convert-hf-to-gguf.py 131 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982
  1. #!/usr/bin/env python3
  2. from __future__ import annotations
  3. import logging
  4. import argparse
  5. import contextlib
  6. import json
  7. import os
  8. import re
  9. import sys
  10. from abc import ABC, abstractmethod
  11. from enum import IntEnum
  12. from pathlib import Path
  13. from hashlib import sha256
  14. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterator, Sequence, TypeVar, cast
  15. import numpy as np
  16. import torch
  17. if TYPE_CHECKING:
  18. from torch import Tensor
  19. if 'NO_LOCAL_GGUF' not in os.environ:
  20. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  21. import gguf
  22. from convert import LlamaHfVocab, permute
  23. logger = logging.getLogger("hf-to-gguf")
  24. ###### MODEL DEFINITIONS ######
  25. class SentencePieceTokenTypes(IntEnum):
  26. NORMAL = 1
  27. UNKNOWN = 2
  28. CONTROL = 3
  29. USER_DEFINED = 4
  30. UNUSED = 5
  31. BYTE = 6
  32. AnyModel = TypeVar("AnyModel", bound="type[Model]")
  33. class Model(ABC):
  34. _model_classes: dict[str, type[Model]] = {}
  35. def __init__(self, dir_model: Path, ftype: int, fname_out: Path, is_big_endian: bool, use_temp_file: bool):
  36. self.dir_model = dir_model
  37. self.ftype = ftype
  38. self.fname_out = fname_out
  39. self.is_big_endian = is_big_endian
  40. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  41. self.use_temp_file = use_temp_file
  42. self.is_safetensors = self._is_model_safetensors()
  43. self.num_parts = Model.count_model_parts(self.dir_model, ".safetensors" if self.is_safetensors else ".bin")
  44. self.part_names = self._get_part_names()
  45. self.hparams = Model.load_hparams(self.dir_model)
  46. self.gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file)
  47. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer"])
  48. @property
  49. @abstractmethod
  50. def model_arch(self) -> gguf.MODEL_ARCH:
  51. pass
  52. def find_hparam(self, keys: Sequence[str], optional: bool = False) -> Any:
  53. key = next((k for k in keys if k in self.hparams), None)
  54. if key is not None:
  55. return self.hparams[key]
  56. if optional:
  57. return None
  58. raise KeyError(f"could not find any of: {keys}")
  59. def set_vocab(self):
  60. self._set_vocab_gpt2()
  61. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  62. for part_name in self.part_names:
  63. logger.info(f"gguf: loading model part '{part_name}'")
  64. ctx: ContextManager[Any]
  65. if self.is_safetensors:
  66. from safetensors import safe_open
  67. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  68. else:
  69. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  70. with ctx as model_part:
  71. for name in model_part.keys():
  72. data = model_part.get_tensor(name) if self.is_safetensors else model_part[name]
  73. yield name, data
  74. def set_gguf_parameters(self):
  75. self.gguf_writer.add_name(self.dir_model.name)
  76. self.gguf_writer.add_block_count(self.block_count)
  77. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  78. self.gguf_writer.add_context_length(n_ctx)
  79. logger.info(f"gguf: context length = {n_ctx}")
  80. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  81. self.gguf_writer.add_embedding_length(n_embd)
  82. logger.info(f"gguf: embedding length = {n_embd}")
  83. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  84. self.gguf_writer.add_feed_forward_length(n_ff)
  85. logger.info(f"gguf: feed forward length = {n_ff}")
  86. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  87. self.gguf_writer.add_head_count(n_head)
  88. logger.info(f"gguf: head count = {n_head}")
  89. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  90. self.gguf_writer.add_head_count_kv(n_head_kv)
  91. logger.info(f"gguf: key-value head count = {n_head_kv}")
  92. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  93. self.gguf_writer.add_rope_freq_base(rope_theta)
  94. logger.info(f"gguf: rope theta = {rope_theta}")
  95. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  96. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  97. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  98. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  99. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  100. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  101. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  102. self.gguf_writer.add_expert_count(n_experts)
  103. logger.info(f"gguf: expert count = {n_experts}")
  104. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  105. self.gguf_writer.add_expert_used_count(n_experts_used)
  106. logger.info(f"gguf: experts used count = {n_experts_used}")
  107. self.gguf_writer.add_file_type(self.ftype)
  108. logger.info(f"gguf: file type = {self.ftype}")
  109. def write_tensors(self):
  110. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  111. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  112. for name, data_torch in self.get_tensors():
  113. # we don't need these
  114. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  115. continue
  116. old_dtype = data_torch.dtype
  117. # convert any unsupported data types to float32
  118. if data_torch.dtype not in (torch.float16, torch.float32):
  119. data_torch = data_torch.to(torch.float32)
  120. data = data_torch.squeeze().numpy()
  121. # map tensor names
  122. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  123. if new_name is None:
  124. raise ValueError(f"Can not map tensor {name!r}")
  125. n_dims = len(data.shape)
  126. data_dtype = data.dtype
  127. # if f32 desired, convert any float16 to float32
  128. if self.ftype == 0 and data_dtype == np.float16:
  129. data = data.astype(np.float32)
  130. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  131. if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")):
  132. data = data.astype(np.float32)
  133. # if f16 desired, convert any float32 2-dim weight tensors to float16
  134. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  135. data = data.astype(np.float16)
  136. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  137. self.gguf_writer.add_tensor(new_name, data)
  138. def write(self):
  139. self.write_tensors()
  140. self.gguf_writer.write_header_to_file()
  141. self.gguf_writer.write_kv_data_to_file()
  142. self.gguf_writer.write_tensors_to_file()
  143. self.gguf_writer.close()
  144. def write_vocab(self):
  145. self.gguf_writer.write_header_to_file()
  146. self.gguf_writer.write_kv_data_to_file()
  147. self.gguf_writer.close()
  148. @staticmethod
  149. def count_model_parts(dir_model: Path, prefix: str) -> int:
  150. num_parts = 0
  151. for filename in os.listdir(dir_model):
  152. if filename.endswith(prefix):
  153. num_parts += 1
  154. return num_parts
  155. @staticmethod
  156. def load_hparams(dir_model):
  157. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  158. return json.load(f)
  159. @classmethod
  160. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  161. assert names
  162. def func(modelcls: type[Model]):
  163. for name in names:
  164. cls._model_classes[name] = modelcls
  165. return modelcls
  166. return func
  167. @classmethod
  168. def from_model_architecture(cls, arch):
  169. try:
  170. return cls._model_classes[arch]
  171. except KeyError:
  172. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  173. def _is_model_safetensors(self) -> bool:
  174. return Model.count_model_parts(self.dir_model, ".safetensors") > 0
  175. def _get_part_names(self):
  176. if self.is_safetensors:
  177. if self.num_parts == 1: # there's only one .safetensors file
  178. return ("model.safetensors",)
  179. return (f"model-{n:05}-of-{self.num_parts:05}.safetensors" for n in range(1, self.num_parts + 1))
  180. if self.num_parts == 1: # there's only one .bin file
  181. return ("pytorch_model.bin",)
  182. return (f"pytorch_model-{n:05}-of-{self.num_parts:05}.bin" for n in range(1, self.num_parts + 1))
  183. # used for GPT-2 BPE and WordPiece vocabs
  184. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  185. tokens: list[str] = []
  186. toktypes: list[int] = []
  187. from transformers import AutoTokenizer
  188. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  189. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  190. assert max(tokenizer.vocab.values()) < vocab_size
  191. tokpre = self.get_vocab_base_pre(tokenizer)
  192. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  193. added_vocab = tokenizer.get_added_vocab()
  194. for i in range(vocab_size):
  195. if i not in reverse_vocab:
  196. tokens.append(f"[PAD{i}]")
  197. toktypes.append(gguf.TokenType.USER_DEFINED)
  198. elif reverse_vocab[i] in added_vocab:
  199. tokens.append(reverse_vocab[i])
  200. if tokenizer.added_tokens_decoder[i].special:
  201. toktypes.append(gguf.TokenType.CONTROL)
  202. else:
  203. toktypes.append(gguf.TokenType.USER_DEFINED)
  204. else:
  205. tokens.append(reverse_vocab[i])
  206. toktypes.append(gguf.TokenType.NORMAL)
  207. return tokens, toktypes, tokpre
  208. # NOTE: this function is generated by convert-hf-to-gguf-update.py
  209. # do not modify it manually!
  210. # ref: https://github.com/ggerganov/llama.cpp/pull/6920
  211. def get_vocab_base_pre(self, tokenizer) -> str:
  212. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  213. # is specific for the BPE pre-tokenizer used by the model
  214. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  215. # use in llama.cpp to implement the same pre-tokenizer
  216. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  217. chktok = tokenizer.encode(chktxt)
  218. chkhsh = sha256(str(chktok).encode()).hexdigest()
  219. logger.debug(f"chktok: {chktok}")
  220. logger.debug(f"chkhsh: {chkhsh}")
  221. res = None
  222. # NOTE: if you get an error here, you need to update the convert-hf-to-gguf-update.py script
  223. # or pull the latest version of the model from Huggingface
  224. # don't edit the hashes manually!
  225. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  226. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  227. res = "llama-bpe"
  228. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  229. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  230. res = "deepseek-llm"
  231. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  232. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  233. res = "deepseek-coder"
  234. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  235. # ref: https://huggingface.co/tiiuae/falcon-7b
  236. res = "falcon"
  237. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  238. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  239. res = "bert-bge"
  240. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  241. # ref: https://huggingface.co/mosaicml/mpt-7b
  242. res = "mpt"
  243. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  244. # ref: https://huggingface.co/bigcode/starcoder2-3b
  245. res = "starcoder"
  246. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  247. # ref: https://huggingface.co/openai-community/gpt2
  248. res = "gpt-2"
  249. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  250. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  251. res = "refact"
  252. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  253. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  254. res = "command-r"
  255. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  256. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  257. res = "olmo"
  258. if res is None:
  259. logger.warning("\n")
  260. logger.warning("**************************************************************************************")
  261. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  262. logger.warning("** There are 2 possible reasons for this:")
  263. logger.warning("** - the model has not been added to convert-hf-to-gguf-update.py yet")
  264. logger.warning("** - the pre-tokenization config has changed upstream")
  265. logger.warning("** Check your model files and convert-hf-to-gguf-update.py and update them accordingly.")
  266. logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
  267. logger.warning("**")
  268. logger.warning(f"** chkhsh: {chkhsh}")
  269. logger.warning("**************************************************************************************")
  270. logger.warning("\n")
  271. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  272. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  273. logger.debug(f"chkhsh: {chkhsh}")
  274. return res
  275. def _set_vocab_gpt2(self) -> None:
  276. tokens, toktypes, tokpre = self.get_vocab_base()
  277. self.gguf_writer.add_tokenizer_model("gpt2")
  278. self.gguf_writer.add_tokenizer_pre(tokpre)
  279. self.gguf_writer.add_token_list(tokens)
  280. self.gguf_writer.add_token_types(toktypes)
  281. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  282. special_vocab.add_to_gguf(self.gguf_writer)
  283. def _set_vocab_qwen(self):
  284. dir_model = self.dir_model
  285. hparams = self.hparams
  286. tokens: list[str] = []
  287. toktypes: list[int] = []
  288. from transformers import AutoTokenizer
  289. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  290. vocab_size = hparams["vocab_size"]
  291. assert max(tokenizer.get_vocab().values()) < vocab_size
  292. tokpre = self.get_vocab_base_pre(tokenizer)
  293. merges = []
  294. vocab = {}
  295. mergeable_ranks = tokenizer.mergeable_ranks
  296. for token, rank in mergeable_ranks.items():
  297. vocab[QwenModel.token_bytes_to_string(token)] = rank
  298. if len(token) == 1:
  299. continue
  300. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  301. assert len(merged) == 2
  302. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  303. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  304. added_vocab = tokenizer.special_tokens
  305. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in (vocab | added_vocab).items()}
  306. for i in range(vocab_size):
  307. if i not in reverse_vocab:
  308. tokens.append(f"[PAD{i}]")
  309. toktypes.append(gguf.TokenType.USER_DEFINED)
  310. elif reverse_vocab[i] in added_vocab:
  311. tokens.append(reverse_vocab[i])
  312. toktypes.append(gguf.TokenType.CONTROL)
  313. else:
  314. tokens.append(reverse_vocab[i])
  315. toktypes.append(gguf.TokenType.NORMAL)
  316. self.gguf_writer.add_tokenizer_model("gpt2")
  317. self.gguf_writer.add_tokenizer_pre(tokpre)
  318. self.gguf_writer.add_token_list(tokens)
  319. self.gguf_writer.add_token_types(toktypes)
  320. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  321. special_vocab.merges = merges
  322. # only add special tokens when they were not already loaded from config.json
  323. if len(special_vocab.special_token_ids) == 0:
  324. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  325. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  326. # this one is usually not in config.json anyway
  327. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  328. special_vocab.add_to_gguf(self.gguf_writer)
  329. def _set_vocab_sentencepiece(self):
  330. from sentencepiece import SentencePieceProcessor
  331. tokenizer_path = self.dir_model / 'tokenizer.model'
  332. tokens: list[bytes] = []
  333. scores: list[float] = []
  334. toktypes: list[int] = []
  335. if not tokenizer_path.is_file():
  336. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  337. tokenizer = SentencePieceProcessor(str(tokenizer_path))
  338. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  339. for token_id in range(tokenizer.vocab_size()):
  340. piece = tokenizer.id_to_piece(token_id)
  341. text = piece.encode("utf-8")
  342. score = tokenizer.get_score(token_id)
  343. toktype = SentencePieceTokenTypes.NORMAL
  344. if tokenizer.is_unknown(token_id):
  345. toktype = SentencePieceTokenTypes.UNKNOWN
  346. elif tokenizer.is_control(token_id):
  347. toktype = SentencePieceTokenTypes.CONTROL
  348. elif tokenizer.is_unused(token_id):
  349. toktype = SentencePieceTokenTypes.UNUSED
  350. elif tokenizer.is_byte(token_id):
  351. toktype = SentencePieceTokenTypes.BYTE
  352. tokens.append(text)
  353. scores.append(score)
  354. toktypes.append(toktype)
  355. added_tokens_file = self.dir_model / 'added_tokens.json'
  356. if added_tokens_file.is_file():
  357. with open(added_tokens_file, "r", encoding="utf-8") as f:
  358. added_tokens_json = json.load(f)
  359. for key in added_tokens_json:
  360. key = key.encode("utf-8")
  361. if key not in tokens:
  362. tokens.append(key)
  363. scores.append(-1000.0)
  364. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  365. if vocab_size > len(tokens):
  366. pad_count = vocab_size - len(tokens)
  367. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  368. for i in range(1, pad_count + 1):
  369. tokens.append(f"[PAD{i}]")
  370. scores.append(-1000.0)
  371. toktypes.append(SentencePieceTokenTypes.UNUSED)
  372. assert len(tokens) == vocab_size
  373. self.gguf_writer.add_tokenizer_model("llama")
  374. self.gguf_writer.add_tokenizer_pre("default")
  375. self.gguf_writer.add_token_list(tokens)
  376. self.gguf_writer.add_token_scores(scores)
  377. self.gguf_writer.add_token_types(toktypes)
  378. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  379. special_vocab.add_to_gguf(self.gguf_writer)
  380. def _set_vocab_llama_hf(self):
  381. vocab = LlamaHfVocab(self.dir_model)
  382. tokens = []
  383. scores = []
  384. toktypes = []
  385. for text, score, toktype in vocab.all_tokens():
  386. tokens.append(text)
  387. scores.append(score)
  388. toktypes.append(toktype)
  389. assert len(tokens) == vocab.vocab_size
  390. self.gguf_writer.add_tokenizer_model("llama")
  391. self.gguf_writer.add_tokenizer_pre("default")
  392. self.gguf_writer.add_token_list(tokens)
  393. self.gguf_writer.add_token_scores(scores)
  394. self.gguf_writer.add_token_types(toktypes)
  395. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  396. special_vocab.add_to_gguf(self.gguf_writer)
  397. @Model.register("GPTNeoXForCausalLM")
  398. class GPTNeoXModel(Model):
  399. model_arch = gguf.MODEL_ARCH.GPTNEOX
  400. def set_gguf_parameters(self):
  401. block_count = self.hparams["num_hidden_layers"]
  402. self.gguf_writer.add_name(self.dir_model.name)
  403. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  404. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  405. self.gguf_writer.add_block_count(block_count)
  406. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  407. self.gguf_writer.add_rope_dimension_count(
  408. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  409. )
  410. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  411. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  412. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  413. @Model.register("BloomForCausalLM")
  414. class BloomModel(Model):
  415. model_arch = gguf.MODEL_ARCH.BLOOM
  416. def set_gguf_parameters(self):
  417. self.gguf_writer.add_name("Bloom")
  418. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  419. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  420. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  421. self.gguf_writer.add_embedding_length(n_embed)
  422. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  423. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  424. self.gguf_writer.add_head_count(n_head)
  425. self.gguf_writer.add_head_count_kv(n_head)
  426. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  427. self.gguf_writer.add_file_type(self.ftype)
  428. def write_tensors(self):
  429. block_count = self.hparams["n_layer"]
  430. tensors = dict(self.get_tensors())
  431. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  432. has_lm_head = True
  433. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  434. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  435. for name, data_torch in tensors.items():
  436. if "lm_head.weight" not in tensors.keys() and "output.weight" not in tensors.keys():
  437. has_lm_head = False
  438. name = re.sub(r'transformer\.', '', name)
  439. old_dtype = data_torch.dtype
  440. # convert any unsupported data types to float32
  441. if data_torch.dtype not in (torch.float16, torch.float32):
  442. data_torch = data_torch.to(torch.float32)
  443. data = data_torch.squeeze().numpy()
  444. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  445. # Map bloom-style qkv_linear to gpt-style qkv_linear
  446. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  447. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  448. qkv_weights = data.reshape((n_head, 3, n_embed // n_head, n_embed))
  449. data = np.concatenate(
  450. (
  451. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  452. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  453. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  454. ),
  455. axis=0,
  456. )
  457. logger.info("re-format attention.linear_qkv.weight")
  458. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  459. qkv_bias = data.reshape((n_head, 3, n_embed // n_head))
  460. data = np.concatenate(
  461. (
  462. qkv_bias[:, 0, :].reshape((n_embed,)),
  463. qkv_bias[:, 1, :].reshape((n_embed,)),
  464. qkv_bias[:, 2, :].reshape((n_embed,)),
  465. ),
  466. axis=0,
  467. )
  468. logger.info("re-format attention.linear_qkv.bias")
  469. # map tensor names
  470. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  471. if new_name is None:
  472. raise ValueError(f"Can not map tensor {name!r}")
  473. n_dims = len(data.shape)
  474. data_dtype = data.dtype
  475. # if f32 desired, convert any float16 to float32
  476. if self.ftype == 0 and data_dtype == np.float16:
  477. data = data.astype(np.float32)
  478. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  479. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  480. data = data.astype(np.float32)
  481. # if f16 desired, convert any float32 2-dim weight tensors to float16
  482. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  483. data = data.astype(np.float16)
  484. logger.info(f"=> {new_name}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  485. self.gguf_writer.add_tensor(new_name, data)
  486. if not has_lm_head and name == "word_embeddings.weight":
  487. self.gguf_writer.add_tensor("output.weight", data)
  488. logger.info(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  489. @Model.register("MPTForCausalLM")
  490. class MPTModel(Model):
  491. model_arch = gguf.MODEL_ARCH.MPT
  492. def set_vocab(self):
  493. try:
  494. self._set_vocab_gpt2()
  495. except Exception:
  496. # Fallback for SEA-LION model
  497. self._set_vocab_sentencepiece()
  498. self.gguf_writer.add_add_bos_token(False)
  499. self.gguf_writer.add_pad_token_id(3)
  500. self.gguf_writer.add_eos_token_id(1)
  501. self.gguf_writer.add_unk_token_id(0)
  502. def set_gguf_parameters(self):
  503. block_count = self.hparams["n_layers"]
  504. self.gguf_writer.add_name(self.dir_model.name)
  505. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  506. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  507. self.gguf_writer.add_block_count(block_count)
  508. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  509. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  510. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  511. self.gguf_writer.add_head_count_kv(kv_n_heads)
  512. self.gguf_writer.add_layer_norm_eps(1e-5)
  513. if self.hparams["attn_config"]["clip_qkv"] is not None:
  514. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  515. if self.hparams["attn_config"]["alibi"]:
  516. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  517. else:
  518. self.gguf_writer.add_max_alibi_bias(0.0)
  519. def write_tensors(self):
  520. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers"))
  521. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  522. for name, data_torch in self.get_tensors():
  523. # we don't need these
  524. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  525. continue
  526. old_dtype = data_torch.dtype
  527. # convert any unsupported data types to float32
  528. if data_torch.dtype not in (torch.float16, torch.float32):
  529. data_torch = data_torch.to(torch.float32)
  530. data = data_torch.squeeze().numpy()
  531. # map tensor names
  532. if "scales" in name:
  533. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  534. if new_name is not None:
  535. new_name = new_name.replace("scales", "act.scales")
  536. else:
  537. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  538. if new_name is None:
  539. raise ValueError(f"Can not map tensor {name!r}")
  540. n_dims = len(data.shape)
  541. data_dtype = data.dtype
  542. # if f32 desired, convert any float16 to float32
  543. if self.ftype == 0 and data_dtype == np.float16:
  544. data = data.astype(np.float32)
  545. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  546. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  547. data = data.astype(np.float32)
  548. # if f16 desired, convert any float32 2-dim weight tensors to float16
  549. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  550. data = data.astype(np.float16)
  551. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  552. self.gguf_writer.add_tensor(new_name, data)
  553. @Model.register("OrionForCausalLM")
  554. class OrionModel(Model):
  555. model_arch = gguf.MODEL_ARCH.ORION
  556. def set_vocab(self):
  557. self._set_vocab_sentencepiece()
  558. def set_gguf_parameters(self):
  559. block_count = self.hparams["num_hidden_layers"]
  560. head_count = self.hparams["num_attention_heads"]
  561. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  562. hf_repo = self.hparams.get("_name_or_path", "")
  563. ctx_length = 0
  564. if "max_sequence_length" in self.hparams:
  565. ctx_length = self.hparams["max_sequence_length"]
  566. elif "max_position_embeddings" in self.hparams:
  567. ctx_length = self.hparams["max_position_embeddings"]
  568. elif "model_max_length" in self.hparams:
  569. ctx_length = self.hparams["model_max_length"]
  570. else:
  571. raise ValueError("gguf: can not find ctx length parameter.")
  572. self.gguf_writer.add_file_type(self.ftype)
  573. self.gguf_writer.add_name(self.dir_model.name)
  574. self.gguf_writer.add_source_hf_repo(hf_repo)
  575. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  576. self.gguf_writer.add_context_length(ctx_length)
  577. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  578. self.gguf_writer.add_block_count(block_count)
  579. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  580. self.gguf_writer.add_head_count(head_count)
  581. self.gguf_writer.add_head_count_kv(head_count_kv)
  582. # note: config provides rms norm but it is actually layer norm
  583. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  584. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  585. def write_tensors(self):
  586. # Collect tensors from generator object
  587. model_kv = dict(self.get_tensors())
  588. block_count = self.hparams["num_hidden_layers"]
  589. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  590. for name, data_torch in model_kv.items():
  591. # we don't need these
  592. if name.endswith(".rotary_emb.inv_freq"):
  593. continue
  594. old_dtype = data_torch.dtype
  595. # convert any unsupported data types to float32
  596. if data_torch.dtype not in (torch.float16, torch.float32):
  597. data_torch = data_torch.to(torch.float32)
  598. data = data_torch.squeeze().numpy()
  599. # map tensor names
  600. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  601. if new_name is None:
  602. raise ValueError(f"Can not map tensor {name!r}")
  603. n_dims = len(data.shape)
  604. data_dtype = data.dtype
  605. # if f32 desired, convert any float16 to float32
  606. if self.ftype == 0 and data_dtype == np.float16:
  607. data = data.astype(np.float32)
  608. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  609. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  610. data = data.astype(np.float32)
  611. # if f16 desired, convert any float32 2-dim weight tensors to float16
  612. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  613. data = data.astype(np.float16)
  614. logger.info(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  615. self.gguf_writer.add_tensor(new_name, data)
  616. @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  617. class BaichuanModel(Model):
  618. model_arch = gguf.MODEL_ARCH.BAICHUAN
  619. def set_vocab(self):
  620. self._set_vocab_sentencepiece()
  621. def set_gguf_parameters(self):
  622. block_count = self.hparams["num_hidden_layers"]
  623. head_count = self.hparams["num_attention_heads"]
  624. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  625. hf_repo = self.hparams.get("_name_or_path", "")
  626. ctx_length = 0
  627. if "max_sequence_length" in self.hparams:
  628. ctx_length = self.hparams["max_sequence_length"]
  629. elif "max_position_embeddings" in self.hparams:
  630. ctx_length = self.hparams["max_position_embeddings"]
  631. elif "model_max_length" in self.hparams:
  632. ctx_length = self.hparams["model_max_length"]
  633. else:
  634. raise ValueError("gguf: can not find ctx length parameter.")
  635. self.gguf_writer.add_name(self.dir_model.name)
  636. self.gguf_writer.add_source_hf_repo(hf_repo)
  637. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  638. self.gguf_writer.add_context_length(ctx_length)
  639. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  640. self.gguf_writer.add_block_count(block_count)
  641. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  642. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  643. self.gguf_writer.add_head_count(head_count)
  644. self.gguf_writer.add_head_count_kv(head_count_kv)
  645. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  646. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  647. if self.hparams["rope_scaling"].get("type") == "linear":
  648. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  649. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  650. def write_tensors(self):
  651. # Collect tensors from generator object
  652. model_kv = dict(self.get_tensors())
  653. block_count = self.hparams["num_hidden_layers"]
  654. head_count = self.hparams["num_attention_heads"]
  655. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  656. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  657. for i in range(block_count):
  658. if (w := model_kv.get(f"model.layers.{i}.self_attn.W_pack.weight")) is not None:
  659. logger.info(f"Unpacking and permuting layer {i}")
  660. model_kv[f"model.layers.{i}.self_attn.q_proj.weight"] = \
  661. self._reverse_hf_permute_part(w, 0, head_count, head_count)
  662. model_kv[f"model.layers.{i}.self_attn.k_proj.weight"] = \
  663. self._reverse_hf_permute_part(w, 1, head_count, head_count_kv)
  664. model_kv[f"model.layers.{i}.self_attn.v_proj.weight"] = \
  665. self._reverse_hf_part(w, 2)
  666. del model_kv[f"model.layers.{i}.self_attn.W_pack.weight"]
  667. for name, data_torch in model_kv.items():
  668. # we don't need these
  669. if name.endswith(".rotary_emb.inv_freq"):
  670. continue
  671. old_dtype = data_torch.dtype
  672. # convert any unsupported data types to float32
  673. if data_torch.dtype not in (torch.float16, torch.float32):
  674. data_torch = data_torch.to(torch.float32)
  675. data = data_torch.squeeze().numpy()
  676. # map tensor names
  677. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  678. if new_name is None:
  679. raise ValueError(f"Can not map tensor {name!r}")
  680. n_dims = len(data.shape)
  681. data_dtype = data.dtype
  682. # if f32 desired, convert any float16 to float32
  683. if self.ftype == 0 and data_dtype == np.float16:
  684. data = data.astype(np.float32)
  685. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  686. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  687. data = data.astype(np.float32)
  688. # if f16 desired, convert any float32 2-dim weight tensors to float16
  689. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  690. data = data.astype(np.float16)
  691. logger.info(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  692. self.gguf_writer.add_tensor(new_name, data)
  693. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  694. if n_kv_head is not None and n_head != n_kv_head:
  695. n_head //= n_kv_head
  696. return (
  697. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  698. .swapaxes(1, 2)
  699. .reshape(weights.shape)
  700. )
  701. def _reverse_hf_permute_part(
  702. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  703. ) -> Tensor:
  704. r = weights.shape[0] // 3
  705. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  706. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  707. r = weights.shape[0] // 3
  708. return weights[r * n_part:r * n_part + r, ...]
  709. @Model.register("XverseForCausalLM")
  710. class XverseModel(Model):
  711. model_arch = gguf.MODEL_ARCH.XVERSE
  712. def set_vocab(self):
  713. assert (self.dir_model / "tokenizer.json").is_file()
  714. dir_model = self.dir_model
  715. hparams = self.hparams
  716. tokens: list[bytearray] = []
  717. toktypes: list[int] = []
  718. from transformers import AutoTokenizer
  719. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  720. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  721. assert max(tokenizer.vocab.values()) < vocab_size
  722. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  723. added_vocab = tokenizer.get_added_vocab()
  724. for token_id in range(vocab_size):
  725. token_text = reverse_vocab[token_id].encode('utf-8')
  726. # replace "\x00" to string with length > 0
  727. if token_text == b"\x00":
  728. toktype = gguf.TokenType.BYTE # special
  729. token_text = f"<{token_text}>".encode('utf-8')
  730. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  731. toktype = gguf.TokenType.BYTE # special
  732. elif reverse_vocab[token_id] in added_vocab:
  733. if tokenizer.added_tokens_decoder[token_id].special:
  734. toktype = gguf.TokenType.CONTROL
  735. else:
  736. toktype = gguf.TokenType.USER_DEFINED
  737. else:
  738. toktype = gguf.TokenType.NORMAL
  739. tokens.append(token_text)
  740. toktypes.append(toktype)
  741. self.gguf_writer.add_tokenizer_model("llama")
  742. self.gguf_writer.add_tokenizer_pre("default")
  743. self.gguf_writer.add_token_list(tokens)
  744. self.gguf_writer.add_token_types(toktypes)
  745. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  746. special_vocab.add_to_gguf(self.gguf_writer)
  747. def set_gguf_parameters(self):
  748. block_count = self.hparams["num_hidden_layers"]
  749. head_count = self.hparams["num_attention_heads"]
  750. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  751. hf_repo = self.hparams.get("_name_or_path", "")
  752. ctx_length = 0
  753. if "max_sequence_length" in self.hparams:
  754. ctx_length = self.hparams["max_sequence_length"]
  755. elif "max_position_embeddings" in self.hparams:
  756. ctx_length = self.hparams["max_position_embeddings"]
  757. elif "model_max_length" in self.hparams:
  758. ctx_length = self.hparams["model_max_length"]
  759. else:
  760. raise ValueError("gguf: can not find ctx length parameter.")
  761. self.gguf_writer.add_name(self.dir_model.name)
  762. self.gguf_writer.add_source_hf_repo(hf_repo)
  763. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  764. self.gguf_writer.add_context_length(ctx_length)
  765. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  766. self.gguf_writer.add_block_count(block_count)
  767. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  768. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  769. self.gguf_writer.add_head_count(head_count)
  770. self.gguf_writer.add_head_count_kv(head_count_kv)
  771. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  772. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  773. if self.hparams["rope_scaling"].get("type") == "linear":
  774. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  775. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  776. def write_tensors(self):
  777. # Collect tensors from generator object
  778. model_kv = dict(self.get_tensors())
  779. block_count = self.hparams["num_hidden_layers"]
  780. head_count = self.hparams["num_attention_heads"]
  781. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  782. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  783. for name, data_torch in model_kv.items():
  784. # we don't need these
  785. if name.endswith(".rotary_emb.inv_freq"):
  786. continue
  787. old_dtype = data_torch.dtype
  788. # convert any unsupported data types to float32
  789. if data_torch.dtype not in (torch.float16, torch.float32):
  790. data_torch = data_torch.to(torch.float32)
  791. # HF models permute some of the tensors, so we need to undo that
  792. if name.endswith(("q_proj.weight")):
  793. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  794. if name.endswith(("k_proj.weight")):
  795. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  796. data = data_torch.squeeze().numpy()
  797. # map tensor names
  798. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  799. if new_name is None:
  800. raise ValueError(f"Can not map tensor {name!r}")
  801. n_dims = len(data.shape)
  802. data_dtype = data.dtype
  803. # if f32 desired, convert any float16 to float32
  804. if self.ftype == 0 and data_dtype == np.float16:
  805. data = data.astype(np.float32)
  806. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  807. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  808. data = data.astype(np.float32)
  809. # if f16 desired, convert any float32 2-dim weight tensors to float16
  810. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  811. data = data.astype(np.float16)
  812. logger.info(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  813. self.gguf_writer.add_tensor(new_name, data)
  814. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  815. if n_kv_head is not None and n_head != n_kv_head:
  816. n_head //= n_kv_head
  817. return (
  818. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  819. .swapaxes(1, 2)
  820. .reshape(weights.shape)
  821. )
  822. @Model.register("FalconForCausalLM", "RWForCausalLM")
  823. class FalconModel(Model):
  824. model_arch = gguf.MODEL_ARCH.FALCON
  825. def set_gguf_parameters(self):
  826. block_count = self.hparams.get("num_hidden_layers")
  827. if block_count is None:
  828. block_count = self.hparams["n_layer"] # old name
  829. n_head = self.hparams.get("num_attention_heads")
  830. if n_head is None:
  831. n_head = self.hparams["n_head"] # old name
  832. n_head_kv = self.hparams.get("num_kv_heads")
  833. if n_head_kv is None:
  834. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  835. self.gguf_writer.add_name("Falcon")
  836. self.gguf_writer.add_context_length(2048) # not in config.json
  837. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  838. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  839. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  840. self.gguf_writer.add_block_count(block_count)
  841. self.gguf_writer.add_head_count(n_head)
  842. self.gguf_writer.add_head_count_kv(n_head_kv)
  843. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  844. self.gguf_writer.add_file_type(self.ftype)
  845. def write_tensors(self):
  846. block_count = self.hparams.get("num_hidden_layers")
  847. if block_count is None:
  848. block_count = self.hparams["n_layer"] # old name
  849. n_head = self.hparams.get("num_attention_heads")
  850. if n_head is None:
  851. n_head = self.hparams["n_head"] # old name
  852. n_head_kv = self.hparams.get("num_kv_heads")
  853. if n_head_kv is None:
  854. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  855. head_dim = self.hparams["hidden_size"] // n_head
  856. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  857. for name, data_torch in self.get_tensors():
  858. old_dtype = data_torch.dtype
  859. # convert any unsupported data types to float32
  860. if data_torch.dtype not in (torch.float16, torch.float32):
  861. data_torch = data_torch.to(torch.float32)
  862. # QKV tensor transform
  863. # The original query_key_value tensor contains n_head_kv "kv groups",
  864. # each consisting of n_head/n_head_kv query weights followed by one key
  865. # and one value weight (shared by all query heads in the kv group).
  866. # This layout makes it a big pain to work with in GGML.
  867. # So we rearrange them here,, so that we have n_head query weights
  868. # followed by n_head_kv key weights followed by n_head_kv value weights,
  869. # in contiguous fashion.
  870. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  871. if "query_key_value" in name:
  872. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  873. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  874. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  875. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  876. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  877. data = data_torch.squeeze().numpy()
  878. # map tensor names
  879. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  880. if new_name is None:
  881. raise ValueError(f"Can not map tensor {name!r}")
  882. n_dims = len(data.shape)
  883. data_dtype = data.dtype
  884. # if f32 desired, convert any float16 to float32
  885. if self.ftype == 0 and data_dtype == np.float16:
  886. data = data.astype(np.float32)
  887. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  888. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  889. data = data.astype(np.float32)
  890. # if f16 desired, convert any float32 2-dim weight tensors to float16
  891. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  892. data = data.astype(np.float16)
  893. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  894. self.gguf_writer.add_tensor(new_name, data)
  895. @Model.register("GPTBigCodeForCausalLM")
  896. class StarCoderModel(Model):
  897. model_arch = gguf.MODEL_ARCH.STARCODER
  898. def set_gguf_parameters(self):
  899. block_count = self.hparams["n_layer"]
  900. self.gguf_writer.add_name("StarCoder")
  901. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  902. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  903. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  904. self.gguf_writer.add_block_count(block_count)
  905. self.gguf_writer.add_head_count(self.hparams["n_head"])
  906. self.gguf_writer.add_head_count_kv(1)
  907. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  908. self.gguf_writer.add_file_type(self.ftype)
  909. @Model.register("GPTRefactForCausalLM")
  910. class RefactModel(Model):
  911. model_arch = gguf.MODEL_ARCH.REFACT
  912. def set_gguf_parameters(self):
  913. hidden_dim = self.hparams["n_embd"]
  914. inner_dim = 4 * hidden_dim
  915. hidden_dim = int(2 * inner_dim / 3)
  916. multiple_of = 256
  917. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  918. block_count = self.hparams["n_layer"]
  919. self.gguf_writer.add_name("Refact")
  920. # refact uses Alibi. So this is from config.json which might be used by training.
  921. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  922. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  923. self.gguf_writer.add_feed_forward_length(ff_dim)
  924. self.gguf_writer.add_block_count(block_count)
  925. self.gguf_writer.add_head_count(self.hparams["n_head"])
  926. self.gguf_writer.add_head_count_kv(1)
  927. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  928. self.gguf_writer.add_file_type(self.ftype)
  929. def write_tensors(self):
  930. hidden_dim = self.hparams["n_embd"]
  931. inner_dim = 4 * hidden_dim
  932. hidden_dim = int(2 * inner_dim / 3)
  933. multiple_of = 256
  934. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  935. n_head = self.hparams["n_head"]
  936. n_head_kv = 1
  937. head_dim = self.hparams["n_embd"] // n_head
  938. block_count = self.hparams["n_layer"]
  939. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  940. tensors = dict(self.get_tensors())
  941. for i in range(block_count):
  942. if (w := tensors.get(f"transformer.h.{i}.attn.kv.weight")) is not None:
  943. tensors[f"model.layers.{i}.self_attn.k_proj.weight"] = w[:n_head_kv * head_dim]
  944. tensors[f"model.layers.{i}.self_attn.v_proj.weight"] = w[n_head_kv * head_dim:]
  945. del tensors[f"transformer.h.{i}.attn.kv.weight"]
  946. if (w := tensors.get(f"transformer.h.{i}.attn.q.weight")) is not None:
  947. tensors[f"model.layers.{i}.self_attn.q_proj.weight"] = w
  948. del tensors[f"transformer.h.{i}.attn.q.weight"]
  949. if (w := tensors.get(f"transformer.h.{i}.mlp.gate_up_proj.weight")) is not None:
  950. tensors[f"model.layers.{i}.mlp.gate_proj.weight"] = w[:ff_dim]
  951. tensors[f"model.layers.{i}.mlp.up_proj.weight"] = w[ff_dim:]
  952. del tensors[f"transformer.h.{i}.mlp.gate_up_proj.weight"]
  953. for name, data_torch in tensors.items():
  954. old_dtype = data_torch.dtype
  955. # convert any unsupported data types to float32
  956. if data_torch.dtype not in (torch.float16, torch.float32):
  957. data_torch = data_torch.to(torch.float32)
  958. data = data_torch.squeeze().numpy()
  959. # map tensor names
  960. new_name = tensor_map.get_name(name, try_suffixes=(".weight",))
  961. if new_name is None:
  962. raise ValueError(f"Can not map tensor {name!r}")
  963. n_dims = len(data.shape)
  964. data_dtype = data.dtype
  965. # if f32 desired, convert any float16 to float32
  966. if self.ftype == 0 and data_dtype == np.float16:
  967. data = data.astype(np.float32)
  968. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  969. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  970. data = data.astype(np.float32)
  971. # if f16 desired, convert any float32 2-dim weight tensors to float16
  972. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  973. data = data.astype(np.float16)
  974. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  975. self.gguf_writer.add_tensor(new_name, data)
  976. @Model.register("PersimmonForCausalLM")
  977. class PersimmonModel(Model):
  978. model_arch = gguf.MODEL_ARCH.PERSIMMON
  979. def set_gguf_parameters(self):
  980. block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
  981. head_count = self.hparams["num_attention_heads"]
  982. head_count_kv = head_count
  983. hidden_size = self.hparams["hidden_size"]
  984. self.gguf_writer.add_name('persimmon-8b-chat')
  985. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  986. self.gguf_writer.add_embedding_length(hidden_size)
  987. self.gguf_writer.add_block_count(block_count)
  988. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  989. # NOTE: not sure about this change - why does the model not have a rope dimension count when it is smaller
  990. # than the head size?
  991. # ref: https://github.com/ggerganov/llama.cpp/pull/4889
  992. # self.gguf_writer.add_rope_dimension_count(hidden_size // head_count)
  993. self.gguf_writer.add_rope_dimension_count(hidden_size // head_count // 2)
  994. self.gguf_writer.add_head_count(head_count)
  995. self.gguf_writer.add_head_count_kv(head_count_kv)
  996. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  997. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  998. def set_vocab(self):
  999. self._set_vocab_sentencepiece()
  1000. # self.gguf_writer.add_bos_token_id(71013)
  1001. # self.gguf_writer.add_eos_token_id(71013)
  1002. def write_tensors(self):
  1003. block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
  1004. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1005. for name, data_torch in self.get_tensors():
  1006. if name.endswith(".self_attention.rotary_emb.inv_freq"):
  1007. continue
  1008. old_dtype = data_torch.dtype
  1009. # TODO: FP16 conversion produces garbage outputs. (Q8_0 does not, so..?)
  1010. data = data_torch.to(torch.float32).squeeze().numpy()
  1011. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1012. if new_name is None:
  1013. raise ValueError(f"Can not map tensor {name!r}")
  1014. n_dims = len(data.shape)
  1015. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1016. self.gguf_writer.add_tensor(new_name, data)
  1017. @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1018. class StableLMModel(Model):
  1019. model_arch = gguf.MODEL_ARCH.STABLELM
  1020. def set_vocab(self):
  1021. if (self.dir_model / "tokenizer.json").is_file():
  1022. self._set_vocab_gpt2()
  1023. else:
  1024. # StableLM 2 1.6B uses a vocab in a similar format to Qwen's vocab
  1025. self._set_vocab_qwen()
  1026. def set_gguf_parameters(self):
  1027. hparams = self.hparams
  1028. block_count = hparams["num_hidden_layers"]
  1029. self.gguf_writer.add_name(self.dir_model.name)
  1030. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1031. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1032. self.gguf_writer.add_block_count(block_count)
  1033. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1034. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1035. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1036. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1037. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1038. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1039. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1040. def write_tensors(self):
  1041. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1042. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1043. n_head = self.hparams.get("num_attention_heads")
  1044. n_kv_head = self.hparams.get("num_key_value_heads")
  1045. q_norms = dict()
  1046. k_norms = dict()
  1047. for name, data_torch in self.get_tensors():
  1048. # we don't need these
  1049. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  1050. continue
  1051. old_dtype = data_torch.dtype
  1052. # convert any unsupported data types to float32
  1053. if data_torch.dtype not in (torch.float16, torch.float32):
  1054. data_torch = data_torch.to(torch.float32)
  1055. data = data_torch.squeeze().numpy()
  1056. n_dims = len(data.shape)
  1057. if name.find("q_layernorm.norms") != -1:
  1058. q_norms[name] = data
  1059. if len(q_norms) >= (block_count * n_head):
  1060. self._stack_qk_norm(block_count, name, tensor_map, n_head, q_norms, n_dims, layer_name="q_layernorm")
  1061. continue
  1062. if name.find("k_layernorm.norms") != -1:
  1063. k_norms[name] = data
  1064. if len(k_norms) >= (block_count * n_kv_head):
  1065. self._stack_qk_norm(block_count, name, tensor_map, n_kv_head, k_norms, n_dims, layer_name="k_layernorm")
  1066. continue
  1067. # map tensor names
  1068. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1069. if new_name is None:
  1070. raise ValueError(f"Can not map tensor {name!r}")
  1071. n_dims = len(data.shape)
  1072. data_dtype = data.dtype
  1073. # if f32 desired, convert any float16 to float32
  1074. if self.ftype == 0 and data_dtype == np.float16:
  1075. data = data.astype(np.float32)
  1076. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1077. if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")):
  1078. data = data.astype(np.float32)
  1079. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1080. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and not new_name.endswith("_norm.weight") and n_dims == 2:
  1081. data = data.astype(np.float16)
  1082. logger.debug(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1083. self.gguf_writer.add_tensor(new_name, data)
  1084. def _stack_qk_norm(self, block_count, name, tensor_map, n_head, norms, n_dims, layer_name="q_layernorm"):
  1085. for bid in range(block_count):
  1086. datas = []
  1087. for xid in range(n_head):
  1088. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1089. datas.append(norms[ename])
  1090. del norms[ename]
  1091. data = np.stack(datas, axis=0)
  1092. data_dtype = data.dtype
  1093. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1094. new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
  1095. if new_name is None:
  1096. raise ValueError(f"Can not map tensor {name!r}")
  1097. if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")):
  1098. data = data.astype(np.float32)
  1099. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1100. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and not new_name.endswith("_norm.weight") and n_dims == 2:
  1101. data = data.astype(np.float16)
  1102. logger.debug(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
  1103. self.gguf_writer.add_tensor(new_name, data)
  1104. @Model.register("LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
  1105. class LlamaModel(Model):
  1106. model_arch = gguf.MODEL_ARCH.LLAMA
  1107. def set_vocab(self):
  1108. try:
  1109. self. _set_vocab_sentencepiece()
  1110. except FileNotFoundError:
  1111. try:
  1112. self._set_vocab_llama_hf()
  1113. except (FileNotFoundError, TypeError):
  1114. # Llama 3
  1115. self._set_vocab_gpt2()
  1116. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1117. if self.hparams.get("vocab_size", 32000) == 32016:
  1118. special_vocab = gguf.SpecialVocab(
  1119. self.dir_model, load_merges=False,
  1120. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1121. )
  1122. special_vocab._set_special_token("prefix", 32007)
  1123. special_vocab._set_special_token("suffix", 32008)
  1124. special_vocab._set_special_token("middle", 32009)
  1125. special_vocab._set_special_token("eot", 32010)
  1126. special_vocab.add_to_gguf(self.gguf_writer)
  1127. def set_gguf_parameters(self):
  1128. super().set_gguf_parameters()
  1129. hparams = self.hparams
  1130. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1131. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  1132. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1133. if self.hparams["rope_scaling"].get("type") == "linear":
  1134. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1135. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1136. # Same as super class, but permuting q_proj, k_proj
  1137. def write_tensors(self):
  1138. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1139. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1140. n_head = self.hparams.get("num_attention_heads")
  1141. n_kv_head = self.hparams.get("num_key_value_heads")
  1142. n_experts = self.hparams.get("num_local_experts")
  1143. experts = dict()
  1144. for name, data_torch in self.get_tensors():
  1145. # we don't need these
  1146. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  1147. continue
  1148. old_dtype = data_torch.dtype
  1149. # convert any unsupported data types to float32
  1150. if data_torch.dtype not in (torch.float16, torch.float32):
  1151. data_torch = data_torch.to(torch.float32)
  1152. data = data_torch.numpy()
  1153. if name.endswith("q_proj.weight"):
  1154. data = permute(data, n_head, n_head)
  1155. if name.endswith("k_proj.weight"):
  1156. data = permute(data, n_head, n_kv_head)
  1157. data = data.squeeze()
  1158. # process the experts separately
  1159. if name.find("block_sparse_moe.experts") != -1:
  1160. experts[name] = data
  1161. if len(experts) >= n_experts:
  1162. # merge the experts into a single 3d tensor
  1163. for bid in range(block_count):
  1164. for wid in range(1, 4):
  1165. full = True
  1166. for xid in range(n_experts):
  1167. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.w{wid}.weight"
  1168. if ename not in experts:
  1169. full = False
  1170. break
  1171. if not full:
  1172. continue
  1173. datas = []
  1174. for xid in range(n_experts):
  1175. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.w{wid}.weight"
  1176. datas.append(experts[ename])
  1177. del experts[ename]
  1178. data = np.stack(datas, axis=0)
  1179. data_dtype = data.dtype
  1180. if self.ftype == 0 and data_dtype == np.float16:
  1181. data = data.astype(np.float32)
  1182. if self.ftype == 1 and data_dtype == np.float32:
  1183. data = data.astype(np.float16)
  1184. merged_name = f"layers.{bid}.feed_forward.experts.w{wid}.weight"
  1185. new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
  1186. if new_name is None:
  1187. raise ValueError(f"Can not map tensor {name!r}")
  1188. logger.info(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
  1189. self.gguf_writer.add_tensor(new_name, data)
  1190. continue
  1191. # map tensor names
  1192. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1193. if new_name is None:
  1194. raise ValueError(f"Can not map tensor {name!r}")
  1195. n_dims = len(data.shape)
  1196. data_dtype = data.dtype
  1197. # if f32 desired, convert any float16 to float32
  1198. if self.ftype == 0 and data_dtype == np.float16:
  1199. data = data.astype(np.float32)
  1200. # 1d tensors need to be converted to float32
  1201. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1202. data = data.astype(np.float32)
  1203. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1204. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1205. data = data.astype(np.float16)
  1206. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1207. self.gguf_writer.add_tensor(new_name, data)
  1208. if len(experts) > 0:
  1209. raise ValueError(f"Unprocessed experts: {experts.keys()}")
  1210. @Model.register("GrokForCausalLM")
  1211. class GrokModel(Model):
  1212. model_arch = gguf.MODEL_ARCH.GROK
  1213. def set_vocab(self):
  1214. self._set_vocab_sentencepiece()
  1215. def __init__(self, *args, **kwargs):
  1216. super().__init__(*args, **kwargs)
  1217. def set_gguf_parameters(self):
  1218. super().set_gguf_parameters()
  1219. self.gguf_writer.add_name("Grok")
  1220. def write_tensors(self):
  1221. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1222. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1223. n_experts = self.hparams.get("num_local_experts")
  1224. experts = dict()
  1225. for name, data_torch in self.get_tensors():
  1226. # we don't need these
  1227. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  1228. continue
  1229. old_dtype = data_torch.dtype
  1230. # convert any unsupported data types to float32
  1231. if data_torch.dtype not in (torch.float16, torch.float32):
  1232. data_torch = data_torch.to(torch.float32)
  1233. data = data_torch.squeeze().numpy()
  1234. # process the experts separately
  1235. if name.find(".moe.") != -1:
  1236. experts[name] = data
  1237. if len(experts) >= n_experts:
  1238. # merge the experts into a single 3d tensor
  1239. for bid in range(block_count):
  1240. for wid in ["linear", "linear_1", "linear_v"]:
  1241. full = True
  1242. for xid in range(n_experts):
  1243. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1244. if ename not in experts:
  1245. full = False
  1246. break
  1247. if not full:
  1248. continue
  1249. datas = []
  1250. for xid in range(n_experts):
  1251. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1252. datas.append(experts[ename])
  1253. del experts[ename]
  1254. data = np.stack(datas, axis=0)
  1255. data_dtype = data.dtype
  1256. if self.ftype == 0 and data_dtype == np.float16:
  1257. data = data.astype(np.float32)
  1258. if self.ftype == 1 and data_dtype == np.float32:
  1259. data = data.astype(np.float16)
  1260. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1261. new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
  1262. if new_name is None:
  1263. raise ValueError(f"Can not map tensor {name!r}")
  1264. logger.info(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
  1265. self.gguf_writer.add_tensor(new_name, data)
  1266. continue
  1267. # map tensor names
  1268. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1269. if new_name is None:
  1270. raise ValueError(f"Can not map tensor {name!r}")
  1271. n_dims = len(data.shape)
  1272. data_dtype = data.dtype
  1273. # if f32 desired, convert any float16 to float32
  1274. if self.ftype == 0 and data_dtype == np.float16:
  1275. data = data.astype(np.float32)
  1276. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1277. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1278. data = data.astype(np.float32)
  1279. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1280. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1281. data = data.astype(np.float16)
  1282. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1283. self.gguf_writer.add_tensor(new_name, data)
  1284. @Model.register("DbrxForCausalLM")
  1285. class DbrxModel(Model):
  1286. model_arch = gguf.MODEL_ARCH.DBRX
  1287. def set_gguf_parameters(self):
  1288. ffn_config = self.hparams["ffn_config"]
  1289. attn_config = self.hparams["attn_config"]
  1290. self.gguf_writer.add_name(self.hparams["model_type"])
  1291. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1292. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1293. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1294. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1295. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1296. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1297. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1298. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1299. self.gguf_writer.add_file_type(self.ftype)
  1300. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1301. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1302. self.gguf_writer.add_layer_norm_eps(1e-5)
  1303. self.gguf_writer.add_file_type(self.ftype)
  1304. logger.info(f"gguf: file type = {self.ftype}")
  1305. def write_tensors(self):
  1306. block_count = self.hparams.get("n_layers")
  1307. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1308. for name, data_torch in self.get_tensors():
  1309. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1310. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1311. n_embd = self.hparams["d_model"]
  1312. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1313. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1314. # But llama.cpp moe graph works differently
  1315. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1316. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1317. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1318. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1319. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1320. experts = False
  1321. for exp_tensor_name in exp_tensor_names.keys():
  1322. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1323. experts = True
  1324. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1325. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1326. data_torch = data_torch.permute(*permute_tensor)
  1327. break
  1328. old_dtype = data_torch.dtype
  1329. # convert any unsupported data types to float32
  1330. if data_torch.dtype not in (torch.float16, torch.float32):
  1331. data_torch = data_torch.to(torch.float32)
  1332. data = data_torch.squeeze().numpy()
  1333. # map tensor names
  1334. # In MoE models the ffn tensors are typically most of the model weights,
  1335. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1336. # Every other model has the weight names ending in .weight,
  1337. # let's assume that is the convention which is not the case for dbrx:
  1338. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  1339. new_name = tensor_map.get_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  1340. if new_name is None:
  1341. raise ValueError(f"Can not map tensor {name!r}")
  1342. n_dims = len(data.shape)
  1343. data_dtype = data.dtype
  1344. # Most of the codebase that takes in 1D tensors only handles F32 tensors
  1345. # and most of the outputs tensors are F32.
  1346. if data_dtype != np.float32 and n_dims == 1:
  1347. raise ValueError(f"Can not map tensor {name!r}: all 1D tensors must be F32")
  1348. # if f32 desired, convert any float16 to float32
  1349. if self.ftype == 0 and data_dtype == np.float16:
  1350. data = data.astype(np.float32)
  1351. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1352. if self.ftype == 1 and data_dtype == np.float32 and n_dims > 1:
  1353. data = data.astype(np.float16)
  1354. logger.debug(f"{new_name}, n_dims = {n_dims}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  1355. self.gguf_writer.add_tensor(new_name, data)
  1356. @Model.register("MiniCPMForCausalLM")
  1357. class MiniCPMModel(Model):
  1358. model_arch = gguf.MODEL_ARCH.MINICPM
  1359. def set_gguf_parameters(self):
  1360. block_count = self.hparams["num_hidden_layers"]
  1361. self.gguf_writer.add_name("MiniCPM")
  1362. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1363. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1364. self.gguf_writer.add_block_count(block_count)
  1365. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1366. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1367. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1368. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1369. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1370. self.gguf_writer.add_file_type(self.ftype)
  1371. def set_vocab(self):
  1372. self._set_vocab_llama_hf()
  1373. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1374. if n_kv_head is not None and n_head != n_kv_head:
  1375. n_head //= n_kv_head
  1376. return (
  1377. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1378. .swapaxes(1, 2)
  1379. .reshape(weights.shape)
  1380. )
  1381. def write_tensors(self):
  1382. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1383. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1384. n_head = self.hparams.get("num_attention_heads")
  1385. n_kv_head = self.hparams.get("num_key_value_heads")
  1386. for name, data_torch in self.get_tensors():
  1387. # we don't need these
  1388. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  1389. continue
  1390. old_dtype = data_torch.dtype
  1391. # convert any unsupported data types to float32
  1392. if data_torch.dtype not in (torch.float16, torch.float32):
  1393. data_torch = data_torch.to(torch.float32)
  1394. # HF models permute some of the tensors, so we need to undo that
  1395. if name.endswith(("q_proj.weight")):
  1396. data_torch = self._reverse_hf_permute(data_torch, n_head, n_head)
  1397. if name.endswith(("k_proj.weight")):
  1398. data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head)
  1399. data = data_torch.squeeze().numpy()
  1400. # map tensor names
  1401. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1402. if new_name is None:
  1403. raise ValueError(f"Can not map tensor {name!r}")
  1404. n_dims = len(data.shape)
  1405. data_dtype = data.dtype
  1406. # if f32 desired, convert any float16 to float32
  1407. if self.ftype == 0 and data_dtype == np.float16:
  1408. data = data.astype(np.float32)
  1409. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1410. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1411. data = data.astype(np.float32)
  1412. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1413. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1414. data = data.astype(np.float16)
  1415. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1416. self.gguf_writer.add_tensor(new_name, data)
  1417. @Model.register("QWenLMHeadModel")
  1418. class QwenModel(Model):
  1419. model_arch = gguf.MODEL_ARCH.QWEN
  1420. @staticmethod
  1421. def token_bytes_to_string(b):
  1422. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  1423. byte_encoder = bytes_to_unicode()
  1424. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  1425. @staticmethod
  1426. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  1427. parts = [bytes([b]) for b in token]
  1428. while True:
  1429. min_idx = None
  1430. min_rank = None
  1431. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  1432. rank = mergeable_ranks.get(pair[0] + pair[1])
  1433. if rank is not None and (min_rank is None or rank < min_rank):
  1434. min_idx = i
  1435. min_rank = rank
  1436. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  1437. break
  1438. assert min_idx is not None
  1439. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  1440. return parts
  1441. def set_vocab(self):
  1442. self._set_vocab_qwen()
  1443. def set_gguf_parameters(self):
  1444. self.gguf_writer.add_name("Qwen")
  1445. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1446. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1447. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1448. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1449. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1450. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1451. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1452. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1453. def write_tensors(self):
  1454. block_count = self.hparams["num_hidden_layers"]
  1455. model_kv = dict(self.get_tensors())
  1456. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1457. for name, data_torch in model_kv.items():
  1458. # we don't need these
  1459. if name.endswith(".rotary_emb.inv_freq"):
  1460. continue
  1461. old_dtype = data_torch.dtype
  1462. # convert any unsupported data types to float32
  1463. if data_torch.dtype not in (torch.float16, torch.float32):
  1464. data_torch = data_torch.to(torch.float32)
  1465. data = data_torch.squeeze().numpy()
  1466. # map tensor names
  1467. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1468. if new_name is None:
  1469. raise ValueError(f"Can not map tensor {name!r}")
  1470. n_dims = len(data.shape)
  1471. data_dtype = data.dtype
  1472. # if f32 desired, convert any float16 to float32
  1473. if self.ftype == 0 and data_dtype == np.float16:
  1474. data = data.astype(np.float32)
  1475. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1476. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1477. data = data.astype(np.float32)
  1478. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1479. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1480. data = data.astype(np.float16)
  1481. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1482. self.gguf_writer.add_tensor(new_name, data)
  1483. @Model.register("Qwen2ForCausalLM")
  1484. class Qwen2Model(Model):
  1485. model_arch = gguf.MODEL_ARCH.QWEN2
  1486. def set_vocab(self):
  1487. try:
  1488. self._set_vocab_sentencepiece()
  1489. except FileNotFoundError:
  1490. self._set_vocab_gpt2()
  1491. @Model.register("Qwen2MoeForCausalLM")
  1492. class Qwen2MoeModel(Model):
  1493. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  1494. def set_gguf_parameters(self):
  1495. super().set_gguf_parameters()
  1496. if (n_experts := self.hparams.get("num_experts")) is not None:
  1497. self.gguf_writer.add_expert_count(n_experts)
  1498. def write_tensors(self):
  1499. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1500. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1501. n_experts = self.hparams.get("num_experts")
  1502. experts = dict()
  1503. for name, data_torch in self.get_tensors():
  1504. # we don't need these
  1505. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  1506. continue
  1507. old_dtype = data_torch.dtype
  1508. # convert any unsupported data types to float32
  1509. if data_torch.dtype not in (torch.float16, torch.float32):
  1510. data_torch = data_torch.to(torch.float32)
  1511. data = data_torch.squeeze().numpy()
  1512. # process the experts separately
  1513. if name.find("experts") != -1:
  1514. experts[name] = data
  1515. if len(experts) >= n_experts * 3:
  1516. # merge the experts into a single 3d tensor
  1517. for bid in range(block_count):
  1518. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  1519. full = True
  1520. for xid in range(n_experts):
  1521. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  1522. if ename not in experts:
  1523. full = False
  1524. break
  1525. if not full:
  1526. continue
  1527. datas = []
  1528. for xid in range(n_experts):
  1529. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  1530. datas.append(experts[ename])
  1531. del experts[ename]
  1532. data = np.stack(datas, axis=0)
  1533. data_dtype = data.dtype
  1534. if self.ftype == 0 and data_dtype == np.float16:
  1535. data = data.astype(np.float32)
  1536. if self.ftype == 1 and data_dtype == np.float32:
  1537. data = data.astype(np.float16)
  1538. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  1539. new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias"))
  1540. if new_name is None:
  1541. raise ValueError(f"Can not map tensor {name!r}")
  1542. logger.debug(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}")
  1543. self.gguf_writer.add_tensor(new_name, data)
  1544. continue
  1545. # map tensor names
  1546. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1547. if new_name is None:
  1548. raise ValueError(f"Can not map tensor {name!r}")
  1549. n_dims = len(data.shape)
  1550. data_dtype = data.dtype
  1551. # if f32 desired, convert any float16 to float32
  1552. if self.ftype == 0 and data_dtype == np.float16:
  1553. data = data.astype(np.float32)
  1554. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1555. if self.ftype == 1 and data_dtype == np.float16 and (n_dims == 1 or new_name.endswith("_norm.weight")):
  1556. data = data.astype(np.float32)
  1557. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1558. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1559. data = data.astype(np.float16)
  1560. logger.debug(f"{new_name}, n_dims = {n_dims}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  1561. self.gguf_writer.add_tensor(new_name, data)
  1562. if len(experts) > 0:
  1563. raise ValueError(f"Unprocessed experts: {experts.keys()}")
  1564. @Model.register("GPT2LMHeadModel")
  1565. class GPT2Model(Model):
  1566. model_arch = gguf.MODEL_ARCH.GPT2
  1567. def set_gguf_parameters(self):
  1568. self.gguf_writer.add_name(self.dir_model.name)
  1569. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1570. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  1571. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1572. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1573. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1574. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1575. self.gguf_writer.add_file_type(self.ftype)
  1576. def write_tensors(self):
  1577. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1578. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1579. for name, data_torch in self.get_tensors():
  1580. # we don't need these
  1581. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq", ".attn.bias", ".attn.masked_bias")):
  1582. continue
  1583. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  1584. data_torch = data_torch.transpose(1, 0)
  1585. old_dtype = data_torch.dtype
  1586. # convert any unsupported data types to float32
  1587. if data_torch.dtype not in (torch.float16, torch.float32):
  1588. data_torch = data_torch.to(torch.float32)
  1589. data = data_torch.squeeze().numpy()
  1590. # map tensor names
  1591. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1592. if new_name is None:
  1593. raise ValueError(f"Can not map tensor {name!r}")
  1594. n_dims = len(data.shape)
  1595. data_dtype = data.dtype
  1596. # if f32 desired, convert any float16 to float32
  1597. if self.ftype == 0 and data_dtype == np.float16:
  1598. data = data.astype(np.float32)
  1599. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1600. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1601. data = data.astype(np.float32)
  1602. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1603. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1604. data = data.astype(np.float16)
  1605. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1606. self.gguf_writer.add_tensor(new_name, data)
  1607. # note: GPT2 output is tied to (same as) wte in original model
  1608. if new_name == "token_embd.weight":
  1609. logger.info(f"output.weight, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1610. self.gguf_writer.add_tensor("output.weight", data)
  1611. @Model.register("PhiForCausalLM")
  1612. class Phi2Model(Model):
  1613. model_arch = gguf.MODEL_ARCH.PHI2
  1614. def set_gguf_parameters(self):
  1615. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1616. rot_pct = self.find_hparam(["partial_rotary_factor"])
  1617. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1618. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1619. self.gguf_writer.add_name("Phi2")
  1620. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1621. self.gguf_writer.add_embedding_length(n_embd)
  1622. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  1623. self.gguf_writer.add_block_count(block_count)
  1624. self.gguf_writer.add_head_count(n_head)
  1625. self.gguf_writer.add_head_count_kv(n_head)
  1626. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  1627. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1628. self.gguf_writer.add_file_type(self.ftype)
  1629. self.gguf_writer.add_add_bos_token(False)
  1630. @Model.register("Phi3ForCausalLM")
  1631. class Phi3MiniModel(Model):
  1632. model_arch = gguf.MODEL_ARCH.PHI3
  1633. def set_vocab(self):
  1634. from sentencepiece import SentencePieceProcessor
  1635. tokenizer_path = self.dir_model / 'tokenizer.model'
  1636. if not tokenizer_path.is_file():
  1637. raise ValueError(f'Error: Missing {tokenizer_path}')
  1638. tokenizer = SentencePieceProcessor(str(tokenizer_path))
  1639. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1640. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1641. scores: list[float] = [-10000.0] * vocab_size
  1642. toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
  1643. for token_id in range(tokenizer.vocab_size()):
  1644. piece = tokenizer.id_to_piece(token_id)
  1645. text = piece.encode("utf-8")
  1646. score = tokenizer.get_score(token_id)
  1647. toktype = SentencePieceTokenTypes.NORMAL
  1648. if tokenizer.is_unknown(token_id):
  1649. toktype = SentencePieceTokenTypes.UNKNOWN
  1650. elif tokenizer.is_control(token_id):
  1651. toktype = SentencePieceTokenTypes.CONTROL
  1652. elif tokenizer.is_unused(token_id):
  1653. toktype = SentencePieceTokenTypes.UNUSED
  1654. elif tokenizer.is_byte(token_id):
  1655. toktype = SentencePieceTokenTypes.BYTE
  1656. tokens[token_id] = text
  1657. scores[token_id] = score
  1658. toktypes[token_id] = toktype
  1659. added_tokens_file = self.dir_model / 'added_tokens.json'
  1660. if added_tokens_file.is_file():
  1661. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1662. added_tokens_json = json.load(f)
  1663. for key in added_tokens_json:
  1664. token_id = added_tokens_json[key]
  1665. if (token_id >= vocab_size):
  1666. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1667. continue
  1668. tokens[token_id] = key.encode("utf-8")
  1669. scores[token_id] = -1000.0
  1670. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1671. self.gguf_writer.add_tokenizer_model("llama")
  1672. self.gguf_writer.add_tokenizer_pre("default")
  1673. self.gguf_writer.add_token_list(tokens)
  1674. self.gguf_writer.add_token_scores(scores)
  1675. self.gguf_writer.add_token_types(toktypes)
  1676. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1677. special_vocab.add_to_gguf(self.gguf_writer)
  1678. def set_gguf_parameters(self):
  1679. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1680. rot_pct = 1.0
  1681. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1682. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1683. rms_eps = self.find_hparam(["rms_norm_eps"])
  1684. self.gguf_writer.add_name("Phi3")
  1685. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1686. self.gguf_writer.add_embedding_length(n_embd)
  1687. self.gguf_writer.add_feed_forward_length(8192)
  1688. self.gguf_writer.add_block_count(block_count)
  1689. self.gguf_writer.add_head_count(n_head)
  1690. self.gguf_writer.add_head_count_kv(n_head)
  1691. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  1692. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1693. self.gguf_writer.add_file_type(self.ftype)
  1694. @Model.register("PlamoForCausalLM")
  1695. class PlamoModel(Model):
  1696. model_arch = gguf.MODEL_ARCH.PLAMO
  1697. def set_vocab(self):
  1698. self._set_vocab_sentencepiece()
  1699. def set_gguf_parameters(self):
  1700. hparams = self.hparams
  1701. block_count = hparams["num_hidden_layers"]
  1702. self.gguf_writer.add_name("PLaMo")
  1703. self.gguf_writer.add_context_length(4096) # not in config.json
  1704. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1705. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1706. self.gguf_writer.add_block_count(block_count)
  1707. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1708. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  1709. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1710. def shuffle_attn_q_weight(self, data_torch):
  1711. assert data_torch.size() == (5120, 5120)
  1712. data_torch = data_torch.reshape(8, 5, 128, 5120)
  1713. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  1714. data_torch = torch.reshape(data_torch, (5120, 5120))
  1715. return data_torch
  1716. def shuffle_attn_output_weight(self, data_torch):
  1717. assert data_torch.size() == (5120, 5120)
  1718. data_torch = data_torch.reshape(5120, 8, 5, 128)
  1719. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  1720. data_torch = torch.reshape(data_torch, (5120, 5120))
  1721. return data_torch
  1722. def write_tensors(self):
  1723. block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
  1724. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1725. for name, data_torch in self.get_tensors():
  1726. if "self_attn.rotary_emb.inv_freq" in name:
  1727. continue
  1728. # map tensor names
  1729. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1730. if new_name is None:
  1731. raise ValueError(f"Can not map tensor {name!r}")
  1732. # shuffle for broadcasting of gqa in ggml_mul_mat
  1733. if new_name.endswith("attn_q.weight"):
  1734. data_torch = self.shuffle_attn_q_weight(data_torch)
  1735. elif new_name.endswith("attn_output.weight"):
  1736. data_torch = self.shuffle_attn_output_weight(data_torch)
  1737. old_dtype = data_torch.dtype
  1738. # convert any unsupported data types to float32
  1739. if data_torch.dtype not in (torch.float16, torch.float32):
  1740. data_torch = data_torch.to(torch.float32)
  1741. data = data_torch.squeeze().numpy()
  1742. n_dims = len(data.shape)
  1743. data_dtype = data.dtype
  1744. # if f32 desired, convert any float16 to float32
  1745. if self.ftype == 0 and data_dtype == np.float16:
  1746. data = data.astype(np.float32)
  1747. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1748. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1749. data = data.astype(np.float32)
  1750. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1751. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1752. data = data.astype(np.float16)
  1753. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1754. self.gguf_writer.add_tensor(new_name, data)
  1755. @Model.register("CodeShellForCausalLM")
  1756. class CodeShellModel(Model):
  1757. model_arch = gguf.MODEL_ARCH.CODESHELL
  1758. def set_gguf_parameters(self):
  1759. block_count = self.hparams["n_layer"]
  1760. self.gguf_writer.add_name("CodeShell")
  1761. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1762. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1763. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1764. self.gguf_writer.add_block_count(block_count)
  1765. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1766. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  1767. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1768. self.gguf_writer.add_file_type(self.ftype)
  1769. self.gguf_writer.add_rope_freq_base(10000.0)
  1770. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1771. self.gguf_writer.add_rope_scaling_factor(1.0)
  1772. def write_tensors(self):
  1773. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1774. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1775. tensors = dict(self.get_tensors())
  1776. has_lm_head = "lm_head.weight" in tensors.keys() or "output.weight" in tensors.keys()
  1777. for name, data_torch in tensors.items():
  1778. # we don't need these
  1779. if name.endswith((".attn.rotary_emb.inv_freq")):
  1780. continue
  1781. old_dtype = data_torch.dtype
  1782. # convert any unsupported data types to float32
  1783. if data_torch.dtype not in (torch.float16, torch.float32):
  1784. data_torch = data_torch.to(torch.float32)
  1785. data = data_torch.squeeze().numpy()
  1786. # map tensor names
  1787. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1788. if new_name is None:
  1789. raise ValueError(f"Can not map tensor {name!r}")
  1790. n_dims = len(data.shape)
  1791. data_dtype = data.dtype
  1792. # if f32 desired, convert any float16 to float32
  1793. if self.ftype == 0 and data_dtype == np.float16:
  1794. data = data.astype(np.float32)
  1795. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1796. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1797. data = data.astype(np.float32)
  1798. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1799. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1800. data = data.astype(np.float16)
  1801. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1802. self.gguf_writer.add_tensor(new_name, data)
  1803. if not has_lm_head and name == "transformer.wte.weight":
  1804. self.gguf_writer.add_tensor("output.weight", data)
  1805. logger.info(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  1806. @Model.register("InternLM2ForCausalLM")
  1807. class InternLM2Model(Model):
  1808. model_arch = gguf.MODEL_ARCH.INTERNLM2
  1809. def set_vocab(self):
  1810. # (TODO): Is there a better way?
  1811. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  1812. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  1813. # recognized as an empty string in C++.
  1814. from sentencepiece import SentencePieceProcessor
  1815. from sentencepiece import sentencepiece_model_pb2 as model
  1816. tokenizer_path = self.dir_model / 'tokenizer.model'
  1817. tokens: list[bytes] = []
  1818. scores: list[float] = []
  1819. toktypes: list[int] = []
  1820. if not tokenizer_path.is_file():
  1821. logger.error(f'Error: Missing {tokenizer_path}')
  1822. sys.exit(1)
  1823. sentencepiece_model = model.ModelProto()
  1824. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  1825. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  1826. tokenizer = SentencePieceProcessor(str(tokenizer_path))
  1827. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1828. for token_id in range(vocab_size):
  1829. piece = tokenizer.id_to_piece(token_id)
  1830. text = piece.encode("utf-8")
  1831. score = tokenizer.get_score(token_id)
  1832. if text == b"\x00":
  1833. # (TODO): fixme
  1834. # Hack here and replace the \x00 characters.
  1835. logger.debug(f"InternLM2 convert token '{text}' to '🐉'!")
  1836. text = "🐉"
  1837. toktype = SentencePieceTokenTypes.NORMAL
  1838. if tokenizer.is_unknown(token_id):
  1839. toktype = SentencePieceTokenTypes.UNKNOWN
  1840. elif tokenizer.is_control(token_id):
  1841. toktype = SentencePieceTokenTypes.CONTROL
  1842. elif tokenizer.is_unused(token_id):
  1843. toktype = SentencePieceTokenTypes.UNUSED
  1844. elif tokenizer.is_byte(token_id):
  1845. toktype = SentencePieceTokenTypes.BYTE
  1846. tokens.append(text)
  1847. scores.append(score)
  1848. toktypes.append(toktype)
  1849. added_tokens_file = self.dir_model / 'added_tokens.json'
  1850. if added_tokens_file.is_file():
  1851. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1852. added_tokens_json = json.load(f)
  1853. for key in added_tokens_json:
  1854. tokens.append(key.encode("utf-8"))
  1855. scores.append(-1000.0)
  1856. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  1857. self.gguf_writer.add_tokenizer_model("llama")
  1858. self.gguf_writer.add_tokenizer_pre("default")
  1859. self.gguf_writer.add_token_list(tokens)
  1860. self.gguf_writer.add_token_scores(scores)
  1861. self.gguf_writer.add_token_types(toktypes)
  1862. self.gguf_writer.add_add_space_prefix(add_prefix)
  1863. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1864. old_eos = special_vocab.special_token_ids["eos"]
  1865. if "chat" in os.path.basename(self.dir_model.absolute()):
  1866. # For the chat model, we replace the eos with '<|im_end|>'.
  1867. # TODO: this is a hack, should be fixed
  1868. # https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048
  1869. special_vocab.special_token_ids["eos"] = self._try_get_sft_eos(tokenizer)
  1870. logger.warning(f"Replace eos:{old_eos} with a special token:{special_vocab.special_token_ids['eos']} \
  1871. in chat mode so that the conversation can end normally.")
  1872. special_vocab.add_to_gguf(self.gguf_writer)
  1873. def _try_get_sft_eos(self, tokenizer):
  1874. unused_145_list = tokenizer.encode('[UNUSED_TOKEN_145]')
  1875. im_end_list = tokenizer.encode('<|im_end|>')
  1876. assert (len(unused_145_list) == 1) ^ (len(im_end_list) == 1)
  1877. if len(unused_145_list) == 1:
  1878. eos_token = unused_145_list[0]
  1879. if len(im_end_list) == 1:
  1880. eos_token = im_end_list[0]
  1881. return eos_token
  1882. def _hf_permute_qk(self, weights, n_head: int, n_head_kv: int):
  1883. if n_head_kv is not None and n_head != n_head_kv:
  1884. n_head = n_head_kv
  1885. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1886. .swapaxes(1, 2)
  1887. .reshape(weights.shape))
  1888. def set_gguf_parameters(self):
  1889. self.gguf_writer.add_name("InternLM2")
  1890. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1891. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1892. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1893. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1894. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  1895. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1896. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1897. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1898. def post_write_tensors(self, tensor_map, name, data_torch):
  1899. old_dtype = data_torch.dtype
  1900. # convert any unsupported data types to float32
  1901. if data_torch.dtype not in (torch.float16, torch.float32):
  1902. data_torch = data_torch.to(torch.float32)
  1903. data = data_torch.squeeze().numpy()
  1904. # map tensor names
  1905. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1906. if new_name is None:
  1907. raise ValueError(f"Can not map tensor {name!r}")
  1908. n_dims = len(data.shape)
  1909. data_dtype = data.dtype
  1910. # if f32 desired, convert any float16 to float32
  1911. if self.ftype == 0 and data_dtype == np.float16:
  1912. data = data.astype(np.float32)
  1913. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1914. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1915. data = data.astype(np.float32)
  1916. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1917. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1918. data = data.astype(np.float16)
  1919. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1920. self.gguf_writer.add_tensor(new_name, data)
  1921. def write_tensors(self):
  1922. from einops import rearrange
  1923. num_heads = self.hparams.get("num_attention_heads")
  1924. num_kv_heads = self.hparams.get("num_key_value_heads")
  1925. hidden_size = self.hparams.get("hidden_size")
  1926. q_per_kv = num_heads // num_kv_heads
  1927. head_dim = hidden_size // num_heads
  1928. num_groups = num_heads // q_per_kv
  1929. block_count = self.hparams["num_hidden_layers"]
  1930. model_kv = dict(self.get_tensors())
  1931. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1932. qkv_pattern = r"model\.layers\.(\d+)\.attention\.wqkv"
  1933. for name, data_torch in model_kv.items():
  1934. # we don't need these
  1935. if name.endswith(".rotary_emb.inv_freq"):
  1936. continue
  1937. if re.match(qkv_pattern, name):
  1938. bid = re.findall(qkv_pattern, name)[0]
  1939. qkv = data_torch
  1940. qkv = rearrange(qkv.T, " o (g n i) ->o g n i", g=num_groups, n=q_per_kv + 2, i=head_dim)
  1941. q, k, v = qkv[..., : q_per_kv, :], qkv[..., q_per_kv: q_per_kv + 1, :], qkv[..., q_per_kv + 1: q_per_kv + 2, :]
  1942. # The model weights of q and k equire additional reshape.
  1943. q = self._hf_permute_qk(rearrange(q, " o g n i -> o (g n i)").T, num_heads, num_heads)
  1944. k = self._hf_permute_qk(rearrange(k, " o g n i -> o (g n i)").T, num_heads, num_kv_heads)
  1945. v = rearrange(v, " o g n i -> o (g n i)").T
  1946. self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wq.weight", q)
  1947. self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wk.weight", k)
  1948. self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wv.weight", v)
  1949. else:
  1950. self.post_write_tensors(tensor_map, name, data_torch)
  1951. @Model.register("BertModel", "CamembertModel")
  1952. class BertModel(Model):
  1953. model_arch = gguf.MODEL_ARCH.BERT
  1954. def __init__(self, *args, **kwargs):
  1955. super().__init__(*args, **kwargs)
  1956. self.vocab_size = None
  1957. def set_gguf_parameters(self):
  1958. super().set_gguf_parameters()
  1959. self.gguf_writer.add_causal_attention(False)
  1960. # get pooling path
  1961. pooling_path = None
  1962. module_path = self.dir_model / "modules.json"
  1963. if module_path.is_file():
  1964. with open(module_path, encoding="utf-8") as f:
  1965. modules = json.load(f)
  1966. for mod in modules:
  1967. if mod["type"] == "sentence_transformers.models.Pooling":
  1968. pooling_path = mod["path"]
  1969. break
  1970. # get pooling type
  1971. if pooling_path is not None:
  1972. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1973. pooling = json.load(f)
  1974. if pooling["pooling_mode_mean_tokens"]:
  1975. pooling_type = gguf.PoolingType.MEAN
  1976. elif pooling["pooling_mode_cls_token"]:
  1977. pooling_type = gguf.PoolingType.CLS
  1978. else:
  1979. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  1980. self.gguf_writer.add_pooling_type(pooling_type)
  1981. def set_vocab(self):
  1982. tokens, toktypes, tokpre = self.get_vocab_base()
  1983. self.vocab_size = len(tokens)
  1984. # we need this to validate the size of the token_type embeddings
  1985. # though currently we are passing all zeros to the token_type embeddings
  1986. self.gguf_writer.add_token_type_count(2) # "Sequence A" or "Sequence B"
  1987. # convert to phantom space vocab
  1988. def phantom(tok):
  1989. if tok.startswith("[") and tok.endswith("]"):
  1990. return tok
  1991. if tok.startswith("##"):
  1992. return tok[2:]
  1993. return "\u2581" + tok
  1994. tokens = list(map(phantom, tokens))
  1995. # add vocab to gguf
  1996. self.gguf_writer.add_tokenizer_model("bert")
  1997. self.gguf_writer.add_tokenizer_pre(tokpre)
  1998. self.gguf_writer.add_token_list(tokens)
  1999. self.gguf_writer.add_token_types(toktypes)
  2000. # handle special tokens
  2001. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2002. special_vocab.add_to_gguf(self.gguf_writer)
  2003. def write_tensors(self):
  2004. tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  2005. tensors = dict(self.get_tensors())
  2006. for name, data_torch in tensors.items():
  2007. # we are only using BERT for embeddings so we don't need the pooling layer
  2008. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  2009. continue # we don't need these
  2010. # map tensor names
  2011. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  2012. if new_name is None:
  2013. raise ValueError(f"Can not map tensor {name!r}")
  2014. # convert any unsupported data types to float32
  2015. if data_torch.dtype not in (torch.float16, torch.float32):
  2016. data_torch = data_torch.to(torch.float32)
  2017. data = data_torch.squeeze().numpy()
  2018. n_dims = len(data.shape)
  2019. new_dtype: type[np.floating[Any]]
  2020. if (
  2021. self.ftype == 1 and name.endswith(".weight") and n_dims == 2
  2022. and name != "embeddings.token_type_embeddings.weight" # not used with get_rows, must be F32
  2023. ):
  2024. # if f16 desired, convert any float32 2-dim weight tensors to float16
  2025. new_dtype = np.float16
  2026. else:
  2027. # if f32 desired, convert any float16 to float32
  2028. new_dtype = np.float32
  2029. logger.info(f"{new_name}, n_dims = {n_dims}, {data_torch.dtype} --> {new_dtype}")
  2030. if data.dtype != new_dtype:
  2031. data = data.astype(new_dtype)
  2032. self.gguf_writer.add_tensor(new_name, data)
  2033. @Model.register("NomicBertModel")
  2034. class NomicBertModel(BertModel):
  2035. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  2036. def __init__(self, *args, **kwargs):
  2037. super().__init__(*args, **kwargs)
  2038. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  2039. self.hparams["n_ctx"] = 2048
  2040. # SwigLU activation
  2041. assert self.hparams["activation_function"] == "swiglu"
  2042. # this doesn't do anything in the HF version
  2043. assert self.hparams["causal"] is False
  2044. # no bias tensors
  2045. assert self.hparams["qkv_proj_bias"] is False
  2046. assert self.hparams["mlp_fc1_bias"] is False
  2047. assert self.hparams["mlp_fc2_bias"] is False
  2048. # norm at end of layer
  2049. assert self.hparams["prenorm"] is False
  2050. # standard RoPE
  2051. assert self.hparams["rotary_emb_fraction"] == 1.0
  2052. assert self.hparams["rotary_emb_interleaved"] is False
  2053. assert self.hparams["rotary_emb_scale_base"] is None
  2054. def set_gguf_parameters(self):
  2055. super().set_gguf_parameters()
  2056. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2057. @Model.register("GemmaForCausalLM")
  2058. class GemmaModel(Model):
  2059. model_arch = gguf.MODEL_ARCH.GEMMA
  2060. def set_vocab(self):
  2061. self._set_vocab_sentencepiece()
  2062. # TODO: these special tokens should be exported only for the CodeGemma family
  2063. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  2064. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  2065. special_vocab._set_special_token("prefix", 67)
  2066. special_vocab._set_special_token("suffix", 69)
  2067. special_vocab._set_special_token("middle", 68)
  2068. special_vocab._set_special_token("fsep", 70)
  2069. special_vocab._set_special_token("eot", 107)
  2070. special_vocab.add_to_gguf(self.gguf_writer)
  2071. def set_gguf_parameters(self):
  2072. hparams = self.hparams
  2073. block_count = hparams["num_hidden_layers"]
  2074. self.gguf_writer.add_name(self.dir_model.name)
  2075. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2076. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2077. self.gguf_writer.add_block_count(block_count)
  2078. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2079. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2080. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2081. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2082. self.gguf_writer.add_key_length(hparams["head_dim"])
  2083. self.gguf_writer.add_value_length(hparams["head_dim"])
  2084. self.gguf_writer.add_file_type(self.ftype)
  2085. def write_tensors(self):
  2086. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  2087. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  2088. for name, data_torch in self.get_tensors():
  2089. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2090. # To prevent errors, skip loading lm_head.weight.
  2091. if name == "lm_head.weight":
  2092. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2093. continue
  2094. old_dtype = data_torch.dtype
  2095. # convert any unsupported data types to float32
  2096. if data_torch.dtype not in (torch.float16, torch.float32):
  2097. data_torch = data_torch.to(torch.float32)
  2098. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2099. if name.endswith("norm.weight"):
  2100. data_torch = data_torch + 1
  2101. data = data_torch.squeeze().numpy()
  2102. # map tensor names
  2103. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  2104. if new_name is None:
  2105. raise ValueError(f"Can not map tensor {name!r}")
  2106. n_dims = len(data.shape)
  2107. data_dtype = data.dtype
  2108. data = data.astype(np.float32)
  2109. # if f16 desired, convert any float32 2-dim weight tensors to float16
  2110. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  2111. data = data.astype(np.float16)
  2112. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  2113. self.gguf_writer.add_tensor(new_name, data)
  2114. @Model.register("Starcoder2ForCausalLM")
  2115. class StarCoder2Model(Model):
  2116. model_arch = gguf.MODEL_ARCH.STARCODER2
  2117. @Model.register("MambaForCausalLM", "MambaLMHeadModel")
  2118. class MambaModel(Model):
  2119. model_arch = gguf.MODEL_ARCH.MAMBA
  2120. def set_vocab(self):
  2121. vocab_size = self.hparams["vocab_size"]
  2122. # Round vocab size to next multiple of 8
  2123. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  2124. # pad using ceiling division
  2125. # ref: https://stackoverflow.com/a/17511341/22827863
  2126. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  2127. self.hparams["vocab_size"] = vocab_size
  2128. if (self.dir_model / "tokenizer.json").is_file():
  2129. self._set_vocab_gpt2()
  2130. else:
  2131. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  2132. tokenizer_path = Path(sys.path[0]) / "models" / "ggml-vocab-gpt-neox.gguf"
  2133. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  2134. neox_reader = gguf.GGUFReader(tokenizer_path, "r")
  2135. field = neox_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  2136. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]))
  2137. field = neox_reader.get_field(gguf.Keys.Tokenizer.PRE)
  2138. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]))
  2139. field = neox_reader.get_field(gguf.Keys.Tokenizer.LIST)
  2140. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  2141. field = neox_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  2142. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  2143. field = neox_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  2144. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  2145. field = neox_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)
  2146. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  2147. field = neox_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)
  2148. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  2149. field = neox_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)
  2150. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  2151. def set_gguf_parameters(self):
  2152. d_model = self.find_hparam(["hidden_size", "d_model"])
  2153. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  2154. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  2155. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  2156. # ceiling division
  2157. # ref: https://stackoverflow.com/a/17511341/22827863
  2158. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  2159. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  2160. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  2161. # Fail early for models which don't have a block expansion factor of 2
  2162. assert d_inner == 2 * d_model
  2163. self.gguf_writer.add_name(self.dir_model.name)
  2164. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  2165. self.gguf_writer.add_embedding_length(d_model)
  2166. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  2167. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  2168. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2169. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  2170. self.gguf_writer.add_ssm_inner_size(d_inner)
  2171. self.gguf_writer.add_ssm_state_size(d_state)
  2172. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  2173. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  2174. self.gguf_writer.add_file_type(self.ftype)
  2175. def write_tensors(self):
  2176. block_count = self.hparams["n_layer"]
  2177. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  2178. tok_embd = None
  2179. tok_embd_name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.TOKEN_EMBD] + ".weight"
  2180. output_name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.OUTPUT] + ".weight"
  2181. for name, data_torch in self.get_tensors():
  2182. old_dtype = data_torch.dtype
  2183. # convert any unsupported data types to float32
  2184. if data_torch.dtype not in (torch.float16, torch.float32):
  2185. data_torch = data_torch.to(torch.float32)
  2186. # map tensor names
  2187. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  2188. if new_name is None:
  2189. raise ValueError(f"Can not map tensor {name!r}")
  2190. if name.endswith(".A_log"):
  2191. logger.debug("A_log --> A ==> " + new_name)
  2192. data_torch = -torch.exp(data_torch)
  2193. # assuming token_embd.weight is seen before output.weight
  2194. if tok_embd is not None and new_name == output_name:
  2195. if torch.equal(tok_embd, data_torch):
  2196. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  2197. continue
  2198. if new_name == tok_embd_name:
  2199. tok_embd = data_torch
  2200. data = data_torch.squeeze().numpy()
  2201. n_dims = len(data.shape)
  2202. data_dtype = data.dtype
  2203. # if f32 desired, convert any float16 to float32
  2204. if self.ftype == 0 and data_dtype == np.float16:
  2205. data = data.astype(np.float32)
  2206. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  2207. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  2208. data = data.astype(np.float32)
  2209. # if f16 desired, convert big float32 2-dim weight tensors to float16
  2210. new_weight_name = new_name[:-len(".weight")] if new_name.endswith(".weight") else ""
  2211. if self.ftype == 1 and data_dtype == np.float32 and new_weight_name.endswith((".ssm_in", ".ssm_out", "token_embd", "output")) and n_dims == 2:
  2212. data = data.astype(np.float16)
  2213. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  2214. self.gguf_writer.add_tensor(new_name, data)
  2215. @Model.register("CohereForCausalLM")
  2216. class CommandR2Model(Model):
  2217. model_arch = gguf.MODEL_ARCH.COMMAND_R
  2218. def __init__(self, *args, **kwargs):
  2219. super().__init__(*args, **kwargs)
  2220. # max_position_embeddings = 8192 in config.json but model was actually
  2221. # trained on 128k context length
  2222. self.hparams["max_position_embeddings"] = self.hparams["model_max_length"]
  2223. def set_gguf_parameters(self):
  2224. super().set_gguf_parameters()
  2225. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  2226. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  2227. @Model.register("OlmoForCausalLM")
  2228. @Model.register("OLMoForCausalLM")
  2229. class OlmoModel(Model):
  2230. model_arch = gguf.MODEL_ARCH.OLMO
  2231. def set_gguf_parameters(self):
  2232. super().set_gguf_parameters()
  2233. self.gguf_writer.add_layer_norm_eps(1e-5)
  2234. clip_qkv = self.hparams.get("clip_qkv")
  2235. if clip_qkv is not None:
  2236. self.gguf_writer.add_clamp_kqv(clip_qkv)
  2237. # Same as super class, but permuting q_proj, k_proj
  2238. # Copied from: LlamaModel
  2239. def write_tensors(self):
  2240. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  2241. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  2242. n_head = self.hparams.get("num_attention_heads")
  2243. n_kv_head = self.hparams.get("num_key_value_heads")
  2244. for name, data_torch in self.get_tensors():
  2245. old_dtype = data_torch.dtype
  2246. # convert any unsupported data types to float32
  2247. if data_torch.dtype not in (torch.float16, torch.float32):
  2248. data_torch = data_torch.to(torch.float32)
  2249. data = data_torch.numpy()
  2250. if name.endswith("q_proj.weight"):
  2251. data = permute(data, n_head, n_head)
  2252. if name.endswith("k_proj.weight"):
  2253. data = permute(data, n_head, n_kv_head)
  2254. data = data.squeeze()
  2255. # map tensor names
  2256. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  2257. if new_name is None:
  2258. raise ValueError(f"Can not map tensor {name!r}")
  2259. n_dims = len(data.shape)
  2260. data_dtype = data.dtype
  2261. # if f32 desired, convert any float16 to float32
  2262. if self.ftype == 0 and data_dtype == np.float16:
  2263. data = data.astype(np.float32)
  2264. # 1d tensors need to be converted to float32
  2265. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  2266. data = data.astype(np.float32)
  2267. # if f16 desired, convert any float32 2-dim weight tensors to float16
  2268. if self.ftype == 1 and data_dtype == np.float32 and n_dims == 2:
  2269. data = data.astype(np.float16)
  2270. logger.info(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  2271. self.gguf_writer.add_tensor(new_name, data)
  2272. ###### CONVERSION LOGIC ######
  2273. def parse_args() -> argparse.Namespace:
  2274. parser = argparse.ArgumentParser(
  2275. description="Convert a huggingface model to a GGML compatible file")
  2276. parser.add_argument(
  2277. "--vocab-only", action="store_true",
  2278. help="extract only the vocab",
  2279. )
  2280. parser.add_argument(
  2281. "--awq-path", type=Path, default=None,
  2282. help="Path to scale awq cache file")
  2283. parser.add_argument(
  2284. "--outfile", type=Path,
  2285. help="path to write to; default: based on input",
  2286. )
  2287. parser.add_argument(
  2288. "--outtype", type=str, choices=["f32", "f16"], default="f16",
  2289. help="output format - use f32 for float32, f16 for float16",
  2290. )
  2291. parser.add_argument("--bigendian", action="store_true", help="model is executed on big endian machine")
  2292. parser.add_argument(
  2293. "model", type=Path,
  2294. help="directory containing model file",
  2295. )
  2296. parser.add_argument("--use-temp-file", action="store_true", help="use the tempfile library while processing (helpful when running out of memory, process killed)")
  2297. parser.add_argument("--model-name", type=str, default=None, help="name of the model")
  2298. parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
  2299. return parser.parse_args()
  2300. def main() -> None:
  2301. args = parse_args()
  2302. logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
  2303. dir_model = args.model
  2304. if args.awq_path:
  2305. sys.path.insert(1, str(Path(__file__).parent / 'awq-py'))
  2306. from awq.apply_awq import add_scale_weights # type: ignore[import-not-found]
  2307. tmp_model_path = args.model / "weighted_model"
  2308. dir_model = tmp_model_path
  2309. if tmp_model_path.is_dir():
  2310. logger.info(f"{tmp_model_path} exists as a weighted model.")
  2311. else:
  2312. tmp_model_path.mkdir(parents=True, exist_ok=True)
  2313. logger.info("Saving new weighted model ...")
  2314. add_scale_weights(str(args.model), str(args.awq_path), str(tmp_model_path))
  2315. logger.info(f"Saved weighted model at {tmp_model_path}.")
  2316. if not dir_model.is_dir():
  2317. logger.error(f'Error: {args.model} is not a directory')
  2318. sys.exit(1)
  2319. ftype_map = {
  2320. "f32": gguf.GGMLQuantizationType.F32,
  2321. "f16": gguf.GGMLQuantizationType.F16,
  2322. }
  2323. if args.outfile is not None:
  2324. fname_out = args.outfile
  2325. else:
  2326. # output in the same directory as the model by default
  2327. fname_out = dir_model / f'ggml-model-{args.outtype}.gguf'
  2328. logger.info(f"Loading model: {dir_model.name}")
  2329. hparams = Model.load_hparams(dir_model)
  2330. with torch.inference_mode():
  2331. model_class = Model.from_model_architecture(hparams["architectures"][0])
  2332. model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian, args.use_temp_file)
  2333. logger.info("Set model parameters")
  2334. model_instance.set_gguf_parameters()
  2335. logger.info("Set model tokenizer")
  2336. model_instance.set_vocab()
  2337. if args.vocab_only:
  2338. logger.info(f"Exporting model vocab to '{fname_out}'")
  2339. model_instance.write_vocab()
  2340. else:
  2341. logger.info(f"Exporting model to '{fname_out}'")
  2342. model_instance.write()
  2343. logger.info(f"Model successfully exported to '{fname_out}'")
  2344. if __name__ == '__main__':
  2345. main()