llama.h 52 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146
  1. #ifndef LLAMA_H
  2. #define LLAMA_H
  3. #include "ggml.h"
  4. #include "ggml-backend.h"
  5. #include <stddef.h>
  6. #include <stdint.h>
  7. #include <stdio.h>
  8. #include <stdbool.h>
  9. #ifdef LLAMA_SHARED
  10. # if defined(_WIN32) && !defined(__MINGW32__)
  11. # ifdef LLAMA_BUILD
  12. # define LLAMA_API __declspec(dllexport)
  13. # else
  14. # define LLAMA_API __declspec(dllimport)
  15. # endif
  16. # else
  17. # define LLAMA_API __attribute__ ((visibility ("default")))
  18. # endif
  19. #else
  20. # define LLAMA_API
  21. #endif
  22. #ifdef __GNUC__
  23. # define DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
  24. #elif defined(_MSC_VER)
  25. # define DEPRECATED(func, hint) __declspec(deprecated(hint)) func
  26. #else
  27. # define DEPRECATED(func, hint) func
  28. #endif
  29. #define LLAMA_DEFAULT_SEED 0xFFFFFFFF
  30. #define LLAMA_MAX_RNG_STATE (64*1024)
  31. #define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
  32. #define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
  33. #define LLAMA_FILE_MAGIC_GGSQ 0x67677371u // 'ggsq'
  34. #define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
  35. #define LLAMA_SESSION_VERSION 6
  36. #define LLAMA_STATE_SEQ_MAGIC LLAMA_FILE_MAGIC_GGSQ
  37. #define LLAMA_STATE_SEQ_VERSION 1
  38. #ifdef __cplusplus
  39. extern "C" {
  40. #endif
  41. //
  42. // C interface
  43. //
  44. // TODO: show sample usage
  45. //
  46. struct llama_model;
  47. struct llama_context;
  48. typedef int32_t llama_pos;
  49. typedef int32_t llama_token;
  50. typedef int32_t llama_seq_id;
  51. enum llama_vocab_type {
  52. LLAMA_VOCAB_TYPE_NONE = 0, // For models without vocab
  53. LLAMA_VOCAB_TYPE_SPM = 1, // LLaMA tokenizer based on byte-level BPE with byte fallback
  54. LLAMA_VOCAB_TYPE_BPE = 2, // GPT-2 tokenizer based on byte-level BPE
  55. LLAMA_VOCAB_TYPE_WPM = 3, // BERT tokenizer based on WordPiece
  56. };
  57. // pre-tokenization types
  58. enum llama_vocab_pre_type {
  59. LLAMA_VOCAB_PRE_TYPE_DEFAULT = 0,
  60. LLAMA_VOCAB_PRE_TYPE_LLAMA3 = 1,
  61. LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM = 2,
  62. LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER = 3,
  63. LLAMA_VOCAB_PRE_TYPE_FALCON = 4,
  64. LLAMA_VOCAB_PRE_TYPE_MPT = 5,
  65. LLAMA_VOCAB_PRE_TYPE_STARCODER = 6,
  66. LLAMA_VOCAB_PRE_TYPE_GPT2 = 7,
  67. LLAMA_VOCAB_PRE_TYPE_REFACT = 8,
  68. LLAMA_VOCAB_PRE_TYPE_COMMAND_R = 9,
  69. LLAMA_VOCAB_PRE_TYPE_OLMO = 10,
  70. };
  71. // note: these values should be synchronized with ggml_rope
  72. // TODO: maybe move this enum to ggml.h (ggml_rope_type)
  73. enum llama_rope_type {
  74. LLAMA_ROPE_TYPE_NONE = -1,
  75. LLAMA_ROPE_TYPE_NORM = 0,
  76. LLAMA_ROPE_TYPE_NEOX = 2,
  77. LLAMA_ROPE_TYPE_GLM = 4,
  78. };
  79. enum llama_token_type {
  80. LLAMA_TOKEN_TYPE_UNDEFINED = 0,
  81. LLAMA_TOKEN_TYPE_NORMAL = 1,
  82. LLAMA_TOKEN_TYPE_UNKNOWN = 2,
  83. LLAMA_TOKEN_TYPE_CONTROL = 3,
  84. LLAMA_TOKEN_TYPE_USER_DEFINED = 4,
  85. LLAMA_TOKEN_TYPE_UNUSED = 5,
  86. LLAMA_TOKEN_TYPE_BYTE = 6,
  87. };
  88. // model file types
  89. enum llama_ftype {
  90. LLAMA_FTYPE_ALL_F32 = 0,
  91. LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  92. LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  93. LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  94. LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  95. // LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
  96. // LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
  97. LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  98. LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  99. LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  100. LLAMA_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
  101. LLAMA_FTYPE_MOSTLY_Q3_K_S = 11, // except 1d tensors
  102. LLAMA_FTYPE_MOSTLY_Q3_K_M = 12, // except 1d tensors
  103. LLAMA_FTYPE_MOSTLY_Q3_K_L = 13, // except 1d tensors
  104. LLAMA_FTYPE_MOSTLY_Q4_K_S = 14, // except 1d tensors
  105. LLAMA_FTYPE_MOSTLY_Q4_K_M = 15, // except 1d tensors
  106. LLAMA_FTYPE_MOSTLY_Q5_K_S = 16, // except 1d tensors
  107. LLAMA_FTYPE_MOSTLY_Q5_K_M = 17, // except 1d tensors
  108. LLAMA_FTYPE_MOSTLY_Q6_K = 18, // except 1d tensors
  109. LLAMA_FTYPE_MOSTLY_IQ2_XXS = 19, // except 1d tensors
  110. LLAMA_FTYPE_MOSTLY_IQ2_XS = 20, // except 1d tensors
  111. LLAMA_FTYPE_MOSTLY_Q2_K_S = 21, // except 1d tensors
  112. LLAMA_FTYPE_MOSTLY_IQ3_XS = 22, // except 1d tensors
  113. LLAMA_FTYPE_MOSTLY_IQ3_XXS = 23, // except 1d tensors
  114. LLAMA_FTYPE_MOSTLY_IQ1_S = 24, // except 1d tensors
  115. LLAMA_FTYPE_MOSTLY_IQ4_NL = 25, // except 1d tensors
  116. LLAMA_FTYPE_MOSTLY_IQ3_S = 26, // except 1d tensors
  117. LLAMA_FTYPE_MOSTLY_IQ3_M = 27, // except 1d tensors
  118. LLAMA_FTYPE_MOSTLY_IQ2_S = 28, // except 1d tensors
  119. LLAMA_FTYPE_MOSTLY_IQ2_M = 29, // except 1d tensors
  120. LLAMA_FTYPE_MOSTLY_IQ4_XS = 30, // except 1d tensors
  121. LLAMA_FTYPE_MOSTLY_IQ1_M = 31, // except 1d tensors
  122. LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
  123. };
  124. enum llama_rope_scaling_type {
  125. LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED = -1,
  126. LLAMA_ROPE_SCALING_TYPE_NONE = 0,
  127. LLAMA_ROPE_SCALING_TYPE_LINEAR = 1,
  128. LLAMA_ROPE_SCALING_TYPE_YARN = 2,
  129. LLAMA_ROPE_SCALING_TYPE_MAX_VALUE = LLAMA_ROPE_SCALING_TYPE_YARN,
  130. };
  131. enum llama_pooling_type {
  132. LLAMA_POOLING_TYPE_UNSPECIFIED = -1,
  133. LLAMA_POOLING_TYPE_NONE = 0,
  134. LLAMA_POOLING_TYPE_MEAN = 1,
  135. LLAMA_POOLING_TYPE_CLS = 2,
  136. };
  137. enum llama_split_mode {
  138. LLAMA_SPLIT_MODE_NONE = 0, // single GPU
  139. LLAMA_SPLIT_MODE_LAYER = 1, // split layers and KV across GPUs
  140. LLAMA_SPLIT_MODE_ROW = 2, // split rows across GPUs
  141. };
  142. typedef struct llama_token_data {
  143. llama_token id; // token id
  144. float logit; // log-odds of the token
  145. float p; // probability of the token
  146. } llama_token_data;
  147. typedef struct llama_token_data_array {
  148. llama_token_data * data;
  149. size_t size;
  150. bool sorted;
  151. } llama_token_data_array;
  152. typedef bool (*llama_progress_callback)(float progress, void * user_data);
  153. // Input data for llama_decode
  154. // A llama_batch object can contain input about one or many sequences
  155. // The provided arrays (i.e. token, embd, pos, etc.) must have size of n_tokens
  156. //
  157. // - token : the token ids of the input (used when embd is NULL)
  158. // - embd : token embeddings (i.e. float vector of size n_embd) (used when token is NULL)
  159. // - pos : the positions of the respective token in the sequence
  160. // - seq_id : the sequence to which the respective token belongs
  161. // - logits : if zero, the logits (and/or the embeddings) for the respective token will not be output
  162. //
  163. typedef struct llama_batch {
  164. int32_t n_tokens;
  165. llama_token * token;
  166. float * embd;
  167. llama_pos * pos;
  168. int32_t * n_seq_id;
  169. llama_seq_id ** seq_id;
  170. int8_t * logits; // TODO: rename this to "output"
  171. // NOTE: helpers for smooth API transition - can be deprecated in the future
  172. // for future-proof code, use the above fields instead and ignore everything below
  173. //
  174. // pos[i] = all_pos_0 + i*all_pos_1
  175. //
  176. llama_pos all_pos_0; // used if pos == NULL
  177. llama_pos all_pos_1; // used if pos == NULL
  178. llama_seq_id all_seq_id; // used if seq_id == NULL
  179. } llama_batch;
  180. enum llama_model_kv_override_type {
  181. LLAMA_KV_OVERRIDE_TYPE_INT,
  182. LLAMA_KV_OVERRIDE_TYPE_FLOAT,
  183. LLAMA_KV_OVERRIDE_TYPE_BOOL,
  184. LLAMA_KV_OVERRIDE_TYPE_STR,
  185. };
  186. struct llama_model_kv_override {
  187. enum llama_model_kv_override_type tag;
  188. char key[128];
  189. union {
  190. int64_t val_i64;
  191. double val_f64;
  192. bool val_bool;
  193. char val_str[128];
  194. };
  195. };
  196. struct llama_model_params {
  197. int32_t n_gpu_layers; // number of layers to store in VRAM
  198. enum llama_split_mode split_mode; // how to split the model across multiple GPUs
  199. // main_gpu interpretation depends on split_mode:
  200. // LLAMA_SPLIT_NONE: the GPU that is used for the entire model
  201. // LLAMA_SPLIT_ROW: the GPU that is used for small tensors and intermediate results
  202. // LLAMA_SPLIT_LAYER: ignored
  203. int32_t main_gpu;
  204. // proportion of the model (layers or rows) to offload to each GPU, size: llama_max_devices()
  205. const float * tensor_split;
  206. // Called with a progress value between 0.0 and 1.0. Pass NULL to disable.
  207. // If the provided progress_callback returns true, model loading continues.
  208. // If it returns false, model loading is immediately aborted.
  209. llama_progress_callback progress_callback;
  210. // context pointer passed to the progress callback
  211. void * progress_callback_user_data;
  212. // override key-value pairs of the model meta data
  213. const struct llama_model_kv_override * kv_overrides;
  214. // Keep the booleans together to avoid misalignment during copy-by-value.
  215. bool vocab_only; // only load the vocabulary, no weights
  216. bool use_mmap; // use mmap if possible
  217. bool use_mlock; // force system to keep model in RAM
  218. bool check_tensors; // validate model tensor data
  219. };
  220. struct llama_context_params {
  221. uint32_t seed; // RNG seed, -1 for random
  222. uint32_t n_ctx; // text context, 0 = from model
  223. uint32_t n_batch; // logical maximum batch size that can be submitted to llama_decode
  224. uint32_t n_ubatch; // physical maximum batch size
  225. uint32_t n_seq_max; // max number of sequences (i.e. distinct states for recurrent models)
  226. uint32_t n_threads; // number of threads to use for generation
  227. uint32_t n_threads_batch; // number of threads to use for batch processing
  228. enum llama_rope_scaling_type rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type`
  229. enum llama_pooling_type pooling_type; // whether to pool (sum) embedding results by sequence id
  230. // (ignored if no pooling layer)
  231. // ref: https://github.com/ggerganov/llama.cpp/pull/2054
  232. float rope_freq_base; // RoPE base frequency, 0 = from model
  233. float rope_freq_scale; // RoPE frequency scaling factor, 0 = from model
  234. float yarn_ext_factor; // YaRN extrapolation mix factor, negative = from model
  235. float yarn_attn_factor; // YaRN magnitude scaling factor
  236. float yarn_beta_fast; // YaRN low correction dim
  237. float yarn_beta_slow; // YaRN high correction dim
  238. uint32_t yarn_orig_ctx; // YaRN original context size
  239. float defrag_thold; // defragment the KV cache if holes/size > thold, < 0 disabled (default)
  240. ggml_backend_sched_eval_callback cb_eval;
  241. void * cb_eval_user_data;
  242. enum ggml_type type_k; // data type for K cache
  243. enum ggml_type type_v; // data type for V cache
  244. // Keep the booleans together to avoid misalignment during copy-by-value.
  245. bool logits_all; // the llama_decode() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead)
  246. bool embeddings; // if true, extract embeddings (together with logits)
  247. bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
  248. bool flash_attn; // whether to use flash attention
  249. // Abort callback
  250. // if it returns true, execution of llama_decode() will be aborted
  251. // currently works only with CPU execution
  252. ggml_abort_callback abort_callback;
  253. void * abort_callback_data;
  254. };
  255. // model quantization parameters
  256. typedef struct llama_model_quantize_params {
  257. int32_t nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
  258. enum llama_ftype ftype; // quantize to this llama_ftype
  259. enum ggml_type output_tensor_type; // output tensor type
  260. enum ggml_type token_embedding_type; // itoken embeddings tensor type
  261. bool allow_requantize; // allow quantizing non-f32/f16 tensors
  262. bool quantize_output_tensor; // quantize output.weight
  263. bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
  264. bool pure; // quantize all tensors to the default type
  265. bool keep_split; // quantize to the same number of shards
  266. void * imatrix; // pointer to importance matrix data
  267. void * kv_overrides; // pointer to vector containing overrides
  268. } llama_model_quantize_params;
  269. // grammar types
  270. struct llama_grammar;
  271. // grammar element type
  272. enum llama_gretype {
  273. // end of rule definition
  274. LLAMA_GRETYPE_END = 0,
  275. // start of alternate definition for rule
  276. LLAMA_GRETYPE_ALT = 1,
  277. // non-terminal element: reference to rule
  278. LLAMA_GRETYPE_RULE_REF = 2,
  279. // terminal element: character (code point)
  280. LLAMA_GRETYPE_CHAR = 3,
  281. // inverse char(s) ([^a], [^a-b] [^abc])
  282. LLAMA_GRETYPE_CHAR_NOT = 4,
  283. // modifies a preceding LLAMA_GRETYPE_CHAR or LLAMA_GRETYPE_CHAR_ALT to
  284. // be an inclusive range ([a-z])
  285. LLAMA_GRETYPE_CHAR_RNG_UPPER = 5,
  286. // modifies a preceding LLAMA_GRETYPE_CHAR or
  287. // LLAMA_GRETYPE_CHAR_RNG_UPPER to add an alternate char to match ([ab], [a-zA])
  288. LLAMA_GRETYPE_CHAR_ALT = 6,
  289. };
  290. typedef struct llama_grammar_element {
  291. enum llama_gretype type;
  292. uint32_t value; // Unicode code point or rule ID
  293. } llama_grammar_element;
  294. // performance timing information
  295. struct llama_timings {
  296. double t_start_ms;
  297. double t_end_ms;
  298. double t_load_ms;
  299. double t_sample_ms;
  300. double t_p_eval_ms;
  301. double t_eval_ms;
  302. int32_t n_sample;
  303. int32_t n_p_eval;
  304. int32_t n_eval;
  305. };
  306. // used in chat template
  307. typedef struct llama_chat_message {
  308. const char * role;
  309. const char * content;
  310. } llama_chat_message;
  311. // Helpers for getting default parameters
  312. LLAMA_API struct llama_model_params llama_model_default_params(void);
  313. LLAMA_API struct llama_context_params llama_context_default_params(void);
  314. LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params(void);
  315. // Initialize the llama + ggml backend
  316. // If numa is true, use NUMA optimizations
  317. // Call once at the start of the program
  318. LLAMA_API void llama_backend_init(void);
  319. //optional:
  320. LLAMA_API void llama_numa_init(enum ggml_numa_strategy numa);
  321. // Call once at the end of the program - currently only used for MPI
  322. LLAMA_API void llama_backend_free(void);
  323. LLAMA_API struct llama_model * llama_load_model_from_file(
  324. const char * path_model,
  325. struct llama_model_params params);
  326. LLAMA_API void llama_free_model(struct llama_model * model);
  327. LLAMA_API struct llama_context * llama_new_context_with_model(
  328. struct llama_model * model,
  329. struct llama_context_params params);
  330. // Frees all allocated memory
  331. LLAMA_API void llama_free(struct llama_context * ctx);
  332. LLAMA_API int64_t llama_time_us(void);
  333. LLAMA_API size_t llama_max_devices(void);
  334. LLAMA_API bool llama_supports_mmap (void);
  335. LLAMA_API bool llama_supports_mlock (void);
  336. LLAMA_API bool llama_supports_gpu_offload(void);
  337. LLAMA_API const struct llama_model * llama_get_model(const struct llama_context * ctx);
  338. LLAMA_API uint32_t llama_n_ctx (const struct llama_context * ctx);
  339. LLAMA_API uint32_t llama_n_batch (const struct llama_context * ctx);
  340. LLAMA_API uint32_t llama_n_ubatch (const struct llama_context * ctx);
  341. LLAMA_API uint32_t llama_n_seq_max (const struct llama_context * ctx);
  342. LLAMA_API enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx);
  343. LLAMA_API enum llama_vocab_type llama_vocab_type (const struct llama_model * model);
  344. LLAMA_API enum llama_rope_type llama_rope_type (const struct llama_model * model);
  345. LLAMA_API int32_t llama_n_vocab (const struct llama_model * model);
  346. LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model);
  347. LLAMA_API int32_t llama_n_embd (const struct llama_model * model);
  348. LLAMA_API int32_t llama_n_layer (const struct llama_model * model);
  349. // Get the model's RoPE frequency scaling factor
  350. LLAMA_API float llama_rope_freq_scale_train(const struct llama_model * model);
  351. // Functions to access the model's GGUF metadata scalar values
  352. // - The functions return the length of the string on success, or -1 on failure
  353. // - The output string is always null-terminated and cleared on failure
  354. // - GGUF array values are not supported by these functions
  355. // Get metadata value as a string by key name
  356. LLAMA_API int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size);
  357. // Get the number of metadata key/value pairs
  358. LLAMA_API int32_t llama_model_meta_count(const struct llama_model * model);
  359. // Get metadata key name by index
  360. LLAMA_API int32_t llama_model_meta_key_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
  361. // Get metadata value as a string by index
  362. LLAMA_API int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
  363. // Get a string describing the model type
  364. LLAMA_API int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size);
  365. // Returns the total size of all the tensors in the model in bytes
  366. LLAMA_API uint64_t llama_model_size(const struct llama_model * model);
  367. // Returns the total number of parameters in the model
  368. LLAMA_API uint64_t llama_model_n_params(const struct llama_model * model);
  369. // Get a llama model tensor
  370. LLAMA_API struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name);
  371. // Returns 0 on success
  372. LLAMA_API uint32_t llama_model_quantize(
  373. const char * fname_inp,
  374. const char * fname_out,
  375. const llama_model_quantize_params * params);
  376. // Apply a LoRA adapter to a loaded model
  377. // path_base_model is the path to a higher quality model to use as a base for
  378. // the layers modified by the adapter. Can be NULL to use the current loaded model.
  379. // The model needs to be reloaded before applying a new adapter, otherwise the adapter
  380. // will be applied on top of the previous one
  381. // Returns 0 on success
  382. LLAMA_API int32_t llama_model_apply_lora_from_file(
  383. const struct llama_model * model,
  384. const char * path_lora,
  385. float scale,
  386. const char * path_base_model,
  387. int32_t n_threads);
  388. // Apply a loaded control vector to a llama_context, or if data is NULL, clear
  389. // the currently loaded vector.
  390. // n_embd should be the size of a single layer's control, and data should point
  391. // to an n_embd x n_layers buffer starting from layer 1.
  392. // il_start and il_end are the layer range the vector should apply to (both inclusive)
  393. // See llama_control_vector_load in common to load a control vector.
  394. LLAMA_API int32_t llama_control_vector_apply(
  395. struct llama_context * lctx,
  396. const float * data,
  397. size_t len,
  398. int32_t n_embd,
  399. int32_t il_start,
  400. int32_t il_end);
  401. //
  402. // KV cache
  403. //
  404. // Information associated with an individual cell in the KV cache view.
  405. struct llama_kv_cache_view_cell {
  406. // The position for this cell. Takes KV cache shifts into account.
  407. // May be negative if the cell is not populated.
  408. llama_pos pos;
  409. };
  410. // An updateable view of the KV cache.
  411. struct llama_kv_cache_view {
  412. // Number of KV cache cells. This will be the same as the context size.
  413. int32_t n_cells;
  414. // Maximum number of sequences that can exist in a cell. It's not an error
  415. // if there are more sequences in a cell than this value, however they will
  416. // not be visible in the view cells_sequences.
  417. int32_t n_seq_max;
  418. // Number of tokens in the cache. For example, if there are two populated
  419. // cells, the first with 1 sequence id in it and the second with 2 sequence
  420. // ids then you'll have 3 tokens.
  421. int32_t token_count;
  422. // Number of populated cache cells.
  423. int32_t used_cells;
  424. // Maximum contiguous empty slots in the cache.
  425. int32_t max_contiguous;
  426. // Index to the start of the max_contiguous slot range. Can be negative
  427. // when cache is full.
  428. int32_t max_contiguous_idx;
  429. // Information for an individual cell.
  430. struct llama_kv_cache_view_cell * cells;
  431. // The sequences for each cell. There will be n_seq_max items per cell.
  432. llama_seq_id * cells_sequences;
  433. };
  434. // Create an empty KV cache view. (use only for debugging purposes)
  435. LLAMA_API struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max);
  436. // Free a KV cache view. (use only for debugging purposes)
  437. LLAMA_API void llama_kv_cache_view_free(struct llama_kv_cache_view * view);
  438. // Update the KV cache view structure with the current state of the KV cache. (use only for debugging purposes)
  439. LLAMA_API void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view);
  440. // Returns the number of tokens in the KV cache (slow, use only for debug)
  441. // If a KV cell has multiple sequences assigned to it, it will be counted multiple times
  442. LLAMA_API int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx);
  443. // Returns the number of used KV cells (i.e. have at least one sequence assigned to them)
  444. LLAMA_API int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx);
  445. // Clear the KV cache - both cell info is erased and KV data is zeroed
  446. LLAMA_API void llama_kv_cache_clear(
  447. struct llama_context * ctx);
  448. // Removes all tokens that belong to the specified sequence and have positions in [p0, p1)
  449. // Returns false if a partial sequence cannot be removed. Removing a whole sequence never fails
  450. // seq_id < 0 : match any sequence
  451. // p0 < 0 : [0, p1]
  452. // p1 < 0 : [p0, inf)
  453. LLAMA_API bool llama_kv_cache_seq_rm(
  454. struct llama_context * ctx,
  455. llama_seq_id seq_id,
  456. llama_pos p0,
  457. llama_pos p1);
  458. // Copy all tokens that belong to the specified sequence to another sequence
  459. // Note that this does not allocate extra KV cache memory - it simply assigns the tokens to the new sequence
  460. // p0 < 0 : [0, p1]
  461. // p1 < 0 : [p0, inf)
  462. LLAMA_API void llama_kv_cache_seq_cp(
  463. struct llama_context * ctx,
  464. llama_seq_id seq_id_src,
  465. llama_seq_id seq_id_dst,
  466. llama_pos p0,
  467. llama_pos p1);
  468. // Removes all tokens that do not belong to the specified sequence
  469. LLAMA_API void llama_kv_cache_seq_keep(
  470. struct llama_context * ctx,
  471. llama_seq_id seq_id);
  472. // Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1)
  473. // If the KV cache is RoPEd, the KV data is updated accordingly:
  474. // - lazily on next llama_decode()
  475. // - explicitly with llama_kv_cache_update()
  476. // p0 < 0 : [0, p1]
  477. // p1 < 0 : [p0, inf)
  478. LLAMA_API void llama_kv_cache_seq_add(
  479. struct llama_context * ctx,
  480. llama_seq_id seq_id,
  481. llama_pos p0,
  482. llama_pos p1,
  483. llama_pos delta);
  484. // Integer division of the positions by factor of `d > 1`
  485. // If the KV cache is RoPEd, the KV data is updated accordingly:
  486. // - lazily on next llama_decode()
  487. // - explicitly with llama_kv_cache_update()
  488. // p0 < 0 : [0, p1]
  489. // p1 < 0 : [p0, inf)
  490. LLAMA_API void llama_kv_cache_seq_div(
  491. struct llama_context * ctx,
  492. llama_seq_id seq_id,
  493. llama_pos p0,
  494. llama_pos p1,
  495. int d);
  496. // Returns the largest position present in the KV cache for the specified sequence
  497. LLAMA_API llama_pos llama_kv_cache_seq_pos_max(
  498. struct llama_context * ctx,
  499. llama_seq_id seq_id);
  500. // Defragment the KV cache
  501. // This will be applied:
  502. // - lazily on next llama_decode()
  503. // - explicitly with llama_kv_cache_update()
  504. LLAMA_API void llama_kv_cache_defrag(struct llama_context * ctx);
  505. // Apply the KV cache updates (such as K-shifts, defragmentation, etc.)
  506. LLAMA_API void llama_kv_cache_update(struct llama_context * ctx);
  507. //
  508. // State / sessions
  509. //
  510. // Returns the maximum size in bytes of the state (rng, logits, embedding
  511. // and kv_cache) - will often be smaller after compacting tokens
  512. LLAMA_API size_t llama_state_get_size(const struct llama_context * ctx);
  513. LLAMA_API DEPRECATED(size_t llama_get_state_size(const struct llama_context * ctx),
  514. "use llama_state_get_size instead");
  515. // Copies the state to the specified destination address.
  516. // Destination needs to have allocated enough memory.
  517. // Returns the number of bytes copied
  518. LLAMA_API size_t llama_state_get_data(
  519. struct llama_context * ctx,
  520. uint8_t * dst);
  521. LLAMA_API DEPRECATED(size_t llama_copy_state_data(
  522. struct llama_context * ctx,
  523. uint8_t * dst),
  524. "use llama_state_get_data instead");
  525. // Set the state reading from the specified address
  526. // Returns the number of bytes read
  527. LLAMA_API size_t llama_state_set_data(
  528. struct llama_context * ctx,
  529. const uint8_t * src);
  530. LLAMA_API DEPRECATED(size_t llama_set_state_data(
  531. struct llama_context * ctx,
  532. const uint8_t * src),
  533. "use llama_state_set_data instead");
  534. // Save/load session file
  535. LLAMA_API bool llama_state_load_file(
  536. struct llama_context * ctx,
  537. const char * path_session,
  538. llama_token * tokens_out,
  539. size_t n_token_capacity,
  540. size_t * n_token_count_out);
  541. LLAMA_API DEPRECATED(bool llama_load_session_file(
  542. struct llama_context * ctx,
  543. const char * path_session,
  544. llama_token * tokens_out,
  545. size_t n_token_capacity,
  546. size_t * n_token_count_out),
  547. "use llama_state_load_file instead");
  548. LLAMA_API bool llama_state_save_file(
  549. struct llama_context * ctx,
  550. const char * path_session,
  551. const llama_token * tokens,
  552. size_t n_token_count);
  553. LLAMA_API DEPRECATED(bool llama_save_session_file(
  554. struct llama_context * ctx,
  555. const char * path_session,
  556. const llama_token * tokens,
  557. size_t n_token_count),
  558. "use llama_state_save_file instead");
  559. // Get the exact size needed to copy the KV cache of a single sequence
  560. LLAMA_API size_t llama_state_seq_get_size(
  561. struct llama_context * ctx,
  562. llama_seq_id seq_id);
  563. // Copy the KV cache of a single sequence into the specified buffer
  564. LLAMA_API size_t llama_state_seq_get_data(
  565. struct llama_context * ctx,
  566. uint8_t * dst,
  567. llama_seq_id seq_id);
  568. // Copy the sequence data (originally copied with `llama_state_seq_get_data`) into the specified sequence
  569. // Returns:
  570. // - Positive: Ok
  571. // - Zero: Failed to load
  572. LLAMA_API size_t llama_state_seq_set_data(
  573. struct llama_context * ctx,
  574. const uint8_t * src,
  575. llama_seq_id dest_seq_id);
  576. LLAMA_API size_t llama_state_seq_save_file(
  577. struct llama_context * ctx,
  578. const char * filepath,
  579. llama_seq_id seq_id,
  580. const llama_token * tokens,
  581. size_t n_token_count);
  582. LLAMA_API size_t llama_state_seq_load_file(
  583. struct llama_context * ctx,
  584. const char * filepath,
  585. llama_seq_id dest_seq_id,
  586. llama_token * tokens_out,
  587. size_t n_token_capacity,
  588. size_t * n_token_count_out);
  589. //
  590. // Decoding
  591. //
  592. // Return batch for single sequence of tokens starting at pos_0
  593. //
  594. // NOTE: this is a helper function to facilitate transition to the new batch API - avoid using it
  595. //
  596. LLAMA_API struct llama_batch llama_batch_get_one(
  597. llama_token * tokens,
  598. int32_t n_tokens,
  599. llama_pos pos_0,
  600. llama_seq_id seq_id);
  601. // Allocates a batch of tokens on the heap that can hold a maximum of n_tokens
  602. // Each token can be assigned up to n_seq_max sequence ids
  603. // The batch has to be freed with llama_batch_free()
  604. // If embd != 0, llama_batch.embd will be allocated with size of n_tokens * embd * sizeof(float)
  605. // Otherwise, llama_batch.token will be allocated to store n_tokens llama_token
  606. // The rest of the llama_batch members are allocated with size n_tokens
  607. // All members are left uninitialized
  608. LLAMA_API struct llama_batch llama_batch_init(
  609. int32_t n_tokens,
  610. int32_t embd,
  611. int32_t n_seq_max);
  612. // Frees a batch of tokens allocated with llama_batch_init()
  613. LLAMA_API void llama_batch_free(struct llama_batch batch);
  614. // Positive return values does not mean a fatal error, but rather a warning.
  615. // 0 - success
  616. // 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
  617. // < 0 - error
  618. LLAMA_API int32_t llama_decode(
  619. struct llama_context * ctx,
  620. struct llama_batch batch);
  621. // Set the number of threads used for decoding
  622. // n_threads is the number of threads used for generation (single token)
  623. // n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens)
  624. LLAMA_API void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch);
  625. // Set whether to use causal attention or not
  626. // If set to true, the model will only attend to the past tokens
  627. LLAMA_API void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn);
  628. // Set abort callback
  629. LLAMA_API void llama_set_abort_callback(struct llama_context * ctx, ggml_abort_callback abort_callback, void * abort_callback_data);
  630. // Wait until all computations are finished
  631. // This is automatically done when using one of the functions below to obtain the computation results
  632. // and is not necessary to call it explicitly in most cases
  633. LLAMA_API void llama_synchronize(struct llama_context * ctx);
  634. // Token logits obtained from the last call to llama_decode()
  635. // The logits for which llama_batch.logits[i] != 0 are stored contiguously
  636. // in the order they have appeared in the batch.
  637. // Rows: number of tokens for which llama_batch.logits[i] != 0
  638. // Cols: n_vocab
  639. LLAMA_API float * llama_get_logits(struct llama_context * ctx);
  640. // Logits for the ith token. For positive indices, Equivalent to:
  641. // llama_get_logits(ctx) + ctx->output_ids[i]*n_vocab
  642. // Negative indicies can be used to access logits in reverse order, -1 is the last logit.
  643. // returns NULL for invalid ids.
  644. LLAMA_API float * llama_get_logits_ith(struct llama_context * ctx, int32_t i);
  645. // Get all output token embeddings.
  646. // when pooling_type == LLAMA_POOLING_TYPE_NONE or when using a generative model,
  647. // the embeddings for which llama_batch.logits[i] != 0 are stored contiguously
  648. // in the order they have appeared in the batch.
  649. // shape: [n_outputs*n_embd]
  650. // Otherwise, returns NULL.
  651. LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
  652. // Get the embeddings for the ith token. For positive indices, Equivalent to:
  653. // llama_get_embeddings(ctx) + ctx->output_ids[i]*n_embd
  654. // Negative indicies can be used to access embeddings in reverse order, -1 is the last embedding.
  655. // shape: [n_embd] (1-dimensional)
  656. // returns NULL for invalid ids.
  657. LLAMA_API float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i);
  658. // Get the embeddings for a sequence id
  659. // Returns NULL if pooling_type is LLAMA_POOLING_TYPE_NONE
  660. // shape: [n_embd] (1-dimensional)
  661. LLAMA_API float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id);
  662. //
  663. // Vocab
  664. //
  665. LLAMA_API const char * llama_token_get_text(const struct llama_model * model, llama_token token);
  666. LLAMA_API float llama_token_get_score(const struct llama_model * model, llama_token token);
  667. LLAMA_API enum llama_token_type llama_token_get_type(const struct llama_model * model, llama_token token);
  668. // Check if the token is supposed to end generation (end-of-generation, eg. EOS, EOT, etc.)
  669. LLAMA_API bool llama_token_is_eog(const struct llama_model * model, llama_token token);
  670. // Special tokens
  671. LLAMA_API llama_token llama_token_bos(const struct llama_model * model); // beginning-of-sentence
  672. LLAMA_API llama_token llama_token_eos(const struct llama_model * model); // end-of-sentence
  673. LLAMA_API llama_token llama_token_cls(const struct llama_model * model); // classification
  674. LLAMA_API llama_token llama_token_sep(const struct llama_model * model); // sentence separator
  675. LLAMA_API llama_token llama_token_nl (const struct llama_model * model); // next-line
  676. // Returns -1 if unknown, 1 for true or 0 for false.
  677. LLAMA_API int32_t llama_add_bos_token(const struct llama_model * model);
  678. // Returns -1 if unknown, 1 for true or 0 for false.
  679. LLAMA_API int32_t llama_add_eos_token(const struct llama_model * model);
  680. // Codellama infill tokens
  681. LLAMA_API llama_token llama_token_prefix(const struct llama_model * model); // Beginning of infill prefix
  682. LLAMA_API llama_token llama_token_middle(const struct llama_model * model); // Beginning of infill middle
  683. LLAMA_API llama_token llama_token_suffix(const struct llama_model * model); // Beginning of infill suffix
  684. LLAMA_API llama_token llama_token_eot (const struct llama_model * model); // End of infill middle
  685. //
  686. // Tokenization
  687. //
  688. /// @details Convert the provided text into tokens.
  689. /// @param tokens The tokens pointer must be large enough to hold the resulting tokens.
  690. /// @return Returns the number of tokens on success, no more than n_tokens_max
  691. /// @return Returns a negative number on failure - the number of tokens that would have been returned
  692. /// @param parse_special Allow tokenizing special and/or control tokens which otherwise are not exposed and treated
  693. /// as plaintext. Does not insert a leading space.
  694. LLAMA_API int32_t llama_tokenize(
  695. const struct llama_model * model,
  696. const char * text,
  697. int32_t text_len,
  698. llama_token * tokens,
  699. int32_t n_tokens_max,
  700. bool add_special,
  701. bool parse_special);
  702. // Token Id -> Piece.
  703. // Uses the vocabulary in the provided context.
  704. // Does not write null terminator to the buffer.
  705. // User code is responsible to remove the leading whitespace of the first non-BOS token when decoding multiple tokens.
  706. // @param special If true, special tokens are rendered in the output.
  707. LLAMA_API int32_t llama_token_to_piece(
  708. const struct llama_model * model,
  709. llama_token token,
  710. char * buf,
  711. int32_t length,
  712. bool special);
  713. /// Apply chat template. Inspired by hf apply_chat_template() on python.
  714. /// Both "model" and "custom_template" are optional, but at least one is required. "custom_template" has higher precedence than "model"
  715. /// NOTE: This function does not use a jinja parser. It only support a pre-defined list of template. See more: https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template
  716. /// @param tmpl A Jinja template to use for this chat. If this is nullptr, the model’s default chat template will be used instead.
  717. /// @param chat Pointer to a list of multiple llama_chat_message
  718. /// @param n_msg Number of llama_chat_message in this chat
  719. /// @param add_ass Whether to end the prompt with the token(s) that indicate the start of an assistant message.
  720. /// @param buf A buffer to hold the output formatted prompt. The recommended alloc size is 2 * (total number of characters of all messages)
  721. /// @param length The size of the allocated buffer
  722. /// @return The total number of bytes of the formatted prompt. If is it larger than the size of buffer, you may need to re-alloc it and then re-apply the template.
  723. LLAMA_API int32_t llama_chat_apply_template(
  724. const struct llama_model * model,
  725. const char * tmpl,
  726. const struct llama_chat_message * chat,
  727. size_t n_msg,
  728. bool add_ass,
  729. char * buf,
  730. int32_t length);
  731. //
  732. // Grammar
  733. //
  734. LLAMA_API struct llama_grammar * llama_grammar_init(
  735. const llama_grammar_element ** rules,
  736. size_t n_rules,
  737. size_t start_rule_index);
  738. LLAMA_API void llama_grammar_free(struct llama_grammar * grammar);
  739. LLAMA_API struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar);
  740. //
  741. // Sampling functions
  742. //
  743. // Sets the current rng seed.
  744. LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed);
  745. /// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
  746. /// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
  747. LLAMA_API void llama_sample_repetition_penalties(
  748. struct llama_context * ctx,
  749. llama_token_data_array * candidates,
  750. const llama_token * last_tokens,
  751. size_t penalty_last_n,
  752. float penalty_repeat,
  753. float penalty_freq,
  754. float penalty_present);
  755. /// @details Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806
  756. /// @param logits Logits extracted from the original generation context.
  757. /// @param logits_guidance Logits extracted from a separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context.
  758. /// @param scale Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance.
  759. LLAMA_API void llama_sample_apply_guidance(
  760. struct llama_context * ctx,
  761. float * logits,
  762. float * logits_guidance,
  763. float scale);
  764. /// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
  765. LLAMA_API void llama_sample_softmax(
  766. struct llama_context * ctx,
  767. llama_token_data_array * candidates);
  768. /// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  769. LLAMA_API void llama_sample_top_k(
  770. struct llama_context * ctx,
  771. llama_token_data_array * candidates,
  772. int32_t k,
  773. size_t min_keep);
  774. /// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  775. LLAMA_API void llama_sample_top_p(
  776. struct llama_context * ctx,
  777. llama_token_data_array * candidates,
  778. float p,
  779. size_t min_keep);
  780. /// @details Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841
  781. LLAMA_API void llama_sample_min_p(
  782. struct llama_context * ctx,
  783. llama_token_data_array * candidates,
  784. float p,
  785. size_t min_keep);
  786. /// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
  787. LLAMA_API void llama_sample_tail_free(
  788. struct llama_context * ctx,
  789. llama_token_data_array * candidates,
  790. float z,
  791. size_t min_keep);
  792. /// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
  793. LLAMA_API void llama_sample_typical(
  794. struct llama_context * ctx,
  795. llama_token_data_array * candidates,
  796. float p,
  797. size_t min_keep);
  798. /// @details Dynamic temperature implementation described in the paper https://arxiv.org/abs/2309.02772.
  799. LLAMA_API void llama_sample_entropy(
  800. struct llama_context * ctx,
  801. llama_token_data_array * candidates_p,
  802. float min_temp,
  803. float max_temp,
  804. float exponent_val);
  805. LLAMA_API void llama_sample_temp(
  806. struct llama_context * ctx,
  807. llama_token_data_array * candidates,
  808. float temp);
  809. /// @details Apply constraints from grammar
  810. LLAMA_API void llama_sample_grammar(
  811. struct llama_context * ctx,
  812. llama_token_data_array * candidates,
  813. const struct llama_grammar * grammar);
  814. /// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  815. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  816. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  817. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  818. /// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
  819. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  820. LLAMA_API llama_token llama_sample_token_mirostat(
  821. struct llama_context * ctx,
  822. llama_token_data_array * candidates,
  823. float tau,
  824. float eta,
  825. int32_t m,
  826. float * mu);
  827. /// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  828. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  829. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  830. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  831. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  832. LLAMA_API llama_token llama_sample_token_mirostat_v2(
  833. struct llama_context * ctx,
  834. llama_token_data_array * candidates,
  835. float tau,
  836. float eta,
  837. float * mu);
  838. /// @details Selects the token with the highest probability.
  839. /// Does not compute the token probabilities. Use llama_sample_softmax() instead.
  840. LLAMA_API llama_token llama_sample_token_greedy(
  841. struct llama_context * ctx,
  842. llama_token_data_array * candidates);
  843. /// @details Randomly selects a token from the candidates based on their probabilities using the RNG of ctx.
  844. LLAMA_API llama_token llama_sample_token(
  845. struct llama_context * ctx,
  846. llama_token_data_array * candidates);
  847. /// @details Accepts the sampled token into the grammar
  848. LLAMA_API void llama_grammar_accept_token(
  849. struct llama_context * ctx,
  850. struct llama_grammar * grammar,
  851. llama_token token);
  852. //
  853. // Beam search
  854. //
  855. struct llama_beam_view {
  856. const llama_token * tokens;
  857. size_t n_tokens;
  858. float p; // Cumulative beam probability (renormalized relative to all beams)
  859. bool eob; // Callback should set this to true when a beam is at end-of-beam.
  860. };
  861. // Passed to beam_search_callback function.
  862. // Whenever 0 < common_prefix_length, this number of tokens should be copied from any of the beams
  863. // (e.g. beams[0]) as they will be removed (shifted) from all beams in all subsequent callbacks.
  864. // These pointers are valid only during the synchronous callback, so should not be saved.
  865. struct llama_beams_state {
  866. struct llama_beam_view * beam_views;
  867. size_t n_beams; // Number of elements in beam_views[].
  868. size_t common_prefix_length; // Current max length of prefix tokens shared by all beams.
  869. bool last_call; // True iff this is the last callback invocation.
  870. };
  871. // Type of pointer to the beam_search_callback function.
  872. // void* callback_data is any custom data passed to llama_beam_search, that is subsequently
  873. // passed back to beam_search_callback. This avoids having to use global variables in the callback.
  874. typedef void (*llama_beam_search_callback_fn_t)(void * callback_data, struct llama_beams_state);
  875. /// @details Deterministically returns entire sentence constructed by a beam search.
  876. /// @param ctx Pointer to the llama_context.
  877. /// @param callback Invoked for each iteration of the beam_search loop, passing in beams_state.
  878. /// @param callback_data A pointer that is simply passed back to callback.
  879. /// @param n_beams Number of beams to use.
  880. /// @param n_past Number of tokens already evaluated.
  881. /// @param n_predict Maximum number of tokens to predict. EOS may occur earlier.
  882. LLAMA_API void llama_beam_search(
  883. struct llama_context * ctx,
  884. llama_beam_search_callback_fn_t callback,
  885. void * callback_data,
  886. size_t n_beams,
  887. int32_t n_past,
  888. int32_t n_predict);
  889. /// @details Build a split GGUF final path for this chunk.
  890. /// llama_split_path(split_path, sizeof(split_path), "/models/ggml-model-q4_0", 2, 4) => split_path = "/models/ggml-model-q4_0-00002-of-00004.gguf"
  891. // Returns the split_path length.
  892. LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count);
  893. /// @details Extract the path prefix from the split_path if and only if the split_no and split_count match.
  894. /// llama_split_prefix(split_prefix, 64, "/models/ggml-model-q4_0-00002-of-00004.gguf", 2, 4) => split_prefix = "/models/ggml-model-q4_0"
  895. // Returns the split_prefix length.
  896. LLAMA_API int llama_split_prefix(char * split_prefix, size_t maxlen, const char * split_path, int split_no, int split_count);
  897. // Performance information
  898. LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx);
  899. LLAMA_API void llama_print_timings(struct llama_context * ctx);
  900. LLAMA_API void llama_reset_timings(struct llama_context * ctx);
  901. // Print system information
  902. LLAMA_API const char * llama_print_system_info(void);
  903. // Set callback for all future logging events.
  904. // If this is not called, or NULL is supplied, everything is output on stderr.
  905. LLAMA_API void llama_log_set(ggml_log_callback log_callback, void * user_data);
  906. LLAMA_API void llama_dump_timing_info_yaml(FILE * stream, const struct llama_context * ctx);
  907. #ifdef __cplusplus
  908. }
  909. #endif
  910. // Internal API to be implemented by llama.cpp and used by tests/benchmarks only
  911. #ifdef LLAMA_API_INTERNAL
  912. #include <random>
  913. #include <string>
  914. #include <vector>
  915. struct ggml_tensor;
  916. struct llama_partial_utf8 {
  917. uint32_t value; // bit value so far (unshifted)
  918. int n_remain; // num bytes remaining; -1 indicates invalid sequence
  919. };
  920. struct llama_grammar {
  921. const std::vector<std::vector<llama_grammar_element>> rules;
  922. std::vector<std::vector<const llama_grammar_element *>> stacks;
  923. // buffer for partially generated UTF-8 sequence from accepted tokens
  924. llama_partial_utf8 partial_utf8;
  925. };
  926. struct llama_grammar_candidate {
  927. size_t index;
  928. const uint32_t * code_points;
  929. llama_partial_utf8 partial_utf8;
  930. };
  931. const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
  932. struct llama_context * ctx
  933. );
  934. void llama_grammar_accept(
  935. const std::vector<std::vector<llama_grammar_element>> & rules,
  936. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  937. const uint32_t chr,
  938. std::vector<std::vector<const llama_grammar_element *>> & new_stacks);
  939. std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
  940. const std::string & src,
  941. llama_partial_utf8 partial_start);
  942. // Randomly selects a token from the candidates based on their probabilities using given std::mt19937.
  943. // This is a temporary workaround in order to fix race conditions when sampling with multiple sequences.
  944. llama_token llama_sample_token_with_rng(struct llama_context * ctx, llama_token_data_array * candidates, std::mt19937 & rng);
  945. #endif // LLAMA_API_INTERNAL
  946. #endif // LLAMA_H