| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283 |
- #pragma once
- #include "llama.h"
- #include "common.h"
- #include <string>
- #include <vector>
- // gpt_sampler extends llama_sampler with additional functionality:
- //
- // - grammar support
- // - custom sampler logic based on the parameters
- // - history of the last accepted tokens
- // - performance metrics
- //
- // This goal is to have a common implementation of the sampling logic shared across the examples.
- // For example, depending on the temperature, the sampling chain can be very simple (greedy) or more
- // complex (top-k, top-p, etc).
- //
- // Another example is related to the grammar. In general, the grammar constraints applied on the full
- // vocabulary can be very taxing. To improve performance, the grammar can be applied only to the sampled
- // token in order to verify if it fits the grammar. And only if the token doesn't fit the grammar, the
- // grammar constraints are applied to the full vocabulary and the token is resampled.
- //
- // The gpt_sampler also maintains a container with the last accepted tokens. In the future, this can
- // be moved into the core llama library.
- //
- // For convenience, the gpt_sampler also maintains a container with the current candidate tokens.
- // This can be used to access the probabilities of the rest of the non-sampled tokens.
- //
- // TODO: measure grammar performance
- //
- struct gpt_sampler;
- // llama_sampler API overloads
- struct gpt_sampler * gpt_sampler_init(const struct llama_model * model, const struct gpt_sampler_params & params);
- void gpt_sampler_free(struct gpt_sampler * gsmpl);
- // if accept_grammar is true, the token is accepted both by the sampling chain and the grammar
- void gpt_sampler_accept(struct gpt_sampler * gsmpl, llama_token token, bool accept_grammar);
- void gpt_sampler_reset (struct gpt_sampler * gsmpl);
- struct gpt_sampler * gpt_sampler_clone (struct gpt_sampler * gsmpl);
- // arguments can be nullptr to skip printing
- void gpt_perf_print(const struct llama_context * ctx, const struct gpt_sampler * gsmpl);
- // extended sampling implementation:
- //
- // - set logits
- // - apply the configured sampler chain
- // - check if the token fits the grammar (if any)
- // - if not: resample by first applying the grammar constraints and then sampling again (slower path)
- //
- // if grammar_first is true, the grammar is applied before the samplers (slower)
- // useful in cases where all the resulting candidates (not just the sampled one) must fit the grammar
- //
- llama_token gpt_sampler_sample(struct gpt_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first = false);
- uint32_t gpt_sampler_get_seed(const struct gpt_sampler * gsmpl);
- // helpers
- // access the internal list of current candidate tokens
- llama_token_data_array * gpt_sampler_get_candidates(struct gpt_sampler * gsmpl);
- // get the last accepted token
- llama_token gpt_sampler_last(const struct gpt_sampler * gsmpl);
- // print the sampler chain into a string
- std::string gpt_sampler_print(const struct gpt_sampler * gsmpl);
- // get a string representation of the last accepted tokens
- std::string gpt_sampler_prev_str(gpt_sampler * gsmpl, llama_context * ctx, int n);
- char gpt_sampler_type_to_chr(enum gpt_sampler_type cnstr);
- std::string gpt_sampler_type_to_str(enum gpt_sampler_type cnstr);
- std::vector<enum gpt_sampler_type> gpt_sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names);
- std::vector<enum gpt_sampler_type> gpt_sampler_types_from_chars(const std::string & chars);
|