convert_hf_to_gguf.py 187 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. import math
  17. import numpy as np
  18. import torch
  19. if TYPE_CHECKING:
  20. from torch import Tensor
  21. if 'NO_LOCAL_GGUF' not in os.environ:
  22. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  23. import gguf
  24. logger = logging.getLogger("hf-to-gguf")
  25. ###### MODEL DEFINITIONS ######
  26. class SentencePieceTokenTypes(IntEnum):
  27. NORMAL = 1
  28. UNKNOWN = 2
  29. CONTROL = 3
  30. USER_DEFINED = 4
  31. UNUSED = 5
  32. BYTE = 6
  33. AnyModel = TypeVar("AnyModel", bound="type[Model]")
  34. class Model:
  35. _model_classes: dict[str, type[Model]] = {}
  36. dir_model: Path
  37. ftype: gguf.LlamaFileType
  38. fname_out: Path
  39. is_big_endian: bool
  40. endianess: gguf.GGUFEndian
  41. use_temp_file: bool
  42. lazy: bool
  43. part_names: list[str]
  44. is_safetensors: bool
  45. hparams: dict[str, Any]
  46. block_count: int
  47. tensor_map: gguf.TensorNameMap
  48. tensor_names: set[str] | None
  49. gguf_writer: gguf.GGUFWriter
  50. model_name: str | None
  51. metadata_override: Path | None
  52. dir_model_card: Path
  53. is_lora: bool
  54. # subclasses should define this!
  55. model_arch: gguf.MODEL_ARCH
  56. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool = False,
  57. use_temp_file: bool = False, eager: bool = False,
  58. metadata_override: Path | None = None, model_name: str | None = None,
  59. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, small_first_shard: bool = False, is_lora: bool = False):
  60. if type(self) is Model:
  61. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  62. self.dir_model = dir_model
  63. self.ftype = ftype
  64. self.fname_out = fname_out
  65. self.is_big_endian = is_big_endian
  66. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  67. self.use_temp_file = use_temp_file
  68. self.lazy = not eager
  69. self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors")
  70. self.is_safetensors = len(self.part_names) > 0
  71. if not self.is_safetensors:
  72. self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  73. self.hparams = Model.load_hparams(self.dir_model)
  74. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  75. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  76. self.tensor_names = None
  77. self.metadata_override = metadata_override
  78. self.model_name = model_name
  79. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  80. self.is_lora = is_lora # true if model is used inside convert_lora_to_gguf.py
  81. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  82. if self.ftype == gguf.LlamaFileType.GUESSED:
  83. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  84. _, first_tensor = next(self.get_tensors())
  85. if first_tensor.dtype == torch.float16:
  86. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  87. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  88. else:
  89. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  90. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  91. # Configure GGUF Writer
  92. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  93. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  94. @classmethod
  95. def __init_subclass__(cls):
  96. # can't use an abstract property, because overriding it without type errors
  97. # would require using decorated functions instead of simply defining the property
  98. if "model_arch" not in cls.__dict__:
  99. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  100. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  101. key = next((k for k in keys if k in self.hparams), None)
  102. if key is not None:
  103. return self.hparams[key]
  104. if optional:
  105. return None
  106. raise KeyError(f"could not find any of: {keys}")
  107. def set_vocab(self):
  108. self._set_vocab_gpt2()
  109. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  110. tensor_names_from_parts: set[str] = set()
  111. if len(self.part_names) > 1:
  112. self.tensor_names = set()
  113. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  114. index_name += ".index.json"
  115. logger.info(f"gguf: loading model weight map from '{index_name}'")
  116. with open(self.dir_model / index_name, "r", encoding="utf-8") as f:
  117. index: dict[str, Any] = json.load(f)
  118. weight_map = index.get("weight_map")
  119. if weight_map is None or not isinstance(weight_map, dict):
  120. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  121. self.tensor_names.update(weight_map.keys())
  122. else:
  123. self.tensor_names = tensor_names_from_parts
  124. for part_name in self.part_names:
  125. logger.info(f"gguf: loading model part '{part_name}'")
  126. ctx: ContextManager[Any]
  127. if self.is_safetensors:
  128. from safetensors import safe_open
  129. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  130. else:
  131. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  132. with ctx as model_part:
  133. tensor_names_from_parts.update(model_part.keys())
  134. for name in model_part.keys():
  135. if self.is_safetensors:
  136. if self.lazy:
  137. data = model_part.get_slice(name)
  138. data = LazyTorchTensor.from_safetensors_slice(data)
  139. else:
  140. data = model_part.get_tensor(name)
  141. else:
  142. data = model_part[name]
  143. if self.lazy:
  144. data = LazyTorchTensor.from_eager(data)
  145. yield name, data
  146. # only verify tensor name presence; it doesn't matter if they are not in the right files
  147. if len(sym_diff := tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  148. raise ValueError(f"Mismatch between weight map and model parts for tensor names: {sym_diff}")
  149. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  150. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  151. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  152. name: str = gguf.TENSOR_NAMES[key]
  153. if "{bid}" in name:
  154. assert bid is not None
  155. name = name.format(bid=bid)
  156. return name + suffix
  157. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  158. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  159. return False
  160. key_name: str = gguf.TENSOR_NAMES[key]
  161. if "{bid}" in key_name:
  162. if bid is None:
  163. return False
  164. key_name = key_name.format(bid=bid)
  165. else:
  166. if bid is not None:
  167. return False
  168. return name == (key_name + suffix)
  169. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  170. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  171. if new_name is None:
  172. raise ValueError(f"Can not map tensor {name!r}")
  173. return new_name
  174. def set_gguf_parameters(self):
  175. self.gguf_writer.add_block_count(self.block_count)
  176. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  177. self.gguf_writer.add_context_length(n_ctx)
  178. logger.info(f"gguf: context length = {n_ctx}")
  179. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  180. self.gguf_writer.add_embedding_length(n_embd)
  181. logger.info(f"gguf: embedding length = {n_embd}")
  182. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  183. self.gguf_writer.add_feed_forward_length(n_ff)
  184. logger.info(f"gguf: feed forward length = {n_ff}")
  185. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  186. self.gguf_writer.add_head_count(n_head)
  187. logger.info(f"gguf: head count = {n_head}")
  188. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  189. self.gguf_writer.add_head_count_kv(n_head_kv)
  190. logger.info(f"gguf: key-value head count = {n_head_kv}")
  191. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  192. self.gguf_writer.add_rope_freq_base(rope_theta)
  193. logger.info(f"gguf: rope theta = {rope_theta}")
  194. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  195. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  196. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  197. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  198. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  199. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  200. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  201. self.gguf_writer.add_expert_count(n_experts)
  202. logger.info(f"gguf: expert count = {n_experts}")
  203. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  204. self.gguf_writer.add_expert_used_count(n_experts_used)
  205. logger.info(f"gguf: experts used count = {n_experts_used}")
  206. if (head_dim := self.hparams.get("head_dim")) is not None:
  207. self.gguf_writer.add_key_length(head_dim)
  208. self.gguf_writer.add_value_length(head_dim)
  209. self.gguf_writer.add_file_type(self.ftype)
  210. logger.info(f"gguf: file type = {self.ftype}")
  211. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  212. del bid # unused
  213. return [(self.map_tensor_name(name), data_torch)]
  214. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  215. del name, new_name, bid, n_dims # unused
  216. return False
  217. def prepare_tensors(self):
  218. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  219. for name, data_torch in self.get_tensors():
  220. # we don't need these
  221. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  222. continue
  223. old_dtype = data_torch.dtype
  224. # convert any unsupported data types to float32
  225. if data_torch.dtype not in (torch.float16, torch.float32):
  226. data_torch = data_torch.to(torch.float32)
  227. # use the first number-like part of the tensor name as the block id
  228. bid = None
  229. for part in name.split("."):
  230. if part.isdecimal():
  231. bid = int(part)
  232. break
  233. for new_name, data in ((n, d.squeeze().numpy()) for n, d in self.modify_tensors(data_torch, name, bid)):
  234. data: np.ndarray # type hint
  235. n_dims = len(data.shape)
  236. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  237. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  238. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  239. data_qtype = gguf.GGMLQuantizationType.F32
  240. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  241. # Some tensor types are always in float32
  242. if data_qtype is False and (
  243. any(
  244. self.match_model_tensor_name(new_name, key, bid)
  245. for key in (
  246. gguf.MODEL_TENSOR.FFN_GATE_INP,
  247. gguf.MODEL_TENSOR.POS_EMBD,
  248. gguf.MODEL_TENSOR.TOKEN_TYPES,
  249. gguf.MODEL_TENSOR.SSM_CONV1D,
  250. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  251. gguf.MODEL_TENSOR.TIME_MIX_W1,
  252. gguf.MODEL_TENSOR.TIME_MIX_W2,
  253. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  254. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  255. )
  256. )
  257. or not new_name.endswith(".weight")
  258. ):
  259. data_qtype = gguf.GGMLQuantizationType.F32
  260. if data_qtype is False and any(
  261. self.match_model_tensor_name(new_name, key, bid)
  262. for key in (
  263. gguf.MODEL_TENSOR.TOKEN_EMBD,
  264. gguf.MODEL_TENSOR.OUTPUT,
  265. )
  266. ):
  267. if self.ftype in (
  268. gguf.LlamaFileType.MOSTLY_TQ1_0,
  269. gguf.LlamaFileType.MOSTLY_TQ2_0,
  270. ):
  271. # TODO: use Q4_K and Q6_K
  272. data_qtype = gguf.GGMLQuantizationType.F16
  273. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  274. if isinstance(data_qtype, bool):
  275. if self.ftype == gguf.LlamaFileType.ALL_F32:
  276. data_qtype = gguf.GGMLQuantizationType.F32
  277. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  278. data_qtype = gguf.GGMLQuantizationType.F16
  279. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  280. data_qtype = gguf.GGMLQuantizationType.BF16
  281. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  282. data_qtype = gguf.GGMLQuantizationType.Q8_0
  283. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  284. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  285. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  286. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  287. else:
  288. raise ValueError(f"Unknown file type: {self.ftype.name}")
  289. try:
  290. data = gguf.quants.quantize(data, data_qtype)
  291. except gguf.QuantError as e:
  292. logger.warning("%s, %s", e, "falling back to F16")
  293. data_qtype = gguf.GGMLQuantizationType.F16
  294. data = gguf.quants.quantize(data, data_qtype)
  295. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  296. # reverse shape to make it similar to the internal ggml dimension order
  297. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  298. # n_dims is implicit in the shape
  299. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  300. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  301. def set_type(self):
  302. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  303. def prepare_metadata(self, vocab_only: bool):
  304. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  305. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  306. # Fallback to model directory name if metadata name is still missing
  307. if self.metadata.name is None:
  308. self.metadata.name = self.dir_model.name
  309. # Generate parameter weight class (useful for leader boards) if not yet determined
  310. if self.metadata.size_label is None and total_params > 0:
  311. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  312. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  313. output_type: str = self.ftype.name.partition("_")[2]
  314. # Filename Output
  315. if self.fname_out.is_dir():
  316. # Generate default filename based on model specification and available metadata
  317. if not vocab_only:
  318. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  319. else:
  320. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  321. # Use the default filename
  322. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  323. else:
  324. # Output path is a custom defined templated filename
  325. # Note: `not is_dir()` is used because `.is_file()` will not detect
  326. # file template strings as it doesn't actually exist as a file
  327. # Process templated file name with the output ftype, useful with the "auto" ftype
  328. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  329. self.set_type()
  330. logger.info("Set meta model")
  331. self.metadata.set_gguf_meta_model(self.gguf_writer)
  332. logger.info("Set model parameters")
  333. self.set_gguf_parameters()
  334. logger.info("Set model tokenizer")
  335. self.set_vocab()
  336. logger.info("Set model quantization version")
  337. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  338. def write(self):
  339. self.prepare_tensors()
  340. self.prepare_metadata(vocab_only=False)
  341. self.gguf_writer.write_header_to_file(path=self.fname_out)
  342. self.gguf_writer.write_kv_data_to_file()
  343. self.gguf_writer.write_tensors_to_file(progress=True)
  344. self.gguf_writer.close()
  345. def write_vocab(self):
  346. if len(self.gguf_writer.tensors) != 1:
  347. raise ValueError('Splitting the vocabulary is not supported')
  348. self.prepare_metadata(vocab_only=True)
  349. self.gguf_writer.write_header_to_file(path=self.fname_out)
  350. self.gguf_writer.write_kv_data_to_file()
  351. self.gguf_writer.close()
  352. @staticmethod
  353. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  354. part_names: list[str] = []
  355. for filename in os.listdir(dir_model):
  356. if filename.startswith(prefix) and filename.endswith(suffix):
  357. part_names.append(filename)
  358. part_names.sort()
  359. return part_names
  360. @staticmethod
  361. def load_hparams(dir_model: Path):
  362. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  363. return json.load(f)
  364. @classmethod
  365. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  366. assert names
  367. def func(modelcls: AnyModel) -> AnyModel:
  368. for name in names:
  369. cls._model_classes[name] = modelcls
  370. return modelcls
  371. return func
  372. @classmethod
  373. def from_model_architecture(cls, arch: str) -> type[Model]:
  374. try:
  375. return cls._model_classes[arch]
  376. except KeyError:
  377. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  378. def does_token_look_special(self, token: str | bytes) -> bool:
  379. if isinstance(token, (bytes, bytearray)):
  380. token_text = token.decode(encoding="utf-8")
  381. elif isinstance(token, memoryview):
  382. token_text = token.tobytes().decode(encoding="utf-8")
  383. else:
  384. token_text = token
  385. # Some models mark some added tokens which ought to be control tokens as not special.
  386. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  387. seems_special = token_text in (
  388. "<pad>", # deepseek-coder
  389. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  390. )
  391. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  392. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  393. # TODO: should these be marked as UNUSED instead? (maybe not)
  394. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  395. return seems_special
  396. # used for GPT-2 BPE and WordPiece vocabs
  397. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  398. tokens: list[str] = []
  399. toktypes: list[int] = []
  400. from transformers import AutoTokenizer
  401. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  402. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  403. assert max(tokenizer.vocab.values()) < vocab_size
  404. tokpre = self.get_vocab_base_pre(tokenizer)
  405. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  406. added_vocab = tokenizer.get_added_vocab()
  407. for i in range(vocab_size):
  408. if i not in reverse_vocab:
  409. tokens.append(f"[PAD{i}]")
  410. toktypes.append(gguf.TokenType.UNUSED)
  411. else:
  412. token: str = reverse_vocab[i]
  413. if token in added_vocab:
  414. if tokenizer.added_tokens_decoder[i].special or self.does_token_look_special(token):
  415. toktypes.append(gguf.TokenType.CONTROL)
  416. else:
  417. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  418. toktypes.append(gguf.TokenType.USER_DEFINED)
  419. else:
  420. toktypes.append(gguf.TokenType.NORMAL)
  421. tokens.append(token)
  422. return tokens, toktypes, tokpre
  423. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  424. # do not modify it manually!
  425. # ref: https://github.com/ggerganov/llama.cpp/pull/6920
  426. # Marker: Start get_vocab_base_pre
  427. def get_vocab_base_pre(self, tokenizer) -> str:
  428. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  429. # is specific for the BPE pre-tokenizer used by the model
  430. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  431. # use in llama.cpp to implement the same pre-tokenizer
  432. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  433. chktok = tokenizer.encode(chktxt)
  434. chkhsh = sha256(str(chktok).encode()).hexdigest()
  435. logger.debug(f"chktok: {chktok}")
  436. logger.debug(f"chkhsh: {chkhsh}")
  437. res = None
  438. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  439. # or pull the latest version of the model from Huggingface
  440. # don't edit the hashes manually!
  441. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  442. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  443. res = "llama-bpe"
  444. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  445. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  446. res = "deepseek-llm"
  447. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  448. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  449. res = "deepseek-coder"
  450. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  451. # ref: https://huggingface.co/tiiuae/falcon-7b
  452. res = "falcon"
  453. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  454. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  455. res = "bert-bge"
  456. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  457. # ref: https://huggingface.co/mosaicml/mpt-7b
  458. res = "mpt"
  459. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  460. # ref: https://huggingface.co/bigcode/starcoder2-3b
  461. res = "starcoder"
  462. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  463. # ref: https://huggingface.co/openai-community/gpt2
  464. res = "gpt-2"
  465. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  466. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  467. res = "stablelm2"
  468. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  469. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  470. res = "refact"
  471. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  472. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  473. res = "command-r"
  474. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  475. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  476. res = "qwen2"
  477. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  478. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  479. res = "olmo"
  480. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  481. # ref: https://huggingface.co/databricks/dbrx-base
  482. res = "dbrx"
  483. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  484. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  485. res = "jina-v2-en"
  486. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  487. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  488. res = "jina-v2-es"
  489. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  490. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  491. res = "jina-v2-de"
  492. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  493. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  494. res = "smaug-bpe"
  495. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  496. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  497. res = "poro-chat"
  498. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  499. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  500. res = "jina-v2-code"
  501. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  502. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  503. res = "chatglm-bpe"
  504. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  505. # ref: https://huggingface.co/LumiOpen/Viking-7B
  506. res = "viking"
  507. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  508. # ref: https://huggingface.co/core42/jais-13b
  509. res = "jais"
  510. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  511. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  512. res = "codeshell"
  513. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  514. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  515. res = "tekken"
  516. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  517. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  518. res = "smollm"
  519. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  520. # ref: https://huggingface.co/bigscience/bloom
  521. res = "bloom"
  522. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  523. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  524. res = "gpt3-finnish"
  525. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  526. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  527. res = "exaone"
  528. if res is None:
  529. logger.warning("\n")
  530. logger.warning("**************************************************************************************")
  531. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  532. logger.warning("** There are 2 possible reasons for this:")
  533. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  534. logger.warning("** - the pre-tokenization config has changed upstream")
  535. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  536. logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
  537. logger.warning("**")
  538. logger.warning(f"** chkhsh: {chkhsh}")
  539. logger.warning("**************************************************************************************")
  540. logger.warning("\n")
  541. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  542. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  543. logger.debug(f"chkhsh: {chkhsh}")
  544. return res
  545. # Marker: End get_vocab_base_pre
  546. def _set_vocab_gpt2(self) -> None:
  547. tokens, toktypes, tokpre = self.get_vocab_base()
  548. self.gguf_writer.add_tokenizer_model("gpt2")
  549. self.gguf_writer.add_tokenizer_pre(tokpre)
  550. self.gguf_writer.add_token_list(tokens)
  551. self.gguf_writer.add_token_types(toktypes)
  552. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  553. special_vocab.add_to_gguf(self.gguf_writer)
  554. def _set_vocab_qwen(self):
  555. dir_model = self.dir_model
  556. hparams = self.hparams
  557. tokens: list[str] = []
  558. toktypes: list[int] = []
  559. from transformers import AutoTokenizer
  560. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  561. vocab_size = hparams["vocab_size"]
  562. assert max(tokenizer.get_vocab().values()) < vocab_size
  563. tokpre = self.get_vocab_base_pre(tokenizer)
  564. merges = []
  565. vocab = {}
  566. mergeable_ranks = tokenizer.mergeable_ranks
  567. for token, rank in mergeable_ranks.items():
  568. vocab[QwenModel.token_bytes_to_string(token)] = rank
  569. if len(token) == 1:
  570. continue
  571. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  572. assert len(merged) == 2
  573. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  574. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  575. added_vocab = tokenizer.special_tokens
  576. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  577. for i in range(vocab_size):
  578. if i not in reverse_vocab:
  579. tokens.append(f"[PAD{i}]")
  580. toktypes.append(gguf.TokenType.UNUSED)
  581. elif reverse_vocab[i] in added_vocab:
  582. tokens.append(reverse_vocab[i])
  583. toktypes.append(gguf.TokenType.CONTROL)
  584. else:
  585. tokens.append(reverse_vocab[i])
  586. toktypes.append(gguf.TokenType.NORMAL)
  587. self.gguf_writer.add_tokenizer_model("gpt2")
  588. self.gguf_writer.add_tokenizer_pre(tokpre)
  589. self.gguf_writer.add_token_list(tokens)
  590. self.gguf_writer.add_token_types(toktypes)
  591. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  592. special_vocab.merges = merges
  593. # only add special tokens when they were not already loaded from config.json
  594. if len(special_vocab.special_token_ids) == 0:
  595. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  596. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  597. # this one is usually not in config.json anyway
  598. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  599. special_vocab.add_to_gguf(self.gguf_writer)
  600. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  601. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  602. self.gguf_writer.add_tokenizer_model("llama")
  603. self.gguf_writer.add_tokenizer_pre("default")
  604. self.gguf_writer.add_token_list(tokens)
  605. self.gguf_writer.add_token_scores(scores)
  606. self.gguf_writer.add_token_types(toktypes)
  607. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  608. special_vocab.add_to_gguf(self.gguf_writer)
  609. def _create_vocab_sentencepiece(self):
  610. from sentencepiece import SentencePieceProcessor
  611. tokenizer_path = self.dir_model / 'tokenizer.model'
  612. if not tokenizer_path.is_file():
  613. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  614. tokenizer = SentencePieceProcessor()
  615. tokenizer.LoadFromFile(str(tokenizer_path))
  616. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  617. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  618. scores: list[float] = [-10000.0] * vocab_size
  619. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  620. for token_id in range(tokenizer.vocab_size()):
  621. piece = tokenizer.IdToPiece(token_id)
  622. text = piece.encode("utf-8")
  623. score = tokenizer.GetScore(token_id)
  624. toktype = SentencePieceTokenTypes.NORMAL
  625. if tokenizer.IsUnknown(token_id):
  626. toktype = SentencePieceTokenTypes.UNKNOWN
  627. elif tokenizer.IsControl(token_id):
  628. toktype = SentencePieceTokenTypes.CONTROL
  629. elif tokenizer.IsUnused(token_id):
  630. toktype = SentencePieceTokenTypes.UNUSED
  631. elif tokenizer.IsByte(token_id):
  632. toktype = SentencePieceTokenTypes.BYTE
  633. tokens[token_id] = text
  634. scores[token_id] = score
  635. toktypes[token_id] = toktype
  636. added_tokens_file = self.dir_model / 'added_tokens.json'
  637. if added_tokens_file.is_file():
  638. with open(added_tokens_file, "r", encoding="utf-8") as f:
  639. added_tokens_json = json.load(f)
  640. for key in added_tokens_json:
  641. token_id = added_tokens_json[key]
  642. if token_id >= vocab_size:
  643. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  644. continue
  645. tokens[token_id] = key.encode("utf-8")
  646. scores[token_id] = -1000.0
  647. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  648. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  649. if tokenizer_config_file.is_file():
  650. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  651. tokenizer_config_json = json.load(f)
  652. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  653. for token_id, token_data in added_tokens_decoder.items():
  654. token_id = int(token_id)
  655. token: str = token_data["content"]
  656. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  657. if tokens[token_id] != token.encode("utf-8"):
  658. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  659. if token_data.get("special") or self.does_token_look_special(token):
  660. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  661. else:
  662. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  663. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  664. scores[token_id] = -1000.0
  665. tokens[token_id] = token.encode("utf-8")
  666. if vocab_size > len(tokens):
  667. pad_count = vocab_size - len(tokens)
  668. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  669. for i in range(1, pad_count + 1):
  670. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  671. scores.append(-1000.0)
  672. toktypes.append(SentencePieceTokenTypes.UNUSED)
  673. return tokens, scores, toktypes
  674. def _set_vocab_llama_hf(self):
  675. vocab = gguf.LlamaHfVocab(self.dir_model)
  676. tokens = []
  677. scores = []
  678. toktypes = []
  679. for text, score, toktype in vocab.all_tokens():
  680. tokens.append(text)
  681. scores.append(score)
  682. toktypes.append(toktype)
  683. assert len(tokens) == vocab.vocab_size
  684. self.gguf_writer.add_tokenizer_model("llama")
  685. self.gguf_writer.add_tokenizer_pre("default")
  686. self.gguf_writer.add_token_list(tokens)
  687. self.gguf_writer.add_token_scores(scores)
  688. self.gguf_writer.add_token_types(toktypes)
  689. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  690. special_vocab.add_to_gguf(self.gguf_writer)
  691. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  692. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  693. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  694. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  695. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  696. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  697. assert field # tokenizer model
  698. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  699. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  700. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  701. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  702. assert field # token list
  703. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  704. if model_name == "llama-spm":
  705. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  706. assert field # token scores
  707. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  708. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  709. assert field # token types
  710. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  711. if model_name != "llama-spm":
  712. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  713. assert field # token merges
  714. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  715. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  716. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  717. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  718. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  719. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  720. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  721. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  722. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  723. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  724. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  725. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  726. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  727. @Model.register("GPTNeoXForCausalLM")
  728. class GPTNeoXModel(Model):
  729. model_arch = gguf.MODEL_ARCH.GPTNEOX
  730. def set_gguf_parameters(self):
  731. block_count = self.hparams["num_hidden_layers"]
  732. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  733. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  734. self.gguf_writer.add_block_count(block_count)
  735. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  736. self.gguf_writer.add_rope_dimension_count(
  737. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  738. )
  739. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  740. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  741. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  742. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  743. del bid # unused
  744. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  745. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  746. tensors: list[tuple[str, Tensor]] = []
  747. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  748. # Map bloom-style qkv_linear to gpt-style qkv_linear
  749. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  750. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  751. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  752. data_torch = torch.cat(
  753. (
  754. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  755. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  756. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  757. ),
  758. dim=0,
  759. )
  760. logger.info("re-format attention.linear_qkv.weight")
  761. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  762. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  763. data_torch = torch.cat(
  764. (
  765. qkv_bias[:, 0, :].reshape((n_embed,)),
  766. qkv_bias[:, 1, :].reshape((n_embed,)),
  767. qkv_bias[:, 2, :].reshape((n_embed,)),
  768. ),
  769. dim=0,
  770. )
  771. logger.info("re-format attention.linear_qkv.bias")
  772. tensors.append((self.map_tensor_name(name), data_torch))
  773. return tensors
  774. @Model.register("BloomForCausalLM", "BloomModel")
  775. class BloomModel(Model):
  776. model_arch = gguf.MODEL_ARCH.BLOOM
  777. def set_gguf_parameters(self):
  778. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  779. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  780. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  781. self.gguf_writer.add_embedding_length(n_embed)
  782. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  783. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  784. self.gguf_writer.add_head_count(n_head)
  785. self.gguf_writer.add_head_count_kv(n_head)
  786. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  787. self.gguf_writer.add_file_type(self.ftype)
  788. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  789. del bid # unused
  790. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  791. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  792. name = re.sub(r'transformer\.', '', name)
  793. tensors: list[tuple[str, Tensor]] = []
  794. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  795. # Map bloom-style qkv_linear to gpt-style qkv_linear
  796. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  797. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  798. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  799. data_torch = torch.cat(
  800. (
  801. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  802. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  803. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  804. ),
  805. dim=0,
  806. )
  807. logger.info("re-format attention.linear_qkv.weight")
  808. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  809. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  810. data_torch = torch.cat(
  811. (
  812. qkv_bias[:, 0, :].reshape((n_embed,)),
  813. qkv_bias[:, 1, :].reshape((n_embed,)),
  814. qkv_bias[:, 2, :].reshape((n_embed,)),
  815. ),
  816. dim=0,
  817. )
  818. logger.info("re-format attention.linear_qkv.bias")
  819. tensors.append((self.map_tensor_name(name), data_torch))
  820. if name == "word_embeddings.weight":
  821. assert self.tensor_names is not None
  822. # TODO: tie them at runtime, don't duplicate in the model file
  823. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  824. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  825. return tensors
  826. @Model.register("MPTForCausalLM")
  827. class MPTModel(Model):
  828. model_arch = gguf.MODEL_ARCH.MPT
  829. def set_vocab(self):
  830. try:
  831. self._set_vocab_gpt2()
  832. except Exception:
  833. # Fallback for SEA-LION model
  834. self._set_vocab_sentencepiece()
  835. self.gguf_writer.add_add_bos_token(False)
  836. self.gguf_writer.add_pad_token_id(3)
  837. self.gguf_writer.add_eos_token_id(1)
  838. self.gguf_writer.add_unk_token_id(0)
  839. def set_gguf_parameters(self):
  840. block_count = self.hparams["n_layers"]
  841. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  842. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  843. self.gguf_writer.add_block_count(block_count)
  844. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  845. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  846. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  847. self.gguf_writer.add_head_count_kv(kv_n_heads)
  848. self.gguf_writer.add_layer_norm_eps(1e-5)
  849. if self.hparams["attn_config"]["clip_qkv"] is not None:
  850. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  851. if self.hparams["attn_config"]["alibi"]:
  852. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  853. else:
  854. self.gguf_writer.add_max_alibi_bias(0.0)
  855. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  856. del bid # unused
  857. if "scales" in name:
  858. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  859. new_name = new_name.replace("scales", "act.scales")
  860. else:
  861. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  862. return [(new_name, data_torch)]
  863. @Model.register("OrionForCausalLM")
  864. class OrionModel(Model):
  865. model_arch = gguf.MODEL_ARCH.ORION
  866. def set_vocab(self):
  867. self._set_vocab_sentencepiece()
  868. def set_gguf_parameters(self):
  869. block_count = self.hparams["num_hidden_layers"]
  870. head_count = self.hparams["num_attention_heads"]
  871. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  872. ctx_length = 0
  873. if "max_sequence_length" in self.hparams:
  874. ctx_length = self.hparams["max_sequence_length"]
  875. elif "max_position_embeddings" in self.hparams:
  876. ctx_length = self.hparams["max_position_embeddings"]
  877. elif "model_max_length" in self.hparams:
  878. ctx_length = self.hparams["model_max_length"]
  879. else:
  880. raise ValueError("gguf: can not find ctx length parameter.")
  881. self.gguf_writer.add_file_type(self.ftype)
  882. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  883. self.gguf_writer.add_context_length(ctx_length)
  884. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  885. self.gguf_writer.add_block_count(block_count)
  886. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  887. self.gguf_writer.add_head_count(head_count)
  888. self.gguf_writer.add_head_count_kv(head_count_kv)
  889. # note: config provides rms norm but it is actually layer norm
  890. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  891. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  892. @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  893. class BaichuanModel(Model):
  894. model_arch = gguf.MODEL_ARCH.BAICHUAN
  895. def set_vocab(self):
  896. self._set_vocab_sentencepiece()
  897. def set_gguf_parameters(self):
  898. block_count = self.hparams["num_hidden_layers"]
  899. head_count = self.hparams["num_attention_heads"]
  900. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  901. ctx_length = 0
  902. if "max_sequence_length" in self.hparams:
  903. ctx_length = self.hparams["max_sequence_length"]
  904. elif "max_position_embeddings" in self.hparams:
  905. ctx_length = self.hparams["max_position_embeddings"]
  906. elif "model_max_length" in self.hparams:
  907. ctx_length = self.hparams["model_max_length"]
  908. else:
  909. raise ValueError("gguf: can not find ctx length parameter.")
  910. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  911. self.gguf_writer.add_context_length(ctx_length)
  912. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  913. self.gguf_writer.add_block_count(block_count)
  914. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  915. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  916. self.gguf_writer.add_head_count(head_count)
  917. self.gguf_writer.add_head_count_kv(head_count_kv)
  918. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  919. self.gguf_writer.add_file_type(self.ftype)
  920. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  921. if self.hparams["rope_scaling"].get("type") == "linear":
  922. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  923. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  924. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  925. head_count = self.hparams["num_attention_heads"]
  926. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  927. tensors: list[tuple[str, Tensor]] = []
  928. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  929. logger.info(f"Unpacking and permuting layer {bid}")
  930. tensors = [
  931. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  932. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  933. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  934. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  935. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  936. self._reverse_hf_part(data_torch, 2)),
  937. ]
  938. else:
  939. tensors = [(self.map_tensor_name(name), data_torch)]
  940. return tensors
  941. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  942. if n_kv_head is not None and n_head != n_kv_head:
  943. n_head //= n_kv_head
  944. return (
  945. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  946. .swapaxes(1, 2)
  947. .reshape(weights.shape)
  948. )
  949. def _reverse_hf_permute_part(
  950. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  951. ) -> Tensor:
  952. r = weights.shape[0] // 3
  953. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  954. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  955. r = weights.shape[0] // 3
  956. return weights[r * n_part:r * n_part + r, ...]
  957. @Model.register("XverseForCausalLM")
  958. class XverseModel(Model):
  959. model_arch = gguf.MODEL_ARCH.XVERSE
  960. def set_vocab(self):
  961. assert (self.dir_model / "tokenizer.json").is_file()
  962. dir_model = self.dir_model
  963. hparams = self.hparams
  964. tokens: list[bytes] = []
  965. toktypes: list[int] = []
  966. from transformers import AutoTokenizer
  967. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  968. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  969. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  970. # because vocab_size is the count of items, and indexes start at 0.
  971. max_vocab_index = max(tokenizer.get_vocab().values())
  972. if max_vocab_index >= vocab_size:
  973. raise ValueError("Vocabulary size exceeds expected maximum size.")
  974. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  975. added_vocab = tokenizer.get_added_vocab()
  976. for token_id in range(vocab_size):
  977. token_text = reverse_vocab[token_id].encode('utf-8')
  978. # replace "\x00" to string with length > 0
  979. if token_text == b"\x00":
  980. toktype = gguf.TokenType.BYTE # special
  981. token_text = f"<{token_text}>".encode('utf-8')
  982. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  983. toktype = gguf.TokenType.BYTE # special
  984. elif reverse_vocab[token_id] in added_vocab:
  985. if tokenizer.added_tokens_decoder[token_id].special:
  986. toktype = gguf.TokenType.CONTROL
  987. else:
  988. toktype = gguf.TokenType.USER_DEFINED
  989. else:
  990. toktype = gguf.TokenType.NORMAL
  991. tokens.append(token_text)
  992. toktypes.append(toktype)
  993. self.gguf_writer.add_tokenizer_model("llama")
  994. self.gguf_writer.add_tokenizer_pre("default")
  995. self.gguf_writer.add_token_list(tokens)
  996. self.gguf_writer.add_token_types(toktypes)
  997. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  998. special_vocab.add_to_gguf(self.gguf_writer)
  999. def set_gguf_parameters(self):
  1000. block_count = self.hparams["num_hidden_layers"]
  1001. head_count = self.hparams["num_attention_heads"]
  1002. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1003. ctx_length = 0
  1004. if "max_sequence_length" in self.hparams:
  1005. ctx_length = self.hparams["max_sequence_length"]
  1006. elif "max_position_embeddings" in self.hparams:
  1007. ctx_length = self.hparams["max_position_embeddings"]
  1008. elif "model_max_length" in self.hparams:
  1009. ctx_length = self.hparams["model_max_length"]
  1010. else:
  1011. raise ValueError("gguf: can not find ctx length parameter.")
  1012. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1013. self.gguf_writer.add_context_length(ctx_length)
  1014. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1015. self.gguf_writer.add_block_count(block_count)
  1016. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1017. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1018. self.gguf_writer.add_head_count(head_count)
  1019. self.gguf_writer.add_head_count_kv(head_count_kv)
  1020. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1021. self.gguf_writer.add_file_type(self.ftype)
  1022. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1023. if self.hparams["rope_scaling"].get("type") == "linear":
  1024. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1025. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1026. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1027. del bid # unused
  1028. head_count = self.hparams["num_attention_heads"]
  1029. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1030. # HF models permute some of the tensors, so we need to undo that
  1031. if name.endswith("q_proj.weight"):
  1032. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1033. if name.endswith("k_proj.weight"):
  1034. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1035. return [(self.map_tensor_name(name), data_torch)]
  1036. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1037. if n_kv_head is not None and n_head != n_kv_head:
  1038. n_head //= n_kv_head
  1039. return (
  1040. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1041. .swapaxes(1, 2)
  1042. .reshape(weights.shape)
  1043. )
  1044. @Model.register("FalconForCausalLM", "RWForCausalLM")
  1045. class FalconModel(Model):
  1046. model_arch = gguf.MODEL_ARCH.FALCON
  1047. def set_gguf_parameters(self):
  1048. block_count = self.hparams.get("num_hidden_layers")
  1049. if block_count is None:
  1050. block_count = self.hparams["n_layer"] # old name
  1051. n_head = self.hparams.get("num_attention_heads")
  1052. if n_head is None:
  1053. n_head = self.hparams["n_head"] # old name
  1054. n_head_kv = self.hparams.get("num_kv_heads")
  1055. if n_head_kv is None:
  1056. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1057. self.gguf_writer.add_context_length(2048) # not in config.json
  1058. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1059. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1060. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1061. self.gguf_writer.add_block_count(block_count)
  1062. self.gguf_writer.add_head_count(n_head)
  1063. self.gguf_writer.add_head_count_kv(n_head_kv)
  1064. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1065. self.gguf_writer.add_file_type(self.ftype)
  1066. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1067. del bid # unused
  1068. # QKV tensor transform
  1069. # The original query_key_value tensor contains n_head_kv "kv groups",
  1070. # each consisting of n_head/n_head_kv query weights followed by one key
  1071. # and one value weight (shared by all query heads in the kv group).
  1072. # This layout makes it a big pain to work with in GGML.
  1073. # So we rearrange them here,, so that we have n_head query weights
  1074. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1075. # in contiguous fashion.
  1076. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1077. if "query_key_value" in name:
  1078. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1079. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1080. head_dim = self.hparams["hidden_size"] // n_head
  1081. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1082. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1083. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1084. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1085. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1086. return [(self.map_tensor_name(name), data_torch)]
  1087. @Model.register("GPTBigCodeForCausalLM")
  1088. class StarCoderModel(Model):
  1089. model_arch = gguf.MODEL_ARCH.STARCODER
  1090. def set_gguf_parameters(self):
  1091. block_count = self.hparams["n_layer"]
  1092. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1093. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1094. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1095. self.gguf_writer.add_block_count(block_count)
  1096. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1097. self.gguf_writer.add_head_count_kv(1)
  1098. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1099. self.gguf_writer.add_file_type(self.ftype)
  1100. @Model.register("GPTRefactForCausalLM")
  1101. class RefactModel(Model):
  1102. model_arch = gguf.MODEL_ARCH.REFACT
  1103. def set_vocab(self):
  1104. super().set_vocab()
  1105. # TODO: how to determine special FIM tokens automatically?
  1106. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1107. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1108. special_vocab._set_special_token("prefix", 1)
  1109. special_vocab._set_special_token("suffix", 3)
  1110. special_vocab._set_special_token("middle", 2)
  1111. special_vocab.chat_template = None # do not add it twice
  1112. special_vocab.add_to_gguf(self.gguf_writer)
  1113. def set_gguf_parameters(self):
  1114. hidden_dim = self.hparams["n_embd"]
  1115. inner_dim = 4 * hidden_dim
  1116. hidden_dim = int(2 * inner_dim / 3)
  1117. multiple_of = 256
  1118. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1119. block_count = self.hparams["n_layer"]
  1120. # refact uses Alibi. So this is from config.json which might be used by training.
  1121. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1122. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1123. self.gguf_writer.add_feed_forward_length(ff_dim)
  1124. self.gguf_writer.add_block_count(block_count)
  1125. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1126. self.gguf_writer.add_head_count_kv(1)
  1127. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1128. self.gguf_writer.add_file_type(self.ftype)
  1129. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1130. hidden_dim = self.hparams["n_embd"]
  1131. inner_dim = 4 * hidden_dim
  1132. hidden_dim = int(2 * inner_dim / 3)
  1133. multiple_of = 256
  1134. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1135. n_head = self.hparams["n_head"]
  1136. n_head_kv = 1
  1137. head_dim = self.hparams["n_embd"] // n_head
  1138. tensors: list[tuple[str, Tensor]] = []
  1139. if bid is not None:
  1140. if name == f"transformer.h.{bid}.attn.kv.weight":
  1141. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1142. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1143. elif name == f"transformer.h.{bid}.attn.q.weight":
  1144. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1145. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1146. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1147. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1148. if len(tensors) == 0:
  1149. tensors.append((self.map_tensor_name(name), data_torch))
  1150. return tensors
  1151. @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1152. class StableLMModel(Model):
  1153. model_arch = gguf.MODEL_ARCH.STABLELM
  1154. def set_vocab(self):
  1155. if (self.dir_model / "tokenizer.json").is_file():
  1156. self._set_vocab_gpt2()
  1157. else:
  1158. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1159. self._set_vocab_qwen()
  1160. def set_gguf_parameters(self):
  1161. hparams = self.hparams
  1162. block_count = hparams["num_hidden_layers"]
  1163. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1164. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1165. self.gguf_writer.add_block_count(block_count)
  1166. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1167. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1168. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1169. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1170. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1171. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1172. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1173. self.gguf_writer.add_file_type(self.ftype)
  1174. _q_norms: list[dict[str, Tensor]] | None = None
  1175. _k_norms: list[dict[str, Tensor]] | None = None
  1176. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1177. n_head = self.hparams["num_attention_heads"]
  1178. n_kv_head = self.hparams["num_key_value_heads"]
  1179. if name.find("q_layernorm.norms") != -1:
  1180. assert bid is not None
  1181. if self._q_norms is None:
  1182. self._q_norms = [{} for _ in range(self.block_count)]
  1183. self._q_norms[bid][name] = data_torch
  1184. if len(self._q_norms[bid]) >= n_head:
  1185. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1186. else:
  1187. return []
  1188. if name.find("k_layernorm.norms") != -1:
  1189. assert bid is not None
  1190. if self._k_norms is None:
  1191. self._k_norms = [{} for _ in range(self.block_count)]
  1192. self._k_norms[bid][name] = data_torch
  1193. if len(self._k_norms[bid]) >= n_kv_head:
  1194. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1195. else:
  1196. return []
  1197. return [(self.map_tensor_name(name), data_torch)]
  1198. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1199. datas: list[Tensor] = []
  1200. # extract the norms in order
  1201. for xid in range(n_head):
  1202. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1203. datas.append(norms[ename])
  1204. del norms[ename]
  1205. data_torch = torch.stack(datas, dim=0)
  1206. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1207. new_name = self.map_tensor_name(merged_name)
  1208. return [(new_name, data_torch)]
  1209. def prepare_tensors(self):
  1210. super().prepare_tensors()
  1211. if self._q_norms is not None or self._k_norms is not None:
  1212. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1213. norms = (
  1214. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1215. ) + (
  1216. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1217. )
  1218. if len(norms) > 0:
  1219. raise ValueError(f"Unprocessed norms: {norms}")
  1220. @Model.register("LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
  1221. class LlamaModel(Model):
  1222. model_arch = gguf.MODEL_ARCH.LLAMA
  1223. def set_vocab(self):
  1224. try:
  1225. self._set_vocab_sentencepiece()
  1226. except FileNotFoundError:
  1227. try:
  1228. self._set_vocab_llama_hf()
  1229. except (FileNotFoundError, TypeError):
  1230. # Llama 3
  1231. self._set_vocab_gpt2()
  1232. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1233. if self.hparams.get("vocab_size", 32000) == 32016:
  1234. special_vocab = gguf.SpecialVocab(
  1235. self.dir_model, load_merges=False,
  1236. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1237. )
  1238. special_vocab._set_special_token("prefix", 32007)
  1239. special_vocab._set_special_token("suffix", 32008)
  1240. special_vocab._set_special_token("middle", 32009)
  1241. special_vocab._set_special_token("eot", 32010)
  1242. special_vocab.add_to_gguf(self.gguf_writer)
  1243. def set_gguf_parameters(self):
  1244. super().set_gguf_parameters()
  1245. hparams = self.hparams
  1246. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1247. if "head_dim" in hparams:
  1248. rope_dim = hparams["head_dim"]
  1249. else:
  1250. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1251. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1252. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1253. if self.hparams["rope_scaling"].get("type") == "linear":
  1254. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1255. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1256. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1257. if tokenizer_config_file.is_file():
  1258. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1259. tokenizer_config_json = json.load(f)
  1260. if "add_prefix_space" in tokenizer_config_json:
  1261. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1262. # Apply to granite small models only
  1263. if self.hparams.get("vocab_size", 32000) == 49152:
  1264. self.gguf_writer.add_add_bos_token(False)
  1265. @staticmethod
  1266. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1267. if n_head_kv is not None and n_head != n_head_kv:
  1268. n_head = n_head_kv
  1269. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1270. .swapaxes(1, 2)
  1271. .reshape(weights.shape))
  1272. _experts: list[dict[str, Tensor]] | None = None
  1273. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1274. n_head = self.hparams["num_attention_heads"]
  1275. n_kv_head = self.hparams.get("num_key_value_heads")
  1276. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1277. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1278. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1279. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1280. # process the experts separately
  1281. if name.find("block_sparse_moe.experts") != -1:
  1282. n_experts = self.hparams["num_local_experts"]
  1283. assert bid is not None
  1284. if self._experts is None:
  1285. self._experts = [{} for _ in range(self.block_count)]
  1286. self._experts[bid][name] = data_torch
  1287. if len(self._experts[bid]) >= n_experts * 3:
  1288. tensors: list[tuple[str, Tensor]] = []
  1289. # merge the experts into a single 3d tensor
  1290. for wid in ["w1", "w2", "w3"]:
  1291. datas: list[Tensor] = []
  1292. for xid in range(n_experts):
  1293. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1294. datas.append(self._experts[bid][ename])
  1295. del self._experts[bid][ename]
  1296. data_torch = torch.stack(datas, dim=0)
  1297. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1298. new_name = self.map_tensor_name(merged_name)
  1299. tensors.append((new_name, data_torch))
  1300. return tensors
  1301. else:
  1302. return []
  1303. return [(self.map_tensor_name(name), data_torch)]
  1304. def prepare_tensors(self):
  1305. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1306. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1307. base = self.hparams.get("rope_theta", 10000.0)
  1308. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1309. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1310. factor = rope_scaling.get("factor", 8.0)
  1311. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1312. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1313. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1314. low_freq_wavelen = old_context_len / low_freq_factor
  1315. high_freq_wavelen = old_context_len / high_freq_factor
  1316. assert low_freq_wavelen != high_freq_wavelen
  1317. rope_factors = []
  1318. for freq in freqs:
  1319. wavelen = 2 * math.pi / freq
  1320. if wavelen < high_freq_wavelen:
  1321. rope_factors.append(1)
  1322. elif wavelen > low_freq_wavelen:
  1323. rope_factors.append(factor)
  1324. else:
  1325. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1326. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1327. if not self.is_lora:
  1328. self.gguf_writer.add_tensor(self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), np.array(rope_factors, dtype=np.float32))
  1329. super().prepare_tensors()
  1330. if self._experts is not None:
  1331. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1332. experts = [k for d in self._experts for k in d.keys()]
  1333. if len(experts) > 0:
  1334. raise ValueError(f"Unprocessed experts: {experts}")
  1335. @Model.register("BitnetForCausalLM")
  1336. class BitnetModel(Model):
  1337. model_arch = gguf.MODEL_ARCH.BITNET
  1338. def set_vocab(self):
  1339. self._set_vocab_sentencepiece()
  1340. def set_gguf_parameters(self):
  1341. super().set_gguf_parameters()
  1342. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1343. self.gguf_writer.add_rope_scaling_factor(1.0)
  1344. def weight_quant(self, weight: Tensor) -> Tensor:
  1345. dtype = weight.dtype
  1346. weight = weight.float()
  1347. scale = weight.abs().mean().clamp(min=1e-5)
  1348. iscale = 1 / scale
  1349. # TODO: multiply by the scale directly instead of inverting it twice
  1350. # (this is also unnecessarily doubly inverted upstream)
  1351. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  1352. result = (weight * iscale).round().clamp(-1, 1) / iscale
  1353. return result.type(dtype)
  1354. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1355. new_name = self.map_tensor_name(name)
  1356. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  1357. gguf.MODEL_TENSOR.ATTN_Q,
  1358. gguf.MODEL_TENSOR.ATTN_K,
  1359. gguf.MODEL_TENSOR.ATTN_V,
  1360. gguf.MODEL_TENSOR.ATTN_OUT,
  1361. gguf.MODEL_TENSOR.FFN_UP,
  1362. gguf.MODEL_TENSOR.FFN_DOWN,
  1363. gguf.MODEL_TENSOR.FFN_GATE,
  1364. ]):
  1365. # transform weight into 1/0/-1 (in fp32)
  1366. data_torch = self.weight_quant(data_torch)
  1367. yield (new_name, data_torch)
  1368. @Model.register("GrokForCausalLM")
  1369. class GrokModel(Model):
  1370. model_arch = gguf.MODEL_ARCH.GROK
  1371. def set_vocab(self):
  1372. self._set_vocab_sentencepiece()
  1373. def __init__(self, *args, **kwargs):
  1374. super().__init__(*args, **kwargs)
  1375. def set_gguf_parameters(self):
  1376. super().set_gguf_parameters()
  1377. _experts: list[dict[str, Tensor]] | None = None
  1378. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1379. # process the experts separately
  1380. if name.find(".moe.") != -1:
  1381. n_experts = self.hparams["num_local_experts"]
  1382. assert bid is not None
  1383. if self._experts is None:
  1384. self._experts = [{} for _ in range(self.block_count)]
  1385. self._experts[bid][name] = data_torch
  1386. if len(self._experts[bid]) >= n_experts * 3:
  1387. tensors: list[tuple[str, Tensor]] = []
  1388. # merge the experts into a single 3d tensor
  1389. for wid in ["linear", "linear_1", "linear_v"]:
  1390. datas: list[Tensor] = []
  1391. for xid in range(n_experts):
  1392. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1393. datas.append(self._experts[bid][ename])
  1394. del self._experts[bid][ename]
  1395. data_torch = torch.stack(datas, dim=0)
  1396. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1397. new_name = self.map_tensor_name(merged_name)
  1398. tensors.append((new_name, data_torch))
  1399. return tensors
  1400. else:
  1401. return []
  1402. return [(self.map_tensor_name(name), data_torch)]
  1403. @Model.register("DbrxForCausalLM")
  1404. class DbrxModel(Model):
  1405. model_arch = gguf.MODEL_ARCH.DBRX
  1406. def set_gguf_parameters(self):
  1407. ffn_config = self.hparams["ffn_config"]
  1408. attn_config = self.hparams["attn_config"]
  1409. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1410. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1411. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1412. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1413. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1414. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1415. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1416. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1417. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1418. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1419. self.gguf_writer.add_layer_norm_eps(1e-5)
  1420. self.gguf_writer.add_file_type(self.ftype)
  1421. logger.info(f"gguf: file type = {self.ftype}")
  1422. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1423. del bid # unused
  1424. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1425. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1426. n_embd = self.hparams["d_model"]
  1427. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1428. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1429. # But llama.cpp moe graph works differently
  1430. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1431. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1432. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1433. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1434. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1435. experts = False
  1436. for exp_tensor_name in exp_tensor_names.keys():
  1437. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1438. experts = True
  1439. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1440. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1441. data_torch = data_torch.permute(*permute_tensor)
  1442. break
  1443. # map tensor names
  1444. # In MoE models the ffn tensors are typically most of the model weights,
  1445. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1446. # Every other model has the weight names ending in .weight,
  1447. # let's assume that is the convention which is not the case for dbrx:
  1448. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  1449. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  1450. return [(new_name, data_torch)]
  1451. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  1452. del name, new_name, bid # unused
  1453. return n_dims > 1
  1454. @Model.register("MiniCPMForCausalLM")
  1455. class MiniCPMModel(Model):
  1456. model_arch = gguf.MODEL_ARCH.MINICPM
  1457. def set_gguf_parameters(self):
  1458. block_count = self.hparams["num_hidden_layers"]
  1459. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1460. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1461. self.gguf_writer.add_block_count(block_count)
  1462. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1463. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1464. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1465. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1466. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1467. self.gguf_writer.add_file_type(self.ftype)
  1468. def set_vocab(self):
  1469. self._set_vocab_llama_hf()
  1470. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1471. if n_kv_head is not None and n_head != n_kv_head:
  1472. n_head //= n_kv_head
  1473. return (
  1474. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1475. .swapaxes(1, 2)
  1476. .reshape(weights.shape)
  1477. )
  1478. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1479. del bid # unused
  1480. n_head = self.hparams["num_attention_heads"]
  1481. n_kv_head = self.hparams.get("num_key_value_heads")
  1482. # HF models permute some of the tensors, so we need to undo that
  1483. if name.endswith(("q_proj.weight")):
  1484. data_torch = self._reverse_hf_permute(data_torch, n_head, n_head)
  1485. if name.endswith(("k_proj.weight")):
  1486. data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head)
  1487. return [(self.map_tensor_name(name), data_torch)]
  1488. @Model.register("QWenLMHeadModel")
  1489. class QwenModel(Model):
  1490. model_arch = gguf.MODEL_ARCH.QWEN
  1491. @staticmethod
  1492. def token_bytes_to_string(b):
  1493. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  1494. byte_encoder = bytes_to_unicode()
  1495. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  1496. @staticmethod
  1497. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  1498. parts = [bytes([b]) for b in token]
  1499. while True:
  1500. min_idx = None
  1501. min_rank = None
  1502. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  1503. rank = mergeable_ranks.get(pair[0] + pair[1])
  1504. if rank is not None and (min_rank is None or rank < min_rank):
  1505. min_idx = i
  1506. min_rank = rank
  1507. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  1508. break
  1509. assert min_idx is not None
  1510. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  1511. return parts
  1512. def set_vocab(self):
  1513. self._set_vocab_qwen()
  1514. def set_gguf_parameters(self):
  1515. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1516. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1517. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1518. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1519. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1520. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1521. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1522. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1523. self.gguf_writer.add_file_type(self.ftype)
  1524. @Model.register("Qwen2ForCausalLM")
  1525. class Qwen2Model(Model):
  1526. model_arch = gguf.MODEL_ARCH.QWEN2
  1527. def set_vocab(self):
  1528. try:
  1529. self._set_vocab_sentencepiece()
  1530. except FileNotFoundError:
  1531. self._set_vocab_gpt2()
  1532. @Model.register("Qwen2MoeForCausalLM")
  1533. class Qwen2MoeModel(Model):
  1534. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  1535. def set_gguf_parameters(self):
  1536. super().set_gguf_parameters()
  1537. if (n_experts := self.hparams.get("num_experts")) is not None:
  1538. self.gguf_writer.add_expert_count(n_experts)
  1539. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  1540. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  1541. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  1542. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  1543. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  1544. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  1545. _experts: list[dict[str, Tensor]] | None = None
  1546. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1547. # process the experts separately
  1548. if name.find("experts") != -1:
  1549. n_experts = self.hparams["num_experts"]
  1550. assert bid is not None
  1551. if self._experts is None:
  1552. self._experts = [{} for _ in range(self.block_count)]
  1553. self._experts[bid][name] = data_torch
  1554. if len(self._experts[bid]) >= n_experts * 3:
  1555. tensors: list[tuple[str, Tensor]] = []
  1556. # merge the experts into a single 3d tensor
  1557. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  1558. datas: list[Tensor] = []
  1559. for xid in range(n_experts):
  1560. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  1561. datas.append(self._experts[bid][ename])
  1562. del self._experts[bid][ename]
  1563. data_torch = torch.stack(datas, dim=0)
  1564. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  1565. new_name = self.map_tensor_name(merged_name)
  1566. tensors.append((new_name, data_torch))
  1567. return tensors
  1568. else:
  1569. return []
  1570. return [(self.map_tensor_name(name), data_torch)]
  1571. def prepare_tensors(self):
  1572. super().prepare_tensors()
  1573. if self._experts is not None:
  1574. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1575. experts = [k for d in self._experts for k in d.keys()]
  1576. if len(experts) > 0:
  1577. raise ValueError(f"Unprocessed experts: {experts}")
  1578. @Model.register("GPT2LMHeadModel")
  1579. class GPT2Model(Model):
  1580. model_arch = gguf.MODEL_ARCH.GPT2
  1581. def set_gguf_parameters(self):
  1582. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1583. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  1584. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1585. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1586. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1587. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1588. self.gguf_writer.add_file_type(self.ftype)
  1589. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1590. del bid # unused
  1591. tensors: list[tuple[str, Tensor]] = []
  1592. # we don't need these
  1593. if name.endswith((".attn.bias", ".attn.masked_bias")):
  1594. return tensors
  1595. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  1596. data_torch = data_torch.transpose(1, 0)
  1597. new_name = self.map_tensor_name(name)
  1598. tensors.append((new_name, data_torch))
  1599. # note: GPT2 output is tied to (same as) wte in original model
  1600. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1601. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1602. return tensors
  1603. @Model.register("PhiForCausalLM")
  1604. class Phi2Model(Model):
  1605. model_arch = gguf.MODEL_ARCH.PHI2
  1606. def set_gguf_parameters(self):
  1607. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1608. rot_pct = self.find_hparam(["partial_rotary_factor"])
  1609. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1610. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1611. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1612. self.gguf_writer.add_embedding_length(n_embd)
  1613. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  1614. self.gguf_writer.add_block_count(block_count)
  1615. self.gguf_writer.add_head_count(n_head)
  1616. self.gguf_writer.add_head_count_kv(n_head)
  1617. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  1618. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1619. self.gguf_writer.add_file_type(self.ftype)
  1620. self.gguf_writer.add_add_bos_token(False)
  1621. @Model.register("Phi3ForCausalLM")
  1622. class Phi3MiniModel(Model):
  1623. model_arch = gguf.MODEL_ARCH.PHI3
  1624. def set_vocab(self):
  1625. from sentencepiece import SentencePieceProcessor
  1626. tokenizer_path = self.dir_model / 'tokenizer.model'
  1627. if not tokenizer_path.is_file():
  1628. raise ValueError(f'Error: Missing {tokenizer_path}')
  1629. tokenizer = SentencePieceProcessor()
  1630. tokenizer.LoadFromFile(str(tokenizer_path))
  1631. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1632. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1633. scores: list[float] = [-10000.0] * vocab_size
  1634. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  1635. for token_id in range(tokenizer.vocab_size()):
  1636. piece = tokenizer.IdToPiece(token_id)
  1637. text = piece.encode("utf-8")
  1638. score = tokenizer.GetScore(token_id)
  1639. toktype = SentencePieceTokenTypes.NORMAL
  1640. if tokenizer.IsUnknown(token_id):
  1641. toktype = SentencePieceTokenTypes.UNKNOWN
  1642. elif tokenizer.IsControl(token_id):
  1643. toktype = SentencePieceTokenTypes.CONTROL
  1644. elif tokenizer.IsUnused(token_id):
  1645. toktype = SentencePieceTokenTypes.UNUSED
  1646. elif tokenizer.IsByte(token_id):
  1647. toktype = SentencePieceTokenTypes.BYTE
  1648. tokens[token_id] = text
  1649. scores[token_id] = score
  1650. toktypes[token_id] = toktype
  1651. added_tokens_file = self.dir_model / 'added_tokens.json'
  1652. if added_tokens_file.is_file():
  1653. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1654. added_tokens_json = json.load(f)
  1655. for key in added_tokens_json:
  1656. token_id = added_tokens_json[key]
  1657. if token_id >= vocab_size:
  1658. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1659. continue
  1660. tokens[token_id] = key.encode("utf-8")
  1661. scores[token_id] = -1000.0
  1662. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1663. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1664. if tokenizer_config_file.is_file():
  1665. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1666. tokenizer_config_json = json.load(f)
  1667. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1668. for token_id, foken_data in added_tokens_decoder.items():
  1669. token_id = int(token_id)
  1670. token = foken_data["content"].encode("utf-8")
  1671. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1672. if tokens[token_id] != token:
  1673. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1674. tokens[token_id] = token
  1675. scores[token_id] = -1000.0
  1676. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1677. if foken_data.get("special"):
  1678. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1679. tokenizer_file = self.dir_model / 'tokenizer.json'
  1680. if tokenizer_file.is_file():
  1681. with open(tokenizer_file, "r", encoding="utf-8") as f:
  1682. tokenizer_json = json.load(f)
  1683. added_tokens = tokenizer_json.get("added_tokens", [])
  1684. for foken_data in added_tokens:
  1685. token_id = int(foken_data["id"])
  1686. token = foken_data["content"].encode("utf-8")
  1687. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1688. if tokens[token_id] != token:
  1689. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1690. tokens[token_id] = token
  1691. scores[token_id] = -1000.0
  1692. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1693. if foken_data.get("special"):
  1694. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1695. self.gguf_writer.add_tokenizer_model("llama")
  1696. self.gguf_writer.add_tokenizer_pre("default")
  1697. self.gguf_writer.add_token_list(tokens)
  1698. self.gguf_writer.add_token_scores(scores)
  1699. self.gguf_writer.add_token_types(toktypes)
  1700. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1701. special_vocab.add_to_gguf(self.gguf_writer)
  1702. def set_gguf_parameters(self):
  1703. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1704. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1705. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1706. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  1707. rms_eps = self.find_hparam(["rms_norm_eps"])
  1708. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  1709. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  1710. rope_dims = n_embd // n_head
  1711. self.gguf_writer.add_context_length(max_pos_embds)
  1712. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  1713. self.gguf_writer.add_embedding_length(n_embd)
  1714. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  1715. self.gguf_writer.add_block_count(block_count)
  1716. self.gguf_writer.add_head_count(n_head)
  1717. self.gguf_writer.add_head_count_kv(n_head_kv)
  1718. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  1719. self.gguf_writer.add_rope_dimension_count(rope_dims)
  1720. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  1721. self.gguf_writer.add_file_type(self.ftype)
  1722. self.gguf_writer.add_sliding_window(self.find_hparam(["sliding_window"]))
  1723. # write rope scaling for long context (128k) model
  1724. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1725. if rope_scaling is None:
  1726. return
  1727. scale = max_pos_embds / orig_max_pos_embds
  1728. rope_scaling_type = rope_scaling.get('type', '').lower()
  1729. if len(rope_scaling_type) == 0:
  1730. raise KeyError('Missing the required key rope_scaling.type')
  1731. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  1732. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  1733. elif rope_scaling_type == 'yarn':
  1734. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  1735. else:
  1736. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  1737. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  1738. long_factors = rope_scaling.get('long_factor', None)
  1739. short_factors = rope_scaling.get('short_factor', None)
  1740. if long_factors is None or short_factors is None:
  1741. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1742. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1743. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1744. if not self.is_lora:
  1745. self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_LONG] + ".weight", np.array(long_factors, dtype=np.float32))
  1746. self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT] + ".weight", np.array(short_factors, dtype=np.float32))
  1747. @Model.register("PlamoForCausalLM")
  1748. class PlamoModel(Model):
  1749. model_arch = gguf.MODEL_ARCH.PLAMO
  1750. def set_vocab(self):
  1751. self._set_vocab_sentencepiece()
  1752. def set_gguf_parameters(self):
  1753. hparams = self.hparams
  1754. block_count = hparams["num_hidden_layers"]
  1755. self.gguf_writer.add_context_length(4096) # not in config.json
  1756. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1757. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1758. self.gguf_writer.add_block_count(block_count)
  1759. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1760. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  1761. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1762. self.gguf_writer.add_file_type(self.ftype)
  1763. def shuffle_attn_q_weight(self, data_torch):
  1764. assert data_torch.size() == (5120, 5120)
  1765. data_torch = data_torch.reshape(8, 5, 128, 5120)
  1766. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  1767. data_torch = torch.reshape(data_torch, (5120, 5120))
  1768. return data_torch
  1769. def shuffle_attn_output_weight(self, data_torch):
  1770. assert data_torch.size() == (5120, 5120)
  1771. data_torch = data_torch.reshape(5120, 8, 5, 128)
  1772. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  1773. data_torch = torch.reshape(data_torch, (5120, 5120))
  1774. return data_torch
  1775. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1776. del bid # unused
  1777. new_name = self.map_tensor_name(name)
  1778. # shuffle for broadcasting of gqa in ggml_mul_mat
  1779. if new_name.endswith("attn_q.weight"):
  1780. data_torch = self.shuffle_attn_q_weight(data_torch)
  1781. elif new_name.endswith("attn_output.weight"):
  1782. data_torch = self.shuffle_attn_output_weight(data_torch)
  1783. return [(new_name, data_torch)]
  1784. @Model.register("CodeShellForCausalLM")
  1785. class CodeShellModel(Model):
  1786. model_arch = gguf.MODEL_ARCH.CODESHELL
  1787. def set_gguf_parameters(self):
  1788. block_count = self.hparams["n_layer"]
  1789. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1790. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1791. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1792. self.gguf_writer.add_block_count(block_count)
  1793. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1794. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  1795. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1796. self.gguf_writer.add_file_type(self.ftype)
  1797. self.gguf_writer.add_rope_freq_base(10000.0)
  1798. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1799. self.gguf_writer.add_rope_scaling_factor(1.0)
  1800. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1801. del bid # unused
  1802. new_name = self.map_tensor_name(name)
  1803. tensors: list[tuple[str, Tensor]] = [(new_name, data_torch)]
  1804. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1805. assert self.tensor_names is not None
  1806. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  1807. # copy tok_embd.weight to output.weight
  1808. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1809. return tensors
  1810. @Model.register("InternLM2ForCausalLM")
  1811. class InternLM2Model(Model):
  1812. model_arch = gguf.MODEL_ARCH.INTERNLM2
  1813. def set_vocab(self):
  1814. # (TODO): Is there a better way?
  1815. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  1816. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  1817. # recognized as an empty string in C++.
  1818. from sentencepiece import SentencePieceProcessor
  1819. from sentencepiece import sentencepiece_model_pb2 as model
  1820. tokenizer_path = self.dir_model / 'tokenizer.model'
  1821. tokens: list[bytes] = []
  1822. scores: list[float] = []
  1823. toktypes: list[int] = []
  1824. if not tokenizer_path.is_file():
  1825. logger.error(f'Error: Missing {tokenizer_path}')
  1826. sys.exit(1)
  1827. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  1828. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  1829. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  1830. tokenizer = SentencePieceProcessor()
  1831. tokenizer.LoadFromFile(str(tokenizer_path))
  1832. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1833. for token_id in range(vocab_size):
  1834. piece = tokenizer.IdToPiece(token_id)
  1835. text = piece.encode("utf-8")
  1836. score = tokenizer.GetScore(token_id)
  1837. if text == b"\x00":
  1838. # (TODO): fixme
  1839. # Hack here and replace the \x00 characters.
  1840. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  1841. text = "🐉".encode("utf-8")
  1842. toktype = SentencePieceTokenTypes.NORMAL
  1843. if tokenizer.IsUnknown(token_id):
  1844. toktype = SentencePieceTokenTypes.UNKNOWN
  1845. elif tokenizer.IsControl(token_id):
  1846. toktype = SentencePieceTokenTypes.CONTROL
  1847. elif tokenizer.IsUnused(token_id):
  1848. toktype = SentencePieceTokenTypes.UNUSED
  1849. elif tokenizer.IsByte(token_id):
  1850. toktype = SentencePieceTokenTypes.BYTE
  1851. # take care of ununsed raw token
  1852. if piece.startswith('[UNUSED'):
  1853. toktype = SentencePieceTokenTypes.UNUSED
  1854. tokens.append(text)
  1855. scores.append(score)
  1856. toktypes.append(toktype)
  1857. added_tokens_file = self.dir_model / 'added_tokens.json'
  1858. if added_tokens_file.is_file():
  1859. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1860. added_tokens_json = json.load(f)
  1861. for key in added_tokens_json:
  1862. tokens.append(key.encode("utf-8"))
  1863. scores.append(-1000.0)
  1864. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  1865. chat_eos_token = '<|im_end|>'
  1866. chat_eos_token_id = None
  1867. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1868. if tokenizer_config_file.is_file():
  1869. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1870. tokenizer_config_json = json.load(f)
  1871. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1872. for token_id, foken_data in added_tokens_decoder.items():
  1873. token_id = int(token_id)
  1874. token = foken_data["content"]
  1875. if token == chat_eos_token:
  1876. chat_eos_token_id = token_id
  1877. token = token.encode("utf-8")
  1878. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1879. if tokens[token_id] != token:
  1880. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1881. tokens[token_id] = token
  1882. scores[token_id] = -1000.0
  1883. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1884. if foken_data.get("special"):
  1885. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1886. tokenizer_file = self.dir_model / 'tokenizer.json'
  1887. if tokenizer_file.is_file():
  1888. with open(tokenizer_file, "r", encoding="utf-8") as f:
  1889. tokenizer_json = json.load(f)
  1890. added_tokens = tokenizer_json.get("added_tokens", [])
  1891. for foken_data in added_tokens:
  1892. token_id = int(foken_data["id"])
  1893. token = foken_data["content"]
  1894. if token == chat_eos_token:
  1895. chat_eos_token_id = token_id
  1896. token = token.encode("utf-8")
  1897. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1898. if tokens[token_id] != token:
  1899. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1900. tokens[token_id] = token
  1901. scores[token_id] = -1000.0
  1902. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1903. if foken_data.get("special"):
  1904. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1905. self.gguf_writer.add_tokenizer_model("llama")
  1906. self.gguf_writer.add_tokenizer_pre("default")
  1907. self.gguf_writer.add_token_list(tokens)
  1908. self.gguf_writer.add_token_scores(scores)
  1909. self.gguf_writer.add_token_types(toktypes)
  1910. self.gguf_writer.add_add_space_prefix(add_prefix)
  1911. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1912. old_eos = special_vocab.special_token_ids["eos"]
  1913. if chat_eos_token_id is not None:
  1914. # For the chat model, we replace the eos with '<|im_end|>'.
  1915. # TODO: this is a hack, should be fixed
  1916. # https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048
  1917. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  1918. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  1919. " in chat mode so that the conversation can end normally.")
  1920. special_vocab.add_to_gguf(self.gguf_writer)
  1921. def set_gguf_parameters(self):
  1922. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1923. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1924. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1925. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1926. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  1927. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1928. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1929. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1930. self.gguf_writer.add_file_type(self.ftype)
  1931. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1932. if self.hparams["rope_scaling"].get("type") == "linear":
  1933. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1934. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1935. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1936. num_heads = self.hparams["num_attention_heads"]
  1937. num_kv_heads = self.hparams["num_key_value_heads"]
  1938. n_embd = self.hparams["hidden_size"]
  1939. q_per_kv = num_heads // num_kv_heads
  1940. head_dim = n_embd // num_heads
  1941. num_groups = num_heads // q_per_kv
  1942. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  1943. qkv = data_torch
  1944. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  1945. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  1946. # The model weights of q and k equire additional reshape.
  1947. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  1948. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  1949. v = v.reshape((-1, v.shape[-1]))
  1950. return [
  1951. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  1952. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  1953. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  1954. ]
  1955. else:
  1956. return [(self.map_tensor_name(name), data_torch)]
  1957. @Model.register("BertModel", "CamembertModel")
  1958. class BertModel(Model):
  1959. model_arch = gguf.MODEL_ARCH.BERT
  1960. def __init__(self, *args, **kwargs):
  1961. super().__init__(*args, **kwargs)
  1962. self.vocab_size = None
  1963. def set_gguf_parameters(self):
  1964. super().set_gguf_parameters()
  1965. self.gguf_writer.add_causal_attention(False)
  1966. # get pooling path
  1967. pooling_path = None
  1968. module_path = self.dir_model / "modules.json"
  1969. if module_path.is_file():
  1970. with open(module_path, encoding="utf-8") as f:
  1971. modules = json.load(f)
  1972. for mod in modules:
  1973. if mod["type"] == "sentence_transformers.models.Pooling":
  1974. pooling_path = mod["path"]
  1975. break
  1976. # get pooling type
  1977. if pooling_path is not None:
  1978. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1979. pooling = json.load(f)
  1980. if pooling["pooling_mode_mean_tokens"]:
  1981. pooling_type = gguf.PoolingType.MEAN
  1982. elif pooling["pooling_mode_cls_token"]:
  1983. pooling_type = gguf.PoolingType.CLS
  1984. else:
  1985. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  1986. self.gguf_writer.add_pooling_type(pooling_type)
  1987. def set_vocab(self):
  1988. tokens, toktypes, tokpre = self.get_vocab_base()
  1989. self.vocab_size = len(tokens)
  1990. # we need this to validate the size of the token_type embeddings
  1991. # though currently we are passing all zeros to the token_type embeddings
  1992. self.gguf_writer.add_token_type_count(2) # "Sequence A" or "Sequence B"
  1993. # convert to phantom space vocab
  1994. def phantom(tok):
  1995. if tok.startswith("[") and tok.endswith("]"):
  1996. return tok
  1997. if tok.startswith("##"):
  1998. return tok[2:]
  1999. return "\u2581" + tok
  2000. tokens = list(map(phantom, tokens))
  2001. # add vocab to gguf
  2002. self.gguf_writer.add_tokenizer_model("bert")
  2003. self.gguf_writer.add_tokenizer_pre(tokpre)
  2004. self.gguf_writer.add_token_list(tokens)
  2005. self.gguf_writer.add_token_types(toktypes)
  2006. # handle special tokens
  2007. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2008. special_vocab.add_to_gguf(self.gguf_writer)
  2009. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2010. del bid # unused
  2011. # we are only using BERT for embeddings so we don't need the pooling layer
  2012. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  2013. return [] # we don't need these
  2014. return [(self.map_tensor_name(name), data_torch)]
  2015. @Model.register("NomicBertModel")
  2016. class NomicBertModel(BertModel):
  2017. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  2018. def __init__(self, *args, **kwargs):
  2019. super().__init__(*args, **kwargs)
  2020. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  2021. self.hparams["n_ctx"] = 2048
  2022. # SwigLU activation
  2023. assert self.hparams["activation_function"] == "swiglu"
  2024. # this doesn't do anything in the HF version
  2025. assert self.hparams["causal"] is False
  2026. # no bias tensors
  2027. assert self.hparams["qkv_proj_bias"] is False
  2028. assert self.hparams["mlp_fc1_bias"] is False
  2029. assert self.hparams["mlp_fc2_bias"] is False
  2030. # norm at end of layer
  2031. assert self.hparams["prenorm"] is False
  2032. # standard RoPE
  2033. assert self.hparams["rotary_emb_fraction"] == 1.0
  2034. assert self.hparams["rotary_emb_interleaved"] is False
  2035. assert self.hparams["rotary_emb_scale_base"] is None
  2036. def set_gguf_parameters(self):
  2037. super().set_gguf_parameters()
  2038. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2039. @Model.register("XLMRobertaModel")
  2040. class XLMRobertaModel(BertModel):
  2041. model_arch = gguf.MODEL_ARCH.BERT
  2042. def __init__(self, *args, **kwargs):
  2043. super().__init__(*args, **kwargs)
  2044. # we need the pad_token_id to know how to chop down position_embd matrix
  2045. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2046. self._position_offset = 1 + pad_token_id
  2047. if "max_position_embeddings" in self.hparams:
  2048. self.hparams["max_position_embeddings"] -= self._position_offset
  2049. else:
  2050. self._position_offset = None
  2051. def set_vocab(self):
  2052. # to avoid TypeError: Descriptors cannot be created directly
  2053. # exception when importing sentencepiece_model_pb2
  2054. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2055. from sentencepiece import SentencePieceProcessor
  2056. from sentencepiece import sentencepiece_model_pb2 as model
  2057. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  2058. if not tokenizer_path.is_file():
  2059. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2060. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2061. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2062. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2063. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2064. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2065. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2066. tokenizer = SentencePieceProcessor()
  2067. tokenizer.LoadFromFile(str(tokenizer_path))
  2068. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2069. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2070. scores: list[float] = [-10000.0] * vocab_size
  2071. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2072. for token_id in range(tokenizer.vocab_size()):
  2073. piece = tokenizer.IdToPiece(token_id)
  2074. text = piece.encode("utf-8")
  2075. score = tokenizer.GetScore(token_id)
  2076. toktype = SentencePieceTokenTypes.NORMAL
  2077. if tokenizer.IsUnknown(token_id):
  2078. toktype = SentencePieceTokenTypes.UNKNOWN
  2079. elif tokenizer.IsControl(token_id):
  2080. toktype = SentencePieceTokenTypes.CONTROL
  2081. elif tokenizer.IsUnused(token_id):
  2082. toktype = SentencePieceTokenTypes.UNUSED
  2083. elif tokenizer.IsByte(token_id):
  2084. toktype = SentencePieceTokenTypes.BYTE
  2085. tokens[token_id] = text
  2086. scores[token_id] = score
  2087. toktypes[token_id] = toktype
  2088. if vocab_size > len(tokens):
  2089. pad_count = vocab_size - len(tokens)
  2090. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2091. for i in range(1, pad_count + 1):
  2092. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2093. scores.append(-1000.0)
  2094. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2095. # realign tokens (see HF tokenizer code)
  2096. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  2097. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  2098. toktypes = [
  2099. SentencePieceTokenTypes.CONTROL,
  2100. SentencePieceTokenTypes.CONTROL,
  2101. SentencePieceTokenTypes.CONTROL,
  2102. SentencePieceTokenTypes.UNKNOWN,
  2103. ] + toktypes[3:-1]
  2104. self.gguf_writer.add_tokenizer_model("t5")
  2105. self.gguf_writer.add_tokenizer_pre("default")
  2106. self.gguf_writer.add_token_list(tokens)
  2107. self.gguf_writer.add_token_scores(scores)
  2108. self.gguf_writer.add_token_types(toktypes)
  2109. self.gguf_writer.add_add_space_prefix(add_prefix)
  2110. self.gguf_writer.add_token_type_count(1)
  2111. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2112. if precompiled_charsmap:
  2113. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2114. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2115. special_vocab.add_to_gguf(self.gguf_writer)
  2116. self.gguf_writer.add_add_bos_token(True)
  2117. self.gguf_writer.add_add_eos_token(True)
  2118. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2119. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  2120. if name == "embeddings.position_embeddings.weight":
  2121. if self._position_offset is not None:
  2122. data_torch = data_torch[self._position_offset:,:]
  2123. return super().modify_tensors(data_torch, name, bid)
  2124. @Model.register("GemmaForCausalLM")
  2125. class GemmaModel(Model):
  2126. model_arch = gguf.MODEL_ARCH.GEMMA
  2127. def set_vocab(self):
  2128. self._set_vocab_sentencepiece()
  2129. # TODO: these special tokens should be exported only for the CodeGemma family
  2130. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  2131. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  2132. special_vocab._set_special_token("prefix", 67)
  2133. special_vocab._set_special_token("suffix", 69)
  2134. special_vocab._set_special_token("middle", 68)
  2135. special_vocab._set_special_token("fsep", 70)
  2136. special_vocab._set_special_token("eot", 107)
  2137. special_vocab.chat_template = None # do not add it twice
  2138. special_vocab.add_to_gguf(self.gguf_writer)
  2139. self.gguf_writer.add_add_space_prefix(False)
  2140. def set_gguf_parameters(self):
  2141. hparams = self.hparams
  2142. block_count = hparams["num_hidden_layers"]
  2143. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2144. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2145. self.gguf_writer.add_block_count(block_count)
  2146. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2147. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2148. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2149. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2150. self.gguf_writer.add_key_length(hparams["head_dim"])
  2151. self.gguf_writer.add_value_length(hparams["head_dim"])
  2152. self.gguf_writer.add_file_type(self.ftype)
  2153. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2154. del bid # unused
  2155. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2156. # To prevent errors, skip loading lm_head.weight.
  2157. if name == "lm_head.weight":
  2158. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2159. return []
  2160. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2161. if name.endswith("norm.weight"):
  2162. data_torch = data_torch + 1
  2163. return [(self.map_tensor_name(name), data_torch)]
  2164. @Model.register("Gemma2ForCausalLM")
  2165. class Gemma2Model(Model):
  2166. model_arch = gguf.MODEL_ARCH.GEMMA2
  2167. def set_vocab(self):
  2168. self._set_vocab_sentencepiece()
  2169. self.gguf_writer.add_add_space_prefix(False)
  2170. def set_gguf_parameters(self):
  2171. hparams = self.hparams
  2172. block_count = hparams["num_hidden_layers"]
  2173. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2174. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2175. self.gguf_writer.add_block_count(block_count)
  2176. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2177. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2178. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2179. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2180. self.gguf_writer.add_key_length(hparams["head_dim"])
  2181. self.gguf_writer.add_value_length(hparams["head_dim"])
  2182. self.gguf_writer.add_file_type(self.ftype)
  2183. self.gguf_writer.add_attn_logit_softcapping(
  2184. self.hparams["attn_logit_softcapping"]
  2185. )
  2186. self.gguf_writer.add_final_logit_softcapping(
  2187. self.hparams["final_logit_softcapping"]
  2188. )
  2189. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  2190. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2191. del bid # unused
  2192. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2193. # To prevent errors, skip loading lm_head.weight.
  2194. if name == "lm_head.weight":
  2195. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2196. return []
  2197. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2198. if name.endswith("norm.weight"):
  2199. data_torch = data_torch + 1
  2200. return [(self.map_tensor_name(name), data_torch)]
  2201. @Model.register("Starcoder2ForCausalLM")
  2202. class StarCoder2Model(Model):
  2203. model_arch = gguf.MODEL_ARCH.STARCODER2
  2204. @Model.register("Rwkv6ForCausalLM")
  2205. class Rwkv6Model(Model):
  2206. model_arch = gguf.MODEL_ARCH.RWKV6
  2207. def set_vocab(self):
  2208. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  2209. vocab_size = self.hparams.get("vocab_size", 65536)
  2210. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  2211. toktypes: list[int] = [gguf.TokenType.CONTROL]
  2212. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  2213. lines = f.readlines()
  2214. for line in lines:
  2215. parts = line.split(' ')
  2216. assert len(parts) >= 3
  2217. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  2218. token = token.encode("utf-8") if isinstance(token, str) else token
  2219. assert isinstance(token, bytes)
  2220. assert len(token) == token_len
  2221. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  2222. tokens.append(token_text.encode("utf-8"))
  2223. toktypes.append(gguf.TokenType.NORMAL)
  2224. remainder = vocab_size - len(tokens)
  2225. assert remainder >= 0
  2226. for i in range(len(tokens), vocab_size):
  2227. tokens.append(f"[PAD{i}]".encode("utf-8"))
  2228. toktypes.append(gguf.TokenType.UNUSED)
  2229. self.gguf_writer.add_tokenizer_model("rwkv")
  2230. self.gguf_writer.add_token_list(tokens)
  2231. self.gguf_writer.add_token_types(toktypes)
  2232. def set_gguf_parameters(self):
  2233. block_count = self.hparams["num_hidden_layers"]
  2234. head_size = self.hparams["head_size"]
  2235. hidden_size = self.hparams["hidden_size"]
  2236. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  2237. rescale_every_n_layers = self.hparams["rescale_every"]
  2238. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  2239. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  2240. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  2241. # RWKV isn't context limited
  2242. self.gguf_writer.add_context_length(1048576)
  2243. self.gguf_writer.add_embedding_length(hidden_size)
  2244. self.gguf_writer.add_block_count(block_count)
  2245. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  2246. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  2247. self.gguf_writer.add_wkv_head_size(head_size)
  2248. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  2249. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  2250. self.gguf_writer.add_feed_forward_length(intermediate_size)
  2251. self.gguf_writer.add_file_type(self.ftype)
  2252. # required by llama.cpp, unused
  2253. self.gguf_writer.add_head_count(0)
  2254. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2255. new_name = self.map_tensor_name(name)
  2256. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  2257. new_name += ".weight"
  2258. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  2259. data_torch = data_torch.transpose(0, 1)
  2260. if new_name.endswith("time_mix_w2.weight"):
  2261. data_torch = data_torch.permute(0, 2, 1)
  2262. rescale_every_n_layers = self.hparams["rescale_every"]
  2263. if rescale_every_n_layers > 0:
  2264. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  2265. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  2266. yield (new_name, data_torch)
  2267. @Model.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  2268. class MambaModel(Model):
  2269. model_arch = gguf.MODEL_ARCH.MAMBA
  2270. def set_vocab(self):
  2271. vocab_size = self.hparams["vocab_size"]
  2272. # Round vocab size to next multiple of 8
  2273. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  2274. # pad using ceiling division
  2275. # ref: https://stackoverflow.com/a/17511341/22827863
  2276. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  2277. self.hparams["vocab_size"] = vocab_size
  2278. if (self.dir_model / "tokenizer.json").is_file():
  2279. self._set_vocab_gpt2()
  2280. elif (self.dir_model / "tokenizer.model").is_file():
  2281. self._set_vocab_sentencepiece()
  2282. else:
  2283. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  2284. self._set_vocab_builtin("gpt-neox", vocab_size)
  2285. def set_gguf_parameters(self):
  2286. d_model = self.find_hparam(["hidden_size", "d_model"])
  2287. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  2288. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  2289. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  2290. # ceiling division
  2291. # ref: https://stackoverflow.com/a/17511341/22827863
  2292. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  2293. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  2294. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  2295. use_dt_b_c_norm = False
  2296. # For falconmamba we do apply RMS norm on B / DT and C layers
  2297. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  2298. use_dt_b_c_norm = True
  2299. # Fail early for models which don't have a block expansion factor of 2
  2300. assert d_inner == 2 * d_model
  2301. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  2302. self.gguf_writer.add_embedding_length(d_model)
  2303. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  2304. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  2305. self.gguf_writer.add_block_count(self.block_count)
  2306. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  2307. self.gguf_writer.add_ssm_inner_size(d_inner)
  2308. self.gguf_writer.add_ssm_state_size(d_state)
  2309. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  2310. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  2311. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  2312. self.gguf_writer.add_file_type(self.ftype)
  2313. _tok_embd = None
  2314. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2315. del bid # unused
  2316. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  2317. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  2318. new_name = self.map_tensor_name(name)
  2319. if name.endswith(".A_log"):
  2320. logger.debug("A_log --> A ==> " + new_name)
  2321. data_torch = -torch.exp(data_torch)
  2322. # assuming token_embd.weight is seen before output.weight
  2323. if self._tok_embd is not None and new_name == output_name:
  2324. if torch.equal(self._tok_embd, data_torch):
  2325. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  2326. return []
  2327. elif new_name == tok_embd_name:
  2328. self._tok_embd = data_torch
  2329. return [(new_name, data_torch)]
  2330. @Model.register("CohereForCausalLM")
  2331. class CommandR2Model(Model):
  2332. model_arch = gguf.MODEL_ARCH.COMMAND_R
  2333. def __init__(self, *args, **kwargs):
  2334. super().__init__(*args, **kwargs)
  2335. # max_position_embeddings = 8192 in config.json but model was actually
  2336. # trained on 128k context length
  2337. # aya-23 models don't have model_max_length specified
  2338. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  2339. def set_gguf_parameters(self):
  2340. super().set_gguf_parameters()
  2341. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  2342. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  2343. @Model.register("OlmoForCausalLM")
  2344. @Model.register("OLMoForCausalLM")
  2345. class OlmoModel(Model):
  2346. model_arch = gguf.MODEL_ARCH.OLMO
  2347. def set_gguf_parameters(self):
  2348. super().set_gguf_parameters()
  2349. self.gguf_writer.add_layer_norm_eps(1e-5)
  2350. clip_qkv = self.hparams.get("clip_qkv")
  2351. if clip_qkv is not None:
  2352. self.gguf_writer.add_clamp_kqv(clip_qkv)
  2353. # Same as super class, but permuting q_proj, k_proj
  2354. # Copied from: LlamaModel
  2355. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2356. del bid # unused
  2357. n_head = self.hparams["num_attention_heads"]
  2358. n_kv_head = self.hparams.get("num_key_value_heads")
  2359. if name.endswith("q_proj.weight"):
  2360. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2361. if name.endswith("k_proj.weight"):
  2362. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2363. return [(self.map_tensor_name(name), data_torch)]
  2364. @Model.register("JinaBertModel", "JinaBertForMaskedLM")
  2365. class JinaBertV2Model(BertModel):
  2366. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  2367. def __init__(self, *args, **kwargs):
  2368. super().__init__(*args, **kwargs)
  2369. self.intermediate_size = self.hparams["intermediate_size"]
  2370. def get_tensors(self):
  2371. for name, data in super().get_tensors():
  2372. if 'gated_layer' in name:
  2373. d1 = data[:self.intermediate_size, :]
  2374. name1 = name.replace('gated_layers', 'gated_layers_w')
  2375. name1 = name1.replace('up_gated_layer', 'gated_layers_v')
  2376. d2 = data[self.intermediate_size:, :]
  2377. name2 = name.replace('gated_layers', 'gated_layers_v')
  2378. name2 = name2.replace('up_gated_layer', 'gated_layers_w')
  2379. yield name1, d1
  2380. yield name2, d2
  2381. continue
  2382. yield name, data
  2383. def set_vocab(self):
  2384. tokenizer_class = 'BertTokenizer'
  2385. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  2386. tokenizer_class = json.load(f)['tokenizer_class']
  2387. if tokenizer_class == 'BertTokenizer':
  2388. super().set_vocab()
  2389. elif tokenizer_class == 'RobertaTokenizer':
  2390. self._set_vocab_gpt2()
  2391. self.gguf_writer.add_token_type_count(2)
  2392. else:
  2393. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  2394. self.gguf_writer.add_add_bos_token(True)
  2395. self.gguf_writer.add_add_eos_token(True)
  2396. @Model.register("OpenELMForCausalLM")
  2397. class OpenELMModel(Model):
  2398. model_arch = gguf.MODEL_ARCH.OPENELM
  2399. @staticmethod
  2400. def _make_divisible(v: float | int, divisor: int) -> int:
  2401. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  2402. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  2403. # Make sure that round down does not go down by more than 10%.
  2404. if new_v < 0.9 * v:
  2405. new_v += divisor
  2406. return new_v
  2407. def __init__(self, *args, **kwargs):
  2408. super().__init__(*args, **kwargs)
  2409. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  2410. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  2411. self._n_embd: int = self.hparams["model_dim"]
  2412. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  2413. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  2414. self._ffn_dims: list[int] = [
  2415. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  2416. for multiplier in ffn_multipliers
  2417. ]
  2418. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  2419. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  2420. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  2421. def set_vocab(self):
  2422. try:
  2423. self._set_vocab_sentencepiece()
  2424. except FileNotFoundError:
  2425. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  2426. def set_gguf_parameters(self):
  2427. n_embd = self._n_embd
  2428. head_dim = self.hparams["head_dim"]
  2429. rot_pct = 1.0
  2430. assert self.block_count == len(self._num_kv_heads)
  2431. assert self.block_count == len(self._num_query_heads)
  2432. assert self.block_count == len(self._ffn_dims)
  2433. self.gguf_writer.add_block_count(self.block_count)
  2434. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  2435. self.gguf_writer.add_embedding_length(n_embd)
  2436. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  2437. self.gguf_writer.add_head_count(self._num_query_heads)
  2438. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2439. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  2440. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  2441. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  2442. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  2443. self.gguf_writer.add_key_length(head_dim)
  2444. self.gguf_writer.add_value_length(head_dim)
  2445. self.gguf_writer.add_file_type(self.ftype)
  2446. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  2447. if "n_layers" in keys:
  2448. return self.hparams["num_transformer_layers"]
  2449. return super().find_hparam(keys, optional)
  2450. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2451. # split ff
  2452. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  2453. ff_dim = self._ffn_dims[bid]
  2454. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  2455. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  2456. return
  2457. yield (self.map_tensor_name(name), data_torch)
  2458. @Model.register("ArcticForCausalLM")
  2459. class ArcticModel(Model):
  2460. model_arch = gguf.MODEL_ARCH.ARCTIC
  2461. def set_vocab(self):
  2462. # The reason for using a custom implementation here is that the
  2463. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  2464. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  2465. from sentencepiece import SentencePieceProcessor
  2466. tokenizer_path = self.dir_model / 'tokenizer.model'
  2467. if not tokenizer_path.is_file():
  2468. logger.error(f'Error: Missing {tokenizer_path}')
  2469. sys.exit(1)
  2470. # Read the whole vocabulary from the tokenizer.model file
  2471. tokenizer = SentencePieceProcessor()
  2472. tokenizer.LoadFromFile(str(tokenizer_path))
  2473. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2474. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2475. scores: list[float] = [-10000.0] * vocab_size
  2476. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2477. for token_id in range(tokenizer.vocab_size()):
  2478. piece = tokenizer.IdToPiece(token_id)
  2479. text = piece.encode("utf-8")
  2480. score = tokenizer.GetScore(token_id)
  2481. toktype = SentencePieceTokenTypes.NORMAL
  2482. if tokenizer.IsUnknown(token_id):
  2483. toktype = SentencePieceTokenTypes.UNKNOWN
  2484. elif tokenizer.IsControl(token_id):
  2485. toktype = SentencePieceTokenTypes.CONTROL
  2486. elif tokenizer.IsUnused(token_id):
  2487. toktype = SentencePieceTokenTypes.UNUSED
  2488. elif tokenizer.IsByte(token_id):
  2489. toktype = SentencePieceTokenTypes.BYTE
  2490. tokens[token_id] = text
  2491. scores[token_id] = score
  2492. toktypes[token_id] = toktype
  2493. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  2494. # of information about added/redefined tokens and modify them accordingly.
  2495. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2496. if tokenizer_config_file.is_file():
  2497. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2498. tokenizer_config_json = json.load(f)
  2499. if "added_tokens_decoder" in tokenizer_config_json:
  2500. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  2501. for token_id, token_json in added_tokens_decoder.items():
  2502. token_id = int(token_id)
  2503. if token_id >= vocab_size:
  2504. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2505. continue
  2506. token_content = token_json["content"]
  2507. token_type = SentencePieceTokenTypes.USER_DEFINED
  2508. token_score = -10000.0
  2509. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  2510. # Set the score to 0.0 as in the original tokenizer.model
  2511. if ("special" in token_json) and token_json["special"]:
  2512. if token_content == tokenizer_config_json["unk_token"]:
  2513. token_type = SentencePieceTokenTypes.UNKNOWN
  2514. else:
  2515. token_type = SentencePieceTokenTypes.CONTROL
  2516. token_score = 0.0
  2517. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  2518. tokens[token_id] = token_content.encode("utf-8")
  2519. toktypes[token_id] = token_type
  2520. scores[token_id] = token_score
  2521. self.gguf_writer.add_tokenizer_model("llama")
  2522. self.gguf_writer.add_tokenizer_pre("default")
  2523. self.gguf_writer.add_token_list(tokens)
  2524. self.gguf_writer.add_token_scores(scores)
  2525. self.gguf_writer.add_token_types(toktypes)
  2526. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2527. special_vocab.add_to_gguf(self.gguf_writer)
  2528. def set_gguf_parameters(self):
  2529. super().set_gguf_parameters()
  2530. hparams = self.hparams
  2531. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2532. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  2533. _experts: list[dict[str, Tensor]] | None = None
  2534. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2535. n_head = self.hparams["num_attention_heads"]
  2536. n_kv_head = self.hparams.get("num_key_value_heads")
  2537. if name.endswith("q_proj.weight"):
  2538. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2539. if name.endswith("k_proj.weight"):
  2540. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2541. # process the experts separately
  2542. if name.find("block_sparse_moe.experts") != -1:
  2543. n_experts = self.hparams["num_local_experts"]
  2544. assert bid is not None
  2545. if self._experts is None:
  2546. self._experts = [{} for _ in range(self.block_count)]
  2547. self._experts[bid][name] = data_torch
  2548. if len(self._experts[bid]) >= n_experts * 3:
  2549. tensors: list[tuple[str, Tensor]] = []
  2550. # merge the experts into a single 3d tensor
  2551. for wid in ["w1", "w2", "w3"]:
  2552. datas: list[Tensor] = []
  2553. for xid in range(n_experts):
  2554. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  2555. datas.append(self._experts[bid][ename])
  2556. del self._experts[bid][ename]
  2557. data_torch = torch.stack(datas, dim=0)
  2558. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  2559. new_name = self.map_tensor_name(merged_name)
  2560. tensors.append((new_name, data_torch))
  2561. return tensors
  2562. else:
  2563. return []
  2564. return [(self.map_tensor_name(name), data_torch)]
  2565. def prepare_tensors(self):
  2566. super().prepare_tensors()
  2567. if self._experts is not None:
  2568. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2569. experts = [k for d in self._experts for k in d.keys()]
  2570. if len(experts) > 0:
  2571. raise ValueError(f"Unprocessed experts: {experts}")
  2572. @Model.register("DeepseekV2ForCausalLM")
  2573. class DeepseekV2Model(Model):
  2574. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  2575. def set_vocab(self):
  2576. self._set_vocab_gpt2()
  2577. def set_gguf_parameters(self):
  2578. super().set_gguf_parameters()
  2579. hparams = self.hparams
  2580. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  2581. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2582. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2583. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2584. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2585. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2586. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  2587. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  2588. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  2589. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  2590. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  2591. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2592. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2593. if self.hparams["rope_scaling"].get("type") == "yarn":
  2594. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2595. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2596. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  2597. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"])
  2598. _experts: list[dict[str, Tensor]] | None = None
  2599. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2600. # process the experts separately
  2601. if name.find("mlp.experts") != -1:
  2602. n_experts = self.hparams["n_routed_experts"]
  2603. assert bid is not None
  2604. if self._experts is None:
  2605. self._experts = [{} for _ in range(self.block_count)]
  2606. self._experts[bid][name] = data_torch
  2607. if len(self._experts[bid]) >= n_experts * 3:
  2608. tensors: list[tuple[str, Tensor]] = []
  2609. # merge the experts into a single 3d tensor
  2610. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2611. datas: list[Tensor] = []
  2612. for xid in range(n_experts):
  2613. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2614. datas.append(self._experts[bid][ename])
  2615. del self._experts[bid][ename]
  2616. data_torch = torch.stack(datas, dim=0)
  2617. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2618. new_name = self.map_tensor_name(merged_name)
  2619. tensors.append((new_name, data_torch))
  2620. return tensors
  2621. else:
  2622. return []
  2623. return [(self.map_tensor_name(name), data_torch)]
  2624. def prepare_tensors(self):
  2625. super().prepare_tensors()
  2626. if self._experts is not None:
  2627. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2628. experts = [k for d in self._experts for k in d.keys()]
  2629. if len(experts) > 0:
  2630. raise ValueError(f"Unprocessed experts: {experts}")
  2631. @Model.register("T5WithLMHeadModel")
  2632. @Model.register("T5ForConditionalGeneration")
  2633. @Model.register("MT5ForConditionalGeneration")
  2634. @Model.register("UMT5ForConditionalGeneration")
  2635. class T5Model(Model):
  2636. model_arch = gguf.MODEL_ARCH.T5
  2637. def __init__(self, *args, **kwargs):
  2638. super().__init__(*args, **kwargs)
  2639. self.shared_token_embeddings_found = False
  2640. def set_vocab(self):
  2641. # to avoid TypeError: Descriptors cannot be created directly
  2642. # exception when importing sentencepiece_model_pb2
  2643. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2644. from sentencepiece import SentencePieceProcessor
  2645. from sentencepiece import sentencepiece_model_pb2 as model
  2646. tokenizer_path = self.dir_model / 'tokenizer.model'
  2647. # many older models use spiece.model tokenizer model filename
  2648. if not tokenizer_path.is_file():
  2649. tokenizer_path = self.dir_model / 'spiece.model'
  2650. if not tokenizer_path.is_file():
  2651. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2652. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2653. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2654. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  2655. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  2656. # assure the tokenizer model file name is correct
  2657. assert tokenizer_path.name == 'tokenizer.model'
  2658. return self._set_vocab_sentencepiece()
  2659. else:
  2660. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2661. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2662. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2663. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2664. tokenizer = SentencePieceProcessor()
  2665. tokenizer.LoadFromFile(str(tokenizer_path))
  2666. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2667. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2668. scores: list[float] = [-10000.0] * vocab_size
  2669. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2670. for token_id in range(tokenizer.vocab_size()):
  2671. piece = tokenizer.IdToPiece(token_id)
  2672. text = piece.encode("utf-8")
  2673. score = tokenizer.GetScore(token_id)
  2674. toktype = SentencePieceTokenTypes.NORMAL
  2675. if tokenizer.IsUnknown(token_id):
  2676. toktype = SentencePieceTokenTypes.UNKNOWN
  2677. elif tokenizer.IsControl(token_id):
  2678. toktype = SentencePieceTokenTypes.CONTROL
  2679. elif tokenizer.IsUnused(token_id):
  2680. toktype = SentencePieceTokenTypes.UNUSED
  2681. elif tokenizer.IsByte(token_id):
  2682. toktype = SentencePieceTokenTypes.BYTE
  2683. tokens[token_id] = text
  2684. scores[token_id] = score
  2685. toktypes[token_id] = toktype
  2686. added_tokens_file = self.dir_model / 'added_tokens.json'
  2687. if added_tokens_file.is_file():
  2688. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2689. added_tokens_json = json.load(f)
  2690. for key in added_tokens_json:
  2691. token_id = added_tokens_json[key]
  2692. if token_id >= vocab_size:
  2693. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2694. continue
  2695. tokens[token_id] = key.encode("utf-8")
  2696. scores[token_id] = -1000.0
  2697. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2698. if vocab_size > len(tokens):
  2699. pad_count = vocab_size - len(tokens)
  2700. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2701. for i in range(1, pad_count + 1):
  2702. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2703. scores.append(-1000.0)
  2704. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2705. self.gguf_writer.add_tokenizer_model("t5")
  2706. self.gguf_writer.add_tokenizer_pre("default")
  2707. self.gguf_writer.add_token_list(tokens)
  2708. self.gguf_writer.add_token_scores(scores)
  2709. self.gguf_writer.add_token_types(toktypes)
  2710. self.gguf_writer.add_add_space_prefix(add_prefix)
  2711. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2712. if precompiled_charsmap:
  2713. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2714. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2715. special_vocab.add_to_gguf(self.gguf_writer)
  2716. self.gguf_writer.add_add_bos_token(False)
  2717. self.gguf_writer.add_add_eos_token(True)
  2718. def set_gguf_parameters(self):
  2719. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  2720. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  2721. n_ctx = 512
  2722. self.gguf_writer.add_context_length(n_ctx)
  2723. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2724. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  2725. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  2726. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  2727. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  2728. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  2729. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2730. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  2731. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2732. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  2733. self.gguf_writer.add_file_type(self.ftype)
  2734. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2735. del bid # unused
  2736. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  2737. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  2738. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  2739. # and decoder and ignore the remaining ones.
  2740. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  2741. if not self.shared_token_embeddings_found:
  2742. name = "shared.weight"
  2743. self.shared_token_embeddings_found = True
  2744. else:
  2745. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  2746. return []
  2747. return [(self.map_tensor_name(name), data_torch)]
  2748. @Model.register("T5EncoderModel")
  2749. class T5EncoderModel(Model):
  2750. model_arch = gguf.MODEL_ARCH.T5ENCODER
  2751. def __init__(self, *args, **kwargs):
  2752. super().__init__(*args, **kwargs)
  2753. self.shared_token_embeddings_found = False
  2754. def set_vocab(self):
  2755. # to avoid TypeError: Descriptors cannot be created directly
  2756. # exception when importing sentencepiece_model_pb2
  2757. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2758. from sentencepiece import SentencePieceProcessor
  2759. from sentencepiece import sentencepiece_model_pb2 as model
  2760. tokenizer_path = self.dir_model / 'tokenizer.model'
  2761. # many older models use spiece.model tokenizer model filename
  2762. if not tokenizer_path.is_file():
  2763. tokenizer_path = self.dir_model / 'spiece.model'
  2764. if not tokenizer_path.is_file():
  2765. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2766. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2767. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2768. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  2769. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  2770. # assure the tokenizer model file name is correct
  2771. assert tokenizer_path.name == 'tokenizer.model'
  2772. return self._set_vocab_sentencepiece()
  2773. else:
  2774. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2775. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2776. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2777. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2778. tokenizer = SentencePieceProcessor()
  2779. tokenizer.LoadFromFile(str(tokenizer_path))
  2780. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2781. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2782. scores: list[float] = [-10000.0] * vocab_size
  2783. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2784. for token_id in range(tokenizer.vocab_size()):
  2785. piece = tokenizer.IdToPiece(token_id)
  2786. text = piece.encode("utf-8")
  2787. score = tokenizer.GetScore(token_id)
  2788. toktype = SentencePieceTokenTypes.NORMAL
  2789. if tokenizer.IsUnknown(token_id):
  2790. toktype = SentencePieceTokenTypes.UNKNOWN
  2791. elif tokenizer.IsControl(token_id):
  2792. toktype = SentencePieceTokenTypes.CONTROL
  2793. elif tokenizer.IsUnused(token_id):
  2794. toktype = SentencePieceTokenTypes.UNUSED
  2795. elif tokenizer.IsByte(token_id):
  2796. toktype = SentencePieceTokenTypes.BYTE
  2797. tokens[token_id] = text
  2798. scores[token_id] = score
  2799. toktypes[token_id] = toktype
  2800. added_tokens_file = self.dir_model / 'added_tokens.json'
  2801. if added_tokens_file.is_file():
  2802. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2803. added_tokens_json = json.load(f)
  2804. for key in added_tokens_json:
  2805. token_id = added_tokens_json[key]
  2806. if token_id >= vocab_size:
  2807. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2808. continue
  2809. tokens[token_id] = key.encode("utf-8")
  2810. scores[token_id] = -1000.0
  2811. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2812. if vocab_size > len(tokens):
  2813. pad_count = vocab_size - len(tokens)
  2814. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2815. for i in range(1, pad_count + 1):
  2816. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2817. scores.append(-1000.0)
  2818. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2819. self.gguf_writer.add_tokenizer_model("t5")
  2820. self.gguf_writer.add_tokenizer_pre("default")
  2821. self.gguf_writer.add_token_list(tokens)
  2822. self.gguf_writer.add_token_scores(scores)
  2823. self.gguf_writer.add_token_types(toktypes)
  2824. self.gguf_writer.add_add_space_prefix(add_prefix)
  2825. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2826. if precompiled_charsmap:
  2827. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2828. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2829. special_vocab.add_to_gguf(self.gguf_writer)
  2830. self.gguf_writer.add_add_bos_token(False)
  2831. self.gguf_writer.add_add_eos_token(True)
  2832. def set_gguf_parameters(self):
  2833. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  2834. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  2835. n_ctx = 512
  2836. self.gguf_writer.add_context_length(n_ctx)
  2837. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2838. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  2839. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  2840. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  2841. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  2842. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  2843. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2844. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  2845. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2846. self.gguf_writer.add_file_type(self.ftype)
  2847. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2848. del bid # unused
  2849. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  2850. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  2851. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  2852. # and decoder and ignore the remaining ones.
  2853. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  2854. if not self.shared_token_embeddings_found:
  2855. name = "shared.weight"
  2856. self.shared_token_embeddings_found = True
  2857. else:
  2858. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  2859. return []
  2860. return [(self.map_tensor_name(name), data_torch)]
  2861. @Model.register("JAISLMHeadModel")
  2862. class JaisModel(Model):
  2863. model_arch = gguf.MODEL_ARCH.JAIS
  2864. def __init__(self, *args, **kwargs):
  2865. super().__init__(*args, **kwargs)
  2866. # SwigLU activation
  2867. assert self.hparams["activation_function"] == "swiglu"
  2868. # ALiBi position embedding
  2869. assert self.hparams["position_embedding_type"] == "alibi"
  2870. # Embeddings scale
  2871. self.embeddings_scale = 1.0
  2872. # note: For some JAIS flavors, output is tied to (same as) wte in original model
  2873. self.output_is_wte = False
  2874. if 'mup_embeddings_scale' in self.hparams:
  2875. self.output_is_wte = True # Hack (?)
  2876. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  2877. elif 'embeddings_scale' in self.hparams:
  2878. self.embeddings_scale = self.hparams['embeddings_scale']
  2879. else:
  2880. assert False
  2881. self.width_scale = 1.0
  2882. if 'mup_output_alpha' in self.hparams:
  2883. assert 'mup_width_scale' in self.hparams
  2884. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  2885. elif 'width_scale' in self.hparams:
  2886. self.width_scale = self.hparams['width_scale']
  2887. else:
  2888. assert False
  2889. self.max_alibi_bias = 8.0
  2890. def set_vocab(self):
  2891. self._set_vocab_gpt2()
  2892. def set_gguf_parameters(self):
  2893. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2894. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  2895. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2896. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  2897. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2898. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2899. self.gguf_writer.add_file_type(self.ftype)
  2900. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2901. del bid # unused
  2902. tensors: list[tuple[str, Tensor]] = []
  2903. # we don't need these
  2904. if name.endswith((".attn.bias")):
  2905. return tensors
  2906. if name.endswith(("relative_pe.slopes")):
  2907. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  2908. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  2909. # but Jais's PyTorch model simply precalculates the slope values and places them
  2910. # in relative_pes.slopes
  2911. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  2912. first_val = float(data_torch[0].item())
  2913. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  2914. return tensors
  2915. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  2916. data_torch = data_torch.transpose(1, 0)
  2917. new_name = self.map_tensor_name(name)
  2918. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  2919. tensors.append((new_name, data_torch * self.embeddings_scale))
  2920. if self.output_is_wte:
  2921. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch * self.width_scale))
  2922. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  2923. assert not self.output_is_wte
  2924. tensors.append((new_name, data_torch * self.width_scale))
  2925. else:
  2926. tensors.append((new_name, data_torch))
  2927. return tensors
  2928. def prepare_tensors(self):
  2929. super().prepare_tensors()
  2930. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  2931. @Model.register("ChatGLMModel", "ChatGLMForConditionalGeneration")
  2932. class ChatGLMModel(Model):
  2933. model_arch = gguf.MODEL_ARCH.CHATGLM
  2934. def set_vocab_chatglm3(self):
  2935. dir_model = self.dir_model
  2936. hparams = self.hparams
  2937. tokens: list[bytes] = []
  2938. toktypes: list[int] = []
  2939. scores: list[float] = []
  2940. from transformers import AutoTokenizer
  2941. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  2942. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  2943. assert max(tokenizer.get_vocab().values()) < vocab_size
  2944. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  2945. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  2946. for token_id in range(vocab_size):
  2947. piece = tokenizer._convert_id_to_token(token_id)
  2948. if token_id == 0:
  2949. piece = "<unk>"
  2950. elif token_id == 1:
  2951. piece = "<bos>"
  2952. elif token_id == 2:
  2953. piece = "<eos>"
  2954. text = piece.encode("utf-8")
  2955. score = 0.0
  2956. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  2957. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  2958. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  2959. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  2960. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  2961. if piece in special_tokens:
  2962. toktype = SentencePieceTokenTypes.CONTROL
  2963. elif len(piece) == 0:
  2964. text = f"[PAD{token_id}]".encode("utf-8")
  2965. toktype = SentencePieceTokenTypes.UNUSED
  2966. else:
  2967. toktype = SentencePieceTokenTypes.USER_DEFINED
  2968. tokens.append(text)
  2969. scores.append(score)
  2970. toktypes.append(toktype)
  2971. continue
  2972. toktype = SentencePieceTokenTypes.NORMAL
  2973. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  2974. toktype = SentencePieceTokenTypes.UNKNOWN
  2975. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  2976. toktype = SentencePieceTokenTypes.CONTROL
  2977. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  2978. toktype = SentencePieceTokenTypes.UNUSED
  2979. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  2980. toktype = SentencePieceTokenTypes.BYTE
  2981. tokens.append(text)
  2982. scores.append(score)
  2983. toktypes.append(toktype)
  2984. self.gguf_writer.add_tokenizer_model("llama")
  2985. # glm3 needs prefix and suffix formatted as:
  2986. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  2987. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  2988. self.gguf_writer.add_token_list(tokens)
  2989. self.gguf_writer.add_token_scores(scores)
  2990. self.gguf_writer.add_token_types(toktypes)
  2991. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2992. special_vocab.add_to_gguf(self.gguf_writer)
  2993. @staticmethod
  2994. def token_bytes_to_string(b):
  2995. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2996. byte_encoder = bytes_to_unicode()
  2997. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2998. @staticmethod
  2999. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  3000. parts = [bytes([b]) for b in token]
  3001. while True:
  3002. min_idx = None
  3003. min_rank = None
  3004. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  3005. rank = mergeable_ranks.get(pair[0] + pair[1])
  3006. if rank is not None and (min_rank is None or rank < min_rank):
  3007. min_idx = i
  3008. min_rank = rank
  3009. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  3010. break
  3011. assert min_idx is not None
  3012. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  3013. return parts
  3014. def set_vocab(self):
  3015. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  3016. self.set_vocab_chatglm3()
  3017. return
  3018. dir_model = self.dir_model
  3019. hparams = self.hparams
  3020. tokens: list[str] = []
  3021. toktypes: list[int] = []
  3022. from transformers import AutoTokenizer
  3023. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  3024. vocab_size = hparams["padded_vocab_size"]
  3025. assert max(tokenizer.get_vocab().values()) < vocab_size
  3026. tokpre = self.get_vocab_base_pre(tokenizer)
  3027. merges = []
  3028. vocab = {}
  3029. mergeable_ranks = tokenizer.mergeable_ranks
  3030. for token, rank in mergeable_ranks.items():
  3031. vocab[ChatGLMModel.token_bytes_to_string(token)] = rank
  3032. if len(token) == 1:
  3033. continue
  3034. merged = ChatGLMModel.bpe(mergeable_ranks, token, max_rank=rank)
  3035. assert len(merged) >= 2 and len(merged) <= 7
  3036. merges.append(' '.join(map(ChatGLMModel.token_bytes_to_string, merged)))
  3037. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  3038. added_vocab = tokenizer.get_added_vocab()
  3039. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  3040. for i in range(vocab_size):
  3041. if i not in reverse_vocab:
  3042. tokens.append(f"[PAD{i}]")
  3043. toktypes.append(gguf.TokenType.UNUSED)
  3044. elif reverse_vocab[i] in added_vocab:
  3045. tokens.append(reverse_vocab[i])
  3046. if tokenizer.added_tokens_decoder[i].special:
  3047. toktypes.append(gguf.TokenType.CONTROL)
  3048. else:
  3049. toktypes.append(gguf.TokenType.USER_DEFINED)
  3050. else:
  3051. tokens.append(reverse_vocab[i])
  3052. toktypes.append(gguf.TokenType.NORMAL)
  3053. self.gguf_writer.add_tokenizer_model("gpt2")
  3054. self.gguf_writer.add_tokenizer_pre(tokpre)
  3055. self.gguf_writer.add_token_list(tokens)
  3056. self.gguf_writer.add_token_types(toktypes)
  3057. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  3058. special_vocab.merges = merges
  3059. # only add special tokens when they were not already loaded from config.json
  3060. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  3061. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  3062. # this one is usually not in config.json anyway
  3063. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  3064. special_vocab.add_to_gguf(self.gguf_writer)
  3065. def set_gguf_parameters(self):
  3066. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  3067. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  3068. n_head_kv = self.hparams.get("multi_query_group_num", n_head)
  3069. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  3070. self.gguf_writer.add_embedding_length(n_embed)
  3071. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", 4 * n_embed))
  3072. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  3073. self.gguf_writer.add_head_count(n_head)
  3074. self.gguf_writer.add_head_count_kv(n_head_kv)
  3075. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layernorm_epsilon"])
  3076. self.gguf_writer.add_file_type(self.ftype)
  3077. self.gguf_writer.add_rope_dimension_count(64)
  3078. self.gguf_writer.add_add_bos_token(False)
  3079. rope_freq = 10000
  3080. if "rope_ratio" in self.hparams:
  3081. rope_freq = rope_freq * self.hparams["rope_ratio"]
  3082. self.gguf_writer.add_rope_freq_base(rope_freq)
  3083. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3084. del bid # unused
  3085. if name.endswith(".rotary_pos_emb.inv_freq"):
  3086. return []
  3087. name = name.removeprefix("transformer.")
  3088. return [(self.map_tensor_name(name), data_torch)]
  3089. @Model.register("NemotronForCausalLM")
  3090. class NemotronModel(Model):
  3091. model_arch = gguf.MODEL_ARCH.NEMOTRON
  3092. def set_vocab(self):
  3093. self._set_vocab_sentencepiece()
  3094. self.gguf_writer.add_pad_token_id(0)
  3095. self.gguf_writer.add_unk_token_id(1)
  3096. def set_gguf_parameters(self):
  3097. super().set_gguf_parameters()
  3098. hparams = self.hparams
  3099. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3100. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  3101. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  3102. # * Partial RoPE
  3103. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  3104. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3105. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3106. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  3107. # * RopeScaling for Nemotron
  3108. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  3109. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3110. else:
  3111. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3112. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  3113. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3114. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  3115. # model.layers.{l}.input_layernorm.weight
  3116. # model.layers.{l}.post_attention_layernorm.weight
  3117. # model.norm.weight
  3118. if name.endswith("norm.weight"):
  3119. data_torch = data_torch + 1
  3120. return [(self.map_tensor_name(name), data_torch)]
  3121. @Model.register("ExaoneForCausalLM")
  3122. class ExaoneModel(Model):
  3123. model_arch = gguf.MODEL_ARCH.EXAONE
  3124. def set_gguf_parameters(self):
  3125. hparams = self.hparams
  3126. assert (hparams["activation_function"] == "silu")
  3127. max_position_embeddings = hparams["max_position_embeddings"]
  3128. embed_dim = hparams["hidden_size"]
  3129. num_heads = hparams["num_attention_heads"]
  3130. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  3131. layer_norm_eps = hparams["layer_norm_epsilon"]
  3132. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  3133. num_layers = hparams["num_layers"]
  3134. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  3135. # attention_dropout_rate = hparams["attention_dropout"]
  3136. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  3137. # embed_dropout_rate = hparams["embed_dropout"]
  3138. self.gguf_writer.add_embedding_length(embed_dim)
  3139. self.gguf_writer.add_head_count(num_heads)
  3140. self.gguf_writer.add_head_count_kv(num_kv_heads)
  3141. self.gguf_writer.add_context_length(max_position_embeddings)
  3142. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  3143. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3144. self.gguf_writer.add_block_count(num_layers)
  3145. self.gguf_writer.add_file_type(self.ftype)
  3146. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  3147. self.gguf_writer.add_rope_freq_base(rope_theta)
  3148. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  3149. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  3150. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  3151. if hparams.get("rope_scaling") is not None and "factor" in hparams["rope_scaling"]:
  3152. if hparams["rope_scaling"].get("type") == "linear":
  3153. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3154. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  3155. def prepare_tensors(self):
  3156. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  3157. if rope_scaling.get("rope_type", '').lower() == "llama3":
  3158. base = self.hparams.get("rope_theta", 10000.0)
  3159. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  3160. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  3161. factor = rope_scaling.get("factor", 8.0)
  3162. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  3163. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  3164. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  3165. low_freq_wavelen = old_context_len / low_freq_factor
  3166. high_freq_wavelen = old_context_len / high_freq_factor
  3167. assert low_freq_wavelen != high_freq_wavelen
  3168. rope_factors = []
  3169. for freq in freqs:
  3170. wavelen = 2 * math.pi / freq
  3171. if wavelen < high_freq_wavelen:
  3172. rope_factors.append(1)
  3173. elif wavelen > low_freq_wavelen:
  3174. rope_factors.append(factor)
  3175. else:
  3176. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  3177. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  3178. if not self.is_lora:
  3179. self.gguf_writer.add_tensor(self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), np.array(rope_factors, dtype=np.float32))
  3180. super().prepare_tensors()
  3181. ###### CONVERSION LOGIC ######
  3182. # tree of lazy tensors
  3183. class LazyTorchTensor(gguf.LazyBase):
  3184. _tensor_type = torch.Tensor
  3185. # to keep the type-checker happy
  3186. dtype: torch.dtype
  3187. shape: torch.Size
  3188. # only used when converting a torch.Tensor to a np.ndarray
  3189. _dtype_map: dict[torch.dtype, type] = {
  3190. torch.float16: np.float16,
  3191. torch.float32: np.float32,
  3192. }
  3193. # used for safetensors slices
  3194. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  3195. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  3196. _dtype_str_map: dict[str, torch.dtype] = {
  3197. "F64": torch.float64,
  3198. "F32": torch.float32,
  3199. "BF16": torch.bfloat16,
  3200. "F16": torch.float16,
  3201. # "U64": torch.uint64,
  3202. "I64": torch.int64,
  3203. # "U32": torch.uint32,
  3204. "I32": torch.int32,
  3205. # "U16": torch.uint16,
  3206. "I16": torch.int16,
  3207. "U8": torch.uint8,
  3208. "I8": torch.int8,
  3209. "BOOL": torch.bool,
  3210. "F8_E4M3": torch.float8_e4m3fn,
  3211. "F8_E5M2": torch.float8_e5m2,
  3212. }
  3213. def numpy(self) -> gguf.LazyNumpyTensor:
  3214. dtype = self._dtype_map[self.dtype]
  3215. return gguf.LazyNumpyTensor(
  3216. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  3217. args=(self,),
  3218. func=(lambda s: s.numpy())
  3219. )
  3220. @classmethod
  3221. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  3222. return torch.empty(size=shape, dtype=dtype, device="meta")
  3223. @classmethod
  3224. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  3225. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  3226. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  3227. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  3228. return cast(torch.Tensor, lazy)
  3229. @classmethod
  3230. def __torch_function__(cls, func, types, args=(), kwargs=None):
  3231. del types # unused
  3232. if kwargs is None:
  3233. kwargs = {}
  3234. if func is torch.Tensor.numpy:
  3235. return args[0].numpy()
  3236. return cls._wrap_fn(func)(*args, **kwargs)
  3237. def parse_args() -> argparse.Namespace:
  3238. parser = argparse.ArgumentParser(
  3239. description="Convert a huggingface model to a GGML compatible file")
  3240. parser.add_argument(
  3241. "--vocab-only", action="store_true",
  3242. help="extract only the vocab",
  3243. )
  3244. parser.add_argument(
  3245. "--outfile", type=Path,
  3246. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  3247. )
  3248. parser.add_argument(
  3249. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  3250. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  3251. )
  3252. parser.add_argument(
  3253. "--bigendian", action="store_true",
  3254. help="model is executed on big endian machine",
  3255. )
  3256. parser.add_argument(
  3257. "model", type=Path,
  3258. help="directory containing model file",
  3259. )
  3260. parser.add_argument(
  3261. "--use-temp-file", action="store_true",
  3262. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  3263. )
  3264. parser.add_argument(
  3265. "--no-lazy", action="store_true",
  3266. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  3267. )
  3268. parser.add_argument(
  3269. "--model-name", type=str, default=None,
  3270. help="name of the model",
  3271. )
  3272. parser.add_argument(
  3273. "--verbose", action="store_true",
  3274. help="increase output verbosity",
  3275. )
  3276. parser.add_argument(
  3277. "--split-max-tensors", type=int, default=0,
  3278. help="max tensors in each split",
  3279. )
  3280. parser.add_argument(
  3281. "--split-max-size", type=str, default="0",
  3282. help="max size per split N(M|G)",
  3283. )
  3284. parser.add_argument(
  3285. "--dry-run", action="store_true",
  3286. help="only print out a split plan and exit, without writing any new files",
  3287. )
  3288. parser.add_argument(
  3289. "--no-tensor-first-split", action="store_true",
  3290. help="do not add tensors to the first split (disabled by default)"
  3291. )
  3292. parser.add_argument(
  3293. "--metadata", type=Path,
  3294. help="Specify the path for an authorship metadata override file"
  3295. )
  3296. return parser.parse_args()
  3297. def split_str_to_n_bytes(split_str: str) -> int:
  3298. if split_str.endswith("K"):
  3299. n = int(split_str[:-1]) * 1000
  3300. elif split_str.endswith("M"):
  3301. n = int(split_str[:-1]) * 1000 * 1000
  3302. elif split_str.endswith("G"):
  3303. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  3304. elif split_str.isnumeric():
  3305. n = int(split_str)
  3306. else:
  3307. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  3308. if n < 0:
  3309. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  3310. return n
  3311. def main() -> None:
  3312. args = parse_args()
  3313. if args.verbose:
  3314. logging.basicConfig(level=logging.DEBUG)
  3315. else:
  3316. logging.basicConfig(level=logging.INFO)
  3317. dir_model = args.model
  3318. if not dir_model.is_dir():
  3319. logger.error(f'Error: {args.model} is not a directory')
  3320. sys.exit(1)
  3321. ftype_map: dict[str, gguf.LlamaFileType] = {
  3322. "f32": gguf.LlamaFileType.ALL_F32,
  3323. "f16": gguf.LlamaFileType.MOSTLY_F16,
  3324. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  3325. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  3326. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  3327. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  3328. "auto": gguf.LlamaFileType.GUESSED,
  3329. }
  3330. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  3331. if args.use_temp_file and is_split:
  3332. logger.error("Error: Cannot use temp file when splitting")
  3333. sys.exit(1)
  3334. if args.outfile is not None:
  3335. fname_out = args.outfile
  3336. else:
  3337. fname_out = dir_model
  3338. logger.info(f"Loading model: {dir_model.name}")
  3339. hparams = Model.load_hparams(dir_model)
  3340. with torch.inference_mode():
  3341. output_type = ftype_map[args.outtype]
  3342. model_architecture = hparams["architectures"][0]
  3343. try:
  3344. model_class = Model.from_model_architecture(model_architecture)
  3345. except NotImplementedError:
  3346. logger.error(f"Model {model_architecture} is not supported")
  3347. sys.exit(1)
  3348. model_instance = model_class(dir_model=dir_model, ftype=output_type, fname_out=fname_out,
  3349. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  3350. eager=args.no_lazy,
  3351. metadata_override=args.metadata, model_name=args.model_name,
  3352. split_max_tensors=args.split_max_tensors,
  3353. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  3354. small_first_shard=args.no_tensor_first_split)
  3355. if args.vocab_only:
  3356. logger.info("Exporting model vocab...")
  3357. model_instance.write_vocab()
  3358. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  3359. else:
  3360. logger.info("Exporting model...")
  3361. model_instance.write()
  3362. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  3363. logger.info(f"Model successfully exported to {out_path}")
  3364. if __name__ == '__main__':
  3365. main()