steps.py 54 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375
  1. import asyncio
  2. import json
  3. import os
  4. import re
  5. import socket
  6. import subprocess
  7. import sys
  8. import threading
  9. import time
  10. import requests
  11. from collections.abc import Sequence
  12. from contextlib import closing
  13. from re import RegexFlag
  14. from typing import Any, Literal, cast
  15. import aiohttp
  16. import numpy as np
  17. import openai
  18. from openai.types.chat import ChatCompletionChunk
  19. from behave import step # pyright: ignore[reportAttributeAccessIssue]
  20. from behave.api.async_step import async_run_until_complete
  21. from prometheus_client import parser
  22. # pyright: reportRedeclaration=false
  23. DEFAULT_TIMEOUT_SECONDS = aiohttp.ClientTimeout(total=600)
  24. @step("a server listening on {server_fqdn}:{server_port}")
  25. def step_server_config(context, server_fqdn: str, server_port: str):
  26. context.server_fqdn = server_fqdn
  27. context.server_port = int(server_port)
  28. context.n_threads = None
  29. context.n_gpu_layer = None
  30. if 'PORT' in os.environ:
  31. context.server_port = int(os.environ['PORT'])
  32. print(f"$PORT set, overriding server port with to {context.server_port}")
  33. if 'FQDN' in os.environ:
  34. context.server_fqdn = os.environ['FQDN']
  35. print(f"$FQDN set, overriding server fqdn with to {context.server_fqdn}")
  36. if 'N_GPU_LAYERS' in os.environ:
  37. context.n_gpu_layer = int(os.environ['N_GPU_LAYERS'])
  38. print(f"$N_GPU_LAYERS set, overriding n_gpu_layer with to {context.n_gpu_layer}")
  39. context.base_url = f'http://{context.server_fqdn}:{context.server_port}'
  40. context.model_alias = None
  41. context.model_file = None
  42. context.model_hf_repo = None
  43. context.model_hf_file = None
  44. context.model_url = None
  45. context.n_batch = None
  46. context.n_ubatch = None
  47. context.n_ctx = None
  48. context.n_ga = None
  49. context.n_ga_w = None
  50. context.n_predict = None
  51. context.n_prompts = 0
  52. context.n_server_predict = None
  53. context.slot_save_path = None
  54. context.id_slot = None
  55. context.cache_prompt = None
  56. context.n_slots = None
  57. context.prompt_prefix = None
  58. context.prompt_suffix = None
  59. context.server_api_key = None
  60. context.server_continuous_batching = False
  61. context.server_embeddings = False
  62. context.server_metrics = False
  63. context.server_process = None
  64. context.seed = None
  65. context.draft = None
  66. context.server_seed = None
  67. context.user_api_key = None
  68. context.response_format = None
  69. context.temperature = None
  70. context.lora_file = None
  71. context.tasks_result = []
  72. context.concurrent_tasks = []
  73. context.prompts = []
  74. @step('a model file {hf_file} from HF repo {hf_repo}')
  75. def step_download_hf_model(context, hf_file: str, hf_repo: str):
  76. context.model_hf_repo = hf_repo
  77. context.model_hf_file = hf_file
  78. context.model_file = os.path.basename(hf_file)
  79. @step('a lora adapter file from {lora_file_url}')
  80. def step_download_lora_file(context, lora_file_url: str):
  81. file_name = lora_file_url.split('/').pop()
  82. context.lora_file = f'../../../{file_name}'
  83. with open(context.lora_file, 'wb') as f:
  84. f.write(requests.get(lora_file_url).content)
  85. @step('a model file {model_file}')
  86. def step_model_file(context, model_file: str):
  87. context.model_file = model_file
  88. @step('a model url {model_url}')
  89. def step_model_url(context, model_url: str):
  90. context.model_url = model_url
  91. @step('a model alias {model_alias}')
  92. def step_model_alias(context, model_alias: str):
  93. context.model_alias = model_alias
  94. @step('{seed:d} as server seed')
  95. def step_seed(context, seed: int):
  96. context.server_seed = seed
  97. @step('{ngl:d} GPU offloaded layers')
  98. def step_n_gpu_layer(context, ngl: int):
  99. if 'N_GPU_LAYERS' in os.environ:
  100. new_ngl = int(os.environ['N_GPU_LAYERS'])
  101. if context.debug:
  102. print(f"-ngl upgraded from {ngl} to {new_ngl}")
  103. ngl = new_ngl
  104. context.n_gpu_layer = ngl
  105. @step('{n_threads:d} threads')
  106. def step_n_threads(context, n_threads: int):
  107. context.n_thread = n_threads
  108. @step('{draft:d} as draft')
  109. def step_draft(context, draft: int):
  110. context.draft = draft
  111. @step('{n_ctx:d} KV cache size')
  112. def step_n_ctx(context, n_ctx: int):
  113. context.n_ctx = n_ctx
  114. @step('{n_slots:d} slots')
  115. def step_n_slots(context, n_slots: int):
  116. context.n_slots = n_slots
  117. @step('{n_predict:d} server max tokens to predict')
  118. def step_server_n_predict(context, n_predict: int):
  119. context.n_server_predict = n_predict
  120. @step('{slot_save_path} as slot save path')
  121. def step_slot_save_path(context, slot_save_path: str):
  122. context.slot_save_path = slot_save_path
  123. @step('using slot id {id_slot:d}')
  124. def step_id_slot(context, id_slot: int):
  125. context.id_slot = id_slot
  126. @step('prompt caching is enabled')
  127. def step_enable_prompt_cache(context):
  128. context.cache_prompt = True
  129. @step('continuous batching')
  130. def step_server_continuous_batching(context):
  131. context.server_continuous_batching = True
  132. @step('embeddings extraction')
  133. def step_server_embeddings(context):
  134. context.server_embeddings = True
  135. @step('prometheus compatible metrics exposed')
  136. def step_server_metrics(context):
  137. context.server_metrics = True
  138. @step("the server is starting")
  139. def step_start_server(context):
  140. start_server_background(context)
  141. attempts = 0
  142. max_attempts = 20
  143. if 'GITHUB_ACTIONS' in os.environ:
  144. max_attempts *= 2
  145. addrs = socket.getaddrinfo(context.server_fqdn, context.server_port, type=socket.SOCK_STREAM)
  146. family, typ, proto, _, sockaddr = addrs[0]
  147. while True:
  148. with closing(socket.socket(family, typ, proto)) as sock:
  149. result = sock.connect_ex(sockaddr)
  150. if result == 0:
  151. print("\x1b[33;46mserver started!\x1b[0m")
  152. return
  153. attempts += 1
  154. if attempts > max_attempts:
  155. assert False, "server not started"
  156. print(f"waiting for server to start, connect error code = {result}...")
  157. time.sleep(0.1)
  158. async def wait_for_server_status_with_timeout(context, expecting_status: Literal['healthy', 'ready', 'idle', 'busy'] | str, timeout: int):
  159. match expecting_status:
  160. case 'healthy':
  161. await wait_for_slots_status(context, context.base_url, 200,
  162. timeout=timeout)
  163. case 'ready' | 'idle':
  164. await wait_for_slots_status(context, context.base_url, 200,
  165. timeout=timeout,
  166. params={'fail_on_no_slot': 1},
  167. slots_idle=context.n_slots,
  168. slots_processing=0)
  169. case 'busy':
  170. await wait_for_slots_status(context, context.base_url, 503,
  171. params={'fail_on_no_slot': 1},
  172. slots_idle=0,
  173. slots_processing=context.n_slots)
  174. case _:
  175. assert False, "unknown status"
  176. @step("the server is {expecting_status} with timeout {timeout:d} seconds")
  177. @async_run_until_complete
  178. async def step_wait_for_server_status_with_timeout(context, expecting_status: Literal['healthy', 'ready', 'idle', 'busy'] | str, timeout: int):
  179. await wait_for_server_status_with_timeout(context, expecting_status, timeout)
  180. @step("the server is {expecting_status}")
  181. @async_run_until_complete
  182. async def step_wait_for_server_status(context, expecting_status: Literal['healthy', 'ready', 'idle', 'busy'] | str):
  183. await wait_for_server_status_with_timeout(context, expecting_status, 30)
  184. @step('all slots are {expected_slot_status_string}')
  185. @async_run_until_complete
  186. async def step_all_slots_status(context, expected_slot_status_string: Literal['idle', 'busy'] | str):
  187. match expected_slot_status_string:
  188. case 'idle':
  189. expected_slot_status = 0
  190. case 'busy':
  191. expected_slot_status = 1
  192. case _:
  193. assert False, "unknown status"
  194. expected_slots = [{'id': slot_id, 'state': expected_slot_status}
  195. for slot_id in range(context.n_slots)]
  196. await request_slots_status(context, expected_slots)
  197. @step('a completion request with {api_error} api error')
  198. @async_run_until_complete
  199. async def step_request_completion(context, api_error: Literal['raised'] | str):
  200. expect_api_error = api_error == 'raised'
  201. seeds = await completions_seed(context, num_seeds=1)
  202. completion = await request_completion(context.prompts.pop(),
  203. seeds[0] if seeds is not None else seeds,
  204. context.base_url,
  205. debug=context.debug,
  206. n_predict=context.n_predict,
  207. cache_prompt=context.cache_prompt,
  208. id_slot=context.id_slot,
  209. expect_api_error=expect_api_error,
  210. user_api_key=context.user_api_key,
  211. temperature=context.temperature)
  212. context.tasks_result.append(completion)
  213. if context.debug:
  214. print(f"Completion response: {completion}")
  215. if expect_api_error:
  216. assert completion == 401, f"completion must be an 401 status code: {completion}"
  217. @step('{predicted_n:d} tokens are predicted matching {re_content}')
  218. def step_n_tokens_predicted_with_content(context, predicted_n, re_content):
  219. context.completion = context.tasks_result.pop()
  220. assert_n_tokens_predicted(context.completion, predicted_n, re_content)
  221. @step('{predicted_n:d} tokens are predicted')
  222. def step_n_tokens_predicted(context, predicted_n):
  223. context.completion = context.tasks_result.pop()
  224. assert_n_tokens_predicted(context.completion, predicted_n)
  225. @step('all predictions are equal')
  226. @async_run_until_complete
  227. async def step_predictions_equal(context):
  228. n_completions = await gather_tasks_results(context)
  229. assert n_completions >= 2, "need at least 2 completions"
  230. assert_all_predictions_equal(context.tasks_result)
  231. context.tasks_result = []
  232. @step('all predictions are different')
  233. @async_run_until_complete
  234. async def step_predictions_different(context):
  235. n_completions = await gather_tasks_results(context)
  236. assert n_completions >= 2, "need at least 2 completions"
  237. assert_all_predictions_different(context.tasks_result)
  238. context.tasks_result = []
  239. @step('all token probabilities are equal')
  240. @async_run_until_complete
  241. async def step_token_probabilities_equal(context):
  242. n_completions = await gather_tasks_results(context)
  243. assert n_completions >= 2, "need at least 2 completions"
  244. assert_all_token_probabilities_equal(context.tasks_result)
  245. context.tasks_result = []
  246. @step('the completion is truncated')
  247. def step_assert_completion_truncated(context):
  248. step_assert_completion_truncated(context, '')
  249. @step('the completion is {truncated} truncated')
  250. def step_assert_completion_truncated(context, truncated):
  251. truncated = truncated != "not"
  252. assert context.completion['truncated'] == truncated, f'{context.completion}'
  253. @step('{n_prompt:d} prompt tokens are processed')
  254. def step_impl(context, n_prompt):
  255. assert n_prompt < 0 or n_prompt == context.completion['timings']['prompt_n'], f"n_prompt={context.completion['timings']['prompt_n']}"
  256. @step('a user prompt {user_prompt}')
  257. def step_user_prompt(context, user_prompt):
  258. context.prompts.append(user_prompt)
  259. context.n_prompts = len(context.prompts)
  260. @step('a system prompt {system_prompt}')
  261. def step_system_prompt(context, system_prompt):
  262. context.system_prompt = system_prompt
  263. @step('a model {model}')
  264. def step_model(context, model):
  265. context.model = model
  266. @step('{max_tokens:d} max tokens to predict')
  267. def step_max_tokens(context, max_tokens):
  268. context.n_predict = max_tokens
  269. @step('a response format {response_format}')
  270. def step_response_format(context, response_format):
  271. context.response_format = json.loads(response_format)
  272. @step('{temperature:f} temperature')
  273. def step_temperature(context, temperature):
  274. context.temperature = temperature
  275. @step('streaming is {enable_streaming}')
  276. def step_streaming(context, enable_streaming):
  277. context.enable_streaming = enable_streaming == 'enabled'
  278. @step('a user api key {user_api_key}')
  279. def step_user_api_key(context, user_api_key):
  280. context.user_api_key = user_api_key
  281. @step('no user api key')
  282. def step_no_user_api_key(context):
  283. context.user_api_key = None
  284. @step('a user api key ')
  285. def step_no_user_api_key_space(context):
  286. context.user_api_key = None
  287. @step('a server api key {server_api_key}')
  288. def step_server_api_key(context, server_api_key):
  289. context.server_api_key = server_api_key
  290. @step('{n_junk:d} as number of junk')
  291. def step_n_junk(context, n_junk):
  292. context.n_junk = n_junk
  293. @step('{n_batch:d} as batch size')
  294. def step_n_batch(context, n_batch):
  295. context.n_batch = n_batch
  296. @step('{n_ubatch:d} as ubatch size')
  297. def step_n_ubatch(context, n_ubatch):
  298. context.n_ubatch = n_ubatch
  299. @step('{seed:d} as seed')
  300. def step_seed(context, seed):
  301. if context.seed is None:
  302. context.seed = [seed]
  303. else:
  304. context.seed.append(seed)
  305. @step('BOS token is {bos:d}')
  306. def step_bos_token(context, bos):
  307. context.bos = bos
  308. @step('a prefix prompt')
  309. def step_prompt_prefix(context):
  310. context.prompt_prefix = context_text(context)
  311. @step('a junk suffix prompt')
  312. def step_prompt_junk_suffix(context):
  313. context.prompt_junk_suffix = context_text(context)
  314. @step('a suffix prompt')
  315. def step_prompt_suffix(context):
  316. context.prompt_suffix = context_text(context)
  317. @step('{n_ga:d} group attention factor'
  318. ' to extend context size through self-extend')
  319. def step_impl(context, n_ga):
  320. context.n_ga = n_ga
  321. @step('{n_ga_w:d} group attention width to extend context size through self-extend')
  322. def step_impl(context, n_ga_w):
  323. context.n_ga_w = n_ga_w
  324. @step('a passkey prompt template')
  325. def step_prompt_passkey(context):
  326. context.prompt_passkey = context_text(context)
  327. @step('{n_prompts:d} fixed prompts')
  328. def step_fixed_prompts(context, n_prompts):
  329. context.prompts.extend([str(0)*(context.n_batch if context.n_batch is not None else 512) for i in range(n_prompts)])
  330. context.n_prompts = n_prompts
  331. @step('a "{passkey}" passkey challenge prompt with the passkey inserted every {i_pos:d} junk')
  332. def step_prompt_passkey(context, passkey, i_pos):
  333. prompt = ""
  334. for i in range(context.n_junk):
  335. if i % context.n_junk == i_pos:
  336. prompt += context.prompt_passkey # the passkey is already substituted
  337. prompt += context.prompt_junk_suffix
  338. if context.debug:
  339. passkey_highlight = "\x1b[33m" + passkey + "\x1b[0m"
  340. print(f"Passkey challenge:\n```{prompt.replace(passkey, passkey_highlight)}```")
  341. context.prompts.append(context.prompt_prefix + prompt + context.prompt_suffix)
  342. context.n_prompts = len(context.prompts)
  343. @step('an OAI compatible chat completions request with {api_error} api error')
  344. @async_run_until_complete
  345. async def step_oai_chat_completions(context, api_error):
  346. if context.debug:
  347. print(f"Submitting OAI compatible completions request...")
  348. expect_api_error = api_error == 'raised'
  349. seeds = await completions_seed(context, num_seeds=1),
  350. completion = await oai_chat_completions(context.prompts.pop(),
  351. seeds[0] if seeds is not None else seeds,
  352. context.system_prompt,
  353. context.base_url,
  354. '/v1/chat',
  355. False,
  356. model=context.model if hasattr(context, 'model') else None,
  357. n_predict=context.n_predict
  358. if hasattr(context, 'n_predict') else None,
  359. enable_streaming=context.enable_streaming
  360. if hasattr(context, 'enable_streaming') else None,
  361. response_format=context.response_format
  362. if hasattr(context, 'response_format') else None,
  363. user_api_key=context.user_api_key
  364. if hasattr(context, 'user_api_key') else None,
  365. expect_api_error=expect_api_error)
  366. context.tasks_result.append(completion)
  367. if context.debug:
  368. print(f"Completion response: {completion}")
  369. if expect_api_error:
  370. assert completion == 401, f"completion must be an 401 status code: {completion}"
  371. if context.debug:
  372. print(f"Completion response: {completion}")
  373. @step('a prompt')
  374. def step_a_prompt(context):
  375. context.prompts.append(context_text(context))
  376. context.n_prompts = len(context.prompts)
  377. @step('a prompt {prompt}')
  378. def step_a_prompt_prompt(context, prompt):
  379. context.prompts.append(prompt)
  380. context.n_prompts = len(context.prompts)
  381. @step('{num_prompts:d} prompts {prompt} with seed {seed:d}')
  382. def step_many_prompts(context, num_prompts, prompt, seed):
  383. if context.seed is None:
  384. context.seed = []
  385. for _ in range(num_prompts):
  386. context.seed.append(seed)
  387. context.prompts.append(prompt)
  388. context.n_prompts = len(context.prompts)
  389. @step('concurrent completion requests')
  390. @async_run_until_complete()
  391. async def step_concurrent_completion_requests(context):
  392. await concurrent_requests(
  393. context,
  394. request_completion,
  395. # prompt is inserted automatically
  396. context.base_url,
  397. debug=context.debug,
  398. prompt_prefix=context.prompt_prefix,
  399. prompt_suffix=context.prompt_suffix,
  400. n_predict=context.n_predict if hasattr(context, 'n_predict') else None,
  401. user_api_key=context.user_api_key if hasattr(context, 'user_api_key') else None,
  402. temperature=context.temperature,
  403. )
  404. @step('concurrent OAI completions requests')
  405. @async_run_until_complete
  406. async def step_oai_chat_completions(context):
  407. await concurrent_requests(context, oai_chat_completions,
  408. # user_prompt is inserted automatically
  409. context.system_prompt,
  410. context.base_url,
  411. '/v1/chat/completions',
  412. True, # async_client
  413. model=context.model
  414. if hasattr(context, 'model') else None,
  415. n_predict=context.n_predict
  416. if hasattr(context, 'n_predict') else None,
  417. enable_streaming=context.enable_streaming
  418. if hasattr(context, 'enable_streaming') else None,
  419. response_format=context.response_format
  420. if hasattr(context, 'response_format') else None,
  421. user_api_key=context.user_api_key
  422. if hasattr(context, 'user_api_key') else None)
  423. @step('concurrent OAI completions requests no v1')
  424. @async_run_until_complete
  425. async def step_oai_chat_completions(context):
  426. await concurrent_requests(context, oai_chat_completions,
  427. # user_prompt is inserted automatically
  428. context.system_prompt,
  429. context.base_url,
  430. '/chat/completions',
  431. True, # async_client
  432. model=context.model
  433. if hasattr(context, 'model') else None,
  434. n_predict=context.n_predict
  435. if hasattr(context, 'n_predict') else None,
  436. enable_streaming=context.enable_streaming
  437. if hasattr(context, 'enable_streaming') else None,
  438. response_format=context.response_format
  439. if hasattr(context, 'response_format') else None,
  440. user_api_key=context.user_api_key
  441. if hasattr(context, 'user_api_key') else None)
  442. @step('all prompts are predicted')
  443. @async_run_until_complete
  444. async def step_all_prompts_are_predicted(context):
  445. await all_prompts_are_predicted(context)
  446. @step('all prompts are predicted with {n_expected_predicted:d} tokens')
  447. @async_run_until_complete
  448. async def step_all_prompts_are_predicted_with_n_tokens(context, n_expected_predicted):
  449. await all_prompts_are_predicted(context, n_expected_predicted)
  450. async def all_prompts_are_predicted(context, expected_predicted_n=None):
  451. n_completions = await gather_tasks_results(context)
  452. assert n_completions > 0
  453. for i in range(n_completions):
  454. assert_n_tokens_predicted(context.tasks_result.pop(), expected_predicted_n=expected_predicted_n)
  455. assert len(context.concurrent_tasks) == 0, f"{len(context.concurrent_tasks)} pending requests"
  456. @step('embeddings are computed for')
  457. @async_run_until_complete
  458. async def step_compute_embedding(context):
  459. context.n_prompts = 1
  460. context.embeddings = await request_embedding(context_text(context), None, base_url=context.base_url)
  461. @step('all embeddings are the same')
  462. @async_run_until_complete
  463. async def step_all_embeddings_are_the_same(context):
  464. n_embedding_requests = await gather_tasks_results(context)
  465. assert n_embedding_requests > 0
  466. embeddings = []
  467. for i in range(n_embedding_requests):
  468. embedding = context.tasks_result.pop().pop()
  469. embeddings.append(embedding)
  470. assert_embeddings(embedding)
  471. n = len(embeddings)
  472. for i in range(n-1):
  473. for j in range(i+1, n):
  474. embedding1 = np.array(embeddings[i])
  475. embedding2 = np.array(embeddings[j])
  476. if context.debug:
  477. print(f"embedding1: {embedding1[-8:]}")
  478. print(f"embedding2: {embedding2[-8:]}")
  479. similarity = np.dot(embedding1, embedding2) / (np.linalg.norm(embedding1) * np.linalg.norm(embedding2))
  480. msg = f"Similarity between {i} and {j}: {similarity:.10f}"
  481. if context.debug:
  482. print(f"{msg}")
  483. assert np.isclose(similarity, 1.0, rtol=1e-05, atol=1e-08, equal_nan=False), msg
  484. @step('embeddings are generated')
  485. def step_assert_embeddings(context):
  486. assert context.n_prompts == len(context.embeddings), (f"unexpected response:\n"
  487. f"context.n_prompts={context.n_prompts}\n"
  488. f"context.embeddings={context.embeddings}")
  489. for embedding in context.embeddings:
  490. assert_embeddings(embedding)
  491. @step('an OAI compatible embeddings computation request for')
  492. @async_run_until_complete
  493. async def step_oai_compute_embeddings(context):
  494. context.n_prompts = 1
  495. context.embeddings = await request_oai_embeddings(context_text(context), None,
  496. base_url=context.base_url,
  497. user_api_key=context.user_api_key,
  498. model=context.model)
  499. @step('an OAI compatible embeddings computation request for multiple inputs')
  500. @async_run_until_complete
  501. async def step_oai_compute_embeddings_multiple_inputs(context):
  502. context.embeddings = await request_oai_embeddings(context.prompts, None,
  503. base_url=context.base_url,
  504. user_api_key=context.user_api_key,
  505. model=context.model)
  506. context.prompts.clear()
  507. @step('concurrent embedding requests')
  508. @async_run_until_complete()
  509. async def step_concurrent_embedding_requests(context):
  510. await concurrent_requests(context,
  511. request_embedding,
  512. # prompt is inserted automatically
  513. base_url=context.base_url)
  514. @step('concurrent OAI embedding requests')
  515. @async_run_until_complete()
  516. async def step_concurrent_oai_embedding_requests(context):
  517. await concurrent_requests(context,
  518. request_oai_embeddings,
  519. # prompt is inserted automatically
  520. base_url=context.base_url,
  521. async_client=True,
  522. model=context.model)
  523. @step('all embeddings are generated')
  524. @async_run_until_complete()
  525. async def all_embeddings_are_generated(context):
  526. n_embedding_requests = await gather_tasks_results(context)
  527. assert n_embedding_requests == context.n_prompts
  528. for i in range(n_embedding_requests):
  529. assert_embeddings(context.tasks_result.pop().pop())
  530. @step('adding special tokens')
  531. def step_tokenize_set_add_special(context):
  532. context.tokenize_add_special = True
  533. @step('tokenizing')
  534. @async_run_until_complete
  535. async def step_tokenize(context):
  536. context.tokenized_text = context_text(context)
  537. async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
  538. tokenize_args = {
  539. "content": context.tokenized_text,
  540. }
  541. if getattr(context, 'tokenize_add_special', None) is not None:
  542. tokenize_args['add_special'] = context.tokenize_add_special
  543. async with session.post(f'{context.base_url}/tokenize',
  544. json=tokenize_args) as response:
  545. assert response.status == 200
  546. tokenize_json = await response.json()
  547. context.tokens = tokenize_json['tokens']
  548. @step('tokens can be detokenized')
  549. @async_run_until_complete
  550. async def step_detokenize(context):
  551. assert len(context.tokens) > 0
  552. async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
  553. async with session.post(f'{context.base_url}/detokenize',
  554. json={
  555. "tokens": context.tokens,
  556. }) as response:
  557. assert response.status == 200
  558. detokenize_json = await response.json()
  559. # SPM tokenizer adds a whitespace prefix: https://github.com/google/sentencepiece/issues/15
  560. assert context.tokenized_text == detokenize_json['content'].strip()
  561. @step('tokens begin with BOS')
  562. def step_strings_for_tokenization(context):
  563. assert context.tokens[0] == context.bos
  564. @step('tokens do not begin with BOS')
  565. def step_strings_for_tokenization(context):
  566. assert context.tokens[0] != context.bos
  567. @step('first token is removed')
  568. def step_strings_for_tokenization(context):
  569. context.tokens = context.tokens[1:]
  570. @step('an OPTIONS request is sent from {origin}')
  571. @async_run_until_complete
  572. async def step_options_request(context, origin):
  573. async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
  574. headers = {'Authorization': f'Bearer {context.user_api_key}', 'Origin': origin}
  575. async with session.options(f'{context.base_url}/v1/chat/completions',
  576. headers=headers) as response:
  577. assert response.status == 200
  578. context.options_response = response
  579. @step('CORS header {cors_header} is set to {cors_header_value}')
  580. def step_check_options_header_value(context, cors_header, cors_header_value):
  581. assert context.options_response.headers[cors_header] == cors_header_value
  582. @step('prometheus metrics are exposed')
  583. @async_run_until_complete
  584. async def step_prometheus_metrics_exported(context):
  585. async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
  586. async with await session.get(f'{context.base_url}/metrics') as metrics_response:
  587. assert metrics_response.status == 200
  588. assert metrics_response.headers['Content-Type'] == "text/plain; version=0.0.4"
  589. metrics_raw = await metrics_response.text()
  590. metric_exported = False
  591. if context.debug:
  592. print(f"/metrics answer:\n{metrics_raw}")
  593. context.metrics = {}
  594. for metric in parser.text_string_to_metric_families(metrics_raw):
  595. match metric.name:
  596. case "llamacpp:kv_cache_usage_ratio":
  597. assert len(metric.samples) > 0
  598. metric_exported = True
  599. context.metrics[metric.name] = metric
  600. assert int(metrics_response.headers["Process-Start-Time-Unix"]) > 0, "no header process start time"
  601. assert metric_exported, "No metrics exported"
  602. @step('metric {metric_name} is {metric_value:d}')
  603. def step_assert_metric_value(context, metric_name, metric_value):
  604. if metric_name not in context.metrics:
  605. assert False, f"no metric {metric_name} in {context.metrics.keys()}"
  606. assert context.metrics[metric_name].samples[0].value == metric_value, f"metric: {context.metrics[metric_name]}"
  607. @step('available models')
  608. def step_available_models(context):
  609. # openai client always expects an api_key
  610. openai.api_key = context.user_api_key if context.user_api_key is not None else 'nope'
  611. openai.base_url = f'{context.base_url}/v1/'
  612. context.models = openai.models.list().data
  613. @step('{n_model:d} models are supported')
  614. def step_supported_models(context, n_model):
  615. if context.debug:
  616. print("server models available:", context.models)
  617. assert len(context.models) == n_model
  618. @step('model {i_model:d} is {param} {preposition} {param_value}')
  619. def step_supported_models(context, i_model: int, param: Literal['identified', 'trained'] | str, preposition: str, param_value: str):
  620. assert i_model < len(context.models)
  621. model = context.models[i_model]
  622. param_value = param_value.split(' ', 1)[0]
  623. match param:
  624. case 'identified':
  625. value = model.id
  626. case 'trained':
  627. value = str(model.meta["n_ctx_train"])
  628. case _:
  629. assert False, "param {param} not supported"
  630. assert param_value == value, f"model param {param} {value} != {param_value}"
  631. async def concurrent_requests(context, f_completion, *args, **kwargs):
  632. context.n_prompts = len(context.prompts)
  633. if context.debug:
  634. print(f"starting {context.n_prompts} concurrent completion requests...")
  635. assert context.n_prompts > 0
  636. seeds = await completions_seed(context)
  637. assert seeds is not None
  638. for prompt_no in range(context.n_prompts):
  639. shifted_args = [context.prompts.pop(), seeds[prompt_no], *args]
  640. context.concurrent_tasks.append(asyncio.create_task(f_completion(*shifted_args, **kwargs)))
  641. await asyncio.sleep(0.01)
  642. @step('the slot {slot_id:d} is saved with filename "{filename}"')
  643. @async_run_until_complete
  644. async def step_save_slot(context, slot_id, filename):
  645. async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
  646. async with session.post(f'{context.base_url}/slots/{slot_id}?action=save',
  647. json={"filename": filename},
  648. headers={"Content-Type": "application/json"}) as response:
  649. context.response = response
  650. @step('the slot {slot_id:d} is restored with filename "{filename}"')
  651. @async_run_until_complete
  652. async def step_restore_slot(context, slot_id, filename):
  653. async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
  654. async with session.post(f'{context.base_url}/slots/{slot_id}?action=restore',
  655. json={"filename": filename},
  656. headers={"Content-Type": "application/json"}) as response:
  657. context.response = response
  658. @step('the slot {slot_id:d} is erased')
  659. @async_run_until_complete
  660. async def step_erase_slot(context, slot_id):
  661. async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
  662. async with session.post(f'{context.base_url}/slots/{slot_id}?action=erase',
  663. headers={"Content-Type": "application/json"}) as response:
  664. context.response = response
  665. @step('switch {on_or_off} lora adapter {lora_id:d}')
  666. @async_run_until_complete
  667. async def toggle_lora_adapter(context, on_or_off: str, lora_id: int):
  668. async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
  669. async with session.post(f'{context.base_url}/lora-adapters',
  670. json=[{'id': lora_id, 'scale': 1 if on_or_off == 'on' else 0}],
  671. headers={"Content-Type": "application/json"}) as response:
  672. context.response = response
  673. print([{'id': lora_id, 'scale': 1 if on_or_off == 'on' else 0}])
  674. @step('the server responds with status code {status_code:d}')
  675. def step_server_responds_with_status_code(context, status_code):
  676. assert context.response.status == status_code
  677. async def request_completion(prompt,
  678. seed,
  679. base_url,
  680. debug=False,
  681. prompt_prefix=None,
  682. prompt_suffix=None,
  683. n_predict=None,
  684. cache_prompt=False,
  685. id_slot=None,
  686. expect_api_error=None,
  687. user_api_key=None,
  688. temperature=None) -> int | dict[str, Any]:
  689. if debug:
  690. print(f"Sending completion request: {prompt}")
  691. origin = "my.super.domain"
  692. headers = {
  693. 'Origin': origin
  694. }
  695. if user_api_key is not None:
  696. if debug:
  697. print(f"Set user_api_key: {user_api_key}")
  698. headers['Authorization'] = f'Bearer {user_api_key}'
  699. async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
  700. async with session.post(f'{base_url}/completion',
  701. json={
  702. "input_prefix": prompt_prefix,
  703. "prompt": prompt,
  704. "input_suffix": prompt_suffix,
  705. "n_predict": n_predict if n_predict is not None else -1,
  706. "cache_prompt": cache_prompt,
  707. "id_slot": id_slot,
  708. "seed": seed if seed is not None else 42,
  709. "temperature": temperature if temperature is not None else 0.8,
  710. "n_probs": 2,
  711. },
  712. headers=headers) as response:
  713. if expect_api_error is None or not expect_api_error:
  714. assert response.status == 200
  715. assert response.headers['Access-Control-Allow-Origin'] == origin
  716. return await response.json()
  717. else:
  718. return response.status
  719. async def oai_chat_completions(user_prompt,
  720. seed,
  721. system_prompt,
  722. base_url: str,
  723. base_path: str,
  724. async_client,
  725. debug=False,
  726. temperature=None,
  727. model=None,
  728. n_predict=None,
  729. enable_streaming=None,
  730. response_format=None,
  731. user_api_key=None,
  732. expect_api_error=None) -> int | dict[str, Any]:
  733. if debug:
  734. print(f"Sending OAI Chat completions request: {user_prompt}")
  735. # openai client always expects an api key
  736. user_api_key = user_api_key if user_api_key is not None else 'nope'
  737. seed = seed if seed is not None else 42
  738. enable_streaming = enable_streaming if enable_streaming is not None else False
  739. payload = {
  740. "messages": [
  741. {
  742. "role": "system",
  743. "content": system_prompt,
  744. },
  745. {
  746. "role": "user",
  747. "content": user_prompt,
  748. }
  749. ],
  750. "model": model,
  751. "max_tokens": n_predict,
  752. "stream": enable_streaming,
  753. "temperature": temperature if temperature is not None else 0.0,
  754. "seed": seed,
  755. }
  756. if response_format is not None:
  757. payload['response_format'] = response_format
  758. completion_response = {
  759. 'content': '',
  760. 'timings': {
  761. 'predicted_n': 0,
  762. 'prompt_n': 0
  763. }
  764. }
  765. if async_client:
  766. origin = 'llama.cpp'
  767. headers = {'Authorization': f'Bearer {user_api_key}', 'Origin': origin}
  768. async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
  769. async with session.post(f'{base_url}{base_path}',
  770. json=payload,
  771. headers=headers) as response:
  772. if enable_streaming:
  773. assert response.status == 200
  774. assert response.headers['Access-Control-Allow-Origin'] == origin
  775. assert response.headers['Content-Type'] == "text/event-stream"
  776. event_received = True
  777. while event_received:
  778. event_received = False
  779. async for line_in_bytes in response.content:
  780. line = line_in_bytes.decode('utf-8')
  781. line = line.rstrip('\n').rstrip('\r')
  782. if line == '':
  783. continue
  784. event_data = line.split(': ', 1)
  785. assert event_data[0] == 'data', f'Bad event code received: ```{event_data}```'
  786. chunk_raw = event_data[1]
  787. chunk = json.loads(chunk_raw)
  788. assert len(chunk['choices']) == 1, f"no choices provided, line ```{line}```"
  789. delta = chunk['choices'][0]['delta']
  790. if 'content' in delta:
  791. completion_response['content'] += delta['content']
  792. completion_response['timings']['predicted_n'] += 1
  793. else:
  794. if expect_api_error is None or not expect_api_error:
  795. assert response.status == 200
  796. assert response.headers['Access-Control-Allow-Origin'] == origin
  797. assert response.headers['Content-Type'] == "application/json; charset=utf-8"
  798. chat_completion_raw = await response.json()
  799. completion_response = {
  800. 'content': chat_completion_raw['choices'][0]['message'],
  801. 'timings': {
  802. 'predicted_n': chat_completion_raw['usage']['completion_tokens'],
  803. 'prompt_n': chat_completion_raw['usage']['prompt_tokens']
  804. }
  805. }
  806. else:
  807. return response.status
  808. else:
  809. try:
  810. openai.api_key = user_api_key
  811. openai.base_url = f'{base_url}{base_path.removesuffix("chat")}'
  812. assert model is not None
  813. chat_completion = openai.chat.completions.create(
  814. messages=payload['messages'],
  815. model=model,
  816. max_tokens=n_predict,
  817. stream=enable_streaming,
  818. response_format=payload.get('response_format') or openai.NOT_GIVEN,
  819. seed=seed,
  820. temperature=payload['temperature']
  821. )
  822. except openai.AuthenticationError as e:
  823. if expect_api_error is not None and expect_api_error:
  824. return 401
  825. else:
  826. assert False, f'error raised: {e}'
  827. if enable_streaming:
  828. chat_completion = cast(openai.Stream[ChatCompletionChunk], chat_completion)
  829. for chunk in chat_completion:
  830. assert len(chunk.choices) == 1
  831. delta = chunk.choices[0].delta
  832. if delta.content is not None:
  833. completion_response['content'] += delta.content
  834. completion_response['timings']['predicted_n'] += 1
  835. completion_response['truncated'] = chunk.choices[0].finish_reason != 'stop'
  836. else:
  837. assert len(chat_completion.choices) == 1
  838. assert chat_completion.usage is not None
  839. completion_response = {
  840. 'content': chat_completion.choices[0].message.content,
  841. 'timings': {
  842. 'predicted_n': chat_completion.usage.completion_tokens,
  843. 'prompt_n': chat_completion.usage.prompt_tokens
  844. },
  845. 'truncated': chat_completion.choices[0].finish_reason != 'stop'
  846. }
  847. if debug:
  848. print("OAI response formatted to llama.cpp:", completion_response)
  849. return completion_response
  850. async def request_embedding(content, seed, base_url=None) -> list[list[float]]:
  851. async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
  852. async with session.post(f'{base_url}/embedding',
  853. json={
  854. "content": content,
  855. }) as response:
  856. assert response.status == 200
  857. response_json = await response.json()
  858. return [response_json['embedding']]
  859. async def request_oai_embeddings(input, seed,
  860. base_url=None, user_api_key=None,
  861. model=None, async_client=False) -> list[list[float]]:
  862. # openai client always expects an api_key
  863. user_api_key = user_api_key if user_api_key is not None else 'nope'
  864. if async_client:
  865. origin = 'llama.cpp'
  866. headers=[]
  867. if user_api_key is not None:
  868. headers = {'Authorization': f'Bearer {user_api_key}', 'Origin': origin}
  869. async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
  870. async with session.post(f'{base_url}/v1/embeddings',
  871. json={
  872. "input": input,
  873. "model": model,
  874. },
  875. headers=headers) as response:
  876. assert response.status == 200, f"received status code not expected: {response.status}"
  877. assert response.headers['Access-Control-Allow-Origin'] == origin
  878. assert response.headers['Content-Type'] == "application/json; charset=utf-8"
  879. response_json = await response.json()
  880. assert response_json['model'] == model, f"invalid model received: {response_json['model']}"
  881. assert response_json['object'] == 'list'
  882. if isinstance(input, Sequence):
  883. embeddings = []
  884. for an_oai_embeddings in response_json['data']:
  885. embeddings.append(an_oai_embeddings['embedding'])
  886. else:
  887. embeddings = [response_json['data']['embedding']]
  888. return embeddings
  889. else:
  890. openai.api_key = user_api_key
  891. openai.base_url = f'{base_url}/v1/'
  892. assert model is not None
  893. oai_embeddings = openai.embeddings.create(
  894. model=model,
  895. input=input,
  896. )
  897. return [e.embedding for e in oai_embeddings.data]
  898. def assert_n_tokens_predicted(completion_response, expected_predicted_n=None, re_content=None):
  899. content = completion_response['content']
  900. n_predicted = completion_response['timings']['predicted_n']
  901. assert len(content) > 0, "no token predicted"
  902. if re_content is not None:
  903. p = re.compile(re_content, flags=RegexFlag.IGNORECASE | RegexFlag.MULTILINE | RegexFlag.DOTALL)
  904. matches = p.finditer(content)
  905. last_match = 0
  906. highlighted = ''
  907. for match in matches:
  908. start, end = match.span()
  909. highlighted += content[last_match: start]
  910. highlighted += '\x1b[33m'
  911. highlighted += content[start: end]
  912. highlighted += '\x1b[0m'
  913. last_match = end
  914. highlighted += content[last_match:]
  915. if 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON':
  916. print(f"Checking completion response: {highlighted}")
  917. assert last_match > 0, f'/{re_content}/ must match ```{highlighted}```'
  918. if expected_predicted_n and expected_predicted_n > 0:
  919. assert n_predicted == expected_predicted_n, (f'invalid number of tokens predicted:'
  920. f' {n_predicted} <> {expected_predicted_n}')
  921. def assert_all_predictions_equal(completion_responses):
  922. if 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON':
  923. for i, response_i in enumerate(completion_responses):
  924. content_i = response_i['content']
  925. print(f"content {i}: {content_i}")
  926. for i, response_i in enumerate(completion_responses):
  927. content_i = response_i['content']
  928. for j, response_j in enumerate(completion_responses):
  929. if i == j:
  930. continue
  931. content_j = response_j['content']
  932. assert content_i == content_j, "contents not equal"
  933. def assert_all_predictions_different(completion_responses):
  934. if 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON':
  935. for i, response_i in enumerate(completion_responses):
  936. content_i = response_i['content']
  937. print(f"content {i}: {content_i}")
  938. for i, response_i in enumerate(completion_responses):
  939. content_i = response_i['content']
  940. for j, response_j in enumerate(completion_responses):
  941. if i == j:
  942. continue
  943. content_j = response_j['content']
  944. assert content_i != content_j, "contents not different"
  945. def assert_all_token_probabilities_equal(completion_responses):
  946. n_predict = len(completion_responses[0]['completion_probabilities'])
  947. if 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON':
  948. for pos in range(n_predict):
  949. for i, response_i in enumerate(completion_responses):
  950. probs_i = response_i['completion_probabilities'][pos]['probs']
  951. print(f"pos {pos}, probs {i}: {probs_i}")
  952. for pos in range(n_predict):
  953. for i, response_i in enumerate(completion_responses):
  954. probs_i = response_i['completion_probabilities'][pos]['probs']
  955. for j, response_j in enumerate(completion_responses):
  956. if i == j:
  957. continue
  958. probs_j = response_j['completion_probabilities'][pos]['probs']
  959. assert probs_i == probs_j, "contents not equal"
  960. async def gather_tasks_results(context):
  961. n_tasks = len(context.concurrent_tasks)
  962. if context.debug:
  963. print(f"Waiting for all {n_tasks} tasks results...")
  964. for task_no in range(n_tasks):
  965. context.tasks_result.append(await context.concurrent_tasks.pop())
  966. n_completions = len(context.tasks_result)
  967. return n_completions
  968. async def wait_for_slots_status(context,
  969. base_url,
  970. expected_http_status_code,
  971. timeout=3,
  972. params=None,
  973. slots_idle=None,
  974. slots_processing=None):
  975. if context.debug:
  976. print(f"Starting checking for health for expected_http_status_code={expected_http_status_code}")
  977. interval = 0.5
  978. counter = 0
  979. if 'GITHUB_ACTIONS' in os.environ:
  980. timeout *= 2
  981. async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
  982. while True:
  983. async with await session.get(f'{base_url}/slots', params=params) as slots_response:
  984. status_code = slots_response.status
  985. slots = await slots_response.json()
  986. if context.debug:
  987. print(f"slots responses {slots}\n")
  988. if status_code == 503 and status_code == expected_http_status_code:
  989. return
  990. if status_code == 200 and status_code == expected_http_status_code:
  991. n_slots_idle = sum(1 if slot["state"] == 0 else 0 for slot in slots)
  992. n_slots_processing = sum(1 if slot["state"] != 0 else 0 for slot in slots)
  993. if ((slots_idle is None or slots_idle == n_slots_idle)
  994. and (slots_processing is None or slots_processing == n_slots_processing)):
  995. return
  996. await asyncio.sleep(interval)
  997. counter += interval
  998. if counter >= timeout:
  999. # Sometimes health requests are triggered after completions are predicted
  1000. if expected_http_status_code == 503:
  1001. if len(context.tasks_result) == 0:
  1002. print("\x1b[5;37;43mWARNING: forcing concurrent tasks,"
  1003. " busy health check missed, probably too fast inference\x1b[0m\n")
  1004. n_completions = await gather_tasks_results(context)
  1005. if n_completions > 0:
  1006. return
  1007. assert False, f'slots check timeout exceeded {counter}s>={timeout}'
  1008. def assert_embeddings(embeddings):
  1009. assert len(embeddings) > 0
  1010. embeddings_computed = False
  1011. for emb in embeddings:
  1012. if not isinstance(emb, float):
  1013. assert False, f"Bad embeddings: {embeddings}"
  1014. if emb != 0:
  1015. embeddings_computed = True
  1016. assert embeddings_computed, f"Embeddings: {embeddings}"
  1017. async def request_slots_status(context, expected_slots):
  1018. async with aiohttp.ClientSession(timeout=DEFAULT_TIMEOUT_SECONDS) as session:
  1019. async with await session.get(f'{context.base_url}/slots') as slots_response:
  1020. assert slots_response.status == 200
  1021. slots = await slots_response.json()
  1022. assert_slots_status(slots, expected_slots)
  1023. def assert_slots_status(slots, expected_slots):
  1024. assert len(slots) == len(expected_slots)
  1025. for slot_id, (expected, slot) in enumerate(zip(expected_slots, slots)):
  1026. for key in expected:
  1027. assert expected[key] == slot[key], (f"invalid slot {slot_id}"
  1028. f" expected[{key}] != slot[{key}]"
  1029. f" = {expected[key]} != {slot[key]}")
  1030. async def completions_seed(context, num_seeds=None):
  1031. if hasattr(context, "seed") and context.seed is not None:
  1032. assert len(context.seed) == context.n_prompts
  1033. if num_seeds is None:
  1034. num_seeds = context.n_prompts
  1035. assert num_seeds <= context.n_prompts
  1036. seeds = context.seed[:num_seeds]
  1037. context.seed = context.seed[num_seeds:] if num_seeds < context.n_prompts else None
  1038. return seeds
  1039. if hasattr(context, "server_seed") and context.server_seed is not None:
  1040. if num_seeds is None:
  1041. return [context.server_seed] * context.n_prompts
  1042. else:
  1043. return [context.server_seed] * num_seeds
  1044. return None
  1045. def context_text(context):
  1046. return context.text.replace('\r', '')
  1047. def start_server_background(context):
  1048. if os.name == 'nt':
  1049. context.server_path = '../../../build/bin/Release/llama-server.exe'
  1050. else:
  1051. context.server_path = '../../../build/bin/llama-server'
  1052. if 'LLAMA_SERVER_BIN_PATH' in os.environ:
  1053. context.server_path = os.environ['LLAMA_SERVER_BIN_PATH']
  1054. server_listen_addr = context.server_fqdn
  1055. server_args = [
  1056. '--host', server_listen_addr,
  1057. '--port', context.server_port,
  1058. ]
  1059. if context.model_file:
  1060. server_args.extend(['--model', context.model_file])
  1061. if context.model_url:
  1062. server_args.extend(['--model-url', context.model_url])
  1063. if context.model_hf_repo:
  1064. server_args.extend(['--hf-repo', context.model_hf_repo])
  1065. if context.model_hf_file:
  1066. server_args.extend(['--hf-file', context.model_hf_file])
  1067. if context.n_batch:
  1068. server_args.extend(['--batch-size', context.n_batch])
  1069. if context.n_ubatch:
  1070. server_args.extend(['--ubatch-size', context.n_ubatch])
  1071. if context.n_threads:
  1072. server_args.extend(['--threads', context.threads])
  1073. if context.n_gpu_layer:
  1074. server_args.extend(['--n-gpu-layers', context.n_gpu_layer])
  1075. if context.draft is not None:
  1076. server_args.extend(['--draft', context.draft])
  1077. if context.server_continuous_batching:
  1078. server_args.append('--cont-batching')
  1079. if context.server_embeddings:
  1080. server_args.append('--embedding')
  1081. if context.server_metrics:
  1082. server_args.append('--metrics')
  1083. if context.model_alias:
  1084. server_args.extend(['--alias', context.model_alias])
  1085. if context.n_ctx:
  1086. server_args.extend(['--ctx-size', context.n_ctx])
  1087. if context.n_slots:
  1088. server_args.extend(['--parallel', context.n_slots])
  1089. if context.n_server_predict:
  1090. server_args.extend(['--n-predict', context.n_server_predict])
  1091. if context.slot_save_path:
  1092. server_args.extend(['--slot-save-path', context.slot_save_path])
  1093. if context.server_api_key:
  1094. server_args.extend(['--api-key', context.server_api_key])
  1095. if context.n_ga:
  1096. server_args.extend(['--grp-attn-n', context.n_ga])
  1097. if context.n_ga_w:
  1098. server_args.extend(['--grp-attn-w', context.n_ga_w])
  1099. if context.debug:
  1100. server_args.append('--verbose')
  1101. if context.lora_file:
  1102. server_args.extend(['--lora', context.lora_file])
  1103. if 'SERVER_LOG_FORMAT_JSON' not in os.environ:
  1104. server_args.extend(['--log-format', "text"])
  1105. args = [str(arg) for arg in [context.server_path, *server_args]]
  1106. print(f"bench: starting server with: {' '.join(args)}")
  1107. flags = 0
  1108. if 'nt' == os.name:
  1109. flags |= subprocess.DETACHED_PROCESS
  1110. flags |= subprocess.CREATE_NEW_PROCESS_GROUP
  1111. flags |= subprocess.CREATE_NO_WINDOW
  1112. pkwargs = {
  1113. 'creationflags': flags,
  1114. 'stdout': subprocess.PIPE,
  1115. 'stderr': subprocess.PIPE
  1116. }
  1117. context.server_process = subprocess.Popen(
  1118. [str(arg) for arg in [context.server_path, *server_args]],
  1119. **pkwargs) # pyright: ignore[reportArgumentType, reportCallIssue]
  1120. def server_log(in_stream, out_stream):
  1121. for line in iter(in_stream.readline, b''):
  1122. print(line.decode('utf-8'), end='', file=out_stream)
  1123. thread_stdout = threading.Thread(target=server_log, args=(context.server_process.stdout, sys.stdout))
  1124. thread_stdout.start()
  1125. thread_stderr = threading.Thread(target=server_log, args=(context.server_process.stderr, sys.stderr))
  1126. thread_stderr.start()
  1127. print(f"server pid={context.server_process.pid}, behave pid={os.getpid()}")