llama.h 57 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190
  1. #ifndef LLAMA_H
  2. #define LLAMA_H
  3. #include "ggml.h"
  4. #include "ggml-backend.h"
  5. #include <stddef.h>
  6. #include <stdint.h>
  7. #include <stdio.h>
  8. #include <stdbool.h>
  9. #ifdef LLAMA_SHARED
  10. # if defined(_WIN32) && !defined(__MINGW32__)
  11. # ifdef LLAMA_BUILD
  12. # define LLAMA_API __declspec(dllexport)
  13. # else
  14. # define LLAMA_API __declspec(dllimport)
  15. # endif
  16. # else
  17. # define LLAMA_API __attribute__ ((visibility ("default")))
  18. # endif
  19. #else
  20. # define LLAMA_API
  21. #endif
  22. #ifdef __GNUC__
  23. # define DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
  24. #elif defined(_MSC_VER)
  25. # define DEPRECATED(func, hint) __declspec(deprecated(hint)) func
  26. #else
  27. # define DEPRECATED(func, hint) func
  28. #endif
  29. #define LLAMA_DEFAULT_SEED 0xFFFFFFFF
  30. // TODO: use everywhere in the implementation
  31. #define LLAMA_TOKEN_NULL -1
  32. #define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
  33. #define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
  34. #define LLAMA_FILE_MAGIC_GGSQ 0x67677371u // 'ggsq'
  35. #define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
  36. #define LLAMA_SESSION_VERSION 9
  37. #define LLAMA_STATE_SEQ_MAGIC LLAMA_FILE_MAGIC_GGSQ
  38. #define LLAMA_STATE_SEQ_VERSION 2
  39. #ifdef __cplusplus
  40. extern "C" {
  41. #endif
  42. //
  43. // C interface
  44. //
  45. // TODO: show sample usage
  46. //
  47. // struct llama_vocab; // TODO: add in the future
  48. struct llama_model;
  49. struct llama_context;
  50. struct llama_sampler;
  51. typedef int32_t llama_pos;
  52. typedef int32_t llama_token;
  53. typedef int32_t llama_seq_id;
  54. enum llama_vocab_type {
  55. LLAMA_VOCAB_TYPE_NONE = 0, // For models without vocab
  56. LLAMA_VOCAB_TYPE_SPM = 1, // LLaMA tokenizer based on byte-level BPE with byte fallback
  57. LLAMA_VOCAB_TYPE_BPE = 2, // GPT-2 tokenizer based on byte-level BPE
  58. LLAMA_VOCAB_TYPE_WPM = 3, // BERT tokenizer based on WordPiece
  59. LLAMA_VOCAB_TYPE_UGM = 4, // T5 tokenizer based on Unigram
  60. LLAMA_VOCAB_TYPE_RWKV = 5, // RWKV tokenizer based on greedy tokenization
  61. };
  62. // pre-tokenization types
  63. enum llama_vocab_pre_type {
  64. LLAMA_VOCAB_PRE_TYPE_DEFAULT = 0,
  65. LLAMA_VOCAB_PRE_TYPE_LLAMA3 = 1,
  66. LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM = 2,
  67. LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER = 3,
  68. LLAMA_VOCAB_PRE_TYPE_FALCON = 4,
  69. LLAMA_VOCAB_PRE_TYPE_MPT = 5,
  70. LLAMA_VOCAB_PRE_TYPE_STARCODER = 6,
  71. LLAMA_VOCAB_PRE_TYPE_GPT2 = 7,
  72. LLAMA_VOCAB_PRE_TYPE_REFACT = 8,
  73. LLAMA_VOCAB_PRE_TYPE_COMMAND_R = 9,
  74. LLAMA_VOCAB_PRE_TYPE_STABLELM2 = 10,
  75. LLAMA_VOCAB_PRE_TYPE_QWEN2 = 11,
  76. LLAMA_VOCAB_PRE_TYPE_OLMO = 12,
  77. LLAMA_VOCAB_PRE_TYPE_DBRX = 13,
  78. LLAMA_VOCAB_PRE_TYPE_SMAUG = 14,
  79. LLAMA_VOCAB_PRE_TYPE_PORO = 15,
  80. LLAMA_VOCAB_PRE_TYPE_CHATGLM3 = 16,
  81. LLAMA_VOCAB_PRE_TYPE_CHATGLM4 = 17,
  82. LLAMA_VOCAB_PRE_TYPE_VIKING = 18,
  83. LLAMA_VOCAB_PRE_TYPE_JAIS = 19,
  84. LLAMA_VOCAB_PRE_TYPE_TEKKEN = 20,
  85. LLAMA_VOCAB_PRE_TYPE_SMOLLM = 21,
  86. LLAMA_VOCAB_PRE_TYPE_CODESHELL = 22,
  87. LLAMA_VOCAB_PRE_TYPE_BLOOM = 23,
  88. LLAMA_VOCAB_PRE_TYPE_GPT3_FINNISH = 24,
  89. LLAMA_VOCAB_PRE_TYPE_EXAONE = 25,
  90. };
  91. enum llama_rope_type {
  92. LLAMA_ROPE_TYPE_NONE = -1,
  93. LLAMA_ROPE_TYPE_NORM = 0,
  94. LLAMA_ROPE_TYPE_NEOX = GGML_ROPE_TYPE_NEOX,
  95. };
  96. enum llama_token_type { //TODO: remove, required until per token attributes are available from GGUF file
  97. LLAMA_TOKEN_TYPE_UNDEFINED = 0,
  98. LLAMA_TOKEN_TYPE_NORMAL = 1,
  99. LLAMA_TOKEN_TYPE_UNKNOWN = 2,
  100. LLAMA_TOKEN_TYPE_CONTROL = 3,
  101. LLAMA_TOKEN_TYPE_USER_DEFINED = 4,
  102. LLAMA_TOKEN_TYPE_UNUSED = 5,
  103. LLAMA_TOKEN_TYPE_BYTE = 6,
  104. };
  105. enum llama_token_attr {
  106. LLAMA_TOKEN_ATTR_UNDEFINED = 0,
  107. LLAMA_TOKEN_ATTR_UNKNOWN = 1 << 0,
  108. LLAMA_TOKEN_ATTR_UNUSED = 1 << 1,
  109. LLAMA_TOKEN_ATTR_NORMAL = 1 << 2,
  110. LLAMA_TOKEN_ATTR_CONTROL = 1 << 3, // SPECIAL?
  111. LLAMA_TOKEN_ATTR_USER_DEFINED = 1 << 4,
  112. LLAMA_TOKEN_ATTR_BYTE = 1 << 5,
  113. LLAMA_TOKEN_ATTR_NORMALIZED = 1 << 6,
  114. LLAMA_TOKEN_ATTR_LSTRIP = 1 << 7,
  115. LLAMA_TOKEN_ATTR_RSTRIP = 1 << 8,
  116. LLAMA_TOKEN_ATTR_SINGLE_WORD = 1 << 9,
  117. };
  118. // model file types
  119. enum llama_ftype {
  120. LLAMA_FTYPE_ALL_F32 = 0,
  121. LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  122. LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  123. LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  124. // LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  125. // LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
  126. // LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
  127. LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  128. LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  129. LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  130. LLAMA_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
  131. LLAMA_FTYPE_MOSTLY_Q3_K_S = 11, // except 1d tensors
  132. LLAMA_FTYPE_MOSTLY_Q3_K_M = 12, // except 1d tensors
  133. LLAMA_FTYPE_MOSTLY_Q3_K_L = 13, // except 1d tensors
  134. LLAMA_FTYPE_MOSTLY_Q4_K_S = 14, // except 1d tensors
  135. LLAMA_FTYPE_MOSTLY_Q4_K_M = 15, // except 1d tensors
  136. LLAMA_FTYPE_MOSTLY_Q5_K_S = 16, // except 1d tensors
  137. LLAMA_FTYPE_MOSTLY_Q5_K_M = 17, // except 1d tensors
  138. LLAMA_FTYPE_MOSTLY_Q6_K = 18, // except 1d tensors
  139. LLAMA_FTYPE_MOSTLY_IQ2_XXS = 19, // except 1d tensors
  140. LLAMA_FTYPE_MOSTLY_IQ2_XS = 20, // except 1d tensors
  141. LLAMA_FTYPE_MOSTLY_Q2_K_S = 21, // except 1d tensors
  142. LLAMA_FTYPE_MOSTLY_IQ3_XS = 22, // except 1d tensors
  143. LLAMA_FTYPE_MOSTLY_IQ3_XXS = 23, // except 1d tensors
  144. LLAMA_FTYPE_MOSTLY_IQ1_S = 24, // except 1d tensors
  145. LLAMA_FTYPE_MOSTLY_IQ4_NL = 25, // except 1d tensors
  146. LLAMA_FTYPE_MOSTLY_IQ3_S = 26, // except 1d tensors
  147. LLAMA_FTYPE_MOSTLY_IQ3_M = 27, // except 1d tensors
  148. LLAMA_FTYPE_MOSTLY_IQ2_S = 28, // except 1d tensors
  149. LLAMA_FTYPE_MOSTLY_IQ2_M = 29, // except 1d tensors
  150. LLAMA_FTYPE_MOSTLY_IQ4_XS = 30, // except 1d tensors
  151. LLAMA_FTYPE_MOSTLY_IQ1_M = 31, // except 1d tensors
  152. LLAMA_FTYPE_MOSTLY_BF16 = 32, // except 1d tensors
  153. LLAMA_FTYPE_MOSTLY_Q4_0_4_4 = 33, // except 1d tensors
  154. LLAMA_FTYPE_MOSTLY_Q4_0_4_8 = 34, // except 1d tensors
  155. LLAMA_FTYPE_MOSTLY_Q4_0_8_8 = 35, // except 1d tensors
  156. LLAMA_FTYPE_MOSTLY_TQ1_0 = 36, // except 1d tensors
  157. LLAMA_FTYPE_MOSTLY_TQ2_0 = 37, // except 1d tensors
  158. LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
  159. };
  160. enum llama_rope_scaling_type {
  161. LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED = -1,
  162. LLAMA_ROPE_SCALING_TYPE_NONE = 0,
  163. LLAMA_ROPE_SCALING_TYPE_LINEAR = 1,
  164. LLAMA_ROPE_SCALING_TYPE_YARN = 2,
  165. LLAMA_ROPE_SCALING_TYPE_MAX_VALUE = LLAMA_ROPE_SCALING_TYPE_YARN,
  166. };
  167. enum llama_pooling_type {
  168. LLAMA_POOLING_TYPE_UNSPECIFIED = -1,
  169. LLAMA_POOLING_TYPE_NONE = 0,
  170. LLAMA_POOLING_TYPE_MEAN = 1,
  171. LLAMA_POOLING_TYPE_CLS = 2,
  172. LLAMA_POOLING_TYPE_LAST = 3,
  173. };
  174. enum llama_attention_type {
  175. LLAMA_ATTENTION_TYPE_UNSPECIFIED = -1,
  176. LLAMA_ATTENTION_TYPE_CAUSAL = 0,
  177. LLAMA_ATTENTION_TYPE_NON_CAUSAL = 1,
  178. };
  179. enum llama_split_mode {
  180. LLAMA_SPLIT_MODE_NONE = 0, // single GPU
  181. LLAMA_SPLIT_MODE_LAYER = 1, // split layers and KV across GPUs
  182. LLAMA_SPLIT_MODE_ROW = 2, // split rows across GPUs
  183. };
  184. // TODO: simplify (https://github.com/ggerganov/llama.cpp/pull/9294#pullrequestreview-2286561979)
  185. typedef struct llama_token_data {
  186. llama_token id; // token id
  187. float logit; // log-odds of the token
  188. float p; // probability of the token
  189. } llama_token_data;
  190. typedef struct llama_token_data_array {
  191. // TODO: consider SoA
  192. llama_token_data * data;
  193. size_t size;
  194. int64_t selected; // this is the index in the data array (i.e. not the token id)
  195. bool sorted;
  196. } llama_token_data_array;
  197. typedef bool (*llama_progress_callback)(float progress, void * user_data);
  198. // Input data for llama_decode
  199. // A llama_batch object can contain input about one or many sequences
  200. // The provided arrays (i.e. token, embd, pos, etc.) must have size of n_tokens
  201. //
  202. // - token : the token ids of the input (used when embd is NULL)
  203. // - embd : token embeddings (i.e. float vector of size n_embd) (used when token is NULL)
  204. // - pos : the positions of the respective token in the sequence
  205. // - seq_id : the sequence to which the respective token belongs
  206. // - logits : if zero, the logits (and/or the embeddings) for the respective token will not be output
  207. //
  208. typedef struct llama_batch {
  209. int32_t n_tokens;
  210. llama_token * token;
  211. float * embd;
  212. llama_pos * pos;
  213. int32_t * n_seq_id;
  214. llama_seq_id ** seq_id;
  215. int8_t * logits; // TODO: rename this to "output"
  216. // NOTE: helpers for smooth API transition - can be deprecated in the future
  217. // for future-proof code, use the above fields instead and ignore everything below
  218. //
  219. // pos[i] = all_pos_0 + i*all_pos_1
  220. //
  221. llama_pos all_pos_0; // used if pos == NULL
  222. llama_pos all_pos_1; // used if pos == NULL
  223. llama_seq_id all_seq_id; // used if seq_id == NULL
  224. } llama_batch;
  225. enum llama_model_kv_override_type {
  226. LLAMA_KV_OVERRIDE_TYPE_INT,
  227. LLAMA_KV_OVERRIDE_TYPE_FLOAT,
  228. LLAMA_KV_OVERRIDE_TYPE_BOOL,
  229. LLAMA_KV_OVERRIDE_TYPE_STR,
  230. };
  231. struct llama_model_kv_override {
  232. enum llama_model_kv_override_type tag;
  233. char key[128];
  234. union {
  235. int64_t val_i64;
  236. double val_f64;
  237. bool val_bool;
  238. char val_str[128];
  239. };
  240. };
  241. struct llama_model_params {
  242. int32_t n_gpu_layers; // number of layers to store in VRAM
  243. enum llama_split_mode split_mode; // how to split the model across multiple GPUs
  244. // main_gpu interpretation depends on split_mode:
  245. // LLAMA_SPLIT_MODE_NONE: the GPU that is used for the entire model
  246. // LLAMA_SPLIT_MODE_ROW: the GPU that is used for small tensors and intermediate results
  247. // LLAMA_SPLIT_MODE_LAYER: ignored
  248. int32_t main_gpu;
  249. // proportion of the model (layers or rows) to offload to each GPU, size: llama_max_devices()
  250. const float * tensor_split;
  251. // comma separated list of RPC servers to use for offloading
  252. const char * rpc_servers;
  253. // Called with a progress value between 0.0 and 1.0. Pass NULL to disable.
  254. // If the provided progress_callback returns true, model loading continues.
  255. // If it returns false, model loading is immediately aborted.
  256. llama_progress_callback progress_callback;
  257. // context pointer passed to the progress callback
  258. void * progress_callback_user_data;
  259. // override key-value pairs of the model meta data
  260. const struct llama_model_kv_override * kv_overrides;
  261. // Keep the booleans together to avoid misalignment during copy-by-value.
  262. bool vocab_only; // only load the vocabulary, no weights
  263. bool use_mmap; // use mmap if possible
  264. bool use_mlock; // force system to keep model in RAM
  265. bool check_tensors; // validate model tensor data
  266. };
  267. // NOTE: changing the default values of parameters marked as [EXPERIMENTAL] may cause crashes or incorrect results in certain configurations
  268. // https://github.com/ggerganov/llama.cpp/pull/7544
  269. struct llama_context_params {
  270. uint32_t n_ctx; // text context, 0 = from model
  271. uint32_t n_batch; // logical maximum batch size that can be submitted to llama_decode
  272. uint32_t n_ubatch; // physical maximum batch size
  273. uint32_t n_seq_max; // max number of sequences (i.e. distinct states for recurrent models)
  274. int32_t n_threads; // number of threads to use for generation
  275. int32_t n_threads_batch; // number of threads to use for batch processing
  276. enum llama_rope_scaling_type rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type`
  277. enum llama_pooling_type pooling_type; // whether to pool (sum) embedding results by sequence id
  278. enum llama_attention_type attention_type; // attention type to use for embeddings
  279. // ref: https://github.com/ggerganov/llama.cpp/pull/2054
  280. float rope_freq_base; // RoPE base frequency, 0 = from model
  281. float rope_freq_scale; // RoPE frequency scaling factor, 0 = from model
  282. float yarn_ext_factor; // YaRN extrapolation mix factor, negative = from model
  283. float yarn_attn_factor; // YaRN magnitude scaling factor
  284. float yarn_beta_fast; // YaRN low correction dim
  285. float yarn_beta_slow; // YaRN high correction dim
  286. uint32_t yarn_orig_ctx; // YaRN original context size
  287. float defrag_thold; // defragment the KV cache if holes/size > thold, < 0 disabled (default)
  288. ggml_backend_sched_eval_callback cb_eval;
  289. void * cb_eval_user_data;
  290. enum ggml_type type_k; // data type for K cache [EXPERIMENTAL]
  291. enum ggml_type type_v; // data type for V cache [EXPERIMENTAL]
  292. // Keep the booleans together and at the end of the struct to avoid misalignment during copy-by-value.
  293. // TODO: move at the end of the struct
  294. bool logits_all; // the llama_decode() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead)
  295. bool embeddings; // if true, extract embeddings (together with logits)
  296. bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
  297. bool flash_attn; // whether to use flash attention [EXPERIMENTAL]
  298. //bool no_perf; // whether to measure performance timings, TODO: implement
  299. // Abort callback
  300. // if it returns true, execution of llama_decode() will be aborted
  301. // currently works only with CPU execution
  302. ggml_abort_callback abort_callback;
  303. void * abort_callback_data;
  304. };
  305. // model quantization parameters
  306. typedef struct llama_model_quantize_params {
  307. int32_t nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
  308. enum llama_ftype ftype; // quantize to this llama_ftype
  309. enum ggml_type output_tensor_type; // output tensor type
  310. enum ggml_type token_embedding_type; // token embeddings tensor type
  311. bool allow_requantize; // allow quantizing non-f32/f16 tensors
  312. bool quantize_output_tensor; // quantize output.weight
  313. bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
  314. bool pure; // quantize all tensors to the default type
  315. bool keep_split; // quantize to the same number of shards
  316. void * imatrix; // pointer to importance matrix data
  317. void * kv_overrides; // pointer to vector containing overrides
  318. } llama_model_quantize_params;
  319. typedef struct llama_logit_bias {
  320. llama_token token;
  321. float bias;
  322. } llama_logit_bias;
  323. typedef struct llama_sampler_chain_params {
  324. bool no_perf; // whether to measure performance timings
  325. } llama_sampler_chain_params;
  326. // used in chat template
  327. typedef struct llama_chat_message {
  328. const char * role;
  329. const char * content;
  330. } llama_chat_message;
  331. // lora adapter
  332. struct llama_lora_adapter;
  333. // Helpers for getting default parameters
  334. // TODO: update API to start accepting pointers to params structs (https://github.com/ggerganov/llama.cpp/discussions/9172)
  335. LLAMA_API struct llama_model_params llama_model_default_params(void);
  336. LLAMA_API struct llama_context_params llama_context_default_params(void);
  337. LLAMA_API struct llama_sampler_chain_params llama_sampler_chain_default_params(void);
  338. LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params(void);
  339. // Initialize the llama + ggml backend
  340. // If numa is true, use NUMA optimizations
  341. // Call once at the start of the program
  342. LLAMA_API void llama_backend_init(void);
  343. //optional:
  344. LLAMA_API void llama_numa_init(enum ggml_numa_strategy numa);
  345. // Optional: an auto threadpool gets created in ggml if not passed explicitly
  346. LLAMA_API void llama_attach_threadpool(
  347. struct llama_context * ctx,
  348. ggml_threadpool_t threadpool,
  349. ggml_threadpool_t threadpool_batch);
  350. LLAMA_API void llama_detach_threadpool(struct llama_context * ctx);
  351. // Call once at the end of the program - currently only used for MPI
  352. LLAMA_API void llama_backend_free(void);
  353. LLAMA_API struct llama_model * llama_load_model_from_file(
  354. const char * path_model,
  355. struct llama_model_params params);
  356. LLAMA_API void llama_free_model(struct llama_model * model);
  357. // TODO: rename to llama_init_from_model
  358. LLAMA_API struct llama_context * llama_new_context_with_model(
  359. struct llama_model * model,
  360. struct llama_context_params params);
  361. // Frees all allocated memory
  362. LLAMA_API void llama_free(struct llama_context * ctx);
  363. LLAMA_API int64_t llama_time_us(void);
  364. LLAMA_API size_t llama_max_devices(void);
  365. LLAMA_API bool llama_supports_mmap (void);
  366. LLAMA_API bool llama_supports_mlock (void);
  367. LLAMA_API bool llama_supports_gpu_offload(void);
  368. LLAMA_API uint32_t llama_n_ctx (const struct llama_context * ctx);
  369. LLAMA_API uint32_t llama_n_batch (const struct llama_context * ctx);
  370. LLAMA_API uint32_t llama_n_ubatch (const struct llama_context * ctx);
  371. LLAMA_API uint32_t llama_n_seq_max (const struct llama_context * ctx);
  372. LLAMA_API int32_t llama_n_vocab (const struct llama_model * model);
  373. LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model);
  374. LLAMA_API int32_t llama_n_embd (const struct llama_model * model);
  375. LLAMA_API int32_t llama_n_layer (const struct llama_model * model);
  376. LLAMA_API const struct llama_model * llama_get_model(const struct llama_context * ctx);
  377. LLAMA_API enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx);
  378. LLAMA_API enum llama_vocab_type llama_vocab_type (const struct llama_model * model);
  379. LLAMA_API enum llama_rope_type llama_rope_type (const struct llama_model * model);
  380. // Get the model's RoPE frequency scaling factor
  381. LLAMA_API float llama_rope_freq_scale_train(const struct llama_model * model);
  382. // Functions to access the model's GGUF metadata scalar values
  383. // - The functions return the length of the string on success, or -1 on failure
  384. // - The output string is always null-terminated and cleared on failure
  385. // - GGUF array values are not supported by these functions
  386. // Get metadata value as a string by key name
  387. LLAMA_API int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size);
  388. // Get the number of metadata key/value pairs
  389. LLAMA_API int32_t llama_model_meta_count(const struct llama_model * model);
  390. // Get metadata key name by index
  391. LLAMA_API int32_t llama_model_meta_key_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
  392. // Get metadata value as a string by index
  393. LLAMA_API int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
  394. // Get a string describing the model type
  395. LLAMA_API int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size);
  396. // Returns the total size of all the tensors in the model in bytes
  397. LLAMA_API uint64_t llama_model_size(const struct llama_model * model);
  398. // Returns the total number of parameters in the model
  399. LLAMA_API uint64_t llama_model_n_params(const struct llama_model * model);
  400. // Get a llama model tensor
  401. LLAMA_API struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name);
  402. // Returns true if the model contains an encoder that requires llama_encode() call
  403. LLAMA_API bool llama_model_has_encoder(const struct llama_model * model);
  404. // Returns true if the model contains a decoder that requires llama_decode() call
  405. LLAMA_API bool llama_model_has_decoder(const struct llama_model * model);
  406. // For encoder-decoder models, this function returns id of the token that must be provided
  407. // to the decoder to start generating output sequence. For other models, it returns -1.
  408. LLAMA_API llama_token llama_model_decoder_start_token(const struct llama_model * model);
  409. // Returns true if the model is recurrent (like Mamba, RWKV, etc.)
  410. LLAMA_API bool llama_model_is_recurrent(const struct llama_model * model);
  411. // Returns 0 on success
  412. LLAMA_API uint32_t llama_model_quantize(
  413. const char * fname_inp,
  414. const char * fname_out,
  415. const llama_model_quantize_params * params);
  416. // Load a LoRA adapter from file
  417. // The loaded adapter will be associated to the given model, and will be free when the model is deleted
  418. LLAMA_API struct llama_lora_adapter * llama_lora_adapter_init(
  419. struct llama_model * model,
  420. const char * path_lora);
  421. // Add a loaded LoRA adapter to given context
  422. // This will not modify model's weight
  423. LLAMA_API int32_t llama_lora_adapter_set(
  424. struct llama_context * ctx,
  425. struct llama_lora_adapter * adapter,
  426. float scale);
  427. // Remove a specific LoRA adapter from given context
  428. // Return -1 if the adapter is not present in the context
  429. LLAMA_API int32_t llama_lora_adapter_remove(
  430. struct llama_context * ctx,
  431. struct llama_lora_adapter * adapter);
  432. // Remove all LoRA adapters from given context
  433. LLAMA_API void llama_lora_adapter_clear(
  434. struct llama_context * ctx);
  435. // Manually free a LoRA adapter
  436. // Note: loaded adapters will be free when the associated model is deleted
  437. LLAMA_API void llama_lora_adapter_free(struct llama_lora_adapter * adapter);
  438. // Apply a loaded control vector to a llama_context, or if data is NULL, clear
  439. // the currently loaded vector.
  440. // n_embd should be the size of a single layer's control, and data should point
  441. // to an n_embd x n_layers buffer starting from layer 1.
  442. // il_start and il_end are the layer range the vector should apply to (both inclusive)
  443. // See llama_control_vector_load in common to load a control vector.
  444. LLAMA_API int32_t llama_control_vector_apply(
  445. struct llama_context * lctx,
  446. const float * data,
  447. size_t len,
  448. int32_t n_embd,
  449. int32_t il_start,
  450. int32_t il_end);
  451. //
  452. // KV cache
  453. //
  454. // Information associated with an individual cell in the KV cache view.
  455. struct llama_kv_cache_view_cell {
  456. // The position for this cell. Takes KV cache shifts into account.
  457. // May be negative if the cell is not populated.
  458. llama_pos pos;
  459. };
  460. // An updateable view of the KV cache.
  461. struct llama_kv_cache_view {
  462. // Number of KV cache cells. This will be the same as the context size.
  463. int32_t n_cells;
  464. // Maximum number of sequences that can exist in a cell. It's not an error
  465. // if there are more sequences in a cell than this value, however they will
  466. // not be visible in the view cells_sequences.
  467. int32_t n_seq_max;
  468. // Number of tokens in the cache. For example, if there are two populated
  469. // cells, the first with 1 sequence id in it and the second with 2 sequence
  470. // ids then you'll have 3 tokens.
  471. int32_t token_count;
  472. // Number of populated cache cells.
  473. int32_t used_cells;
  474. // Maximum contiguous empty slots in the cache.
  475. int32_t max_contiguous;
  476. // Index to the start of the max_contiguous slot range. Can be negative
  477. // when cache is full.
  478. int32_t max_contiguous_idx;
  479. // Information for an individual cell.
  480. struct llama_kv_cache_view_cell * cells;
  481. // The sequences for each cell. There will be n_seq_max items per cell.
  482. llama_seq_id * cells_sequences;
  483. };
  484. // Create an empty KV cache view. (use only for debugging purposes)
  485. LLAMA_API struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max);
  486. // Free a KV cache view. (use only for debugging purposes)
  487. LLAMA_API void llama_kv_cache_view_free(struct llama_kv_cache_view * view);
  488. // Update the KV cache view structure with the current state of the KV cache. (use only for debugging purposes)
  489. LLAMA_API void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view);
  490. // Returns the number of tokens in the KV cache (slow, use only for debug)
  491. // If a KV cell has multiple sequences assigned to it, it will be counted multiple times
  492. LLAMA_API int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx);
  493. // Returns the number of used KV cells (i.e. have at least one sequence assigned to them)
  494. LLAMA_API int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx);
  495. // Clear the KV cache - both cell info is erased and KV data is zeroed
  496. LLAMA_API void llama_kv_cache_clear(
  497. struct llama_context * ctx);
  498. // Removes all tokens that belong to the specified sequence and have positions in [p0, p1)
  499. // Returns false if a partial sequence cannot be removed. Removing a whole sequence never fails
  500. // seq_id < 0 : match any sequence
  501. // p0 < 0 : [0, p1]
  502. // p1 < 0 : [p0, inf)
  503. LLAMA_API bool llama_kv_cache_seq_rm(
  504. struct llama_context * ctx,
  505. llama_seq_id seq_id,
  506. llama_pos p0,
  507. llama_pos p1);
  508. // Copy all tokens that belong to the specified sequence to another sequence
  509. // Note that this does not allocate extra KV cache memory - it simply assigns the tokens to the new sequence
  510. // p0 < 0 : [0, p1]
  511. // p1 < 0 : [p0, inf)
  512. LLAMA_API void llama_kv_cache_seq_cp(
  513. struct llama_context * ctx,
  514. llama_seq_id seq_id_src,
  515. llama_seq_id seq_id_dst,
  516. llama_pos p0,
  517. llama_pos p1);
  518. // Removes all tokens that do not belong to the specified sequence
  519. LLAMA_API void llama_kv_cache_seq_keep(
  520. struct llama_context * ctx,
  521. llama_seq_id seq_id);
  522. // Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1)
  523. // If the KV cache is RoPEd, the KV data is updated accordingly:
  524. // - lazily on next llama_decode()
  525. // - explicitly with llama_kv_cache_update()
  526. // p0 < 0 : [0, p1]
  527. // p1 < 0 : [p0, inf)
  528. LLAMA_API void llama_kv_cache_seq_add(
  529. struct llama_context * ctx,
  530. llama_seq_id seq_id,
  531. llama_pos p0,
  532. llama_pos p1,
  533. llama_pos delta);
  534. // Integer division of the positions by factor of `d > 1`
  535. // If the KV cache is RoPEd, the KV data is updated accordingly:
  536. // - lazily on next llama_decode()
  537. // - explicitly with llama_kv_cache_update()
  538. // p0 < 0 : [0, p1]
  539. // p1 < 0 : [p0, inf)
  540. LLAMA_API void llama_kv_cache_seq_div(
  541. struct llama_context * ctx,
  542. llama_seq_id seq_id,
  543. llama_pos p0,
  544. llama_pos p1,
  545. int d);
  546. // Returns the largest position present in the KV cache for the specified sequence
  547. LLAMA_API llama_pos llama_kv_cache_seq_pos_max(
  548. struct llama_context * ctx,
  549. llama_seq_id seq_id);
  550. // Defragment the KV cache
  551. // This will be applied:
  552. // - lazily on next llama_decode()
  553. // - explicitly with llama_kv_cache_update()
  554. LLAMA_API void llama_kv_cache_defrag(struct llama_context * ctx);
  555. // Apply the KV cache updates (such as K-shifts, defragmentation, etc.)
  556. LLAMA_API void llama_kv_cache_update(struct llama_context * ctx);
  557. //
  558. // State / sessions
  559. //
  560. // Returns the *actual* size in bytes of the state
  561. // (logits, embedding and kv_cache)
  562. // Only use when saving the state, not when restoring it, otherwise the size may be too small.
  563. LLAMA_API size_t llama_state_get_size(struct llama_context * ctx);
  564. LLAMA_API DEPRECATED(size_t llama_get_state_size(struct llama_context * ctx),
  565. "use llama_state_get_size instead");
  566. // Copies the state to the specified destination address.
  567. // Destination needs to have allocated enough memory.
  568. // Returns the number of bytes copied
  569. LLAMA_API size_t llama_state_get_data(
  570. struct llama_context * ctx,
  571. uint8_t * dst,
  572. size_t size);
  573. LLAMA_API DEPRECATED(size_t llama_copy_state_data(
  574. struct llama_context * ctx,
  575. uint8_t * dst),
  576. "use llama_state_get_data instead");
  577. // Set the state reading from the specified address
  578. // Returns the number of bytes read
  579. LLAMA_API size_t llama_state_set_data(
  580. struct llama_context * ctx,
  581. const uint8_t * src,
  582. size_t size);
  583. LLAMA_API DEPRECATED(size_t llama_set_state_data(
  584. struct llama_context * ctx,
  585. const uint8_t * src),
  586. "use llama_state_set_data instead");
  587. // Save/load session file
  588. LLAMA_API bool llama_state_load_file(
  589. struct llama_context * ctx,
  590. const char * path_session,
  591. llama_token * tokens_out,
  592. size_t n_token_capacity,
  593. size_t * n_token_count_out);
  594. LLAMA_API DEPRECATED(bool llama_load_session_file(
  595. struct llama_context * ctx,
  596. const char * path_session,
  597. llama_token * tokens_out,
  598. size_t n_token_capacity,
  599. size_t * n_token_count_out),
  600. "use llama_state_load_file instead");
  601. LLAMA_API bool llama_state_save_file(
  602. struct llama_context * ctx,
  603. const char * path_session,
  604. const llama_token * tokens,
  605. size_t n_token_count);
  606. LLAMA_API DEPRECATED(bool llama_save_session_file(
  607. struct llama_context * ctx,
  608. const char * path_session,
  609. const llama_token * tokens,
  610. size_t n_token_count),
  611. "use llama_state_save_file instead");
  612. // Get the exact size needed to copy the KV cache of a single sequence
  613. LLAMA_API size_t llama_state_seq_get_size(
  614. struct llama_context * ctx,
  615. llama_seq_id seq_id);
  616. // Copy the KV cache of a single sequence into the specified buffer
  617. LLAMA_API size_t llama_state_seq_get_data(
  618. struct llama_context * ctx,
  619. uint8_t * dst,
  620. size_t size,
  621. llama_seq_id seq_id);
  622. // Copy the sequence data (originally copied with `llama_state_seq_get_data`) into the specified sequence
  623. // Returns:
  624. // - Positive: Ok
  625. // - Zero: Failed to load
  626. LLAMA_API size_t llama_state_seq_set_data(
  627. struct llama_context * ctx,
  628. const uint8_t * src,
  629. size_t size,
  630. llama_seq_id dest_seq_id);
  631. LLAMA_API size_t llama_state_seq_save_file(
  632. struct llama_context * ctx,
  633. const char * filepath,
  634. llama_seq_id seq_id,
  635. const llama_token * tokens,
  636. size_t n_token_count);
  637. LLAMA_API size_t llama_state_seq_load_file(
  638. struct llama_context * ctx,
  639. const char * filepath,
  640. llama_seq_id dest_seq_id,
  641. llama_token * tokens_out,
  642. size_t n_token_capacity,
  643. size_t * n_token_count_out);
  644. //
  645. // Decoding
  646. //
  647. // Return batch for single sequence of tokens starting at pos_0
  648. //
  649. // NOTE: this is a helper function to facilitate transition to the new batch API - avoid using it
  650. //
  651. LLAMA_API struct llama_batch llama_batch_get_one(
  652. llama_token * tokens,
  653. int32_t n_tokens,
  654. llama_pos pos_0,
  655. llama_seq_id seq_id);
  656. // Allocates a batch of tokens on the heap that can hold a maximum of n_tokens
  657. // Each token can be assigned up to n_seq_max sequence ids
  658. // The batch has to be freed with llama_batch_free()
  659. // If embd != 0, llama_batch.embd will be allocated with size of n_tokens * embd * sizeof(float)
  660. // Otherwise, llama_batch.token will be allocated to store n_tokens llama_token
  661. // The rest of the llama_batch members are allocated with size n_tokens
  662. // All members are left uninitialized
  663. LLAMA_API struct llama_batch llama_batch_init(
  664. int32_t n_tokens,
  665. int32_t embd,
  666. int32_t n_seq_max);
  667. // Frees a batch of tokens allocated with llama_batch_init()
  668. LLAMA_API void llama_batch_free(struct llama_batch batch);
  669. // Processes a batch of tokens with the ecoder part of the encoder-decoder model.
  670. // Stores the encoder output internally for later use by the decoder cross-attention layers.
  671. // 0 - success
  672. // < 0 - error
  673. LLAMA_API int32_t llama_encode(
  674. struct llama_context * ctx,
  675. struct llama_batch batch);
  676. // Positive return values does not mean a fatal error, but rather a warning.
  677. // 0 - success
  678. // 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
  679. // < 0 - error
  680. LLAMA_API int32_t llama_decode(
  681. struct llama_context * ctx,
  682. struct llama_batch batch);
  683. // Set the number of threads used for decoding
  684. // n_threads is the number of threads used for generation (single token)
  685. // n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens)
  686. LLAMA_API void llama_set_n_threads(struct llama_context * ctx, int32_t n_threads, int32_t n_threads_batch);
  687. // Get the number of threads used for generation of a single token.
  688. LLAMA_API int32_t llama_n_threads(struct llama_context * ctx);
  689. // Get the number of threads used for prompt and batch processing (multiple token).
  690. LLAMA_API int32_t llama_n_threads_batch(struct llama_context * ctx);
  691. // Set whether the model is in embeddings mode or not
  692. // If true, embeddings will be returned but logits will not
  693. LLAMA_API void llama_set_embeddings(struct llama_context * ctx, bool embeddings);
  694. // Set whether to use causal attention or not
  695. // If set to true, the model will only attend to the past tokens
  696. LLAMA_API void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn);
  697. // Set abort callback
  698. LLAMA_API void llama_set_abort_callback(struct llama_context * ctx, ggml_abort_callback abort_callback, void * abort_callback_data);
  699. // Wait until all computations are finished
  700. // This is automatically done when using one of the functions below to obtain the computation results
  701. // and is not necessary to call it explicitly in most cases
  702. LLAMA_API void llama_synchronize(struct llama_context * ctx);
  703. // Token logits obtained from the last call to llama_decode()
  704. // The logits for which llama_batch.logits[i] != 0 are stored contiguously
  705. // in the order they have appeared in the batch.
  706. // Rows: number of tokens for which llama_batch.logits[i] != 0
  707. // Cols: n_vocab
  708. LLAMA_API float * llama_get_logits(struct llama_context * ctx);
  709. // Logits for the ith token. For positive indices, Equivalent to:
  710. // llama_get_logits(ctx) + ctx->output_ids[i]*n_vocab
  711. // Negative indicies can be used to access logits in reverse order, -1 is the last logit.
  712. // returns NULL for invalid ids.
  713. LLAMA_API float * llama_get_logits_ith(struct llama_context * ctx, int32_t i);
  714. // Get all output token embeddings.
  715. // when pooling_type == LLAMA_POOLING_TYPE_NONE or when using a generative model,
  716. // the embeddings for which llama_batch.logits[i] != 0 are stored contiguously
  717. // in the order they have appeared in the batch.
  718. // shape: [n_outputs*n_embd]
  719. // Otherwise, returns NULL.
  720. LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
  721. // Get the embeddings for the ith token. For positive indices, Equivalent to:
  722. // llama_get_embeddings(ctx) + ctx->output_ids[i]*n_embd
  723. // Negative indicies can be used to access embeddings in reverse order, -1 is the last embedding.
  724. // shape: [n_embd] (1-dimensional)
  725. // returns NULL for invalid ids.
  726. LLAMA_API float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i);
  727. // Get the embeddings for a sequence id
  728. // Returns NULL if pooling_type is LLAMA_POOLING_TYPE_NONE
  729. // shape: [n_embd] (1-dimensional)
  730. LLAMA_API float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id);
  731. //
  732. // Vocab
  733. //
  734. LLAMA_API const char * llama_token_get_text(const struct llama_model * model, llama_token token);
  735. LLAMA_API float llama_token_get_score(const struct llama_model * model, llama_token token);
  736. LLAMA_API enum llama_token_attr llama_token_get_attr(const struct llama_model * model, llama_token token);
  737. // Check if the token is supposed to end generation (end-of-generation, eg. EOS, EOT, etc.)
  738. LLAMA_API bool llama_token_is_eog(const struct llama_model * model, llama_token token);
  739. // Identify if Token Id is a control token or a render-able token
  740. LLAMA_API bool llama_token_is_control(const struct llama_model * model, llama_token token);
  741. // Special tokens
  742. LLAMA_API llama_token llama_token_bos(const struct llama_model * model); // beginning-of-sentence
  743. LLAMA_API llama_token llama_token_eos(const struct llama_model * model); // end-of-sentence
  744. LLAMA_API llama_token llama_token_cls(const struct llama_model * model); // classification
  745. LLAMA_API llama_token llama_token_sep(const struct llama_model * model); // sentence separator
  746. LLAMA_API llama_token llama_token_nl (const struct llama_model * model); // next-line
  747. LLAMA_API llama_token llama_token_pad(const struct llama_model * model); // padding
  748. LLAMA_API bool llama_add_bos_token(const struct llama_model * model);
  749. LLAMA_API bool llama_add_eos_token(const struct llama_model * model);
  750. // Codellama infill tokens
  751. LLAMA_API llama_token llama_token_prefix(const struct llama_model * model); // Beginning of infill prefix
  752. LLAMA_API llama_token llama_token_middle(const struct llama_model * model); // Beginning of infill middle
  753. LLAMA_API llama_token llama_token_suffix(const struct llama_model * model); // Beginning of infill suffix
  754. LLAMA_API llama_token llama_token_eot (const struct llama_model * model); // End of infill middle
  755. //
  756. // Tokenization
  757. //
  758. /// @details Convert the provided text into tokens.
  759. /// @param tokens The tokens pointer must be large enough to hold the resulting tokens.
  760. /// @return Returns the number of tokens on success, no more than n_tokens_max
  761. /// @return Returns a negative number on failure - the number of tokens that would have been returned
  762. /// @param add_special Allow to add BOS and EOS tokens if model is configured to do so.
  763. /// @param parse_special Allow tokenizing special and/or control tokens which otherwise are not exposed and treated
  764. /// as plaintext. Does not insert a leading space.
  765. LLAMA_API int32_t llama_tokenize(
  766. const struct llama_model * model,
  767. const char * text,
  768. int32_t text_len,
  769. llama_token * tokens,
  770. int32_t n_tokens_max,
  771. bool add_special,
  772. bool parse_special);
  773. // Token Id -> Piece.
  774. // Uses the vocabulary in the provided context.
  775. // Does not write null terminator to the buffer.
  776. // User can skip up to 'lstrip' leading spaces before copying (useful when encoding/decoding multiple tokens with 'add_space_prefix')
  777. // @param special If true, special tokens are rendered in the output.
  778. LLAMA_API int32_t llama_token_to_piece(
  779. const struct llama_model * model,
  780. llama_token token,
  781. char * buf,
  782. int32_t length,
  783. int32_t lstrip,
  784. bool special);
  785. /// @details Convert the provided tokens into text (inverse of llama_tokenize()).
  786. /// @param text The char pointer must be large enough to hold the resulting text.
  787. /// @return Returns the number of chars/bytes on success, no more than text_len_max.
  788. /// @return Returns a negative number on failure - the number of chars/bytes that would have been returned.
  789. /// @param remove_special Allow to remove BOS and EOS tokens if model is configured to do so.
  790. /// @param unparse_special If true, special tokens are rendered in the output.
  791. LLAMA_API int32_t llama_detokenize(
  792. const struct llama_model * model,
  793. const llama_token * tokens,
  794. int32_t n_tokens,
  795. char * text,
  796. int32_t text_len_max,
  797. bool remove_special,
  798. bool unparse_special);
  799. //
  800. // Chat templates
  801. //
  802. /// Apply chat template. Inspired by hf apply_chat_template() on python.
  803. /// Both "model" and "custom_template" are optional, but at least one is required. "custom_template" has higher precedence than "model"
  804. /// NOTE: This function does not use a jinja parser. It only support a pre-defined list of template. See more: https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template
  805. /// @param tmpl A Jinja template to use for this chat. If this is nullptr, the model’s default chat template will be used instead.
  806. /// @param chat Pointer to a list of multiple llama_chat_message
  807. /// @param n_msg Number of llama_chat_message in this chat
  808. /// @param add_ass Whether to end the prompt with the token(s) that indicate the start of an assistant message.
  809. /// @param buf A buffer to hold the output formatted prompt. The recommended alloc size is 2 * (total number of characters of all messages)
  810. /// @param length The size of the allocated buffer
  811. /// @return The total number of bytes of the formatted prompt. If is it larger than the size of buffer, you may need to re-alloc it and then re-apply the template.
  812. LLAMA_API int32_t llama_chat_apply_template(
  813. const struct llama_model * model,
  814. const char * tmpl,
  815. const struct llama_chat_message * chat,
  816. size_t n_msg,
  817. bool add_ass,
  818. char * buf,
  819. int32_t length);
  820. //
  821. // Sampling API
  822. //
  823. // Sample usage:
  824. //
  825. // // prepare the sampling chain at the start
  826. // auto sparams = llama_sampler_chain_default_params();
  827. //
  828. // llama_sampler * smpl = llama_sampler_chain_init(sparams);
  829. //
  830. // llama_sampler_chain_add(smpl, llama_sampler_init_top_k(50));
  831. // llama_sampler_chain_add(smpl, llama_sampler_init_top_p(0.9, 1));
  832. // llama_sampler_chain_add(smpl, llama_sampler_init_temp (0.8));
  833. //
  834. // // typically, the chain should end with a sampler such as "greedy", "dist" or "mirostat"
  835. // // this sampler will be responsible to select the actual token
  836. // llama_sampler_chain_add(smpl, llama_sampler_init_dist(seed));
  837. //
  838. // ...
  839. //
  840. // // decoding loop:
  841. // while (...) {
  842. // ...
  843. //
  844. // llama_decode(ctx, batch);
  845. //
  846. // // sample from the logits of the last token in the batch
  847. // const llama_token id = llama_sampler_sample(smpl, ctx, -1);
  848. //
  849. // // accepting the token updates the internal state of certain samplers (e.g. grammar, repetition, etc.)
  850. // llama_sampler_accept(smpl, id);
  851. // ...
  852. // }
  853. //
  854. // llama_sampler_free(smpl);
  855. //
  856. // TODO: In the future, llama_sampler will be utilized to offload the sampling to the backends (e.g. GPU).
  857. // TODO: in the future, the entire sampling API that uses llama_model should start using llama_vocab
  858. //
  859. typedef void * llama_sampler_context_t;
  860. // user code can implement the interface below in order to create custom llama_sampler
  861. struct llama_sampler_i {
  862. const char * (*name) (const struct llama_sampler * smpl); // can be NULL
  863. void (*accept)( struct llama_sampler * smpl, llama_token token); // can be NULL
  864. void (*apply) ( struct llama_sampler * smpl, llama_token_data_array * cur_p); // required
  865. void (*reset) ( struct llama_sampler * smpl); // can be NULL
  866. struct llama_sampler * (*clone) (const struct llama_sampler * smpl); // can be NULL if ctx is NULL
  867. void (*free) ( struct llama_sampler * smpl); // can be NULL if ctx is NULL
  868. // TODO: API for internal libllama usage for appending the sampling to an existing ggml_cgraph
  869. //void (*apply_ggml) (struct llama_sampler * smpl, ...);
  870. };
  871. struct llama_sampler {
  872. struct llama_sampler_i * iface;
  873. llama_sampler_context_t ctx;
  874. };
  875. // mirror of llama_sampler_i:
  876. LLAMA_API const char * llama_sampler_name (const struct llama_sampler * smpl);
  877. LLAMA_API void llama_sampler_accept( struct llama_sampler * smpl, llama_token token);
  878. LLAMA_API void llama_sampler_apply ( struct llama_sampler * smpl, llama_token_data_array * cur_p);
  879. LLAMA_API void llama_sampler_reset ( struct llama_sampler * smpl);
  880. LLAMA_API struct llama_sampler * llama_sampler_clone (const struct llama_sampler * smpl);
  881. // important: do not free if the sampler has been added to a llama_sampler_chain (via llama_sampler_chain_add)
  882. LLAMA_API void llama_sampler_free ( struct llama_sampler * smpl);
  883. // llama_sampler_chain
  884. // a type of llama_sampler that can chain multiple samplers one after another
  885. LLAMA_API struct llama_sampler * llama_sampler_chain_init(struct llama_sampler_chain_params params);
  886. // important: takes ownership of the sampler object and will free it when llama_sampler_free is called
  887. LLAMA_API void llama_sampler_chain_add( struct llama_sampler * chain, struct llama_sampler * smpl);
  888. LLAMA_API struct llama_sampler * llama_sampler_chain_get(const struct llama_sampler * chain, int32_t i);
  889. LLAMA_API int llama_sampler_chain_n (const struct llama_sampler * chain);
  890. // available samplers:
  891. LLAMA_API struct llama_sampler * llama_sampler_init_greedy (void);
  892. LLAMA_API struct llama_sampler * llama_sampler_init_dist (uint32_t seed);
  893. /// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
  894. LLAMA_API struct llama_sampler * llama_sampler_init_softmax (void);
  895. /// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  896. LLAMA_API struct llama_sampler * llama_sampler_init_top_k (int32_t k);
  897. /// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  898. LLAMA_API struct llama_sampler * llama_sampler_init_top_p (float p, size_t min_keep);
  899. /// @details Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841
  900. LLAMA_API struct llama_sampler * llama_sampler_init_min_p (float p, size_t min_keep);
  901. /// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
  902. LLAMA_API struct llama_sampler * llama_sampler_init_tail_free (float z, size_t min_keep);
  903. /// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
  904. LLAMA_API struct llama_sampler * llama_sampler_init_typical (float p, size_t min_keep);
  905. LLAMA_API struct llama_sampler * llama_sampler_init_temp (float t);
  906. /// @details Dynamic temperature implementation (a.k.a. entropy) described in the paper https://arxiv.org/abs/2309.02772.
  907. LLAMA_API struct llama_sampler * llama_sampler_init_temp_ext (float t, float delta, float exponent);
  908. /// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  909. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  910. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  911. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  912. /// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
  913. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  914. LLAMA_API struct llama_sampler * llama_sampler_init_mirostat(
  915. int32_t n_vocab,
  916. uint32_t seed,
  917. float tau,
  918. float eta,
  919. int32_t m);
  920. /// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  921. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  922. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  923. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  924. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  925. LLAMA_API struct llama_sampler * llama_sampler_init_mirostat_v2(
  926. uint32_t seed,
  927. float tau,
  928. float eta);
  929. LLAMA_API struct llama_sampler * llama_sampler_init_grammar(
  930. const struct llama_model * model,
  931. const char * grammar_str,
  932. const char * grammar_root);
  933. LLAMA_API struct llama_sampler * llama_sampler_init_penalties(
  934. int32_t n_vocab, // llama_n_vocab()
  935. llama_token special_eos_id, // llama_token_eos()
  936. llama_token linefeed_id, // llama_token_nl()
  937. int32_t penalty_last_n, // last n tokens to penalize (0 = disable penalty, -1 = context size)
  938. float penalty_repeat, // 1.0 = disabled
  939. float penalty_freq, // 0.0 = disabled
  940. float penalty_present, // 0.0 = disabled
  941. bool penalize_nl, // consider newlines as a repeatable token
  942. bool ignore_eos); // ignore the end-of-sequence token
  943. LLAMA_API struct llama_sampler * llama_sampler_init_logit_bias(
  944. int32_t n_vocab,
  945. int32_t n_logit_bias,
  946. const llama_logit_bias * logit_bias);
  947. // Returns the seed used by the sampler if applicable, LLAMA_DEFAULT_SEED otherwise
  948. LLAMA_API uint32_t llama_sampler_get_seed(const struct llama_sampler * smpl);
  949. /// @details Sample and accept a token from the idx-th output of the last evaluation
  950. //
  951. // Shorthand for:
  952. // const auto * logits = llama_get_logits_ith(ctx, idx);
  953. // llama_token_data_array cur_p = { ... init from logits ... };
  954. // llama_sampler_apply(smpl, &cur_p);
  955. // auto token = cur_p.data[cur_p.selected].id;
  956. // llama_sampler_accept(smpl, token);
  957. // return token;
  958. // Returns the sampled token
  959. LLAMA_API llama_token llama_sampler_sample(struct llama_sampler * smpl, struct llama_context * ctx, int32_t idx);
  960. // TODO: extend in the future
  961. //LLAMA_API void llama_decode_with_sampler(struct llama_context * ctx, struct llama_sampler * smpl, struct llama_batch batch, ...);
  962. //
  963. // Model split
  964. //
  965. /// @details Build a split GGUF final path for this chunk.
  966. /// llama_split_path(split_path, sizeof(split_path), "/models/ggml-model-q4_0", 2, 4) => split_path = "/models/ggml-model-q4_0-00002-of-00004.gguf"
  967. // Returns the split_path length.
  968. LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count);
  969. /// @details Extract the path prefix from the split_path if and only if the split_no and split_count match.
  970. /// llama_split_prefix(split_prefix, 64, "/models/ggml-model-q4_0-00002-of-00004.gguf", 2, 4) => split_prefix = "/models/ggml-model-q4_0"
  971. // Returns the split_prefix length.
  972. LLAMA_API int llama_split_prefix(char * split_prefix, size_t maxlen, const char * split_path, int split_no, int split_count);
  973. // Print system information
  974. LLAMA_API const char * llama_print_system_info(void);
  975. // Set callback for all future logging events.
  976. // If this is not called, or NULL is supplied, everything is output on stderr.
  977. LLAMA_API void llama_log_set(ggml_log_callback log_callback, void * user_data);
  978. //
  979. // Performance utils
  980. //
  981. // NOTE: Used by llama.cpp examples, avoid using in third-party apps. Instead, do your own performance measurements.
  982. //
  983. enum llama_perf_type {
  984. LLAMA_PERF_TYPE_CONTEXT = 0,
  985. LLAMA_PERF_TYPE_SAMPLER_CHAIN = 1,
  986. };
  987. LLAMA_API void llama_perf_print(const void * ctx, enum llama_perf_type type);
  988. LLAMA_API void llama_perf_reset( void * ctx, enum llama_perf_type type);
  989. LLAMA_API void llama_perf_dump_yaml(FILE * stream, const struct llama_context * ctx);
  990. #ifdef __cplusplus
  991. }
  992. #endif
  993. #endif // LLAMA_H