ggml.c 641 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885168861688716888168891689016891168921689316894168951689616897168981689916900169011690216903169041690516906169071690816909169101691116912169131691416915169161691716918169191692016921169221692316924169251692616927169281692916930169311693216933169341693516936169371693816939169401694116942169431694416945169461694716948169491695016951169521695316954169551695616957169581695916960169611696216963169641696516966169671696816969169701697116972169731697416975169761697716978169791698016981169821698316984169851698616987169881698916990169911699216993169941699516996169971699816999170001700117002170031700417005170061700717008170091701017011170121701317014170151701617017170181701917020170211702217023170241702517026170271702817029170301703117032170331703417035170361703717038170391704017041170421704317044170451704617047170481704917050170511705217053170541705517056170571705817059170601706117062170631706417065170661706717068170691707017071170721707317074170751707617077170781707917080170811708217083170841708517086170871708817089170901709117092170931709417095170961709717098170991710017101171021710317104171051710617107171081710917110171111711217113171141711517116171171711817119171201712117122171231712417125171261712717128171291713017131171321713317134171351713617137171381713917140171411714217143171441714517146171471714817149171501715117152171531715417155171561715717158171591716017161171621716317164171651716617167171681716917170171711717217173171741717517176171771717817179171801718117182171831718417185171861718717188171891719017191171921719317194171951719617197171981719917200172011720217203172041720517206172071720817209172101721117212172131721417215172161721717218172191722017221172221722317224172251722617227172281722917230172311723217233172341723517236172371723817239172401724117242172431724417245172461724717248172491725017251172521725317254172551725617257172581725917260172611726217263172641726517266172671726817269172701727117272172731727417275172761727717278172791728017281172821728317284172851728617287172881728917290172911729217293172941729517296172971729817299173001730117302173031730417305173061730717308173091731017311173121731317314173151731617317173181731917320173211732217323173241732517326173271732817329173301733117332173331733417335173361733717338173391734017341173421734317344173451734617347173481734917350173511735217353173541735517356173571735817359173601736117362173631736417365173661736717368173691737017371173721737317374173751737617377173781737917380173811738217383173841738517386173871738817389173901739117392173931739417395173961739717398173991740017401174021740317404174051740617407174081740917410174111741217413174141741517416174171741817419174201742117422174231742417425174261742717428174291743017431174321743317434174351743617437174381743917440174411744217443174441744517446174471744817449174501745117452174531745417455174561745717458174591746017461174621746317464174651746617467174681746917470174711747217473174741747517476174771747817479174801748117482174831748417485174861748717488174891749017491174921749317494174951749617497174981749917500175011750217503175041750517506175071750817509175101751117512175131751417515175161751717518175191752017521175221752317524175251752617527175281752917530175311753217533175341753517536175371753817539175401754117542175431754417545175461754717548175491755017551175521755317554175551755617557175581755917560175611756217563175641756517566175671756817569175701757117572175731757417575175761757717578175791758017581175821758317584175851758617587175881758917590175911759217593175941759517596175971759817599176001760117602176031760417605176061760717608176091761017611176121761317614176151761617617176181761917620176211762217623176241762517626176271762817629176301763117632176331763417635176361763717638176391764017641176421764317644176451764617647176481764917650176511765217653176541765517656176571765817659176601766117662176631766417665176661766717668176691767017671176721767317674176751767617677176781767917680176811768217683176841768517686176871768817689176901769117692176931769417695176961769717698176991770017701177021770317704177051770617707177081770917710177111771217713177141771517716177171771817719177201772117722177231772417725177261772717728177291773017731177321773317734177351773617737177381773917740177411774217743177441774517746177471774817749177501775117752177531775417755177561775717758177591776017761177621776317764177651776617767177681776917770177711777217773177741777517776177771777817779177801778117782177831778417785177861778717788177891779017791177921779317794177951779617797177981779917800178011780217803178041780517806178071780817809178101781117812178131781417815178161781717818178191782017821178221782317824178251782617827178281782917830178311783217833178341783517836178371783817839178401784117842178431784417845178461784717848178491785017851178521785317854178551785617857178581785917860178611786217863178641786517866178671786817869178701787117872178731787417875178761787717878178791788017881178821788317884178851788617887178881788917890178911789217893178941789517896178971789817899179001790117902179031790417905179061790717908179091791017911179121791317914179151791617917179181791917920179211792217923179241792517926179271792817929179301793117932179331793417935179361793717938179391794017941179421794317944179451794617947179481794917950179511795217953179541795517956179571795817959179601796117962179631796417965179661796717968179691797017971179721797317974179751797617977179781797917980179811798217983179841798517986179871798817989179901799117992179931799417995179961799717998179991800018001180021800318004180051800618007180081800918010180111801218013180141801518016180171801818019180201802118022180231802418025180261802718028180291803018031180321803318034180351803618037180381803918040180411804218043180441804518046180471804818049180501805118052180531805418055180561805718058180591806018061180621806318064180651806618067180681806918070180711807218073180741807518076180771807818079180801808118082180831808418085180861808718088180891809018091180921809318094180951809618097180981809918100181011810218103181041810518106181071810818109181101811118112181131811418115181161811718118181191812018121181221812318124181251812618127181281812918130181311813218133181341813518136181371813818139181401814118142181431814418145181461814718148181491815018151181521815318154181551815618157181581815918160181611816218163181641816518166181671816818169181701817118172181731817418175181761817718178181791818018181181821818318184181851818618187181881818918190181911819218193181941819518196181971819818199182001820118202182031820418205182061820718208182091821018211182121821318214182151821618217182181821918220182211822218223182241822518226182271822818229182301823118232182331823418235182361823718238182391824018241182421824318244182451824618247182481824918250182511825218253182541825518256182571825818259182601826118262182631826418265182661826718268182691827018271182721827318274182751827618277182781827918280182811828218283182841828518286182871828818289182901829118292182931829418295182961829718298182991830018301183021830318304183051830618307183081830918310183111831218313183141831518316183171831818319183201832118322183231832418325183261832718328183291833018331183321833318334183351833618337183381833918340183411834218343183441834518346183471834818349183501835118352183531835418355183561835718358183591836018361183621836318364183651836618367183681836918370183711837218373183741837518376183771837818379183801838118382183831838418385183861838718388183891839018391183921839318394183951839618397183981839918400184011840218403184041840518406184071840818409184101841118412184131841418415184161841718418184191842018421184221842318424184251842618427184281842918430184311843218433184341843518436184371843818439184401844118442184431844418445184461844718448184491845018451184521845318454184551845618457184581845918460184611846218463184641846518466184671846818469184701847118472184731847418475184761847718478184791848018481184821848318484184851848618487184881848918490184911849218493184941849518496184971849818499185001850118502185031850418505185061850718508185091851018511185121851318514185151851618517185181851918520185211852218523185241852518526185271852818529185301853118532185331853418535185361853718538185391854018541185421854318544185451854618547185481854918550185511855218553185541855518556185571855818559185601856118562185631856418565185661856718568185691857018571185721857318574185751857618577185781857918580185811858218583185841858518586185871858818589185901859118592185931859418595185961859718598185991860018601186021860318604186051860618607186081860918610186111861218613186141861518616186171861818619186201862118622186231862418625186261862718628186291863018631186321863318634186351863618637186381863918640186411864218643186441864518646186471864818649186501865118652186531865418655186561865718658186591866018661186621866318664186651866618667186681866918670186711867218673186741867518676186771867818679186801868118682186831868418685186861868718688186891869018691186921869318694186951869618697186981869918700187011870218703187041870518706187071870818709187101871118712187131871418715187161871718718187191872018721187221872318724187251872618727187281872918730187311873218733187341873518736187371873818739187401874118742187431874418745187461874718748187491875018751187521875318754187551875618757187581875918760187611876218763187641876518766187671876818769187701877118772187731877418775187761877718778187791878018781187821878318784187851878618787187881878918790187911879218793187941879518796187971879818799188001880118802188031880418805188061880718808188091881018811188121881318814188151881618817188181881918820188211882218823188241882518826188271882818829188301883118832188331883418835188361883718838188391884018841188421884318844188451884618847188481884918850188511885218853188541885518856188571885818859188601886118862188631886418865188661886718868188691887018871188721887318874188751887618877188781887918880188811888218883188841888518886188871888818889188901889118892188931889418895188961889718898188991890018901189021890318904189051890618907189081890918910189111891218913189141891518916189171891818919189201892118922189231892418925189261892718928189291893018931189321893318934189351893618937189381893918940189411894218943189441894518946189471894818949189501895118952189531895418955189561895718958189591896018961189621896318964189651896618967189681896918970189711897218973189741897518976189771897818979189801898118982189831898418985189861898718988189891899018991189921899318994189951899618997189981899919000190011900219003190041900519006190071900819009190101901119012190131901419015190161901719018190191902019021190221902319024190251902619027190281902919030190311903219033190341903519036190371903819039190401904119042190431904419045190461904719048190491905019051190521905319054190551905619057190581905919060190611906219063190641906519066190671906819069190701907119072190731907419075190761907719078190791908019081190821908319084190851908619087190881908919090190911909219093190941909519096190971909819099191001910119102191031910419105191061910719108191091911019111191121911319114191151911619117191181911919120191211912219123191241912519126191271912819129191301913119132191331913419135191361913719138191391914019141191421914319144191451914619147191481914919150191511915219153191541915519156191571915819159191601916119162191631916419165191661916719168191691917019171191721917319174191751917619177191781917919180191811918219183191841918519186191871918819189191901919119192191931919419195191961919719198191991920019201192021920319204192051920619207192081920919210192111921219213192141921519216192171921819219192201922119222192231922419225192261922719228192291923019231192321923319234192351923619237192381923919240192411924219243192441924519246192471924819249192501925119252192531925419255192561925719258192591926019261192621926319264192651926619267192681926919270192711927219273192741927519276192771927819279192801928119282192831928419285192861928719288192891929019291192921929319294192951929619297192981929919300193011930219303193041930519306193071930819309193101931119312193131931419315193161931719318193191932019321193221932319324193251932619327193281932919330193311933219333193341933519336193371933819339193401934119342193431934419345193461934719348193491935019351193521935319354193551935619357193581935919360193611936219363193641936519366193671936819369193701937119372193731937419375193761937719378193791938019381193821938319384193851938619387193881938919390193911939219393193941939519396193971939819399194001940119402194031940419405194061940719408194091941019411194121941319414194151941619417194181941919420194211942219423194241942519426194271942819429194301943119432194331943419435194361943719438194391944019441194421944319444194451944619447194481944919450194511945219453194541945519456194571945819459194601946119462194631946419465194661946719468194691947019471194721947319474194751947619477194781947919480194811948219483194841948519486194871948819489194901949119492194931949419495194961949719498194991950019501195021950319504195051950619507195081950919510195111951219513195141951519516195171951819519195201952119522195231952419525195261952719528195291953019531195321953319534195351953619537195381953919540195411954219543195441954519546195471954819549195501955119552195531955419555195561955719558195591956019561195621956319564195651956619567195681956919570195711957219573195741957519576195771957819579195801958119582195831958419585195861958719588195891959019591195921959319594195951959619597195981959919600196011960219603196041960519606196071960819609196101961119612196131961419615196161961719618196191962019621196221962319624196251962619627196281962919630196311963219633196341963519636196371963819639196401964119642196431964419645196461964719648196491965019651196521965319654196551965619657196581965919660196611966219663196641966519666196671966819669196701967119672196731967419675196761967719678196791968019681196821968319684196851968619687196881968919690196911969219693196941969519696196971969819699197001970119702197031970419705197061970719708197091971019711197121971319714197151971619717197181971919720197211972219723197241972519726197271972819729197301973119732197331973419735197361973719738197391974019741197421974319744197451974619747197481974919750197511975219753197541975519756197571975819759197601976119762197631976419765197661976719768197691977019771197721977319774197751977619777197781977919780197811978219783197841978519786197871978819789197901979119792197931979419795197961979719798197991980019801198021980319804198051980619807198081980919810198111981219813198141981519816198171981819819198201982119822198231982419825198261982719828198291983019831198321983319834198351983619837198381983919840198411984219843198441984519846198471984819849198501985119852198531985419855198561985719858198591986019861198621986319864198651986619867198681986919870198711987219873198741987519876198771987819879198801988119882198831988419885198861988719888198891989019891198921989319894198951989619897198981989919900199011990219903199041990519906199071990819909199101991119912199131991419915199161991719918199191992019921199221992319924199251992619927199281992919930199311993219933199341993519936199371993819939199401994119942199431994419945199461994719948199491995019951199521995319954199551995619957199581995919960199611996219963199641996519966199671996819969199701997119972
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #if defined(_MSC_VER) || defined(__MINGW32__)
  6. #include <malloc.h> // using malloc.h with MSC/MINGW
  7. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  8. #include <alloca.h>
  9. #endif
  10. #include <assert.h>
  11. #include <errno.h>
  12. #include <time.h>
  13. #include <math.h>
  14. #include <stdlib.h>
  15. #include <string.h>
  16. #include <stdint.h>
  17. #include <inttypes.h>
  18. #include <stdio.h>
  19. #include <float.h>
  20. #include <limits.h>
  21. #include <stdarg.h>
  22. #include <signal.h>
  23. #ifdef GGML_USE_METAL
  24. #include <unistd.h>
  25. #endif
  26. #if defined(_MSC_VER)
  27. // disable "possible loss of data" to avoid hundreds of casts
  28. // we should just be careful :)
  29. #pragma warning(disable: 4244 4267)
  30. // disable POSIX deprecation warnings
  31. // these functions are never going away, anyway
  32. #pragma warning(disable: 4996)
  33. #endif
  34. #if defined(_WIN32)
  35. #include <windows.h>
  36. typedef volatile LONG atomic_int;
  37. typedef atomic_int atomic_bool;
  38. static void atomic_store(atomic_int * ptr, LONG val) {
  39. InterlockedExchange(ptr, val);
  40. }
  41. static LONG atomic_load(atomic_int * ptr) {
  42. return InterlockedCompareExchange(ptr, 0, 0);
  43. }
  44. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  45. return InterlockedExchangeAdd(ptr, inc);
  46. }
  47. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  48. return atomic_fetch_add(ptr, -(dec));
  49. }
  50. typedef HANDLE pthread_t;
  51. typedef DWORD thread_ret_t;
  52. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  53. (void) unused;
  54. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  55. if (handle == NULL)
  56. {
  57. return EAGAIN;
  58. }
  59. *out = handle;
  60. return 0;
  61. }
  62. static int pthread_join(pthread_t thread, void * unused) {
  63. (void) unused;
  64. int ret = (int) WaitForSingleObject(thread, INFINITE);
  65. CloseHandle(thread);
  66. return ret;
  67. }
  68. static int sched_yield (void) {
  69. Sleep (0);
  70. return 0;
  71. }
  72. #else
  73. #include <pthread.h>
  74. #include <stdatomic.h>
  75. typedef void * thread_ret_t;
  76. #include <sys/types.h>
  77. #include <sys/stat.h>
  78. #include <unistd.h>
  79. #endif
  80. #ifdef GGML_USE_CPU_HBM
  81. #include <hbwmalloc.h>
  82. #endif
  83. #if defined(__APPLE__)
  84. #include <TargetConditionals.h>
  85. #endif
  86. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  87. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  88. #include <sys/wait.h>
  89. void ggml_print_backtrace(void) {
  90. /*
  91. #include <execinfo.h>
  92. #include <dlfcn.h>
  93. void * trace[100];
  94. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  95. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  96. */
  97. // backtrack_symbols does not show line numbers, use gdb instead
  98. char attach[32];
  99. snprintf(attach, sizeof(attach), "attach %d", getpid());
  100. int pid = fork();
  101. if (pid == 0) {
  102. execlp("gdb", "gdb", "--batch",
  103. "-ex", "set style enabled on",
  104. "-ex", attach,
  105. "-ex", "bt -frame-info source-and-location",
  106. "-ex", "detach",
  107. "-ex", "quit",
  108. (char *) NULL);
  109. } else {
  110. waitpid(pid, NULL, 0);
  111. }
  112. }
  113. #else
  114. void ggml_print_backtrace(void) {
  115. // platform not supported
  116. }
  117. #endif
  118. /*#define GGML_PERF*/
  119. #define GGML_DEBUG 0
  120. #define GGML_GELU_FP16
  121. #define GGML_GELU_QUICK_FP16
  122. #define GGML_SILU_FP16
  123. // #define GGML_CROSS_ENTROPY_EXP_FP16
  124. // #define GGML_FLASH_ATTN_EXP_FP16
  125. #define GGML_SOFT_MAX_UNROLL 4
  126. #define GGML_VEC_DOT_UNROLL 2
  127. #define GGML_VEC_MAD_UNROLL 32
  128. //
  129. // logging
  130. //
  131. #if (GGML_DEBUG >= 1)
  132. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  133. #else
  134. #define GGML_PRINT_DEBUG(...)
  135. #endif
  136. #if (GGML_DEBUG >= 5)
  137. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  138. #else
  139. #define GGML_PRINT_DEBUG_5(...)
  140. #endif
  141. #if (GGML_DEBUG >= 10)
  142. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  143. #else
  144. #define GGML_PRINT_DEBUG_10(...)
  145. #endif
  146. #define GGML_PRINT(...) printf(__VA_ARGS__)
  147. //
  148. // end of logging block
  149. //
  150. #ifdef GGML_USE_ACCELERATE
  151. // uncomment to use vDSP for soft max computation
  152. // note: not sure if it is actually faster
  153. //#define GGML_SOFT_MAX_ACCELERATE
  154. #endif
  155. #if defined(_MSC_VER) || defined(__MINGW32__)
  156. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  157. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  158. #else
  159. inline static void * ggml_aligned_malloc(size_t size) {
  160. if (size == 0) {
  161. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  162. return NULL;
  163. }
  164. void * aligned_memory = NULL;
  165. #ifdef GGML_USE_CPU_HBM
  166. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  167. #elif GGML_USE_METAL
  168. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  169. #else
  170. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  171. #endif
  172. if (result != 0) {
  173. // Handle allocation failure
  174. const char *error_desc = "unknown allocation error";
  175. switch (result) {
  176. case EINVAL:
  177. error_desc = "invalid alignment value";
  178. break;
  179. case ENOMEM:
  180. error_desc = "insufficient memory";
  181. break;
  182. }
  183. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  184. return NULL;
  185. }
  186. return aligned_memory;
  187. }
  188. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  189. #ifdef GGML_USE_CPU_HBM
  190. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  191. #else
  192. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  193. #endif
  194. #endif
  195. #define UNUSED GGML_UNUSED
  196. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  197. #if defined(GGML_USE_ACCELERATE)
  198. #include <Accelerate/Accelerate.h>
  199. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  200. #include "ggml-opencl.h"
  201. #endif
  202. #elif defined(GGML_USE_OPENBLAS)
  203. #if defined(GGML_BLAS_USE_MKL)
  204. #include <mkl.h>
  205. #else
  206. #include <cblas.h>
  207. #endif
  208. #elif defined(GGML_USE_CUBLAS)
  209. #include "ggml-cuda.h"
  210. #elif defined(GGML_USE_CLBLAST)
  211. #include "ggml-opencl.h"
  212. #endif
  213. // floating point type used to accumulate sums
  214. typedef double ggml_float;
  215. #undef MIN
  216. #undef MAX
  217. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  218. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  219. //
  220. // global data
  221. //
  222. // precomputed gelu table for f16 (128 KB)
  223. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  224. // precomputed quick gelu table for f16 (128 KB)
  225. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  226. // precomputed silu table for f16 (128 KB)
  227. static ggml_fp16_t ggml_table_silu_f16[1 << 16];
  228. // precomputed exp table for f16 (128 KB)
  229. static ggml_fp16_t ggml_table_exp_f16[1 << 16];
  230. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  231. float ggml_table_f32_f16[1 << 16];
  232. // note: do not use these inside ggml.c
  233. // these are meant to be used via the ggml.h API
  234. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  235. return (float) GGML_FP16_TO_FP32(x);
  236. }
  237. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  238. return GGML_FP32_TO_FP16(x);
  239. }
  240. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  241. for (int i = 0; i < n; i++) {
  242. y[i] = GGML_FP16_TO_FP32(x[i]);
  243. }
  244. }
  245. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  246. int i = 0;
  247. #if defined(__F16C__)
  248. for (; i + 7 < n; i += 8) {
  249. __m256 x_vec = _mm256_loadu_ps(x + i);
  250. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  251. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  252. }
  253. for(; i + 3 < n; i += 4) {
  254. __m128 x_vec = _mm_loadu_ps(x + i);
  255. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  256. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  257. }
  258. #endif
  259. for (; i < n; i++) {
  260. y[i] = GGML_FP32_TO_FP16(x[i]);
  261. }
  262. }
  263. //
  264. // timing
  265. //
  266. #if defined(_MSC_VER) || defined(__MINGW32__)
  267. static int64_t timer_freq, timer_start;
  268. void ggml_time_init(void) {
  269. LARGE_INTEGER t;
  270. QueryPerformanceFrequency(&t);
  271. timer_freq = t.QuadPart;
  272. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  273. // and the uptime is high enough.
  274. // We subtract the program start time to reduce the likelihood of that happening.
  275. QueryPerformanceCounter(&t);
  276. timer_start = t.QuadPart;
  277. }
  278. int64_t ggml_time_ms(void) {
  279. LARGE_INTEGER t;
  280. QueryPerformanceCounter(&t);
  281. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  282. }
  283. int64_t ggml_time_us(void) {
  284. LARGE_INTEGER t;
  285. QueryPerformanceCounter(&t);
  286. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  287. }
  288. #else
  289. void ggml_time_init(void) {}
  290. int64_t ggml_time_ms(void) {
  291. struct timespec ts;
  292. clock_gettime(CLOCK_MONOTONIC, &ts);
  293. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  294. }
  295. int64_t ggml_time_us(void) {
  296. struct timespec ts;
  297. clock_gettime(CLOCK_MONOTONIC, &ts);
  298. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  299. }
  300. #endif
  301. int64_t ggml_cycles(void) {
  302. return clock();
  303. }
  304. int64_t ggml_cycles_per_ms(void) {
  305. return CLOCKS_PER_SEC/1000;
  306. }
  307. #ifdef GGML_PERF
  308. #define ggml_perf_time_ms() ggml_time_ms()
  309. #define ggml_perf_time_us() ggml_time_us()
  310. #define ggml_perf_cycles() ggml_cycles()
  311. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  312. #else
  313. #define ggml_perf_time_ms() 0
  314. #define ggml_perf_time_us() 0
  315. #define ggml_perf_cycles() 0
  316. #define ggml_perf_cycles_per_ms() 0
  317. #endif
  318. //
  319. // cache line
  320. //
  321. #if defined(__cpp_lib_hardware_interference_size)
  322. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  323. #else
  324. #if defined(__POWER9_VECTOR__)
  325. #define CACHE_LINE_SIZE 128
  326. #else
  327. #define CACHE_LINE_SIZE 64
  328. #endif
  329. #endif
  330. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  331. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
  332. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
  333. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  334. [GGML_TYPE_I8] = {
  335. .type_name = "i8",
  336. .blck_size = 1,
  337. .type_size = sizeof(int8_t),
  338. .is_quantized = false,
  339. },
  340. [GGML_TYPE_I16] = {
  341. .type_name = "i16",
  342. .blck_size = 1,
  343. .type_size = sizeof(int16_t),
  344. .is_quantized = false,
  345. },
  346. [GGML_TYPE_I32] = {
  347. .type_name = "i32",
  348. .blck_size = 1,
  349. .type_size = sizeof(int32_t),
  350. .is_quantized = false,
  351. },
  352. [GGML_TYPE_F32] = {
  353. .type_name = "f32",
  354. .blck_size = 1,
  355. .type_size = sizeof(float),
  356. .is_quantized = false,
  357. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  358. .vec_dot_type = GGML_TYPE_F32,
  359. },
  360. [GGML_TYPE_F16] = {
  361. .type_name = "f16",
  362. .blck_size = 1,
  363. .type_size = sizeof(ggml_fp16_t),
  364. .is_quantized = false,
  365. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  366. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  367. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  368. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  369. .vec_dot_type = GGML_TYPE_F16,
  370. },
  371. [GGML_TYPE_Q4_0] = {
  372. .type_name = "q4_0",
  373. .blck_size = QK4_0,
  374. .type_size = sizeof(block_q4_0),
  375. .is_quantized = true,
  376. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  377. .from_float = quantize_row_q4_0,
  378. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  379. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  380. .vec_dot_type = GGML_TYPE_Q8_0,
  381. },
  382. [GGML_TYPE_Q4_1] = {
  383. .type_name = "q4_1",
  384. .blck_size = QK4_1,
  385. .type_size = sizeof(block_q4_1),
  386. .is_quantized = true,
  387. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  388. .from_float = quantize_row_q4_1,
  389. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  390. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  391. .vec_dot_type = GGML_TYPE_Q8_1,
  392. },
  393. [4] = { // GGML_TYPE_Q4_2
  394. .type_name = "DEPRECATED",
  395. .blck_size = 0,
  396. .type_size = 0,
  397. .is_quantized = false,
  398. .to_float = NULL,
  399. .from_float = NULL,
  400. .from_float_reference = NULL,
  401. .vec_dot = NULL,
  402. .vec_dot_type = GGML_TYPE_COUNT,
  403. },
  404. [5] = { // GGML_TYPE_Q4_3
  405. .type_name = "DEPRECATED",
  406. .blck_size = 0,
  407. .type_size = 0,
  408. .is_quantized = false,
  409. .to_float = NULL,
  410. .from_float = NULL,
  411. .from_float_reference = NULL,
  412. .vec_dot = NULL,
  413. .vec_dot_type = GGML_TYPE_COUNT,
  414. },
  415. [GGML_TYPE_Q5_0] = {
  416. .type_name = "q5_0",
  417. .blck_size = QK5_0,
  418. .type_size = sizeof(block_q5_0),
  419. .is_quantized = true,
  420. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  421. .from_float = quantize_row_q5_0,
  422. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  423. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  424. .vec_dot_type = GGML_TYPE_Q8_0,
  425. },
  426. [GGML_TYPE_Q5_1] = {
  427. .type_name = "q5_1",
  428. .blck_size = QK5_1,
  429. .type_size = sizeof(block_q5_1),
  430. .is_quantized = true,
  431. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  432. .from_float = quantize_row_q5_1,
  433. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  434. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  435. .vec_dot_type = GGML_TYPE_Q8_1,
  436. },
  437. [GGML_TYPE_Q8_0] = {
  438. .type_name = "q8_0",
  439. .blck_size = QK8_0,
  440. .type_size = sizeof(block_q8_0),
  441. .is_quantized = true,
  442. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  443. .from_float = quantize_row_q8_0,
  444. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  445. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  446. .vec_dot_type = GGML_TYPE_Q8_0,
  447. },
  448. [GGML_TYPE_Q8_1] = {
  449. .type_name = "q8_1",
  450. .blck_size = QK8_1,
  451. .type_size = sizeof(block_q8_1),
  452. .is_quantized = true,
  453. .from_float = quantize_row_q8_1,
  454. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  455. .vec_dot_type = GGML_TYPE_Q8_1,
  456. },
  457. [GGML_TYPE_Q2_K] = {
  458. .type_name = "q2_K",
  459. .blck_size = QK_K,
  460. .type_size = sizeof(block_q2_K),
  461. .is_quantized = true,
  462. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  463. .from_float = quantize_row_q2_K,
  464. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  465. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  466. .vec_dot_type = GGML_TYPE_Q8_K,
  467. },
  468. [GGML_TYPE_Q3_K] = {
  469. .type_name = "q3_K",
  470. .blck_size = QK_K,
  471. .type_size = sizeof(block_q3_K),
  472. .is_quantized = true,
  473. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  474. .from_float = quantize_row_q3_K,
  475. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  476. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  477. .vec_dot_type = GGML_TYPE_Q8_K,
  478. },
  479. [GGML_TYPE_Q4_K] = {
  480. .type_name = "q4_K",
  481. .blck_size = QK_K,
  482. .type_size = sizeof(block_q4_K),
  483. .is_quantized = true,
  484. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  485. .from_float = quantize_row_q4_K,
  486. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  487. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  488. .vec_dot_type = GGML_TYPE_Q8_K,
  489. },
  490. [GGML_TYPE_Q5_K] = {
  491. .type_name = "q5_K",
  492. .blck_size = QK_K,
  493. .type_size = sizeof(block_q5_K),
  494. .is_quantized = true,
  495. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  496. .from_float = quantize_row_q5_K,
  497. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  498. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  499. .vec_dot_type = GGML_TYPE_Q8_K,
  500. },
  501. [GGML_TYPE_Q6_K] = {
  502. .type_name = "q6_K",
  503. .blck_size = QK_K,
  504. .type_size = sizeof(block_q6_K),
  505. .is_quantized = true,
  506. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  507. .from_float = quantize_row_q6_K,
  508. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  509. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  510. .vec_dot_type = GGML_TYPE_Q8_K,
  511. },
  512. [GGML_TYPE_IQ2_XXS] = {
  513. .type_name = "iq2_xxs",
  514. .blck_size = QK_K,
  515. .type_size = sizeof(block_iq2_xxs),
  516. .is_quantized = true,
  517. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  518. .from_float = quantize_row_iq2_xxs,
  519. .from_float_reference = (ggml_from_float_t) quantize_row_iq2_xxs_reference,
  520. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  521. .vec_dot_type = GGML_TYPE_Q8_K,
  522. },
  523. [GGML_TYPE_IQ2_XS] = {
  524. .type_name = "iq2_xs",
  525. .blck_size = QK_K,
  526. .type_size = sizeof(block_iq2_xs),
  527. .is_quantized = true,
  528. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  529. .from_float = quantize_row_iq2_xs,
  530. .from_float_reference = (ggml_from_float_t) quantize_row_iq2_xs_reference,
  531. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  532. .vec_dot_type = GGML_TYPE_Q8_K,
  533. },
  534. [GGML_TYPE_Q8_K] = {
  535. .type_name = "q8_K",
  536. .blck_size = QK_K,
  537. .type_size = sizeof(block_q8_K),
  538. .is_quantized = true,
  539. .from_float = quantize_row_q8_K,
  540. }
  541. };
  542. // For internal test use
  543. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  544. GGML_ASSERT(type < GGML_TYPE_COUNT);
  545. return type_traits[type];
  546. }
  547. //
  548. // simd mappings
  549. //
  550. #if defined(__ARM_NEON)
  551. #if !defined(__aarch64__)
  552. // 64-bit compatibility
  553. inline static float vaddvq_f32(float32x4_t v) {
  554. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  555. }
  556. #endif
  557. #endif
  558. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  559. // we then implement the fundamental computation operations below using only these macros
  560. // adding support for new architectures requires to define the corresponding SIMD macros
  561. //
  562. // GGML_F32_STEP / GGML_F16_STEP
  563. // number of elements to process in a single step
  564. //
  565. // GGML_F32_EPR / GGML_F16_EPR
  566. // number of elements to fit in a single register
  567. //
  568. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  569. #define GGML_SIMD
  570. // F32 NEON
  571. #define GGML_F32_STEP 16
  572. #define GGML_F32_EPR 4
  573. #define GGML_F32x4 float32x4_t
  574. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  575. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  576. #define GGML_F32x4_LOAD vld1q_f32
  577. #define GGML_F32x4_STORE vst1q_f32
  578. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  579. #define GGML_F32x4_ADD vaddq_f32
  580. #define GGML_F32x4_MUL vmulq_f32
  581. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  582. #define GGML_F32x4_REDUCE(res, x) \
  583. { \
  584. int offset = GGML_F32_ARR >> 1; \
  585. for (int i = 0; i < offset; ++i) { \
  586. x[i] = vaddq_f32(x[i], x[offset+i]); \
  587. } \
  588. offset >>= 1; \
  589. for (int i = 0; i < offset; ++i) { \
  590. x[i] = vaddq_f32(x[i], x[offset+i]); \
  591. } \
  592. offset >>= 1; \
  593. for (int i = 0; i < offset; ++i) { \
  594. x[i] = vaddq_f32(x[i], x[offset+i]); \
  595. } \
  596. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  597. }
  598. #define GGML_F32_VEC GGML_F32x4
  599. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  600. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  601. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  602. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  603. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  604. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  605. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  606. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  607. // F16 NEON
  608. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  609. #define GGML_F16_STEP 32
  610. #define GGML_F16_EPR 8
  611. #define GGML_F16x8 float16x8_t
  612. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  613. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  614. #define GGML_F16x8_LOAD vld1q_f16
  615. #define GGML_F16x8_STORE vst1q_f16
  616. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  617. #define GGML_F16x8_ADD vaddq_f16
  618. #define GGML_F16x8_MUL vmulq_f16
  619. #define GGML_F16x8_REDUCE(res, x) \
  620. do { \
  621. int offset = GGML_F16_ARR >> 1; \
  622. for (int i = 0; i < offset; ++i) { \
  623. x[i] = vaddq_f16(x[i], x[offset+i]); \
  624. } \
  625. offset >>= 1; \
  626. for (int i = 0; i < offset; ++i) { \
  627. x[i] = vaddq_f16(x[i], x[offset+i]); \
  628. } \
  629. offset >>= 1; \
  630. for (int i = 0; i < offset; ++i) { \
  631. x[i] = vaddq_f16(x[i], x[offset+i]); \
  632. } \
  633. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  634. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  635. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  636. } while (0)
  637. #define GGML_F16_VEC GGML_F16x8
  638. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  639. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  640. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  641. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  642. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  643. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  644. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  645. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  646. #else
  647. // if FP16 vector arithmetic is not supported, we use FP32 instead
  648. // and take advantage of the vcvt_ functions to convert to/from FP16
  649. #define GGML_F16_STEP 16
  650. #define GGML_F16_EPR 4
  651. #define GGML_F32Cx4 float32x4_t
  652. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  653. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  654. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  655. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  656. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  657. #define GGML_F32Cx4_ADD vaddq_f32
  658. #define GGML_F32Cx4_MUL vmulq_f32
  659. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  660. #define GGML_F16_VEC GGML_F32Cx4
  661. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  662. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  663. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  664. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  665. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  666. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  667. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  668. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  669. #endif
  670. #elif defined(__AVX__)
  671. #define GGML_SIMD
  672. // F32 AVX
  673. #define GGML_F32_STEP 32
  674. #define GGML_F32_EPR 8
  675. #define GGML_F32x8 __m256
  676. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  677. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  678. #define GGML_F32x8_LOAD _mm256_loadu_ps
  679. #define GGML_F32x8_STORE _mm256_storeu_ps
  680. #if defined(__FMA__)
  681. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  682. #else
  683. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  684. #endif
  685. #define GGML_F32x8_ADD _mm256_add_ps
  686. #define GGML_F32x8_MUL _mm256_mul_ps
  687. #define GGML_F32x8_REDUCE(res, x) \
  688. do { \
  689. int offset = GGML_F32_ARR >> 1; \
  690. for (int i = 0; i < offset; ++i) { \
  691. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  692. } \
  693. offset >>= 1; \
  694. for (int i = 0; i < offset; ++i) { \
  695. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  696. } \
  697. offset >>= 1; \
  698. for (int i = 0; i < offset; ++i) { \
  699. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  700. } \
  701. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  702. _mm256_extractf128_ps(x[0], 1)); \
  703. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  704. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  705. } while (0)
  706. // TODO: is this optimal ?
  707. #define GGML_F32_VEC GGML_F32x8
  708. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  709. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  710. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  711. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  712. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  713. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  714. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  715. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  716. // F16 AVX
  717. #define GGML_F16_STEP 32
  718. #define GGML_F16_EPR 8
  719. // F16 arithmetic is not supported by AVX, so we use F32 instead
  720. #define GGML_F32Cx8 __m256
  721. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  722. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  723. #if defined(__F16C__)
  724. // the _mm256_cvt intrinsics require F16C
  725. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  726. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  727. #else
  728. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  729. float tmp[8];
  730. for (int i = 0; i < 8; i++) {
  731. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  732. }
  733. return _mm256_loadu_ps(tmp);
  734. }
  735. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  736. float arr[8];
  737. _mm256_storeu_ps(arr, y);
  738. for (int i = 0; i < 8; i++)
  739. x[i] = GGML_FP32_TO_FP16(arr[i]);
  740. }
  741. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  742. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  743. #endif
  744. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  745. #define GGML_F32Cx8_ADD _mm256_add_ps
  746. #define GGML_F32Cx8_MUL _mm256_mul_ps
  747. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  748. #define GGML_F16_VEC GGML_F32Cx8
  749. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  750. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  751. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  752. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  753. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  754. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  755. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  756. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  757. #elif defined(__POWER9_VECTOR__)
  758. #define GGML_SIMD
  759. // F32 POWER9
  760. #define GGML_F32_STEP 32
  761. #define GGML_F32_EPR 4
  762. #define GGML_F32x4 vector float
  763. #define GGML_F32x4_ZERO 0.0f
  764. #define GGML_F32x4_SET1 vec_splats
  765. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  766. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  767. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  768. #define GGML_F32x4_ADD vec_add
  769. #define GGML_F32x4_MUL vec_mul
  770. #define GGML_F32x4_REDUCE(res, x) \
  771. { \
  772. int offset = GGML_F32_ARR >> 1; \
  773. for (int i = 0; i < offset; ++i) { \
  774. x[i] = vec_add(x[i], x[offset+i]); \
  775. } \
  776. offset >>= 1; \
  777. for (int i = 0; i < offset; ++i) { \
  778. x[i] = vec_add(x[i], x[offset+i]); \
  779. } \
  780. offset >>= 1; \
  781. for (int i = 0; i < offset; ++i) { \
  782. x[i] = vec_add(x[i], x[offset+i]); \
  783. } \
  784. res = vec_extract(x[0], 0) + \
  785. vec_extract(x[0], 1) + \
  786. vec_extract(x[0], 2) + \
  787. vec_extract(x[0], 3); \
  788. }
  789. #define GGML_F32_VEC GGML_F32x4
  790. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  791. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  792. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  793. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  794. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  795. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  796. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  797. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  798. // F16 POWER9
  799. #define GGML_F16_STEP GGML_F32_STEP
  800. #define GGML_F16_EPR GGML_F32_EPR
  801. #define GGML_F16_VEC GGML_F32x4
  802. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  803. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  804. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  805. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  806. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  807. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  808. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  809. vec_extract_fp32_from_shortl(vec_xl(0, p))
  810. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  811. #define GGML_F16_VEC_STORE(p, r, i) \
  812. if (i & 0x1) \
  813. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  814. r[i - GGML_ENDIAN_BYTE(0)]), \
  815. 0, p - GGML_F16_EPR)
  816. #elif defined(__wasm_simd128__)
  817. #define GGML_SIMD
  818. // F32 WASM
  819. #define GGML_F32_STEP 16
  820. #define GGML_F32_EPR 4
  821. #define GGML_F32x4 v128_t
  822. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  823. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  824. #define GGML_F32x4_LOAD wasm_v128_load
  825. #define GGML_F32x4_STORE wasm_v128_store
  826. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  827. #define GGML_F32x4_ADD wasm_f32x4_add
  828. #define GGML_F32x4_MUL wasm_f32x4_mul
  829. #define GGML_F32x4_REDUCE(res, x) \
  830. { \
  831. int offset = GGML_F32_ARR >> 1; \
  832. for (int i = 0; i < offset; ++i) { \
  833. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  834. } \
  835. offset >>= 1; \
  836. for (int i = 0; i < offset; ++i) { \
  837. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  838. } \
  839. offset >>= 1; \
  840. for (int i = 0; i < offset; ++i) { \
  841. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  842. } \
  843. res = wasm_f32x4_extract_lane(x[0], 0) + \
  844. wasm_f32x4_extract_lane(x[0], 1) + \
  845. wasm_f32x4_extract_lane(x[0], 2) + \
  846. wasm_f32x4_extract_lane(x[0], 3); \
  847. }
  848. #define GGML_F32_VEC GGML_F32x4
  849. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  850. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  851. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  852. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  853. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  854. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  855. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  856. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  857. // F16 WASM
  858. #define GGML_F16_STEP 16
  859. #define GGML_F16_EPR 4
  860. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  861. float tmp[4];
  862. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  863. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  864. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  865. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  866. return wasm_v128_load(tmp);
  867. }
  868. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  869. float tmp[4];
  870. wasm_v128_store(tmp, x);
  871. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  872. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  873. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  874. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  875. }
  876. #define GGML_F16x4 v128_t
  877. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  878. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  879. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  880. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  881. #define GGML_F16x4_FMA GGML_F32x4_FMA
  882. #define GGML_F16x4_ADD wasm_f32x4_add
  883. #define GGML_F16x4_MUL wasm_f32x4_mul
  884. #define GGML_F16x4_REDUCE(res, x) \
  885. { \
  886. int offset = GGML_F16_ARR >> 1; \
  887. for (int i = 0; i < offset; ++i) { \
  888. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  889. } \
  890. offset >>= 1; \
  891. for (int i = 0; i < offset; ++i) { \
  892. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  893. } \
  894. offset >>= 1; \
  895. for (int i = 0; i < offset; ++i) { \
  896. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  897. } \
  898. res = wasm_f32x4_extract_lane(x[0], 0) + \
  899. wasm_f32x4_extract_lane(x[0], 1) + \
  900. wasm_f32x4_extract_lane(x[0], 2) + \
  901. wasm_f32x4_extract_lane(x[0], 3); \
  902. }
  903. #define GGML_F16_VEC GGML_F16x4
  904. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  905. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  906. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  907. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  908. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  909. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  910. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  911. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  912. #elif defined(__SSE3__)
  913. #define GGML_SIMD
  914. // F32 SSE
  915. #define GGML_F32_STEP 32
  916. #define GGML_F32_EPR 4
  917. #define GGML_F32x4 __m128
  918. #define GGML_F32x4_ZERO _mm_setzero_ps()
  919. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  920. #define GGML_F32x4_LOAD _mm_loadu_ps
  921. #define GGML_F32x4_STORE _mm_storeu_ps
  922. #if defined(__FMA__)
  923. // TODO: Does this work?
  924. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  925. #else
  926. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  927. #endif
  928. #define GGML_F32x4_ADD _mm_add_ps
  929. #define GGML_F32x4_MUL _mm_mul_ps
  930. #define GGML_F32x4_REDUCE(res, x) \
  931. { \
  932. int offset = GGML_F32_ARR >> 1; \
  933. for (int i = 0; i < offset; ++i) { \
  934. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  935. } \
  936. offset >>= 1; \
  937. for (int i = 0; i < offset; ++i) { \
  938. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  939. } \
  940. offset >>= 1; \
  941. for (int i = 0; i < offset; ++i) { \
  942. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  943. } \
  944. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  945. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  946. }
  947. // TODO: is this optimal ?
  948. #define GGML_F32_VEC GGML_F32x4
  949. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  950. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  951. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  952. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  953. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  954. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  955. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  956. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  957. // F16 SSE
  958. #define GGML_F16_STEP 32
  959. #define GGML_F16_EPR 4
  960. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  961. float tmp[4];
  962. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  963. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  964. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  965. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  966. return _mm_loadu_ps(tmp);
  967. }
  968. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  969. float arr[4];
  970. _mm_storeu_ps(arr, y);
  971. x[0] = GGML_FP32_TO_FP16(arr[0]);
  972. x[1] = GGML_FP32_TO_FP16(arr[1]);
  973. x[2] = GGML_FP32_TO_FP16(arr[2]);
  974. x[3] = GGML_FP32_TO_FP16(arr[3]);
  975. }
  976. #define GGML_F32Cx4 __m128
  977. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  978. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  979. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  980. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  981. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  982. #define GGML_F32Cx4_ADD _mm_add_ps
  983. #define GGML_F32Cx4_MUL _mm_mul_ps
  984. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  985. #define GGML_F16_VEC GGML_F32Cx4
  986. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  987. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  988. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  989. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  990. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  991. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  992. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  993. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  994. #endif
  995. // GGML_F32_ARR / GGML_F16_ARR
  996. // number of registers to use per step
  997. #ifdef GGML_SIMD
  998. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  999. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1000. #endif
  1001. //
  1002. // fundamental operations
  1003. //
  1004. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1005. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1006. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1007. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1008. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1009. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1010. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1011. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1012. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1013. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1014. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1015. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1016. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1017. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1018. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1019. #ifdef GGML_SIMD
  1020. float sumf = 0.0f;
  1021. const int np = (n & ~(GGML_F32_STEP - 1));
  1022. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1023. GGML_F32_VEC ax[GGML_F32_ARR];
  1024. GGML_F32_VEC ay[GGML_F32_ARR];
  1025. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1026. for (int j = 0; j < GGML_F32_ARR; j++) {
  1027. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1028. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1029. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1030. }
  1031. }
  1032. // reduce sum0..sum3 to sum0
  1033. GGML_F32_VEC_REDUCE(sumf, sum);
  1034. // leftovers
  1035. for (int i = np; i < n; ++i) {
  1036. sumf += x[i]*y[i];
  1037. }
  1038. #else
  1039. // scalar
  1040. ggml_float sumf = 0.0;
  1041. for (int i = 0; i < n; ++i) {
  1042. sumf += (ggml_float)(x[i]*y[i]);
  1043. }
  1044. #endif
  1045. *s = sumf;
  1046. }
  1047. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1048. ggml_float sumf = 0.0;
  1049. #if defined(GGML_SIMD)
  1050. const int np = (n & ~(GGML_F16_STEP - 1));
  1051. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1052. GGML_F16_VEC ax[GGML_F16_ARR];
  1053. GGML_F16_VEC ay[GGML_F16_ARR];
  1054. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1055. for (int j = 0; j < GGML_F16_ARR; j++) {
  1056. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1057. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1058. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1059. }
  1060. }
  1061. // reduce sum0..sum3 to sum0
  1062. GGML_F16_VEC_REDUCE(sumf, sum);
  1063. // leftovers
  1064. for (int i = np; i < n; ++i) {
  1065. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1066. }
  1067. #else
  1068. for (int i = 0; i < n; ++i) {
  1069. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1070. }
  1071. #endif
  1072. *s = sumf;
  1073. }
  1074. // compute GGML_VEC_DOT_UNROLL dot products at once
  1075. // xs - x row stride in bytes
  1076. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1077. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1078. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1079. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1080. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1081. }
  1082. #if defined(GGML_SIMD)
  1083. const int np = (n & ~(GGML_F16_STEP - 1));
  1084. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1085. GGML_F16_VEC ax[GGML_F16_ARR];
  1086. GGML_F16_VEC ay[GGML_F16_ARR];
  1087. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1088. for (int j = 0; j < GGML_F16_ARR; j++) {
  1089. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1090. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1091. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1092. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1093. }
  1094. }
  1095. }
  1096. // reduce sum0..sum3 to sum0
  1097. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1098. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1099. }
  1100. // leftovers
  1101. for (int i = np; i < n; ++i) {
  1102. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1103. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1104. }
  1105. }
  1106. #else
  1107. for (int i = 0; i < n; ++i) {
  1108. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1109. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1110. }
  1111. }
  1112. #endif
  1113. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1114. s[i] = sumf[i];
  1115. }
  1116. }
  1117. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1118. #if defined(GGML_SIMD)
  1119. const int np = (n & ~(GGML_F32_STEP - 1));
  1120. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1121. GGML_F32_VEC ax[GGML_F32_ARR];
  1122. GGML_F32_VEC ay[GGML_F32_ARR];
  1123. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1124. for (int j = 0; j < GGML_F32_ARR; j++) {
  1125. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1126. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1127. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1128. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1129. }
  1130. }
  1131. // leftovers
  1132. for (int i = np; i < n; ++i) {
  1133. y[i] += x[i]*v;
  1134. }
  1135. #else
  1136. // scalar
  1137. for (int i = 0; i < n; ++i) {
  1138. y[i] += x[i]*v;
  1139. }
  1140. #endif
  1141. }
  1142. // xs and vs are byte strides of x and v
  1143. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1144. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1145. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1146. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1147. x[i] = (const float *) ((const char *) xv + i*xs);
  1148. v[i] = (const float *) ((const char *) vv + i*vs);
  1149. }
  1150. #if defined(GGML_SIMD)
  1151. const int np = (n & ~(GGML_F32_STEP - 1));
  1152. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1153. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1154. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1155. }
  1156. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1157. GGML_F32_VEC ay[GGML_F32_ARR];
  1158. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1159. for (int j = 0; j < GGML_F32_ARR; j++) {
  1160. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1161. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1162. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1163. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1164. }
  1165. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1166. }
  1167. }
  1168. // leftovers
  1169. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1170. for (int i = np; i < n; ++i) {
  1171. y[i] += x[k][i]*v[k][0];
  1172. }
  1173. }
  1174. #else
  1175. // scalar
  1176. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1177. for (int i = 0; i < n; ++i) {
  1178. y[i] += x[k][i]*v[k][0];
  1179. }
  1180. }
  1181. #endif
  1182. }
  1183. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1184. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1185. #if defined(GGML_USE_ACCELERATE)
  1186. vDSP_vsmul(y, 1, &v, y, 1, n);
  1187. #elif defined(GGML_SIMD)
  1188. const int np = (n & ~(GGML_F32_STEP - 1));
  1189. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1190. GGML_F32_VEC ay[GGML_F32_ARR];
  1191. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1192. for (int j = 0; j < GGML_F32_ARR; j++) {
  1193. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1194. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1195. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1196. }
  1197. }
  1198. // leftovers
  1199. for (int i = np; i < n; ++i) {
  1200. y[i] *= v;
  1201. }
  1202. #else
  1203. // scalar
  1204. for (int i = 0; i < n; ++i) {
  1205. y[i] *= v;
  1206. }
  1207. #endif
  1208. }
  1209. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  1210. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1211. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1212. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1213. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1214. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1215. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1216. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1217. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1218. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1219. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1220. static const float GELU_COEF_A = 0.044715f;
  1221. static const float GELU_QUICK_COEF = -1.702f;
  1222. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1223. inline static float ggml_gelu_f32(float x) {
  1224. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1225. }
  1226. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1227. const uint16_t * i16 = (const uint16_t *) x;
  1228. for (int i = 0; i < n; ++i) {
  1229. y[i] = ggml_table_gelu_f16[i16[i]];
  1230. }
  1231. }
  1232. #ifdef GGML_GELU_FP16
  1233. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1234. uint16_t t;
  1235. for (int i = 0; i < n; ++i) {
  1236. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1237. memcpy(&t, &fp16, sizeof(uint16_t));
  1238. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1239. }
  1240. }
  1241. #else
  1242. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1243. for (int i = 0; i < n; ++i) {
  1244. y[i] = ggml_gelu_f32(x[i]);
  1245. }
  1246. }
  1247. #endif
  1248. inline static float ggml_gelu_quick_f32(float x) {
  1249. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1250. }
  1251. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1252. // const uint16_t * i16 = (const uint16_t *) x;
  1253. // for (int i = 0; i < n; ++i) {
  1254. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1255. // }
  1256. //}
  1257. #ifdef GGML_GELU_QUICK_FP16
  1258. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1259. uint16_t t;
  1260. for (int i = 0; i < n; ++i) {
  1261. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1262. memcpy(&t, &fp16, sizeof(uint16_t));
  1263. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1264. }
  1265. }
  1266. #else
  1267. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1268. for (int i = 0; i < n; ++i) {
  1269. y[i] = ggml_gelu_quick_f32(x[i]);
  1270. }
  1271. }
  1272. #endif
  1273. // Sigmoid Linear Unit (SiLU) function
  1274. inline static float ggml_silu_f32(float x) {
  1275. return x/(1.0f + expf(-x));
  1276. }
  1277. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1278. // const uint16_t * i16 = (const uint16_t *) x;
  1279. // for (int i = 0; i < n; ++i) {
  1280. // y[i] = ggml_table_silu_f16[i16[i]];
  1281. // }
  1282. //}
  1283. #ifdef GGML_SILU_FP16
  1284. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1285. uint16_t t;
  1286. for (int i = 0; i < n; ++i) {
  1287. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1288. memcpy(&t, &fp16, sizeof(uint16_t));
  1289. y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
  1290. }
  1291. }
  1292. #else
  1293. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1294. for (int i = 0; i < n; ++i) {
  1295. y[i] = ggml_silu_f32(x[i]);
  1296. }
  1297. }
  1298. #endif
  1299. inline static float ggml_silu_backward_f32(float x, float dy) {
  1300. const float s = 1.0f/(1.0f + expf(-x));
  1301. return dy*s*(1.0f + x*(1.0f - s));
  1302. }
  1303. #ifdef GGML_SILU_FP16
  1304. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1305. for (int i = 0; i < n; ++i) {
  1306. // we did not use x[i] to compute forward silu but its f16 equivalent
  1307. // take derivative at f16 of x[i]:
  1308. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1309. float usedx = GGML_FP16_TO_FP32(fp16);
  1310. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  1311. }
  1312. }
  1313. #else
  1314. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1315. for (int i = 0; i < n; ++i) {
  1316. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1317. }
  1318. }
  1319. #endif
  1320. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1321. #ifndef GGML_USE_ACCELERATE
  1322. ggml_float sum = 0.0;
  1323. for (int i = 0; i < n; ++i) {
  1324. sum += (ggml_float)x[i];
  1325. }
  1326. *s = sum;
  1327. #else
  1328. vDSP_sve(x, 1, s, n);
  1329. #endif
  1330. }
  1331. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1332. ggml_float sum = 0.0;
  1333. for (int i = 0; i < n; ++i) {
  1334. sum += (ggml_float)x[i];
  1335. }
  1336. *s = sum;
  1337. }
  1338. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1339. float sum = 0.0f;
  1340. for (int i = 0; i < n; ++i) {
  1341. sum += GGML_FP16_TO_FP32(x[i]);
  1342. }
  1343. *s = sum;
  1344. }
  1345. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1346. #ifndef GGML_USE_ACCELERATE
  1347. float max = -INFINITY;
  1348. for (int i = 0; i < n; ++i) {
  1349. max = MAX(max, x[i]);
  1350. }
  1351. *s = max;
  1352. #else
  1353. vDSP_maxv(x, 1, s, n);
  1354. #endif
  1355. }
  1356. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1357. ggml_vec_norm_f32(n, s, x);
  1358. *s = 1.f/(*s);
  1359. }
  1360. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1361. float max = -INFINITY;
  1362. int idx = 0;
  1363. for (int i = 0; i < n; ++i) {
  1364. max = MAX(max, x[i]);
  1365. if (max == x[i]) { idx = i; }
  1366. }
  1367. *s = idx;
  1368. }
  1369. //
  1370. // data types
  1371. //
  1372. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  1373. "NONE",
  1374. "DUP",
  1375. "ADD",
  1376. "ADD1",
  1377. "ACC",
  1378. "SUB",
  1379. "MUL",
  1380. "DIV",
  1381. "SQR",
  1382. "SQRT",
  1383. "LOG",
  1384. "SUM",
  1385. "SUM_ROWS",
  1386. "MEAN",
  1387. "ARGMAX",
  1388. "REPEAT",
  1389. "REPEAT_BACK",
  1390. "CONCAT",
  1391. "SILU_BACK",
  1392. "NORM",
  1393. "RMS_NORM",
  1394. "RMS_NORM_BACK",
  1395. "GROUP_NORM",
  1396. "MUL_MAT",
  1397. "MUL_MAT_ID",
  1398. "OUT_PROD",
  1399. "SCALE",
  1400. "SET",
  1401. "CPY",
  1402. "CONT",
  1403. "RESHAPE",
  1404. "VIEW",
  1405. "PERMUTE",
  1406. "TRANSPOSE",
  1407. "GET_ROWS",
  1408. "GET_ROWS_BACK",
  1409. "DIAG",
  1410. "DIAG_MASK_INF",
  1411. "DIAG_MASK_ZERO",
  1412. "SOFT_MAX",
  1413. "SOFT_MAX_BACK",
  1414. "ROPE",
  1415. "ROPE_BACK",
  1416. "ALIBI",
  1417. "CLAMP",
  1418. "CONV_TRANSPOSE_1D",
  1419. "IM2COL",
  1420. "CONV_TRANSPOSE_2D",
  1421. "POOL_1D",
  1422. "POOL_2D",
  1423. "UPSCALE",
  1424. "PAD",
  1425. "ARGSORT",
  1426. "LEAKY_RELU",
  1427. "FLASH_ATTN",
  1428. "FLASH_FF",
  1429. "FLASH_ATTN_BACK",
  1430. "WIN_PART",
  1431. "WIN_UNPART",
  1432. "GET_REL_POS",
  1433. "ADD_REL_POS",
  1434. "UNARY",
  1435. "MAP_UNARY",
  1436. "MAP_BINARY",
  1437. "MAP_CUSTOM1_F32",
  1438. "MAP_CUSTOM2_F32",
  1439. "MAP_CUSTOM3_F32",
  1440. "MAP_CUSTOM1",
  1441. "MAP_CUSTOM2",
  1442. "MAP_CUSTOM3",
  1443. "CROSS_ENTROPY_LOSS",
  1444. "CROSS_ENTROPY_LOSS_BACK",
  1445. };
  1446. static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72");
  1447. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1448. "none",
  1449. "x",
  1450. "x+y",
  1451. "x+y",
  1452. "view(x,nb,offset)+=y->x",
  1453. "x-y",
  1454. "x*y",
  1455. "x/y",
  1456. "x^2",
  1457. "√x",
  1458. "log(x)",
  1459. "Σx",
  1460. "Σx_k",
  1461. "Σx/n",
  1462. "argmax(x)",
  1463. "repeat(x)",
  1464. "repeat_back(x)",
  1465. "concat(x, y)",
  1466. "silu_back(x)",
  1467. "norm(x)",
  1468. "rms_norm(x)",
  1469. "rms_norm_back(x)",
  1470. "group_norm(x)",
  1471. "X*Y",
  1472. "X[i]*Y",
  1473. "X*Y",
  1474. "x*v",
  1475. "y-\\>view(x)",
  1476. "x-\\>y",
  1477. "cont(x)",
  1478. "reshape(x)",
  1479. "view(x)",
  1480. "permute(x)",
  1481. "transpose(x)",
  1482. "get_rows(x)",
  1483. "get_rows_back(x)",
  1484. "diag(x)",
  1485. "diag_mask_inf(x)",
  1486. "diag_mask_zero(x)",
  1487. "soft_max(x)",
  1488. "soft_max_back(x)",
  1489. "rope(x)",
  1490. "rope_back(x)",
  1491. "alibi(x)",
  1492. "clamp(x)",
  1493. "conv_transpose_1d(x)",
  1494. "im2col(x)",
  1495. "conv_transpose_2d(x)",
  1496. "pool_1d(x)",
  1497. "pool_2d(x)",
  1498. "upscale(x)",
  1499. "pad(x)",
  1500. "argsort(x)",
  1501. "leaky_relu(x)",
  1502. "flash_attn(x)",
  1503. "flash_ff(x)",
  1504. "flash_attn_back(x)",
  1505. "win_part(x)",
  1506. "win_unpart(x)",
  1507. "get_rel_pos(x)",
  1508. "add_rel_pos(x)",
  1509. "unary(x)",
  1510. "f(x)",
  1511. "f(x,y)",
  1512. "custom_f32(x)",
  1513. "custom_f32(x,y)",
  1514. "custom_f32(x,y,z)",
  1515. "custom(x)",
  1516. "custom(x,y)",
  1517. "custom(x,y,z)",
  1518. "cross_entropy_loss(x,y)",
  1519. "cross_entropy_loss_back(x,y)",
  1520. };
  1521. static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72");
  1522. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  1523. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  1524. "ABS",
  1525. "SGN",
  1526. "NEG",
  1527. "STEP",
  1528. "TANH",
  1529. "ELU",
  1530. "RELU",
  1531. "GELU",
  1532. "GELU_QUICK",
  1533. "SILU",
  1534. };
  1535. static_assert(GGML_UNARY_OP_COUNT == 10, "GGML_UNARY_OP_COUNT != 10");
  1536. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1537. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1538. // WARN:
  1539. // Mis-configuration can lead to problem that's hard to reason about:
  1540. // * At best it crash or talks nosense.
  1541. // * At worst it talks slightly difference but hard to perceive.
  1542. //
  1543. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  1544. // Take care about compile options (e.g., GGML_USE_xxx).
  1545. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  1546. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  1547. static void ggml_setup_op_has_task_pass(void) {
  1548. { // INIT
  1549. bool * p = GGML_OP_HAS_INIT;
  1550. p[GGML_OP_ACC ] = true;
  1551. p[GGML_OP_MUL_MAT ] = true;
  1552. p[GGML_OP_MUL_MAT_ID ] = true;
  1553. p[GGML_OP_OUT_PROD ] = true;
  1554. p[GGML_OP_SET ] = true;
  1555. p[GGML_OP_GET_ROWS_BACK ] = true;
  1556. p[GGML_OP_DIAG_MASK_INF ] = true;
  1557. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  1558. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  1559. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  1560. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  1561. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1562. p[GGML_OP_ADD_REL_POS ] = true;
  1563. }
  1564. { // FINALIZE
  1565. bool * p = GGML_OP_HAS_FINALIZE;
  1566. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1567. }
  1568. }
  1569. //
  1570. // ggml context
  1571. //
  1572. struct ggml_context {
  1573. size_t mem_size;
  1574. void * mem_buffer;
  1575. bool mem_buffer_owned;
  1576. bool no_alloc;
  1577. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1578. int n_objects;
  1579. struct ggml_object * objects_begin;
  1580. struct ggml_object * objects_end;
  1581. struct ggml_scratch scratch;
  1582. struct ggml_scratch scratch_save;
  1583. };
  1584. struct ggml_context_container {
  1585. bool used;
  1586. struct ggml_context context;
  1587. };
  1588. //
  1589. // NUMA support
  1590. //
  1591. #define GGML_NUMA_MAX_NODES 8
  1592. #define GGML_NUMA_MAX_CPUS 512
  1593. struct ggml_numa_node {
  1594. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  1595. uint32_t n_cpus;
  1596. };
  1597. struct ggml_numa_nodes {
  1598. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  1599. uint32_t n_nodes;
  1600. uint32_t total_cpus; // hardware threads on system
  1601. };
  1602. //
  1603. // ggml state
  1604. //
  1605. struct ggml_state {
  1606. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1607. struct ggml_numa_nodes numa;
  1608. };
  1609. // global state
  1610. static struct ggml_state g_state;
  1611. static atomic_int g_state_barrier = 0;
  1612. // barrier via spin lock
  1613. inline static void ggml_critical_section_start(void) {
  1614. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1615. while (processing > 0) {
  1616. // wait for other threads to finish
  1617. atomic_fetch_sub(&g_state_barrier, 1);
  1618. sched_yield(); // TODO: reconsider this
  1619. processing = atomic_fetch_add(&g_state_barrier, 1);
  1620. }
  1621. }
  1622. // TODO: make this somehow automatically executed
  1623. // some sort of "sentry" mechanism
  1624. inline static void ggml_critical_section_end(void) {
  1625. atomic_fetch_sub(&g_state_barrier, 1);
  1626. }
  1627. void ggml_numa_init(void) {
  1628. if (g_state.numa.n_nodes > 0) {
  1629. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  1630. return;
  1631. }
  1632. #ifdef __linux__
  1633. struct stat st;
  1634. char path[256];
  1635. int rv;
  1636. // enumerate nodes
  1637. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  1638. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  1639. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1640. if (stat(path, &st) != 0) { break; }
  1641. ++g_state.numa.n_nodes;
  1642. }
  1643. // enumerate CPUs
  1644. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  1645. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  1646. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1647. if (stat(path, &st) != 0) { break; }
  1648. ++g_state.numa.total_cpus;
  1649. }
  1650. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  1651. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
  1652. g_state.numa.n_nodes = 0;
  1653. return;
  1654. }
  1655. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  1656. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  1657. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  1658. node->n_cpus = 0;
  1659. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  1660. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  1661. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1662. if (stat(path, &st) == 0) {
  1663. node->cpus[node->n_cpus++] = c;
  1664. GGML_PRINT_DEBUG(" %u", c);
  1665. }
  1666. }
  1667. GGML_PRINT_DEBUG("\n");
  1668. }
  1669. if (ggml_is_numa()) {
  1670. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  1671. if (fptr != NULL) {
  1672. char buf[42];
  1673. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  1674. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  1675. }
  1676. fclose(fptr);
  1677. }
  1678. }
  1679. #else
  1680. // TODO
  1681. #endif
  1682. }
  1683. bool ggml_is_numa(void) {
  1684. return g_state.numa.n_nodes > 1;
  1685. }
  1686. ////////////////////////////////////////////////////////////////////////////////
  1687. void ggml_print_object(const struct ggml_object * obj) {
  1688. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  1689. obj->type, obj->offs, obj->size, (const void *) obj->next);
  1690. }
  1691. void ggml_print_objects(const struct ggml_context * ctx) {
  1692. struct ggml_object * obj = ctx->objects_begin;
  1693. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  1694. while (obj != NULL) {
  1695. ggml_print_object(obj);
  1696. obj = obj->next;
  1697. }
  1698. GGML_PRINT("%s: --- end ---\n", __func__);
  1699. }
  1700. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  1701. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1702. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1703. }
  1704. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  1705. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1706. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1707. }
  1708. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  1709. size_t nbytes;
  1710. size_t blck_size = ggml_blck_size(tensor->type);
  1711. if (blck_size == 1) {
  1712. nbytes = ggml_type_size(tensor->type);
  1713. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  1714. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1715. }
  1716. }
  1717. else {
  1718. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  1719. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  1720. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1721. }
  1722. }
  1723. return nbytes;
  1724. }
  1725. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  1726. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  1727. }
  1728. int ggml_blck_size(enum ggml_type type) {
  1729. return type_traits[type].blck_size;
  1730. }
  1731. size_t ggml_type_size(enum ggml_type type) {
  1732. return type_traits[type].type_size;
  1733. }
  1734. size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  1735. assert(ne % ggml_blck_size(type) == 0);
  1736. return ggml_type_size(type)*ne/ggml_blck_size(type);
  1737. }
  1738. double ggml_type_sizef(enum ggml_type type) {
  1739. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  1740. }
  1741. const char * ggml_type_name(enum ggml_type type) {
  1742. return type_traits[type].type_name;
  1743. }
  1744. bool ggml_is_quantized(enum ggml_type type) {
  1745. return type_traits[type].is_quantized;
  1746. }
  1747. const char * ggml_op_name(enum ggml_op op) {
  1748. return GGML_OP_NAME[op];
  1749. }
  1750. const char * ggml_op_symbol(enum ggml_op op) {
  1751. return GGML_OP_SYMBOL[op];
  1752. }
  1753. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  1754. return GGML_UNARY_OP_NAME[op];
  1755. }
  1756. const char * ggml_op_desc(const struct ggml_tensor * t) {
  1757. if (t->op == GGML_OP_UNARY) {
  1758. enum ggml_unary_op uop = ggml_get_unary_op(t);
  1759. return ggml_unary_op_name(uop);
  1760. }
  1761. else {
  1762. return ggml_op_name(t->op);
  1763. }
  1764. }
  1765. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  1766. return ggml_type_size(tensor->type);
  1767. }
  1768. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  1769. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1770. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1771. }
  1772. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  1773. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1774. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1775. }
  1776. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  1777. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1778. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1779. }
  1780. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  1781. return tensor->ne[3] == 1;
  1782. }
  1783. int ggml_n_dims(const struct ggml_tensor * tensor) {
  1784. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  1785. if (tensor->ne[i] > 1) {
  1786. return i + 1;
  1787. }
  1788. }
  1789. return 1;
  1790. }
  1791. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1792. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1793. return (t0->ne[0] == t1->ne[0]) &&
  1794. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1795. (t1->ne[3]%t0->ne[3] == 0);
  1796. }
  1797. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1798. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1799. return (t0->ne[1] == t1->ne[1]) &&
  1800. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1801. (t1->ne[3]%t0->ne[3] == 0);
  1802. }
  1803. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  1804. enum ggml_type wtype = GGML_TYPE_COUNT;
  1805. switch (ftype) {
  1806. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  1807. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  1808. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  1809. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  1810. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  1811. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  1812. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  1813. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  1814. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  1815. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  1816. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  1817. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  1818. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  1819. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  1820. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  1821. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  1822. }
  1823. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  1824. return wtype;
  1825. }
  1826. size_t ggml_tensor_overhead(void) {
  1827. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  1828. }
  1829. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  1830. return tensor->nb[0] > tensor->nb[1];
  1831. }
  1832. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  1833. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1834. return
  1835. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1836. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  1837. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1838. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1839. }
  1840. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  1841. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1842. return
  1843. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1844. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1845. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1846. }
  1847. bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  1848. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1849. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  1850. }
  1851. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  1852. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1853. return
  1854. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1855. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1856. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1857. }
  1858. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1859. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1860. return
  1861. (t0->ne[0] == t1->ne[0] ) &&
  1862. (t0->ne[1] == t1->ne[1] ) &&
  1863. (t0->ne[2] == t1->ne[2] ) &&
  1864. (t0->ne[3] == t1->ne[3] );
  1865. }
  1866. // check if t1 can be represented as a repeatition of t0
  1867. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1868. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1869. return
  1870. (t1->ne[0]%t0->ne[0] == 0) &&
  1871. (t1->ne[1]%t0->ne[1] == 0) &&
  1872. (t1->ne[2]%t0->ne[2] == 0) &&
  1873. (t1->ne[3]%t0->ne[3] == 0);
  1874. }
  1875. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1876. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1877. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  1878. }
  1879. static inline int ggml_up32(int n) {
  1880. return (n + 31) & ~31;
  1881. }
  1882. //static inline int ggml_up64(int n) {
  1883. // return (n + 63) & ~63;
  1884. //}
  1885. static inline int ggml_up(int n, int m) {
  1886. // assert m is a power of 2
  1887. GGML_ASSERT((m & (m - 1)) == 0);
  1888. return (n + m - 1) & ~(m - 1);
  1889. }
  1890. // assert that pointer is aligned to GGML_MEM_ALIGN
  1891. #define ggml_assert_aligned(ptr) \
  1892. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  1893. ////////////////////////////////////////////////////////////////////////////////
  1894. struct ggml_context * ggml_init(struct ggml_init_params params) {
  1895. // make this function thread safe
  1896. ggml_critical_section_start();
  1897. static bool is_first_call = true;
  1898. if (is_first_call) {
  1899. // initialize time system (required on Windows)
  1900. ggml_time_init();
  1901. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  1902. {
  1903. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  1904. ggml_fp16_t ii;
  1905. for (int i = 0; i < (1 << 16); ++i) {
  1906. uint16_t ui = i;
  1907. memcpy(&ii, &ui, sizeof(ii));
  1908. const float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  1909. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  1910. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  1911. ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  1912. ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  1913. }
  1914. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  1915. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  1916. }
  1917. // initialize g_state
  1918. {
  1919. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  1920. g_state = (struct ggml_state) {
  1921. /*.contexts =*/ { { 0 } },
  1922. /*.numa =*/ {
  1923. .n_nodes = 0,
  1924. .total_cpus = 0,
  1925. },
  1926. };
  1927. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  1928. g_state.contexts[i].used = false;
  1929. }
  1930. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  1931. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  1932. }
  1933. #if defined(GGML_USE_CUBLAS)
  1934. ggml_init_cublas();
  1935. #elif defined(GGML_USE_CLBLAST)
  1936. ggml_cl_init();
  1937. #endif
  1938. ggml_setup_op_has_task_pass();
  1939. is_first_call = false;
  1940. }
  1941. // find non-used context in g_state
  1942. struct ggml_context * ctx = NULL;
  1943. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  1944. if (!g_state.contexts[i].used) {
  1945. g_state.contexts[i].used = true;
  1946. ctx = &g_state.contexts[i].context;
  1947. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  1948. break;
  1949. }
  1950. }
  1951. if (ctx == NULL) {
  1952. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  1953. ggml_critical_section_end();
  1954. return NULL;
  1955. }
  1956. // allow to call ggml_init with 0 size
  1957. if (params.mem_size == 0) {
  1958. params.mem_size = GGML_MEM_ALIGN;
  1959. }
  1960. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  1961. *ctx = (struct ggml_context) {
  1962. /*.mem_size =*/ mem_size,
  1963. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  1964. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  1965. /*.no_alloc =*/ params.no_alloc,
  1966. /*.no_alloc_save =*/ params.no_alloc,
  1967. /*.n_objects =*/ 0,
  1968. /*.objects_begin =*/ NULL,
  1969. /*.objects_end =*/ NULL,
  1970. /*.scratch =*/ { 0, 0, NULL, },
  1971. /*.scratch_save =*/ { 0, 0, NULL, },
  1972. };
  1973. GGML_ASSERT(ctx->mem_buffer != NULL);
  1974. ggml_assert_aligned(ctx->mem_buffer);
  1975. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  1976. ggml_critical_section_end();
  1977. return ctx;
  1978. }
  1979. void ggml_free(struct ggml_context * ctx) {
  1980. // make this function thread safe
  1981. ggml_critical_section_start();
  1982. bool found = false;
  1983. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  1984. if (&g_state.contexts[i].context == ctx) {
  1985. g_state.contexts[i].used = false;
  1986. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  1987. __func__, i, ggml_used_mem(ctx));
  1988. if (ctx->mem_buffer_owned) {
  1989. GGML_ALIGNED_FREE(ctx->mem_buffer);
  1990. }
  1991. found = true;
  1992. break;
  1993. }
  1994. }
  1995. if (!found) {
  1996. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  1997. }
  1998. ggml_critical_section_end();
  1999. }
  2000. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2001. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2002. }
  2003. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2004. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2005. ctx->scratch = scratch;
  2006. return result;
  2007. }
  2008. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2009. return ctx->no_alloc;
  2010. }
  2011. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2012. ctx->no_alloc = no_alloc;
  2013. }
  2014. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2015. return ctx->mem_buffer;
  2016. }
  2017. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2018. return ctx->mem_size;
  2019. }
  2020. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2021. size_t max_size = 0;
  2022. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2023. max_size = MAX(max_size, ggml_nbytes(tensor));
  2024. }
  2025. return max_size;
  2026. }
  2027. // IMPORTANT:
  2028. // when creating "opt" tensors, always save and load the scratch buffer
  2029. // this is an error prone process, but it is necessary to support inplace
  2030. // operators when using scratch buffers
  2031. // TODO: implement a better way
  2032. static void ggml_scratch_save(struct ggml_context * ctx) {
  2033. // this is needed to allow opt tensors to store their data
  2034. // TODO: again, need to find a better way
  2035. ctx->no_alloc_save = ctx->no_alloc;
  2036. ctx->no_alloc = false;
  2037. ctx->scratch_save = ctx->scratch;
  2038. ctx->scratch.data = NULL;
  2039. }
  2040. static void ggml_scratch_load(struct ggml_context * ctx) {
  2041. ctx->no_alloc = ctx->no_alloc_save;
  2042. ctx->scratch = ctx->scratch_save;
  2043. }
  2044. ////////////////////////////////////////////////////////////////////////////////
  2045. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  2046. // always insert objects at the end of the context's memory pool
  2047. struct ggml_object * obj_cur = ctx->objects_end;
  2048. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2049. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2050. const size_t cur_end = cur_offs + cur_size;
  2051. // align to GGML_MEM_ALIGN
  2052. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  2053. char * const mem_buffer = ctx->mem_buffer;
  2054. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2055. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2056. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2057. __func__, cur_end + size_needed, ctx->mem_size);
  2058. assert(false);
  2059. return NULL;
  2060. }
  2061. *obj_new = (struct ggml_object) {
  2062. .offs = cur_end + GGML_OBJECT_SIZE,
  2063. .size = size_needed,
  2064. .next = NULL,
  2065. .type = type,
  2066. };
  2067. ggml_assert_aligned(mem_buffer + obj_new->offs);
  2068. if (obj_cur != NULL) {
  2069. obj_cur->next = obj_new;
  2070. } else {
  2071. // this is the first object in this context
  2072. ctx->objects_begin = obj_new;
  2073. }
  2074. ctx->objects_end = obj_new;
  2075. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2076. return obj_new;
  2077. }
  2078. static struct ggml_tensor * ggml_new_tensor_impl(
  2079. struct ggml_context * ctx,
  2080. enum ggml_type type,
  2081. int n_dims,
  2082. const int64_t * ne,
  2083. struct ggml_tensor * view_src,
  2084. size_t view_offs) {
  2085. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2086. // find the base tensor and absolute offset
  2087. if (view_src != NULL && view_src->view_src != NULL) {
  2088. view_offs += view_src->view_offs;
  2089. view_src = view_src->view_src;
  2090. }
  2091. size_t data_size = ggml_row_size(type, ne[0]);
  2092. for (int i = 1; i < n_dims; i++) {
  2093. data_size *= ne[i];
  2094. }
  2095. GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
  2096. void * data = view_src != NULL ? view_src->data : NULL;
  2097. if (data != NULL) {
  2098. data = (char *) data + view_offs;
  2099. }
  2100. size_t obj_alloc_size = 0;
  2101. if (view_src == NULL && !ctx->no_alloc) {
  2102. if (ctx->scratch.data != NULL) {
  2103. // allocate tensor data in the scratch buffer
  2104. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2105. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2106. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2107. assert(false);
  2108. return NULL;
  2109. }
  2110. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2111. ctx->scratch.offs += data_size;
  2112. } else {
  2113. // allocate tensor data in the context's memory pool
  2114. obj_alloc_size = data_size;
  2115. }
  2116. }
  2117. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2118. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2119. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2120. *result = (struct ggml_tensor) {
  2121. /*.type =*/ type,
  2122. /*.backend =*/ GGML_BACKEND_CPU,
  2123. /*.buffer =*/ NULL,
  2124. /*.ne =*/ { 1, 1, 1, 1 },
  2125. /*.nb =*/ { 0, 0, 0, 0 },
  2126. /*.op =*/ GGML_OP_NONE,
  2127. /*.op_params =*/ { 0 },
  2128. /*.is_param =*/ false,
  2129. /*.grad =*/ NULL,
  2130. /*.src =*/ { NULL },
  2131. /*.perf_runs =*/ 0,
  2132. /*.perf_cycles =*/ 0,
  2133. /*.perf_time_us =*/ 0,
  2134. /*.view_src =*/ view_src,
  2135. /*.view_offs =*/ view_offs,
  2136. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2137. /*.name =*/ { 0 },
  2138. /*.extra =*/ NULL,
  2139. /*.padding =*/ { 0 },
  2140. };
  2141. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2142. //ggml_assert_aligned(result->data);
  2143. for (int i = 0; i < n_dims; i++) {
  2144. result->ne[i] = ne[i];
  2145. }
  2146. result->nb[0] = ggml_type_size(type);
  2147. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2148. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2149. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2150. }
  2151. ctx->n_objects++;
  2152. return result;
  2153. }
  2154. struct ggml_tensor * ggml_new_tensor(
  2155. struct ggml_context * ctx,
  2156. enum ggml_type type,
  2157. int n_dims,
  2158. const int64_t * ne) {
  2159. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2160. }
  2161. struct ggml_tensor * ggml_new_tensor_1d(
  2162. struct ggml_context * ctx,
  2163. enum ggml_type type,
  2164. int64_t ne0) {
  2165. return ggml_new_tensor(ctx, type, 1, &ne0);
  2166. }
  2167. struct ggml_tensor * ggml_new_tensor_2d(
  2168. struct ggml_context * ctx,
  2169. enum ggml_type type,
  2170. int64_t ne0,
  2171. int64_t ne1) {
  2172. const int64_t ne[2] = { ne0, ne1 };
  2173. return ggml_new_tensor(ctx, type, 2, ne);
  2174. }
  2175. struct ggml_tensor * ggml_new_tensor_3d(
  2176. struct ggml_context * ctx,
  2177. enum ggml_type type,
  2178. int64_t ne0,
  2179. int64_t ne1,
  2180. int64_t ne2) {
  2181. const int64_t ne[3] = { ne0, ne1, ne2 };
  2182. return ggml_new_tensor(ctx, type, 3, ne);
  2183. }
  2184. struct ggml_tensor * ggml_new_tensor_4d(
  2185. struct ggml_context * ctx,
  2186. enum ggml_type type,
  2187. int64_t ne0,
  2188. int64_t ne1,
  2189. int64_t ne2,
  2190. int64_t ne3) {
  2191. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2192. return ggml_new_tensor(ctx, type, 4, ne);
  2193. }
  2194. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2195. ggml_scratch_save(ctx);
  2196. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2197. ggml_scratch_load(ctx);
  2198. ggml_set_i32(result, value);
  2199. return result;
  2200. }
  2201. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2202. ggml_scratch_save(ctx);
  2203. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2204. ggml_scratch_load(ctx);
  2205. ggml_set_f32(result, value);
  2206. return result;
  2207. }
  2208. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2209. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  2210. }
  2211. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  2212. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  2213. assert(params_size <= GGML_MAX_OP_PARAMS);
  2214. memcpy(tensor->op_params, params, params_size);
  2215. }
  2216. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  2217. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2218. return ((const int32_t *)(tensor->op_params))[i];
  2219. }
  2220. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  2221. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2222. ((int32_t *)(tensor->op_params))[i] = value;
  2223. }
  2224. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2225. memset(tensor->data, 0, ggml_nbytes(tensor));
  2226. return tensor;
  2227. }
  2228. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2229. const int n = ggml_nrows(tensor);
  2230. const int nc = tensor->ne[0];
  2231. const size_t n1 = tensor->nb[1];
  2232. char * const data = tensor->data;
  2233. switch (tensor->type) {
  2234. case GGML_TYPE_I8:
  2235. {
  2236. assert(tensor->nb[0] == sizeof(int8_t));
  2237. for (int i = 0; i < n; i++) {
  2238. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2239. }
  2240. } break;
  2241. case GGML_TYPE_I16:
  2242. {
  2243. assert(tensor->nb[0] == sizeof(int16_t));
  2244. for (int i = 0; i < n; i++) {
  2245. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2246. }
  2247. } break;
  2248. case GGML_TYPE_I32:
  2249. {
  2250. assert(tensor->nb[0] == sizeof(int32_t));
  2251. for (int i = 0; i < n; i++) {
  2252. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2253. }
  2254. } break;
  2255. case GGML_TYPE_F16:
  2256. {
  2257. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2258. for (int i = 0; i < n; i++) {
  2259. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2260. }
  2261. } break;
  2262. case GGML_TYPE_F32:
  2263. {
  2264. assert(tensor->nb[0] == sizeof(float));
  2265. for (int i = 0; i < n; i++) {
  2266. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2267. }
  2268. } break;
  2269. default:
  2270. {
  2271. GGML_ASSERT(false);
  2272. } break;
  2273. }
  2274. return tensor;
  2275. }
  2276. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2277. const int n = ggml_nrows(tensor);
  2278. const int nc = tensor->ne[0];
  2279. const size_t n1 = tensor->nb[1];
  2280. char * const data = tensor->data;
  2281. switch (tensor->type) {
  2282. case GGML_TYPE_I8:
  2283. {
  2284. assert(tensor->nb[0] == sizeof(int8_t));
  2285. for (int i = 0; i < n; i++) {
  2286. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2287. }
  2288. } break;
  2289. case GGML_TYPE_I16:
  2290. {
  2291. assert(tensor->nb[0] == sizeof(int16_t));
  2292. for (int i = 0; i < n; i++) {
  2293. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2294. }
  2295. } break;
  2296. case GGML_TYPE_I32:
  2297. {
  2298. assert(tensor->nb[0] == sizeof(int32_t));
  2299. for (int i = 0; i < n; i++) {
  2300. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2301. }
  2302. } break;
  2303. case GGML_TYPE_F16:
  2304. {
  2305. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2306. for (int i = 0; i < n; i++) {
  2307. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2308. }
  2309. } break;
  2310. case GGML_TYPE_F32:
  2311. {
  2312. assert(tensor->nb[0] == sizeof(float));
  2313. for (int i = 0; i < n; i++) {
  2314. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2315. }
  2316. } break;
  2317. default:
  2318. {
  2319. GGML_ASSERT(false);
  2320. } break;
  2321. }
  2322. return tensor;
  2323. }
  2324. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  2325. const int64_t ne2 = tensor->ne[2];
  2326. const int64_t ne1 = tensor->ne[1];
  2327. const int64_t ne0 = tensor->ne[0];
  2328. const int64_t i3_ = (i/(ne2*ne1*ne0));
  2329. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  2330. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  2331. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  2332. if (i0) {
  2333. * i0 = i0_;
  2334. }
  2335. if (i1) {
  2336. * i1 = i1_;
  2337. }
  2338. if (i2) {
  2339. * i2 = i2_;
  2340. }
  2341. if (i3) {
  2342. * i3 = i3_;
  2343. }
  2344. }
  2345. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2346. if (!ggml_is_contiguous(tensor)) {
  2347. int64_t id[4] = { 0, 0, 0, 0 };
  2348. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2349. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2350. }
  2351. switch (tensor->type) {
  2352. case GGML_TYPE_I8:
  2353. {
  2354. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2355. return ((int8_t *)(tensor->data))[i];
  2356. }
  2357. case GGML_TYPE_I16:
  2358. {
  2359. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2360. return ((int16_t *)(tensor->data))[i];
  2361. }
  2362. case GGML_TYPE_I32:
  2363. {
  2364. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2365. return ((int32_t *)(tensor->data))[i];
  2366. }
  2367. case GGML_TYPE_F16:
  2368. {
  2369. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2370. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2371. }
  2372. case GGML_TYPE_F32:
  2373. {
  2374. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2375. return ((float *)(tensor->data))[i];
  2376. }
  2377. default:
  2378. {
  2379. GGML_ASSERT(false);
  2380. }
  2381. }
  2382. return 0.0f;
  2383. }
  2384. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2385. if (!ggml_is_contiguous(tensor)) {
  2386. int64_t id[4] = { 0, 0, 0, 0 };
  2387. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2388. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2389. return;
  2390. }
  2391. switch (tensor->type) {
  2392. case GGML_TYPE_I8:
  2393. {
  2394. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2395. ((int8_t *)(tensor->data))[i] = value;
  2396. } break;
  2397. case GGML_TYPE_I16:
  2398. {
  2399. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2400. ((int16_t *)(tensor->data))[i] = value;
  2401. } break;
  2402. case GGML_TYPE_I32:
  2403. {
  2404. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2405. ((int32_t *)(tensor->data))[i] = value;
  2406. } break;
  2407. case GGML_TYPE_F16:
  2408. {
  2409. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2410. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2411. } break;
  2412. case GGML_TYPE_F32:
  2413. {
  2414. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2415. ((float *)(tensor->data))[i] = value;
  2416. } break;
  2417. default:
  2418. {
  2419. GGML_ASSERT(false);
  2420. } break;
  2421. }
  2422. }
  2423. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2424. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2425. switch (tensor->type) {
  2426. case GGML_TYPE_I8:
  2427. return ((int8_t *) data)[0];
  2428. case GGML_TYPE_I16:
  2429. return ((int16_t *) data)[0];
  2430. case GGML_TYPE_I32:
  2431. return ((int32_t *) data)[0];
  2432. case GGML_TYPE_F16:
  2433. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2434. case GGML_TYPE_F32:
  2435. return ((float *) data)[0];
  2436. default:
  2437. GGML_ASSERT(false);
  2438. }
  2439. return 0.0f;
  2440. }
  2441. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  2442. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2443. switch (tensor->type) {
  2444. case GGML_TYPE_I8:
  2445. {
  2446. ((int8_t *)(data))[0] = value;
  2447. } break;
  2448. case GGML_TYPE_I16:
  2449. {
  2450. ((int16_t *)(data))[0] = value;
  2451. } break;
  2452. case GGML_TYPE_I32:
  2453. {
  2454. ((int32_t *)(data))[0] = value;
  2455. } break;
  2456. case GGML_TYPE_F16:
  2457. {
  2458. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2459. } break;
  2460. case GGML_TYPE_F32:
  2461. {
  2462. ((float *)(data))[0] = value;
  2463. } break;
  2464. default:
  2465. {
  2466. GGML_ASSERT(false);
  2467. } break;
  2468. }
  2469. }
  2470. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2471. if (!ggml_is_contiguous(tensor)) {
  2472. int64_t id[4] = { 0, 0, 0, 0 };
  2473. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2474. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  2475. }
  2476. switch (tensor->type) {
  2477. case GGML_TYPE_I8:
  2478. {
  2479. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2480. return ((int8_t *)(tensor->data))[i];
  2481. }
  2482. case GGML_TYPE_I16:
  2483. {
  2484. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2485. return ((int16_t *)(tensor->data))[i];
  2486. }
  2487. case GGML_TYPE_I32:
  2488. {
  2489. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2490. return ((int32_t *)(tensor->data))[i];
  2491. }
  2492. case GGML_TYPE_F16:
  2493. {
  2494. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2495. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2496. }
  2497. case GGML_TYPE_F32:
  2498. {
  2499. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2500. return ((float *)(tensor->data))[i];
  2501. }
  2502. default:
  2503. {
  2504. GGML_ASSERT(false);
  2505. }
  2506. }
  2507. return 0.0f;
  2508. }
  2509. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2510. if (!ggml_is_contiguous(tensor)) {
  2511. int64_t id[4] = { 0, 0, 0, 0 };
  2512. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2513. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2514. return;
  2515. }
  2516. switch (tensor->type) {
  2517. case GGML_TYPE_I8:
  2518. {
  2519. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2520. ((int8_t *)(tensor->data))[i] = value;
  2521. } break;
  2522. case GGML_TYPE_I16:
  2523. {
  2524. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2525. ((int16_t *)(tensor->data))[i] = value;
  2526. } break;
  2527. case GGML_TYPE_I32:
  2528. {
  2529. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2530. ((int32_t *)(tensor->data))[i] = value;
  2531. } break;
  2532. case GGML_TYPE_F16:
  2533. {
  2534. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2535. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2536. } break;
  2537. case GGML_TYPE_F32:
  2538. {
  2539. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2540. ((float *)(tensor->data))[i] = value;
  2541. } break;
  2542. default:
  2543. {
  2544. GGML_ASSERT(false);
  2545. } break;
  2546. }
  2547. }
  2548. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2549. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2550. switch (tensor->type) {
  2551. case GGML_TYPE_I8:
  2552. return ((int8_t *) data)[0];
  2553. case GGML_TYPE_I16:
  2554. return ((int16_t *) data)[0];
  2555. case GGML_TYPE_I32:
  2556. return ((int32_t *) data)[0];
  2557. case GGML_TYPE_F16:
  2558. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2559. case GGML_TYPE_F32:
  2560. return ((float *) data)[0];
  2561. default:
  2562. GGML_ASSERT(false);
  2563. }
  2564. return 0.0f;
  2565. }
  2566. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  2567. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2568. switch (tensor->type) {
  2569. case GGML_TYPE_I8:
  2570. {
  2571. ((int8_t *)(data))[0] = value;
  2572. } break;
  2573. case GGML_TYPE_I16:
  2574. {
  2575. ((int16_t *)(data))[0] = value;
  2576. } break;
  2577. case GGML_TYPE_I32:
  2578. {
  2579. ((int32_t *)(data))[0] = value;
  2580. } break;
  2581. case GGML_TYPE_F16:
  2582. {
  2583. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2584. } break;
  2585. case GGML_TYPE_F32:
  2586. {
  2587. ((float *)(data))[0] = value;
  2588. } break;
  2589. default:
  2590. {
  2591. GGML_ASSERT(false);
  2592. } break;
  2593. }
  2594. }
  2595. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2596. return tensor->data;
  2597. }
  2598. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2599. assert(tensor->type == GGML_TYPE_F32);
  2600. return (float *)(tensor->data);
  2601. }
  2602. enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  2603. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  2604. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  2605. }
  2606. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  2607. return tensor->name;
  2608. }
  2609. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  2610. strncpy(tensor->name, name, sizeof(tensor->name));
  2611. tensor->name[sizeof(tensor->name) - 1] = '\0';
  2612. return tensor;
  2613. }
  2614. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  2615. va_list args;
  2616. va_start(args, fmt);
  2617. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  2618. va_end(args);
  2619. return tensor;
  2620. }
  2621. struct ggml_tensor * ggml_view_tensor(
  2622. struct ggml_context * ctx,
  2623. struct ggml_tensor * src) {
  2624. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  2625. ggml_format_name(result, "%s (view)", src->name);
  2626. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  2627. result->nb[i] = src->nb[i];
  2628. }
  2629. return result;
  2630. }
  2631. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  2632. struct ggml_object * obj = ctx->objects_begin;
  2633. char * const mem_buffer = ctx->mem_buffer;
  2634. while (obj != NULL) {
  2635. if (obj->type == GGML_OBJECT_TENSOR) {
  2636. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2637. }
  2638. obj = obj->next;
  2639. }
  2640. return NULL;
  2641. }
  2642. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  2643. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  2644. obj = obj->next;
  2645. char * const mem_buffer = ctx->mem_buffer;
  2646. while (obj != NULL) {
  2647. if (obj->type == GGML_OBJECT_TENSOR) {
  2648. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2649. }
  2650. obj = obj->next;
  2651. }
  2652. return NULL;
  2653. }
  2654. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  2655. struct ggml_object * obj = ctx->objects_begin;
  2656. char * const mem_buffer = ctx->mem_buffer;
  2657. while (obj != NULL) {
  2658. if (obj->type == GGML_OBJECT_TENSOR) {
  2659. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  2660. if (strcmp(cur->name, name) == 0) {
  2661. return cur;
  2662. }
  2663. }
  2664. obj = obj->next;
  2665. }
  2666. return NULL;
  2667. }
  2668. ////////////////////////////////////////////////////////////////////////////////
  2669. // ggml_dup
  2670. static struct ggml_tensor * ggml_dup_impl(
  2671. struct ggml_context * ctx,
  2672. struct ggml_tensor * a,
  2673. bool inplace) {
  2674. bool is_node = false;
  2675. if (!inplace && (a->grad)) {
  2676. is_node = true;
  2677. }
  2678. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2679. result->op = GGML_OP_DUP;
  2680. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2681. result->src[0] = a;
  2682. return result;
  2683. }
  2684. struct ggml_tensor * ggml_dup(
  2685. struct ggml_context * ctx,
  2686. struct ggml_tensor * a) {
  2687. return ggml_dup_impl(ctx, a, false);
  2688. }
  2689. struct ggml_tensor * ggml_dup_inplace(
  2690. struct ggml_context * ctx,
  2691. struct ggml_tensor * a) {
  2692. return ggml_dup_impl(ctx, a, true);
  2693. }
  2694. // ggml_add
  2695. static struct ggml_tensor * ggml_add_impl(
  2696. struct ggml_context * ctx,
  2697. struct ggml_tensor * a,
  2698. struct ggml_tensor * b,
  2699. bool inplace) {
  2700. GGML_ASSERT(ggml_can_repeat(b, a));
  2701. bool is_node = false;
  2702. if (!inplace && (a->grad || b->grad)) {
  2703. // TODO: support backward pass for broadcasting
  2704. GGML_ASSERT(ggml_are_same_shape(a, b));
  2705. is_node = true;
  2706. }
  2707. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2708. result->op = GGML_OP_ADD;
  2709. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2710. result->src[0] = a;
  2711. result->src[1] = b;
  2712. return result;
  2713. }
  2714. struct ggml_tensor * ggml_add(
  2715. struct ggml_context * ctx,
  2716. struct ggml_tensor * a,
  2717. struct ggml_tensor * b) {
  2718. return ggml_add_impl(ctx, a, b, false);
  2719. }
  2720. struct ggml_tensor * ggml_add_inplace(
  2721. struct ggml_context * ctx,
  2722. struct ggml_tensor * a,
  2723. struct ggml_tensor * b) {
  2724. return ggml_add_impl(ctx, a, b, true);
  2725. }
  2726. // ggml_add_cast
  2727. static struct ggml_tensor * ggml_add_cast_impl(
  2728. struct ggml_context * ctx,
  2729. struct ggml_tensor * a,
  2730. struct ggml_tensor * b,
  2731. enum ggml_type type) {
  2732. // TODO: support less-strict constraint
  2733. // GGML_ASSERT(ggml_can_repeat(b, a));
  2734. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  2735. GGML_ASSERT(ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16); // currently only supported for quantized input and f16
  2736. bool is_node = false;
  2737. if (a->grad || b->grad) {
  2738. // TODO: support backward pass for broadcasting
  2739. GGML_ASSERT(ggml_are_same_shape(a, b));
  2740. is_node = true;
  2741. }
  2742. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  2743. result->op = GGML_OP_ADD;
  2744. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  2745. result->src[0] = a;
  2746. result->src[1] = b;
  2747. return result;
  2748. }
  2749. struct ggml_tensor * ggml_add_cast(
  2750. struct ggml_context * ctx,
  2751. struct ggml_tensor * a,
  2752. struct ggml_tensor * b,
  2753. enum ggml_type type) {
  2754. return ggml_add_cast_impl(ctx, a, b, type);
  2755. }
  2756. // ggml_add1
  2757. static struct ggml_tensor * ggml_add1_impl(
  2758. struct ggml_context * ctx,
  2759. struct ggml_tensor * a,
  2760. struct ggml_tensor * b,
  2761. bool inplace) {
  2762. GGML_ASSERT(ggml_is_scalar(b));
  2763. GGML_ASSERT(ggml_is_padded_1d(a));
  2764. bool is_node = false;
  2765. if (a->grad || b->grad) {
  2766. is_node = true;
  2767. }
  2768. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2769. result->op = GGML_OP_ADD1;
  2770. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2771. result->src[0] = a;
  2772. result->src[1] = b;
  2773. return result;
  2774. }
  2775. struct ggml_tensor * ggml_add1(
  2776. struct ggml_context * ctx,
  2777. struct ggml_tensor * a,
  2778. struct ggml_tensor * b) {
  2779. return ggml_add1_impl(ctx, a, b, false);
  2780. }
  2781. struct ggml_tensor * ggml_add1_inplace(
  2782. struct ggml_context * ctx,
  2783. struct ggml_tensor * a,
  2784. struct ggml_tensor * b) {
  2785. return ggml_add1_impl(ctx, a, b, true);
  2786. }
  2787. // ggml_acc
  2788. static struct ggml_tensor * ggml_acc_impl(
  2789. struct ggml_context * ctx,
  2790. struct ggml_tensor * a,
  2791. struct ggml_tensor * b,
  2792. size_t nb1,
  2793. size_t nb2,
  2794. size_t nb3,
  2795. size_t offset,
  2796. bool inplace) {
  2797. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  2798. GGML_ASSERT(ggml_is_contiguous(a));
  2799. GGML_ASSERT(a->type == GGML_TYPE_F32);
  2800. GGML_ASSERT(b->type == GGML_TYPE_F32);
  2801. bool is_node = false;
  2802. if (!inplace && (a->grad || b->grad)) {
  2803. is_node = true;
  2804. }
  2805. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2806. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  2807. ggml_set_op_params(result, params, sizeof(params));
  2808. result->op = GGML_OP_ACC;
  2809. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2810. result->src[0] = a;
  2811. result->src[1] = b;
  2812. return result;
  2813. }
  2814. struct ggml_tensor * ggml_acc(
  2815. struct ggml_context * ctx,
  2816. struct ggml_tensor * a,
  2817. struct ggml_tensor * b,
  2818. size_t nb1,
  2819. size_t nb2,
  2820. size_t nb3,
  2821. size_t offset) {
  2822. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  2823. }
  2824. struct ggml_tensor * ggml_acc_inplace(
  2825. struct ggml_context * ctx,
  2826. struct ggml_tensor * a,
  2827. struct ggml_tensor * b,
  2828. size_t nb1,
  2829. size_t nb2,
  2830. size_t nb3,
  2831. size_t offset) {
  2832. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  2833. }
  2834. // ggml_sub
  2835. static struct ggml_tensor * ggml_sub_impl(
  2836. struct ggml_context * ctx,
  2837. struct ggml_tensor * a,
  2838. struct ggml_tensor * b,
  2839. bool inplace) {
  2840. GGML_ASSERT(ggml_are_same_shape(a, b));
  2841. bool is_node = false;
  2842. if (!inplace && (a->grad || b->grad)) {
  2843. is_node = true;
  2844. }
  2845. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2846. result->op = GGML_OP_SUB;
  2847. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2848. result->src[0] = a;
  2849. result->src[1] = b;
  2850. return result;
  2851. }
  2852. struct ggml_tensor * ggml_sub(
  2853. struct ggml_context * ctx,
  2854. struct ggml_tensor * a,
  2855. struct ggml_tensor * b) {
  2856. return ggml_sub_impl(ctx, a, b, false);
  2857. }
  2858. struct ggml_tensor * ggml_sub_inplace(
  2859. struct ggml_context * ctx,
  2860. struct ggml_tensor * a,
  2861. struct ggml_tensor * b) {
  2862. return ggml_sub_impl(ctx, a, b, true);
  2863. }
  2864. // ggml_mul
  2865. static struct ggml_tensor * ggml_mul_impl(
  2866. struct ggml_context * ctx,
  2867. struct ggml_tensor * a,
  2868. struct ggml_tensor * b,
  2869. bool inplace) {
  2870. GGML_ASSERT(ggml_can_repeat(b, a));
  2871. bool is_node = false;
  2872. if (!inplace && (a->grad || b->grad)) {
  2873. // TODO: support backward pass for broadcasting
  2874. GGML_ASSERT(ggml_are_same_shape(a, b));
  2875. is_node = true;
  2876. }
  2877. if (inplace) {
  2878. GGML_ASSERT(!is_node);
  2879. }
  2880. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2881. result->op = GGML_OP_MUL;
  2882. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2883. result->src[0] = a;
  2884. result->src[1] = b;
  2885. return result;
  2886. }
  2887. struct ggml_tensor * ggml_mul(
  2888. struct ggml_context * ctx,
  2889. struct ggml_tensor * a,
  2890. struct ggml_tensor * b) {
  2891. return ggml_mul_impl(ctx, a, b, false);
  2892. }
  2893. struct ggml_tensor * ggml_mul_inplace(
  2894. struct ggml_context * ctx,
  2895. struct ggml_tensor * a,
  2896. struct ggml_tensor * b) {
  2897. return ggml_mul_impl(ctx, a, b, true);
  2898. }
  2899. // ggml_div
  2900. static struct ggml_tensor * ggml_div_impl(
  2901. struct ggml_context * ctx,
  2902. struct ggml_tensor * a,
  2903. struct ggml_tensor * b,
  2904. bool inplace) {
  2905. GGML_ASSERT(ggml_can_repeat(b, a));
  2906. bool is_node = false;
  2907. if (!inplace && (a->grad || b->grad)) {
  2908. is_node = true;
  2909. }
  2910. if (inplace) {
  2911. GGML_ASSERT(!is_node);
  2912. }
  2913. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2914. result->op = GGML_OP_DIV;
  2915. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2916. result->src[0] = a;
  2917. result->src[1] = b;
  2918. return result;
  2919. }
  2920. struct ggml_tensor * ggml_div(
  2921. struct ggml_context * ctx,
  2922. struct ggml_tensor * a,
  2923. struct ggml_tensor * b) {
  2924. return ggml_div_impl(ctx, a, b, false);
  2925. }
  2926. struct ggml_tensor * ggml_div_inplace(
  2927. struct ggml_context * ctx,
  2928. struct ggml_tensor * a,
  2929. struct ggml_tensor * b) {
  2930. return ggml_div_impl(ctx, a, b, true);
  2931. }
  2932. // ggml_sqr
  2933. static struct ggml_tensor * ggml_sqr_impl(
  2934. struct ggml_context * ctx,
  2935. struct ggml_tensor * a,
  2936. bool inplace) {
  2937. bool is_node = false;
  2938. if (!inplace && (a->grad)) {
  2939. is_node = true;
  2940. }
  2941. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2942. result->op = GGML_OP_SQR;
  2943. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2944. result->src[0] = a;
  2945. return result;
  2946. }
  2947. struct ggml_tensor * ggml_sqr(
  2948. struct ggml_context * ctx,
  2949. struct ggml_tensor * a) {
  2950. return ggml_sqr_impl(ctx, a, false);
  2951. }
  2952. struct ggml_tensor * ggml_sqr_inplace(
  2953. struct ggml_context * ctx,
  2954. struct ggml_tensor * a) {
  2955. return ggml_sqr_impl(ctx, a, true);
  2956. }
  2957. // ggml_sqrt
  2958. static struct ggml_tensor * ggml_sqrt_impl(
  2959. struct ggml_context * ctx,
  2960. struct ggml_tensor * a,
  2961. bool inplace) {
  2962. bool is_node = false;
  2963. if (!inplace && (a->grad)) {
  2964. is_node = true;
  2965. }
  2966. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2967. result->op = GGML_OP_SQRT;
  2968. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2969. result->src[0] = a;
  2970. return result;
  2971. }
  2972. struct ggml_tensor * ggml_sqrt(
  2973. struct ggml_context * ctx,
  2974. struct ggml_tensor * a) {
  2975. return ggml_sqrt_impl(ctx, a, false);
  2976. }
  2977. struct ggml_tensor * ggml_sqrt_inplace(
  2978. struct ggml_context * ctx,
  2979. struct ggml_tensor * a) {
  2980. return ggml_sqrt_impl(ctx, a, true);
  2981. }
  2982. // ggml_log
  2983. static struct ggml_tensor * ggml_log_impl(
  2984. struct ggml_context * ctx,
  2985. struct ggml_tensor * a,
  2986. bool inplace) {
  2987. bool is_node = false;
  2988. if (!inplace && (a->grad)) {
  2989. is_node = true;
  2990. }
  2991. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2992. result->op = GGML_OP_LOG;
  2993. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2994. result->src[0] = a;
  2995. return result;
  2996. }
  2997. struct ggml_tensor * ggml_log(
  2998. struct ggml_context * ctx,
  2999. struct ggml_tensor * a) {
  3000. return ggml_log_impl(ctx, a, false);
  3001. }
  3002. struct ggml_tensor * ggml_log_inplace(
  3003. struct ggml_context * ctx,
  3004. struct ggml_tensor * a) {
  3005. return ggml_log_impl(ctx, a, true);
  3006. }
  3007. // ggml_sum
  3008. struct ggml_tensor * ggml_sum(
  3009. struct ggml_context * ctx,
  3010. struct ggml_tensor * a) {
  3011. bool is_node = false;
  3012. if (a->grad) {
  3013. is_node = true;
  3014. }
  3015. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3016. result->op = GGML_OP_SUM;
  3017. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3018. result->src[0] = a;
  3019. return result;
  3020. }
  3021. // ggml_sum_rows
  3022. struct ggml_tensor * ggml_sum_rows(
  3023. struct ggml_context * ctx,
  3024. struct ggml_tensor * a) {
  3025. bool is_node = false;
  3026. if (a->grad) {
  3027. is_node = true;
  3028. }
  3029. int64_t ne[GGML_MAX_DIMS] = { 1 };
  3030. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3031. ne[i] = a->ne[i];
  3032. }
  3033. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  3034. result->op = GGML_OP_SUM_ROWS;
  3035. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3036. result->src[0] = a;
  3037. return result;
  3038. }
  3039. // ggml_mean
  3040. struct ggml_tensor * ggml_mean(
  3041. struct ggml_context * ctx,
  3042. struct ggml_tensor * a) {
  3043. bool is_node = false;
  3044. if (a->grad) {
  3045. GGML_ASSERT(false); // TODO: implement
  3046. is_node = true;
  3047. }
  3048. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3049. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3050. result->op = GGML_OP_MEAN;
  3051. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3052. result->src[0] = a;
  3053. return result;
  3054. }
  3055. // ggml_argmax
  3056. struct ggml_tensor * ggml_argmax(
  3057. struct ggml_context * ctx,
  3058. struct ggml_tensor * a) {
  3059. GGML_ASSERT(ggml_is_matrix(a));
  3060. bool is_node = false;
  3061. if (a->grad) {
  3062. GGML_ASSERT(false);
  3063. is_node = true;
  3064. }
  3065. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  3066. result->op = GGML_OP_ARGMAX;
  3067. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3068. result->src[0] = a;
  3069. return result;
  3070. }
  3071. // ggml_repeat
  3072. struct ggml_tensor * ggml_repeat(
  3073. struct ggml_context * ctx,
  3074. struct ggml_tensor * a,
  3075. struct ggml_tensor * b) {
  3076. GGML_ASSERT(ggml_can_repeat(a, b));
  3077. bool is_node = false;
  3078. if (a->grad) {
  3079. is_node = true;
  3080. }
  3081. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3082. result->op = GGML_OP_REPEAT;
  3083. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3084. result->src[0] = a;
  3085. return result;
  3086. }
  3087. // ggml_repeat_back
  3088. struct ggml_tensor * ggml_repeat_back(
  3089. struct ggml_context * ctx,
  3090. struct ggml_tensor * a,
  3091. struct ggml_tensor * b) {
  3092. GGML_ASSERT(ggml_can_repeat(b, a));
  3093. bool is_node = false;
  3094. if (a->grad) {
  3095. is_node = true;
  3096. }
  3097. if (ggml_are_same_shape(a, b) && !is_node) {
  3098. return a;
  3099. }
  3100. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3101. result->op = GGML_OP_REPEAT_BACK;
  3102. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3103. result->src[0] = a;
  3104. return result;
  3105. }
  3106. // ggml_concat
  3107. struct ggml_tensor * ggml_concat(
  3108. struct ggml_context* ctx,
  3109. struct ggml_tensor* a,
  3110. struct ggml_tensor* b) {
  3111. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3112. bool is_node = false;
  3113. if (a->grad || b->grad) {
  3114. is_node = true;
  3115. }
  3116. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3117. result->op = GGML_OP_CONCAT;
  3118. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3119. result->src[0] = a;
  3120. result->src[1] = b;
  3121. return result;
  3122. }
  3123. // ggml_abs
  3124. struct ggml_tensor * ggml_abs(
  3125. struct ggml_context * ctx,
  3126. struct ggml_tensor * a) {
  3127. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  3128. }
  3129. struct ggml_tensor * ggml_abs_inplace(
  3130. struct ggml_context * ctx,
  3131. struct ggml_tensor * a) {
  3132. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  3133. }
  3134. // ggml_sgn
  3135. struct ggml_tensor * ggml_sgn(
  3136. struct ggml_context * ctx,
  3137. struct ggml_tensor * a) {
  3138. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  3139. }
  3140. struct ggml_tensor * ggml_sgn_inplace(
  3141. struct ggml_context * ctx,
  3142. struct ggml_tensor * a) {
  3143. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  3144. }
  3145. // ggml_neg
  3146. struct ggml_tensor * ggml_neg(
  3147. struct ggml_context * ctx,
  3148. struct ggml_tensor * a) {
  3149. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  3150. }
  3151. struct ggml_tensor * ggml_neg_inplace(
  3152. struct ggml_context * ctx,
  3153. struct ggml_tensor * a) {
  3154. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  3155. }
  3156. // ggml_step
  3157. struct ggml_tensor * ggml_step(
  3158. struct ggml_context * ctx,
  3159. struct ggml_tensor * a) {
  3160. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  3161. }
  3162. struct ggml_tensor * ggml_step_inplace(
  3163. struct ggml_context * ctx,
  3164. struct ggml_tensor * a) {
  3165. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  3166. }
  3167. // ggml_tanh
  3168. struct ggml_tensor * ggml_tanh(
  3169. struct ggml_context * ctx,
  3170. struct ggml_tensor * a) {
  3171. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  3172. }
  3173. struct ggml_tensor * ggml_tanh_inplace(
  3174. struct ggml_context * ctx,
  3175. struct ggml_tensor * a) {
  3176. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  3177. }
  3178. // ggml_elu
  3179. struct ggml_tensor * ggml_elu(
  3180. struct ggml_context * ctx,
  3181. struct ggml_tensor * a) {
  3182. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  3183. }
  3184. struct ggml_tensor * ggml_elu_inplace(
  3185. struct ggml_context * ctx,
  3186. struct ggml_tensor * a) {
  3187. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  3188. }
  3189. // ggml_relu
  3190. struct ggml_tensor * ggml_relu(
  3191. struct ggml_context * ctx,
  3192. struct ggml_tensor * a) {
  3193. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  3194. }
  3195. struct ggml_tensor * ggml_relu_inplace(
  3196. struct ggml_context * ctx,
  3197. struct ggml_tensor * a) {
  3198. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  3199. }
  3200. // ggml_leaky_relu
  3201. struct ggml_tensor * ggml_leaky_relu(
  3202. struct ggml_context * ctx,
  3203. struct ggml_tensor * a, float negative_slope, bool inplace) {
  3204. bool is_node = false;
  3205. if (!inplace && (a->grad)) {
  3206. is_node = true;
  3207. }
  3208. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3209. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  3210. result->op = GGML_OP_LEAKY_RELU;
  3211. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3212. result->src[0] = a;
  3213. return result;
  3214. }
  3215. // ggml_gelu
  3216. struct ggml_tensor * ggml_gelu(
  3217. struct ggml_context * ctx,
  3218. struct ggml_tensor * a) {
  3219. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  3220. }
  3221. struct ggml_tensor * ggml_gelu_inplace(
  3222. struct ggml_context * ctx,
  3223. struct ggml_tensor * a) {
  3224. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  3225. }
  3226. // ggml_gelu_quick
  3227. struct ggml_tensor * ggml_gelu_quick(
  3228. struct ggml_context * ctx,
  3229. struct ggml_tensor * a) {
  3230. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3231. }
  3232. struct ggml_tensor * ggml_gelu_quick_inplace(
  3233. struct ggml_context * ctx,
  3234. struct ggml_tensor * a) {
  3235. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3236. }
  3237. // ggml_silu
  3238. struct ggml_tensor * ggml_silu(
  3239. struct ggml_context * ctx,
  3240. struct ggml_tensor * a) {
  3241. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  3242. }
  3243. struct ggml_tensor * ggml_silu_inplace(
  3244. struct ggml_context * ctx,
  3245. struct ggml_tensor * a) {
  3246. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  3247. }
  3248. // ggml_silu_back
  3249. struct ggml_tensor * ggml_silu_back(
  3250. struct ggml_context * ctx,
  3251. struct ggml_tensor * a,
  3252. struct ggml_tensor * b) {
  3253. bool is_node = false;
  3254. if (a->grad || b->grad) {
  3255. // TODO: implement backward
  3256. is_node = true;
  3257. }
  3258. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3259. result->op = GGML_OP_SILU_BACK;
  3260. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3261. result->src[0] = a;
  3262. result->src[1] = b;
  3263. return result;
  3264. }
  3265. // ggml_norm
  3266. static struct ggml_tensor * ggml_norm_impl(
  3267. struct ggml_context * ctx,
  3268. struct ggml_tensor * a,
  3269. float eps,
  3270. bool inplace) {
  3271. bool is_node = false;
  3272. if (!inplace && (a->grad)) {
  3273. GGML_ASSERT(false); // TODO: implement backward
  3274. is_node = true;
  3275. }
  3276. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3277. ggml_set_op_params(result, &eps, sizeof(eps));
  3278. result->op = GGML_OP_NORM;
  3279. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3280. result->src[0] = a;
  3281. return result;
  3282. }
  3283. struct ggml_tensor * ggml_norm(
  3284. struct ggml_context * ctx,
  3285. struct ggml_tensor * a,
  3286. float eps) {
  3287. return ggml_norm_impl(ctx, a, eps, false);
  3288. }
  3289. struct ggml_tensor * ggml_norm_inplace(
  3290. struct ggml_context * ctx,
  3291. struct ggml_tensor * a,
  3292. float eps) {
  3293. return ggml_norm_impl(ctx, a, eps, true);
  3294. }
  3295. // ggml_rms_norm
  3296. static struct ggml_tensor * ggml_rms_norm_impl(
  3297. struct ggml_context * ctx,
  3298. struct ggml_tensor * a,
  3299. float eps,
  3300. bool inplace) {
  3301. bool is_node = false;
  3302. if (!inplace && (a->grad)) {
  3303. is_node = true;
  3304. }
  3305. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3306. ggml_set_op_params(result, &eps, sizeof(eps));
  3307. result->op = GGML_OP_RMS_NORM;
  3308. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3309. result->src[0] = a;
  3310. return result;
  3311. }
  3312. struct ggml_tensor * ggml_rms_norm(
  3313. struct ggml_context * ctx,
  3314. struct ggml_tensor * a,
  3315. float eps) {
  3316. return ggml_rms_norm_impl(ctx, a, eps, false);
  3317. }
  3318. struct ggml_tensor * ggml_rms_norm_inplace(
  3319. struct ggml_context * ctx,
  3320. struct ggml_tensor * a,
  3321. float eps) {
  3322. return ggml_rms_norm_impl(ctx, a, eps, true);
  3323. }
  3324. // ggml_rms_norm_back
  3325. struct ggml_tensor * ggml_rms_norm_back(
  3326. struct ggml_context * ctx,
  3327. struct ggml_tensor * a,
  3328. struct ggml_tensor * b,
  3329. float eps) {
  3330. bool is_node = false;
  3331. if (a->grad) {
  3332. // TODO: implement backward
  3333. is_node = true;
  3334. }
  3335. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3336. ggml_set_op_params(result, &eps, sizeof(eps));
  3337. result->op = GGML_OP_RMS_NORM_BACK;
  3338. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3339. result->src[0] = a;
  3340. result->src[1] = b;
  3341. return result;
  3342. }
  3343. // ggml_group_norm
  3344. static struct ggml_tensor * ggml_group_norm_impl(
  3345. struct ggml_context * ctx,
  3346. struct ggml_tensor * a,
  3347. int n_groups,
  3348. bool inplace) {
  3349. bool is_node = false;
  3350. if (!inplace && (a->grad)) {
  3351. GGML_ASSERT(false); // TODO: implement backward
  3352. is_node = true;
  3353. }
  3354. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3355. result->op_params[0] = n_groups;
  3356. result->op = GGML_OP_GROUP_NORM;
  3357. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3358. result->src[0] = a;
  3359. return result;
  3360. }
  3361. struct ggml_tensor * ggml_group_norm(
  3362. struct ggml_context * ctx,
  3363. struct ggml_tensor * a,
  3364. int n_groups) {
  3365. return ggml_group_norm_impl(ctx, a, n_groups, false);
  3366. }
  3367. struct ggml_tensor * ggml_group_norm_inplace(
  3368. struct ggml_context * ctx,
  3369. struct ggml_tensor * a,
  3370. int n_groups) {
  3371. return ggml_group_norm_impl(ctx, a, n_groups, true);
  3372. }
  3373. // ggml_mul_mat
  3374. struct ggml_tensor * ggml_mul_mat(
  3375. struct ggml_context * ctx,
  3376. struct ggml_tensor * a,
  3377. struct ggml_tensor * b) {
  3378. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3379. GGML_ASSERT(!ggml_is_transposed(a));
  3380. bool is_node = false;
  3381. if (a->grad || b->grad) {
  3382. is_node = true;
  3383. }
  3384. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3385. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3386. result->op = GGML_OP_MUL_MAT;
  3387. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3388. result->src[0] = a;
  3389. result->src[1] = b;
  3390. return result;
  3391. }
  3392. void ggml_mul_mat_set_prec(
  3393. struct ggml_tensor * a,
  3394. enum ggml_prec prec) {
  3395. const int32_t prec_i32 = (int32_t) prec;
  3396. ggml_set_op_params_i32(a, 0, prec_i32);
  3397. }
  3398. // ggml_mul_mat_id
  3399. struct ggml_tensor * ggml_mul_mat_id(
  3400. struct ggml_context * ctx,
  3401. struct ggml_tensor * const as[],
  3402. int n_as,
  3403. struct ggml_tensor * ids,
  3404. int id,
  3405. struct ggml_tensor * b) {
  3406. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  3407. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1);
  3408. GGML_ASSERT(ids->ne[1] == b->ne[1]);
  3409. GGML_ASSERT(ids->ne[2] == b->ne[2] && ids->ne[3] == b->ne[3]);
  3410. GGML_ASSERT(n_as > 0 && n_as <= GGML_MAX_SRC - 2);
  3411. GGML_ASSERT(id >= 0 && id < ids->ne[0]);
  3412. bool is_node = false;
  3413. if (as[0]->grad || b->grad) {
  3414. is_node = true;
  3415. }
  3416. const int64_t ne[4] = { as[0]->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3417. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3418. ggml_set_op_params_i32(result, 0, id);
  3419. ggml_set_op_params_i32(result, 1, n_as);
  3420. result->op = GGML_OP_MUL_MAT_ID;
  3421. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3422. result->src[0] = ids;
  3423. result->src[1] = b;
  3424. for (int i = 0; i < n_as; i++) {
  3425. struct ggml_tensor * a = as[i];
  3426. GGML_ASSERT(ggml_are_same_shape(as[0], a));
  3427. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3428. GGML_ASSERT(!ggml_is_transposed(a));
  3429. result->src[i + 2] = a;
  3430. }
  3431. return result;
  3432. }
  3433. // ggml_out_prod
  3434. struct ggml_tensor * ggml_out_prod(
  3435. struct ggml_context * ctx,
  3436. struct ggml_tensor * a,
  3437. struct ggml_tensor * b) {
  3438. GGML_ASSERT(ggml_can_out_prod(a, b));
  3439. GGML_ASSERT(!ggml_is_transposed(a));
  3440. bool is_node = false;
  3441. if (a->grad || b->grad) {
  3442. is_node = true;
  3443. }
  3444. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  3445. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  3446. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3447. result->op = GGML_OP_OUT_PROD;
  3448. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3449. result->src[0] = a;
  3450. result->src[1] = b;
  3451. return result;
  3452. }
  3453. // ggml_scale
  3454. static struct ggml_tensor * ggml_scale_impl(
  3455. struct ggml_context * ctx,
  3456. struct ggml_tensor * a,
  3457. float s,
  3458. bool inplace) {
  3459. GGML_ASSERT(ggml_is_padded_1d(a));
  3460. bool is_node = false;
  3461. if (a->grad) {
  3462. is_node = true;
  3463. }
  3464. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3465. ggml_set_op_params(result, &s, sizeof(s));
  3466. result->op = GGML_OP_SCALE;
  3467. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3468. result->src[0] = a;
  3469. return result;
  3470. }
  3471. struct ggml_tensor * ggml_scale(
  3472. struct ggml_context * ctx,
  3473. struct ggml_tensor * a,
  3474. float s) {
  3475. return ggml_scale_impl(ctx, a, s, false);
  3476. }
  3477. struct ggml_tensor * ggml_scale_inplace(
  3478. struct ggml_context * ctx,
  3479. struct ggml_tensor * a,
  3480. float s) {
  3481. return ggml_scale_impl(ctx, a, s, true);
  3482. }
  3483. // ggml_set
  3484. static struct ggml_tensor * ggml_set_impl(
  3485. struct ggml_context * ctx,
  3486. struct ggml_tensor * a,
  3487. struct ggml_tensor * b,
  3488. size_t nb1,
  3489. size_t nb2,
  3490. size_t nb3,
  3491. size_t offset,
  3492. bool inplace) {
  3493. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  3494. bool is_node = false;
  3495. if (a->grad || b->grad) {
  3496. is_node = true;
  3497. }
  3498. // make a view of the destination
  3499. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3500. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3501. ggml_set_op_params(result, params, sizeof(params));
  3502. result->op = GGML_OP_SET;
  3503. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3504. result->src[0] = a;
  3505. result->src[1] = b;
  3506. return result;
  3507. }
  3508. struct ggml_tensor * ggml_set(
  3509. struct ggml_context * ctx,
  3510. struct ggml_tensor * a,
  3511. struct ggml_tensor * b,
  3512. size_t nb1,
  3513. size_t nb2,
  3514. size_t nb3,
  3515. size_t offset) {
  3516. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3517. }
  3518. struct ggml_tensor * ggml_set_inplace(
  3519. struct ggml_context * ctx,
  3520. struct ggml_tensor * a,
  3521. struct ggml_tensor * b,
  3522. size_t nb1,
  3523. size_t nb2,
  3524. size_t nb3,
  3525. size_t offset) {
  3526. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3527. }
  3528. struct ggml_tensor * ggml_set_1d(
  3529. struct ggml_context * ctx,
  3530. struct ggml_tensor * a,
  3531. struct ggml_tensor * b,
  3532. size_t offset) {
  3533. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  3534. }
  3535. struct ggml_tensor * ggml_set_1d_inplace(
  3536. struct ggml_context * ctx,
  3537. struct ggml_tensor * a,
  3538. struct ggml_tensor * b,
  3539. size_t offset) {
  3540. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  3541. }
  3542. struct ggml_tensor * ggml_set_2d(
  3543. struct ggml_context * ctx,
  3544. struct ggml_tensor * a,
  3545. struct ggml_tensor * b,
  3546. size_t nb1,
  3547. size_t offset) {
  3548. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3549. }
  3550. struct ggml_tensor * ggml_set_2d_inplace(
  3551. struct ggml_context * ctx,
  3552. struct ggml_tensor * a,
  3553. struct ggml_tensor * b,
  3554. size_t nb1,
  3555. size_t offset) {
  3556. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  3557. }
  3558. // ggml_cpy
  3559. static struct ggml_tensor * ggml_cpy_impl(
  3560. struct ggml_context * ctx,
  3561. struct ggml_tensor * a,
  3562. struct ggml_tensor * b) {
  3563. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3564. bool is_node = false;
  3565. if (a->grad || b->grad) {
  3566. // inplace is false and either one have a grad
  3567. is_node = true;
  3568. }
  3569. // make a view of the destination
  3570. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3571. if (strlen(b->name) > 0) {
  3572. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  3573. } else {
  3574. ggml_format_name(result, "%s (copy)", a->name);
  3575. }
  3576. result->op = GGML_OP_CPY;
  3577. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3578. result->src[0] = a;
  3579. result->src[1] = b;
  3580. return result;
  3581. }
  3582. struct ggml_tensor * ggml_cpy(
  3583. struct ggml_context * ctx,
  3584. struct ggml_tensor * a,
  3585. struct ggml_tensor * b) {
  3586. return ggml_cpy_impl(ctx, a, b);
  3587. }
  3588. // ggml_cont
  3589. static struct ggml_tensor * ggml_cont_impl(
  3590. struct ggml_context * ctx,
  3591. struct ggml_tensor * a) {
  3592. bool is_node = false;
  3593. if (a->grad) {
  3594. is_node = true;
  3595. }
  3596. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3597. ggml_format_name(result, "%s (cont)", a->name);
  3598. result->op = GGML_OP_CONT;
  3599. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3600. result->src[0] = a;
  3601. return result;
  3602. }
  3603. struct ggml_tensor * ggml_cont(
  3604. struct ggml_context * ctx,
  3605. struct ggml_tensor * a) {
  3606. return ggml_cont_impl(ctx, a);
  3607. }
  3608. // make contiguous, with new shape
  3609. GGML_API struct ggml_tensor * ggml_cont_1d(
  3610. struct ggml_context * ctx,
  3611. struct ggml_tensor * a,
  3612. int64_t ne0) {
  3613. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  3614. }
  3615. GGML_API struct ggml_tensor * ggml_cont_2d(
  3616. struct ggml_context * ctx,
  3617. struct ggml_tensor * a,
  3618. int64_t ne0,
  3619. int64_t ne1) {
  3620. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  3621. }
  3622. GGML_API struct ggml_tensor * ggml_cont_3d(
  3623. struct ggml_context * ctx,
  3624. struct ggml_tensor * a,
  3625. int64_t ne0,
  3626. int64_t ne1,
  3627. int64_t ne2) {
  3628. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  3629. }
  3630. struct ggml_tensor * ggml_cont_4d(
  3631. struct ggml_context * ctx,
  3632. struct ggml_tensor * a,
  3633. int64_t ne0,
  3634. int64_t ne1,
  3635. int64_t ne2,
  3636. int64_t ne3) {
  3637. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  3638. bool is_node = false;
  3639. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  3640. ggml_format_name(result, "%s (cont)", a->name);
  3641. result->op = GGML_OP_CONT;
  3642. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3643. result->src[0] = a;
  3644. return result;
  3645. }
  3646. // ggml_reshape
  3647. struct ggml_tensor * ggml_reshape(
  3648. struct ggml_context * ctx,
  3649. struct ggml_tensor * a,
  3650. struct ggml_tensor * b) {
  3651. GGML_ASSERT(ggml_is_contiguous(a));
  3652. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  3653. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3654. bool is_node = false;
  3655. if (a->grad) {
  3656. is_node = true;
  3657. }
  3658. if (b->grad) {
  3659. // gradient propagation is not supported
  3660. //GGML_ASSERT(false);
  3661. }
  3662. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  3663. ggml_format_name(result, "%s (reshaped)", a->name);
  3664. result->op = GGML_OP_RESHAPE;
  3665. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3666. result->src[0] = a;
  3667. return result;
  3668. }
  3669. struct ggml_tensor * ggml_reshape_1d(
  3670. struct ggml_context * ctx,
  3671. struct ggml_tensor * a,
  3672. int64_t ne0) {
  3673. GGML_ASSERT(ggml_is_contiguous(a));
  3674. GGML_ASSERT(ggml_nelements(a) == ne0);
  3675. bool is_node = false;
  3676. if (a->grad) {
  3677. is_node = true;
  3678. }
  3679. const int64_t ne[1] = { ne0 };
  3680. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  3681. ggml_format_name(result, "%s (reshaped)", a->name);
  3682. result->op = GGML_OP_RESHAPE;
  3683. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3684. result->src[0] = a;
  3685. return result;
  3686. }
  3687. struct ggml_tensor * ggml_reshape_2d(
  3688. struct ggml_context * ctx,
  3689. struct ggml_tensor * a,
  3690. int64_t ne0,
  3691. int64_t ne1) {
  3692. GGML_ASSERT(ggml_is_contiguous(a));
  3693. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3694. bool is_node = false;
  3695. if (a->grad) {
  3696. is_node = true;
  3697. }
  3698. const int64_t ne[2] = { ne0, ne1 };
  3699. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  3700. ggml_format_name(result, "%s (reshaped)", a->name);
  3701. result->op = GGML_OP_RESHAPE;
  3702. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3703. result->src[0] = a;
  3704. return result;
  3705. }
  3706. struct ggml_tensor * ggml_reshape_3d(
  3707. struct ggml_context * ctx,
  3708. struct ggml_tensor * a,
  3709. int64_t ne0,
  3710. int64_t ne1,
  3711. int64_t ne2) {
  3712. GGML_ASSERT(ggml_is_contiguous(a));
  3713. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3714. bool is_node = false;
  3715. if (a->grad) {
  3716. is_node = true;
  3717. }
  3718. const int64_t ne[3] = { ne0, ne1, ne2 };
  3719. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  3720. ggml_format_name(result, "%s (reshaped)", a->name);
  3721. result->op = GGML_OP_RESHAPE;
  3722. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3723. result->src[0] = a;
  3724. return result;
  3725. }
  3726. struct ggml_tensor * ggml_reshape_4d(
  3727. struct ggml_context * ctx,
  3728. struct ggml_tensor * a,
  3729. int64_t ne0,
  3730. int64_t ne1,
  3731. int64_t ne2,
  3732. int64_t ne3) {
  3733. GGML_ASSERT(ggml_is_contiguous(a));
  3734. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  3735. bool is_node = false;
  3736. if (a->grad) {
  3737. is_node = true;
  3738. }
  3739. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3740. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  3741. ggml_format_name(result, "%s (reshaped)", a->name);
  3742. result->op = GGML_OP_RESHAPE;
  3743. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3744. result->src[0] = a;
  3745. return result;
  3746. }
  3747. static struct ggml_tensor * ggml_view_impl(
  3748. struct ggml_context * ctx,
  3749. struct ggml_tensor * a,
  3750. int n_dims,
  3751. const int64_t * ne,
  3752. size_t offset) {
  3753. bool is_node = false;
  3754. if (a->grad) {
  3755. is_node = true;
  3756. }
  3757. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  3758. ggml_format_name(result, "%s (view)", a->name);
  3759. ggml_set_op_params(result, &offset, sizeof(offset));
  3760. result->op = GGML_OP_VIEW;
  3761. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3762. result->src[0] = a;
  3763. return result;
  3764. }
  3765. // ggml_view_1d
  3766. struct ggml_tensor * ggml_view_1d(
  3767. struct ggml_context * ctx,
  3768. struct ggml_tensor * a,
  3769. int64_t ne0,
  3770. size_t offset) {
  3771. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  3772. return result;
  3773. }
  3774. // ggml_view_2d
  3775. struct ggml_tensor * ggml_view_2d(
  3776. struct ggml_context * ctx,
  3777. struct ggml_tensor * a,
  3778. int64_t ne0,
  3779. int64_t ne1,
  3780. size_t nb1,
  3781. size_t offset) {
  3782. const int64_t ne[2] = { ne0, ne1 };
  3783. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  3784. result->nb[1] = nb1;
  3785. result->nb[2] = result->nb[1]*ne1;
  3786. result->nb[3] = result->nb[2];
  3787. return result;
  3788. }
  3789. // ggml_view_3d
  3790. struct ggml_tensor * ggml_view_3d(
  3791. struct ggml_context * ctx,
  3792. struct ggml_tensor * a,
  3793. int64_t ne0,
  3794. int64_t ne1,
  3795. int64_t ne2,
  3796. size_t nb1,
  3797. size_t nb2,
  3798. size_t offset) {
  3799. const int64_t ne[3] = { ne0, ne1, ne2 };
  3800. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  3801. result->nb[1] = nb1;
  3802. result->nb[2] = nb2;
  3803. result->nb[3] = result->nb[2]*ne2;
  3804. return result;
  3805. }
  3806. // ggml_view_4d
  3807. struct ggml_tensor * ggml_view_4d(
  3808. struct ggml_context * ctx,
  3809. struct ggml_tensor * a,
  3810. int64_t ne0,
  3811. int64_t ne1,
  3812. int64_t ne2,
  3813. int64_t ne3,
  3814. size_t nb1,
  3815. size_t nb2,
  3816. size_t nb3,
  3817. size_t offset) {
  3818. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3819. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  3820. result->nb[1] = nb1;
  3821. result->nb[2] = nb2;
  3822. result->nb[3] = nb3;
  3823. return result;
  3824. }
  3825. // ggml_permute
  3826. struct ggml_tensor * ggml_permute(
  3827. struct ggml_context * ctx,
  3828. struct ggml_tensor * a,
  3829. int axis0,
  3830. int axis1,
  3831. int axis2,
  3832. int axis3) {
  3833. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3834. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3835. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3836. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3837. GGML_ASSERT(axis0 != axis1);
  3838. GGML_ASSERT(axis0 != axis2);
  3839. GGML_ASSERT(axis0 != axis3);
  3840. GGML_ASSERT(axis1 != axis2);
  3841. GGML_ASSERT(axis1 != axis3);
  3842. GGML_ASSERT(axis2 != axis3);
  3843. bool is_node = false;
  3844. if (a->grad) {
  3845. is_node = true;
  3846. }
  3847. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3848. ggml_format_name(result, "%s (permuted)", a->name);
  3849. int ne[GGML_MAX_DIMS];
  3850. int nb[GGML_MAX_DIMS];
  3851. ne[axis0] = a->ne[0];
  3852. ne[axis1] = a->ne[1];
  3853. ne[axis2] = a->ne[2];
  3854. ne[axis3] = a->ne[3];
  3855. nb[axis0] = a->nb[0];
  3856. nb[axis1] = a->nb[1];
  3857. nb[axis2] = a->nb[2];
  3858. nb[axis3] = a->nb[3];
  3859. result->ne[0] = ne[0];
  3860. result->ne[1] = ne[1];
  3861. result->ne[2] = ne[2];
  3862. result->ne[3] = ne[3];
  3863. result->nb[0] = nb[0];
  3864. result->nb[1] = nb[1];
  3865. result->nb[2] = nb[2];
  3866. result->nb[3] = nb[3];
  3867. result->op = GGML_OP_PERMUTE;
  3868. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3869. result->src[0] = a;
  3870. int32_t params[] = { axis0, axis1, axis2, axis3 };
  3871. ggml_set_op_params(result, params, sizeof(params));
  3872. return result;
  3873. }
  3874. // ggml_transpose
  3875. struct ggml_tensor * ggml_transpose(
  3876. struct ggml_context * ctx,
  3877. struct ggml_tensor * a) {
  3878. bool is_node = false;
  3879. if (a->grad) {
  3880. is_node = true;
  3881. }
  3882. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3883. ggml_format_name(result, "%s (transposed)", a->name);
  3884. result->ne[0] = a->ne[1];
  3885. result->ne[1] = a->ne[0];
  3886. result->nb[0] = a->nb[1];
  3887. result->nb[1] = a->nb[0];
  3888. result->op = GGML_OP_TRANSPOSE;
  3889. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3890. result->src[0] = a;
  3891. return result;
  3892. }
  3893. // ggml_get_rows
  3894. struct ggml_tensor * ggml_get_rows(
  3895. struct ggml_context * ctx,
  3896. struct ggml_tensor * a,
  3897. struct ggml_tensor * b) {
  3898. GGML_ASSERT(a->ne[2] == b->ne[1]);
  3899. GGML_ASSERT(b->ne[3] == 1);
  3900. GGML_ASSERT(b->type == GGML_TYPE_I32);
  3901. bool is_node = false;
  3902. if (a->grad || b->grad) {
  3903. is_node = true;
  3904. }
  3905. // TODO: implement non F32 return
  3906. enum ggml_type type = GGML_TYPE_F32;
  3907. if (a->type == GGML_TYPE_I32) {
  3908. type = a->type;
  3909. }
  3910. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  3911. result->op = GGML_OP_GET_ROWS;
  3912. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3913. result->src[0] = a;
  3914. result->src[1] = b;
  3915. return result;
  3916. }
  3917. // ggml_get_rows_back
  3918. struct ggml_tensor * ggml_get_rows_back(
  3919. struct ggml_context * ctx,
  3920. struct ggml_tensor * a,
  3921. struct ggml_tensor * b,
  3922. struct ggml_tensor * c) {
  3923. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3924. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  3925. bool is_node = false;
  3926. if (a->grad || b->grad) {
  3927. is_node = true;
  3928. }
  3929. // TODO: implement non F32 return
  3930. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3931. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  3932. result->op = GGML_OP_GET_ROWS_BACK;
  3933. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3934. result->src[0] = a;
  3935. result->src[1] = b;
  3936. return result;
  3937. }
  3938. // ggml_diag
  3939. struct ggml_tensor * ggml_diag(
  3940. struct ggml_context * ctx,
  3941. struct ggml_tensor * a) {
  3942. GGML_ASSERT(a->ne[1] == 1);
  3943. bool is_node = false;
  3944. if (a->grad) {
  3945. is_node = true;
  3946. }
  3947. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  3948. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  3949. result->op = GGML_OP_DIAG;
  3950. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3951. result->src[0] = a;
  3952. return result;
  3953. }
  3954. // ggml_diag_mask_inf
  3955. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  3956. struct ggml_context * ctx,
  3957. struct ggml_tensor * a,
  3958. int n_past,
  3959. bool inplace) {
  3960. bool is_node = false;
  3961. if (a->grad) {
  3962. is_node = true;
  3963. }
  3964. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3965. int32_t params[] = { n_past };
  3966. ggml_set_op_params(result, params, sizeof(params));
  3967. result->op = GGML_OP_DIAG_MASK_INF;
  3968. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3969. result->src[0] = a;
  3970. return result;
  3971. }
  3972. struct ggml_tensor * ggml_diag_mask_inf(
  3973. struct ggml_context * ctx,
  3974. struct ggml_tensor * a,
  3975. int n_past) {
  3976. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  3977. }
  3978. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  3979. struct ggml_context * ctx,
  3980. struct ggml_tensor * a,
  3981. int n_past) {
  3982. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  3983. }
  3984. // ggml_diag_mask_zero
  3985. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  3986. struct ggml_context * ctx,
  3987. struct ggml_tensor * a,
  3988. int n_past,
  3989. bool inplace) {
  3990. bool is_node = false;
  3991. if (a->grad) {
  3992. is_node = true;
  3993. }
  3994. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3995. int32_t params[] = { n_past };
  3996. ggml_set_op_params(result, params, sizeof(params));
  3997. result->op = GGML_OP_DIAG_MASK_ZERO;
  3998. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3999. result->src[0] = a;
  4000. return result;
  4001. }
  4002. struct ggml_tensor * ggml_diag_mask_zero(
  4003. struct ggml_context * ctx,
  4004. struct ggml_tensor * a,
  4005. int n_past) {
  4006. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4007. }
  4008. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4009. struct ggml_context * ctx,
  4010. struct ggml_tensor * a,
  4011. int n_past) {
  4012. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4013. }
  4014. // ggml_soft_max
  4015. static struct ggml_tensor * ggml_soft_max_impl(
  4016. struct ggml_context * ctx,
  4017. struct ggml_tensor * a,
  4018. struct ggml_tensor * mask,
  4019. float scale,
  4020. bool inplace) {
  4021. GGML_ASSERT(ggml_is_contiguous(a));
  4022. if (mask) {
  4023. GGML_ASSERT(ggml_is_contiguous(mask));
  4024. GGML_ASSERT(mask->ne[2] == 1);
  4025. GGML_ASSERT(mask->ne[3] == 1);
  4026. GGML_ASSERT(ggml_can_repeat_rows(mask, a));
  4027. }
  4028. bool is_node = false;
  4029. if (a->grad) {
  4030. is_node = true;
  4031. }
  4032. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4033. float params[] = { scale };
  4034. ggml_set_op_params(result, params, sizeof(params));
  4035. result->op = GGML_OP_SOFT_MAX;
  4036. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4037. result->src[0] = a;
  4038. result->src[1] = mask;
  4039. return result;
  4040. }
  4041. struct ggml_tensor * ggml_soft_max(
  4042. struct ggml_context * ctx,
  4043. struct ggml_tensor * a) {
  4044. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, false);
  4045. }
  4046. struct ggml_tensor * ggml_soft_max_inplace(
  4047. struct ggml_context * ctx,
  4048. struct ggml_tensor * a) {
  4049. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, true);
  4050. }
  4051. struct ggml_tensor * ggml_soft_max_ext(
  4052. struct ggml_context * ctx,
  4053. struct ggml_tensor * a,
  4054. struct ggml_tensor * mask,
  4055. float scale) {
  4056. return ggml_soft_max_impl(ctx, a, mask, scale, false);
  4057. }
  4058. // ggml_soft_max_back
  4059. static struct ggml_tensor * ggml_soft_max_back_impl(
  4060. struct ggml_context * ctx,
  4061. struct ggml_tensor * a,
  4062. struct ggml_tensor * b,
  4063. bool inplace) {
  4064. bool is_node = false;
  4065. if (a->grad || b->grad) {
  4066. is_node = true; // TODO : implement backward pass
  4067. }
  4068. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4069. result->op = GGML_OP_SOFT_MAX_BACK;
  4070. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4071. result->src[0] = a;
  4072. result->src[1] = b;
  4073. return result;
  4074. }
  4075. struct ggml_tensor * ggml_soft_max_back(
  4076. struct ggml_context * ctx,
  4077. struct ggml_tensor * a,
  4078. struct ggml_tensor * b) {
  4079. return ggml_soft_max_back_impl(ctx, a, b, false);
  4080. }
  4081. struct ggml_tensor * ggml_soft_max_back_inplace(
  4082. struct ggml_context * ctx,
  4083. struct ggml_tensor * a,
  4084. struct ggml_tensor * b) {
  4085. return ggml_soft_max_back_impl(ctx, a, b, true);
  4086. }
  4087. // ggml_rope
  4088. static struct ggml_tensor * ggml_rope_impl(
  4089. struct ggml_context * ctx,
  4090. struct ggml_tensor * a,
  4091. struct ggml_tensor * b,
  4092. int n_dims,
  4093. int mode,
  4094. int n_ctx,
  4095. int n_orig_ctx,
  4096. float freq_base,
  4097. float freq_scale,
  4098. float ext_factor,
  4099. float attn_factor,
  4100. float beta_fast,
  4101. float beta_slow,
  4102. float xpos_base,
  4103. bool xpos_down,
  4104. bool inplace) {
  4105. GGML_ASSERT(ggml_is_vector(b));
  4106. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4107. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4108. bool is_node = false;
  4109. if (a->grad) {
  4110. is_node = true;
  4111. }
  4112. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4113. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4114. memcpy(params + 5, &freq_base, sizeof(float));
  4115. memcpy(params + 6, &freq_scale, sizeof(float));
  4116. memcpy(params + 7, &ext_factor, sizeof(float));
  4117. memcpy(params + 8, &attn_factor, sizeof(float));
  4118. memcpy(params + 9, &beta_fast, sizeof(float));
  4119. memcpy(params + 10, &beta_slow, sizeof(float));
  4120. memcpy(params + 11, &xpos_base, sizeof(float));
  4121. memcpy(params + 12, &xpos_down, sizeof(bool));
  4122. ggml_set_op_params(result, params, sizeof(params));
  4123. result->op = GGML_OP_ROPE;
  4124. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4125. result->src[0] = a;
  4126. result->src[1] = b;
  4127. return result;
  4128. }
  4129. struct ggml_tensor * ggml_rope(
  4130. struct ggml_context * ctx,
  4131. struct ggml_tensor * a,
  4132. struct ggml_tensor * b,
  4133. int n_dims,
  4134. int mode,
  4135. int n_ctx) {
  4136. return ggml_rope_impl(
  4137. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  4138. );
  4139. }
  4140. struct ggml_tensor * ggml_rope_inplace(
  4141. struct ggml_context * ctx,
  4142. struct ggml_tensor * a,
  4143. struct ggml_tensor * b,
  4144. int n_dims,
  4145. int mode,
  4146. int n_ctx) {
  4147. return ggml_rope_impl(
  4148. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  4149. );
  4150. }
  4151. struct ggml_tensor * ggml_rope_custom(
  4152. struct ggml_context * ctx,
  4153. struct ggml_tensor * a,
  4154. struct ggml_tensor * b,
  4155. int n_dims,
  4156. int mode,
  4157. int n_ctx,
  4158. int n_orig_ctx,
  4159. float freq_base,
  4160. float freq_scale,
  4161. float ext_factor,
  4162. float attn_factor,
  4163. float beta_fast,
  4164. float beta_slow) {
  4165. return ggml_rope_impl(
  4166. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4167. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  4168. );
  4169. }
  4170. struct ggml_tensor * ggml_rope_custom_inplace(
  4171. struct ggml_context * ctx,
  4172. struct ggml_tensor * a,
  4173. struct ggml_tensor * b,
  4174. int n_dims,
  4175. int mode,
  4176. int n_ctx,
  4177. int n_orig_ctx,
  4178. float freq_base,
  4179. float freq_scale,
  4180. float ext_factor,
  4181. float attn_factor,
  4182. float beta_fast,
  4183. float beta_slow) {
  4184. return ggml_rope_impl(
  4185. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4186. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  4187. );
  4188. }
  4189. struct ggml_tensor * ggml_rope_xpos_inplace(
  4190. struct ggml_context * ctx,
  4191. struct ggml_tensor * a,
  4192. struct ggml_tensor * b,
  4193. int n_dims,
  4194. float base,
  4195. bool down) {
  4196. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  4197. }
  4198. // ggml_rope_back
  4199. struct ggml_tensor * ggml_rope_back(
  4200. struct ggml_context * ctx,
  4201. struct ggml_tensor * a,
  4202. struct ggml_tensor * b,
  4203. int n_dims,
  4204. int mode,
  4205. int n_ctx,
  4206. int n_orig_ctx,
  4207. float freq_base,
  4208. float freq_scale,
  4209. float ext_factor,
  4210. float attn_factor,
  4211. float beta_fast,
  4212. float beta_slow,
  4213. float xpos_base,
  4214. bool xpos_down) {
  4215. GGML_ASSERT(ggml_is_vector(b));
  4216. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4217. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4218. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  4219. bool is_node = false;
  4220. if (a->grad) {
  4221. is_node = false; // TODO: implement backward
  4222. }
  4223. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4224. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4225. memcpy(params + 5, &freq_base, sizeof(float));
  4226. memcpy(params + 6, &freq_scale, sizeof(float));
  4227. memcpy(params + 7, &ext_factor, sizeof(float));
  4228. memcpy(params + 8, &attn_factor, sizeof(float));
  4229. memcpy(params + 9, &beta_fast, sizeof(float));
  4230. memcpy(params + 10, &beta_slow, sizeof(float));
  4231. memcpy(params + 11, &xpos_base, sizeof(float));
  4232. memcpy(params + 12, &xpos_down, sizeof(bool));
  4233. ggml_set_op_params(result, params, sizeof(params));
  4234. result->op = GGML_OP_ROPE_BACK;
  4235. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4236. result->src[0] = a;
  4237. result->src[1] = b;
  4238. return result;
  4239. }
  4240. // ggml_alibi
  4241. struct ggml_tensor * ggml_alibi(
  4242. struct ggml_context * ctx,
  4243. struct ggml_tensor * a,
  4244. int n_past,
  4245. int n_head,
  4246. float bias_max) {
  4247. GGML_ASSERT(n_past >= 0);
  4248. bool is_node = false;
  4249. if (a->grad) {
  4250. GGML_ASSERT(false); // TODO: implement backward
  4251. is_node = true;
  4252. }
  4253. // TODO: when implement backward, fix this:
  4254. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4255. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4256. int32_t op_params[3] = { n_past, n_head };
  4257. memcpy(op_params + 2, &bias_max, sizeof(float));
  4258. ggml_set_op_params(result, op_params, sizeof(op_params));
  4259. result->op = GGML_OP_ALIBI;
  4260. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4261. result->src[0] = a;
  4262. return result;
  4263. }
  4264. // ggml_clamp
  4265. struct ggml_tensor * ggml_clamp(
  4266. struct ggml_context * ctx,
  4267. struct ggml_tensor * a,
  4268. float min,
  4269. float max) {
  4270. bool is_node = false;
  4271. if (a->grad) {
  4272. GGML_ASSERT(false); // TODO: implement backward
  4273. is_node = true;
  4274. }
  4275. // TODO: when implement backward, fix this:
  4276. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4277. float params[] = { min, max };
  4278. ggml_set_op_params(result, params, sizeof(params));
  4279. result->op = GGML_OP_CLAMP;
  4280. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4281. result->src[0] = a;
  4282. return result;
  4283. }
  4284. // ggml_conv_1d
  4285. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4286. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4287. }
  4288. GGML_API struct ggml_tensor * ggml_conv_1d(
  4289. struct ggml_context * ctx,
  4290. struct ggml_tensor * a,
  4291. struct ggml_tensor * b,
  4292. int s0,
  4293. int p0,
  4294. int d0) {
  4295. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false); // [N, OL, IC * K]
  4296. struct ggml_tensor * result =
  4297. ggml_mul_mat(ctx,
  4298. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  4299. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  4300. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  4301. return result;
  4302. }
  4303. // ggml_conv_1d_ph
  4304. struct ggml_tensor* ggml_conv_1d_ph(
  4305. struct ggml_context * ctx,
  4306. struct ggml_tensor * a,
  4307. struct ggml_tensor * b,
  4308. int s,
  4309. int d) {
  4310. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  4311. }
  4312. // ggml_conv_transpose_1d
  4313. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4314. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  4315. }
  4316. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  4317. struct ggml_context * ctx,
  4318. struct ggml_tensor * a,
  4319. struct ggml_tensor * b,
  4320. int s0,
  4321. int p0,
  4322. int d0) {
  4323. GGML_ASSERT(ggml_is_matrix(b));
  4324. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4325. GGML_ASSERT(a->ne[3] == 1);
  4326. GGML_ASSERT(p0 == 0);
  4327. GGML_ASSERT(d0 == 1);
  4328. bool is_node = false;
  4329. if (a->grad || b->grad) {
  4330. GGML_ASSERT(false); // TODO: implement backward
  4331. is_node = true;
  4332. }
  4333. const int64_t ne[4] = {
  4334. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  4335. a->ne[1], b->ne[2], 1,
  4336. };
  4337. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4338. int32_t params[] = { s0, p0, d0 };
  4339. ggml_set_op_params(result, params, sizeof(params));
  4340. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  4341. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4342. result->src[0] = a;
  4343. result->src[1] = b;
  4344. return result;
  4345. }
  4346. // ggml_conv_2d
  4347. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  4348. // a: [OC,IC, KH, KW]
  4349. // b: [N, IC, IH, IW]
  4350. // result: [N, OH, OW, IC*KH*KW]
  4351. struct ggml_tensor * ggml_im2col(
  4352. struct ggml_context * ctx,
  4353. struct ggml_tensor * a,
  4354. struct ggml_tensor * b,
  4355. int s0,
  4356. int s1,
  4357. int p0,
  4358. int p1,
  4359. int d0,
  4360. int d1,
  4361. bool is_2D) {
  4362. if(is_2D) {
  4363. GGML_ASSERT(a->ne[2] == b->ne[2]);
  4364. } else {
  4365. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4366. }
  4367. bool is_node = false;
  4368. if (a->grad || b->grad) {
  4369. GGML_ASSERT(false); // TODO: implement backward
  4370. is_node = true;
  4371. }
  4372. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  4373. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  4374. const int64_t ne[4] = {
  4375. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  4376. OW,
  4377. is_2D ? OH : b->ne[2],
  4378. is_2D ? b->ne[3] : 1,
  4379. };
  4380. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne);
  4381. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  4382. ggml_set_op_params(result, params, sizeof(params));
  4383. result->op = GGML_OP_IM2COL;
  4384. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4385. result->src[0] = a;
  4386. result->src[1] = b;
  4387. return result;
  4388. }
  4389. // a: [OC,IC, KH, KW]
  4390. // b: [N, IC, IH, IW]
  4391. // result: [N, OC, OH, OW]
  4392. struct ggml_tensor * ggml_conv_2d(
  4393. struct ggml_context * ctx,
  4394. struct ggml_tensor * a,
  4395. struct ggml_tensor * b,
  4396. int s0,
  4397. int s1,
  4398. int p0,
  4399. int p1,
  4400. int d0,
  4401. int d1) {
  4402. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true); // [N, OH, OW, IC * KH * KW]
  4403. struct ggml_tensor * result =
  4404. ggml_mul_mat(ctx,
  4405. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  4406. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  4407. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], a->ne[3], im2col->ne[3]); // [N, OC, OH, OW]
  4408. return result;
  4409. }
  4410. // ggml_conv_2d_sk_p0
  4411. struct ggml_tensor * ggml_conv_2d_sk_p0(
  4412. struct ggml_context * ctx,
  4413. struct ggml_tensor * a,
  4414. struct ggml_tensor * b) {
  4415. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  4416. }
  4417. // ggml_conv_2d_s1_ph
  4418. struct ggml_tensor * ggml_conv_2d_s1_ph(
  4419. struct ggml_context * ctx,
  4420. struct ggml_tensor * a,
  4421. struct ggml_tensor * b) {
  4422. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  4423. }
  4424. // ggml_conv_transpose_2d_p0
  4425. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  4426. return (ins - 1) * s - 2 * p + ks;
  4427. }
  4428. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  4429. struct ggml_context * ctx,
  4430. struct ggml_tensor * a,
  4431. struct ggml_tensor * b,
  4432. int stride) {
  4433. GGML_ASSERT(a->ne[3] == b->ne[2]);
  4434. bool is_node = false;
  4435. if (a->grad || b->grad) {
  4436. GGML_ASSERT(false); // TODO: implement backward
  4437. is_node = true;
  4438. }
  4439. const int64_t ne[4] = {
  4440. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  4441. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  4442. a->ne[2], b->ne[3],
  4443. };
  4444. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4445. ggml_set_op_params_i32(result, 0, stride);
  4446. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  4447. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4448. result->src[0] = a;
  4449. result->src[1] = b;
  4450. return result;
  4451. }
  4452. // ggml_pool_*
  4453. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  4454. return (ins + 2 * p - ks) / s + 1;
  4455. }
  4456. // ggml_pool_1d
  4457. struct ggml_tensor * ggml_pool_1d(
  4458. struct ggml_context * ctx,
  4459. struct ggml_tensor * a,
  4460. enum ggml_op_pool op,
  4461. int k0,
  4462. int s0,
  4463. int p0) {
  4464. bool is_node = false;
  4465. if (a->grad) {
  4466. GGML_ASSERT(false); // TODO: implement backward
  4467. is_node = true;
  4468. }
  4469. const int64_t ne[2] = {
  4470. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4471. a->ne[1],
  4472. };
  4473. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4474. int32_t params[] = { op, k0, s0, p0 };
  4475. ggml_set_op_params(result, params, sizeof(params));
  4476. result->op = GGML_OP_POOL_1D;
  4477. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4478. result->src[0] = a;
  4479. return result;
  4480. }
  4481. // ggml_pool_2d
  4482. struct ggml_tensor * ggml_pool_2d(
  4483. struct ggml_context * ctx,
  4484. struct ggml_tensor * a,
  4485. enum ggml_op_pool op,
  4486. int k0,
  4487. int k1,
  4488. int s0,
  4489. int s1,
  4490. float p0,
  4491. float p1) {
  4492. bool is_node = false;
  4493. if (a->grad) {
  4494. GGML_ASSERT(false); // TODO: implement backward
  4495. is_node = true;
  4496. }
  4497. const int64_t ne[3] = {
  4498. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4499. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  4500. a->ne[2],
  4501. };
  4502. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4503. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  4504. ggml_set_op_params(result, params, sizeof(params));
  4505. result->op = GGML_OP_POOL_2D;
  4506. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4507. result->src[0] = a;
  4508. return result;
  4509. }
  4510. // ggml_upscale
  4511. static struct ggml_tensor * ggml_upscale_impl(
  4512. struct ggml_context * ctx,
  4513. struct ggml_tensor * a,
  4514. int scale_factor) {
  4515. bool is_node = false;
  4516. if (a->grad) {
  4517. GGML_ASSERT(false); // TODO: implement backward
  4518. is_node = true;
  4519. }
  4520. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4521. a->ne[0] * scale_factor,
  4522. a->ne[1] * scale_factor,
  4523. a->ne[2], a->ne[3]);
  4524. result->op = GGML_OP_UPSCALE;
  4525. result->op_params[0] = scale_factor;
  4526. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4527. result->src[0] = a;
  4528. return result;
  4529. }
  4530. struct ggml_tensor * ggml_pad(
  4531. struct ggml_context * ctx,
  4532. struct ggml_tensor * a,
  4533. int p0, int p1, int p2, int p3) {
  4534. bool is_node = false;
  4535. if (a->grad) {
  4536. GGML_ASSERT(false); // TODO: implement backward
  4537. is_node = true;
  4538. }
  4539. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4540. a->ne[0] + p0,
  4541. a->ne[1] + p1,
  4542. a->ne[2] + p2,
  4543. a->ne[3] + p3);
  4544. result->op = GGML_OP_PAD;
  4545. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4546. result->src[0] = a;
  4547. return result;
  4548. }
  4549. struct ggml_tensor * ggml_upscale(
  4550. struct ggml_context * ctx,
  4551. struct ggml_tensor * a,
  4552. int scale_factor) {
  4553. return ggml_upscale_impl(ctx, a, scale_factor);
  4554. }
  4555. // ggml_argsort
  4556. struct ggml_tensor * ggml_argsort(
  4557. struct ggml_context * ctx,
  4558. struct ggml_tensor * a,
  4559. enum ggml_sort_order order) {
  4560. bool is_node = false;
  4561. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  4562. ggml_set_op_params_i32(result, 0, (int32_t) order);
  4563. result->op = GGML_OP_ARGSORT;
  4564. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4565. result->src[0] = a;
  4566. return result;
  4567. }
  4568. // ggml_top_k
  4569. struct ggml_tensor * ggml_top_k(
  4570. struct ggml_context * ctx,
  4571. struct ggml_tensor * a,
  4572. int k) {
  4573. GGML_ASSERT(a->ne[0] >= k);
  4574. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_DESC);
  4575. result = ggml_view_4d(ctx, result,
  4576. k, result->ne[1], result->ne[2], result->ne[3],
  4577. result->nb[1], result->nb[2], result->nb[3],
  4578. 0);
  4579. return result;
  4580. }
  4581. // ggml_flash_attn
  4582. struct ggml_tensor * ggml_flash_attn(
  4583. struct ggml_context * ctx,
  4584. struct ggml_tensor * q,
  4585. struct ggml_tensor * k,
  4586. struct ggml_tensor * v,
  4587. bool masked) {
  4588. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4589. // TODO: check if vT can be multiplied by (k*qT)
  4590. bool is_node = false;
  4591. if (q->grad || k->grad || v->grad) {
  4592. is_node = true;
  4593. }
  4594. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4595. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne);
  4596. int32_t t = masked ? 1 : 0;
  4597. ggml_set_op_params(result, &t, sizeof(t));
  4598. result->op = GGML_OP_FLASH_ATTN;
  4599. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4600. result->src[0] = q;
  4601. result->src[1] = k;
  4602. result->src[2] = v;
  4603. return result;
  4604. }
  4605. // ggml_flash_ff
  4606. struct ggml_tensor * ggml_flash_ff(
  4607. struct ggml_context * ctx,
  4608. struct ggml_tensor * a,
  4609. struct ggml_tensor * b0,
  4610. struct ggml_tensor * b1,
  4611. struct ggml_tensor * c0,
  4612. struct ggml_tensor * c1) {
  4613. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4614. // TODO: more checks
  4615. bool is_node = false;
  4616. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4617. is_node = true;
  4618. }
  4619. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4620. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne);
  4621. result->op = GGML_OP_FLASH_FF;
  4622. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4623. result->src[0] = a;
  4624. result->src[1] = b0;
  4625. result->src[2] = b1;
  4626. result->src[3] = c0;
  4627. result->src[4] = c1;
  4628. return result;
  4629. }
  4630. // ggml_flash_attn_back
  4631. struct ggml_tensor * ggml_flash_attn_back(
  4632. struct ggml_context * ctx,
  4633. struct ggml_tensor * q,
  4634. struct ggml_tensor * k,
  4635. struct ggml_tensor * v,
  4636. struct ggml_tensor * d,
  4637. bool masked) {
  4638. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4639. // TODO: check if vT can be multiplied by (k*qT)
  4640. // d shape [D,N,ne2,ne3]
  4641. // q shape [D,N,ne2,ne3]
  4642. // k shape [D,M,kvne2,ne3]
  4643. // v shape [M,D,kvne2,ne3]
  4644. const int64_t D = q->ne[0];
  4645. const int64_t N = q->ne[1];
  4646. const int64_t M = k->ne[1];
  4647. const int64_t ne2 = q->ne[2];
  4648. const int64_t ne3 = q->ne[3];
  4649. const int64_t kvne2 = k->ne[2];
  4650. GGML_ASSERT(k->ne[0] == D);
  4651. GGML_ASSERT(v->ne[0] == M);
  4652. GGML_ASSERT(v->ne[1] == D);
  4653. GGML_ASSERT(d->ne[0] == D);
  4654. GGML_ASSERT(d->ne[1] == N);
  4655. GGML_ASSERT(k->ne[2] == kvne2);
  4656. GGML_ASSERT(k->ne[3] == ne3);
  4657. GGML_ASSERT(v->ne[2] == kvne2);
  4658. GGML_ASSERT(v->ne[3] == ne3);
  4659. GGML_ASSERT(d->ne[2] == ne2);
  4660. GGML_ASSERT(d->ne[3] == ne3);
  4661. GGML_ASSERT(ne2 % kvne2 == 0);
  4662. bool is_node = false;
  4663. if (q->grad || k->grad || v->grad) {
  4664. // when using this operation (in backwards pass) these grads are set.
  4665. // we don't want to create (big) grad of our result, so is_node is false.
  4666. is_node = false;
  4667. }
  4668. // store gradients of q, k and v as continuous tensors concatenated in result.
  4669. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  4670. const int64_t elem_q = ggml_nelements(q);
  4671. const int64_t elem_k = ggml_nelements(k);
  4672. const int64_t elem_v = ggml_nelements(v);
  4673. enum ggml_type result_type = GGML_TYPE_F32;
  4674. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  4675. const size_t tsize = ggml_type_size(result_type);
  4676. const size_t offs_q = 0;
  4677. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  4678. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  4679. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  4680. const size_t nelements = (end + tsize - 1)/tsize;
  4681. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  4682. int32_t masked_i = masked ? 1 : 0;
  4683. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  4684. result->op = GGML_OP_FLASH_ATTN_BACK;
  4685. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4686. result->src[0] = q;
  4687. result->src[1] = k;
  4688. result->src[2] = v;
  4689. result->src[3] = d;
  4690. return result;
  4691. }
  4692. // ggml_win_part
  4693. struct ggml_tensor * ggml_win_part(
  4694. struct ggml_context * ctx,
  4695. struct ggml_tensor * a,
  4696. int w) {
  4697. GGML_ASSERT(a->ne[3] == 1);
  4698. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4699. bool is_node = false;
  4700. if (a->grad) {
  4701. GGML_ASSERT(false); // TODO: implement backward
  4702. is_node = true;
  4703. }
  4704. // padding
  4705. const int px = (w - a->ne[1]%w)%w;
  4706. const int py = (w - a->ne[2]%w)%w;
  4707. const int npx = (px + a->ne[1])/w;
  4708. const int npy = (py + a->ne[2])/w;
  4709. const int np = npx*npy;
  4710. const int64_t ne[4] = { a->ne[0], w, w, np, };
  4711. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4712. int32_t params[] = { npx, npy, w };
  4713. ggml_set_op_params(result, params, sizeof(params));
  4714. result->op = GGML_OP_WIN_PART;
  4715. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4716. result->src[0] = a;
  4717. return result;
  4718. }
  4719. // ggml_win_unpart
  4720. struct ggml_tensor * ggml_win_unpart(
  4721. struct ggml_context * ctx,
  4722. struct ggml_tensor * a,
  4723. int w0,
  4724. int h0,
  4725. int w) {
  4726. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4727. bool is_node = false;
  4728. if (a->grad) {
  4729. GGML_ASSERT(false); // TODO: implement backward
  4730. is_node = true;
  4731. }
  4732. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  4733. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4734. int32_t params[] = { w };
  4735. ggml_set_op_params(result, params, sizeof(params));
  4736. result->op = GGML_OP_WIN_UNPART;
  4737. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4738. result->src[0] = a;
  4739. return result;
  4740. }
  4741. // ggml_get_rel_pos
  4742. struct ggml_tensor * ggml_get_rel_pos(
  4743. struct ggml_context * ctx,
  4744. struct ggml_tensor * a,
  4745. int qh,
  4746. int kh) {
  4747. GGML_ASSERT(qh == kh);
  4748. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  4749. bool is_node = false;
  4750. if (a->grad) {
  4751. GGML_ASSERT(false); // TODO: implement backward
  4752. is_node = true;
  4753. }
  4754. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  4755. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  4756. result->op = GGML_OP_GET_REL_POS;
  4757. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4758. result->src[0] = a;
  4759. return result;
  4760. }
  4761. // ggml_add_rel_pos
  4762. static struct ggml_tensor * ggml_add_rel_pos_impl(
  4763. struct ggml_context * ctx,
  4764. struct ggml_tensor * a,
  4765. struct ggml_tensor * pw,
  4766. struct ggml_tensor * ph,
  4767. bool inplace) {
  4768. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  4769. GGML_ASSERT(ggml_is_contiguous(a));
  4770. GGML_ASSERT(ggml_is_contiguous(pw));
  4771. GGML_ASSERT(ggml_is_contiguous(ph));
  4772. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  4773. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  4774. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  4775. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  4776. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  4777. bool is_node = false;
  4778. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  4779. is_node = true;
  4780. }
  4781. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4782. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  4783. result->op = GGML_OP_ADD_REL_POS;
  4784. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4785. result->src[0] = a;
  4786. result->src[1] = pw;
  4787. result->src[2] = ph;
  4788. return result;
  4789. }
  4790. struct ggml_tensor * ggml_add_rel_pos(
  4791. struct ggml_context * ctx,
  4792. struct ggml_tensor * a,
  4793. struct ggml_tensor * pw,
  4794. struct ggml_tensor * ph) {
  4795. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  4796. }
  4797. struct ggml_tensor * ggml_add_rel_pos_inplace(
  4798. struct ggml_context * ctx,
  4799. struct ggml_tensor * a,
  4800. struct ggml_tensor * pw,
  4801. struct ggml_tensor * ph) {
  4802. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  4803. }
  4804. // gmml_unary
  4805. static struct ggml_tensor * ggml_unary_impl(
  4806. struct ggml_context * ctx,
  4807. struct ggml_tensor * a,
  4808. enum ggml_unary_op op,
  4809. bool inplace) {
  4810. bool is_node = false;
  4811. if (!inplace && (a->grad)) {
  4812. is_node = true;
  4813. }
  4814. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4815. ggml_set_op_params_i32(result, 0, (int32_t) op);
  4816. result->op = GGML_OP_UNARY;
  4817. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4818. result->src[0] = a;
  4819. return result;
  4820. }
  4821. struct ggml_tensor * ggml_unary(
  4822. struct ggml_context * ctx,
  4823. struct ggml_tensor * a,
  4824. enum ggml_unary_op op) {
  4825. return ggml_unary_impl(ctx, a, op, false);
  4826. }
  4827. struct ggml_tensor * ggml_unary_inplace(
  4828. struct ggml_context * ctx,
  4829. struct ggml_tensor * a,
  4830. enum ggml_unary_op op) {
  4831. return ggml_unary_impl(ctx, a, op, true);
  4832. }
  4833. // ggml_map_unary
  4834. static struct ggml_tensor * ggml_map_unary_impl_f32(
  4835. struct ggml_context * ctx,
  4836. struct ggml_tensor * a,
  4837. const ggml_unary_op_f32_t fun,
  4838. bool inplace) {
  4839. bool is_node = false;
  4840. if (!inplace && a->grad) {
  4841. is_node = true;
  4842. }
  4843. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4844. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4845. result->op = GGML_OP_MAP_UNARY;
  4846. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4847. result->src[0] = a;
  4848. return result;
  4849. }
  4850. struct ggml_tensor * ggml_map_unary_f32(
  4851. struct ggml_context * ctx,
  4852. struct ggml_tensor * a,
  4853. const ggml_unary_op_f32_t fun) {
  4854. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4855. }
  4856. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4857. struct ggml_context * ctx,
  4858. struct ggml_tensor * a,
  4859. const ggml_unary_op_f32_t fun) {
  4860. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4861. }
  4862. // ggml_map_binary
  4863. static struct ggml_tensor * ggml_map_binary_impl_f32(
  4864. struct ggml_context * ctx,
  4865. struct ggml_tensor * a,
  4866. struct ggml_tensor * b,
  4867. const ggml_binary_op_f32_t fun,
  4868. bool inplace) {
  4869. GGML_ASSERT(ggml_are_same_shape(a, b));
  4870. bool is_node = false;
  4871. if (!inplace && (a->grad || b->grad)) {
  4872. is_node = true;
  4873. }
  4874. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4875. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4876. result->op = GGML_OP_MAP_BINARY;
  4877. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4878. result->src[0] = a;
  4879. result->src[1] = b;
  4880. return result;
  4881. }
  4882. struct ggml_tensor * ggml_map_binary_f32(
  4883. struct ggml_context * ctx,
  4884. struct ggml_tensor * a,
  4885. struct ggml_tensor * b,
  4886. const ggml_binary_op_f32_t fun) {
  4887. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  4888. }
  4889. struct ggml_tensor * ggml_map_binary_inplace_f32(
  4890. struct ggml_context * ctx,
  4891. struct ggml_tensor * a,
  4892. struct ggml_tensor * b,
  4893. const ggml_binary_op_f32_t fun) {
  4894. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  4895. }
  4896. // ggml_map_custom1_f32
  4897. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  4898. struct ggml_context * ctx,
  4899. struct ggml_tensor * a,
  4900. const ggml_custom1_op_f32_t fun,
  4901. bool inplace) {
  4902. bool is_node = false;
  4903. if (!inplace && a->grad) {
  4904. is_node = true;
  4905. }
  4906. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4907. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4908. result->op = GGML_OP_MAP_CUSTOM1_F32;
  4909. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4910. result->src[0] = a;
  4911. return result;
  4912. }
  4913. struct ggml_tensor * ggml_map_custom1_f32(
  4914. struct ggml_context * ctx,
  4915. struct ggml_tensor * a,
  4916. const ggml_custom1_op_f32_t fun) {
  4917. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  4918. }
  4919. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  4920. struct ggml_context * ctx,
  4921. struct ggml_tensor * a,
  4922. const ggml_custom1_op_f32_t fun) {
  4923. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  4924. }
  4925. // ggml_map_custom2_f32
  4926. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  4927. struct ggml_context * ctx,
  4928. struct ggml_tensor * a,
  4929. struct ggml_tensor * b,
  4930. const ggml_custom2_op_f32_t fun,
  4931. bool inplace) {
  4932. bool is_node = false;
  4933. if (!inplace && (a->grad || b->grad)) {
  4934. is_node = true;
  4935. }
  4936. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4937. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4938. result->op = GGML_OP_MAP_CUSTOM2_F32;
  4939. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4940. result->src[0] = a;
  4941. result->src[1] = b;
  4942. return result;
  4943. }
  4944. struct ggml_tensor * ggml_map_custom2_f32(
  4945. struct ggml_context * ctx,
  4946. struct ggml_tensor * a,
  4947. struct ggml_tensor * b,
  4948. const ggml_custom2_op_f32_t fun) {
  4949. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  4950. }
  4951. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  4952. struct ggml_context * ctx,
  4953. struct ggml_tensor * a,
  4954. struct ggml_tensor * b,
  4955. const ggml_custom2_op_f32_t fun) {
  4956. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  4957. }
  4958. // ggml_map_custom3_f32
  4959. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  4960. struct ggml_context * ctx,
  4961. struct ggml_tensor * a,
  4962. struct ggml_tensor * b,
  4963. struct ggml_tensor * c,
  4964. const ggml_custom3_op_f32_t fun,
  4965. bool inplace) {
  4966. bool is_node = false;
  4967. if (!inplace && (a->grad || b->grad || c->grad)) {
  4968. is_node = true;
  4969. }
  4970. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4971. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4972. result->op = GGML_OP_MAP_CUSTOM3_F32;
  4973. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4974. result->src[0] = a;
  4975. result->src[1] = b;
  4976. result->src[2] = c;
  4977. return result;
  4978. }
  4979. struct ggml_tensor * ggml_map_custom3_f32(
  4980. struct ggml_context * ctx,
  4981. struct ggml_tensor * a,
  4982. struct ggml_tensor * b,
  4983. struct ggml_tensor * c,
  4984. const ggml_custom3_op_f32_t fun) {
  4985. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  4986. }
  4987. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  4988. struct ggml_context * ctx,
  4989. struct ggml_tensor * a,
  4990. struct ggml_tensor * b,
  4991. struct ggml_tensor * c,
  4992. const ggml_custom3_op_f32_t fun) {
  4993. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  4994. }
  4995. // ggml_map_custom1
  4996. struct ggml_map_custom1_op_params {
  4997. ggml_custom1_op_t fun;
  4998. int n_tasks;
  4999. void * userdata;
  5000. };
  5001. static struct ggml_tensor * ggml_map_custom1_impl(
  5002. struct ggml_context * ctx,
  5003. struct ggml_tensor * a,
  5004. const ggml_custom1_op_t fun,
  5005. int n_tasks,
  5006. void * userdata,
  5007. bool inplace) {
  5008. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5009. bool is_node = false;
  5010. if (!inplace && a->grad) {
  5011. is_node = true;
  5012. }
  5013. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5014. struct ggml_map_custom1_op_params params = {
  5015. /*.fun =*/ fun,
  5016. /*.n_tasks =*/ n_tasks,
  5017. /*.userdata =*/ userdata
  5018. };
  5019. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5020. result->op = GGML_OP_MAP_CUSTOM1;
  5021. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5022. result->src[0] = a;
  5023. return result;
  5024. }
  5025. struct ggml_tensor * ggml_map_custom1(
  5026. struct ggml_context * ctx,
  5027. struct ggml_tensor * a,
  5028. const ggml_custom1_op_t fun,
  5029. int n_tasks,
  5030. void * userdata) {
  5031. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  5032. }
  5033. struct ggml_tensor * ggml_map_custom1_inplace(
  5034. struct ggml_context * ctx,
  5035. struct ggml_tensor * a,
  5036. const ggml_custom1_op_t fun,
  5037. int n_tasks,
  5038. void * userdata) {
  5039. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  5040. }
  5041. // ggml_map_custom2
  5042. struct ggml_map_custom2_op_params {
  5043. ggml_custom2_op_t fun;
  5044. int n_tasks;
  5045. void * userdata;
  5046. };
  5047. static struct ggml_tensor * ggml_map_custom2_impl(
  5048. struct ggml_context * ctx,
  5049. struct ggml_tensor * a,
  5050. struct ggml_tensor * b,
  5051. const ggml_custom2_op_t fun,
  5052. int n_tasks,
  5053. void * userdata,
  5054. bool inplace) {
  5055. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5056. bool is_node = false;
  5057. if (!inplace && (a->grad || b->grad)) {
  5058. is_node = true;
  5059. }
  5060. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5061. struct ggml_map_custom2_op_params params = {
  5062. /*.fun =*/ fun,
  5063. /*.n_tasks =*/ n_tasks,
  5064. /*.userdata =*/ userdata
  5065. };
  5066. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5067. result->op = GGML_OP_MAP_CUSTOM2;
  5068. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5069. result->src[0] = a;
  5070. result->src[1] = b;
  5071. return result;
  5072. }
  5073. struct ggml_tensor * ggml_map_custom2(
  5074. struct ggml_context * ctx,
  5075. struct ggml_tensor * a,
  5076. struct ggml_tensor * b,
  5077. const ggml_custom2_op_t fun,
  5078. int n_tasks,
  5079. void * userdata) {
  5080. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  5081. }
  5082. struct ggml_tensor * ggml_map_custom2_inplace(
  5083. struct ggml_context * ctx,
  5084. struct ggml_tensor * a,
  5085. struct ggml_tensor * b,
  5086. const ggml_custom2_op_t fun,
  5087. int n_tasks,
  5088. void * userdata) {
  5089. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  5090. }
  5091. // ggml_map_custom3
  5092. struct ggml_map_custom3_op_params {
  5093. ggml_custom3_op_t fun;
  5094. int n_tasks;
  5095. void * userdata;
  5096. };
  5097. static struct ggml_tensor * ggml_map_custom3_impl(
  5098. struct ggml_context * ctx,
  5099. struct ggml_tensor * a,
  5100. struct ggml_tensor * b,
  5101. struct ggml_tensor * c,
  5102. const ggml_custom3_op_t fun,
  5103. int n_tasks,
  5104. void * userdata,
  5105. bool inplace) {
  5106. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5107. bool is_node = false;
  5108. if (!inplace && (a->grad || b->grad || c->grad)) {
  5109. is_node = true;
  5110. }
  5111. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5112. struct ggml_map_custom3_op_params params = {
  5113. /*.fun =*/ fun,
  5114. /*.n_tasks =*/ n_tasks,
  5115. /*.userdata =*/ userdata
  5116. };
  5117. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5118. result->op = GGML_OP_MAP_CUSTOM3;
  5119. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5120. result->src[0] = a;
  5121. result->src[1] = b;
  5122. result->src[2] = c;
  5123. return result;
  5124. }
  5125. struct ggml_tensor * ggml_map_custom3(
  5126. struct ggml_context * ctx,
  5127. struct ggml_tensor * a,
  5128. struct ggml_tensor * b,
  5129. struct ggml_tensor * c,
  5130. const ggml_custom3_op_t fun,
  5131. int n_tasks,
  5132. void * userdata) {
  5133. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  5134. }
  5135. struct ggml_tensor * ggml_map_custom3_inplace(
  5136. struct ggml_context * ctx,
  5137. struct ggml_tensor * a,
  5138. struct ggml_tensor * b,
  5139. struct ggml_tensor * c,
  5140. const ggml_custom3_op_t fun,
  5141. int n_tasks,
  5142. void * userdata) {
  5143. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  5144. }
  5145. // ggml_cross_entropy_loss
  5146. struct ggml_tensor * ggml_cross_entropy_loss(
  5147. struct ggml_context * ctx,
  5148. struct ggml_tensor * a,
  5149. struct ggml_tensor * b) {
  5150. GGML_ASSERT(ggml_are_same_shape(a, b));
  5151. bool is_node = false;
  5152. if (a->grad || b->grad) {
  5153. is_node = true;
  5154. }
  5155. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5156. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5157. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5158. result->src[0] = a;
  5159. result->src[1] = b;
  5160. return result;
  5161. }
  5162. // ggml_cross_entropy_loss_back
  5163. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5164. struct ggml_context * ctx,
  5165. struct ggml_tensor * a,
  5166. struct ggml_tensor * b,
  5167. struct ggml_tensor * c) {
  5168. GGML_ASSERT(ggml_are_same_shape(a, b));
  5169. GGML_ASSERT(ggml_is_scalar(c));
  5170. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5171. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5172. result->grad = NULL;
  5173. result->src[0] = a;
  5174. result->src[1] = b;
  5175. result->src[2] = c;
  5176. return result;
  5177. }
  5178. ////////////////////////////////////////////////////////////////////////////////
  5179. void ggml_set_param(
  5180. struct ggml_context * ctx,
  5181. struct ggml_tensor * tensor) {
  5182. tensor->is_param = true;
  5183. GGML_ASSERT(tensor->grad == NULL);
  5184. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5185. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  5186. }
  5187. // ggml_compute_forward_dup
  5188. static void ggml_compute_forward_dup_same_cont(
  5189. const struct ggml_compute_params * params,
  5190. const struct ggml_tensor * src0,
  5191. struct ggml_tensor * dst) {
  5192. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5193. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5194. GGML_ASSERT(src0->type == dst->type);
  5195. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5196. return;
  5197. }
  5198. const size_t nb00 = src0->nb[0];
  5199. const size_t nb0 = dst->nb[0];
  5200. const int ith = params->ith; // thread index
  5201. const int nth = params->nth; // number of threads
  5202. // parallelize by elements
  5203. const int ne = ggml_nelements(dst);
  5204. const int dr = (ne + nth - 1) / nth;
  5205. const int ie0 = dr * ith;
  5206. const int ie1 = MIN(ie0 + dr, ne);
  5207. if (ie0 < ie1) {
  5208. memcpy(
  5209. ((char *) dst->data + ie0*nb0),
  5210. ((char *) src0->data + ie0*nb00),
  5211. (ie1 - ie0) * ggml_type_size(src0->type));
  5212. }
  5213. }
  5214. static void ggml_compute_forward_dup_f16(
  5215. const struct ggml_compute_params * params,
  5216. const struct ggml_tensor * src0,
  5217. struct ggml_tensor * dst) {
  5218. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5219. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5220. return;
  5221. }
  5222. GGML_TENSOR_UNARY_OP_LOCALS
  5223. const int ith = params->ith; // thread index
  5224. const int nth = params->nth; // number of threads
  5225. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5226. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5227. return;
  5228. }
  5229. // parallelize by rows
  5230. const int nr = ne01;
  5231. // number of rows per thread
  5232. const int dr = (nr + nth - 1) / nth;
  5233. // row range for this thread
  5234. const int ir0 = dr * ith;
  5235. const int ir1 = MIN(ir0 + dr, nr);
  5236. if (src0->type == dst->type &&
  5237. ne00 == ne0 &&
  5238. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5239. // copy by rows
  5240. const size_t rs = ne00*nb00;
  5241. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5242. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5243. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5244. memcpy(
  5245. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5246. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5247. rs);
  5248. }
  5249. }
  5250. }
  5251. return;
  5252. }
  5253. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5254. if (ggml_is_contiguous(dst)) {
  5255. if (nb00 == sizeof(ggml_fp16_t)) {
  5256. if (dst->type == GGML_TYPE_F16) {
  5257. size_t id = 0;
  5258. const size_t rs = ne00 * nb00;
  5259. char * dst_ptr = (char *) dst->data;
  5260. for (int i03 = 0; i03 < ne03; i03++) {
  5261. for (int i02 = 0; i02 < ne02; i02++) {
  5262. id += rs * ir0;
  5263. for (int i01 = ir0; i01 < ir1; i01++) {
  5264. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5265. memcpy(dst_ptr + id, src0_ptr, rs);
  5266. id += rs;
  5267. }
  5268. id += rs * (ne01 - ir1);
  5269. }
  5270. }
  5271. } else if (dst->type == GGML_TYPE_F32) {
  5272. size_t id = 0;
  5273. float * dst_ptr = (float *) dst->data;
  5274. for (int i03 = 0; i03 < ne03; i03++) {
  5275. for (int i02 = 0; i02 < ne02; i02++) {
  5276. id += ne00 * ir0;
  5277. for (int i01 = ir0; i01 < ir1; i01++) {
  5278. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5279. for (int i00 = 0; i00 < ne00; i00++) {
  5280. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5281. id++;
  5282. }
  5283. }
  5284. id += ne00 * (ne01 - ir1);
  5285. }
  5286. }
  5287. } else if (type_traits[dst->type].from_float) {
  5288. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5289. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5290. size_t id = 0;
  5291. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5292. char * dst_ptr = (char *) dst->data;
  5293. for (int i03 = 0; i03 < ne03; i03++) {
  5294. for (int i02 = 0; i02 < ne02; i02++) {
  5295. id += rs * ir0;
  5296. for (int i01 = ir0; i01 < ir1; i01++) {
  5297. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5298. for (int i00 = 0; i00 < ne00; i00++) {
  5299. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5300. }
  5301. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5302. id += rs;
  5303. }
  5304. id += rs * (ne01 - ir1);
  5305. }
  5306. }
  5307. } else {
  5308. GGML_ASSERT(false); // TODO: implement
  5309. }
  5310. } else {
  5311. //printf("%s: this is not optimal - fix me\n", __func__);
  5312. if (dst->type == GGML_TYPE_F32) {
  5313. size_t id = 0;
  5314. float * dst_ptr = (float *) dst->data;
  5315. for (int i03 = 0; i03 < ne03; i03++) {
  5316. for (int i02 = 0; i02 < ne02; i02++) {
  5317. id += ne00 * ir0;
  5318. for (int i01 = ir0; i01 < ir1; i01++) {
  5319. for (int i00 = 0; i00 < ne00; i00++) {
  5320. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5321. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5322. id++;
  5323. }
  5324. }
  5325. id += ne00 * (ne01 - ir1);
  5326. }
  5327. }
  5328. } else if (dst->type == GGML_TYPE_F16) {
  5329. size_t id = 0;
  5330. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5331. for (int i03 = 0; i03 < ne03; i03++) {
  5332. for (int i02 = 0; i02 < ne02; i02++) {
  5333. id += ne00 * ir0;
  5334. for (int i01 = ir0; i01 < ir1; i01++) {
  5335. for (int i00 = 0; i00 < ne00; i00++) {
  5336. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5337. dst_ptr[id] = *src0_ptr;
  5338. id++;
  5339. }
  5340. }
  5341. id += ne00 * (ne01 - ir1);
  5342. }
  5343. }
  5344. } else {
  5345. GGML_ASSERT(false); // TODO: implement
  5346. }
  5347. }
  5348. return;
  5349. }
  5350. // dst counters
  5351. int64_t i10 = 0;
  5352. int64_t i11 = 0;
  5353. int64_t i12 = 0;
  5354. int64_t i13 = 0;
  5355. if (dst->type == GGML_TYPE_F16) {
  5356. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5357. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5358. i10 += ne00 * ir0;
  5359. while (i10 >= ne0) {
  5360. i10 -= ne0;
  5361. if (++i11 == ne1) {
  5362. i11 = 0;
  5363. if (++i12 == ne2) {
  5364. i12 = 0;
  5365. if (++i13 == ne3) {
  5366. i13 = 0;
  5367. }
  5368. }
  5369. }
  5370. }
  5371. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5372. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5373. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5374. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5375. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5376. if (++i10 == ne00) {
  5377. i10 = 0;
  5378. if (++i11 == ne01) {
  5379. i11 = 0;
  5380. if (++i12 == ne02) {
  5381. i12 = 0;
  5382. if (++i13 == ne03) {
  5383. i13 = 0;
  5384. }
  5385. }
  5386. }
  5387. }
  5388. }
  5389. }
  5390. i10 += ne00 * (ne01 - ir1);
  5391. while (i10 >= ne0) {
  5392. i10 -= ne0;
  5393. if (++i11 == ne1) {
  5394. i11 = 0;
  5395. if (++i12 == ne2) {
  5396. i12 = 0;
  5397. if (++i13 == ne3) {
  5398. i13 = 0;
  5399. }
  5400. }
  5401. }
  5402. }
  5403. }
  5404. }
  5405. } else if (dst->type == GGML_TYPE_F32) {
  5406. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5407. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5408. i10 += ne00 * ir0;
  5409. while (i10 >= ne0) {
  5410. i10 -= ne0;
  5411. if (++i11 == ne1) {
  5412. i11 = 0;
  5413. if (++i12 == ne2) {
  5414. i12 = 0;
  5415. if (++i13 == ne3) {
  5416. i13 = 0;
  5417. }
  5418. }
  5419. }
  5420. }
  5421. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5422. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5423. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5424. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5425. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5426. if (++i10 == ne0) {
  5427. i10 = 0;
  5428. if (++i11 == ne1) {
  5429. i11 = 0;
  5430. if (++i12 == ne2) {
  5431. i12 = 0;
  5432. if (++i13 == ne3) {
  5433. i13 = 0;
  5434. }
  5435. }
  5436. }
  5437. }
  5438. }
  5439. }
  5440. i10 += ne00 * (ne01 - ir1);
  5441. while (i10 >= ne0) {
  5442. i10 -= ne0;
  5443. if (++i11 == ne1) {
  5444. i11 = 0;
  5445. if (++i12 == ne2) {
  5446. i12 = 0;
  5447. if (++i13 == ne3) {
  5448. i13 = 0;
  5449. }
  5450. }
  5451. }
  5452. }
  5453. }
  5454. }
  5455. } else {
  5456. GGML_ASSERT(false); // TODO: implement
  5457. }
  5458. }
  5459. static void ggml_compute_forward_dup_f32(
  5460. const struct ggml_compute_params * params,
  5461. const struct ggml_tensor * src0,
  5462. struct ggml_tensor * dst) {
  5463. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5464. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5465. return;
  5466. }
  5467. GGML_TENSOR_UNARY_OP_LOCALS
  5468. const int ith = params->ith; // thread index
  5469. const int nth = params->nth; // number of threads
  5470. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5471. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5472. return;
  5473. }
  5474. // parallelize by rows
  5475. const int nr = ne01;
  5476. // number of rows per thread
  5477. const int dr = (nr + nth - 1) / nth;
  5478. // row range for this thread
  5479. const int ir0 = dr * ith;
  5480. const int ir1 = MIN(ir0 + dr, nr);
  5481. if (src0->type == dst->type &&
  5482. ne00 == ne0 &&
  5483. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5484. // copy by rows
  5485. const size_t rs = ne00*nb00;
  5486. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5487. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5488. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5489. memcpy(
  5490. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5491. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5492. rs);
  5493. }
  5494. }
  5495. }
  5496. return;
  5497. }
  5498. if (ggml_is_contiguous(dst)) {
  5499. // TODO: simplify
  5500. if (nb00 == sizeof(float)) {
  5501. if (dst->type == GGML_TYPE_F32) {
  5502. size_t id = 0;
  5503. const size_t rs = ne00 * nb00;
  5504. char * dst_ptr = (char *) dst->data;
  5505. for (int i03 = 0; i03 < ne03; i03++) {
  5506. for (int i02 = 0; i02 < ne02; i02++) {
  5507. id += rs * ir0;
  5508. for (int i01 = ir0; i01 < ir1; i01++) {
  5509. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5510. memcpy(dst_ptr + id, src0_ptr, rs);
  5511. id += rs;
  5512. }
  5513. id += rs * (ne01 - ir1);
  5514. }
  5515. }
  5516. } else if (type_traits[dst->type].from_float) {
  5517. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5518. size_t id = 0;
  5519. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5520. char * dst_ptr = (char *) dst->data;
  5521. for (int i03 = 0; i03 < ne03; i03++) {
  5522. for (int i02 = 0; i02 < ne02; i02++) {
  5523. id += rs * ir0;
  5524. for (int i01 = ir0; i01 < ir1; i01++) {
  5525. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5526. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5527. id += rs;
  5528. }
  5529. id += rs * (ne01 - ir1);
  5530. }
  5531. }
  5532. } else {
  5533. GGML_ASSERT(false); // TODO: implement
  5534. }
  5535. } else {
  5536. //printf("%s: this is not optimal - fix me\n", __func__);
  5537. if (dst->type == GGML_TYPE_F32) {
  5538. size_t id = 0;
  5539. float * dst_ptr = (float *) dst->data;
  5540. for (int i03 = 0; i03 < ne03; i03++) {
  5541. for (int i02 = 0; i02 < ne02; i02++) {
  5542. id += ne00 * ir0;
  5543. for (int i01 = ir0; i01 < ir1; i01++) {
  5544. for (int i00 = 0; i00 < ne00; i00++) {
  5545. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5546. dst_ptr[id] = *src0_ptr;
  5547. id++;
  5548. }
  5549. }
  5550. id += ne00 * (ne01 - ir1);
  5551. }
  5552. }
  5553. } else if (dst->type == GGML_TYPE_F16) {
  5554. size_t id = 0;
  5555. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5556. for (int i03 = 0; i03 < ne03; i03++) {
  5557. for (int i02 = 0; i02 < ne02; i02++) {
  5558. id += ne00 * ir0;
  5559. for (int i01 = ir0; i01 < ir1; i01++) {
  5560. for (int i00 = 0; i00 < ne00; i00++) {
  5561. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5562. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5563. id++;
  5564. }
  5565. }
  5566. id += ne00 * (ne01 - ir1);
  5567. }
  5568. }
  5569. } else {
  5570. GGML_ASSERT(false); // TODO: implement
  5571. }
  5572. }
  5573. return;
  5574. }
  5575. // dst counters
  5576. int64_t i10 = 0;
  5577. int64_t i11 = 0;
  5578. int64_t i12 = 0;
  5579. int64_t i13 = 0;
  5580. if (dst->type == GGML_TYPE_F32) {
  5581. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5582. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5583. i10 += ne00 * ir0;
  5584. while (i10 >= ne0) {
  5585. i10 -= ne0;
  5586. if (++i11 == ne1) {
  5587. i11 = 0;
  5588. if (++i12 == ne2) {
  5589. i12 = 0;
  5590. if (++i13 == ne3) {
  5591. i13 = 0;
  5592. }
  5593. }
  5594. }
  5595. }
  5596. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5597. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5598. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5599. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5600. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5601. if (++i10 == ne0) {
  5602. i10 = 0;
  5603. if (++i11 == ne1) {
  5604. i11 = 0;
  5605. if (++i12 == ne2) {
  5606. i12 = 0;
  5607. if (++i13 == ne3) {
  5608. i13 = 0;
  5609. }
  5610. }
  5611. }
  5612. }
  5613. }
  5614. }
  5615. i10 += ne00 * (ne01 - ir1);
  5616. while (i10 >= ne0) {
  5617. i10 -= ne0;
  5618. if (++i11 == ne1) {
  5619. i11 = 0;
  5620. if (++i12 == ne2) {
  5621. i12 = 0;
  5622. if (++i13 == ne3) {
  5623. i13 = 0;
  5624. }
  5625. }
  5626. }
  5627. }
  5628. }
  5629. }
  5630. } else if (dst->type == GGML_TYPE_F16) {
  5631. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5632. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5633. i10 += ne00 * ir0;
  5634. while (i10 >= ne0) {
  5635. i10 -= ne0;
  5636. if (++i11 == ne1) {
  5637. i11 = 0;
  5638. if (++i12 == ne2) {
  5639. i12 = 0;
  5640. if (++i13 == ne3) {
  5641. i13 = 0;
  5642. }
  5643. }
  5644. }
  5645. }
  5646. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5647. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5648. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5649. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5650. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5651. if (++i10 == ne0) {
  5652. i10 = 0;
  5653. if (++i11 == ne1) {
  5654. i11 = 0;
  5655. if (++i12 == ne2) {
  5656. i12 = 0;
  5657. if (++i13 == ne3) {
  5658. i13 = 0;
  5659. }
  5660. }
  5661. }
  5662. }
  5663. }
  5664. }
  5665. i10 += ne00 * (ne01 - ir1);
  5666. while (i10 >= ne0) {
  5667. i10 -= ne0;
  5668. if (++i11 == ne1) {
  5669. i11 = 0;
  5670. if (++i12 == ne2) {
  5671. i12 = 0;
  5672. if (++i13 == ne3) {
  5673. i13 = 0;
  5674. }
  5675. }
  5676. }
  5677. }
  5678. }
  5679. }
  5680. } else {
  5681. GGML_ASSERT(false); // TODO: implement
  5682. }
  5683. }
  5684. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  5685. static void ggml_compute_forward_dup_bytes(
  5686. const struct ggml_compute_params * params,
  5687. const struct ggml_tensor * src0,
  5688. struct ggml_tensor * dst) {
  5689. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5690. GGML_ASSERT(src0->type == dst->type);
  5691. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5692. return;
  5693. }
  5694. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  5695. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5696. return;
  5697. }
  5698. GGML_TENSOR_UNARY_OP_LOCALS;
  5699. const size_t type_size = ggml_type_size(src0->type);
  5700. const int ith = params->ith; // thread index
  5701. const int nth = params->nth; // number of threads
  5702. // parallelize by rows
  5703. const int nr = ne01;
  5704. // number of rows per thread
  5705. const int dr = (nr + nth - 1) / nth;
  5706. // row range for this thread
  5707. const int ir0 = dr * ith;
  5708. const int ir1 = MIN(ir0 + dr, nr);
  5709. if (src0->type == dst->type &&
  5710. ne00 == ne0 &&
  5711. nb00 == type_size && nb0 == type_size) {
  5712. // copy by rows
  5713. const size_t rs = ne00 * type_size;
  5714. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5715. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5716. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5717. memcpy(
  5718. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5719. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5720. rs);
  5721. }
  5722. }
  5723. }
  5724. return;
  5725. }
  5726. if (ggml_is_contiguous(dst)) {
  5727. size_t id = 0;
  5728. char * dst_ptr = (char *) dst->data;
  5729. const size_t rs = ne00 * type_size;
  5730. if (nb00 == type_size) {
  5731. // src0 is contigous on first dimension, copy by rows
  5732. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5733. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5734. id += rs * ir0;
  5735. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5736. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5737. memcpy(dst_ptr + id, src0_ptr, rs);
  5738. id += rs;
  5739. }
  5740. id += rs * (ne01 - ir1);
  5741. }
  5742. }
  5743. } else {
  5744. //printf("%s: this is not optimal - fix me\n", __func__);
  5745. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5746. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5747. id += rs * ir0;
  5748. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5749. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5750. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  5751. memcpy(dst_ptr + id, src0_ptr, type_size);
  5752. id += type_size;
  5753. }
  5754. }
  5755. id += rs * (ne01 - ir1);
  5756. }
  5757. }
  5758. }
  5759. return;
  5760. }
  5761. // dst counters
  5762. int64_t i10 = 0;
  5763. int64_t i11 = 0;
  5764. int64_t i12 = 0;
  5765. int64_t i13 = 0;
  5766. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5767. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5768. i10 += ne00 * ir0;
  5769. while (i10 >= ne0) {
  5770. i10 -= ne0;
  5771. if (++i11 == ne1) {
  5772. i11 = 0;
  5773. if (++i12 == ne2) {
  5774. i12 = 0;
  5775. if (++i13 == ne3) {
  5776. i13 = 0;
  5777. }
  5778. }
  5779. }
  5780. }
  5781. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5782. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5783. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5784. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5785. memcpy(dst_ptr, src0_ptr, type_size);
  5786. if (++i10 == ne0) {
  5787. i10 = 0;
  5788. if (++i11 == ne1) {
  5789. i11 = 0;
  5790. if (++i12 == ne2) {
  5791. i12 = 0;
  5792. if (++i13 == ne3) {
  5793. i13 = 0;
  5794. }
  5795. }
  5796. }
  5797. }
  5798. }
  5799. }
  5800. i10 += ne00 * (ne01 - ir1);
  5801. while (i10 >= ne0) {
  5802. i10 -= ne0;
  5803. if (++i11 == ne1) {
  5804. i11 = 0;
  5805. if (++i12 == ne2) {
  5806. i12 = 0;
  5807. if (++i13 == ne3) {
  5808. i13 = 0;
  5809. }
  5810. }
  5811. }
  5812. }
  5813. }
  5814. }
  5815. }
  5816. static void ggml_compute_forward_dup(
  5817. const struct ggml_compute_params * params,
  5818. const struct ggml_tensor * src0,
  5819. struct ggml_tensor * dst) {
  5820. if (src0->type == dst->type) {
  5821. ggml_compute_forward_dup_bytes(params, src0, dst);
  5822. return;
  5823. }
  5824. switch (src0->type) {
  5825. case GGML_TYPE_F16:
  5826. {
  5827. ggml_compute_forward_dup_f16(params, src0, dst);
  5828. } break;
  5829. case GGML_TYPE_F32:
  5830. {
  5831. ggml_compute_forward_dup_f32(params, src0, dst);
  5832. } break;
  5833. default:
  5834. {
  5835. GGML_ASSERT(false);
  5836. } break;
  5837. }
  5838. }
  5839. // ggml_compute_forward_add
  5840. static void ggml_compute_forward_add_f32(
  5841. const struct ggml_compute_params * params,
  5842. const struct ggml_tensor * src0,
  5843. const struct ggml_tensor * src1,
  5844. struct ggml_tensor * dst) {
  5845. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  5846. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5847. return;
  5848. }
  5849. const int ith = params->ith;
  5850. const int nth = params->nth;
  5851. const int nr = ggml_nrows(src0);
  5852. GGML_TENSOR_BINARY_OP_LOCALS
  5853. GGML_ASSERT( nb0 == sizeof(float));
  5854. GGML_ASSERT(nb00 == sizeof(float));
  5855. // rows per thread
  5856. const int dr = (nr + nth - 1)/nth;
  5857. // row range for this thread
  5858. const int ir0 = dr*ith;
  5859. const int ir1 = MIN(ir0 + dr, nr);
  5860. if (nb10 == sizeof(float)) {
  5861. for (int ir = ir0; ir < ir1; ++ir) {
  5862. // src1 is broadcastable across src0 and dst in i1, i2, i3
  5863. const int64_t i03 = ir/(ne02*ne01);
  5864. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  5865. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5866. const int64_t i13 = i03 % ne13;
  5867. const int64_t i12 = i02 % ne12;
  5868. const int64_t i11 = i01 % ne11;
  5869. const int64_t nr0 = ne00 / ne10;
  5870. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  5871. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  5872. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  5873. for (int64_t r = 0; r < nr0; ++r) {
  5874. #ifdef GGML_USE_ACCELERATE
  5875. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  5876. #else
  5877. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  5878. #endif
  5879. }
  5880. }
  5881. } else {
  5882. // src1 is not contiguous
  5883. for (int ir = ir0; ir < ir1; ++ir) {
  5884. // src1 is broadcastable across src0 and dst in i1, i2, i3
  5885. const int64_t i03 = ir/(ne02*ne01);
  5886. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  5887. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5888. const int64_t i13 = i03 % ne13;
  5889. const int64_t i12 = i02 % ne12;
  5890. const int64_t i11 = i01 % ne11;
  5891. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  5892. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  5893. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  5894. const int64_t i10 = i0 % ne10;
  5895. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  5896. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  5897. }
  5898. }
  5899. }
  5900. }
  5901. static void ggml_compute_forward_add_f16_f32(
  5902. const struct ggml_compute_params * params,
  5903. const struct ggml_tensor * src0,
  5904. const struct ggml_tensor * src1,
  5905. struct ggml_tensor * dst) {
  5906. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5907. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5908. return;
  5909. }
  5910. const int ith = params->ith;
  5911. const int nth = params->nth;
  5912. const int nr = ggml_nrows(src0);
  5913. GGML_TENSOR_BINARY_OP_LOCALS
  5914. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5915. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5916. if (dst->type == GGML_TYPE_F32) {
  5917. GGML_ASSERT( nb0 == sizeof(float));
  5918. }
  5919. else {
  5920. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5921. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5922. }
  5923. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5924. // rows per thread
  5925. const int dr = (nr + nth - 1)/nth;
  5926. // row range for this thread
  5927. const int ir0 = dr*ith;
  5928. const int ir1 = MIN(ir0 + dr, nr);
  5929. if (nb10 == sizeof(float)) {
  5930. if (dst->type == GGML_TYPE_F16) {
  5931. for (int ir = ir0; ir < ir1; ++ir) {
  5932. // src0, src1 and dst are same shape => same indices
  5933. const int i3 = ir/(ne2*ne1);
  5934. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5935. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5936. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5937. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5938. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5939. for (int i = 0; i < ne0; i++) {
  5940. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  5941. }
  5942. }
  5943. } else {
  5944. for (int ir = ir0; ir < ir1; ++ir) {
  5945. // src0, src1 and dst are same shape => same indices
  5946. const int i3 = ir/(ne2*ne1);
  5947. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5948. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5949. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5950. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5951. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5952. for (int i = 0; i < ne0; i++) {
  5953. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  5954. }
  5955. }
  5956. }
  5957. }
  5958. else {
  5959. // src1 is not contiguous
  5960. GGML_ASSERT(false);
  5961. }
  5962. }
  5963. static void ggml_compute_forward_add_f16_f16(
  5964. const struct ggml_compute_params * params,
  5965. const struct ggml_tensor * src0,
  5966. const struct ggml_tensor * src1,
  5967. struct ggml_tensor * dst) {
  5968. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5969. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5970. return;
  5971. }
  5972. const int ith = params->ith;
  5973. const int nth = params->nth;
  5974. const int nr = ggml_nrows(src0);
  5975. GGML_TENSOR_BINARY_OP_LOCALS
  5976. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5977. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5978. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5979. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5980. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5981. // rows per thread
  5982. const int dr = (nr + nth - 1)/nth;
  5983. // row range for this thread
  5984. const int ir0 = dr*ith;
  5985. const int ir1 = MIN(ir0 + dr, nr);
  5986. if (nb10 == sizeof(ggml_fp16_t)) {
  5987. for (int ir = ir0; ir < ir1; ++ir) {
  5988. // src0, src1 and dst are same shape => same indices
  5989. const int i3 = ir/(ne2*ne1);
  5990. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5991. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5992. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5993. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5994. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5995. for (int i = 0; i < ne0; i++) {
  5996. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  5997. }
  5998. }
  5999. }
  6000. else {
  6001. // src1 is not contiguous
  6002. GGML_ASSERT(false);
  6003. }
  6004. }
  6005. static void ggml_compute_forward_add_q_f32(
  6006. const struct ggml_compute_params * params,
  6007. const struct ggml_tensor * src0,
  6008. const struct ggml_tensor * src1,
  6009. struct ggml_tensor * dst) {
  6010. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6011. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6012. return;
  6013. }
  6014. const int nr = ggml_nrows(src0);
  6015. GGML_TENSOR_BINARY_OP_LOCALS
  6016. const int ith = params->ith;
  6017. const int nth = params->nth;
  6018. const enum ggml_type type = src0->type;
  6019. const enum ggml_type dtype = dst->type;
  6020. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6021. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  6022. // we don't support permuted src0 or src1
  6023. GGML_ASSERT(nb00 == ggml_type_size(type));
  6024. GGML_ASSERT(nb10 == sizeof(float));
  6025. // dst cannot be transposed or permuted
  6026. GGML_ASSERT(nb0 <= nb1);
  6027. GGML_ASSERT(nb1 <= nb2);
  6028. GGML_ASSERT(nb2 <= nb3);
  6029. GGML_ASSERT(ggml_is_quantized(src0->type));
  6030. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6031. // rows per thread
  6032. const int dr = (nr + nth - 1)/nth;
  6033. // row range for this thread
  6034. const int ir0 = dr*ith;
  6035. const int ir1 = MIN(ir0 + dr, nr);
  6036. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6037. for (int ir = ir0; ir < ir1; ++ir) {
  6038. // src0 indices
  6039. const int i03 = ir/(ne02*ne01);
  6040. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6041. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6042. // src1 and dst are same shape as src0 => same indices
  6043. const int i13 = i03;
  6044. const int i12 = i02;
  6045. const int i11 = i01;
  6046. const int i3 = i03;
  6047. const int i2 = i02;
  6048. const int i1 = i01;
  6049. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6050. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6051. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6052. assert(ne00 % 32 == 0);
  6053. // unquantize row from src0 to temp buffer
  6054. dequantize_row_q(src0_row, wdata, ne00);
  6055. // add src1
  6056. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6057. // quantize row to dst
  6058. if (quantize_row_q != NULL) {
  6059. quantize_row_q(wdata, dst_row, ne00);
  6060. } else {
  6061. memcpy(dst_row, wdata, ne0*nb0);
  6062. }
  6063. }
  6064. }
  6065. static void ggml_compute_forward_add(
  6066. const struct ggml_compute_params * params,
  6067. const struct ggml_tensor * src0,
  6068. const struct ggml_tensor * src1,
  6069. struct ggml_tensor * dst) {
  6070. switch (src0->type) {
  6071. case GGML_TYPE_F32:
  6072. {
  6073. ggml_compute_forward_add_f32(params, src0, src1, dst);
  6074. } break;
  6075. case GGML_TYPE_F16:
  6076. {
  6077. if (src1->type == GGML_TYPE_F16) {
  6078. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  6079. }
  6080. else if (src1->type == GGML_TYPE_F32) {
  6081. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  6082. }
  6083. else {
  6084. GGML_ASSERT(false);
  6085. }
  6086. } break;
  6087. case GGML_TYPE_Q4_0:
  6088. case GGML_TYPE_Q4_1:
  6089. case GGML_TYPE_Q5_0:
  6090. case GGML_TYPE_Q5_1:
  6091. case GGML_TYPE_Q8_0:
  6092. case GGML_TYPE_Q2_K:
  6093. case GGML_TYPE_Q3_K:
  6094. case GGML_TYPE_Q4_K:
  6095. case GGML_TYPE_Q5_K:
  6096. case GGML_TYPE_Q6_K:
  6097. case GGML_TYPE_IQ2_XXS:
  6098. case GGML_TYPE_IQ2_XS:
  6099. {
  6100. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  6101. } break;
  6102. default:
  6103. {
  6104. GGML_ASSERT(false);
  6105. } break;
  6106. }
  6107. }
  6108. // ggml_compute_forward_add1
  6109. static void ggml_compute_forward_add1_f32(
  6110. const struct ggml_compute_params * params,
  6111. const struct ggml_tensor * src0,
  6112. const struct ggml_tensor * src1,
  6113. struct ggml_tensor * dst) {
  6114. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6115. GGML_ASSERT(ggml_is_scalar(src1));
  6116. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6117. return;
  6118. }
  6119. const int ith = params->ith;
  6120. const int nth = params->nth;
  6121. const int nr = ggml_nrows(src0);
  6122. GGML_TENSOR_UNARY_OP_LOCALS
  6123. GGML_ASSERT( nb0 == sizeof(float));
  6124. GGML_ASSERT(nb00 == sizeof(float));
  6125. // rows per thread
  6126. const int dr = (nr + nth - 1)/nth;
  6127. // row range for this thread
  6128. const int ir0 = dr*ith;
  6129. const int ir1 = MIN(ir0 + dr, nr);
  6130. for (int ir = ir0; ir < ir1; ++ir) {
  6131. // src0 and dst are same shape => same indices
  6132. const int i3 = ir/(ne2*ne1);
  6133. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6134. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6135. #ifdef GGML_USE_ACCELERATE
  6136. UNUSED(ggml_vec_add1_f32);
  6137. vDSP_vadd(
  6138. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6139. (float *) ((char *) src1->data), 0,
  6140. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6141. ne0);
  6142. #else
  6143. ggml_vec_add1_f32(ne0,
  6144. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6145. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6146. *(float *) src1->data);
  6147. #endif
  6148. }
  6149. }
  6150. static void ggml_compute_forward_add1_f16_f32(
  6151. const struct ggml_compute_params * params,
  6152. const struct ggml_tensor * src0,
  6153. const struct ggml_tensor * src1,
  6154. struct ggml_tensor * dst) {
  6155. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6156. GGML_ASSERT(ggml_is_scalar(src1));
  6157. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6158. return;
  6159. }
  6160. // scalar to add
  6161. const float v = *(float *) src1->data;
  6162. const int ith = params->ith;
  6163. const int nth = params->nth;
  6164. const int nr = ggml_nrows(src0);
  6165. GGML_TENSOR_UNARY_OP_LOCALS
  6166. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6167. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6168. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6169. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6170. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6171. // rows per thread
  6172. const int dr = (nr + nth - 1)/nth;
  6173. // row range for this thread
  6174. const int ir0 = dr*ith;
  6175. const int ir1 = MIN(ir0 + dr, nr);
  6176. for (int ir = ir0; ir < ir1; ++ir) {
  6177. // src0 and dst are same shape => same indices
  6178. const int i3 = ir/(ne2*ne1);
  6179. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6180. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6181. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6182. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6183. for (int i = 0; i < ne0; i++) {
  6184. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6185. }
  6186. }
  6187. }
  6188. static void ggml_compute_forward_add1_f16_f16(
  6189. const struct ggml_compute_params * params,
  6190. const struct ggml_tensor * src0,
  6191. const struct ggml_tensor * src1,
  6192. struct ggml_tensor * dst) {
  6193. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6194. GGML_ASSERT(ggml_is_scalar(src1));
  6195. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6196. return;
  6197. }
  6198. // scalar to add
  6199. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6200. const int ith = params->ith;
  6201. const int nth = params->nth;
  6202. const int nr = ggml_nrows(src0);
  6203. GGML_TENSOR_UNARY_OP_LOCALS
  6204. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6205. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6206. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6207. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6208. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6209. // rows per thread
  6210. const int dr = (nr + nth - 1)/nth;
  6211. // row range for this thread
  6212. const int ir0 = dr*ith;
  6213. const int ir1 = MIN(ir0 + dr, nr);
  6214. for (int ir = ir0; ir < ir1; ++ir) {
  6215. // src0 and dst are same shape => same indices
  6216. const int i3 = ir/(ne2*ne1);
  6217. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6218. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6219. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6220. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6221. for (int i = 0; i < ne0; i++) {
  6222. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6223. }
  6224. }
  6225. }
  6226. static void ggml_compute_forward_add1_q_f32(
  6227. const struct ggml_compute_params * params,
  6228. const struct ggml_tensor * src0,
  6229. const struct ggml_tensor * src1,
  6230. struct ggml_tensor * dst) {
  6231. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6232. GGML_ASSERT(ggml_is_scalar(src1));
  6233. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6234. return;
  6235. }
  6236. // scalar to add
  6237. const float v = *(float *) src1->data;
  6238. const int ith = params->ith;
  6239. const int nth = params->nth;
  6240. const int nr = ggml_nrows(src0);
  6241. GGML_TENSOR_UNARY_OP_LOCALS
  6242. const enum ggml_type type = src0->type;
  6243. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6244. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6245. // we don't support permuted src0
  6246. GGML_ASSERT(nb00 == ggml_type_size(type));
  6247. // dst cannot be transposed or permuted
  6248. GGML_ASSERT(nb0 <= nb1);
  6249. GGML_ASSERT(nb1 <= nb2);
  6250. GGML_ASSERT(nb2 <= nb3);
  6251. GGML_ASSERT(ggml_is_quantized(src0->type));
  6252. GGML_ASSERT(dst->type == src0->type);
  6253. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6254. // rows per thread
  6255. const int dr = (nr + nth - 1)/nth;
  6256. // row range for this thread
  6257. const int ir0 = dr*ith;
  6258. const int ir1 = MIN(ir0 + dr, nr);
  6259. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6260. for (int ir = ir0; ir < ir1; ++ir) {
  6261. // src0 and dst are same shape => same indices
  6262. const int i3 = ir/(ne2*ne1);
  6263. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6264. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6265. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6266. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6267. assert(ne0 % 32 == 0);
  6268. // unquantize row from src0 to temp buffer
  6269. dequantize_row_q(src0_row, wdata, ne0);
  6270. // add src1
  6271. ggml_vec_acc1_f32(ne0, wdata, v);
  6272. // quantize row to dst
  6273. quantize_row_q(wdata, dst_row, ne0);
  6274. }
  6275. }
  6276. static void ggml_compute_forward_add1(
  6277. const struct ggml_compute_params * params,
  6278. const struct ggml_tensor * src0,
  6279. const struct ggml_tensor * src1,
  6280. struct ggml_tensor * dst) {
  6281. switch (src0->type) {
  6282. case GGML_TYPE_F32:
  6283. {
  6284. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  6285. } break;
  6286. case GGML_TYPE_F16:
  6287. {
  6288. if (src1->type == GGML_TYPE_F16) {
  6289. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  6290. }
  6291. else if (src1->type == GGML_TYPE_F32) {
  6292. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  6293. }
  6294. else {
  6295. GGML_ASSERT(false);
  6296. }
  6297. } break;
  6298. case GGML_TYPE_Q4_0:
  6299. case GGML_TYPE_Q4_1:
  6300. case GGML_TYPE_Q5_0:
  6301. case GGML_TYPE_Q5_1:
  6302. case GGML_TYPE_Q8_0:
  6303. case GGML_TYPE_Q8_1:
  6304. case GGML_TYPE_Q2_K:
  6305. case GGML_TYPE_Q3_K:
  6306. case GGML_TYPE_Q4_K:
  6307. case GGML_TYPE_Q5_K:
  6308. case GGML_TYPE_Q6_K:
  6309. case GGML_TYPE_IQ2_XXS:
  6310. case GGML_TYPE_IQ2_XS:
  6311. {
  6312. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  6313. } break;
  6314. default:
  6315. {
  6316. GGML_ASSERT(false);
  6317. } break;
  6318. }
  6319. }
  6320. // ggml_compute_forward_acc
  6321. static void ggml_compute_forward_acc_f32(
  6322. const struct ggml_compute_params * params,
  6323. const struct ggml_tensor * src0,
  6324. const struct ggml_tensor * src1,
  6325. struct ggml_tensor * dst) {
  6326. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6327. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6328. // view src0 and dst with these strides and data offset inbytes during acc
  6329. // nb0 is implicitly element_size because src0 and dst are contiguous
  6330. size_t nb1 = ((int32_t *) dst->op_params)[0];
  6331. size_t nb2 = ((int32_t *) dst->op_params)[1];
  6332. size_t nb3 = ((int32_t *) dst->op_params)[2];
  6333. size_t offset = ((int32_t *) dst->op_params)[3];
  6334. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  6335. if (!inplace && (params->type == GGML_TASK_INIT)) {
  6336. // memcpy needs to be synchronized across threads to avoid race conditions.
  6337. // => do it in INIT phase
  6338. memcpy(
  6339. ((char *) dst->data),
  6340. ((char *) src0->data),
  6341. ggml_nbytes(dst));
  6342. }
  6343. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6344. return;
  6345. }
  6346. const int ith = params->ith;
  6347. const int nth = params->nth;
  6348. const int nr = ggml_nrows(src1);
  6349. const int nc = src1->ne[0];
  6350. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  6351. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  6352. // src0 and dst as viewed during acc
  6353. const size_t nb0 = ggml_element_size(src0);
  6354. const size_t nb00 = nb0;
  6355. const size_t nb01 = nb1;
  6356. const size_t nb02 = nb2;
  6357. const size_t nb03 = nb3;
  6358. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6359. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6360. GGML_ASSERT(nb10 == sizeof(float));
  6361. // rows per thread
  6362. const int dr = (nr + nth - 1)/nth;
  6363. // row range for this thread
  6364. const int ir0 = dr*ith;
  6365. const int ir1 = MIN(ir0 + dr, nr);
  6366. for (int ir = ir0; ir < ir1; ++ir) {
  6367. // src0 and dst are viewed with shape of src1 and offset
  6368. // => same indices
  6369. const int i3 = ir/(ne12*ne11);
  6370. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6371. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6372. #ifdef GGML_USE_ACCELERATE
  6373. vDSP_vadd(
  6374. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6375. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6376. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6377. #else
  6378. ggml_vec_add_f32(nc,
  6379. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6380. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6381. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6382. #endif
  6383. }
  6384. }
  6385. static void ggml_compute_forward_acc(
  6386. const struct ggml_compute_params * params,
  6387. const struct ggml_tensor * src0,
  6388. const struct ggml_tensor * src1,
  6389. struct ggml_tensor * dst) {
  6390. switch (src0->type) {
  6391. case GGML_TYPE_F32:
  6392. {
  6393. ggml_compute_forward_acc_f32(params, src0, src1, dst);
  6394. } break;
  6395. case GGML_TYPE_F16:
  6396. case GGML_TYPE_Q4_0:
  6397. case GGML_TYPE_Q4_1:
  6398. case GGML_TYPE_Q5_0:
  6399. case GGML_TYPE_Q5_1:
  6400. case GGML_TYPE_Q8_0:
  6401. case GGML_TYPE_Q8_1:
  6402. case GGML_TYPE_Q2_K:
  6403. case GGML_TYPE_Q3_K:
  6404. case GGML_TYPE_Q4_K:
  6405. case GGML_TYPE_Q5_K:
  6406. case GGML_TYPE_Q6_K:
  6407. case GGML_TYPE_IQ2_XXS:
  6408. case GGML_TYPE_IQ2_XS:
  6409. default:
  6410. {
  6411. GGML_ASSERT(false);
  6412. } break;
  6413. }
  6414. }
  6415. // ggml_compute_forward_sub
  6416. static void ggml_compute_forward_sub_f32(
  6417. const struct ggml_compute_params * params,
  6418. const struct ggml_tensor * src0,
  6419. const struct ggml_tensor * src1,
  6420. struct ggml_tensor * dst) {
  6421. assert(params->ith == 0);
  6422. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6423. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6424. return;
  6425. }
  6426. const int nr = ggml_nrows(src0);
  6427. GGML_TENSOR_BINARY_OP_LOCALS
  6428. GGML_ASSERT( nb0 == sizeof(float));
  6429. GGML_ASSERT(nb00 == sizeof(float));
  6430. if (nb10 == sizeof(float)) {
  6431. for (int ir = 0; ir < nr; ++ir) {
  6432. // src0, src1 and dst are same shape => same indices
  6433. const int i3 = ir/(ne2*ne1);
  6434. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6435. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6436. #ifdef GGML_USE_ACCELERATE
  6437. vDSP_vsub(
  6438. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6439. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6440. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6441. ne0);
  6442. #else
  6443. ggml_vec_sub_f32(ne0,
  6444. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6445. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6446. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6447. #endif
  6448. // }
  6449. // }
  6450. }
  6451. } else {
  6452. // src1 is not contiguous
  6453. for (int ir = 0; ir < nr; ++ir) {
  6454. // src0, src1 and dst are same shape => same indices
  6455. const int i3 = ir/(ne2*ne1);
  6456. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6457. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6458. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6459. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6460. for (int i0 = 0; i0 < ne0; i0++) {
  6461. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6462. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6463. }
  6464. }
  6465. }
  6466. }
  6467. static void ggml_compute_forward_sub(
  6468. const struct ggml_compute_params * params,
  6469. const struct ggml_tensor * src0,
  6470. const struct ggml_tensor * src1,
  6471. struct ggml_tensor * dst) {
  6472. switch (src0->type) {
  6473. case GGML_TYPE_F32:
  6474. {
  6475. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  6476. } break;
  6477. default:
  6478. {
  6479. GGML_ASSERT(false);
  6480. } break;
  6481. }
  6482. }
  6483. // ggml_compute_forward_mul
  6484. static void ggml_compute_forward_mul_f32(
  6485. const struct ggml_compute_params * params,
  6486. const struct ggml_tensor * src0,
  6487. const struct ggml_tensor * src1,
  6488. struct ggml_tensor * dst) {
  6489. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6490. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6491. return;
  6492. }
  6493. const int ith = params->ith;
  6494. const int nth = params->nth;
  6495. #ifdef GGML_USE_CLBLAST
  6496. if (src1->backend == GGML_BACKEND_GPU) {
  6497. // TODO: OpenCL kernel support full broadcast
  6498. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  6499. if (ith == 0) {
  6500. ggml_cl_mul(src0, src1, dst);
  6501. }
  6502. return;
  6503. }
  6504. #endif
  6505. const int64_t nr = ggml_nrows(src0);
  6506. GGML_TENSOR_BINARY_OP_LOCALS
  6507. GGML_ASSERT( nb0 == sizeof(float));
  6508. GGML_ASSERT(nb00 == sizeof(float));
  6509. if (nb10 == sizeof(float)) {
  6510. for (int64_t ir = ith; ir < nr; ir += nth) {
  6511. // src0 and dst are same shape => same indices
  6512. const int64_t i03 = ir/(ne02*ne01);
  6513. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6514. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6515. const int64_t i13 = i03 % ne13;
  6516. const int64_t i12 = i02 % ne12;
  6517. const int64_t i11 = i01 % ne11;
  6518. const int64_t nr0 = ne00 / ne10;
  6519. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6520. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6521. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6522. for (int64_t r = 0 ; r < nr0; ++r) {
  6523. #ifdef GGML_USE_ACCELERATE
  6524. UNUSED(ggml_vec_mul_f32);
  6525. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  6526. #else
  6527. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6528. #endif
  6529. }
  6530. }
  6531. } else {
  6532. // src1 is not contiguous
  6533. for (int64_t ir = ith; ir < nr; ir += nth) {
  6534. // src0 and dst are same shape => same indices
  6535. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6536. const int64_t i03 = ir/(ne02*ne01);
  6537. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6538. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6539. const int64_t i13 = i03 % ne13;
  6540. const int64_t i12 = i02 % ne12;
  6541. const int64_t i11 = i01 % ne11;
  6542. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6543. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6544. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6545. const int64_t i10 = i0 % ne10;
  6546. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6547. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  6548. }
  6549. }
  6550. }
  6551. }
  6552. static void ggml_compute_forward_mul(
  6553. const struct ggml_compute_params * params,
  6554. const struct ggml_tensor * src0,
  6555. const struct ggml_tensor * src1,
  6556. struct ggml_tensor * dst) {
  6557. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  6558. switch (src0->type) {
  6559. case GGML_TYPE_F32:
  6560. {
  6561. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  6562. } break;
  6563. default:
  6564. {
  6565. GGML_ASSERT(false);
  6566. } break;
  6567. }
  6568. }
  6569. // ggml_compute_forward_div
  6570. static void ggml_compute_forward_div_f32(
  6571. const struct ggml_compute_params * params,
  6572. const struct ggml_tensor * src0,
  6573. const struct ggml_tensor * src1,
  6574. struct ggml_tensor * dst) {
  6575. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6576. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6577. return;
  6578. }
  6579. const int ith = params->ith;
  6580. const int nth = params->nth;
  6581. const int64_t nr = ggml_nrows(src0);
  6582. GGML_TENSOR_BINARY_OP_LOCALS
  6583. GGML_ASSERT( nb0 == sizeof(float));
  6584. GGML_ASSERT(nb00 == sizeof(float));
  6585. if (nb10 == sizeof(float)) {
  6586. for (int64_t ir = ith; ir < nr; ir += nth) {
  6587. // src0 and dst are same shape => same indices
  6588. const int64_t i03 = ir/(ne02*ne01);
  6589. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6590. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6591. const int64_t i13 = i03 % ne13;
  6592. const int64_t i12 = i02 % ne12;
  6593. const int64_t i11 = i01 % ne11;
  6594. const int64_t nr0 = ne00 / ne10;
  6595. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6596. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6597. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6598. for (int64_t r = 0; r < nr0; ++r) {
  6599. #ifdef GGML_USE_ACCELERATE
  6600. UNUSED(ggml_vec_div_f32);
  6601. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  6602. #else
  6603. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6604. #endif
  6605. }
  6606. }
  6607. } else {
  6608. // src1 is not contiguous
  6609. for (int64_t ir = ith; ir < nr; ir += nth) {
  6610. // src0 and dst are same shape => same indices
  6611. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6612. const int64_t i03 = ir/(ne02*ne01);
  6613. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6614. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6615. const int64_t i13 = i03 % ne13;
  6616. const int64_t i12 = i02 % ne12;
  6617. const int64_t i11 = i01 % ne11;
  6618. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6619. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6620. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6621. const int64_t i10 = i0 % ne10;
  6622. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6623. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  6624. }
  6625. }
  6626. }
  6627. }
  6628. static void ggml_compute_forward_div(
  6629. const struct ggml_compute_params * params,
  6630. const struct ggml_tensor * src0,
  6631. const struct ggml_tensor * src1,
  6632. struct ggml_tensor * dst) {
  6633. switch (src0->type) {
  6634. case GGML_TYPE_F32:
  6635. {
  6636. ggml_compute_forward_div_f32(params, src0, src1, dst);
  6637. } break;
  6638. default:
  6639. {
  6640. GGML_ASSERT(false);
  6641. } break;
  6642. }
  6643. }
  6644. // ggml_compute_forward_sqr
  6645. static void ggml_compute_forward_sqr_f32(
  6646. const struct ggml_compute_params * params,
  6647. const struct ggml_tensor * src0,
  6648. struct ggml_tensor * dst) {
  6649. assert(params->ith == 0);
  6650. assert(ggml_are_same_shape(src0, dst));
  6651. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6652. return;
  6653. }
  6654. const int n = ggml_nrows(src0);
  6655. const int nc = src0->ne[0];
  6656. assert( dst->nb[0] == sizeof(float));
  6657. assert(src0->nb[0] == sizeof(float));
  6658. for (int i = 0; i < n; i++) {
  6659. ggml_vec_sqr_f32(nc,
  6660. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6661. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6662. }
  6663. }
  6664. static void ggml_compute_forward_sqr(
  6665. const struct ggml_compute_params * params,
  6666. const struct ggml_tensor * src0,
  6667. struct ggml_tensor * dst) {
  6668. switch (src0->type) {
  6669. case GGML_TYPE_F32:
  6670. {
  6671. ggml_compute_forward_sqr_f32(params, src0, dst);
  6672. } break;
  6673. default:
  6674. {
  6675. GGML_ASSERT(false);
  6676. } break;
  6677. }
  6678. }
  6679. // ggml_compute_forward_sqrt
  6680. static void ggml_compute_forward_sqrt_f32(
  6681. const struct ggml_compute_params * params,
  6682. const struct ggml_tensor * src0,
  6683. struct ggml_tensor * dst) {
  6684. assert(params->ith == 0);
  6685. assert(ggml_are_same_shape(src0, dst));
  6686. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6687. return;
  6688. }
  6689. const int n = ggml_nrows(src0);
  6690. const int nc = src0->ne[0];
  6691. assert( dst->nb[0] == sizeof(float));
  6692. assert(src0->nb[0] == sizeof(float));
  6693. for (int i = 0; i < n; i++) {
  6694. ggml_vec_sqrt_f32(nc,
  6695. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6696. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6697. }
  6698. }
  6699. static void ggml_compute_forward_sqrt(
  6700. const struct ggml_compute_params * params,
  6701. const struct ggml_tensor * src0,
  6702. struct ggml_tensor * dst) {
  6703. switch (src0->type) {
  6704. case GGML_TYPE_F32:
  6705. {
  6706. ggml_compute_forward_sqrt_f32(params, src0, dst);
  6707. } break;
  6708. default:
  6709. {
  6710. GGML_ASSERT(false);
  6711. } break;
  6712. }
  6713. }
  6714. // ggml_compute_forward_log
  6715. static void ggml_compute_forward_log_f32(
  6716. const struct ggml_compute_params * params,
  6717. const struct ggml_tensor * src0,
  6718. struct ggml_tensor * dst) {
  6719. GGML_ASSERT(params->ith == 0);
  6720. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6721. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6722. return;
  6723. }
  6724. const int n = ggml_nrows(src0);
  6725. const int nc = src0->ne[0];
  6726. GGML_ASSERT( dst->nb[0] == sizeof(float));
  6727. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6728. for (int i = 0; i < n; i++) {
  6729. ggml_vec_log_f32(nc,
  6730. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6731. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6732. }
  6733. }
  6734. static void ggml_compute_forward_log(
  6735. const struct ggml_compute_params * params,
  6736. const struct ggml_tensor * src0,
  6737. struct ggml_tensor * dst) {
  6738. switch (src0->type) {
  6739. case GGML_TYPE_F32:
  6740. {
  6741. ggml_compute_forward_log_f32(params, src0, dst);
  6742. } break;
  6743. default:
  6744. {
  6745. GGML_ASSERT(false);
  6746. } break;
  6747. }
  6748. }
  6749. // ggml_compute_forward_sum
  6750. static void ggml_compute_forward_sum_f32(
  6751. const struct ggml_compute_params * params,
  6752. const struct ggml_tensor * src0,
  6753. struct ggml_tensor * dst) {
  6754. assert(params->ith == 0);
  6755. assert(ggml_is_scalar(dst));
  6756. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6757. return;
  6758. }
  6759. assert(ggml_is_scalar(dst));
  6760. assert(src0->nb[0] == sizeof(float));
  6761. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6762. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6763. ggml_float sum = 0;
  6764. ggml_float row_sum = 0;
  6765. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6766. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6767. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6768. ggml_vec_sum_f32_ggf(ne00,
  6769. &row_sum,
  6770. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6771. sum += row_sum;
  6772. }
  6773. }
  6774. }
  6775. ((float *) dst->data)[0] = sum;
  6776. }
  6777. static void ggml_compute_forward_sum_f16(
  6778. const struct ggml_compute_params * params,
  6779. const struct ggml_tensor * src0,
  6780. struct ggml_tensor * dst) {
  6781. assert(params->ith == 0);
  6782. assert(ggml_is_scalar(dst));
  6783. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6784. return;
  6785. }
  6786. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  6787. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6788. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6789. float sum = 0;
  6790. float row_sum = 0;
  6791. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6792. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6793. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6794. ggml_vec_sum_f16_ggf(ne00,
  6795. &row_sum,
  6796. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  6797. sum += row_sum;
  6798. }
  6799. }
  6800. }
  6801. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  6802. }
  6803. static void ggml_compute_forward_sum(
  6804. const struct ggml_compute_params * params,
  6805. const struct ggml_tensor * src0,
  6806. struct ggml_tensor * dst) {
  6807. switch (src0->type) {
  6808. case GGML_TYPE_F32:
  6809. {
  6810. ggml_compute_forward_sum_f32(params, src0, dst);
  6811. } break;
  6812. case GGML_TYPE_F16:
  6813. {
  6814. ggml_compute_forward_sum_f16(params, src0, dst);
  6815. } break;
  6816. default:
  6817. {
  6818. GGML_ASSERT(false);
  6819. } break;
  6820. }
  6821. }
  6822. // ggml_compute_forward_sum_rows
  6823. static void ggml_compute_forward_sum_rows_f32(
  6824. const struct ggml_compute_params * params,
  6825. const struct ggml_tensor * src0,
  6826. struct ggml_tensor * dst) {
  6827. GGML_ASSERT(params->ith == 0);
  6828. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6829. return;
  6830. }
  6831. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6832. GGML_ASSERT(dst->nb[0] == sizeof(float));
  6833. GGML_TENSOR_UNARY_OP_LOCALS
  6834. GGML_ASSERT(ne0 == 1);
  6835. GGML_ASSERT(ne1 == ne01);
  6836. GGML_ASSERT(ne2 == ne02);
  6837. GGML_ASSERT(ne3 == ne03);
  6838. for (int64_t i3 = 0; i3 < ne03; i3++) {
  6839. for (int64_t i2 = 0; i2 < ne02; i2++) {
  6840. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6841. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  6842. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  6843. float row_sum = 0;
  6844. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  6845. dst_row[0] = row_sum;
  6846. }
  6847. }
  6848. }
  6849. }
  6850. static void ggml_compute_forward_sum_rows(
  6851. const struct ggml_compute_params * params,
  6852. const struct ggml_tensor * src0,
  6853. struct ggml_tensor * dst) {
  6854. switch (src0->type) {
  6855. case GGML_TYPE_F32:
  6856. {
  6857. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  6858. } break;
  6859. default:
  6860. {
  6861. GGML_ASSERT(false);
  6862. } break;
  6863. }
  6864. }
  6865. // ggml_compute_forward_mean
  6866. static void ggml_compute_forward_mean_f32(
  6867. const struct ggml_compute_params * params,
  6868. const struct ggml_tensor * src0,
  6869. struct ggml_tensor * dst) {
  6870. assert(params->ith == 0);
  6871. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6872. return;
  6873. }
  6874. assert(src0->nb[0] == sizeof(float));
  6875. GGML_TENSOR_UNARY_OP_LOCALS
  6876. assert(ne0 == 1);
  6877. assert(ne1 == ne01);
  6878. assert(ne2 == ne02);
  6879. assert(ne3 == ne03);
  6880. UNUSED(ne0);
  6881. UNUSED(ne1);
  6882. UNUSED(ne2);
  6883. UNUSED(ne3);
  6884. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6885. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6886. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6887. ggml_vec_sum_f32(ne00,
  6888. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6889. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6890. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  6891. }
  6892. }
  6893. }
  6894. }
  6895. static void ggml_compute_forward_mean(
  6896. const struct ggml_compute_params * params,
  6897. const struct ggml_tensor * src0,
  6898. struct ggml_tensor * dst) {
  6899. switch (src0->type) {
  6900. case GGML_TYPE_F32:
  6901. {
  6902. ggml_compute_forward_mean_f32(params, src0, dst);
  6903. } break;
  6904. default:
  6905. {
  6906. GGML_ASSERT(false);
  6907. } break;
  6908. }
  6909. }
  6910. // ggml_compute_forward_argmax
  6911. static void ggml_compute_forward_argmax_f32(
  6912. const struct ggml_compute_params * params,
  6913. const struct ggml_tensor * src0,
  6914. struct ggml_tensor * dst) {
  6915. assert(params->ith == 0);
  6916. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6917. return;
  6918. }
  6919. assert(src0->nb[0] == sizeof(float));
  6920. assert(dst->nb[0] == sizeof(float));
  6921. const int64_t ne00 = src0->ne[0];
  6922. const int64_t ne01 = src0->ne[1];
  6923. const size_t nb01 = src0->nb[1];
  6924. const size_t nb0 = dst->nb[0];
  6925. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6926. float * src = (float *) ((char *) src0->data + i1*nb01);
  6927. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  6928. int v = 0;
  6929. ggml_vec_argmax_f32(ne00, &v, src);
  6930. dst_[0] = v;
  6931. }
  6932. }
  6933. static void ggml_compute_forward_argmax(
  6934. const struct ggml_compute_params * params,
  6935. const struct ggml_tensor * src0,
  6936. struct ggml_tensor * dst) {
  6937. switch (src0->type) {
  6938. case GGML_TYPE_F32:
  6939. {
  6940. ggml_compute_forward_argmax_f32(params, src0, dst);
  6941. } break;
  6942. default:
  6943. {
  6944. GGML_ASSERT(false);
  6945. } break;
  6946. }
  6947. }
  6948. // ggml_compute_forward_repeat
  6949. static void ggml_compute_forward_repeat_f32(
  6950. const struct ggml_compute_params * params,
  6951. const struct ggml_tensor * src0,
  6952. struct ggml_tensor * dst) {
  6953. GGML_ASSERT(params->ith == 0);
  6954. GGML_ASSERT(ggml_can_repeat(src0, dst));
  6955. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6956. return;
  6957. }
  6958. GGML_TENSOR_UNARY_OP_LOCALS
  6959. // guaranteed to be an integer due to the check in ggml_can_repeat
  6960. const int nr0 = (int)(ne0/ne00);
  6961. const int nr1 = (int)(ne1/ne01);
  6962. const int nr2 = (int)(ne2/ne02);
  6963. const int nr3 = (int)(ne3/ne03);
  6964. // TODO: support for transposed / permuted tensors
  6965. GGML_ASSERT(nb0 == sizeof(float));
  6966. GGML_ASSERT(nb00 == sizeof(float));
  6967. // TODO: maybe this is not optimal?
  6968. for (int i3 = 0; i3 < nr3; i3++) {
  6969. for (int k3 = 0; k3 < ne03; k3++) {
  6970. for (int i2 = 0; i2 < nr2; i2++) {
  6971. for (int k2 = 0; k2 < ne02; k2++) {
  6972. for (int i1 = 0; i1 < nr1; i1++) {
  6973. for (int k1 = 0; k1 < ne01; k1++) {
  6974. for (int i0 = 0; i0 < nr0; i0++) {
  6975. ggml_vec_cpy_f32(ne00,
  6976. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  6977. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  6978. }
  6979. }
  6980. }
  6981. }
  6982. }
  6983. }
  6984. }
  6985. }
  6986. static void ggml_compute_forward_repeat_f16(
  6987. const struct ggml_compute_params * params,
  6988. const struct ggml_tensor * src0,
  6989. struct ggml_tensor * dst) {
  6990. GGML_ASSERT(params->ith == 0);
  6991. GGML_ASSERT(ggml_can_repeat(src0, dst));
  6992. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6993. return;
  6994. }
  6995. GGML_TENSOR_UNARY_OP_LOCALS
  6996. // guaranteed to be an integer due to the check in ggml_can_repeat
  6997. const int nr0 = (int)(ne0/ne00);
  6998. const int nr1 = (int)(ne1/ne01);
  6999. const int nr2 = (int)(ne2/ne02);
  7000. const int nr3 = (int)(ne3/ne03);
  7001. // TODO: support for transposed / permuted tensors
  7002. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  7003. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7004. // TODO: maybe this is not optimal?
  7005. for (int i3 = 0; i3 < nr3; i3++) {
  7006. for (int k3 = 0; k3 < ne03; k3++) {
  7007. for (int i2 = 0; i2 < nr2; i2++) {
  7008. for (int k2 = 0; k2 < ne02; k2++) {
  7009. for (int i1 = 0; i1 < nr1; i1++) {
  7010. for (int k1 = 0; k1 < ne01; k1++) {
  7011. for (int i0 = 0; i0 < nr0; i0++) {
  7012. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  7013. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  7014. // ggml_vec_cpy_f16(ne00, y, x)
  7015. for (int i = 0; i < ne00; ++i) {
  7016. y[i] = x[i];
  7017. }
  7018. }
  7019. }
  7020. }
  7021. }
  7022. }
  7023. }
  7024. }
  7025. }
  7026. static void ggml_compute_forward_repeat(
  7027. const struct ggml_compute_params * params,
  7028. const struct ggml_tensor * src0,
  7029. struct ggml_tensor * dst) {
  7030. switch (src0->type) {
  7031. case GGML_TYPE_F16:
  7032. case GGML_TYPE_I16:
  7033. {
  7034. ggml_compute_forward_repeat_f16(params, src0, dst);
  7035. } break;
  7036. case GGML_TYPE_F32:
  7037. case GGML_TYPE_I32:
  7038. {
  7039. ggml_compute_forward_repeat_f32(params, src0, dst);
  7040. } break;
  7041. default:
  7042. {
  7043. GGML_ASSERT(false);
  7044. } break;
  7045. }
  7046. }
  7047. // ggml_compute_forward_repeat_back
  7048. static void ggml_compute_forward_repeat_back_f32(
  7049. const struct ggml_compute_params * params,
  7050. const struct ggml_tensor * src0,
  7051. struct ggml_tensor * dst) {
  7052. GGML_ASSERT(params->ith == 0);
  7053. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7054. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7055. return;
  7056. }
  7057. GGML_TENSOR_UNARY_OP_LOCALS
  7058. // guaranteed to be an integer due to the check in ggml_can_repeat
  7059. const int nr0 = (int)(ne00/ne0);
  7060. const int nr1 = (int)(ne01/ne1);
  7061. const int nr2 = (int)(ne02/ne2);
  7062. const int nr3 = (int)(ne03/ne3);
  7063. // TODO: support for transposed / permuted tensors
  7064. GGML_ASSERT(nb0 == sizeof(float));
  7065. GGML_ASSERT(nb00 == sizeof(float));
  7066. if (ggml_is_contiguous(dst)) {
  7067. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7068. } else {
  7069. for (int k3 = 0; k3 < ne3; k3++) {
  7070. for (int k2 = 0; k2 < ne2; k2++) {
  7071. for (int k1 = 0; k1 < ne1; k1++) {
  7072. ggml_vec_set_f32(ne0,
  7073. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7074. 0);
  7075. }
  7076. }
  7077. }
  7078. }
  7079. // TODO: maybe this is not optimal?
  7080. for (int i3 = 0; i3 < nr3; i3++) {
  7081. for (int k3 = 0; k3 < ne3; k3++) {
  7082. for (int i2 = 0; i2 < nr2; i2++) {
  7083. for (int k2 = 0; k2 < ne2; k2++) {
  7084. for (int i1 = 0; i1 < nr1; i1++) {
  7085. for (int k1 = 0; k1 < ne1; k1++) {
  7086. for (int i0 = 0; i0 < nr0; i0++) {
  7087. ggml_vec_acc_f32(ne0,
  7088. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7089. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7090. }
  7091. }
  7092. }
  7093. }
  7094. }
  7095. }
  7096. }
  7097. }
  7098. static void ggml_compute_forward_repeat_back(
  7099. const struct ggml_compute_params * params,
  7100. const struct ggml_tensor * src0,
  7101. struct ggml_tensor * dst) {
  7102. switch (src0->type) {
  7103. case GGML_TYPE_F32:
  7104. {
  7105. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  7106. } break;
  7107. default:
  7108. {
  7109. GGML_ASSERT(false);
  7110. } break;
  7111. }
  7112. }
  7113. // ggml_compute_forward_concat
  7114. static void ggml_compute_forward_concat_f32(
  7115. const struct ggml_compute_params * params,
  7116. const struct ggml_tensor * src0,
  7117. const struct ggml_tensor * src1,
  7118. struct ggml_tensor * dst) {
  7119. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7120. return;
  7121. }
  7122. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7123. const int ith = params->ith;
  7124. const int nth = params->nth;
  7125. GGML_TENSOR_BINARY_OP_LOCALS
  7126. // TODO: support for transposed / permuted tensors
  7127. GGML_ASSERT(nb0 == sizeof(float));
  7128. GGML_ASSERT(nb00 == sizeof(float));
  7129. GGML_ASSERT(nb10 == sizeof(float));
  7130. for (int i3 = 0; i3 < ne3; i3++) {
  7131. for (int i2 = ith; i2 < ne2; i2 += nth) {
  7132. if (i2 < ne02) { // src0
  7133. for (int i1 = 0; i1 < ne1; i1++) {
  7134. for (int i0 = 0; i0 < ne0; i0++) {
  7135. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  7136. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7137. *y = *x;
  7138. }
  7139. }
  7140. } // src1
  7141. else {
  7142. for (int i1 = 0; i1 < ne1; i1++) {
  7143. for (int i0 = 0; i0 < ne0; i0++) {
  7144. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  7145. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7146. *y = *x;
  7147. }
  7148. }
  7149. }
  7150. }
  7151. }
  7152. }
  7153. static void ggml_compute_forward_concat(
  7154. const struct ggml_compute_params* params,
  7155. const struct ggml_tensor* src0,
  7156. const struct ggml_tensor* src1,
  7157. struct ggml_tensor* dst) {
  7158. switch (src0->type) {
  7159. case GGML_TYPE_F32:
  7160. case GGML_TYPE_I32:
  7161. {
  7162. ggml_compute_forward_concat_f32(params, src0, src1, dst);
  7163. } break;
  7164. default:
  7165. {
  7166. GGML_ASSERT(false);
  7167. } break;
  7168. }
  7169. }
  7170. // ggml_compute_forward_abs
  7171. static void ggml_compute_forward_abs_f32(
  7172. const struct ggml_compute_params * params,
  7173. const struct ggml_tensor * src0,
  7174. struct ggml_tensor * dst) {
  7175. assert(params->ith == 0);
  7176. assert(ggml_are_same_shape(src0, dst));
  7177. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7178. return;
  7179. }
  7180. const int n = ggml_nrows(src0);
  7181. const int nc = src0->ne[0];
  7182. assert(dst->nb[0] == sizeof(float));
  7183. assert(src0->nb[0] == sizeof(float));
  7184. for (int i = 0; i < n; i++) {
  7185. ggml_vec_abs_f32(nc,
  7186. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7187. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7188. }
  7189. }
  7190. static void ggml_compute_forward_abs(
  7191. const struct ggml_compute_params * params,
  7192. const struct ggml_tensor * src0,
  7193. struct ggml_tensor * dst) {
  7194. switch (src0->type) {
  7195. case GGML_TYPE_F32:
  7196. {
  7197. ggml_compute_forward_abs_f32(params, src0, dst);
  7198. } break;
  7199. default:
  7200. {
  7201. GGML_ASSERT(false);
  7202. } break;
  7203. }
  7204. }
  7205. // ggml_compute_forward_sgn
  7206. static void ggml_compute_forward_sgn_f32(
  7207. const struct ggml_compute_params * params,
  7208. const struct ggml_tensor * src0,
  7209. struct ggml_tensor * dst) {
  7210. assert(params->ith == 0);
  7211. assert(ggml_are_same_shape(src0, dst));
  7212. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7213. return;
  7214. }
  7215. const int n = ggml_nrows(src0);
  7216. const int nc = src0->ne[0];
  7217. assert(dst->nb[0] == sizeof(float));
  7218. assert(src0->nb[0] == sizeof(float));
  7219. for (int i = 0; i < n; i++) {
  7220. ggml_vec_sgn_f32(nc,
  7221. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7222. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7223. }
  7224. }
  7225. static void ggml_compute_forward_sgn(
  7226. const struct ggml_compute_params * params,
  7227. const struct ggml_tensor * src0,
  7228. struct ggml_tensor * dst) {
  7229. switch (src0->type) {
  7230. case GGML_TYPE_F32:
  7231. {
  7232. ggml_compute_forward_sgn_f32(params, src0, dst);
  7233. } break;
  7234. default:
  7235. {
  7236. GGML_ASSERT(false);
  7237. } break;
  7238. }
  7239. }
  7240. // ggml_compute_forward_neg
  7241. static void ggml_compute_forward_neg_f32(
  7242. const struct ggml_compute_params * params,
  7243. const struct ggml_tensor * src0,
  7244. struct ggml_tensor * dst) {
  7245. assert(params->ith == 0);
  7246. assert(ggml_are_same_shape(src0, dst));
  7247. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7248. return;
  7249. }
  7250. const int n = ggml_nrows(src0);
  7251. const int nc = src0->ne[0];
  7252. assert(dst->nb[0] == sizeof(float));
  7253. assert(src0->nb[0] == sizeof(float));
  7254. for (int i = 0; i < n; i++) {
  7255. ggml_vec_neg_f32(nc,
  7256. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7257. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7258. }
  7259. }
  7260. static void ggml_compute_forward_neg(
  7261. const struct ggml_compute_params * params,
  7262. const struct ggml_tensor * src0,
  7263. struct ggml_tensor * dst) {
  7264. switch (src0->type) {
  7265. case GGML_TYPE_F32:
  7266. {
  7267. ggml_compute_forward_neg_f32(params, src0, dst);
  7268. } break;
  7269. default:
  7270. {
  7271. GGML_ASSERT(false);
  7272. } break;
  7273. }
  7274. }
  7275. // ggml_compute_forward_step
  7276. static void ggml_compute_forward_step_f32(
  7277. const struct ggml_compute_params * params,
  7278. const struct ggml_tensor * src0,
  7279. struct ggml_tensor * dst) {
  7280. assert(params->ith == 0);
  7281. assert(ggml_are_same_shape(src0, dst));
  7282. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7283. return;
  7284. }
  7285. const int n = ggml_nrows(src0);
  7286. const int nc = src0->ne[0];
  7287. assert(dst->nb[0] == sizeof(float));
  7288. assert(src0->nb[0] == sizeof(float));
  7289. for (int i = 0; i < n; i++) {
  7290. ggml_vec_step_f32(nc,
  7291. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7292. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7293. }
  7294. }
  7295. static void ggml_compute_forward_step(
  7296. const struct ggml_compute_params * params,
  7297. const struct ggml_tensor * src0,
  7298. struct ggml_tensor * dst) {
  7299. switch (src0->type) {
  7300. case GGML_TYPE_F32:
  7301. {
  7302. ggml_compute_forward_step_f32(params, src0, dst);
  7303. } break;
  7304. default:
  7305. {
  7306. GGML_ASSERT(false);
  7307. } break;
  7308. }
  7309. }
  7310. // ggml_compute_forward_tanh
  7311. static void ggml_compute_forward_tanh_f32(
  7312. const struct ggml_compute_params * params,
  7313. const struct ggml_tensor * src0,
  7314. struct ggml_tensor * dst) {
  7315. assert(params->ith == 0);
  7316. assert(ggml_are_same_shape(src0, dst));
  7317. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7318. return;
  7319. }
  7320. const int n = ggml_nrows(src0);
  7321. const int nc = src0->ne[0];
  7322. assert(dst->nb[0] == sizeof(float));
  7323. assert(src0->nb[0] == sizeof(float));
  7324. for (int i = 0; i < n; i++) {
  7325. ggml_vec_tanh_f32(nc,
  7326. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7327. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7328. }
  7329. }
  7330. static void ggml_compute_forward_tanh(
  7331. const struct ggml_compute_params * params,
  7332. const struct ggml_tensor * src0,
  7333. struct ggml_tensor * dst) {
  7334. switch (src0->type) {
  7335. case GGML_TYPE_F32:
  7336. {
  7337. ggml_compute_forward_tanh_f32(params, src0, dst);
  7338. } break;
  7339. default:
  7340. {
  7341. GGML_ASSERT(false);
  7342. } break;
  7343. }
  7344. }
  7345. // ggml_compute_forward_elu
  7346. static void ggml_compute_forward_elu_f32(
  7347. const struct ggml_compute_params * params,
  7348. const struct ggml_tensor * src0,
  7349. struct ggml_tensor * dst) {
  7350. assert(params->ith == 0);
  7351. assert(ggml_are_same_shape(src0, dst));
  7352. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7353. return;
  7354. }
  7355. const int n = ggml_nrows(src0);
  7356. const int nc = src0->ne[0];
  7357. assert(dst->nb[0] == sizeof(float));
  7358. assert(src0->nb[0] == sizeof(float));
  7359. for (int i = 0; i < n; i++) {
  7360. ggml_vec_elu_f32(nc,
  7361. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7362. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7363. }
  7364. }
  7365. static void ggml_compute_forward_elu(
  7366. const struct ggml_compute_params * params,
  7367. const struct ggml_tensor * src0,
  7368. struct ggml_tensor * dst) {
  7369. switch (src0->type) {
  7370. case GGML_TYPE_F32:
  7371. {
  7372. ggml_compute_forward_elu_f32(params, src0, dst);
  7373. } break;
  7374. default:
  7375. {
  7376. GGML_ASSERT(false);
  7377. } break;
  7378. }
  7379. }
  7380. // ggml_compute_forward_relu
  7381. static void ggml_compute_forward_relu_f32(
  7382. const struct ggml_compute_params * params,
  7383. const struct ggml_tensor * src0,
  7384. struct ggml_tensor * dst) {
  7385. assert(params->ith == 0);
  7386. assert(ggml_are_same_shape(src0, dst));
  7387. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7388. return;
  7389. }
  7390. const int n = ggml_nrows(src0);
  7391. const int nc = src0->ne[0];
  7392. assert(dst->nb[0] == sizeof(float));
  7393. assert(src0->nb[0] == sizeof(float));
  7394. for (int i = 0; i < n; i++) {
  7395. ggml_vec_relu_f32(nc,
  7396. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7397. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7398. }
  7399. }
  7400. static void ggml_compute_forward_relu(
  7401. const struct ggml_compute_params * params,
  7402. const struct ggml_tensor * src0,
  7403. struct ggml_tensor * dst) {
  7404. switch (src0->type) {
  7405. case GGML_TYPE_F32:
  7406. {
  7407. ggml_compute_forward_relu_f32(params, src0, dst);
  7408. } break;
  7409. default:
  7410. {
  7411. GGML_ASSERT(false);
  7412. } break;
  7413. }
  7414. }
  7415. // ggml_compute_forward_gelu
  7416. static void ggml_compute_forward_gelu_f32(
  7417. const struct ggml_compute_params * params,
  7418. const struct ggml_tensor * src0,
  7419. struct ggml_tensor * dst) {
  7420. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7421. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7422. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7423. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7424. return;
  7425. }
  7426. const int ith = params->ith;
  7427. const int nth = params->nth;
  7428. const int nc = src0->ne[0];
  7429. const int nr = ggml_nrows(src0);
  7430. // rows per thread
  7431. const int dr = (nr + nth - 1)/nth;
  7432. // row range for this thread
  7433. const int ir0 = dr*ith;
  7434. const int ir1 = MIN(ir0 + dr, nr);
  7435. for (int i1 = ir0; i1 < ir1; i1++) {
  7436. ggml_vec_gelu_f32(nc,
  7437. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7438. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7439. #ifndef NDEBUG
  7440. for (int k = 0; k < nc; k++) {
  7441. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7442. UNUSED(x);
  7443. assert(!isnan(x));
  7444. assert(!isinf(x));
  7445. }
  7446. #endif
  7447. }
  7448. }
  7449. static void ggml_compute_forward_gelu(
  7450. const struct ggml_compute_params * params,
  7451. const struct ggml_tensor * src0,
  7452. struct ggml_tensor * dst) {
  7453. switch (src0->type) {
  7454. case GGML_TYPE_F32:
  7455. {
  7456. ggml_compute_forward_gelu_f32(params, src0, dst);
  7457. } break;
  7458. default:
  7459. {
  7460. GGML_ASSERT(false);
  7461. } break;
  7462. }
  7463. }
  7464. // ggml_compute_forward_gelu_quick
  7465. static void ggml_compute_forward_gelu_quick_f32(
  7466. const struct ggml_compute_params * params,
  7467. const struct ggml_tensor * src0,
  7468. struct ggml_tensor * dst) {
  7469. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7470. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7471. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7472. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7473. return;
  7474. }
  7475. const int ith = params->ith;
  7476. const int nth = params->nth;
  7477. const int nc = src0->ne[0];
  7478. const int nr = ggml_nrows(src0);
  7479. // rows per thread
  7480. const int dr = (nr + nth - 1)/nth;
  7481. // row range for this thread
  7482. const int ir0 = dr*ith;
  7483. const int ir1 = MIN(ir0 + dr, nr);
  7484. for (int i1 = ir0; i1 < ir1; i1++) {
  7485. ggml_vec_gelu_quick_f32(nc,
  7486. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7487. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7488. #ifndef NDEBUG
  7489. for (int k = 0; k < nc; k++) {
  7490. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7491. UNUSED(x);
  7492. assert(!isnan(x));
  7493. assert(!isinf(x));
  7494. }
  7495. #endif
  7496. }
  7497. }
  7498. static void ggml_compute_forward_gelu_quick(
  7499. const struct ggml_compute_params * params,
  7500. const struct ggml_tensor * src0,
  7501. struct ggml_tensor * dst) {
  7502. switch (src0->type) {
  7503. case GGML_TYPE_F32:
  7504. {
  7505. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  7506. } break;
  7507. default:
  7508. {
  7509. GGML_ASSERT(false);
  7510. } break;
  7511. }
  7512. }
  7513. // ggml_compute_forward_silu
  7514. static void ggml_compute_forward_silu_f32(
  7515. const struct ggml_compute_params * params,
  7516. const struct ggml_tensor * src0,
  7517. struct ggml_tensor * dst) {
  7518. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7519. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7520. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7521. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7522. return;
  7523. }
  7524. const int ith = params->ith;
  7525. const int nth = params->nth;
  7526. const int nc = src0->ne[0];
  7527. const int nr = ggml_nrows(src0);
  7528. // rows per thread
  7529. const int dr = (nr + nth - 1)/nth;
  7530. // row range for this thread
  7531. const int ir0 = dr*ith;
  7532. const int ir1 = MIN(ir0 + dr, nr);
  7533. for (int i1 = ir0; i1 < ir1; i1++) {
  7534. ggml_vec_silu_f32(nc,
  7535. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7536. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7537. #ifndef NDEBUG
  7538. for (int k = 0; k < nc; k++) {
  7539. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  7540. UNUSED(x);
  7541. assert(!isnan(x));
  7542. assert(!isinf(x));
  7543. }
  7544. #endif
  7545. }
  7546. }
  7547. static void ggml_compute_forward_silu(
  7548. const struct ggml_compute_params * params,
  7549. const struct ggml_tensor * src0,
  7550. struct ggml_tensor * dst) {
  7551. switch (src0->type) {
  7552. case GGML_TYPE_F32:
  7553. {
  7554. ggml_compute_forward_silu_f32(params, src0, dst);
  7555. } break;
  7556. default:
  7557. {
  7558. GGML_ASSERT(false);
  7559. } break;
  7560. }
  7561. }
  7562. // ggml_compute_forward_leaky_relu
  7563. static void ggml_compute_forward_leaky_relu_f32(
  7564. const struct ggml_compute_params * params,
  7565. const struct ggml_tensor * src0,
  7566. struct ggml_tensor * dst) {
  7567. assert(params->ith == 0);
  7568. assert(ggml_are_same_shape(src0, dst));
  7569. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7570. return;
  7571. }
  7572. const int n = ggml_nrows(src0);
  7573. const int nc = src0->ne[0];
  7574. float negative_slope;
  7575. memcpy(&negative_slope, dst->op_params, sizeof(float));
  7576. assert(dst->nb[0] == sizeof(float));
  7577. assert(src0->nb[0] == sizeof(float));
  7578. for (int i = 0; i < n; i++) {
  7579. ggml_vec_leaky_relu_f32(nc,
  7580. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7581. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  7582. }
  7583. }
  7584. static void ggml_compute_forward_leaky_relu(
  7585. const struct ggml_compute_params * params,
  7586. const struct ggml_tensor * src0,
  7587. struct ggml_tensor * dst) {
  7588. switch (src0->type) {
  7589. case GGML_TYPE_F32:
  7590. {
  7591. ggml_compute_forward_leaky_relu_f32(params, src0, dst);
  7592. } break;
  7593. default:
  7594. {
  7595. GGML_ASSERT(false);
  7596. } break;
  7597. }
  7598. }
  7599. // ggml_compute_forward_silu_back
  7600. static void ggml_compute_forward_silu_back_f32(
  7601. const struct ggml_compute_params * params,
  7602. const struct ggml_tensor * src0,
  7603. const struct ggml_tensor * grad,
  7604. struct ggml_tensor * dst) {
  7605. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  7606. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7607. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7608. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7609. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7610. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7611. return;
  7612. }
  7613. const int ith = params->ith;
  7614. const int nth = params->nth;
  7615. const int nc = src0->ne[0];
  7616. const int nr = ggml_nrows(src0);
  7617. // rows per thread
  7618. const int dr = (nr + nth - 1)/nth;
  7619. // row range for this thread
  7620. const int ir0 = dr*ith;
  7621. const int ir1 = MIN(ir0 + dr, nr);
  7622. for (int i1 = ir0; i1 < ir1; i1++) {
  7623. ggml_vec_silu_backward_f32(nc,
  7624. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7625. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7626. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7627. #ifndef NDEBUG
  7628. for (int k = 0; k < nc; k++) {
  7629. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7630. UNUSED(x);
  7631. assert(!isnan(x));
  7632. assert(!isinf(x));
  7633. }
  7634. #endif
  7635. }
  7636. }
  7637. static void ggml_compute_forward_silu_back(
  7638. const struct ggml_compute_params * params,
  7639. const struct ggml_tensor * src0,
  7640. const struct ggml_tensor * grad,
  7641. struct ggml_tensor * dst) {
  7642. switch (src0->type) {
  7643. case GGML_TYPE_F32:
  7644. {
  7645. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  7646. } break;
  7647. default:
  7648. {
  7649. GGML_ASSERT(false);
  7650. } break;
  7651. }
  7652. }
  7653. // ggml_compute_forward_norm
  7654. static void ggml_compute_forward_norm_f32(
  7655. const struct ggml_compute_params * params,
  7656. const struct ggml_tensor * src0,
  7657. struct ggml_tensor * dst) {
  7658. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7659. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7660. return;
  7661. }
  7662. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7663. const int ith = params->ith;
  7664. const int nth = params->nth;
  7665. GGML_TENSOR_UNARY_OP_LOCALS
  7666. float eps;
  7667. memcpy(&eps, dst->op_params, sizeof(float));
  7668. GGML_ASSERT(eps > 0.0f);
  7669. // TODO: optimize
  7670. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7671. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7672. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7673. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7674. ggml_float sum = 0.0;
  7675. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7676. sum += (ggml_float)x[i00];
  7677. }
  7678. float mean = sum/ne00;
  7679. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7680. ggml_float sum2 = 0.0;
  7681. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7682. float v = x[i00] - mean;
  7683. y[i00] = v;
  7684. sum2 += (ggml_float)(v*v);
  7685. }
  7686. float variance = sum2/ne00;
  7687. const float scale = 1.0f/sqrtf(variance + eps);
  7688. ggml_vec_scale_f32(ne00, y, scale);
  7689. }
  7690. }
  7691. }
  7692. }
  7693. static void ggml_compute_forward_norm(
  7694. const struct ggml_compute_params * params,
  7695. const struct ggml_tensor * src0,
  7696. struct ggml_tensor * dst) {
  7697. switch (src0->type) {
  7698. case GGML_TYPE_F32:
  7699. {
  7700. ggml_compute_forward_norm_f32(params, src0, dst);
  7701. } break;
  7702. default:
  7703. {
  7704. GGML_ASSERT(false);
  7705. } break;
  7706. }
  7707. }
  7708. // ggml_compute_forward_group_rms_norm
  7709. static void ggml_compute_forward_rms_norm_f32(
  7710. const struct ggml_compute_params * params,
  7711. const struct ggml_tensor * src0,
  7712. struct ggml_tensor * dst) {
  7713. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7714. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7715. return;
  7716. }
  7717. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7718. const int ith = params->ith;
  7719. const int nth = params->nth;
  7720. GGML_TENSOR_UNARY_OP_LOCALS
  7721. float eps;
  7722. memcpy(&eps, dst->op_params, sizeof(float));
  7723. GGML_ASSERT(eps > 0.0f);
  7724. // TODO: optimize
  7725. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7726. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7727. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7728. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7729. ggml_float sum = 0.0;
  7730. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7731. sum += (ggml_float)(x[i00] * x[i00]);
  7732. }
  7733. const float mean = sum/ne00;
  7734. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7735. memcpy(y, x, ne00 * sizeof(float));
  7736. // for (int i00 = 0; i00 < ne00; i00++) {
  7737. // y[i00] = x[i00];
  7738. // }
  7739. const float scale = 1.0f/sqrtf(mean + eps);
  7740. ggml_vec_scale_f32(ne00, y, scale);
  7741. }
  7742. }
  7743. }
  7744. }
  7745. static void ggml_compute_forward_rms_norm(
  7746. const struct ggml_compute_params * params,
  7747. const struct ggml_tensor * src0,
  7748. struct ggml_tensor * dst) {
  7749. switch (src0->type) {
  7750. case GGML_TYPE_F32:
  7751. {
  7752. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  7753. } break;
  7754. default:
  7755. {
  7756. GGML_ASSERT(false);
  7757. } break;
  7758. }
  7759. }
  7760. static void ggml_compute_forward_rms_norm_back_f32(
  7761. const struct ggml_compute_params * params,
  7762. const struct ggml_tensor * src0,
  7763. const struct ggml_tensor * src1,
  7764. struct ggml_tensor * dst) {
  7765. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  7766. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7767. return;
  7768. }
  7769. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7770. const int ith = params->ith;
  7771. const int nth = params->nth;
  7772. GGML_TENSOR_BINARY_OP_LOCALS
  7773. float eps;
  7774. memcpy(&eps, dst->op_params, sizeof(float));
  7775. // TODO: optimize
  7776. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7777. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7778. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7779. // src1 is same shape as src0 => same indices
  7780. const int64_t i11 = i01;
  7781. const int64_t i12 = i02;
  7782. const int64_t i13 = i03;
  7783. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7784. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  7785. ggml_float sum_xx = 0.0;
  7786. ggml_float sum_xdz = 0.0;
  7787. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7788. sum_xx += (ggml_float)(x[i00] * x[i00]);
  7789. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  7790. }
  7791. //const float mean = (float)(sum_xx)/ne00;
  7792. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  7793. const float sum_eps = (float)(sum_xx) + eps*ne00;
  7794. //const float mean_xdz = (float)(sum_xdz)/ne00;
  7795. // we could cache rms from forward pass to improve performance.
  7796. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  7797. //const float rms = sqrtf(mean_eps);
  7798. const float rrms = 1.0f / sqrtf(mean_eps);
  7799. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  7800. {
  7801. // z = rms_norm(x)
  7802. //
  7803. // rms_norm(src0) =
  7804. // scale(
  7805. // src0,
  7806. // div(
  7807. // 1,
  7808. // sqrt(
  7809. // add(
  7810. // scale(
  7811. // sum(
  7812. // sqr(
  7813. // src0)),
  7814. // (1.0/N)),
  7815. // eps))));
  7816. // postorder:
  7817. // ## op args grad
  7818. // 00 param src0 grad[#00]
  7819. // 01 const 1
  7820. // 02 sqr (#00) grad[#02]
  7821. // 03 sum (#02) grad[#03]
  7822. // 04 const 1/N
  7823. // 05 scale (#03, #04) grad[#05]
  7824. // 06 const eps
  7825. // 07 add (#05, #06) grad[#07]
  7826. // 08 sqrt (#07) grad[#08]
  7827. // 09 div (#01,#08) grad[#09]
  7828. // 10 scale (#00,#09) grad[#10]
  7829. //
  7830. // backward pass, given grad[#10]
  7831. // #10: scale
  7832. // grad[#00] += scale(grad[#10],#09)
  7833. // grad[#09] += sum(mul(grad[#10],#00))
  7834. // #09: div
  7835. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  7836. // #08: sqrt
  7837. // grad[#07] += mul(grad[#08], div(0.5, #08))
  7838. // #07: add
  7839. // grad[#05] += grad[#07]
  7840. // #05: scale
  7841. // grad[#03] += scale(grad[#05],#04)
  7842. // #03: sum
  7843. // grad[#02] += repeat(grad[#03], #02)
  7844. // #02:
  7845. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  7846. //
  7847. // substitute and simplify:
  7848. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7849. // grad[#02] = repeat(grad[#03], #02)
  7850. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  7851. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  7852. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  7853. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  7854. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  7855. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  7856. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  7857. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  7858. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  7859. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7860. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  7861. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  7862. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  7863. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7864. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7865. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  7866. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  7867. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  7868. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  7869. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  7870. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  7871. // a = b*c + d*e
  7872. // a = b*c*f/f + d*e*f/f
  7873. // a = (b*c*f + d*e*f)*(1/f)
  7874. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  7875. // a = (b + d*e/c)*c
  7876. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  7877. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  7878. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  7879. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  7880. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  7881. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  7882. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  7883. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  7884. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7885. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7886. }
  7887. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7888. // post-order:
  7889. // dx := x
  7890. // dx := scale(dx,-mean_xdz/mean_eps)
  7891. // dx := add(dx, dz)
  7892. // dx := scale(dx, rrms)
  7893. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7894. ggml_vec_cpy_f32 (ne00, dx, x);
  7895. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  7896. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  7897. ggml_vec_acc_f32 (ne00, dx, dz);
  7898. ggml_vec_scale_f32(ne00, dx, rrms);
  7899. }
  7900. }
  7901. }
  7902. }
  7903. static void ggml_compute_forward_rms_norm_back(
  7904. const struct ggml_compute_params * params,
  7905. const struct ggml_tensor * src0,
  7906. const struct ggml_tensor * src1,
  7907. struct ggml_tensor * dst) {
  7908. switch (src0->type) {
  7909. case GGML_TYPE_F32:
  7910. {
  7911. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  7912. } break;
  7913. default:
  7914. {
  7915. GGML_ASSERT(false);
  7916. } break;
  7917. }
  7918. }
  7919. // ggml_compute_forward_group_norm
  7920. static void ggml_compute_forward_group_norm_f32(
  7921. const struct ggml_compute_params * params,
  7922. const struct ggml_tensor * src0,
  7923. struct ggml_tensor * dst) {
  7924. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7925. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7926. return;
  7927. }
  7928. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7929. const int ith = params->ith;
  7930. const int nth = params->nth;
  7931. GGML_TENSOR_UNARY_OP_LOCALS
  7932. const float eps = 1e-6f; // TODO: make this a parameter
  7933. // TODO: optimize
  7934. int n_channels = src0->ne[2];
  7935. int n_groups = dst->op_params[0];
  7936. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  7937. for (int i = ith; i < n_groups; i+=nth) {
  7938. int start = i * n_channels_per_group;
  7939. int end = start + n_channels_per_group;
  7940. if (end > n_channels) {
  7941. end = n_channels;
  7942. }
  7943. int step = end - start;
  7944. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7945. ggml_float sum = 0.0;
  7946. for (int64_t i02 = start; i02 < end; i02++) {
  7947. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7948. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  7949. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7950. sum += (ggml_float)x[i00];
  7951. }
  7952. }
  7953. }
  7954. float mean = sum / (ne00 * ne01 * step);
  7955. ggml_float sum2 = 0.0;
  7956. for (int64_t i02 = start; i02 < end; i02++) {
  7957. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7958. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  7959. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  7960. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7961. float v = x[i00] - mean;
  7962. y[i00] = v;
  7963. sum2 += (ggml_float)(v * v);
  7964. }
  7965. }
  7966. }
  7967. float variance = sum2 / (ne00 * ne01 * step);
  7968. const float scale = 1.0f / sqrtf(variance + eps);
  7969. for (int64_t i02 = start; i02 < end; i02++) {
  7970. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7971. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  7972. ggml_vec_scale_f32(ne00, y, scale);
  7973. }
  7974. }
  7975. }
  7976. }
  7977. }
  7978. static void ggml_compute_forward_group_norm(
  7979. const struct ggml_compute_params * params,
  7980. const struct ggml_tensor * src0,
  7981. struct ggml_tensor * dst) {
  7982. switch (src0->type) {
  7983. case GGML_TYPE_F32:
  7984. {
  7985. ggml_compute_forward_group_norm_f32(params, src0, dst);
  7986. } break;
  7987. default:
  7988. {
  7989. GGML_ASSERT(false);
  7990. } break;
  7991. }
  7992. }
  7993. // ggml_compute_forward_mul_mat
  7994. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7995. // helper function to determine if it is better to use BLAS or not
  7996. // for large matrices, BLAS is faster
  7997. static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
  7998. const struct ggml_tensor * src0 = dst->src[0];
  7999. const struct ggml_tensor * src1 = dst->src[1];
  8000. //const int64_t ne00 = src0->ne[0];
  8001. //const int64_t ne01 = src0->ne[1];
  8002. const int64_t ne10 = src1->ne[0];
  8003. const int64_t ne0 = dst->ne[0];
  8004. const int64_t ne1 = dst->ne[1];
  8005. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  8006. // all the experts for each batch element and the processing would become incredibly slow
  8007. // TODO: find the optimal values for these
  8008. if (dst->op != GGML_OP_MUL_MAT_ID &&
  8009. ggml_is_contiguous(src0) &&
  8010. ggml_is_contiguous(src1) &&
  8011. //src0->type == GGML_TYPE_F32 &&
  8012. src1->type == GGML_TYPE_F32 &&
  8013. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8014. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8015. return true;
  8016. }
  8017. return false;
  8018. }
  8019. #endif
  8020. static void ggml_compute_forward_mul_mat(
  8021. const struct ggml_compute_params * params,
  8022. const struct ggml_tensor * src0,
  8023. const struct ggml_tensor * src1,
  8024. struct ggml_tensor * dst) {
  8025. int64_t t0 = ggml_perf_time_us();
  8026. UNUSED(t0);
  8027. GGML_TENSOR_BINARY_OP_LOCALS
  8028. const int ith = params->ith;
  8029. const int nth = params->nth;
  8030. const enum ggml_type type = src0->type;
  8031. const bool src1_cont = ggml_is_contiguous(src1);
  8032. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8033. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8034. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8035. GGML_ASSERT(ne0 == ne01);
  8036. GGML_ASSERT(ne1 == ne11);
  8037. GGML_ASSERT(ne2 == ne12);
  8038. GGML_ASSERT(ne3 == ne13);
  8039. // we don't support permuted src0 or src1
  8040. GGML_ASSERT(nb00 == ggml_type_size(type));
  8041. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8042. // dst cannot be transposed or permuted
  8043. GGML_ASSERT(nb0 == sizeof(float));
  8044. GGML_ASSERT(nb0 <= nb1);
  8045. GGML_ASSERT(nb1 <= nb2);
  8046. GGML_ASSERT(nb2 <= nb3);
  8047. // broadcast factors
  8048. const int64_t r2 = ne12/ne02;
  8049. const int64_t r3 = ne13/ne03;
  8050. // nb01 >= nb00 - src0 is not transposed
  8051. // compute by src0 rows
  8052. #if defined(GGML_USE_CLBLAST)
  8053. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8054. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8055. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8056. }
  8057. return;
  8058. }
  8059. #endif
  8060. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8061. if (ggml_compute_forward_mul_mat_use_blas(dst)) {
  8062. if (params->ith != 0) {
  8063. return;
  8064. }
  8065. if (params->type == GGML_TASK_INIT) {
  8066. return;
  8067. }
  8068. if (params->type == GGML_TASK_FINALIZE) {
  8069. return;
  8070. }
  8071. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8072. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8073. // broadcast src0 into src1 across 2nd,3rd dimension
  8074. const int64_t i03 = i13/r3;
  8075. const int64_t i02 = i12/r2;
  8076. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8077. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  8078. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  8079. if (type != GGML_TYPE_F32) {
  8080. float * const wdata = params->wdata;
  8081. ggml_to_float_t const to_float = type_traits[type].to_float;
  8082. size_t id = 0;
  8083. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8084. to_float((const char *) x + i01*nb01, wdata + id, ne00);
  8085. id += ne00;
  8086. }
  8087. assert(id*sizeof(float) <= params->wsize);
  8088. x = wdata;
  8089. }
  8090. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8091. ne1, ne01, ne10,
  8092. 1.0f, y, ne10,
  8093. x, ne00,
  8094. 0.0f, d, ne01);
  8095. }
  8096. }
  8097. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8098. return;
  8099. }
  8100. #endif
  8101. if (params->type == GGML_TASK_INIT) {
  8102. if (src1->type != vec_dot_type) {
  8103. char * wdata = params->wdata;
  8104. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8105. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8106. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8107. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8108. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8109. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8110. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8111. wdata += row_size;
  8112. }
  8113. }
  8114. }
  8115. }
  8116. return;
  8117. }
  8118. if (params->type == GGML_TASK_FINALIZE) {
  8119. return;
  8120. }
  8121. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8122. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8123. const int64_t nr0 = ne01; // src0 rows
  8124. const int64_t nr1 = ne1*ne12*ne13; // src1 rows
  8125. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8126. // distribute the thread work across the inner or outer loop based on which one is larger
  8127. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8128. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8129. const int64_t ith0 = ith % nth0;
  8130. const int64_t ith1 = ith / nth0;
  8131. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8132. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8133. const int64_t ir010 = dr0*ith0;
  8134. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8135. const int64_t ir110 = dr1*ith1;
  8136. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8137. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8138. // threads with no work simply yield (not sure if it helps)
  8139. if (ir010 >= ir011 || ir110 >= ir111) {
  8140. sched_yield();
  8141. return;
  8142. }
  8143. assert(ne12 % ne02 == 0);
  8144. assert(ne13 % ne03 == 0);
  8145. // block-tiling attempt
  8146. const int64_t blck_0 = 16;
  8147. const int64_t blck_1 = 16;
  8148. // attempt to reduce false-sharing (does not seem to make a difference)
  8149. float tmp[16];
  8150. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8151. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8152. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  8153. const int64_t i13 = (ir1/(ne12*ne1));
  8154. const int64_t i12 = (ir1 - i13*ne12*ne1)/ne1;
  8155. const int64_t i11 = (ir1 - i13*ne12*ne1 - i12*ne1);
  8156. // broadcast src0 into src1
  8157. const int64_t i03 = i13/r3;
  8158. const int64_t i02 = i12/r2;
  8159. const int64_t i1 = i11;
  8160. const int64_t i2 = i12;
  8161. const int64_t i3 = i13;
  8162. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  8163. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8164. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8165. // the original src1 data pointer, so we should index using the indices directly
  8166. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8167. const char * src1_col = (const char *) wdata +
  8168. (src1_cont || src1->type != vec_dot_type
  8169. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8170. : (i11*nb11 + i12*nb12 + i13*nb13));
  8171. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8172. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8173. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8174. //}
  8175. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8176. vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
  8177. }
  8178. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8179. }
  8180. }
  8181. }
  8182. }
  8183. // ggml_compute_forward_mul_mat_id
  8184. static void ggml_compute_forward_mul_mat_id(
  8185. const struct ggml_compute_params * params,
  8186. const struct ggml_tensor * ids,
  8187. const struct ggml_tensor * src1,
  8188. struct ggml_tensor * dst) {
  8189. const struct ggml_tensor * src0 = dst->src[2]; // only for GGML_TENSOR_BINARY_OP_LOCALS
  8190. GGML_TENSOR_BINARY_OP_LOCALS
  8191. const int ith = params->ith;
  8192. const int nth = params->nth;
  8193. const enum ggml_type type = src0->type;
  8194. const bool src1_cont = ggml_is_contiguous(src1);
  8195. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8196. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8197. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8198. GGML_ASSERT(ne0 == ne01);
  8199. GGML_ASSERT(ne1 == ne11);
  8200. GGML_ASSERT(ne2 == ne12);
  8201. GGML_ASSERT(ne3 == ne13);
  8202. // we don't support permuted src0 or src1
  8203. GGML_ASSERT(nb00 == ggml_type_size(type));
  8204. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8205. // dst cannot be transposed or permuted
  8206. GGML_ASSERT(nb0 == sizeof(float));
  8207. GGML_ASSERT(nb0 <= nb1);
  8208. GGML_ASSERT(nb1 <= nb2);
  8209. GGML_ASSERT(nb2 <= nb3);
  8210. // broadcast factors
  8211. const int64_t r2 = ne12/ne02;
  8212. const int64_t r3 = ne13/ne03;
  8213. // row groups
  8214. const int id = ggml_get_op_params_i32(dst, 0);
  8215. const int n_as = ggml_get_op_params_i32(dst, 1);
  8216. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  8217. (char *) params->wdata :
  8218. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  8219. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  8220. int64_t * matrix_rows = matrix_row_counts + n_as; // [n_as][ne11]
  8221. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne11 + (i1)]
  8222. if (params->type == GGML_TASK_INIT) {
  8223. char * wdata = params->wdata;
  8224. if (src1->type != vec_dot_type) {
  8225. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8226. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8227. assert(src1->type == GGML_TYPE_F32);
  8228. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8229. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8230. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8231. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8232. wdata += row_size;
  8233. }
  8234. }
  8235. }
  8236. }
  8237. // initialize matrix_row_counts
  8238. GGML_ASSERT(wdata == wdata_src1_end);
  8239. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  8240. // group rows by src0 matrix
  8241. for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
  8242. const int32_t row_id = *(const int32_t *) ((const char *) ids->data + i01*ids->nb[1] + id*ids->nb[0]);
  8243. GGML_ASSERT(row_id >= 0 && row_id < n_as);
  8244. MMID_MATRIX_ROW(row_id, matrix_row_counts[row_id]) = i01;
  8245. matrix_row_counts[row_id] += 1;
  8246. }
  8247. return;
  8248. }
  8249. if (params->type == GGML_TASK_FINALIZE) {
  8250. return;
  8251. }
  8252. // compute each matrix multiplication in sequence
  8253. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  8254. const int64_t cne1 = matrix_row_counts[cur_a];
  8255. if (cne1 == 0) {
  8256. continue;
  8257. }
  8258. const struct ggml_tensor * src0_cur = dst->src[cur_a + 2];
  8259. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8260. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8261. const int64_t nr0 = ne01; // src0 rows
  8262. const int64_t nr1 = cne1*ne12*ne13; // src1 rows
  8263. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8264. // distribute the thread work across the inner or outer loop based on which one is larger
  8265. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8266. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8267. const int64_t ith0 = ith % nth0;
  8268. const int64_t ith1 = ith / nth0;
  8269. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8270. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8271. const int64_t ir010 = dr0*ith0;
  8272. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8273. const int64_t ir110 = dr1*ith1;
  8274. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8275. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8276. // threads with no work simply yield (not sure if it helps)
  8277. if (ir010 >= ir011 || ir110 >= ir111) {
  8278. sched_yield();
  8279. continue;
  8280. }
  8281. assert(ne12 % ne02 == 0);
  8282. assert(ne13 % ne03 == 0);
  8283. // block-tiling attempt
  8284. const int64_t blck_0 = 16;
  8285. const int64_t blck_1 = 16;
  8286. // attempt to reduce false-sharing (does not seem to make a difference)
  8287. float tmp[16];
  8288. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8289. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8290. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  8291. const int64_t i13 = (ir1/(ne12*cne1)); // Note: currently, src1 is always a matrix
  8292. const int64_t i12 = (ir1 - i13*ne12*cne1)/cne1;
  8293. const int64_t _i11 = (ir1 - i13*ne12*cne1 - i12*cne1);
  8294. const int64_t i11 = MMID_MATRIX_ROW(cur_a, _i11);
  8295. // broadcast src0 into src1
  8296. const int64_t i03 = i13/r3;
  8297. const int64_t i02 = i12/r2;
  8298. const int64_t i1 = i11;
  8299. const int64_t i2 = i12;
  8300. const int64_t i3 = i13;
  8301. const char * src0_row = (const char *) src0_cur->data + (0 + i02*nb02 + i03*nb03);
  8302. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8303. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8304. // the original src1 data pointer, so we should index using the indices directly
  8305. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8306. const char * src1_col = (const char *) wdata +
  8307. (src1_cont || src1->type != vec_dot_type
  8308. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8309. : (i11*nb11 + i12*nb12 + i13*nb13));
  8310. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8311. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8312. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8313. //}
  8314. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8315. vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
  8316. }
  8317. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8318. }
  8319. }
  8320. }
  8321. }
  8322. #undef MMID_MATRIX_ROW
  8323. }
  8324. // ggml_compute_forward_out_prod
  8325. static void ggml_compute_forward_out_prod_f32(
  8326. const struct ggml_compute_params * params,
  8327. const struct ggml_tensor * src0,
  8328. const struct ggml_tensor * src1,
  8329. struct ggml_tensor * dst) {
  8330. // int64_t t0 = ggml_perf_time_us();
  8331. // UNUSED(t0);
  8332. GGML_TENSOR_BINARY_OP_LOCALS
  8333. const int ith = params->ith;
  8334. const int nth = params->nth;
  8335. GGML_ASSERT(ne0 == ne00);
  8336. GGML_ASSERT(ne1 == ne10);
  8337. GGML_ASSERT(ne2 == ne02);
  8338. GGML_ASSERT(ne02 == ne12);
  8339. GGML_ASSERT(ne3 == ne13);
  8340. GGML_ASSERT(ne03 == ne13);
  8341. // we don't support permuted src0 or src1
  8342. GGML_ASSERT(nb00 == sizeof(float));
  8343. // dst cannot be transposed or permuted
  8344. GGML_ASSERT(nb0 == sizeof(float));
  8345. // GGML_ASSERT(nb0 <= nb1);
  8346. // GGML_ASSERT(nb1 <= nb2);
  8347. // GGML_ASSERT(nb2 <= nb3);
  8348. // nb01 >= nb00 - src0 is not transposed
  8349. // compute by src0 rows
  8350. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8351. // TODO: #if defined(GGML_USE_CLBLAST)
  8352. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8353. bool use_blas = ggml_is_matrix(src0) &&
  8354. ggml_is_matrix(src1) &&
  8355. ggml_is_contiguous(src0) &&
  8356. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  8357. #endif
  8358. if (params->type == GGML_TASK_INIT) {
  8359. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  8360. if (use_blas) {
  8361. return;
  8362. }
  8363. #endif
  8364. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8365. return;
  8366. }
  8367. if (params->type == GGML_TASK_FINALIZE) {
  8368. return;
  8369. }
  8370. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8371. if (use_blas) {
  8372. if (params->ith != 0) { // All threads other than the first do no work.
  8373. return;
  8374. }
  8375. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  8376. // src0: (k,n)
  8377. // src1: (k,m)
  8378. // dst: (m,n)
  8379. //
  8380. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  8381. // Also expressed as (major,minor)
  8382. // a: (m,k): so src1 transposed
  8383. // b: (k,n): so src0
  8384. // c: (m,n)
  8385. //
  8386. // However, if ggml_is_transposed(src1) is true, then
  8387. // src1->data already contains a transposed version, so sgemm mustn't
  8388. // transpose it further.
  8389. int n = src0->ne[0];
  8390. int k = src0->ne[1];
  8391. int m = src1->ne[0];
  8392. int transposeA, lda;
  8393. if (!ggml_is_transposed(src1)) {
  8394. transposeA = CblasTrans;
  8395. lda = m;
  8396. } else {
  8397. transposeA = CblasNoTrans;
  8398. lda = k;
  8399. }
  8400. float * a = (float *) ((char *) src1->data);
  8401. float * b = (float *) ((char *) src0->data);
  8402. float * c = (float *) ((char *) dst->data);
  8403. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  8404. return;
  8405. }
  8406. #endif
  8407. // dst[:,:,:,:] = 0
  8408. // for i2,i3:
  8409. // for i1:
  8410. // for i01:
  8411. // for i0:
  8412. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8413. // parallelize by last three dimensions
  8414. // total rows in dst
  8415. const int64_t nr = ne1*ne2*ne3;
  8416. // rows per thread
  8417. const int64_t dr = (nr + nth - 1)/nth;
  8418. // row range for this thread
  8419. const int64_t ir0 = dr*ith;
  8420. const int64_t ir1 = MIN(ir0 + dr, nr);
  8421. // block-tiling attempt
  8422. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  8423. const int64_t blck_1 = 16;
  8424. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  8425. const int64_t bir1 = MIN(bir + blck_1, ir1);
  8426. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  8427. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  8428. for (int64_t ir = bir; ir < bir1; ++ir) {
  8429. // dst indices
  8430. const int64_t i3 = ir/(ne2*ne1);
  8431. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8432. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8433. const int64_t i02 = i2;
  8434. const int64_t i03 = i3;
  8435. //const int64_t i10 = i1;
  8436. const int64_t i12 = i2;
  8437. const int64_t i13 = i3;
  8438. #if GGML_VEC_MAD_UNROLL > 2
  8439. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  8440. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  8441. const int64_t i11 = i01;
  8442. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8443. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8444. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8445. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  8446. }
  8447. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  8448. const int64_t i11 = i01;
  8449. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8450. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8451. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8452. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8453. }
  8454. #else
  8455. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  8456. const int64_t i11 = i01;
  8457. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8458. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8459. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8460. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8461. }
  8462. #endif
  8463. }
  8464. }
  8465. }
  8466. //int64_t t1 = ggml_perf_time_us();
  8467. //static int64_t acc = 0;
  8468. //acc += t1 - t0;
  8469. //if (t1 - t0 > 10) {
  8470. // printf("\n");
  8471. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8472. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8473. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8474. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8475. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8476. //}
  8477. }
  8478. static void ggml_compute_forward_out_prod_q_f32(
  8479. const struct ggml_compute_params * params,
  8480. const struct ggml_tensor * src0,
  8481. const struct ggml_tensor * src1,
  8482. struct ggml_tensor * dst) {
  8483. // int64_t t0 = ggml_perf_time_us();
  8484. // UNUSED(t0);
  8485. GGML_TENSOR_BINARY_OP_LOCALS;
  8486. const int ith = params->ith;
  8487. const int nth = params->nth;
  8488. const enum ggml_type type = src0->type;
  8489. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8490. GGML_ASSERT(ne02 == ne12);
  8491. GGML_ASSERT(ne03 == ne13);
  8492. GGML_ASSERT(ne2 == ne12);
  8493. GGML_ASSERT(ne3 == ne13);
  8494. // we don't support permuted src0 dim0
  8495. GGML_ASSERT(nb00 == ggml_type_size(type));
  8496. // dst dim0 cannot be transposed or permuted
  8497. GGML_ASSERT(nb0 == sizeof(float));
  8498. // GGML_ASSERT(nb0 <= nb1);
  8499. // GGML_ASSERT(nb1 <= nb2);
  8500. // GGML_ASSERT(nb2 <= nb3);
  8501. GGML_ASSERT(ne0 == ne00);
  8502. GGML_ASSERT(ne1 == ne10);
  8503. GGML_ASSERT(ne2 == ne02);
  8504. GGML_ASSERT(ne3 == ne03);
  8505. // nb01 >= nb00 - src0 is not transposed
  8506. // compute by src0 rows
  8507. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8508. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8509. if (params->type == GGML_TASK_INIT) {
  8510. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8511. return;
  8512. }
  8513. if (params->type == GGML_TASK_FINALIZE) {
  8514. return;
  8515. }
  8516. // parallelize by last three dimensions
  8517. // total rows in dst
  8518. const int64_t nr = ne1*ne2*ne3;
  8519. // rows per thread
  8520. const int64_t dr = (nr + nth - 1)/nth;
  8521. // row range for this thread
  8522. const int64_t ir0 = dr*ith;
  8523. const int64_t ir1 = MIN(ir0 + dr, nr);
  8524. // dst[:,:,:,:] = 0
  8525. // for i2,i3:
  8526. // for i1:
  8527. // for i01:
  8528. // for i0:
  8529. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8530. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  8531. for (int64_t ir = ir0; ir < ir1; ++ir) {
  8532. // dst indices
  8533. const int64_t i3 = ir/(ne2*ne1);
  8534. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8535. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8536. const int64_t i02 = i2;
  8537. const int64_t i03 = i3;
  8538. //const int64_t i10 = i1;
  8539. const int64_t i12 = i2;
  8540. const int64_t i13 = i3;
  8541. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8542. const int64_t i11 = i01;
  8543. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8544. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8545. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8546. dequantize_row_q(s0, wdata, ne0);
  8547. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  8548. }
  8549. }
  8550. //int64_t t1 = ggml_perf_time_us();
  8551. //static int64_t acc = 0;
  8552. //acc += t1 - t0;
  8553. //if (t1 - t0 > 10) {
  8554. // printf("\n");
  8555. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8556. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8557. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8558. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8559. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8560. //}
  8561. }
  8562. static void ggml_compute_forward_out_prod(
  8563. const struct ggml_compute_params * params,
  8564. const struct ggml_tensor * src0,
  8565. const struct ggml_tensor * src1,
  8566. struct ggml_tensor * dst) {
  8567. switch (src0->type) {
  8568. case GGML_TYPE_Q4_0:
  8569. case GGML_TYPE_Q4_1:
  8570. case GGML_TYPE_Q5_0:
  8571. case GGML_TYPE_Q5_1:
  8572. case GGML_TYPE_Q8_0:
  8573. case GGML_TYPE_Q2_K:
  8574. case GGML_TYPE_Q3_K:
  8575. case GGML_TYPE_Q4_K:
  8576. case GGML_TYPE_Q5_K:
  8577. case GGML_TYPE_Q6_K:
  8578. case GGML_TYPE_IQ2_XXS:
  8579. case GGML_TYPE_IQ2_XS:
  8580. {
  8581. ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  8582. } break;
  8583. case GGML_TYPE_F16:
  8584. {
  8585. GGML_ASSERT(false); // todo
  8586. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  8587. } break;
  8588. case GGML_TYPE_F32:
  8589. {
  8590. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  8591. } break;
  8592. default:
  8593. {
  8594. GGML_ASSERT(false);
  8595. } break;
  8596. }
  8597. }
  8598. // ggml_compute_forward_scale
  8599. static void ggml_compute_forward_scale_f32(
  8600. const struct ggml_compute_params * params,
  8601. const struct ggml_tensor * src0,
  8602. struct ggml_tensor * dst) {
  8603. GGML_ASSERT(ggml_is_contiguous(src0));
  8604. GGML_ASSERT(ggml_is_contiguous(dst));
  8605. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8606. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8607. return;
  8608. }
  8609. // scale factor
  8610. float v;
  8611. memcpy(&v, dst->op_params, sizeof(float));
  8612. const int ith = params->ith;
  8613. const int nth = params->nth;
  8614. const int nc = src0->ne[0];
  8615. const int nr = ggml_nrows(src0);
  8616. // rows per thread
  8617. const int dr = (nr + nth - 1)/nth;
  8618. // row range for this thread
  8619. const int ir0 = dr*ith;
  8620. const int ir1 = MIN(ir0 + dr, nr);
  8621. const size_t nb01 = src0->nb[1];
  8622. const size_t nb1 = dst->nb[1];
  8623. for (int i1 = ir0; i1 < ir1; i1++) {
  8624. if (dst->data != src0->data) {
  8625. // src0 is same shape as dst => same indices
  8626. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8627. }
  8628. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8629. }
  8630. }
  8631. static void ggml_compute_forward_scale(
  8632. const struct ggml_compute_params * params,
  8633. const struct ggml_tensor * src0,
  8634. struct ggml_tensor * dst) {
  8635. switch (src0->type) {
  8636. case GGML_TYPE_F32:
  8637. {
  8638. ggml_compute_forward_scale_f32(params, src0, dst);
  8639. } break;
  8640. default:
  8641. {
  8642. GGML_ASSERT(false);
  8643. } break;
  8644. }
  8645. }
  8646. // ggml_compute_forward_set
  8647. static void ggml_compute_forward_set_f32(
  8648. const struct ggml_compute_params * params,
  8649. const struct ggml_tensor * src0,
  8650. const struct ggml_tensor * src1,
  8651. struct ggml_tensor * dst) {
  8652. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8653. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8654. // view src0 and dst with these strides and data offset inbytes during set
  8655. // nb0 is implicitly element_size because src0 and dst are contiguous
  8656. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8657. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8658. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8659. size_t offset = ((int32_t *) dst->op_params)[3];
  8660. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8661. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8662. // memcpy needs to be synchronized across threads to avoid race conditions.
  8663. // => do it in INIT phase
  8664. memcpy(
  8665. ((char *) dst->data),
  8666. ((char *) src0->data),
  8667. ggml_nbytes(dst));
  8668. }
  8669. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8670. return;
  8671. }
  8672. const int ith = params->ith;
  8673. const int nth = params->nth;
  8674. const int nr = ggml_nrows(src1);
  8675. const int nc = src1->ne[0];
  8676. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  8677. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  8678. // src0 and dst as viewed during set
  8679. const size_t nb0 = ggml_element_size(src0);
  8680. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8681. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8682. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8683. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8684. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  8685. GGML_ASSERT(nb10 == sizeof(float));
  8686. // rows per thread
  8687. const int dr = (nr + nth - 1)/nth;
  8688. // row range for this thread
  8689. const int ir0 = dr*ith;
  8690. const int ir1 = MIN(ir0 + dr, nr);
  8691. for (int ir = ir0; ir < ir1; ++ir) {
  8692. // src0 and dst are viewed with shape of src1 and offset
  8693. // => same indices
  8694. const int i3 = ir/(ne12*ne11);
  8695. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8696. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8697. ggml_vec_cpy_f32(nc,
  8698. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8699. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8700. }
  8701. }
  8702. static void ggml_compute_forward_set(
  8703. const struct ggml_compute_params * params,
  8704. const struct ggml_tensor * src0,
  8705. const struct ggml_tensor * src1,
  8706. struct ggml_tensor * dst) {
  8707. switch (src0->type) {
  8708. case GGML_TYPE_F32:
  8709. {
  8710. ggml_compute_forward_set_f32(params, src0, src1, dst);
  8711. } break;
  8712. case GGML_TYPE_F16:
  8713. case GGML_TYPE_Q4_0:
  8714. case GGML_TYPE_Q4_1:
  8715. case GGML_TYPE_Q5_0:
  8716. case GGML_TYPE_Q5_1:
  8717. case GGML_TYPE_Q8_0:
  8718. case GGML_TYPE_Q8_1:
  8719. case GGML_TYPE_Q2_K:
  8720. case GGML_TYPE_Q3_K:
  8721. case GGML_TYPE_Q4_K:
  8722. case GGML_TYPE_Q5_K:
  8723. case GGML_TYPE_Q6_K:
  8724. case GGML_TYPE_IQ2_XXS:
  8725. case GGML_TYPE_IQ2_XS:
  8726. default:
  8727. {
  8728. GGML_ASSERT(false);
  8729. } break;
  8730. }
  8731. }
  8732. // ggml_compute_forward_cpy
  8733. static void ggml_compute_forward_cpy(
  8734. const struct ggml_compute_params * params,
  8735. const struct ggml_tensor * src0,
  8736. struct ggml_tensor * dst) {
  8737. ggml_compute_forward_dup(params, src0, dst);
  8738. }
  8739. // ggml_compute_forward_cont
  8740. static void ggml_compute_forward_cont(
  8741. const struct ggml_compute_params * params,
  8742. const struct ggml_tensor * src0,
  8743. struct ggml_tensor * dst) {
  8744. ggml_compute_forward_dup(params, src0, dst);
  8745. }
  8746. // ggml_compute_forward_reshape
  8747. static void ggml_compute_forward_reshape(
  8748. const struct ggml_compute_params * params,
  8749. const struct ggml_tensor * src0,
  8750. struct ggml_tensor * dst) {
  8751. // NOP
  8752. UNUSED(params);
  8753. UNUSED(src0);
  8754. UNUSED(dst);
  8755. }
  8756. // ggml_compute_forward_view
  8757. static void ggml_compute_forward_view(
  8758. const struct ggml_compute_params * params,
  8759. const struct ggml_tensor * src0) {
  8760. // NOP
  8761. UNUSED(params);
  8762. UNUSED(src0);
  8763. }
  8764. // ggml_compute_forward_permute
  8765. static void ggml_compute_forward_permute(
  8766. const struct ggml_compute_params * params,
  8767. const struct ggml_tensor * src0) {
  8768. // NOP
  8769. UNUSED(params);
  8770. UNUSED(src0);
  8771. }
  8772. // ggml_compute_forward_transpose
  8773. static void ggml_compute_forward_transpose(
  8774. const struct ggml_compute_params * params,
  8775. const struct ggml_tensor * src0) {
  8776. // NOP
  8777. UNUSED(params);
  8778. UNUSED(src0);
  8779. }
  8780. // ggml_compute_forward_get_rows
  8781. static void ggml_compute_forward_get_rows_q(
  8782. const struct ggml_compute_params * params,
  8783. const struct ggml_tensor * src0,
  8784. const struct ggml_tensor * src1,
  8785. struct ggml_tensor * dst) {
  8786. assert(params->ith == 0);
  8787. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8788. return;
  8789. }
  8790. GGML_TENSOR_BINARY_OP_LOCALS
  8791. const int64_t nc = ne00;
  8792. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  8793. const enum ggml_type type = src0->type;
  8794. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8795. assert(ne0 == nc);
  8796. assert(ne02 == ne11);
  8797. assert(nb00 == ggml_type_size(type));
  8798. assert(ggml_nrows(dst) == nr);
  8799. // TODO: multi-thread
  8800. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8801. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8802. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  8803. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  8804. dequantize_row_q(
  8805. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  8806. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  8807. }
  8808. }
  8809. }
  8810. }
  8811. static void ggml_compute_forward_get_rows_f16(
  8812. const struct ggml_compute_params * params,
  8813. const struct ggml_tensor * src0,
  8814. const struct ggml_tensor * src1,
  8815. struct ggml_tensor * dst) {
  8816. assert(params->ith == 0);
  8817. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8818. return;
  8819. }
  8820. GGML_TENSOR_BINARY_OP_LOCALS
  8821. const int64_t nc = ne00;
  8822. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  8823. assert(ne0 == nc);
  8824. assert(ne02 == ne11);
  8825. assert(nb00 == sizeof(ggml_fp16_t));
  8826. assert(ggml_nrows(dst) == nr);
  8827. // TODO: multi-thread
  8828. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8829. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8830. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  8831. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  8832. ggml_fp16_to_fp32_row(
  8833. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  8834. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  8835. }
  8836. }
  8837. }
  8838. }
  8839. static void ggml_compute_forward_get_rows_f32(
  8840. const struct ggml_compute_params * params,
  8841. const struct ggml_tensor * src0,
  8842. const struct ggml_tensor * src1,
  8843. struct ggml_tensor * dst) {
  8844. assert(params->ith == 0);
  8845. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8846. return;
  8847. }
  8848. GGML_TENSOR_BINARY_OP_LOCALS
  8849. const int64_t nc = ne00;
  8850. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  8851. assert(ne0 == nc);
  8852. assert(ne02 == ne11);
  8853. assert(nb00 == sizeof(float));
  8854. assert(ggml_nrows(dst) == nr);
  8855. // TODO: multi-thread
  8856. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8857. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8858. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  8859. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  8860. ggml_vec_cpy_f32(nc,
  8861. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  8862. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  8863. }
  8864. }
  8865. }
  8866. }
  8867. static void ggml_compute_forward_get_rows(
  8868. const struct ggml_compute_params * params,
  8869. const struct ggml_tensor * src0,
  8870. const struct ggml_tensor * src1,
  8871. struct ggml_tensor * dst) {
  8872. switch (src0->type) {
  8873. case GGML_TYPE_Q4_0:
  8874. case GGML_TYPE_Q4_1:
  8875. case GGML_TYPE_Q5_0:
  8876. case GGML_TYPE_Q5_1:
  8877. case GGML_TYPE_Q8_0:
  8878. case GGML_TYPE_Q8_1:
  8879. case GGML_TYPE_Q2_K:
  8880. case GGML_TYPE_Q3_K:
  8881. case GGML_TYPE_Q4_K:
  8882. case GGML_TYPE_Q5_K:
  8883. case GGML_TYPE_Q6_K:
  8884. case GGML_TYPE_IQ2_XXS:
  8885. case GGML_TYPE_IQ2_XS:
  8886. {
  8887. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  8888. } break;
  8889. case GGML_TYPE_F16:
  8890. {
  8891. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  8892. } break;
  8893. case GGML_TYPE_F32:
  8894. case GGML_TYPE_I32:
  8895. {
  8896. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  8897. } break;
  8898. default:
  8899. {
  8900. GGML_ASSERT(false);
  8901. } break;
  8902. }
  8903. //static bool first = true;
  8904. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8905. //if (first) {
  8906. // first = false;
  8907. //} else {
  8908. // for (int k = 0; k < dst->ne[1]; ++k) {
  8909. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8910. // for (int i = 0; i < 16; ++i) {
  8911. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8912. // }
  8913. // printf("\n");
  8914. // }
  8915. // printf("\n");
  8916. // }
  8917. // printf("\n");
  8918. // exit(0);
  8919. //}
  8920. }
  8921. // ggml_compute_forward_get_rows_back
  8922. static void ggml_compute_forward_get_rows_back_f32_f16(
  8923. const struct ggml_compute_params * params,
  8924. const struct ggml_tensor * src0,
  8925. const struct ggml_tensor * src1,
  8926. struct ggml_tensor * dst) {
  8927. GGML_ASSERT(params->ith == 0);
  8928. GGML_ASSERT(ggml_is_contiguous(dst));
  8929. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8930. if (params->type == GGML_TASK_INIT) {
  8931. memset(dst->data, 0, ggml_nbytes(dst));
  8932. }
  8933. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8934. return;
  8935. }
  8936. const int nc = src0->ne[0];
  8937. const int nr = ggml_nelements(src1);
  8938. GGML_ASSERT( dst->ne[0] == nc);
  8939. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  8940. for (int i = 0; i < nr; ++i) {
  8941. const int r = ((int32_t *) src1->data)[i];
  8942. for (int j = 0; j < nc; ++j) {
  8943. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  8944. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  8945. }
  8946. }
  8947. }
  8948. static void ggml_compute_forward_get_rows_back_f32(
  8949. const struct ggml_compute_params * params,
  8950. const struct ggml_tensor * src0,
  8951. const struct ggml_tensor * src1,
  8952. struct ggml_tensor * dst) {
  8953. GGML_ASSERT(params->ith == 0);
  8954. GGML_ASSERT(ggml_is_contiguous(dst));
  8955. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8956. if (params->type == GGML_TASK_INIT) {
  8957. memset(dst->data, 0, ggml_nbytes(dst));
  8958. }
  8959. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8960. return;
  8961. }
  8962. const int nc = src0->ne[0];
  8963. const int nr = ggml_nelements(src1);
  8964. GGML_ASSERT( dst->ne[0] == nc);
  8965. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8966. for (int i = 0; i < nr; ++i) {
  8967. const int r = ((int32_t *) src1->data)[i];
  8968. ggml_vec_add_f32(nc,
  8969. (float *) ((char *) dst->data + r*dst->nb[1]),
  8970. (float *) ((char *) dst->data + r*dst->nb[1]),
  8971. (float *) ((char *) src0->data + i*src0->nb[1]));
  8972. }
  8973. }
  8974. static void ggml_compute_forward_get_rows_back(
  8975. const struct ggml_compute_params * params,
  8976. const struct ggml_tensor * src0,
  8977. const struct ggml_tensor * src1,
  8978. struct ggml_tensor * dst) {
  8979. switch (src0->type) {
  8980. case GGML_TYPE_F16:
  8981. {
  8982. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, dst);
  8983. } break;
  8984. case GGML_TYPE_F32:
  8985. {
  8986. ggml_compute_forward_get_rows_back_f32(params, src0, src1, dst);
  8987. } break;
  8988. default:
  8989. {
  8990. GGML_ASSERT(false);
  8991. } break;
  8992. }
  8993. //static bool first = true;
  8994. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8995. //if (first) {
  8996. // first = false;
  8997. //} else {
  8998. // for (int k = 0; k < dst->ne[1]; ++k) {
  8999. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9000. // for (int i = 0; i < 16; ++i) {
  9001. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9002. // }
  9003. // printf("\n");
  9004. // }
  9005. // printf("\n");
  9006. // }
  9007. // printf("\n");
  9008. // exit(0);
  9009. //}
  9010. }
  9011. // ggml_compute_forward_diag
  9012. static void ggml_compute_forward_diag_f32(
  9013. const struct ggml_compute_params * params,
  9014. const struct ggml_tensor * src0,
  9015. struct ggml_tensor * dst) {
  9016. GGML_ASSERT(params->ith == 0);
  9017. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9018. return;
  9019. }
  9020. // TODO: handle transposed/permuted matrices
  9021. GGML_TENSOR_UNARY_OP_LOCALS
  9022. GGML_ASSERT(ne00 == ne0);
  9023. GGML_ASSERT(ne00 == ne1);
  9024. GGML_ASSERT(ne01 == 1);
  9025. GGML_ASSERT(ne02 == ne2);
  9026. GGML_ASSERT(ne03 == ne3);
  9027. GGML_ASSERT(nb00 == sizeof(float));
  9028. GGML_ASSERT(nb0 == sizeof(float));
  9029. for (int i3 = 0; i3 < ne3; i3++) {
  9030. for (int i2 = 0; i2 < ne2; i2++) {
  9031. for (int i1 = 0; i1 < ne1; i1++) {
  9032. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9033. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9034. for (int i0 = 0; i0 < i1; i0++) {
  9035. d[i0] = 0;
  9036. }
  9037. d[i1] = s[i1];
  9038. for (int i0 = i1+1; i0 < ne0; i0++) {
  9039. d[i0] = 0;
  9040. }
  9041. }
  9042. }
  9043. }
  9044. }
  9045. static void ggml_compute_forward_diag(
  9046. const struct ggml_compute_params * params,
  9047. const struct ggml_tensor * src0,
  9048. struct ggml_tensor * dst) {
  9049. switch (src0->type) {
  9050. case GGML_TYPE_F32:
  9051. {
  9052. ggml_compute_forward_diag_f32(params, src0, dst);
  9053. } break;
  9054. default:
  9055. {
  9056. GGML_ASSERT(false);
  9057. } break;
  9058. }
  9059. }
  9060. // ggml_compute_forward_diag_mask_inf
  9061. static void ggml_compute_forward_diag_mask_f32(
  9062. const struct ggml_compute_params * params,
  9063. const struct ggml_tensor * src0,
  9064. struct ggml_tensor * dst,
  9065. const float value) {
  9066. const int ith = params->ith;
  9067. const int nth = params->nth;
  9068. const int n_past = ((int32_t *) dst->op_params)[0];
  9069. const bool inplace = src0->data == dst->data;
  9070. GGML_ASSERT(n_past >= 0);
  9071. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9072. // memcpy needs to be synchronized across threads to avoid race conditions.
  9073. // => do it in INIT phase
  9074. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9075. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9076. memcpy(
  9077. ((char *) dst->data),
  9078. ((char *) src0->data),
  9079. ggml_nbytes(dst));
  9080. }
  9081. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9082. return;
  9083. }
  9084. // TODO: handle transposed/permuted matrices
  9085. const int n = ggml_nrows(src0);
  9086. const int nc = src0->ne[0];
  9087. const int nr = src0->ne[1];
  9088. const int nz = n/nr;
  9089. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9090. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9091. for (int k = 0; k < nz; k++) {
  9092. for (int j = ith; j < nr; j += nth) {
  9093. for (int i = n_past; i < nc; i++) {
  9094. if (i > n_past + j) {
  9095. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9096. }
  9097. }
  9098. }
  9099. }
  9100. }
  9101. static void ggml_compute_forward_diag_mask_inf(
  9102. const struct ggml_compute_params * params,
  9103. const struct ggml_tensor * src0,
  9104. struct ggml_tensor * dst) {
  9105. switch (src0->type) {
  9106. case GGML_TYPE_F32:
  9107. {
  9108. ggml_compute_forward_diag_mask_f32(params, src0, dst, -INFINITY);
  9109. } break;
  9110. default:
  9111. {
  9112. GGML_ASSERT(false);
  9113. } break;
  9114. }
  9115. }
  9116. static void ggml_compute_forward_diag_mask_zero(
  9117. const struct ggml_compute_params * params,
  9118. const struct ggml_tensor * src0,
  9119. struct ggml_tensor * dst) {
  9120. switch (src0->type) {
  9121. case GGML_TYPE_F32:
  9122. {
  9123. ggml_compute_forward_diag_mask_f32(params, src0, dst, 0);
  9124. } break;
  9125. default:
  9126. {
  9127. GGML_ASSERT(false);
  9128. } break;
  9129. }
  9130. }
  9131. // ggml_compute_forward_soft_max
  9132. static void ggml_compute_forward_soft_max_f32(
  9133. const struct ggml_compute_params * params,
  9134. const struct ggml_tensor * src0,
  9135. const struct ggml_tensor * src1,
  9136. struct ggml_tensor * dst) {
  9137. assert(ggml_is_contiguous(dst));
  9138. assert(ggml_are_same_shape(src0, dst));
  9139. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9140. return;
  9141. }
  9142. float scale = 1.0f;
  9143. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  9144. // TODO: handle transposed/permuted matrices
  9145. const int ith = params->ith;
  9146. const int nth = params->nth;
  9147. const int64_t ne11 = src1 ? src1->ne[1] : 1;
  9148. const int nc = src0->ne[0];
  9149. const int nr = ggml_nrows(src0);
  9150. // rows per thread
  9151. const int dr = (nr + nth - 1)/nth;
  9152. // row range for this thread
  9153. const int ir0 = dr*ith;
  9154. const int ir1 = MIN(ir0 + dr, nr);
  9155. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  9156. for (int i1 = ir0; i1 < ir1; i1++) {
  9157. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9158. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9159. // broadcast the mask across rows
  9160. float * mp = src1 ? (float *)((char *) src1->data + (i1%ne11)*src1->nb[1]) : NULL;
  9161. ggml_vec_cpy_f32 (nc, wp, sp);
  9162. ggml_vec_scale_f32(nc, wp, scale);
  9163. if (mp) {
  9164. ggml_vec_acc_f32(nc, wp, mp);
  9165. }
  9166. #ifndef NDEBUG
  9167. for (int i = 0; i < nc; ++i) {
  9168. //printf("p[%d] = %f\n", i, p[i]);
  9169. assert(!isnan(wp[i]));
  9170. }
  9171. #endif
  9172. float max = -INFINITY;
  9173. ggml_vec_max_f32(nc, &max, wp);
  9174. ggml_float sum = 0.0;
  9175. uint16_t scvt;
  9176. for (int i = 0; i < nc; i++) {
  9177. if (wp[i] == -INFINITY) {
  9178. dp[i] = 0.0f;
  9179. } else {
  9180. // const float val = (wp[i] == -INFINITY) ? 0.0 : exp(wp[i] - max);
  9181. ggml_fp16_t s = GGML_FP32_TO_FP16(wp[i] - max);
  9182. memcpy(&scvt, &s, sizeof(scvt));
  9183. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  9184. sum += (ggml_float)val;
  9185. dp[i] = val;
  9186. }
  9187. }
  9188. assert(sum > 0.0);
  9189. sum = 1.0/sum;
  9190. ggml_vec_scale_f32(nc, dp, sum);
  9191. #ifndef NDEBUG
  9192. for (int i = 0; i < nc; ++i) {
  9193. assert(!isnan(dp[i]));
  9194. assert(!isinf(dp[i]));
  9195. }
  9196. #endif
  9197. }
  9198. }
  9199. static void ggml_compute_forward_soft_max(
  9200. const struct ggml_compute_params * params,
  9201. const struct ggml_tensor * src0,
  9202. const struct ggml_tensor * src1,
  9203. struct ggml_tensor * dst) {
  9204. switch (src0->type) {
  9205. case GGML_TYPE_F32:
  9206. {
  9207. ggml_compute_forward_soft_max_f32(params, src0, src1, dst);
  9208. } break;
  9209. default:
  9210. {
  9211. GGML_ASSERT(false);
  9212. } break;
  9213. }
  9214. }
  9215. // ggml_compute_forward_soft_max_back
  9216. static void ggml_compute_forward_soft_max_back_f32(
  9217. const struct ggml_compute_params * params,
  9218. const struct ggml_tensor * src0,
  9219. const struct ggml_tensor * src1,
  9220. struct ggml_tensor * dst) {
  9221. GGML_ASSERT(ggml_is_contiguous(src0));
  9222. GGML_ASSERT(ggml_is_contiguous(src1));
  9223. GGML_ASSERT(ggml_is_contiguous(dst));
  9224. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9225. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9226. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9227. return;
  9228. }
  9229. // TODO: handle transposed/permuted matrices
  9230. const int ith = params->ith;
  9231. const int nth = params->nth;
  9232. const int nc = src0->ne[0];
  9233. const int nr = ggml_nrows(src0);
  9234. // rows per thread
  9235. const int dr = (nr + nth - 1)/nth;
  9236. // row range for this thread
  9237. const int ir0 = dr*ith;
  9238. const int ir1 = MIN(ir0 + dr, nr);
  9239. for (int i1 = ir0; i1 < ir1; i1++) {
  9240. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9241. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9242. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9243. #ifndef NDEBUG
  9244. for (int i = 0; i < nc; ++i) {
  9245. //printf("p[%d] = %f\n", i, p[i]);
  9246. assert(!isnan(dy[i]));
  9247. assert(!isnan(y[i]));
  9248. }
  9249. #endif
  9250. // Jii = yi - yi*yi
  9251. // Jij = -yi*yj
  9252. // J = diag(y)-y.T*y
  9253. // dx = J * dy
  9254. // dxk = sum_i(Jki * dyi)
  9255. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9256. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  9257. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9258. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9259. // dxk = -yk * dot(y, dy) + yk*dyk
  9260. // dxk = yk * (- dot(y, dy) + dyk)
  9261. // dxk = yk * (dyk - dot(y, dy))
  9262. //
  9263. // post-order:
  9264. // dot_y_dy := dot(y, dy)
  9265. // dx := dy
  9266. // dx := dx - dot_y_dy
  9267. // dx := dx * y
  9268. // linear runtime, no additional memory
  9269. float dot_y_dy = 0;
  9270. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  9271. ggml_vec_cpy_f32 (nc, dx, dy);
  9272. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9273. ggml_vec_mul_f32 (nc, dx, dx, y);
  9274. #ifndef NDEBUG
  9275. for (int i = 0; i < nc; ++i) {
  9276. assert(!isnan(dx[i]));
  9277. assert(!isinf(dx[i]));
  9278. }
  9279. #endif
  9280. }
  9281. }
  9282. static void ggml_compute_forward_soft_max_back(
  9283. const struct ggml_compute_params * params,
  9284. const struct ggml_tensor * src0,
  9285. const struct ggml_tensor * src1,
  9286. struct ggml_tensor * dst) {
  9287. switch (src0->type) {
  9288. case GGML_TYPE_F32:
  9289. {
  9290. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  9291. } break;
  9292. default:
  9293. {
  9294. GGML_ASSERT(false);
  9295. } break;
  9296. }
  9297. }
  9298. // ggml_compute_forward_alibi
  9299. static void ggml_compute_forward_alibi_f32(
  9300. const struct ggml_compute_params * params,
  9301. const struct ggml_tensor * src0,
  9302. struct ggml_tensor * dst) {
  9303. assert(params->ith == 0);
  9304. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9305. return;
  9306. }
  9307. //const int n_past = ((int32_t *) dst->op_params)[0];
  9308. const int n_head = ((int32_t *) dst->op_params)[1];
  9309. float max_bias;
  9310. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9311. const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9312. const int64_t ne1 = src0->ne[1]; // seq_len_without_past
  9313. const int64_t ne2 = src0->ne[2]; // n_head -> this is k
  9314. //const int64_t ne3 = src0->ne[3]; // 1 -> bsz
  9315. const int64_t n = ggml_nrows(src0);
  9316. const int64_t ne2_ne3 = n/ne1; // ne2*ne3
  9317. const size_t nb0 = src0->nb[0];
  9318. const size_t nb1 = src0->nb[1];
  9319. const size_t nb2 = src0->nb[2];
  9320. //const int nb3 = src0->nb[3];
  9321. GGML_ASSERT(nb0 == sizeof(float));
  9322. GGML_ASSERT(n_head == ne2);
  9323. // add alibi to src0 (KQ_scaled)
  9324. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9325. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9326. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9327. for (int64_t i = 0; i < ne0; i++) {
  9328. for (int64_t j = 0; j < ne1; j++) {
  9329. for (int64_t k = 0; k < ne2_ne3; k++) {
  9330. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9331. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9332. // TODO: k*nb2 or k*nb3
  9333. float m_k;
  9334. if (k < n_heads_log2_floor) {
  9335. m_k = powf(m0, k + 1);
  9336. } else {
  9337. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9338. }
  9339. pdst[0] = i * m_k + src[0];
  9340. }
  9341. }
  9342. }
  9343. }
  9344. static void ggml_compute_forward_alibi_f16(
  9345. const struct ggml_compute_params * params,
  9346. const struct ggml_tensor * src0,
  9347. struct ggml_tensor * dst) {
  9348. assert(params->ith == 0);
  9349. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9350. return;
  9351. }
  9352. //const int n_past = ((int32_t *) dst->op_params)[0];
  9353. const int n_head = ((int32_t *) dst->op_params)[1];
  9354. float max_bias;
  9355. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9356. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9357. const int ne1 = src0->ne[1]; // seq_len_without_past
  9358. const int ne2 = src0->ne[2]; // n_head -> this is k
  9359. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9360. const int n = ggml_nrows(src0);
  9361. const int ne2_ne3 = n/ne1; // ne2*ne3
  9362. const int nb0 = src0->nb[0];
  9363. const int nb1 = src0->nb[1];
  9364. const int nb2 = src0->nb[2];
  9365. //const int nb3 = src0->nb[3];
  9366. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9367. //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  9368. GGML_ASSERT(n_head == ne2);
  9369. // add alibi to src0 (KQ_scaled)
  9370. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9371. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9372. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9373. for (int i = 0; i < ne0; i++) {
  9374. for (int j = 0; j < ne1; j++) {
  9375. for (int k = 0; k < ne2_ne3; k++) {
  9376. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9377. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9378. // TODO: k*nb2 or k*nb3
  9379. float m_k;
  9380. if (k < n_heads_log2_floor) {
  9381. m_k = powf(m0, k + 1);
  9382. } else {
  9383. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9384. }
  9385. // we return F32
  9386. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  9387. }
  9388. }
  9389. }
  9390. }
  9391. static void ggml_compute_forward_alibi(
  9392. const struct ggml_compute_params * params,
  9393. const struct ggml_tensor * src0,
  9394. struct ggml_tensor * dst) {
  9395. switch (src0->type) {
  9396. case GGML_TYPE_F16:
  9397. {
  9398. ggml_compute_forward_alibi_f16(params, src0, dst);
  9399. } break;
  9400. case GGML_TYPE_F32:
  9401. {
  9402. ggml_compute_forward_alibi_f32(params, src0, dst);
  9403. } break;
  9404. case GGML_TYPE_Q4_0:
  9405. case GGML_TYPE_Q4_1:
  9406. case GGML_TYPE_Q5_0:
  9407. case GGML_TYPE_Q5_1:
  9408. case GGML_TYPE_Q8_0:
  9409. case GGML_TYPE_Q8_1:
  9410. case GGML_TYPE_Q2_K:
  9411. case GGML_TYPE_Q3_K:
  9412. case GGML_TYPE_Q4_K:
  9413. case GGML_TYPE_Q5_K:
  9414. case GGML_TYPE_Q6_K:
  9415. case GGML_TYPE_IQ2_XXS:
  9416. case GGML_TYPE_IQ2_XS:
  9417. case GGML_TYPE_Q8_K:
  9418. case GGML_TYPE_I8:
  9419. case GGML_TYPE_I16:
  9420. case GGML_TYPE_I32:
  9421. case GGML_TYPE_COUNT:
  9422. {
  9423. GGML_ASSERT(false);
  9424. } break;
  9425. }
  9426. }
  9427. // ggml_compute_forward_clamp
  9428. static void ggml_compute_forward_clamp_f32(
  9429. const struct ggml_compute_params * params,
  9430. const struct ggml_tensor * src0,
  9431. struct ggml_tensor * dst) {
  9432. assert(params->ith == 0);
  9433. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9434. return;
  9435. }
  9436. float min;
  9437. float max;
  9438. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  9439. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  9440. const int ith = params->ith;
  9441. const int nth = params->nth;
  9442. const int n = ggml_nrows(src0);
  9443. const int nc = src0->ne[0];
  9444. const size_t nb00 = src0->nb[0];
  9445. const size_t nb01 = src0->nb[1];
  9446. const size_t nb0 = dst->nb[0];
  9447. const size_t nb1 = dst->nb[1];
  9448. GGML_ASSERT( nb0 == sizeof(float));
  9449. GGML_ASSERT(nb00 == sizeof(float));
  9450. for (int j = ith; j < n; j += nth) {
  9451. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9452. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9453. for (int i = 0; i < nc; i++) {
  9454. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9455. }
  9456. }
  9457. }
  9458. static void ggml_compute_forward_clamp(
  9459. const struct ggml_compute_params * params,
  9460. const struct ggml_tensor * src0,
  9461. struct ggml_tensor * dst) {
  9462. switch (src0->type) {
  9463. case GGML_TYPE_F32:
  9464. {
  9465. ggml_compute_forward_clamp_f32(params, src0, dst);
  9466. } break;
  9467. case GGML_TYPE_F16:
  9468. case GGML_TYPE_Q4_0:
  9469. case GGML_TYPE_Q4_1:
  9470. case GGML_TYPE_Q5_0:
  9471. case GGML_TYPE_Q5_1:
  9472. case GGML_TYPE_Q8_0:
  9473. case GGML_TYPE_Q8_1:
  9474. case GGML_TYPE_Q2_K:
  9475. case GGML_TYPE_Q3_K:
  9476. case GGML_TYPE_Q4_K:
  9477. case GGML_TYPE_Q5_K:
  9478. case GGML_TYPE_Q6_K:
  9479. case GGML_TYPE_IQ2_XXS:
  9480. case GGML_TYPE_IQ2_XS:
  9481. case GGML_TYPE_Q8_K:
  9482. case GGML_TYPE_I8:
  9483. case GGML_TYPE_I16:
  9484. case GGML_TYPE_I32:
  9485. case GGML_TYPE_COUNT:
  9486. {
  9487. GGML_ASSERT(false);
  9488. } break;
  9489. }
  9490. }
  9491. // ggml_compute_forward_rope
  9492. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  9493. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  9494. return 1 - MIN(1, MAX(0, y));
  9495. }
  9496. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  9497. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  9498. static void rope_yarn(
  9499. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  9500. float * cos_theta, float * sin_theta
  9501. ) {
  9502. // Get n-d rotational scaling corrected for extrapolation
  9503. float theta_interp = freq_scale * theta_extrap;
  9504. float theta = theta_interp;
  9505. if (ext_factor != 0.0f) {
  9506. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  9507. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  9508. // Get n-d magnitude scaling corrected for interpolation
  9509. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  9510. }
  9511. *cos_theta = cosf(theta) * mscale;
  9512. *sin_theta = sinf(theta) * mscale;
  9513. }
  9514. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  9515. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  9516. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  9517. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  9518. }
  9519. void ggml_rope_yarn_corr_dims(
  9520. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  9521. ) {
  9522. // start and end correction dims
  9523. dims[0] = MAX(0, floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base)));
  9524. dims[1] = MIN(n_dims - 1, ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base)));
  9525. }
  9526. static void ggml_compute_forward_rope_f32(
  9527. const struct ggml_compute_params * params,
  9528. const struct ggml_tensor * src0,
  9529. const struct ggml_tensor * src1,
  9530. struct ggml_tensor * dst,
  9531. const bool forward) {
  9532. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9533. return;
  9534. }
  9535. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  9536. // these two only relevant for xPos RoPE:
  9537. float xpos_base;
  9538. bool xpos_down;
  9539. //const int n_past = ((int32_t *) dst->op_params)[0];
  9540. const int n_dims = ((int32_t *) dst->op_params)[1];
  9541. const int mode = ((int32_t *) dst->op_params)[2];
  9542. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9543. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  9544. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  9545. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  9546. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  9547. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  9548. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  9549. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  9550. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  9551. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  9552. GGML_TENSOR_UNARY_OP_LOCALS
  9553. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9554. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9555. GGML_ASSERT(nb00 == sizeof(float));
  9556. const int ith = params->ith;
  9557. const int nth = params->nth;
  9558. const int nr = ggml_nrows(dst);
  9559. GGML_ASSERT(n_dims <= ne0);
  9560. GGML_ASSERT(n_dims % 2 == 0);
  9561. // rows per thread
  9562. const int dr = (nr + nth - 1)/nth;
  9563. // row range for this thread
  9564. const int ir0 = dr*ith;
  9565. const int ir1 = MIN(ir0 + dr, nr);
  9566. // row index used to determine which thread to use
  9567. int ir = 0;
  9568. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9569. const float inv_ndims = -1.f/n_dims;
  9570. float corr_dims[2];
  9571. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  9572. const bool is_neox = mode & 2;
  9573. const bool is_glm = mode & 4;
  9574. // backward process uses inverse rotation by cos and sin.
  9575. // cos and sin build a rotation matrix, where the inverse is the transpose.
  9576. // this essentially just switches the sign of sin.
  9577. const float sin_sign = forward ? 1.0f : -1.0f;
  9578. const int32_t * pos = (const int32_t *) src1->data;
  9579. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9580. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9581. const int64_t p = pos[i2];
  9582. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9583. if (ir++ < ir0) continue;
  9584. if (ir > ir1) break;
  9585. float theta_base = (float)p;
  9586. if (is_glm) {
  9587. theta_base = MIN(p, n_ctx - 2);
  9588. float block_theta = MAX(p - (n_ctx - 2), 0);
  9589. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9590. const float cos_theta = cosf(theta_base);
  9591. const float sin_theta = sinf(theta_base) * sin_sign;
  9592. const float cos_block_theta = cosf(block_theta);
  9593. const float sin_block_theta = sinf(block_theta) * sin_sign;
  9594. theta_base *= theta_scale;
  9595. block_theta *= theta_scale;
  9596. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9597. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9598. const float x0 = src[0];
  9599. const float x1 = src[n_dims/2];
  9600. const float x2 = src[n_dims];
  9601. const float x3 = src[n_dims/2*3];
  9602. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9603. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9604. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  9605. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  9606. }
  9607. } else if (!is_neox) {
  9608. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9609. float cos_theta, sin_theta;
  9610. rope_yarn(
  9611. theta_base, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta
  9612. );
  9613. sin_theta *= sin_sign;
  9614. // zeta scaling for xPos only:
  9615. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  9616. if (xpos_down) zeta = 1.0f / zeta;
  9617. theta_base *= theta_scale;
  9618. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9619. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9620. const float x0 = src[0];
  9621. const float x1 = src[1];
  9622. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  9623. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  9624. }
  9625. } else {
  9626. // TODO: this might be wrong for ne0 != n_dims - need double check
  9627. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  9628. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  9629. theta_base *= freq_scale;
  9630. for (int64_t ic = 0; ic < ne0; ic += 2) {
  9631. if (ic < n_dims) {
  9632. const int64_t ib = 0;
  9633. // simplified from `(ib * n_dims + ic) * inv_ndims`
  9634. float cur_rot = inv_ndims * ic - ib;
  9635. float cos_theta, sin_theta;
  9636. rope_yarn(
  9637. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  9638. &cos_theta, &sin_theta
  9639. );
  9640. sin_theta *= sin_sign;
  9641. theta_base *= theta_scale;
  9642. const int64_t i0 = ib*n_dims + ic/2;
  9643. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9644. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9645. const float x0 = src[0];
  9646. const float x1 = src[n_dims/2];
  9647. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9648. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9649. } else {
  9650. const int64_t i0 = ic;
  9651. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9652. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9653. dst_data[0] = src[0];
  9654. dst_data[1] = src[1];
  9655. }
  9656. }
  9657. }
  9658. }
  9659. }
  9660. }
  9661. }
  9662. static void ggml_compute_forward_rope_f16(
  9663. const struct ggml_compute_params * params,
  9664. const struct ggml_tensor * src0,
  9665. const struct ggml_tensor * src1,
  9666. struct ggml_tensor * dst,
  9667. const bool forward) {
  9668. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9669. return;
  9670. }
  9671. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  9672. //const int n_past = ((int32_t *) dst->op_params)[0];
  9673. const int n_dims = ((int32_t *) dst->op_params)[1];
  9674. const int mode = ((int32_t *) dst->op_params)[2];
  9675. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9676. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  9677. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  9678. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  9679. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  9680. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  9681. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  9682. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  9683. GGML_TENSOR_UNARY_OP_LOCALS
  9684. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9685. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9686. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9687. const int ith = params->ith;
  9688. const int nth = params->nth;
  9689. const int nr = ggml_nrows(dst);
  9690. GGML_ASSERT(n_dims <= ne0);
  9691. GGML_ASSERT(n_dims % 2 == 0);
  9692. // rows per thread
  9693. const int dr = (nr + nth - 1)/nth;
  9694. // row range for this thread
  9695. const int ir0 = dr*ith;
  9696. const int ir1 = MIN(ir0 + dr, nr);
  9697. // row index used to determine which thread to use
  9698. int ir = 0;
  9699. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9700. const float inv_ndims = -1.f/n_dims;
  9701. float corr_dims[2];
  9702. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  9703. const bool is_neox = mode & 2;
  9704. const bool is_glm = mode & 4;
  9705. // backward process uses inverse rotation by cos and sin.
  9706. // cos and sin build a rotation matrix, where the inverse is the transpose.
  9707. // this essentially just switches the sign of sin.
  9708. const float sin_sign = forward ? 1.0f : -1.0f;
  9709. const int32_t * pos = (const int32_t *) src1->data;
  9710. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9711. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9712. const int64_t p = pos[i2];
  9713. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9714. if (ir++ < ir0) continue;
  9715. if (ir > ir1) break;
  9716. float theta_base = (float)p;
  9717. if (is_glm) {
  9718. theta_base = MIN(p, n_ctx - 2);
  9719. float block_theta = MAX(p - (n_ctx - 2), 0);
  9720. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9721. const float cos_theta = cosf(theta_base);
  9722. const float sin_theta = sinf(theta_base) * sin_sign;
  9723. const float cos_block_theta = cosf(block_theta);
  9724. const float sin_block_theta = sinf(block_theta) * sin_sign;
  9725. theta_base *= theta_scale;
  9726. block_theta *= theta_scale;
  9727. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9728. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9729. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9730. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9731. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  9732. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  9733. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9734. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9735. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  9736. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  9737. }
  9738. } else if (!is_neox) {
  9739. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9740. float cos_theta, sin_theta;
  9741. rope_yarn(
  9742. theta_base, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta
  9743. );
  9744. sin_theta *= sin_sign;
  9745. theta_base *= theta_scale;
  9746. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9747. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9748. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9749. const float x1 = GGML_FP16_TO_FP32(src[1]);
  9750. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9751. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9752. }
  9753. } else {
  9754. // TODO: this might be wrong for ne0 != n_dims - need double check
  9755. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  9756. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  9757. theta_base *= freq_scale;
  9758. for (int64_t ic = 0; ic < ne0; ic += 2) {
  9759. if (ic < n_dims) {
  9760. const int64_t ib = 0;
  9761. // simplified from `(ib * n_dims + ic) * inv_ndims`
  9762. float cur_rot = inv_ndims * ic - ib;
  9763. float cos_theta, sin_theta;
  9764. rope_yarn(
  9765. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  9766. &cos_theta, &sin_theta
  9767. );
  9768. sin_theta *= sin_sign;
  9769. theta_base *= theta_scale;
  9770. const int64_t i0 = ib*n_dims + ic/2;
  9771. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9772. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9773. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9774. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9775. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9776. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9777. } else {
  9778. const int64_t i0 = ic;
  9779. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9780. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9781. dst_data[0] = src[0];
  9782. dst_data[1] = src[1];
  9783. }
  9784. }
  9785. }
  9786. }
  9787. }
  9788. }
  9789. }
  9790. static void ggml_compute_forward_rope(
  9791. const struct ggml_compute_params * params,
  9792. const struct ggml_tensor * src0,
  9793. const struct ggml_tensor * src1,
  9794. struct ggml_tensor * dst) {
  9795. switch (src0->type) {
  9796. case GGML_TYPE_F16:
  9797. {
  9798. ggml_compute_forward_rope_f16(params, src0, src1, dst, true);
  9799. } break;
  9800. case GGML_TYPE_F32:
  9801. {
  9802. ggml_compute_forward_rope_f32(params, src0, src1, dst, true);
  9803. } break;
  9804. default:
  9805. {
  9806. GGML_ASSERT(false);
  9807. } break;
  9808. }
  9809. }
  9810. // ggml_compute_forward_rope_back
  9811. static void ggml_compute_forward_rope_back(
  9812. const struct ggml_compute_params * params,
  9813. const struct ggml_tensor * src0,
  9814. const struct ggml_tensor * src1,
  9815. struct ggml_tensor * dst) {
  9816. switch (src0->type) {
  9817. case GGML_TYPE_F16:
  9818. {
  9819. ggml_compute_forward_rope_f16(params, src0, src1, dst, false);
  9820. } break;
  9821. case GGML_TYPE_F32:
  9822. {
  9823. ggml_compute_forward_rope_f32(params, src0, src1, dst, false);
  9824. } break;
  9825. default:
  9826. {
  9827. GGML_ASSERT(false);
  9828. } break;
  9829. }
  9830. }
  9831. // ggml_compute_forward_conv_transpose_1d
  9832. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  9833. const struct ggml_compute_params * params,
  9834. const struct ggml_tensor * src0,
  9835. const struct ggml_tensor * src1,
  9836. struct ggml_tensor * dst) {
  9837. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9838. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9839. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9840. int64_t t0 = ggml_perf_time_us();
  9841. UNUSED(t0);
  9842. GGML_TENSOR_BINARY_OP_LOCALS
  9843. const int ith = params->ith;
  9844. const int nth = params->nth;
  9845. const int nk = ne00*ne01*ne02;
  9846. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9847. GGML_ASSERT(nb10 == sizeof(float));
  9848. if (params->type == GGML_TASK_INIT) {
  9849. memset(params->wdata, 0, params->wsize);
  9850. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  9851. {
  9852. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9853. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9854. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9855. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  9856. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  9857. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9858. dst_data[i00*ne02 + i02] = src[i00];
  9859. }
  9860. }
  9861. }
  9862. }
  9863. // permute source data (src1) from (L x Cin) to (Cin x L)
  9864. {
  9865. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  9866. ggml_fp16_t * dst_data = wdata;
  9867. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9868. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9869. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9870. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  9871. }
  9872. }
  9873. }
  9874. // need to zero dst since we are accumulating into it
  9875. memset(dst->data, 0, ggml_nbytes(dst));
  9876. return;
  9877. }
  9878. if (params->type == GGML_TASK_FINALIZE) {
  9879. return;
  9880. }
  9881. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9882. // total rows in dst
  9883. const int nr = ne1;
  9884. // rows per thread
  9885. const int dr = (nr + nth - 1)/nth;
  9886. // row range for this thread
  9887. const int ir0 = dr*ith;
  9888. const int ir1 = MIN(ir0 + dr, nr);
  9889. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9890. ggml_fp16_t * const wdata_src = wdata + nk;
  9891. for (int i1 = ir0; i1 < ir1; i1++) {
  9892. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9893. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  9894. for (int i10 = 0; i10 < ne10; i10++) {
  9895. const int i1n = i10*ne11;
  9896. for (int i00 = 0; i00 < ne00; i00++) {
  9897. float v = 0;
  9898. ggml_vec_dot_f16(ne02, &v,
  9899. (ggml_fp16_t *) wdata_src + i1n,
  9900. (ggml_fp16_t *) wdata_kernel + i00*ne02);
  9901. dst_data[i10*s0 + i00] += v;
  9902. }
  9903. }
  9904. }
  9905. }
  9906. static void ggml_compute_forward_conv_transpose_1d_f32(
  9907. const struct ggml_compute_params * params,
  9908. const struct ggml_tensor * src0,
  9909. const struct ggml_tensor * src1,
  9910. struct ggml_tensor * dst) {
  9911. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9912. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9913. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9914. int64_t t0 = ggml_perf_time_us();
  9915. UNUSED(t0);
  9916. GGML_TENSOR_BINARY_OP_LOCALS
  9917. const int ith = params->ith;
  9918. const int nth = params->nth;
  9919. const int nk = ne00*ne01*ne02;
  9920. GGML_ASSERT(nb00 == sizeof(float));
  9921. GGML_ASSERT(nb10 == sizeof(float));
  9922. if (params->type == GGML_TASK_INIT) {
  9923. memset(params->wdata, 0, params->wsize);
  9924. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  9925. {
  9926. float * const wdata = (float *) params->wdata + 0;
  9927. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9928. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9929. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  9930. float * dst_data = wdata + i01*ne00*ne02;
  9931. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9932. dst_data[i00*ne02 + i02] = src[i00];
  9933. }
  9934. }
  9935. }
  9936. }
  9937. // prepare source data (src1)
  9938. {
  9939. float * const wdata = (float *) params->wdata + nk;
  9940. float * dst_data = wdata;
  9941. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9942. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9943. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9944. dst_data[i10*ne11 + i11] = src[i10];
  9945. }
  9946. }
  9947. }
  9948. // need to zero dst since we are accumulating into it
  9949. memset(dst->data, 0, ggml_nbytes(dst));
  9950. return;
  9951. }
  9952. if (params->type == GGML_TASK_FINALIZE) {
  9953. return;
  9954. }
  9955. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9956. // total rows in dst
  9957. const int nr = ne1;
  9958. // rows per thread
  9959. const int dr = (nr + nth - 1)/nth;
  9960. // row range for this thread
  9961. const int ir0 = dr*ith;
  9962. const int ir1 = MIN(ir0 + dr, nr);
  9963. float * const wdata = (float *) params->wdata + 0;
  9964. float * const wdata_src = wdata + nk;
  9965. for (int i1 = ir0; i1 < ir1; i1++) {
  9966. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9967. float * wdata_kernel = wdata + i1*ne02*ne00;
  9968. for (int i10 = 0; i10 < ne10; i10++) {
  9969. const int i1n = i10*ne11;
  9970. for (int i00 = 0; i00 < ne00; i00++) {
  9971. float v = 0;
  9972. ggml_vec_dot_f32(ne02, &v,
  9973. wdata_src + i1n,
  9974. wdata_kernel + i00*ne02);
  9975. dst_data[i10*s0 + i00] += v;
  9976. }
  9977. }
  9978. }
  9979. }
  9980. static void ggml_compute_forward_conv_transpose_1d(
  9981. const struct ggml_compute_params * params,
  9982. const struct ggml_tensor * src0,
  9983. const struct ggml_tensor * src1,
  9984. struct ggml_tensor * dst) {
  9985. switch (src0->type) {
  9986. case GGML_TYPE_F16:
  9987. {
  9988. ggml_compute_forward_conv_transpose_1d_f16_f32(params, src0, src1, dst);
  9989. } break;
  9990. case GGML_TYPE_F32:
  9991. {
  9992. ggml_compute_forward_conv_transpose_1d_f32(params, src0, src1, dst);
  9993. } break;
  9994. default:
  9995. {
  9996. GGML_ASSERT(false);
  9997. } break;
  9998. }
  9999. }
  10000. // src0: kernel [OC, IC, KH, KW]
  10001. // src1: image [N, IC, IH, IW]
  10002. // dst: result [N, OH, OW, IC*KH*KW]
  10003. static void ggml_compute_forward_im2col_f16(
  10004. const struct ggml_compute_params * params,
  10005. const struct ggml_tensor * src0,
  10006. const struct ggml_tensor * src1,
  10007. struct ggml_tensor * dst) {
  10008. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10009. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10010. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  10011. int64_t t0 = ggml_perf_time_us();
  10012. UNUSED(t0);
  10013. GGML_TENSOR_BINARY_OP_LOCALS;
  10014. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10015. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10016. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10017. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10018. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10019. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10020. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10021. const int ith = params->ith;
  10022. const int nth = params->nth;
  10023. const int64_t N = is_2D ? ne13 : ne12;
  10024. const int64_t IC = is_2D ? ne12 : ne11;
  10025. const int64_t IH = is_2D ? ne11 : 1;
  10026. const int64_t IW = ne10;
  10027. const int64_t KH = is_2D ? ne01 : 1;
  10028. const int64_t KW = ne00;
  10029. const int64_t OH = is_2D ? ne2 : 1;
  10030. const int64_t OW = ne1;
  10031. int ofs0 = is_2D ? nb13 : nb12;
  10032. int ofs1 = is_2D ? nb12 : nb11;
  10033. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10034. GGML_ASSERT(nb10 == sizeof(float));
  10035. if (params->type == GGML_TASK_INIT) {
  10036. return;
  10037. }
  10038. if (params->type == GGML_TASK_FINALIZE) {
  10039. return;
  10040. }
  10041. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10042. {
  10043. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  10044. for (int64_t in = 0; in < N; in++) {
  10045. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10046. for (int64_t iow = 0; iow < OW; iow++) {
  10047. for (int64_t iic = ith; iic < IC; iic += nth) {
  10048. // micro kernel
  10049. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10050. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10051. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10052. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10053. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10054. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10055. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10056. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10057. } else {
  10058. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  10059. }
  10060. }
  10061. }
  10062. }
  10063. }
  10064. }
  10065. }
  10066. }
  10067. }
  10068. static void ggml_compute_forward_im2col(
  10069. const struct ggml_compute_params * params,
  10070. const struct ggml_tensor * src0,
  10071. const struct ggml_tensor * src1,
  10072. struct ggml_tensor * dst) {
  10073. switch (src0->type) {
  10074. case GGML_TYPE_F16:
  10075. {
  10076. ggml_compute_forward_im2col_f16(params, src0, src1, dst);
  10077. } break;
  10078. case GGML_TYPE_F32:
  10079. {
  10080. GGML_ASSERT(false);
  10081. } break;
  10082. default:
  10083. {
  10084. GGML_ASSERT(false);
  10085. } break;
  10086. }
  10087. }
  10088. // ggml_compute_forward_conv_transpose_2d
  10089. static void ggml_compute_forward_conv_transpose_2d(
  10090. const struct ggml_compute_params * params,
  10091. const struct ggml_tensor * src0,
  10092. const struct ggml_tensor * src1,
  10093. struct ggml_tensor * dst) {
  10094. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10095. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10096. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10097. int64_t t0 = ggml_perf_time_us();
  10098. UNUSED(t0);
  10099. GGML_TENSOR_BINARY_OP_LOCALS
  10100. const int ith = params->ith;
  10101. const int nth = params->nth;
  10102. const int nk = ne00*ne01*ne02*ne03;
  10103. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10104. GGML_ASSERT(nb10 == sizeof(float));
  10105. if (params->type == GGML_TASK_INIT) {
  10106. memset(params->wdata, 0, params->wsize);
  10107. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  10108. {
  10109. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10110. for (int64_t i03 = 0; i03 < ne03; i03++) {
  10111. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10112. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  10113. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  10114. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10115. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10116. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  10117. }
  10118. }
  10119. }
  10120. }
  10121. }
  10122. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  10123. {
  10124. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10125. for (int i12 = 0; i12 < ne12; i12++) {
  10126. for (int i11 = 0; i11 < ne11; i11++) {
  10127. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  10128. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  10129. for (int i10 = 0; i10 < ne10; i10++) {
  10130. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  10131. }
  10132. }
  10133. }
  10134. }
  10135. memset(dst->data, 0, ggml_nbytes(dst));
  10136. return;
  10137. }
  10138. if (params->type == GGML_TASK_FINALIZE) {
  10139. return;
  10140. }
  10141. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  10142. // total patches in dst
  10143. const int np = ne2;
  10144. // patches per thread
  10145. const int dp = (np + nth - 1)/nth;
  10146. // patch range for this thread
  10147. const int ip0 = dp*ith;
  10148. const int ip1 = MIN(ip0 + dp, np);
  10149. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10150. ggml_fp16_t * const wdata_src = wdata + nk;
  10151. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  10152. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  10153. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  10154. for (int i11 = 0; i11 < ne11; i11++) {
  10155. for (int i10 = 0; i10 < ne10; i10++) {
  10156. const int i1n = i11*ne10*ne12 + i10*ne12;
  10157. for (int i01 = 0; i01 < ne01; i01++) {
  10158. for (int i00 = 0; i00 < ne00; i00++) {
  10159. float v = 0;
  10160. ggml_vec_dot_f16(ne03, &v,
  10161. wdata_src + i1n,
  10162. wdata_kernel + i01*ne00*ne03 + i00*ne03);
  10163. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  10164. }
  10165. }
  10166. }
  10167. }
  10168. }
  10169. }
  10170. // ggml_compute_forward_pool_1d_sk_p0
  10171. static void ggml_compute_forward_pool_1d_sk_p0(
  10172. const struct ggml_compute_params * params,
  10173. const enum ggml_op_pool op,
  10174. const struct ggml_tensor * src,
  10175. const int k,
  10176. struct ggml_tensor * dst) {
  10177. assert(src->type == GGML_TYPE_F32);
  10178. assert(params->ith == 0);
  10179. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10180. return;
  10181. }
  10182. const char * cdata = (const char *)src->data;
  10183. const char * const data_end = cdata + ggml_nbytes(src);
  10184. float * drow = (float *)dst->data;
  10185. const int64_t rs = dst->ne[0];
  10186. while (cdata < data_end) {
  10187. const float * const srow = (const float *)cdata;
  10188. int j = 0;
  10189. for (int64_t i = 0; i < rs; ++i) {
  10190. switch (op) {
  10191. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  10192. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  10193. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10194. }
  10195. for (int ki = 0; ki < k; ++ki) {
  10196. switch (op) {
  10197. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  10198. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  10199. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10200. }
  10201. ++j;
  10202. }
  10203. switch (op) {
  10204. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  10205. case GGML_OP_POOL_MAX: break;
  10206. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10207. }
  10208. }
  10209. cdata += src->nb[1];
  10210. drow += rs;
  10211. }
  10212. }
  10213. // ggml_compute_forward_pool_1d
  10214. static void ggml_compute_forward_pool_1d(
  10215. const struct ggml_compute_params * params,
  10216. const struct ggml_tensor * src0,
  10217. struct ggml_tensor * dst) {
  10218. const int32_t * opts = (const int32_t *)dst->op_params;
  10219. enum ggml_op_pool op = opts[0];
  10220. const int k0 = opts[1];
  10221. const int s0 = opts[2];
  10222. const int p0 = opts[3];
  10223. GGML_ASSERT(p0 == 0); // padding not supported
  10224. GGML_ASSERT(k0 == s0); // only s = k supported
  10225. ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst);
  10226. }
  10227. // ggml_compute_forward_pool_2d
  10228. static void ggml_compute_forward_pool_2d(
  10229. const struct ggml_compute_params * params,
  10230. const struct ggml_tensor * src,
  10231. struct ggml_tensor * dst) {
  10232. assert(src->type == GGML_TYPE_F32);
  10233. assert(params->ith == 0);
  10234. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10235. return;
  10236. }
  10237. const int32_t * opts = (const int32_t *)dst->op_params;
  10238. enum ggml_op_pool op = opts[0];
  10239. const int k0 = opts[1];
  10240. const int k1 = opts[2];
  10241. const int s0 = opts[3];
  10242. const int s1 = opts[4];
  10243. const int p0 = opts[5];
  10244. const int p1 = opts[6];
  10245. const char * cdata = (const char*)src->data;
  10246. const char * const data_end = cdata + ggml_nbytes(src);
  10247. const int64_t px = dst->ne[0];
  10248. const int64_t py = dst->ne[1];
  10249. const int64_t pa = px * py;
  10250. float * dplane = (float *)dst->data;
  10251. const int ka = k0 * k1;
  10252. const int offset0 = -p0;
  10253. const int offset1 = -p1;
  10254. while (cdata < data_end) {
  10255. for (int oy = 0; oy < py; ++oy) {
  10256. float * const drow = dplane + oy * px;
  10257. for (int ox = 0; ox < px; ++ox) {
  10258. float * const out = drow + ox;
  10259. switch (op) {
  10260. case GGML_OP_POOL_AVG: *out = 0; break;
  10261. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  10262. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10263. }
  10264. const int ix = offset0 + ox * s0;
  10265. const int iy = offset1 + oy * s1;
  10266. for (int ky = 0; ky < k1; ++ky) {
  10267. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  10268. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  10269. for (int kx = 0; kx < k0; ++kx) {
  10270. int j = ix + kx;
  10271. if (j < 0 || j >= src->ne[0]) continue;
  10272. switch (op) {
  10273. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  10274. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  10275. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10276. }
  10277. }
  10278. }
  10279. switch (op) {
  10280. case GGML_OP_POOL_AVG: *out /= ka; break;
  10281. case GGML_OP_POOL_MAX: break;
  10282. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10283. }
  10284. }
  10285. }
  10286. cdata += src->nb[2];
  10287. dplane += pa;
  10288. }
  10289. }
  10290. // ggml_compute_forward_upscale
  10291. static void ggml_compute_forward_upscale_f32(
  10292. const struct ggml_compute_params * params,
  10293. const struct ggml_tensor * src0,
  10294. struct ggml_tensor * dst) {
  10295. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10296. return;
  10297. }
  10298. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10299. const int ith = params->ith;
  10300. const int nth = params->nth;
  10301. GGML_TENSOR_UNARY_OP_LOCALS
  10302. const int scale_factor = dst->op_params[0];
  10303. // TODO: optimize
  10304. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10305. const int64_t i03 = i3;
  10306. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  10307. const int64_t i02 = i2;
  10308. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10309. const int64_t i01 = i1 / scale_factor;
  10310. for (int64_t i0 = 0; i0 < ne0; i0++) {
  10311. const int64_t i00 = i0 / scale_factor;
  10312. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  10313. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  10314. *y = *x;
  10315. }
  10316. }
  10317. }
  10318. }
  10319. }
  10320. static void ggml_compute_forward_upscale(
  10321. const struct ggml_compute_params * params,
  10322. const struct ggml_tensor * src0,
  10323. struct ggml_tensor * dst) {
  10324. switch (src0->type) {
  10325. case GGML_TYPE_F32:
  10326. {
  10327. ggml_compute_forward_upscale_f32(params, src0, dst);
  10328. } break;
  10329. default:
  10330. {
  10331. GGML_ASSERT(false);
  10332. } break;
  10333. }
  10334. }
  10335. // ggml_compute_forward_pad
  10336. static void ggml_compute_forward_pad_f32(
  10337. const struct ggml_compute_params * params,
  10338. const struct ggml_tensor * src0,
  10339. struct ggml_tensor * dst) {
  10340. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10341. return;
  10342. }
  10343. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10344. GGML_ASSERT( dst->nb[0] == sizeof(float));
  10345. const int ith = params->ith;
  10346. const int nth = params->nth;
  10347. GGML_TENSOR_UNARY_OP_LOCALS
  10348. float * dst_ptr = (float *) dst->data;
  10349. // TODO: optimize
  10350. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  10351. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  10352. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  10353. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  10354. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  10355. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10356. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  10357. dst_ptr[dst_idx] = *src_ptr;
  10358. } else {
  10359. dst_ptr[dst_idx] = 0;
  10360. }
  10361. }
  10362. }
  10363. }
  10364. }
  10365. }
  10366. static void ggml_compute_forward_pad(
  10367. const struct ggml_compute_params * params,
  10368. const struct ggml_tensor * src0,
  10369. struct ggml_tensor * dst) {
  10370. switch (src0->type) {
  10371. case GGML_TYPE_F32:
  10372. {
  10373. ggml_compute_forward_pad_f32(params, src0, dst);
  10374. } break;
  10375. default:
  10376. {
  10377. GGML_ASSERT(false);
  10378. } break;
  10379. }
  10380. }
  10381. // ggml_compute_forward_argsort
  10382. static void ggml_compute_forward_argsort_f32(
  10383. const struct ggml_compute_params * params,
  10384. const struct ggml_tensor * src0,
  10385. struct ggml_tensor * dst) {
  10386. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10387. return;
  10388. }
  10389. GGML_TENSOR_UNARY_OP_LOCALS
  10390. GGML_ASSERT(nb0 == sizeof(float));
  10391. const int ith = params->ith;
  10392. const int nth = params->nth;
  10393. const int64_t nr = ggml_nrows(src0);
  10394. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  10395. for (int64_t i = ith; i < nr; i += nth) {
  10396. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  10397. const float * src_data = (float *)((char *) src0->data + i*nb01);
  10398. for (int64_t j = 0; j < ne0; j++) {
  10399. dst_data[j] = j;
  10400. }
  10401. // C doesn't have a functional sort, so we do a bubble sort instead
  10402. for (int64_t j = 0; j < ne0; j++) {
  10403. for (int64_t k = j + 1; k < ne0; k++) {
  10404. if ((order == GGML_SORT_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  10405. (order == GGML_SORT_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  10406. int32_t tmp = dst_data[j];
  10407. dst_data[j] = dst_data[k];
  10408. dst_data[k] = tmp;
  10409. }
  10410. }
  10411. }
  10412. }
  10413. }
  10414. static void ggml_compute_forward_argsort(
  10415. const struct ggml_compute_params * params,
  10416. const struct ggml_tensor * src0,
  10417. struct ggml_tensor * dst) {
  10418. switch (src0->type) {
  10419. case GGML_TYPE_F32:
  10420. {
  10421. ggml_compute_forward_argsort_f32(params, src0, dst);
  10422. } break;
  10423. default:
  10424. {
  10425. GGML_ASSERT(false);
  10426. } break;
  10427. }
  10428. }
  10429. // ggml_compute_forward_flash_attn
  10430. static void ggml_compute_forward_flash_attn_f32(
  10431. const struct ggml_compute_params * params,
  10432. const struct ggml_tensor * q,
  10433. const struct ggml_tensor * k,
  10434. const struct ggml_tensor * v,
  10435. const bool masked,
  10436. struct ggml_tensor * dst) {
  10437. int64_t t0 = ggml_perf_time_us();
  10438. UNUSED(t0);
  10439. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10440. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10441. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10442. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10443. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10444. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10445. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10446. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10447. const int ith = params->ith;
  10448. const int nth = params->nth;
  10449. const int64_t D = neq0;
  10450. const int64_t N = neq1;
  10451. const int64_t P = nek1 - N;
  10452. const int64_t M = P + N;
  10453. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10454. GGML_ASSERT(ne0 == D);
  10455. GGML_ASSERT(ne1 == N);
  10456. GGML_ASSERT(P >= 0);
  10457. GGML_ASSERT(nbq0 == sizeof(float));
  10458. GGML_ASSERT(nbk0 == sizeof(float));
  10459. GGML_ASSERT(nbv0 == sizeof(float));
  10460. GGML_ASSERT(neq0 == D);
  10461. GGML_ASSERT(nek0 == D);
  10462. GGML_ASSERT(nev1 == D);
  10463. GGML_ASSERT(neq1 == N);
  10464. GGML_ASSERT(nek1 == N + P);
  10465. GGML_ASSERT(nev1 == D);
  10466. // dst cannot be transposed or permuted
  10467. GGML_ASSERT(nb0 == sizeof(float));
  10468. GGML_ASSERT(nb0 <= nb1);
  10469. GGML_ASSERT(nb1 <= nb2);
  10470. GGML_ASSERT(nb2 <= nb3);
  10471. if (params->type == GGML_TASK_INIT) {
  10472. return;
  10473. }
  10474. if (params->type == GGML_TASK_FINALIZE) {
  10475. return;
  10476. }
  10477. // parallelize by q rows using ggml_vec_dot_f32
  10478. // total rows in q
  10479. const int nr = neq1*neq2*neq3;
  10480. // rows per thread
  10481. const int dr = (nr + nth - 1)/nth;
  10482. // row range for this thread
  10483. const int ir0 = dr*ith;
  10484. const int ir1 = MIN(ir0 + dr, nr);
  10485. const float scale = 1.0f/sqrtf(D);
  10486. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10487. for (int ir = ir0; ir < ir1; ++ir) {
  10488. // q indices
  10489. const int iq3 = ir/(neq2*neq1);
  10490. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10491. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10492. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  10493. for (int i = M; i < Mup; ++i) {
  10494. S[i] = -INFINITY;
  10495. }
  10496. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  10497. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  10498. // k indices
  10499. const int ik3 = iq3;
  10500. const int ik2 = iq2 % nek2;
  10501. const int ik1 = ic;
  10502. // S indices
  10503. const int i1 = ik1;
  10504. ggml_vec_dot_f32(neq0,
  10505. S + i1,
  10506. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10507. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10508. }
  10509. // scale
  10510. ggml_vec_scale_f32(masked_begin, S, scale);
  10511. for (int64_t i = masked_begin; i < M; i++) {
  10512. S[i] = -INFINITY;
  10513. }
  10514. // softmax
  10515. // exclude known -INF S[..] values from max and loop
  10516. // dont forget to set their SW values to zero
  10517. {
  10518. float max = -INFINITY;
  10519. ggml_vec_max_f32(masked_begin, &max, S);
  10520. ggml_float sum = 0.0;
  10521. {
  10522. #ifdef GGML_SOFT_MAX_ACCELERATE
  10523. max = -max;
  10524. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10525. vvexpf(S, S, &Mup);
  10526. ggml_vec_sum_f32(Mup, &sum, S);
  10527. #else
  10528. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  10529. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10530. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10531. if (i >= masked_begin) {
  10532. break;
  10533. }
  10534. float * SS = S + i;
  10535. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10536. if (i + j >= masked_begin) {
  10537. break;
  10538. } else if (SS[j] == -INFINITY) {
  10539. SS[j] = 0.0f;
  10540. } else {
  10541. #ifndef GGML_FLASH_ATTN_EXP_FP16
  10542. const float val = expf(SS[j] - max);
  10543. #else
  10544. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10545. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10546. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  10547. #endif
  10548. sump[j] += (ggml_float)val;
  10549. SS[j] = val;
  10550. }
  10551. }
  10552. }
  10553. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10554. sum += sump[i];
  10555. }
  10556. #endif
  10557. }
  10558. assert(sum > 0.0);
  10559. sum = 1.0/sum;
  10560. ggml_vec_scale_f32(masked_begin, S, sum);
  10561. #ifndef NDEBUG
  10562. for (int i = 0; i < masked_begin; ++i) {
  10563. assert(!isnan(S[i]));
  10564. assert(!isinf(S[i]));
  10565. }
  10566. #endif
  10567. }
  10568. for (int64_t ic = 0; ic < nev1; ++ic) {
  10569. // dst indices
  10570. const int i1 = iq1;
  10571. const int i2 = iq2;
  10572. const int i3 = iq3;
  10573. // v indices
  10574. const int iv2 = iq2 % nev2;
  10575. const int iv3 = iq3;
  10576. ggml_vec_dot_f32(masked_begin,
  10577. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10578. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10579. S);
  10580. }
  10581. }
  10582. }
  10583. static void ggml_compute_forward_flash_attn_f16(
  10584. const struct ggml_compute_params * params,
  10585. const struct ggml_tensor * q,
  10586. const struct ggml_tensor * k,
  10587. const struct ggml_tensor * v,
  10588. const bool masked,
  10589. struct ggml_tensor * dst) {
  10590. int64_t t0 = ggml_perf_time_us();
  10591. UNUSED(t0);
  10592. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10593. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10594. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10595. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10596. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10597. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10598. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10599. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10600. const int ith = params->ith;
  10601. const int nth = params->nth;
  10602. const int64_t D = neq0;
  10603. const int64_t N = neq1;
  10604. const int64_t P = nek1 - N;
  10605. const int64_t M = P + N;
  10606. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10607. GGML_ASSERT(ne0 == D);
  10608. GGML_ASSERT(ne1 == N);
  10609. GGML_ASSERT(P >= 0);
  10610. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  10611. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  10612. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  10613. GGML_ASSERT(neq0 == D);
  10614. GGML_ASSERT(nek0 == D);
  10615. GGML_ASSERT(nev1 == D);
  10616. GGML_ASSERT(neq1 == N);
  10617. GGML_ASSERT(nek1 == N + P);
  10618. GGML_ASSERT(nev1 == D);
  10619. // dst cannot be transposed or permuted
  10620. GGML_ASSERT(nb0 == sizeof(float));
  10621. GGML_ASSERT(nb0 <= nb1);
  10622. GGML_ASSERT(nb1 <= nb2);
  10623. GGML_ASSERT(nb2 <= nb3);
  10624. if (params->type == GGML_TASK_INIT) {
  10625. return;
  10626. }
  10627. if (params->type == GGML_TASK_FINALIZE) {
  10628. return;
  10629. }
  10630. // parallelize by q rows using ggml_vec_dot_f32
  10631. // total rows in q
  10632. const int nr = neq1*neq2*neq3;
  10633. // rows per thread
  10634. const int dr = (nr + nth - 1)/nth;
  10635. // row range for this thread
  10636. const int ir0 = dr*ith;
  10637. const int ir1 = MIN(ir0 + dr, nr);
  10638. const float scale = 1.0f/sqrtf(D);
  10639. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10640. for (int ir = ir0; ir < ir1; ++ir) {
  10641. // q indices
  10642. const int iq3 = ir/(neq2*neq1);
  10643. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10644. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10645. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  10646. for (int i = M; i < Mup; ++i) {
  10647. S[i] = -INFINITY;
  10648. }
  10649. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  10650. for (int64_t ic = 0; ic < nek1; ++ic) {
  10651. // k indices
  10652. const int ik3 = iq3;
  10653. const int ik2 = iq2 % nek2;
  10654. const int ik1 = ic;
  10655. // S indices
  10656. const int i1 = ik1;
  10657. ggml_vec_dot_f16(neq0,
  10658. S + i1,
  10659. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10660. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10661. }
  10662. } else {
  10663. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  10664. // k indices
  10665. const int ik3 = iq3;
  10666. const int ik2 = iq2 % nek2;
  10667. const int ik1 = ic;
  10668. // S indices
  10669. const int i1 = ik1;
  10670. ggml_vec_dot_f16_unroll(neq0, nbk1,
  10671. S + i1,
  10672. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10673. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10674. }
  10675. }
  10676. // scale
  10677. ggml_vec_scale_f32(nek1, S, scale);
  10678. if (masked) {
  10679. for (int64_t i = P; i < M; i++) {
  10680. if (i > P + iq1) {
  10681. S[i] = -INFINITY;
  10682. }
  10683. }
  10684. }
  10685. // softmax
  10686. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  10687. // dont forget to set their S values to zero
  10688. {
  10689. float max = -INFINITY;
  10690. ggml_vec_max_f32(M, &max, S);
  10691. ggml_float sum = 0.0;
  10692. {
  10693. #ifdef GGML_SOFT_MAX_ACCELERATE
  10694. max = -max;
  10695. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10696. vvexpf(S, S, &Mup);
  10697. ggml_vec_sum_f32(Mup, &sum, S);
  10698. #else
  10699. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10700. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10701. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10702. float * SS = S + i;
  10703. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10704. if (SS[j] == -INFINITY) {
  10705. SS[j] = 0.0f;
  10706. } else {
  10707. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10708. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10709. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  10710. sump[j] += (ggml_float)val;
  10711. SS[j] = val;
  10712. }
  10713. }
  10714. }
  10715. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10716. sum += sump[i];
  10717. }
  10718. #endif
  10719. }
  10720. assert(sum > 0.0);
  10721. sum = 1.0/sum;
  10722. ggml_vec_scale_f32(M, S, sum);
  10723. #ifndef NDEBUG
  10724. for (int i = 0; i < M; ++i) {
  10725. assert(!isnan(S[i]));
  10726. assert(!isinf(S[i]));
  10727. }
  10728. #endif
  10729. }
  10730. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  10731. for (int64_t i = 0; i < M; i++) {
  10732. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10733. }
  10734. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  10735. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  10736. for (int64_t ic = 0; ic < nev1; ++ic) {
  10737. // dst indices
  10738. const int i1 = iq1;
  10739. const int i2 = iq2;
  10740. const int i3 = iq3;
  10741. // v indices
  10742. const int iv2 = iq2 % nev2;
  10743. const int iv3 = iq3;
  10744. ggml_vec_dot_f16(nev0,
  10745. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10746. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10747. S16);
  10748. }
  10749. } else {
  10750. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  10751. // dst indices
  10752. const int i1 = iq1;
  10753. const int i2 = iq2;
  10754. const int i3 = iq3;
  10755. // v indices
  10756. const int iv2 = iq2 % nev2;
  10757. const int iv3 = iq3;
  10758. ggml_vec_dot_f16_unroll(nev0, nbv1,
  10759. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10760. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10761. S16);
  10762. }
  10763. }
  10764. }
  10765. }
  10766. static void ggml_compute_forward_flash_attn(
  10767. const struct ggml_compute_params * params,
  10768. const struct ggml_tensor * q,
  10769. const struct ggml_tensor * k,
  10770. const struct ggml_tensor * v,
  10771. const bool masked,
  10772. struct ggml_tensor * dst) {
  10773. switch (q->type) {
  10774. case GGML_TYPE_F16:
  10775. {
  10776. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  10777. } break;
  10778. case GGML_TYPE_F32:
  10779. {
  10780. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  10781. } break;
  10782. default:
  10783. {
  10784. GGML_ASSERT(false);
  10785. } break;
  10786. }
  10787. }
  10788. // ggml_compute_forward_flash_ff
  10789. static void ggml_compute_forward_flash_ff_f16(
  10790. const struct ggml_compute_params * params,
  10791. const struct ggml_tensor * a, // F16
  10792. const struct ggml_tensor * b0, // F16 fc_w
  10793. const struct ggml_tensor * b1, // F32 fc_b
  10794. const struct ggml_tensor * c0, // F16 proj_w
  10795. const struct ggml_tensor * c1, // F32 proj_b
  10796. struct ggml_tensor * dst) {
  10797. int64_t t0 = ggml_perf_time_us();
  10798. UNUSED(t0);
  10799. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  10800. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  10801. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  10802. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  10803. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  10804. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  10805. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  10806. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  10807. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  10808. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  10809. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10810. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10811. const int ith = params->ith;
  10812. const int nth = params->nth;
  10813. const int64_t D = nea0;
  10814. //const int64_t N = nea1;
  10815. const int64_t M = neb01;
  10816. GGML_ASSERT(ne0 == nea0);
  10817. GGML_ASSERT(ne1 == nea1);
  10818. GGML_ASSERT(ne2 == nea2);
  10819. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  10820. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  10821. GGML_ASSERT(nbb10 == sizeof(float));
  10822. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  10823. GGML_ASSERT(nbc10 == sizeof(float));
  10824. GGML_ASSERT(neb00 == D);
  10825. GGML_ASSERT(neb01 == M);
  10826. GGML_ASSERT(neb10 == M);
  10827. GGML_ASSERT(neb11 == 1);
  10828. GGML_ASSERT(nec00 == M);
  10829. GGML_ASSERT(nec01 == D);
  10830. GGML_ASSERT(nec10 == D);
  10831. GGML_ASSERT(nec11 == 1);
  10832. // dst cannot be transposed or permuted
  10833. GGML_ASSERT(nb0 == sizeof(float));
  10834. GGML_ASSERT(nb0 <= nb1);
  10835. GGML_ASSERT(nb1 <= nb2);
  10836. GGML_ASSERT(nb2 <= nb3);
  10837. if (params->type == GGML_TASK_INIT) {
  10838. return;
  10839. }
  10840. if (params->type == GGML_TASK_FINALIZE) {
  10841. return;
  10842. }
  10843. // parallelize by a rows using ggml_vec_dot_f32
  10844. // total rows in a
  10845. const int nr = nea1*nea2*nea3;
  10846. // rows per thread
  10847. const int dr = (nr + nth - 1)/nth;
  10848. // row range for this thread
  10849. const int ir0 = dr*ith;
  10850. const int ir1 = MIN(ir0 + dr, nr);
  10851. for (int ir = ir0; ir < ir1; ++ir) {
  10852. // a indices
  10853. const int ia3 = ir/(nea2*nea1);
  10854. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  10855. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  10856. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  10857. for (int64_t ic = 0; ic < neb01; ++ic) {
  10858. // b0 indices
  10859. const int ib03 = ia3;
  10860. const int ib02 = ia2;
  10861. const int ib01 = ic;
  10862. // S indices
  10863. const int i1 = ib01;
  10864. ggml_vec_dot_f16(nea0,
  10865. S + i1,
  10866. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  10867. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  10868. }
  10869. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  10870. //ggml_vec_gelu_f32(neb01, S, S);
  10871. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  10872. for (int64_t i = 0; i < M; i++) {
  10873. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10874. }
  10875. ggml_vec_gelu_f16(neb01, S16, S16);
  10876. {
  10877. // dst indices
  10878. const int i1 = ia1;
  10879. const int i2 = ia2;
  10880. const int i3 = ia3;
  10881. for (int64_t ic = 0; ic < nec01; ++ic) {
  10882. ggml_vec_dot_f16(neb01,
  10883. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10884. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  10885. S16);
  10886. }
  10887. ggml_vec_add_f32(nec01,
  10888. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10889. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10890. (float *) c1->data);
  10891. }
  10892. }
  10893. }
  10894. static void ggml_compute_forward_flash_ff(
  10895. const struct ggml_compute_params * params,
  10896. const struct ggml_tensor * a,
  10897. const struct ggml_tensor * b0,
  10898. const struct ggml_tensor * b1,
  10899. const struct ggml_tensor * c0,
  10900. const struct ggml_tensor * c1,
  10901. struct ggml_tensor * dst) {
  10902. switch (b0->type) {
  10903. case GGML_TYPE_F16:
  10904. {
  10905. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  10906. } break;
  10907. case GGML_TYPE_F32:
  10908. {
  10909. GGML_ASSERT(false); // TODO
  10910. } break;
  10911. default:
  10912. {
  10913. GGML_ASSERT(false);
  10914. } break;
  10915. }
  10916. }
  10917. // ggml_compute_forward_flash_attn_back
  10918. static void ggml_compute_forward_flash_attn_back_f32(
  10919. const struct ggml_compute_params * params,
  10920. const struct ggml_tensor * q,
  10921. const struct ggml_tensor * k,
  10922. const struct ggml_tensor * v,
  10923. const struct ggml_tensor * d,
  10924. const bool masked,
  10925. struct ggml_tensor * dst) {
  10926. int64_t t0 = ggml_perf_time_us();
  10927. UNUSED(t0);
  10928. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10929. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10930. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10931. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10932. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10933. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10934. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  10935. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  10936. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10937. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10938. const int ith = params->ith;
  10939. const int nth = params->nth;
  10940. const int64_t D = neq0;
  10941. const int64_t N = neq1;
  10942. const int64_t P = nek1 - N;
  10943. const int64_t M = P + N;
  10944. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10945. const int mxDM = MAX(D, Mup);
  10946. // GGML_ASSERT(ne0 == D);
  10947. // GGML_ASSERT(ne1 == N);
  10948. GGML_ASSERT(P >= 0);
  10949. GGML_ASSERT(nbq0 == sizeof(float));
  10950. GGML_ASSERT(nbk0 == sizeof(float));
  10951. GGML_ASSERT(nbv0 == sizeof(float));
  10952. GGML_ASSERT(neq0 == D);
  10953. GGML_ASSERT(nek0 == D);
  10954. GGML_ASSERT(nev1 == D);
  10955. GGML_ASSERT(ned0 == D);
  10956. GGML_ASSERT(neq1 == N);
  10957. GGML_ASSERT(nek1 == N + P);
  10958. GGML_ASSERT(nev1 == D);
  10959. GGML_ASSERT(ned1 == N);
  10960. // dst cannot be transposed or permuted
  10961. GGML_ASSERT(nb0 == sizeof(float));
  10962. GGML_ASSERT(nb0 <= nb1);
  10963. GGML_ASSERT(nb1 <= nb2);
  10964. GGML_ASSERT(nb2 <= nb3);
  10965. if (params->type == GGML_TASK_INIT) {
  10966. if (ith == 0) {
  10967. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  10968. }
  10969. return;
  10970. }
  10971. if (params->type == GGML_TASK_FINALIZE) {
  10972. return;
  10973. }
  10974. const int64_t elem_q = ggml_nelements(q);
  10975. const int64_t elem_k = ggml_nelements(k);
  10976. enum ggml_type result_type = dst->type;
  10977. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  10978. const size_t tsize = ggml_type_size(result_type);
  10979. const size_t offs_q = 0;
  10980. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  10981. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  10982. void * grad_q = (char *) dst->data;
  10983. void * grad_k = (char *) dst->data + offs_k;
  10984. void * grad_v = (char *) dst->data + offs_v;
  10985. const size_t nbgq1 = nb0*neq0;
  10986. const size_t nbgq2 = nb0*neq0*neq1;
  10987. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  10988. const size_t nbgk1 = nb0*nek0;
  10989. const size_t nbgk2 = nb0*nek0*nek1;
  10990. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  10991. const size_t nbgv1 = nb0*nev0;
  10992. const size_t nbgv2 = nb0*nev0*nev1;
  10993. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  10994. // parallelize by k rows using ggml_vec_dot_f32
  10995. // total rows in k
  10996. const int nr = nek2*nek3;
  10997. // rows per thread
  10998. const int dr = (nr + nth - 1)/nth;
  10999. // row range for this thread
  11000. const int ir0 = dr*ith;
  11001. const int ir1 = MIN(ir0 + dr, nr);
  11002. const float scale = 1.0f/sqrtf(D);
  11003. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11004. // how often k2 (and v2) is repeated in q2
  11005. int nrep = neq2/nek2;
  11006. for (int ir = ir0; ir < ir1; ++ir) {
  11007. // q indices
  11008. const int ik3 = ir/(nek2);
  11009. const int ik2 = ir - ik3*nek2;
  11010. const int iq3 = ik3;
  11011. const int id3 = ik3;
  11012. const int iv3 = ik3;
  11013. const int iv2 = ik2;
  11014. for (int irep = 0; irep < nrep; ++irep) {
  11015. const int iq2 = ik2 + irep*nek2;
  11016. const int id2 = iq2;
  11017. // (ik2 + irep*nek2) % nek2 == ik2
  11018. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  11019. const int id1 = iq1;
  11020. // not sure about CACHE_LINE_SIZE_F32..
  11021. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11022. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11023. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11024. for (int i = M; i < Mup; ++i) {
  11025. S[i] = -INFINITY;
  11026. }
  11027. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11028. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11029. // k indices
  11030. const int ik1 = ic;
  11031. // S indices
  11032. const int i1 = ik1;
  11033. ggml_vec_dot_f32(neq0,
  11034. S + i1,
  11035. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11036. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11037. }
  11038. // scale
  11039. ggml_vec_scale_f32(masked_begin, S, scale);
  11040. for (int64_t i = masked_begin; i < M; i++) {
  11041. S[i] = -INFINITY;
  11042. }
  11043. // softmax
  11044. // exclude known -INF S[..] values from max and loop
  11045. // dont forget to set their SM values to zero
  11046. {
  11047. float max = -INFINITY;
  11048. ggml_vec_max_f32(masked_begin, &max, S);
  11049. ggml_float sum = 0.0;
  11050. {
  11051. #ifdef GGML_SOFT_MAX_ACCELERATE
  11052. max = -max;
  11053. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11054. vvexpf(SM, SM, &Mup);
  11055. ggml_vec_sum_f32(Mup, &sum, SM);
  11056. #else
  11057. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11058. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11059. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11060. if (i >= masked_begin) {
  11061. break;
  11062. }
  11063. float * SR = S + i;
  11064. float * SW = SM + i;
  11065. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11066. if (i + j >= masked_begin) {
  11067. break;
  11068. } else if (SR[j] == -INFINITY) {
  11069. SW[j] = 0.0f;
  11070. } else {
  11071. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11072. const float val = expf(SR[j] - max);
  11073. #else
  11074. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11075. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11076. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11077. #endif
  11078. sump[j] += (ggml_float)val;
  11079. SW[j] = val;
  11080. }
  11081. }
  11082. }
  11083. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11084. sum += sump[i];
  11085. }
  11086. #endif
  11087. }
  11088. assert(sum > 0.0);
  11089. sum = 1.0/sum;
  11090. ggml_vec_scale_f32(masked_begin, SM, sum);
  11091. }
  11092. // step-by-step explanation
  11093. {
  11094. // forward-process shape grads from backward process
  11095. // parallel_for ik2,ik3:
  11096. // for irep:
  11097. // iq2 = ik2 + irep*nek2
  11098. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  11099. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11100. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  11101. // for iq1:
  11102. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11103. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11104. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11105. // S0 = -Inf [D,1,1,1]
  11106. // ~S1[i] = dot(kcur[:D,i], qcur)
  11107. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11108. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11109. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11110. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11111. // ~S5[i] = dot(vcur[:,i], S4)
  11112. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  11113. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11114. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  11115. // dst backward-/ grad[dst] = d
  11116. //
  11117. // output gradients with their dependencies:
  11118. //
  11119. // grad[kcur] = grad[S1].T @ qcur
  11120. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11121. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11122. // grad[S4] = grad[S5] @ vcur
  11123. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11124. // grad[qcur] = grad[S1] @ kcur
  11125. // grad[vcur] = grad[S5].T @ S4
  11126. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11127. //
  11128. // in post-order:
  11129. //
  11130. // S1 = qcur @ kcur.T
  11131. // S2 = S1 * scale
  11132. // S3 = diag_mask_inf(S2, P)
  11133. // S4 = softmax(S3)
  11134. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11135. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11136. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11137. // grad[qcur] = grad[S1] @ kcur
  11138. // grad[kcur] = grad[S1].T @ qcur
  11139. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11140. //
  11141. // using less variables (SM=S4):
  11142. //
  11143. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11144. // SM = softmax(S)
  11145. // S = d[:D,iq1,iq2,iq3] @ vcur
  11146. // dot_SM_gradSM = dot(SM, S)
  11147. // S = SM * (S - dot(SM, S))
  11148. // S = diag_mask_zero(S, P) * scale
  11149. //
  11150. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11151. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  11152. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11153. }
  11154. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11155. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11156. // for ic:
  11157. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  11158. // exclude known future zero S[..] values from operation
  11159. ggml_vec_set_f32(masked_begin, S, 0);
  11160. for (int64_t ic = 0; ic < D; ++ic) {
  11161. ggml_vec_mad_f32(masked_begin,
  11162. S,
  11163. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11164. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11165. }
  11166. // S = SM * (S - dot(SM, S))
  11167. float dot_SM_gradSM = 0;
  11168. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, SM, S);
  11169. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11170. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  11171. // S = diag_mask_zero(S, P) * scale
  11172. // already done by above ggml_vec_set_f32
  11173. // exclude known zero S[..] values from operation
  11174. ggml_vec_scale_f32(masked_begin, S, scale);
  11175. // S shape [M,1]
  11176. // SM shape [M,1]
  11177. // kcur shape [D,M]
  11178. // qcur shape [D,1]
  11179. // vcur shape [M,D]
  11180. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11181. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11182. // for ic:
  11183. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  11184. // exclude known zero S[..] values from loop
  11185. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11186. ggml_vec_mad_f32(D,
  11187. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  11188. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11189. S[ic]);
  11190. }
  11191. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11192. // for ic:
  11193. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11194. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11195. // exclude known zero S[..] values from loop
  11196. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11197. ggml_vec_mad_f32(D,
  11198. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  11199. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  11200. S[ic]);
  11201. }
  11202. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11203. // for ic:
  11204. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  11205. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  11206. // exclude known zero SM[..] values from mad
  11207. for (int64_t ic = 0; ic < D; ++ic) {
  11208. ggml_vec_mad_f32(masked_begin,
  11209. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  11210. SM,
  11211. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11212. }
  11213. }
  11214. }
  11215. }
  11216. }
  11217. static void ggml_compute_forward_flash_attn_back(
  11218. const struct ggml_compute_params * params,
  11219. const struct ggml_tensor * q,
  11220. const struct ggml_tensor * k,
  11221. const struct ggml_tensor * v,
  11222. const struct ggml_tensor * d,
  11223. const bool masked,
  11224. struct ggml_tensor * dst) {
  11225. switch (q->type) {
  11226. case GGML_TYPE_F32:
  11227. {
  11228. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  11229. } break;
  11230. default:
  11231. {
  11232. GGML_ASSERT(false);
  11233. } break;
  11234. }
  11235. }
  11236. // ggml_compute_forward_win_part
  11237. static void ggml_compute_forward_win_part_f32(
  11238. const struct ggml_compute_params * params,
  11239. const struct ggml_tensor * src0,
  11240. struct ggml_tensor * dst) {
  11241. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11242. return;
  11243. }
  11244. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11245. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11246. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  11247. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  11248. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  11249. assert(ne00 == ne0);
  11250. assert(ne3 == nep0*nep1);
  11251. // TODO: optimize / multi-thread
  11252. for (int py = 0; py < nep1; ++py) {
  11253. for (int px = 0; px < nep0; ++px) {
  11254. const int64_t i3 = py*nep0 + px;
  11255. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11256. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11257. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11258. const int64_t i02 = py*w + i2;
  11259. const int64_t i01 = px*w + i1;
  11260. const int64_t i00 = i0;
  11261. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  11262. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  11263. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  11264. ((float *) dst->data)[i] = 0.0f;
  11265. } else {
  11266. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  11267. }
  11268. }
  11269. }
  11270. }
  11271. }
  11272. }
  11273. }
  11274. static void ggml_compute_forward_win_part(
  11275. const struct ggml_compute_params * params,
  11276. const struct ggml_tensor * src0,
  11277. struct ggml_tensor * dst) {
  11278. switch (src0->type) {
  11279. case GGML_TYPE_F32:
  11280. {
  11281. ggml_compute_forward_win_part_f32(params, src0, dst);
  11282. } break;
  11283. default:
  11284. {
  11285. GGML_ASSERT(false);
  11286. } break;
  11287. }
  11288. }
  11289. // ggml_compute_forward_win_unpart
  11290. static void ggml_compute_forward_win_unpart_f32(
  11291. const struct ggml_compute_params * params,
  11292. const struct ggml_tensor * src0,
  11293. struct ggml_tensor * dst) {
  11294. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11295. return;
  11296. }
  11297. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11298. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11299. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  11300. // padding
  11301. const int px = (w - ne1%w)%w;
  11302. //const int py = (w - ne2%w)%w;
  11303. const int npx = (px + ne1)/w;
  11304. //const int npy = (py + ne2)/w;
  11305. assert(ne0 == ne00);
  11306. // TODO: optimize / multi-thread
  11307. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11308. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11309. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11310. const int ip2 = i2/w;
  11311. const int ip1 = i1/w;
  11312. const int64_t i02 = i2%w;
  11313. const int64_t i01 = i1%w;
  11314. const int64_t i00 = i0;
  11315. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  11316. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  11317. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  11318. }
  11319. }
  11320. }
  11321. }
  11322. static void ggml_compute_forward_win_unpart(
  11323. const struct ggml_compute_params * params,
  11324. const struct ggml_tensor * src0,
  11325. struct ggml_tensor * dst) {
  11326. switch (src0->type) {
  11327. case GGML_TYPE_F32:
  11328. {
  11329. ggml_compute_forward_win_unpart_f32(params, src0, dst);
  11330. } break;
  11331. default:
  11332. {
  11333. GGML_ASSERT(false);
  11334. } break;
  11335. }
  11336. }
  11337. //gmml_compute_forward_unary
  11338. static void ggml_compute_forward_unary(
  11339. const struct ggml_compute_params * params,
  11340. const struct ggml_tensor * src0,
  11341. struct ggml_tensor * dst) {
  11342. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  11343. switch (op) {
  11344. case GGML_UNARY_OP_ABS:
  11345. {
  11346. ggml_compute_forward_abs(params, src0, dst);
  11347. } break;
  11348. case GGML_UNARY_OP_SGN:
  11349. {
  11350. ggml_compute_forward_sgn(params, src0, dst);
  11351. } break;
  11352. case GGML_UNARY_OP_NEG:
  11353. {
  11354. ggml_compute_forward_neg(params, src0, dst);
  11355. } break;
  11356. case GGML_UNARY_OP_STEP:
  11357. {
  11358. ggml_compute_forward_step(params, src0, dst);
  11359. } break;
  11360. case GGML_UNARY_OP_TANH:
  11361. {
  11362. ggml_compute_forward_tanh(params, src0, dst);
  11363. } break;
  11364. case GGML_UNARY_OP_ELU:
  11365. {
  11366. ggml_compute_forward_elu(params, src0, dst);
  11367. } break;
  11368. case GGML_UNARY_OP_RELU:
  11369. {
  11370. ggml_compute_forward_relu(params, src0, dst);
  11371. } break;
  11372. case GGML_UNARY_OP_GELU:
  11373. {
  11374. ggml_compute_forward_gelu(params, src0, dst);
  11375. } break;
  11376. case GGML_UNARY_OP_GELU_QUICK:
  11377. {
  11378. ggml_compute_forward_gelu_quick(params, src0, dst);
  11379. } break;
  11380. case GGML_UNARY_OP_SILU:
  11381. {
  11382. ggml_compute_forward_silu(params, src0, dst);
  11383. } break;
  11384. default:
  11385. {
  11386. GGML_ASSERT(false);
  11387. } break;
  11388. }
  11389. }
  11390. // ggml_compute_forward_get_rel_pos
  11391. static void ggml_compute_forward_get_rel_pos_f16(
  11392. const struct ggml_compute_params * params,
  11393. const struct ggml_tensor * src0,
  11394. struct ggml_tensor * dst) {
  11395. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11396. return;
  11397. }
  11398. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  11399. GGML_TENSOR_UNARY_OP_LOCALS
  11400. const int64_t w = ne1;
  11401. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  11402. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  11403. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11404. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11405. const int64_t pos = (w - i1 - 1) + i2;
  11406. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11407. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  11408. }
  11409. }
  11410. }
  11411. }
  11412. static void ggml_compute_forward_get_rel_pos(
  11413. const struct ggml_compute_params * params,
  11414. const struct ggml_tensor * src0,
  11415. struct ggml_tensor * dst) {
  11416. switch (src0->type) {
  11417. case GGML_TYPE_F16:
  11418. {
  11419. ggml_compute_forward_get_rel_pos_f16(params, src0, dst);
  11420. } break;
  11421. default:
  11422. {
  11423. GGML_ASSERT(false);
  11424. } break;
  11425. }
  11426. }
  11427. // ggml_compute_forward_add_rel_pos
  11428. static void ggml_compute_forward_add_rel_pos_f32(
  11429. const struct ggml_compute_params * params,
  11430. const struct ggml_tensor * src0,
  11431. const struct ggml_tensor * src1,
  11432. const struct ggml_tensor * src2,
  11433. struct ggml_tensor * dst) {
  11434. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  11435. if (!inplace && params->type == GGML_TASK_INIT) {
  11436. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  11437. return;
  11438. }
  11439. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11440. return;
  11441. }
  11442. int64_t t0 = ggml_perf_time_us();
  11443. UNUSED(t0);
  11444. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  11445. float * src1_data = (float *) src1->data;
  11446. float * src2_data = (float *) src2->data;
  11447. float * dst_data = (float *) dst->data;
  11448. const int64_t ne10 = src1->ne[0];
  11449. const int64_t ne11 = src1->ne[1];
  11450. const int64_t ne12 = src1->ne[2];
  11451. const int64_t ne13 = src1->ne[3];
  11452. const int ith = params->ith;
  11453. const int nth = params->nth;
  11454. // total patches in dst
  11455. const int np = ne13;
  11456. // patches per thread
  11457. const int dp = (np + nth - 1)/nth;
  11458. // patch range for this thread
  11459. const int ip0 = dp*ith;
  11460. const int ip1 = MIN(ip0 + dp, np);
  11461. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  11462. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  11463. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  11464. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  11465. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  11466. const int64_t jp0 = jp1 + i10;
  11467. const float src1_e = src1_data[jp0];
  11468. const float src2_e = src2_data[jp0];
  11469. const int64_t jdh = jp0 * ne10;
  11470. const int64_t jdw = jdh - (ne10 - 1) * i10;
  11471. for (int64_t j = 0; j < ne10; ++j) {
  11472. dst_data[jdh + j ] += src2_e;
  11473. dst_data[jdw + j*ne10] += src1_e;
  11474. }
  11475. }
  11476. }
  11477. }
  11478. }
  11479. }
  11480. static void ggml_compute_forward_add_rel_pos(
  11481. const struct ggml_compute_params * params,
  11482. const struct ggml_tensor * src0,
  11483. const struct ggml_tensor * src1,
  11484. const struct ggml_tensor * src2,
  11485. struct ggml_tensor * dst) {
  11486. switch (src0->type) {
  11487. case GGML_TYPE_F32:
  11488. {
  11489. ggml_compute_forward_add_rel_pos_f32(params, src0, src1, src2, dst);
  11490. } break;
  11491. default:
  11492. {
  11493. GGML_ASSERT(false);
  11494. } break;
  11495. }
  11496. }
  11497. // ggml_compute_forward_map_unary
  11498. static void ggml_compute_forward_map_unary_f32(
  11499. const struct ggml_compute_params * params,
  11500. const struct ggml_tensor * src0,
  11501. struct ggml_tensor * dst,
  11502. const ggml_unary_op_f32_t fun) {
  11503. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11504. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11505. return;
  11506. }
  11507. const int n = ggml_nrows(src0);
  11508. const int nc = src0->ne[0];
  11509. assert( dst->nb[0] == sizeof(float));
  11510. assert(src0->nb[0] == sizeof(float));
  11511. for (int i = 0; i < n; i++) {
  11512. fun(nc,
  11513. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11514. (float *) ((char *) src0->data + i*(src0->nb[1])));
  11515. }
  11516. }
  11517. static void ggml_compute_forward_map_unary(
  11518. const struct ggml_compute_params * params,
  11519. const struct ggml_tensor * src0,
  11520. struct ggml_tensor * dst,
  11521. const ggml_unary_op_f32_t fun) {
  11522. switch (src0->type) {
  11523. case GGML_TYPE_F32:
  11524. {
  11525. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  11526. } break;
  11527. default:
  11528. {
  11529. GGML_ASSERT(false);
  11530. } break;
  11531. }
  11532. }
  11533. // ggml_compute_forward_map_binary
  11534. static void ggml_compute_forward_map_binary_f32(
  11535. const struct ggml_compute_params * params,
  11536. const struct ggml_tensor * src0,
  11537. const struct ggml_tensor * src1,
  11538. struct ggml_tensor * dst,
  11539. const ggml_binary_op_f32_t fun) {
  11540. assert(params->ith == 0);
  11541. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11542. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11543. return;
  11544. }
  11545. const int n = ggml_nrows(src0);
  11546. const int nc = src0->ne[0];
  11547. assert( dst->nb[0] == sizeof(float));
  11548. assert(src0->nb[0] == sizeof(float));
  11549. assert(src1->nb[0] == sizeof(float));
  11550. for (int i = 0; i < n; i++) {
  11551. fun(nc,
  11552. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11553. (float *) ((char *) src0->data + i*(src0->nb[1])),
  11554. (float *) ((char *) src1->data + i*(src1->nb[1])));
  11555. }
  11556. }
  11557. static void ggml_compute_forward_map_binary(
  11558. const struct ggml_compute_params * params,
  11559. const struct ggml_tensor * src0,
  11560. const struct ggml_tensor * src1,
  11561. struct ggml_tensor * dst,
  11562. const ggml_binary_op_f32_t fun) {
  11563. switch (src0->type) {
  11564. case GGML_TYPE_F32:
  11565. {
  11566. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  11567. } break;
  11568. default:
  11569. {
  11570. GGML_ASSERT(false);
  11571. } break;
  11572. }
  11573. }
  11574. // ggml_compute_forward_map_custom1
  11575. static void ggml_compute_forward_map_custom1_f32(
  11576. const struct ggml_compute_params * params,
  11577. const struct ggml_tensor * a,
  11578. struct ggml_tensor * dst,
  11579. const ggml_custom1_op_f32_t fun) {
  11580. assert(params->ith == 0);
  11581. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11582. return;
  11583. }
  11584. fun(dst, a);
  11585. }
  11586. // ggml_compute_forward_map_custom2
  11587. static void ggml_compute_forward_map_custom2_f32(
  11588. const struct ggml_compute_params * params,
  11589. const struct ggml_tensor * a,
  11590. const struct ggml_tensor * b,
  11591. struct ggml_tensor * dst,
  11592. const ggml_custom2_op_f32_t fun) {
  11593. assert(params->ith == 0);
  11594. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11595. return;
  11596. }
  11597. fun(dst, a, b);
  11598. }
  11599. // ggml_compute_forward_map_custom3
  11600. static void ggml_compute_forward_map_custom3_f32(
  11601. const struct ggml_compute_params * params,
  11602. const struct ggml_tensor * a,
  11603. const struct ggml_tensor * b,
  11604. const struct ggml_tensor * c,
  11605. struct ggml_tensor * dst,
  11606. const ggml_custom3_op_f32_t fun) {
  11607. assert(params->ith == 0);
  11608. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11609. return;
  11610. }
  11611. fun(dst, a, b, c);
  11612. }
  11613. // ggml_compute_forward_map_custom1
  11614. static void ggml_compute_forward_map_custom1(
  11615. const struct ggml_compute_params * params,
  11616. const struct ggml_tensor * a,
  11617. struct ggml_tensor * dst) {
  11618. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11619. return;
  11620. }
  11621. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
  11622. p->fun(dst, a, params->ith, params->nth, p->userdata);
  11623. }
  11624. // ggml_compute_forward_map_custom2
  11625. static void ggml_compute_forward_map_custom2(
  11626. const struct ggml_compute_params * params,
  11627. const struct ggml_tensor * a,
  11628. const struct ggml_tensor * b,
  11629. struct ggml_tensor * dst) {
  11630. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11631. return;
  11632. }
  11633. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
  11634. p->fun(dst, a, b, params->ith, params->nth, p->userdata);
  11635. }
  11636. // ggml_compute_forward_map_custom3
  11637. static void ggml_compute_forward_map_custom3(
  11638. const struct ggml_compute_params * params,
  11639. const struct ggml_tensor * a,
  11640. const struct ggml_tensor * b,
  11641. const struct ggml_tensor * c,
  11642. struct ggml_tensor * dst) {
  11643. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11644. return;
  11645. }
  11646. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
  11647. p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
  11648. }
  11649. // ggml_compute_forward_cross_entropy_loss
  11650. static void ggml_compute_forward_cross_entropy_loss_f32(
  11651. const struct ggml_compute_params * params,
  11652. const struct ggml_tensor * src0,
  11653. const struct ggml_tensor * src1,
  11654. struct ggml_tensor * dst) {
  11655. GGML_ASSERT(ggml_is_contiguous(src0));
  11656. GGML_ASSERT(ggml_is_contiguous(src1));
  11657. GGML_ASSERT(ggml_is_scalar(dst));
  11658. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  11659. const int ith = params->ith;
  11660. const int nth = params->nth;
  11661. float * sums = (float *) params->wdata;
  11662. // TODO: handle transposed/permuted matrices
  11663. const int nc = src0->ne[0];
  11664. const int nr = ggml_nrows(src0);
  11665. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  11666. if (params->type == GGML_TASK_INIT) {
  11667. if (ith == 0) {
  11668. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  11669. }
  11670. return;
  11671. }
  11672. if (params->type == GGML_TASK_FINALIZE) {
  11673. if (ith == 0) {
  11674. float * dp = (float *) dst->data;
  11675. ggml_vec_sum_f32(nth, dp, sums);
  11676. dp[0] *= -1.0f / (float) nr;
  11677. }
  11678. return;
  11679. }
  11680. const double eps = 1e-9;
  11681. // rows per thread
  11682. const int dr = (nr + nth - 1)/nth;
  11683. // row range for this thread
  11684. const int ir0 = dr*ith;
  11685. const int ir1 = MIN(ir0 + dr, nr);
  11686. for (int i1 = ir0; i1 < ir1; i1++) {
  11687. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11688. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11689. float * st = ((float *) params->wdata) + nth + ith*nc;
  11690. #ifndef NDEBUG
  11691. for (int i = 0; i < nc; ++i) {
  11692. //printf("p[%d] = %f\n", i, p[i]);
  11693. assert(!isnan(s0[i]));
  11694. assert(!isnan(s1[i]));
  11695. }
  11696. #endif
  11697. // soft_max
  11698. ggml_float sum = 0.0;
  11699. {
  11700. float max = -INFINITY;
  11701. ggml_vec_max_f32(nc, &max, s0);
  11702. uint16_t scvt; UNUSED(scvt);
  11703. for (int i = 0; i < nc; i++) {
  11704. if (s0[i] == -INFINITY) {
  11705. st[i] = 0.0f;
  11706. } else {
  11707. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  11708. const float s = s0[i] - max;
  11709. const float val = expf(s);
  11710. #else
  11711. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11712. memcpy(&scvt, &s, sizeof(scvt));
  11713. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  11714. #endif
  11715. sum += (ggml_float)val;
  11716. st[i] = val;
  11717. }
  11718. }
  11719. assert(sum > 0.0);
  11720. // sum = 1.0/sum;
  11721. }
  11722. // avoid log(0) by rescaling from [0..1] to [eps..1]
  11723. sum = (1.0 - eps) / sum;
  11724. ggml_vec_scale_f32(nc, st, sum);
  11725. ggml_vec_add1_f32(nc, st, st, eps);
  11726. ggml_vec_log_f32(nc, st, st);
  11727. ggml_vec_mul_f32(nc, st, st, s1);
  11728. float st_sum = 0;
  11729. ggml_vec_sum_f32(nc, &st_sum, st);
  11730. sums[ith] += st_sum;
  11731. #ifndef NDEBUG
  11732. for (int i = 0; i < nc; ++i) {
  11733. assert(!isnan(st[i]));
  11734. assert(!isinf(st[i]));
  11735. }
  11736. #endif
  11737. }
  11738. }
  11739. static void ggml_compute_forward_cross_entropy_loss(
  11740. const struct ggml_compute_params * params,
  11741. const struct ggml_tensor * src0,
  11742. const struct ggml_tensor * src1,
  11743. struct ggml_tensor * dst) {
  11744. switch (src0->type) {
  11745. case GGML_TYPE_F32:
  11746. {
  11747. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  11748. } break;
  11749. default:
  11750. {
  11751. GGML_ASSERT(false);
  11752. } break;
  11753. }
  11754. }
  11755. // ggml_compute_forward_cross_entropy_loss_back
  11756. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  11757. const struct ggml_compute_params * params,
  11758. const struct ggml_tensor * src0,
  11759. const struct ggml_tensor * src1,
  11760. const struct ggml_tensor * opt0,
  11761. struct ggml_tensor * dst) {
  11762. GGML_ASSERT(ggml_is_contiguous(dst));
  11763. GGML_ASSERT(ggml_is_contiguous(src0));
  11764. GGML_ASSERT(ggml_is_contiguous(src1));
  11765. GGML_ASSERT(ggml_is_contiguous(opt0));
  11766. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11767. const int64_t ith = params->ith;
  11768. const int64_t nth = params->nth;
  11769. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11770. return;
  11771. }
  11772. const double eps = 1e-9;
  11773. // TODO: handle transposed/permuted matrices
  11774. const int64_t nc = src0->ne[0];
  11775. const int64_t nr = ggml_nrows(src0);
  11776. // rows per thread
  11777. const int64_t dr = (nr + nth - 1)/nth;
  11778. // row range for this thread
  11779. const int64_t ir0 = dr*ith;
  11780. const int64_t ir1 = MIN(ir0 + dr, nr);
  11781. float * d = (float *) opt0->data;
  11782. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  11783. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  11784. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11785. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11786. #ifndef NDEBUG
  11787. for (int i = 0; i < nc; ++i) {
  11788. //printf("p[%d] = %f\n", i, p[i]);
  11789. assert(!isnan(s0[i]));
  11790. assert(!isnan(s1[i]));
  11791. }
  11792. #endif
  11793. // soft_max
  11794. ggml_float sum = 0.0;
  11795. {
  11796. float max = -INFINITY;
  11797. ggml_vec_max_f32(nc, &max, s0);
  11798. uint16_t scvt; UNUSED(scvt);
  11799. for (int i = 0; i < nc; i++) {
  11800. if (s0[i] == -INFINITY) {
  11801. ds0[i] = 0.0f;
  11802. } else {
  11803. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  11804. const float s = s0[i] - max;
  11805. const float val = expf(s);
  11806. #else
  11807. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11808. memcpy(&scvt, &s, sizeof(scvt));
  11809. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  11810. #endif
  11811. sum += (ggml_float)val;
  11812. ds0[i] = val;
  11813. }
  11814. }
  11815. assert(sum > 0.0);
  11816. sum = (1.0 - eps)/sum;
  11817. }
  11818. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  11819. ggml_vec_scale_f32(nc, ds0, sum);
  11820. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  11821. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  11822. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  11823. #ifndef NDEBUG
  11824. for (int i = 0; i < nc; ++i) {
  11825. assert(!isnan(ds0[i]));
  11826. assert(!isinf(ds0[i]));
  11827. }
  11828. #endif
  11829. }
  11830. }
  11831. static void ggml_compute_forward_cross_entropy_loss_back(
  11832. const struct ggml_compute_params * params,
  11833. const struct ggml_tensor * src0,
  11834. const struct ggml_tensor * src1,
  11835. const struct ggml_tensor * opt0,
  11836. struct ggml_tensor * dst) {
  11837. switch (src0->type) {
  11838. case GGML_TYPE_F32:
  11839. {
  11840. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  11841. } break;
  11842. default:
  11843. {
  11844. GGML_ASSERT(false);
  11845. } break;
  11846. }
  11847. }
  11848. /////////////////////////////////
  11849. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  11850. GGML_ASSERT(params);
  11851. if (tensor->op == GGML_OP_NONE) {
  11852. return;
  11853. }
  11854. #ifdef GGML_USE_CUBLAS
  11855. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  11856. if (skip_cpu) {
  11857. return;
  11858. }
  11859. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  11860. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  11861. #endif // GGML_USE_CUBLAS
  11862. switch (tensor->op) {
  11863. case GGML_OP_DUP:
  11864. {
  11865. ggml_compute_forward_dup(params, tensor->src[0], tensor);
  11866. } break;
  11867. case GGML_OP_ADD:
  11868. {
  11869. ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
  11870. } break;
  11871. case GGML_OP_ADD1:
  11872. {
  11873. ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
  11874. } break;
  11875. case GGML_OP_ACC:
  11876. {
  11877. ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor);
  11878. } break;
  11879. case GGML_OP_SUB:
  11880. {
  11881. ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
  11882. } break;
  11883. case GGML_OP_MUL:
  11884. {
  11885. ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
  11886. } break;
  11887. case GGML_OP_DIV:
  11888. {
  11889. ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
  11890. } break;
  11891. case GGML_OP_SQR:
  11892. {
  11893. ggml_compute_forward_sqr(params, tensor->src[0], tensor);
  11894. } break;
  11895. case GGML_OP_SQRT:
  11896. {
  11897. ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
  11898. } break;
  11899. case GGML_OP_LOG:
  11900. {
  11901. ggml_compute_forward_log(params, tensor->src[0], tensor);
  11902. } break;
  11903. case GGML_OP_SUM:
  11904. {
  11905. ggml_compute_forward_sum(params, tensor->src[0], tensor);
  11906. } break;
  11907. case GGML_OP_SUM_ROWS:
  11908. {
  11909. ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
  11910. } break;
  11911. case GGML_OP_MEAN:
  11912. {
  11913. ggml_compute_forward_mean(params, tensor->src[0], tensor);
  11914. } break;
  11915. case GGML_OP_ARGMAX:
  11916. {
  11917. ggml_compute_forward_argmax(params, tensor->src[0], tensor);
  11918. } break;
  11919. case GGML_OP_REPEAT:
  11920. {
  11921. ggml_compute_forward_repeat(params, tensor->src[0], tensor);
  11922. } break;
  11923. case GGML_OP_REPEAT_BACK:
  11924. {
  11925. ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
  11926. } break;
  11927. case GGML_OP_CONCAT:
  11928. {
  11929. ggml_compute_forward_concat(params, tensor->src[0], tensor->src[1], tensor);
  11930. } break;
  11931. case GGML_OP_SILU_BACK:
  11932. {
  11933. ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
  11934. } break;
  11935. case GGML_OP_NORM:
  11936. {
  11937. ggml_compute_forward_norm(params, tensor->src[0], tensor);
  11938. } break;
  11939. case GGML_OP_RMS_NORM:
  11940. {
  11941. ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
  11942. } break;
  11943. case GGML_OP_RMS_NORM_BACK:
  11944. {
  11945. ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
  11946. } break;
  11947. case GGML_OP_GROUP_NORM:
  11948. {
  11949. ggml_compute_forward_group_norm(params, tensor->src[0], tensor);
  11950. } break;
  11951. case GGML_OP_MUL_MAT:
  11952. {
  11953. ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
  11954. } break;
  11955. case GGML_OP_MUL_MAT_ID:
  11956. {
  11957. ggml_compute_forward_mul_mat_id(params, tensor->src[0], tensor->src[1], tensor);
  11958. } break;
  11959. case GGML_OP_OUT_PROD:
  11960. {
  11961. ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
  11962. } break;
  11963. case GGML_OP_SCALE:
  11964. {
  11965. ggml_compute_forward_scale(params, tensor->src[0], tensor);
  11966. } break;
  11967. case GGML_OP_SET:
  11968. {
  11969. ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor);
  11970. } break;
  11971. case GGML_OP_CPY:
  11972. {
  11973. ggml_compute_forward_cpy(params, tensor->src[0], tensor);
  11974. } break;
  11975. case GGML_OP_CONT:
  11976. {
  11977. ggml_compute_forward_cont(params, tensor->src[0], tensor);
  11978. } break;
  11979. case GGML_OP_RESHAPE:
  11980. {
  11981. ggml_compute_forward_reshape(params, tensor->src[0], tensor);
  11982. } break;
  11983. case GGML_OP_VIEW:
  11984. {
  11985. ggml_compute_forward_view(params, tensor->src[0]);
  11986. } break;
  11987. case GGML_OP_PERMUTE:
  11988. {
  11989. ggml_compute_forward_permute(params, tensor->src[0]);
  11990. } break;
  11991. case GGML_OP_TRANSPOSE:
  11992. {
  11993. ggml_compute_forward_transpose(params, tensor->src[0]);
  11994. } break;
  11995. case GGML_OP_GET_ROWS:
  11996. {
  11997. ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
  11998. } break;
  11999. case GGML_OP_GET_ROWS_BACK:
  12000. {
  12001. ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor);
  12002. } break;
  12003. case GGML_OP_DIAG:
  12004. {
  12005. ggml_compute_forward_diag(params, tensor->src[0], tensor);
  12006. } break;
  12007. case GGML_OP_DIAG_MASK_INF:
  12008. {
  12009. ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor);
  12010. } break;
  12011. case GGML_OP_DIAG_MASK_ZERO:
  12012. {
  12013. ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor);
  12014. } break;
  12015. case GGML_OP_SOFT_MAX:
  12016. {
  12017. ggml_compute_forward_soft_max(params, tensor->src[0], tensor->src[1], tensor);
  12018. } break;
  12019. case GGML_OP_SOFT_MAX_BACK:
  12020. {
  12021. ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
  12022. } break;
  12023. case GGML_OP_ROPE:
  12024. {
  12025. ggml_compute_forward_rope(params, tensor->src[0], tensor->src[1], tensor);
  12026. } break;
  12027. case GGML_OP_ROPE_BACK:
  12028. {
  12029. ggml_compute_forward_rope_back(params, tensor->src[0], tensor->src[1], tensor);
  12030. } break;
  12031. case GGML_OP_ALIBI:
  12032. {
  12033. ggml_compute_forward_alibi(params, tensor->src[0], tensor);
  12034. } break;
  12035. case GGML_OP_CLAMP:
  12036. {
  12037. ggml_compute_forward_clamp(params, tensor->src[0], tensor);
  12038. } break;
  12039. case GGML_OP_CONV_TRANSPOSE_1D:
  12040. {
  12041. ggml_compute_forward_conv_transpose_1d(params, tensor->src[0], tensor->src[1], tensor);
  12042. } break;
  12043. case GGML_OP_IM2COL:
  12044. {
  12045. ggml_compute_forward_im2col(params, tensor->src[0], tensor->src[1], tensor);
  12046. } break;
  12047. case GGML_OP_CONV_TRANSPOSE_2D:
  12048. {
  12049. ggml_compute_forward_conv_transpose_2d(params, tensor->src[0], tensor->src[1], tensor);
  12050. } break;
  12051. case GGML_OP_POOL_1D:
  12052. {
  12053. ggml_compute_forward_pool_1d(params, tensor->src[0], tensor);
  12054. } break;
  12055. case GGML_OP_POOL_2D:
  12056. {
  12057. ggml_compute_forward_pool_2d(params, tensor->src[0], tensor);
  12058. } break;
  12059. case GGML_OP_UPSCALE:
  12060. {
  12061. ggml_compute_forward_upscale(params, tensor->src[0], tensor);
  12062. } break;
  12063. case GGML_OP_PAD:
  12064. {
  12065. ggml_compute_forward_pad(params, tensor->src[0], tensor);
  12066. } break;
  12067. case GGML_OP_ARGSORT:
  12068. {
  12069. ggml_compute_forward_argsort(params, tensor->src[0], tensor);
  12070. } break;
  12071. case GGML_OP_LEAKY_RELU:
  12072. {
  12073. ggml_compute_forward_leaky_relu(params, tensor->src[0], tensor);
  12074. } break;
  12075. case GGML_OP_FLASH_ATTN:
  12076. {
  12077. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  12078. GGML_ASSERT(t == 0 || t == 1);
  12079. const bool masked = t != 0;
  12080. ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
  12081. } break;
  12082. case GGML_OP_FLASH_FF:
  12083. {
  12084. ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
  12085. } break;
  12086. case GGML_OP_FLASH_ATTN_BACK:
  12087. {
  12088. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12089. GGML_ASSERT(t == 0 || t == 1);
  12090. bool masked = t != 0;
  12091. ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
  12092. } break;
  12093. case GGML_OP_WIN_PART:
  12094. {
  12095. ggml_compute_forward_win_part(params, tensor->src[0], tensor);
  12096. } break;
  12097. case GGML_OP_WIN_UNPART:
  12098. {
  12099. ggml_compute_forward_win_unpart(params, tensor->src[0], tensor);
  12100. } break;
  12101. case GGML_OP_UNARY:
  12102. {
  12103. ggml_compute_forward_unary(params, tensor->src[0], tensor);
  12104. } break;
  12105. case GGML_OP_GET_REL_POS:
  12106. {
  12107. ggml_compute_forward_get_rel_pos(params, tensor->src[0], tensor);
  12108. } break;
  12109. case GGML_OP_ADD_REL_POS:
  12110. {
  12111. ggml_compute_forward_add_rel_pos(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12112. } break;
  12113. case GGML_OP_MAP_UNARY:
  12114. {
  12115. ggml_unary_op_f32_t fun;
  12116. memcpy(&fun, tensor->op_params, sizeof(fun));
  12117. ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
  12118. }
  12119. break;
  12120. case GGML_OP_MAP_BINARY:
  12121. {
  12122. ggml_binary_op_f32_t fun;
  12123. memcpy(&fun, tensor->op_params, sizeof(fun));
  12124. ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
  12125. }
  12126. break;
  12127. case GGML_OP_MAP_CUSTOM1_F32:
  12128. {
  12129. ggml_custom1_op_f32_t fun;
  12130. memcpy(&fun, tensor->op_params, sizeof(fun));
  12131. ggml_compute_forward_map_custom1_f32(params, tensor->src[0], tensor, fun);
  12132. }
  12133. break;
  12134. case GGML_OP_MAP_CUSTOM2_F32:
  12135. {
  12136. ggml_custom2_op_f32_t fun;
  12137. memcpy(&fun, tensor->op_params, sizeof(fun));
  12138. ggml_compute_forward_map_custom2_f32(params, tensor->src[0], tensor->src[1], tensor, fun);
  12139. }
  12140. break;
  12141. case GGML_OP_MAP_CUSTOM3_F32:
  12142. {
  12143. ggml_custom3_op_f32_t fun;
  12144. memcpy(&fun, tensor->op_params, sizeof(fun));
  12145. ggml_compute_forward_map_custom3_f32(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
  12146. }
  12147. break;
  12148. case GGML_OP_MAP_CUSTOM1:
  12149. {
  12150. ggml_compute_forward_map_custom1(params, tensor->src[0], tensor);
  12151. }
  12152. break;
  12153. case GGML_OP_MAP_CUSTOM2:
  12154. {
  12155. ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor);
  12156. }
  12157. break;
  12158. case GGML_OP_MAP_CUSTOM3:
  12159. {
  12160. ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12161. }
  12162. break;
  12163. case GGML_OP_CROSS_ENTROPY_LOSS:
  12164. {
  12165. ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
  12166. }
  12167. break;
  12168. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12169. {
  12170. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12171. }
  12172. break;
  12173. case GGML_OP_NONE:
  12174. {
  12175. // nop
  12176. } break;
  12177. case GGML_OP_COUNT:
  12178. {
  12179. GGML_ASSERT(false);
  12180. } break;
  12181. }
  12182. }
  12183. ////////////////////////////////////////////////////////////////////////////////
  12184. static size_t ggml_hash_size(size_t min_sz) {
  12185. // next primes after powers of two
  12186. static const size_t primes[] = {
  12187. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  12188. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  12189. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  12190. 16777259, 33554467, 67108879, 134217757, 268435459,
  12191. 536870923, 1073741827, 2147483659
  12192. };
  12193. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  12194. // find the smallest prime that is larger or equal to min_sz
  12195. size_t l = 0;
  12196. size_t r = n_primes;
  12197. while (l < r) {
  12198. size_t m = (l + r)/2;
  12199. if (primes[m] < min_sz) {
  12200. l = m + 1;
  12201. } else {
  12202. r = m;
  12203. }
  12204. }
  12205. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  12206. return sz;
  12207. }
  12208. static size_t ggml_hash(const void * p) {
  12209. return (size_t)p;
  12210. }
  12211. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12212. size_t h = ggml_hash(key) % hash_set.size;
  12213. // linear probing
  12214. size_t i = h;
  12215. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  12216. i = (i + 1) % hash_set.size;
  12217. if (i == h) {
  12218. // visited all hash table entries -> not found
  12219. return GGML_HASHTABLE_FULL;
  12220. }
  12221. }
  12222. return i;
  12223. }
  12224. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12225. size_t i = ggml_hash_find(hash_set, key);
  12226. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  12227. }
  12228. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12229. size_t i = ggml_hash_find(hash_set, key);
  12230. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  12231. if (hash_set.keys[i] == key) {
  12232. return GGML_HASHTABLE_ALREADY_EXISTS;
  12233. }
  12234. // insert
  12235. GGML_ASSERT(hash_set.keys[i] == NULL);
  12236. hash_set.keys[i] = key;
  12237. return i;
  12238. }
  12239. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12240. size_t i = ggml_hash_find(hash_set, key);
  12241. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  12242. hash_set.keys[i] = key;
  12243. return i;
  12244. }
  12245. static struct ggml_hash_set ggml_hash_set_new(size_t size) {
  12246. size = ggml_hash_size(size);
  12247. struct ggml_hash_set result;
  12248. result.size = size;
  12249. result.keys = malloc(sizeof(struct ggml_tensor *) * size);
  12250. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  12251. return result;
  12252. }
  12253. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  12254. free(hash_set.keys);
  12255. }
  12256. struct hash_map {
  12257. struct ggml_hash_set set;
  12258. struct ggml_tensor ** vals;
  12259. };
  12260. static struct hash_map * ggml_new_hash_map(size_t size) {
  12261. struct hash_map * result = malloc(sizeof(struct hash_map));
  12262. result->set = ggml_hash_set_new(size);
  12263. result->vals = malloc(sizeof(struct ggml_tensor *) * result->set.size);
  12264. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  12265. return result;
  12266. }
  12267. static void ggml_hash_map_free(struct hash_map * map) {
  12268. ggml_hash_set_free(map->set);
  12269. free(map->vals);
  12270. free(map);
  12271. }
  12272. // gradient checkpointing
  12273. static struct ggml_tensor * ggml_recompute_graph_node(
  12274. struct ggml_context * ctx,
  12275. struct ggml_cgraph * graph,
  12276. struct hash_map * replacements,
  12277. struct ggml_tensor * node) {
  12278. if (node == NULL) {
  12279. return NULL;
  12280. }
  12281. if (node->is_param) {
  12282. return node;
  12283. }
  12284. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  12285. return node;
  12286. }
  12287. int count_children = 0;
  12288. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12289. if (node->src[k]) {
  12290. ++count_children;
  12291. }
  12292. }
  12293. if (count_children == 0) {
  12294. return node;
  12295. }
  12296. size_t i = ggml_hash_find(replacements->set, node);
  12297. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  12298. if (replacements->set.keys[i] == node) {
  12299. return replacements->vals[i];
  12300. }
  12301. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  12302. // insert clone into replacements
  12303. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  12304. replacements->set.keys[i] = node;
  12305. replacements->vals[i] = clone;
  12306. clone->op = node->op;
  12307. clone->grad = node->grad;
  12308. clone->is_param = node->is_param;
  12309. clone->extra = node->extra;
  12310. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  12311. clone->nb[k] = node->nb[k];
  12312. }
  12313. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12314. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  12315. }
  12316. if (node->view_src != NULL) {
  12317. clone->data = (node->view_src->data == NULL)
  12318. ? NULL // view_src not yet allocated
  12319. : (char *) node->view_src->data // view_src already allocated
  12320. + node->view_offs;
  12321. clone->view_src = node->view_src;
  12322. clone->view_offs = node->view_offs;
  12323. }
  12324. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  12325. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  12326. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  12327. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  12328. return clone;
  12329. }
  12330. void ggml_build_backward_gradient_checkpointing(
  12331. struct ggml_context * ctx,
  12332. struct ggml_cgraph * gf,
  12333. struct ggml_cgraph * gb,
  12334. struct ggml_cgraph * gb_tmp,
  12335. struct ggml_tensor * * checkpoints,
  12336. int n_checkpoints) {
  12337. ggml_graph_cpy(gf, gb_tmp);
  12338. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  12339. if (n_checkpoints <= 0) {
  12340. ggml_graph_cpy(gb_tmp, gb);
  12341. return;
  12342. }
  12343. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  12344. // insert checkpoints in replacements
  12345. for (int i = 0; i < n_checkpoints; ++i) {
  12346. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  12347. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  12348. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  12349. replacements->set.keys[k] = checkpoints[i];
  12350. replacements->vals[k] = checkpoints[i];
  12351. }
  12352. ggml_graph_cpy(gf, gb);
  12353. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  12354. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  12355. // by recomputing them from checkpoints
  12356. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  12357. struct ggml_tensor * node = gb_tmp->nodes[i];
  12358. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12359. // insert new tensors recomputing src, reusing already made replacements,
  12360. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  12361. // recurse for input tensors,
  12362. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  12363. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  12364. }
  12365. // insert rewritten backward node with replacements made into resulting backward graph gb
  12366. ggml_build_forward_expand(gb, node);
  12367. }
  12368. ggml_hash_map_free(replacements);
  12369. }
  12370. // functions to change gradients considering the case that input a might be initial gradient with zero value
  12371. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12372. if (ggml_hash_contains(zero_table, a)) {
  12373. return b;
  12374. } else {
  12375. return ggml_add_impl(ctx, a, b, false);
  12376. }
  12377. }
  12378. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  12379. if (ggml_hash_contains(zero_table, a)) {
  12380. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  12381. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  12382. } else {
  12383. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  12384. }
  12385. }
  12386. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12387. if (ggml_hash_contains(zero_table, a)) {
  12388. return ggml_repeat(ctx, b, a);
  12389. } else {
  12390. return ggml_add1_impl(ctx, a, b, false);
  12391. }
  12392. }
  12393. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12394. if (ggml_hash_contains(zero_table, a)) {
  12395. return ggml_neg(ctx, b);
  12396. } else {
  12397. return ggml_sub_impl(ctx, a, b, false);
  12398. }
  12399. }
  12400. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  12401. struct ggml_tensor * src0 = tensor->src[0];
  12402. struct ggml_tensor * src1 = tensor->src[1];
  12403. switch (tensor->op) {
  12404. case GGML_OP_DUP:
  12405. {
  12406. if (src0->grad) {
  12407. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12408. }
  12409. } break;
  12410. case GGML_OP_ADD:
  12411. {
  12412. if (src0->grad) {
  12413. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12414. }
  12415. if (src1->grad) {
  12416. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12417. }
  12418. } break;
  12419. case GGML_OP_ADD1:
  12420. {
  12421. if (src0->grad) {
  12422. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12423. }
  12424. if (src1->grad) {
  12425. src1->grad = ggml_add_or_set(ctx,
  12426. src1->grad,
  12427. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  12428. zero_table);
  12429. }
  12430. } break;
  12431. case GGML_OP_ACC:
  12432. {
  12433. if (src0->grad) {
  12434. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12435. }
  12436. if (src1->grad) {
  12437. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12438. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12439. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12440. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12441. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  12442. tensor->grad,
  12443. src1->grad->ne[0],
  12444. src1->grad->ne[1],
  12445. src1->grad->ne[2],
  12446. src1->grad->ne[3],
  12447. nb1, nb2, nb3, offset);
  12448. src1->grad =
  12449. ggml_add_or_set(ctx,
  12450. src1->grad,
  12451. ggml_reshape(ctx,
  12452. ggml_cont(ctx, tensor_grad_view),
  12453. src1->grad),
  12454. zero_table);
  12455. }
  12456. } break;
  12457. case GGML_OP_SUB:
  12458. {
  12459. if (src0->grad) {
  12460. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12461. }
  12462. if (src1->grad) {
  12463. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12464. }
  12465. } break;
  12466. case GGML_OP_MUL:
  12467. {
  12468. if (src0->grad) {
  12469. src0->grad =
  12470. ggml_add_or_set(ctx,
  12471. src0->grad,
  12472. ggml_mul(ctx, src1, tensor->grad),
  12473. zero_table);
  12474. }
  12475. if (src1->grad) {
  12476. src1->grad =
  12477. ggml_add_or_set(ctx,
  12478. src1->grad,
  12479. ggml_mul(ctx, src0, tensor->grad),
  12480. zero_table);
  12481. }
  12482. } break;
  12483. case GGML_OP_DIV:
  12484. {
  12485. if (src0->grad) {
  12486. src0->grad =
  12487. ggml_add_or_set(ctx,
  12488. src0->grad,
  12489. ggml_div(ctx, tensor->grad, src1),
  12490. zero_table);
  12491. }
  12492. if (src1->grad) {
  12493. src1->grad =
  12494. ggml_sub_or_set(ctx,
  12495. src1->grad,
  12496. ggml_mul(ctx,
  12497. tensor->grad,
  12498. ggml_div(ctx, tensor, src1)),
  12499. zero_table);
  12500. }
  12501. } break;
  12502. case GGML_OP_SQR:
  12503. {
  12504. if (src0->grad) {
  12505. src0->grad =
  12506. ggml_add_or_set(ctx,
  12507. src0->grad,
  12508. ggml_scale(ctx,
  12509. ggml_mul(ctx, src0, tensor->grad),
  12510. 2.0f),
  12511. zero_table);
  12512. }
  12513. } break;
  12514. case GGML_OP_SQRT:
  12515. {
  12516. if (src0->grad) {
  12517. src0->grad =
  12518. ggml_add_or_set(ctx,
  12519. src0->grad,
  12520. ggml_scale(ctx,
  12521. ggml_div(ctx,
  12522. tensor->grad,
  12523. tensor),
  12524. 0.5f),
  12525. zero_table);
  12526. }
  12527. } break;
  12528. case GGML_OP_LOG:
  12529. {
  12530. if (src0->grad) {
  12531. src0->grad =
  12532. ggml_add_or_set(ctx,
  12533. src0->grad,
  12534. ggml_div(ctx,
  12535. tensor->grad,
  12536. src0),
  12537. zero_table);
  12538. }
  12539. } break;
  12540. case GGML_OP_SUM:
  12541. {
  12542. if (src0->grad) {
  12543. src0->grad =
  12544. ggml_add1_or_set(ctx,
  12545. src0->grad,
  12546. tensor->grad,
  12547. zero_table);
  12548. }
  12549. } break;
  12550. case GGML_OP_SUM_ROWS:
  12551. {
  12552. if (src0->grad) {
  12553. src0->grad =
  12554. ggml_add_or_set(ctx,
  12555. src0->grad,
  12556. ggml_repeat(ctx,
  12557. tensor->grad,
  12558. src0->grad),
  12559. zero_table);
  12560. }
  12561. } break;
  12562. case GGML_OP_MEAN:
  12563. case GGML_OP_ARGMAX:
  12564. {
  12565. GGML_ASSERT(false); // TODO: implement
  12566. } break;
  12567. case GGML_OP_REPEAT:
  12568. {
  12569. // necessary for llama
  12570. if (src0->grad) {
  12571. src0->grad = ggml_add_or_set(ctx,
  12572. src0->grad,
  12573. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  12574. zero_table);
  12575. }
  12576. } break;
  12577. case GGML_OP_REPEAT_BACK:
  12578. {
  12579. if (src0->grad) {
  12580. // TODO: test this
  12581. src0->grad = ggml_add_or_set(ctx,
  12582. src0->grad,
  12583. ggml_repeat(ctx, tensor->grad, src0->grad),
  12584. zero_table);
  12585. }
  12586. } break;
  12587. case GGML_OP_CONCAT:
  12588. {
  12589. GGML_ASSERT(false); // TODO: implement
  12590. } break;
  12591. case GGML_OP_SILU_BACK:
  12592. {
  12593. GGML_ASSERT(false); // TODO: not implemented
  12594. } break;
  12595. case GGML_OP_NORM:
  12596. {
  12597. GGML_ASSERT(false); // TODO: not implemented
  12598. } break;
  12599. case GGML_OP_RMS_NORM:
  12600. {
  12601. // necessary for llama
  12602. if (src0->grad) {
  12603. float eps;
  12604. memcpy(&eps, tensor->op_params, sizeof(float));
  12605. src0->grad = ggml_add_or_set(ctx,
  12606. src0->grad,
  12607. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  12608. zero_table);
  12609. }
  12610. } break;
  12611. case GGML_OP_RMS_NORM_BACK:
  12612. {
  12613. GGML_ASSERT(false); // TODO: not implemented
  12614. } break;
  12615. case GGML_OP_GROUP_NORM:
  12616. {
  12617. GGML_ASSERT(false); // TODO: not implemented
  12618. } break;
  12619. case GGML_OP_MUL_MAT:
  12620. {
  12621. // https://cs231n.github.io/optimization-2/#staged
  12622. // # forward pass
  12623. // s0 = np.random.randn(5, 10)
  12624. // s1 = np.random.randn(10, 3)
  12625. // t = s0.dot(s1)
  12626. // # now suppose we had the gradient on t from above in the circuit
  12627. // dt = np.random.randn(*t.shape) # same shape as t
  12628. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  12629. // ds1 = t.T.dot(dt)
  12630. // tensor.shape [m,p,qq,rr]
  12631. // src0.shape [n,m,q1,r1]
  12632. // src1.shape [n,p,qq,rr]
  12633. // necessary for llama
  12634. if (src0->grad) {
  12635. struct ggml_tensor * s1_tg =
  12636. ggml_out_prod(ctx, // [n,m,qq,rr]
  12637. src1, // [n,p,qq,rr]
  12638. tensor->grad); // [m,p,qq,rr]
  12639. const int64_t qq = s1_tg->ne[2];
  12640. const int64_t rr = s1_tg->ne[3];
  12641. const int64_t q1 = src0->ne[2];
  12642. const int64_t r1 = src0->ne[3];
  12643. const bool ne2_broadcasted = qq > q1;
  12644. const bool ne3_broadcasted = rr > r1;
  12645. if (ne2_broadcasted || ne3_broadcasted) {
  12646. // sum broadcast repetitions of s1_tg into shape of src0
  12647. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  12648. }
  12649. src0->grad =
  12650. ggml_add_or_set(ctx,
  12651. src0->grad, // [n,m,q1,r1]
  12652. s1_tg, // [n,m,q1,r1]
  12653. zero_table);
  12654. }
  12655. if (src1->grad) {
  12656. src1->grad =
  12657. ggml_add_or_set(ctx,
  12658. src1->grad, // [n,p,qq,rr]
  12659. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  12660. // ggml_cont(ctx, // [m,n,q1,r1]
  12661. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  12662. // tensor->grad), // [m,p,qq,rr]
  12663. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  12664. // // avoid transpose of src0, rather transpose smaller tensor->grad
  12665. // // and then use ggml_out_prod
  12666. ggml_out_prod(ctx, // [n,p,qq,rr]
  12667. src0, // [n,m,q1,r1]
  12668. ggml_transpose(ctx, // [p,m,qq,rr]
  12669. tensor->grad)), // [m,p,qq,rr]
  12670. zero_table);
  12671. }
  12672. } break;
  12673. case GGML_OP_MUL_MAT_ID:
  12674. {
  12675. GGML_ASSERT(false); // TODO: not implemented
  12676. } break;
  12677. case GGML_OP_OUT_PROD:
  12678. {
  12679. GGML_ASSERT(false); // TODO: not implemented
  12680. } break;
  12681. case GGML_OP_SCALE:
  12682. {
  12683. // necessary for llama
  12684. if (src0->grad) {
  12685. float s;
  12686. memcpy(&s, tensor->op_params, sizeof(float));
  12687. src0->grad =
  12688. ggml_add_or_set(ctx,
  12689. src0->grad,
  12690. ggml_scale_impl(ctx, tensor->grad, s, false),
  12691. zero_table);
  12692. }
  12693. } break;
  12694. case GGML_OP_SET:
  12695. {
  12696. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12697. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12698. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12699. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12700. struct ggml_tensor * tensor_grad_view = NULL;
  12701. if (src0->grad || src1->grad) {
  12702. GGML_ASSERT(src0->type == tensor->type);
  12703. GGML_ASSERT(tensor->grad->type == tensor->type);
  12704. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  12705. tensor_grad_view = ggml_view_4d(ctx,
  12706. tensor->grad,
  12707. src1->grad->ne[0],
  12708. src1->grad->ne[1],
  12709. src1->grad->ne[2],
  12710. src1->grad->ne[3],
  12711. nb1, nb2, nb3, offset);
  12712. }
  12713. if (src0->grad) {
  12714. src0->grad = ggml_add_or_set(ctx,
  12715. src0->grad,
  12716. ggml_acc_impl(ctx,
  12717. tensor->grad,
  12718. ggml_neg(ctx, tensor_grad_view),
  12719. nb1, nb2, nb3, offset, false),
  12720. zero_table);
  12721. }
  12722. if (src1->grad) {
  12723. src1->grad =
  12724. ggml_add_or_set(ctx,
  12725. src1->grad,
  12726. ggml_reshape(ctx,
  12727. ggml_cont(ctx, tensor_grad_view),
  12728. src1->grad),
  12729. zero_table);
  12730. }
  12731. } break;
  12732. case GGML_OP_CPY:
  12733. {
  12734. // necessary for llama
  12735. // cpy overwrites value of src1 by src0 and returns view(src1)
  12736. // the overwriting is mathematically equivalent to:
  12737. // tensor = src0 * 1 + src1 * 0
  12738. if (src0->grad) {
  12739. // dsrc0 = dtensor * 1
  12740. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12741. }
  12742. if (src1->grad) {
  12743. // dsrc1 = dtensor * 0 -> noop
  12744. }
  12745. } break;
  12746. case GGML_OP_CONT:
  12747. {
  12748. // same as cpy
  12749. if (src0->grad) {
  12750. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  12751. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  12752. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12753. }
  12754. } break;
  12755. case GGML_OP_RESHAPE:
  12756. {
  12757. // necessary for llama
  12758. if (src0->grad) {
  12759. src0->grad =
  12760. ggml_add_or_set(ctx, src0->grad,
  12761. ggml_reshape(ctx,
  12762. ggml_is_contiguous(tensor->grad)
  12763. ? tensor->grad
  12764. : ggml_cont(ctx, tensor->grad),
  12765. src0->grad),
  12766. zero_table);
  12767. }
  12768. } break;
  12769. case GGML_OP_VIEW:
  12770. {
  12771. // necessary for llama
  12772. if (src0->grad) {
  12773. size_t offset;
  12774. memcpy(&offset, tensor->op_params, sizeof(offset));
  12775. size_t nb1 = tensor->nb[1];
  12776. size_t nb2 = tensor->nb[2];
  12777. size_t nb3 = tensor->nb[3];
  12778. if (src0->type != src0->grad->type) {
  12779. // gradient is typically F32, but src0 could be other type
  12780. size_t ng = ggml_element_size(src0->grad);
  12781. size_t n0 = ggml_element_size(src0);
  12782. GGML_ASSERT(offset % n0 == 0);
  12783. GGML_ASSERT(nb1 % n0 == 0);
  12784. GGML_ASSERT(nb2 % n0 == 0);
  12785. GGML_ASSERT(nb3 % n0 == 0);
  12786. offset = (offset / n0) * ng;
  12787. nb1 = (nb1 / n0) * ng;
  12788. nb2 = (nb2 / n0) * ng;
  12789. nb3 = (nb3 / n0) * ng;
  12790. }
  12791. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  12792. }
  12793. } break;
  12794. case GGML_OP_PERMUTE:
  12795. {
  12796. // necessary for llama
  12797. if (src0->grad) {
  12798. int32_t * axes = (int32_t *) tensor->op_params;
  12799. int axis0 = axes[0] & 0x3;
  12800. int axis1 = axes[1] & 0x3;
  12801. int axis2 = axes[2] & 0x3;
  12802. int axis3 = axes[3] & 0x3;
  12803. int axes_backward[4] = {0,0,0,0};
  12804. axes_backward[axis0] = 0;
  12805. axes_backward[axis1] = 1;
  12806. axes_backward[axis2] = 2;
  12807. axes_backward[axis3] = 3;
  12808. src0->grad =
  12809. ggml_add_or_set(ctx, src0->grad,
  12810. ggml_permute(ctx,
  12811. tensor->grad,
  12812. axes_backward[0],
  12813. axes_backward[1],
  12814. axes_backward[2],
  12815. axes_backward[3]),
  12816. zero_table);
  12817. }
  12818. } break;
  12819. case GGML_OP_TRANSPOSE:
  12820. {
  12821. // necessary for llama
  12822. if (src0->grad) {
  12823. src0->grad =
  12824. ggml_add_or_set(ctx, src0->grad,
  12825. ggml_transpose(ctx, tensor->grad),
  12826. zero_table);
  12827. }
  12828. } break;
  12829. case GGML_OP_GET_ROWS:
  12830. {
  12831. // necessary for llama (only for tokenizer)
  12832. if (src0->grad) {
  12833. src0->grad =
  12834. ggml_add_or_set(ctx, src0->grad,
  12835. // last ggml_get_rows_back argument src0->grad is only
  12836. // necessary to setup correct output shape
  12837. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  12838. zero_table);
  12839. }
  12840. if (src1->grad) {
  12841. // noop
  12842. }
  12843. } break;
  12844. case GGML_OP_GET_ROWS_BACK:
  12845. {
  12846. GGML_ASSERT(false); // TODO: not implemented
  12847. } break;
  12848. case GGML_OP_DIAG:
  12849. {
  12850. GGML_ASSERT(false); // TODO: not implemented
  12851. } break;
  12852. case GGML_OP_DIAG_MASK_INF:
  12853. {
  12854. // necessary for llama
  12855. if (src0->grad) {
  12856. const int n_past = ((int32_t *) tensor->op_params)[0];
  12857. src0->grad =
  12858. ggml_add_or_set(ctx, src0->grad,
  12859. /* ggml_diag_mask_inf_impl() shouldn't be here */
  12860. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  12861. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12862. zero_table);
  12863. }
  12864. } break;
  12865. case GGML_OP_DIAG_MASK_ZERO:
  12866. {
  12867. // necessary for llama
  12868. if (src0->grad) {
  12869. const int n_past = ((int32_t *) tensor->op_params)[0];
  12870. src0->grad =
  12871. ggml_add_or_set(ctx, src0->grad,
  12872. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12873. zero_table);
  12874. }
  12875. } break;
  12876. case GGML_OP_SOFT_MAX:
  12877. {
  12878. // necessary for llama
  12879. if (src0->grad) {
  12880. src0->grad =
  12881. ggml_add_or_set(ctx, src0->grad,
  12882. ggml_soft_max_back(ctx, tensor->grad, tensor),
  12883. zero_table);
  12884. }
  12885. } break;
  12886. case GGML_OP_SOFT_MAX_BACK:
  12887. {
  12888. GGML_ASSERT(false); // TODO: not implemented
  12889. } break;
  12890. case GGML_OP_ROPE:
  12891. {
  12892. // necessary for llama
  12893. if (src0->grad) {
  12894. //const int n_past = ((int32_t *) tensor->op_params)[0];
  12895. const int n_dims = ((int32_t *) tensor->op_params)[1];
  12896. const int mode = ((int32_t *) tensor->op_params)[2];
  12897. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  12898. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  12899. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  12900. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  12901. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  12902. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  12903. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  12904. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  12905. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  12906. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  12907. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  12908. src0->grad = ggml_add_or_set(ctx,
  12909. src0->grad,
  12910. ggml_rope_back(ctx,
  12911. tensor->grad,
  12912. src1,
  12913. n_dims,
  12914. mode,
  12915. n_ctx,
  12916. n_orig_ctx,
  12917. freq_base,
  12918. freq_scale,
  12919. ext_factor,
  12920. attn_factor,
  12921. beta_fast,
  12922. beta_slow,
  12923. xpos_base,
  12924. xpos_down),
  12925. zero_table);
  12926. }
  12927. } break;
  12928. case GGML_OP_ROPE_BACK:
  12929. {
  12930. if (src0->grad) {
  12931. //const int n_past = ((int32_t *) tensor->op_params)[0];
  12932. const int n_dims = ((int32_t *) tensor->op_params)[1];
  12933. const int mode = ((int32_t *) tensor->op_params)[2];
  12934. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  12935. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  12936. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  12937. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  12938. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  12939. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  12940. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  12941. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  12942. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  12943. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  12944. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  12945. src0->grad = ggml_add_or_set(ctx,
  12946. src0->grad,
  12947. ggml_rope_impl(ctx,
  12948. tensor->grad,
  12949. src1,
  12950. n_dims,
  12951. mode,
  12952. n_ctx,
  12953. n_orig_ctx,
  12954. freq_base,
  12955. freq_scale,
  12956. ext_factor,
  12957. attn_factor,
  12958. beta_fast,
  12959. beta_slow,
  12960. xpos_base,
  12961. xpos_down,
  12962. false),
  12963. zero_table);
  12964. }
  12965. } break;
  12966. case GGML_OP_ALIBI:
  12967. {
  12968. GGML_ASSERT(false); // TODO: not implemented
  12969. } break;
  12970. case GGML_OP_CLAMP:
  12971. {
  12972. GGML_ASSERT(false); // TODO: not implemented
  12973. } break;
  12974. case GGML_OP_CONV_TRANSPOSE_1D:
  12975. {
  12976. GGML_ASSERT(false); // TODO: not implemented
  12977. } break;
  12978. case GGML_OP_IM2COL:
  12979. {
  12980. GGML_ASSERT(false); // TODO: not implemented
  12981. } break;
  12982. case GGML_OP_CONV_TRANSPOSE_2D:
  12983. {
  12984. GGML_ASSERT(false); // TODO: not implemented
  12985. } break;
  12986. case GGML_OP_POOL_1D:
  12987. {
  12988. GGML_ASSERT(false); // TODO: not implemented
  12989. } break;
  12990. case GGML_OP_POOL_2D:
  12991. {
  12992. GGML_ASSERT(false); // TODO: not implemented
  12993. } break;
  12994. case GGML_OP_UPSCALE:
  12995. {
  12996. GGML_ASSERT(false); // TODO: not implemented
  12997. } break;
  12998. case GGML_OP_PAD:
  12999. {
  13000. GGML_ASSERT(false); // TODO: not implemented
  13001. } break;
  13002. case GGML_OP_ARGSORT:
  13003. {
  13004. GGML_ASSERT(false); // TODO: not implemented
  13005. } break;
  13006. case GGML_OP_LEAKY_RELU:
  13007. {
  13008. GGML_ASSERT(false); // TODO: not implemented
  13009. } break;
  13010. case GGML_OP_FLASH_ATTN:
  13011. {
  13012. struct ggml_tensor * flash_grad = NULL;
  13013. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  13014. int32_t t = ggml_get_op_params_i32(tensor, 0);
  13015. GGML_ASSERT(t == 0 || t == 1);
  13016. bool masked = t != 0;
  13017. flash_grad =
  13018. ggml_flash_attn_back(ctx,
  13019. src0,
  13020. src1,
  13021. tensor->src[2],
  13022. tensor->grad,
  13023. masked);
  13024. }
  13025. struct ggml_tensor * src2 = tensor->src[2];
  13026. const int64_t elem_q = ggml_nelements(src0);
  13027. const int64_t elem_k = ggml_nelements(src1);
  13028. const int64_t elem_v = ggml_nelements(src2);
  13029. enum ggml_type result_type = flash_grad->type;
  13030. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  13031. const size_t tsize = ggml_type_size(result_type);
  13032. const size_t offs_q = 0;
  13033. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  13034. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  13035. if (src0->grad) {
  13036. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  13037. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  13038. src0->grad = ggml_add_or_set(ctx,
  13039. src0->grad,
  13040. grad_q,
  13041. zero_table);
  13042. }
  13043. if (src1->grad) {
  13044. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  13045. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  13046. src1->grad = ggml_add_or_set(ctx,
  13047. src1->grad,
  13048. grad_k,
  13049. zero_table);
  13050. }
  13051. if (src2->grad) {
  13052. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  13053. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  13054. src2->grad = ggml_add_or_set(ctx,
  13055. src2->grad,
  13056. grad_v,
  13057. zero_table);
  13058. }
  13059. } break;
  13060. case GGML_OP_FLASH_FF:
  13061. {
  13062. GGML_ASSERT(false); // not supported
  13063. } break;
  13064. case GGML_OP_FLASH_ATTN_BACK:
  13065. {
  13066. GGML_ASSERT(false); // not supported
  13067. } break;
  13068. case GGML_OP_WIN_PART:
  13069. case GGML_OP_WIN_UNPART:
  13070. case GGML_OP_UNARY:
  13071. {
  13072. switch (ggml_get_unary_op(tensor)) {
  13073. case GGML_UNARY_OP_ABS:
  13074. {
  13075. if (src0->grad) {
  13076. src0->grad =
  13077. ggml_add_or_set(ctx,
  13078. src0->grad,
  13079. ggml_mul(ctx,
  13080. ggml_sgn(ctx, src0),
  13081. tensor->grad),
  13082. zero_table);
  13083. }
  13084. } break;
  13085. case GGML_UNARY_OP_SGN:
  13086. {
  13087. if (src0->grad) {
  13088. // noop
  13089. }
  13090. } break;
  13091. case GGML_UNARY_OP_NEG:
  13092. {
  13093. if (src0->grad) {
  13094. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13095. }
  13096. } break;
  13097. case GGML_UNARY_OP_STEP:
  13098. {
  13099. if (src0->grad) {
  13100. // noop
  13101. }
  13102. } break;
  13103. case GGML_UNARY_OP_TANH:
  13104. {
  13105. GGML_ASSERT(false); // TODO: not implemented
  13106. } break;
  13107. case GGML_UNARY_OP_ELU:
  13108. {
  13109. GGML_ASSERT(false); // TODO: not implemented
  13110. } break;
  13111. case GGML_UNARY_OP_RELU:
  13112. {
  13113. if (src0->grad) {
  13114. src0->grad = ggml_add_or_set(ctx,
  13115. src0->grad,
  13116. ggml_mul(ctx,
  13117. ggml_step(ctx, src0),
  13118. tensor->grad),
  13119. zero_table);
  13120. }
  13121. } break;
  13122. case GGML_UNARY_OP_GELU:
  13123. {
  13124. GGML_ASSERT(false); // TODO: not implemented
  13125. } break;
  13126. case GGML_UNARY_OP_GELU_QUICK:
  13127. {
  13128. GGML_ASSERT(false); // TODO: not implemented
  13129. } break;
  13130. case GGML_UNARY_OP_SILU:
  13131. {
  13132. // necessary for llama
  13133. if (src0->grad) {
  13134. src0->grad = ggml_add_or_set(ctx,
  13135. src0->grad,
  13136. ggml_silu_back(ctx, src0, tensor->grad),
  13137. zero_table);
  13138. }
  13139. } break;
  13140. default:
  13141. GGML_ASSERT(false);
  13142. }
  13143. } break;
  13144. case GGML_OP_GET_REL_POS:
  13145. case GGML_OP_ADD_REL_POS:
  13146. case GGML_OP_MAP_UNARY:
  13147. case GGML_OP_MAP_BINARY:
  13148. case GGML_OP_MAP_CUSTOM1_F32:
  13149. case GGML_OP_MAP_CUSTOM2_F32:
  13150. case GGML_OP_MAP_CUSTOM3_F32:
  13151. case GGML_OP_MAP_CUSTOM1:
  13152. case GGML_OP_MAP_CUSTOM2:
  13153. case GGML_OP_MAP_CUSTOM3:
  13154. {
  13155. GGML_ASSERT(false); // not supported
  13156. } break;
  13157. case GGML_OP_CROSS_ENTROPY_LOSS:
  13158. {
  13159. if (src0->grad) {
  13160. src0->grad = ggml_add_or_set(ctx,
  13161. src0->grad,
  13162. ggml_cross_entropy_loss_back(ctx,
  13163. src0,
  13164. src1,
  13165. tensor->grad),
  13166. zero_table);
  13167. }
  13168. } break;
  13169. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13170. {
  13171. GGML_ASSERT(false); // not supported
  13172. } break;
  13173. case GGML_OP_NONE:
  13174. {
  13175. // nop
  13176. } break;
  13177. case GGML_OP_COUNT:
  13178. {
  13179. GGML_ASSERT(false);
  13180. } break;
  13181. }
  13182. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13183. if (tensor->src[i] && tensor->src[i]->grad) {
  13184. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  13185. }
  13186. }
  13187. }
  13188. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  13189. if (node->grad == NULL) {
  13190. // this usually happens when we generate intermediate nodes from constants in the backward pass
  13191. // it can also happen during forward pass, if the user performs computations with constants
  13192. if (node->op != GGML_OP_NONE) {
  13193. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  13194. }
  13195. }
  13196. // check if already visited
  13197. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  13198. return;
  13199. }
  13200. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13201. const int k =
  13202. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  13203. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  13204. /* unknown order, just fall back to using i*/ i;
  13205. if (node->src[k]) {
  13206. ggml_visit_parents(cgraph, node->src[k]);
  13207. }
  13208. }
  13209. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  13210. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  13211. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  13212. if (strlen(node->name) == 0) {
  13213. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  13214. }
  13215. cgraph->leafs[cgraph->n_leafs] = node;
  13216. cgraph->n_leafs++;
  13217. } else {
  13218. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  13219. if (strlen(node->name) == 0) {
  13220. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  13221. }
  13222. cgraph->nodes[cgraph->n_nodes] = node;
  13223. if (cgraph->grads) {
  13224. cgraph->grads[cgraph->n_nodes] = node->grad;
  13225. }
  13226. cgraph->n_nodes++;
  13227. }
  13228. }
  13229. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  13230. if (!expand) {
  13231. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  13232. ggml_graph_clear(cgraph);
  13233. }
  13234. const int n0 = cgraph->n_nodes;
  13235. UNUSED(n0);
  13236. ggml_visit_parents(cgraph, tensor);
  13237. const int n_new = cgraph->n_nodes - n0;
  13238. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  13239. if (n_new > 0) {
  13240. // the last added node should always be starting point
  13241. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  13242. }
  13243. }
  13244. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  13245. ggml_build_forward_impl(cgraph, tensor, true);
  13246. }
  13247. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  13248. GGML_ASSERT(gf->n_nodes > 0);
  13249. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  13250. if (keep) {
  13251. for (int i = 0; i < gf->n_nodes; i++) {
  13252. struct ggml_tensor * node = gf->nodes[i];
  13253. if (node->grad) {
  13254. node->grad = ggml_dup_tensor(ctx, node);
  13255. gf->grads[i] = node->grad;
  13256. }
  13257. }
  13258. }
  13259. // remember original gradients which start with zero values
  13260. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  13261. for (int i = 0; i < gf->n_nodes; i++) {
  13262. if (gf->grads[i]) {
  13263. ggml_hash_insert(zero_table, gf->grads[i]);
  13264. }
  13265. }
  13266. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13267. struct ggml_tensor * node = gf->nodes[i];
  13268. // inplace operations to add gradients are not created by ggml_compute_backward
  13269. // use allocator to automatically make inplace operations
  13270. if (node->grad) {
  13271. ggml_compute_backward(ctx, node, zero_table);
  13272. }
  13273. }
  13274. for (int i = 0; i < gf->n_nodes; i++) {
  13275. struct ggml_tensor * node = gf->nodes[i];
  13276. if (node->is_param) {
  13277. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13278. ggml_build_forward_expand(gb, node->grad);
  13279. }
  13280. }
  13281. ggml_hash_set_free(zero_table);
  13282. }
  13283. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  13284. size_t nbytes = sizeof(struct ggml_cgraph);
  13285. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  13286. if (grads) {
  13287. nbytes += size * sizeof(struct ggml_tensor *); // grads
  13288. }
  13289. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  13290. return nbytes;
  13291. }
  13292. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  13293. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  13294. }
  13295. size_t ggml_graph_overhead(void) {
  13296. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  13297. }
  13298. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  13299. const size_t obj_size = ggml_graph_nbytes(size, grads);
  13300. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, obj_size);
  13301. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  13302. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  13303. size_t hash_size = ggml_hash_size(size * 2);
  13304. struct ggml_tensor ** nodes_ptr = data_start;
  13305. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  13306. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  13307. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  13308. // check that we allocated the correct amount of memory
  13309. assert(obj_size == (size_t) (
  13310. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  13311. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  13312. *cgraph = (struct ggml_cgraph) {
  13313. /*.size =*/ size,
  13314. /*.n_nodes =*/ 0,
  13315. /*.n_leafs =*/ 0,
  13316. /*.nodes =*/ nodes_ptr,
  13317. /*.grads =*/ grads_ptr,
  13318. /*.leafs =*/ leafs_ptr,
  13319. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  13320. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  13321. /*.perf_runs =*/ 0,
  13322. /*.perf_cycles =*/ 0,
  13323. /*.perf_time_us =*/ 0,
  13324. };
  13325. return cgraph;
  13326. }
  13327. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  13328. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  13329. }
  13330. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  13331. struct ggml_cgraph cgraph = {
  13332. /*.size =*/ 0,
  13333. /*.n_nodes =*/ i1 - i0,
  13334. /*.n_leafs =*/ 0,
  13335. /*.nodes =*/ cgraph0->nodes + i0,
  13336. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  13337. /*.leafs =*/ NULL,
  13338. /*.hash_table =*/ { 0, NULL },
  13339. /*.order =*/ cgraph0->order,
  13340. /*.perf_runs =*/ 0,
  13341. /*.perf_cycles =*/ 0,
  13342. /*.perf_time_us =*/ 0,
  13343. };
  13344. return cgraph;
  13345. }
  13346. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  13347. GGML_ASSERT(dst->size >= src->n_leafs);
  13348. GGML_ASSERT(dst->size >= src->n_nodes);
  13349. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  13350. dst->n_leafs = src->n_leafs;
  13351. dst->n_nodes = src->n_nodes;
  13352. dst->order = src->order;
  13353. for (int i = 0; i < src->n_leafs; ++i) {
  13354. dst->leafs[i] = src->leafs[i];
  13355. }
  13356. for (int i = 0; i < src->n_nodes; ++i) {
  13357. dst->nodes[i] = src->nodes[i];
  13358. }
  13359. if (src->grads) {
  13360. GGML_ASSERT(dst->grads != NULL);
  13361. for (int i = 0; i < src->n_nodes; ++i) {
  13362. dst->grads[i] = src->grads[i];
  13363. }
  13364. }
  13365. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  13366. if (src->visited_hash_table.keys[i]) {
  13367. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  13368. }
  13369. }
  13370. }
  13371. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  13372. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  13373. ggml_graph_cpy(cgraph, result);
  13374. return result;
  13375. }
  13376. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  13377. GGML_ASSERT(cgraph->grads != NULL);
  13378. for (int i = 0; i < cgraph->n_nodes; i++) {
  13379. struct ggml_tensor * grad = cgraph->grads[i];
  13380. if (grad) {
  13381. ggml_set_zero(grad);
  13382. }
  13383. }
  13384. }
  13385. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  13386. cgraph->n_leafs = 0;
  13387. cgraph->n_nodes = 0;
  13388. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  13389. }
  13390. //
  13391. // thread data
  13392. //
  13393. // synchronization is done via busy loops
  13394. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  13395. //
  13396. #ifdef __APPLE__
  13397. //#include <os/lock.h>
  13398. //
  13399. //typedef os_unfair_lock ggml_lock_t;
  13400. //
  13401. //#define ggml_lock_init(x) UNUSED(x)
  13402. //#define ggml_lock_destroy(x) UNUSED(x)
  13403. //#define ggml_lock_lock os_unfair_lock_lock
  13404. //#define ggml_lock_unlock os_unfair_lock_unlock
  13405. //
  13406. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  13407. typedef int ggml_lock_t;
  13408. #define ggml_lock_init(x) UNUSED(x)
  13409. #define ggml_lock_destroy(x) UNUSED(x)
  13410. #define ggml_lock_lock(x) UNUSED(x)
  13411. #define ggml_lock_unlock(x) UNUSED(x)
  13412. #define GGML_LOCK_INITIALIZER 0
  13413. typedef pthread_t ggml_thread_t;
  13414. #define ggml_thread_create pthread_create
  13415. #define ggml_thread_join pthread_join
  13416. #else
  13417. //typedef pthread_spinlock_t ggml_lock_t;
  13418. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  13419. //#define ggml_lock_destroy pthread_spin_destroy
  13420. //#define ggml_lock_lock pthread_spin_lock
  13421. //#define ggml_lock_unlock pthread_spin_unlock
  13422. typedef int ggml_lock_t;
  13423. #define ggml_lock_init(x) UNUSED(x)
  13424. #define ggml_lock_destroy(x) UNUSED(x)
  13425. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  13426. #define ggml_lock_lock(x) _mm_pause()
  13427. #else
  13428. #define ggml_lock_lock(x) UNUSED(x)
  13429. #endif
  13430. #define ggml_lock_unlock(x) UNUSED(x)
  13431. #define GGML_LOCK_INITIALIZER 0
  13432. typedef pthread_t ggml_thread_t;
  13433. #define ggml_thread_create pthread_create
  13434. #define ggml_thread_join pthread_join
  13435. #endif
  13436. // Android's libc implementation "bionic" does not support setting affinity
  13437. #if defined(__linux__) && !defined(__BIONIC__)
  13438. static void set_numa_thread_affinity(int thread_n, int n_threads) {
  13439. if (!ggml_is_numa()) {
  13440. return;
  13441. }
  13442. // run thread on node_num thread_n / (threads per node)
  13443. const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
  13444. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  13445. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13446. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13447. CPU_ZERO_S(setsize, cpus);
  13448. for (size_t i = 0; i < node->n_cpus; ++i) {
  13449. CPU_SET_S(node->cpus[i], setsize, cpus);
  13450. }
  13451. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13452. if (rv) {
  13453. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13454. strerror(rv));
  13455. }
  13456. CPU_FREE(cpus);
  13457. }
  13458. static void clear_numa_thread_affinity(void) {
  13459. if (!ggml_is_numa()) {
  13460. return;
  13461. }
  13462. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13463. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13464. CPU_ZERO_S(setsize, cpus);
  13465. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  13466. CPU_SET_S(i, setsize, cpus);
  13467. }
  13468. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13469. if (rv) {
  13470. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13471. strerror(rv));
  13472. }
  13473. CPU_FREE(cpus);
  13474. }
  13475. #else
  13476. // TODO: Windows etc.
  13477. // (the linux implementation may also work on BSD, someone should test)
  13478. static void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
  13479. static void clear_numa_thread_affinity(void) {}
  13480. #endif
  13481. struct ggml_compute_state_shared {
  13482. const struct ggml_cgraph * cgraph;
  13483. const struct ggml_cplan * cplan;
  13484. int64_t perf_node_start_cycles;
  13485. int64_t perf_node_start_time_us;
  13486. const int n_threads;
  13487. // synchronization primitives
  13488. atomic_int n_active; // num active threads
  13489. atomic_int node_n; // active graph node
  13490. bool (*abort_callback)(void * data); // abort ggml_graph_compute when true
  13491. void * abort_callback_data;
  13492. };
  13493. struct ggml_compute_state {
  13494. ggml_thread_t thrd;
  13495. int ith;
  13496. struct ggml_compute_state_shared * shared;
  13497. };
  13498. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  13499. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  13500. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  13501. node->perf_runs++;
  13502. node->perf_cycles += cycles_cur;
  13503. node->perf_time_us += time_us_cur;
  13504. }
  13505. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
  13506. int n_tasks = 0;
  13507. switch (node->op) {
  13508. case GGML_OP_CPY:
  13509. case GGML_OP_DUP:
  13510. case GGML_OP_ADD:
  13511. case GGML_OP_ADD1:
  13512. case GGML_OP_ACC:
  13513. {
  13514. n_tasks = n_threads;
  13515. } break;
  13516. case GGML_OP_SUB:
  13517. case GGML_OP_SQR:
  13518. case GGML_OP_SQRT:
  13519. case GGML_OP_LOG:
  13520. case GGML_OP_SUM:
  13521. case GGML_OP_SUM_ROWS:
  13522. case GGML_OP_MEAN:
  13523. case GGML_OP_ARGMAX:
  13524. case GGML_OP_REPEAT:
  13525. case GGML_OP_REPEAT_BACK:
  13526. case GGML_OP_LEAKY_RELU:
  13527. {
  13528. n_tasks = 1;
  13529. } break;
  13530. case GGML_OP_UNARY:
  13531. switch (ggml_get_unary_op(node)) {
  13532. case GGML_UNARY_OP_ABS:
  13533. case GGML_UNARY_OP_SGN:
  13534. case GGML_UNARY_OP_NEG:
  13535. case GGML_UNARY_OP_STEP:
  13536. case GGML_UNARY_OP_TANH:
  13537. case GGML_UNARY_OP_ELU:
  13538. case GGML_UNARY_OP_RELU:
  13539. {
  13540. n_tasks = 1;
  13541. } break;
  13542. case GGML_UNARY_OP_GELU:
  13543. case GGML_UNARY_OP_GELU_QUICK:
  13544. case GGML_UNARY_OP_SILU:
  13545. {
  13546. n_tasks = n_threads;
  13547. } break;
  13548. default:
  13549. GGML_ASSERT(false);
  13550. }
  13551. break;
  13552. case GGML_OP_SILU_BACK:
  13553. case GGML_OP_MUL:
  13554. case GGML_OP_DIV:
  13555. case GGML_OP_NORM:
  13556. case GGML_OP_RMS_NORM:
  13557. case GGML_OP_RMS_NORM_BACK:
  13558. case GGML_OP_GROUP_NORM:
  13559. case GGML_OP_CONCAT:
  13560. {
  13561. n_tasks = n_threads;
  13562. } break;
  13563. case GGML_OP_MUL_MAT:
  13564. {
  13565. n_tasks = n_threads;
  13566. // TODO: use different scheduling for different matrix sizes
  13567. //const int nr0 = ggml_nrows(node->src[0]);
  13568. //const int nr1 = ggml_nrows(node->src[1]);
  13569. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  13570. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  13571. } break;
  13572. case GGML_OP_MUL_MAT_ID:
  13573. {
  13574. n_tasks = n_threads;
  13575. } break;
  13576. case GGML_OP_OUT_PROD:
  13577. {
  13578. n_tasks = n_threads;
  13579. } break;
  13580. case GGML_OP_SCALE:
  13581. case GGML_OP_SET:
  13582. case GGML_OP_CONT:
  13583. case GGML_OP_RESHAPE:
  13584. case GGML_OP_VIEW:
  13585. case GGML_OP_PERMUTE:
  13586. case GGML_OP_TRANSPOSE:
  13587. case GGML_OP_GET_ROWS:
  13588. case GGML_OP_GET_ROWS_BACK:
  13589. case GGML_OP_DIAG:
  13590. {
  13591. n_tasks = 1;
  13592. } break;
  13593. case GGML_OP_DIAG_MASK_ZERO:
  13594. case GGML_OP_DIAG_MASK_INF:
  13595. case GGML_OP_SOFT_MAX_BACK:
  13596. case GGML_OP_ROPE:
  13597. case GGML_OP_ROPE_BACK:
  13598. case GGML_OP_ADD_REL_POS:
  13599. {
  13600. n_tasks = n_threads;
  13601. } break;
  13602. case GGML_OP_ALIBI:
  13603. {
  13604. n_tasks = 1; //TODO
  13605. } break;
  13606. case GGML_OP_CLAMP:
  13607. {
  13608. n_tasks = 1; //TODO
  13609. } break;
  13610. case GGML_OP_SOFT_MAX:
  13611. {
  13612. n_tasks = MIN(MIN(4, n_threads), ggml_nrows(node->src[0]));
  13613. } break;
  13614. case GGML_OP_CONV_TRANSPOSE_1D:
  13615. {
  13616. n_tasks = n_threads;
  13617. } break;
  13618. case GGML_OP_IM2COL:
  13619. {
  13620. n_tasks = n_threads;
  13621. } break;
  13622. case GGML_OP_CONV_TRANSPOSE_2D:
  13623. {
  13624. n_tasks = n_threads;
  13625. } break;
  13626. case GGML_OP_POOL_1D:
  13627. case GGML_OP_POOL_2D:
  13628. {
  13629. n_tasks = 1;
  13630. } break;
  13631. case GGML_OP_UPSCALE:
  13632. {
  13633. n_tasks = n_threads;
  13634. } break;
  13635. case GGML_OP_PAD:
  13636. {
  13637. n_tasks = n_threads;
  13638. } break;
  13639. case GGML_OP_ARGSORT:
  13640. {
  13641. n_tasks = n_threads;
  13642. } break;
  13643. case GGML_OP_FLASH_ATTN:
  13644. {
  13645. n_tasks = n_threads;
  13646. } break;
  13647. case GGML_OP_FLASH_FF:
  13648. {
  13649. n_tasks = n_threads;
  13650. } break;
  13651. case GGML_OP_FLASH_ATTN_BACK:
  13652. {
  13653. n_tasks = n_threads;
  13654. } break;
  13655. case GGML_OP_WIN_PART:
  13656. case GGML_OP_WIN_UNPART:
  13657. case GGML_OP_GET_REL_POS:
  13658. case GGML_OP_MAP_UNARY:
  13659. case GGML_OP_MAP_BINARY:
  13660. case GGML_OP_MAP_CUSTOM1_F32:
  13661. case GGML_OP_MAP_CUSTOM2_F32:
  13662. case GGML_OP_MAP_CUSTOM3_F32:
  13663. {
  13664. n_tasks = 1;
  13665. } break;
  13666. case GGML_OP_MAP_CUSTOM1:
  13667. {
  13668. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
  13669. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13670. n_tasks = n_threads;
  13671. } else {
  13672. n_tasks = MIN(p->n_tasks, n_threads);
  13673. }
  13674. } break;
  13675. case GGML_OP_MAP_CUSTOM2:
  13676. {
  13677. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
  13678. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13679. n_tasks = n_threads;
  13680. } else {
  13681. n_tasks = MIN(p->n_tasks, n_threads);
  13682. }
  13683. } break;
  13684. case GGML_OP_MAP_CUSTOM3:
  13685. {
  13686. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
  13687. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13688. n_tasks = n_threads;
  13689. } else {
  13690. n_tasks = MIN(p->n_tasks, n_threads);
  13691. }
  13692. } break;
  13693. case GGML_OP_CROSS_ENTROPY_LOSS:
  13694. {
  13695. n_tasks = n_threads;
  13696. } break;
  13697. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13698. {
  13699. n_tasks = n_threads;
  13700. } break;
  13701. case GGML_OP_NONE:
  13702. {
  13703. n_tasks = 1;
  13704. } break;
  13705. case GGML_OP_COUNT:
  13706. {
  13707. GGML_ASSERT(false);
  13708. } break;
  13709. default:
  13710. {
  13711. fprintf(stderr, "%s: op not implemented: ", __func__);
  13712. if (node->op < GGML_OP_COUNT) {
  13713. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  13714. } else {
  13715. fprintf(stderr, "%d\n", node->op);
  13716. }
  13717. GGML_ASSERT(false);
  13718. } break;
  13719. }
  13720. assert(n_tasks > 0);
  13721. return n_tasks;
  13722. }
  13723. static thread_ret_t ggml_graph_compute_thread(void * data) {
  13724. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  13725. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  13726. const struct ggml_cplan * cplan = state->shared->cplan;
  13727. const int n_threads = state->shared->n_threads;
  13728. set_numa_thread_affinity(state->ith, n_threads);
  13729. int node_n = -1;
  13730. while (true) {
  13731. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13732. state->shared->node_n += 1;
  13733. return (thread_ret_t) GGML_EXIT_ABORTED;
  13734. }
  13735. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  13736. // all other threads are finished and spinning
  13737. // do finalize and init here so we don't have synchronize again
  13738. struct ggml_compute_params params = {
  13739. /*.type =*/ GGML_TASK_FINALIZE,
  13740. /*.ith =*/ 0,
  13741. /*.nth =*/ 0,
  13742. /*.wsize =*/ cplan->work_size,
  13743. /*.wdata =*/ cplan->work_data,
  13744. };
  13745. if (node_n != -1) {
  13746. /* FINALIZE */
  13747. struct ggml_tensor * node = cgraph->nodes[node_n];
  13748. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13749. params.nth = ggml_get_n_tasks(node, n_threads);
  13750. ggml_compute_forward(&params, node);
  13751. }
  13752. ggml_graph_compute_perf_stats_node(node, state->shared);
  13753. }
  13754. // distribute new work or execute it direct if 1T
  13755. while (++node_n < cgraph->n_nodes) {
  13756. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  13757. struct ggml_tensor * node = cgraph->nodes[node_n];
  13758. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  13759. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  13760. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  13761. params.nth = n_tasks;
  13762. /* INIT */
  13763. if (GGML_OP_HAS_INIT[node->op]) {
  13764. params.type = GGML_TASK_INIT;
  13765. ggml_compute_forward(&params, node);
  13766. }
  13767. if (n_tasks == 1) {
  13768. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  13769. // they do something more efficient than spinning (?)
  13770. params.type = GGML_TASK_COMPUTE;
  13771. ggml_compute_forward(&params, node);
  13772. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13773. params.type = GGML_TASK_FINALIZE;
  13774. ggml_compute_forward(&params, node);
  13775. }
  13776. ggml_graph_compute_perf_stats_node(node, state->shared);
  13777. } else {
  13778. break;
  13779. }
  13780. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13781. break;
  13782. }
  13783. }
  13784. atomic_store(&state->shared->n_active, n_threads);
  13785. atomic_store(&state->shared->node_n, node_n);
  13786. } else {
  13787. // wait for other threads to finish
  13788. const int last = node_n;
  13789. const bool do_yield = last < 0 || cgraph->nodes[last]->op == GGML_OP_MUL_MAT;
  13790. while (true) {
  13791. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  13792. // depending on the workload and the operating system.
  13793. // since it is not clear what is the best approach, it should potentially become user-configurable
  13794. // ref: https://github.com/ggerganov/ggml/issues/291
  13795. // UPD: adding the do_yield flag seems to resolve the issue universally
  13796. if (do_yield) {
  13797. sched_yield();
  13798. }
  13799. node_n = atomic_load(&state->shared->node_n);
  13800. if (node_n != last) break;
  13801. };
  13802. }
  13803. // check if we should stop
  13804. if (node_n >= cgraph->n_nodes) break;
  13805. /* COMPUTE */
  13806. struct ggml_tensor * node = cgraph->nodes[node_n];
  13807. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  13808. struct ggml_compute_params params = {
  13809. /*.type =*/ GGML_TASK_COMPUTE,
  13810. /*.ith =*/ state->ith,
  13811. /*.nth =*/ n_tasks,
  13812. /*.wsize =*/ cplan->work_size,
  13813. /*.wdata =*/ cplan->work_data,
  13814. };
  13815. if (state->ith < n_tasks) {
  13816. ggml_compute_forward(&params, node);
  13817. }
  13818. }
  13819. return GGML_EXIT_SUCCESS;
  13820. }
  13821. struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
  13822. if (n_threads <= 0) {
  13823. n_threads = GGML_DEFAULT_N_THREADS;
  13824. }
  13825. size_t work_size = 0;
  13826. struct ggml_cplan cplan;
  13827. memset(&cplan, 0, sizeof(struct ggml_cplan));
  13828. // thread scheduling for the different operations + work buffer size estimation
  13829. for (int i = 0; i < cgraph->n_nodes; i++) {
  13830. struct ggml_tensor * node = cgraph->nodes[i];
  13831. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  13832. size_t cur = 0;
  13833. switch (node->op) {
  13834. case GGML_OP_CPY:
  13835. case GGML_OP_DUP:
  13836. {
  13837. if (ggml_is_quantized(node->type)) {
  13838. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  13839. }
  13840. } break;
  13841. case GGML_OP_ADD:
  13842. case GGML_OP_ADD1:
  13843. {
  13844. if (ggml_is_quantized(node->src[0]->type)) {
  13845. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  13846. }
  13847. } break;
  13848. case GGML_OP_ACC:
  13849. {
  13850. if (ggml_is_quantized(node->src[0]->type)) {
  13851. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  13852. }
  13853. } break;
  13854. case GGML_OP_MUL_MAT:
  13855. {
  13856. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  13857. #if defined(GGML_USE_CLBLAST)
  13858. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  13859. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  13860. } else
  13861. #endif
  13862. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13863. if (ggml_compute_forward_mul_mat_use_blas(node)) {
  13864. if (node->src[0]->type != GGML_TYPE_F32) {
  13865. // here we need memory just for single 2D matrix from src0
  13866. cur = ggml_type_size(GGML_TYPE_F32)*(node->src[0]->ne[0]*node->src[0]->ne[1]);
  13867. }
  13868. } else
  13869. #endif
  13870. if (node->src[1]->type != vec_dot_type) {
  13871. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  13872. }
  13873. } break;
  13874. case GGML_OP_MUL_MAT_ID:
  13875. {
  13876. const struct ggml_tensor * src0 = node->src[2];
  13877. const struct ggml_tensor * src1 = node->src[1];
  13878. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  13879. if (src1->type != vec_dot_type) {
  13880. cur = ggml_row_size(vec_dot_type, ggml_nelements(src1));
  13881. }
  13882. const int n_as = ggml_get_op_params_i32(node, 1);
  13883. cur = GGML_PAD(cur, sizeof(int64_t)); // align
  13884. cur += n_as * sizeof(int64_t); // matrix_row_counts
  13885. cur += n_as * src1->ne[1] * sizeof(int64_t); // matrix_rows
  13886. } break;
  13887. case GGML_OP_OUT_PROD:
  13888. {
  13889. if (ggml_is_quantized(node->src[0]->type)) {
  13890. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  13891. }
  13892. } break;
  13893. case GGML_OP_SOFT_MAX:
  13894. {
  13895. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  13896. } break;
  13897. case GGML_OP_CONV_TRANSPOSE_1D:
  13898. {
  13899. GGML_ASSERT(node->src[0]->ne[3] == 1);
  13900. GGML_ASSERT(node->src[1]->ne[2] == 1);
  13901. GGML_ASSERT(node->src[1]->ne[3] == 1);
  13902. const int64_t ne00 = node->src[0]->ne[0]; // K
  13903. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  13904. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  13905. const int64_t ne10 = node->src[1]->ne[0]; // L
  13906. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  13907. if (node->src[0]->type == GGML_TYPE_F16 &&
  13908. node->src[1]->type == GGML_TYPE_F32) {
  13909. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  13910. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  13911. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  13912. node->src[1]->type == GGML_TYPE_F32) {
  13913. cur += sizeof(float)*ne00*ne01*ne02;
  13914. cur += sizeof(float)*ne10*ne11;
  13915. } else {
  13916. GGML_ASSERT(false);
  13917. }
  13918. } break;
  13919. case GGML_OP_CONV_TRANSPOSE_2D:
  13920. {
  13921. const int64_t ne00 = node->src[0]->ne[0]; // W
  13922. const int64_t ne01 = node->src[0]->ne[1]; // H
  13923. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  13924. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  13925. const int64_t ne10 = node->src[1]->ne[0]; // W
  13926. const int64_t ne11 = node->src[1]->ne[1]; // H
  13927. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  13928. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  13929. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  13930. } break;
  13931. case GGML_OP_FLASH_ATTN:
  13932. {
  13933. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13934. if (node->src[1]->type == GGML_TYPE_F32) {
  13935. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13936. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13937. } else if (node->src[1]->type == GGML_TYPE_F16) {
  13938. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13939. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13940. }
  13941. } break;
  13942. case GGML_OP_FLASH_FF:
  13943. {
  13944. if (node->src[1]->type == GGML_TYPE_F32) {
  13945. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13946. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13947. } else if (node->src[1]->type == GGML_TYPE_F16) {
  13948. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13949. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13950. }
  13951. } break;
  13952. case GGML_OP_FLASH_ATTN_BACK:
  13953. {
  13954. const int64_t D = node->src[0]->ne[0];
  13955. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13956. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  13957. if (node->src[1]->type == GGML_TYPE_F32) {
  13958. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13959. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13960. } else if (node->src[1]->type == GGML_TYPE_F16) {
  13961. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13962. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13963. }
  13964. } break;
  13965. case GGML_OP_CROSS_ENTROPY_LOSS:
  13966. {
  13967. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  13968. } break;
  13969. case GGML_OP_COUNT:
  13970. {
  13971. GGML_ASSERT(false);
  13972. } break;
  13973. default:
  13974. break;
  13975. }
  13976. work_size = MAX(work_size, cur);
  13977. }
  13978. if (work_size > 0) {
  13979. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  13980. }
  13981. cplan.n_threads = n_threads;
  13982. cplan.work_size = work_size;
  13983. cplan.work_data = NULL;
  13984. return cplan;
  13985. }
  13986. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  13987. {
  13988. GGML_ASSERT(cplan);
  13989. GGML_ASSERT(cplan->n_threads > 0);
  13990. if (cplan->work_size > 0) {
  13991. GGML_ASSERT(cplan->work_data);
  13992. }
  13993. }
  13994. const int n_threads = cplan->n_threads;
  13995. struct ggml_compute_state_shared state_shared = {
  13996. /*.cgraph =*/ cgraph,
  13997. /*.cgraph_plan =*/ cplan,
  13998. /*.perf_node_start_cycles =*/ 0,
  13999. /*.perf_node_start_time_us =*/ 0,
  14000. /*.n_threads =*/ n_threads,
  14001. /*.n_active =*/ n_threads,
  14002. /*.node_n =*/ -1,
  14003. /*.abort_callback =*/ NULL,
  14004. /*.abort_callback_data =*/ NULL,
  14005. };
  14006. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  14007. // create thread pool
  14008. if (n_threads > 1) {
  14009. for (int j = 1; j < n_threads; ++j) {
  14010. workers[j] = (struct ggml_compute_state) {
  14011. .thrd = 0,
  14012. .ith = j,
  14013. .shared = &state_shared,
  14014. };
  14015. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  14016. GGML_ASSERT(rc == 0);
  14017. UNUSED(rc);
  14018. }
  14019. }
  14020. workers[0].ith = 0;
  14021. workers[0].shared = &state_shared;
  14022. const int64_t perf_start_cycles = ggml_perf_cycles();
  14023. const int64_t perf_start_time_us = ggml_perf_time_us();
  14024. // this is a work thread too
  14025. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  14026. // don't leave affinity set on the main thread
  14027. clear_numa_thread_affinity();
  14028. // join or kill thread pool
  14029. if (n_threads > 1) {
  14030. for (int j = 1; j < n_threads; j++) {
  14031. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  14032. GGML_ASSERT(rc == 0);
  14033. }
  14034. }
  14035. // performance stats (graph)
  14036. {
  14037. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  14038. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  14039. cgraph->perf_runs++;
  14040. cgraph->perf_cycles += perf_cycles_cur;
  14041. cgraph->perf_time_us += perf_time_us_cur;
  14042. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  14043. __func__, cgraph->perf_runs,
  14044. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  14045. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  14046. (double) perf_time_us_cur / 1000.0,
  14047. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  14048. }
  14049. return compute_status;
  14050. }
  14051. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  14052. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  14053. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14054. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14055. ggml_graph_compute(cgraph, &cplan);
  14056. }
  14057. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  14058. for (int i = 0; i < cgraph->n_leafs; i++) {
  14059. struct ggml_tensor * leaf = cgraph->leafs[i];
  14060. if (strcmp(leaf->name, name) == 0) {
  14061. return leaf;
  14062. }
  14063. }
  14064. for (int i = 0; i < cgraph->n_nodes; i++) {
  14065. struct ggml_tensor * node = cgraph->nodes[i];
  14066. if (strcmp(node->name, name) == 0) {
  14067. return node;
  14068. }
  14069. }
  14070. return NULL;
  14071. }
  14072. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  14073. const int64_t * ne = tensor->ne;
  14074. const size_t * nb = tensor->nb;
  14075. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14076. ggml_type_name(tensor->type),
  14077. ggml_op_name (tensor->op),
  14078. ggml_n_dims(tensor),
  14079. ne[0], ne[1], ne[2], ne[3],
  14080. nb[0], nb[1], nb[2], nb[3],
  14081. tensor->data,
  14082. tensor->name);
  14083. }
  14084. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  14085. const int64_t * ne = tensor->ne;
  14086. const size_t * nb = tensor->nb;
  14087. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14088. arg,
  14089. ggml_type_name(tensor->type),
  14090. ggml_op_name (tensor->op),
  14091. ggml_n_dims(tensor),
  14092. ne[0], ne[1], ne[2], ne[3],
  14093. nb[0], nb[1], nb[2], nb[3],
  14094. tensor->data,
  14095. tensor->name);
  14096. }
  14097. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  14098. uint64_t size_eval = 0;
  14099. // compute size of intermediate results
  14100. // TODO: does not take into account scratch buffers !!!!
  14101. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14102. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  14103. }
  14104. // print
  14105. {
  14106. FILE * fout = stdout;
  14107. fprintf(fout, "\n");
  14108. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  14109. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  14110. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  14111. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  14112. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  14113. // header
  14114. fprintf(fout, "\n");
  14115. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  14116. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  14117. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14118. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  14119. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  14120. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  14121. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  14122. }
  14123. // header
  14124. fprintf(fout, "\n");
  14125. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  14126. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  14127. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14128. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  14129. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14130. if (cgraph->nodes[i]->src[j]) {
  14131. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  14132. }
  14133. }
  14134. fprintf(fout, "\n");
  14135. }
  14136. fprintf(fout, "\n");
  14137. }
  14138. // write binary data
  14139. {
  14140. FILE * fout = fopen(fname, "wb");
  14141. if (!fout) {
  14142. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14143. return;
  14144. }
  14145. // header
  14146. {
  14147. const uint32_t magic = GGML_FILE_MAGIC;
  14148. const uint32_t version = GGML_FILE_VERSION;
  14149. const uint32_t n_leafs = cgraph->n_leafs;
  14150. const uint32_t n_nodes = cgraph->n_nodes;
  14151. fwrite(&magic, sizeof(uint32_t), 1, fout);
  14152. fwrite(&version, sizeof(uint32_t), 1, fout);
  14153. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  14154. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  14155. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  14156. }
  14157. // leafs
  14158. {
  14159. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14160. const struct ggml_tensor * tensor = cgraph->leafs[i];
  14161. const uint32_t type = tensor->type;
  14162. const uint32_t op = tensor->op;
  14163. fwrite(&type, sizeof(uint32_t), 1, fout);
  14164. fwrite(&op, sizeof(uint32_t), 1, fout);
  14165. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14166. const uint64_t ne = tensor->ne[j];
  14167. const uint64_t nb = tensor->nb[j];
  14168. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14169. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14170. }
  14171. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14172. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14173. // dump the data
  14174. // TODO: pad this to 32 byte boundary
  14175. {
  14176. const size_t size = ggml_nbytes(tensor);
  14177. fwrite(tensor->data, sizeof(char), size, fout);
  14178. }
  14179. }
  14180. }
  14181. // nodes
  14182. {
  14183. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14184. const struct ggml_tensor * tensor = cgraph->nodes[i];
  14185. const uint32_t type = tensor->type;
  14186. const uint32_t op = tensor->op;
  14187. fwrite(&type, sizeof(uint32_t), 1, fout);
  14188. fwrite(&op, sizeof(uint32_t), 1, fout);
  14189. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14190. const uint64_t ne = tensor->ne[j];
  14191. const uint64_t nb = tensor->nb[j];
  14192. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14193. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14194. }
  14195. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14196. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14197. // output the op arguments
  14198. {
  14199. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14200. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14201. args[j] = tensor->src[j];
  14202. }
  14203. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14204. if (args[j]) {
  14205. int32_t idx = -1;
  14206. // check if leaf
  14207. {
  14208. for (int k = 0; k < cgraph->n_leafs; ++k) {
  14209. if (args[j] == cgraph->leafs[k]) {
  14210. idx = k;
  14211. break;
  14212. }
  14213. }
  14214. }
  14215. // check if node
  14216. if (idx == -1) {
  14217. for (int k = 0; k < cgraph->n_nodes; ++k) {
  14218. if (args[j] == cgraph->nodes[k]) {
  14219. idx = cgraph->n_leafs + k;
  14220. break;
  14221. }
  14222. }
  14223. }
  14224. if (idx == -1) {
  14225. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  14226. fclose(fout);
  14227. return;
  14228. }
  14229. fwrite(&idx, sizeof(int32_t), 1, fout);
  14230. } else {
  14231. const int32_t nul = -1;
  14232. fwrite(&nul, sizeof(int32_t), 1, fout);
  14233. }
  14234. }
  14235. }
  14236. }
  14237. }
  14238. fclose(fout);
  14239. }
  14240. }
  14241. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  14242. assert(*ctx_data == NULL);
  14243. assert(*ctx_eval == NULL);
  14244. struct ggml_cgraph * result = NULL;
  14245. struct ggml_tensor * data = NULL;
  14246. // read file into data
  14247. {
  14248. FILE * fin = fopen(fname, "rb");
  14249. if (!fin) {
  14250. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14251. return result;
  14252. }
  14253. size_t fsize = 0;
  14254. fseek(fin, 0, SEEK_END);
  14255. fsize = ftell(fin);
  14256. fseek(fin, 0, SEEK_SET);
  14257. // create the data context
  14258. {
  14259. const size_t overhead = 1*ggml_tensor_overhead();
  14260. struct ggml_init_params params = {
  14261. .mem_size = fsize + overhead,
  14262. .mem_buffer = NULL,
  14263. .no_alloc = false,
  14264. };
  14265. *ctx_data = ggml_init(params);
  14266. if (!*ctx_data) {
  14267. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14268. fclose(fin);
  14269. return result;
  14270. }
  14271. }
  14272. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  14273. {
  14274. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  14275. if (ret != fsize) {
  14276. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  14277. fclose(fin);
  14278. return result;
  14279. }
  14280. }
  14281. fclose(fin);
  14282. }
  14283. // populate result
  14284. {
  14285. char * ptr = (char *) data->data;
  14286. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  14287. if (magic != GGML_FILE_MAGIC) {
  14288. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  14289. return result;
  14290. }
  14291. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  14292. if (version != GGML_FILE_VERSION) {
  14293. fprintf(stderr, "%s: invalid version number\n", __func__);
  14294. return result;
  14295. }
  14296. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  14297. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  14298. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  14299. const int graph_size = MAX(n_leafs, n_nodes);
  14300. // create the data context
  14301. {
  14302. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  14303. struct ggml_init_params params = {
  14304. .mem_size = size_eval + overhead,
  14305. .mem_buffer = NULL,
  14306. .no_alloc = true,
  14307. };
  14308. *ctx_eval = ggml_init(params);
  14309. if (!*ctx_eval) {
  14310. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14311. return result;
  14312. }
  14313. }
  14314. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  14315. result->n_leafs = n_leafs;
  14316. result->n_nodes = n_nodes;
  14317. // leafs
  14318. {
  14319. uint32_t type;
  14320. uint32_t op;
  14321. for (uint32_t i = 0; i < n_leafs; ++i) {
  14322. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14323. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14324. int64_t ne[GGML_MAX_DIMS];
  14325. size_t nb[GGML_MAX_DIMS];
  14326. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14327. uint64_t ne_cur;
  14328. uint64_t nb_cur;
  14329. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14330. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14331. ne[j] = ne_cur;
  14332. nb[j] = nb_cur;
  14333. }
  14334. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  14335. tensor->op = (enum ggml_op) op;
  14336. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  14337. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  14338. tensor->data = (void *) ptr;
  14339. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14340. tensor->nb[j] = nb[j];
  14341. }
  14342. result->leafs[i] = tensor;
  14343. ptr += ggml_nbytes(tensor);
  14344. fprintf(stderr, "%s: loaded leaf %d: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  14345. }
  14346. }
  14347. ggml_set_no_alloc(*ctx_eval, false);
  14348. // nodes
  14349. {
  14350. uint32_t type;
  14351. uint32_t op;
  14352. for (uint32_t i = 0; i < n_nodes; ++i) {
  14353. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14354. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14355. enum ggml_op eop = (enum ggml_op) op;
  14356. int64_t ne[GGML_MAX_DIMS];
  14357. size_t nb[GGML_MAX_DIMS];
  14358. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14359. uint64_t ne_cur;
  14360. uint64_t nb_cur;
  14361. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14362. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14363. ne[j] = ne_cur;
  14364. nb[j] = nb_cur;
  14365. }
  14366. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  14367. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  14368. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  14369. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14370. // parse args
  14371. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14372. const int32_t arg_idx = ptr_arg_idx[j];
  14373. if (arg_idx == -1) {
  14374. continue;
  14375. }
  14376. if (arg_idx < result->n_leafs) {
  14377. args[j] = result->leafs[arg_idx];
  14378. } else {
  14379. args[j] = result->nodes[arg_idx - result->n_leafs];
  14380. }
  14381. }
  14382. // create the tensor
  14383. // "view" operations are handled differently
  14384. // TODO: handle inplace ops - currently a copy is always made
  14385. struct ggml_tensor * tensor = NULL;
  14386. switch (eop) {
  14387. // TODO: implement other view ops
  14388. case GGML_OP_RESHAPE:
  14389. {
  14390. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  14391. } break;
  14392. case GGML_OP_VIEW:
  14393. {
  14394. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14395. size_t offs;
  14396. memcpy(&offs, ptr_op_params, sizeof(offs));
  14397. tensor->data = ((char *) tensor->data) + offs;
  14398. } break;
  14399. case GGML_OP_TRANSPOSE:
  14400. {
  14401. tensor = ggml_transpose(*ctx_eval, args[0]);
  14402. } break;
  14403. case GGML_OP_PERMUTE:
  14404. {
  14405. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14406. } break;
  14407. default:
  14408. {
  14409. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  14410. tensor->op = eop;
  14411. } break;
  14412. }
  14413. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  14414. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  14415. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14416. tensor->nb[j] = nb[j];
  14417. }
  14418. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14419. tensor->src[j] = args[j];
  14420. }
  14421. result->nodes[i] = tensor;
  14422. fprintf(stderr, "%s: loaded node %d: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  14423. }
  14424. }
  14425. }
  14426. return result;
  14427. }
  14428. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  14429. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  14430. GGML_PRINT("=== GRAPH ===\n");
  14431. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  14432. for (int i = 0; i < cgraph->n_nodes; i++) {
  14433. struct ggml_tensor * node = cgraph->nodes[i];
  14434. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  14435. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  14436. i,
  14437. node->ne[0], node->ne[1], node->ne[2],
  14438. ggml_op_name(node->op), node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  14439. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  14440. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  14441. (double) node->perf_time_us / 1000.0,
  14442. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  14443. }
  14444. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  14445. for (int i = 0; i < cgraph->n_leafs; i++) {
  14446. struct ggml_tensor * node = cgraph->leafs[i];
  14447. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  14448. i,
  14449. node->ne[0], node->ne[1],
  14450. ggml_op_name(node->op),
  14451. ggml_get_name(node));
  14452. }
  14453. for (int i = 0; i < GGML_OP_COUNT; i++) {
  14454. if (perf_total_per_op_us[i] == 0) {
  14455. continue;
  14456. }
  14457. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  14458. }
  14459. GGML_PRINT("========================================\n");
  14460. }
  14461. // check if node is part of the graph
  14462. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14463. if (cgraph == NULL) {
  14464. return true;
  14465. }
  14466. for (int i = 0; i < cgraph->n_nodes; i++) {
  14467. if (cgraph->nodes[i] == node) {
  14468. return true;
  14469. }
  14470. }
  14471. return false;
  14472. }
  14473. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14474. for (int i = 0; i < cgraph->n_nodes; i++) {
  14475. struct ggml_tensor * parent = cgraph->nodes[i];
  14476. if (parent->grad == node) {
  14477. return parent;
  14478. }
  14479. }
  14480. return NULL;
  14481. }
  14482. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14483. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  14484. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  14485. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  14486. gparent0 ? (void *) gparent0 : (void *) parent,
  14487. gparent0 ? "g" : "x",
  14488. gparent ? (void *) gparent : (void *) node,
  14489. gparent ? "g" : "x",
  14490. gparent ? "empty" : "vee",
  14491. gparent ? "dashed" : "solid",
  14492. label);
  14493. }
  14494. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14495. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  14496. (void *) parent, "x",
  14497. (void *) node, "x",
  14498. label);
  14499. }
  14500. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  14501. char color[16];
  14502. FILE * fp = fopen(filename, "w");
  14503. GGML_ASSERT(fp);
  14504. fprintf(fp, "digraph G {\n");
  14505. fprintf(fp, " newrank = true;\n");
  14506. fprintf(fp, " rankdir = LR;\n");
  14507. for (int i = 0; i < gb->n_nodes; i++) {
  14508. struct ggml_tensor * node = gb->nodes[i];
  14509. if (ggml_graph_get_parent(gb, node) != NULL) {
  14510. continue;
  14511. }
  14512. if (node->is_param) {
  14513. snprintf(color, sizeof(color), "yellow");
  14514. } else if (node->grad) {
  14515. if (ggml_graph_find(gf, node)) {
  14516. snprintf(color, sizeof(color), "green");
  14517. } else {
  14518. snprintf(color, sizeof(color), "lightblue");
  14519. }
  14520. } else {
  14521. snprintf(color, sizeof(color), "white");
  14522. }
  14523. fprintf(fp, " \"%p\" [ "
  14524. "style = filled; fillcolor = %s; shape = record; "
  14525. "label=\"",
  14526. (void *) node, color);
  14527. if (strlen(node->name) > 0) {
  14528. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14529. } else {
  14530. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14531. }
  14532. if (ggml_is_matrix(node)) {
  14533. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  14534. } else {
  14535. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  14536. }
  14537. if (node->grad) {
  14538. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  14539. } else {
  14540. fprintf(fp, "\"; ]\n");
  14541. }
  14542. }
  14543. for (int i = 0; i < gb->n_leafs; i++) {
  14544. struct ggml_tensor * node = gb->leafs[i];
  14545. snprintf(color, sizeof(color), "pink");
  14546. fprintf(fp, " \"%p\" [ "
  14547. "style = filled; fillcolor = %s; shape = record; "
  14548. "label=\"<x>",
  14549. (void *) node, color);
  14550. if (strlen(node->name) > 0) {
  14551. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14552. } else {
  14553. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14554. }
  14555. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  14556. if (ggml_nelements(node) < 5) {
  14557. fprintf(fp, " | (");
  14558. for (int j = 0; j < ggml_nelements(node); j++) {
  14559. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  14560. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  14561. }
  14562. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  14563. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  14564. }
  14565. else {
  14566. fprintf(fp, "#");
  14567. }
  14568. if (j < ggml_nelements(node) - 1) {
  14569. fprintf(fp, ", ");
  14570. }
  14571. }
  14572. fprintf(fp, ")");
  14573. }
  14574. fprintf(fp, "\"; ]\n");
  14575. }
  14576. for (int i = 0; i < gb->n_nodes; i++) {
  14577. struct ggml_tensor * node = gb->nodes[i];
  14578. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14579. if (node->src[j]) {
  14580. char label[16];
  14581. snprintf(label, sizeof(label), "src %d", j);
  14582. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  14583. }
  14584. }
  14585. }
  14586. for (int i = 0; i < gb->n_leafs; i++) {
  14587. struct ggml_tensor * node = gb->leafs[i];
  14588. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14589. if (node->src[j]) {
  14590. char label[16];
  14591. snprintf(label, sizeof(label), "src %d", j);
  14592. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  14593. }
  14594. }
  14595. }
  14596. fprintf(fp, "}\n");
  14597. fclose(fp);
  14598. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  14599. }
  14600. ////////////////////////////////////////////////////////////////////////////////
  14601. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  14602. int i = 0;
  14603. for (int p = 0; p < np; ++p) {
  14604. const int64_t ne = ggml_nelements(ps[p]) ;
  14605. // TODO: add function to set tensor from array
  14606. for (int64_t j = 0; j < ne; ++j) {
  14607. ggml_set_f32_1d(ps[p], j, x[i++]);
  14608. }
  14609. }
  14610. }
  14611. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  14612. int i = 0;
  14613. for (int p = 0; p < np; ++p) {
  14614. const int64_t ne = ggml_nelements(ps[p]) ;
  14615. // TODO: add function to get all elements at once
  14616. for (int64_t j = 0; j < ne; ++j) {
  14617. x[i++] = ggml_get_f32_1d(ps[p], j);
  14618. }
  14619. }
  14620. }
  14621. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  14622. int64_t i = 0;
  14623. for (int p = 0; p < np; ++p) {
  14624. const int64_t ne = ggml_nelements(ps[p]) ;
  14625. // TODO: add function to get all elements at once
  14626. for (int64_t j = 0; j < ne; ++j) {
  14627. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  14628. }
  14629. }
  14630. }
  14631. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  14632. int64_t i = 0;
  14633. for (int p = 0; p < np; ++p) {
  14634. const int64_t ne = ggml_nelements(ps[p]) ;
  14635. // TODO: add function to get all elements at once
  14636. for (int64_t j = 0; j < ne; ++j) {
  14637. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  14638. }
  14639. }
  14640. }
  14641. //
  14642. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  14643. //
  14644. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  14645. //
  14646. static enum ggml_opt_result ggml_opt_adam(
  14647. struct ggml_context * ctx,
  14648. struct ggml_opt_context * opt,
  14649. struct ggml_opt_params params,
  14650. struct ggml_tensor * f,
  14651. struct ggml_cgraph * gf,
  14652. struct ggml_cgraph * gb,
  14653. ggml_opt_callback callback,
  14654. void * callback_data) {
  14655. GGML_ASSERT(ggml_is_scalar(f));
  14656. // these will store the parameters we want to optimize
  14657. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14658. int np = 0;
  14659. int64_t nx = 0;
  14660. for (int i = 0; i < gf->n_nodes; ++i) {
  14661. if (gf->nodes[i]->is_param) {
  14662. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14663. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14664. ps[np++] = gf->nodes[i];
  14665. nx += ggml_nelements(gf->nodes[i]);
  14666. }
  14667. }
  14668. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  14669. int iter = opt->iter;
  14670. ggml_opt_init(opt->ctx, opt, params, nx);
  14671. opt->iter = iter;
  14672. }
  14673. // constants
  14674. float sched = params.adam.sched;
  14675. const float alpha = params.adam.alpha;
  14676. const float decay = params.adam.decay * alpha;
  14677. const float beta1 = params.adam.beta1;
  14678. const float beta2 = params.adam.beta2;
  14679. const float eps = params.adam.eps;
  14680. const float gclip = params.adam.gclip;
  14681. const int decay_min_ndim = params.adam.decay_min_ndim;
  14682. const int n_accum = MAX(1, params.n_gradient_accumulation);
  14683. const float accum_norm = 1.0f / (float) n_accum;
  14684. float * g = opt->adam.g->data; // gradients
  14685. float * m = opt->adam.m->data; // first moment
  14686. float * v = opt->adam.v->data; // second moment
  14687. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  14688. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  14689. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14690. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14691. bool cancel = false;
  14692. // compute the function value
  14693. float fx = 0;
  14694. ggml_set_zero(opt->adam.g);
  14695. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14696. if (callback) {
  14697. callback(callback_data, accum_step, &sched, &cancel);
  14698. if (cancel) {
  14699. return GGML_OPT_CANCEL;
  14700. }
  14701. }
  14702. // ggml_graph_reset (gf);
  14703. ggml_set_f32 (f->grad, 1.0f);
  14704. ggml_graph_compute(gb, &cplan);
  14705. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14706. fx += ggml_get_f32_1d(f, 0);
  14707. }
  14708. fx *= accum_norm;
  14709. opt->adam.fx_prev = fx;
  14710. opt->adam.fx_best = opt->adam.fx_prev;
  14711. if (pf) {
  14712. pf[opt->iter % params.past] = opt->adam.fx_prev;
  14713. }
  14714. opt->loss_before = opt->adam.fx_prev;
  14715. opt->loss_after = opt->adam.fx_prev;
  14716. // initialize
  14717. if (opt->just_initialized) {
  14718. opt->adam.n_no_improvement = 0;
  14719. opt->just_initialized = false;
  14720. }
  14721. float * fx_best = &opt->adam.fx_best;
  14722. float * fx_prev = &opt->adam.fx_prev;
  14723. int * n_no_improvement = &opt->adam.n_no_improvement;
  14724. int iter0 = opt->iter;
  14725. // run the optimizer
  14726. for (int t = 0; t < params.adam.n_iter; ++t) {
  14727. opt->iter = iter0 + t + 1;
  14728. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  14729. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14730. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  14731. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  14732. for (int i = 0; i < np; ++i) {
  14733. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  14734. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  14735. }
  14736. const int64_t t_start_wall = ggml_time_us();
  14737. const int64_t t_start_cpu = ggml_cycles();
  14738. UNUSED(t_start_wall);
  14739. UNUSED(t_start_cpu);
  14740. {
  14741. float gnorm = 1.0f;
  14742. if (gclip > 0.0f) {
  14743. // gradient clipping
  14744. ggml_float sum = 0.0;
  14745. for (int64_t i = 0; i < nx; ++i) {
  14746. sum += (ggml_float)(g[i]*g[i]);
  14747. }
  14748. ggml_float norm = sqrt(sum);
  14749. if (norm > (ggml_float) gclip) {
  14750. gnorm = (float) ((ggml_float) gclip / norm);
  14751. }
  14752. }
  14753. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  14754. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  14755. int64_t i = 0;
  14756. for (int p = 0; p < np; ++p) {
  14757. const int64_t ne = ggml_nelements(ps[p]);
  14758. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  14759. for (int64_t j = 0; j < ne; ++j) {
  14760. float x = ggml_get_f32_1d(ps[p], j);
  14761. float g_ = g[i]*gnorm;
  14762. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  14763. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  14764. float mh = m[i]*beta1h;
  14765. float vh = v[i]*beta2h;
  14766. vh = sqrtf(vh) + eps;
  14767. x = x*(1.0f - p_decay) - mh/vh;
  14768. ggml_set_f32_1d(ps[p], j, x);
  14769. ++i;
  14770. }
  14771. }
  14772. }
  14773. fx = 0;
  14774. ggml_set_zero(opt->adam.g);
  14775. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14776. if (callback) {
  14777. callback(callback_data, accum_step, &sched, &cancel);
  14778. if (cancel) {
  14779. return GGML_OPT_CANCEL;;
  14780. }
  14781. }
  14782. // ggml_graph_reset (gf);
  14783. ggml_set_f32 (f->grad, 1.0f);
  14784. ggml_graph_compute(gb, &cplan);
  14785. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14786. fx += ggml_get_f32_1d(f, 0);
  14787. }
  14788. fx *= accum_norm;
  14789. opt->loss_after = fx;
  14790. // check convergence
  14791. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  14792. GGML_PRINT_DEBUG("converged\n");
  14793. return GGML_OPT_OK;
  14794. }
  14795. // delta-based convergence test
  14796. if (pf != NULL) {
  14797. // need at least params.past iterations to start checking for convergence
  14798. if (params.past <= iter0 + t) {
  14799. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  14800. if (fabsf(rate) < params.delta) {
  14801. return GGML_OPT_OK;
  14802. }
  14803. }
  14804. pf[(iter0 + t)%params.past] = fx;
  14805. }
  14806. // check for improvement
  14807. if (params.max_no_improvement > 0) {
  14808. if (fx_best[0] > fx) {
  14809. fx_best[0] = fx;
  14810. n_no_improvement[0] = 0;
  14811. } else {
  14812. ++n_no_improvement[0];
  14813. if (n_no_improvement[0] >= params.max_no_improvement) {
  14814. return GGML_OPT_OK;
  14815. }
  14816. }
  14817. }
  14818. fx_prev[0] = fx;
  14819. {
  14820. const int64_t t_end_cpu = ggml_cycles();
  14821. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  14822. UNUSED(t_end_cpu);
  14823. const int64_t t_end_wall = ggml_time_us();
  14824. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  14825. UNUSED(t_end_wall);
  14826. }
  14827. }
  14828. return GGML_OPT_DID_NOT_CONVERGE;
  14829. }
  14830. //
  14831. // L-BFGS
  14832. //
  14833. // the L-BFGS implementation below is based on the following implementation:
  14834. //
  14835. // https://github.com/chokkan/liblbfgs
  14836. //
  14837. struct ggml_lbfgs_iteration_data {
  14838. float alpha;
  14839. float ys;
  14840. float * s;
  14841. float * y;
  14842. };
  14843. static enum ggml_opt_result linesearch_backtracking(
  14844. const struct ggml_opt_params * params,
  14845. int nx,
  14846. float * x,
  14847. float * fx,
  14848. float * g,
  14849. float * d,
  14850. float * step,
  14851. const float * xp,
  14852. struct ggml_tensor * f,
  14853. struct ggml_cgraph * gb,
  14854. struct ggml_cplan * cplan,
  14855. const int np,
  14856. struct ggml_tensor * ps[],
  14857. bool * cancel,
  14858. ggml_opt_callback callback,
  14859. void * callback_data) {
  14860. int count = 0;
  14861. float width = 0.0f;
  14862. float dg = 0.0f;
  14863. float finit = 0.0f;
  14864. float dginit = 0.0f;
  14865. float dgtest = 0.0f;
  14866. const float dec = 0.5f;
  14867. const float inc = 2.1f;
  14868. const int n_accum = MAX(1, params->n_gradient_accumulation);
  14869. const float accum_norm = 1.0f / (float) n_accum;
  14870. if (*step <= 0.f) {
  14871. return GGML_LINESEARCH_INVALID_PARAMETERS;
  14872. }
  14873. // compute the initial gradient in the search direction
  14874. ggml_vec_dot_f32(nx, &dginit, g, d);
  14875. // make sure that d points to a descent direction
  14876. if (0 < dginit) {
  14877. return GGML_LINESEARCH_FAIL;
  14878. }
  14879. // initialize local variables
  14880. finit = *fx;
  14881. dgtest = params->lbfgs.ftol*dginit;
  14882. while (true) {
  14883. ggml_vec_cpy_f32(nx, x, xp);
  14884. ggml_vec_mad_f32(nx, x, d, *step);
  14885. // evaluate the function and gradient values
  14886. {
  14887. ggml_opt_set_params(np, ps, x);
  14888. *fx = 0;
  14889. memset(g, 0, sizeof(float)*nx);
  14890. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14891. if (callback) {
  14892. // LBFG-S does not support learning rate -> ignore learning schedule
  14893. float sched = 0;
  14894. callback(callback_data, accum_step, &sched, cancel);
  14895. if (*cancel) {
  14896. return GGML_OPT_CANCEL;
  14897. }
  14898. }
  14899. // ggml_graph_reset (gf);
  14900. ggml_set_f32 (f->grad, 1.0f);
  14901. ggml_graph_compute(gb, cplan);
  14902. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14903. *fx += ggml_get_f32_1d(f, 0);
  14904. }
  14905. *fx *= accum_norm;
  14906. }
  14907. ++count;
  14908. if (*fx > finit + (*step)*dgtest) {
  14909. width = dec;
  14910. } else {
  14911. // Armijo condition is satisfied
  14912. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  14913. return count;
  14914. }
  14915. ggml_vec_dot_f32(nx, &dg, g, d);
  14916. // check the Wolfe condition
  14917. if (dg < params->lbfgs.wolfe * dginit) {
  14918. width = inc;
  14919. } else {
  14920. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  14921. // regular Wolfe conditions
  14922. return count;
  14923. }
  14924. if(dg > -params->lbfgs.wolfe*dginit) {
  14925. width = dec;
  14926. } else {
  14927. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  14928. return count;
  14929. }
  14930. }
  14931. }
  14932. if (*step < params->lbfgs.min_step) {
  14933. return GGML_LINESEARCH_MINIMUM_STEP;
  14934. }
  14935. if (*step > params->lbfgs.max_step) {
  14936. return GGML_LINESEARCH_MAXIMUM_STEP;
  14937. }
  14938. if (params->lbfgs.max_linesearch <= count) {
  14939. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  14940. }
  14941. (*step) *= width;
  14942. }
  14943. GGML_UNREACHABLE();
  14944. }
  14945. static enum ggml_opt_result ggml_opt_lbfgs(
  14946. struct ggml_context * ctx,
  14947. struct ggml_opt_context * opt,
  14948. struct ggml_opt_params params,
  14949. struct ggml_tensor * f,
  14950. struct ggml_cgraph * gf,
  14951. struct ggml_cgraph * gb,
  14952. ggml_opt_callback callback,
  14953. void * callback_data) {
  14954. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  14955. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  14956. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  14957. return GGML_OPT_INVALID_WOLFE;
  14958. }
  14959. }
  14960. const int m = params.lbfgs.m;
  14961. // these will store the parameters we want to optimize
  14962. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14963. int np = 0;
  14964. int nx = 0;
  14965. for (int i = 0; i < gf->n_nodes; ++i) {
  14966. if (gf->nodes[i]->is_param) {
  14967. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14968. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14969. ps[np++] = gf->nodes[i];
  14970. nx += ggml_nelements(gf->nodes[i]);
  14971. }
  14972. }
  14973. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  14974. int iter = opt->iter;
  14975. ggml_opt_init(ctx, opt, params, nx);
  14976. opt->iter = iter;
  14977. }
  14978. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  14979. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14980. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14981. float * x = opt->lbfgs.x->data; // current parameters
  14982. float * xp = opt->lbfgs.xp->data; // previous parameters
  14983. float * g = opt->lbfgs.g->data; // current gradient
  14984. float * gp = opt->lbfgs.gp->data; // previous gradient
  14985. float * d = opt->lbfgs.d->data; // search direction
  14986. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  14987. const int n_accum = MAX(1, params.n_gradient_accumulation);
  14988. const float accum_norm = 1.0f / (float) n_accum;
  14989. float fx = 0.0f; // cost function value
  14990. float xnorm = 0.0f; // ||x||
  14991. float gnorm = 0.0f; // ||g||
  14992. // initialize x from the graph nodes
  14993. ggml_opt_get_params(np, ps, x);
  14994. // the L-BFGS memory
  14995. float * lm_alpha = opt->lbfgs.lmal->data;
  14996. float * lm_ys = opt->lbfgs.lmys->data;
  14997. float * lm_s = opt->lbfgs.lms->data;
  14998. float * lm_y = opt->lbfgs.lmy->data;
  14999. bool cancel = false;
  15000. // evaluate the function value and its gradient
  15001. {
  15002. ggml_opt_set_params(np, ps, x);
  15003. fx = 0;
  15004. memset(g, 0, sizeof(float)*nx);
  15005. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15006. if (callback) {
  15007. // LBFG-S does not support learning rate -> ignore learning schedule
  15008. float sched = 0;
  15009. callback(callback_data, accum_step, &sched, &cancel);
  15010. if (cancel) {
  15011. return GGML_OPT_CANCEL;
  15012. }
  15013. }
  15014. // ggml_graph_reset (gf);
  15015. ggml_set_f32 (f->grad, 1.0f);
  15016. ggml_graph_compute(gb, &cplan);
  15017. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15018. fx += ggml_get_f32_1d(f, 0);
  15019. }
  15020. fx *= accum_norm;
  15021. opt->loss_before = fx;
  15022. opt->loss_after = fx;
  15023. }
  15024. // search direction = -gradient
  15025. ggml_vec_neg_f32(nx, d, g);
  15026. // ||x||, ||g||
  15027. ggml_vec_norm_f32(nx, &xnorm, x);
  15028. ggml_vec_norm_f32(nx, &gnorm, g);
  15029. if (xnorm < 1.0f) {
  15030. xnorm = 1.0f;
  15031. }
  15032. // already optimized
  15033. if (gnorm/xnorm <= params.lbfgs.eps) {
  15034. return GGML_OPT_OK;
  15035. }
  15036. if (opt->just_initialized) {
  15037. if (pf) {
  15038. pf[0] = fx;
  15039. }
  15040. opt->lbfgs.fx_best = fx;
  15041. // initial step
  15042. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  15043. opt->lbfgs.j = 0;
  15044. opt->lbfgs.k = 1;
  15045. opt->lbfgs.end = 0;
  15046. opt->lbfgs.n_no_improvement = 0;
  15047. opt->just_initialized = false;
  15048. }
  15049. float * fx_best = &opt->lbfgs.fx_best;
  15050. float * step = &opt->lbfgs.step;
  15051. int * j = &opt->lbfgs.j;
  15052. int * k = &opt->lbfgs.k;
  15053. int * end = &opt->lbfgs.end;
  15054. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  15055. int ls = 0;
  15056. int bound = 0;
  15057. float ys = 0.0f;
  15058. float yy = 0.0f;
  15059. float beta = 0.0f;
  15060. int it = 0;
  15061. while (true) {
  15062. // store the current position and gradient vectors
  15063. ggml_vec_cpy_f32(nx, xp, x);
  15064. ggml_vec_cpy_f32(nx, gp, g);
  15065. // TODO: instead of passing &cancel here, use the return code of the linesearch
  15066. // to determine if the optimization should be cancelled
  15067. // this is a simple change, but not doing this atm, since I don't have a nice
  15068. // way to test and don't want to break something with so many changes lined up
  15069. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  15070. if (cancel) {
  15071. return GGML_OPT_CANCEL;
  15072. }
  15073. if (ls < 0) {
  15074. // linesearch failed - go back to the previous point and return
  15075. ggml_vec_cpy_f32(nx, x, xp);
  15076. ggml_vec_cpy_f32(nx, g, gp);
  15077. return ls;
  15078. }
  15079. opt->loss_after = fx;
  15080. ggml_vec_norm_f32(nx, &xnorm, x);
  15081. ggml_vec_norm_f32(nx, &gnorm, g);
  15082. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15083. if (xnorm < 1.0f) {
  15084. xnorm = 1.0f;
  15085. }
  15086. if (gnorm/xnorm <= params.lbfgs.eps) {
  15087. // converged
  15088. return GGML_OPT_OK;
  15089. }
  15090. // delta-based convergence test
  15091. if (pf != NULL) {
  15092. // need at least params.past iterations to start checking for convergence
  15093. if (params.past <= k[0]) {
  15094. const float rate = (pf[k[0]%params.past] - fx)/fx;
  15095. if (fabsf(rate) < params.delta) {
  15096. return GGML_OPT_OK;
  15097. }
  15098. }
  15099. pf[k[0]%params.past] = fx;
  15100. }
  15101. // check for improvement
  15102. if (params.max_no_improvement > 0) {
  15103. if (fx < fx_best[0]) {
  15104. fx_best[0] = fx;
  15105. n_no_improvement[0] = 0;
  15106. } else {
  15107. n_no_improvement[0]++;
  15108. if (n_no_improvement[0] >= params.max_no_improvement) {
  15109. return GGML_OPT_OK;
  15110. }
  15111. }
  15112. }
  15113. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  15114. // reached the maximum number of iterations
  15115. return GGML_OPT_DID_NOT_CONVERGE;
  15116. }
  15117. // update vectors s and y:
  15118. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  15119. // y_{k+1} = g_{k+1} - g_{k}.
  15120. //
  15121. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  15122. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  15123. // compute scalars ys and yy:
  15124. // ys = y^t \cdot s -> 1 / \rho.
  15125. // yy = y^t \cdot y.
  15126. //
  15127. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0]*nx]);
  15128. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  15129. lm_ys[end[0]] = ys;
  15130. // find new search direction
  15131. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  15132. bound = (m <= k[0]) ? m : k[0];
  15133. k[0]++;
  15134. it++;
  15135. end[0] = (end[0] + 1)%m;
  15136. // initialize search direction with -g
  15137. ggml_vec_neg_f32(nx, d, g);
  15138. j[0] = end[0];
  15139. for (int i = 0; i < bound; ++i) {
  15140. j[0] = (j[0] + m - 1) % m;
  15141. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  15142. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  15143. lm_alpha[j[0]] /= lm_ys[j[0]];
  15144. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  15145. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  15146. }
  15147. ggml_vec_scale_f32(nx, d, ys/yy);
  15148. for (int i = 0; i < bound; ++i) {
  15149. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  15150. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  15151. beta /= lm_ys[j[0]];
  15152. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  15153. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  15154. j[0] = (j[0] + 1)%m;
  15155. }
  15156. step[0] = 1.0;
  15157. }
  15158. GGML_UNREACHABLE();
  15159. }
  15160. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  15161. struct ggml_opt_params result;
  15162. switch (type) {
  15163. case GGML_OPT_ADAM:
  15164. {
  15165. result = (struct ggml_opt_params) {
  15166. .type = GGML_OPT_ADAM,
  15167. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  15168. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  15169. .past = 0,
  15170. .delta = 1e-5f,
  15171. .max_no_improvement = 100,
  15172. .print_forward_graph = true,
  15173. .print_backward_graph = true,
  15174. .n_gradient_accumulation = 1,
  15175. .adam = {
  15176. .n_iter = 10000,
  15177. .sched = 1.000f,
  15178. .decay = 0.0f,
  15179. .decay_min_ndim = 2,
  15180. .alpha = 0.001f,
  15181. .beta1 = 0.9f,
  15182. .beta2 = 0.999f,
  15183. .eps = 1e-8f,
  15184. .eps_f = 1e-5f,
  15185. .eps_g = 1e-3f,
  15186. .gclip = 0.0f,
  15187. },
  15188. };
  15189. } break;
  15190. case GGML_OPT_LBFGS:
  15191. {
  15192. result = (struct ggml_opt_params) {
  15193. .type = GGML_OPT_LBFGS,
  15194. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  15195. .n_threads = 1,
  15196. .past = 0,
  15197. .delta = 1e-5f,
  15198. .max_no_improvement = 0,
  15199. .print_forward_graph = true,
  15200. .print_backward_graph = true,
  15201. .n_gradient_accumulation = 1,
  15202. .lbfgs = {
  15203. .m = 6,
  15204. .n_iter = 100,
  15205. .max_linesearch = 20,
  15206. .eps = 1e-5f,
  15207. .ftol = 1e-4f,
  15208. .wolfe = 0.9f,
  15209. .min_step = 1e-20f,
  15210. .max_step = 1e+20f,
  15211. .linesearch = GGML_LINESEARCH_DEFAULT,
  15212. },
  15213. };
  15214. } break;
  15215. }
  15216. return result;
  15217. }
  15218. GGML_API void ggml_opt_init(
  15219. struct ggml_context * ctx,
  15220. struct ggml_opt_context * opt,
  15221. struct ggml_opt_params params,
  15222. int64_t nx) {
  15223. opt->ctx = ctx;
  15224. opt->params = params;
  15225. opt->iter = 0;
  15226. opt->nx = nx;
  15227. opt->just_initialized = true;
  15228. if (opt->ctx == NULL) {
  15229. struct ggml_init_params ctx_opt_params;
  15230. if (opt->params.type == GGML_OPT_ADAM) {
  15231. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  15232. if (opt->params.past > 0) {
  15233. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15234. }
  15235. } else if (opt->params.type == GGML_OPT_LBFGS) {
  15236. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  15237. if (opt->params.past > 0) {
  15238. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15239. }
  15240. }
  15241. ctx_opt_params.mem_buffer = NULL;
  15242. ctx_opt_params.no_alloc = false;
  15243. opt->ctx = ggml_init(ctx_opt_params);
  15244. }
  15245. switch (opt->params.type) {
  15246. case GGML_OPT_ADAM:
  15247. {
  15248. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15249. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15250. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15251. opt->adam.pf = params.past > 0
  15252. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15253. : NULL;
  15254. ggml_set_zero(opt->adam.m);
  15255. ggml_set_zero(opt->adam.v);
  15256. if (opt->adam.pf) {
  15257. ggml_set_zero(opt->adam.pf);
  15258. }
  15259. } break;
  15260. case GGML_OPT_LBFGS:
  15261. {
  15262. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15263. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15264. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15265. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15266. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15267. opt->lbfgs.pf = params.past > 0
  15268. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15269. : NULL;
  15270. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15271. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15272. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15273. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15274. ggml_set_zero(opt->lbfgs.x);
  15275. ggml_set_zero(opt->lbfgs.xp);
  15276. ggml_set_zero(opt->lbfgs.g);
  15277. ggml_set_zero(opt->lbfgs.gp);
  15278. ggml_set_zero(opt->lbfgs.d);
  15279. if (opt->lbfgs.pf) {
  15280. ggml_set_zero(opt->lbfgs.pf);
  15281. }
  15282. ggml_set_zero(opt->lbfgs.lmal);
  15283. ggml_set_zero(opt->lbfgs.lmys);
  15284. ggml_set_zero(opt->lbfgs.lms);
  15285. ggml_set_zero(opt->lbfgs.lmy);
  15286. } break;
  15287. }
  15288. }
  15289. enum ggml_opt_result ggml_opt(
  15290. struct ggml_context * ctx,
  15291. struct ggml_opt_params params,
  15292. struct ggml_tensor * f) {
  15293. bool free_ctx = false;
  15294. if (ctx == NULL) {
  15295. struct ggml_init_params params_ctx = {
  15296. .mem_size = 16*1024*1024,
  15297. .mem_buffer = NULL,
  15298. .no_alloc = false,
  15299. };
  15300. ctx = ggml_init(params_ctx);
  15301. if (ctx == NULL) {
  15302. return GGML_OPT_NO_CONTEXT;
  15303. }
  15304. free_ctx = true;
  15305. }
  15306. enum ggml_opt_result result = GGML_OPT_OK;
  15307. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  15308. ggml_opt_init(ctx, opt, params, 0);
  15309. result = ggml_opt_resume(ctx, opt, f);
  15310. if (free_ctx) {
  15311. ggml_free(ctx);
  15312. }
  15313. return result;
  15314. }
  15315. enum ggml_opt_result ggml_opt_resume(
  15316. struct ggml_context * ctx,
  15317. struct ggml_opt_context * opt,
  15318. struct ggml_tensor * f) {
  15319. // build forward + backward compute graphs
  15320. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  15321. ggml_build_forward_expand(gf, f);
  15322. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  15323. ggml_build_backward_expand(ctx, gf, gb, true);
  15324. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  15325. }
  15326. enum ggml_opt_result ggml_opt_resume_g(
  15327. struct ggml_context * ctx,
  15328. struct ggml_opt_context * opt,
  15329. struct ggml_tensor * f,
  15330. struct ggml_cgraph * gf,
  15331. struct ggml_cgraph * gb,
  15332. ggml_opt_callback callback,
  15333. void * callback_data) {
  15334. // build forward + backward compute graphs
  15335. enum ggml_opt_result result = GGML_OPT_OK;
  15336. switch (opt->params.type) {
  15337. case GGML_OPT_ADAM:
  15338. {
  15339. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15340. } break;
  15341. case GGML_OPT_LBFGS:
  15342. {
  15343. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15344. } break;
  15345. }
  15346. if (opt->params.print_forward_graph) {
  15347. ggml_graph_print (gf);
  15348. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  15349. }
  15350. if (opt->params.print_backward_graph) {
  15351. ggml_graph_print (gb);
  15352. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  15353. }
  15354. return result;
  15355. }
  15356. ////////////////////////////////////////////////////////////////////////////////
  15357. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15358. assert(k % QK4_0 == 0);
  15359. const int nb = k / QK4_0;
  15360. for (int b = 0; b < n; b += k) {
  15361. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  15362. quantize_row_q4_0_reference(src + b, y, k);
  15363. for (int i = 0; i < nb; i++) {
  15364. for (int j = 0; j < QK4_0; j += 2) {
  15365. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15366. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15367. hist[vi0]++;
  15368. hist[vi1]++;
  15369. }
  15370. }
  15371. }
  15372. return (n/QK4_0*sizeof(block_q4_0));
  15373. }
  15374. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15375. assert(k % QK4_1 == 0);
  15376. const int nb = k / QK4_1;
  15377. for (int b = 0; b < n; b += k) {
  15378. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  15379. quantize_row_q4_1_reference(src + b, y, k);
  15380. for (int i = 0; i < nb; i++) {
  15381. for (int j = 0; j < QK4_1; j += 2) {
  15382. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15383. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15384. hist[vi0]++;
  15385. hist[vi1]++;
  15386. }
  15387. }
  15388. }
  15389. return (n/QK4_1*sizeof(block_q4_1));
  15390. }
  15391. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15392. assert(k % QK5_0 == 0);
  15393. const int nb = k / QK5_0;
  15394. for (int b = 0; b < n; b += k) {
  15395. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  15396. quantize_row_q5_0_reference(src + b, y, k);
  15397. for (int i = 0; i < nb; i++) {
  15398. uint32_t qh;
  15399. memcpy(&qh, &y[i].qh, sizeof(qh));
  15400. for (int j = 0; j < QK5_0; j += 2) {
  15401. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  15402. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  15403. // cast to 16 bins
  15404. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15405. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15406. hist[vi0]++;
  15407. hist[vi1]++;
  15408. }
  15409. }
  15410. }
  15411. return (n/QK5_0*sizeof(block_q5_0));
  15412. }
  15413. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15414. assert(k % QK5_1 == 0);
  15415. const int nb = k / QK5_1;
  15416. for (int b = 0; b < n; b += k) {
  15417. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  15418. quantize_row_q5_1_reference(src + b, y, k);
  15419. for (int i = 0; i < nb; i++) {
  15420. uint32_t qh;
  15421. memcpy(&qh, &y[i].qh, sizeof(qh));
  15422. for (int j = 0; j < QK5_1; j += 2) {
  15423. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  15424. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  15425. // cast to 16 bins
  15426. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15427. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15428. hist[vi0]++;
  15429. hist[vi1]++;
  15430. }
  15431. }
  15432. }
  15433. return (n/QK5_1*sizeof(block_q5_1));
  15434. }
  15435. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15436. assert(k % QK8_0 == 0);
  15437. const int nb = k / QK8_0;
  15438. for (int b = 0; b < n; b += k) {
  15439. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  15440. quantize_row_q8_0_reference(src + b, y, k);
  15441. for (int i = 0; i < nb; i++) {
  15442. for (int j = 0; j < QK8_0; ++j) {
  15443. const int8_t vi = y[i].qs[j];
  15444. hist[vi/16 + 8]++;
  15445. }
  15446. }
  15447. }
  15448. return (n/QK8_0*sizeof(block_q8_0));
  15449. }
  15450. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  15451. size_t result = 0;
  15452. switch (type) {
  15453. case GGML_TYPE_Q4_0:
  15454. {
  15455. GGML_ASSERT(start % QK4_0 == 0);
  15456. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  15457. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  15458. } break;
  15459. case GGML_TYPE_Q4_1:
  15460. {
  15461. GGML_ASSERT(start % QK4_1 == 0);
  15462. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  15463. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  15464. } break;
  15465. case GGML_TYPE_Q5_0:
  15466. {
  15467. GGML_ASSERT(start % QK5_0 == 0);
  15468. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  15469. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  15470. } break;
  15471. case GGML_TYPE_Q5_1:
  15472. {
  15473. GGML_ASSERT(start % QK5_1 == 0);
  15474. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  15475. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  15476. } break;
  15477. case GGML_TYPE_Q8_0:
  15478. {
  15479. GGML_ASSERT(start % QK8_0 == 0);
  15480. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  15481. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  15482. } break;
  15483. case GGML_TYPE_Q2_K:
  15484. {
  15485. GGML_ASSERT(start % QK_K == 0);
  15486. block_q2_K * block = (block_q2_K*)dst + start / QK_K;
  15487. result = ggml_quantize_q2_K(src + start, block, n, n, hist);
  15488. } break;
  15489. case GGML_TYPE_Q3_K:
  15490. {
  15491. GGML_ASSERT(start % QK_K == 0);
  15492. block_q3_K * block = (block_q3_K*)dst + start / QK_K;
  15493. result = ggml_quantize_q3_K(src + start, block, n, n, hist);
  15494. } break;
  15495. case GGML_TYPE_Q4_K:
  15496. {
  15497. GGML_ASSERT(start % QK_K == 0);
  15498. block_q4_K * block = (block_q4_K*)dst + start / QK_K;
  15499. result = ggml_quantize_q4_K(src + start, block, n, n, hist);
  15500. } break;
  15501. case GGML_TYPE_Q5_K:
  15502. {
  15503. GGML_ASSERT(start % QK_K == 0);
  15504. block_q5_K * block = (block_q5_K*)dst + start / QK_K;
  15505. result = ggml_quantize_q5_K(src + start, block, n, n, hist);
  15506. } break;
  15507. case GGML_TYPE_Q6_K:
  15508. {
  15509. GGML_ASSERT(start % QK_K == 0);
  15510. block_q6_K * block = (block_q6_K*)dst + start / QK_K;
  15511. result = ggml_quantize_q6_K(src + start, block, n, n, hist);
  15512. } break;
  15513. case GGML_TYPE_IQ2_XXS:
  15514. {
  15515. GGML_ASSERT(start % QK_K == 0);
  15516. block_iq2_xxs * block = (block_iq2_xxs*)dst + start / QK_K;
  15517. result = ggml_quantize_iq2_xxs(src + start, block, n, n, hist);
  15518. } break;
  15519. case GGML_TYPE_IQ2_XS:
  15520. {
  15521. GGML_ASSERT(start % QK_K == 0);
  15522. block_iq2_xs * block = (block_iq2_xs*)dst + start / QK_K;
  15523. result = ggml_quantize_iq2_xs(src + start, block, n, n, hist);
  15524. } break;
  15525. case GGML_TYPE_F16:
  15526. {
  15527. int elemsize = sizeof(ggml_fp16_t);
  15528. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  15529. result = n * elemsize;
  15530. } break;
  15531. case GGML_TYPE_F32:
  15532. {
  15533. int elemsize = sizeof(float);
  15534. result = n * elemsize;
  15535. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  15536. } break;
  15537. default:
  15538. assert(false);
  15539. }
  15540. return result;
  15541. }
  15542. ////////////////////////////////////////////////////////////////////////////////
  15543. struct gguf_str {
  15544. uint64_t n; // GGUFv2
  15545. char * data;
  15546. };
  15547. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  15548. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  15549. [GGUF_TYPE_INT8] = sizeof(int8_t),
  15550. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  15551. [GGUF_TYPE_INT16] = sizeof(int16_t),
  15552. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  15553. [GGUF_TYPE_INT32] = sizeof(int32_t),
  15554. [GGUF_TYPE_FLOAT32] = sizeof(float),
  15555. [GGUF_TYPE_BOOL] = sizeof(bool),
  15556. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  15557. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  15558. [GGUF_TYPE_INT64] = sizeof(int64_t),
  15559. [GGUF_TYPE_FLOAT64] = sizeof(double),
  15560. [GGUF_TYPE_ARRAY] = 0, // undefined
  15561. };
  15562. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  15563. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  15564. [GGUF_TYPE_UINT8] = "u8",
  15565. [GGUF_TYPE_INT8] = "i8",
  15566. [GGUF_TYPE_UINT16] = "u16",
  15567. [GGUF_TYPE_INT16] = "i16",
  15568. [GGUF_TYPE_UINT32] = "u32",
  15569. [GGUF_TYPE_INT32] = "i32",
  15570. [GGUF_TYPE_FLOAT32] = "f32",
  15571. [GGUF_TYPE_BOOL] = "bool",
  15572. [GGUF_TYPE_STRING] = "str",
  15573. [GGUF_TYPE_ARRAY] = "arr",
  15574. [GGUF_TYPE_UINT64] = "u64",
  15575. [GGUF_TYPE_INT64] = "i64",
  15576. [GGUF_TYPE_FLOAT64] = "f64",
  15577. };
  15578. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  15579. union gguf_value {
  15580. uint8_t uint8;
  15581. int8_t int8;
  15582. uint16_t uint16;
  15583. int16_t int16;
  15584. uint32_t uint32;
  15585. int32_t int32;
  15586. float float32;
  15587. uint64_t uint64;
  15588. int64_t int64;
  15589. double float64;
  15590. bool bool_;
  15591. struct gguf_str str;
  15592. struct {
  15593. enum gguf_type type;
  15594. uint64_t n; // GGUFv2
  15595. void * data;
  15596. } arr;
  15597. };
  15598. struct gguf_kv {
  15599. struct gguf_str key;
  15600. enum gguf_type type;
  15601. union gguf_value value;
  15602. };
  15603. struct gguf_header {
  15604. char magic[4];
  15605. uint32_t version;
  15606. uint64_t n_tensors; // GGUFv2
  15607. uint64_t n_kv; // GGUFv2
  15608. };
  15609. struct gguf_tensor_info {
  15610. struct gguf_str name;
  15611. uint32_t n_dims;
  15612. uint64_t ne[GGML_MAX_DIMS];
  15613. enum ggml_type type;
  15614. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  15615. // for writing API
  15616. const void * data;
  15617. size_t size;
  15618. };
  15619. struct gguf_context {
  15620. struct gguf_header header;
  15621. struct gguf_kv * kv;
  15622. struct gguf_tensor_info * infos;
  15623. size_t alignment;
  15624. size_t offset; // offset of `data` from beginning of file
  15625. size_t size; // size of `data` in bytes
  15626. //uint8_t * padding;
  15627. void * data;
  15628. };
  15629. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  15630. const size_t n = fread(dst, 1, size, file);
  15631. *offset += n;
  15632. return n == size;
  15633. }
  15634. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  15635. p->n = 0;
  15636. p->data = NULL;
  15637. bool ok = true;
  15638. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset); p->data = calloc(p->n + 1, 1);
  15639. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  15640. return ok;
  15641. }
  15642. struct gguf_context * gguf_init_empty(void) {
  15643. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  15644. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  15645. ctx->header.version = GGUF_VERSION;
  15646. ctx->header.n_tensors = 0;
  15647. ctx->header.n_kv = 0;
  15648. ctx->kv = NULL;
  15649. ctx->infos = NULL;
  15650. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  15651. ctx->offset = 0;
  15652. ctx->size = 0;
  15653. ctx->data = NULL;
  15654. return ctx;
  15655. }
  15656. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  15657. FILE * file = fopen(fname, "rb");
  15658. if (!file) {
  15659. return NULL;
  15660. }
  15661. // offset from start of file
  15662. size_t offset = 0;
  15663. char magic[4];
  15664. // check the magic before making allocations
  15665. {
  15666. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  15667. for (uint32_t i = 0; i < sizeof(magic); i++) {
  15668. if (magic[i] != GGUF_MAGIC[i]) {
  15669. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  15670. fclose(file);
  15671. return NULL;
  15672. }
  15673. }
  15674. }
  15675. bool ok = true;
  15676. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  15677. // read the header
  15678. {
  15679. strncpy(ctx->header.magic, magic, 4);
  15680. ctx->kv = NULL;
  15681. ctx->infos = NULL;
  15682. ctx->data = NULL;
  15683. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  15684. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  15685. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  15686. if (ctx->header.version == 1) {
  15687. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  15688. fclose(file);
  15689. gguf_free(ctx);
  15690. return NULL;
  15691. }
  15692. if (!ok) {
  15693. fprintf(stderr, "%s: failed to read header\n", __func__);
  15694. fclose(file);
  15695. gguf_free(ctx);
  15696. return NULL;
  15697. }
  15698. }
  15699. // read the kv pairs
  15700. {
  15701. ctx->kv = malloc(ctx->header.n_kv * sizeof(struct gguf_kv));
  15702. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  15703. struct gguf_kv * kv = &ctx->kv[i];
  15704. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  15705. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  15706. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  15707. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  15708. switch (kv->type) {
  15709. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  15710. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  15711. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  15712. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  15713. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  15714. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  15715. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  15716. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  15717. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  15718. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  15719. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  15720. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  15721. case GGUF_TYPE_ARRAY:
  15722. {
  15723. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  15724. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  15725. switch (kv->value.arr.type) {
  15726. case GGUF_TYPE_UINT8:
  15727. case GGUF_TYPE_INT8:
  15728. case GGUF_TYPE_UINT16:
  15729. case GGUF_TYPE_INT16:
  15730. case GGUF_TYPE_UINT32:
  15731. case GGUF_TYPE_INT32:
  15732. case GGUF_TYPE_FLOAT32:
  15733. case GGUF_TYPE_UINT64:
  15734. case GGUF_TYPE_INT64:
  15735. case GGUF_TYPE_FLOAT64:
  15736. case GGUF_TYPE_BOOL:
  15737. {
  15738. kv->value.arr.data = malloc(kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  15739. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type], &offset);
  15740. } break;
  15741. case GGUF_TYPE_STRING:
  15742. {
  15743. kv->value.arr.data = malloc(kv->value.arr.n * sizeof(struct gguf_str));
  15744. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  15745. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  15746. }
  15747. } break;
  15748. case GGUF_TYPE_ARRAY:
  15749. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  15750. }
  15751. } break;
  15752. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  15753. }
  15754. if (!ok) {
  15755. break;
  15756. }
  15757. }
  15758. if (!ok) {
  15759. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  15760. fclose(file);
  15761. gguf_free(ctx);
  15762. return NULL;
  15763. }
  15764. }
  15765. // read the tensor infos
  15766. {
  15767. ctx->infos = malloc(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  15768. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  15769. struct gguf_tensor_info * info = &ctx->infos[i];
  15770. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15771. info->ne[j] = 1;
  15772. }
  15773. ok = ok && gguf_fread_str(file, &info->name, &offset);
  15774. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  15775. for (uint32_t j = 0; j < info->n_dims; ++j) {
  15776. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  15777. }
  15778. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  15779. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  15780. if (!ok) {
  15781. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  15782. fclose(file);
  15783. gguf_free(ctx);
  15784. return NULL;
  15785. }
  15786. }
  15787. }
  15788. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  15789. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  15790. if (alignment_idx != -1) {
  15791. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  15792. }
  15793. // we require the data section to be aligned, so take into account any padding
  15794. {
  15795. const size_t offset_pad = offset % ctx->alignment;
  15796. if (offset_pad != 0) {
  15797. offset += ctx->alignment - offset_pad;
  15798. fseek(file, offset, SEEK_SET);
  15799. }
  15800. }
  15801. // store the current file offset - this is where the data section starts
  15802. ctx->offset = offset;
  15803. // compute the total size of the data section, taking into account the alignment
  15804. {
  15805. ctx->size = 0;
  15806. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  15807. struct gguf_tensor_info * info = &ctx->infos[i];
  15808. const int64_t ne =
  15809. (int64_t) info->ne[0] *
  15810. (int64_t) info->ne[1] *
  15811. (int64_t) info->ne[2] *
  15812. (int64_t) info->ne[3];
  15813. if (ne % ggml_blck_size(info->type) != 0) {
  15814. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  15815. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  15816. fclose(file);
  15817. gguf_free(ctx);
  15818. return NULL;
  15819. }
  15820. const size_t size_cur = ggml_row_size(info->type, ne);
  15821. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  15822. }
  15823. }
  15824. // load the tensor data only if requested
  15825. if (params.ctx != NULL) {
  15826. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  15827. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  15828. // the ggml_tensor structs to the appropriate locations in the binary blob
  15829. // compute the exact size needed for the new ggml_context
  15830. const size_t mem_size =
  15831. params.no_alloc ?
  15832. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  15833. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  15834. struct ggml_init_params pdata = {
  15835. .mem_size = mem_size,
  15836. .mem_buffer = NULL,
  15837. .no_alloc = params.no_alloc,
  15838. };
  15839. *params.ctx = ggml_init(pdata);
  15840. struct ggml_context * ctx_data = *params.ctx;
  15841. struct ggml_tensor * data = NULL;
  15842. if (!params.no_alloc) {
  15843. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  15844. ok = ok && data != NULL;
  15845. // read the binary blob with the tensor data
  15846. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  15847. if (!ok) {
  15848. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  15849. fclose(file);
  15850. ggml_free(ctx_data);
  15851. gguf_free(ctx);
  15852. return NULL;
  15853. }
  15854. ctx->data = data->data;
  15855. }
  15856. ggml_set_no_alloc(ctx_data, true);
  15857. // create the tensors
  15858. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  15859. const int64_t ne[GGML_MAX_DIMS] = {
  15860. ctx->infos[i].ne[0],
  15861. ctx->infos[i].ne[1],
  15862. ctx->infos[i].ne[2],
  15863. ctx->infos[i].ne[3],
  15864. };
  15865. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  15866. ok = ok && cur != NULL;
  15867. ggml_set_name(cur, ctx->infos[i].name.data);
  15868. if (!ok) {
  15869. break;
  15870. }
  15871. // point the data member to the appropriate location in the binary blob using the tensor infos
  15872. if (!params.no_alloc) {
  15873. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  15874. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  15875. }
  15876. }
  15877. if (!ok) {
  15878. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  15879. fclose(file);
  15880. ggml_free(ctx_data);
  15881. gguf_free(ctx);
  15882. return NULL;
  15883. }
  15884. ggml_set_no_alloc(ctx_data, params.no_alloc);
  15885. }
  15886. fclose(file);
  15887. return ctx;
  15888. }
  15889. void gguf_free(struct gguf_context * ctx) {
  15890. if (ctx == NULL) {
  15891. return;
  15892. }
  15893. if (ctx->kv) {
  15894. // free string memory - not great..
  15895. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  15896. struct gguf_kv * kv = &ctx->kv[i];
  15897. if (kv->key.data) {
  15898. free(kv->key.data);
  15899. }
  15900. if (kv->type == GGUF_TYPE_STRING) {
  15901. if (kv->value.str.data) {
  15902. free(kv->value.str.data);
  15903. }
  15904. }
  15905. if (kv->type == GGUF_TYPE_ARRAY) {
  15906. if (kv->value.arr.data) {
  15907. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  15908. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  15909. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  15910. if (str->data) {
  15911. free(str->data);
  15912. }
  15913. }
  15914. }
  15915. free(kv->value.arr.data);
  15916. }
  15917. }
  15918. }
  15919. free(ctx->kv);
  15920. }
  15921. if (ctx->infos) {
  15922. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  15923. struct gguf_tensor_info * info = &ctx->infos[i];
  15924. if (info->name.data) {
  15925. free(info->name.data);
  15926. }
  15927. }
  15928. free(ctx->infos);
  15929. }
  15930. GGML_ALIGNED_FREE(ctx);
  15931. }
  15932. const char * gguf_type_name(enum gguf_type type) {
  15933. return GGUF_TYPE_NAME[type];
  15934. }
  15935. int gguf_get_version(const struct gguf_context * ctx) {
  15936. return ctx->header.version;
  15937. }
  15938. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  15939. return ctx->alignment;
  15940. }
  15941. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  15942. return ctx->offset;
  15943. }
  15944. void * gguf_get_data(const struct gguf_context * ctx) {
  15945. return ctx->data;
  15946. }
  15947. int gguf_get_n_kv(const struct gguf_context * ctx) {
  15948. return ctx->header.n_kv;
  15949. }
  15950. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  15951. // return -1 if key not found
  15952. int keyfound = -1;
  15953. const int n_kv = gguf_get_n_kv(ctx);
  15954. for (int i = 0; i < n_kv; ++i) {
  15955. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  15956. keyfound = i;
  15957. break;
  15958. }
  15959. }
  15960. return keyfound;
  15961. }
  15962. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  15963. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15964. return ctx->kv[key_id].key.data;
  15965. }
  15966. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  15967. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15968. return ctx->kv[key_id].type;
  15969. }
  15970. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  15971. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15972. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15973. return ctx->kv[key_id].value.arr.type;
  15974. }
  15975. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  15976. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15977. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15978. return ctx->kv[key_id].value.arr.data;
  15979. }
  15980. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  15981. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15982. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15983. struct gguf_kv * kv = &ctx->kv[key_id];
  15984. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  15985. return str->data;
  15986. }
  15987. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  15988. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15989. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15990. return ctx->kv[key_id].value.arr.n;
  15991. }
  15992. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  15993. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15994. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  15995. return ctx->kv[key_id].value.uint8;
  15996. }
  15997. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  15998. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15999. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  16000. return ctx->kv[key_id].value.int8;
  16001. }
  16002. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  16003. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16004. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  16005. return ctx->kv[key_id].value.uint16;
  16006. }
  16007. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  16008. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16009. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  16010. return ctx->kv[key_id].value.int16;
  16011. }
  16012. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  16013. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16014. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  16015. return ctx->kv[key_id].value.uint32;
  16016. }
  16017. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  16018. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16019. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  16020. return ctx->kv[key_id].value.int32;
  16021. }
  16022. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  16023. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16024. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  16025. return ctx->kv[key_id].value.float32;
  16026. }
  16027. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  16028. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16029. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  16030. return ctx->kv[key_id].value.uint64;
  16031. }
  16032. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  16033. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16034. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  16035. return ctx->kv[key_id].value.int64;
  16036. }
  16037. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  16038. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16039. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  16040. return ctx->kv[key_id].value.float64;
  16041. }
  16042. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  16043. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16044. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  16045. return ctx->kv[key_id].value.bool_;
  16046. }
  16047. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  16048. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16049. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  16050. return ctx->kv[key_id].value.str.data;
  16051. }
  16052. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  16053. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16054. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  16055. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  16056. return &ctx->kv[key_id].value;
  16057. }
  16058. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  16059. return ctx->header.n_tensors;
  16060. }
  16061. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  16062. // return -1 if tensor not found
  16063. int tensorfound = -1;
  16064. const int n_tensors = gguf_get_n_tensors(ctx);
  16065. for (int i = 0; i < n_tensors; ++i) {
  16066. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  16067. tensorfound = i;
  16068. break;
  16069. }
  16070. }
  16071. return tensorfound;
  16072. }
  16073. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  16074. return ctx->infos[i].offset;
  16075. }
  16076. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  16077. return ctx->infos[i].name.data;
  16078. }
  16079. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  16080. return ctx->infos[i].type;
  16081. }
  16082. // returns the index
  16083. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  16084. const int idx = gguf_find_key(ctx, key);
  16085. if (idx >= 0) {
  16086. return idx;
  16087. }
  16088. const int n_kv = gguf_get_n_kv(ctx);
  16089. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  16090. ctx->kv[n_kv].key.n = strlen(key);
  16091. ctx->kv[n_kv].key.data = strdup(key);
  16092. ctx->header.n_kv++;
  16093. return n_kv;
  16094. }
  16095. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  16096. const int idx = gguf_get_or_add_key(ctx, key);
  16097. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  16098. ctx->kv[idx].value.uint8 = val;
  16099. }
  16100. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  16101. const int idx = gguf_get_or_add_key(ctx, key);
  16102. ctx->kv[idx].type = GGUF_TYPE_INT8;
  16103. ctx->kv[idx].value.int8 = val;
  16104. }
  16105. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  16106. const int idx = gguf_get_or_add_key(ctx, key);
  16107. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  16108. ctx->kv[idx].value.uint16 = val;
  16109. }
  16110. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  16111. const int idx = gguf_get_or_add_key(ctx, key);
  16112. ctx->kv[idx].type = GGUF_TYPE_INT16;
  16113. ctx->kv[idx].value.int16 = val;
  16114. }
  16115. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  16116. const int idx = gguf_get_or_add_key(ctx, key);
  16117. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  16118. ctx->kv[idx].value.uint32 = val;
  16119. }
  16120. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  16121. const int idx = gguf_get_or_add_key(ctx, key);
  16122. ctx->kv[idx].type = GGUF_TYPE_INT32;
  16123. ctx->kv[idx].value.int32 = val;
  16124. }
  16125. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  16126. const int idx = gguf_get_or_add_key(ctx, key);
  16127. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  16128. ctx->kv[idx].value.float32 = val;
  16129. }
  16130. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  16131. const int idx = gguf_get_or_add_key(ctx, key);
  16132. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  16133. ctx->kv[idx].value.uint64 = val;
  16134. }
  16135. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  16136. const int idx = gguf_get_or_add_key(ctx, key);
  16137. ctx->kv[idx].type = GGUF_TYPE_INT64;
  16138. ctx->kv[idx].value.int64 = val;
  16139. }
  16140. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  16141. const int idx = gguf_get_or_add_key(ctx, key);
  16142. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  16143. ctx->kv[idx].value.float64 = val;
  16144. }
  16145. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  16146. const int idx = gguf_get_or_add_key(ctx, key);
  16147. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  16148. ctx->kv[idx].value.bool_ = val;
  16149. }
  16150. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  16151. const int idx = gguf_get_or_add_key(ctx, key);
  16152. ctx->kv[idx].type = GGUF_TYPE_STRING;
  16153. ctx->kv[idx].value.str.n = strlen(val);
  16154. ctx->kv[idx].value.str.data = strdup(val);
  16155. }
  16156. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  16157. const int idx = gguf_get_or_add_key(ctx, key);
  16158. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16159. ctx->kv[idx].value.arr.type = type;
  16160. ctx->kv[idx].value.arr.n = n;
  16161. ctx->kv[idx].value.arr.data = malloc(n*GGUF_TYPE_SIZE[type]);
  16162. memcpy(ctx->kv[idx].value.arr.data, data, n*GGUF_TYPE_SIZE[type]);
  16163. }
  16164. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  16165. const int idx = gguf_get_or_add_key(ctx, key);
  16166. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16167. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  16168. ctx->kv[idx].value.arr.n = n;
  16169. ctx->kv[idx].value.arr.data = malloc(n*sizeof(struct gguf_str));
  16170. for (int i = 0; i < n; i++) {
  16171. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  16172. str->n = strlen(data[i]);
  16173. str->data = strdup(data[i]);
  16174. }
  16175. }
  16176. // set or add KV pairs from another context
  16177. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  16178. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  16179. switch (src->kv[i].type) {
  16180. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  16181. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  16182. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  16183. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  16184. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  16185. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  16186. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  16187. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  16188. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  16189. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  16190. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  16191. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  16192. case GGUF_TYPE_ARRAY:
  16193. {
  16194. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  16195. const char ** data = malloc(src->kv[i].value.arr.n*sizeof(char *));
  16196. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  16197. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  16198. }
  16199. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  16200. free((void *)data);
  16201. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  16202. GGML_ASSERT(false && "nested arrays not supported");
  16203. } else {
  16204. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  16205. }
  16206. } break;
  16207. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16208. }
  16209. }
  16210. }
  16211. void gguf_add_tensor(
  16212. struct gguf_context * ctx,
  16213. const struct ggml_tensor * tensor) {
  16214. const int idx = ctx->header.n_tensors;
  16215. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  16216. ctx->infos[idx].name.n = strlen(tensor->name);
  16217. ctx->infos[idx].name.data = strdup(tensor->name);
  16218. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  16219. ctx->infos[idx].ne[i] = 1;
  16220. }
  16221. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  16222. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  16223. ctx->infos[idx].ne[i] = tensor->ne[i];
  16224. }
  16225. ctx->infos[idx].type = tensor->type;
  16226. ctx->infos[idx].offset = 0;
  16227. ctx->infos[idx].data = tensor->data;
  16228. ctx->infos[idx].size = ggml_nbytes(tensor);
  16229. if (ctx->header.n_tensors > 0) {
  16230. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  16231. }
  16232. ctx->header.n_tensors++;
  16233. }
  16234. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  16235. const int idx = gguf_find_tensor(ctx, name);
  16236. if (idx < 0) {
  16237. GGML_ASSERT(false && "tensor not found");
  16238. }
  16239. ctx->infos[idx].type = type;
  16240. }
  16241. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  16242. const int idx = gguf_find_tensor(ctx, name);
  16243. if (idx < 0) {
  16244. GGML_ASSERT(false && "tensor not found");
  16245. }
  16246. ctx->infos[idx].data = data;
  16247. ctx->infos[idx].size = size;
  16248. // update offsets
  16249. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  16250. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  16251. }
  16252. }
  16253. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  16254. // fwrite(&val->n, sizeof(val->n), 1, file);
  16255. // fwrite(val->data, sizeof(char), val->n, file);
  16256. //}
  16257. //
  16258. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  16259. // fwrite(val, sizeof(char), size, file);
  16260. //}
  16261. struct gguf_buf {
  16262. void * data;
  16263. size_t size;
  16264. size_t offset;
  16265. };
  16266. static struct gguf_buf gguf_buf_init(size_t size) {
  16267. struct gguf_buf buf = {
  16268. /*buf.data =*/ size == 0 ? NULL : malloc(size),
  16269. /*buf.size =*/ size,
  16270. /*buf.offset =*/ 0,
  16271. };
  16272. return buf;
  16273. }
  16274. static void gguf_buf_free(struct gguf_buf buf) {
  16275. if (buf.data) {
  16276. free(buf.data);
  16277. }
  16278. }
  16279. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  16280. if (buf->offset + size > buf->size) {
  16281. buf->size = 1.5*(buf->offset + size);
  16282. if (buf->data) {
  16283. buf->data = realloc(buf->data, buf->size);
  16284. }
  16285. }
  16286. }
  16287. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  16288. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  16289. if (buf->data) {
  16290. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  16291. }
  16292. buf->offset += sizeof(val->n);
  16293. if (buf->data) {
  16294. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  16295. }
  16296. buf->offset += val->n;
  16297. }
  16298. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  16299. gguf_buf_grow(buf, el_size);
  16300. if (buf->data) {
  16301. memcpy((char *) buf->data + buf->offset, val, el_size);
  16302. }
  16303. buf->offset += el_size;
  16304. }
  16305. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  16306. // write header
  16307. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  16308. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  16309. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  16310. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  16311. // write key-value pairs
  16312. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  16313. struct gguf_kv * kv = &ctx->kv[i];
  16314. gguf_bwrite_str(buf, &kv->key);
  16315. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  16316. switch (kv->type) {
  16317. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  16318. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  16319. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  16320. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  16321. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  16322. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  16323. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  16324. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  16325. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  16326. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  16327. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  16328. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  16329. case GGUF_TYPE_ARRAY:
  16330. {
  16331. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  16332. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  16333. switch (kv->value.arr.type) {
  16334. case GGUF_TYPE_UINT8:
  16335. case GGUF_TYPE_INT8:
  16336. case GGUF_TYPE_UINT16:
  16337. case GGUF_TYPE_INT16:
  16338. case GGUF_TYPE_UINT32:
  16339. case GGUF_TYPE_INT32:
  16340. case GGUF_TYPE_FLOAT32:
  16341. case GGUF_TYPE_UINT64:
  16342. case GGUF_TYPE_INT64:
  16343. case GGUF_TYPE_FLOAT64:
  16344. case GGUF_TYPE_BOOL:
  16345. {
  16346. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  16347. } break;
  16348. case GGUF_TYPE_STRING:
  16349. {
  16350. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  16351. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  16352. }
  16353. } break;
  16354. case GGUF_TYPE_ARRAY:
  16355. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16356. }
  16357. } break;
  16358. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  16359. }
  16360. }
  16361. // write tensor infos
  16362. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16363. struct gguf_tensor_info * info = &ctx->infos[i];
  16364. gguf_bwrite_str(buf, &info->name);
  16365. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  16366. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16367. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  16368. }
  16369. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  16370. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  16371. }
  16372. // we require the data section to be aligned, so take into account any padding
  16373. {
  16374. const size_t offset = buf->offset;
  16375. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  16376. if (offset_pad != offset) {
  16377. uint8_t pad = 0;
  16378. for (size_t i = 0; i < offset_pad - offset; ++i) {
  16379. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16380. }
  16381. }
  16382. }
  16383. if (only_meta) {
  16384. return;
  16385. }
  16386. size_t offset = 0;
  16387. // write tensor data
  16388. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16389. struct gguf_tensor_info * info = &ctx->infos[i];
  16390. const size_t size = info->size;
  16391. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  16392. gguf_bwrite_el(buf, info->data, size);
  16393. if (size_pad != size) {
  16394. uint8_t pad = 0;
  16395. for (size_t j = 0; j < size_pad - size; ++j) {
  16396. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16397. }
  16398. }
  16399. GGML_ASSERT(offset == info->offset);
  16400. offset += size_pad;
  16401. }
  16402. }
  16403. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  16404. FILE * file = fopen(fname, "wb");
  16405. if (!file) {
  16406. GGML_ASSERT(false && "failed to open file for writing");
  16407. }
  16408. struct gguf_buf buf = gguf_buf_init(16*1024);
  16409. gguf_write_to_buf(ctx, &buf, only_meta);
  16410. fwrite(buf.data, 1, buf.offset, file);
  16411. gguf_buf_free(buf);
  16412. fclose(file);
  16413. }
  16414. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  16415. // no allocs - only compute size
  16416. struct gguf_buf buf = gguf_buf_init(0);
  16417. gguf_write_to_buf(ctx, &buf, true);
  16418. return buf.offset;
  16419. }
  16420. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  16421. struct gguf_buf buf = gguf_buf_init(16*1024);
  16422. gguf_write_to_buf(ctx, &buf, true);
  16423. memcpy(data, buf.data, buf.offset);
  16424. gguf_buf_free(buf);
  16425. }
  16426. ////////////////////////////////////////////////////////////////////////////////
  16427. int ggml_cpu_has_avx(void) {
  16428. #if defined(__AVX__)
  16429. return 1;
  16430. #else
  16431. return 0;
  16432. #endif
  16433. }
  16434. int ggml_cpu_has_avx_vnni(void) {
  16435. #if defined(__AVXVNNI__)
  16436. return 1;
  16437. #else
  16438. return 0;
  16439. #endif
  16440. }
  16441. int ggml_cpu_has_avx2(void) {
  16442. #if defined(__AVX2__)
  16443. return 1;
  16444. #else
  16445. return 0;
  16446. #endif
  16447. }
  16448. int ggml_cpu_has_avx512(void) {
  16449. #if defined(__AVX512F__)
  16450. return 1;
  16451. #else
  16452. return 0;
  16453. #endif
  16454. }
  16455. int ggml_cpu_has_avx512_vbmi(void) {
  16456. #if defined(__AVX512VBMI__)
  16457. return 1;
  16458. #else
  16459. return 0;
  16460. #endif
  16461. }
  16462. int ggml_cpu_has_avx512_vnni(void) {
  16463. #if defined(__AVX512VNNI__)
  16464. return 1;
  16465. #else
  16466. return 0;
  16467. #endif
  16468. }
  16469. int ggml_cpu_has_fma(void) {
  16470. #if defined(__FMA__)
  16471. return 1;
  16472. #else
  16473. return 0;
  16474. #endif
  16475. }
  16476. int ggml_cpu_has_neon(void) {
  16477. #if defined(__ARM_NEON)
  16478. return 1;
  16479. #else
  16480. return 0;
  16481. #endif
  16482. }
  16483. int ggml_cpu_has_arm_fma(void) {
  16484. #if defined(__ARM_FEATURE_FMA)
  16485. return 1;
  16486. #else
  16487. return 0;
  16488. #endif
  16489. }
  16490. int ggml_cpu_has_metal(void) {
  16491. #if defined(GGML_USE_METAL)
  16492. return 1;
  16493. #else
  16494. return 0;
  16495. #endif
  16496. }
  16497. int ggml_cpu_has_f16c(void) {
  16498. #if defined(__F16C__)
  16499. return 1;
  16500. #else
  16501. return 0;
  16502. #endif
  16503. }
  16504. int ggml_cpu_has_fp16_va(void) {
  16505. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  16506. return 1;
  16507. #else
  16508. return 0;
  16509. #endif
  16510. }
  16511. int ggml_cpu_has_wasm_simd(void) {
  16512. #if defined(__wasm_simd128__)
  16513. return 1;
  16514. #else
  16515. return 0;
  16516. #endif
  16517. }
  16518. int ggml_cpu_has_blas(void) {
  16519. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  16520. return 1;
  16521. #else
  16522. return 0;
  16523. #endif
  16524. }
  16525. int ggml_cpu_has_cublas(void) {
  16526. #if defined(GGML_USE_CUBLAS)
  16527. return 1;
  16528. #else
  16529. return 0;
  16530. #endif
  16531. }
  16532. int ggml_cpu_has_clblast(void) {
  16533. #if defined(GGML_USE_CLBLAST)
  16534. return 1;
  16535. #else
  16536. return 0;
  16537. #endif
  16538. }
  16539. int ggml_cpu_has_gpublas(void) {
  16540. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  16541. }
  16542. int ggml_cpu_has_sse3(void) {
  16543. #if defined(__SSE3__)
  16544. return 1;
  16545. #else
  16546. return 0;
  16547. #endif
  16548. }
  16549. int ggml_cpu_has_ssse3(void) {
  16550. #if defined(__SSSE3__)
  16551. return 1;
  16552. #else
  16553. return 0;
  16554. #endif
  16555. }
  16556. int ggml_cpu_has_vsx(void) {
  16557. #if defined(__POWER9_VECTOR__)
  16558. return 1;
  16559. #else
  16560. return 0;
  16561. #endif
  16562. }
  16563. ////////////////////////////////////////////////////////////////////////////////