tensor_mapping.py 61 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418
  1. from __future__ import annotations
  2. from typing import Sequence
  3. from .constants import MODEL_ARCH, MODEL_TENSOR, MODEL_TENSORS, TENSOR_NAMES
  4. class TensorNameMap:
  5. mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  6. # Token embeddings
  7. MODEL_TENSOR.TOKEN_EMBD: (
  8. "gpt_neox.embed_in", # gptneox
  9. "transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais exaone
  10. "transformer.word_embeddings", # falcon
  11. "word_embeddings", # bloom
  12. "model.embed_tokens", # llama-hf nemotron olmoe olmo2 rwkv6qwen2 glm4-0414 plamo2 granite-hybrid
  13. "tok_embeddings", # llama-pth
  14. "embeddings.word_embeddings", # bert nomic-bert
  15. "language_model.embedding.word_embeddings", # persimmon
  16. "wte", # gpt2
  17. "transformer.embd.wte", # phi2
  18. "model.tok_embeddings", # internlm2
  19. "model.embedding", # mamba-qbert
  20. "backbone.embedding", # mamba
  21. "backbone.embeddings", # mamba-hf
  22. "transformer.in_out_embed", # Grok
  23. "embedding.word_embeddings", # chatglm
  24. "transformer.token_embeddings", # openelm
  25. "shared", # t5
  26. "rwkv.embeddings", # rwkv6
  27. "model.embeddings", # rwkv7
  28. "model.word_embeddings", # bailingmoe
  29. "language_model.model.embed_tokens", # llama4
  30. "encoder", # neobert
  31. ),
  32. # Token type embeddings
  33. MODEL_TENSOR.TOKEN_TYPES: (
  34. "embeddings.token_type_embeddings", # bert nomic-bert
  35. ),
  36. # Normalization of token embeddings
  37. MODEL_TENSOR.TOKEN_EMBD_NORM: (
  38. "word_embeddings_layernorm", # bloom
  39. "embeddings.LayerNorm", # bert
  40. "emb_ln", # nomic-bert
  41. "transformer.norm", # openelm
  42. "rwkv.blocks.0.pre_ln", # rwkv
  43. "rwkv.blocks.0.pre_ln", # rwkv6
  44. "model.pre_ln", # rwkv7
  45. "model.layers.0.pre_norm", # rwkv7
  46. "backbone.norm", # wavtokenizer
  47. "model.embedding_norm", # lfm2
  48. ),
  49. # Position embeddings
  50. MODEL_TENSOR.POS_EMBD: (
  51. "transformer.wpe", # gpt2
  52. "embeddings.position_embeddings", # bert
  53. "wpe", # gpt2
  54. ),
  55. # Output
  56. MODEL_TENSOR.OUTPUT: (
  57. "embed_out", # gptneox
  58. "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone olmoe olmo2 phimoe plamo2
  59. "output", # llama-pth bloom internlm2
  60. "word_embeddings_for_head", # persimmon
  61. "lm_head.linear", # phi2
  62. "output_layer", # chatglm
  63. "head", # rwkv
  64. "head.out", # wavtokenizer
  65. "lm_head", # llama4
  66. ),
  67. # Output norm
  68. MODEL_TENSOR.OUTPUT_NORM: (
  69. "gpt_neox.final_layer_norm", # gptneox
  70. "transformer.ln_f", # gpt2 gpt-j falcon jais exaone
  71. "model.norm", # llama-hf baichuan internlm2 olmoe olmo2 phimoe plamo2
  72. "norm", # llama-pth
  73. "transformer.norm_f", # mpt dbrx
  74. "ln_f", # refact bloom qwen gpt2
  75. "language_model.encoder.final_layernorm", # persimmon
  76. "model.final_layernorm", # persimmon
  77. "lm_head.ln", # phi2
  78. "model.norm_f", # mamba-qbert
  79. "backbone.norm_f", # mamba
  80. "transformer.rms_norm", # Grok
  81. "encoder.final_layernorm", # chatglm
  82. "transformer.norm", # openelm
  83. "model.norm", # nemotron
  84. "rwkv.ln_out", # rwkv6
  85. "model.ln_out", # rwkv7
  86. "backbone.final_layer_norm", # wavtokenizer
  87. "model.norm", # llama4
  88. ),
  89. # Rope frequencies
  90. MODEL_TENSOR.ROPE_FREQS: (
  91. "rope.freqs", # llama-pth
  92. "rotary_pos_emb.inv_freq", # chatglm
  93. ),
  94. MODEL_TENSOR.ROPE_FACTORS_LONG: (),
  95. MODEL_TENSOR.ROPE_FACTORS_SHORT: (),
  96. MODEL_TENSOR.CONV1D: (
  97. "backbone.embed", # roberta
  98. ),
  99. }
  100. block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  101. # Attention norm
  102. MODEL_TENSOR.ATTN_NORM: (
  103. "gpt_neox.layers.{bid}.input_layernorm", # gptneox
  104. "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen jais exaone
  105. "transformer.blocks.{bid}.norm_1", # mpt
  106. "transformer.h.{bid}.input_layernorm", # falcon7b
  107. "h.{bid}.input_layernorm", # bloom
  108. "transformer.h.{bid}.ln_mlp", # falcon40b
  109. "model.layers.{bid}.input_layernorm", # llama-hf nemotron olmoe phimoe granite-hybrid
  110. "layers.{bid}.attention_norm", # llama-pth
  111. "language_model.encoder.layers.{bid}.input_layernorm", # persimmon
  112. "model.layers.{bid}.ln1", # yi
  113. "h.{bid}.ln_1", # gpt2
  114. "transformer.h.{bid}.ln", # phi2
  115. "model.layers.layers.{bid}.norm", # plamo
  116. "model.layers.layers.{bid}.pre_mixer_norm", # plamo2
  117. "model.layers.{bid}.attention_norm", # internlm2
  118. "model.layers.{bid}.norm", # mamba-qbert
  119. "backbone.layers.{bid}.norm", # mamba
  120. "transformer.decoder_layer.{bid}.rms_norm", # Grok
  121. "transformer.blocks.{bid}.norm_attn_norm.norm_1", # dbrx
  122. "encoder.layers.{bid}.input_layernorm", # chatglm
  123. "transformer.layers.{bid}.attn_norm", # openelm
  124. "rwkv.blocks.{bid}.ln1", # rwkv6
  125. "model.layers.{bid}.ln1", # rwkv7
  126. "model.layers.{bid}.input_layernorm", # llama4
  127. "transformer_encoder.{bid}.attention_norm", # neobert
  128. "model.layers.{bid}.operator_norm", # lfm2
  129. ),
  130. # Attention norm 2
  131. MODEL_TENSOR.ATTN_NORM_2: (
  132. "transformer.h.{bid}.ln_attn", # falcon40b
  133. "encoder.layer.{bid}.layer_norm_1", # jina-v2-code
  134. "rwkv.blocks.{bid}.ln2", # rwkv6
  135. "model.layers.{bid}.ln2", # rwkv7
  136. ),
  137. # Attention query-key-value
  138. MODEL_TENSOR.ATTN_QKV: (
  139. "gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
  140. "transformer.h.{bid}.attn.c_attn", # gpt2 qwen jais
  141. "transformer.blocks.{bid}.attn.Wqkv", # mpt
  142. "transformer.blocks.{bid}.norm_attn_norm.attn.Wqkv", # dbrx
  143. "transformer.h.{bid}.self_attention.query_key_value", # falcon
  144. "h.{bid}.self_attention.query_key_value", # bloom
  145. "language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
  146. "model.layers.{bid}.self_attn.query_key_value", # persimmon
  147. "h.{bid}.attn.c_attn", # gpt2
  148. "transformer.h.{bid}.mixer.Wqkv", # phi2
  149. "encoder.layers.{bid}.attn.Wqkv", # nomic-bert
  150. "encoder.layers.{bid}.mixer.Wqkv", # jina
  151. "model.layers.{bid}.self_attn.qkv_proj", # phi3
  152. "model.layers.layers.{bid}.mixer.qkv_proj", # plamo2
  153. "encoder.layers.{bid}.self_attention.query_key_value", # chatglm
  154. "transformer.layers.{bid}.attn.qkv_proj", # openelm
  155. "transformer_encoder.{bid}.qkv", # neobert
  156. ),
  157. # Attention query
  158. MODEL_TENSOR.ATTN_Q: (
  159. "model.layers.{bid}.self_attn.q_proj", # llama-hf nemotron olmoe olmo2 phimoe
  160. "model.layers.{bid}.self_attn.q_proj_no_perm", # llama-custom
  161. "layers.{bid}.attention.wq", # llama-pth
  162. "encoder.layer.{bid}.attention.self.query", # bert
  163. "transformer.layer.{bid}.attention.q_lin", # distillbert
  164. "transformer.h.{bid}.attn.q_proj", # gpt-j
  165. "model.layers.layers.{bid}.self_attn.q_proj", # plamo
  166. "model.layers.{bid}.attention.wq", # internlm2
  167. "transformer.decoder_layer.{bid}.multi_head_attention.query",# Grok
  168. "transformer.h.{bid}.attn.attention.q_proj", # exaone
  169. "model.layers.{bid}.self_attn.q_proj", # llama4
  170. ),
  171. # Attention key
  172. MODEL_TENSOR.ATTN_K: (
  173. "model.layers.{bid}.self_attn.k_proj", # llama-hf nemotron olmoe olmo2 phimoe
  174. "model.layers.{bid}.self_attn.k_proj_no_perm", # llama-custom
  175. "layers.{bid}.attention.wk", # llama-pth
  176. "encoder.layer.{bid}.attention.self.key", # bert
  177. "transformer.layer.{bid}.attention.k_lin", # distillbert
  178. "transformer.h.{bid}.attn.k_proj", # gpt-j
  179. "transformer.h.{bid}.attn.k", # refact
  180. "model.layers.layers.{bid}.self_attn.k_proj", # plamo
  181. "model.layers.{bid}.attention.wk", # internlm2
  182. "transformer.decoder_layer.{bid}.multi_head_attention.key",# Grok
  183. "transformer.h.{bid}.attn.attention.k_proj", # exaone
  184. "model.layers.{bid}.self_attn.k_proj", # llama4
  185. ),
  186. # Attention value
  187. MODEL_TENSOR.ATTN_V: (
  188. "model.layers.{bid}.self_attn.v_proj", # llama-hf nemotron olmoe olmo2 phimoe
  189. "layers.{bid}.attention.wv", # llama-pth
  190. "encoder.layer.{bid}.attention.self.value", # bert
  191. "transformer.layer.{bid}.attention.v_lin", # distillbert
  192. "transformer.h.{bid}.attn.v_proj", # gpt-j
  193. "transformer.h.{bid}.attn.v", # refact
  194. "model.layers.layers.{bid}.self_attn.v_proj", # plamo
  195. "model.layers.{bid}.attention.wv", # internlm2
  196. "transformer.decoder_layer.{bid}.multi_head_attention.value",# Grok
  197. "transformer.h.{bid}.attn.attention.v_proj", # exaone
  198. "model.layers.{bid}.self_attn.v_proj", # llama4
  199. ),
  200. # Attention output
  201. MODEL_TENSOR.ATTN_OUT: (
  202. "gpt_neox.layers.{bid}.attention.dense", # gptneox
  203. "transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen jais
  204. "transformer.blocks.{bid}.attn.out_proj", # mpt
  205. "transformer.h.{bid}.self_attention.dense", # falcon
  206. "h.{bid}.self_attention.dense", # bloom
  207. "model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron olmoe olmo2 phimoe
  208. "model.layers.{bid}.self_attn.out_proj", # lfm2
  209. "model.layers.{bid}.self_attn.linear_attn", # deci
  210. "layers.{bid}.attention.wo", # llama-pth
  211. "encoder.layer.{bid}.attention.output.dense", # bert
  212. "transformer.layer.{bid}.attention.out_lin", # distillbert
  213. "transformer.h.{bid}.attn.out_proj", # gpt-j
  214. "language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
  215. "model.layers.{bid}.self_attn.dense", # persimmon
  216. "h.{bid}.attn.c_proj", # gpt2
  217. "transformer.h.{bid}.mixer.out_proj", # phi2
  218. "model.layers.layers.{bid}.self_attn.o_proj", # plamo
  219. "model.layers.layers.{bid}.mixer.o_proj", # plamo2
  220. "model.layers.{bid}.attention.wo", # internlm2
  221. "encoder.layers.{bid}.attn.out_proj", # nomic-bert
  222. "encoder.layers.{bid}.mixer.out_proj", # jina
  223. "transformer.decoder_layer.{bid}.multi_head_attention.linear", # Grok
  224. "transformer.blocks.{bid}.norm_attn_norm.attn.out_proj", # dbrx
  225. "encoder.layers.{bid}.self_attention.dense", # chatglm
  226. "transformer.layers.{bid}.attn.out_proj", # openelm
  227. "transformer.h.{bid}.attn.attention.out_proj", # exaone
  228. "model.layers.{bid}.self_attn.o_proj", # llama4
  229. "transformer_encoder.{bid}.wo", # neobert
  230. ),
  231. # Attention output norm
  232. MODEL_TENSOR.ATTN_OUT_NORM: (
  233. "encoder.layer.{bid}.attention.output.LayerNorm", # bert
  234. "transformer.layer.{bid}.sa_layer_norm", # distillbert
  235. "encoder.layers.{bid}.norm1", # nomic-bert
  236. "transformer.decoder_layer.{bid}.rms_norm_1", # Grok
  237. "transformer.blocks.{bid}.norm_attn_norm.norm_2", # dbrx
  238. ),
  239. MODEL_TENSOR.ATTN_POST_NORM: (
  240. "model.layers.{bid}.post_attention_layernorm", # gemma2 olmo2 # ge
  241. "model.layers.{bid}.post_self_attn_layernorm", # glm-4-0414
  242. "model.layers.layers.{bid}.post_mixer_norm.weight", # plamo2
  243. ),
  244. # Rotary embeddings
  245. MODEL_TENSOR.ATTN_ROT_EMBD: (
  246. "model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf
  247. "layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth
  248. "model.layers.layers.{bid}.self_attn.rotary_emb.inv_freq", # plamo
  249. "transformer.h.{bid}.attn.rotary_emb.inv_freq", # codeshell
  250. ),
  251. # Feed-forward norm
  252. MODEL_TENSOR.FFN_NORM: (
  253. "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
  254. "transformer.h.{bid}.ln_2", # gpt2 refact qwen jais exaone
  255. "h.{bid}.post_attention_layernorm", # bloom
  256. "transformer.blocks.{bid}.norm_2", # mpt
  257. "model.layers.{bid}.post_attention_layernorm", # llama-hf nemotron olmoe phimoe
  258. "layers.{bid}.ffn_norm", # llama-pth
  259. "language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
  260. "model.layers.{bid}.ln2", # yi
  261. "h.{bid}.ln_2", # gpt2
  262. "model.layers.{bid}.ffn_norm", # internlm2
  263. "transformer.decoder_layer.{bid}.rms_norm_2", # Grok
  264. "encoder.layers.{bid}.post_attention_layernorm", # chatglm
  265. "transformer.layers.{bid}.ffn_norm", # openelm
  266. "model.layers.{bid}.pre_ff_layernorm", # jamba granite-hybrid
  267. "model.layers.{bid}.pre_moe_layernorm", # mini-jamba
  268. "model.layers.{bid}.post_attention_layernorm", # llama4
  269. "transformer_encoder.{bid}.ffn_norm", # neobert
  270. "model.layers.layers.{bid}.pre_mlp_norm", # plamo2
  271. ),
  272. # Post feed-forward norm
  273. MODEL_TENSOR.FFN_PRE_NORM: (
  274. "model.layers.{bid}.pre_feedforward_layernorm", # gemma2
  275. "model.layers.{bid}.pre_ff_layernorm.weight",
  276. ),
  277. # Post feed-forward norm
  278. MODEL_TENSOR.FFN_POST_NORM: (
  279. "model.layers.{bid}.post_feedforward_layernorm", # gemma2 olmo2
  280. "model.layers.{bid}.post_mlp_layernorm", # glm-4-0414
  281. "model.layers.layers.{bid}.post_mlp_norm.weight", # plamo2
  282. "model.layers.{bid}.feed_forward.up_proj",
  283. ),
  284. MODEL_TENSOR.FFN_GATE_INP: (
  285. "layers.{bid}.feed_forward.gate", # mixtral
  286. "model.layers.{bid}.block_sparse_moe.gate", # mixtral phimoe
  287. "model.layers.{bid}.mlp.gate", # qwen2moe olmoe
  288. "transformer.decoder_layer.{bid}.router", # Grok
  289. "transformer.blocks.{bid}.ffn.router.layer", # dbrx
  290. "model.layers.{bid}.block_sparse_moe.router.layer", # granitemoe
  291. "model.layers.{bid}.feed_forward.router", # llama4 jamba
  292. "encoder.layers.{bid}.mlp.router.layer", # nomic-bert-moe
  293. "model.layers.{bid}.mlp.gate.wg", # hunyuan
  294. ),
  295. MODEL_TENSOR.FFN_GATE_INP_SHEXP: (
  296. "model.layers.{bid}.mlp.shared_expert_gate", # qwen2moe
  297. ),
  298. MODEL_TENSOR.FFN_EXP_PROBS_B: (
  299. "model.layers.{bid}.mlp.gate.e_score_correction", # deepseek-v3 dots1
  300. ),
  301. # Feed-forward up
  302. MODEL_TENSOR.FFN_UP: (
  303. "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
  304. "transformer.h.{bid}.mlp.c_fc", # gpt2 jais
  305. "transformer.blocks.{bid}.ffn.up_proj", # mpt
  306. "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
  307. "h.{bid}.mlp.dense_h_to_4h", # bloom
  308. "model.layers.{bid}.mlp.up_proj", # llama-hf refact nemotron olmo2
  309. "layers.{bid}.feed_forward.w3", # llama-pth
  310. "encoder.layer.{bid}.intermediate.dense", # bert
  311. "transformer.layer.{bid}.ffn.lin1", # distillbert
  312. "transformer.h.{bid}.mlp.fc_in", # gpt-j
  313. "transformer.h.{bid}.mlp.linear_3", # refact
  314. "language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  315. "model.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  316. "transformer.h.{bid}.mlp.w1", # qwen
  317. "h.{bid}.mlp.c_fc", # gpt2
  318. "transformer.h.{bid}.mlp.fc1", # phi2
  319. "model.layers.{bid}.mlp.fc1", # phi2
  320. "model.layers.{bid}.mlp.gate_up_proj", # phi3 glm-4-0414
  321. "model.layers.layers.{bid}.mlp.up_proj", # plamo
  322. "model.layers.layers.{bid}.mlp.gate_up_proj", # plamo2
  323. "model.layers.{bid}.feed_forward.w3", # internlm2
  324. "encoder.layers.{bid}.mlp.fc11", # nomic-bert
  325. "encoder.layers.{bid}.mlp.fc1", # nomic-bert-moe
  326. "model.layers.{bid}.mlp.c_fc", # starcoder2
  327. "encoder.layer.{bid}.mlp.gated_layers_v", # jina-bert-v2 (split up/gate, no longer used)
  328. "encoder.layer.{bid}.mlp.gated_layers", # jina-bert-v2 (GEGLU)
  329. "encoder.layer.{bid}.mlp.up_gated_layer", # jina-v2-code (GEGLU)
  330. "model.layers.{bid}.residual_mlp.w3", # arctic
  331. "encoder.layers.{bid}.mlp.dense_h_to_4h", # chatglm
  332. "transformer.h.{bid}.mlp.c_fc_1", # exaone
  333. "model.layers.{bid}.feed_forward.up_proj", # llama4 jamba granite-hybrid
  334. "transformer_encoder.{bid}.ffn.w12", # neobert
  335. ),
  336. MODEL_TENSOR.FFN_UP_EXP: (
  337. "layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
  338. "transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
  339. "transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx
  340. "model.layers.{bid}.mlp.experts.up_proj", # qwen2moe olmoe (merged)
  341. "model.layers.{bid}.block_sparse_moe.experts.w3", # phimoe (merged)
  342. "model.layers.{bid}.feed_forward.experts.up_proj", # llama4
  343. "encoder.layers.{bid}.mlp.experts.mlp.w1", # nomic-bert-moe
  344. ),
  345. MODEL_TENSOR.FFN_UP_SHEXP: (
  346. "model.layers.{bid}.mlp.shared_expert.up_proj", # qwen2moe
  347. "model.layers.{bid}.mlp.shared_experts.up_proj", # deepseek deepseek2
  348. "model.layers.{bid}.feed_forward.shared_expert.up_proj", # llama4
  349. "model.layers.{bid}.feed_forward.down_proj",
  350. "model.layers.{bid}.mlp.shared_mlp.up_proj", # hunyuan
  351. ),
  352. # AWQ-activation gate
  353. MODEL_TENSOR.FFN_ACT: (
  354. "transformer.blocks.{bid}.ffn.act", # mpt
  355. ),
  356. # Feed-forward gate
  357. MODEL_TENSOR.FFN_GATE: (
  358. "model.layers.{bid}.mlp.gate_proj", # llama-hf refact olmo2
  359. "layers.{bid}.feed_forward.w1", # llama-pth
  360. "transformer.h.{bid}.mlp.w2", # qwen
  361. "transformer.h.{bid}.mlp.c_fc2", # jais
  362. "model.layers.layers.{bid}.mlp.gate_proj", # plamo
  363. "model.layers.{bid}.feed_forward.w1", # internlm2
  364. "encoder.layers.{bid}.mlp.fc12", # nomic-bert
  365. "encoder.layer.{bid}.mlp.gated_layers_w", # jina-bert-v2 (split up/gate, no longer used)
  366. "transformer.h.{bid}.mlp.linear_1", # refact
  367. "model.layers.{bid}.residual_mlp.w1", # arctic
  368. "transformer.h.{bid}.mlp.c_fc_0", # exaone
  369. "model.layers.{bid}.feed_forward.gate_proj", # llama4 jamba granite-hybrid
  370. ),
  371. MODEL_TENSOR.FFN_GATE_EXP: (
  372. "layers.{bid}.feed_forward.experts.w1", # mixtral (merged)
  373. "transformer.decoder_layer.{bid}.moe.linear", # Grok (merged)
  374. "transformer.blocks.{bid}.ffn.experts.mlp.w1", # dbrx
  375. "model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe olmoe (merged)
  376. "model.layers.{bid}.block_sparse_moe.experts.w1", # phimoe (merged)
  377. "model.layers.{bid}.feed_forward.experts.gate_proj", # llama4
  378. ),
  379. MODEL_TENSOR.FFN_GATE_SHEXP: (
  380. "model.layers.{bid}.mlp.shared_expert.gate_proj", # qwen2moe
  381. "model.layers.{bid}.mlp.shared_experts.gate_proj", # deepseek deepseek2
  382. "model.layers.{bid}.feed_forward.shared_expert.gate_proj", # llama4
  383. "model.layers.{bid}.mlp.shared_mlp.gate_proj", # hunyuan
  384. ),
  385. # Feed-forward down
  386. MODEL_TENSOR.FFN_DOWN: (
  387. "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
  388. "transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen jais
  389. "transformer.blocks.{bid}.ffn.down_proj", # mpt
  390. "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
  391. "h.{bid}.mlp.dense_4h_to_h", # bloom
  392. "model.layers.{bid}.mlp.down_proj", # llama-hf nemotron olmo2
  393. "layers.{bid}.feed_forward.w2", # llama-pth
  394. "encoder.layer.{bid}.output.dense", # bert
  395. "transformer.layer.{bid}.ffn.lin2", # distillbert
  396. "transformer.h.{bid}.mlp.fc_out", # gpt-j
  397. "language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  398. "model.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  399. "h.{bid}.mlp.c_proj", # gpt2
  400. "transformer.h.{bid}.mlp.fc2", # phi2
  401. "model.layers.{bid}.mlp.fc2", # phi2
  402. "model.layers.layers.{bid}.mlp.down_proj", # plamo
  403. "model.layers.{bid}.feed_forward.w2", # internlm2
  404. "encoder.layers.{bid}.mlp.fc2", # nomic-bert
  405. "model.layers.{bid}.mlp.c_proj", # starcoder2
  406. "encoder.layer.{bid}.mlp.wo", # jina-bert-v2
  407. "transformer.layers.{bid}.ffn.proj_2", # openelm
  408. "model.layers.{bid}.residual_mlp.w2", # arctic
  409. "encoder.layer.{bid}.mlp.down_layer", # jina-bert-v2
  410. "encoder.layers.{bid}.mlp.dense_4h_to_h", # chatglm
  411. "model.layers.h.{bid}.mlp.c_proj", # exaone
  412. "model.layers.{bid}.feed_forward.down_proj", # llama4 jamba granite-hybrid
  413. "transformer_encoder.{bid}.ffn.w3", # neobert
  414. ),
  415. MODEL_TENSOR.FFN_DOWN_EXP: (
  416. "layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
  417. "transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
  418. "transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx
  419. "model.layers.{bid}.mlp.experts.down_proj", # qwen2moe olmoe (merged)
  420. "model.layers.{bid}.block_sparse_moe.output_linear", # granitemoe
  421. "model.layers.{bid}.block_sparse_moe.experts.w2", # phimoe (merged)
  422. "model.layers.{bid}.feed_forward.experts.down_proj", # llama4
  423. "encoder.layers.{bid}.mlp.experts.mlp.w2", # nomic-bert-moe
  424. ),
  425. MODEL_TENSOR.FFN_DOWN_SHEXP: (
  426. "model.layers.{bid}.mlp.shared_expert.down_proj", # qwen2moe
  427. "model.layers.{bid}.mlp.shared_experts.down_proj", # deepseek deepseek2
  428. "model.layers.{bid}.feed_forward.shared_expert.down_proj", # llama4
  429. "model.layers.{bid}.shared_mlp.output_linear", # granitemoe
  430. "model.layers.{bid}.mlp.shared_mlp.down_proj", # hunyuan
  431. ),
  432. MODEL_TENSOR.ATTN_Q_NORM: (
  433. "language_model.encoder.layers.{bid}.self_attention.q_layernorm",
  434. "model.layers.{bid}.self_attn.q_layernorm", # persimmon
  435. "model.layers.{bid}.self_attn.query_layernorm", # hunyuan
  436. "model.layers.{bid}.self_attn.q_norm", # cohere olmoe chameleon olmo2
  437. "transformer.blocks.{bid}.attn.q_ln", # sea-lion
  438. "encoder.layer.{bid}.attention.self.layer_norm_q", # jina-bert-v2
  439. "transformer.layers.{bid}.attn.q_norm", # openelm
  440. "model.layers.layers.{bid}.mixer.q", # plamo2
  441. ),
  442. MODEL_TENSOR.ATTN_K_NORM: (
  443. "language_model.encoder.layers.{bid}.self_attention.k_layernorm",
  444. "model.layers.{bid}.self_attn.k_layernorm", # persimmon
  445. "model.layers.{bid}.self_attn.key_layernorm", # hunyuan
  446. "model.layers.{bid}.self_attn.k_norm", # cohere olmoe chameleon olmo2
  447. "transformer.blocks.{bid}.attn.k_ln", # sea-lion
  448. "encoder.layer.{bid}.attention.self.layer_norm_k", # jina-bert-v2
  449. "transformer.layers.{bid}.attn.k_norm", # openelm
  450. "model.layers.layers.{bid}.mixer.k", # plamo2
  451. ),
  452. MODEL_TENSOR.ROPE_FREQS: (
  453. "language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq", # persimmon
  454. ),
  455. MODEL_TENSOR.LAYER_OUT_NORM: (
  456. "encoder.layer.{bid}.output.LayerNorm", # bert
  457. "transformer.layer.{bid}.output_layer_norm", # distillbert
  458. "encoder.layers.{bid}.norm2", # nomic-bert
  459. "transformer.decoder_layer.{bid}.rms_norm_3", # Grok
  460. "encoder.layer.{bid}.mlp.layernorm", # jina-bert-v2
  461. "encoder.layer.{bid}.layer_norm_2", # jina-v2-code
  462. ),
  463. MODEL_TENSOR.PER_LAYER_TOKEN_EMBD: (
  464. "model.embed_tokens_per_layer", # gemma3n
  465. ),
  466. MODEL_TENSOR.PER_LAYER_MODEL_PROJ: (
  467. "model.per_layer_model_projection", # gemma3n
  468. ),
  469. MODEL_TENSOR.PER_LAYER_PROJ_NORM: (
  470. "model.per_layer_projection_norm", # gemma3n
  471. ),
  472. MODEL_TENSOR.ALTUP_PROJ: (
  473. "model.altup_projections", # gemma3n
  474. ),
  475. MODEL_TENSOR.ALTUP_UNEMBD_PROJ: (
  476. "model.altup_unembed_projections", # gemma3n
  477. ),
  478. MODEL_TENSOR.PER_LAYER_INP_GATE: (
  479. "model.layers.{bid}.per_layer_input_gate", # gemma3n
  480. ),
  481. MODEL_TENSOR.PER_LAYER_PROJ: (
  482. "model.layers.{bid}.per_layer_projection", # gemma3n
  483. ),
  484. MODEL_TENSOR.PER_LAYER_POST_NORM: (
  485. "model.layers.{bid}.post_per_layer_input_norm", # gemma3n
  486. ),
  487. MODEL_TENSOR.ALTUP_CORRECT_COEF: (
  488. "model.layers.{bid}.altup.correction_coefs", # gemma3n
  489. ),
  490. MODEL_TENSOR.ALTUP_CORRECT_SCALE: (
  491. "model.layers.{bid}.altup.correct_output_scale", # gemma3n
  492. ),
  493. MODEL_TENSOR.ALTUP_PREDICT_COEF: (
  494. "model.layers.{bid}.altup.prediction_coefs", # gemma3n
  495. ),
  496. MODEL_TENSOR.ALTUP_ROUTER: (
  497. "model.layers.{bid}.altup.modality_router", # gemma3n
  498. ),
  499. MODEL_TENSOR.ALTUP_ROUTER_NORM: (
  500. "model.layers.{bid}.altup.router_norm", # gemma3n
  501. ),
  502. MODEL_TENSOR.LAUREL_L: (
  503. "model.layers.{bid}.laurel.linear_left", # gemma3n
  504. ),
  505. MODEL_TENSOR.LAUREL_R: (
  506. "model.layers.{bid}.laurel.linear_right", # gemma3n
  507. ),
  508. MODEL_TENSOR.LAUREL_POST_NORM: (
  509. "model.layers.{bid}.laurel.post_laurel_norm", # gemma3n
  510. ),
  511. MODEL_TENSOR.SSM_IN: (
  512. "model.layers.{bid}.in_proj", # mamba-hf
  513. "backbone.layers.{bid}.mixer.in_proj", # mamba
  514. "model.layers.{bid}.mamba.in_proj", # jamba falcon-h1 granite-hybrid
  515. "model.layers.layers.{bid}.mixer.in_proj", # plamo2
  516. ),
  517. MODEL_TENSOR.SSM_CONV1D: (
  518. "model.layers.{bid}.conv1d", # mamba-hf
  519. "backbone.layers.{bid}.mixer.conv1d", # mamba
  520. "model.layers.{bid}.mamba.conv1d", # jamba falcon-h1 granite-hybrid
  521. "model.layers.layers.{bid}.mixer.conv1d", # plamo2
  522. ),
  523. MODEL_TENSOR.SSM_X: (
  524. "model.layers.{bid}.x_proj", # mamba-hf
  525. "backbone.layers.{bid}.mixer.x_proj", # mamba
  526. "model.layers.{bid}.mamba.x_proj", # jamba
  527. "model.layers.layers.{bid}.mixer.bcdt_proj", # plamo2
  528. ),
  529. MODEL_TENSOR.SSM_DT: (
  530. "model.layers.{bid}.dt_proj", # mamba-hf
  531. "backbone.layers.{bid}.mixer.dt_proj", # mamba
  532. "model.layers.{bid}.mamba.dt_proj", # jamba falcon-h1 granite-hybrid
  533. "model.layers.layers.{bid}.mixer.dt_proj", # plamo2
  534. ),
  535. MODEL_TENSOR.SSM_DT_NORM: (
  536. "model.layers.{bid}.mamba.dt_layernorm", # jamba
  537. ),
  538. MODEL_TENSOR.SSM_A: (
  539. "model.layers.{bid}.A_log", # mamba-hf
  540. "backbone.layers.{bid}.mixer.A_log", # mamba
  541. "model.layers.{bid}.mamba.A_log", # jamba falcon-h1 granite-hybrid
  542. "model.layers.layers.{bid}.mixer.A_log", # plamo2
  543. ),
  544. MODEL_TENSOR.SSM_B_NORM: (
  545. "model.layers.{bid}.mamba.b_layernorm", # jamba
  546. "model.layers.{bid}.mamba.B_layernorm", # mini-jamba
  547. "model.layers.layers.{bid}.mixer.B_norm.weight", # plamo2
  548. ),
  549. MODEL_TENSOR.SSM_C_NORM: (
  550. "model.layers.{bid}.mamba.c_layernorm", # jamba
  551. "model.layers.{bid}.mamba.C_layernorm", # mini-jamba
  552. "model.layers.layers.{bid}.mixer.C_norm.weight", # plamo2
  553. ),
  554. MODEL_TENSOR.SSM_D: (
  555. "model.layers.{bid}.D", # mamba-hf
  556. "backbone.layers.{bid}.mixer.D", # mamba
  557. "model.layers.{bid}.mamba.D", # jamba falcon-h1 granite-hybrid
  558. "model.layers.layers.{bid}.mixer.D", # plamo2
  559. ),
  560. MODEL_TENSOR.SSM_DT_NORM: (
  561. "model.layers.layers.{bid}.mixer.dt_norm.weight", # plamo2
  562. ),
  563. MODEL_TENSOR.SSM_NORM: (
  564. "model.layers.{bid}.mamba.norm", # falcon-h1 granite-hybrid
  565. "backbone.layers.{bid}.mixer.norm", # mamba2
  566. ),
  567. MODEL_TENSOR.SSM_OUT: (
  568. "model.layers.{bid}.out_proj", # mamba-hf
  569. "backbone.layers.{bid}.mixer.out_proj", # mamba
  570. "model.layers.{bid}.mamba.out_proj", # jamba falcon-h1 granite-hybrid
  571. "model.layers.layers.{bid}.mixer.out_proj", # plamo2
  572. ),
  573. MODEL_TENSOR.TIME_MIX_W0: (
  574. "model.layers.{bid}.attention.w0", # rwkv7
  575. ),
  576. MODEL_TENSOR.TIME_MIX_W1: (
  577. "rwkv.blocks.{bid}.attention.time_maa_w1", # rwkv6
  578. "model.layers.{bid}.self_attn.time_maa_w1", # rwkv6qwen2
  579. "model.layers.{bid}.attention.w1", # rwkv7
  580. ),
  581. MODEL_TENSOR.TIME_MIX_W2: (
  582. "rwkv.blocks.{bid}.attention.time_maa_w2", # rwkv6
  583. "model.layers.{bid}.self_attn.time_maa_w2", # rwkv6qwen2
  584. "model.layers.{bid}.attention.w2", # rwkv7
  585. ),
  586. MODEL_TENSOR.TIME_MIX_A0: (
  587. "model.layers.{bid}.attention.a0", # rwkv7
  588. ),
  589. MODEL_TENSOR.TIME_MIX_A1: (
  590. "model.layers.{bid}.attention.a1", # rwkv7
  591. ),
  592. MODEL_TENSOR.TIME_MIX_A2: (
  593. "model.layers.{bid}.attention.a2", # rwkv7
  594. ),
  595. MODEL_TENSOR.TIME_MIX_V0: (
  596. "model.layers.{bid}.attention.v0", # rwkv7
  597. ),
  598. MODEL_TENSOR.TIME_MIX_V1: (
  599. "model.layers.{bid}.attention.v1", # rwkv7
  600. ),
  601. MODEL_TENSOR.TIME_MIX_V2: (
  602. "model.layers.{bid}.attention.v2", # rwkv7
  603. ),
  604. MODEL_TENSOR.TIME_MIX_G1: (
  605. "model.layers.{bid}.attention.g1", # rwkv7
  606. ),
  607. MODEL_TENSOR.TIME_MIX_G2: (
  608. "model.layers.{bid}.attention.g2", # rwkv7
  609. ),
  610. MODEL_TENSOR.TIME_MIX_K_K: (
  611. "model.layers.{bid}.attention.k_k", # rwkv7
  612. ),
  613. MODEL_TENSOR.TIME_MIX_K_A: (
  614. "model.layers.{bid}.attention.k_a", # rwkv7
  615. ),
  616. MODEL_TENSOR.TIME_MIX_R_K: (
  617. "model.layers.{bid}.attention.r_k", # rwkv7
  618. ),
  619. MODEL_TENSOR.TIME_MIX_LERP_X: (
  620. "rwkv.blocks.{bid}.attention.time_maa_x", # rwkv6
  621. "model.layers.{bid}.self_attn.time_maa_x", # rwkv6qwen2
  622. ),
  623. MODEL_TENSOR.TIME_MIX_LERP_K: (
  624. "rwkv.blocks.{bid}.attention.time_maa_k", # rwkv6
  625. "model.layers.{bid}.self_attn.time_maa_k", # rwkv6qwen2
  626. ),
  627. MODEL_TENSOR.TIME_MIX_LERP_V: (
  628. "rwkv.blocks.{bid}.attention.time_maa_v", # rwkv6
  629. "model.layers.{bid}.self_attn.time_maa_v", # rwkv6qwen2
  630. ),
  631. MODEL_TENSOR.TIME_MIX_LERP_R: (
  632. "rwkv.blocks.{bid}.attention.time_maa_r", # rwkv6
  633. "model.layers.{bid}.self_attn.time_maa_r", # rwkv6qwen2
  634. ),
  635. MODEL_TENSOR.TIME_MIX_LERP_G: (
  636. "rwkv.blocks.{bid}.attention.time_maa_g", # rwkv6
  637. "model.layers.{bid}.self_attn.time_maa_g", # rwkv6qwen2
  638. ),
  639. MODEL_TENSOR.TIME_MIX_LERP_W: (
  640. "rwkv.blocks.{bid}.attention.time_maa_w", # rwkv6
  641. "model.layers.{bid}.self_attn.time_maa_w", # rwkv6qwen2
  642. ),
  643. MODEL_TENSOR.TIME_MIX_FIRST: (
  644. "rwkv.blocks.{bid}.attention.time_faaaa", # rwkv6
  645. ),
  646. MODEL_TENSOR.TIME_MIX_DECAY: (
  647. "rwkv.blocks.{bid}.attention.time_decay", # rwkv6
  648. "model.layers.{bid}.self_attn.time_decay", # rwkv6qwen2
  649. ),
  650. MODEL_TENSOR.TIME_MIX_DECAY_W1: (
  651. "rwkv.blocks.{bid}.attention.time_decay_w1", # rwkv6
  652. "model.layers.{bid}.self_attn.time_decay_w1", # rwkv6qwen2
  653. ),
  654. MODEL_TENSOR.TIME_MIX_DECAY_W2: (
  655. "rwkv.blocks.{bid}.attention.time_decay_w2", # rwkv6
  656. "model.layers.{bid}.self_attn.time_decay_w2", # rwkv6qwen2
  657. ),
  658. MODEL_TENSOR.TIME_MIX_KEY: (
  659. "rwkv.blocks.{bid}.attention.key", # rwkv6
  660. "model.layers.{bid}.self_attn.k_proj", # rwkv6qwen2
  661. "model.layers.{bid}.attention.key", # rwkv7
  662. "model.layers.{bid}.attention.k_proj", # rwkv7
  663. ),
  664. MODEL_TENSOR.TIME_MIX_VALUE: (
  665. "rwkv.blocks.{bid}.attention.value", # rwkv6
  666. "model.layers.{bid}.self_attn.v_proj", # rwkv6qwen2
  667. "model.layers.{bid}.attention.value", # rwkv7
  668. "model.layers.{bid}.attention.v_proj", # rwkv7
  669. ),
  670. MODEL_TENSOR.TIME_MIX_RECEPTANCE: (
  671. "rwkv.blocks.{bid}.attention.receptance", # rwkv6
  672. "model.layers.{bid}.self_attn.q_proj", # rwkv6qwen2
  673. "model.layers.{bid}.attention.receptance", # rwkv7
  674. "model.layers.{bid}.attention.r_proj", # rwkv7
  675. ),
  676. MODEL_TENSOR.TIME_MIX_GATE: (
  677. "rwkv.blocks.{bid}.attention.gate", # rwkv6
  678. "model.layers.{bid}.self_attn.gate", # rwkv6qwen2
  679. ),
  680. MODEL_TENSOR.TIME_MIX_LN: (
  681. "rwkv.blocks.{bid}.attention.ln_x", # rwkv6
  682. "model.layers.{bid}.attention.ln_x" # rwkv7
  683. ),
  684. MODEL_TENSOR.TIME_MIX_OUTPUT: (
  685. "rwkv.blocks.{bid}.attention.output", # rwkv6
  686. "model.layers.{bid}.self_attn.o_proj", # rwkv6qwen2
  687. "model.layers.{bid}.attention.output", # rwkv7
  688. "model.layers.{bid}.attention.o_proj", # rwkv7
  689. ),
  690. MODEL_TENSOR.CHANNEL_MIX_LERP_K: (
  691. "rwkv.blocks.{bid}.feed_forward.time_maa_k", # rwkv6
  692. "model.layers.{bid}.feed_forward.x_k", # rwkv7
  693. ),
  694. MODEL_TENSOR.CHANNEL_MIX_LERP_R: (
  695. "rwkv.blocks.{bid}.feed_forward.time_maa_r", # rwkv6
  696. ),
  697. MODEL_TENSOR.CHANNEL_MIX_KEY: (
  698. "rwkv.blocks.{bid}.feed_forward.key", # rwkv6
  699. "model.layers.{bid}.feed_forward.key", # rwkv7
  700. ),
  701. MODEL_TENSOR.CHANNEL_MIX_RECEPTANCE: (
  702. "rwkv.blocks.{bid}.feed_forward.receptance", # rwkv6
  703. ),
  704. MODEL_TENSOR.CHANNEL_MIX_VALUE: (
  705. "rwkv.blocks.{bid}.feed_forward.value", # rwkv6
  706. "model.layers.{bid}.feed_forward.value", # rwkv7
  707. ),
  708. MODEL_TENSOR.ATTN_Q_A: (
  709. "model.layers.{bid}.self_attn.q_a_proj", # deepseek2
  710. ),
  711. MODEL_TENSOR.ATTN_Q_B: (
  712. "model.layers.{bid}.self_attn.q_b_proj", # deepseek2
  713. ),
  714. MODEL_TENSOR.ATTN_KV_A_MQA: (
  715. "model.layers.{bid}.self_attn.kv_a_proj_with_mqa", # deepseek2
  716. ),
  717. MODEL_TENSOR.ATTN_KV_B: (
  718. "model.layers.{bid}.self_attn.kv_b_proj", # deepseek2
  719. ),
  720. MODEL_TENSOR.ATTN_K_B: (
  721. "model.layers.{bid}.self_attn.k_b_proj", # deepseek2
  722. ),
  723. MODEL_TENSOR.ATTN_V_B: (
  724. "model.layers.{bid}.self_attn.v_b_proj", # deepseek2
  725. ),
  726. MODEL_TENSOR.ATTN_Q_A_NORM: (
  727. "model.layers.{bid}.self_attn.q_a_layernorm", # deepseek2
  728. ),
  729. MODEL_TENSOR.ATTN_KV_A_NORM: (
  730. "model.layers.{bid}.self_attn.kv_a_layernorm", # deepseek2
  731. ),
  732. MODEL_TENSOR.ATTN_SUB_NORM: (
  733. "model.layers.{bid}.self_attn.inner_attn_ln", # bitnet
  734. ),
  735. MODEL_TENSOR.FFN_SUB_NORM: (
  736. "model.layers.{bid}.mlp.ffn_layernorm", # bitnet
  737. ),
  738. MODEL_TENSOR.DEC_ATTN_NORM: (
  739. "decoder.block.{bid}.layer.0.layer_norm", # t5
  740. ),
  741. MODEL_TENSOR.DEC_ATTN_Q: (
  742. "decoder.block.{bid}.layer.0.SelfAttention.q", # t5
  743. ),
  744. MODEL_TENSOR.DEC_ATTN_K: (
  745. "decoder.block.{bid}.layer.0.SelfAttention.k", # t5
  746. ),
  747. MODEL_TENSOR.DEC_ATTN_V: (
  748. "decoder.block.{bid}.layer.0.SelfAttention.v", # t5
  749. ),
  750. MODEL_TENSOR.DEC_ATTN_OUT: (
  751. "decoder.block.{bid}.layer.0.SelfAttention.o", # t5
  752. ),
  753. MODEL_TENSOR.DEC_ATTN_REL_B: (
  754. "decoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  755. ),
  756. MODEL_TENSOR.DEC_CROSS_ATTN_NORM: (
  757. "decoder.block.{bid}.layer.1.layer_norm", # t5
  758. ),
  759. MODEL_TENSOR.DEC_CROSS_ATTN_Q: (
  760. "decoder.block.{bid}.layer.1.EncDecAttention.q", # t5
  761. ),
  762. MODEL_TENSOR.DEC_CROSS_ATTN_K: (
  763. "decoder.block.{bid}.layer.1.EncDecAttention.k", # t5
  764. ),
  765. MODEL_TENSOR.DEC_CROSS_ATTN_V: (
  766. "decoder.block.{bid}.layer.1.EncDecAttention.v", # t5
  767. ),
  768. MODEL_TENSOR.DEC_CROSS_ATTN_OUT: (
  769. "decoder.block.{bid}.layer.1.EncDecAttention.o", # t5
  770. ),
  771. MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: (
  772. "decoder.block.{bid}.layer.1.EncDecAttention.relative_attention_bias", # t5
  773. ),
  774. MODEL_TENSOR.DEC_FFN_NORM: (
  775. "decoder.block.{bid}.layer.2.layer_norm", # t5
  776. ),
  777. MODEL_TENSOR.DEC_FFN_GATE: (
  778. "decoder.block.{bid}.layer.2.DenseReluDense.wi_0", # flan-t5
  779. ),
  780. MODEL_TENSOR.DEC_FFN_UP: (
  781. "decoder.block.{bid}.layer.2.DenseReluDense.wi", # t5
  782. "decoder.block.{bid}.layer.2.DenseReluDense.wi_1", # flan-t5
  783. ),
  784. MODEL_TENSOR.DEC_FFN_DOWN: (
  785. "decoder.block.{bid}.layer.2.DenseReluDense.wo", # t5
  786. ),
  787. MODEL_TENSOR.DEC_OUTPUT_NORM: (
  788. "decoder.final_layer_norm", # t5
  789. ),
  790. MODEL_TENSOR.ENC_ATTN_NORM: (
  791. "encoder.block.{bid}.layer.0.layer_norm", # t5
  792. ),
  793. MODEL_TENSOR.ENC_ATTN_Q: (
  794. "encoder.block.{bid}.layer.0.SelfAttention.q", # t5
  795. ),
  796. MODEL_TENSOR.ENC_ATTN_K: (
  797. "encoder.block.{bid}.layer.0.SelfAttention.k", # t5
  798. ),
  799. MODEL_TENSOR.ENC_ATTN_V: (
  800. "encoder.block.{bid}.layer.0.SelfAttention.v", # t5
  801. ),
  802. MODEL_TENSOR.ENC_ATTN_OUT: (
  803. "encoder.block.{bid}.layer.0.SelfAttention.o", # t5
  804. ),
  805. MODEL_TENSOR.ENC_ATTN_REL_B: (
  806. "encoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  807. ),
  808. MODEL_TENSOR.ENC_FFN_NORM: (
  809. "encoder.block.{bid}.layer.1.layer_norm", # t5
  810. ),
  811. MODEL_TENSOR.ENC_FFN_GATE: (
  812. "encoder.block.{bid}.layer.1.DenseReluDense.wi_0", # flan-t5
  813. ),
  814. MODEL_TENSOR.ENC_FFN_UP: (
  815. "encoder.block.{bid}.layer.1.DenseReluDense.wi", # t5
  816. "encoder.block.{bid}.layer.1.DenseReluDense.wi_1", # flan-t5
  817. ),
  818. MODEL_TENSOR.ENC_FFN_DOWN: (
  819. "encoder.block.{bid}.layer.1.DenseReluDense.wo", # t5
  820. ),
  821. ############################################################################
  822. # TODO: these do not belong to block_mappings_cfg - move them to mappings_cfg
  823. MODEL_TENSOR.ENC_OUTPUT_NORM: (
  824. "encoder.final_layer_norm", # t5
  825. "layer_norm", # neobert
  826. ),
  827. MODEL_TENSOR.CLS: (
  828. "classifier", # jina
  829. "classifier.dense", # roberta
  830. "pre_classifier", # distillbert
  831. "dense", # neobert
  832. ),
  833. MODEL_TENSOR.CLS_OUT: (
  834. "classifier.out_proj", # roberta
  835. ),
  836. #############################################################################
  837. MODEL_TENSOR.CONVNEXT_DW: (
  838. "backbone.convnext.{bid}.dwconv", # wavtokenizer
  839. ),
  840. MODEL_TENSOR.CONVNEXT_NORM: (
  841. "backbone.convnext.{bid}.norm", # wavtokenizer
  842. ),
  843. MODEL_TENSOR.CONVNEXT_PW1: (
  844. "backbone.convnext.{bid}.pwconv1", # wavtokenizer
  845. ),
  846. MODEL_TENSOR.CONVNEXT_PW2: (
  847. "backbone.convnext.{bid}.pwconv2", # wavtokenizer
  848. ),
  849. MODEL_TENSOR.CONVNEXT_GAMMA: (
  850. "backbone.convnext.{bid}.gamma", # wavtokenizer
  851. ),
  852. MODEL_TENSOR.POSNET_CONV1: (
  853. "backbone.posnet.{bid}.conv1", # wavtokenizer
  854. ),
  855. MODEL_TENSOR.POSNET_CONV2: (
  856. "backbone.posnet.{bid}.conv2", # wavtokenizer
  857. ),
  858. MODEL_TENSOR.POSNET_NORM: (
  859. "backbone.posnet.{bid}.norm", # wavtokenizer
  860. ),
  861. MODEL_TENSOR.POSNET_NORM1: (
  862. "backbone.posnet.{bid}.norm1", # wavtokenizer
  863. ),
  864. MODEL_TENSOR.POSNET_NORM2: (
  865. "backbone.posnet.{bid}.norm2", # wavtokenizer
  866. ),
  867. MODEL_TENSOR.POSNET_ATTN_NORM: (
  868. "backbone.posnet.{bid}.norm", # wavtokenizer
  869. ),
  870. MODEL_TENSOR.POSNET_ATTN_Q: (
  871. "backbone.posnet.{bid}.q", # wavtokenizer
  872. ),
  873. MODEL_TENSOR.POSNET_ATTN_K: (
  874. "backbone.posnet.{bid}.k", # wavtokenizer
  875. ),
  876. MODEL_TENSOR.POSNET_ATTN_V: (
  877. "backbone.posnet.{bid}.v", # wavtokenizer
  878. ),
  879. MODEL_TENSOR.POSNET_ATTN_OUT: (
  880. "backbone.posnet.{bid}.proj_out", # wavtokenizer
  881. ),
  882. MODEL_TENSOR.SHORTCONV_CONV: (
  883. "model.layers.{bid}.conv.conv",
  884. ),
  885. MODEL_TENSOR.SHORTCONV_INPROJ: (
  886. "model.layers.{bid}.conv.in_proj",
  887. ),
  888. MODEL_TENSOR.SHORTCONV_OUTPROJ: (
  889. "model.layers.{bid}.conv.out_proj",
  890. ),
  891. #############################################################################
  892. ## Vision encoder
  893. MODEL_TENSOR.V_MMPROJ: (
  894. "multi_modal_projector.linear_{bid}",
  895. "visual.merger.mlp.{bid}", # qwen2vl
  896. ),
  897. MODEL_TENSOR.V_MMPROJ_FC: (
  898. "model.connector.modality_projection.proj", # SmolVLM
  899. ),
  900. MODEL_TENSOR.V_MMPROJ_MLP: (
  901. "model.mm_projector.mlp.mlp.{bid}",
  902. "vision_model.vision_adapter.mlp.fc{bid}", # llama 4
  903. "mlp1.{bid}", # InternVL
  904. ),
  905. MODEL_TENSOR.V_MMPROJ_PEG: (
  906. "model.mm_projector.peg.peg.{bid}",
  907. ),
  908. MODEL_TENSOR.V_ENC_EMBD_CLS: (
  909. "vision_tower.vision_model.embeddings.class_embedding",
  910. "vision_model.class_embedding", # llama 4
  911. ),
  912. MODEL_TENSOR.V_ENC_EMBD_PATCH: (
  913. "vision_tower.vision_model.embeddings.patch_embedding",
  914. "vpm.embeddings.patch_embedding",
  915. "model.vision_model.embeddings.patch_embedding", # SmolVLM
  916. "vision_tower.patch_conv", # pixtral
  917. "vision_model.patch_embedding.linear", # llama 4
  918. "visual.patch_embed.proj", # qwen2vl
  919. ),
  920. MODEL_TENSOR.V_ENC_EMBD_POS: (
  921. "vision_tower.vision_model.embeddings.position_embedding",
  922. "vpm.embeddings.position_embedding",
  923. "model.vision_model.embeddings.position_embedding", # SmolVLM
  924. "vision_model.positional_embedding_vlm", # llama 4
  925. ),
  926. MODEL_TENSOR.V_ENC_ATTN_Q: (
  927. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.q_proj",
  928. "vpm.encoder.layers.{bid}.self_attn.q_proj",
  929. "model.vision_model.encoder.layers.{bid}.self_attn.q_proj", # SmolVLM
  930. "vision_model.model.layers.{bid}.self_attn.q_proj", # llama4
  931. "vision_tower.transformer.layers.{bid}.attention.q_proj", # pixtral
  932. "visual.blocks.{bid}.attn.q", # qwen2vl, generated
  933. ),
  934. MODEL_TENSOR.V_ENC_ATTN_Q_NORM: (
  935. "vision_tower.vision_model.encoder.layers.{bid}.attn.q_norm", # InternVL
  936. ),
  937. MODEL_TENSOR.V_ENC_ATTN_K: (
  938. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.k_proj",
  939. "vpm.encoder.layers.{bid}.self_attn.k_proj",
  940. "model.vision_model.encoder.layers.{bid}.self_attn.k_proj", # SmolVLM
  941. "vision_model.model.layers.{bid}.self_attn.k_proj", # llama4
  942. "vision_tower.transformer.layers.{bid}.attention.k_proj", # pixtral
  943. "visual.blocks.{bid}.attn.k", # qwen2vl, generated
  944. ),
  945. MODEL_TENSOR.V_ENC_ATTN_K_NORM: (
  946. "vision_tower.vision_model.encoder.layers.{bid}.attn.k_norm", # InternVL
  947. ),
  948. MODEL_TENSOR.V_ENC_ATTN_V: (
  949. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.v_proj",
  950. "vpm.encoder.layers.{bid}.self_attn.v_proj",
  951. "model.vision_model.encoder.layers.{bid}.self_attn.v_proj", # SmolVLM
  952. "vision_model.model.layers.{bid}.self_attn.v_proj", # llama4
  953. "vision_tower.transformer.layers.{bid}.attention.v_proj", # pixtral
  954. "visual.blocks.{bid}.attn.v", # qwen2vl, generated
  955. ),
  956. MODEL_TENSOR.V_ENC_INPUT_NORM: (
  957. "vision_tower.vision_model.encoder.layers.{bid}.layer_norm1",
  958. "vision_tower.vision_model.encoder.layers.{bid}.norm1", # InternVL
  959. "vpm.encoder.layers.{bid}.layer_norm1",
  960. "model.vision_model.encoder.layers.{bid}.layer_norm1", # SmolVLM
  961. "vision_tower.transformer.layers.{bid}.attention_norm", # pixtral
  962. "vision_model.model.layers.{bid}.input_layernorm", # llama4
  963. "visual.blocks.{bid}.norm1", # qwen2vl
  964. ),
  965. MODEL_TENSOR.V_ENC_ATTN_O: (
  966. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.out_proj",
  967. "vision_tower.vision_model.encoder.layers.{bid}.attn.proj", # InternVL
  968. "vpm.encoder.layers.{bid}.self_attn.out_proj",
  969. "model.vision_model.encoder.layers.{bid}.self_attn.out_proj", # SmolVLM
  970. "vision_model.model.layers.{bid}.self_attn.o_proj", # llama4
  971. "vision_tower.transformer.layers.{bid}.attention.o_proj", # pixtral
  972. "visual.blocks.{bid}.attn.proj", # qwen2vl
  973. ),
  974. MODEL_TENSOR.V_ENC_POST_ATTN_NORM: (
  975. "vision_tower.vision_model.encoder.layers.{bid}.layer_norm2",
  976. "vision_tower.vision_model.encoder.layers.{bid}.norm2", # InternVL
  977. "vpm.encoder.layers.{bid}.layer_norm2",
  978. "model.vision_model.encoder.layers.{bid}.layer_norm2", # SmolVLM
  979. "vision_model.model.layers.{bid}.post_attention_layernorm", # llama4
  980. "vision_tower.transformer.layers.{bid}.ffn_norm", # pixtral
  981. "visual.blocks.{bid}.norm2", # qwen2vl
  982. ),
  983. MODEL_TENSOR.V_ENC_FFN_UP: (
  984. "vision_tower.vision_model.encoder.layers.{bid}.mlp.fc1",
  985. "vpm.encoder.layers.{bid}.mlp.fc1",
  986. "model.vision_model.encoder.layers.{bid}.mlp.fc1", # SmolVLM, gemma3
  987. "vision_tower.transformer.layers.{bid}.feed_forward.up_proj", # pixtral
  988. "vision_model.model.layers.{bid}.mlp.fc1", # llama4
  989. "visual.blocks.{bid}.mlp.fc1", # qwen2vl
  990. "visual.blocks.{bid}.mlp.up_proj", # qwen2.5vl
  991. ),
  992. MODEL_TENSOR.V_ENC_FFN_GATE: (
  993. "vision_tower.transformer.layers.{bid}.feed_forward.gate_proj", # pixtral
  994. "visual.blocks.{bid}.mlp.gate_proj", # qwen2.5vl
  995. ),
  996. MODEL_TENSOR.V_ENC_FFN_DOWN: (
  997. "vision_tower.vision_model.encoder.layers.{bid}.mlp.fc2",
  998. "vpm.encoder.layers.{bid}.mlp.fc2",
  999. "model.vision_model.encoder.layers.{bid}.mlp.fc2", # SmolVLM, gemma3
  1000. "vision_tower.transformer.layers.{bid}.feed_forward.down_proj", # pixtral
  1001. "vision_model.model.layers.{bid}.mlp.fc2", # llama4
  1002. "visual.blocks.{bid}.mlp.fc2", # qwen2vl
  1003. "visual.blocks.{bid}.mlp.down_proj", # qwen2.5vl
  1004. ),
  1005. MODEL_TENSOR.V_LAYER_SCALE_1: (
  1006. "vision_tower.vision_model.encoder.layers.{bid}.ls1", # InternVL
  1007. ),
  1008. MODEL_TENSOR.V_LAYER_SCALE_2: (
  1009. "vision_tower.vision_model.encoder.layers.{bid}.ls2", # InternVL
  1010. ),
  1011. MODEL_TENSOR.V_PRE_NORM: (
  1012. "vision_tower.vision_model.pre_layrnorm",
  1013. "vision_tower.ln_pre", # pixtral
  1014. "vision_model.layernorm_pre", # llama4
  1015. ),
  1016. MODEL_TENSOR.V_POST_NORM: (
  1017. "vision_tower.vision_model.post_layernorm",
  1018. "model.vision_model.post_layernorm", # SmolVLM
  1019. "vision_model.layernorm_post", # llama4
  1020. "visual.merger.ln_q", # qwen2vl
  1021. ),
  1022. MODEL_TENSOR.V_MM_INP_PROJ: (
  1023. "multi_modal_projector.mm_input_projection",
  1024. ),
  1025. MODEL_TENSOR.V_MM_INP_NORM: (
  1026. "multi_modal_projector.norm",
  1027. ),
  1028. MODEL_TENSOR.V_MM_SOFT_EMB_NORM: (
  1029. "multi_modal_projector.mm_soft_emb_norm",
  1030. ),
  1031. MODEL_TENSOR.V_RESMPL_POS_EMBD_K: (
  1032. "resampler.pos_embed_k",
  1033. ),
  1034. MODEL_TENSOR.V_RESMPL_ATTN_Q: (
  1035. "resampler.attn.in_proj_q", # tensor generated from resampler.attn.in_proj
  1036. ),
  1037. MODEL_TENSOR.V_RESMPL_ATTN_K: (
  1038. "resampler.attn.in_proj_k", # tensor generated from resampler.attn.in_proj
  1039. ),
  1040. MODEL_TENSOR.V_RESMPL_ATTN_V: (
  1041. "resampler.attn.in_proj_v", # tensor generated from resampler.attn.in_proj
  1042. ),
  1043. MODEL_TENSOR.V_RESMPL_ATTN_OUT: (
  1044. "resampler.attn.out_proj",
  1045. ),
  1046. MODEL_TENSOR.V_RESMPL_KV: (
  1047. "resampler.kv_proj",
  1048. ),
  1049. MODEL_TENSOR.V_RESMPL_POST_NORM: (
  1050. "resampler.ln_post",
  1051. ),
  1052. MODEL_TENSOR.V_RESMPL_KV_NORM: (
  1053. "resampler.ln_kv",
  1054. ),
  1055. MODEL_TENSOR.V_RESMPL_Q_NORM: (
  1056. "resampler.ln_q",
  1057. ),
  1058. MODEL_TENSOR.V_RESMPL_PROJ: (
  1059. "resampler.proj",
  1060. ),
  1061. MODEL_TENSOR.V_RESMPL_QUERY: (
  1062. "resampler.query",
  1063. ),
  1064. MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK: (
  1065. "v.token_embd.img_break", # for pixtral, this is a generated vector
  1066. ),
  1067. MODEL_TENSOR.V_MM_PATCH_MERGER: (
  1068. "multi_modal_projector.patch_merger.merging_layer", # mistral small 3.1
  1069. ),
  1070. # audio (mtmd)
  1071. MODEL_TENSOR.A_ENC_EMBD_POS: (
  1072. "audio_tower.embed_positions", # ultravox
  1073. ),
  1074. MODEL_TENSOR.A_ENC_CONV1D: (
  1075. "audio_tower.conv{bid}", # ultravox
  1076. ),
  1077. MODEL_TENSOR.A_PRE_NORM: (),
  1078. MODEL_TENSOR.A_POST_NORM: (
  1079. "audio_tower.layer_norm", # ultravox
  1080. "audio_tower.ln_post", # qwen2omni
  1081. ),
  1082. MODEL_TENSOR.A_ENC_ATTN_Q: (
  1083. "audio_tower.layers.{bid}.self_attn.q_proj", # ultravox
  1084. ),
  1085. MODEL_TENSOR.A_ENC_ATTN_K: (
  1086. "audio_tower.layers.{bid}.self_attn.k_proj", # ultravox
  1087. ),
  1088. MODEL_TENSOR.A_ENC_ATTN_V: (
  1089. "audio_tower.layers.{bid}.self_attn.v_proj", # ultravox
  1090. ),
  1091. MODEL_TENSOR.A_ENC_INPUT_NORM: (
  1092. "audio_tower.layers.{bid}.self_attn_layer_norm", # ultravox
  1093. ),
  1094. MODEL_TENSOR.A_ENC_OUTPUT: (
  1095. "audio_tower.layers.{bid}.self_attn.out_proj", # ultravox
  1096. ),
  1097. MODEL_TENSOR.A_ENC_OUTPUT_NORM: (
  1098. "audio_tower.layers.{bid}.final_layer_norm", # ultravox
  1099. ),
  1100. MODEL_TENSOR.A_ENC_FFN_UP: (
  1101. "audio_tower.layers.{bid}.fc1", # ultravox
  1102. ),
  1103. MODEL_TENSOR.A_ENC_FFN_GATE: (),
  1104. MODEL_TENSOR.A_ENC_FFN_DOWN: (
  1105. "audio_tower.layers.{bid}.fc2", # ultravox
  1106. ),
  1107. # note: some tensors below has "audio." pseudo-prefix, to prevent conflicts with vision tensors
  1108. # this prefix is added in the conversion code in modify_tensors()
  1109. MODEL_TENSOR.A_MMPROJ: (
  1110. "audio.multi_modal_projector.linear_{bid}", # ultravox
  1111. ),
  1112. MODEL_TENSOR.A_MMPROJ_FC: (
  1113. "audio.multi_modal_projector.linear", # qwen2audio
  1114. "audio_tower.proj", # qwen2omni
  1115. ),
  1116. MODEL_TENSOR.A_MM_NORM_PRE: (
  1117. "audio.multi_modal_projector.ln_pre", # ultravox
  1118. ),
  1119. MODEL_TENSOR.A_MM_NORM_MID: (
  1120. "audio.multi_modal_projector.ln_mid", # ultravox
  1121. ),
  1122. }
  1123. # architecture-specific block mappings
  1124. arch_block_mappings_cfg: dict[MODEL_ARCH, dict[MODEL_TENSOR, tuple[str, ...]]] = {
  1125. MODEL_ARCH.ARCTIC: {
  1126. MODEL_TENSOR.FFN_NORM: (
  1127. "model.layers.{bid}.residual_layernorm",
  1128. ),
  1129. MODEL_TENSOR.FFN_NORM_EXP: (
  1130. "model.layers.{bid}.post_attention_layernorm",
  1131. ),
  1132. },
  1133. }
  1134. mapping: dict[str, tuple[MODEL_TENSOR, str]]
  1135. def __init__(self, arch: MODEL_ARCH, n_blocks: int):
  1136. self.mapping = {}
  1137. for tensor, keys in self.mappings_cfg.items():
  1138. if tensor not in MODEL_TENSORS[arch]:
  1139. continue
  1140. tensor_name = TENSOR_NAMES[tensor]
  1141. self.mapping[tensor_name] = (tensor, tensor_name)
  1142. for key in keys:
  1143. self.mapping[key] = (tensor, tensor_name)
  1144. if arch in self.arch_block_mappings_cfg:
  1145. self.block_mappings_cfg.update(self.arch_block_mappings_cfg[arch])
  1146. for bid in range(n_blocks):
  1147. for tensor, keys in self.block_mappings_cfg.items():
  1148. if tensor not in MODEL_TENSORS[arch]:
  1149. continue
  1150. tensor_name = TENSOR_NAMES[tensor].format(bid = bid)
  1151. self.mapping[tensor_name] = (tensor, tensor_name)
  1152. for key in keys:
  1153. key = key.format(bid = bid)
  1154. self.mapping[key] = (tensor, tensor_name)
  1155. def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
  1156. result = self.mapping.get(key)
  1157. if result is not None:
  1158. return result
  1159. for suffix in try_suffixes:
  1160. if key.endswith(suffix):
  1161. result = self.mapping.get(key[:-len(suffix)])
  1162. if result is not None:
  1163. return result[0], result[1] + suffix
  1164. return None
  1165. def get_name(self, key: str, try_suffixes: Sequence[str] = ()) -> str | None:
  1166. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  1167. if result is None:
  1168. return None
  1169. return result[1]
  1170. def get_type(self, key: str, try_suffixes: Sequence[str] = ()) -> MODEL_TENSOR | None:
  1171. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  1172. if result is None:
  1173. return None
  1174. return result[0]
  1175. def __getitem__(self, key: str) -> str:
  1176. try:
  1177. return self.mapping[key][1]
  1178. except KeyError:
  1179. raise KeyError(key)
  1180. def __contains__(self, key: str) -> bool:
  1181. return key in self.mapping
  1182. def __repr__(self) -> str:
  1183. return repr(self.mapping)
  1184. def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap:
  1185. return TensorNameMap(arch, n_blocks)