convert_hf_to_gguf.py 480 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. from transformers import AutoConfig
  18. import math
  19. import numpy as np
  20. import torch
  21. if TYPE_CHECKING:
  22. from torch import Tensor
  23. if 'NO_LOCAL_GGUF' not in os.environ:
  24. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  25. import gguf
  26. from gguf.vocab import MistralTokenizerType, MistralVocab
  27. try:
  28. from mistral_common.tokens.tokenizers.base import TokenizerVersion # pyright: ignore[reportMissingImports]
  29. from mistral_common.tokens.tokenizers.multimodal import DATASET_MEAN as _MISTRAL_COMMON_DATASET_MEAN, DATASET_STD as _MISTRAL_COMMON_DATASET_STD # pyright: ignore[reportMissingImports]
  30. from mistral_common.tokens.tokenizers.tekken import Tekkenizer # pyright: ignore[reportMissingImports]
  31. from mistral_common.tokens.tokenizers.sentencepiece import ( # pyright: ignore[reportMissingImports]
  32. SentencePieceTokenizer,
  33. )
  34. _mistral_common_installed = True
  35. _mistral_import_error_msg = ""
  36. except ImportError:
  37. _MISTRAL_COMMON_DATASET_MEAN = (0.48145466, 0.4578275, 0.40821073)
  38. _MISTRAL_COMMON_DATASET_STD = (0.26862954, 0.26130258, 0.27577711)
  39. _mistral_common_installed = False
  40. TokenizerVersion = None
  41. Tekkenizer = None
  42. SentencePieceTokenizer = None
  43. _mistral_import_error_msg = (
  44. "Mistral format requires `mistral-common` to be installed. Please run "
  45. "`pip install mistral-common[image,audio]` to install it."
  46. )
  47. logger = logging.getLogger("hf-to-gguf")
  48. ###### MODEL DEFINITIONS ######
  49. class SentencePieceTokenTypes(IntEnum):
  50. NORMAL = 1
  51. UNKNOWN = 2
  52. CONTROL = 3
  53. USER_DEFINED = 4
  54. UNUSED = 5
  55. BYTE = 6
  56. class ModelType(IntEnum):
  57. TEXT = 1
  58. MMPROJ = 2
  59. AnyModel = TypeVar("AnyModel", bound="type[ModelBase]")
  60. class ModelBase:
  61. _model_classes: dict[ModelType, dict[str, type[ModelBase]]] = {
  62. ModelType.TEXT: {},
  63. ModelType.MMPROJ: {},
  64. }
  65. dir_model: Path
  66. ftype: gguf.LlamaFileType
  67. fname_out: Path
  68. is_big_endian: bool
  69. endianess: gguf.GGUFEndian
  70. use_temp_file: bool
  71. lazy: bool
  72. dry_run: bool
  73. hparams: dict[str, Any]
  74. model_tensors: dict[str, Callable[[], Tensor]]
  75. gguf_writer: gguf.GGUFWriter
  76. model_name: str | None
  77. metadata_override: Path | None
  78. dir_model_card: Path
  79. remote_hf_model_id: str | None
  80. # subclasses should define this!
  81. model_arch: gguf.MODEL_ARCH
  82. # subclasses should initialize this!
  83. block_count: int
  84. tensor_map: gguf.TensorNameMap
  85. # Mistral format specifics
  86. is_mistral_format: bool = False
  87. disable_mistral_community_chat_template: bool = False
  88. sentence_transformers_dense_modules: bool = False
  89. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, *, is_big_endian: bool = False,
  90. use_temp_file: bool = False, eager: bool = False,
  91. metadata_override: Path | None = None, model_name: str | None = None,
  92. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  93. small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None,
  94. disable_mistral_community_chat_template: bool = False,
  95. sentence_transformers_dense_modules: bool = False):
  96. if type(self) is ModelBase or \
  97. type(self) is TextModel or \
  98. type(self) is MmprojModel:
  99. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  100. if self.is_mistral_format and not _mistral_common_installed:
  101. raise ImportError(_mistral_import_error_msg)
  102. self.dir_model = dir_model
  103. self.ftype = ftype
  104. self.fname_out = fname_out
  105. self.is_big_endian = is_big_endian
  106. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  107. self.use_temp_file = use_temp_file
  108. self.lazy = not eager or (remote_hf_model_id is not None)
  109. self.dry_run = dry_run
  110. self.remote_hf_model_id = remote_hf_model_id
  111. self.sentence_transformers_dense_modules = sentence_transformers_dense_modules
  112. self.hparams = ModelBase.load_hparams(self.dir_model, self.is_mistral_format) if hparams is None else hparams
  113. self.rope_parameters = self.hparams.get("rope_parameters", self.hparams.get("rope_scaling")) or {}
  114. self.model_tensors = self.index_tensors(remote_hf_model_id=remote_hf_model_id)
  115. self.metadata_override = metadata_override
  116. self.model_name = model_name
  117. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  118. # Ensure "rope_theta" and "rope_type" is mirrored in rope_parameters
  119. if "full_attention" not in self.rope_parameters and "sliding_attention" not in self.rope_parameters:
  120. if "rope_theta" not in self.rope_parameters and (rope_theta := self.find_hparam(["rope_theta", "global_rope_theta", "rotary_emb_base"], optional=True)) is not None:
  121. self.rope_parameters["rope_theta"] = rope_theta
  122. if "rope_type" not in self.rope_parameters and (rope_type := self.rope_parameters.get("type")) is not None:
  123. self.rope_parameters["rope_type"] = rope_type
  124. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  125. if self.ftype == gguf.LlamaFileType.GUESSED:
  126. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  127. _, first_tensor = next(self.get_tensors())
  128. if first_tensor.dtype == torch.float16:
  129. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  130. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  131. else:
  132. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  133. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  134. self.dequant_model()
  135. # Configure GGUF Writer
  136. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  137. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  138. # Mistral specific
  139. self.disable_mistral_community_chat_template = disable_mistral_community_chat_template
  140. @classmethod
  141. def add_prefix_to_filename(cls, path: Path, prefix: str) -> Path:
  142. stem, suffix = path.stem, path.suffix
  143. new_name = f"{prefix}{stem}{suffix}"
  144. return path.with_name(new_name)
  145. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  146. key = next((k for k in keys if k in self.hparams), None)
  147. if key is not None:
  148. return self.hparams[key]
  149. if optional:
  150. return None
  151. raise KeyError(f"could not find any of: {keys}")
  152. def index_tensors(self, remote_hf_model_id: str | None = None) -> dict[str, Callable[[], Tensor]]:
  153. tensors: dict[str, Callable[[], Tensor]] = {}
  154. if remote_hf_model_id is not None:
  155. is_safetensors = True
  156. logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
  157. remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
  158. for name, remote_tensor in remote_tensors.items():
  159. tensors[name] = lambda r=remote_tensor: LazyTorchTensor.from_remote_tensor(r)
  160. return tensors
  161. prefix = "model" if not self.is_mistral_format else "consolidated"
  162. part_names: set[str] = set(ModelBase.get_model_part_names(self.dir_model, prefix, ".safetensors"))
  163. is_safetensors: bool = len(part_names) > 0
  164. if not is_safetensors:
  165. part_names = set(ModelBase.get_model_part_names(self.dir_model, "pytorch_model", ".bin"))
  166. tensor_names_from_index: set[str] = set()
  167. if not self.is_mistral_format:
  168. index_name = "model.safetensors" if is_safetensors else "pytorch_model.bin"
  169. index_name += ".index.json"
  170. index_file = self.dir_model / index_name
  171. if index_file.is_file():
  172. logger.info(f"gguf: loading model weight map from '{index_name}'")
  173. with open(index_file, "r", encoding="utf-8") as f:
  174. index: dict[str, Any] = json.load(f)
  175. weight_map = index.get("weight_map")
  176. if weight_map is None or not isinstance(weight_map, dict):
  177. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  178. tensor_names_from_index.update(weight_map.keys())
  179. part_names |= set(weight_map.values())
  180. else:
  181. weight_map = {}
  182. else:
  183. weight_map = {}
  184. for part_name in part_names:
  185. logger.info(f"gguf: indexing model part '{part_name}'")
  186. ctx: ContextManager[Any]
  187. if is_safetensors:
  188. ctx = cast(ContextManager[Any], gguf.utility.SafetensorsLocal(self.dir_model / part_name))
  189. else:
  190. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  191. with ctx as model_part:
  192. assert model_part is not None
  193. for name in model_part.keys():
  194. if is_safetensors:
  195. data: gguf.utility.LocalTensor = model_part[name]
  196. if self.lazy:
  197. data_gen = lambda data=data: LazyTorchTensor.from_local_tensor(data) # noqa: E731
  198. else:
  199. dtype = LazyTorchTensor._dtype_str_map[data.dtype]
  200. data_gen = lambda data=data, dtype=dtype: torch.from_numpy(data.mmap_bytes()).view(dtype).reshape(data.shape) # noqa: E731
  201. else:
  202. data_torch: Tensor = model_part[name]
  203. if self.lazy:
  204. data_gen = lambda data=data_torch: LazyTorchTensor.from_eager(data) # noqa: E731
  205. else:
  206. data_gen = lambda data=data_torch: data # noqa: E731
  207. tensors[name] = data_gen
  208. # verify tensor name presence and identify potentially missing files
  209. if len(tensor_names_from_index) > 0:
  210. tensor_names_from_parts = set(tensors.keys())
  211. if len(tensor_names_from_parts.symmetric_difference(tensor_names_from_index)) > 0:
  212. missing = sorted(tensor_names_from_index.difference(tensor_names_from_parts))
  213. extra = sorted(tensor_names_from_parts.difference(tensor_names_from_index))
  214. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  215. if len(extra) == 0 and len(missing_files) > 0:
  216. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  217. f"Missing tensors: {missing}")
  218. else:
  219. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  220. f"Missing tensors: {missing}\n"
  221. f"Extra tensors: {extra}")
  222. return tensors
  223. def dequant_model(self):
  224. tensors_to_remove: list[str] = []
  225. new_tensors: dict[str, Callable[[], Tensor]] = {}
  226. if (quant_config := self.hparams.get("quantization_config")) and isinstance(quant_config, dict):
  227. quant_method = quant_config.get("quant_method")
  228. def dequant_bitnet(weight: Tensor, scale: Tensor) -> Tensor:
  229. weight = weight.view(torch.uint8)
  230. orig_shape = weight.shape
  231. shift = torch.tensor([0, 2, 4, 6], dtype=torch.uint8).reshape((4, *(1 for _ in range(len(orig_shape)))))
  232. data = weight.unsqueeze(0).expand((4, *orig_shape)) >> shift
  233. data = data & 3
  234. data = (data.float() - 1).reshape((orig_shape[0] * 4, *orig_shape[1:]))
  235. # The scale is inverted
  236. return data / scale.float()
  237. def dequant_simple(weight: Tensor, scale: Tensor, block_size: Sequence[int] | None = None) -> Tensor:
  238. scale = scale.float()
  239. if block_size is not None:
  240. for i, size in enumerate(block_size):
  241. scale = scale.repeat_interleave(size, i)
  242. # unpad the scale (e.g. when the tensor size isn't a multiple of the block size)
  243. scale = scale[tuple(slice(0, size) for size in weight.shape)]
  244. return weight.float() * scale
  245. # ref: https://github.com/ModelCloud/GPTQModel/blob/037c5c0f6c9e33c500d975b038d02e7ca437546d/gptqmodel/nn_modules/qlinear/__init__.py#L437-L476
  246. def dequant_gptq(g_idx: Tensor, qweight: Tensor, qzeros: Tensor, scales: Tensor) -> Tensor:
  247. bits = quant_config["bits"]
  248. assert bits in (2, 3, 4, 8)
  249. assert qweight.dtype == qzeros.dtype
  250. maxq = (2 ** bits) - 1
  251. weight = None
  252. zeros = None
  253. pack_dtype_bits = qweight.dtype.itemsize * 8
  254. if bits in [2, 4, 8]:
  255. pack_factor = pack_dtype_bits // bits
  256. wf = torch.tensor(list(range(0, pack_dtype_bits, bits)), dtype=torch.int32).unsqueeze(0)
  257. if self.lazy:
  258. wf = LazyTorchTensor.from_eager(wf)
  259. zeros = torch.bitwise_right_shift(
  260. qzeros.unsqueeze(2).expand(-1, -1, pack_factor),
  261. wf.unsqueeze(0)
  262. ).to(torch.int16 if bits == 8 else torch.int8)
  263. zeros = torch.bitwise_and(zeros, maxq).reshape(scales.shape)
  264. weight = torch.bitwise_and(
  265. torch.bitwise_right_shift(
  266. qweight.unsqueeze(1).expand(-1, pack_factor, -1),
  267. wf.unsqueeze(-1)
  268. ).to(torch.int16 if bits == 8 else torch.int8),
  269. maxq
  270. )
  271. elif bits == 3:
  272. raise NotImplementedError("3-bit gptq dequantization is not yet implemented")
  273. assert weight is not None
  274. assert zeros is not None
  275. weight = weight.reshape(weight.shape[0] * weight.shape[1], weight.shape[2])
  276. # gptq_v2 doesn't need to offset zeros
  277. if quant_config.get("checkpoint_format", "gptq") == "gptq":
  278. zeros += 1
  279. return (scales[g_idx].float() * (weight - zeros[g_idx]).float()).T
  280. def dequant_packed(w: Tensor, scale: Tensor, shape_tensor: Tensor, zero_point: Tensor | None, num_bits: int, group_size: int):
  281. assert w.dtype == torch.int32
  282. shape = tuple(shape_tensor.tolist())
  283. assert len(shape) == 2
  284. mask = (1 << num_bits) - 1
  285. shifts = torch.arange(0, 32 - (num_bits - 1), num_bits, dtype=torch.int32)
  286. if self.lazy:
  287. shifts = LazyTorchTensor.from_eager(shifts)
  288. if zero_point is None:
  289. offset = 1 << (num_bits - 1)
  290. else:
  291. assert len(zero_point.shape) == 2
  292. offset = (zero_point.unsqueeze(1) >> shifts.reshape(1, -1, 1)) & mask
  293. offset = offset.reshape(-1, zero_point.shape[1])
  294. # trim padding, and prepare for broadcast
  295. # NOTE: the zero-point is packed along dim 0
  296. offset = offset[:shape[0], :].unsqueeze(-1)
  297. # extract values
  298. # NOTE: the weights are packed along dim 1
  299. unpacked = (w.unsqueeze(-1) >> shifts.reshape(1, 1, -1)) & mask
  300. unpacked = unpacked.reshape(shape[0], -1)
  301. # trim padding
  302. unpacked = unpacked[:, :shape[1]]
  303. # prepare for broadcast of the scale
  304. unpacked = unpacked.reshape(shape[0], (unpacked.shape[-1] + group_size - 1) // group_size, group_size)
  305. unpacked = unpacked - offset
  306. return (unpacked * scale.unsqueeze(-1).float()).reshape(shape)
  307. if quant_method == "bitnet":
  308. for name in self.model_tensors.keys():
  309. if name.endswith(".weight_scale"):
  310. weight_name = name.removesuffix("_scale")
  311. w = self.model_tensors[weight_name]
  312. s = self.model_tensors[name]
  313. self.model_tensors[weight_name] = lambda w=w, s=s: dequant_bitnet(w(), s())
  314. tensors_to_remove.append(name)
  315. elif quant_method == "fp8":
  316. block_size = quant_config.get("weight_block_size")
  317. for name in self.model_tensors.keys():
  318. if name.endswith(".weight_scale_inv"):
  319. weight_name = name.removesuffix("_scale_inv")
  320. w = self.model_tensors[weight_name]
  321. s = self.model_tensors[name]
  322. self.model_tensors[weight_name] = lambda w=w, s=s, bs=block_size: dequant_simple(w(), s(), bs)
  323. tensors_to_remove.append(name)
  324. if name.endswith(".activation_scale"): # unused
  325. tensors_to_remove.append(name)
  326. # mistral format
  327. if name.endswith(".qscale_weight"):
  328. weight_name = name.removesuffix("qscale_weight") + "weight"
  329. w = self.model_tensors[weight_name]
  330. s = self.model_tensors[name]
  331. self.model_tensors[weight_name] = lambda w=w, s=s, bs=block_size: dequant_simple(w(), s(), bs)
  332. tensors_to_remove.append(name)
  333. if name.endswith(".qscale_act"):
  334. tensors_to_remove.append(name)
  335. elif quant_method == "gptq":
  336. for name in self.model_tensors.keys():
  337. if name.endswith(".qweight"):
  338. base_name = name.removesuffix(".qweight")
  339. g_idx = self.model_tensors[base_name + ".g_idx"]
  340. qweight = self.model_tensors[base_name + ".qweight"]
  341. qzeros = self.model_tensors[base_name + ".qzeros"]
  342. scales = self.model_tensors[base_name + ".scales"]
  343. new_tensors[base_name + ".weight"] = (
  344. lambda g=g_idx, z=qzeros, w=qweight, s=scales: dequant_gptq(
  345. g(), w(), z(), s()
  346. )
  347. )
  348. tensors_to_remove += [
  349. base_name + n
  350. for n in (
  351. ".g_idx",
  352. ".qzeros",
  353. ".qweight",
  354. ".scales",
  355. )
  356. ]
  357. elif quant_method == "compressed-tensors":
  358. quant_format = quant_config["format"]
  359. groups = quant_config["config_groups"]
  360. if len(groups) > 1:
  361. raise NotImplementedError("Can't handle multiple config groups for compressed-tensors yet")
  362. weight_config = tuple(groups.values())[0]["weights"]
  363. if quant_format == "float-quantized" or quant_format == "int-quantized" or quant_format == "naive-quantized":
  364. block_size = weight_config.get("block_structure", None)
  365. strategy = weight_config.get("strategy")
  366. assert strategy == "channel" or strategy == "block"
  367. assert weight_config.get("group_size") is None # didn't find a model using this yet
  368. for name in self.model_tensors.keys():
  369. if name.endswith(".weight_scale"):
  370. weight_name = name.removesuffix("_scale")
  371. w = self.model_tensors[weight_name]
  372. s = self.model_tensors[name]
  373. self.model_tensors[weight_name] = lambda w=w, s=s: dequant_simple(w(), s(), block_size)
  374. tensors_to_remove.append(name)
  375. elif quant_format == "pack-quantized":
  376. assert weight_config.get("strategy") == "group"
  377. assert weight_config.get("type", "int") == "int"
  378. num_bits = weight_config.get("num_bits")
  379. group_size = weight_config.get("group_size")
  380. assert isinstance(num_bits, int)
  381. assert isinstance(group_size, int)
  382. for name in self.model_tensors.keys():
  383. if name.endswith(".weight_packed"):
  384. base_name = name.removesuffix("_packed")
  385. w = self.model_tensors[name]
  386. scale = self.model_tensors[base_name + "_scale"]
  387. shape = self.model_tensors[base_name + "_shape"]
  388. zero_point = self.model_tensors.get(base_name + "_zero_point", lambda: None)
  389. new_tensors[base_name] = (
  390. lambda w=w, scale=scale, shape=shape, zero_point=zero_point: dequant_packed(
  391. w(), scale(), shape(), zero_point(), num_bits, group_size,
  392. )
  393. )
  394. tensors_to_remove += [base_name + n for n in ("_packed", "_shape", "_scale")]
  395. if (base_name + "_zero_point") in self.model_tensors:
  396. tensors_to_remove.append(base_name + "_zero_point")
  397. else:
  398. raise NotImplementedError(f"Quant format {quant_format!r} for method {quant_method!r} is not yet supported")
  399. else:
  400. raise NotImplementedError(f"Quant method is not yet supported: {quant_method!r}")
  401. for name in tensors_to_remove:
  402. if name in self.model_tensors:
  403. del self.model_tensors[name]
  404. for name, value in new_tensors.items():
  405. self.model_tensors[name] = value
  406. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  407. for name, gen in self.model_tensors.items():
  408. yield name, gen()
  409. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  410. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  411. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  412. name: str = gguf.TENSOR_NAMES[key]
  413. if "{bid}" in name:
  414. assert bid is not None
  415. name = name.format(bid=bid)
  416. return name + suffix
  417. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  418. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  419. return False
  420. key_name: str = gguf.TENSOR_NAMES[key]
  421. if "{bid}" in key_name:
  422. if bid is None:
  423. return False
  424. key_name = key_name.format(bid=bid)
  425. else:
  426. if bid is not None:
  427. return False
  428. return name == (key_name + suffix)
  429. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  430. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  431. if new_name is None:
  432. raise ValueError(f"Can not map tensor {name!r}")
  433. return new_name
  434. def set_gguf_parameters(self):
  435. raise NotImplementedError("set_gguf_parameters() must be implemented in subclasses")
  436. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  437. del bid # unused
  438. return [(self.map_tensor_name(name), data_torch)]
  439. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  440. del name, new_name, bid, n_dims # unused
  441. return False
  442. # some models need extra generated tensors (like rope_freqs)
  443. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  444. return ()
  445. def prepare_tensors(self):
  446. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  447. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  448. # we don't need these
  449. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  450. continue
  451. old_dtype = data_torch.dtype
  452. # convert any unsupported data types to float32
  453. if data_torch.dtype not in (torch.float16, torch.float32):
  454. data_torch = data_torch.to(torch.float32)
  455. # use the first number-like part of the tensor name as the block id
  456. bid = None
  457. for part in name.split("."):
  458. if part.isdecimal():
  459. bid = int(part)
  460. break
  461. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  462. # TODO: why do we squeeze here?
  463. # data = data_torch.squeeze().numpy()
  464. data = data_torch.numpy()
  465. n_dims = len(data.shape)
  466. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  467. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  468. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  469. data_qtype = gguf.GGMLQuantizationType.F32
  470. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  471. # Some tensor types are always in float32
  472. if data_qtype is False and (
  473. any(
  474. self.match_model_tensor_name(new_name, key, bid)
  475. for key in (
  476. gguf.MODEL_TENSOR.FFN_GATE_INP,
  477. gguf.MODEL_TENSOR.POS_EMBD,
  478. gguf.MODEL_TENSOR.TOKEN_TYPES,
  479. gguf.MODEL_TENSOR.SSM_CONV1D,
  480. gguf.MODEL_TENSOR.SHORTCONV_CONV,
  481. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  482. gguf.MODEL_TENSOR.TIME_MIX_W1,
  483. gguf.MODEL_TENSOR.TIME_MIX_W2,
  484. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  485. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  486. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  487. gguf.MODEL_TENSOR.POSNET_NORM1,
  488. gguf.MODEL_TENSOR.POSNET_NORM2,
  489. gguf.MODEL_TENSOR.V_ENC_EMBD_POS,
  490. gguf.MODEL_TENSOR.A_ENC_EMBD_POS,
  491. gguf.MODEL_TENSOR.ALTUP_CORRECT_COEF,
  492. gguf.MODEL_TENSOR.ALTUP_PREDICT_COEF,
  493. )
  494. )
  495. or new_name[-7:] not in (".weight", ".lora_a", ".lora_b")
  496. ):
  497. data_qtype = gguf.GGMLQuantizationType.F32
  498. if data_qtype is False and any(
  499. self.match_model_tensor_name(new_name, key, bid)
  500. for key in (
  501. gguf.MODEL_TENSOR.TOKEN_EMBD,
  502. gguf.MODEL_TENSOR.PER_LAYER_TOKEN_EMBD,
  503. gguf.MODEL_TENSOR.OUTPUT,
  504. gguf.MODEL_TENSOR.ALTUP_ROUTER,
  505. gguf.MODEL_TENSOR.LAUREL_L,
  506. gguf.MODEL_TENSOR.LAUREL_R,
  507. )
  508. ):
  509. if self.ftype in (
  510. gguf.LlamaFileType.MOSTLY_TQ1_0,
  511. gguf.LlamaFileType.MOSTLY_TQ2_0,
  512. ):
  513. # TODO: use Q4_K and Q6_K
  514. data_qtype = gguf.GGMLQuantizationType.F16
  515. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  516. if isinstance(data_qtype, bool):
  517. if self.ftype == gguf.LlamaFileType.ALL_F32:
  518. data_qtype = gguf.GGMLQuantizationType.F32
  519. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  520. data_qtype = gguf.GGMLQuantizationType.F16
  521. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  522. data_qtype = gguf.GGMLQuantizationType.BF16
  523. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  524. data_qtype = gguf.GGMLQuantizationType.Q8_0
  525. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  526. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  527. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  528. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  529. else:
  530. raise ValueError(f"Unknown file type: {self.ftype.name}")
  531. try:
  532. data = gguf.quants.quantize(data, data_qtype)
  533. except gguf.QuantError as e:
  534. logger.warning("%s, %s", e, "falling back to F16")
  535. data_qtype = gguf.GGMLQuantizationType.F16
  536. data = gguf.quants.quantize(data, data_qtype)
  537. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  538. # reverse shape to make it similar to the internal ggml dimension order
  539. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  540. # n_dims is implicit in the shape
  541. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  542. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  543. def set_type(self):
  544. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  545. def prepare_metadata(self, vocab_only: bool):
  546. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  547. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  548. # If we are using HF model id, set the metadata name to the model id
  549. if self.remote_hf_model_id:
  550. self.metadata.name = self.remote_hf_model_id
  551. # Fallback to model directory name if metadata name is still missing
  552. if self.metadata.name is None:
  553. self.metadata.name = self.dir_model.name
  554. # Generate parameter weight class (useful for leader boards) if not yet determined
  555. if self.metadata.size_label is None and total_params > 0:
  556. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  557. self.set_type()
  558. logger.info("Set meta model")
  559. self.metadata.set_gguf_meta_model(self.gguf_writer)
  560. logger.info("Set model parameters")
  561. self.set_gguf_parameters()
  562. logger.info("Set model quantization version")
  563. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  564. def write_vocab(self):
  565. raise NotImplementedError("write_vocab() must be implemented in subclasses")
  566. def write(self):
  567. self.prepare_tensors()
  568. self.prepare_metadata(vocab_only=False)
  569. self.gguf_writer.write_header_to_file(path=self.fname_out)
  570. self.gguf_writer.write_kv_data_to_file()
  571. self.gguf_writer.write_tensors_to_file(progress=True)
  572. self.gguf_writer.close()
  573. @staticmethod
  574. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  575. part_names: list[str] = []
  576. for filename in os.listdir(dir_model):
  577. if filename.startswith(prefix) and filename.endswith(suffix):
  578. part_names.append(filename)
  579. part_names.sort()
  580. return part_names
  581. @staticmethod
  582. def load_hparams(dir_model: Path, is_mistral_format: bool):
  583. if is_mistral_format:
  584. with open(dir_model / "params.json", "r", encoding="utf-8") as f:
  585. config = json.load(f)
  586. return config
  587. try:
  588. # for security reason, we don't allow loading remote code by default
  589. # if a model need remote code, we will fallback to config.json
  590. config = AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
  591. except Exception as e:
  592. logger.warning(f"Failed to load model config from {dir_model}: {e}")
  593. logger.warning("Trying to load config.json instead")
  594. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  595. config = json.load(f)
  596. if "llm_config" in config:
  597. # rename for InternVL
  598. config["text_config"] = config["llm_config"]
  599. if "lm_config" in config:
  600. # rename for GlmASR
  601. config["text_config"] = config["lm_config"]
  602. if "thinker_config" in config:
  603. # rename for Qwen2.5-Omni
  604. config["text_config"] = config["thinker_config"]["text_config"]
  605. return config
  606. @classmethod
  607. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  608. assert names
  609. def func(modelcls: AnyModel) -> AnyModel:
  610. model_type = ModelType.MMPROJ if modelcls.model_arch == gguf.MODEL_ARCH.MMPROJ else ModelType.TEXT
  611. for name in names:
  612. cls._model_classes[model_type][name] = modelcls
  613. return modelcls
  614. return func
  615. @classmethod
  616. def print_registered_models(cls):
  617. for model_type, model_classes in cls._model_classes.items():
  618. logger.error(f"{model_type.name} models:")
  619. for name in sorted(model_classes.keys()):
  620. logger.error(f" - {name}")
  621. @classmethod
  622. def from_model_architecture(cls, arch: str, model_type = ModelType.TEXT) -> type[ModelBase]:
  623. try:
  624. return cls._model_classes[model_type][arch]
  625. except KeyError:
  626. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  627. class TextModel(ModelBase):
  628. model_type = ModelType.TEXT
  629. hf_arch: str
  630. def __init__(self, *args, **kwargs):
  631. super().__init__(*args, **kwargs)
  632. if not self.is_mistral_format:
  633. self.hf_arch = get_model_architecture(self.hparams, self.model_type)
  634. else:
  635. self.hf_arch = ""
  636. if "text_config" in self.hparams:
  637. # move the text_config to the root level
  638. self.hparams = {**self.hparams, **self.hparams["text_config"]}
  639. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  640. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  641. @classmethod
  642. def __init_subclass__(cls):
  643. # can't use an abstract property, because overriding it without type errors
  644. # would require using decorated functions instead of simply defining the property
  645. if "model_arch" not in cls.__dict__:
  646. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  647. def set_vocab(self):
  648. self._set_vocab_gpt2()
  649. def prepare_metadata(self, vocab_only: bool):
  650. super().prepare_metadata(vocab_only=vocab_only)
  651. total_params = self.gguf_writer.get_total_parameter_count()[0]
  652. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  653. output_type: str = self.ftype.name.partition("_")[2]
  654. # Filename Output
  655. if self.fname_out.is_dir():
  656. # Generate default filename based on model specification and available metadata
  657. if not vocab_only:
  658. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  659. else:
  660. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  661. # Use the default filename
  662. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  663. else:
  664. # Output path is a custom defined templated filename
  665. # Note: `not is_dir()` is used because `.is_file()` will not detect
  666. # file template strings as it doesn't actually exist as a file
  667. # Process templated file name with the output ftype, useful with the "auto" ftype
  668. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  669. logger.info("Set model tokenizer")
  670. self.set_vocab()
  671. def set_gguf_parameters(self):
  672. self.gguf_writer.add_block_count(self.block_count)
  673. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions", "max_length", "max_sequence_length", "model_max_length"], optional=True)) is not None:
  674. self.gguf_writer.add_context_length(n_ctx)
  675. logger.info(f"gguf: context length = {n_ctx}")
  676. if (n_embd := self.find_hparam(["hidden_size", "n_embd", "dim"], optional=True)) is not None:
  677. self.gguf_writer.add_embedding_length(n_embd)
  678. logger.info(f"gguf: embedding length = {n_embd}")
  679. if (n_ff := self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"], optional=True)) is not None:
  680. self.gguf_writer.add_feed_forward_length(n_ff)
  681. logger.info(f"gguf: feed forward length = {n_ff}")
  682. if (n_head := self.find_hparam(["num_attention_heads", "n_head", "n_heads"], optional=True)) is not None:
  683. self.gguf_writer.add_head_count(n_head)
  684. logger.info(f"gguf: head count = {n_head}")
  685. if (n_head_kv := self.find_hparam(["num_key_value_heads", "n_kv_heads"], optional=True)) is not None:
  686. self.gguf_writer.add_head_count_kv(n_head_kv)
  687. logger.info(f"gguf: key-value head count = {n_head_kv}")
  688. rope_params = self.rope_parameters.get("full_attention", self.rope_parameters)
  689. if (rope_type := rope_params.get("rope_type")) is not None:
  690. rope_factor = rope_params.get("factor")
  691. rope_gguf_type = gguf.RopeScalingType.NONE
  692. if rope_type == "linear" and rope_factor is not None:
  693. rope_gguf_type = gguf.RopeScalingType.LINEAR
  694. self.gguf_writer.add_rope_scaling_type(rope_gguf_type)
  695. self.gguf_writer.add_rope_scaling_factor(rope_factor)
  696. elif rope_type == "yarn" and rope_factor is not None:
  697. rope_gguf_type = gguf.RopeScalingType.YARN
  698. self.gguf_writer.add_rope_scaling_type(rope_gguf_type)
  699. self.gguf_writer.add_rope_scaling_factor(rope_factor)
  700. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_params["original_max_position_embeddings"])
  701. if (yarn_ext_factor := rope_params.get("extrapolation_factor")) is not None:
  702. self.gguf_writer.add_rope_scaling_yarn_ext_factor(yarn_ext_factor)
  703. if (yarn_attn_factor := rope_params.get("attention_factor", rope_params.get("attn_factor"))) is not None:
  704. self.gguf_writer.add_rope_scaling_yarn_attn_factor(yarn_attn_factor)
  705. if (yarn_beta_fast := rope_params.get("beta_fast")) is not None:
  706. self.gguf_writer.add_rope_scaling_yarn_beta_fast(yarn_beta_fast)
  707. if (yarn_beta_slow := rope_params.get("beta_slow")) is not None:
  708. self.gguf_writer.add_rope_scaling_yarn_beta_slow(yarn_beta_slow)
  709. # self.gguf_writer.add_rope_scaling_yarn_log_mul(rope_params["mscale_all_dim"])
  710. elif rope_type == "su" or rope_type == "longrope":
  711. rope_gguf_type = gguf.RopeScalingType.LONGROPE
  712. self.gguf_writer.add_rope_scaling_type(rope_gguf_type)
  713. elif rope_type == "dynamic":
  714. # HunYuan, handled in model class
  715. pass
  716. elif rope_type.lower() == "llama3":
  717. # Handled in generate_extra_tensors
  718. pass
  719. else:
  720. logger.warning(f"Unknown RoPE type: {rope_type}")
  721. logger.info(f"gguf: rope scaling type = {rope_gguf_type.name}")
  722. if (rope_theta := rope_params.get("rope_theta")) is not None:
  723. self.gguf_writer.add_rope_freq_base(rope_theta)
  724. logger.info(f"gguf: rope theta = {rope_theta}")
  725. if (f_rms_eps := self.find_hparam(["rms_norm_eps", "norm_eps"], optional=True)) is not None:
  726. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  727. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  728. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  729. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  730. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  731. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  732. self.gguf_writer.add_expert_count(n_experts)
  733. logger.info(f"gguf: expert count = {n_experts}")
  734. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  735. self.gguf_writer.add_expert_used_count(n_experts_used)
  736. logger.info(f"gguf: experts used count = {n_experts_used}")
  737. if (n_expert_groups := self.hparams.get("n_group")) is not None:
  738. self.gguf_writer.add_expert_group_count(n_expert_groups)
  739. logger.info(f"gguf: expert groups count = {n_expert_groups}")
  740. if (n_group_used := self.hparams.get("topk_group")) is not None:
  741. self.gguf_writer.add_expert_group_used_count(n_group_used)
  742. logger.info(f"gguf: expert groups used count = {n_group_used}")
  743. if (score_func := self.find_hparam(["score_function", "scoring_func", "score_func"], optional=True)) is not None:
  744. if score_func == "sigmoid":
  745. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  746. elif score_func == "softmax":
  747. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  748. else:
  749. raise ValueError(f"Unsupported expert score gating function value: {score_func}")
  750. logger.info(f"gguf: expert score gating function = {score_func}")
  751. if (head_dim := self.hparams.get("head_dim")) is not None:
  752. self.gguf_writer.add_key_length(head_dim)
  753. self.gguf_writer.add_value_length(head_dim)
  754. self.gguf_writer.add_file_type(self.ftype)
  755. logger.info(f"gguf: file type = {self.ftype}")
  756. def write_vocab(self):
  757. if len(self.gguf_writer.tensors) != 1:
  758. raise ValueError('Splitting the vocabulary is not supported')
  759. self.prepare_metadata(vocab_only=True)
  760. self.gguf_writer.write_header_to_file(path=self.fname_out)
  761. self.gguf_writer.write_kv_data_to_file()
  762. self.gguf_writer.close()
  763. def does_token_look_special(self, token: str | bytes) -> bool:
  764. if isinstance(token, (bytes, bytearray)):
  765. token_text = token.decode(encoding="utf-8")
  766. elif isinstance(token, memoryview):
  767. token_text = token.tobytes().decode(encoding="utf-8")
  768. else:
  769. token_text = token
  770. # Some models mark some added tokens which ought to be control tokens as not special.
  771. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  772. seems_special = token_text in (
  773. "<pad>", # deepseek-coder
  774. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  775. )
  776. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  777. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  778. # TODO: should these be marked as UNUSED instead? (maybe not)
  779. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  780. return seems_special
  781. # used for GPT-2 BPE and WordPiece vocabs
  782. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  783. tokens: list[str] = []
  784. toktypes: list[int] = []
  785. from transformers import AutoTokenizer
  786. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  787. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  788. assert max(tokenizer.vocab.values()) < vocab_size
  789. tokpre = self.get_vocab_base_pre(tokenizer)
  790. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  791. added_vocab = tokenizer.get_added_vocab()
  792. added_tokens_decoder = tokenizer.added_tokens_decoder
  793. for i in range(vocab_size):
  794. if i not in reverse_vocab:
  795. tokens.append(f"[PAD{i}]")
  796. toktypes.append(gguf.TokenType.UNUSED)
  797. else:
  798. token: str = reverse_vocab[i]
  799. if token in added_vocab:
  800. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  801. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  802. if not added_tokens_decoder[i].normalized:
  803. previous_token = token
  804. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  805. if previous_token != token:
  806. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  807. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  808. toktypes.append(gguf.TokenType.CONTROL)
  809. else:
  810. # NOTE: this was added for Gemma.
  811. # Encoding and decoding the tokens above isn't sufficient for this case.
  812. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  813. toktypes.append(gguf.TokenType.USER_DEFINED)
  814. else:
  815. toktypes.append(gguf.TokenType.NORMAL)
  816. tokens.append(token)
  817. return tokens, toktypes, tokpre
  818. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  819. # do not modify it manually!
  820. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  821. # Marker: Start get_vocab_base_pre
  822. def get_vocab_base_pre(self, tokenizer) -> str:
  823. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  824. # is specific for the BPE pre-tokenizer used by the model
  825. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  826. # use in llama.cpp to implement the same pre-tokenizer
  827. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  828. chktok = tokenizer.encode(chktxt)
  829. chkhsh = sha256(str(chktok).encode()).hexdigest()
  830. logger.debug(f"chktok: {chktok}")
  831. logger.debug(f"chkhsh: {chkhsh}")
  832. res = None
  833. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  834. # or pull the latest version of the model from Huggingface
  835. # don't edit the hashes manually!
  836. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  837. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  838. res = "chatglm-bpe"
  839. if chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  840. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  841. res = "chatglm-bpe"
  842. if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
  843. # ref: https://huggingface.co/THUDM/glm-4-9b-hf
  844. res = "glm4"
  845. if chkhsh == "9ca2dd618e8afaf09731a7cf6e2105b373ba6a1821559f258b272fe83e6eb902":
  846. # ref: https://huggingface.co/zai-org/GLM-4.5-Air
  847. res = "glm4"
  848. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  849. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  850. res = "minerva-7b"
  851. if chkhsh == "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664":
  852. # ref: https://huggingface.co/tencent/Hunyuan-A13B-Instruct
  853. res = "hunyuan"
  854. if chkhsh == "bba3b3366b646dbdded5dbc42d59598b849371afc42f7beafa914afaa5b70aa6":
  855. # ref: https://huggingface.co/tencent/Hunyuan-4B-Instruct
  856. res = "hunyuan-dense"
  857. if chkhsh == "a6b57017d60e6edb4d88ecc2845188e0eb333a70357e45dcc9b53964a73bbae6":
  858. # ref: https://huggingface.co/tiiuae/Falcon-H1-0.5B-Base
  859. res = "falcon-h1"
  860. if chkhsh == "60476e1243776c4fb1b993dbd7a5f15ac22f83c80afdf425fa5ae01c8d44ef86":
  861. # ref: https://huggingface.co/tiiuae/Falcon-H1-1B-Base
  862. res = "falcon-h1"
  863. if chkhsh == "3eda48b4c4dc7de733d1a8b3e3b4a85243dbbf704da2ee9d42c6beced8897896":
  864. # ref: https://huggingface.co/tiiuae/Falcon-H1-7B-Base
  865. res = "falcon-h1"
  866. if chkhsh == "48f8e02c0359c0bbdd82f26909171fac1c18a457bb47573ed1fe3bbb2c1cfd4b":
  867. # ref: https://huggingface.co/tiiuae/Falcon-H1-34B-Base
  868. res = "falcon-h1"
  869. if chkhsh == "81212dc7cdb7e0c1074ca62c5aeab0d43c9f52b8a737be7b12a777c953027890":
  870. # ref: https://huggingface.co/moonshotai/Kimi-K2-Base
  871. res = "kimi-k2"
  872. if chkhsh == "d4540891389ea895b53b399da6ac824becc30f2fba0e9ddbb98f92e55ca0e97c":
  873. # ref: https://huggingface.co/Qwen/Qwen3-Embedding-0.6B
  874. res = "qwen2"
  875. if chkhsh == "66b8d4e19ab16c3bfd89bce5d785fb7e0155e8648708a1f42077cb9fe002c273":
  876. # ref: https://huggingface.co/alvarobartt/grok-2-tokenizer
  877. res = "grok-2"
  878. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  879. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  880. res = "llama-bpe"
  881. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  882. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  883. res = "deepseek-llm"
  884. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  885. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  886. res = "deepseek-coder"
  887. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  888. # ref: https://huggingface.co/tiiuae/falcon-7b
  889. res = "falcon"
  890. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  891. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  892. res = "bert-bge"
  893. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  894. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  895. res = "falcon3"
  896. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  897. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  898. res = "bert-bge-large"
  899. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  900. # ref: https://huggingface.co/mosaicml/mpt-7b
  901. res = "mpt"
  902. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  903. # ref: https://huggingface.co/bigcode/starcoder2-3b
  904. res = "starcoder"
  905. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  906. # ref: https://huggingface.co/openai-community/gpt2
  907. res = "gpt-2"
  908. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  909. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  910. res = "stablelm2"
  911. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  912. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  913. res = "refact"
  914. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  915. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  916. res = "command-r"
  917. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  918. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  919. res = "qwen2"
  920. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  921. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  922. res = "olmo"
  923. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  924. # ref: https://huggingface.co/databricks/dbrx-base
  925. res = "dbrx"
  926. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  927. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  928. res = "jina-v1-en"
  929. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  930. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  931. res = "jina-v2-en"
  932. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  933. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  934. res = "jina-v2-es"
  935. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  936. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  937. res = "jina-v2-de"
  938. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  939. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  940. res = "smaug-bpe"
  941. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  942. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  943. res = "poro-chat"
  944. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  945. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  946. res = "jina-v2-code"
  947. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  948. # ref: https://huggingface.co/LumiOpen/Viking-7B
  949. res = "viking"
  950. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  951. # ref: https://huggingface.co/core42/jais-13b
  952. res = "jais"
  953. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  954. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  955. res = "codeshell"
  956. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  957. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  958. res = "tekken"
  959. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  960. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  961. res = "smollm"
  962. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  963. # ref: https://huggingface.co/bigscience/bloom
  964. res = "bloom"
  965. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  966. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  967. res = "gpt3-finnish"
  968. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  969. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  970. res = "exaone"
  971. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  972. # ref: https://huggingface.co/microsoft/phi-2
  973. res = "phi-2"
  974. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  975. # ref: https://huggingface.co/facebook/chameleon-7b
  976. res = "chameleon"
  977. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  978. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  979. res = "roberta-bpe"
  980. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  981. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  982. res = "gigachat"
  983. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  984. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  985. res = "megrez"
  986. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  987. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  988. res = "deepseek-v3"
  989. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  990. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  991. res = "deepseek-r1-qwen"
  992. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  993. # ref: https://huggingface.co/Xenova/gpt-4o
  994. res = "gpt-4o"
  995. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  996. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  997. res = "superbpe"
  998. if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
  999. # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
  1000. res = "trillion"
  1001. if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
  1002. # ref: https://huggingface.co/inclusionAI/Ling-lite
  1003. res = "bailingmoe"
  1004. if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
  1005. # ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
  1006. res = "llama4"
  1007. if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
  1008. # ref: https://huggingface.co/mistral-community/pixtral-12b
  1009. res = "pixtral"
  1010. if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec":
  1011. # ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base
  1012. res = "seed-coder"
  1013. if chkhsh == "b0a6b1c0bd5998ebd9df08611efde34a4ff03faed45ae09c43e6b31ebd4b94cf":
  1014. # ref: https://huggingface.co/skt/A.X-4.0
  1015. res = "a.x-4.0"
  1016. if chkhsh == "f6791d196f87ce6b56a7d234be618e0d58f8cda3549416635b2bebcd22cd95c4":
  1017. # ref: https://huggingface.co/K-intelligence/Midm-2.0-Base-Instruct
  1018. res = "midm-2.0"
  1019. if chkhsh == "169bf0296a13c4d9b7672313f749eb36501d931022de052aad6e36f2bf34dd51":
  1020. # ref: https://huggingface.co/LiquidAI/LFM2-Tokenizer
  1021. res = "lfm2"
  1022. if chkhsh == "2085e1638f6c377a0aa4ead21b27bb4cb941bf800df86ed391011769c1758dfb":
  1023. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B
  1024. res = "exaone4"
  1025. if chkhsh == "a1e163ecab2e718a4c829d1148b6e86824ec36163bb71941c3dca9cd5ac25756":
  1026. # ref: https://huggingface.co/JetBrains/Mellum-4b-base
  1027. res = "mellum"
  1028. if chkhsh == "49fc0303c9e0d2c2c565c510f64b2d9b271276acdcdadff733249eda9f7d59df":
  1029. # ref: https://huggingface.co/arcee-ai/Trinity-Tokenizer
  1030. res = "afmoe"
  1031. if chkhsh == "9b1be57e70d20d9501b2b3186e792d81181ae36ada3903c26f9fea418cf87206":
  1032. # ref: https://huggingface.co/inclusionAI/Ling-mini-base-2.0
  1033. res = "bailingmoe2"
  1034. if chkhsh == "53e325976a6e142379c19b09afcae354f2f496f147afa8f9e189a33fe4e3024e":
  1035. # ref: https://huggingface.co/ibm-granite/granite-docling-258M
  1036. res = "granite-docling"
  1037. if chkhsh == "f4f37b6c8eb9ea29b3eac6bb8c8487c5ab7885f8d8022e67edc1c68ce8403e95":
  1038. # ref: https://huggingface.co/MiniMaxAI/MiniMax-M2
  1039. res = "minimax-m2"
  1040. if res is None:
  1041. logger.warning("\n")
  1042. logger.warning("**************************************************************************************")
  1043. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  1044. logger.warning("** There are 2 possible reasons for this:")
  1045. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  1046. logger.warning("** - the pre-tokenization config has changed upstream")
  1047. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  1048. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  1049. logger.warning("**")
  1050. logger.warning(f"** chkhsh: {chkhsh}")
  1051. logger.warning("**************************************************************************************")
  1052. logger.warning("\n")
  1053. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  1054. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  1055. logger.debug(f"chkhsh: {chkhsh}")
  1056. return res
  1057. # Marker: End get_vocab_base_pre
  1058. def _set_vocab_none(self) -> None:
  1059. self.gguf_writer.add_tokenizer_model("none")
  1060. def _set_vocab_gpt2(self) -> None:
  1061. tokens, toktypes, tokpre = self.get_vocab_base()
  1062. self.gguf_writer.add_tokenizer_model("gpt2")
  1063. self.gguf_writer.add_tokenizer_pre(tokpre)
  1064. self.gguf_writer.add_token_list(tokens)
  1065. self.gguf_writer.add_token_types(toktypes)
  1066. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1067. special_vocab.add_to_gguf(self.gguf_writer)
  1068. def _set_vocab_qwen(self):
  1069. dir_model = self.dir_model
  1070. hparams = self.hparams
  1071. tokens: list[str] = []
  1072. toktypes: list[int] = []
  1073. from transformers import AutoTokenizer
  1074. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  1075. vocab_size = hparams["vocab_size"]
  1076. assert max(tokenizer.get_vocab().values()) < vocab_size
  1077. tokpre = self.get_vocab_base_pre(tokenizer)
  1078. merges = []
  1079. vocab = {}
  1080. mergeable_ranks = tokenizer.mergeable_ranks
  1081. for token, rank in mergeable_ranks.items():
  1082. vocab[QwenModel.token_bytes_to_string(token)] = rank
  1083. if len(token) == 1:
  1084. continue
  1085. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  1086. assert len(merged) == 2
  1087. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  1088. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  1089. added_vocab = tokenizer.special_tokens
  1090. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  1091. for i in range(vocab_size):
  1092. if i not in reverse_vocab:
  1093. tokens.append(f"[PAD{i}]")
  1094. toktypes.append(gguf.TokenType.UNUSED)
  1095. elif reverse_vocab[i] in added_vocab:
  1096. tokens.append(reverse_vocab[i])
  1097. toktypes.append(gguf.TokenType.CONTROL)
  1098. else:
  1099. tokens.append(reverse_vocab[i])
  1100. toktypes.append(gguf.TokenType.NORMAL)
  1101. self.gguf_writer.add_tokenizer_model("gpt2")
  1102. self.gguf_writer.add_tokenizer_pre(tokpre)
  1103. self.gguf_writer.add_token_list(tokens)
  1104. self.gguf_writer.add_token_types(toktypes)
  1105. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  1106. special_vocab.merges = merges
  1107. # only add special tokens when they were not already loaded from config.json
  1108. if len(special_vocab.special_token_ids) == 0:
  1109. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  1110. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  1111. # this one is usually not in config.json anyway
  1112. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  1113. special_vocab.add_to_gguf(self.gguf_writer)
  1114. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  1115. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  1116. self.gguf_writer.add_tokenizer_model("llama")
  1117. self.gguf_writer.add_tokenizer_pre("default")
  1118. self.gguf_writer.add_token_list(tokens)
  1119. self.gguf_writer.add_token_scores(scores)
  1120. self.gguf_writer.add_token_types(toktypes)
  1121. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1122. special_vocab.add_to_gguf(self.gguf_writer)
  1123. def _create_vocab_sentencepiece(self):
  1124. from sentencepiece import SentencePieceProcessor
  1125. tokenizer_path = self.dir_model / 'tokenizer.model'
  1126. if not tokenizer_path.is_file():
  1127. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  1128. tokenizer = SentencePieceProcessor()
  1129. tokenizer.LoadFromFile(str(tokenizer_path))
  1130. vocab_size = self.find_hparam([
  1131. "vocab_size_per_layer_input", # gemma3n
  1132. "vocab_size",
  1133. ], optional=True) or tokenizer.vocab_size()
  1134. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1135. scores: list[float] = [-10000.0] * vocab_size
  1136. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  1137. for token_id in range(tokenizer.vocab_size()):
  1138. if token_id >= vocab_size:
  1139. logger.warning(f'ignore tokens from {token_id}: id is out of range, max={vocab_size - 1}')
  1140. break
  1141. piece = tokenizer.IdToPiece(token_id)
  1142. text = piece.encode("utf-8")
  1143. score = tokenizer.GetScore(token_id)
  1144. toktype = SentencePieceTokenTypes.NORMAL
  1145. if tokenizer.IsUnknown(token_id):
  1146. toktype = SentencePieceTokenTypes.UNKNOWN
  1147. elif tokenizer.IsControl(token_id):
  1148. toktype = SentencePieceTokenTypes.CONTROL
  1149. elif tokenizer.IsUnused(token_id):
  1150. toktype = SentencePieceTokenTypes.UNUSED
  1151. elif tokenizer.IsByte(token_id):
  1152. toktype = SentencePieceTokenTypes.BYTE
  1153. tokens[token_id] = text
  1154. scores[token_id] = score
  1155. toktypes[token_id] = toktype
  1156. added_tokens_file = self.dir_model / 'added_tokens.json'
  1157. if added_tokens_file.is_file():
  1158. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1159. added_tokens_json = json.load(f)
  1160. for key in added_tokens_json:
  1161. token_id = added_tokens_json[key]
  1162. if token_id >= vocab_size:
  1163. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1164. continue
  1165. tokens[token_id] = key.encode("utf-8")
  1166. scores[token_id] = -1000.0
  1167. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1168. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1169. if tokenizer_config_file.is_file():
  1170. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1171. tokenizer_config_json = json.load(f)
  1172. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1173. for token_id, token_data in added_tokens_decoder.items():
  1174. token_id = int(token_id)
  1175. token: str = token_data["content"]
  1176. if token_id >= vocab_size:
  1177. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1178. continue
  1179. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1180. if tokens[token_id] != token.encode("utf-8"):
  1181. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  1182. if token_data.get("special") or self.does_token_look_special(token):
  1183. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1184. else:
  1185. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  1186. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1187. scores[token_id] = -1000.0
  1188. tokens[token_id] = token.encode("utf-8")
  1189. if vocab_size > len(tokens):
  1190. pad_count = vocab_size - len(tokens)
  1191. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  1192. for i in range(1, pad_count + 1):
  1193. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  1194. scores.append(-1000.0)
  1195. toktypes.append(SentencePieceTokenTypes.UNUSED)
  1196. return tokens, scores, toktypes
  1197. def _set_vocab_llama_hf(self):
  1198. vocab = gguf.LlamaHfVocab(self.dir_model)
  1199. tokens = []
  1200. scores = []
  1201. toktypes = []
  1202. for text, score, toktype in vocab.all_tokens():
  1203. tokens.append(text)
  1204. scores.append(score)
  1205. toktypes.append(toktype)
  1206. assert len(tokens) == vocab.vocab_size
  1207. self.gguf_writer.add_tokenizer_model("llama")
  1208. self.gguf_writer.add_tokenizer_pre("default")
  1209. self.gguf_writer.add_token_list(tokens)
  1210. self.gguf_writer.add_token_scores(scores)
  1211. self.gguf_writer.add_token_types(toktypes)
  1212. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1213. special_vocab.add_to_gguf(self.gguf_writer)
  1214. def _set_vocab_rwkv_world(self):
  1215. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  1216. vocab_size = self.hparams.get("vocab_size", 65536)
  1217. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  1218. toktypes: list[int] = [gguf.TokenType.CONTROL]
  1219. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  1220. lines = f.readlines()
  1221. for line in lines:
  1222. parts = line.split(' ')
  1223. assert len(parts) >= 3
  1224. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  1225. token = token.encode("utf-8") if isinstance(token, str) else token
  1226. assert isinstance(token, bytes)
  1227. assert len(token) == token_len
  1228. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  1229. tokens.append(token_text.encode("utf-8"))
  1230. toktypes.append(gguf.TokenType.NORMAL)
  1231. remainder = vocab_size - len(tokens)
  1232. assert remainder >= 0
  1233. for i in range(len(tokens), vocab_size):
  1234. tokens.append(f"[PAD{i}]".encode("utf-8"))
  1235. toktypes.append(gguf.TokenType.UNUSED)
  1236. self.gguf_writer.add_tokenizer_model("rwkv")
  1237. self.gguf_writer.add_token_list(tokens)
  1238. self.gguf_writer.add_token_types(toktypes)
  1239. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  1240. if special_vocab.chat_template is None:
  1241. template_path = Path(__file__).parent / "models" / "templates" / "llama-cpp-rwkv-world.jinja"
  1242. if template_path.is_file():
  1243. with open(template_path, "r", encoding="utf-8") as f:
  1244. template = f.read()
  1245. else:
  1246. template = "rwkv-world"
  1247. special_vocab.chat_template = template
  1248. # hack: Add '\n\n' as the EOT token to make it chat normally
  1249. special_vocab._set_special_token("eot", 261)
  1250. # hack: Override these as they have already been set (incorrectly)
  1251. special_vocab.special_token_ids["bos"] = 0
  1252. special_vocab.special_token_ids["eos"] = 0
  1253. special_vocab.add_to_gguf(self.gguf_writer)
  1254. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  1255. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  1256. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  1257. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  1258. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  1259. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  1260. assert field # tokenizer model
  1261. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  1262. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  1263. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  1264. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  1265. assert field # token list
  1266. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  1267. if model_name == "llama-spm":
  1268. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  1269. assert field # token scores
  1270. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1271. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  1272. assert field # token types
  1273. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1274. if model_name != "llama-spm":
  1275. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  1276. assert field # token merges
  1277. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  1278. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  1279. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  1280. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  1281. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  1282. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  1283. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  1284. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  1285. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  1286. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  1287. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  1288. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  1289. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  1290. def _try_set_pooling_type(self) -> None:
  1291. # get pooling path
  1292. pooling_path = None
  1293. module_path = self.dir_model / "modules.json"
  1294. if module_path.is_file():
  1295. with open(module_path, encoding="utf-8") as f:
  1296. modules = json.load(f)
  1297. for mod in modules:
  1298. if mod["type"] == "sentence_transformers.models.Pooling":
  1299. pooling_path = mod["path"]
  1300. break
  1301. # get pooling type
  1302. if pooling_path is not None:
  1303. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1304. pooling = json.load(f)
  1305. if pooling["pooling_mode_mean_tokens"]:
  1306. pooling_type = gguf.PoolingType.MEAN
  1307. elif pooling["pooling_mode_cls_token"]:
  1308. pooling_type = gguf.PoolingType.CLS
  1309. elif pooling["pooling_mode_lasttoken"]:
  1310. pooling_type = gguf.PoolingType.LAST
  1311. else:
  1312. raise NotImplementedError("Only MEAN, CLS, and LAST pooling types supported")
  1313. self.gguf_writer.add_pooling_type(pooling_type)
  1314. def _set_vocab_glmedge(self):
  1315. from transformers import AutoTokenizer
  1316. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  1317. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1318. tokens, toktypes, tokpre = self.get_vocab_base()
  1319. self.gguf_writer.add_tokenizer_model("gpt2")
  1320. self.gguf_writer.add_tokenizer_pre(tokpre)
  1321. self.gguf_writer.add_token_list(tokens)
  1322. self.gguf_writer.add_token_types(toktypes)
  1323. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  1324. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  1325. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  1326. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  1327. special_vocab.add_to_gguf(self.gguf_writer)
  1328. def _set_vocab_interns1(self):
  1329. tokens: list[str] = []
  1330. toktypes: list[int] = []
  1331. from transformers import AutoTokenizer
  1332. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  1333. vocab = getattr(tokenizer, 'vocab', tokenizer.get_vocab())
  1334. vocab_size = self.hparams.get("vocab_size", len(vocab))
  1335. assert max(vocab.values()) < vocab_size
  1336. tokpre = self.get_vocab_base_pre(tokenizer)
  1337. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab.items()}
  1338. added_vocab = tokenizer.get_added_vocab()
  1339. added_tokens_decoder = tokenizer.added_tokens_decoder
  1340. for i in range(vocab_size):
  1341. if i not in reverse_vocab:
  1342. tokens.append(f"[PAD{i}]")
  1343. toktypes.append(gguf.TokenType.UNUSED)
  1344. else:
  1345. token: str = reverse_vocab[i]
  1346. if token in added_vocab:
  1347. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  1348. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  1349. if not added_tokens_decoder[i].normalized:
  1350. previous_token = token
  1351. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  1352. if previous_token != token:
  1353. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  1354. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  1355. toktypes.append(gguf.TokenType.CONTROL)
  1356. else:
  1357. toktypes.append(gguf.TokenType.USER_DEFINED)
  1358. else:
  1359. toktypes.append(gguf.TokenType.NORMAL)
  1360. tokens.append(token)
  1361. self.gguf_writer.add_tokenizer_model("gpt2")
  1362. self.gguf_writer.add_tokenizer_pre(tokpre)
  1363. self.gguf_writer.add_token_list(tokens)
  1364. self.gguf_writer.add_token_types(toktypes)
  1365. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1366. special_vocab._set_special_token("bos", 151643)
  1367. special_vocab.add_to_gguf(self.gguf_writer)
  1368. def _set_vocab_mistral(self):
  1369. if not _mistral_common_installed:
  1370. raise ImportError(_mistral_import_error_msg)
  1371. vocab = MistralVocab(self.dir_model)
  1372. logger.info(
  1373. f"Converting tokenizer {vocab.tokenizer_type} of size {vocab.vocab_size}."
  1374. )
  1375. self.gguf_writer.add_tokenizer_model(vocab.gguf_tokenizer_model)
  1376. tokens = []
  1377. scores = []
  1378. toktypes = []
  1379. for text, score, toktype in vocab.all_tokens():
  1380. tokens.append(text)
  1381. scores.append(score)
  1382. toktypes.append(toktype)
  1383. assert len(tokens) == vocab.vocab_size, (
  1384. f"token count ({len(tokens)}) != vocab size ({vocab.vocab_size})"
  1385. )
  1386. if vocab.tokenizer_type == MistralTokenizerType.tekken:
  1387. self.gguf_writer.add_tokenizer_pre("tekken")
  1388. self.gguf_writer.add_token_merges(
  1389. vocab.extract_vocab_merges_from_model()
  1390. )
  1391. logger.info(
  1392. f"Setting bos, eos, unk and pad token IDs to {vocab.bos_id}, {vocab.eos_id}, {vocab.unk_id}, {vocab.pad_id}."
  1393. )
  1394. self.gguf_writer.add_bos_token_id(vocab.bos_id)
  1395. self.gguf_writer.add_eos_token_id(vocab.eos_id)
  1396. self.gguf_writer.add_unk_token_id(vocab.unk_id)
  1397. self.gguf_writer.add_pad_token_id(vocab.pad_id)
  1398. self.gguf_writer.add_token_list(tokens)
  1399. self.gguf_writer.add_token_scores(scores)
  1400. self.gguf_writer.add_token_types(toktypes)
  1401. self.gguf_writer.add_vocab_size(vocab.vocab_size)
  1402. self.gguf_writer.add_add_bos_token(True)
  1403. self.gguf_writer.add_add_eos_token(False)
  1404. local_template_file_path = self.dir_model / "chat_template.jinja"
  1405. if self.is_mistral_format and local_template_file_path.is_file():
  1406. # Ministral-3 and other new Mistral models come with chat templates.
  1407. # ref: https://huggingface.co/mistralai/Ministral-3-14B-Instruct-2512/tree/main
  1408. logger.info("Using an existing Mistral local chat template.")
  1409. with open(local_template_file_path, "r", encoding="utf-8") as f:
  1410. template = f.read()
  1411. elif not self.is_mistral_format or not self.disable_mistral_community_chat_template:
  1412. template_dir = Path(__file__).parent / "models/templates/"
  1413. # Log only for Mistral format that the official tokenization and detokenization is via `mistral-common`.
  1414. if self.is_mistral_format:
  1415. logger.info(
  1416. "Using a Mistral community chat template. These templates can be subject to errors in early days or weeks after a release. "
  1417. "Mistral recommends to use `mistral-common` to perform tokenization and detokenization."
  1418. )
  1419. template = MistralModel.get_community_chat_template(vocab, template_dir, self.is_mistral_format)
  1420. else:
  1421. logger.info("Not using a Mistral local or community chat template. Ensure to perform the tokenization and detokenization via `mistral-common`.")
  1422. template = None
  1423. if template is not None:
  1424. self.gguf_writer.add_chat_template(template)
  1425. class MmprojModel(ModelBase):
  1426. model_type = ModelType.MMPROJ
  1427. model_arch = gguf.MODEL_ARCH.MMPROJ
  1428. preprocessor_config: dict[str, Any]
  1429. global_config: dict[str, Any]
  1430. n_block_keys = ["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth", "encoder_layers"]
  1431. has_vision_encoder: bool = True # by default
  1432. has_audio_encoder: bool = False
  1433. # for models having multiple encoders, we need to separate their hparams
  1434. hparams_vision: dict[str, Any] | None = None
  1435. hparams_audio: dict[str, Any] | None = None
  1436. def __init__(self, *args, **kwargs):
  1437. super().__init__(*args, **kwargs)
  1438. if self.model_arch != gguf.MODEL_ARCH.MMPROJ:
  1439. raise TypeError("MmprojModel must be subclassed with model_arch = gguf.MODEL_ARCH.MMPROJ")
  1440. # get n_embd of the text model
  1441. if not self.is_mistral_format:
  1442. if "text_config" not in self.hparams:
  1443. self.hparams["text_config"] = {}
  1444. if "audio_config" not in self.hparams:
  1445. self.hparams["audio_config"] = {}
  1446. text_config = {**self.hparams, **self.hparams["text_config"]}
  1447. self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
  1448. else:
  1449. text_config = {
  1450. k: v for k, v in self.hparams.items() if k not in ["vision_encoder", "audio_encoder"]
  1451. }
  1452. self.n_embd_text = text_config.get("hidden_dim", 0)
  1453. assert self.n_embd_text > 0, "n_embd not found in hparams"
  1454. # move vision config to the top level, while preserving the original hparams in global_config
  1455. import copy
  1456. self.global_config = copy.deepcopy(self.hparams)
  1457. self.hparams_vision = self.get_vision_config()
  1458. self.hparams_audio = self.get_audio_config()
  1459. if self.hparams_vision is None and self.hparams_audio is None:
  1460. raise ValueError("vision_config / audio_config not found in hparams")
  1461. # for compat with vision-only models
  1462. self.hparams = self.hparams_vision or self.hparams_audio or self.hparams
  1463. # TODO @ngxson : this is a hack to support both vision and audio encoders
  1464. have_multiple_encoders = self.has_audio_encoder and self.has_vision_encoder
  1465. self.block_count = 128 if have_multiple_encoders else self.find_hparam(self.n_block_keys, True)
  1466. self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.MMPROJ, self.block_count)
  1467. # load preprocessor config
  1468. self.preprocessor_config = {}
  1469. # prefer preprocessor_config.json if possible
  1470. preprocessor_config_path = self.dir_model / "preprocessor_config.json"
  1471. if preprocessor_config_path.is_file():
  1472. with open(preprocessor_config_path, "r", encoding="utf-8") as f:
  1473. self.preprocessor_config = json.load(f)
  1474. # prefer processor_config.json if possible
  1475. processor_config_path = self.dir_model / "processor_config.json"
  1476. if processor_config_path.is_file():
  1477. with open(processor_config_path, "r", encoding="utf-8") as f:
  1478. cfg = json.load(f)
  1479. # move image_processor to root level for compat
  1480. if "image_processor" in cfg:
  1481. cfg = {
  1482. **cfg,
  1483. **cfg["image_processor"],
  1484. }
  1485. # merge configs
  1486. self.preprocessor_config = {**self.preprocessor_config, **cfg}
  1487. def get_vision_config(self) -> dict[str, Any] | None:
  1488. config_name = "vision_config" if not self.is_mistral_format else "vision_encoder"
  1489. return self.global_config.get(config_name)
  1490. def get_audio_config(self) -> dict[str, Any] | None:
  1491. mm_config_key = "whisper_config" if "whisper_config" in self.hparams else "audio_config"
  1492. return self.global_config.get(mm_config_key)
  1493. def set_type(self):
  1494. self.gguf_writer.add_type(gguf.GGUFType.MMPROJ)
  1495. def prepare_metadata(self, vocab_only: bool):
  1496. super().prepare_metadata(vocab_only=vocab_only)
  1497. output_type: str = self.ftype.name.partition("_")[2]
  1498. if self.fname_out.is_dir():
  1499. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=output_type, model_type=None)
  1500. self.fname_out = self.fname_out / f"mmproj-{fname_default}.gguf"
  1501. else:
  1502. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  1503. def set_gguf_parameters(self):
  1504. self.gguf_writer.add_file_type(self.ftype)
  1505. if self.has_vision_encoder:
  1506. self.gguf_writer.add_clip_has_vision_encoder(True)
  1507. self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
  1508. # vision config
  1509. self.image_size = self.find_vparam(["image_size"])
  1510. self.gguf_writer.add_vision_image_size(self.image_size)
  1511. self.gguf_writer.add_vision_patch_size(self.find_vparam(["patch_size"]))
  1512. self.gguf_writer.add_vision_embedding_length(self.find_vparam(["hidden_size"]))
  1513. self.gguf_writer.add_vision_feed_forward_length(self.find_vparam(["intermediate_size"]))
  1514. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys))
  1515. self.gguf_writer.add_vision_head_count(self.find_vparam(["num_attention_heads", "num_heads"]))
  1516. # preprocessor config
  1517. image_mean = _MISTRAL_COMMON_DATASET_MEAN if self.is_mistral_format else self.preprocessor_config["image_mean"]
  1518. image_std = _MISTRAL_COMMON_DATASET_STD if self.is_mistral_format else self.preprocessor_config["image_std"]
  1519. self.gguf_writer.add_vision_image_mean(image_mean)
  1520. self.gguf_writer.add_vision_image_std(image_std)
  1521. if self.has_audio_encoder:
  1522. self.gguf_writer.add_clip_has_audio_encoder(True)
  1523. self.gguf_writer.add_audio_projection_dim(self.n_embd_text)
  1524. # audio config
  1525. self.gguf_writer.add_audio_embedding_length(self.find_aparam(["hidden_size"]))
  1526. self.gguf_writer.add_audio_feed_forward_length(self.find_aparam(["intermediate_size"]))
  1527. self.gguf_writer.add_audio_block_count(self.find_aparam(self.n_block_keys))
  1528. self.gguf_writer.add_audio_head_count(self.find_aparam(["num_attention_heads"]))
  1529. if not self.has_vision_encoder and not self.has_audio_encoder:
  1530. raise ValueError("MmprojModel must have either vision or audio encoder")
  1531. def write_vocab(self):
  1532. raise ValueError("MmprojModel does not support vocab writing")
  1533. def find_vparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1534. assert self.hparams_vision is not None
  1535. return self._find_param(self.hparams_vision, keys, optional)
  1536. def find_aparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1537. assert self.hparams_audio is not None
  1538. return self._find_param(self.hparams_audio, keys, optional)
  1539. def _find_param(self, obj: dict[str, Any], keys: Iterable[str], optional: bool = False) -> Any:
  1540. key = next((k for k in keys if k in obj), None)
  1541. if key is not None:
  1542. return obj[key]
  1543. if optional:
  1544. return None
  1545. raise KeyError(f"could not find any of: {keys}")
  1546. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1547. del bid, name, n_dims # unused
  1548. if ".patch_embd.weight" in new_name:
  1549. return gguf.GGMLQuantizationType.F16 if self.ftype == gguf.LlamaFileType.MOSTLY_F16 else gguf.GGMLQuantizationType.F32
  1550. return False
  1551. @ModelBase.register("GPTNeoXForCausalLM")
  1552. class GPTNeoXModel(TextModel):
  1553. model_arch = gguf.MODEL_ARCH.GPTNEOX
  1554. def set_gguf_parameters(self):
  1555. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1556. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1557. self.gguf_writer.add_block_count(self.block_count)
  1558. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1559. self.gguf_writer.add_rope_dimension_count(
  1560. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  1561. )
  1562. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1563. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  1564. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  1565. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1566. del bid # unused
  1567. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1568. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1569. tensors: list[tuple[str, Tensor]] = []
  1570. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  1571. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1572. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1573. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1574. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1575. data_torch = torch.cat(
  1576. (
  1577. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1578. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1579. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1580. ),
  1581. dim=0,
  1582. )
  1583. logger.info("re-format attention.linear_qkv.weight")
  1584. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  1585. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1586. data_torch = torch.cat(
  1587. (
  1588. qkv_bias[:, 0, :].reshape((n_embed,)),
  1589. qkv_bias[:, 1, :].reshape((n_embed,)),
  1590. qkv_bias[:, 2, :].reshape((n_embed,)),
  1591. ),
  1592. dim=0,
  1593. )
  1594. logger.info("re-format attention.linear_qkv.bias")
  1595. tensors.append((self.map_tensor_name(name), data_torch))
  1596. return tensors
  1597. @ModelBase.register("BloomForCausalLM", "BloomModel")
  1598. class BloomModel(TextModel):
  1599. model_arch = gguf.MODEL_ARCH.BLOOM
  1600. def set_gguf_parameters(self):
  1601. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1602. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1603. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  1604. self.gguf_writer.add_embedding_length(n_embed)
  1605. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  1606. self.gguf_writer.add_block_count(self.block_count)
  1607. self.gguf_writer.add_head_count(n_head)
  1608. self.gguf_writer.add_head_count_kv(n_head)
  1609. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1610. self.gguf_writer.add_file_type(self.ftype)
  1611. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1612. del bid # unused
  1613. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1614. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1615. name = re.sub(r'transformer\.', '', name)
  1616. tensors: list[tuple[str, Tensor]] = []
  1617. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  1618. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1619. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1620. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1621. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1622. data_torch = torch.cat(
  1623. (
  1624. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1625. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1626. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1627. ),
  1628. dim=0,
  1629. )
  1630. logger.info("re-format attention.linear_qkv.weight")
  1631. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  1632. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1633. data_torch = torch.cat(
  1634. (
  1635. qkv_bias[:, 0, :].reshape((n_embed,)),
  1636. qkv_bias[:, 1, :].reshape((n_embed,)),
  1637. qkv_bias[:, 2, :].reshape((n_embed,)),
  1638. ),
  1639. dim=0,
  1640. )
  1641. logger.info("re-format attention.linear_qkv.bias")
  1642. tensors.append((self.map_tensor_name(name), data_torch))
  1643. return tensors
  1644. @ModelBase.register("MPTForCausalLM")
  1645. class MPTModel(TextModel):
  1646. model_arch = gguf.MODEL_ARCH.MPT
  1647. def set_vocab(self):
  1648. try:
  1649. self._set_vocab_gpt2()
  1650. except Exception:
  1651. # Fallback for SEA-LION model
  1652. self._set_vocab_sentencepiece()
  1653. self.gguf_writer.add_add_bos_token(False)
  1654. self.gguf_writer.add_pad_token_id(3)
  1655. self.gguf_writer.add_eos_token_id(1)
  1656. self.gguf_writer.add_unk_token_id(0)
  1657. def set_gguf_parameters(self):
  1658. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1659. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1660. self.gguf_writer.add_block_count(self.block_count)
  1661. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  1662. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1663. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  1664. self.gguf_writer.add_head_count_kv(kv_n_heads)
  1665. self.gguf_writer.add_layer_norm_eps(1e-5)
  1666. if self.hparams["attn_config"]["clip_qkv"] is not None:
  1667. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  1668. if self.hparams["attn_config"]["alibi"]:
  1669. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  1670. else:
  1671. self.gguf_writer.add_max_alibi_bias(0.0)
  1672. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1673. del bid # unused
  1674. if "scales" in name:
  1675. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  1676. new_name = new_name.replace("scales", "act.scales")
  1677. else:
  1678. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  1679. return [(new_name, data_torch)]
  1680. @ModelBase.register("OrionForCausalLM")
  1681. class OrionModel(TextModel):
  1682. model_arch = gguf.MODEL_ARCH.ORION
  1683. def set_vocab(self):
  1684. self._set_vocab_sentencepiece()
  1685. def set_gguf_parameters(self):
  1686. head_count = self.hparams["num_attention_heads"]
  1687. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1688. ctx_length = 0
  1689. if "max_sequence_length" in self.hparams:
  1690. ctx_length = self.hparams["max_sequence_length"]
  1691. elif "max_position_embeddings" in self.hparams:
  1692. ctx_length = self.hparams["max_position_embeddings"]
  1693. elif "model_max_length" in self.hparams:
  1694. ctx_length = self.hparams["model_max_length"]
  1695. else:
  1696. raise ValueError("gguf: can not find ctx length parameter.")
  1697. self.gguf_writer.add_file_type(self.ftype)
  1698. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1699. self.gguf_writer.add_context_length(ctx_length)
  1700. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1701. self.gguf_writer.add_block_count(self.block_count)
  1702. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1703. self.gguf_writer.add_head_count(head_count)
  1704. self.gguf_writer.add_head_count_kv(head_count_kv)
  1705. # note: config provides rms norm but it is actually layer norm
  1706. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  1707. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  1708. @ModelBase.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  1709. class BaichuanModel(TextModel):
  1710. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1711. def set_vocab(self):
  1712. self._set_vocab_sentencepiece()
  1713. def set_gguf_parameters(self):
  1714. super().set_gguf_parameters()
  1715. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1716. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1717. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1718. head_count = self.hparams["num_attention_heads"]
  1719. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1720. tensors: list[tuple[str, Tensor]] = []
  1721. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1722. logger.info(f"Unpacking and permuting layer {bid}")
  1723. tensors = [
  1724. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1725. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1726. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1727. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1728. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1729. self._reverse_hf_part(data_torch, 2)),
  1730. ]
  1731. else:
  1732. tensors = [(self.map_tensor_name(name), data_torch)]
  1733. return tensors
  1734. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1735. if n_kv_head is not None and n_head != n_kv_head:
  1736. n_head //= n_kv_head
  1737. return (
  1738. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1739. .swapaxes(1, 2)
  1740. .reshape(weights.shape)
  1741. )
  1742. def _reverse_hf_permute_part(
  1743. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1744. ) -> Tensor:
  1745. r = weights.shape[0] // 3
  1746. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1747. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1748. r = weights.shape[0] // 3
  1749. return weights[r * n_part:r * n_part + r, ...]
  1750. @ModelBase.register("XverseForCausalLM")
  1751. class XverseModel(TextModel):
  1752. model_arch = gguf.MODEL_ARCH.XVERSE
  1753. def set_vocab(self):
  1754. assert (self.dir_model / "tokenizer.json").is_file()
  1755. dir_model = self.dir_model
  1756. hparams = self.hparams
  1757. tokens: list[bytes] = []
  1758. toktypes: list[int] = []
  1759. from transformers import AutoTokenizer
  1760. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1761. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1762. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1763. # because vocab_size is the count of items, and indexes start at 0.
  1764. max_vocab_index = max(tokenizer.get_vocab().values())
  1765. if max_vocab_index >= vocab_size:
  1766. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1767. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1768. added_vocab = tokenizer.get_added_vocab()
  1769. for token_id in range(vocab_size):
  1770. token_text = reverse_vocab[token_id].encode('utf-8')
  1771. # replace "\x00" to string with length > 0
  1772. if token_text == b"\x00":
  1773. toktype = gguf.TokenType.BYTE # special
  1774. token_text = f"<{token_text}>".encode('utf-8')
  1775. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1776. toktype = gguf.TokenType.BYTE # special
  1777. elif reverse_vocab[token_id] in added_vocab:
  1778. if tokenizer.added_tokens_decoder[token_id].special:
  1779. toktype = gguf.TokenType.CONTROL
  1780. else:
  1781. toktype = gguf.TokenType.USER_DEFINED
  1782. else:
  1783. toktype = gguf.TokenType.NORMAL
  1784. tokens.append(token_text)
  1785. toktypes.append(toktype)
  1786. self.gguf_writer.add_tokenizer_model("llama")
  1787. self.gguf_writer.add_tokenizer_pre("default")
  1788. self.gguf_writer.add_token_list(tokens)
  1789. self.gguf_writer.add_token_types(toktypes)
  1790. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1791. special_vocab.add_to_gguf(self.gguf_writer)
  1792. def set_gguf_parameters(self):
  1793. super().set_gguf_parameters()
  1794. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1795. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1796. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1797. del bid # unused
  1798. head_count = self.hparams["num_attention_heads"]
  1799. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1800. # HF models permute some of the tensors, so we need to undo that
  1801. if name.endswith("q_proj.weight"):
  1802. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1803. if name.endswith("k_proj.weight"):
  1804. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1805. return [(self.map_tensor_name(name), data_torch)]
  1806. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1807. if n_kv_head is not None and n_head != n_kv_head:
  1808. n_head //= n_kv_head
  1809. return (
  1810. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1811. .swapaxes(1, 2)
  1812. .reshape(weights.shape)
  1813. )
  1814. @ModelBase.register("FalconForCausalLM", "RWForCausalLM")
  1815. class FalconModel(TextModel):
  1816. model_arch = gguf.MODEL_ARCH.FALCON
  1817. def set_gguf_parameters(self):
  1818. n_head = self.hparams.get("num_attention_heads")
  1819. if n_head is None:
  1820. n_head = self.hparams["n_head"] # old name
  1821. n_head_kv = self.hparams.get("num_kv_heads")
  1822. if n_head_kv is None:
  1823. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1824. self.gguf_writer.add_context_length(2048) # not in config.json
  1825. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1826. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1827. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1828. self.gguf_writer.add_block_count(self.block_count)
  1829. self.gguf_writer.add_head_count(n_head)
  1830. self.gguf_writer.add_head_count_kv(n_head_kv)
  1831. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1832. self.gguf_writer.add_file_type(self.ftype)
  1833. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1834. del bid # unused
  1835. # QKV tensor transform
  1836. # The original query_key_value tensor contains n_head_kv "kv groups",
  1837. # each consisting of n_head/n_head_kv query weights followed by one key
  1838. # and one value weight (shared by all query heads in the kv group).
  1839. # This layout makes it a big pain to work with in GGML.
  1840. # So we rearrange them here,, so that we have n_head query weights
  1841. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1842. # in contiguous fashion.
  1843. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1844. if "query_key_value" in name:
  1845. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1846. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1847. head_dim = self.hparams["hidden_size"] // n_head
  1848. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1849. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1850. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1851. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1852. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1853. return [(self.map_tensor_name(name), data_torch)]
  1854. @ModelBase.register("GPTBigCodeForCausalLM")
  1855. class StarCoderModel(TextModel):
  1856. model_arch = gguf.MODEL_ARCH.STARCODER
  1857. def set_gguf_parameters(self):
  1858. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1859. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1860. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1861. self.gguf_writer.add_block_count(self.block_count)
  1862. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1863. self.gguf_writer.add_head_count_kv(1)
  1864. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1865. self.gguf_writer.add_file_type(self.ftype)
  1866. @ModelBase.register("GPTRefactForCausalLM")
  1867. class RefactModel(TextModel):
  1868. model_arch = gguf.MODEL_ARCH.REFACT
  1869. def set_vocab(self):
  1870. super().set_vocab()
  1871. # TODO: how to determine special FIM tokens automatically?
  1872. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1873. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1874. special_vocab._set_special_token("prefix", 1)
  1875. special_vocab._set_special_token("suffix", 3)
  1876. special_vocab._set_special_token("middle", 2)
  1877. special_vocab.chat_template = None # do not add it twice
  1878. special_vocab.add_to_gguf(self.gguf_writer)
  1879. def set_gguf_parameters(self):
  1880. hidden_dim = self.hparams["n_embd"]
  1881. inner_dim = 4 * hidden_dim
  1882. hidden_dim = int(2 * inner_dim / 3)
  1883. multiple_of = 256
  1884. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1885. # refact uses Alibi. So this is from config.json which might be used by training.
  1886. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1887. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1888. self.gguf_writer.add_feed_forward_length(ff_dim)
  1889. self.gguf_writer.add_block_count(self.block_count)
  1890. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1891. self.gguf_writer.add_head_count_kv(1)
  1892. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1893. self.gguf_writer.add_file_type(self.ftype)
  1894. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1895. hidden_dim = self.hparams["n_embd"]
  1896. inner_dim = 4 * hidden_dim
  1897. hidden_dim = int(2 * inner_dim / 3)
  1898. multiple_of = 256
  1899. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1900. n_head = self.hparams["n_head"]
  1901. n_head_kv = 1
  1902. head_dim = self.hparams["n_embd"] // n_head
  1903. tensors: list[tuple[str, Tensor]] = []
  1904. if bid is not None:
  1905. if name == f"transformer.h.{bid}.attn.kv.weight":
  1906. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1907. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1908. elif name == f"transformer.h.{bid}.attn.q.weight":
  1909. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1910. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1911. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1912. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1913. if len(tensors) == 0:
  1914. tensors.append((self.map_tensor_name(name), data_torch))
  1915. return tensors
  1916. @ModelBase.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1917. class StableLMModel(TextModel):
  1918. model_arch = gguf.MODEL_ARCH.STABLELM
  1919. def set_vocab(self):
  1920. if (self.dir_model / "tokenizer.json").is_file():
  1921. self._set_vocab_gpt2()
  1922. else:
  1923. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1924. self._set_vocab_qwen()
  1925. def set_gguf_parameters(self):
  1926. hparams = self.hparams
  1927. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1928. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1929. self.gguf_writer.add_block_count(self.block_count)
  1930. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1931. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1932. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1933. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1934. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1935. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1936. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1937. self.gguf_writer.add_file_type(self.ftype)
  1938. _q_norms: list[dict[str, Tensor]] | None = None
  1939. _k_norms: list[dict[str, Tensor]] | None = None
  1940. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1941. n_head = self.hparams["num_attention_heads"]
  1942. n_kv_head = self.hparams["num_key_value_heads"]
  1943. if name.find("q_layernorm.norms") != -1:
  1944. assert bid is not None
  1945. if self._q_norms is None:
  1946. self._q_norms = [{} for _ in range(self.block_count)]
  1947. self._q_norms[bid][name] = data_torch
  1948. if len(self._q_norms[bid]) >= n_head:
  1949. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1950. else:
  1951. return []
  1952. if name.find("k_layernorm.norms") != -1:
  1953. assert bid is not None
  1954. if self._k_norms is None:
  1955. self._k_norms = [{} for _ in range(self.block_count)]
  1956. self._k_norms[bid][name] = data_torch
  1957. if len(self._k_norms[bid]) >= n_kv_head:
  1958. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1959. else:
  1960. return []
  1961. return [(self.map_tensor_name(name), data_torch)]
  1962. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1963. datas: list[Tensor] = []
  1964. # extract the norms in order
  1965. for xid in range(n_head):
  1966. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1967. datas.append(norms[ename])
  1968. del norms[ename]
  1969. data_torch = torch.stack(datas, dim=0)
  1970. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1971. new_name = self.map_tensor_name(merged_name)
  1972. return [(new_name, data_torch)]
  1973. def prepare_tensors(self):
  1974. super().prepare_tensors()
  1975. if self._q_norms is not None or self._k_norms is not None:
  1976. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1977. norms = (
  1978. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1979. ) + (
  1980. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1981. )
  1982. if len(norms) > 0:
  1983. raise ValueError(f"Unprocessed norms: {norms}")
  1984. @ModelBase.register(
  1985. "LLaMAForCausalLM",
  1986. "LlamaForCausalLM",
  1987. "MistralForCausalLM",
  1988. "MixtralForCausalLM",
  1989. "VLlama3ForCausalLM",
  1990. "LlavaForConditionalGeneration",
  1991. "VoxtralForConditionalGeneration",
  1992. "LlamaModel")
  1993. class LlamaModel(TextModel):
  1994. model_arch = gguf.MODEL_ARCH.LLAMA
  1995. undo_permute = True
  1996. def __init__(self, *args, **kwargs):
  1997. super().__init__(*args, **kwargs)
  1998. # fix for SmolVLM2, missing `num_attention_heads` in config.json
  1999. if self.hf_arch == "VLlama3ForCausalLM":
  2000. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
  2001. hparams = ModelBase.load_hparams(self.dir_model, is_mistral_format=False)
  2002. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  2003. def set_vocab(self):
  2004. if self.origin_hf_arch == "GlmasrModel":
  2005. return self._set_vocab_glmedge()
  2006. if self.is_mistral_format:
  2007. return self._set_vocab_mistral()
  2008. path_tekken_json = self.dir_model / "tekken.json"
  2009. path_tokenizer_json = self.dir_model / "tokenizer.json"
  2010. if path_tekken_json.is_file() and not path_tokenizer_json.is_file():
  2011. self._set_vocab_mistral()
  2012. try:
  2013. self._set_vocab_sentencepiece()
  2014. except FileNotFoundError:
  2015. try:
  2016. self._set_vocab_llama_hf()
  2017. except (FileNotFoundError, TypeError):
  2018. # Llama 3
  2019. self._set_vocab_gpt2()
  2020. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  2021. if self.hparams.get("vocab_size", 32000) == 32016:
  2022. special_vocab = gguf.SpecialVocab(
  2023. self.dir_model, load_merges=False,
  2024. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  2025. )
  2026. special_vocab._set_special_token("prefix", 32007)
  2027. special_vocab._set_special_token("suffix", 32008)
  2028. special_vocab._set_special_token("middle", 32009)
  2029. special_vocab._set_special_token("eot", 32010)
  2030. special_vocab.add_to_gguf(self.gguf_writer)
  2031. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2032. if tokenizer_config_file.is_file():
  2033. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2034. tokenizer_config_json = json.load(f)
  2035. if "add_prefix_space" in tokenizer_config_json:
  2036. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  2037. # Apply to granite small models only
  2038. if self.hparams.get("vocab_size", 32000) == 49152:
  2039. self.gguf_writer.add_add_bos_token(False)
  2040. def set_gguf_parameters(self):
  2041. super().set_gguf_parameters()
  2042. hparams = self.hparams
  2043. if not self.is_mistral_format:
  2044. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2045. if (rope_dim := hparams.get("head_dim")) is None:
  2046. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2047. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2048. @staticmethod
  2049. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2050. if n_head_kv is not None and n_head != n_head_kv:
  2051. n_head = n_head_kv
  2052. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2053. .swapaxes(1, 2)
  2054. .reshape(weights.shape))
  2055. _experts: list[dict[str, Tensor]] | None = None
  2056. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2057. n_head = self.find_hparam(["n_heads", "num_attention_heads"])
  2058. n_kv_head = self.find_hparam(["n_kv_heads", "num_key_value_heads"])
  2059. vision_prefixes = [
  2060. "vision_encoder.",
  2061. "vision_language_adapter.",
  2062. "patch_merger.",
  2063. "pre_mm_projector_norm",
  2064. "audio_encoder.",
  2065. ]
  2066. is_multimodal_tensor = "vision_tower" in name \
  2067. or "vision_model" in name \
  2068. or "audio_tower" in name \
  2069. or "model.connector" in name \
  2070. or "multi_modal_projector" in name \
  2071. or any(
  2072. name.startswith(prefix)
  2073. for prefix in vision_prefixes
  2074. )
  2075. if is_multimodal_tensor:
  2076. return [] # skip vision tensors
  2077. elif self.hf_arch == "LlamaModel":
  2078. name = "model." + name
  2079. elif name.startswith("model.text_model"):
  2080. name = name.replace("text_model.", "") # for SmolVLM
  2081. elif name.startswith("language_model."):
  2082. name = name.replace("language_model.", "") # for the rest
  2083. if self.undo_permute:
  2084. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2085. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2086. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2087. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2088. # process the experts separately
  2089. if name.find("block_sparse_moe.experts") != -1:
  2090. n_experts = self.hparams["num_local_experts"]
  2091. assert bid is not None
  2092. if self._experts is None:
  2093. self._experts = [{} for _ in range(self.block_count)]
  2094. self._experts[bid][name] = data_torch
  2095. if len(self._experts[bid]) >= n_experts * 3:
  2096. tensors: list[tuple[str, Tensor]] = []
  2097. # merge the experts into a single 3d tensor
  2098. for wid in ["w1", "w2", "w3"]:
  2099. datas: list[Tensor] = []
  2100. for xid in range(n_experts):
  2101. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  2102. datas.append(self._experts[bid][ename])
  2103. del self._experts[bid][ename]
  2104. data_torch = torch.stack(datas, dim=0)
  2105. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  2106. new_name = self.map_tensor_name(merged_name)
  2107. tensors.append((new_name, data_torch))
  2108. return tensors
  2109. else:
  2110. return []
  2111. return [(self.map_tensor_name(name), data_torch)]
  2112. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2113. if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters):
  2114. if rope_params.get("rope_type", '').lower() == "llama3":
  2115. base = rope_params.get("rope_theta", 10000.0)
  2116. if (dim := self.hparams.get("head_dim")) is None:
  2117. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2118. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  2119. factor = rope_params.get("factor", 8.0)
  2120. low_freq_factor = rope_params.get("low_freq_factor", 1.0)
  2121. high_freq_factor = rope_params.get("high_freq_factor", 4.0)
  2122. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2123. low_freq_wavelen = old_context_len / low_freq_factor
  2124. high_freq_wavelen = old_context_len / high_freq_factor
  2125. # assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
  2126. rope_factors = []
  2127. for freq in freqs:
  2128. wavelen = 2 * math.pi / freq
  2129. if wavelen < high_freq_wavelen:
  2130. rope_factors.append(1)
  2131. elif wavelen > low_freq_wavelen:
  2132. rope_factors.append(factor)
  2133. else:
  2134. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2135. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2136. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2137. def prepare_tensors(self):
  2138. super().prepare_tensors()
  2139. if self._experts is not None:
  2140. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2141. experts = [k for d in self._experts for k in d.keys()]
  2142. if len(experts) > 0:
  2143. raise ValueError(f"Unprocessed experts: {experts}")
  2144. @ModelBase.register("ArceeForCausalLM")
  2145. class ArceeModel(LlamaModel):
  2146. model_arch = gguf.MODEL_ARCH.ARCEE
  2147. def set_gguf_parameters(self):
  2148. super().set_gguf_parameters()
  2149. self._try_set_pooling_type()
  2150. @ModelBase.register("AfmoeForCausalLM")
  2151. class AfmoeModel(LlamaModel):
  2152. model_arch = gguf.MODEL_ARCH.AFMOE
  2153. def set_gguf_parameters(self):
  2154. super().set_gguf_parameters()
  2155. # MoE parameters
  2156. if (n_experts := self.hparams.get("num_experts")) is not None:
  2157. self.gguf_writer.add_expert_count(n_experts)
  2158. if (n_shared_experts := self.hparams.get("num_shared_experts")) is not None:
  2159. self.gguf_writer.add_expert_shared_count(n_shared_experts)
  2160. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2161. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2162. if (n_dense_layers := self.hparams.get("num_dense_layers")) is not None:
  2163. self.gguf_writer.add_leading_dense_block_count(n_dense_layers)
  2164. # Route normalization and scaling
  2165. if (route_norm := self.hparams.get("route_norm")) is not None:
  2166. self.gguf_writer.add_expert_weights_norm(route_norm)
  2167. if (route_scale := self.hparams.get("route_scale")) is not None:
  2168. self.gguf_writer.add_expert_weights_scale(route_scale)
  2169. # Sliding window attention
  2170. if (sliding_window := self.hparams.get("sliding_window")) is not None:
  2171. self.gguf_writer.add_sliding_window(sliding_window)
  2172. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2173. # Handle expert weights - they're already merged in the HF format
  2174. # process the experts separately
  2175. if name.find("mlp.experts") != -1:
  2176. n_experts = self.hparams["num_experts"]
  2177. assert bid is not None
  2178. if self._experts is None:
  2179. self._experts = [{} for _ in range(self.block_count)]
  2180. self._experts[bid][name] = data_torch
  2181. if len(self._experts[bid]) >= n_experts * 3:
  2182. tensors: list[tuple[str, Tensor]] = []
  2183. # merge the experts into a single 3d tensor
  2184. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  2185. datas: list[Tensor] = []
  2186. for xid in range(n_experts):
  2187. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2188. datas.append(self._experts[bid][ename_to_retrieve])
  2189. del self._experts[bid][ename_to_retrieve]
  2190. data_torch = torch.stack(datas, dim=0)
  2191. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2192. new_name = self.map_tensor_name(merged_name)
  2193. tensors.append((new_name, data_torch))
  2194. return tensors
  2195. else:
  2196. return []
  2197. if name.endswith(".expert_bias"):
  2198. name = name.replace(".expert_bias", ".expert_bias.bias")
  2199. return [(self.map_tensor_name(name), data_torch)]
  2200. @ModelBase.register(
  2201. "LlavaForConditionalGeneration", # pixtral
  2202. "Mistral3ForConditionalGeneration", # mistral small 3.1
  2203. )
  2204. class LlavaVisionModel(MmprojModel):
  2205. img_break_tok_id = -1
  2206. use_break_tok = True
  2207. def __init__(self, *args, **kwargs):
  2208. super().__init__(*args, **kwargs)
  2209. if self.hparams.get("model_type") == "pixtral":
  2210. # layer_norm_eps is not in config.json, it is hard-coded in modeling_pixtral.py
  2211. self.hparams["layer_norm_eps"] = self.hparams.get("layer_norm_eps", 1e-5)
  2212. if self.use_break_tok:
  2213. self.img_break_tok_id = self.get_token_id("[IMG_BREAK]")
  2214. elif self.is_mistral_format:
  2215. # hparams is already vision config here so norm_eps is only defined in global_config.
  2216. self.hparams["norm_eps"] = self.global_config.get("norm_eps", None)
  2217. assert self.hparams["norm_eps"] is not None, "norm_eps not found in params.json"
  2218. if self.use_break_tok:
  2219. self.img_break_tok_id = self.find_vparam(["image_break_token_id"])
  2220. else:
  2221. raise ValueError(f"Unsupported model type: {self.hparams['model_type']}")
  2222. logger.info(f"Image break token id: {self.img_break_tok_id}")
  2223. def get_token_id(self, token: str) -> int:
  2224. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2225. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2226. added_tokens_decoder = json.load(f)['added_tokens_decoder']
  2227. for id_, token_data in added_tokens_decoder.items():
  2228. if token_data["content"] == token:
  2229. return int(id_)
  2230. raise ValueError(f"Token '{token}' not found in tokenizer config.")
  2231. def set_gguf_parameters(self):
  2232. super().set_gguf_parameters()
  2233. hparams = self.hparams
  2234. if hparams.get("model_type") == "pixtral":
  2235. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  2236. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  2237. # hidden_act
  2238. if hparams["hidden_act"] == "silu":
  2239. self.gguf_writer.add_vision_use_silu(True)
  2240. elif hparams["hidden_act"] == "gelu":
  2241. self.gguf_writer.add_vision_use_gelu(True)
  2242. else:
  2243. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  2244. # spatial_merge_size
  2245. if "spatial_merge_size" in self.global_config:
  2246. self.gguf_writer.add_vision_spatial_merge_size(self.global_config["spatial_merge_size"])
  2247. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2248. del bid # unused
  2249. n_head = (
  2250. self.hparams["num_attention_heads"] if not self.is_mistral_format else self.find_vparam(["num_attention_heads"])
  2251. )
  2252. n_kv_head = n_head
  2253. valid_prefixes = (
  2254. "multi_modal_projector.",
  2255. "vision_tower.",
  2256. "vision_encoder.",
  2257. "vision_language_adapter.",
  2258. "patch_merger.",
  2259. "pre_mm_projector_norm",
  2260. )
  2261. if any(name.startswith(prefix) for prefix in valid_prefixes):
  2262. # process vision tensors
  2263. if name.endswith(("q_proj.weight", "q_proj.bias")) and not self.is_mistral_format:
  2264. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2265. if name.endswith(("k_proj.weight", "k_proj.bias")) and not self.is_mistral_format:
  2266. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2267. return [(self.map_tensor_name(name), data_torch)]
  2268. embed_key = "embed_tokens.weight" if not self.is_mistral_format else "tok_embeddings.weight"
  2269. if self.img_break_tok_id > 0 and embed_key in name:
  2270. logger.info(f"Extracting [IMG_BREAK] token embedding from {name}")
  2271. # for pixtral model, we need to extract the [IMG_BREAK] token embedding
  2272. img_break_embd = data_torch[self.img_break_tok_id]
  2273. name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK]
  2274. return [(self.map_tensor_name(name), img_break_embd)]
  2275. return [] # skip other tensors
  2276. @ModelBase.register("Idefics3ForConditionalGeneration", "SmolVLMForConditionalGeneration")
  2277. class SmolVLMModel(MmprojModel):
  2278. def __init__(self, *args, **kwargs):
  2279. super().__init__(*args, **kwargs)
  2280. if self.hparams["model_type"] == "smolvlm_vision":
  2281. # fix for SmolVLM2, missing some keys in config.json
  2282. # default values are taken from transformers code
  2283. self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1152)
  2284. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
  2285. self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 3072)
  2286. def set_gguf_parameters(self):
  2287. super().set_gguf_parameters()
  2288. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.IDEFICS3)
  2289. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  2290. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
  2291. self.gguf_writer.add_vision_use_gelu(True)
  2292. # Add the preprocessor longest edge size
  2293. preproc_image_size = self.preprocessor_config.get("size", {}).get("longest_edge", self.image_size)
  2294. self.gguf_writer.add_vision_preproc_image_size(preproc_image_size)
  2295. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2296. if ".embeddings." in name:
  2297. return gguf.GGMLQuantizationType.F32
  2298. return super().tensor_force_quant(name, new_name, bid, n_dims)
  2299. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2300. del bid # unused
  2301. is_vision_tensor = "vision_tower" in name or "vision_model" in name or "model.connector" in name
  2302. if is_vision_tensor:
  2303. return [(self.map_tensor_name(name), data_torch)]
  2304. return [] # skip other tensors
  2305. @ModelBase.register(
  2306. "Llama4ForConditionalGeneration",
  2307. "Llama4ForCausalLM",
  2308. )
  2309. class Llama4Model(LlamaModel):
  2310. model_arch = gguf.MODEL_ARCH.LLAMA4
  2311. undo_permute = False
  2312. def __init__(self, *args, **kwargs):
  2313. super().__init__(*args, **kwargs)
  2314. # IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
  2315. self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
  2316. self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
  2317. def set_vocab(self):
  2318. self._set_vocab_gpt2()
  2319. def set_gguf_parameters(self):
  2320. super().set_gguf_parameters()
  2321. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
  2322. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
  2323. if "layer_types" in self.hparams:
  2324. if all(lt == "full_attention" for lt in self.hparams["layer_types"]):
  2325. # all layers are full attention (for MobileLLM), disable swa
  2326. self.gguf_writer.add_sliding_window(0)
  2327. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  2328. if name.startswith("language_model."):
  2329. name = name.replace("language_model.", "")
  2330. # split the gate_up into gate and up
  2331. if "gate_up_proj" in name:
  2332. name_up = name.replace("gate_up_proj", "up_proj.weight")
  2333. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  2334. dim_half = data_torch.shape[-1] // 2
  2335. gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
  2336. return [
  2337. (self.map_tensor_name(name_gate), gate_proj_weight),
  2338. (self.map_tensor_name(name_up), up_proj_weight)
  2339. ]
  2340. if name.endswith("down_proj"):
  2341. name += ".weight"
  2342. data_torch = data_torch.transpose(-1, -2)
  2343. if "multi_modal_projector" in name or "vision_model" in name:
  2344. return []
  2345. return super().modify_tensors(data_torch, name, bid)
  2346. @ModelBase.register("Llama4ForConditionalGeneration")
  2347. class Llama4VisionModel(MmprojModel):
  2348. def set_gguf_parameters(self):
  2349. super().set_gguf_parameters()
  2350. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LLAMA4)
  2351. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams["norm_eps"])
  2352. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / self.hparams["pixel_shuffle_ratio"]))
  2353. assert self.hparams["hidden_act"] == "gelu"
  2354. self.gguf_writer.add_vision_use_gelu(True)
  2355. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2356. del bid # unused
  2357. if "multi_modal_projector" in name or "vision_model" in name:
  2358. # process vision tensors
  2359. if "positional_embedding_vlm" in name and ".weight" not in name:
  2360. name += ".weight"
  2361. if "multi_modal_projector.linear_1" in name:
  2362. # despite the name with number postfix, this is a single fully connected layer
  2363. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_MMPROJ_FC] + '.weight', data_torch)]
  2364. return [(self.map_tensor_name(name), data_torch)]
  2365. return []
  2366. @ModelBase.register("Mistral3ForConditionalGeneration")
  2367. class Mistral3Model(LlamaModel):
  2368. model_arch = gguf.MODEL_ARCH.MISTRAL3
  2369. def __init__(self, *args, **kwargs):
  2370. super().__init__(*args, **kwargs)
  2371. # for compatibility, we use LLAMA arch for older models
  2372. # TODO: remove this once everyone has migrated to newer version of llama.cpp
  2373. if self.hparams.get("model_type") != "ministral3":
  2374. self.model_arch = gguf.MODEL_ARCH.LLAMA
  2375. self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[self.model_arch]
  2376. self.gguf_writer.add_architecture()
  2377. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  2378. def set_gguf_parameters(self):
  2379. super().set_gguf_parameters()
  2380. rope_params = self.rope_parameters
  2381. if self.hparams.get("model_type") == "ministral3":
  2382. assert rope_params, "ministral3 must have 'rope_parameters' config"
  2383. assert rope_params["rope_type"] == "yarn", "ministral3 rope_type must be 'yarn'"
  2384. self.gguf_writer.add_rope_scaling_yarn_log_mul(rope_params["mscale_all_dim"])
  2385. self.gguf_writer.add_attn_temperature_scale(rope_params["llama_4_scaling_beta"])
  2386. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  2387. name = name.replace("language_model.", "")
  2388. if "multi_modal_projector" in name or "vision_tower" in name:
  2389. return []
  2390. return super().modify_tensors(data_torch, name, bid)
  2391. @ModelBase.register("DeciLMForCausalLM")
  2392. class DeciModel(TextModel):
  2393. model_arch = gguf.MODEL_ARCH.DECI
  2394. @staticmethod
  2395. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  2396. # DeciLM-specific code
  2397. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  2398. return DeciModel._find_multiple(intermediate_size, 256)
  2399. @staticmethod
  2400. def _find_multiple(n: int, k: int) -> int:
  2401. # DeciLM-specific code
  2402. if n % k == 0:
  2403. return n
  2404. return n + k - (n % k)
  2405. def __init__(self, *args, **kwargs):
  2406. super().__init__(*args, **kwargs)
  2407. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2408. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  2409. assert self.block_count == len(_block_configs)
  2410. self._num_kv_heads = list()
  2411. self._num_heads = list()
  2412. _ffn_multipliers = list()
  2413. # ***linear attention layer***
  2414. # if n_heads_in_group is None and replace_with_linear is True
  2415. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  2416. # ***attention-free layer***
  2417. # if n_heads_in_group is None and replace_with_linear is False
  2418. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  2419. # ***normal attention-layer***
  2420. # if n_heads_in_group is not None, then
  2421. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  2422. # _num_heads[il] is num_attention_head
  2423. # ***dummy layer*** for nemotron 253B
  2424. # if n_heads_in_group is None and ffn_mult is None
  2425. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0 and _ffn_dims is 0
  2426. for il in range(len(_block_configs)):
  2427. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  2428. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  2429. self._num_kv_heads.append(0)
  2430. self._num_heads.append(self.hparams["num_attention_heads"])
  2431. else:
  2432. self._num_kv_heads.append(0)
  2433. self._num_heads.append(0)
  2434. else:
  2435. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  2436. self._num_heads.append(self.hparams["num_attention_heads"])
  2437. if _block_configs[il]["ffn"]["ffn_mult"] is None: # dummy layer
  2438. _ffn_multipliers.append(0.0)
  2439. else:
  2440. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  2441. assert self.block_count == len(self._num_kv_heads)
  2442. assert self.block_count == len(self._num_heads)
  2443. assert self.block_count == len(_ffn_multipliers)
  2444. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  2445. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  2446. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  2447. self._ffn_dims: list[int] = [
  2448. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  2449. for multiplier in _ffn_multipliers
  2450. ]
  2451. def set_vocab(self):
  2452. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  2453. # eos_token from '|eot_id|' to '|end_of_text|'
  2454. if self.hparams.get("vocab_size", 128256) == 128256:
  2455. tokens, toktypes, tokpre = self.get_vocab_base()
  2456. self.gguf_writer.add_tokenizer_model("gpt2")
  2457. self.gguf_writer.add_tokenizer_pre(tokpre)
  2458. self.gguf_writer.add_token_list(tokens)
  2459. self.gguf_writer.add_token_types(toktypes)
  2460. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  2461. special_vocab.add_to_gguf(self.gguf_writer)
  2462. else:
  2463. # DeciLM-7B
  2464. self._set_vocab_llama_hf()
  2465. def set_gguf_parameters(self):
  2466. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2467. assert self.block_count == len(self._num_kv_heads)
  2468. assert self.block_count == len(self._num_heads)
  2469. assert self.block_count == len(self._ffn_dims)
  2470. if (rope_theta := self.rope_parameters.get("rope_theta")) is not None:
  2471. self.gguf_writer.add_rope_freq_base(rope_theta)
  2472. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2473. self.gguf_writer.add_head_count(self._num_heads)
  2474. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  2475. self.gguf_writer.add_block_count(self.block_count)
  2476. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2477. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2478. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2479. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2480. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2481. self.gguf_writer.add_file_type(self.ftype)
  2482. else: # DeciLM-7B
  2483. super().set_gguf_parameters()
  2484. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  2485. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  2486. assert self.block_count == len(self._num_kv_heads)
  2487. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2488. hparams = self.hparams
  2489. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2490. if (rope_dim := hparams.get("head_dim")) is None:
  2491. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2492. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2493. @staticmethod
  2494. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2495. if n_head_kv is not None and n_head != n_head_kv:
  2496. n_head = n_head_kv
  2497. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2498. .swapaxes(1, 2)
  2499. .reshape(weights.shape))
  2500. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2501. n_head = self.hparams["num_attention_heads"]
  2502. if bid is not None:
  2503. if "num_key_value_heads_per_layer" in self.hparams:
  2504. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  2505. elif "block_configs" in self.hparams:
  2506. n_kv_head = self._num_kv_heads[bid]
  2507. n_head = self._num_heads[bid]
  2508. else:
  2509. n_kv_head = self.hparams.get("num_key_value_heads")
  2510. else:
  2511. n_kv_head = self.hparams.get("num_key_value_heads")
  2512. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2513. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  2514. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2515. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  2516. return [(self.map_tensor_name(name), data_torch)]
  2517. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2518. if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters):
  2519. if rope_params.get("rope_type", '').lower() == "llama3":
  2520. base = rope_params.get("rope_theta", 10000.0)
  2521. if (dim := self.hparams.get("head_dim")) is None:
  2522. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2523. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  2524. factor = rope_params.get("factor", 8.0)
  2525. low_freq_factor = rope_params.get("low_freq_factor", 1.0)
  2526. high_freq_factor = rope_params.get("high_freq_factor", 4.0)
  2527. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2528. low_freq_wavelen = old_context_len / low_freq_factor
  2529. high_freq_wavelen = old_context_len / high_freq_factor
  2530. assert low_freq_wavelen != high_freq_wavelen
  2531. rope_factors = []
  2532. for freq in freqs:
  2533. wavelen = 2 * math.pi / freq
  2534. if wavelen < high_freq_wavelen:
  2535. rope_factors.append(1)
  2536. elif wavelen > low_freq_wavelen:
  2537. rope_factors.append(factor)
  2538. else:
  2539. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2540. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2541. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2542. def prepare_tensors(self):
  2543. super().prepare_tensors()
  2544. @ModelBase.register("BitnetForCausalLM")
  2545. class BitnetModel(TextModel):
  2546. model_arch = gguf.MODEL_ARCH.BITNET
  2547. def set_vocab(self):
  2548. self._set_vocab_sentencepiece()
  2549. def set_gguf_parameters(self):
  2550. super().set_gguf_parameters()
  2551. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2552. self.gguf_writer.add_rope_scaling_factor(1.0)
  2553. def weight_quant(self, weight: Tensor) -> Tensor:
  2554. dtype = weight.dtype
  2555. weight = weight.float()
  2556. scale = weight.abs().mean().clamp(min=1e-5)
  2557. iscale = 1 / scale
  2558. # TODO: multiply by the scale directly instead of inverting it twice
  2559. # (this is also unnecessarily doubly inverted upstream)
  2560. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  2561. result = (weight * iscale).round().clamp(-1, 1) / iscale
  2562. return result.type(dtype)
  2563. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2564. new_name = self.map_tensor_name(name)
  2565. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  2566. gguf.MODEL_TENSOR.ATTN_Q,
  2567. gguf.MODEL_TENSOR.ATTN_K,
  2568. gguf.MODEL_TENSOR.ATTN_V,
  2569. gguf.MODEL_TENSOR.ATTN_OUT,
  2570. gguf.MODEL_TENSOR.FFN_UP,
  2571. gguf.MODEL_TENSOR.FFN_DOWN,
  2572. gguf.MODEL_TENSOR.FFN_GATE,
  2573. ]):
  2574. # transform weight into 1/0/-1 (in fp32)
  2575. data_torch = self.weight_quant(data_torch)
  2576. yield (new_name, data_torch)
  2577. @ModelBase.register("GrokForCausalLM", "Grok1ForCausalLM")
  2578. class GrokModel(TextModel):
  2579. model_arch = gguf.MODEL_ARCH.GROK
  2580. def set_vocab(self):
  2581. if (self.dir_model / 'tokenizer.model').is_file():
  2582. self._set_vocab_sentencepiece()
  2583. return
  2584. if not (self.dir_model / 'tokenizer.json').is_file() or not (self.dir_model / 'chat_template.jinja').is_file():
  2585. logger.error('Error: Missing vocab and chat template, download files from https://huggingface.co/alvarobartt/grok-2-tokenizer')
  2586. sys.exit(1)
  2587. self._set_vocab_gpt2()
  2588. def __init__(self, *args, **kwargs):
  2589. super().__init__(*args, **kwargs)
  2590. def set_gguf_parameters(self):
  2591. super().set_gguf_parameters()
  2592. self.gguf_writer.add_attn_logit_softcapping(self.hparams.get("attn_logit_softcapping", 30.0))
  2593. self.gguf_writer.add_router_logit_softcapping(self.hparams.get("router_logit_softcapping", 30.0))
  2594. if (final_logit_softcap := self.hparams.get("final_logit_softcapping")):
  2595. self.gguf_writer.add_final_logit_softcapping(final_logit_softcap)
  2596. if (rope_dim := self.hparams.get("head_dim")) is None:
  2597. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2598. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2599. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2600. # Treat "original" as "yarn", seems to have been a mistake
  2601. if self.hparams.get("rope_type") in ("yarn", "original"):
  2602. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2603. self.gguf_writer.add_rope_scaling_factor(self.hparams["scaling_factor"])
  2604. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["original_max_position_embeddings"])
  2605. self.gguf_writer.add_rope_scaling_yarn_ext_factor(self.hparams["extrapolation_factor"])
  2606. self.gguf_writer.add_rope_scaling_yarn_attn_factor(self.hparams["attn_factor"])
  2607. self.gguf_writer.add_rope_scaling_yarn_beta_fast(self.hparams["beta_fast"])
  2608. self.gguf_writer.add_rope_scaling_yarn_beta_slow(self.hparams["beta_slow"])
  2609. if temp_len := self.hparams.get("attn_temperature_len"):
  2610. self.gguf_writer.add_attn_temperature_length(temp_len)
  2611. self.gguf_writer.add_attn_output_scale(self.hparams.get("attn_output_multiplier", rope_dim**-0.5))
  2612. self.gguf_writer.add_embedding_scale(self.hparams["embedding_multiplier_scale"])
  2613. self.gguf_writer.add_logit_scale(self.hparams["output_multiplier_scale"])
  2614. _experts: list[dict[str, list[Tensor]]] | None = None
  2615. _cur_expert = ""
  2616. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2617. tensors: list[tuple[str, Tensor]] = []
  2618. is_expert = ".moe." in name or ".block_sparse_moe.experts." in name
  2619. if not is_expert:
  2620. tensors.append((self.map_tensor_name(name), data_torch))
  2621. # process the experts separately
  2622. if is_expert or self._cur_expert:
  2623. n_experts = self.hparams["num_local_experts"]
  2624. assert bid is not None
  2625. if self._experts is None:
  2626. self._experts = [{} for _ in range(self.block_count)]
  2627. # concatenate split tensors
  2628. if name in self._experts[bid]:
  2629. self._cur_expert = name
  2630. self._experts[bid][name].append(data_torch)
  2631. return []
  2632. elif is_expert:
  2633. self._cur_expert = name
  2634. self._experts[bid][name] = [data_torch]
  2635. return []
  2636. else:
  2637. self._cur_expert = ""
  2638. for bid in range(self.block_count):
  2639. if len(self._experts[bid]) >= n_experts * 3:
  2640. # merge the experts into a single 3d tensor
  2641. for wid in [("linear", "w1", 0), ("linear_1", "w2", 1), ("linear_v", "w3", 0)]:
  2642. datas: list[Tensor] = []
  2643. for xid in range(n_experts):
  2644. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid[0]}.weight"
  2645. if ename not in self._experts[bid]:
  2646. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid[1]}.weight"
  2647. tensor_list = self._experts[bid][ename]
  2648. datas.append(torch.cat(tensor_list, dim=wid[2]) if len(tensor_list) > 1 else tensor_list[0])
  2649. del self._experts[bid][ename]
  2650. data_torch = torch.stack(datas, dim=0)
  2651. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid[0]}.weight"
  2652. new_name = self.map_tensor_name(merged_name)
  2653. yield (new_name, data_torch)
  2654. yield from tensors
  2655. @ModelBase.register("DbrxForCausalLM")
  2656. class DbrxModel(TextModel):
  2657. model_arch = gguf.MODEL_ARCH.DBRX
  2658. def set_gguf_parameters(self):
  2659. ffn_config = self.hparams["ffn_config"]
  2660. attn_config = self.hparams["attn_config"]
  2661. self.gguf_writer.add_block_count(self.block_count)
  2662. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  2663. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2664. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  2665. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  2666. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  2667. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  2668. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  2669. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  2670. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  2671. self.gguf_writer.add_layer_norm_eps(1e-5)
  2672. self.gguf_writer.add_file_type(self.ftype)
  2673. logger.info(f"gguf: file type = {self.ftype}")
  2674. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2675. del bid # unused
  2676. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  2677. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  2678. n_embd = self.hparams["d_model"]
  2679. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  2680. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  2681. # But llama.cpp moe graph works differently
  2682. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  2683. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  2684. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2685. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  2686. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2687. experts = False
  2688. for exp_tensor_name in exp_tensor_names.keys():
  2689. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  2690. experts = True
  2691. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  2692. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  2693. data_torch = data_torch.permute(*permute_tensor)
  2694. break
  2695. # map tensor names
  2696. # In MoE models the ffn tensors are typically most of the model weights,
  2697. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  2698. # Every other model has the weight names ending in .weight,
  2699. # let's assume that is the convention which is not the case for dbrx:
  2700. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  2701. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  2702. return [(new_name, data_torch)]
  2703. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  2704. del name, new_name, bid # unused
  2705. return n_dims > 1
  2706. @ModelBase.register("MiniCPMForCausalLM")
  2707. class MiniCPMModel(TextModel):
  2708. model_arch = gguf.MODEL_ARCH.MINICPM
  2709. def set_gguf_parameters(self):
  2710. super().set_gguf_parameters()
  2711. embedding_scale = float(self.hparams["scale_emb"])
  2712. self.gguf_writer.add_embedding_scale(embedding_scale)
  2713. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  2714. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  2715. self.gguf_writer.add_residual_scale(residual_scale)
  2716. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  2717. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  2718. self.gguf_writer.add_logit_scale(logit_scale)
  2719. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  2720. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2721. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2722. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2723. if rope_scaling is not None:
  2724. long_factors = rope_scaling.get('long_factor', None)
  2725. short_factors = rope_scaling.get('short_factor', None)
  2726. if long_factors is None or short_factors is None:
  2727. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2728. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2729. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2730. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2731. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2732. def set_vocab(self):
  2733. self._set_vocab_sentencepiece()
  2734. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2735. del bid # unused
  2736. n_head = self.hparams["num_attention_heads"]
  2737. n_kv_head = self.hparams.get("num_key_value_heads")
  2738. # HF models permute some of the tensors, so we need to undo that
  2739. if name.endswith(("q_proj.weight")):
  2740. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2741. if name.endswith(("k_proj.weight")):
  2742. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2743. return [(self.map_tensor_name(name), data_torch)]
  2744. @ModelBase.register("MiniCPM3ForCausalLM")
  2745. class MiniCPM3Model(TextModel):
  2746. model_arch = gguf.MODEL_ARCH.MINICPM3
  2747. def set_gguf_parameters(self):
  2748. hparams = self.hparams
  2749. self.gguf_writer.add_file_type(self.ftype)
  2750. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2751. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2752. self.gguf_writer.add_block_count(self.block_count)
  2753. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2754. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2755. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  2756. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2757. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2758. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2759. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2760. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2761. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2762. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2763. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2764. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2765. if rope_scaling is not None:
  2766. rope_dims = self.hparams["qk_rope_head_dim"]
  2767. long_factors = rope_scaling.get('long_factor', None)
  2768. short_factors = rope_scaling.get('short_factor', None)
  2769. if long_factors is None or short_factors is None:
  2770. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2771. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2772. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2773. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2774. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2775. def set_vocab(self):
  2776. self._set_vocab_sentencepiece()
  2777. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  2778. if n_kv_head is not None and n_head != n_kv_head:
  2779. n_head //= n_kv_head
  2780. return (
  2781. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2782. .swapaxes(1, 2)
  2783. .reshape(weights.shape)
  2784. )
  2785. @ModelBase.register("QWenLMHeadModel")
  2786. class QwenModel(TextModel):
  2787. model_arch = gguf.MODEL_ARCH.QWEN
  2788. @staticmethod
  2789. def token_bytes_to_string(b):
  2790. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2791. byte_encoder = bytes_to_unicode()
  2792. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2793. @staticmethod
  2794. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2795. parts = [bytes([b]) for b in token]
  2796. while True:
  2797. min_idx = None
  2798. min_rank = None
  2799. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2800. rank = mergeable_ranks.get(pair[0] + pair[1])
  2801. if rank is not None and (min_rank is None or rank < min_rank):
  2802. min_idx = i
  2803. min_rank = rank
  2804. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2805. break
  2806. assert min_idx is not None
  2807. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2808. return parts
  2809. def set_vocab(self):
  2810. self._set_vocab_qwen()
  2811. @ModelBase.register("Qwen2Model", "Qwen2ForCausalLM", "Qwen2AudioForConditionalGeneration")
  2812. class Qwen2Model(TextModel):
  2813. model_arch = gguf.MODEL_ARCH.QWEN2
  2814. def set_vocab(self):
  2815. try:
  2816. self._set_vocab_sentencepiece()
  2817. except FileNotFoundError:
  2818. self._set_vocab_gpt2()
  2819. def set_gguf_parameters(self):
  2820. super().set_gguf_parameters()
  2821. self._try_set_pooling_type()
  2822. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2823. if self.hf_arch == "Qwen2Model":
  2824. name = f"model.{name}" # map to Qwen2ForCausalLM tensors
  2825. if "language_model." in name:
  2826. name = name.replace("language_model.", "") # for InternVL
  2827. if name.startswith("mlp") or name.startswith("multi_modal_projector") \
  2828. or name.startswith("vision_model") or name.startswith("audio_tower") \
  2829. or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector"):
  2830. # skip vision and audio tensors
  2831. return []
  2832. yield from super().modify_tensors(data_torch, name, bid)
  2833. @ModelBase.register("DreamModel")
  2834. class DreamModel(TextModel):
  2835. model_arch = gguf.MODEL_ARCH.DREAM
  2836. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2837. tokens: list[str] = []
  2838. toktypes: list[int] = []
  2839. from transformers import AutoTokenizer
  2840. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2841. vocab_dict = tokenizer.get_vocab()
  2842. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2843. assert max(vocab_dict.values()) < vocab_size
  2844. tokpre = self.get_vocab_base_pre(tokenizer)
  2845. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2846. added_vocab = tokenizer.get_added_vocab()
  2847. for i in range(vocab_size):
  2848. if i not in reverse_vocab:
  2849. tokens.append(f"[PAD{i}]")
  2850. toktypes.append(gguf.TokenType.UNUSED)
  2851. elif reverse_vocab[i] in added_vocab:
  2852. tokens.append(reverse_vocab[i])
  2853. # Check if it's a special token - treat special tokens as CONTROL tokens
  2854. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2855. if tokenizer.added_tokens_decoder[i].special:
  2856. toktypes.append(gguf.TokenType.CONTROL)
  2857. else:
  2858. toktypes.append(gguf.TokenType.USER_DEFINED)
  2859. else:
  2860. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2861. toktypes.append(gguf.TokenType.CONTROL)
  2862. else:
  2863. tokens.append(reverse_vocab[i])
  2864. toktypes.append(gguf.TokenType.NORMAL)
  2865. return tokens, toktypes, tokpre
  2866. def set_vocab(self):
  2867. try:
  2868. self._set_vocab_sentencepiece()
  2869. except FileNotFoundError:
  2870. self._set_vocab_gpt2()
  2871. def set_gguf_parameters(self):
  2872. super().set_gguf_parameters()
  2873. self._try_set_pooling_type()
  2874. # Dream models use non-causal attention for diffusion
  2875. self.gguf_writer.add_causal_attention(False)
  2876. # Add Dream-specific parameters
  2877. mask_token_id = self.hparams.get("mask_token_id")
  2878. if mask_token_id is not None:
  2879. self.gguf_writer.add_mask_token_id(mask_token_id)
  2880. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2881. # Dream model tensors should be mapped directly since it's the base model
  2882. yield from super().modify_tensors(data_torch, name, bid)
  2883. @ModelBase.register("LLaDAModelLM")
  2884. class LLaDAModel(TextModel):
  2885. model_arch = gguf.MODEL_ARCH.LLADA
  2886. undo_permute = True
  2887. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2888. tokens: list[str] = []
  2889. toktypes: list[int] = []
  2890. from transformers import AutoTokenizer
  2891. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2892. vocab_dict = tokenizer.get_vocab()
  2893. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2894. assert max(vocab_dict.values()) < vocab_size
  2895. tokpre = self.get_vocab_base_pre(tokenizer)
  2896. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2897. added_vocab = tokenizer.get_added_vocab()
  2898. for i in range(vocab_size):
  2899. if i not in reverse_vocab:
  2900. tokens.append(f"[PAD{i}]")
  2901. toktypes.append(gguf.TokenType.UNUSED)
  2902. elif reverse_vocab[i] in added_vocab:
  2903. tokens.append(reverse_vocab[i])
  2904. # Check if it's a special token - treat special tokens as CONTROL tokens
  2905. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2906. if tokenizer.added_tokens_decoder[i].special:
  2907. toktypes.append(gguf.TokenType.CONTROL)
  2908. else:
  2909. toktypes.append(gguf.TokenType.USER_DEFINED)
  2910. else:
  2911. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2912. toktypes.append(gguf.TokenType.CONTROL)
  2913. else:
  2914. tokens.append(reverse_vocab[i])
  2915. toktypes.append(gguf.TokenType.NORMAL)
  2916. return tokens, toktypes, tokpre
  2917. def set_vocab(self):
  2918. self._set_vocab_gpt2()
  2919. # LLaDA specific parameters
  2920. self.gguf_writer.add_add_bos_token(True)
  2921. def set_gguf_parameters(self):
  2922. super().set_gguf_parameters()
  2923. self._try_set_pooling_type()
  2924. # Add parameters similar to LlamaModel
  2925. hparams = self.hparams
  2926. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2927. if (rope_dim := hparams.get("head_dim")) is None:
  2928. n_heads = hparams.get("num_attention_heads", hparams.get("n_heads"))
  2929. rope_dim = hparams.get("hidden_size", hparams.get("d_model")) // n_heads
  2930. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2931. # Set context length for LLaDA
  2932. context_length = self.hparams.get("max_sequence_length", 4096)
  2933. self.gguf_writer.add_context_length(context_length)
  2934. # Set embedding length (dimension size)
  2935. embedding_length = self.hparams.get("d_model", 4096)
  2936. self.gguf_writer.add_embedding_length(embedding_length)
  2937. # Set feed forward length (MLP hidden size)
  2938. feed_forward_length = self.hparams.get("mlp_hidden_size", 12288)
  2939. self.gguf_writer.add_feed_forward_length(feed_forward_length)
  2940. # LLaDA models use non-causal attention for diffusion, similar to Dream
  2941. self.gguf_writer.add_causal_attention(False)
  2942. # LLaDA models don't shift their logits
  2943. self.gguf_writer.add_diffusion_shift_logits(False)
  2944. @staticmethod
  2945. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2946. if n_head_kv is not None and n_head != n_head_kv:
  2947. n_head = n_head_kv
  2948. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2949. .swapaxes(1, 2)
  2950. .reshape(weights.shape))
  2951. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2952. n_head = self.hparams.get("num_attention_heads", self.hparams.get("n_heads"))
  2953. n_kv_head = self.hparams.get("num_key_value_heads", self.hparams.get("n_kv_heads"))
  2954. if self.undo_permute:
  2955. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2956. data_torch = LLaDAModel.permute(data_torch, n_head, n_head)
  2957. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2958. data_torch = LLaDAModel.permute(data_torch, n_head, n_kv_head)
  2959. # LLaDA model tensors should be mapped directly since it's the base model
  2960. yield from super().modify_tensors(data_torch, name, bid)
  2961. @ModelBase.register("Ernie4_5_ForCausalLM", "Ernie4_5ForCausalLM")
  2962. class Ernie4_5Model(TextModel):
  2963. model_arch = gguf.MODEL_ARCH.ERNIE4_5
  2964. def set_vocab(self):
  2965. self._set_vocab_sentencepiece()
  2966. def set_gguf_parameters(self):
  2967. super().set_gguf_parameters()
  2968. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2969. num_heads = self.hparams["num_attention_heads"]
  2970. num_kv_heads = self.hparams["num_key_value_heads"]
  2971. if (head_dim := self.hparams.get("head_dim")) is None:
  2972. head_dim = self.hparams["hidden_size"] // num_heads
  2973. if "ernie." in name:
  2974. name = name.replace("ernie.", "model.")
  2975. # split the qkv weights
  2976. # qkv_proj shape: [(num_heads + 2 * num_kv_heads) * head_dim, hidden_size]
  2977. if "qkv_proj" in name:
  2978. name_q = name.replace("qkv_proj.weight", "q_proj.weight")
  2979. name_k = name.replace("qkv_proj.weight", "k_proj.weight")
  2980. name_v = name.replace("qkv_proj.weight", "v_proj.weight")
  2981. total_q_dim = num_heads * head_dim
  2982. total_k_dim = num_kv_heads * head_dim
  2983. total_v_dim = num_kv_heads * head_dim
  2984. q_proj_weight, k_proj_weight, v_proj_weight = data_torch.split([total_q_dim, total_k_dim, total_v_dim], dim=0)
  2985. return [
  2986. (self.map_tensor_name(name_q), q_proj_weight),
  2987. (self.map_tensor_name(name_k), k_proj_weight),
  2988. (self.map_tensor_name(name_v), v_proj_weight)
  2989. ]
  2990. # split the up_gate_proj into gate and up
  2991. # up_gate_proj shape: [2 * intermediate_size, hidden_size]
  2992. if "up_gate_proj" in name:
  2993. name_up = name.replace("up_gate_proj.weight", "up_proj.weight")
  2994. name_gate = name.replace("up_gate_proj.weight", "gate_proj.weight")
  2995. dim_half = data_torch.shape[0] // 2
  2996. gate_proj_weight, up_proj_weight = data_torch.split(dim_half, dim=0)
  2997. return [
  2998. (self.map_tensor_name(name_gate), gate_proj_weight),
  2999. (self.map_tensor_name(name_up), up_proj_weight)
  3000. ]
  3001. return [(self.map_tensor_name(name), data_torch)]
  3002. @ModelBase.register("Ernie4_5_MoeForCausalLM")
  3003. class Ernie4_5MoeModel(Ernie4_5Model):
  3004. model_arch = gguf.MODEL_ARCH.ERNIE4_5_MOE
  3005. _experts: list[dict[str, Tensor]] | None = None
  3006. def __init__(self, *args, **kwargs):
  3007. super().__init__(*args, **kwargs)
  3008. self._experts = [{} for _ in range(self.block_count)]
  3009. def set_gguf_parameters(self):
  3010. super().set_gguf_parameters()
  3011. self.gguf_writer.add_expert_count(self.hparams["moe_num_experts"])
  3012. self.gguf_writer.add_expert_used_count(self.hparams["moe_k"])
  3013. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["moe_layer_interval"])
  3014. self.gguf_writer.add_leading_dense_block_count(self.hparams["moe_layer_start_index"])
  3015. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  3016. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  3017. if (shared_expert_count := self.hparams.get('moe_num_shared_experts')) is not None:
  3018. self.gguf_writer.add_expert_shared_count(shared_expert_count)
  3019. if shared_expert_count > 0 and (shared_expert_intermediate_size := self.hparams.get('intermediate_size')) is not None and (num_key_value_heads := self.hparams.get('num_key_value_heads')) is not None:
  3020. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size // num_key_value_heads)
  3021. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3022. # Modify correction bias name as in DeepseekV2
  3023. if name.endswith("e_score_correction_bias"):
  3024. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  3025. # skip Multi-Token Prediction (MTP) layers (again, same as DeepseekV2)
  3026. match = re.match(r"model.mtp_block.(\d+)", name)
  3027. if match:
  3028. return []
  3029. # skip all other MTP tensors for now
  3030. match = re.match(r"model.mtp_emb_norm.(\d+)", name)
  3031. if match:
  3032. return []
  3033. match = re.match(r"model.mtp_hidden_norm.(\d+)", name)
  3034. if match:
  3035. return []
  3036. match = re.match(r"model.mtp_linear_proj.(\d+)", name)
  3037. if match:
  3038. return []
  3039. # process the experts separately
  3040. if name.find("mlp.experts") != -1:
  3041. n_experts = self.hparams["moe_num_experts"]
  3042. assert bid is not None
  3043. if self._experts is None:
  3044. self._experts = [{} for _ in range(self.block_count)]
  3045. self._experts[bid][name] = data_torch
  3046. if len(self._experts[bid]) >= n_experts * 3:
  3047. tensors: list[tuple[str, Tensor]] = []
  3048. # merge the experts into a single 3d tensor
  3049. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  3050. datas: list[Tensor] = []
  3051. for xid in range(n_experts):
  3052. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3053. datas.append(self._experts[bid][ename_to_retrieve])
  3054. del self._experts[bid][ename_to_retrieve]
  3055. data_torch = torch.stack(datas, dim=0)
  3056. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3057. new_name = self.map_tensor_name(merged_name)
  3058. tensors.append((new_name, data_torch))
  3059. return tensors
  3060. else:
  3061. return []
  3062. return [(self.map_tensor_name(name), data_torch)]
  3063. def prepare_tensors(self):
  3064. super().prepare_tensors()
  3065. if self._experts is not None:
  3066. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3067. experts = [k for d in self._experts for k in d.keys()]
  3068. if len(experts) > 0:
  3069. raise ValueError(f"Unprocessed experts: {experts}")
  3070. @ModelBase.register(
  3071. "Qwen2VLModel",
  3072. "Qwen2VLForConditionalGeneration",
  3073. "Qwen2_5_VLForConditionalGeneration",
  3074. "Qwen2_5OmniModel",
  3075. )
  3076. class Qwen2VLModel(TextModel):
  3077. model_arch = gguf.MODEL_ARCH.QWEN2VL
  3078. def set_gguf_parameters(self):
  3079. super().set_gguf_parameters()
  3080. mrope_section = self.hparams["rope_scaling"]["mrope_section"]
  3081. mrope_section += [0] * max(0, 4 - len(mrope_section))
  3082. self.gguf_writer.add_rope_dimension_sections(mrope_section)
  3083. def set_vocab(self):
  3084. try:
  3085. self._set_vocab_sentencepiece()
  3086. except FileNotFoundError:
  3087. self._set_vocab_gpt2()
  3088. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3089. del bid # unused
  3090. if name.startswith("thinker."):
  3091. name = name.replace("thinker.", "")
  3092. if name.startswith("visual") or name.startswith("audio") or \
  3093. name.startswith("talker") or name.startswith("token2wav"):
  3094. # skip multimodal tensors
  3095. return []
  3096. return [(self.map_tensor_name(name), data_torch)]
  3097. @ModelBase.register("Qwen2VLModel", "Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  3098. class Qwen2VLVisionModel(MmprojModel):
  3099. def __init__(self, *args, **kwargs):
  3100. super().__init__(*args, **kwargs)
  3101. assert self.hparams_vision is not None
  3102. self.hparams_vision["image_size"] = self.hparams_vision.get("image_size", 560)
  3103. # rename config.json values
  3104. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  3105. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  3106. if "embed_dim" in self.hparams_vision: # qwen2vl
  3107. self.hparams_vision["intermediate_size"] = self.hparams_vision.get("hidden_size")
  3108. self.hparams_vision["hidden_size"] = self.hparams_vision.get("embed_dim")
  3109. def set_gguf_parameters(self):
  3110. super().set_gguf_parameters()
  3111. assert self.hparams_vision is not None
  3112. hparams = self.hparams_vision
  3113. model_type = self.global_config['model_type']
  3114. if model_type == 'qwen2_vl':
  3115. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2VL)
  3116. elif model_type == 'qwen2_5_vl' or model_type == 'qwen2_5_omni':
  3117. if model_type == 'qwen2_5_omni':
  3118. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25O)
  3119. else:
  3120. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25VL)
  3121. self.gguf_writer.add_vision_use_silu(True)
  3122. # find n_wa_pattern (window attention pattern)
  3123. fullatt_block_indexes = hparams.get("fullatt_block_indexes")
  3124. assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for qwen2_5_vl"
  3125. n_wa_pattern = fullatt_block_indexes[0] + 1
  3126. # validate n_wa_pattern
  3127. for i in range(1, len(fullatt_block_indexes)):
  3128. if fullatt_block_indexes[i] - fullatt_block_indexes[i - 1] != n_wa_pattern:
  3129. raise ValueError(f"Invalid fullatt_block_indexes: {fullatt_block_indexes}")
  3130. self.gguf_writer.add_vision_n_wa_pattern(n_wa_pattern)
  3131. else:
  3132. raise ValueError(f"Unknown QwenVL model type: {self.global_config['model_type']}")
  3133. # default values below are taken from HF tranformers code
  3134. self.gguf_writer.add_vision_attention_layernorm_eps(self.global_config.get("rms_norm_eps", 1e-6))
  3135. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3136. if ".position_embd." in new_name:
  3137. return gguf.GGMLQuantizationType.F32
  3138. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3139. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3140. del bid # unused
  3141. if name.startswith("visual."):
  3142. # process visual tensors
  3143. # split QKV tensors if needed
  3144. if ".qkv." in name:
  3145. if data_torch.ndim == 2: # weight
  3146. c3, _ = data_torch.shape
  3147. else: # bias
  3148. c3 = data_torch.shape[0]
  3149. assert c3 % 3 == 0
  3150. c = c3 // 3
  3151. wq = data_torch[:c]
  3152. wk = data_torch[c: c * 2]
  3153. wv = data_torch[c * 2:]
  3154. return [
  3155. (self.map_tensor_name(name.replace("qkv", "q")), wq),
  3156. (self.map_tensor_name(name.replace("qkv", "k")), wk),
  3157. (self.map_tensor_name(name.replace("qkv", "v")), wv),
  3158. ]
  3159. elif 'patch_embed.proj.weight' in name:
  3160. # split Conv3D into Conv2Ds
  3161. c1, c2, kt, kh, kw = data_torch.shape
  3162. del c1, c2, kh, kw # unused
  3163. assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
  3164. return [
  3165. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight" , data_torch[:, :, 0, ...]),
  3166. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  3167. ]
  3168. else:
  3169. return [(self.map_tensor_name(name), data_torch)]
  3170. return [] # skip other tensors
  3171. @ModelBase.register("Qwen2_5OmniModel")
  3172. class Qwen25OmniModel(Qwen2VLVisionModel):
  3173. has_vision_encoder = True
  3174. has_audio_encoder = True
  3175. def __init__(self, *args, **kwargs):
  3176. super().__init__(*args, **kwargs)
  3177. assert self.hparams_audio is not None
  3178. self.hparams_audio["hidden_size"] = self.hparams_audio["d_model"]
  3179. self.hparams_audio["intermediate_size"] = self.hparams_audio["encoder_ffn_dim"]
  3180. self.hparams_audio["num_attention_heads"] = self.hparams_audio["encoder_attention_heads"]
  3181. def set_gguf_parameters(self):
  3182. super().set_gguf_parameters()
  3183. assert self.hparams_audio is not None
  3184. self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["num_mel_bins"])
  3185. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams_audio.get("layer_norm_eps", 1e-5))
  3186. def get_vision_config(self) -> dict[str, Any] | None:
  3187. return self.global_config["thinker_config"].get("vision_config")
  3188. def get_audio_config(self) -> dict[str, Any] | None:
  3189. return self.global_config["thinker_config"].get("audio_config")
  3190. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3191. # SinusoidsPositionEmbedding
  3192. assert self.hparams_audio is not None
  3193. max_timescale = 10000
  3194. length = 1500
  3195. channels = self.hparams_audio["hidden_size"]
  3196. log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
  3197. inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2).float())
  3198. scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
  3199. pos_embd = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1).to(dtype=torch.float32)
  3200. yield ("audio_tower.embed_positions.weight", pos_embd)
  3201. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3202. if ".conv" in name and ".weight" in name:
  3203. return gguf.GGMLQuantizationType.F16
  3204. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3205. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3206. if name.startswith("thinker."):
  3207. name = name.replace("thinker.", "")
  3208. if name.startswith("audio_tower"):
  3209. # process audio tensors
  3210. if "conv1.bias" in name or "conv2.bias" in name:
  3211. # transpose conv1 and conv2 bias
  3212. data_torch = data_torch.unsqueeze(-1)
  3213. if "audio_bos_eos_token" in name:
  3214. # this tensor is left unused in transformers code
  3215. # https://github.com/huggingface/transformers/blob/6e3063422c4b1c014aa60c32b9254fd2902f0f28/src/transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py#L1809
  3216. return []
  3217. return [(self.map_tensor_name(name), data_torch)]
  3218. return super().modify_tensors(data_torch, name, bid)
  3219. @ModelBase.register("InternVisionModel")
  3220. class InternVisionModel(MmprojModel):
  3221. def set_gguf_parameters(self):
  3222. assert self.hparams_vision is not None
  3223. if isinstance(self.hparams_vision['image_size'], list):
  3224. self.hparams_vision['image_size'] = self.hparams_vision['image_size'][0]
  3225. if isinstance(self.hparams_vision['patch_size'], list):
  3226. self.hparams_vision['patch_size'] = self.hparams_vision['patch_size'][0]
  3227. super().set_gguf_parameters()
  3228. hparams = self.hparams
  3229. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.INTERNVL)
  3230. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  3231. # hidden_act
  3232. if hparams["hidden_act"] == "silu":
  3233. self.gguf_writer.add_vision_use_silu(True)
  3234. elif hparams["hidden_act"] == "gelu":
  3235. self.gguf_writer.add_vision_use_gelu(True)
  3236. else:
  3237. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  3238. # downsample_ratio
  3239. downsample_ratio = self.global_config.get("downsample_ratio")
  3240. assert downsample_ratio is not None
  3241. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / downsample_ratio))
  3242. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3243. if ".position_embd." in new_name:
  3244. return gguf.GGMLQuantizationType.F32
  3245. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3246. def _mapping_interns1_name(self, name):
  3247. names_map = {
  3248. "model.multi_modal_projector.layer_norm.bias": "mlp1.0.bias",
  3249. "model.multi_modal_projector.layer_norm.weight": "mlp1.0.weight",
  3250. "model.multi_modal_projector.linear_1.bias": "mlp1.1.bias",
  3251. "model.multi_modal_projector.linear_1.weight": "mlp1.1.weight",
  3252. "model.multi_modal_projector.linear_2.bias": "mlp1.3.bias",
  3253. "model.multi_modal_projector.linear_2.weight": "mlp1.3.weight",
  3254. }
  3255. if name in names_map:
  3256. name = names_map[name]
  3257. return name
  3258. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3259. del bid # unused
  3260. vision_prefix = ['vision_model', 'mlp', 'model.vision_tower', 'model.multi_modal_projector']
  3261. # deal with intern-s1 special case
  3262. name = self._mapping_interns1_name(name)
  3263. if any([name.startswith(prefix) for prefix in vision_prefix]):
  3264. # process visual tensors
  3265. # correct name
  3266. if name.startswith("vision_model"):
  3267. name = "vision_tower." + name
  3268. if (".ls" in name or ".lambda_" in name or "position_embedding" in name) and not name.endswith(".weight"):
  3269. name += ".weight"
  3270. # split QKV tensors if needed
  3271. if ".qkv." in name:
  3272. if data_torch.ndim == 2: # weight
  3273. c3, _ = data_torch.shape
  3274. else: # bias
  3275. c3 = data_torch.shape[0]
  3276. assert c3 % 3 == 0
  3277. c = c3 // 3
  3278. wq = data_torch[:c]
  3279. wk = data_torch[c: c * 2]
  3280. wv = data_torch[c * 2:]
  3281. return [
  3282. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.q_proj")), wq),
  3283. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.k_proj")), wk),
  3284. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.v_proj")), wv),
  3285. ]
  3286. return [(self.map_tensor_name(name), data_torch)]
  3287. return [] # skip other tensors
  3288. @ModelBase.register("WavTokenizerDec")
  3289. class WavTokenizerDecModel(TextModel):
  3290. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  3291. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3292. del bid # unused
  3293. if \
  3294. name.endswith("codebook.cluster_size") or \
  3295. name.endswith("codebook.embed_avg") or \
  3296. name.endswith("codebook.inited"):
  3297. logger.debug(f"Skipping {name!r}")
  3298. return []
  3299. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  3300. return [(self.map_tensor_name(name), data_torch)]
  3301. def set_vocab(self):
  3302. self._set_vocab_none()
  3303. def set_gguf_parameters(self):
  3304. super().set_gguf_parameters()
  3305. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  3306. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  3307. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  3308. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  3309. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  3310. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  3311. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  3312. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  3313. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  3314. self.gguf_writer.add_causal_attention(False)
  3315. @ModelBase.register("Qwen2MoeForCausalLM")
  3316. class Qwen2MoeModel(TextModel):
  3317. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  3318. def set_gguf_parameters(self):
  3319. super().set_gguf_parameters()
  3320. if (n_experts := self.hparams.get("num_experts")) is not None:
  3321. self.gguf_writer.add_expert_count(n_experts)
  3322. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  3323. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  3324. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  3325. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  3326. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  3327. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  3328. _experts: list[dict[str, Tensor]] | None = None
  3329. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3330. # process the experts separately
  3331. name = name.replace("language_model.", "") # InternVL
  3332. # handle aggregated expert tensors
  3333. # GGUF stores dimensions reversed from PyTorch, so:
  3334. # PyTorch (A,B,C) -> GGUF writes [C,B,A] -> GGML reads ne={C,B,A}
  3335. # Input shapes from HF: (n_expert, n_ff_exp, n_embd) or (n_expert, n_embd, n_ff_exp)
  3336. # Expected GGML ne: {n_embd, n_ff_exp, n_expert} for gate/up, {n_ff_exp, n_embd, n_expert} for down
  3337. if name.endswith("mlp.experts.down_proj") or name.endswith("mlp.experts.down_proj.weight"):
  3338. mapped = f"{name}.weight" if not name.endswith(".weight") else name
  3339. # Input: (n_expert=128, n_ff_exp=768, n_embd=2048)
  3340. # Want GGML ne: {n_ff_exp, n_embd, n_expert} = {768, 2048, 128}
  3341. # Need PyTorch: (128, 2048, 768) [reversed of GGML]
  3342. # So: permute(0, 2, 1): (128, 768, 2048) -> (128, 2048, 768)
  3343. permuted = data_torch.permute(0, 2, 1).contiguous()
  3344. return [(self.map_tensor_name(mapped), permuted)]
  3345. if name.endswith("mlp.experts.gate_up_proj") or name.endswith("mlp.experts.gate_up_proj.weight"):
  3346. if data_torch.ndim < 3 or data_torch.shape[-1] % 2 != 0:
  3347. raise ValueError(f"Unexpected gate_up_proj shape for {name}: {tuple(data_torch.shape)}")
  3348. split_dim = data_torch.shape[-1] // 2
  3349. gate = data_torch[..., :split_dim].contiguous()
  3350. up = data_torch[..., split_dim:].contiguous()
  3351. # Input gate/up: (n_expert=128, n_embd=2048, n_ff_exp=768)
  3352. # Want GGML ne: {n_embd, n_ff_exp, n_expert} = {2048, 768, 128}
  3353. # Need PyTorch: (128, 768, 2048) [reversed of GGML]
  3354. # So: permute(0, 2, 1): (128, 2048, 768) -> (128, 768, 2048)
  3355. base_name = name.removesuffix(".weight")
  3356. base = base_name.rsplit('.', 1)[0]
  3357. mapped_gate = f"{base}.gate_proj.weight"
  3358. mapped_up = f"{base}.up_proj.weight"
  3359. perm_gate = gate.permute(0, 2, 1).contiguous()
  3360. perm_up = up.permute(0, 2, 1).contiguous()
  3361. return [
  3362. (self.map_tensor_name(mapped_gate), perm_gate),
  3363. (self.map_tensor_name(mapped_up), perm_up),
  3364. ]
  3365. if name.startswith("mlp") or name.startswith("vision_model") or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector") or name.startswith("model.visual"):
  3366. # skip visual tensors
  3367. return []
  3368. if name.find("experts") != -1:
  3369. n_experts = self.hparams["num_experts"]
  3370. assert bid is not None
  3371. if self._experts is None:
  3372. self._experts = [{} for _ in range(self.block_count)]
  3373. self._experts[bid][name] = data_torch
  3374. if len(self._experts[bid]) >= n_experts * 3:
  3375. tensors: list[tuple[str, Tensor]] = []
  3376. # merge the experts into a single 3d tensor
  3377. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3378. datas: list[Tensor] = []
  3379. for xid in range(n_experts):
  3380. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3381. datas.append(self._experts[bid][ename])
  3382. del self._experts[bid][ename]
  3383. data_torch = torch.stack(datas, dim=0)
  3384. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3385. new_name = self.map_tensor_name(merged_name)
  3386. tensors.append((new_name, data_torch))
  3387. return tensors
  3388. else:
  3389. return []
  3390. return [(self.map_tensor_name(name), data_torch)]
  3391. def prepare_tensors(self):
  3392. super().prepare_tensors()
  3393. if self._experts is not None:
  3394. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3395. experts = [k for d in self._experts for k in d.keys()]
  3396. if len(experts) > 0:
  3397. raise ValueError(f"Unprocessed experts: {experts}")
  3398. @ModelBase.register("Qwen3ForCausalLM")
  3399. class Qwen3Model(Qwen2Model):
  3400. model_arch = gguf.MODEL_ARCH.QWEN3
  3401. # extra logic for rerank models
  3402. is_rerank: bool = False
  3403. is_tied_embeddings: bool = False
  3404. token_false_id: int | None = None
  3405. token_true_id: int | None = None
  3406. def __init__(self, *args, **kwargs):
  3407. super().__init__(*args, **kwargs)
  3408. # track for intern-s1-mini
  3409. hparams = ModelBase.load_hparams(self.dir_model, is_mistral_format=False)
  3410. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  3411. # a bit hacky, but currently the only way to detect if this is a rerank model
  3412. # ref: https://huggingface.co/Qwen/Qwen3-Reranker-0.6B
  3413. readme_path = self.dir_model / "README.md"
  3414. readme_text = ""
  3415. if readme_path.exists():
  3416. with readme_path.open("r", encoding="utf-8") as f:
  3417. readme_text = f.read()
  3418. if "# Qwen3-Reranker" in readme_text:
  3419. self._find_rerank_config()
  3420. def set_vocab(self):
  3421. # deal with intern-s1-mini
  3422. if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
  3423. self._set_vocab_interns1()
  3424. return
  3425. super().set_vocab()
  3426. def _find_rerank_config(self):
  3427. from transformers import AutoTokenizer
  3428. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  3429. self.is_rerank = True
  3430. self.is_tied_embeddings = self.hparams.get("tie_word_embeddings", False)
  3431. self.token_false_id = tokenizer.convert_tokens_to_ids("no")
  3432. self.token_true_id = tokenizer.convert_tokens_to_ids("yes")
  3433. self.sep_token_id = tokenizer.convert_tokens_to_ids("|")
  3434. assert self.token_false_id is not None and self.token_true_id is not None
  3435. def set_gguf_parameters(self):
  3436. super().set_gguf_parameters()
  3437. if self.is_rerank:
  3438. self.gguf_writer.add_pooling_type(gguf.PoolingType.RANK)
  3439. self.gguf_writer.add_classifier_output_labels(["yes", "no"])
  3440. self.gguf_writer.add_chat_template([{
  3441. "name": "rerank",
  3442. "template": "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n"
  3443. "<|im_start|>user\n<Instruct>: Given a web search query, retrieve relevant passages that answer the query\n<Query>: {query}\n<Document>: {document}<|im_end|>\n"
  3444. "<|im_start|>assistant\n<think>\n\n</think>\n\n"
  3445. }])
  3446. def _get_cls_out_tensor(self, data_torch: Tensor) -> Tensor:
  3447. # extract "yes" and "no" tokens from the output lm_head tensor
  3448. false_row = data_torch[self.token_false_id]
  3449. true_row = data_torch[self.token_true_id]
  3450. return torch.stack([true_row, false_row], dim=0)
  3451. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3452. if "model.vision_" in name:
  3453. # skip multimodal tensors
  3454. return []
  3455. if self.is_rerank:
  3456. is_tied_head = self.is_tied_embeddings and "embed_tokens" in name
  3457. is_real_head = not self.is_tied_embeddings and "lm_head" in name
  3458. if is_tied_head or is_real_head:
  3459. cls_out_head = (
  3460. gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.CLS_OUT] + ".weight",
  3461. self._get_cls_out_tensor(data_torch),
  3462. )
  3463. if is_tied_head:
  3464. embed = (self.map_tensor_name(name), data_torch)
  3465. return [cls_out_head, embed]
  3466. if is_real_head:
  3467. return [cls_out_head]
  3468. return super().modify_tensors(data_torch, name, bid)
  3469. @ModelBase.register("Qwen3MoeForCausalLM")
  3470. class Qwen3MoeModel(Qwen2MoeModel):
  3471. model_arch = gguf.MODEL_ARCH.QWEN3MOE
  3472. def __init__(self, *args, **kwargs):
  3473. super().__init__(*args, **kwargs)
  3474. hparams = ModelBase.load_hparams(self.dir_model, False)
  3475. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  3476. def set_vocab(self):
  3477. # deal with intern-s1
  3478. if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
  3479. self._set_vocab_interns1()
  3480. return
  3481. super().set_vocab()
  3482. @ModelBase.register("Qwen3NextForCausalLM")
  3483. class Qwen3NextModel(Qwen2MoeModel):
  3484. model_arch = gguf.MODEL_ARCH.QWEN3NEXT
  3485. def set_gguf_parameters(self):
  3486. super().set_gguf_parameters()
  3487. self.gguf_writer.add_ssm_conv_kernel(self.hparams["linear_conv_kernel_dim"])
  3488. self.gguf_writer.add_ssm_state_size(self.hparams["linear_key_head_dim"])
  3489. self.gguf_writer.add_ssm_group_count(self.hparams["linear_num_key_heads"])
  3490. self.gguf_writer.add_ssm_time_step_rank(self.hparams["linear_num_value_heads"])
  3491. self.gguf_writer.add_ssm_inner_size(self.hparams["linear_value_head_dim"] * self.hparams["linear_num_value_heads"])
  3492. if (rope_dim := self.hparams.get("head_dim")) is None:
  3493. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  3494. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.25)))
  3495. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3496. if name.startswith("mtp"):
  3497. return [] # ignore MTP layers for now
  3498. if name.endswith(".A_log"):
  3499. data_torch = -torch.exp(data_torch)
  3500. elif name.endswith(".dt_bias"):
  3501. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  3502. elif "conv1d" in name:
  3503. data_torch = data_torch.squeeze()
  3504. elif name.endswith("norm.weight") and not name.endswith("linear_attn.norm.weight"):
  3505. data_torch = data_torch + 1
  3506. yield from super().modify_tensors(data_torch, name, bid)
  3507. @ModelBase.register("RND1")
  3508. class RND1Model(Qwen2MoeModel):
  3509. model_arch = gguf.MODEL_ARCH.RND1
  3510. def set_gguf_parameters(self):
  3511. super().set_gguf_parameters()
  3512. # RND1 specific parameters
  3513. # RND1 uses bidirectional attention
  3514. self.gguf_writer.add_causal_attention(False)
  3515. if (mask_token_id := self.hparams.get("mask_token_id")) is not None:
  3516. self.gguf_writer.add_mask_token_id(mask_token_id)
  3517. @ModelBase.register("Qwen3VLForConditionalGeneration", "Qwen3VLMoeForConditionalGeneration")
  3518. class Qwen3VLVisionModel(MmprojModel):
  3519. def __init__(self, *args, **kwargs):
  3520. super().__init__(*args, **kwargs)
  3521. assert self.hparams_vision is not None
  3522. # Compute image_size if not present
  3523. if "image_size" not in self.hparams_vision:
  3524. # For Qwen3VL/Qwen3VLMoe, compute from num_position_embeddings
  3525. num_pos = self.hparams_vision.get("num_position_embeddings", 2304)
  3526. patch_size = self.hparams_vision.get("patch_size", 16)
  3527. # num_position_embeddings = (image_size / patch_size) ** 2
  3528. # So image_size = sqrt(num_position_embeddings) * patch_size
  3529. image_size = int(num_pos**0.5 * patch_size)
  3530. self.hparams_vision["image_size"] = image_size
  3531. # Rename config values for compatibility
  3532. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  3533. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  3534. self.is_deepstack_layers = [False] * int(self.hparams_vision["num_hidden_layers"] or 0)
  3535. for idx in self.hparams_vision.get("deepstack_visual_indexes", []):
  3536. self.is_deepstack_layers[idx] = True
  3537. def set_gguf_parameters(self):
  3538. super().set_gguf_parameters()
  3539. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN3VL)
  3540. self.gguf_writer.add_vision_use_gelu(True)
  3541. if self.hparams_vision is not None:
  3542. merge_size = self.hparams_vision.get("spatial_merge_size")
  3543. if merge_size is not None:
  3544. self.gguf_writer.add_vision_spatial_merge_size(int(merge_size))
  3545. # Use text config's rms_norm_eps for vision attention layernorm eps
  3546. rms_norm_eps = self.global_config.get("text_config", {}).get("rms_norm_eps", 1e-6)
  3547. self.gguf_writer.add_vision_attention_layernorm_eps(rms_norm_eps)
  3548. if self.is_deepstack_layers:
  3549. self.gguf_writer.add_vision_is_deepstack_layers(self.is_deepstack_layers)
  3550. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3551. assert self.hparams_vision is not None
  3552. # Skip text model tensors - they go in the text model file
  3553. if name.startswith("model.language_model.") or name.startswith("lm_head."):
  3554. return []
  3555. if name.startswith("model.visual."):
  3556. name = name.replace("model.visual.", "visual.", 1)
  3557. if name.startswith("visual.deepstack_merger_list."):
  3558. prefix, rest = name.split(".", maxsplit=3)[2:]
  3559. # prefix is the layer index, convert to absolute clip layer index!
  3560. idx = self.hparams_vision.get("deepstack_visual_indexes", [])[int(prefix)]
  3561. target = rest
  3562. tensor_type: gguf.MODEL_TENSOR
  3563. if target.startswith("norm."):
  3564. tensor_type = gguf.MODEL_TENSOR.V_DS_NORM
  3565. suffix = target.split(".", 1)[1]
  3566. elif target.startswith("linear_fc1."):
  3567. tensor_type = gguf.MODEL_TENSOR.V_DS_FC1
  3568. suffix = target.split(".", 1)[1]
  3569. elif target.startswith("linear_fc2."):
  3570. tensor_type = gguf.MODEL_TENSOR.V_DS_FC2
  3571. suffix = target.split(".", 1)[1]
  3572. else:
  3573. raise ValueError(f"Unexpected deepstack tensor: {name}")
  3574. new_name = self.format_tensor_name(tensor_type, idx, suffix=f".{suffix}")
  3575. return [(new_name, data_torch)]
  3576. if name.startswith("visual.merger."):
  3577. suffix = name.split(".", 2)[2]
  3578. if suffix.startswith("linear_fc"):
  3579. fc_idx_str, tail = suffix.split(".", 1)
  3580. fc_num = int(fc_idx_str.replace("linear_fc", ""))
  3581. # Qwen3VL has linear_fc1 and linear_fc2
  3582. # Map to indices 0 and 2 (matching Qwen2VL which uses indices 0 and 2)
  3583. if fc_num == 1:
  3584. fc_idx = 0
  3585. elif fc_num == 2:
  3586. fc_idx = 2
  3587. else:
  3588. raise ValueError(f"unexpected fc index {fc_num} in {name}")
  3589. new_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_MMPROJ, fc_idx, suffix=f".{tail}")
  3590. elif suffix.startswith("norm."):
  3591. new_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_POST_NORM, suffix=f".{suffix.split('.', 1)[1]}")
  3592. else:
  3593. raise ValueError(f"Unexpected merger tensor: {name}")
  3594. return [(new_name, data_torch)]
  3595. if name == "visual.patch_embed.proj.weight":
  3596. # split Conv3D into Conv2Ds along temporal dimension
  3597. c1, c2, kt, _, _ = data_torch.shape
  3598. del c1, c2
  3599. if kt != 2:
  3600. raise ValueError("Current implementation only supports temporal_patch_size of 2")
  3601. return [
  3602. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight", data_torch[:, :, 0, ...]),
  3603. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  3604. ]
  3605. if name == "visual.patch_embed.proj.bias":
  3606. # Include the bias - it's used by the C++ code
  3607. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".bias", data_torch)]
  3608. if name.startswith("visual."):
  3609. return [(self.map_tensor_name(name), data_torch)]
  3610. # Fall back to parent class for other tensors
  3611. return super().modify_tensors(data_torch, name, bid)
  3612. @ModelBase.register("Qwen3VLForConditionalGeneration")
  3613. class Qwen3VLTextModel(Qwen3Model):
  3614. model_arch = gguf.MODEL_ARCH.QWEN3VL
  3615. def set_gguf_parameters(self):
  3616. super().set_gguf_parameters()
  3617. # Handle MRoPE (Multi-axis Rotary Position Embedding) for Qwen3-VL
  3618. text_config = self.hparams.get("text_config", {})
  3619. # rope_scaling is deprecated in V5, use rope_parameters instead
  3620. rope_scaling = text_config.get("rope_scaling") or text_config.get("rope_parameters") or {}
  3621. if rope_scaling.get("mrope_section"):
  3622. # mrope_section contains [time, height, width] dimensions
  3623. mrope_section = rope_scaling["mrope_section"]
  3624. # Pad to 4 dimensions [time, height, width, extra]
  3625. while len(mrope_section) < 4:
  3626. mrope_section.append(0)
  3627. self.gguf_writer.add_rope_dimension_sections(mrope_section[:4])
  3628. logger.info(f"MRoPE sections: {mrope_section[:4]}")
  3629. vision_config = self.hparams.get("vision_config", {})
  3630. deepstack_layer_num = len(vision_config.get("deepstack_visual_indexes", []))
  3631. self.gguf_writer.add_num_deepstack_layers(deepstack_layer_num)
  3632. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3633. # Skip vision tensors - they go in the mmproj file
  3634. if name.startswith("model.visual."):
  3635. return []
  3636. return super().modify_tensors(data_torch, name, bid)
  3637. @ModelBase.register("Qwen3VLMoeForConditionalGeneration")
  3638. class Qwen3VLMoeTextModel(Qwen3MoeModel):
  3639. model_arch = gguf.MODEL_ARCH.QWEN3VLMOE
  3640. def set_gguf_parameters(self):
  3641. super().set_gguf_parameters()
  3642. # Handle MRoPE (Multi-axis Rotary Position Embedding) for Qwen3-VL
  3643. text_config = self.hparams.get("text_config", {})
  3644. # rope_scaling is deprecated in V5, use rope_parameters instead
  3645. rope_scaling = text_config.get("rope_scaling") or text_config.get("rope_parameters") or {}
  3646. if rope_scaling.get("mrope_section"):
  3647. # mrope_section contains [time, height, width] dimensions
  3648. mrope_section = rope_scaling["mrope_section"]
  3649. # Pad to 4 dimensions [time, height, width, extra]
  3650. while len(mrope_section) < 4:
  3651. mrope_section.append(0)
  3652. self.gguf_writer.add_rope_dimension_sections(mrope_section[:4])
  3653. logger.info(f"MRoPE sections: {mrope_section[:4]}")
  3654. vision_config = self.hparams.get("vision_config", {})
  3655. deepstack_layer_num = len(vision_config.get("deepstack_visual_indexes", []))
  3656. self.gguf_writer.add_num_deepstack_layers(deepstack_layer_num)
  3657. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3658. # Skip vision tensors - they go in the mmproj file
  3659. if name.startswith("model.visual."):
  3660. return []
  3661. return super().modify_tensors(data_torch, name, bid)
  3662. @ModelBase.register("GPT2LMHeadModel")
  3663. class GPT2Model(TextModel):
  3664. model_arch = gguf.MODEL_ARCH.GPT2
  3665. def set_gguf_parameters(self):
  3666. self.gguf_writer.add_block_count(self.block_count)
  3667. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  3668. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3669. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  3670. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3671. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3672. self.gguf_writer.add_file_type(self.ftype)
  3673. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3674. del bid # unused
  3675. tensors: list[tuple[str, Tensor]] = []
  3676. # we don't need these
  3677. if name.endswith((".attn.bias", ".attn.masked_bias")):
  3678. return tensors
  3679. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  3680. data_torch = data_torch.transpose(1, 0)
  3681. new_name = self.map_tensor_name(name)
  3682. tensors.append((new_name, data_torch))
  3683. return tensors
  3684. @ModelBase.register("PhiForCausalLM")
  3685. class Phi2Model(TextModel):
  3686. model_arch = gguf.MODEL_ARCH.PHI2
  3687. def set_gguf_parameters(self):
  3688. rot_pct = self.find_hparam(["partial_rotary_factor"])
  3689. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3690. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3691. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  3692. self.gguf_writer.add_embedding_length(n_embd)
  3693. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  3694. self.gguf_writer.add_block_count(self.block_count)
  3695. self.gguf_writer.add_head_count(n_head)
  3696. self.gguf_writer.add_head_count_kv(n_head)
  3697. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  3698. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  3699. self.gguf_writer.add_file_type(self.ftype)
  3700. self.gguf_writer.add_add_bos_token(False)
  3701. @ModelBase.register("Phi3ForCausalLM")
  3702. class Phi3MiniModel(TextModel):
  3703. model_arch = gguf.MODEL_ARCH.PHI3
  3704. def set_vocab(self):
  3705. # Phi-4 model uses GPT2Tokenizer
  3706. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3707. if tokenizer_config_file.is_file():
  3708. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3709. tokenizer_config_json = json.load(f)
  3710. tokenizer_class = tokenizer_config_json['tokenizer_class']
  3711. if tokenizer_class == 'GPT2Tokenizer':
  3712. return self._set_vocab_gpt2()
  3713. from sentencepiece import SentencePieceProcessor
  3714. tokenizer_path = self.dir_model / 'tokenizer.model'
  3715. if not tokenizer_path.is_file():
  3716. raise ValueError(f'Error: Missing {tokenizer_path}')
  3717. tokenizer = SentencePieceProcessor()
  3718. tokenizer.LoadFromFile(str(tokenizer_path))
  3719. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3720. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3721. scores: list[float] = [-10000.0] * vocab_size
  3722. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3723. for token_id in range(tokenizer.vocab_size()):
  3724. piece = tokenizer.IdToPiece(token_id)
  3725. text = piece.encode("utf-8")
  3726. score = tokenizer.GetScore(token_id)
  3727. toktype = SentencePieceTokenTypes.NORMAL
  3728. if tokenizer.IsUnknown(token_id):
  3729. toktype = SentencePieceTokenTypes.UNKNOWN
  3730. elif tokenizer.IsControl(token_id):
  3731. toktype = SentencePieceTokenTypes.CONTROL
  3732. elif tokenizer.IsUnused(token_id):
  3733. toktype = SentencePieceTokenTypes.UNUSED
  3734. elif tokenizer.IsByte(token_id):
  3735. toktype = SentencePieceTokenTypes.BYTE
  3736. tokens[token_id] = text
  3737. scores[token_id] = score
  3738. toktypes[token_id] = toktype
  3739. added_tokens_file = self.dir_model / 'added_tokens.json'
  3740. if added_tokens_file.is_file():
  3741. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3742. added_tokens_json = json.load(f)
  3743. for key in added_tokens_json:
  3744. token_id = added_tokens_json[key]
  3745. if token_id >= vocab_size:
  3746. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3747. continue
  3748. tokens[token_id] = key.encode("utf-8")
  3749. scores[token_id] = -1000.0
  3750. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3751. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3752. if tokenizer_config_file.is_file():
  3753. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3754. tokenizer_config_json = json.load(f)
  3755. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  3756. for token_id, foken_data in added_tokens_decoder.items():
  3757. token_id = int(token_id)
  3758. token = foken_data["content"].encode("utf-8")
  3759. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3760. if tokens[token_id] != token:
  3761. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3762. tokens[token_id] = token
  3763. scores[token_id] = -1000.0
  3764. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3765. if foken_data.get("special"):
  3766. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3767. tokenizer_file = self.dir_model / 'tokenizer.json'
  3768. if tokenizer_file.is_file():
  3769. with open(tokenizer_file, "r", encoding="utf-8") as f:
  3770. tokenizer_json = json.load(f)
  3771. added_tokens = tokenizer_json.get("added_tokens", [])
  3772. for foken_data in added_tokens:
  3773. token_id = int(foken_data["id"])
  3774. token = foken_data["content"].encode("utf-8")
  3775. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3776. if tokens[token_id] != token:
  3777. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3778. tokens[token_id] = token
  3779. scores[token_id] = -1000.0
  3780. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3781. if foken_data.get("special"):
  3782. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3783. self.gguf_writer.add_tokenizer_model("llama")
  3784. self.gguf_writer.add_tokenizer_pre("default")
  3785. self.gguf_writer.add_token_list(tokens)
  3786. self.gguf_writer.add_token_scores(scores)
  3787. self.gguf_writer.add_token_types(toktypes)
  3788. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3789. special_vocab.add_to_gguf(self.gguf_writer)
  3790. def set_gguf_parameters(self):
  3791. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3792. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3793. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  3794. rms_eps = self.find_hparam(["rms_norm_eps"])
  3795. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3796. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3797. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3798. rope_dims = int(rot_pct * n_embd) // n_head
  3799. self.gguf_writer.add_context_length(max_pos_embds)
  3800. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  3801. self.gguf_writer.add_embedding_length(n_embd)
  3802. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  3803. self.gguf_writer.add_block_count(self.block_count)
  3804. self.gguf_writer.add_head_count(n_head)
  3805. self.gguf_writer.add_head_count_kv(n_head_kv)
  3806. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  3807. self.gguf_writer.add_rope_dimension_count(rope_dims)
  3808. self.gguf_writer.add_rope_freq_base(self.rope_parameters.get("full_attention", self.rope_parameters)["rope_theta"])
  3809. self.gguf_writer.add_file_type(self.ftype)
  3810. sliding_window = self.hparams.get("sliding_window")
  3811. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  3812. if sliding_window is None:
  3813. sliding_window = 0
  3814. self.gguf_writer.add_sliding_window(sliding_window)
  3815. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3816. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3817. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3818. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3819. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3820. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3821. rope_dims = int(rot_pct * n_embd) // n_head
  3822. # write rope scaling for long context (128k) model
  3823. rope_scaling = self.find_hparam(['rope_scaling'], True)
  3824. if rope_scaling is None:
  3825. return
  3826. scale = max_pos_embds / orig_max_pos_embds
  3827. rope_scaling_type = rope_scaling.get('rope_type', rope_scaling.get('type', '')).lower()
  3828. if len(rope_scaling_type) == 0:
  3829. raise KeyError('Missing the required key rope_scaling.type')
  3830. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  3831. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  3832. elif rope_scaling_type == 'yarn':
  3833. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  3834. else:
  3835. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  3836. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  3837. long_factors = rope_scaling.get('long_factor', None)
  3838. short_factors = rope_scaling.get('short_factor', None)
  3839. if long_factors is None or short_factors is None:
  3840. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  3841. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  3842. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  3843. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  3844. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  3845. @ModelBase.register("PhiMoEForCausalLM")
  3846. class PhiMoeModel(Phi3MiniModel):
  3847. model_arch = gguf.MODEL_ARCH.PHIMOE
  3848. _experts: list[dict[str, Tensor]] | None = None
  3849. def set_gguf_parameters(self):
  3850. super().set_gguf_parameters()
  3851. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  3852. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  3853. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3854. # process the experts separately
  3855. if name.find("block_sparse_moe.experts") != -1:
  3856. n_experts = self.hparams["num_local_experts"]
  3857. assert bid is not None
  3858. if self._experts is None:
  3859. self._experts = [{} for _ in range(self.block_count)]
  3860. self._experts[bid][name] = data_torch
  3861. if len(self._experts[bid]) >= n_experts * 3:
  3862. tensors: list[tuple[str, Tensor]] = []
  3863. # merge the experts into a single 3d tensor
  3864. for w_name in ["w1", "w2", "w3"]:
  3865. datas: list[Tensor] = []
  3866. for xid in range(n_experts):
  3867. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  3868. datas.append(self._experts[bid][ename])
  3869. del self._experts[bid][ename]
  3870. data_torch = torch.stack(datas, dim=0)
  3871. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  3872. new_name = self.map_tensor_name(merged_name)
  3873. tensors.append((new_name, data_torch))
  3874. return tensors
  3875. else:
  3876. return []
  3877. return [(self.map_tensor_name(name), data_torch)]
  3878. def prepare_tensors(self):
  3879. super().prepare_tensors()
  3880. if self._experts is not None:
  3881. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3882. experts = [k for d in self._experts for k in d.keys()]
  3883. if len(experts) > 0:
  3884. raise ValueError(f"Unprocessed experts: {experts}")
  3885. @ModelBase.register("PlamoForCausalLM")
  3886. class PlamoModel(TextModel):
  3887. model_arch = gguf.MODEL_ARCH.PLAMO
  3888. def set_vocab(self):
  3889. self._set_vocab_sentencepiece()
  3890. def set_gguf_parameters(self):
  3891. hparams = self.hparams
  3892. self.gguf_writer.add_context_length(4096) # not in config.json
  3893. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3894. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3895. self.gguf_writer.add_block_count(self.block_count)
  3896. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3897. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  3898. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  3899. self.gguf_writer.add_file_type(self.ftype)
  3900. def shuffle_attn_q_weight(self, data_torch):
  3901. assert data_torch.size() == (5120, 5120)
  3902. data_torch = data_torch.reshape(8, 5, 128, 5120)
  3903. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  3904. data_torch = torch.reshape(data_torch, (5120, 5120))
  3905. return data_torch
  3906. def shuffle_attn_output_weight(self, data_torch):
  3907. assert data_torch.size() == (5120, 5120)
  3908. data_torch = data_torch.reshape(5120, 8, 5, 128)
  3909. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  3910. data_torch = torch.reshape(data_torch, (5120, 5120))
  3911. return data_torch
  3912. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3913. del bid # unused
  3914. new_name = self.map_tensor_name(name)
  3915. # shuffle for broadcasting of gqa in ggml_mul_mat
  3916. if new_name.endswith("attn_q.weight"):
  3917. data_torch = self.shuffle_attn_q_weight(data_torch)
  3918. elif new_name.endswith("attn_output.weight"):
  3919. data_torch = self.shuffle_attn_output_weight(data_torch)
  3920. return [(new_name, data_torch)]
  3921. @ModelBase.register("Plamo2ForCausalLM", "PLaMo2ForCausalLM")
  3922. class Plamo2Model(TextModel):
  3923. model_arch = gguf.MODEL_ARCH.PLAMO2
  3924. def set_vocab(self):
  3925. # PLaMo 2 uses a custom tokenizer with a .jsonl file
  3926. # We need to handle this specially
  3927. tokenizer_jsonl_path = self.dir_model / "tokenizer.jsonl"
  3928. tokenizer_config_path = self.dir_model / "tokenizer_config.json"
  3929. if not tokenizer_jsonl_path.is_file():
  3930. raise FileNotFoundError(f"PLaMo 2 tokenizer file not found: {tokenizer_jsonl_path}")
  3931. # Load tokenizer config
  3932. with open(tokenizer_config_path, 'r', encoding='utf-8') as f:
  3933. tokenizer_config = json.load(f)
  3934. # Load tokens from JSONL file (actually a list format)
  3935. tokens = []
  3936. scores = []
  3937. toktypes = []
  3938. with open(tokenizer_jsonl_path, 'r', encoding='utf-8') as f:
  3939. for line_num, line in enumerate(f):
  3940. if line.strip():
  3941. token_data = json.loads(line)
  3942. # Format: [token, score, type, ?, ?, ?, ?]
  3943. token = token_data[0].encode("utf-8")
  3944. score = float(token_data[1])
  3945. token_type_str = token_data[2] if len(token_data) > 2 else "NORMAL"
  3946. tokens.append(token)
  3947. scores.append(score)
  3948. # Map token type strings to GGUF token types
  3949. if token_type_str == "UNKNOWN":
  3950. toktypes.append(gguf.TokenType.UNKNOWN)
  3951. elif token_type_str == "CONTROL":
  3952. toktypes.append(gguf.TokenType.CONTROL)
  3953. elif token_type_str == "BYTE":
  3954. toktypes.append(gguf.TokenType.BYTE)
  3955. else:
  3956. # Check for PLaMo-2 special tokens
  3957. token_str = token_data[0]
  3958. if token_str.startswith("<|plamo:") and token_str.endswith("|>"):
  3959. toktypes.append(gguf.TokenType.CONTROL)
  3960. else:
  3961. toktypes.append(gguf.TokenType.NORMAL)
  3962. vocab_size = self.hparams["vocab_size"]
  3963. if vocab_size > len(tokens):
  3964. pad_count = vocab_size - len(tokens)
  3965. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3966. for i in range(1, pad_count + 1):
  3967. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3968. scores.append(-1000.0)
  3969. toktypes.append(gguf.TokenType.UNUSED)
  3970. # Use "plamo2" tokenizer type for PLaMo-2's custom Aho-Corasick tokenizer
  3971. self.gguf_writer.add_tokenizer_model("plamo2")
  3972. self.gguf_writer.add_tokenizer_pre("default")
  3973. self.gguf_writer.add_token_list(tokens)
  3974. self.gguf_writer.add_token_scores(scores)
  3975. self.gguf_writer.add_token_types(toktypes)
  3976. # Add special tokens from config
  3977. if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] is not None:
  3978. token_id = tokens.index(tokenizer_config["bos_token"].encode("utf-8"))
  3979. self.gguf_writer.add_bos_token_id(token_id)
  3980. if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] is not None:
  3981. token_id = tokens.index(tokenizer_config["eos_token"].encode("utf-8"))
  3982. self.gguf_writer.add_eos_token_id(token_id)
  3983. if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] is not None:
  3984. token_id = tokens.index(tokenizer_config["pad_token"].encode("utf-8"))
  3985. self.gguf_writer.add_pad_token_id(token_id)
  3986. if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] is not None:
  3987. token_id = tokens.index(tokenizer_config["sep_token"].encode("utf-8"))
  3988. self.gguf_writer.add_sep_token_id(token_id)
  3989. if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] is not None:
  3990. token_id = tokens.index(tokenizer_config["unk_token"].encode("utf-8"))
  3991. self.gguf_writer.add_unk_token_id(token_id)
  3992. # Add <|plamo:op|> as EOT to ensure appropriate end of generation
  3993. self.gguf_writer.add_eot_token_id(4)
  3994. self.gguf_writer.add_add_space_prefix(False)
  3995. def set_gguf_parameters(self):
  3996. hparams = self.hparams
  3997. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  3998. # Which layers are Mamba layers
  3999. # PLaMo 2 uses mamba_step to indicate the pattern (e.g., 2 means every other layer)
  4000. # This logic matches modeling_plamo.py's is_mamba function
  4001. mamba_step = hparams.get("mamba_step", 2)
  4002. mamba_enabled = hparams.get("mamba_enabled", True)
  4003. num_key_value_heads = []
  4004. num_attention_heads = []
  4005. if mamba_enabled:
  4006. for i in range(self.block_count):
  4007. if self.block_count <= (mamba_step // 2):
  4008. # use attention in last layer
  4009. is_mamba = (i != self.block_count - 1)
  4010. else:
  4011. is_mamba = (i % mamba_step) != (mamba_step // 2)
  4012. if is_mamba:
  4013. num_key_value_heads.append(0)
  4014. num_attention_heads.append(0)
  4015. else:
  4016. num_key_value_heads.append(hparams.get("num_key_value_heads", 4))
  4017. num_attention_heads.append(hparams.get("num_attention_heads", 32))
  4018. if num_key_value_heads and num_attention_heads:
  4019. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  4020. self.gguf_writer.add_head_count(num_attention_heads)
  4021. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 2048))
  4022. self.gguf_writer.add_embedding_length(hparams.get("hidden_size", 4096))
  4023. self.gguf_writer.add_key_length(hparams.get("hidden_size_per_head", 128))
  4024. self.gguf_writer.add_value_length(hparams.get("hidden_size_per_head", 128))
  4025. self.gguf_writer.add_block_count(self.block_count)
  4026. self.gguf_writer.add_layer_norm_rms_eps(hparams.get("rms_norm_eps", 1e-06))
  4027. self.gguf_writer.add_rope_freq_base(self.rope_parameters.get("rope_theta", 10000))
  4028. # Mamba parameters
  4029. self.gguf_writer.add_ssm_state_size(hparams.get("mamba_d_state", 64))
  4030. self.gguf_writer.add_ssm_conv_kernel(hparams.get("mamba_d_conv", 4))
  4031. self.gguf_writer.add_ssm_time_step_rank(hparams.get("mamba_num_heads", 64))
  4032. intermediate_size = hparams.get("mamba_num_heads", 64) * hparams.get("hidden_size_per_head", 128)
  4033. self.gguf_writer.add_ssm_inner_size(intermediate_size)
  4034. self.gguf_writer.add_ssm_group_count(0)
  4035. # MLP feed forward parameters (for attention layers)
  4036. self.gguf_writer.add_feed_forward_length(hparams.get("intermediate_size", 13312))
  4037. self.gguf_writer.add_file_type(self.ftype)
  4038. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4039. del bid # unused
  4040. if name.endswith(".A_log"):
  4041. data_torch = -torch.exp(data_torch)
  4042. elif name.endswith(".dt_bias"):
  4043. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  4044. elif name.endswith(".dt_norm_weight"):
  4045. name = name.rpartition(".dt_norm_weight")[0] + ".dt_norm.weight"
  4046. elif name.endswith(".B_norm_weight"):
  4047. name = name.rpartition(".B_norm_weight")[0] + ".B_norm.weight"
  4048. elif name.endswith(".C_norm_weight"):
  4049. name = name.rpartition(".C_norm_weight")[0] + ".C_norm.weight"
  4050. elif name.endswith(".k_weight"):
  4051. name = name.rpartition(".k_weight")[0] + ".k.weight"
  4052. elif name.endswith(".q_weight"):
  4053. name = name.rpartition(".q_weight")[0] + ".q.weight"
  4054. elif name.endswith(".conv1d.weight"):
  4055. data_torch = torch.squeeze(data_torch) # remove (, 1, )
  4056. assert data_torch.ndim == 2
  4057. elif name.endswith(".pre_mixer_norm.weight"):
  4058. data_torch += 1.0
  4059. elif name.endswith(".post_mixer_norm.weight"):
  4060. data_torch += 1.0 / 5
  4061. elif name.endswith(".pre_mlp_norm.weight"):
  4062. data_torch += 1.0
  4063. elif name.endswith(".post_mlp_norm.weight"):
  4064. data_torch += 1.0 / (5**1.5)
  4065. elif name.endswith(".norm.weight"):
  4066. data_torch += 1.0
  4067. new_name = self.map_tensor_name(name)
  4068. return [(new_name, data_torch)]
  4069. @ModelBase.register("CodeShellForCausalLM")
  4070. class CodeShellModel(TextModel):
  4071. model_arch = gguf.MODEL_ARCH.CODESHELL
  4072. def set_gguf_parameters(self):
  4073. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  4074. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  4075. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  4076. self.gguf_writer.add_block_count(self.block_count)
  4077. self.gguf_writer.add_head_count(self.hparams["n_head"])
  4078. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  4079. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4080. self.gguf_writer.add_file_type(self.ftype)
  4081. self.gguf_writer.add_rope_freq_base(10000.0)
  4082. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4083. self.gguf_writer.add_rope_scaling_factor(1.0)
  4084. @ModelBase.register("InternLM2ForCausalLM")
  4085. class InternLM2Model(TextModel):
  4086. model_arch = gguf.MODEL_ARCH.INTERNLM2
  4087. def set_vocab(self):
  4088. # (TODO): Is there a better way?
  4089. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  4090. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  4091. # recognized as an empty string in C++.
  4092. from sentencepiece import SentencePieceProcessor
  4093. from sentencepiece import sentencepiece_model_pb2 as model
  4094. tokenizer_path = self.dir_model / 'tokenizer.model'
  4095. tokens: list[bytes] = []
  4096. scores: list[float] = []
  4097. toktypes: list[int] = []
  4098. if not tokenizer_path.is_file():
  4099. logger.error(f'Error: Missing {tokenizer_path}')
  4100. sys.exit(1)
  4101. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4102. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4103. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4104. tokenizer = SentencePieceProcessor()
  4105. tokenizer.LoadFromFile(str(tokenizer_path))
  4106. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4107. for token_id in range(vocab_size):
  4108. piece = tokenizer.IdToPiece(token_id)
  4109. text = piece.encode("utf-8")
  4110. score = tokenizer.GetScore(token_id)
  4111. if text == b"\x00":
  4112. # (TODO): fixme
  4113. # Hack here and replace the \x00 characters.
  4114. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  4115. text = "🐉".encode("utf-8")
  4116. toktype = SentencePieceTokenTypes.NORMAL
  4117. if tokenizer.IsUnknown(token_id):
  4118. toktype = SentencePieceTokenTypes.UNKNOWN
  4119. elif tokenizer.IsControl(token_id):
  4120. toktype = SentencePieceTokenTypes.CONTROL
  4121. elif tokenizer.IsUnused(token_id):
  4122. toktype = SentencePieceTokenTypes.UNUSED
  4123. elif tokenizer.IsByte(token_id):
  4124. toktype = SentencePieceTokenTypes.BYTE
  4125. # take care of ununsed raw token
  4126. if piece.startswith('[UNUSED'):
  4127. toktype = SentencePieceTokenTypes.UNUSED
  4128. tokens.append(text)
  4129. scores.append(score)
  4130. toktypes.append(toktype)
  4131. added_tokens_file = self.dir_model / 'added_tokens.json'
  4132. if added_tokens_file.is_file():
  4133. with open(added_tokens_file, "r", encoding="utf-8") as f:
  4134. added_tokens_json = json.load(f)
  4135. for key in added_tokens_json:
  4136. tokens.append(key.encode("utf-8"))
  4137. scores.append(-1000.0)
  4138. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  4139. chat_eos_token = '<|im_end|>'
  4140. chat_eos_token_id = None
  4141. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  4142. if tokenizer_config_file.is_file():
  4143. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  4144. tokenizer_config_json = json.load(f)
  4145. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  4146. for token_id, foken_data in added_tokens_decoder.items():
  4147. token_id = int(token_id)
  4148. token = foken_data["content"]
  4149. if token == chat_eos_token:
  4150. chat_eos_token_id = token_id
  4151. token = token.encode("utf-8")
  4152. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  4153. if tokens[token_id] != token:
  4154. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  4155. tokens[token_id] = token
  4156. scores[token_id] = -1000.0
  4157. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4158. if foken_data.get("special"):
  4159. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  4160. tokenizer_file = self.dir_model / 'tokenizer.json'
  4161. if tokenizer_file.is_file():
  4162. with open(tokenizer_file, "r", encoding="utf-8") as f:
  4163. tokenizer_json = json.load(f)
  4164. added_tokens = tokenizer_json.get("added_tokens", [])
  4165. for foken_data in added_tokens:
  4166. token_id = int(foken_data["id"])
  4167. token = foken_data["content"]
  4168. if token == chat_eos_token:
  4169. chat_eos_token_id = token_id
  4170. token = token.encode("utf-8")
  4171. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  4172. if tokens[token_id] != token:
  4173. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  4174. tokens[token_id] = token
  4175. scores[token_id] = -1000.0
  4176. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4177. if foken_data.get("special"):
  4178. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  4179. self.gguf_writer.add_tokenizer_model("llama")
  4180. self.gguf_writer.add_tokenizer_pre("default")
  4181. self.gguf_writer.add_token_list(tokens)
  4182. self.gguf_writer.add_token_scores(scores)
  4183. self.gguf_writer.add_token_types(toktypes)
  4184. self.gguf_writer.add_add_space_prefix(add_prefix)
  4185. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4186. old_eos = special_vocab.special_token_ids["eos"]
  4187. if chat_eos_token_id is not None:
  4188. # For the chat model, we replace the eos with '<|im_end|>'.
  4189. # TODO: this is a hack, should be fixed
  4190. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  4191. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  4192. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  4193. " in chat mode so that the conversation can end normally.")
  4194. special_vocab.add_to_gguf(self.gguf_writer)
  4195. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4196. num_heads = self.hparams["num_attention_heads"]
  4197. num_kv_heads = self.hparams["num_key_value_heads"]
  4198. n_embd = self.hparams["hidden_size"]
  4199. q_per_kv = num_heads // num_kv_heads
  4200. head_dim = n_embd // num_heads
  4201. num_groups = num_heads // q_per_kv
  4202. name = name.replace("language_model.", "") # InternVL
  4203. if name.startswith("mlp") or name.startswith("vision_model"):
  4204. # skip visual tensors
  4205. return []
  4206. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  4207. qkv = data_torch
  4208. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  4209. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  4210. # The model weights of q and k equire additional reshape.
  4211. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  4212. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  4213. v = v.reshape((-1, v.shape[-1]))
  4214. return [
  4215. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  4216. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  4217. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  4218. ]
  4219. else:
  4220. return [(self.map_tensor_name(name), data_torch)]
  4221. @ModelBase.register("InternLM3ForCausalLM")
  4222. class InternLM3Model(TextModel):
  4223. model_arch = gguf.MODEL_ARCH.LLAMA
  4224. def set_vocab(self):
  4225. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  4226. self.gguf_writer.add_tokenizer_model("llama")
  4227. self.gguf_writer.add_tokenizer_pre("default")
  4228. self.gguf_writer.add_token_list(tokens)
  4229. self.gguf_writer.add_token_scores(scores)
  4230. self.gguf_writer.add_token_types(toktypes)
  4231. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4232. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  4233. if tokenizer_config_file.is_file():
  4234. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  4235. tokenizer_config_json = json.load(f)
  4236. if "add_prefix_space" in tokenizer_config_json:
  4237. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  4238. if "added_tokens_decoder" in tokenizer_config_json:
  4239. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  4240. if token_data.get("special"):
  4241. token_id = int(token_id)
  4242. token = token_data["content"]
  4243. special_vocab._set_special_token(token, token_id)
  4244. # update eos token
  4245. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  4246. special_vocab.special_token_ids["eos"] = token_id
  4247. special_vocab.add_to_gguf(self.gguf_writer)
  4248. def set_gguf_parameters(self):
  4249. super().set_gguf_parameters()
  4250. hparams = self.hparams
  4251. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4252. if (rope_dim := hparams.get("head_dim")) is None:
  4253. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  4254. self.gguf_writer.add_rope_dimension_count(rope_dim)
  4255. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4256. n_head = self.hparams["num_attention_heads"]
  4257. n_kv_head = self.hparams.get("num_key_value_heads")
  4258. name = name.replace("language_model.", "") # InternVL
  4259. if name.startswith("mlp") or name.startswith("vision_model"):
  4260. # skip visual tensors
  4261. return []
  4262. if name.endswith(("q_proj.weight", "q_proj.bias")):
  4263. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4264. if name.endswith(("k_proj.weight", "k_proj.bias")):
  4265. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4266. return [(self.map_tensor_name(name), data_torch)]
  4267. @ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel", "BertForSequenceClassification")
  4268. class BertModel(TextModel):
  4269. model_arch = gguf.MODEL_ARCH.BERT
  4270. def __init__(self, *args, **kwargs):
  4271. super().__init__(*args, **kwargs)
  4272. self.vocab_size = None
  4273. if cls_out_labels := self.hparams.get("id2label"):
  4274. if len(cls_out_labels) == 2 and cls_out_labels[0] == "LABEL_0":
  4275. # Remove dummy labels added by AutoConfig
  4276. cls_out_labels = None
  4277. self.cls_out_labels = cls_out_labels
  4278. def set_gguf_parameters(self):
  4279. super().set_gguf_parameters()
  4280. self.gguf_writer.add_causal_attention(False)
  4281. self._try_set_pooling_type()
  4282. if self.cls_out_labels:
  4283. self.gguf_writer.add_classifier_output_labels([v for k, v in sorted(self.cls_out_labels.items())])
  4284. def set_vocab(self):
  4285. tokens, toktypes, tokpre = self.get_vocab_base()
  4286. self.vocab_size = len(tokens)
  4287. # we need this to validate the size of the token_type embeddings
  4288. # though currently we are passing all zeros to the token_type embeddings
  4289. # "Sequence A" or "Sequence B"
  4290. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4291. # convert to phantom space vocab
  4292. def phantom(tok):
  4293. if tok.startswith("[") and tok.endswith("]"):
  4294. return tok
  4295. if tok.startswith("##"):
  4296. return tok[2:]
  4297. return "\u2581" + tok
  4298. tokens = list(map(phantom, tokens))
  4299. # add vocab to gguf
  4300. self.gguf_writer.add_tokenizer_model("bert")
  4301. self.gguf_writer.add_tokenizer_pre(tokpre)
  4302. self.gguf_writer.add_token_list(tokens)
  4303. self.gguf_writer.add_token_types(toktypes)
  4304. # handle special tokens
  4305. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4306. special_vocab.add_to_gguf(self.gguf_writer)
  4307. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4308. del bid # unused
  4309. if name.startswith("bert."):
  4310. name = name[5:]
  4311. if name.endswith(".gamma"):
  4312. name = name[:-6] + ".weight"
  4313. if name.endswith(".beta"):
  4314. name = name[:-5] + ".bias"
  4315. # we are only using BERT for embeddings so we don't need the pooling layer
  4316. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  4317. return [] # we don't need these
  4318. if name.startswith("cls.predictions"):
  4319. return []
  4320. if name.startswith("cls.seq_relationship"):
  4321. return []
  4322. if self.cls_out_labels:
  4323. # For BertForSequenceClassification (direct projection layer)
  4324. if name == "classifier.weight":
  4325. name = "classifier.out_proj.weight"
  4326. if name == "classifier.bias":
  4327. name = "classifier.out_proj.bias"
  4328. return [(self.map_tensor_name(name), data_torch)]
  4329. def _xlmroberta_tokenizer_init(self) -> None:
  4330. # we need the pad_token_id to know how to chop down position_embd matrix
  4331. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  4332. self._position_offset = 1 + pad_token_id
  4333. if "max_position_embeddings" in self.hparams:
  4334. self.hparams["max_position_embeddings"] -= self._position_offset
  4335. else:
  4336. self._position_offset = None
  4337. def _xlmroberta_set_vocab(self) -> None:
  4338. # to avoid TypeError: Descriptors cannot be created directly
  4339. # exception when importing sentencepiece_model_pb2
  4340. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  4341. from sentencepiece import SentencePieceProcessor
  4342. from sentencepiece import sentencepiece_model_pb2 as model
  4343. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  4344. tokenizer_json = {}
  4345. tokenizer_config_json = {}
  4346. if not tokenizer_path.is_file():
  4347. tokenizer_path = self.dir_model / 'tokenizer.json'
  4348. tokenizer_config_path = self.dir_model / 'tokenizer_config.json'
  4349. if not tokenizer_path.is_file():
  4350. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  4351. from base64 import b64decode
  4352. from transformers import AutoTokenizer
  4353. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  4354. with open(tokenizer_path, "r", encoding="utf-8") as fp:
  4355. tokenizer_json = json.load(fp)
  4356. if tokenizer_config_path.is_file():
  4357. with open(tokenizer_config_path, "r", encoding="utf-8") as fp:
  4358. tokenizer_config_json = json.load(fp)
  4359. add_prefix = tokenizer.add_prefix_space
  4360. remove_whitespaces = tokenizer.clean_up_tokenization_spaces
  4361. precompiled_charsmap = b64decode(tokenizer_json["normalizer"]["precompiled_charsmap"])
  4362. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size)
  4363. else:
  4364. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4365. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4366. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  4367. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4368. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  4369. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  4370. tokenizer = SentencePieceProcessor()
  4371. tokenizer.LoadFromFile(str(tokenizer_path))
  4372. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size())
  4373. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4374. scores: list[float] = [-10000.0] * vocab_size
  4375. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4376. if isinstance(tokenizer, SentencePieceProcessor):
  4377. for token_id in range(tokenizer.vocab_size()):
  4378. piece = tokenizer.IdToPiece(token_id)
  4379. text = piece.encode("utf-8")
  4380. score = tokenizer.GetScore(token_id)
  4381. toktype = SentencePieceTokenTypes.NORMAL
  4382. if tokenizer.IsUnknown(token_id):
  4383. toktype = SentencePieceTokenTypes.UNKNOWN
  4384. elif tokenizer.IsControl(token_id):
  4385. toktype = SentencePieceTokenTypes.CONTROL
  4386. elif tokenizer.IsUnused(token_id):
  4387. toktype = SentencePieceTokenTypes.UNUSED
  4388. elif tokenizer.IsByte(token_id):
  4389. toktype = SentencePieceTokenTypes.BYTE
  4390. tokens[token_id] = text
  4391. scores[token_id] = score
  4392. toktypes[token_id] = toktype
  4393. else:
  4394. added_vocab = tokenizer.get_added_vocab()
  4395. unk_token = tokenizer_config_json.get("unk_token")
  4396. unk_token_id = added_vocab.get(unk_token, tokenizer_json["model"].get("unk_id", 3))
  4397. for token_id in range(tokenizer.vocab_size):
  4398. piece = tokenizer._convert_id_to_token(token_id)
  4399. if (piece := tokenizer._convert_id_to_token(token_id)) is not None:
  4400. text = piece.encode("utf-8")
  4401. score = tokenizer_json["model"]["vocab"][token_id][1]
  4402. toktype = SentencePieceTokenTypes.NORMAL
  4403. if token_id == unk_token_id:
  4404. toktype = SentencePieceTokenTypes.UNKNOWN
  4405. elif token_id in tokenizer.all_special_ids:
  4406. toktype = SentencePieceTokenTypes.CONTROL
  4407. elif token_id in added_vocab.values():
  4408. toktype = SentencePieceTokenTypes.USER_DEFINED
  4409. # No reliable way to detect this, but jina doesn't have any
  4410. # elif tokenizer.IsByte(token_id):
  4411. # toktype = SentencePieceTokenTypes.BYTE
  4412. tokens[token_id] = text
  4413. scores[token_id] = score
  4414. toktypes[token_id] = toktype
  4415. if isinstance(tokenizer, SentencePieceProcessor):
  4416. # realign tokens (see HF tokenizer code)
  4417. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  4418. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  4419. toktypes = [
  4420. SentencePieceTokenTypes.CONTROL,
  4421. SentencePieceTokenTypes.CONTROL,
  4422. SentencePieceTokenTypes.CONTROL,
  4423. SentencePieceTokenTypes.UNKNOWN,
  4424. ] + toktypes[3:-1]
  4425. if self.model_arch == gguf.MODEL_ARCH.NOMIC_BERT_MOE:
  4426. # Add mask token missing from sentencepiece.bpe.model
  4427. tokens[250001] = b'<mask>'
  4428. scores[250001] = 0.0
  4429. toktypes[250001] = SentencePieceTokenTypes.CONTROL
  4430. self.gguf_writer.add_tokenizer_model("t5")
  4431. self.gguf_writer.add_tokenizer_pre("default")
  4432. self.gguf_writer.add_token_list(tokens)
  4433. self.gguf_writer.add_token_scores(scores)
  4434. self.gguf_writer.add_token_types(toktypes)
  4435. self.gguf_writer.add_add_space_prefix(add_prefix)
  4436. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4437. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  4438. if precompiled_charsmap:
  4439. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  4440. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4441. special_vocab.add_to_gguf(self.gguf_writer)
  4442. @ModelBase.register("DistilBertModel", "DistilBertForMaskedLM", "DistilBertForSequenceClassification")
  4443. class DistilBertModel(BertModel):
  4444. model_arch = gguf.MODEL_ARCH.BERT
  4445. def set_gguf_parameters(self):
  4446. self.gguf_writer.add_layer_norm_eps(1e-12)
  4447. logger.info("gguf: layer norm epsilon = 1e-12")
  4448. super().set_gguf_parameters()
  4449. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4450. if name.startswith("distilbert."):
  4451. name = name[11:]
  4452. # These layers act as MLM head, so we don't need them
  4453. if name.startswith("vocab_"):
  4454. return []
  4455. return super().modify_tensors(data_torch, name, bid)
  4456. @ModelBase.register("RobertaModel", "RobertaForSequenceClassification")
  4457. class RobertaModel(BertModel):
  4458. model_arch = gguf.MODEL_ARCH.BERT
  4459. def __init__(self, *args, **kwargs):
  4460. super().__init__(*args, **kwargs)
  4461. # we need the pad_token_id to know how to chop down position_embd matrix
  4462. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  4463. self._position_offset = 1 + pad_token_id
  4464. if "max_position_embeddings" in self.hparams:
  4465. self.hparams["max_position_embeddings"] -= self._position_offset
  4466. else:
  4467. self._position_offset = None
  4468. def set_vocab(self):
  4469. """Support BPE tokenizers for roberta models"""
  4470. bpe_tok_path = self.dir_model / "tokenizer.json"
  4471. if bpe_tok_path.exists():
  4472. self._set_vocab_gpt2()
  4473. # we need this to validate the size of the token_type embeddings
  4474. # though currently we are passing all zeros to the token_type embeddings
  4475. # "Sequence A" or "Sequence B"
  4476. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4477. else:
  4478. return super().set_vocab()
  4479. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4480. # if name starts with "roberta.", remove the prefix
  4481. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  4482. if name.startswith("roberta."):
  4483. name = name[8:]
  4484. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  4485. if name == "embeddings.position_embeddings.weight":
  4486. if self._position_offset is not None:
  4487. data_torch = data_torch[self._position_offset:,:]
  4488. return super().modify_tensors(data_torch, name, bid)
  4489. @ModelBase.register("NomicBertModel")
  4490. class NomicBertModel(BertModel):
  4491. model_arch = gguf.MODEL_ARCH.BERT
  4492. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  4493. hparams = kwargs.pop("hparams", None)
  4494. if hparams is None:
  4495. hparams = ModelBase.load_hparams(dir_model, False)
  4496. self.is_moe = bool(hparams.get("moe_every_n_layers"))
  4497. self.model_arch = gguf.MODEL_ARCH.NOMIC_BERT_MOE if self.is_moe else gguf.MODEL_ARCH.NOMIC_BERT
  4498. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  4499. self._tokenizer_is_xlmroberta = self._is_tokenizer_xlmroberta()
  4500. if self._tokenizer_is_xlmroberta:
  4501. self._xlmroberta_tokenizer_init()
  4502. npos, mtp = self.hparams["n_positions"], self.hparams.get("max_trained_positions", 2048)
  4503. if npos == 8192 and mtp == 2048:
  4504. self.hparams["n_positions"] = 2048 # nomic-embed-text v1 and v1.5 are trained for 2048 tokens.
  4505. elif npos == 2048 and mtp == 2048:
  4506. self.hparams["n_positions"] = 512 # nomic-embed-text-v2-moe is trained for 512 tokens.
  4507. else:
  4508. raise ValueError(f"unrecognized parameters: n_positions={npos}, max_trained_positions={mtp}")
  4509. assert self.hparams["activation_function"] == "gelu" if self.is_moe else "swiglu"
  4510. # this doesn't do anything in the HF version
  4511. assert self.hparams["causal"] is False
  4512. # no bias tensors unless MoE
  4513. assert self.hparams["qkv_proj_bias"] == self.is_moe
  4514. assert self.hparams["mlp_fc1_bias"] == self.is_moe
  4515. assert self.hparams["mlp_fc2_bias"] == self.is_moe
  4516. # norm at end of layer
  4517. assert self.hparams["prenorm"] is False
  4518. # standard RoPE
  4519. assert self.hparams["rotary_emb_fraction"] == 1.0
  4520. assert self.hparams["rotary_emb_interleaved"] is False
  4521. assert self.hparams["rotary_emb_scale_base"] is None
  4522. def set_vocab(self) -> None:
  4523. if self._tokenizer_is_xlmroberta:
  4524. return self._xlmroberta_set_vocab()
  4525. return super().set_vocab()
  4526. def modify_tensors(self, data_torch: torch.Tensor, name: str, bid: int | None) -> Iterable[tuple[str, torch.Tensor]]:
  4527. # If the tensor is an experts bias tensor, skip it by returning an empty list.
  4528. if "mlp.experts.bias" in name:
  4529. return [] # Explicitly return an empty list.
  4530. if "mlp.experts.mlp.w1" in name:
  4531. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  4532. name += ".weight"
  4533. if "mlp.experts.mlp.w2" in name:
  4534. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  4535. data_torch = data_torch.transpose(1, 2)
  4536. name += ".weight"
  4537. return [(self.map_tensor_name(name), data_torch)]
  4538. def set_gguf_parameters(self):
  4539. super().set_gguf_parameters()
  4540. if self.is_moe:
  4541. self.gguf_writer.add_moe_every_n_layers(self.hparams["moe_every_n_layers"])
  4542. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  4543. self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"])
  4544. def _is_tokenizer_xlmroberta(self) -> bool:
  4545. with open(self.dir_model / "tokenizer.json") as f:
  4546. tokenizer_json = json.load(f)
  4547. toktyp = tokenizer_json["model"]["type"]
  4548. if toktyp == "Unigram":
  4549. return True
  4550. if toktyp == "WordPiece":
  4551. return False
  4552. raise ValueError(f"unknown tokenizer: {toktyp}")
  4553. @ModelBase.register("NeoBERT", "NeoBERTLMHead", "NeoBERTForSequenceClassification")
  4554. class NeoBert(BertModel):
  4555. model_arch = gguf.MODEL_ARCH.NEO_BERT
  4556. def set_gguf_parameters(self):
  4557. super().set_gguf_parameters()
  4558. # NeoBERT uses 2/3 of the intermediate size as feed forward length
  4559. self.gguf_writer.add_feed_forward_length(int(2 * self.hparams["intermediate_size"] / 3))
  4560. self.gguf_writer.add_rope_freq_base(10000.0) # default value for NeoBERT
  4561. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4562. f_rms_eps = self.hparams.get("norm_eps", 1e-6) # default value for NeoBERT
  4563. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  4564. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  4565. self.gguf_writer.add_pooling_type(gguf.PoolingType.CLS) # https://huggingface.co/chandar-lab/NeoBERT#how-to-use
  4566. def modify_tensors(self, data_torch, name, bid):
  4567. if name.startswith("decoder."):
  4568. return []
  4569. if name.startswith("model."):
  4570. name = name[6:]
  4571. return super().modify_tensors(data_torch, name, bid)
  4572. @ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  4573. class XLMRobertaModel(BertModel):
  4574. model_arch = gguf.MODEL_ARCH.BERT
  4575. _lora_files = {}
  4576. _lora_names = []
  4577. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  4578. hparams = kwargs.pop("hparams", None)
  4579. if hparams is None:
  4580. hparams = ModelBase.load_hparams(dir_model, False)
  4581. if lora_names := hparams.get("lora_adaptations"):
  4582. self._lora_names = lora_names
  4583. self.model_arch = gguf.MODEL_ARCH.JINA_BERT_V3
  4584. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  4585. self._xlmroberta_tokenizer_init()
  4586. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4587. if self._lora_names:
  4588. for name in self._lora_names:
  4589. fname = self.add_prefix_to_filename(self.fname_out, f"lora-{name}-")
  4590. self._lora_files[name] = gguf.GGUFWriter(fname, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file, dry_run=self.dry_run)
  4591. return super().generate_extra_tensors()
  4592. def set_type(self):
  4593. for lora_writer in self._lora_files.values():
  4594. lora_writer.add_type(gguf.GGUFType.ADAPTER)
  4595. lora_writer.add_string(gguf.Keys.Adapter.TYPE, "lora")
  4596. super().set_type()
  4597. def set_vocab(self):
  4598. self._xlmroberta_set_vocab()
  4599. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4600. # if name starts with "roberta.", remove the prefix
  4601. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  4602. if name.startswith("roberta."):
  4603. name = name[8:]
  4604. # jina-embeddings-v3
  4605. if ".parametrizations." in name:
  4606. name = name.replace(".parametrizations.", ".")
  4607. if name.endswith(".original"):
  4608. name = name[:-9]
  4609. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  4610. if name == "embeddings.position_embeddings.weight":
  4611. if self._position_offset is not None:
  4612. data_torch = data_torch[self._position_offset:,:]
  4613. if name.endswith(".0.lora_A") or name.endswith(".0.lora_B"):
  4614. if name.startswith("pooler.dense"):
  4615. return []
  4616. num_loras = data_torch.size(0)
  4617. assert num_loras == len(self._lora_names)
  4618. # Split out each LoRA in their own GGUF
  4619. for i, lora_writer in enumerate(self._lora_files.values()):
  4620. new_name = self.map_tensor_name(name[:-9]) + name[-7:].lower()
  4621. data = data_torch[i, :, :]
  4622. # Transpose/flip token_embd/types into correct shape
  4623. if new_name == "token_embd.weight.lora_b":
  4624. data = data.T
  4625. elif new_name.startswith("token_types.weight."):
  4626. new_name = new_name[:-1] + ("a" if new_name[-1:] == "b" else "b")
  4627. lora_writer.add_tensor(new_name, data.float().numpy(), raw_dtype=gguf.GGMLQuantizationType.F32)
  4628. return []
  4629. return super().modify_tensors(data_torch, name, bid)
  4630. def set_gguf_parameters(self):
  4631. super().set_gguf_parameters()
  4632. # jina-embeddings-v3
  4633. lora_alpha = self.hparams.get("lora_alpha")
  4634. if lora_prompt_prefixes := self.hparams.get("task_instructions"):
  4635. assert self._lora_files and all(lora_name in lora_prompt_prefixes for lora_name in self._lora_files.keys())
  4636. for lora_name, lora_writer in self._lora_files.items():
  4637. lora_writer.add_float32(gguf.Keys.Adapter.LORA_ALPHA, lora_alpha if lora_alpha is not None else 1.0)
  4638. lora_writer.add_string(gguf.Keys.Adapter.LORA_TASK_NAME, lora_name)
  4639. if lora_prompt_prefixes:
  4640. lora_writer.add_string(gguf.Keys.Adapter.LORA_PROMPT_PREFIX, lora_prompt_prefixes[lora_name])
  4641. def write(self):
  4642. super().write()
  4643. for lora_writer in self._lora_files.values():
  4644. lora_writer.write_header_to_file()
  4645. lora_writer.write_kv_data_to_file()
  4646. lora_writer.write_tensors_to_file(progress=True)
  4647. lora_writer.close()
  4648. @ModelBase.register("GemmaForCausalLM")
  4649. class GemmaModel(TextModel):
  4650. model_arch = gguf.MODEL_ARCH.GEMMA
  4651. def set_vocab(self):
  4652. self._set_vocab_sentencepiece()
  4653. # TODO: these special tokens should be exported only for the CodeGemma family
  4654. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  4655. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  4656. special_vocab._set_special_token("prefix", 67)
  4657. special_vocab._set_special_token("suffix", 69)
  4658. special_vocab._set_special_token("middle", 68)
  4659. special_vocab._set_special_token("fsep", 70)
  4660. special_vocab._set_special_token("eot", 107)
  4661. special_vocab.chat_template = None # do not add it twice
  4662. special_vocab.add_to_gguf(self.gguf_writer)
  4663. self.gguf_writer.add_add_space_prefix(False)
  4664. def set_gguf_parameters(self):
  4665. hparams = self.hparams
  4666. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4667. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4668. self.gguf_writer.add_block_count(self.block_count)
  4669. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4670. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4671. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4672. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4673. self.gguf_writer.add_key_length(hparams["head_dim"])
  4674. self.gguf_writer.add_value_length(hparams["head_dim"])
  4675. self.gguf_writer.add_file_type(self.ftype)
  4676. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4677. del bid # unused
  4678. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4679. # To prevent errors, skip loading lm_head.weight.
  4680. if name == "lm_head.weight":
  4681. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4682. return []
  4683. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4684. if name.endswith("norm.weight"):
  4685. data_torch = data_torch + 1
  4686. return [(self.map_tensor_name(name), data_torch)]
  4687. @ModelBase.register("Gemma2ForCausalLM")
  4688. class Gemma2Model(TextModel):
  4689. model_arch = gguf.MODEL_ARCH.GEMMA2
  4690. def set_vocab(self):
  4691. self._set_vocab_sentencepiece()
  4692. self.gguf_writer.add_add_space_prefix(False)
  4693. def set_gguf_parameters(self):
  4694. hparams = self.hparams
  4695. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4696. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4697. self.gguf_writer.add_block_count(self.block_count)
  4698. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4699. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4700. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4701. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4702. self.gguf_writer.add_key_length(hparams["head_dim"])
  4703. self.gguf_writer.add_value_length(hparams["head_dim"])
  4704. self.gguf_writer.add_file_type(self.ftype)
  4705. self.gguf_writer.add_attn_logit_softcapping(
  4706. self.hparams["attn_logit_softcapping"]
  4707. )
  4708. self.gguf_writer.add_final_logit_softcapping(
  4709. self.hparams["final_logit_softcapping"]
  4710. )
  4711. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  4712. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4713. del bid # unused
  4714. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4715. # To prevent errors, skip loading lm_head.weight.
  4716. if name == "lm_head.weight":
  4717. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4718. return []
  4719. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4720. if name.endswith("norm.weight"):
  4721. data_torch = data_torch + 1
  4722. return [(self.map_tensor_name(name), data_torch)]
  4723. @ModelBase.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  4724. class Gemma3Model(TextModel):
  4725. model_arch = gguf.MODEL_ARCH.GEMMA3
  4726. norm_shift = 1.0 # Gemma3RMSNorm adds 1.0 to the norm value
  4727. def set_vocab(self):
  4728. if (self.dir_model / "tokenizer.model").is_file():
  4729. self._set_vocab_sentencepiece()
  4730. self.gguf_writer.add_add_space_prefix(False)
  4731. else:
  4732. self._set_vocab_gpt2()
  4733. def set_gguf_parameters(self):
  4734. super().set_gguf_parameters()
  4735. hparams = self.hparams
  4736. # some default values are not specified in the hparams
  4737. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  4738. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  4739. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  4740. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  4741. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  4742. self.gguf_writer.add_rope_freq_base(self.rope_parameters.get("full_attention", self.rope_parameters).get("rope_theta", 1_000_000.0)) # for global layers
  4743. # attn_logit_softcapping is removed in Gemma3
  4744. assert hparams.get("attn_logit_softcapping") is None
  4745. if (final_logit_softcap := hparams.get("final_logit_softcapping")):
  4746. self.gguf_writer.add_final_logit_softcapping(final_logit_softcap)
  4747. if hparams.get("sliding_window_pattern") != 1:
  4748. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  4749. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  4750. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4751. del bid # unused
  4752. if "language_model." in name:
  4753. name = name.replace("language_model.", "")
  4754. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4755. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4756. return [] # skip vision tensors
  4757. # remove OOV (out-of-vocabulary) rows in token_embd
  4758. if "embed_tokens.weight" in name:
  4759. if (self.dir_model / "tokenizer.model").is_file():
  4760. tokens = self._create_vocab_sentencepiece()[0]
  4761. else:
  4762. tokens = self.get_vocab_base()[0]
  4763. data_torch = data_torch[:len(tokens)]
  4764. # ref code in Gemma3RMSNorm
  4765. # output = output * (1.0 + self.weight.float())
  4766. # note: this is not the case on gemma3n
  4767. if name.endswith("norm.weight"):
  4768. data_torch = data_torch + self.norm_shift
  4769. return [(self.map_tensor_name(name), data_torch)]
  4770. @ModelBase.register("Gemma3TextModel")
  4771. class EmbeddingGemma(Gemma3Model):
  4772. model_arch = gguf.MODEL_ARCH.GEMMA_EMBEDDING
  4773. module_paths = []
  4774. dense_features_dims = {}
  4775. def __init__(self, *args, **kwargs):
  4776. super().__init__(*args, **kwargs)
  4777. if self.sentence_transformers_dense_modules:
  4778. # read modules.json to determine if model has Dense layers
  4779. modules_file = self.dir_model / "modules.json"
  4780. if modules_file.is_file():
  4781. with open(modules_file, encoding="utf-8") as modules_json_file:
  4782. mods = json.load(modules_json_file)
  4783. for mod in mods:
  4784. if mod["type"] == "sentence_transformers.models.Dense":
  4785. mod_path = mod["path"]
  4786. # check if model.safetensors file for Dense layer exists
  4787. model_tensors_file = self.dir_model / mod_path / "model.safetensors"
  4788. if model_tensors_file.is_file():
  4789. self.module_paths.append(mod_path)
  4790. # read config.json of the Dense layer to get in/out features
  4791. mod_conf_file = self.dir_model / mod_path / "config.json"
  4792. if mod_conf_file.is_file():
  4793. with open(mod_conf_file, encoding="utf-8") as mod_conf_json_file:
  4794. mod_conf = json.load(mod_conf_json_file)
  4795. # hparams dense_2_feat_out and dense_3_feat_in are required when loading model's dense weights
  4796. prefix = self._get_dense_prefix(mod_path)
  4797. if mod_conf["in_features"] is not None and mod_conf["out_features"] is not None:
  4798. self.dense_features_dims[prefix] = (mod_conf["in_features"], mod_conf["out_features"])
  4799. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4800. from safetensors.torch import load_file
  4801. module_paths = list(self.module_paths)
  4802. for i, module_path in enumerate(module_paths):
  4803. tensors_file = self.dir_model / module_path / "model.safetensors"
  4804. local_tensors = load_file(tensors_file)
  4805. tensor_name = self._get_dense_prefix(module_path)
  4806. for name, local_tensor in local_tensors.items():
  4807. if not name.endswith(".weight"):
  4808. continue
  4809. orig_name = name.replace("linear", tensor_name)
  4810. name = self.map_tensor_name(orig_name)
  4811. yield name, local_tensor.clone()
  4812. @staticmethod
  4813. def _get_dense_prefix(module_path) -> str:
  4814. """Get the tensor name prefix for the Dense layer from module path."""
  4815. tensor_name = "dense_2" if module_path == "2_Dense" else "dense_3"
  4816. return tensor_name
  4817. def set_gguf_parameters(self):
  4818. super().set_gguf_parameters()
  4819. # Override the sliding window size as it gets adjusted by the Gemma3TextConfig
  4820. # constructor. We want to use the value from the original model's config.json.
  4821. # ref: https://github.com/huggingface/transformers/pull/40700
  4822. with open(self.dir_model / "config.json", "r", encoding="utf-8") as f:
  4823. config = json.load(f)
  4824. orig_sliding_window = config.get("sliding_window")
  4825. if orig_sliding_window is None:
  4826. raise ValueError("sliding_window not found in model config - this is required for the model")
  4827. logger.info(f"Using original sliding_window from config: {orig_sliding_window} "
  4828. f"instead of {self.hparams['sliding_window']}")
  4829. self.gguf_writer.add_sliding_window(orig_sliding_window)
  4830. if self.sentence_transformers_dense_modules:
  4831. for dense, dims in self.dense_features_dims.items():
  4832. logger.info(f"Setting dense layer {dense} in/out features to {dims}")
  4833. self.gguf_writer.add_dense_features_dims(dense, dims[0], dims[1])
  4834. self._try_set_pooling_type()
  4835. @ModelBase.register("Gemma3ForConditionalGeneration")
  4836. class Gemma3VisionModel(MmprojModel):
  4837. def set_gguf_parameters(self):
  4838. super().set_gguf_parameters()
  4839. hparams = self.hparams
  4840. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GEMMA3)
  4841. # default values below are taken from HF tranformers code
  4842. self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
  4843. self.gguf_writer.add_vision_use_gelu(True)
  4844. # calculate proj_scale_factor (used by tinygemma3 test model)
  4845. image_seq_length = self.preprocessor_config.get("image_seq_length", 256)
  4846. n_per_side = int(image_seq_length ** 0.5)
  4847. image_size = self.hparams["image_size"]
  4848. patch_size = self.hparams["patch_size"]
  4849. proj_scale_factor = (image_size // patch_size) // n_per_side
  4850. if proj_scale_factor > 0 and proj_scale_factor != 4:
  4851. # we only need to write this if it's not the default value
  4852. # in this case, we are converting a test model
  4853. self.gguf_writer.add_vision_projector_scale_factor(proj_scale_factor)
  4854. def tensor_force_quant(self, name, new_name, bid, n_dims):
  4855. # related to https://github.com/ggml-org/llama.cpp/issues/13025
  4856. if "input_projection" in name:
  4857. return gguf.GGMLQuantizationType.F16
  4858. if ".embeddings." in name:
  4859. return gguf.GGMLQuantizationType.F32
  4860. return super().tensor_force_quant(name, new_name, bid, n_dims)
  4861. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4862. del bid # unused
  4863. if "vision_model.head." in name:
  4864. return [] # skip redundant tensors for tinygemma3
  4865. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4866. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4867. # process vision tensors
  4868. name = name.replace("_weight", ".weight")
  4869. # correct norm value ; only this "soft_emb_norm" need to be corrected as it's part of Gemma projector
  4870. # the other norm values are part of SigLIP model, and they are already correct
  4871. # ref code: Gemma3RMSNorm
  4872. if "soft_emb_norm.weight" in name:
  4873. logger.info(f"Correcting norm value for '{name}'")
  4874. data_torch = data_torch + 1
  4875. return [(self.map_tensor_name(name), data_torch)]
  4876. return [] # skip other tensors
  4877. @ModelBase.register("Gemma3nForConditionalGeneration")
  4878. class Gemma3NModel(Gemma3Model):
  4879. model_arch = gguf.MODEL_ARCH.GEMMA3N
  4880. norm_shift = 0.0 # same value with Gemma3p5RMSNorm scale_shift on python code
  4881. _altup_proj: list[Tensor] = []
  4882. _altup_unembd: list[Tensor] = []
  4883. def __init__(self, *args, **kwargs):
  4884. super().__init__(*args, **kwargs)
  4885. assert self.hparams["altup_num_inputs"] == 4, "Current conversion only supports 4 altup inputs"
  4886. self._altup_proj = [
  4887. torch.Tensor(), # to be replaced
  4888. torch.Tensor(), # to be replaced
  4889. torch.Tensor(), # to be replaced
  4890. ]
  4891. self._altup_unembd = [
  4892. torch.Tensor(), # to be replaced
  4893. torch.Tensor(), # to be replaced
  4894. torch.Tensor(), # to be replaced
  4895. ]
  4896. def set_vocab(self):
  4897. super().set_vocab()
  4898. def set_gguf_parameters(self):
  4899. super().set_gguf_parameters()
  4900. self.gguf_writer.add_altup_active_idx(self.hparams["altup_active_idx"])
  4901. self.gguf_writer.add_altup_num_inputs(self.hparams["altup_num_inputs"])
  4902. self.gguf_writer.add_embedding_length_per_layer_input(self.hparams["hidden_size_per_layer_input"])
  4903. self.gguf_writer.add_shared_kv_layers(self.hparams["num_kv_shared_layers"])
  4904. activation_sparsity_scale = []
  4905. for s in self.hparams["activation_sparsity_pattern"]:
  4906. normal_dist = torch.distributions.normal.Normal(0, 1)
  4907. std_multiplier = normal_dist.icdf(torch.tensor(s, dtype=torch.float32))
  4908. activation_sparsity_scale.append(std_multiplier.item())
  4909. self.gguf_writer.add_activation_sparsity_scale(activation_sparsity_scale)
  4910. sliding_window_pattern = []
  4911. for t in self.hparams["layer_types"]:
  4912. sliding_window_pattern.append(t == "sliding_attention")
  4913. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  4914. def _stack_matrices(self, matrices: list[Tensor]) -> Tensor | None:
  4915. has_all = all(m.numel() > 0 for m in matrices)
  4916. if not has_all:
  4917. return None
  4918. else:
  4919. return torch.stack(matrices, dim=0)
  4920. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4921. if name.endswith("_scale"):
  4922. name = name + ".weight"
  4923. # TODO: implement self.prediction_coefs.weight.clamp_(...)
  4924. if "language_model." not in name:
  4925. return [] # skip non-language model tensors
  4926. if "altup_unembed_projections" in name:
  4927. data_torch = data_torch.to(device="cpu")
  4928. if ".0." in name:
  4929. self._altup_unembd[0] = data_torch
  4930. elif ".1." in name:
  4931. self._altup_unembd[1] = data_torch
  4932. elif ".2." in name:
  4933. self._altup_unembd[2] = data_torch
  4934. else:
  4935. raise ValueError(f"Unknown name: {name}")
  4936. out = self._stack_matrices(self._altup_unembd)
  4937. if out is not None:
  4938. return [(self.map_tensor_name("model.altup_unembed_projections.weight"), out)]
  4939. else:
  4940. return []
  4941. if "altup_projections" in name:
  4942. data_torch = data_torch.to(device="cpu")
  4943. if ".0." in name:
  4944. self._altup_proj[0] = data_torch
  4945. elif ".1." in name:
  4946. self._altup_proj[1] = data_torch
  4947. elif ".2." in name:
  4948. self._altup_proj[2] = data_torch
  4949. else:
  4950. raise ValueError(f"Unknown name: {name}")
  4951. out = self._stack_matrices(self._altup_proj)
  4952. if out is not None:
  4953. return [(self.map_tensor_name("model.altup_projections.weight"), out)]
  4954. else:
  4955. return []
  4956. return super().modify_tensors(data_torch, name, bid)
  4957. @ModelBase.register("Starcoder2ForCausalLM")
  4958. class StarCoder2Model(TextModel):
  4959. model_arch = gguf.MODEL_ARCH.STARCODER2
  4960. @ModelBase.register("Rwkv6ForCausalLM")
  4961. class Rwkv6Model(TextModel):
  4962. model_arch = gguf.MODEL_ARCH.RWKV6
  4963. def set_vocab(self):
  4964. self._set_vocab_rwkv_world()
  4965. def set_gguf_parameters(self):
  4966. head_size = self.hparams["head_size"]
  4967. hidden_size = self.hparams["hidden_size"]
  4968. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  4969. rescale_every_n_layers = self.hparams["rescale_every"]
  4970. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  4971. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  4972. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  4973. # RWKV isn't context limited
  4974. self.gguf_writer.add_context_length(1048576)
  4975. self.gguf_writer.add_embedding_length(hidden_size)
  4976. self.gguf_writer.add_block_count(self.block_count)
  4977. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  4978. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  4979. self.gguf_writer.add_wkv_head_size(head_size)
  4980. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  4981. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  4982. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4983. self.gguf_writer.add_file_type(self.ftype)
  4984. # required by llama.cpp, unused
  4985. self.gguf_writer.add_head_count(0)
  4986. lerp_weights: dict[int, dict[str, Tensor]] = {}
  4987. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4988. new_name = self.map_tensor_name(name)
  4989. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  4990. new_name += ".weight"
  4991. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  4992. data_torch = data_torch.transpose(0, 1)
  4993. if new_name.endswith("time_mix_w2.weight"):
  4994. data_torch = data_torch.permute(0, 2, 1)
  4995. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  4996. data_torch = data_torch.squeeze()
  4997. try:
  4998. rescale_every_n_layers = self.hparams["rescale_every"]
  4999. if rescale_every_n_layers > 0:
  5000. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  5001. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  5002. except KeyError:
  5003. pass
  5004. # concat time_mix_lerp weights to reduce some cpu overhead
  5005. # also reduces the number of tensors in the model
  5006. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  5007. try:
  5008. self.lerp_weights[bid][new_name] = data_torch
  5009. except KeyError:
  5010. self.lerp_weights[bid] = {new_name: data_torch}
  5011. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  5012. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  5013. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  5014. yield (new_name, data)
  5015. return
  5016. yield (new_name, data_torch)
  5017. @ModelBase.register("RWKV6Qwen2ForCausalLM")
  5018. class RWKV6Qwen2Model(Rwkv6Model):
  5019. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  5020. def set_vocab(self):
  5021. try:
  5022. self._set_vocab_sentencepiece()
  5023. except FileNotFoundError:
  5024. self._set_vocab_gpt2()
  5025. def set_gguf_parameters(self):
  5026. num_attention_heads = self.hparams["num_attention_heads"]
  5027. num_key_value_heads = self.hparams["num_key_value_heads"]
  5028. hidden_size = self.hparams["hidden_size"]
  5029. head_size = hidden_size // num_attention_heads
  5030. rms_norm_eps = self.hparams["rms_norm_eps"]
  5031. intermediate_size = self.hparams["intermediate_size"]
  5032. time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
  5033. time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
  5034. # RWKV isn't context limited
  5035. self.gguf_writer.add_context_length(1048576)
  5036. self.gguf_writer.add_embedding_length(hidden_size)
  5037. self.gguf_writer.add_block_count(self.block_count)
  5038. self.gguf_writer.add_wkv_head_size(head_size)
  5039. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  5040. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  5041. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5042. self.gguf_writer.add_file_type(self.ftype)
  5043. # special parameters for time_mixing in RWKV6QWEN2
  5044. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5045. self.gguf_writer.add_token_shift_count(1)
  5046. # RWKV6QWEN2 use grouped key/value like GQA
  5047. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  5048. # required by llama.cpp, unused
  5049. self.gguf_writer.add_head_count(0)
  5050. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5051. for new_name, data in super().modify_tensors(data_torch, name, bid):
  5052. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  5053. data = data.view(5, -1, data.shape[-1])
  5054. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  5055. # permute them here to avoid code changes
  5056. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  5057. if "w2" in new_name:
  5058. data = data.view(5, -1, data.shape[-1])
  5059. yield (new_name, data)
  5060. continue
  5061. yield (new_name, data)
  5062. @ModelBase.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  5063. class Rwkv7Model(TextModel):
  5064. model_arch = gguf.MODEL_ARCH.RWKV7
  5065. def set_vocab(self):
  5066. self._set_vocab_rwkv_world()
  5067. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  5068. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  5069. def set_gguf_parameters(self):
  5070. try:
  5071. head_size = self.hparams["head_size"]
  5072. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  5073. except KeyError:
  5074. head_size = self.hparams["head_dim"]
  5075. layer_norm_eps = self.hparams["norm_eps"]
  5076. hidden_size = self.hparams["hidden_size"]
  5077. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  5078. # ICLR: In-Context-Learning-Rate
  5079. try:
  5080. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5081. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5082. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  5083. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  5084. except KeyError:
  5085. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5086. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5087. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  5088. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  5089. # RWKV isn't context limited
  5090. self.gguf_writer.add_context_length(1048576)
  5091. self.gguf_writer.add_embedding_length(hidden_size)
  5092. self.gguf_writer.add_block_count(self.block_count)
  5093. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  5094. self.gguf_writer.add_wkv_head_size(head_size)
  5095. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  5096. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  5097. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  5098. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  5099. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5100. self.gguf_writer.add_file_type(self.ftype)
  5101. # required by llama.cpp, unused
  5102. self.gguf_writer.add_head_count(0)
  5103. lerp_weights: dict[int, dict[str, Tensor]] = {}
  5104. lora_needs_transpose: bool = True
  5105. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5106. # unify tensor names here to make life easier
  5107. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  5108. name = name.replace("self_attn", "attention").replace("attn", "attention")
  5109. name = name.replace("time_mixer.", "")
  5110. # lora layer names in fla-hub's impl
  5111. if "_lora.lora" in name:
  5112. self.lora_needs_transpose = False
  5113. name = name.replace("_lora.lora.0.weight", "1.weight")
  5114. name = name.replace("_lora.lora.2.weight", "2.weight")
  5115. name = name.replace("_lora.lora.2.bias", "0.weight")
  5116. name = name.replace("feed_forward_norm", "ln2")
  5117. name = name.replace("g_norm", "ln_x")
  5118. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  5119. # some models have dummy v0/v1/v2 on first layer while others don't
  5120. # ignore them all since they are not used
  5121. return
  5122. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  5123. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  5124. if bid is not None and "attention.x_" in name:
  5125. if "attention.x_x" in name:
  5126. # already concatenated
  5127. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  5128. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  5129. yield (new_name, data)
  5130. else:
  5131. try:
  5132. self.lerp_weights[bid][name] = data_torch
  5133. except KeyError:
  5134. self.lerp_weights[bid] = {name: data_torch}
  5135. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  5136. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  5137. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  5138. yield (new_name, data)
  5139. return
  5140. else:
  5141. data_torch = data_torch.squeeze()
  5142. new_name = self.map_tensor_name(name)
  5143. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  5144. new_name += ".weight"
  5145. if self.lora_needs_transpose and any(
  5146. new_name.endswith(t) for t in [
  5147. "time_mix_w1.weight", "time_mix_w2.weight",
  5148. "time_mix_a1.weight", "time_mix_a2.weight",
  5149. "time_mix_v1.weight", "time_mix_v2.weight",
  5150. "time_mix_g1.weight", "time_mix_g2.weight",
  5151. ]
  5152. ):
  5153. data_torch = data_torch.transpose(0, 1)
  5154. if 'r_k' in new_name:
  5155. data_torch = data_torch.flatten()
  5156. if bid == 0 and "time_mix_a" in new_name:
  5157. # dummy v0/v1/v2 on first layer
  5158. # easist way to make llama happy
  5159. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  5160. yield (new_name, data_torch)
  5161. @ModelBase.register("RwkvHybridForCausalLM")
  5162. class ARwkv7Model(Rwkv7Model):
  5163. model_arch = gguf.MODEL_ARCH.ARWKV7
  5164. def set_vocab(self):
  5165. try:
  5166. self._set_vocab_sentencepiece()
  5167. except FileNotFoundError:
  5168. self._set_vocab_gpt2()
  5169. def set_gguf_parameters(self):
  5170. hidden_size = self.hparams["hidden_size"]
  5171. head_size = self.hparams["head_size"]
  5172. rms_norm_eps = self.hparams["rms_norm_eps"]
  5173. intermediate_size = self.hparams["intermediate_size"]
  5174. wkv_has_gate = self.hparams["wkv_has_gate"]
  5175. assert self.hparams["wkv_version"] == 7
  5176. # ICLR: In-Context-Learning-Rate
  5177. lora_rank_decay = 64
  5178. lora_rank_iclr = 64
  5179. lora_rank_value_residual_mix = 32
  5180. lora_rank_gate = 128 if wkv_has_gate else 0
  5181. # RWKV isn't context limited
  5182. self.gguf_writer.add_context_length(1048576)
  5183. self.gguf_writer.add_embedding_length(hidden_size)
  5184. self.gguf_writer.add_block_count(self.block_count)
  5185. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5186. self.gguf_writer.add_wkv_head_size(head_size)
  5187. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  5188. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  5189. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  5190. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  5191. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5192. self.gguf_writer.add_file_type(self.ftype)
  5193. self.gguf_writer.add_token_shift_count(1)
  5194. # required by llama.cpp, unused
  5195. self.gguf_writer.add_head_count(0)
  5196. @ModelBase.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  5197. class MambaModel(TextModel):
  5198. model_arch = gguf.MODEL_ARCH.MAMBA
  5199. def __init__(self, dir_model: Path, *args, **kwargs):
  5200. # Avoid using AutoConfig for hparams
  5201. hparams = kwargs.pop("hparams", None)
  5202. if hparams is None:
  5203. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  5204. hparams = json.load(f)
  5205. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  5206. def set_vocab(self):
  5207. vocab_size = self.hparams["vocab_size"]
  5208. # Round vocab size to next multiple of 8
  5209. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  5210. # pad using ceiling division
  5211. # ref: https://stackoverflow.com/a/17511341/22827863
  5212. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  5213. self.hparams["vocab_size"] = vocab_size
  5214. if (self.dir_model / "tokenizer.json").is_file():
  5215. self._set_vocab_gpt2()
  5216. elif (self.dir_model / "tokenizer.model").is_file():
  5217. self._set_vocab_sentencepiece()
  5218. else:
  5219. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  5220. self._set_vocab_builtin("gpt-neox", vocab_size)
  5221. def set_gguf_parameters(self):
  5222. d_model = self.find_hparam(["hidden_size", "d_model"])
  5223. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  5224. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  5225. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  5226. # ceiling division
  5227. # ref: https://stackoverflow.com/a/17511341/22827863
  5228. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  5229. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  5230. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  5231. use_dt_b_c_norm = False
  5232. # For falconmamba we do apply RMS norm on B / DT and C layers
  5233. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  5234. use_dt_b_c_norm = True
  5235. # Fail early for models which don't have a block expansion factor of 2
  5236. assert d_inner == 2 * d_model
  5237. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  5238. self.gguf_writer.add_embedding_length(d_model)
  5239. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  5240. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  5241. self.gguf_writer.add_block_count(self.block_count)
  5242. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5243. self.gguf_writer.add_ssm_inner_size(d_inner)
  5244. self.gguf_writer.add_ssm_state_size(d_state)
  5245. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  5246. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5247. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  5248. self.gguf_writer.add_file_type(self.ftype)
  5249. _tok_embd = None
  5250. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5251. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  5252. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  5253. new_name = self.map_tensor_name(name)
  5254. if name.endswith(".A_log"):
  5255. logger.debug("A_log --> A ==> " + new_name)
  5256. data_torch = -torch.exp(data_torch)
  5257. # [4 1 8192 1] -> [4 8192 1 1]
  5258. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5259. data_torch = data_torch.squeeze()
  5260. # assuming token_embd.weight is seen before output.weight
  5261. if self._tok_embd is not None and new_name == output_name:
  5262. if torch.equal(self._tok_embd, data_torch):
  5263. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  5264. return []
  5265. elif new_name == tok_embd_name:
  5266. self._tok_embd = data_torch
  5267. return [(new_name, data_torch)]
  5268. @ModelBase.register("Mamba2ForCausalLM")
  5269. class Mamba2Model(TextModel):
  5270. model_arch = gguf.MODEL_ARCH.MAMBA2
  5271. def __init__(self, dir_model: Path, *args, **kwargs):
  5272. # Avoid using AutoConfig for hparams
  5273. # It wrongly assumes all Mamba2 models are Mamba-Codestral-7B-v0.1
  5274. hparams = kwargs.pop("hparams", None)
  5275. if hparams is None:
  5276. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  5277. hparams = json.load(f)
  5278. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  5279. self.d_model = self.find_hparam(["hidden_size", "d_model", "dim"])
  5280. self.d_inner = self.find_hparam(["mamba_d_ssm", "intermediate_size", "d_inner"], optional=True) or 2 * self.d_model
  5281. self.n_group = self.find_hparam(["n_groups"], optional=True) or 1
  5282. def set_vocab(self):
  5283. vocab_size = self.hparams["vocab_size"]
  5284. # Round vocab size to next multiple of 16
  5285. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 16)
  5286. # pad using ceiling division
  5287. # ref: https://stackoverflow.com/a/17511341/22827863
  5288. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  5289. self.hparams["vocab_size"] = vocab_size
  5290. if (self.dir_model / "tokenizer.model").is_file():
  5291. self._set_vocab_sentencepiece()
  5292. elif (self.dir_model / "tokenizer.model.v3").is_file():
  5293. # mamba-codestral
  5294. raise NotImplementedError(f"Please rename {self.dir_model / 'tokenizer.model.v3'} to {self.dir_model / 'tokenizer.model'}")
  5295. elif (self.dir_model / "tokenizer.json").is_file():
  5296. self._set_vocab_gpt2()
  5297. else:
  5298. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  5299. self._set_vocab_builtin("gpt-neox", vocab_size)
  5300. def set_gguf_parameters(self):
  5301. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  5302. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 128
  5303. head_dim = self.find_hparam(["mamba_d_head", "head_dim"], optional=True) or 64
  5304. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  5305. # Fail early for models which don't have a block expansion factor of 2
  5306. # TODO: does this really matter?
  5307. # skip the assertion for FalconH1 Model
  5308. if self.model_arch != gguf.MODEL_ARCH.FALCON_H1:
  5309. assert self.d_inner == 2 * self.d_model
  5310. assert self.d_inner % head_dim == 0
  5311. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  5312. self.gguf_writer.add_embedding_length(self.d_model)
  5313. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  5314. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  5315. self.gguf_writer.add_block_count(self.block_count)
  5316. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5317. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  5318. self.gguf_writer.add_ssm_state_size(d_state)
  5319. self.gguf_writer.add_ssm_time_step_rank(self.d_inner // head_dim)
  5320. self.gguf_writer.add_ssm_group_count(self.n_group)
  5321. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5322. self.gguf_writer.add_file_type(self.ftype)
  5323. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5324. if name.startswith("model.backbone") or name.startswith("model.lm_head"):
  5325. # map Mamba-Codestral-7B-v0.1 tensor names to the names used by Mamba-2
  5326. name = name.removeprefix("model.")
  5327. if name.endswith(".dt_bias"):
  5328. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  5329. new_name = self.map_tensor_name(name)
  5330. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5331. data_torch = data_torch.squeeze()
  5332. elif any(self.match_model_tensor_name(new_name, t, bid, suffix="") for t in [
  5333. gguf.MODEL_TENSOR.SSM_A,
  5334. gguf.MODEL_TENSOR.SSM_D,
  5335. ]):
  5336. # unsqueeze A to use similar shape semantics as Mamba-1
  5337. # (D is also unsqueezed, but for more straightforward broadcast internally)
  5338. data_torch = data_torch.reshape((*data_torch.shape, 1))
  5339. elif self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_NORM, bid):
  5340. data_torch = data_torch.reshape((self.n_group, self.d_inner // self.n_group))
  5341. if name.endswith(".A_log"):
  5342. logger.debug("A_log --> A ==> " + new_name)
  5343. data_torch = -torch.exp(data_torch)
  5344. yield (new_name, data_torch)
  5345. @ModelBase.register("JambaForCausalLM")
  5346. class JambaModel(TextModel):
  5347. model_arch = gguf.MODEL_ARCH.JAMBA
  5348. def set_vocab(self):
  5349. if (self.dir_model / "tokenizer.model").is_file():
  5350. self._set_vocab_sentencepiece()
  5351. else:
  5352. self._set_vocab_llama_hf()
  5353. self.gguf_writer.add_add_space_prefix(False)
  5354. def set_gguf_parameters(self):
  5355. d_model = self.find_hparam(["hidden_size", "mamba_d_model"])
  5356. d_conv = self.find_hparam(["mamba_d_conv"], optional=True) or 4
  5357. d_inner = self.hparams["mamba_expand"] * d_model
  5358. d_state = self.find_hparam(["mamba_d_state"], optional=True) or 16
  5359. # ceiling division
  5360. # ref: https://stackoverflow.com/a/17511341/22827863
  5361. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  5362. dt_rank = self.find_hparam(["mamba_dt_rank"], optional=True) or -(d_model // -16)
  5363. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-6
  5364. n_kv_head = self.hparams["num_key_value_heads"]
  5365. attn_offset = self.hparams["attn_layer_offset"]
  5366. attn_period = self.hparams["attn_layer_period"]
  5367. n_kv_vec = [0 for _ in range(attn_offset)] + [
  5368. n_kv_head if (i - attn_offset) % attn_period == 0 else 0 for i in range(attn_offset, self.block_count)
  5369. ]
  5370. self.gguf_writer.add_block_count(self.block_count)
  5371. self.gguf_writer.add_context_length(self.find_hparam(["max_position_embeddings", "n_ctx"]))
  5372. self.gguf_writer.add_embedding_length(d_model)
  5373. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  5374. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  5375. self.gguf_writer.add_head_count_kv(n_kv_vec)
  5376. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5377. self.gguf_writer.add_ssm_inner_size(d_inner)
  5378. self.gguf_writer.add_ssm_state_size(d_state)
  5379. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  5380. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5381. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  5382. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  5383. self.gguf_writer.add_file_type(self.ftype)
  5384. _experts: list[dict[str, Tensor]] | None = None
  5385. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5386. # Mini-Jamba
  5387. name = name.replace(".moe.", ".feed_forward.")
  5388. if bid is not None:
  5389. moe_offset = self.hparams["expert_layer_offset"]
  5390. moe_period = self.hparams["expert_layer_period"]
  5391. if not (bid >= moe_offset and (bid - moe_offset) % moe_period == 0):
  5392. name = name.replace(".experts.0.", ".")
  5393. # process the experts separately
  5394. if ".feed_forward.experts." in name:
  5395. n_experts = self.hparams["num_experts"]
  5396. assert bid is not None
  5397. if self._experts is None:
  5398. self._experts = [{} for _ in range(self.block_count)]
  5399. self._experts[bid][name] = data_torch
  5400. if len(self._experts[bid]) >= n_experts * 3:
  5401. # merge the experts into a single 3d tensor
  5402. for wid in ["down_proj", "gate_proj", "up_proj"]:
  5403. datas: list[Tensor] = []
  5404. for xid in range(n_experts):
  5405. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{wid}.weight"
  5406. datas.append(self._experts[bid][ename])
  5407. del self._experts[bid][ename]
  5408. data_torch = torch.stack(datas, dim=0)
  5409. # using the same merged name as qwen2moe
  5410. merged_name = f"model.layers.{bid}.mlp.experts.{wid}.weight"
  5411. new_name = self.map_tensor_name(merged_name)
  5412. yield new_name, data_torch
  5413. return
  5414. new_name = self.map_tensor_name(name)
  5415. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5416. data_torch = data_torch.squeeze()
  5417. if name.endswith(".A_log"):
  5418. logger.debug("A_log --> A ==> " + new_name)
  5419. data_torch = -torch.exp(data_torch)
  5420. yield (new_name, data_torch)
  5421. def prepare_tensors(self):
  5422. super().prepare_tensors()
  5423. if self._experts is not None:
  5424. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5425. experts = [k for d in self._experts for k in d.keys()]
  5426. if len(experts) > 0:
  5427. raise ValueError(f"Unprocessed experts: {experts}")
  5428. @ModelBase.register("CohereForCausalLM")
  5429. class CommandR2Model(TextModel):
  5430. model_arch = gguf.MODEL_ARCH.COMMAND_R
  5431. def __init__(self, *args, **kwargs):
  5432. super().__init__(*args, **kwargs)
  5433. # max_position_embeddings = 8192 in config.json but model was actually
  5434. # trained on 128k context length
  5435. # aya-23 models don't have model_max_length specified
  5436. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  5437. def set_gguf_parameters(self):
  5438. super().set_gguf_parameters()
  5439. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  5440. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5441. @ModelBase.register("Cohere2ForCausalLM")
  5442. class Cohere2Model(TextModel):
  5443. model_arch = gguf.MODEL_ARCH.COHERE2
  5444. def set_gguf_parameters(self):
  5445. super().set_gguf_parameters()
  5446. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  5447. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  5448. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  5449. rotary_pct = self.hparams["rotary_pct"]
  5450. hidden_size = self.hparams["hidden_size"]
  5451. num_attention_heads = self.hparams["num_attention_heads"]
  5452. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  5453. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5454. @ModelBase.register("OlmoForCausalLM")
  5455. @ModelBase.register("OLMoForCausalLM")
  5456. class OlmoModel(TextModel):
  5457. model_arch = gguf.MODEL_ARCH.OLMO
  5458. def set_gguf_parameters(self):
  5459. super().set_gguf_parameters()
  5460. self.gguf_writer.add_layer_norm_eps(1e-5)
  5461. clip_qkv = self.hparams.get("clip_qkv")
  5462. if clip_qkv is not None:
  5463. self.gguf_writer.add_clamp_kqv(clip_qkv)
  5464. # Same as super class, but permuting q_proj, k_proj
  5465. # Copied from: LlamaModel
  5466. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5467. del bid # unused
  5468. n_head = self.hparams["num_attention_heads"]
  5469. n_kv_head = self.hparams.get("num_key_value_heads")
  5470. if name.endswith("q_proj.weight"):
  5471. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5472. if name.endswith("k_proj.weight"):
  5473. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5474. return [(self.map_tensor_name(name), data_torch)]
  5475. @ModelBase.register("SeedOssForCausalLM")
  5476. class SeedOssModel(TextModel):
  5477. model_arch = gguf.MODEL_ARCH.SEED_OSS
  5478. @ModelBase.register("Olmo2ForCausalLM")
  5479. @ModelBase.register("Olmo3ForCausalLM")
  5480. class Olmo2Model(TextModel):
  5481. model_arch = gguf.MODEL_ARCH.OLMO2
  5482. def set_gguf_parameters(self):
  5483. super().set_gguf_parameters()
  5484. if "sliding_window" in self.hparams:
  5485. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  5486. sliding_window_pattern = []
  5487. if "layer_types" in self.hparams:
  5488. sliding_window_pattern = [t == "sliding_attention" for t in self.hparams["layer_types"]]
  5489. else:
  5490. # Olmo2 does not use sliding window attention.
  5491. # Olmo3 defaults to using sliding window for all layers except every 4th.
  5492. for i in range(self.hparams["num_hidden_layers"]):
  5493. sliding_window_pattern.append((i + 1) % 4 != 0)
  5494. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  5495. @ModelBase.register("OlmoeForCausalLM")
  5496. class OlmoeModel(TextModel):
  5497. model_arch = gguf.MODEL_ARCH.OLMOE
  5498. def set_gguf_parameters(self):
  5499. super().set_gguf_parameters()
  5500. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  5501. if (n_experts := self.hparams.get("num_experts")) is not None:
  5502. self.gguf_writer.add_expert_count(n_experts)
  5503. _experts: list[dict[str, Tensor]] | None = None
  5504. # Copied from: Qwen2MoeModel
  5505. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5506. # process the experts separately
  5507. if name.find("experts") != -1:
  5508. n_experts = self.hparams["num_experts"]
  5509. assert bid is not None
  5510. if self._experts is None:
  5511. self._experts = [{} for _ in range(self.block_count)]
  5512. self._experts[bid][name] = data_torch
  5513. if len(self._experts[bid]) >= n_experts * 3:
  5514. tensors: list[tuple[str, Tensor]] = []
  5515. # merge the experts into a single 3d tensor
  5516. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5517. datas: list[Tensor] = []
  5518. for xid in range(n_experts):
  5519. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5520. datas.append(self._experts[bid][ename])
  5521. del self._experts[bid][ename]
  5522. data_torch = torch.stack(datas, dim=0)
  5523. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5524. new_name = self.map_tensor_name(merged_name)
  5525. tensors.append((new_name, data_torch))
  5526. return tensors
  5527. else:
  5528. return []
  5529. return [(self.map_tensor_name(name), data_torch)]
  5530. # Copied from: Qwen2MoeModel
  5531. def prepare_tensors(self):
  5532. super().prepare_tensors()
  5533. if self._experts is not None:
  5534. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5535. experts = [k for d in self._experts for k in d.keys()]
  5536. if len(experts) > 0:
  5537. raise ValueError(f"Unprocessed experts: {experts}")
  5538. @ModelBase.register("JinaBertModel", "JinaBertForMaskedLM")
  5539. class JinaBertV2Model(BertModel):
  5540. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  5541. def set_vocab(self):
  5542. tokenizer_class = 'BertTokenizer'
  5543. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  5544. tokenizer_class = json.load(f)['tokenizer_class']
  5545. if tokenizer_class == 'BertTokenizer':
  5546. super().set_vocab()
  5547. elif tokenizer_class == 'RobertaTokenizer':
  5548. self._set_vocab_gpt2()
  5549. self.gguf_writer.add_token_type_count(2)
  5550. else:
  5551. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  5552. @ModelBase.register("OpenELMForCausalLM")
  5553. class OpenELMModel(TextModel):
  5554. model_arch = gguf.MODEL_ARCH.OPENELM
  5555. @staticmethod
  5556. def _make_divisible(v: float | int, divisor: int) -> int:
  5557. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  5558. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  5559. # Make sure that round down does not go down by more than 10%.
  5560. if new_v < 0.9 * v:
  5561. new_v += divisor
  5562. return new_v
  5563. def __init__(self, *args, **kwargs):
  5564. super().__init__(*args, **kwargs)
  5565. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  5566. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  5567. self._n_embd: int = self.hparams["model_dim"]
  5568. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  5569. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  5570. self._ffn_dims: list[int] = [
  5571. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  5572. for multiplier in ffn_multipliers
  5573. ]
  5574. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  5575. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  5576. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  5577. def set_vocab(self):
  5578. try:
  5579. self._set_vocab_sentencepiece()
  5580. except FileNotFoundError:
  5581. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  5582. def set_gguf_parameters(self):
  5583. n_embd = self._n_embd
  5584. head_dim = self.hparams["head_dim"]
  5585. rot_pct = 1.0
  5586. assert self.block_count == len(self._num_kv_heads)
  5587. assert self.block_count == len(self._num_query_heads)
  5588. assert self.block_count == len(self._ffn_dims)
  5589. self.gguf_writer.add_block_count(self.block_count)
  5590. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  5591. self.gguf_writer.add_embedding_length(n_embd)
  5592. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  5593. self.gguf_writer.add_head_count(self._num_query_heads)
  5594. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  5595. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  5596. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  5597. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  5598. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  5599. self.gguf_writer.add_key_length(head_dim)
  5600. self.gguf_writer.add_value_length(head_dim)
  5601. self.gguf_writer.add_file_type(self.ftype)
  5602. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  5603. if "n_layers" in keys:
  5604. return self.hparams["num_transformer_layers"]
  5605. return super().find_hparam(keys, optional)
  5606. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5607. # split ff
  5608. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  5609. ff_dim = self._ffn_dims[bid]
  5610. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  5611. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  5612. return
  5613. yield (self.map_tensor_name(name), data_torch)
  5614. @ModelBase.register("ArcticForCausalLM")
  5615. class ArcticModel(TextModel):
  5616. model_arch = gguf.MODEL_ARCH.ARCTIC
  5617. def set_vocab(self):
  5618. # The reason for using a custom implementation here is that the
  5619. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  5620. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  5621. from sentencepiece import SentencePieceProcessor
  5622. tokenizer_path = self.dir_model / 'tokenizer.model'
  5623. if not tokenizer_path.is_file():
  5624. logger.error(f'Error: Missing {tokenizer_path}')
  5625. sys.exit(1)
  5626. # Read the whole vocabulary from the tokenizer.model file
  5627. tokenizer = SentencePieceProcessor()
  5628. tokenizer.LoadFromFile(str(tokenizer_path))
  5629. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5630. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5631. scores: list[float] = [-10000.0] * vocab_size
  5632. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5633. for token_id in range(tokenizer.vocab_size()):
  5634. piece = tokenizer.IdToPiece(token_id)
  5635. text = piece.encode("utf-8")
  5636. score = tokenizer.GetScore(token_id)
  5637. toktype = SentencePieceTokenTypes.NORMAL
  5638. if tokenizer.IsUnknown(token_id):
  5639. toktype = SentencePieceTokenTypes.UNKNOWN
  5640. elif tokenizer.IsControl(token_id):
  5641. toktype = SentencePieceTokenTypes.CONTROL
  5642. elif tokenizer.IsUnused(token_id):
  5643. toktype = SentencePieceTokenTypes.UNUSED
  5644. elif tokenizer.IsByte(token_id):
  5645. toktype = SentencePieceTokenTypes.BYTE
  5646. tokens[token_id] = text
  5647. scores[token_id] = score
  5648. toktypes[token_id] = toktype
  5649. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  5650. # of information about added/redefined tokens and modify them accordingly.
  5651. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  5652. if tokenizer_config_file.is_file():
  5653. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  5654. tokenizer_config_json = json.load(f)
  5655. if "added_tokens_decoder" in tokenizer_config_json:
  5656. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  5657. for token_id, token_json in added_tokens_decoder.items():
  5658. token_id = int(token_id)
  5659. if token_id >= vocab_size:
  5660. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5661. continue
  5662. token_content = token_json["content"]
  5663. token_type = SentencePieceTokenTypes.USER_DEFINED
  5664. token_score = -10000.0
  5665. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  5666. # Set the score to 0.0 as in the original tokenizer.model
  5667. if ("special" in token_json) and token_json["special"]:
  5668. if token_content == tokenizer_config_json["unk_token"]:
  5669. token_type = SentencePieceTokenTypes.UNKNOWN
  5670. else:
  5671. token_type = SentencePieceTokenTypes.CONTROL
  5672. token_score = 0.0
  5673. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  5674. tokens[token_id] = token_content.encode("utf-8")
  5675. toktypes[token_id] = token_type
  5676. scores[token_id] = token_score
  5677. self.gguf_writer.add_tokenizer_model("llama")
  5678. self.gguf_writer.add_tokenizer_pre("default")
  5679. self.gguf_writer.add_token_list(tokens)
  5680. self.gguf_writer.add_token_scores(scores)
  5681. self.gguf_writer.add_token_types(toktypes)
  5682. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5683. special_vocab.add_to_gguf(self.gguf_writer)
  5684. def set_gguf_parameters(self):
  5685. super().set_gguf_parameters()
  5686. hparams = self.hparams
  5687. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5688. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  5689. _experts: list[dict[str, Tensor]] | None = None
  5690. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5691. n_head = self.hparams["num_attention_heads"]
  5692. n_kv_head = self.hparams.get("num_key_value_heads")
  5693. if name.endswith("q_proj.weight"):
  5694. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5695. if name.endswith("k_proj.weight"):
  5696. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5697. # process the experts separately
  5698. if name.find("block_sparse_moe.experts") != -1:
  5699. n_experts = self.hparams["num_local_experts"]
  5700. assert bid is not None
  5701. if self._experts is None:
  5702. self._experts = [{} for _ in range(self.block_count)]
  5703. self._experts[bid][name] = data_torch
  5704. if len(self._experts[bid]) >= n_experts * 3:
  5705. tensors: list[tuple[str, Tensor]] = []
  5706. # merge the experts into a single 3d tensor
  5707. for wid in ["w1", "w2", "w3"]:
  5708. datas: list[Tensor] = []
  5709. for xid in range(n_experts):
  5710. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  5711. datas.append(self._experts[bid][ename])
  5712. del self._experts[bid][ename]
  5713. data_torch = torch.stack(datas, dim=0)
  5714. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  5715. new_name = self.map_tensor_name(merged_name)
  5716. tensors.append((new_name, data_torch))
  5717. return tensors
  5718. else:
  5719. return []
  5720. return [(self.map_tensor_name(name), data_torch)]
  5721. def prepare_tensors(self):
  5722. super().prepare_tensors()
  5723. if self._experts is not None:
  5724. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5725. experts = [k for d in self._experts for k in d.keys()]
  5726. if len(experts) > 0:
  5727. raise ValueError(f"Unprocessed experts: {experts}")
  5728. @ModelBase.register("DeepseekForCausalLM")
  5729. class DeepseekModel(TextModel):
  5730. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  5731. def set_vocab(self):
  5732. try:
  5733. self._set_vocab_sentencepiece()
  5734. except FileNotFoundError:
  5735. self._set_vocab_gpt2()
  5736. def set_gguf_parameters(self):
  5737. super().set_gguf_parameters()
  5738. hparams = self.hparams
  5739. if (rope_dim := hparams.get("head_dim")) is None:
  5740. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  5741. self.gguf_writer.add_rope_dimension_count(rope_dim)
  5742. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5743. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5744. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5745. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5746. self.gguf_writer.add_expert_weights_scale(1.0)
  5747. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  5748. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  5749. _experts: list[dict[str, Tensor]] | None = None
  5750. @staticmethod
  5751. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  5752. if n_head_kv is not None and n_head != n_head_kv:
  5753. n_head = n_head_kv
  5754. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  5755. .swapaxes(1, 2)
  5756. .reshape(weights.shape))
  5757. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5758. n_head = self.hparams["num_attention_heads"]
  5759. n_kv_head = self.hparams.get("num_key_value_heads")
  5760. if name.endswith(("q_proj.weight", "q_proj.bias")):
  5761. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  5762. if name.endswith(("k_proj.weight", "k_proj.bias")):
  5763. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  5764. # process the experts separately
  5765. if name.find("mlp.experts") != -1:
  5766. n_experts = self.hparams["n_routed_experts"]
  5767. assert bid is not None
  5768. if self._experts is None:
  5769. self._experts = [{} for _ in range(self.block_count)]
  5770. self._experts[bid][name] = data_torch
  5771. if len(self._experts[bid]) >= n_experts * 3:
  5772. tensors: list[tuple[str, Tensor]] = []
  5773. # merge the experts into a single 3d tensor
  5774. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5775. datas: list[Tensor] = []
  5776. for xid in range(n_experts):
  5777. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5778. datas.append(self._experts[bid][ename])
  5779. del self._experts[bid][ename]
  5780. data_torch = torch.stack(datas, dim=0)
  5781. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5782. new_name = self.map_tensor_name(merged_name)
  5783. tensors.append((new_name, data_torch))
  5784. return tensors
  5785. else:
  5786. return []
  5787. return [(self.map_tensor_name(name), data_torch)]
  5788. def prepare_tensors(self):
  5789. super().prepare_tensors()
  5790. if self._experts is not None:
  5791. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5792. experts = [k for d in self._experts for k in d.keys()]
  5793. if len(experts) > 0:
  5794. raise ValueError(f"Unprocessed experts: {experts}")
  5795. @ModelBase.register(
  5796. "DeepseekV2ForCausalLM",
  5797. "DeepseekV3ForCausalLM",
  5798. "KimiVLForConditionalGeneration",
  5799. )
  5800. class DeepseekV2Model(TextModel):
  5801. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  5802. def set_vocab(self):
  5803. try:
  5804. self._set_vocab_gpt2()
  5805. return
  5806. except Exception:
  5807. pass
  5808. from transformers import AutoTokenizer
  5809. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  5810. tokpre = self.get_vocab_base_pre(tokenizer)
  5811. if tokpre == "kimi-k2":
  5812. # Build merges list using the approach similar to HunYuanMoE
  5813. merges = []
  5814. vocab = {}
  5815. mergeable_ranks = tokenizer.model._mergeable_ranks
  5816. for token, rank in mergeable_ranks.items():
  5817. vocab[QwenModel.token_bytes_to_string(token)] = rank
  5818. if len(token) == 1:
  5819. continue
  5820. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  5821. if len(merged) == 2:
  5822. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  5823. # Build token list
  5824. vocab_size = self.hparams["vocab_size"]
  5825. special_tokens = tokenizer.special_tokens
  5826. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  5827. tokens: list[str] = []
  5828. toktypes: list[int] = []
  5829. for i in range(vocab_size):
  5830. if i not in reverse_vocab:
  5831. tokens.append(f"[PAD{i}]")
  5832. toktypes.append(gguf.TokenType.UNUSED)
  5833. else:
  5834. token = reverse_vocab[i]
  5835. tokens.append(token)
  5836. if i in special_tokens.values():
  5837. toktypes.append(gguf.TokenType.CONTROL)
  5838. else:
  5839. toktypes.append(gguf.TokenType.NORMAL)
  5840. self.gguf_writer.add_tokenizer_model("gpt2")
  5841. self.gguf_writer.add_tokenizer_pre(tokpre)
  5842. self.gguf_writer.add_token_list(tokens)
  5843. self.gguf_writer.add_token_types(toktypes)
  5844. self.gguf_writer.add_token_merges(merges)
  5845. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  5846. special_vocab.add_to_gguf(self.gguf_writer)
  5847. else:
  5848. raise NotImplementedError(f"Deepseek pre-tokenizer {tokpre!r} is not supported yet!")
  5849. def set_gguf_parameters(self):
  5850. # note: deepseek2 using MLA converts into MQA (ie: GQA with 1 group)
  5851. self.hparams["num_key_value_heads"] = 1
  5852. super().set_gguf_parameters()
  5853. hparams = self.hparams
  5854. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5855. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5856. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  5857. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  5858. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  5859. # note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
  5860. self.gguf_writer.add_key_length(hparams["kv_lora_rank"] + hparams["qk_rope_head_dim"])
  5861. self.gguf_writer.add_value_length(hparams["kv_lora_rank"])
  5862. self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  5863. self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
  5864. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5865. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  5866. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  5867. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  5868. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  5869. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  5870. if (rope_mscale_all := self.rope_parameters.get("mscale_all_dim")) is not None:
  5871. # [TAG_DEEPSEEK2_YARN_LOG_MUL_FIX]
  5872. # note: for legacy reasons, this is not consistent with the other usages of self.gguf_writer.add_rope_scaling_yarn_log_mul
  5873. # ref https://github.com/ggml-org/llama.cpp/pull/17945
  5874. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * rope_mscale_all)
  5875. _experts: list[dict[str, Tensor]] | None = None
  5876. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5877. # skip vision tensors and remove "language_model." for Kimi-VL
  5878. if "vision_tower" in name or "multi_modal_projector" in name:
  5879. return []
  5880. if name.startswith("language_model."):
  5881. name = name.replace("language_model.", "")
  5882. # rename e_score_correction_bias tensors
  5883. if name.endswith("e_score_correction_bias"):
  5884. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5885. # skip Multi-Token Prediction (MTP) layers
  5886. block_count = self.hparams["num_hidden_layers"]
  5887. match = re.match(r"model.layers.(\d+)", name)
  5888. if match and int(match.group(1)) >= block_count:
  5889. return []
  5890. # process the experts separately
  5891. if name.find("mlp.experts") != -1:
  5892. n_experts = self.hparams["n_routed_experts"]
  5893. assert bid is not None
  5894. if self._experts is None:
  5895. self._experts = [{} for _ in range(self.block_count)]
  5896. self._experts[bid][name] = data_torch
  5897. if len(self._experts[bid]) >= n_experts * 3:
  5898. tensors: list[tuple[str, Tensor]] = []
  5899. # merge the experts into a single 3d tensor
  5900. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5901. datas: list[Tensor] = []
  5902. for xid in range(n_experts):
  5903. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5904. datas.append(self._experts[bid][ename])
  5905. del self._experts[bid][ename]
  5906. data_torch = torch.stack(datas, dim=0)
  5907. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5908. new_name = self.map_tensor_name(merged_name)
  5909. tensors.append((new_name, data_torch))
  5910. return tensors
  5911. else:
  5912. return []
  5913. # note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
  5914. if name.endswith("kv_b_proj.weight"):
  5915. name_kb = name.replace("kv_b_proj", "k_b_proj")
  5916. name_vb = name.replace("kv_b_proj", "v_b_proj")
  5917. n_head_kv = self.hparams["num_key_value_heads"]
  5918. v_head_dim = self.hparams["v_head_dim"]
  5919. qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
  5920. assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
  5921. kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
  5922. k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
  5923. k_b = k_b.transpose(1, 2)
  5924. return [
  5925. (self.map_tensor_name(name_kb), k_b),
  5926. (self.map_tensor_name(name_vb), v_b)
  5927. ]
  5928. return [(self.map_tensor_name(name), data_torch)]
  5929. def prepare_tensors(self):
  5930. super().prepare_tensors()
  5931. if self._experts is not None:
  5932. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5933. experts = [k for d in self._experts for k in d.keys()]
  5934. if len(experts) > 0:
  5935. raise ValueError(f"Unprocessed experts: {experts}")
  5936. @ModelBase.register("MiniMaxM2ForCausalLM")
  5937. class MiniMaxM2Model(TextModel):
  5938. model_arch = gguf.MODEL_ARCH.MINIMAXM2
  5939. _experts_cache: dict[int, dict[str, Tensor]] = {}
  5940. def __init__(self, *args, **kwargs):
  5941. super().__init__(*args, **kwargs)
  5942. self.hparams["num_experts"] = self.hparams["num_local_experts"]
  5943. def set_gguf_parameters(self):
  5944. super().set_gguf_parameters()
  5945. self.gguf_writer.add_expert_feed_forward_length(self.find_hparam(["intermediate_size"]))
  5946. self.gguf_writer.add_rope_dimension_count(self.find_hparam(["rotary_dim"]))
  5947. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  5948. if name.endswith("e_score_correction_bias"):
  5949. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5950. # merge expert weights
  5951. if 'experts' in name:
  5952. n_experts = self.hparams["num_experts"]
  5953. assert bid is not None
  5954. expert_cache = self._experts_cache.setdefault(bid, {})
  5955. expert_cache[name] = data_torch
  5956. expert_weights = ["w1", "w2", "w3"]
  5957. # not enough expert weights to merge
  5958. if len(expert_cache) < n_experts * len(expert_weights):
  5959. return []
  5960. tensors: list[tuple[str, Tensor]] = []
  5961. for w_name in expert_weights:
  5962. datas: list[Tensor] = []
  5963. for xid in range(n_experts):
  5964. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  5965. datas.append(expert_cache[ename])
  5966. del expert_cache[ename]
  5967. data_torch = torch.stack(datas, dim=0)
  5968. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  5969. new_name = self.map_tensor_name(merged_name)
  5970. tensors.append((new_name, data_torch))
  5971. del self._experts_cache[bid]
  5972. return tensors
  5973. return super().modify_tensors(data_torch, name, bid)
  5974. @ModelBase.register("PanguEmbeddedForCausalLM")
  5975. class PanguEmbeddedModel(TextModel):
  5976. model_arch = gguf.MODEL_ARCH.PANGU_EMBED
  5977. def set_vocab(self):
  5978. self._set_vocab_sentencepiece()
  5979. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  5980. if tokenizer_config_file.is_file():
  5981. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  5982. tokenizer_config_json = json.load(f)
  5983. if "add_prefix_space" in tokenizer_config_json:
  5984. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  5985. def set_gguf_parameters(self):
  5986. super().set_gguf_parameters()
  5987. hparams = self.hparams
  5988. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5989. # PanguEmbedded's hparam loaded from config.json without head_dim
  5990. if (rope_dim := hparams.get("head_dim")) is None:
  5991. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  5992. self.gguf_writer.add_rope_dimension_count(rope_dim)
  5993. if hparams.get("head_dim") is None:
  5994. self.gguf_writer.add_key_length(rope_dim)
  5995. self.gguf_writer.add_value_length(rope_dim)
  5996. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5997. if name == "lm_head.weight":
  5998. if self.hparams.get("tie_word_embeddings", False):
  5999. logger.info("Skipping tied output layer 'lm_head.weight'")
  6000. return []
  6001. return [(self.map_tensor_name(name), data_torch)]
  6002. @ModelBase.register("Dots1ForCausalLM")
  6003. class Dots1Model(Qwen2MoeModel):
  6004. model_arch = gguf.MODEL_ARCH.DOTS1
  6005. def __init__(self, *args, **kwargs):
  6006. super().__init__(*args, **kwargs)
  6007. self.hparams["num_experts"] = self.hparams["n_routed_experts"]
  6008. def set_gguf_parameters(self):
  6009. super().set_gguf_parameters()
  6010. self.gguf_writer.add_leading_dense_block_count(self.hparams["first_k_dense_replace"])
  6011. self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
  6012. self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
  6013. self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
  6014. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  6015. if name.endswith("e_score_correction_bias"):
  6016. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  6017. if "shared_experts" in name:
  6018. return [(self.map_tensor_name(name), data_torch)]
  6019. return super().modify_tensors(data_torch, name, bid)
  6020. @ModelBase.register("PLMForCausalLM")
  6021. class PLMModel(TextModel):
  6022. model_arch = gguf.MODEL_ARCH.PLM
  6023. def set_vocab(self):
  6024. self._set_vocab_gpt2()
  6025. def set_gguf_parameters(self):
  6026. super().set_gguf_parameters()
  6027. hparams = self.hparams
  6028. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6029. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  6030. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  6031. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  6032. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  6033. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6034. return [(self.map_tensor_name(name), data_torch)]
  6035. def prepare_tensors(self):
  6036. super().prepare_tensors()
  6037. @ModelBase.register("T5WithLMHeadModel")
  6038. @ModelBase.register("T5ForConditionalGeneration")
  6039. @ModelBase.register("MT5ForConditionalGeneration")
  6040. @ModelBase.register("UMT5ForConditionalGeneration")
  6041. @ModelBase.register("UMT5Model")
  6042. class T5Model(TextModel):
  6043. model_arch = gguf.MODEL_ARCH.T5
  6044. def __init__(self, *args, **kwargs):
  6045. super().__init__(*args, **kwargs)
  6046. self.shared_token_embeddings_found = False
  6047. def set_vocab(self):
  6048. # to avoid TypeError: Descriptors cannot be created directly
  6049. # exception when importing sentencepiece_model_pb2
  6050. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  6051. from sentencepiece import SentencePieceProcessor
  6052. from sentencepiece import sentencepiece_model_pb2 as model
  6053. tokenizer_path = self.dir_model / 'tokenizer.model'
  6054. # many older models use spiece.model tokenizer model filename
  6055. if not tokenizer_path.is_file():
  6056. tokenizer_path = self.dir_model / 'spiece.model'
  6057. if not tokenizer_path.is_file():
  6058. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  6059. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  6060. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  6061. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  6062. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  6063. # assure the tokenizer model file name is correct
  6064. assert tokenizer_path.name == 'tokenizer.model'
  6065. return self._set_vocab_sentencepiece()
  6066. else:
  6067. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  6068. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  6069. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  6070. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  6071. tokenizer = SentencePieceProcessor()
  6072. tokenizer.LoadFromFile(str(tokenizer_path))
  6073. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  6074. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  6075. scores: list[float] = [-10000.0] * vocab_size
  6076. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  6077. for token_id in range(tokenizer.vocab_size()):
  6078. piece = tokenizer.IdToPiece(token_id)
  6079. text = piece.encode("utf-8")
  6080. score = tokenizer.GetScore(token_id)
  6081. toktype = SentencePieceTokenTypes.NORMAL
  6082. if tokenizer.IsUnknown(token_id):
  6083. toktype = SentencePieceTokenTypes.UNKNOWN
  6084. elif tokenizer.IsControl(token_id):
  6085. toktype = SentencePieceTokenTypes.CONTROL
  6086. elif tokenizer.IsUnused(token_id):
  6087. toktype = SentencePieceTokenTypes.UNUSED
  6088. elif tokenizer.IsByte(token_id):
  6089. toktype = SentencePieceTokenTypes.BYTE
  6090. tokens[token_id] = text
  6091. scores[token_id] = score
  6092. toktypes[token_id] = toktype
  6093. added_tokens_file = self.dir_model / 'added_tokens.json'
  6094. if added_tokens_file.is_file():
  6095. with open(added_tokens_file, "r", encoding="utf-8") as f:
  6096. added_tokens_json = json.load(f)
  6097. for key in added_tokens_json:
  6098. token_id = added_tokens_json[key]
  6099. if token_id >= vocab_size:
  6100. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  6101. continue
  6102. tokens[token_id] = key.encode("utf-8")
  6103. scores[token_id] = -1000.0
  6104. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  6105. if vocab_size > len(tokens):
  6106. pad_count = vocab_size - len(tokens)
  6107. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  6108. for i in range(1, pad_count + 1):
  6109. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  6110. scores.append(-1000.0)
  6111. toktypes.append(SentencePieceTokenTypes.UNUSED)
  6112. self.gguf_writer.add_tokenizer_model("t5")
  6113. self.gguf_writer.add_tokenizer_pre("default")
  6114. self.gguf_writer.add_token_list(tokens)
  6115. self.gguf_writer.add_token_scores(scores)
  6116. self.gguf_writer.add_token_types(toktypes)
  6117. self.gguf_writer.add_add_space_prefix(add_prefix)
  6118. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  6119. if precompiled_charsmap:
  6120. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  6121. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6122. special_vocab.add_to_gguf(self.gguf_writer)
  6123. def set_gguf_parameters(self):
  6124. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  6125. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  6126. n_ctx = 512
  6127. self.gguf_writer.add_context_length(n_ctx)
  6128. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  6129. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  6130. self.gguf_writer.add_block_count(self.block_count)
  6131. if (dec_n_layer := self.hparams.get("num_decoder_layers")) is not None:
  6132. self.gguf_writer.add_decoder_block_count(dec_n_layer)
  6133. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  6134. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  6135. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  6136. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6137. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  6138. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  6139. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  6140. self.gguf_writer.add_file_type(self.ftype)
  6141. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6142. del bid # unused
  6143. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  6144. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  6145. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  6146. # and decoder and ignore the remaining ones.
  6147. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  6148. if not self.shared_token_embeddings_found:
  6149. name = "shared.weight"
  6150. self.shared_token_embeddings_found = True
  6151. else:
  6152. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  6153. return []
  6154. return [(self.map_tensor_name(name), data_torch)]
  6155. @ModelBase.register("T5EncoderModel")
  6156. class T5EncoderModel(TextModel):
  6157. model_arch = gguf.MODEL_ARCH.T5ENCODER
  6158. def __init__(self, *args, **kwargs):
  6159. super().__init__(*args, **kwargs)
  6160. self.shared_token_embeddings_found = False
  6161. def set_vocab(self):
  6162. # to avoid TypeError: Descriptors cannot be created directly
  6163. # exception when importing sentencepiece_model_pb2
  6164. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  6165. from sentencepiece import SentencePieceProcessor
  6166. from sentencepiece import sentencepiece_model_pb2 as model
  6167. tokenizer_path = self.dir_model / 'tokenizer.model'
  6168. # many older models use spiece.model tokenizer model filename
  6169. if not tokenizer_path.is_file():
  6170. tokenizer_path = self.dir_model / 'spiece.model'
  6171. if not tokenizer_path.is_file():
  6172. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  6173. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  6174. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  6175. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  6176. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  6177. # assure the tokenizer model file name is correct
  6178. assert tokenizer_path.name == 'tokenizer.model'
  6179. return self._set_vocab_sentencepiece()
  6180. else:
  6181. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  6182. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  6183. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  6184. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  6185. tokenizer = SentencePieceProcessor()
  6186. tokenizer.LoadFromFile(str(tokenizer_path))
  6187. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  6188. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  6189. scores: list[float] = [-10000.0] * vocab_size
  6190. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  6191. for token_id in range(tokenizer.vocab_size()):
  6192. piece = tokenizer.IdToPiece(token_id)
  6193. text = piece.encode("utf-8")
  6194. score = tokenizer.GetScore(token_id)
  6195. toktype = SentencePieceTokenTypes.NORMAL
  6196. if tokenizer.IsUnknown(token_id):
  6197. toktype = SentencePieceTokenTypes.UNKNOWN
  6198. elif tokenizer.IsControl(token_id):
  6199. toktype = SentencePieceTokenTypes.CONTROL
  6200. elif tokenizer.IsUnused(token_id):
  6201. toktype = SentencePieceTokenTypes.UNUSED
  6202. elif tokenizer.IsByte(token_id):
  6203. toktype = SentencePieceTokenTypes.BYTE
  6204. tokens[token_id] = text
  6205. scores[token_id] = score
  6206. toktypes[token_id] = toktype
  6207. added_tokens_file = self.dir_model / 'added_tokens.json'
  6208. if added_tokens_file.is_file():
  6209. with open(added_tokens_file, "r", encoding="utf-8") as f:
  6210. added_tokens_json = json.load(f)
  6211. for key in added_tokens_json:
  6212. token_id = added_tokens_json[key]
  6213. if token_id >= vocab_size:
  6214. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  6215. continue
  6216. tokens[token_id] = key.encode("utf-8")
  6217. scores[token_id] = -1000.0
  6218. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  6219. if vocab_size > len(tokens):
  6220. pad_count = vocab_size - len(tokens)
  6221. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  6222. for i in range(1, pad_count + 1):
  6223. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  6224. scores.append(-1000.0)
  6225. toktypes.append(SentencePieceTokenTypes.UNUSED)
  6226. self.gguf_writer.add_tokenizer_model("t5")
  6227. self.gguf_writer.add_tokenizer_pre("default")
  6228. self.gguf_writer.add_token_list(tokens)
  6229. self.gguf_writer.add_token_scores(scores)
  6230. self.gguf_writer.add_token_types(toktypes)
  6231. self.gguf_writer.add_add_space_prefix(add_prefix)
  6232. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  6233. if precompiled_charsmap:
  6234. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  6235. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6236. special_vocab.add_to_gguf(self.gguf_writer)
  6237. def set_gguf_parameters(self):
  6238. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  6239. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  6240. n_ctx = 512
  6241. self.gguf_writer.add_context_length(n_ctx)
  6242. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  6243. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  6244. self.gguf_writer.add_block_count(self.block_count)
  6245. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  6246. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  6247. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  6248. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6249. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  6250. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  6251. self.gguf_writer.add_file_type(self.ftype)
  6252. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6253. del bid # unused
  6254. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  6255. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  6256. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  6257. # and decoder and ignore the remaining ones.
  6258. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  6259. if not self.shared_token_embeddings_found:
  6260. name = "shared.weight"
  6261. self.shared_token_embeddings_found = True
  6262. else:
  6263. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  6264. return []
  6265. return [(self.map_tensor_name(name), data_torch)]
  6266. @ModelBase.register("JAISLMHeadModel")
  6267. class JaisModel(TextModel):
  6268. model_arch = gguf.MODEL_ARCH.JAIS
  6269. def __init__(self, *args, **kwargs):
  6270. super().__init__(*args, **kwargs)
  6271. # SwigLU activation
  6272. assert self.hparams["activation_function"] == "swiglu"
  6273. # ALiBi position embedding
  6274. assert self.hparams["position_embedding_type"] == "alibi"
  6275. # Embeddings scale
  6276. self.embeddings_scale = 1.0
  6277. if 'mup_embeddings_scale' in self.hparams:
  6278. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  6279. elif 'embeddings_scale' in self.hparams:
  6280. self.embeddings_scale = self.hparams['embeddings_scale']
  6281. else:
  6282. assert False
  6283. self.width_scale = 1.0
  6284. if 'mup_output_alpha' in self.hparams:
  6285. assert 'mup_width_scale' in self.hparams
  6286. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  6287. elif 'width_scale' in self.hparams:
  6288. self.width_scale = self.hparams['width_scale']
  6289. else:
  6290. assert False
  6291. self.max_alibi_bias = 8.0
  6292. def set_vocab(self):
  6293. self._set_vocab_gpt2()
  6294. def set_gguf_parameters(self):
  6295. self.gguf_writer.add_block_count(self.block_count)
  6296. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  6297. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  6298. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  6299. self.gguf_writer.add_head_count(self.hparams["n_head"])
  6300. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6301. self.gguf_writer.add_file_type(self.ftype)
  6302. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6303. del bid # unused
  6304. tensors: list[tuple[str, Tensor]] = []
  6305. # we don't need these
  6306. if name.endswith((".attn.bias")):
  6307. return tensors
  6308. if name.endswith(("relative_pe.slopes")):
  6309. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  6310. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  6311. # but Jais's PyTorch model simply precalculates the slope values and places them
  6312. # in relative_pes.slopes
  6313. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  6314. first_val = float(data_torch[0].item())
  6315. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  6316. return tensors
  6317. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  6318. data_torch = data_torch.transpose(1, 0)
  6319. new_name = self.map_tensor_name(name)
  6320. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  6321. tensors.append((new_name, data_torch * self.embeddings_scale))
  6322. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  6323. tensors.append((new_name, data_torch * self.width_scale))
  6324. else:
  6325. tensors.append((new_name, data_torch))
  6326. return tensors
  6327. def prepare_tensors(self):
  6328. super().prepare_tensors()
  6329. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  6330. @ModelBase.register("Glm4ForCausalLM", "Glm4vForConditionalGeneration")
  6331. class Glm4Model(TextModel):
  6332. model_arch = gguf.MODEL_ARCH.GLM4
  6333. def set_vocab(self):
  6334. from transformers import AutoTokenizer
  6335. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  6336. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6337. tokens, toktypes, tokpre = self.get_vocab_base()
  6338. self.gguf_writer.add_tokenizer_model("gpt2")
  6339. self.gguf_writer.add_tokenizer_pre(tokpre)
  6340. self.gguf_writer.add_token_list(tokens)
  6341. self.gguf_writer.add_token_types(toktypes)
  6342. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6343. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6344. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  6345. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  6346. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6347. special_vocab.add_to_gguf(self.gguf_writer)
  6348. def set_gguf_parameters(self):
  6349. super().set_gguf_parameters()
  6350. if (rope_dim := self.hparams.get("head_dim")) is None:
  6351. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6352. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  6353. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6354. if name.startswith("model.visual."): # ignore visual part of Glm4v
  6355. return []
  6356. elif name.startswith("model.language_model."):
  6357. name = name.replace("language_model.", "") # for Glm4v
  6358. return super().modify_tensors(data_torch, name, bid)
  6359. @ModelBase.register("Glm4MoeForCausalLM")
  6360. class Glm4MoeModel(TextModel):
  6361. model_arch = gguf.MODEL_ARCH.GLM4_MOE
  6362. def __init__(self, *args, **kwargs):
  6363. super().__init__(*args, **kwargs)
  6364. # GLM4_MOE has num_hidden_layers + 1 actual layers (including NextN layer)
  6365. self.block_count = self.hparams["num_hidden_layers"] + self.hparams.get("num_nextn_predict_layers", 0)
  6366. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  6367. def set_vocab(self):
  6368. from transformers import AutoTokenizer
  6369. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  6370. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6371. tokens, toktypes, tokpre = self.get_vocab_base()
  6372. self.gguf_writer.add_tokenizer_model("gpt2")
  6373. self.gguf_writer.add_tokenizer_pre(tokpre)
  6374. self.gguf_writer.add_token_list(tokens)
  6375. self.gguf_writer.add_token_types(toktypes)
  6376. # Special tokens
  6377. # Note: Using <|endoftext|> (151329) for eot causes endless generation
  6378. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["[gMASK]"]) # 151331
  6379. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"]) # 151336
  6380. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"]) # 151329
  6381. special_vocab._set_special_token("eom", tokenizer.get_added_vocab()["<|observation|>"]) # 151338
  6382. special_vocab.add_to_gguf(self.gguf_writer)
  6383. def set_gguf_parameters(self):
  6384. super().set_gguf_parameters()
  6385. if (rope_dim := self.hparams.get("head_dim")) is None:
  6386. rope_dim = (
  6387. self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6388. )
  6389. self.gguf_writer.add_rope_dimension_count(
  6390. int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5))
  6391. )
  6392. # MoE parameters - Use only routed expert count (shared experts handled separately)
  6393. if (n_routed_experts := self.hparams.get("n_routed_experts")) is not None:
  6394. self.gguf_writer.add_expert_count(n_routed_experts)
  6395. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  6396. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  6397. if (n_shared_experts := self.hparams.get("n_shared_experts")) is not None:
  6398. self.gguf_writer.add_expert_shared_count(n_shared_experts)
  6399. if (first_k_dense_replace := self.hparams.get("first_k_dense_replace")) is not None:
  6400. self.gguf_writer.add_leading_dense_block_count(first_k_dense_replace)
  6401. # Expert gating function (sigmoid for GLM4_MOE)
  6402. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  6403. # Routed scaling factor
  6404. if (routed_scaling_factor := self.hparams.get("routed_scaling_factor")) is not None:
  6405. self.gguf_writer.add_expert_weights_scale(routed_scaling_factor)
  6406. # Normalise topk probabilities
  6407. if (norm_topk_prob := self.hparams.get("norm_topk_prob")) is not None:
  6408. self.gguf_writer.add_expert_weights_norm(norm_topk_prob)
  6409. # NextN/MTP prediction layers
  6410. if (num_nextn_predict_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
  6411. self.gguf_writer.add_nextn_predict_layers(num_nextn_predict_layers)
  6412. _experts: list[dict[str, Tensor]] | None = None
  6413. def modify_tensors(
  6414. self, data_torch: Tensor, name: str, bid: int | None
  6415. ) -> Iterable[tuple[str, Tensor]]:
  6416. if name.startswith("model.visual."): # ignore visual part
  6417. return []
  6418. elif name.startswith("model.language_model."):
  6419. name = name.replace("language_model.", "") # for multimodal variants
  6420. # Handle main token embedding (but not layer-specific NextN embeddings)
  6421. if name == "model.embed_tokens.weight" and ".layers." not in name:
  6422. return [(self.map_tensor_name("token_embd.weight"), data_torch)]
  6423. # Handle routed experts
  6424. if name.find("mlp.experts") != -1:
  6425. n_experts = self.hparams["n_routed_experts"]
  6426. assert bid is not None
  6427. if self._experts is None:
  6428. self._experts = [{} for _ in range(self.block_count)]
  6429. self._experts[bid][name] = data_torch
  6430. if len(self._experts[bid]) >= n_experts * 3:
  6431. tensors: list[tuple[str, Tensor]] = []
  6432. # merge the experts into a single 3d tensor
  6433. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6434. datas: list[Tensor] = []
  6435. for xid in range(n_experts):
  6436. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6437. datas.append(self._experts[bid][ename])
  6438. del self._experts[bid][ename]
  6439. data_torch = torch.stack(datas, dim=0)
  6440. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6441. new_name = self.map_tensor_name(merged_name)
  6442. tensors.append((new_name, data_torch))
  6443. return tensors
  6444. else:
  6445. return []
  6446. if name.endswith("e_score_correction_bias"):
  6447. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  6448. new_name = self.map_tensor_name(name)
  6449. return [(new_name, data_torch)]
  6450. def prepare_tensors(self):
  6451. super().prepare_tensors()
  6452. if self._experts is not None:
  6453. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6454. experts = [k for d in self._experts for k in d.keys()]
  6455. if len(experts) > 0:
  6456. raise ValueError(f"Unprocessed experts: {experts}")
  6457. @ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  6458. class ChatGLMModel(TextModel):
  6459. model_arch = gguf.MODEL_ARCH.CHATGLM
  6460. def set_vocab_chatglm3(self):
  6461. dir_model = self.dir_model
  6462. hparams = self.hparams
  6463. tokens: list[bytes] = []
  6464. toktypes: list[int] = []
  6465. scores: list[float] = []
  6466. from transformers import AutoTokenizer
  6467. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  6468. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  6469. assert max(tokenizer.get_vocab().values()) < vocab_size
  6470. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  6471. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  6472. for token_id in range(vocab_size):
  6473. piece = tokenizer._convert_id_to_token(token_id)
  6474. if token_id == 0:
  6475. piece = "<unk>"
  6476. elif token_id == 1:
  6477. piece = "<bos>"
  6478. elif token_id == 2:
  6479. piece = "<eos>"
  6480. text = piece.encode("utf-8")
  6481. score = 0.0
  6482. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  6483. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  6484. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  6485. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  6486. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  6487. if piece in special_tokens:
  6488. toktype = SentencePieceTokenTypes.CONTROL
  6489. elif len(piece) == 0:
  6490. text = f"[PAD{token_id}]".encode("utf-8")
  6491. toktype = SentencePieceTokenTypes.UNUSED
  6492. else:
  6493. toktype = SentencePieceTokenTypes.USER_DEFINED
  6494. tokens.append(text)
  6495. scores.append(score)
  6496. toktypes.append(toktype)
  6497. continue
  6498. toktype = SentencePieceTokenTypes.NORMAL
  6499. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  6500. toktype = SentencePieceTokenTypes.UNKNOWN
  6501. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  6502. toktype = SentencePieceTokenTypes.CONTROL
  6503. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  6504. toktype = SentencePieceTokenTypes.UNUSED
  6505. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  6506. toktype = SentencePieceTokenTypes.BYTE
  6507. tokens.append(text)
  6508. scores.append(score)
  6509. toktypes.append(toktype)
  6510. self.gguf_writer.add_tokenizer_model("llama")
  6511. # glm3 needs prefix and suffix formatted as:
  6512. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  6513. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  6514. self.gguf_writer.add_token_list(tokens)
  6515. self.gguf_writer.add_token_scores(scores)
  6516. self.gguf_writer.add_token_types(toktypes)
  6517. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6518. special_vocab.add_to_gguf(self.gguf_writer)
  6519. @staticmethod
  6520. def token_bytes_to_string(b):
  6521. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  6522. byte_encoder = bytes_to_unicode()
  6523. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  6524. @staticmethod
  6525. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  6526. parts = [bytes([b]) for b in token]
  6527. while True:
  6528. min_idx = None
  6529. min_rank = None
  6530. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  6531. rank = mergeable_ranks.get(pair[0] + pair[1])
  6532. if rank is not None and (min_rank is None or rank < min_rank):
  6533. min_idx = i
  6534. min_rank = rank
  6535. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  6536. break
  6537. assert min_idx is not None
  6538. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  6539. return parts
  6540. def set_vocab(self):
  6541. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  6542. self.set_vocab_chatglm3()
  6543. return
  6544. dir_model = self.dir_model
  6545. hparams = self.hparams
  6546. tokens: list[str] = []
  6547. toktypes: list[int] = []
  6548. from transformers import AutoTokenizer
  6549. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  6550. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  6551. assert max(tokenizer.get_vocab().values()) < vocab_size
  6552. tokens, toktypes, tokpre = self.get_vocab_base()
  6553. self.gguf_writer.add_tokenizer_model("gpt2")
  6554. self.gguf_writer.add_tokenizer_pre(tokpre)
  6555. self.gguf_writer.add_token_list(tokens)
  6556. self.gguf_writer.add_token_types(toktypes)
  6557. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6558. # only add special tokens when they were not already loaded from config.json
  6559. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6560. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  6561. # this one is usually not in config.json anyway
  6562. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  6563. special_vocab.add_to_gguf(self.gguf_writer)
  6564. def set_gguf_parameters(self):
  6565. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  6566. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  6567. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  6568. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  6569. self.gguf_writer.add_embedding_length(n_embed)
  6570. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  6571. self.gguf_writer.add_block_count(self.block_count)
  6572. self.gguf_writer.add_head_count(n_head)
  6573. self.gguf_writer.add_head_count_kv(n_head_kv)
  6574. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  6575. self.gguf_writer.add_file_type(self.ftype)
  6576. if "attention_dim" in self.hparams:
  6577. rope_dim = self.hparams["attention_dim"]
  6578. else:
  6579. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6580. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  6581. self.gguf_writer.add_add_bos_token(False)
  6582. rope_freq = 10000
  6583. if "rope_ratio" in self.hparams:
  6584. rope_freq = rope_freq * self.hparams["rope_ratio"]
  6585. self.gguf_writer.add_rope_freq_base(rope_freq)
  6586. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6587. del bid # unused
  6588. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  6589. return []
  6590. name = name.removeprefix("transformer.")
  6591. return [(self.map_tensor_name(name), data_torch)]
  6592. @ModelBase.register("NemotronForCausalLM")
  6593. class NemotronModel(TextModel):
  6594. model_arch = gguf.MODEL_ARCH.NEMOTRON
  6595. def set_vocab(self):
  6596. self._set_vocab_sentencepiece()
  6597. self.gguf_writer.add_pad_token_id(0)
  6598. self.gguf_writer.add_unk_token_id(1)
  6599. def set_gguf_parameters(self):
  6600. super().set_gguf_parameters()
  6601. hparams = self.hparams
  6602. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6603. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  6604. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  6605. # * Partial RoPE
  6606. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  6607. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  6608. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  6609. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  6610. # * RopeScaling for Nemotron
  6611. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  6612. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6613. else:
  6614. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  6615. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  6616. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6617. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  6618. # model.layers.{l}.input_layernorm.weight
  6619. # model.layers.{l}.post_attention_layernorm.weight
  6620. # model.norm.weight
  6621. if name.endswith("norm.weight"):
  6622. data_torch = data_torch + 1
  6623. return [(self.map_tensor_name(name), data_torch)]
  6624. @ModelBase.register("ExaoneForCausalLM")
  6625. class ExaoneModel(TextModel):
  6626. model_arch = gguf.MODEL_ARCH.EXAONE
  6627. def set_gguf_parameters(self):
  6628. super().set_gguf_parameters()
  6629. hparams = self.hparams
  6630. assert (hparams["activation_function"] == "silu")
  6631. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  6632. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  6633. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  6634. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  6635. if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters):
  6636. if rope_params.get("rope_type", '').lower() == "llama3":
  6637. base = self.rope_parameters.get("rope_theta", 10000.0)
  6638. if (dim := self.hparams.get("head_dim")) is None:
  6639. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6640. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  6641. factor = rope_params.get("factor", 8.0)
  6642. low_freq_factor = rope_params.get("low_freq_factor", 1.0)
  6643. high_freq_factor = rope_params.get("high_freq_factor", 4.0)
  6644. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  6645. low_freq_wavelen = old_context_len / low_freq_factor
  6646. high_freq_wavelen = old_context_len / high_freq_factor
  6647. assert low_freq_wavelen != high_freq_wavelen
  6648. rope_factors = []
  6649. for freq in freqs:
  6650. wavelen = 2 * math.pi / freq
  6651. if wavelen < high_freq_wavelen:
  6652. rope_factors.append(1)
  6653. elif wavelen > low_freq_wavelen:
  6654. rope_factors.append(factor)
  6655. else:
  6656. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  6657. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  6658. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  6659. @ModelBase.register("Exaone4ForCausalLM")
  6660. class Exaone4Model(TextModel):
  6661. model_arch = gguf.MODEL_ARCH.EXAONE4
  6662. def set_vocab(self):
  6663. tokens, toktypes, tokpre = self.get_vocab_base()
  6664. self.gguf_writer.add_tokenizer_model("gpt2")
  6665. self.gguf_writer.add_tokenizer_pre(tokpre)
  6666. self.gguf_writer.add_token_list(tokens)
  6667. self.gguf_writer.add_token_types(toktypes)
  6668. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6669. special_vocab.add_to_gguf(self.gguf_writer)
  6670. def set_gguf_parameters(self):
  6671. super().set_gguf_parameters()
  6672. hparams = self.hparams
  6673. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6674. if hparams.get("sliding_window") is not None:
  6675. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  6676. if "layer_types" in hparams:
  6677. self.gguf_writer.add_sliding_window_pattern([t == "sliding_attention" for t in hparams["layer_types"]])
  6678. elif "sliding_window_pattern" in hparams:
  6679. sliding_window_pattern = []
  6680. if isinstance(hparams["sliding_window_pattern"], str): # e.g. LLLG
  6681. for i in range(hparams["num_hidden_layers"]):
  6682. sliding_window_pattern.append(hparams["sliding_window_pattern"][i % len(hparams["sliding_window_pattern"])] == "L")
  6683. if isinstance(hparams["sliding_window_pattern"], int): # e.g. 4
  6684. for i in range(hparams["num_hidden_layers"]):
  6685. sliding_window_pattern.append((i + 1) % hparams["sliding_window_pattern"] != 0)
  6686. if len(sliding_window_pattern) == hparams["num_hidden_layers"]:
  6687. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  6688. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  6689. if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters):
  6690. if rope_params.get("rope_type", '').lower() == "llama3":
  6691. base = rope_params.get("rope_theta", 10_000.0)
  6692. if (dim := self.hparams.get("head_dim")) is None:
  6693. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6694. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  6695. factor = rope_params.get("factor", 16.0)
  6696. low_freq_factor = rope_params.get("low_freq_factor", 1.0)
  6697. high_freq_factor = rope_params.get("high_freq_factor", 4.0)
  6698. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  6699. low_freq_wavelen = old_context_len / low_freq_factor
  6700. high_freq_wavelen = old_context_len / high_freq_factor
  6701. rope_factors = []
  6702. for freq in freqs:
  6703. wavelen = 2 * math.pi / freq
  6704. if wavelen < high_freq_wavelen:
  6705. rope_factors.append(1)
  6706. elif wavelen > low_freq_wavelen:
  6707. rope_factors.append(factor)
  6708. else:
  6709. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  6710. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  6711. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  6712. @ModelBase.register("GraniteForCausalLM")
  6713. class GraniteModel(LlamaModel):
  6714. """Conversion for IBM's GraniteForCausalLM"""
  6715. model_arch = gguf.MODEL_ARCH.GRANITE
  6716. def set_gguf_parameters(self):
  6717. """Granite uses standard llama parameters with the following differences:
  6718. - No head_dim support
  6719. - New multiplier params:
  6720. - attention_scale
  6721. - embedding_scale
  6722. - residual_scale
  6723. - logits_scaling
  6724. """
  6725. if head_dim := self.hparams.pop("head_dim", None):
  6726. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  6727. super().set_gguf_parameters()
  6728. # NOTE: Convert _multiplier params to _scale params for naming
  6729. # consistency
  6730. if attention_scale := self.hparams.get("attention_multiplier"):
  6731. self.gguf_writer.add_attention_scale(attention_scale)
  6732. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  6733. if embedding_scale := self.hparams.get("embedding_multiplier"):
  6734. self.gguf_writer.add_embedding_scale(embedding_scale)
  6735. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  6736. if residual_scale := self.hparams.get("residual_multiplier"):
  6737. self.gguf_writer.add_residual_scale(residual_scale)
  6738. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  6739. if logits_scale := self.hparams.get("logits_scaling"):
  6740. self.gguf_writer.add_logit_scale(logits_scale)
  6741. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  6742. @ModelBase.register("GraniteMoeForCausalLM", "GraniteMoeSharedForCausalLM")
  6743. class GraniteMoeModel(GraniteModel):
  6744. """Conversion for IBM's GraniteMoeForCausalLM"""
  6745. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  6746. def set_gguf_parameters(self):
  6747. """GraniteMoeShared uses GraniteMoe parameters plus the following:
  6748. - shared_intermediate_size
  6749. """
  6750. super().set_gguf_parameters()
  6751. if shared_feed_forward_length := self.hparams.get("shared_intermediate_size"):
  6752. self.gguf_writer.add_expert_shared_feed_forward_length(shared_feed_forward_length)
  6753. logger.info("gguf: (granitemoeshared) shared_feed_forward_length = %s", shared_feed_forward_length)
  6754. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6755. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  6756. is used. This essentially merges w1 and w3 into a single tensor with 2x
  6757. the hidden size that is then split during forward. To keep compatibility
  6758. with existing mixtral support, we pull them apart here.
  6759. """
  6760. if name.endswith("block_sparse_moe.input_linear.weight"):
  6761. ffn_dim = self.hparams["intermediate_size"]
  6762. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  6763. gate, up = data_torch.split(ffn_dim, dim=-2)
  6764. return [
  6765. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  6766. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  6767. ]
  6768. has_experts = bool(self.hparams.get('num_local_experts'))
  6769. if name.endswith("shared_mlp.input_linear.weight"):
  6770. ffn_dim = self.hparams["shared_intermediate_size"]
  6771. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * shared_intermediate_size"
  6772. gate, up = data_torch.split(ffn_dim, dim=-2)
  6773. if has_experts:
  6774. return [
  6775. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_SHEXP, bid), gate),
  6776. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_SHEXP, bid), up),
  6777. ]
  6778. return [
  6779. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), gate),
  6780. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), up),
  6781. ]
  6782. if not has_experts and name.endswith("shared_mlp.output_linear.weight"):
  6783. return [
  6784. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, bid), data_torch)
  6785. ]
  6786. return super().modify_tensors(data_torch, name, bid)
  6787. @ModelBase.register("GraniteMoeHybridForCausalLM", "BambaForCausalLM")
  6788. class GraniteHybridModel(Mamba2Model, GraniteMoeModel):
  6789. """GraniteHybrid is a hybrid SSM + Attention model that uses Mamba2 SSM
  6790. layers and optionally uses MoE w/ a shared expert"""
  6791. model_arch = gguf.MODEL_ARCH.GRANITE_HYBRID
  6792. undo_permute = True
  6793. def __init__(self, *args, **kwargs):
  6794. # Hybrid mamba models use a prefix for the mamba-specific params.
  6795. # TODO: Extend this if the prefix(es) need to be configurable
  6796. self.hparam_prefixes = ["mamba"]
  6797. super().__init__(*args, **kwargs)
  6798. # Lists of which layers use ssm vs attention
  6799. self._attn_layers = self.get_attn_layers()
  6800. self._ssm_layers = [
  6801. i for i in range(self.block_count)
  6802. if i not in self._attn_layers
  6803. ]
  6804. # There are some models in this family that are non-hybrid, but keep the
  6805. # same parent class by setting all layers to "attention." If this is the
  6806. # case, the model architecture needs to be updated to a standard
  6807. # "granite" or "granitemoe" model
  6808. if not self._ssm_layers:
  6809. has_experts = self.find_hparam(["num_experts_per_tok"], optional=True)
  6810. new_arch = (
  6811. gguf.MODEL_ARCH.GRANITE_MOE
  6812. if has_experts else
  6813. gguf.MODEL_ARCH.GRANITE
  6814. )
  6815. self.model_arch = new_arch
  6816. self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[new_arch]
  6817. self.gguf_writer.add_architecture()
  6818. # n_group and d_inner are used during reshape_tensors for mamba2
  6819. # NOTE: Explicitly include hparam prefix prefix for d_model to
  6820. # disambiguate with top-level head_dim
  6821. # NOTE 2: If needed for future models, this can be isolated in a method
  6822. # to separate the prefix setting and teh keys used
  6823. self.d_model = self.find_hparam([f"{self.hparam_prefixes[0]}_head_dim", "hidden_size", "d_model"])
  6824. self.n_group = self.find_hparam(["n_groups", "num_groups"])
  6825. self.d_inner = self.find_hparam(["expand", "num_heads"]) * self.d_model
  6826. def get_attn_layers(self):
  6827. # Explicit list of layer type names
  6828. if layer_types := self.hparams.get("layer_types"):
  6829. return [
  6830. i for i, typ in enumerate(layer_types)
  6831. if typ == "attention"
  6832. ]
  6833. # Layer types indicated by index or period
  6834. attn_layers = self.hparams.get("attn_layer_indices", [])
  6835. if not attn_layers:
  6836. attn_period = self.hparams.get("attn_layer_period")
  6837. assert attn_period, "Didn't find attn_layer_indices or attn_layer_period"
  6838. attn_offset = self.hparams.get("attn_layer_offset")
  6839. assert attn_offset is not None, "No attention layer offset set with attn_layer_period"
  6840. attn_layers = [
  6841. i for i in range(self.block_count)
  6842. if i % attn_period == attn_offset
  6843. ]
  6844. return attn_layers
  6845. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  6846. prefixed = []
  6847. for pfx in self.hparam_prefixes:
  6848. prefixed.extend(
  6849. "_".join([pfx, k])
  6850. for k in keys
  6851. )
  6852. keys = list(keys) + prefixed
  6853. return Mamba2Model.find_hparam(self, keys, *args, **kwargs)
  6854. def modify_tensors(
  6855. self, data_torch: Tensor, name: str, bid: int | None
  6856. ) -> Iterable[tuple[str, Tensor]]:
  6857. if (
  6858. name.endswith("block_sparse_moe.input_linear.weight")
  6859. or "shared_mlp" in name
  6860. ):
  6861. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  6862. # Determine whether this is a mamba layer or an attention layer
  6863. if bid in self._ssm_layers:
  6864. return Mamba2Model.modify_tensors(self, data_torch, name, bid)
  6865. elif bid in self._attn_layers:
  6866. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  6867. return [(self.map_tensor_name(name), data_torch)]
  6868. def set_gguf_parameters(self):
  6869. """This method merges params from both parents and some that are
  6870. specific to this model. The result is some duplication of how the params
  6871. get set. The following warnings are expected during conversion:
  6872. WARNING:Duplicated key name 'granitehybrid.attention.head_count_kv'
  6873. WARNING:Duplicated key name 'granitehybrid.context_length'
  6874. """
  6875. GraniteMoeModel.set_gguf_parameters(self)
  6876. ## Mamba mixer params ##
  6877. self.gguf_writer.add_ssm_conv_kernel(self.find_hparam(["conv_kernel", "d_conv"]))
  6878. self.gguf_writer.add_ssm_state_size(self.find_hparam(["state_size", "d_state", "state_dim", "ssm_state_size"]))
  6879. self.gguf_writer.add_ssm_group_count(self.n_group)
  6880. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  6881. # NOTE: The mamba_dt_rank is _not_ the right field for how this is used
  6882. # in llama.cpp
  6883. self.gguf_writer.add_ssm_time_step_rank(self.find_hparam(["n_heads", "num_heads"]))
  6884. ## Attention params ##
  6885. head_count_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  6886. head_count_kv_vec = [
  6887. head_count_kv if i in self._attn_layers else 0 for i in range(self.block_count)
  6888. ]
  6889. if rope_dim := self.hparams.get("attn_rotary_emb"):
  6890. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6891. self.gguf_writer.add_head_count_kv(head_count_kv_vec)
  6892. ## If Bamba or non-hybrid, use rope, otherwise don't
  6893. use_rope = (
  6894. "BambaForCausalLM" in self.hparams["architectures"]
  6895. or not self._ssm_layers
  6896. )
  6897. self.gguf_writer.add_rope_scaling_finetuned(use_rope)
  6898. if not use_rope:
  6899. self.gguf_writer.add_context_length(2**20)
  6900. ## Validation ##
  6901. d_head = self.find_hparam(["d_head"], optional=True) or 64
  6902. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  6903. assert self.d_inner % d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {d_head}"
  6904. def set_vocab(self):
  6905. self.hparams["pad_vocab_size_multiple"] = 8
  6906. Mamba2Model.set_vocab(self)
  6907. @ModelBase.register("NemotronHForCausalLM")
  6908. class NemotronHModel(GraniteHybridModel):
  6909. """Hybrid mamba2/attention model from NVIDIA"""
  6910. model_arch = gguf.MODEL_ARCH.NEMOTRON_H
  6911. def __init__(self, *args, **kwargs):
  6912. super().__init__(*args, **kwargs)
  6913. # Save the top-level head_dim for later
  6914. self.head_dim = self.hparams.get("head_dim", self.hparams.get("attention_head_dim"))
  6915. assert self.head_dim is not None, "Could not find the attention head dim in config"
  6916. # Don't use expand to calculate d_inner
  6917. self.d_inner = self.find_hparam(["num_heads"]) * self.d_model
  6918. # Update the ssm / attn / mlp layers
  6919. # M: Mamba2, *: Attention, -: MLP
  6920. hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
  6921. self._ssm_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == "M"]
  6922. self._mlp_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == "-"]
  6923. def get_attn_layers(self):
  6924. hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
  6925. assert len(hybrid_override_pattern) == self.block_count, "Mismatch between hybrid override and num_hidden_layers!"
  6926. return [i for i, val in enumerate(hybrid_override_pattern) if val == "*"]
  6927. def set_gguf_parameters(self):
  6928. super().set_gguf_parameters()
  6929. self.gguf_writer.add_key_length(self.head_dim)
  6930. self.gguf_writer.add_value_length(self.head_dim)
  6931. # Set feed_forward_length
  6932. # NOTE: This will trigger an override warning. This is preferrable to
  6933. # duplicating all the parent logic
  6934. n_ff = self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"])
  6935. self.gguf_writer.add_feed_forward_length([
  6936. n_ff if i in self._mlp_layers else 0 for i in range(self.block_count)
  6937. ])
  6938. def set_vocab(self):
  6939. super().set_vocab()
  6940. # The tokenizer _does_ add a BOS token (via post_processor type
  6941. # TemplateProcessing) but does not set add_bos_token to true in the
  6942. # config, so we need to explicitly override it here.
  6943. self.gguf_writer.add_add_bos_token(True)
  6944. @ModelBase.register("BailingMoeForCausalLM")
  6945. class BailingMoeModel(TextModel):
  6946. model_arch = gguf.MODEL_ARCH.BAILINGMOE
  6947. def set_vocab(self):
  6948. self._set_vocab_gpt2()
  6949. def set_gguf_parameters(self):
  6950. super().set_gguf_parameters()
  6951. hparams = self.hparams
  6952. if (rope_dim := hparams.get("head_dim")) is None:
  6953. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  6954. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6955. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  6956. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6957. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  6958. self.gguf_writer.add_expert_weights_scale(1.0)
  6959. self.gguf_writer.add_expert_count(hparams["num_experts"])
  6960. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  6961. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  6962. _experts: list[dict[str, Tensor]] | None = None
  6963. @staticmethod
  6964. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  6965. if n_head_kv is not None and n_head != n_head_kv:
  6966. n_head = n_head_kv
  6967. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  6968. .swapaxes(1, 2)
  6969. .reshape(weights.shape))
  6970. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6971. n_head = self.hparams["num_attention_heads"]
  6972. n_kv_head = self.hparams.get("num_key_value_heads")
  6973. n_embd = self.hparams["hidden_size"]
  6974. if (head_dim := self.hparams.get("head_dim")) is None:
  6975. head_dim = n_embd // n_head
  6976. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  6977. if name.endswith("attention.dense.weight"):
  6978. return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
  6979. elif name.endswith("query_key_value.weight"):
  6980. q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
  6981. return [
  6982. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
  6983. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
  6984. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
  6985. ]
  6986. elif name.find("mlp.experts") != -1:
  6987. n_experts = self.hparams["num_experts"]
  6988. assert bid is not None
  6989. tensors: list[tuple[str, Tensor]] = []
  6990. if self._experts is None:
  6991. self._experts = [{} for _ in range(self.block_count)]
  6992. self._experts[bid][name] = data_torch
  6993. if len(self._experts[bid]) >= n_experts * 3:
  6994. # merge the experts into a single 3d tensor
  6995. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6996. datas: list[Tensor] = []
  6997. for xid in range(n_experts):
  6998. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6999. datas.append(self._experts[bid][ename])
  7000. del self._experts[bid][ename]
  7001. data_torch = torch.stack(datas, dim=0)
  7002. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7003. new_name = self.map_tensor_name(merged_name)
  7004. tensors.append((new_name, data_torch))
  7005. return tensors
  7006. new_name = self.map_tensor_name(name)
  7007. if new_name == output_name and self.hparams.get("norm_head"):
  7008. data_torch = data_torch.float()
  7009. data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
  7010. return [(new_name, data_torch)]
  7011. def prepare_tensors(self):
  7012. super().prepare_tensors()
  7013. if self._experts is not None:
  7014. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7015. experts = [k for d in self._experts for k in d.keys()]
  7016. if len(experts) > 0:
  7017. raise ValueError(f"Unprocessed experts: {experts}")
  7018. @ModelBase.register("BailingMoeV2ForCausalLM")
  7019. class BailingMoeV2Model(TextModel):
  7020. model_arch = gguf.MODEL_ARCH.BAILINGMOE2
  7021. def __init__(self, *args, **kwargs):
  7022. super().__init__(*args, **kwargs)
  7023. if nextn_layers := self.hparams.get("num_nextn_predict_layers", 0):
  7024. self.block_count = self.hparams["num_hidden_layers"] + nextn_layers
  7025. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  7026. def set_vocab(self):
  7027. self._set_vocab_gpt2()
  7028. def set_gguf_parameters(self):
  7029. super().set_gguf_parameters()
  7030. hparams = self.hparams
  7031. if (rope_dim := hparams.get("head_dim")) is None:
  7032. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  7033. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  7034. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  7035. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  7036. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  7037. self.gguf_writer.add_expert_shared_feed_forward_length(hparams.get("moe_shared_expert_intermediate_size", hparams["moe_intermediate_size"] * hparams["num_shared_experts"]))
  7038. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  7039. self.gguf_writer.add_expert_count(hparams["num_experts"])
  7040. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  7041. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  7042. if (nextn_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
  7043. self.gguf_writer.add_nextn_predict_layers(nextn_layers)
  7044. _experts: list[dict[str, Tensor]] | None = None
  7045. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7046. if "mlp.experts" in name:
  7047. n_experts = self.hparams["num_experts"]
  7048. assert bid is not None
  7049. tensors: list[tuple[str, Tensor]] = []
  7050. if self._experts is None:
  7051. self._experts = [{} for _ in range(self.block_count)]
  7052. self._experts[bid][name] = data_torch
  7053. if len(self._experts[bid]) >= n_experts * 3:
  7054. # merge the experts into a single 3d tensor
  7055. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7056. datas: list[Tensor] = []
  7057. for xid in range(n_experts):
  7058. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7059. datas.append(self._experts[bid][ename])
  7060. del self._experts[bid][ename]
  7061. data_torch = torch.stack(datas, dim=0)
  7062. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7063. new_name = self.map_tensor_name(merged_name)
  7064. tensors.append((new_name, data_torch))
  7065. return tensors
  7066. if name.endswith(".expert_bias"):
  7067. name = name.replace(".expert_bias", ".expert_bias.bias")
  7068. return [(self.map_tensor_name(name), data_torch)]
  7069. def prepare_tensors(self):
  7070. super().prepare_tensors()
  7071. if self._experts is not None:
  7072. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7073. experts = [k for d in self._experts for k in d.keys()]
  7074. if len(experts) > 0:
  7075. raise ValueError(f"Unprocessed experts: {experts}")
  7076. @ModelBase.register("GroveMoeForCausalLM", "modeling_grove_moe.GroveMoeForCausalLM")
  7077. class GroveMoeModel(TextModel):
  7078. model_arch = gguf.MODEL_ARCH.GROVEMOE
  7079. def set_gguf_parameters(self):
  7080. super().set_gguf_parameters()
  7081. if (n_experts := self.hparams.get("num_experts")) is not None:
  7082. self.gguf_writer.add_expert_count(n_experts)
  7083. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  7084. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  7085. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  7086. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L299
  7087. self.gguf_writer.add_expert_chunk_feed_forward_length(self.hparams.get("head_dim") or 128)
  7088. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L298
  7089. self.gguf_writer.add_experts_per_group(2)
  7090. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L376
  7091. self.gguf_writer.add_expert_group_scale(0.05)
  7092. _experts: list[dict[str, Tensor]] | None = None
  7093. _chunk_experts: list[dict[str, Tensor]] | None = None
  7094. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7095. if name.endswith(".expert_bias"):
  7096. # FIXME?: Unused https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L303
  7097. return []
  7098. # process the experts separately
  7099. if name.find("chunk_experts") != -1:
  7100. n_experts = self.hparams["num_experts"] // 2 # see add_experts_per_group
  7101. assert bid is not None
  7102. if self._chunk_experts is None:
  7103. self._chunk_experts = [{} for _ in range(self.block_count)]
  7104. self._chunk_experts[bid][name] = data_torch
  7105. if len(self._chunk_experts[bid]) >= n_experts * 3:
  7106. tensors: list[tuple[str, Tensor]] = []
  7107. # merge the experts into a single 3d tensor
  7108. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7109. datas: list[Tensor] = []
  7110. for xid in range(n_experts):
  7111. ename = f"model.layers.{bid}.mlp.chunk_experts.{xid}.{w_name}.weight"
  7112. datas.append(self._chunk_experts[bid][ename])
  7113. del self._chunk_experts[bid][ename]
  7114. data_torch = torch.stack(datas, dim=0)
  7115. merged_name = f"model.layers.{bid}.mlp.chunk_experts.{w_name}.weight"
  7116. new_name = self.map_tensor_name(merged_name)
  7117. tensors.append((new_name, data_torch))
  7118. return tensors
  7119. else:
  7120. return []
  7121. elif name.find("experts") != -1:
  7122. n_experts = self.hparams["num_experts"]
  7123. assert bid is not None
  7124. if self._experts is None:
  7125. self._experts = [{} for _ in range(self.block_count)]
  7126. self._experts[bid][name] = data_torch
  7127. if len(self._experts[bid]) >= n_experts * 3:
  7128. tensors: list[tuple[str, Tensor]] = []
  7129. # merge the experts into a single 3d tensor
  7130. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7131. datas: list[Tensor] = []
  7132. for xid in range(n_experts):
  7133. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7134. datas.append(self._experts[bid][ename])
  7135. del self._experts[bid][ename]
  7136. data_torch = torch.stack(datas, dim=0)
  7137. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7138. new_name = self.map_tensor_name(merged_name)
  7139. tensors.append((new_name, data_torch))
  7140. return tensors
  7141. else:
  7142. return []
  7143. return [(self.map_tensor_name(name), data_torch)]
  7144. def prepare_tensors(self):
  7145. super().prepare_tensors()
  7146. if self._chunk_experts is not None:
  7147. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7148. chunk_experts = [k for d in self._chunk_experts for k in d.keys()]
  7149. if len(chunk_experts) > 0:
  7150. raise ValueError(f"Unprocessed adjugate experts: {chunk_experts}")
  7151. if self._experts is not None:
  7152. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7153. experts = [k for d in self._experts for k in d.keys()]
  7154. if len(experts) > 0:
  7155. raise ValueError(f"Unprocessed experts: {experts}")
  7156. @ModelBase.register("ChameleonForConditionalGeneration")
  7157. @ModelBase.register("ChameleonForCausalLM") # obsolete
  7158. class ChameleonModel(TextModel):
  7159. model_arch = gguf.MODEL_ARCH.CHAMELEON
  7160. def set_gguf_parameters(self):
  7161. super().set_gguf_parameters()
  7162. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  7163. def set_vocab(self):
  7164. self._set_vocab_gpt2()
  7165. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7166. # ignore image tokenizer for now
  7167. # TODO: remove this once image support is implemented for Chameleon
  7168. if name.startswith("model.vqmodel"):
  7169. return []
  7170. n_head = self.hparams["num_attention_heads"]
  7171. n_kv_head = self.hparams.get("num_key_value_heads")
  7172. hidden_dim = self.hparams.get("hidden_size")
  7173. if name.endswith(("q_proj.weight", "q_proj.bias")):
  7174. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  7175. if name.endswith(("k_proj.weight", "k_proj.bias")):
  7176. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  7177. if name.endswith(("q_norm.weight", "q_norm.bias")):
  7178. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  7179. if name.endswith(("k_norm.weight", "k_norm.bias")):
  7180. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  7181. return [(self.map_tensor_name(name), data_torch)]
  7182. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  7183. @staticmethod
  7184. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  7185. head_dim = hidden_dim // n_heads
  7186. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  7187. data_torch = data_torch.repeat_interleave(n_heads, 0)
  7188. return data_torch
  7189. @ModelBase.register("UltravoxModel")
  7190. class UltravoxModel(TextModel):
  7191. model_arch = gguf.MODEL_ARCH.LLAMA # dummy
  7192. def __init__(self, *args, **kwargs):
  7193. super().__init__(*args, **kwargs)
  7194. raise NotImplementedError("Ultravox does not have text decoder. Instead, it uses Llama or other models for text. If you want to get the audio encoder, please use --mmproj argument")
  7195. @ModelBase.register("GlmasrModel")
  7196. class GlmASRWhisperEncoderModel(MmprojModel):
  7197. has_vision_encoder = False
  7198. has_audio_encoder = True
  7199. def __init__(self, *args, **kwargs):
  7200. super().__init__(*args, **kwargs)
  7201. if "hidden_size" not in self.hparams and "intermediate_size" not in self.hparams:
  7202. self.hparams["hidden_size"] = self.hparams["d_model"]
  7203. self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
  7204. self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
  7205. def set_gguf_parameters(self):
  7206. super().set_gguf_parameters()
  7207. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GLMA)
  7208. self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
  7209. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  7210. self.gguf_writer.add_audio_stack_factor(self.global_config["merge_factor"])
  7211. def tensor_force_quant(self, name, new_name, bid, n_dims):
  7212. if ".conv" in name and ".weight" in name:
  7213. return gguf.GGMLQuantizationType.F16
  7214. return super().tensor_force_quant(name, new_name, bid, n_dims)
  7215. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7216. del bid # unused
  7217. if name.startswith("model.") or name.startswith("lm_head."):
  7218. # skip language model tensors
  7219. return []
  7220. if name.startswith("audio_encoder.whisper."):
  7221. name = name.replace("audio_encoder.whisper.","audio_tower.")
  7222. if "audio_encoder.layer_norm." in name or "audio_encoder.proj." in name:
  7223. name = name.replace("audio_encoder.", "audio_encoder.adapting.")
  7224. if name.startswith("audio_encoder.audio_bos_eos_token."):
  7225. return [(self.map_tensor_name("model.vision.boi"), data_torch[0]), (self.map_tensor_name("model.vision.eoi"), data_torch[1])]
  7226. if name.startswith("audio_encoder.adapting."):
  7227. name = name.replace("audio_encoder.adapting.","audio.multi_modal_projector.")
  7228. if ".layer_norm." in name:
  7229. name = name.replace(".layer_norm.", ".ln_pre.")
  7230. if ".0." in name:
  7231. name = name.replace(".0.", ".linear_1.")
  7232. if ".2." in name:
  7233. name = name.replace(".2.", ".linear_2.")
  7234. if ".proj." in name:
  7235. return []
  7236. if "conv1.bias" in name or "conv2.bias" in name:
  7237. # transpose conv1 and conv2 bias
  7238. data_torch = data_torch.unsqueeze(-1)
  7239. return [(self.map_tensor_name(name), data_torch)]
  7240. @ModelBase.register("Qwen2AudioForConditionalGeneration")
  7241. class WhisperEncoderModel(MmprojModel):
  7242. has_vision_encoder = False # no vision encoder
  7243. has_audio_encoder = True
  7244. def __init__(self, *args, **kwargs):
  7245. super().__init__(*args, **kwargs)
  7246. if "hidden_size" not in self.hparams and "intermediate_size" not in self.hparams:
  7247. self.hparams["hidden_size"] = self.hparams["d_model"]
  7248. self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
  7249. self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
  7250. def set_gguf_parameters(self):
  7251. super().set_gguf_parameters()
  7252. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2A)
  7253. self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
  7254. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  7255. def tensor_force_quant(self, name, new_name, bid, n_dims):
  7256. if ".conv" in name and ".weight" in name:
  7257. return gguf.GGMLQuantizationType.F16
  7258. return super().tensor_force_quant(name, new_name, bid, n_dims)
  7259. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7260. del bid # unused
  7261. if name.startswith("language_model."):
  7262. # skip language model tensors
  7263. return []
  7264. # prevent clash naming with vision tensors
  7265. if name.startswith("multi_modal_projector"):
  7266. name = "audio." + name
  7267. if "conv1.bias" in name or "conv2.bias" in name:
  7268. # transpose conv1 and conv2 bias
  7269. data_torch = data_torch.unsqueeze(-1)
  7270. return [(self.map_tensor_name(name), data_torch)]
  7271. @ModelBase.register("UltravoxModel")
  7272. class UltravoxWhisperEncoderModel(WhisperEncoderModel):
  7273. has_vision_encoder = False # no vision encoder
  7274. has_audio_encoder = True
  7275. def set_gguf_parameters(self):
  7276. super().set_gguf_parameters()
  7277. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.ULTRAVOX)
  7278. self.gguf_writer.add_audio_stack_factor(self.global_config["stack_factor"])
  7279. @ModelBase.register("VoxtralForConditionalGeneration")
  7280. class VoxtralWhisperEncoderModel(WhisperEncoderModel):
  7281. has_vision_encoder = False # no vision encoder
  7282. has_audio_encoder = True
  7283. def set_gguf_parameters(self):
  7284. super().set_gguf_parameters()
  7285. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.VOXTRAL)
  7286. self.gguf_writer.add_audio_stack_factor(4) # == intermediate_size // hidden_size
  7287. @ModelBase.register("FalconH1ForCausalLM")
  7288. class FalconH1Model(Mamba2Model):
  7289. model_arch = gguf.MODEL_ARCH.FALCON_H1
  7290. def __init__(self, *args, **kwargs):
  7291. # Set the hparam prefixes for Falcon Mamba2
  7292. self.hparam_prefixes = ["mamba"]
  7293. # Initialize the base Mamba2Model
  7294. super().__init__(*args, **kwargs)
  7295. # Use Llama conversion for attention
  7296. self._transformer_model_class = LlamaModel
  7297. # n_group and d_inner are used during reshape_tensors for mamba2
  7298. self.n_group = self.find_hparam(["n_groups"])
  7299. self.d_inner = self.find_hparam(["mamba_d_ssm"])
  7300. self.d_head = self.find_hparam(["d_head"])
  7301. # Initialize any Falcon Mamba2 specific attributes
  7302. self.has_attention = True # Falcon Mamba2 has attention components
  7303. # Load Falcon-H1 multipliers from hyperparameters
  7304. self.attention_in_multiplier = self.find_hparam(["attention_in_multiplier"], optional=True)
  7305. self.attention_out_multiplier = self.find_hparam(["attention_out_multiplier"], optional=True)
  7306. self.ssm_in_multiplier = self.find_hparam(["ssm_in_multiplier"], optional=True)
  7307. self.ssm_out_multiplier = self.find_hparam(["ssm_out_multiplier"], optional=True)
  7308. self.mlp_multipliers = self.find_hparam(["mlp_multipliers"], optional=True)
  7309. self.ssm_multipliers = self.find_hparam(["ssm_multipliers"], optional=True)
  7310. self.intermediate_size = self.find_hparam(["intermediate_size"])
  7311. self.key_multiplier = self.find_hparam(["key_multiplier"], optional=True)
  7312. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  7313. prefixed = []
  7314. for pfx in self.hparam_prefixes:
  7315. prefixed.extend(
  7316. "_".join([pfx, k])
  7317. for k in keys
  7318. )
  7319. keys = list(keys) + prefixed
  7320. return super().find_hparam(keys, *args, **kwargs)
  7321. def set_vocab(self):
  7322. self._set_vocab_gpt2()
  7323. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7324. tensors = list(super().modify_tensors(data_torch, name, bid))
  7325. tensor = tensors[0][1]
  7326. if "down_proj" in name:
  7327. tensor = tensor * self.mlp_multipliers[1]
  7328. elif "gate_proj" in name:
  7329. tensor = tensor * self.mlp_multipliers[0]
  7330. elif "k_proj" in name:
  7331. tensor = tensor * self.key_multiplier * self.attention_in_multiplier
  7332. elif "q_proj" in name:
  7333. tensor = tensor * self.attention_in_multiplier
  7334. elif "v_proj" in name:
  7335. tensor = tensor * self.attention_in_multiplier
  7336. elif "o_proj" in name:
  7337. tensor = tensor * self.attention_out_multiplier
  7338. elif "out_proj" in name:
  7339. tensor = tensor * self.ssm_out_multiplier
  7340. elif "in_proj" in name:
  7341. tensor = tensor * self.ssm_in_multiplier
  7342. zxbcdt_multipliers = self.hparams["ssm_multipliers"]
  7343. intermediate_size = self.hparams["mamba_d_ssm"]
  7344. groups_time_state_size = self.hparams["mamba_n_groups"] * self.hparams["mamba_d_state"]
  7345. tensor[:intermediate_size, :] *= zxbcdt_multipliers[0]
  7346. tensor[intermediate_size:2 * intermediate_size, :] *= zxbcdt_multipliers[1]
  7347. tensor[2 * intermediate_size:2 * intermediate_size + groups_time_state_size, :] *= zxbcdt_multipliers[2]
  7348. tensor[2 * intermediate_size + groups_time_state_size:2 * intermediate_size + 2 * groups_time_state_size, :] *= zxbcdt_multipliers[3]
  7349. tensor[2 * intermediate_size + 2 * groups_time_state_size:, :] *= zxbcdt_multipliers[4]
  7350. elif "lm_head" in name:
  7351. tensor = tensor * self.hparams["lm_head_multiplier"]
  7352. elif "embed_tokens" in name:
  7353. tensor = tensor * self.hparams["embedding_multiplier"]
  7354. elif "mamba.norm" in name:
  7355. tensor = tensor.reshape(self.n_group, self.d_inner // self.n_group)
  7356. tensors = [(tensors[0][0], tensor)]
  7357. return tensors
  7358. def set_gguf_parameters(self):
  7359. super().set_gguf_parameters()
  7360. ## General Params ##
  7361. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  7362. # Override some Mamba2 defaults
  7363. self.gguf_writer.add_block_count(self.block_count)
  7364. self.gguf_writer.add_context_length(self.hparams.get("max_position_embeddings", 0))
  7365. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  7366. ## Attention params ##
  7367. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) # Override value 0 from Mamba2
  7368. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  7369. self.gguf_writer.add_key_length(self.hparams["head_dim"])
  7370. self.gguf_writer.add_value_length(self.hparams["head_dim"])
  7371. ## Validation ##
  7372. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  7373. assert self.d_inner % self.d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {self.d_head}"
  7374. # Add any other Falcon Mamba2 specific configuration
  7375. self.gguf_writer.add_rope_freq_base(self.rope_parameters["rope_theta"])
  7376. @ModelBase.register("HunYuanMoEV1ForCausalLM")
  7377. class HunYuanMoEModel(TextModel):
  7378. model_arch = gguf.MODEL_ARCH.HUNYUAN_MOE
  7379. def set_vocab(self):
  7380. from transformers import AutoTokenizer
  7381. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  7382. # 1. Get the pre-tokenizer identifier hash
  7383. tokpre = self.get_vocab_base_pre(tokenizer)
  7384. # 2. Reverse-engineer the merges list from mergeable_ranks
  7385. merges = []
  7386. vocab = {}
  7387. mergeable_ranks = tokenizer.mergeable_ranks
  7388. for token, rank in mergeable_ranks.items():
  7389. vocab[QwenModel.token_bytes_to_string(token)] = rank
  7390. if len(token) == 1:
  7391. continue
  7392. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  7393. if len(merged) == 2: # todo this is an assert in Qwen, why?
  7394. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  7395. # 3. Generate the tokens and toktypes lists
  7396. vocab_size = self.hparams["vocab_size"]
  7397. assert tokenizer.vocab_size == vocab_size
  7398. special_tokens = tokenizer.special_tokens
  7399. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  7400. tokens: list[str] = []
  7401. toktypes: list[int] = []
  7402. for i in range(vocab_size):
  7403. if i not in reverse_vocab:
  7404. tokens.append(f"[PAD{i}]")
  7405. toktypes.append(gguf.TokenType.UNUSED)
  7406. else:
  7407. token = reverse_vocab[i]
  7408. tokens.append(token)
  7409. if i in special_tokens.values():
  7410. toktypes.append(gguf.TokenType.CONTROL)
  7411. else:
  7412. toktypes.append(gguf.TokenType.NORMAL)
  7413. # 4. Write all vocab-related fields to the GGUF writer
  7414. self.gguf_writer.add_tokenizer_model("gpt2")
  7415. self.gguf_writer.add_tokenizer_pre(tokpre)
  7416. self.gguf_writer.add_token_list(tokens)
  7417. self.gguf_writer.add_token_types(toktypes)
  7418. self.gguf_writer.add_token_merges(merges)
  7419. # 5. Add special tokens and chat templates
  7420. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  7421. special_vocab.add_to_gguf(self.gguf_writer)
  7422. # FIX for BOS token: Overwrite incorrect id read from config.json
  7423. self.gguf_writer.add_bos_token_id(127959) # <|bos|>
  7424. def set_gguf_parameters(self):
  7425. super().set_gguf_parameters()
  7426. hparams = self.hparams
  7427. self.gguf_writer.add_expert_count(hparams["num_experts"])
  7428. self.gguf_writer.add_expert_shared_feed_forward_length(hparams["intermediate_size"])
  7429. moe_intermediate_size = hparams["moe_intermediate_size"]
  7430. assert all(n == moe_intermediate_size[0] for n in moe_intermediate_size)
  7431. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size[0])
  7432. moe_topk = hparams["moe_topk"]
  7433. assert all(topk == moe_topk[0] for topk in moe_topk)
  7434. self.gguf_writer.add_expert_used_count(moe_topk[0])
  7435. moe_shared_expert = hparams["num_shared_expert"]
  7436. assert all(n == moe_shared_expert[0] for n in moe_shared_expert)
  7437. self.gguf_writer.add_expert_shared_count(moe_shared_expert[0])
  7438. # Rope
  7439. if self.rope_parameters.get("rope_type") == "dynamic":
  7440. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  7441. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  7442. alpha = self.rope_parameters.get("alpha", 1000)
  7443. base = self.rope_parameters.get("rope_theta", 10000.0)
  7444. dim = (hparams["hidden_size"] // hparams["num_attention_heads"]) # 128
  7445. scaled_base = base * (alpha ** (dim / (dim - 2))) # 10000 * (1000 ** (128 / 126)) = 11158839.9251
  7446. self.gguf_writer.add_rope_freq_base(scaled_base)
  7447. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  7448. self.gguf_writer.add_rope_scaling_factor(1)
  7449. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  7450. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  7451. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  7452. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  7453. assert alpha == 1000 and base == 10000.0 and dim == 128 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  7454. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  7455. _experts: list[dict[str, Tensor]] | None = None
  7456. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7457. if name == "lm_head.weight":
  7458. if self.hparams.get("tie_word_embeddings", False):
  7459. logger.info("Skipping tied output layer 'lm_head.weight'")
  7460. return []
  7461. if name.find("mlp.experts") != -1:
  7462. n_experts = self.hparams["num_experts"]
  7463. assert bid is not None
  7464. if self._experts is None:
  7465. self._experts = [{} for _ in range(self.block_count)]
  7466. self._experts[bid][name] = data_torch
  7467. if len(self._experts[bid]) >= n_experts * 3:
  7468. # merge the experts into a single 3d tensor
  7469. tensors: list[tuple[str, Tensor]] = []
  7470. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7471. datas: list[Tensor] = []
  7472. for xid in range(n_experts):
  7473. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7474. datas.append(self._experts[bid][ename])
  7475. del self._experts[bid][ename]
  7476. data_torch = torch.stack(datas, dim=0)
  7477. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7478. new_name = self.map_tensor_name(merged_name)
  7479. tensors.append((new_name, data_torch))
  7480. return tensors
  7481. else:
  7482. return []
  7483. return [(self.map_tensor_name(name), data_torch)]
  7484. def prepare_tensors(self):
  7485. super().prepare_tensors()
  7486. if self._experts is not None:
  7487. experts = [k for d in self._experts for k in d.keys()]
  7488. if len(experts) > 0:
  7489. raise ValueError(f"Unprocessed experts: {experts}")
  7490. @ModelBase.register("LLaDAMoEModel", "LLaDAMoEModelLM")
  7491. class LLaDAMoEModel(TextModel):
  7492. model_arch = gguf.MODEL_ARCH.LLADA_MOE
  7493. def set_gguf_parameters(self):
  7494. super().set_gguf_parameters()
  7495. if (n_experts := self.hparams.get("num_experts")) is not None:
  7496. self.gguf_writer.add_expert_count(n_experts)
  7497. if (expert_intermediate_size := self.hparams.get("expert_intermediate_size")) is not None:
  7498. self.gguf_writer.add_expert_feed_forward_length(expert_intermediate_size)
  7499. # number of experts used per token (top-k)
  7500. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  7501. self.gguf_writer.add_expert_used_count(n_experts_used)
  7502. self.gguf_writer.add_mask_token_id(156895)
  7503. self.gguf_writer.add_causal_attention(False)
  7504. self.gguf_writer.add_diffusion_shift_logits(False)
  7505. _experts: list[dict[str, Tensor]] | None = None
  7506. # Copied from: Qwen2MoeModel
  7507. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7508. # process the experts separately
  7509. if name.find("experts") != -1:
  7510. n_experts = self.hparams["num_experts"]
  7511. assert bid is not None
  7512. if self._experts is None:
  7513. self._experts = [{} for _ in range(self.block_count)]
  7514. self._experts[bid][name] = data_torch
  7515. if len(self._experts[bid]) >= n_experts * 3:
  7516. tensors: list[tuple[str, Tensor]] = []
  7517. # merge the experts into a single 3d tensor
  7518. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7519. datas: list[Tensor] = []
  7520. for xid in range(n_experts):
  7521. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7522. datas.append(self._experts[bid][ename])
  7523. del self._experts[bid][ename]
  7524. data_torch = torch.stack(datas, dim=0)
  7525. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7526. new_name = self.map_tensor_name(merged_name)
  7527. tensors.append((new_name, data_torch))
  7528. return tensors
  7529. else:
  7530. return []
  7531. return [(self.map_tensor_name(name), data_torch)]
  7532. # Copied from: Qwen2MoeModel
  7533. def prepare_tensors(self):
  7534. super().prepare_tensors()
  7535. if self._experts is not None:
  7536. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7537. experts = [k for d in self._experts for k in d.keys()]
  7538. if len(experts) > 0:
  7539. raise ValueError(f"Unprocessed experts: {experts}")
  7540. @ModelBase.register("HunYuanDenseV1ForCausalLM")
  7541. class HunYuanModel(TextModel):
  7542. model_arch = gguf.MODEL_ARCH.HUNYUAN_DENSE
  7543. def set_vocab(self):
  7544. if (self.dir_model / "tokenizer.json").is_file():
  7545. self._set_vocab_gpt2()
  7546. else:
  7547. from transformers import AutoTokenizer
  7548. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  7549. # 1. Get the pre-tokenizer identifier hash
  7550. tokpre = self.get_vocab_base_pre(tokenizer)
  7551. # 2. Reverse-engineer the merges list from mergeable_ranks
  7552. merges = []
  7553. vocab = {}
  7554. mergeable_ranks = tokenizer.mergeable_ranks
  7555. for token, rank in mergeable_ranks.items():
  7556. vocab[QwenModel.token_bytes_to_string(token)] = rank
  7557. if len(token) == 1:
  7558. continue
  7559. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  7560. if len(merged) == 2:
  7561. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  7562. # 3. Generate the tokens and toktypes lists
  7563. vocab_size = self.hparams["vocab_size"]
  7564. assert tokenizer.vocab_size == vocab_size
  7565. special_tokens = tokenizer.special_tokens
  7566. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  7567. tokens: list[str] = []
  7568. toktypes: list[int] = []
  7569. for i in range(vocab_size):
  7570. if i not in reverse_vocab:
  7571. tokens.append(f"[PAD{i}]")
  7572. toktypes.append(gguf.TokenType.UNUSED)
  7573. else:
  7574. token = reverse_vocab[i]
  7575. tokens.append(token)
  7576. if i in special_tokens.values():
  7577. toktypes.append(gguf.TokenType.CONTROL)
  7578. else:
  7579. toktypes.append(gguf.TokenType.NORMAL)
  7580. # 4. Write all vocab-related fields to the GGUF writer
  7581. self.gguf_writer.add_tokenizer_model("gpt2")
  7582. self.gguf_writer.add_tokenizer_pre(tokpre)
  7583. self.gguf_writer.add_token_list(tokens)
  7584. self.gguf_writer.add_token_types(toktypes)
  7585. self.gguf_writer.add_token_merges(merges)
  7586. # 5. Add special tokens and chat templates
  7587. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  7588. special_vocab.add_to_gguf(self.gguf_writer)
  7589. # FIX for BOS token: Overwrite incorrect id read from config.json
  7590. if self.hparams['hidden_size'] == 4096:
  7591. self.gguf_writer.add_bos_token_id(127958) # only for 7b dense, fix <|bos|> token
  7592. def set_gguf_parameters(self):
  7593. super().set_gguf_parameters()
  7594. hparams = self.hparams
  7595. # Rope
  7596. if self.rope_parameters.get("rope_type") == "dynamic":
  7597. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  7598. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  7599. alpha = self.rope_parameters.get("alpha", 50)
  7600. base = self.rope_parameters.get("rope_theta", 10000.0)
  7601. dim = hparams["head_dim"]
  7602. scaled_base = base * (alpha ** (dim / (dim - 2)))
  7603. self.gguf_writer.add_rope_freq_base(scaled_base)
  7604. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  7605. self.gguf_writer.add_rope_scaling_factor(1)
  7606. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  7607. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  7608. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  7609. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  7610. assert base == 10000.0 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  7611. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  7612. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7613. if name == "lm_head.weight":
  7614. if self.hparams.get("tie_word_embeddings", False):
  7615. logger.info("Skipping tied output layer 'lm_head.weight'")
  7616. return []
  7617. return [(self.map_tensor_name(name), data_torch)]
  7618. @ModelBase.register("SmolLM3ForCausalLM")
  7619. class SmolLM3Model(LlamaModel):
  7620. model_arch = gguf.MODEL_ARCH.SMOLLM3
  7621. @ModelBase.register("GptOssForCausalLM")
  7622. class GptOssModel(TextModel):
  7623. model_arch = gguf.MODEL_ARCH.GPT_OSS
  7624. # TODO: remove once MXFP4 is supported more generally
  7625. def dequant_model(self):
  7626. quant_config = self.hparams.get("quantization_config")
  7627. if quant_config is not None and quant_config.get("quant_method") == "mxfp4":
  7628. return
  7629. return super().dequant_model()
  7630. def transform_nibble_layout(self, tensor):
  7631. assert tensor.dtype == torch.uint8
  7632. assert tensor.shape[-1] == 16
  7633. # swap nibbles
  7634. t_lo = tensor & 0x0F
  7635. t_hi = tensor & 0xF0
  7636. t_swapped = (t_lo << 4) | (t_hi >> 4)
  7637. tensor = t_swapped
  7638. # transform aaaa...bbbb... to abababab...
  7639. blk_a, blk_b = tensor.chunk(2, dim=-1)
  7640. # get a_
  7641. blk_a0 = (blk_a & 0xF0).view(-1, 1)
  7642. blk_a1 = (blk_a << 4).view(-1, 1)
  7643. blk_a = torch.stack((blk_a0, blk_a1), dim=2).view(tensor.shape)
  7644. # get _b
  7645. blk_b0 = (blk_b >> 4).view(-1, 1)
  7646. blk_b1 = (blk_b & 0x0F).view(-1, 1)
  7647. blk_b = torch.stack((blk_b0, blk_b1), dim=2).view(tensor.shape)
  7648. # swap once more
  7649. out = blk_a | blk_b
  7650. out_h = out & 0xF0
  7651. out_l = out & 0x0F
  7652. out = (out_h >> 4) | (out_l << 4)
  7653. return out
  7654. def repack_mxfp4(self, new_name: str, blocks: Tensor, scales: Tensor):
  7655. assert blocks.dtype == torch.uint8
  7656. assert scales.dtype == torch.uint8
  7657. scales = scales.unsqueeze(-1)
  7658. assert len(blocks.shape) == 4
  7659. assert len(scales.shape) == 4
  7660. blocks = self.transform_nibble_layout(blocks)
  7661. new_data = torch.concat((scales, blocks), dim=-1)
  7662. new_shape = [new_data.shape[0], new_data.shape[1], new_data.shape[2] * 32]
  7663. logger.info(f"Repacked {new_name} with shape {new_shape} and quantization MXFP4")
  7664. # flatten last dim
  7665. new_data = new_data.view(new_data.shape[0], new_data.shape[1], new_data.shape[2] * new_data.shape[3])
  7666. new_data = new_data.numpy()
  7667. self.gguf_writer.add_tensor(new_name, new_data, raw_dtype=gguf.GGMLQuantizationType.MXFP4)
  7668. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  7669. blocks0: Tensor = torch.zeros(1)
  7670. blocks1: Tensor = torch.zeros(1)
  7671. # we assume that tensors are loaded in the correct order
  7672. for name, data_torch in self.get_tensors():
  7673. if "mlp.experts.down_proj_blocks" in name:
  7674. blocks0 = data_torch
  7675. elif "mlp.experts.down_proj_scales" in name:
  7676. new_name = self.map_tensor_name(name.replace("_scales", ".weight"))
  7677. self.repack_mxfp4(new_name, blocks0, data_torch)
  7678. elif "mlp.experts.gate_up_proj_blocks" in name:
  7679. blocks0, blocks1 = data_torch[:, ::2, :, :], data_torch[:, 1::2, :, :]
  7680. elif "mlp.experts.gate_up_proj_scales" in name:
  7681. scales0, scales1 = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  7682. new_name_gate = self.map_tensor_name(name.replace("gate_up_proj_scales", "gate_proj.weight"))
  7683. new_name_up = self.map_tensor_name(name.replace("gate_up_proj_scales", "up_proj.weight"))
  7684. self.repack_mxfp4(new_name_gate, blocks0, scales0)
  7685. self.repack_mxfp4(new_name_up, blocks1, scales1)
  7686. return []
  7687. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7688. del bid # unused
  7689. if "sinks" in name:
  7690. name += ".weight"
  7691. # correct naming for down_proj
  7692. if "down_proj" in name:
  7693. if name.endswith("_bias"):
  7694. name = name.replace("down_proj_bias", "down_proj.bias")
  7695. elif "_blocks" not in name and "_scales" not in name:
  7696. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  7697. name = name.replace("down_proj", "down_proj.weight")
  7698. data_torch = data_torch.transpose(-1, -2)
  7699. else:
  7700. # otherwise, it should already be repacked to ggml MXFP4 format
  7701. return []
  7702. # split the gate_up into gate and up
  7703. if "gate_up_proj" in name:
  7704. if name.endswith("_bias"):
  7705. name_up = name.replace("gate_up_proj_bias", "up_proj.bias")
  7706. name_gate = name.replace("gate_up_proj_bias", "gate_proj.bias")
  7707. gate_proj_bias, up_proj_bias = data_torch[..., ::2], data_torch[..., 1::2]
  7708. return [
  7709. (self.map_tensor_name(name_gate), gate_proj_bias),
  7710. (self.map_tensor_name(name_up), up_proj_bias)
  7711. ]
  7712. elif "_blocks" not in name and "_scales" not in name:
  7713. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  7714. name_up = name.replace("gate_up_proj", "up_proj.weight")
  7715. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  7716. data_torch = data_torch.transpose(-1, -2)
  7717. gate_proj_weight, up_proj_weight = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  7718. return [
  7719. (self.map_tensor_name(name_gate), gate_proj_weight),
  7720. (self.map_tensor_name(name_up), up_proj_weight)
  7721. ]
  7722. else:
  7723. # otherwise, it should already be repacked to ggml MXFP4 format
  7724. return []
  7725. return [(self.map_tensor_name(name), data_torch)]
  7726. def set_vocab(self):
  7727. self._set_vocab_gpt2()
  7728. def set_gguf_parameters(self):
  7729. super().set_gguf_parameters()
  7730. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  7731. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size"])
  7732. @ModelBase.register("Lfm2ForCausalLM", "LFM2ForCausalLM")
  7733. class LFM2Model(TextModel):
  7734. model_arch = gguf.MODEL_ARCH.LFM2
  7735. def _add_feed_forward_length(self):
  7736. ff_dim = self.hparams["block_ff_dim"]
  7737. auto_adjust_ff_dim = self.hparams["block_auto_adjust_ff_dim"]
  7738. ff_dim = self.hparams["block_ff_dim"]
  7739. ffn_dim_multiplier = self.hparams["block_ffn_dim_multiplier"]
  7740. multiple_of = self.hparams["block_multiple_of"]
  7741. if auto_adjust_ff_dim:
  7742. ff_dim = int(2 * ff_dim / 3)
  7743. # custom dim factor multiplier
  7744. if ffn_dim_multiplier is not None:
  7745. ff_dim = int(ffn_dim_multiplier * ff_dim)
  7746. ff_dim = multiple_of * ((ff_dim + multiple_of - 1) // multiple_of)
  7747. self.gguf_writer.add_feed_forward_length(ff_dim)
  7748. def set_gguf_parameters(self):
  7749. # set num_key_value_heads only for attention layers
  7750. self.hparams["num_key_value_heads"] = [
  7751. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  7752. for layer_type in self.hparams["layer_types"]
  7753. ]
  7754. super().set_gguf_parameters()
  7755. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  7756. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  7757. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["norm_eps"])
  7758. self._add_feed_forward_length()
  7759. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7760. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  7761. if is_vision_tensor:
  7762. # skip vision tensors
  7763. return []
  7764. name = name.replace("language_model.", "")
  7765. # conv op requires 2d tensor
  7766. if 'conv.conv' in name:
  7767. data_torch = data_torch.squeeze(1)
  7768. return [(self.map_tensor_name(name), data_torch)]
  7769. @ModelBase.register("Lfm2MoeForCausalLM")
  7770. class LFM2MoeModel(TextModel):
  7771. model_arch = gguf.MODEL_ARCH.LFM2MOE
  7772. def set_gguf_parameters(self):
  7773. # set num_key_value_heads only for attention layers
  7774. self.hparams["num_key_value_heads"] = [
  7775. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  7776. for layer_type in self.hparams["layer_types"]
  7777. ]
  7778. super().set_gguf_parameters()
  7779. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  7780. self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
  7781. self.gguf_writer.add_leading_dense_block_count(self.hparams["num_dense_layers"])
  7782. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  7783. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  7784. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  7785. # cache for experts weights for merging
  7786. _experts_cache: dict[int, dict[str, Tensor]] = {}
  7787. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7788. # conv op requires 2d tensor
  7789. if 'conv.conv' in name:
  7790. data_torch = data_torch.squeeze(1)
  7791. if name.endswith(".expert_bias"):
  7792. name = name.replace(".expert_bias", ".expert_bias.bias")
  7793. # merge expert weights
  7794. if 'experts' in name:
  7795. n_experts = self.hparams["num_experts"]
  7796. assert bid is not None
  7797. expert_cache = self._experts_cache.setdefault(bid, {})
  7798. expert_cache[name] = data_torch
  7799. expert_weights = ["w1", "w2", "w3"]
  7800. # not enough expert weights to merge
  7801. if len(expert_cache) < n_experts * len(expert_weights):
  7802. return []
  7803. tensors: list[tuple[str, Tensor]] = []
  7804. for w_name in expert_weights:
  7805. datas: list[Tensor] = []
  7806. for xid in range(n_experts):
  7807. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{w_name}.weight"
  7808. datas.append(expert_cache[ename])
  7809. del expert_cache[ename]
  7810. data_torch = torch.stack(datas, dim=0)
  7811. merged_name = f"layers.{bid}.feed_forward.experts.{w_name}.weight"
  7812. new_name = self.map_tensor_name(merged_name)
  7813. tensors.append((new_name, data_torch))
  7814. del self._experts_cache[bid]
  7815. return tensors
  7816. return [(self.map_tensor_name(name), data_torch)]
  7817. def prepare_tensors(self):
  7818. super().prepare_tensors()
  7819. assert not self._experts_cache
  7820. @ModelBase.register("Lfm2VlForConditionalGeneration")
  7821. class LFM2VLModel(MmprojModel):
  7822. def __init__(self, *args, **kwargs):
  7823. super().__init__(*args, **kwargs)
  7824. assert self.hparams_vision is not None
  7825. # TODO(tarek): for dynamic resolution image_size is not specified, setting here for compatibility
  7826. self.hparams_vision["image_size"] = 256
  7827. def set_gguf_parameters(self):
  7828. super().set_gguf_parameters()
  7829. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LFM2)
  7830. self.gguf_writer.add_vision_attention_layernorm_eps(self.find_vparam(["layer_norm_eps"]))
  7831. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("downsample_factor", 2))
  7832. self.gguf_writer.add_vision_use_gelu(True)
  7833. # python notation, e.g. for vision_feature_layer == -1, we pick last layer -> vision_feature_layers_to_drop = 0
  7834. vision_feature_layers_to_drop = -(self.global_config.get("vision_feature_layer", -1) + 1)
  7835. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys) - vision_feature_layers_to_drop)
  7836. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7837. del bid # unused
  7838. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  7839. if is_vision_tensor:
  7840. # remove "model." prefix
  7841. name = name.replace("model.vision_tower.", "vision_tower.")
  7842. name = name.replace("model.multi_modal_projector.", "multi_modal_projector.")
  7843. if "patch_embedding.weight" in name:
  7844. data_torch = data_torch.view(data_torch.shape[0], 16, 16, 3).permute(0, 3, 1, 2)
  7845. return [(self.map_tensor_name(name), data_torch)]
  7846. return [] # skip other tensors
  7847. @ModelBase.register("SmallThinkerForCausalLM")
  7848. class SmallThinkerModel(TextModel):
  7849. model_arch = gguf.MODEL_ARCH.SMALLTHINKER
  7850. def set_gguf_parameters(self):
  7851. super().set_gguf_parameters()
  7852. if (n_experts := self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))) is not None:
  7853. self.gguf_writer.add_expert_count(n_experts)
  7854. if (n_experts_used := self.hparams.get("num_experts_per_tok", self.hparams.get("moe_num_active_primary_experts"))) is not None:
  7855. self.gguf_writer.add_expert_used_count(n_experts_used)
  7856. if (moe_intermediate_size := self.hparams.get("moe_ffn_hidden_size")) is not None:
  7857. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  7858. self.gguf_writer.add_feed_forward_length(moe_intermediate_size)
  7859. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  7860. if (self.hparams.get('moe_primary_router_apply_softmax')):
  7861. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  7862. else:
  7863. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  7864. sliding_window_layout = self.hparams.get("sliding_window_layout")
  7865. if sliding_window_layout:
  7866. for i in sliding_window_layout:
  7867. if i != 0:
  7868. sliding_window = self.hparams.get("sliding_window_size")
  7869. if sliding_window:
  7870. self.gguf_writer.add_sliding_window(sliding_window)
  7871. break
  7872. _experts: list[dict[str, Tensor]] | None = None
  7873. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7874. # process the experts separately
  7875. if name.find("experts") != -1:
  7876. n_experts = self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))
  7877. assert bid is not None
  7878. if self._experts is None:
  7879. self._experts = [{} for _ in range(self.block_count)]
  7880. self._experts[bid][name] = data_torch
  7881. if len(self._experts[bid]) >= n_experts * 3:
  7882. tensors: list[tuple[str, Tensor]] = []
  7883. # merge the experts into a single 3d tensor
  7884. for w_name in ["down", "gate", "up"]:
  7885. datas: list[Tensor] = []
  7886. for xid in range(n_experts):
  7887. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  7888. datas.append(self._experts[bid][ename])
  7889. del self._experts[bid][ename]
  7890. data_torch = torch.stack(datas, dim=0)
  7891. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  7892. new_name = self.map_tensor_name(merged_name)
  7893. tensors.append((new_name, data_torch))
  7894. return tensors
  7895. else:
  7896. return []
  7897. return [(self.map_tensor_name(name), data_torch)]
  7898. def prepare_tensors(self):
  7899. super().prepare_tensors()
  7900. if self._experts is not None:
  7901. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7902. experts = [k for d in self._experts for k in d.keys()]
  7903. if len(experts) > 0:
  7904. raise ValueError(f"Unprocessed experts: {experts}")
  7905. @ModelBase.register("ApertusForCausalLM")
  7906. class ApertusModel(LlamaModel):
  7907. model_arch = gguf.MODEL_ARCH.APERTUS
  7908. undo_permute = False
  7909. _alpha_n = {}
  7910. _alpha_p = {}
  7911. _beta = {}
  7912. _eps = {}
  7913. def modify_tensors(self, data_torch, name, bid):
  7914. # Handle xIELU activation parameters
  7915. n_layers = self.hparams["num_hidden_layers"]
  7916. if name.endswith(".act_fn.alpha_n"):
  7917. self._alpha_n[bid] = data_torch.to("cpu").float().item()
  7918. if (len(self._alpha_n) == n_layers):
  7919. self.gguf_writer.add_xielu_alpha_n([self._alpha_n[k] for k in sorted(self._alpha_n)])
  7920. return []
  7921. if name.endswith(".act_fn.alpha_p"):
  7922. self._alpha_p[bid] = data_torch.to("cpu").float().item()
  7923. if (len(self._alpha_p) == n_layers):
  7924. self.gguf_writer.add_xielu_alpha_p([self._alpha_p[k] for k in sorted(self._alpha_p)])
  7925. return []
  7926. if name.endswith(".act_fn.beta"):
  7927. self._beta[bid] = data_torch.to("cpu").float().item()
  7928. if (len(self._beta) == n_layers):
  7929. self.gguf_writer.add_xielu_beta([self._beta[k] for k in sorted(self._beta)])
  7930. return []
  7931. if name.endswith(".act_fn.eps"):
  7932. self._eps[bid] = data_torch.to("cpu").float().item()
  7933. if (len(self._eps) == n_layers):
  7934. self.gguf_writer.add_xielu_eps([self._eps[k] for k in sorted(self._eps)])
  7935. return []
  7936. return super().modify_tensors(data_torch, name, bid)
  7937. class MistralModel(LlamaModel):
  7938. model_arch = gguf.MODEL_ARCH.MISTRAL3
  7939. model_name = "Mistral"
  7940. hf_arch = ""
  7941. is_mistral_format = True
  7942. undo_permute = False
  7943. def __init__(self, *args, **kwargs):
  7944. super().__init__(*args, **kwargs)
  7945. # for compatibility, we use LLAMA arch for older models
  7946. # TODO: remove this once everyone migrates to newer version of llama.cpp
  7947. if "llama_4_scaling" not in self.hparams:
  7948. self.model_arch = gguf.MODEL_ARCH.LLAMA
  7949. self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[self.model_arch]
  7950. self.gguf_writer.add_architecture()
  7951. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  7952. def dequant_model(self):
  7953. # transform quantization config into HF format
  7954. quant_config = self.hparams.get("quantization")
  7955. if quant_config is not None:
  7956. assert quant_config["qformat_weight"] == "fp8_e4m3"
  7957. self.hparams["quantization_config"] = {
  7958. "activation_scheme": "static",
  7959. "quant_method": "fp8",
  7960. "weight_block_size": None,
  7961. }
  7962. return super().dequant_model()
  7963. @staticmethod
  7964. def get_community_chat_template(vocab: MistralVocab, templates_dir: Path, is_mistral_format: bool):
  7965. assert TokenizerVersion is not None and Tekkenizer is not None and SentencePieceTokenizer is not None, _mistral_import_error_msg
  7966. assert isinstance(vocab.tokenizer, (Tekkenizer, SentencePieceTokenizer)), (
  7967. f"Expected Tekkenizer or SentencePieceTokenizer, got {type(vocab.tokenizer)}"
  7968. )
  7969. if vocab.tokenizer.version == TokenizerVersion.v1:
  7970. return "mistral-v1"
  7971. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.spm:
  7972. return "mistral-v3"
  7973. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  7974. return "mistral-v3-tekken"
  7975. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.spm:
  7976. return "mistral-v7"
  7977. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  7978. return "mistral-v7-tekken"
  7979. elif vocab.tokenizer.version == TokenizerVersion.v11:
  7980. template_file = "Mistral-Small-3.2-24B-Instruct-2506.jinja"
  7981. elif vocab.tokenizer.version == TokenizerVersion.v13:
  7982. template_file = "unsloth-mistral-Devstral-Small-2507.jinja"
  7983. else:
  7984. err_message = f"Unknown tokenizer type: {vocab.tokenizer_type} and version {vocab.tokenizer.version}"
  7985. if is_mistral_format:
  7986. err_message += (
  7987. " . Please pass --disable-mistral-community-chat-template argument to the CLI "
  7988. "if you want to skip this error and use the Mistral official `mistral-common` pre-processing library."
  7989. )
  7990. raise ValueError(err_message)
  7991. template_path = templates_dir / template_file
  7992. if not template_path.exists():
  7993. raise FileNotFoundError(f"Template file not found: {template_path}")
  7994. with open(template_path, "r", encoding="utf-8") as f:
  7995. template = f.read()
  7996. return template
  7997. def set_gguf_parameters(self):
  7998. super().set_gguf_parameters()
  7999. MistralModel.set_mistral_config(self.gguf_writer, self.hparams)
  8000. @staticmethod
  8001. def set_mistral_config(gguf_writer: gguf.GGUFWriter, hparams: dict):
  8002. if "yarn" in hparams:
  8003. yarn_params = hparams["yarn"]
  8004. gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  8005. gguf_writer.add_rope_scaling_factor(yarn_params["factor"])
  8006. gguf_writer.add_rope_scaling_yarn_beta_fast(yarn_params["beta"])
  8007. gguf_writer.add_rope_scaling_yarn_beta_slow(yarn_params["alpha"])
  8008. gguf_writer.add_rope_scaling_yarn_log_mul(1.0) # mscale_all_dim
  8009. gguf_writer.add_rope_scaling_orig_ctx_len(yarn_params["original_max_position_embeddings"])
  8010. if "llama_4_scaling" in hparams:
  8011. gguf_writer.add_attn_temperature_scale(hparams["llama_4_scaling"]["beta"])
  8012. class MistralMoeModel(DeepseekV2Model):
  8013. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  8014. model_name = "Mistral"
  8015. hf_arch = ""
  8016. is_mistral_format = True
  8017. def __init__(self, *args, **kwargs):
  8018. super().__init__(*args, **kwargs)
  8019. logger.info("Using MistralMoeModel")
  8020. # remap hparams from Mistral MoE format to DeepseekV2 format
  8021. # we do this way to be able to reuse DeepseekV2Model set_gguf_parameters logic
  8022. # ref: https://github.com/vllm-project/vllm/blob/b294e28db2c5dee61bc25157664edcada8b90b31/vllm/transformers_utils/configs/mistral.py
  8023. config = self.hparams
  8024. # Mistral key -> HF key
  8025. config_mapping = {
  8026. "dim": "hidden_size",
  8027. "norm_eps": "rms_norm_eps",
  8028. "n_kv_heads": "num_key_value_heads",
  8029. "n_layers": "num_hidden_layers",
  8030. "n_heads": "num_attention_heads",
  8031. "hidden_dim": "intermediate_size",
  8032. }
  8033. # HF key -> (Mistral key, default value)
  8034. top_level_mapping_with_default = {
  8035. "model_type": ("model_type", "transformer"),
  8036. "hidden_act": ("activation", "silu"),
  8037. "tie_word_embeddings": ("tied_embeddings", False),
  8038. "max_seq_len": ("max_seq_len", config.get("max_position_embeddings", 128_000)),
  8039. "max_position_embeddings": ("max_position_embeddings", 128_000),
  8040. }
  8041. # mapping top-level keys
  8042. for key, new_key in config_mapping.items():
  8043. if key in config:
  8044. config[new_key] = config[key]
  8045. for new_key, (key, default_value) in top_level_mapping_with_default.items():
  8046. config[new_key] = config.get(key, default_value)
  8047. # mapping MoE-specific keys
  8048. moe_config_map = {
  8049. "route_every_n": "moe_layer_freq",
  8050. "first_k_dense_replace": "first_k_dense_replace",
  8051. "num_experts_per_tok": "num_experts_per_tok",
  8052. "num_experts": "n_routed_experts",
  8053. "expert_hidden_dim": "moe_intermediate_size",
  8054. "routed_scale": "routed_scaling_factor",
  8055. "num_shared_experts": "n_shared_experts",
  8056. "num_expert_groups": "n_group",
  8057. "num_expert_groups_per_tok": "topk_group",
  8058. }
  8059. moe = config["moe"]
  8060. for key, new_key in moe_config_map.items():
  8061. if key in moe:
  8062. config[new_key] = moe[key]
  8063. # provide missing values
  8064. config["topk_method"] = None
  8065. config["norm_topk_prob"] = True
  8066. config["scoring_func"] = "softmax"
  8067. def set_vocab(self):
  8068. self._set_vocab_mistral()
  8069. def set_gguf_parameters(self):
  8070. super().set_gguf_parameters()
  8071. MistralModel.set_mistral_config(self.gguf_writer, self.hparams)
  8072. yarn_params = self.hparams["yarn"]
  8073. self.gguf_writer.add_attn_temperature_length(yarn_params["original_max_position_embeddings"])
  8074. # [TAG_DEEPSEEK2_YARN_LOG_MUL_FIX]
  8075. # note: for legacy reasons, this is not consistent with the other usages of self.gguf_writer.add_rope_scaling_yarn_log_mul
  8076. # ref https://github.com/ggml-org/llama.cpp/pull/17945
  8077. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1) # mscale_all_dim * 0.1
  8078. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  8079. if name.startswith("vision_") or name.startswith("patch_merger.") or "mm_projector" in name:
  8080. return []
  8081. # rename certain tensors so that we can reuse DeepseekV2Model modify_tensors logic
  8082. if name.endswith(".qscale_act"):
  8083. name = name.replace(".qscale_act", ".input_scale")
  8084. if name.endswith(".qscale_weight"):
  8085. name = name.replace(".qscale_weight", ".weight_scale")
  8086. if ".wkv_b." in name:
  8087. name = name.replace(".wkv_b.", ".kv_b_proj.")
  8088. if ".experts." in name:
  8089. name = name.replace(".experts.", ".mlp.experts.")
  8090. name = name.replace(".w1.", ".gate_proj.")
  8091. name = name.replace(".w2.", ".down_proj.")
  8092. name = name.replace(".w3.", ".up_proj.")
  8093. name = "model." + name
  8094. return super().modify_tensors(data_torch, name, bid)
  8095. class PixtralModel(LlavaVisionModel):
  8096. model_name = "Pixtral"
  8097. hf_arch = ""
  8098. is_mistral_format = True
  8099. def set_gguf_parameters(self):
  8100. super().set_gguf_parameters()
  8101. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  8102. self.gguf_writer.add_vision_attention_layernorm_eps(
  8103. self.find_hparam(["norm_eps"])
  8104. )
  8105. self.gguf_writer.add_rope_freq_base(self.find_vparam(["rope_theta"]))
  8106. self.gguf_writer.add_vision_use_silu(True)
  8107. # spatial_merge_size
  8108. if self.find_vparam(["mm_projector_id"]) == "patch_merge":
  8109. self.gguf_writer.add_vision_spatial_merge_size(
  8110. self.find_vparam(["spatial_merge_size"])
  8111. )
  8112. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  8113. if name == "vision_language_adapter.w_in.weight":
  8114. return "mm.1.weight"
  8115. elif name == "vision_language_adapter.w_out.weight":
  8116. return "mm.2.weight"
  8117. return super().map_tensor_name(name, try_suffixes)
  8118. @ModelBase.register("LightOnOCRForConditionalGeneration")
  8119. class LightOnOCRVisionModel(LlavaVisionModel):
  8120. is_mistral_format = False
  8121. use_break_tok = False
  8122. def set_gguf_parameters(self):
  8123. super().set_gguf_parameters()
  8124. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LIGHTONOCR)
  8125. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  8126. name = name.replace("model.vision_encoder.", "vision_tower.")
  8127. name = name.replace("model.vision_projection.", "multi_modal_projector.")
  8128. return super().modify_tensors(data_torch, name, bid)
  8129. @ModelBase.register("KimiVLForConditionalGeneration")
  8130. class KimiVLModel(MmprojModel):
  8131. def __init__(self, *args, **kwargs):
  8132. super().__init__(*args, **kwargs)
  8133. assert self.hparams_vision is not None
  8134. self.hparams_vision["image_size"] = 64 * 14 # for compatibility
  8135. def set_gguf_parameters(self):
  8136. super().set_gguf_parameters()
  8137. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.KIMIVL)
  8138. self.gguf_writer.add_vision_use_gelu(True)
  8139. self.gguf_writer.add_vision_projector_scale_factor(2)
  8140. # eps is the same as pytorch's default value
  8141. assert self.hparams_vision is not None
  8142. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams_vision.get("layer_norm_eps", 1e-5))
  8143. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8144. del bid # unused
  8145. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  8146. if is_vision_tensor:
  8147. if "pos_emb.weight" in name:
  8148. data_torch = data_torch.view(data_torch.shape[0] * data_torch.shape[1], data_torch.shape[2])
  8149. elif "wqkv" in name:
  8150. split_dim = 0 if "weight" in name else -1
  8151. wq, wk, wv = data_torch.chunk(3, dim=split_dim)
  8152. return [
  8153. (self.map_tensor_name(name.replace("wqkv", "wq")), wq),
  8154. (self.map_tensor_name(name.replace("wqkv", "wk")), wk),
  8155. (self.map_tensor_name(name.replace("wqkv", "wv")), wv)
  8156. ]
  8157. return [(self.map_tensor_name(name), data_torch)]
  8158. return [] # skip other tensors
  8159. @ModelBase.register("CogVLMForCausalLM")
  8160. class CogVLMVisionModel(MmprojModel):
  8161. def set_gguf_parameters(self):
  8162. super().set_gguf_parameters()
  8163. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-6))
  8164. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.COGVLM)
  8165. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8166. del bid # unused
  8167. if not name.startswith("model.vision."):
  8168. return []
  8169. return [(self.map_tensor_name(name), data_torch)]
  8170. @ModelBase.register("CogVLMForCausalLM")
  8171. class CogVLMModel(LlamaModel):
  8172. model_arch = gguf.MODEL_ARCH.COGVLM
  8173. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8174. del bid # unused
  8175. # block vision tensors
  8176. if name.startswith("model.vision."):
  8177. return []
  8178. return [(self.map_tensor_name(name), data_torch)]
  8179. @ModelBase.register("JanusForConditionalGeneration")
  8180. class JanusProModel(LlamaModel):
  8181. model_arch = gguf.MODEL_ARCH.LLAMA # reuse Llama arch
  8182. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8183. # Skip vision, aligner, and generation tensors
  8184. skip_prefixes = (
  8185. 'model.vision_model.',
  8186. 'model.aligner.',
  8187. 'model.vqmodel.',
  8188. 'model.generation_embeddings.',
  8189. 'model.generation_aligner.',
  8190. 'model.generation_head.',
  8191. )
  8192. if name.startswith(skip_prefixes):
  8193. return []
  8194. if name.startswith('model.language_model.'):
  8195. name = name.replace('model.language_model.', 'model.')
  8196. elif name.startswith('language_model.'):
  8197. name = name.replace('language_model.', '')
  8198. return super().modify_tensors(data_torch, name, bid)
  8199. @ModelBase.register("JanusForConditionalGeneration")
  8200. class JanusProVisionModel(MmprojModel):
  8201. def __init__(self, *args, **kwargs):
  8202. super().__init__(*args, **kwargs)
  8203. assert self.hparams_vision is not None
  8204. if "intermediate_size" not in self.hparams_vision:
  8205. mlp_ratio = self.hparams_vision.get("mlp_ratio")
  8206. hidden_size = self.hparams_vision.get("hidden_size")
  8207. if mlp_ratio is not None and hidden_size is not None:
  8208. self.hparams_vision["intermediate_size"] = int(round(hidden_size * mlp_ratio))
  8209. def set_gguf_parameters(self):
  8210. super().set_gguf_parameters()
  8211. assert self.hparams_vision is not None
  8212. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.JANUS_PRO)
  8213. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams_vision.get("layer_norm_eps", 1e-6))
  8214. hidden_act = str(self.hparams_vision.get("hidden_act", "")).lower()
  8215. if hidden_act == "gelu":
  8216. self.gguf_writer.add_vision_use_gelu(True)
  8217. elif hidden_act == "silu":
  8218. self.gguf_writer.add_vision_use_silu(True)
  8219. def _map_aligner_tensor(self, data_torch: Tensor, name: str) -> Iterable[tuple[str, Tensor]]:
  8220. """Map aligner tensors to projector format"""
  8221. suffix = ".bias" if name.endswith(".bias") else ".weight"
  8222. if name.startswith("model.aligner."):
  8223. local_name = name[len("model.aligner."):]
  8224. elif name.startswith("aligner."):
  8225. local_name = name[len("aligner."):]
  8226. else:
  8227. raise ValueError(f"Unsupported Janus aligner prefix: {name}")
  8228. if local_name.startswith("fc1."):
  8229. mm_index = 0
  8230. elif local_name.startswith("hidden_layers."):
  8231. parts = local_name.split(".", 2)
  8232. if len(parts) < 3:
  8233. raise ValueError(f"Unexpected Janus aligner tensor name: {name}")
  8234. mm_index = int(parts[1]) + 1
  8235. else:
  8236. raise ValueError(f"Unsupported Janus aligner tensor: {name}")
  8237. tensor_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_MMPROJ, mm_index, suffix=suffix)
  8238. return [(tensor_name, data_torch)]
  8239. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8240. del bid # unused
  8241. # Skip language model tensors as they will be handled by `JanusProModel`
  8242. if name.startswith(('model.language_model.', 'language_model.')):
  8243. return []
  8244. # Skip generation-related components
  8245. skip_generation_prefixes = (
  8246. 'model.vqmodel.',
  8247. 'vqmodel.',
  8248. 'model.generation_embeddings.',
  8249. 'generation_embeddings.',
  8250. 'model.generation_aligner.',
  8251. 'generation_aligner.',
  8252. 'model.generation_head.',
  8253. 'generation_head.',
  8254. )
  8255. if name.startswith(skip_generation_prefixes):
  8256. return []
  8257. # Handle aligner tensors
  8258. if name.startswith(('model.aligner.', 'aligner.')):
  8259. return list(self._map_aligner_tensor(data_torch, name))
  8260. # Handle vision tensors
  8261. if name.startswith(('model.vision_model.', 'vision_model.')):
  8262. return [(self.map_tensor_name(name), data_torch)]
  8263. return []
  8264. ###### CONVERSION LOGIC ######
  8265. # tree of lazy tensors
  8266. class LazyTorchTensor(gguf.LazyBase):
  8267. _tensor_type = torch.Tensor
  8268. # to keep the type-checker happy
  8269. dtype: torch.dtype
  8270. shape: torch.Size
  8271. # only used when converting a torch.Tensor to a np.ndarray
  8272. _dtype_map: dict[torch.dtype, type] = {
  8273. torch.float16: np.float16,
  8274. torch.float32: np.float32,
  8275. torch.uint8: np.uint8,
  8276. }
  8277. # only used when byteswapping data. Only correct size is needed
  8278. _dtype_byteswap_map: dict[torch.dtype, type] = {
  8279. torch.float64: np.float64,
  8280. torch.float32: np.float32,
  8281. torch.bfloat16: np.float16,
  8282. torch.float16: np.float16,
  8283. torch.int64: np.int64,
  8284. torch.uint64: np.uint64,
  8285. torch.int32: np.int32,
  8286. torch.uint32: np.uint32,
  8287. torch.int16: np.int16,
  8288. torch.uint16: np.uint16,
  8289. torch.int8: np.int8,
  8290. torch.uint8: np.uint8,
  8291. torch.bool: np.uint8,
  8292. torch.float8_e4m3fn: np.uint8,
  8293. torch.float8_e5m2: np.uint8,
  8294. }
  8295. # used for safetensors slices
  8296. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  8297. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  8298. _dtype_str_map: dict[str, torch.dtype] = {
  8299. "F64": torch.float64,
  8300. "F32": torch.float32,
  8301. "BF16": torch.bfloat16,
  8302. "F16": torch.float16,
  8303. # "U64": torch.uint64,
  8304. "I64": torch.int64,
  8305. # "U32": torch.uint32,
  8306. "I32": torch.int32,
  8307. # "U16": torch.uint16,
  8308. "I16": torch.int16,
  8309. "U8": torch.uint8,
  8310. "I8": torch.int8,
  8311. "BOOL": torch.bool,
  8312. "F8_E4M3": torch.float8_e4m3fn,
  8313. "F8_E5M2": torch.float8_e5m2,
  8314. }
  8315. def numpy(self) -> gguf.LazyNumpyTensor:
  8316. dtype = self._dtype_map[self.dtype]
  8317. return gguf.LazyNumpyTensor(
  8318. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  8319. args=(self,),
  8320. func=(lambda s: s.numpy())
  8321. )
  8322. @classmethod
  8323. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  8324. return torch.empty(size=shape, dtype=dtype, device="meta")
  8325. @classmethod
  8326. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  8327. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  8328. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  8329. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[...] if len(s.get_shape()) == 0 else s[:])
  8330. return cast(torch.Tensor, lazy)
  8331. @classmethod
  8332. def from_local_tensor(cls, t: gguf.utility.LocalTensor) -> Tensor:
  8333. def load_tensor(tensor: gguf.utility.LocalTensor) -> Tensor:
  8334. def byteswap_tensor(tensor: np.ndarray, dtype: type) -> np.ndarray:
  8335. if sys.byteorder == 'big':
  8336. # switch data back to big endian
  8337. tensor = tensor.view(dtype).byteswap(inplace=False)
  8338. return tensor
  8339. dtype = cls._dtype_str_map[tensor.dtype]
  8340. numpy_dtype = cls._dtype_byteswap_map[dtype]
  8341. return torch.from_numpy(byteswap_tensor(tensor.mmap_bytes(), numpy_dtype)).view(dtype).reshape(tensor.shape)
  8342. dtype = cls._dtype_str_map[t.dtype]
  8343. shape = t.shape
  8344. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(t,), func=lambda r: load_tensor(r))
  8345. return cast(torch.Tensor, lazy)
  8346. @classmethod
  8347. def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
  8348. def byteswap_tensor(tensor: np.ndarray, dtype: type) -> np.ndarray:
  8349. if sys.byteorder == 'big':
  8350. # switch data back to big endian
  8351. tensor = tensor.view(dtype).byteswap(inplace=False)
  8352. return tensor
  8353. dtype = cls._dtype_str_map[remote_tensor.dtype]
  8354. numpy_dtype = cls._dtype_byteswap_map[dtype]
  8355. shape = remote_tensor.shape
  8356. meta = cls.meta_with_dtype_and_shape(dtype, shape)
  8357. lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.from_numpy(byteswap_tensor(np.frombuffer(r.data(), dtype=numpy_dtype), numpy_dtype)).view(dtype).reshape(shape))
  8358. return cast(torch.Tensor, lazy)
  8359. @classmethod
  8360. def __torch_function__(cls, func, types, args=(), kwargs=None):
  8361. del types # unused
  8362. if kwargs is None:
  8363. kwargs = {}
  8364. if func is torch.Tensor.numpy:
  8365. return args[0].numpy()
  8366. return cls._wrap_fn(func)(*args, **kwargs)
  8367. def parse_args() -> argparse.Namespace:
  8368. parser = argparse.ArgumentParser(
  8369. description="Convert a huggingface model to a GGML compatible file")
  8370. parser.add_argument(
  8371. "--vocab-only", action="store_true",
  8372. help="extract only the vocab",
  8373. )
  8374. parser.add_argument(
  8375. "--outfile", type=Path,
  8376. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  8377. )
  8378. parser.add_argument(
  8379. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  8380. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  8381. )
  8382. parser.add_argument(
  8383. "--bigendian", action="store_true",
  8384. help="model is executed on big endian machine",
  8385. )
  8386. parser.add_argument(
  8387. "model", type=str,
  8388. help="directory containing model file or huggingface repository ID (if --remote)",
  8389. nargs="?",
  8390. )
  8391. parser.add_argument(
  8392. "--use-temp-file", action="store_true",
  8393. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  8394. )
  8395. parser.add_argument(
  8396. "--no-lazy", action="store_true",
  8397. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  8398. )
  8399. parser.add_argument(
  8400. "--model-name", type=str, default=None,
  8401. help="name of the model",
  8402. )
  8403. parser.add_argument(
  8404. "--verbose", action="store_true",
  8405. help="increase output verbosity",
  8406. )
  8407. parser.add_argument(
  8408. "--split-max-tensors", type=int, default=0,
  8409. help="max tensors in each split",
  8410. )
  8411. parser.add_argument(
  8412. "--split-max-size", type=str, default="0",
  8413. help="max size per split N(M|G)",
  8414. )
  8415. parser.add_argument(
  8416. "--dry-run", action="store_true",
  8417. help="only print out a split plan and exit, without writing any new files",
  8418. )
  8419. parser.add_argument(
  8420. "--no-tensor-first-split", action="store_true",
  8421. help="do not add tensors to the first split (disabled by default)"
  8422. )
  8423. parser.add_argument(
  8424. "--metadata", type=Path,
  8425. help="Specify the path for an authorship metadata override file"
  8426. )
  8427. parser.add_argument(
  8428. "--print-supported-models", action="store_true",
  8429. help="Print the supported models"
  8430. )
  8431. parser.add_argument(
  8432. "--remote", action="store_true",
  8433. help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
  8434. )
  8435. parser.add_argument(
  8436. "--mmproj", action="store_true",
  8437. help="(Experimental) Export multimodal projector (mmproj) for vision models. This will only work on some vision models. A prefix 'mmproj-' will be added to the output file name.",
  8438. )
  8439. parser.add_argument(
  8440. "--mistral-format", action="store_true",
  8441. help="Whether the model is stored following the Mistral format.",
  8442. )
  8443. parser.add_argument(
  8444. "--disable-mistral-community-chat-template", action="store_true",
  8445. help=(
  8446. "Whether to disable usage of Mistral community chat templates. If set, use the Mistral official `mistral-common` library for tokenization and detokenization of Mistral models. "
  8447. "Using `mistral-common` ensure correctness and zero-day support of tokenization for models converted from the Mistral format but requires to manually setup the tokenization server."
  8448. )
  8449. )
  8450. parser.add_argument(
  8451. "--sentence-transformers-dense-modules", action="store_true",
  8452. help=("Whether to include sentence-transformers dense modules."
  8453. "It can be used for sentence-transformers models, like google/embeddinggemma-300m"
  8454. "Default these modules are not included.")
  8455. )
  8456. args = parser.parse_args()
  8457. if not args.print_supported_models and args.model is None:
  8458. parser.error("the following arguments are required: model")
  8459. return args
  8460. def split_str_to_n_bytes(split_str: str) -> int:
  8461. if split_str.endswith("K"):
  8462. n = int(split_str[:-1]) * 1000
  8463. elif split_str.endswith("M"):
  8464. n = int(split_str[:-1]) * 1000 * 1000
  8465. elif split_str.endswith("G"):
  8466. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  8467. elif split_str.isnumeric():
  8468. n = int(split_str)
  8469. else:
  8470. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  8471. if n < 0:
  8472. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  8473. return n
  8474. def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> str:
  8475. # TODO @ngxson : this won't work correctly if the model has both audio & vision encoders
  8476. # maybe we should fallback to text model's arch in that case, since not many models have both
  8477. text_config = hparams.get("text_config", {})
  8478. vision_config = hparams.get("vision_config", {})
  8479. arch = None
  8480. if (arches := hparams.get("architectures")) is not None and len(arches) > 0:
  8481. arch = arches[0]
  8482. elif "ssm_cfg" in hparams:
  8483. # For non-hf Mamba and Mamba2 models
  8484. arch = hparams["ssm_cfg"].get("layer", "Mamba") + "ForCausalLM"
  8485. # if "architectures" is found in the sub-config, use that instead
  8486. if model_type == ModelType.TEXT and text_config.get("architectures") is not None:
  8487. arch = text_config["architectures"][0]
  8488. elif model_type == ModelType.MMPROJ and vision_config.get("architectures") is not None:
  8489. arch = vision_config["architectures"][0]
  8490. if arch is None:
  8491. raise ValueError("Failed to detect model architecture")
  8492. return arch
  8493. def main() -> None:
  8494. args = parse_args()
  8495. if args.print_supported_models:
  8496. logger.error("Supported models:")
  8497. ModelBase.print_registered_models()
  8498. sys.exit(0)
  8499. if args.verbose:
  8500. logging.basicConfig(level=logging.DEBUG)
  8501. else:
  8502. logging.basicConfig(level=logging.INFO)
  8503. if args.remote:
  8504. hf_repo_id = args.model
  8505. from huggingface_hub import snapshot_download
  8506. allowed_patterns = ["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"]
  8507. if args.sentence_transformers_dense_modules:
  8508. # include sentence-transformers dense modules safetensors files
  8509. allowed_patterns.append("*.safetensors")
  8510. local_dir = snapshot_download(
  8511. repo_id=hf_repo_id,
  8512. allow_patterns=allowed_patterns)
  8513. dir_model = Path(local_dir)
  8514. logger.info(f"Downloaded config and tokenizer to {local_dir}")
  8515. else:
  8516. hf_repo_id = None
  8517. dir_model = Path(args.model)
  8518. if not dir_model.is_dir():
  8519. logger.error(f'Error: {dir_model} is not a directory')
  8520. sys.exit(1)
  8521. ftype_map: dict[str, gguf.LlamaFileType] = {
  8522. "f32": gguf.LlamaFileType.ALL_F32,
  8523. "f16": gguf.LlamaFileType.MOSTLY_F16,
  8524. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  8525. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  8526. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  8527. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  8528. "auto": gguf.LlamaFileType.GUESSED,
  8529. }
  8530. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  8531. if args.use_temp_file and is_split:
  8532. logger.error("Error: Cannot use temp file when splitting")
  8533. sys.exit(1)
  8534. if args.outfile is not None:
  8535. fname_out = args.outfile
  8536. elif hf_repo_id:
  8537. # if remote, use the model ID as the output file name
  8538. fname_out = Path("./" + hf_repo_id.replace("/", "-") + "-{ftype}.gguf")
  8539. else:
  8540. fname_out = dir_model
  8541. logger.info(f"Loading model: {dir_model.name}")
  8542. is_mistral_format = args.mistral_format
  8543. if is_mistral_format and not _mistral_common_installed:
  8544. raise ImportError(_mistral_import_error_msg)
  8545. disable_mistral_community_chat_template = args.disable_mistral_community_chat_template
  8546. with torch.inference_mode():
  8547. output_type = ftype_map[args.outtype]
  8548. model_type = ModelType.MMPROJ if args.mmproj else ModelType.TEXT
  8549. hparams = ModelBase.load_hparams(dir_model, is_mistral_format)
  8550. if not is_mistral_format:
  8551. model_architecture = get_model_architecture(hparams, model_type)
  8552. logger.info(f"Model architecture: {model_architecture}")
  8553. try:
  8554. model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
  8555. except NotImplementedError:
  8556. logger.error(f"Model {model_architecture} is not supported")
  8557. sys.exit(1)
  8558. elif args.mmproj:
  8559. assert hparams.get("vision_encoder") is not None, "This model does not support multimodal"
  8560. model_class = PixtralModel
  8561. elif "moe" in hparams:
  8562. model_class = MistralMoeModel
  8563. else:
  8564. model_class = MistralModel
  8565. model_instance = model_class(dir_model, output_type, fname_out,
  8566. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  8567. eager=args.no_lazy,
  8568. metadata_override=args.metadata, model_name=args.model_name,
  8569. split_max_tensors=args.split_max_tensors,
  8570. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  8571. small_first_shard=args.no_tensor_first_split,
  8572. remote_hf_model_id=hf_repo_id, disable_mistral_community_chat_template=disable_mistral_community_chat_template,
  8573. sentence_transformers_dense_modules=args.sentence_transformers_dense_modules
  8574. )
  8575. if args.vocab_only:
  8576. logger.info("Exporting model vocab...")
  8577. model_instance.write_vocab()
  8578. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  8579. else:
  8580. logger.info("Exporting model...")
  8581. model_instance.write()
  8582. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  8583. logger.info(f"Model successfully exported to {out_path}")
  8584. if __name__ == '__main__':
  8585. main()