ggml.h 90 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443
  1. #pragma once
  2. //
  3. // GGML Tensor Library
  4. //
  5. // This documentation is still a work in progress.
  6. // If you wish some specific topics to be covered, feel free to drop a comment:
  7. //
  8. // https://github.com/ggerganov/whisper.cpp/issues/40
  9. //
  10. // ## Overview
  11. //
  12. // This library implements:
  13. //
  14. // - a set of tensor operations
  15. // - automatic differentiation
  16. // - basic optimization algorithms
  17. //
  18. // The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
  19. // but is not limited to, the following:
  20. //
  21. // - linear regression
  22. // - support vector machines
  23. // - neural networks
  24. //
  25. // The library allows the user to define a certain function using the available tensor operations. This function
  26. // definition is represented internally via a computation graph. Each tensor operation in the function definition
  27. // corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
  28. // function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
  29. // using one of the available optimization algorithms.
  30. //
  31. // For example, here we define the function: f(x) = a*x^2 + b
  32. //
  33. // {
  34. // struct ggml_init_params params = {
  35. // .mem_size = 16*1024*1024,
  36. // .mem_buffer = NULL,
  37. // };
  38. //
  39. // // memory allocation happens here
  40. // struct ggml_context * ctx = ggml_init(params);
  41. //
  42. // struct ggml_tensor * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  43. //
  44. // ggml_set_param(ctx, x); // x is an input variable
  45. //
  46. // struct ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  47. // struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  48. // struct ggml_tensor * x2 = ggml_mul(ctx, x, x);
  49. // struct ggml_tensor * f = ggml_add(ctx, ggml_mul(ctx, a, x2), b);
  50. //
  51. // ...
  52. // }
  53. //
  54. // Notice that the function definition above does not involve any actual computation. The computation is performed only
  55. // when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
  56. //
  57. // {
  58. // ...
  59. //
  60. // struct ggml_cgraph * gf = ggml_new_graph(ctx);
  61. // ggml_build_forward_expand(gf, f);
  62. //
  63. // // set the input variable and parameter values
  64. // ggml_set_f32(x, 2.0f);
  65. // ggml_set_f32(a, 3.0f);
  66. // ggml_set_f32(b, 4.0f);
  67. //
  68. // ggml_graph_compute_with_ctx(ctx, &gf, n_threads);
  69. //
  70. // printf("f = %f\n", ggml_get_f32_1d(f, 0));
  71. //
  72. // ...
  73. // }
  74. //
  75. // The actual computation is performed in the ggml_graph_compute() function.
  76. //
  77. // The ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
  78. // ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
  79. // in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
  80. // and after defining the computation graph, call the ggml_used_mem() function to find out how much memory was
  81. // actually needed.
  82. //
  83. // The ggml_set_param() function marks a tensor as an input variable. This is used by the automatic
  84. // differentiation and optimization algorithms.
  85. //
  86. // The described approach allows to define the function graph once and then compute its forward or backward graphs
  87. // multiple times. All computations will use the same memory buffer allocated in the ggml_init() function. This way
  88. // the user can avoid the memory allocation overhead at runtime.
  89. //
  90. // The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
  91. // citizens, but in theory the library can be extended to support FP8 and integer data types.
  92. //
  93. // Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
  94. // and binary operations. Most of the available operations fall into one of these two categories. With time, it became
  95. // clear that the library needs to support more complex operations. The way to support these operations is not clear
  96. // yet, but a few examples are demonstrated in the following operations:
  97. //
  98. // - ggml_permute()
  99. // - ggml_conv_1d_1s()
  100. // - ggml_conv_1d_2s()
  101. //
  102. // For each tensor operator, the library implements a forward and backward computation function. The forward function
  103. // computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
  104. // input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
  105. // calculus class, or watch the following video:
  106. //
  107. // What is Automatic Differentiation?
  108. // https://www.youtube.com/watch?v=wG_nF1awSSY
  109. //
  110. //
  111. // ## Tensor data (struct ggml_tensor)
  112. //
  113. // The tensors are stored in memory via the ggml_tensor struct. The structure provides information about the size of
  114. // the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
  115. // pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
  116. //
  117. // {
  118. // struct ggml_tensor * c = ggml_add(ctx, a, b);
  119. //
  120. // assert(c->src[0] == a);
  121. // assert(c->src[1] == b);
  122. // }
  123. //
  124. // The multi-dimensional tensors are stored in row-major order. The ggml_tensor struct contains fields for the
  125. // number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
  126. // to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
  127. // permutation. All tensor operations have to take the stride into account and not assume that the tensor is
  128. // contiguous in memory.
  129. //
  130. // The data of the tensor is accessed via the "data" pointer. For example:
  131. //
  132. // {
  133. // const int nx = 2;
  134. // const int ny = 3;
  135. //
  136. // struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, ny);
  137. //
  138. // for (int y = 0; y < ny; y++) {
  139. // for (int x = 0; x < nx; x++) {
  140. // *(float *) ((char *) a->data + y*a->nb[1] + x*a->nb[0]) = x + y;
  141. // }
  142. // }
  143. //
  144. // ...
  145. // }
  146. //
  147. // Alternatively, there are helper functions, such as ggml_get_f32_1d() and ggml_set_f32_1d() that can be used.
  148. //
  149. // ## The matrix multiplication operator (ggml_mul_mat)
  150. //
  151. // TODO
  152. //
  153. //
  154. // ## Multi-threading
  155. //
  156. // TODO
  157. //
  158. //
  159. // ## Overview of ggml.c
  160. //
  161. // TODO
  162. //
  163. //
  164. // ## SIMD optimizations
  165. //
  166. // TODO
  167. //
  168. //
  169. // ## Debugging ggml
  170. //
  171. // TODO
  172. //
  173. //
  174. #ifdef GGML_SHARED
  175. # if defined(_WIN32) && !defined(__MINGW32__)
  176. # ifdef GGML_BUILD
  177. # define GGML_API __declspec(dllexport)
  178. # else
  179. # define GGML_API __declspec(dllimport)
  180. # endif
  181. # else
  182. # define GGML_API __attribute__ ((visibility ("default")))
  183. # endif
  184. #else
  185. # define GGML_API
  186. #endif
  187. // TODO: support for clang
  188. #ifdef __GNUC__
  189. # define GGML_DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
  190. #elif defined(_MSC_VER)
  191. # define GGML_DEPRECATED(func, hint) __declspec(deprecated(hint)) func
  192. #else
  193. # define GGML_DEPRECATED(func, hint) func
  194. #endif
  195. #ifndef __GNUC__
  196. # define GGML_ATTRIBUTE_FORMAT(...)
  197. #elif defined(__MINGW32__)
  198. # define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  199. #else
  200. # define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  201. #endif
  202. #include <stdbool.h>
  203. #include <stddef.h>
  204. #include <stdint.h>
  205. #include <stdio.h>
  206. #define GGML_FILE_MAGIC 0x67676d6c // "ggml"
  207. #define GGML_FILE_VERSION 2
  208. #define GGML_QNT_VERSION 2 // bump this on quantization format changes
  209. #define GGML_QNT_VERSION_FACTOR 1000 // do not change this
  210. #define GGML_MAX_DIMS 4
  211. #define GGML_MAX_PARAMS 2048
  212. #define GGML_MAX_SRC 10
  213. #define GGML_MAX_N_THREADS 512
  214. #define GGML_MAX_OP_PARAMS 64
  215. #ifndef GGML_MAX_NAME
  216. # define GGML_MAX_NAME 64
  217. #endif
  218. #define GGML_DEFAULT_N_THREADS 4
  219. #define GGML_DEFAULT_GRAPH_SIZE 2048
  220. #if UINTPTR_MAX == 0xFFFFFFFF
  221. #define GGML_MEM_ALIGN 4
  222. #else
  223. #define GGML_MEM_ALIGN 16
  224. #endif
  225. #define GGML_EXIT_SUCCESS 0
  226. #define GGML_EXIT_ABORTED 1
  227. #define GGML_ROPE_TYPE_NEOX 2
  228. #define GGUF_MAGIC "GGUF"
  229. #define GGUF_VERSION 3
  230. #define GGUF_DEFAULT_ALIGNMENT 32
  231. #define GGML_UNUSED(x) (void)(x)
  232. #define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))
  233. #ifndef NDEBUG
  234. # define GGML_UNREACHABLE() do { fprintf(stderr, "statement should be unreachable\n"); abort(); } while(0)
  235. #elif defined(__GNUC__)
  236. # define GGML_UNREACHABLE() __builtin_unreachable()
  237. #elif defined(_MSC_VER)
  238. # define GGML_UNREACHABLE() __assume(0)
  239. #else
  240. # define GGML_UNREACHABLE() ((void) 0)
  241. #endif
  242. #ifdef __cplusplus
  243. # define GGML_NORETURN [[noreturn]]
  244. #elif defined(_MSC_VER)
  245. # define GGML_NORETURN __declspec(noreturn)
  246. #else
  247. # define GGML_NORETURN _Noreturn
  248. #endif
  249. #define GGML_ABORT(...) ggml_abort(__FILE__, __LINE__, __VA_ARGS__)
  250. #define GGML_ASSERT(x) if (!(x)) GGML_ABORT("GGML_ASSERT(%s) failed", #x)
  251. // used to copy the number of elements and stride in bytes of tensors into local variables.
  252. // main purpose is to reduce code duplication and improve readability.
  253. //
  254. // example:
  255. //
  256. // GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  257. // GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  258. //
  259. #define GGML_TENSOR_LOCALS_1(type, prefix, pointer, array) \
  260. const type prefix##0 = (pointer)->array[0]; \
  261. GGML_UNUSED(prefix##0);
  262. #define GGML_TENSOR_LOCALS_2(type, prefix, pointer, array) \
  263. GGML_TENSOR_LOCALS_1 (type, prefix, pointer, array) \
  264. const type prefix##1 = (pointer)->array[1]; \
  265. GGML_UNUSED(prefix##1);
  266. #define GGML_TENSOR_LOCALS_3(type, prefix, pointer, array) \
  267. GGML_TENSOR_LOCALS_2 (type, prefix, pointer, array) \
  268. const type prefix##2 = (pointer)->array[2]; \
  269. GGML_UNUSED(prefix##2);
  270. #define GGML_TENSOR_LOCALS(type, prefix, pointer, array) \
  271. GGML_TENSOR_LOCALS_3 (type, prefix, pointer, array) \
  272. const type prefix##3 = (pointer)->array[3]; \
  273. GGML_UNUSED(prefix##3);
  274. #define GGML_TENSOR_UNARY_OP_LOCALS \
  275. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  276. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  277. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  278. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  279. #define GGML_TENSOR_BINARY_OP_LOCALS \
  280. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  281. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  282. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
  283. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) \
  284. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  285. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  286. #define GGML_TENSOR_BINARY_OP_LOCALS01 \
  287. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  288. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  289. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
  290. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  291. #ifdef __cplusplus
  292. extern "C" {
  293. #endif
  294. GGML_NORETURN GGML_ATTRIBUTE_FORMAT(3, 4)
  295. GGML_API void ggml_abort(const char * file, int line, const char * fmt, ...);
  296. enum ggml_status {
  297. GGML_STATUS_ALLOC_FAILED = -2,
  298. GGML_STATUS_FAILED = -1,
  299. GGML_STATUS_SUCCESS = 0,
  300. GGML_STATUS_ABORTED = 1,
  301. };
  302. // get ggml_status name string
  303. GGML_API const char * ggml_status_to_string(enum ggml_status status);
  304. // ieee 754-2008 half-precision float16
  305. // todo: make this not an integral type
  306. typedef uint16_t ggml_fp16_t;
  307. GGML_API float ggml_fp16_to_fp32(ggml_fp16_t);
  308. GGML_API ggml_fp16_t ggml_fp32_to_fp16(float);
  309. GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t *, float *, int64_t);
  310. GGML_API void ggml_fp32_to_fp16_row(const float *, ggml_fp16_t *, int64_t);
  311. // google brain half-precision bfloat16
  312. typedef struct { uint16_t bits; } ggml_bf16_t;
  313. GGML_API ggml_bf16_t ggml_fp32_to_bf16(float);
  314. GGML_API float ggml_bf16_to_fp32(ggml_bf16_t); // consider just doing << 16
  315. GGML_API void ggml_bf16_to_fp32_row(const ggml_bf16_t *, float *, int64_t);
  316. GGML_API void ggml_fp32_to_bf16_row_ref(const float *, ggml_bf16_t *, int64_t);
  317. GGML_API void ggml_fp32_to_bf16_row(const float *, ggml_bf16_t *, int64_t);
  318. struct ggml_object;
  319. struct ggml_context;
  320. struct ggml_cgraph;
  321. // NOTE: always add types at the end of the enum to keep backward compatibility
  322. enum ggml_type {
  323. GGML_TYPE_F32 = 0,
  324. GGML_TYPE_F16 = 1,
  325. GGML_TYPE_Q4_0 = 2,
  326. GGML_TYPE_Q4_1 = 3,
  327. // GGML_TYPE_Q4_2 = 4, support has been removed
  328. // GGML_TYPE_Q4_3 = 5, support has been removed
  329. GGML_TYPE_Q5_0 = 6,
  330. GGML_TYPE_Q5_1 = 7,
  331. GGML_TYPE_Q8_0 = 8,
  332. GGML_TYPE_Q8_1 = 9,
  333. GGML_TYPE_Q2_K = 10,
  334. GGML_TYPE_Q3_K = 11,
  335. GGML_TYPE_Q4_K = 12,
  336. GGML_TYPE_Q5_K = 13,
  337. GGML_TYPE_Q6_K = 14,
  338. GGML_TYPE_Q8_K = 15,
  339. GGML_TYPE_IQ2_XXS = 16,
  340. GGML_TYPE_IQ2_XS = 17,
  341. GGML_TYPE_IQ3_XXS = 18,
  342. GGML_TYPE_IQ1_S = 19,
  343. GGML_TYPE_IQ4_NL = 20,
  344. GGML_TYPE_IQ3_S = 21,
  345. GGML_TYPE_IQ2_S = 22,
  346. GGML_TYPE_IQ4_XS = 23,
  347. GGML_TYPE_I8 = 24,
  348. GGML_TYPE_I16 = 25,
  349. GGML_TYPE_I32 = 26,
  350. GGML_TYPE_I64 = 27,
  351. GGML_TYPE_F64 = 28,
  352. GGML_TYPE_IQ1_M = 29,
  353. GGML_TYPE_BF16 = 30,
  354. GGML_TYPE_Q4_0_4_4 = 31,
  355. GGML_TYPE_Q4_0_4_8 = 32,
  356. GGML_TYPE_Q4_0_8_8 = 33,
  357. GGML_TYPE_TQ1_0 = 34,
  358. GGML_TYPE_TQ2_0 = 35,
  359. GGML_TYPE_COUNT,
  360. };
  361. // precision
  362. enum ggml_prec {
  363. GGML_PREC_DEFAULT,
  364. GGML_PREC_F32,
  365. };
  366. enum ggml_backend_type {
  367. GGML_BACKEND_TYPE_CPU = 0,
  368. GGML_BACKEND_TYPE_GPU = 10,
  369. GGML_BACKEND_TYPE_GPU_SPLIT = 20,
  370. };
  371. // model file types
  372. enum ggml_ftype {
  373. GGML_FTYPE_UNKNOWN = -1,
  374. GGML_FTYPE_ALL_F32 = 0,
  375. GGML_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  376. GGML_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  377. GGML_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  378. GGML_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  379. GGML_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  380. GGML_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  381. GGML_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  382. GGML_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
  383. GGML_FTYPE_MOSTLY_Q3_K = 11, // except 1d tensors
  384. GGML_FTYPE_MOSTLY_Q4_K = 12, // except 1d tensors
  385. GGML_FTYPE_MOSTLY_Q5_K = 13, // except 1d tensors
  386. GGML_FTYPE_MOSTLY_Q6_K = 14, // except 1d tensors
  387. GGML_FTYPE_MOSTLY_IQ2_XXS = 15, // except 1d tensors
  388. GGML_FTYPE_MOSTLY_IQ2_XS = 16, // except 1d tensors
  389. GGML_FTYPE_MOSTLY_IQ3_XXS = 17, // except 1d tensors
  390. GGML_FTYPE_MOSTLY_IQ1_S = 18, // except 1d tensors
  391. GGML_FTYPE_MOSTLY_IQ4_NL = 19, // except 1d tensors
  392. GGML_FTYPE_MOSTLY_IQ3_S = 20, // except 1d tensors
  393. GGML_FTYPE_MOSTLY_IQ2_S = 21, // except 1d tensors
  394. GGML_FTYPE_MOSTLY_IQ4_XS = 22, // except 1d tensors
  395. GGML_FTYPE_MOSTLY_IQ1_M = 23, // except 1d tensors
  396. GGML_FTYPE_MOSTLY_BF16 = 24, // except 1d tensors
  397. GGML_FTYPE_MOSTLY_Q4_0_4_4 = 25, // except 1d tensors
  398. GGML_FTYPE_MOSTLY_Q4_0_4_8 = 26, // except 1d tensors
  399. GGML_FTYPE_MOSTLY_Q4_0_8_8 = 27, // except 1d tensors
  400. };
  401. // available tensor operations:
  402. enum ggml_op {
  403. GGML_OP_NONE = 0,
  404. GGML_OP_DUP,
  405. GGML_OP_ADD,
  406. GGML_OP_ADD1,
  407. GGML_OP_ACC,
  408. GGML_OP_SUB,
  409. GGML_OP_MUL,
  410. GGML_OP_DIV,
  411. GGML_OP_SQR,
  412. GGML_OP_SQRT,
  413. GGML_OP_LOG,
  414. GGML_OP_SIN,
  415. GGML_OP_COS,
  416. GGML_OP_SUM,
  417. GGML_OP_SUM_ROWS,
  418. GGML_OP_MEAN,
  419. GGML_OP_ARGMAX,
  420. GGML_OP_COUNT_EQUAL,
  421. GGML_OP_REPEAT,
  422. GGML_OP_REPEAT_BACK,
  423. GGML_OP_CONCAT,
  424. GGML_OP_SILU_BACK,
  425. GGML_OP_NORM, // normalize
  426. GGML_OP_RMS_NORM,
  427. GGML_OP_RMS_NORM_BACK,
  428. GGML_OP_GROUP_NORM,
  429. GGML_OP_MUL_MAT,
  430. GGML_OP_MUL_MAT_ID,
  431. GGML_OP_OUT_PROD,
  432. GGML_OP_SCALE,
  433. GGML_OP_SET,
  434. GGML_OP_CPY,
  435. GGML_OP_CONT,
  436. GGML_OP_RESHAPE,
  437. GGML_OP_VIEW,
  438. GGML_OP_PERMUTE,
  439. GGML_OP_TRANSPOSE,
  440. GGML_OP_GET_ROWS,
  441. GGML_OP_GET_ROWS_BACK,
  442. GGML_OP_DIAG,
  443. GGML_OP_DIAG_MASK_INF,
  444. GGML_OP_DIAG_MASK_ZERO,
  445. GGML_OP_SOFT_MAX,
  446. GGML_OP_SOFT_MAX_BACK,
  447. GGML_OP_ROPE,
  448. GGML_OP_ROPE_BACK,
  449. GGML_OP_CLAMP,
  450. GGML_OP_CONV_TRANSPOSE_1D,
  451. GGML_OP_IM2COL,
  452. GGML_OP_IM2COL_BACK,
  453. GGML_OP_CONV_TRANSPOSE_2D,
  454. GGML_OP_POOL_1D,
  455. GGML_OP_POOL_2D,
  456. GGML_OP_POOL_2D_BACK,
  457. GGML_OP_UPSCALE, // nearest interpolate
  458. GGML_OP_PAD,
  459. GGML_OP_ARANGE,
  460. GGML_OP_TIMESTEP_EMBEDDING,
  461. GGML_OP_ARGSORT,
  462. GGML_OP_LEAKY_RELU,
  463. GGML_OP_FLASH_ATTN_EXT,
  464. GGML_OP_FLASH_ATTN_BACK,
  465. GGML_OP_SSM_CONV,
  466. GGML_OP_SSM_SCAN,
  467. GGML_OP_WIN_PART,
  468. GGML_OP_WIN_UNPART,
  469. GGML_OP_GET_REL_POS,
  470. GGML_OP_ADD_REL_POS,
  471. GGML_OP_RWKV_WKV6,
  472. GGML_OP_UNARY,
  473. GGML_OP_MAP_UNARY,
  474. GGML_OP_MAP_BINARY,
  475. GGML_OP_MAP_CUSTOM1_F32,
  476. GGML_OP_MAP_CUSTOM2_F32,
  477. GGML_OP_MAP_CUSTOM3_F32,
  478. GGML_OP_MAP_CUSTOM1,
  479. GGML_OP_MAP_CUSTOM2,
  480. GGML_OP_MAP_CUSTOM3,
  481. GGML_OP_CROSS_ENTROPY_LOSS,
  482. GGML_OP_CROSS_ENTROPY_LOSS_BACK,
  483. GGML_OP_OPT_STEP_ADAMW,
  484. GGML_OP_COUNT,
  485. };
  486. enum ggml_unary_op {
  487. GGML_UNARY_OP_ABS,
  488. GGML_UNARY_OP_SGN,
  489. GGML_UNARY_OP_NEG,
  490. GGML_UNARY_OP_STEP,
  491. GGML_UNARY_OP_TANH,
  492. GGML_UNARY_OP_ELU,
  493. GGML_UNARY_OP_RELU,
  494. GGML_UNARY_OP_SIGMOID,
  495. GGML_UNARY_OP_GELU,
  496. GGML_UNARY_OP_GELU_QUICK,
  497. GGML_UNARY_OP_SILU,
  498. GGML_UNARY_OP_HARDSWISH,
  499. GGML_UNARY_OP_HARDSIGMOID,
  500. GGML_UNARY_OP_EXP,
  501. GGML_UNARY_OP_COUNT,
  502. };
  503. enum ggml_object_type {
  504. GGML_OBJECT_TYPE_TENSOR,
  505. GGML_OBJECT_TYPE_GRAPH,
  506. GGML_OBJECT_TYPE_WORK_BUFFER
  507. };
  508. enum ggml_log_level {
  509. GGML_LOG_LEVEL_NONE = 0,
  510. GGML_LOG_LEVEL_DEBUG = 1,
  511. GGML_LOG_LEVEL_INFO = 2,
  512. GGML_LOG_LEVEL_WARN = 3,
  513. GGML_LOG_LEVEL_ERROR = 4,
  514. GGML_LOG_LEVEL_CONT = 5, // continue previous log
  515. };
  516. // this tensor...
  517. enum ggml_tensor_flag {
  518. GGML_TENSOR_FLAG_INPUT = 1, // ...is an input for the GGML compute graph
  519. GGML_TENSOR_FLAG_OUTPUT = 2, // ...is an output for the GGML compute graph
  520. GGML_TENSOR_FLAG_PARAM = 4, // ...contains trainable parameters
  521. GGML_TENSOR_FLAG_LOSS = 8, // ...defines loss for numerical optimization (multiple loss tensors add up)
  522. };
  523. struct ggml_init_params {
  524. // memory pool
  525. size_t mem_size; // bytes
  526. void * mem_buffer; // if NULL, memory will be allocated internally
  527. bool no_alloc; // don't allocate memory for the tensor data
  528. };
  529. // n-dimensional tensor
  530. struct ggml_tensor {
  531. enum ggml_type type;
  532. GGML_DEPRECATED(enum ggml_backend_type backend, "use the buffer type to find the storage location of the tensor");
  533. struct ggml_backend_buffer * buffer;
  534. int64_t ne[GGML_MAX_DIMS]; // number of elements
  535. size_t nb[GGML_MAX_DIMS]; // stride in bytes:
  536. // nb[0] = ggml_type_size(type)
  537. // nb[1] = nb[0] * (ne[0] / ggml_blck_size(type)) + padding
  538. // nb[i] = nb[i-1] * ne[i-1]
  539. // compute data
  540. enum ggml_op op;
  541. // op params - allocated as int32_t for alignment
  542. int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
  543. int32_t flags;
  544. struct ggml_tensor * grad;
  545. struct ggml_tensor * src[GGML_MAX_SRC];
  546. // source tensor and offset for views
  547. struct ggml_tensor * view_src;
  548. size_t view_offs;
  549. void * data;
  550. char name[GGML_MAX_NAME];
  551. void * extra; // extra things e.g. for ggml-cuda.cu
  552. // char padding[4];
  553. };
  554. static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
  555. // Abort callback
  556. // If not NULL, called before ggml computation
  557. // If it returns true, the computation is aborted
  558. typedef bool (*ggml_abort_callback)(void * data);
  559. //
  560. // GUID
  561. //
  562. // GUID types
  563. typedef uint8_t ggml_guid[16];
  564. typedef ggml_guid * ggml_guid_t;
  565. GGML_API bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b);
  566. // misc
  567. GGML_API void ggml_time_init(void); // call this once at the beginning of the program
  568. GGML_API int64_t ggml_time_ms(void);
  569. GGML_API int64_t ggml_time_us(void);
  570. GGML_API int64_t ggml_cycles(void);
  571. GGML_API int64_t ggml_cycles_per_ms(void);
  572. // accepts a UTF-8 path, even on Windows
  573. GGML_API FILE * ggml_fopen(const char * fname, const char * mode);
  574. GGML_API void ggml_print_object (const struct ggml_object * obj);
  575. GGML_API void ggml_print_objects(const struct ggml_context * ctx);
  576. GGML_API int64_t ggml_nelements (const struct ggml_tensor * tensor);
  577. GGML_API int64_t ggml_nrows (const struct ggml_tensor * tensor);
  578. GGML_API size_t ggml_nbytes (const struct ggml_tensor * tensor);
  579. GGML_API size_t ggml_nbytes_pad(const struct ggml_tensor * tensor); // same as ggml_nbytes() but padded to GGML_MEM_ALIGN
  580. GGML_API int64_t ggml_blck_size(enum ggml_type type);
  581. GGML_API size_t ggml_type_size(enum ggml_type type); // size in bytes for all elements in a block
  582. GGML_API size_t ggml_row_size (enum ggml_type type, int64_t ne); // size in bytes for all elements in a row
  583. GGML_DEPRECATED(
  584. GGML_API double ggml_type_sizef(enum ggml_type type), // ggml_type_size()/ggml_blck_size() as float
  585. "use ggml_row_size() instead");
  586. GGML_API const char * ggml_type_name(enum ggml_type type);
  587. GGML_API const char * ggml_op_name (enum ggml_op op);
  588. GGML_API const char * ggml_op_symbol(enum ggml_op op);
  589. GGML_API const char * ggml_unary_op_name(enum ggml_unary_op op);
  590. GGML_API const char * ggml_op_desc(const struct ggml_tensor * t); // unary or op name
  591. GGML_API size_t ggml_element_size(const struct ggml_tensor * tensor);
  592. GGML_API bool ggml_is_quantized(enum ggml_type type);
  593. // TODO: temporary until model loading of ggml examples is refactored
  594. GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype);
  595. GGML_API bool ggml_is_transposed(const struct ggml_tensor * tensor);
  596. GGML_API bool ggml_is_permuted (const struct ggml_tensor * tensor);
  597. GGML_API bool ggml_is_empty (const struct ggml_tensor * tensor);
  598. GGML_API bool ggml_is_scalar (const struct ggml_tensor * tensor);
  599. GGML_API bool ggml_is_vector (const struct ggml_tensor * tensor);
  600. GGML_API bool ggml_is_matrix (const struct ggml_tensor * tensor);
  601. GGML_API bool ggml_is_3d (const struct ggml_tensor * tensor);
  602. GGML_API int ggml_n_dims (const struct ggml_tensor * tensor); // returns 1 for scalars
  603. GGML_API bool ggml_is_contiguous (const struct ggml_tensor * tensor);
  604. GGML_API bool ggml_is_contiguous_0(const struct ggml_tensor * tensor); // same as ggml_is_contiguous()
  605. GGML_API bool ggml_is_contiguous_1(const struct ggml_tensor * tensor); // contiguous for dims >= 1
  606. GGML_API bool ggml_is_contiguous_2(const struct ggml_tensor * tensor); // contiguous for dims >= 2
  607. GGML_API bool ggml_are_same_shape (const struct ggml_tensor * t0, const struct ggml_tensor * t1);
  608. GGML_API bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
  609. GGML_API bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
  610. // use this to compute the memory overhead of a tensor
  611. GGML_API size_t ggml_tensor_overhead(void);
  612. GGML_API bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbytes);
  613. // main
  614. GGML_API struct ggml_context * ggml_init (struct ggml_init_params params);
  615. GGML_API void ggml_reset(struct ggml_context * ctx);
  616. GGML_API void ggml_free (struct ggml_context * ctx);
  617. GGML_API size_t ggml_used_mem(const struct ggml_context * ctx);
  618. GGML_API bool ggml_get_no_alloc(struct ggml_context * ctx);
  619. GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc);
  620. GGML_API void * ggml_get_mem_buffer (const struct ggml_context * ctx);
  621. GGML_API size_t ggml_get_mem_size (const struct ggml_context * ctx);
  622. GGML_API size_t ggml_get_max_tensor_size(const struct ggml_context * ctx);
  623. GGML_API struct ggml_tensor * ggml_new_tensor(
  624. struct ggml_context * ctx,
  625. enum ggml_type type,
  626. int n_dims,
  627. const int64_t *ne);
  628. GGML_API struct ggml_tensor * ggml_new_tensor_1d(
  629. struct ggml_context * ctx,
  630. enum ggml_type type,
  631. int64_t ne0);
  632. GGML_API struct ggml_tensor * ggml_new_tensor_2d(
  633. struct ggml_context * ctx,
  634. enum ggml_type type,
  635. int64_t ne0,
  636. int64_t ne1);
  637. GGML_API struct ggml_tensor * ggml_new_tensor_3d(
  638. struct ggml_context * ctx,
  639. enum ggml_type type,
  640. int64_t ne0,
  641. int64_t ne1,
  642. int64_t ne2);
  643. GGML_API struct ggml_tensor * ggml_new_tensor_4d(
  644. struct ggml_context * ctx,
  645. enum ggml_type type,
  646. int64_t ne0,
  647. int64_t ne1,
  648. int64_t ne2,
  649. int64_t ne3);
  650. GGML_API void * ggml_new_buffer(struct ggml_context * ctx, size_t nbytes);
  651. GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
  652. GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, struct ggml_tensor * src);
  653. // Context tensor enumeration and lookup
  654. GGML_API struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx);
  655. GGML_API struct ggml_tensor * ggml_get_next_tensor (const struct ggml_context * ctx, struct ggml_tensor * tensor);
  656. GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
  657. // Converts a flat index into coordinates
  658. GGML_API void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3);
  659. GGML_API enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);
  660. GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
  661. GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
  662. GGML_API const char * ggml_get_name (const struct ggml_tensor * tensor);
  663. GGML_API struct ggml_tensor * ggml_set_name ( struct ggml_tensor * tensor, const char * name);
  664. GGML_ATTRIBUTE_FORMAT(2, 3)
  665. GGML_API struct ggml_tensor * ggml_format_name( struct ggml_tensor * tensor, const char * fmt, ...);
  666. // Tensor flags
  667. GGML_API void ggml_set_input(struct ggml_tensor * tensor);
  668. GGML_API void ggml_set_output(struct ggml_tensor * tensor);
  669. GGML_API void ggml_set_param(struct ggml_context * ctx, struct ggml_tensor * tensor);
  670. GGML_API void ggml_set_loss(struct ggml_tensor * tensor);
  671. //
  672. // operations on tensors with backpropagation
  673. //
  674. GGML_API struct ggml_tensor * ggml_dup(
  675. struct ggml_context * ctx,
  676. struct ggml_tensor * a);
  677. // in-place, returns view(a)
  678. GGML_API struct ggml_tensor * ggml_dup_inplace(
  679. struct ggml_context * ctx,
  680. struct ggml_tensor * a);
  681. GGML_API struct ggml_tensor * ggml_add(
  682. struct ggml_context * ctx,
  683. struct ggml_tensor * a,
  684. struct ggml_tensor * b);
  685. GGML_API struct ggml_tensor * ggml_add_inplace(
  686. struct ggml_context * ctx,
  687. struct ggml_tensor * a,
  688. struct ggml_tensor * b);
  689. GGML_API struct ggml_tensor * ggml_add_cast(
  690. struct ggml_context * ctx,
  691. struct ggml_tensor * a,
  692. struct ggml_tensor * b,
  693. enum ggml_type type);
  694. GGML_API struct ggml_tensor * ggml_add1(
  695. struct ggml_context * ctx,
  696. struct ggml_tensor * a,
  697. struct ggml_tensor * b);
  698. GGML_API struct ggml_tensor * ggml_add1_inplace(
  699. struct ggml_context * ctx,
  700. struct ggml_tensor * a,
  701. struct ggml_tensor * b);
  702. // dst = a
  703. // view(dst, nb1, nb2, nb3, offset) += b
  704. // return dst
  705. GGML_API struct ggml_tensor * ggml_acc(
  706. struct ggml_context * ctx,
  707. struct ggml_tensor * a,
  708. struct ggml_tensor * b,
  709. size_t nb1,
  710. size_t nb2,
  711. size_t nb3,
  712. size_t offset);
  713. GGML_API struct ggml_tensor * ggml_acc_inplace(
  714. struct ggml_context * ctx,
  715. struct ggml_tensor * a,
  716. struct ggml_tensor * b,
  717. size_t nb1,
  718. size_t nb2,
  719. size_t nb3,
  720. size_t offset);
  721. GGML_API struct ggml_tensor * ggml_sub(
  722. struct ggml_context * ctx,
  723. struct ggml_tensor * a,
  724. struct ggml_tensor * b);
  725. GGML_API struct ggml_tensor * ggml_sub_inplace(
  726. struct ggml_context * ctx,
  727. struct ggml_tensor * a,
  728. struct ggml_tensor * b);
  729. GGML_API struct ggml_tensor * ggml_mul(
  730. struct ggml_context * ctx,
  731. struct ggml_tensor * a,
  732. struct ggml_tensor * b);
  733. GGML_API struct ggml_tensor * ggml_mul_inplace(
  734. struct ggml_context * ctx,
  735. struct ggml_tensor * a,
  736. struct ggml_tensor * b);
  737. GGML_API struct ggml_tensor * ggml_div(
  738. struct ggml_context * ctx,
  739. struct ggml_tensor * a,
  740. struct ggml_tensor * b);
  741. GGML_API struct ggml_tensor * ggml_div_inplace(
  742. struct ggml_context * ctx,
  743. struct ggml_tensor * a,
  744. struct ggml_tensor * b);
  745. GGML_API struct ggml_tensor * ggml_sqr(
  746. struct ggml_context * ctx,
  747. struct ggml_tensor * a);
  748. GGML_API struct ggml_tensor * ggml_sqr_inplace(
  749. struct ggml_context * ctx,
  750. struct ggml_tensor * a);
  751. GGML_API struct ggml_tensor * ggml_sqrt(
  752. struct ggml_context * ctx,
  753. struct ggml_tensor * a);
  754. GGML_API struct ggml_tensor * ggml_sqrt_inplace(
  755. struct ggml_context * ctx,
  756. struct ggml_tensor * a);
  757. GGML_API struct ggml_tensor * ggml_log(
  758. struct ggml_context * ctx,
  759. struct ggml_tensor * a);
  760. GGML_API struct ggml_tensor * ggml_log_inplace(
  761. struct ggml_context * ctx,
  762. struct ggml_tensor * a);
  763. GGML_API struct ggml_tensor * ggml_sin(
  764. struct ggml_context * ctx,
  765. struct ggml_tensor * a);
  766. GGML_API struct ggml_tensor * ggml_sin_inplace(
  767. struct ggml_context * ctx,
  768. struct ggml_tensor * a);
  769. GGML_API struct ggml_tensor * ggml_cos(
  770. struct ggml_context * ctx,
  771. struct ggml_tensor * a);
  772. GGML_API struct ggml_tensor * ggml_cos_inplace(
  773. struct ggml_context * ctx,
  774. struct ggml_tensor * a);
  775. // return scalar
  776. GGML_API struct ggml_tensor * ggml_sum(
  777. struct ggml_context * ctx,
  778. struct ggml_tensor * a);
  779. // sums along rows, with input shape [a,b,c,d] return shape [1,b,c,d]
  780. GGML_API struct ggml_tensor * ggml_sum_rows(
  781. struct ggml_context * ctx,
  782. struct ggml_tensor * a);
  783. // mean along rows
  784. GGML_API struct ggml_tensor * ggml_mean(
  785. struct ggml_context * ctx,
  786. struct ggml_tensor * a);
  787. // argmax along rows
  788. GGML_API struct ggml_tensor * ggml_argmax(
  789. struct ggml_context * ctx,
  790. struct ggml_tensor * a);
  791. // count number of equal elements in a and b
  792. GGML_API struct ggml_tensor * ggml_count_equal(
  793. struct ggml_context * ctx,
  794. struct ggml_tensor * a,
  795. struct ggml_tensor * b);
  796. // if a is the same shape as b, and a is not parameter, return a
  797. // otherwise, return a new tensor: repeat(a) to fit in b
  798. GGML_API struct ggml_tensor * ggml_repeat(
  799. struct ggml_context * ctx,
  800. struct ggml_tensor * a,
  801. struct ggml_tensor * b);
  802. // sums repetitions in a into shape of b
  803. GGML_API struct ggml_tensor * ggml_repeat_back(
  804. struct ggml_context * ctx,
  805. struct ggml_tensor * a,
  806. struct ggml_tensor * b);
  807. // concat a and b along dim
  808. // used in stable-diffusion
  809. GGML_API struct ggml_tensor * ggml_concat(
  810. struct ggml_context * ctx,
  811. struct ggml_tensor * a,
  812. struct ggml_tensor * b,
  813. int dim);
  814. GGML_API struct ggml_tensor * ggml_abs(
  815. struct ggml_context * ctx,
  816. struct ggml_tensor * a);
  817. GGML_API struct ggml_tensor * ggml_abs_inplace(
  818. struct ggml_context * ctx,
  819. struct ggml_tensor * a);
  820. GGML_API struct ggml_tensor * ggml_sgn(
  821. struct ggml_context * ctx,
  822. struct ggml_tensor * a);
  823. GGML_API struct ggml_tensor * ggml_sgn_inplace(
  824. struct ggml_context * ctx,
  825. struct ggml_tensor * a);
  826. GGML_API struct ggml_tensor * ggml_neg(
  827. struct ggml_context * ctx,
  828. struct ggml_tensor * a);
  829. GGML_API struct ggml_tensor * ggml_neg_inplace(
  830. struct ggml_context * ctx,
  831. struct ggml_tensor * a);
  832. GGML_API struct ggml_tensor * ggml_step(
  833. struct ggml_context * ctx,
  834. struct ggml_tensor * a);
  835. GGML_API struct ggml_tensor * ggml_step_inplace(
  836. struct ggml_context * ctx,
  837. struct ggml_tensor * a);
  838. GGML_API struct ggml_tensor * ggml_tanh(
  839. struct ggml_context * ctx,
  840. struct ggml_tensor * a);
  841. GGML_API struct ggml_tensor * ggml_tanh_inplace(
  842. struct ggml_context * ctx,
  843. struct ggml_tensor * a);
  844. GGML_API struct ggml_tensor * ggml_elu(
  845. struct ggml_context * ctx,
  846. struct ggml_tensor * a);
  847. GGML_API struct ggml_tensor * ggml_elu_inplace(
  848. struct ggml_context * ctx,
  849. struct ggml_tensor * a);
  850. GGML_API struct ggml_tensor * ggml_relu(
  851. struct ggml_context * ctx,
  852. struct ggml_tensor * a);
  853. GGML_API struct ggml_tensor * ggml_leaky_relu(
  854. struct ggml_context * ctx,
  855. struct ggml_tensor * a, float negative_slope, bool inplace);
  856. GGML_API struct ggml_tensor * ggml_relu_inplace(
  857. struct ggml_context * ctx,
  858. struct ggml_tensor * a);
  859. GGML_API struct ggml_tensor * ggml_sigmoid(
  860. struct ggml_context * ctx,
  861. struct ggml_tensor * a);
  862. GGML_API struct ggml_tensor * ggml_sigmoid_inplace(
  863. struct ggml_context * ctx,
  864. struct ggml_tensor * a);
  865. GGML_API struct ggml_tensor * ggml_gelu(
  866. struct ggml_context * ctx,
  867. struct ggml_tensor * a);
  868. GGML_API struct ggml_tensor * ggml_gelu_inplace(
  869. struct ggml_context * ctx,
  870. struct ggml_tensor * a);
  871. GGML_API struct ggml_tensor * ggml_gelu_quick(
  872. struct ggml_context * ctx,
  873. struct ggml_tensor * a);
  874. GGML_API struct ggml_tensor * ggml_gelu_quick_inplace(
  875. struct ggml_context * ctx,
  876. struct ggml_tensor * a);
  877. GGML_API struct ggml_tensor * ggml_silu(
  878. struct ggml_context * ctx,
  879. struct ggml_tensor * a);
  880. GGML_API struct ggml_tensor * ggml_silu_inplace(
  881. struct ggml_context * ctx,
  882. struct ggml_tensor * a);
  883. // a - x
  884. // b - dy
  885. GGML_API struct ggml_tensor * ggml_silu_back(
  886. struct ggml_context * ctx,
  887. struct ggml_tensor * a,
  888. struct ggml_tensor * b);
  889. // hardswish(x) = x * relu6(x + 3) / 6
  890. GGML_API struct ggml_tensor * ggml_hardswish(
  891. struct ggml_context * ctx,
  892. struct ggml_tensor * a);
  893. // hardsigmoid(x) = relu6(x + 3) / 6
  894. GGML_API struct ggml_tensor * ggml_hardsigmoid(
  895. struct ggml_context * ctx,
  896. struct ggml_tensor * a);
  897. GGML_API struct ggml_tensor * ggml_exp(
  898. struct ggml_context * ctx,
  899. struct ggml_tensor * a);
  900. GGML_API struct ggml_tensor * ggml_exp_inplace(
  901. struct ggml_context * ctx,
  902. struct ggml_tensor * a);
  903. // normalize along rows
  904. GGML_API struct ggml_tensor * ggml_norm(
  905. struct ggml_context * ctx,
  906. struct ggml_tensor * a,
  907. float eps);
  908. GGML_API struct ggml_tensor * ggml_norm_inplace(
  909. struct ggml_context * ctx,
  910. struct ggml_tensor * a,
  911. float eps);
  912. GGML_API struct ggml_tensor * ggml_rms_norm(
  913. struct ggml_context * ctx,
  914. struct ggml_tensor * a,
  915. float eps);
  916. GGML_API struct ggml_tensor * ggml_rms_norm_inplace(
  917. struct ggml_context * ctx,
  918. struct ggml_tensor * a,
  919. float eps);
  920. // group normalize along ne0*ne1*n_groups
  921. // used in stable-diffusion
  922. GGML_API struct ggml_tensor * ggml_group_norm(
  923. struct ggml_context * ctx,
  924. struct ggml_tensor * a,
  925. int n_groups,
  926. float eps);
  927. GGML_API struct ggml_tensor * ggml_group_norm_inplace(
  928. struct ggml_context * ctx,
  929. struct ggml_tensor * a,
  930. int n_groups,
  931. float eps);
  932. // a - x
  933. // b - dy
  934. GGML_API struct ggml_tensor * ggml_rms_norm_back(
  935. struct ggml_context * ctx,
  936. struct ggml_tensor * a,
  937. struct ggml_tensor * b,
  938. float eps);
  939. // A: k columns, n rows => [ne03, ne02, n, k]
  940. // B: k columns, m rows (i.e. we transpose it internally) => [ne03 * x, ne02 * y, m, k]
  941. // result is n columns, m rows => [ne03 * x, ne02 * y, m, n]
  942. GGML_API struct ggml_tensor * ggml_mul_mat(
  943. struct ggml_context * ctx,
  944. struct ggml_tensor * a,
  945. struct ggml_tensor * b);
  946. // change the precision of a matrix multiplication
  947. // set to GGML_PREC_F32 for higher precision (useful for phi-2)
  948. GGML_API void ggml_mul_mat_set_prec(
  949. struct ggml_tensor * a,
  950. enum ggml_prec prec);
  951. // indirect matrix multiplication
  952. GGML_API struct ggml_tensor * ggml_mul_mat_id(
  953. struct ggml_context * ctx,
  954. struct ggml_tensor * as,
  955. struct ggml_tensor * b,
  956. struct ggml_tensor * ids);
  957. // A: m columns, n rows,
  958. // B: p columns, n rows,
  959. // result is m columns, p rows
  960. GGML_API struct ggml_tensor * ggml_out_prod(
  961. struct ggml_context * ctx,
  962. struct ggml_tensor * a,
  963. struct ggml_tensor * b);
  964. //
  965. // operations on tensors without backpropagation
  966. //
  967. GGML_API struct ggml_tensor * ggml_scale(
  968. struct ggml_context * ctx,
  969. struct ggml_tensor * a,
  970. float s);
  971. // in-place, returns view(a)
  972. GGML_API struct ggml_tensor * ggml_scale_inplace(
  973. struct ggml_context * ctx,
  974. struct ggml_tensor * a,
  975. float s);
  976. // b -> view(a,offset,nb1,nb2,3), return modified a
  977. GGML_API struct ggml_tensor * ggml_set(
  978. struct ggml_context * ctx,
  979. struct ggml_tensor * a,
  980. struct ggml_tensor * b,
  981. size_t nb1,
  982. size_t nb2,
  983. size_t nb3,
  984. size_t offset); // in bytes
  985. // b -> view(a,offset,nb1,nb2,3), return view(a)
  986. GGML_API struct ggml_tensor * ggml_set_inplace(
  987. struct ggml_context * ctx,
  988. struct ggml_tensor * a,
  989. struct ggml_tensor * b,
  990. size_t nb1,
  991. size_t nb2,
  992. size_t nb3,
  993. size_t offset); // in bytes
  994. GGML_API struct ggml_tensor * ggml_set_1d(
  995. struct ggml_context * ctx,
  996. struct ggml_tensor * a,
  997. struct ggml_tensor * b,
  998. size_t offset); // in bytes
  999. GGML_API struct ggml_tensor * ggml_set_1d_inplace(
  1000. struct ggml_context * ctx,
  1001. struct ggml_tensor * a,
  1002. struct ggml_tensor * b,
  1003. size_t offset); // in bytes
  1004. // b -> view(a,offset,nb1,nb2,3), return modified a
  1005. GGML_API struct ggml_tensor * ggml_set_2d(
  1006. struct ggml_context * ctx,
  1007. struct ggml_tensor * a,
  1008. struct ggml_tensor * b,
  1009. size_t nb1,
  1010. size_t offset); // in bytes
  1011. // b -> view(a,offset,nb1,nb2,3), return view(a)
  1012. GGML_API struct ggml_tensor * ggml_set_2d_inplace(
  1013. struct ggml_context * ctx,
  1014. struct ggml_tensor * a,
  1015. struct ggml_tensor * b,
  1016. size_t nb1,
  1017. size_t offset); // in bytes
  1018. // a -> b, return view(b)
  1019. GGML_API struct ggml_tensor * ggml_cpy(
  1020. struct ggml_context * ctx,
  1021. struct ggml_tensor * a,
  1022. struct ggml_tensor * b);
  1023. GGML_API struct ggml_tensor * ggml_cast(
  1024. struct ggml_context * ctx,
  1025. struct ggml_tensor * a,
  1026. enum ggml_type type);
  1027. // make contiguous
  1028. GGML_API struct ggml_tensor * ggml_cont(
  1029. struct ggml_context * ctx,
  1030. struct ggml_tensor * a);
  1031. // make contiguous, with new shape
  1032. GGML_API struct ggml_tensor * ggml_cont_1d(
  1033. struct ggml_context * ctx,
  1034. struct ggml_tensor * a,
  1035. int64_t ne0);
  1036. GGML_API struct ggml_tensor * ggml_cont_2d(
  1037. struct ggml_context * ctx,
  1038. struct ggml_tensor * a,
  1039. int64_t ne0,
  1040. int64_t ne1);
  1041. GGML_API struct ggml_tensor * ggml_cont_3d(
  1042. struct ggml_context * ctx,
  1043. struct ggml_tensor * a,
  1044. int64_t ne0,
  1045. int64_t ne1,
  1046. int64_t ne2);
  1047. GGML_API struct ggml_tensor * ggml_cont_4d(
  1048. struct ggml_context * ctx,
  1049. struct ggml_tensor * a,
  1050. int64_t ne0,
  1051. int64_t ne1,
  1052. int64_t ne2,
  1053. int64_t ne3);
  1054. // return view(a), b specifies the new shape
  1055. // TODO: when we start computing gradient, make a copy instead of view
  1056. GGML_API struct ggml_tensor * ggml_reshape(
  1057. struct ggml_context * ctx,
  1058. struct ggml_tensor * a,
  1059. struct ggml_tensor * b);
  1060. // return view(a)
  1061. // TODO: when we start computing gradient, make a copy instead of view
  1062. GGML_API struct ggml_tensor * ggml_reshape_1d(
  1063. struct ggml_context * ctx,
  1064. struct ggml_tensor * a,
  1065. int64_t ne0);
  1066. GGML_API struct ggml_tensor * ggml_reshape_2d(
  1067. struct ggml_context * ctx,
  1068. struct ggml_tensor * a,
  1069. int64_t ne0,
  1070. int64_t ne1);
  1071. // return view(a)
  1072. // TODO: when we start computing gradient, make a copy instead of view
  1073. GGML_API struct ggml_tensor * ggml_reshape_3d(
  1074. struct ggml_context * ctx,
  1075. struct ggml_tensor * a,
  1076. int64_t ne0,
  1077. int64_t ne1,
  1078. int64_t ne2);
  1079. GGML_API struct ggml_tensor * ggml_reshape_4d(
  1080. struct ggml_context * ctx,
  1081. struct ggml_tensor * a,
  1082. int64_t ne0,
  1083. int64_t ne1,
  1084. int64_t ne2,
  1085. int64_t ne3);
  1086. // offset in bytes
  1087. GGML_API struct ggml_tensor * ggml_view_1d(
  1088. struct ggml_context * ctx,
  1089. struct ggml_tensor * a,
  1090. int64_t ne0,
  1091. size_t offset);
  1092. GGML_API struct ggml_tensor * ggml_view_2d(
  1093. struct ggml_context * ctx,
  1094. struct ggml_tensor * a,
  1095. int64_t ne0,
  1096. int64_t ne1,
  1097. size_t nb1, // row stride in bytes
  1098. size_t offset);
  1099. GGML_API struct ggml_tensor * ggml_view_3d(
  1100. struct ggml_context * ctx,
  1101. struct ggml_tensor * a,
  1102. int64_t ne0,
  1103. int64_t ne1,
  1104. int64_t ne2,
  1105. size_t nb1, // row stride in bytes
  1106. size_t nb2, // slice stride in bytes
  1107. size_t offset);
  1108. GGML_API struct ggml_tensor * ggml_view_4d(
  1109. struct ggml_context * ctx,
  1110. struct ggml_tensor * a,
  1111. int64_t ne0,
  1112. int64_t ne1,
  1113. int64_t ne2,
  1114. int64_t ne3,
  1115. size_t nb1, // row stride in bytes
  1116. size_t nb2, // slice stride in bytes
  1117. size_t nb3,
  1118. size_t offset);
  1119. GGML_API struct ggml_tensor * ggml_permute(
  1120. struct ggml_context * ctx,
  1121. struct ggml_tensor * a,
  1122. int axis0,
  1123. int axis1,
  1124. int axis2,
  1125. int axis3);
  1126. // alias for ggml_permute(ctx, a, 1, 0, 2, 3)
  1127. GGML_API struct ggml_tensor * ggml_transpose(
  1128. struct ggml_context * ctx,
  1129. struct ggml_tensor * a);
  1130. // supports 3D: a->ne[2] == b->ne[1]
  1131. GGML_API struct ggml_tensor * ggml_get_rows(
  1132. struct ggml_context * ctx,
  1133. struct ggml_tensor * a, // data
  1134. struct ggml_tensor * b); // row indices
  1135. GGML_API struct ggml_tensor * ggml_get_rows_back(
  1136. struct ggml_context * ctx,
  1137. struct ggml_tensor * a, // gradients of ggml_get_rows result
  1138. struct ggml_tensor * b, // row indices
  1139. struct ggml_tensor * c); // data for ggml_get_rows, only used for its shape
  1140. GGML_API struct ggml_tensor * ggml_diag(
  1141. struct ggml_context * ctx,
  1142. struct ggml_tensor * a);
  1143. // set elements above the diagonal to -INF
  1144. GGML_API struct ggml_tensor * ggml_diag_mask_inf(
  1145. struct ggml_context * ctx,
  1146. struct ggml_tensor * a,
  1147. int n_past);
  1148. // in-place, returns view(a)
  1149. GGML_API struct ggml_tensor * ggml_diag_mask_inf_inplace(
  1150. struct ggml_context * ctx,
  1151. struct ggml_tensor * a,
  1152. int n_past);
  1153. // set elements above the diagonal to 0
  1154. GGML_API struct ggml_tensor * ggml_diag_mask_zero(
  1155. struct ggml_context * ctx,
  1156. struct ggml_tensor * a,
  1157. int n_past);
  1158. // in-place, returns view(a)
  1159. GGML_API struct ggml_tensor * ggml_diag_mask_zero_inplace(
  1160. struct ggml_context * ctx,
  1161. struct ggml_tensor * a,
  1162. int n_past);
  1163. GGML_API struct ggml_tensor * ggml_soft_max(
  1164. struct ggml_context * ctx,
  1165. struct ggml_tensor * a);
  1166. // in-place, returns view(a)
  1167. GGML_API struct ggml_tensor * ggml_soft_max_inplace(
  1168. struct ggml_context * ctx,
  1169. struct ggml_tensor * a);
  1170. // fused soft_max(a*scale + mask*(ALiBi slope))
  1171. // mask is optional
  1172. // max_bias = 0.0f for no ALiBi
  1173. GGML_API struct ggml_tensor * ggml_soft_max_ext(
  1174. struct ggml_context * ctx,
  1175. struct ggml_tensor * a,
  1176. struct ggml_tensor * mask,
  1177. float scale,
  1178. float max_bias);
  1179. GGML_API struct ggml_tensor * ggml_soft_max_back(
  1180. struct ggml_context * ctx,
  1181. struct ggml_tensor * a,
  1182. struct ggml_tensor * b);
  1183. // in-place, returns view(a)
  1184. GGML_API struct ggml_tensor * ggml_soft_max_back_inplace(
  1185. struct ggml_context * ctx,
  1186. struct ggml_tensor * a,
  1187. struct ggml_tensor * b);
  1188. // rotary position embedding
  1189. // if (mode & 1) - skip n_past elements (NOT SUPPORTED)
  1190. // if (mode & GGML_ROPE_TYPE_NEOX) - GPT-NeoX style
  1191. //
  1192. // b is an int32 vector with size a->ne[2], it contains the positions
  1193. GGML_API struct ggml_tensor * ggml_rope(
  1194. struct ggml_context * ctx,
  1195. struct ggml_tensor * a,
  1196. struct ggml_tensor * b,
  1197. int n_dims,
  1198. int mode);
  1199. // in-place, returns view(a)
  1200. GGML_API struct ggml_tensor * ggml_rope_inplace(
  1201. struct ggml_context * ctx,
  1202. struct ggml_tensor * a,
  1203. struct ggml_tensor * b,
  1204. int n_dims,
  1205. int mode);
  1206. // custom RoPE
  1207. // c is freq factors (e.g. phi3-128k), (optional)
  1208. GGML_API struct ggml_tensor * ggml_rope_ext(
  1209. struct ggml_context * ctx,
  1210. struct ggml_tensor * a,
  1211. struct ggml_tensor * b,
  1212. struct ggml_tensor * c,
  1213. int n_dims,
  1214. int mode,
  1215. int n_ctx_orig,
  1216. float freq_base,
  1217. float freq_scale,
  1218. float ext_factor,
  1219. float attn_factor,
  1220. float beta_fast,
  1221. float beta_slow);
  1222. // in-place, returns view(a)
  1223. GGML_API struct ggml_tensor * ggml_rope_ext_inplace(
  1224. struct ggml_context * ctx,
  1225. struct ggml_tensor * a,
  1226. struct ggml_tensor * b,
  1227. struct ggml_tensor * c,
  1228. int n_dims,
  1229. int mode,
  1230. int n_ctx_orig,
  1231. float freq_base,
  1232. float freq_scale,
  1233. float ext_factor,
  1234. float attn_factor,
  1235. float beta_fast,
  1236. float beta_slow);
  1237. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_rope_custom(
  1238. struct ggml_context * ctx,
  1239. struct ggml_tensor * a,
  1240. struct ggml_tensor * b,
  1241. int n_dims,
  1242. int mode,
  1243. int n_ctx_orig,
  1244. float freq_base,
  1245. float freq_scale,
  1246. float ext_factor,
  1247. float attn_factor,
  1248. float beta_fast,
  1249. float beta_slow),
  1250. "use ggml_rope_ext instead");
  1251. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_rope_custom_inplace(
  1252. struct ggml_context * ctx,
  1253. struct ggml_tensor * a,
  1254. struct ggml_tensor * b,
  1255. int n_dims,
  1256. int mode,
  1257. int n_ctx_orig,
  1258. float freq_base,
  1259. float freq_scale,
  1260. float ext_factor,
  1261. float attn_factor,
  1262. float beta_fast,
  1263. float beta_slow),
  1264. "use ggml_rope_ext_inplace instead");
  1265. // compute correction dims for YaRN RoPE scaling
  1266. void ggml_rope_yarn_corr_dims(
  1267. int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2]);
  1268. // rotary position embedding backward, i.e compute dx from dy
  1269. // a - dy
  1270. GGML_API struct ggml_tensor * ggml_rope_back(
  1271. struct ggml_context * ctx,
  1272. struct ggml_tensor * a, // gradients of ggml_rope result
  1273. struct ggml_tensor * b, // positions
  1274. struct ggml_tensor * c, // freq factors
  1275. int n_dims,
  1276. int mode,
  1277. int n_ctx_orig,
  1278. float freq_base,
  1279. float freq_scale,
  1280. float ext_factor,
  1281. float attn_factor,
  1282. float beta_fast,
  1283. float beta_slow);
  1284. // clamp
  1285. // in-place, returns view(a)
  1286. GGML_API struct ggml_tensor * ggml_clamp(
  1287. struct ggml_context * ctx,
  1288. struct ggml_tensor * a,
  1289. float min,
  1290. float max);
  1291. // im2col
  1292. // converts data into a format that effectively results in a convolution when combined with matrix multiplication
  1293. GGML_API struct ggml_tensor * ggml_im2col(
  1294. struct ggml_context * ctx,
  1295. struct ggml_tensor * a, // convolution kernel
  1296. struct ggml_tensor * b, // data
  1297. int s0, // stride dimension 0
  1298. int s1, // stride dimension 1
  1299. int p0, // padding dimension 0
  1300. int p1, // padding dimension 1
  1301. int d0, // dilation dimension 0
  1302. int d1, // dilation dimension 1
  1303. bool is_2D,
  1304. enum ggml_type dst_type);
  1305. GGML_API struct ggml_tensor * ggml_im2col_back(
  1306. struct ggml_context * ctx,
  1307. struct ggml_tensor * a, // convolution kernel
  1308. struct ggml_tensor * b, // gradient of im2col output
  1309. int64_t * ne, // shape of im2col input
  1310. int s0, // stride dimension 0
  1311. int s1, // stride dimension 1
  1312. int p0, // padding dimension 0
  1313. int p1, // padding dimension 1
  1314. int d0, // dilation dimension 0
  1315. int d1, // dilation dimension 1
  1316. bool is_2D);
  1317. GGML_API struct ggml_tensor * ggml_conv_depthwise_2d(
  1318. struct ggml_context * ctx,
  1319. struct ggml_tensor * a, // convolution kernel
  1320. struct ggml_tensor * b, // data
  1321. int s0, // stride dimension 0
  1322. int s1, // stride dimension 1
  1323. int p0, // padding dimension 0
  1324. int p1, // padding dimension 1
  1325. int d0, // dilation dimension 0
  1326. int d1); // dilation dimension 1
  1327. GGML_API struct ggml_tensor * ggml_conv_1d(
  1328. struct ggml_context * ctx,
  1329. struct ggml_tensor * a, // convolution kernel
  1330. struct ggml_tensor * b, // data
  1331. int s0, // stride
  1332. int p0, // padding
  1333. int d0); // dilation
  1334. // conv_1d with padding = half
  1335. // alias for ggml_conv_1d(a, b, s, a->ne[0]/2, d)
  1336. GGML_API struct ggml_tensor* ggml_conv_1d_ph(
  1337. struct ggml_context * ctx,
  1338. struct ggml_tensor * a, // convolution kernel
  1339. struct ggml_tensor * b, // data
  1340. int s, // stride
  1341. int d); // dilation
  1342. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  1343. struct ggml_context * ctx,
  1344. struct ggml_tensor * a, // convolution kernel
  1345. struct ggml_tensor * b, // data
  1346. int s0, // stride
  1347. int p0, // padding
  1348. int d0); // dilation
  1349. GGML_API struct ggml_tensor * ggml_conv_2d(
  1350. struct ggml_context * ctx,
  1351. struct ggml_tensor * a, // convolution kernel
  1352. struct ggml_tensor * b, // data
  1353. int s0, // stride dimension 0
  1354. int s1, // stride dimension 1
  1355. int p0, // padding dimension 0
  1356. int p1, // padding dimension 1
  1357. int d0, // dilation dimension 0
  1358. int d1); // dilation dimension 1
  1359. // kernel size is a->ne[0] x a->ne[1]
  1360. // stride is equal to kernel size
  1361. // padding is zero
  1362. // example:
  1363. // a: 16 16 3 768
  1364. // b: 1024 1024 3 1
  1365. // res: 64 64 768 1
  1366. // used in sam
  1367. GGML_API struct ggml_tensor * ggml_conv_2d_sk_p0(
  1368. struct ggml_context * ctx,
  1369. struct ggml_tensor * a,
  1370. struct ggml_tensor * b);
  1371. // kernel size is a->ne[0] x a->ne[1]
  1372. // stride is 1
  1373. // padding is half
  1374. // example:
  1375. // a: 3 3 256 256
  1376. // b: 64 64 256 1
  1377. // res: 64 64 256 1
  1378. // used in sam
  1379. GGML_API struct ggml_tensor * ggml_conv_2d_s1_ph(
  1380. struct ggml_context * ctx,
  1381. struct ggml_tensor * a,
  1382. struct ggml_tensor * b);
  1383. GGML_API struct ggml_tensor * ggml_conv_transpose_2d_p0(
  1384. struct ggml_context * ctx,
  1385. struct ggml_tensor * a,
  1386. struct ggml_tensor * b,
  1387. int stride);
  1388. enum ggml_op_pool {
  1389. GGML_OP_POOL_MAX,
  1390. GGML_OP_POOL_AVG,
  1391. GGML_OP_POOL_COUNT,
  1392. };
  1393. GGML_API struct ggml_tensor * ggml_pool_1d(
  1394. struct ggml_context * ctx,
  1395. struct ggml_tensor * a,
  1396. enum ggml_op_pool op,
  1397. int k0, // kernel size
  1398. int s0, // stride
  1399. int p0); // padding
  1400. // the result will have 2*p0 padding for the first dimension
  1401. // and 2*p1 padding for the second dimension
  1402. GGML_API struct ggml_tensor * ggml_pool_2d(
  1403. struct ggml_context * ctx,
  1404. struct ggml_tensor * a,
  1405. enum ggml_op_pool op,
  1406. int k0,
  1407. int k1,
  1408. int s0,
  1409. int s1,
  1410. float p0,
  1411. float p1);
  1412. GGML_API struct ggml_tensor * ggml_pool_2d_back(
  1413. struct ggml_context * ctx,
  1414. struct ggml_tensor * a,
  1415. struct ggml_tensor * af, // "a"/input used in forward pass
  1416. enum ggml_op_pool op,
  1417. int k0,
  1418. int k1,
  1419. int s0,
  1420. int s1,
  1421. float p0,
  1422. float p1);
  1423. // nearest interpolate
  1424. // multiplies ne0 and ne1 by scale factor
  1425. // used in stable-diffusion
  1426. GGML_API struct ggml_tensor * ggml_upscale(
  1427. struct ggml_context * ctx,
  1428. struct ggml_tensor * a,
  1429. int scale_factor);
  1430. // nearest interpolate
  1431. // nearest interpolate to specified dimensions
  1432. // used in tortoise.cpp
  1433. GGML_API struct ggml_tensor * ggml_upscale_ext(
  1434. struct ggml_context * ctx,
  1435. struct ggml_tensor * a,
  1436. int ne0,
  1437. int ne1,
  1438. int ne2,
  1439. int ne3);
  1440. // pad each dimension with zeros: [x, ..., x] -> [x, ..., x, 0, ..., 0]
  1441. GGML_API struct ggml_tensor * ggml_pad(
  1442. struct ggml_context * ctx,
  1443. struct ggml_tensor * a,
  1444. int p0,
  1445. int p1,
  1446. int p2,
  1447. int p3);
  1448. // Ref: https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/diffusionmodules/util.py#L151
  1449. // timesteps: [N,]
  1450. // return: [N, dim]
  1451. GGML_API struct ggml_tensor * ggml_timestep_embedding(
  1452. struct ggml_context * ctx,
  1453. struct ggml_tensor * timesteps,
  1454. int dim,
  1455. int max_period);
  1456. // sort rows
  1457. enum ggml_sort_order {
  1458. GGML_SORT_ORDER_ASC,
  1459. GGML_SORT_ORDER_DESC,
  1460. };
  1461. GGML_API struct ggml_tensor * ggml_argsort(
  1462. struct ggml_context * ctx,
  1463. struct ggml_tensor * a,
  1464. enum ggml_sort_order order);
  1465. GGML_API struct ggml_tensor * ggml_arange(
  1466. struct ggml_context * ctx,
  1467. float start,
  1468. float stop,
  1469. float step);
  1470. // top k elements per row
  1471. GGML_API struct ggml_tensor * ggml_top_k(
  1472. struct ggml_context * ctx,
  1473. struct ggml_tensor * a,
  1474. int k);
  1475. #define GGML_KQ_MASK_PAD 32
  1476. // q: [n_embd, n_batch, n_head, 1]
  1477. // k: [n_embd, n_kv, n_head_kv, 1]
  1478. // v: [n_embd, n_kv, n_head_kv, 1] !! not transposed !!
  1479. // mask: [n_kv, n_batch_pad, 1, 1] !! n_batch_pad = GGML_PAD(n_batch, GGML_KQ_MASK_PAD) !!
  1480. // res: [n_embd, n_head, n_batch, 1] !! permuted !!
  1481. GGML_API struct ggml_tensor * ggml_flash_attn_ext(
  1482. struct ggml_context * ctx,
  1483. struct ggml_tensor * q,
  1484. struct ggml_tensor * k,
  1485. struct ggml_tensor * v,
  1486. struct ggml_tensor * mask,
  1487. float scale,
  1488. float max_bias,
  1489. float logit_softcap);
  1490. GGML_API void ggml_flash_attn_ext_set_prec(
  1491. struct ggml_tensor * a,
  1492. enum ggml_prec prec);
  1493. GGML_API enum ggml_prec ggml_flash_attn_ext_get_prec(
  1494. const struct ggml_tensor * a);
  1495. // TODO: needs to be adapted to ggml_flash_attn_ext
  1496. GGML_API struct ggml_tensor * ggml_flash_attn_back(
  1497. struct ggml_context * ctx,
  1498. struct ggml_tensor * q,
  1499. struct ggml_tensor * k,
  1500. struct ggml_tensor * v,
  1501. struct ggml_tensor * d,
  1502. bool masked);
  1503. GGML_API struct ggml_tensor * ggml_ssm_conv(
  1504. struct ggml_context * ctx,
  1505. struct ggml_tensor * sx,
  1506. struct ggml_tensor * c);
  1507. GGML_API struct ggml_tensor * ggml_ssm_scan(
  1508. struct ggml_context * ctx,
  1509. struct ggml_tensor * s,
  1510. struct ggml_tensor * x,
  1511. struct ggml_tensor * dt,
  1512. struct ggml_tensor * A,
  1513. struct ggml_tensor * B,
  1514. struct ggml_tensor * C);
  1515. // partition into non-overlapping windows with padding if needed
  1516. // example:
  1517. // a: 768 64 64 1
  1518. // w: 14
  1519. // res: 768 14 14 25
  1520. // used in sam
  1521. GGML_API struct ggml_tensor * ggml_win_part(
  1522. struct ggml_context * ctx,
  1523. struct ggml_tensor * a,
  1524. int w);
  1525. // reverse of ggml_win_part
  1526. // used in sam
  1527. GGML_API struct ggml_tensor * ggml_win_unpart(
  1528. struct ggml_context * ctx,
  1529. struct ggml_tensor * a,
  1530. int w0,
  1531. int h0,
  1532. int w);
  1533. GGML_API struct ggml_tensor * ggml_unary(
  1534. struct ggml_context * ctx,
  1535. struct ggml_tensor * a,
  1536. enum ggml_unary_op op);
  1537. GGML_API struct ggml_tensor * ggml_unary_inplace(
  1538. struct ggml_context * ctx,
  1539. struct ggml_tensor * a,
  1540. enum ggml_unary_op op);
  1541. // used in sam
  1542. GGML_API struct ggml_tensor * ggml_get_rel_pos(
  1543. struct ggml_context * ctx,
  1544. struct ggml_tensor * a,
  1545. int qh,
  1546. int kh);
  1547. // used in sam
  1548. GGML_API struct ggml_tensor * ggml_add_rel_pos(
  1549. struct ggml_context * ctx,
  1550. struct ggml_tensor * a,
  1551. struct ggml_tensor * pw,
  1552. struct ggml_tensor * ph);
  1553. GGML_API struct ggml_tensor * ggml_add_rel_pos_inplace(
  1554. struct ggml_context * ctx,
  1555. struct ggml_tensor * a,
  1556. struct ggml_tensor * pw,
  1557. struct ggml_tensor * ph);
  1558. GGML_API struct ggml_tensor * ggml_rwkv_wkv6(
  1559. struct ggml_context * ctx,
  1560. struct ggml_tensor * k,
  1561. struct ggml_tensor * v,
  1562. struct ggml_tensor * r,
  1563. struct ggml_tensor * tf,
  1564. struct ggml_tensor * td,
  1565. struct ggml_tensor * state);
  1566. // custom operators
  1567. typedef void (*ggml_unary_op_f32_t) (const int, float *, const float *);
  1568. typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
  1569. typedef void (*ggml_custom1_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *);
  1570. typedef void (*ggml_custom2_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
  1571. typedef void (*ggml_custom3_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
  1572. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_f32(
  1573. struct ggml_context * ctx,
  1574. struct ggml_tensor * a,
  1575. ggml_unary_op_f32_t fun),
  1576. "use ggml_map_custom1 instead");
  1577. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_inplace_f32(
  1578. struct ggml_context * ctx,
  1579. struct ggml_tensor * a,
  1580. ggml_unary_op_f32_t fun),
  1581. "use ggml_map_custom1_inplace instead");
  1582. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_f32(
  1583. struct ggml_context * ctx,
  1584. struct ggml_tensor * a,
  1585. struct ggml_tensor * b,
  1586. ggml_binary_op_f32_t fun),
  1587. "use ggml_map_custom2 instead");
  1588. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_inplace_f32(
  1589. struct ggml_context * ctx,
  1590. struct ggml_tensor * a,
  1591. struct ggml_tensor * b,
  1592. ggml_binary_op_f32_t fun),
  1593. "use ggml_map_custom2_inplace instead");
  1594. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_f32(
  1595. struct ggml_context * ctx,
  1596. struct ggml_tensor * a,
  1597. ggml_custom1_op_f32_t fun),
  1598. "use ggml_map_custom1 instead");
  1599. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_inplace_f32(
  1600. struct ggml_context * ctx,
  1601. struct ggml_tensor * a,
  1602. ggml_custom1_op_f32_t fun),
  1603. "use ggml_map_custom1_inplace instead");
  1604. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_f32(
  1605. struct ggml_context * ctx,
  1606. struct ggml_tensor * a,
  1607. struct ggml_tensor * b,
  1608. ggml_custom2_op_f32_t fun),
  1609. "use ggml_map_custom2 instead");
  1610. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_inplace_f32(
  1611. struct ggml_context * ctx,
  1612. struct ggml_tensor * a,
  1613. struct ggml_tensor * b,
  1614. ggml_custom2_op_f32_t fun),
  1615. "use ggml_map_custom2_inplace instead");
  1616. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_f32(
  1617. struct ggml_context * ctx,
  1618. struct ggml_tensor * a,
  1619. struct ggml_tensor * b,
  1620. struct ggml_tensor * c,
  1621. ggml_custom3_op_f32_t fun),
  1622. "use ggml_map_custom3 instead");
  1623. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_inplace_f32(
  1624. struct ggml_context * ctx,
  1625. struct ggml_tensor * a,
  1626. struct ggml_tensor * b,
  1627. struct ggml_tensor * c,
  1628. ggml_custom3_op_f32_t fun),
  1629. "use ggml_map_custom3_inplace instead");
  1630. // custom operators v2
  1631. typedef void (*ggml_custom1_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, int ith, int nth, void * userdata);
  1632. typedef void (*ggml_custom2_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, int ith, int nth, void * userdata);
  1633. typedef void (*ggml_custom3_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, const struct ggml_tensor * c, int ith, int nth, void * userdata);
  1634. #define GGML_N_TASKS_MAX (-1)
  1635. // n_tasks == GGML_N_TASKS_MAX means to use max number of tasks
  1636. GGML_API struct ggml_tensor * ggml_map_custom1(
  1637. struct ggml_context * ctx,
  1638. struct ggml_tensor * a,
  1639. ggml_custom1_op_t fun,
  1640. int n_tasks,
  1641. void * userdata);
  1642. GGML_API struct ggml_tensor * ggml_map_custom1_inplace(
  1643. struct ggml_context * ctx,
  1644. struct ggml_tensor * a,
  1645. ggml_custom1_op_t fun,
  1646. int n_tasks,
  1647. void * userdata);
  1648. GGML_API struct ggml_tensor * ggml_map_custom2(
  1649. struct ggml_context * ctx,
  1650. struct ggml_tensor * a,
  1651. struct ggml_tensor * b,
  1652. ggml_custom2_op_t fun,
  1653. int n_tasks,
  1654. void * userdata);
  1655. GGML_API struct ggml_tensor * ggml_map_custom2_inplace(
  1656. struct ggml_context * ctx,
  1657. struct ggml_tensor * a,
  1658. struct ggml_tensor * b,
  1659. ggml_custom2_op_t fun,
  1660. int n_tasks,
  1661. void * userdata);
  1662. GGML_API struct ggml_tensor * ggml_map_custom3(
  1663. struct ggml_context * ctx,
  1664. struct ggml_tensor * a,
  1665. struct ggml_tensor * b,
  1666. struct ggml_tensor * c,
  1667. ggml_custom3_op_t fun,
  1668. int n_tasks,
  1669. void * userdata);
  1670. GGML_API struct ggml_tensor * ggml_map_custom3_inplace(
  1671. struct ggml_context * ctx,
  1672. struct ggml_tensor * a,
  1673. struct ggml_tensor * b,
  1674. struct ggml_tensor * c,
  1675. ggml_custom3_op_t fun,
  1676. int n_tasks,
  1677. void * userdata);
  1678. // loss function
  1679. GGML_API struct ggml_tensor * ggml_cross_entropy_loss(
  1680. struct ggml_context * ctx,
  1681. struct ggml_tensor * a, // logits
  1682. struct ggml_tensor * b); // labels
  1683. GGML_API struct ggml_tensor * ggml_cross_entropy_loss_back(
  1684. struct ggml_context * ctx,
  1685. struct ggml_tensor * a, // logits
  1686. struct ggml_tensor * b, // labels
  1687. struct ggml_tensor * c); // gradients of cross_entropy_loss result
  1688. // AdamW optimizer step
  1689. // Paper: https://arxiv.org/pdf/1711.05101v3.pdf
  1690. // PyTorch: https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
  1691. GGML_API struct ggml_tensor * ggml_opt_step_adamw(
  1692. struct ggml_context * ctx,
  1693. struct ggml_tensor * a,
  1694. struct ggml_tensor * grad,
  1695. float alpha,
  1696. float beta1,
  1697. float beta2,
  1698. float eps,
  1699. float wd); // weight decay
  1700. //
  1701. // automatic differentiation
  1702. //
  1703. GGML_API void ggml_build_forward_expand (struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
  1704. GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool accumulate);
  1705. GGML_API void ggml_build_opt_adamw(
  1706. struct ggml_context * ctx,
  1707. struct ggml_cgraph * gf,
  1708. struct ggml_cgraph * gb,
  1709. float alpha,
  1710. float beta1,
  1711. float beta2,
  1712. float eps,
  1713. float wd); // weight decay
  1714. // graph allocation in a context
  1715. GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx); // size = GGML_DEFAULT_GRAPH_SIZE, grads = false
  1716. GGML_API struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads);
  1717. GGML_API struct ggml_cgraph * ggml_graph_dup (struct ggml_context * ctx, struct ggml_cgraph * cgraph);
  1718. GGML_API void ggml_graph_cpy (struct ggml_cgraph * src, struct ggml_cgraph * dst);
  1719. GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph); // set regular grads + optimizer momenta to 0, set loss grad to 1
  1720. GGML_API void ggml_graph_clear (struct ggml_cgraph * cgraph);
  1721. GGML_API int ggml_graph_size (struct ggml_cgraph * cgraph);
  1722. GGML_API struct ggml_tensor * ggml_graph_node (struct ggml_cgraph * cgraph, int i); // if i < 0, returns nodes[n_nodes + i]
  1723. GGML_API struct ggml_tensor ** ggml_graph_nodes (struct ggml_cgraph * cgraph);
  1724. GGML_API int ggml_graph_n_nodes(struct ggml_cgraph * cgraph);
  1725. GGML_API void ggml_graph_add_node(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
  1726. GGML_API size_t ggml_graph_overhead(void);
  1727. GGML_API size_t ggml_graph_overhead_custom(size_t size, bool grads);
  1728. GGML_API struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name);
  1729. GGML_API void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname);
  1730. GGML_API struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval);
  1731. // print info and performance information for the graph
  1732. GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
  1733. // dump the graph into a file using the dot format
  1734. GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
  1735. // build gradient checkpointing backward graph gb for gf using provided checkpoints
  1736. // gb_tmp will contain original backward graph with rewritten backward process nodes,
  1737. // but without the second forward pass nodes.
  1738. GGML_API void ggml_build_backward_gradient_checkpointing(
  1739. struct ggml_context * ctx,
  1740. struct ggml_cgraph * gf,
  1741. struct ggml_cgraph * gb,
  1742. struct ggml_cgraph * gb_tmp,
  1743. struct ggml_tensor * * checkpoints,
  1744. int n_checkpoints);
  1745. //
  1746. // optimization
  1747. //
  1748. // optimization methods
  1749. enum ggml_opt_type {
  1750. GGML_OPT_TYPE_ADAM,
  1751. GGML_OPT_TYPE_LBFGS,
  1752. };
  1753. // linesearch methods
  1754. enum ggml_linesearch {
  1755. GGML_LINESEARCH_DEFAULT = 1,
  1756. GGML_LINESEARCH_BACKTRACKING_ARMIJO = 0,
  1757. GGML_LINESEARCH_BACKTRACKING_WOLFE = 1,
  1758. GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2,
  1759. };
  1760. // optimization return values
  1761. enum ggml_opt_result {
  1762. GGML_OPT_RESULT_OK = 0,
  1763. GGML_OPT_RESULT_DID_NOT_CONVERGE,
  1764. GGML_OPT_RESULT_NO_CONTEXT,
  1765. GGML_OPT_RESULT_INVALID_WOLFE,
  1766. GGML_OPT_RESULT_FAIL,
  1767. GGML_OPT_RESULT_CANCEL,
  1768. GGML_LINESEARCH_FAIL = -128,
  1769. GGML_LINESEARCH_MINIMUM_STEP,
  1770. GGML_LINESEARCH_MAXIMUM_STEP,
  1771. GGML_LINESEARCH_MAXIMUM_ITERATIONS,
  1772. GGML_LINESEARCH_INVALID_PARAMETERS,
  1773. };
  1774. typedef void (*ggml_opt_callback)(void * data, int accum_step, float * sched, bool * cancel);
  1775. typedef void (*ggml_log_callback)(enum ggml_log_level level, const char * text, void * user_data);
  1776. // Set callback for all future logging events.
  1777. // If this is not called, or NULL is supplied, everything is output on stderr.
  1778. GGML_API void ggml_log_set(ggml_log_callback log_callback, void * user_data);
  1779. // optimization parameters
  1780. //
  1781. // see ggml.c (ggml_opt_default_params) for default values
  1782. //
  1783. struct ggml_opt_params {
  1784. enum ggml_opt_type type;
  1785. size_t graph_size;
  1786. int n_threads;
  1787. // delta-based convergence test
  1788. //
  1789. // if past == 0 - disabled
  1790. // if past > 0:
  1791. // stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|)
  1792. //
  1793. int past;
  1794. float delta;
  1795. // maximum number of iterations without improvement
  1796. //
  1797. // if 0 - disabled
  1798. // if > 0:
  1799. // assume convergence if no cost improvement in this number of iterations
  1800. //
  1801. int max_no_improvement;
  1802. bool print_forward_graph;
  1803. bool print_backward_graph;
  1804. int n_gradient_accumulation;
  1805. // ADAM parameters
  1806. struct {
  1807. int n_iter;
  1808. float sched; // schedule multiplier (fixed, decay or warmup)
  1809. float decay; // weight decay for AdamW, use 0.0f to disable
  1810. int decay_min_ndim; // minimum number of tensor dimension to apply weight decay
  1811. float alpha; // learning rate
  1812. float beta1;
  1813. float beta2;
  1814. float eps; // epsilon for numerical stability
  1815. float eps_f; // epsilon for convergence test
  1816. float eps_g; // epsilon for convergence test
  1817. float gclip; // gradient clipping
  1818. } adam;
  1819. // LBFGS parameters
  1820. struct {
  1821. int m; // number of corrections to approximate the inv. Hessian
  1822. int n_iter;
  1823. int max_linesearch;
  1824. float eps; // convergence tolerance
  1825. float ftol; // line search tolerance
  1826. float wolfe;
  1827. float min_step;
  1828. float max_step;
  1829. enum ggml_linesearch linesearch;
  1830. } lbfgs;
  1831. };
  1832. struct ggml_opt_context {
  1833. struct ggml_context * ctx;
  1834. struct ggml_opt_params params;
  1835. int iter;
  1836. int64_t nx; // number of parameter elements
  1837. bool just_initialized;
  1838. float loss_before;
  1839. float loss_after;
  1840. struct {
  1841. struct ggml_tensor * g; // current gradient
  1842. struct ggml_tensor * m; // first moment
  1843. struct ggml_tensor * v; // second moment
  1844. struct ggml_tensor * pf; // past function values
  1845. float fx_best;
  1846. float fx_prev;
  1847. int n_no_improvement;
  1848. } adam;
  1849. struct {
  1850. struct ggml_tensor * x; // current parameters
  1851. struct ggml_tensor * xp; // previous parameters
  1852. struct ggml_tensor * g; // current gradient
  1853. struct ggml_tensor * gp; // previous gradient
  1854. struct ggml_tensor * d; // search direction
  1855. struct ggml_tensor * pf; // past function values
  1856. struct ggml_tensor * lmal; // the L-BFGS memory alpha
  1857. struct ggml_tensor * lmys; // the L-BFGS memory ys
  1858. struct ggml_tensor * lms; // the L-BFGS memory s
  1859. struct ggml_tensor * lmy; // the L-BFGS memory y
  1860. float fx_best;
  1861. float step;
  1862. int j;
  1863. int k;
  1864. int end;
  1865. int n_no_improvement;
  1866. } lbfgs;
  1867. };
  1868. GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
  1869. GGML_API struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type);
  1870. // optimize the function defined by the tensor f
  1871. GGML_API enum ggml_opt_result ggml_opt(
  1872. struct ggml_context * ctx,
  1873. struct ggml_opt_params params,
  1874. struct ggml_tensor * f);
  1875. // initialize optimizer context
  1876. GGML_API void ggml_opt_init(
  1877. struct ggml_context * ctx,
  1878. struct ggml_opt_context * opt,
  1879. struct ggml_opt_params params,
  1880. int64_t nx);
  1881. // continue optimizing the function defined by the tensor f
  1882. GGML_API enum ggml_opt_result ggml_opt_resume(
  1883. struct ggml_context * ctx,
  1884. struct ggml_opt_context * opt,
  1885. struct ggml_tensor * f);
  1886. // continue optimizing the function defined by the tensor f
  1887. GGML_API enum ggml_opt_result ggml_opt_resume_g(
  1888. struct ggml_context * ctx,
  1889. struct ggml_opt_context * opt,
  1890. struct ggml_tensor * f,
  1891. struct ggml_cgraph * gf,
  1892. struct ggml_cgraph * gb,
  1893. ggml_opt_callback callback,
  1894. void * callback_data);
  1895. //
  1896. // quantization
  1897. //
  1898. // - ggml_quantize_init can be called multiple times with the same type
  1899. // it will only initialize the quantization tables for the first call or after ggml_quantize_free
  1900. // automatically called by ggml_quantize_chunk for convenience
  1901. //
  1902. // - ggml_quantize_free will free any memory allocated by ggml_quantize_init
  1903. // call this at the end of the program to avoid memory leaks
  1904. //
  1905. // note: these are thread-safe
  1906. //
  1907. GGML_API void ggml_quantize_init(enum ggml_type type);
  1908. GGML_API void ggml_quantize_free(void);
  1909. // some quantization type cannot be used without an importance matrix
  1910. GGML_API bool ggml_quantize_requires_imatrix(enum ggml_type type);
  1911. // calls ggml_quantize_init internally (i.e. can allocate memory)
  1912. GGML_API size_t ggml_quantize_chunk(
  1913. enum ggml_type type,
  1914. const float * src,
  1915. void * dst,
  1916. int64_t start,
  1917. int64_t nrows,
  1918. int64_t n_per_row,
  1919. const float * imatrix);
  1920. //
  1921. // gguf
  1922. //
  1923. enum gguf_type {
  1924. GGUF_TYPE_UINT8 = 0,
  1925. GGUF_TYPE_INT8 = 1,
  1926. GGUF_TYPE_UINT16 = 2,
  1927. GGUF_TYPE_INT16 = 3,
  1928. GGUF_TYPE_UINT32 = 4,
  1929. GGUF_TYPE_INT32 = 5,
  1930. GGUF_TYPE_FLOAT32 = 6,
  1931. GGUF_TYPE_BOOL = 7,
  1932. GGUF_TYPE_STRING = 8,
  1933. GGUF_TYPE_ARRAY = 9,
  1934. GGUF_TYPE_UINT64 = 10,
  1935. GGUF_TYPE_INT64 = 11,
  1936. GGUF_TYPE_FLOAT64 = 12,
  1937. GGUF_TYPE_COUNT, // marks the end of the enum
  1938. };
  1939. struct gguf_context;
  1940. struct gguf_init_params {
  1941. bool no_alloc;
  1942. // if not NULL, create a ggml_context and allocate the tensor data in it
  1943. struct ggml_context ** ctx;
  1944. };
  1945. GGML_API struct gguf_context * gguf_init_empty(void);
  1946. GGML_API struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params);
  1947. //GGML_API struct gguf_context * gguf_init_from_buffer(..);
  1948. GGML_API void gguf_free(struct gguf_context * ctx);
  1949. GGML_API const char * gguf_type_name(enum gguf_type type);
  1950. GGML_API int gguf_get_version (const struct gguf_context * ctx);
  1951. GGML_API size_t gguf_get_alignment (const struct gguf_context * ctx);
  1952. GGML_API size_t gguf_get_data_offset(const struct gguf_context * ctx);
  1953. GGML_API void * gguf_get_data (const struct gguf_context * ctx);
  1954. GGML_API int gguf_get_n_kv(const struct gguf_context * ctx);
  1955. GGML_API int gguf_find_key(const struct gguf_context * ctx, const char * key);
  1956. GGML_API const char * gguf_get_key (const struct gguf_context * ctx, int key_id);
  1957. GGML_API enum gguf_type gguf_get_kv_type (const struct gguf_context * ctx, int key_id);
  1958. GGML_API enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id);
  1959. // will abort if the wrong type is used for the key
  1960. GGML_API uint8_t gguf_get_val_u8 (const struct gguf_context * ctx, int key_id);
  1961. GGML_API int8_t gguf_get_val_i8 (const struct gguf_context * ctx, int key_id);
  1962. GGML_API uint16_t gguf_get_val_u16 (const struct gguf_context * ctx, int key_id);
  1963. GGML_API int16_t gguf_get_val_i16 (const struct gguf_context * ctx, int key_id);
  1964. GGML_API uint32_t gguf_get_val_u32 (const struct gguf_context * ctx, int key_id);
  1965. GGML_API int32_t gguf_get_val_i32 (const struct gguf_context * ctx, int key_id);
  1966. GGML_API float gguf_get_val_f32 (const struct gguf_context * ctx, int key_id);
  1967. GGML_API uint64_t gguf_get_val_u64 (const struct gguf_context * ctx, int key_id);
  1968. GGML_API int64_t gguf_get_val_i64 (const struct gguf_context * ctx, int key_id);
  1969. GGML_API double gguf_get_val_f64 (const struct gguf_context * ctx, int key_id);
  1970. GGML_API bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id);
  1971. GGML_API const char * gguf_get_val_str (const struct gguf_context * ctx, int key_id);
  1972. GGML_API const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id);
  1973. GGML_API int gguf_get_arr_n (const struct gguf_context * ctx, int key_id);
  1974. GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id);
  1975. GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int key_id, int i);
  1976. GGML_API int gguf_get_n_tensors (const struct gguf_context * ctx);
  1977. GGML_API int gguf_find_tensor (const struct gguf_context * ctx, const char * name);
  1978. GGML_API size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i);
  1979. GGML_API char * gguf_get_tensor_name (const struct gguf_context * ctx, int i);
  1980. GGML_API enum ggml_type gguf_get_tensor_type (const struct gguf_context * ctx, int i);
  1981. // removes key if it exists
  1982. GGML_API void gguf_remove_key(struct gguf_context * ctx, const char * key);
  1983. // overrides existing values or adds a new one
  1984. GGML_API void gguf_set_val_u8 (struct gguf_context * ctx, const char * key, uint8_t val);
  1985. GGML_API void gguf_set_val_i8 (struct gguf_context * ctx, const char * key, int8_t val);
  1986. GGML_API void gguf_set_val_u16 (struct gguf_context * ctx, const char * key, uint16_t val);
  1987. GGML_API void gguf_set_val_i16 (struct gguf_context * ctx, const char * key, int16_t val);
  1988. GGML_API void gguf_set_val_u32 (struct gguf_context * ctx, const char * key, uint32_t val);
  1989. GGML_API void gguf_set_val_i32 (struct gguf_context * ctx, const char * key, int32_t val);
  1990. GGML_API void gguf_set_val_f32 (struct gguf_context * ctx, const char * key, float val);
  1991. GGML_API void gguf_set_val_u64 (struct gguf_context * ctx, const char * key, uint64_t val);
  1992. GGML_API void gguf_set_val_i64 (struct gguf_context * ctx, const char * key, int64_t val);
  1993. GGML_API void gguf_set_val_f64 (struct gguf_context * ctx, const char * key, double val);
  1994. GGML_API void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val);
  1995. GGML_API void gguf_set_val_str (struct gguf_context * ctx, const char * key, const char * val);
  1996. GGML_API void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n);
  1997. GGML_API void gguf_set_arr_str (struct gguf_context * ctx, const char * key, const char ** data, int n);
  1998. // set or add KV pairs from another context
  1999. GGML_API void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src);
  2000. // manage tensor info
  2001. GGML_API void gguf_add_tensor(struct gguf_context * ctx, const struct ggml_tensor * tensor);
  2002. GGML_API void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type);
  2003. GGML_API void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size);
  2004. // writing gguf files can be done in 2 ways:
  2005. //
  2006. // - write the entire gguf_context to a binary file in a single pass:
  2007. //
  2008. // gguf_write_to_file(ctx, fname);
  2009. //
  2010. // - first prepare a file with a placeholder for the meta data, write the tensor data, then write the meta data:
  2011. //
  2012. // FILE * f = fopen(fname, "wb");
  2013. // fseek(f, gguf_get_meta_size(ctx), SEEK_SET);
  2014. // fwrite(f, ...);
  2015. // void * data = gguf_meta_get_meta_data(ctx);
  2016. // fseek(f, 0, SEEK_SET);
  2017. // fwrite(f, data, gguf_get_meta_size(ctx));
  2018. // free(data);
  2019. // fclose(f);
  2020. //
  2021. // write the entire context to a binary file
  2022. GGML_API void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta);
  2023. // get the size in bytes of the meta data (header, kv pairs, tensor info) including padding
  2024. GGML_API size_t gguf_get_meta_size(const struct gguf_context * ctx);
  2025. GGML_API void gguf_get_meta_data(const struct gguf_context * ctx, void * data);
  2026. //
  2027. // system info
  2028. //
  2029. GGML_API int ggml_cpu_has_avx (void);
  2030. GGML_API int ggml_cpu_has_avx_vnni (void);
  2031. GGML_API int ggml_cpu_has_avx2 (void);
  2032. GGML_API int ggml_cpu_has_avx512 (void);
  2033. GGML_API int ggml_cpu_has_avx512_vbmi(void);
  2034. GGML_API int ggml_cpu_has_avx512_vnni(void);
  2035. GGML_API int ggml_cpu_has_avx512_bf16(void);
  2036. GGML_API int ggml_cpu_has_amx_int8 (void);
  2037. GGML_API int ggml_cpu_has_fma (void);
  2038. GGML_API int ggml_cpu_has_arm_fma (void);
  2039. GGML_API int ggml_cpu_has_metal (void);
  2040. GGML_API int ggml_cpu_has_f16c (void);
  2041. GGML_API int ggml_cpu_has_fp16_va (void);
  2042. GGML_API int ggml_cpu_has_wasm_simd (void);
  2043. GGML_API int ggml_cpu_has_blas (void);
  2044. GGML_API int ggml_cpu_has_cuda (void);
  2045. GGML_API int ggml_cpu_has_vulkan (void);
  2046. GGML_API int ggml_cpu_has_kompute (void);
  2047. GGML_API int ggml_cpu_has_gpublas (void);
  2048. GGML_API int ggml_cpu_has_sse3 (void);
  2049. GGML_API int ggml_cpu_has_ssse3 (void);
  2050. GGML_API int ggml_cpu_has_riscv_v (void);
  2051. GGML_API int ggml_cpu_has_sycl (void);
  2052. GGML_API int ggml_cpu_has_rpc (void);
  2053. GGML_API int ggml_cpu_has_vsx (void);
  2054. GGML_API int ggml_cpu_has_cann (void);
  2055. GGML_API int ggml_cpu_has_llamafile (void);
  2056. #ifdef __cplusplus
  2057. // restrict not standard in C++
  2058. #define GGML_RESTRICT
  2059. #else
  2060. #define GGML_RESTRICT restrict
  2061. #endif
  2062. typedef void (*ggml_to_float_t) (const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
  2063. typedef void (*ggml_from_float_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
  2064. struct ggml_type_traits {
  2065. const char * type_name;
  2066. int64_t blck_size;
  2067. int64_t blck_size_interleave; // interleave elements in blocks
  2068. size_t type_size;
  2069. bool is_quantized;
  2070. ggml_to_float_t to_float;
  2071. ggml_from_float_t from_float;
  2072. ggml_from_float_t from_float_ref;
  2073. };
  2074. GGML_API const struct ggml_type_traits * ggml_get_type_traits(enum ggml_type type);
  2075. #ifdef __cplusplus
  2076. }
  2077. #endif