llama.cpp 702 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885168861688716888168891689016891168921689316894168951689616897168981689916900169011690216903169041690516906169071690816909169101691116912169131691416915169161691716918169191692016921169221692316924169251692616927169281692916930169311693216933169341693516936169371693816939169401694116942169431694416945169461694716948169491695016951169521695316954169551695616957169581695916960169611696216963169641696516966169671696816969169701697116972169731697416975169761697716978169791698016981169821698316984169851698616987169881698916990169911699216993169941699516996169971699816999170001700117002170031700417005170061700717008170091701017011170121701317014170151701617017170181701917020170211702217023170241702517026170271702817029170301703117032170331703417035170361703717038170391704017041170421704317044170451704617047170481704917050170511705217053170541705517056170571705817059170601706117062170631706417065170661706717068170691707017071170721707317074170751707617077170781707917080170811708217083170841708517086170871708817089170901709117092170931709417095170961709717098170991710017101171021710317104171051710617107171081710917110171111711217113171141711517116171171711817119171201712117122171231712417125171261712717128171291713017131171321713317134171351713617137171381713917140171411714217143171441714517146171471714817149171501715117152171531715417155171561715717158171591716017161171621716317164171651716617167171681716917170171711717217173171741717517176171771717817179171801718117182171831718417185171861718717188171891719017191171921719317194171951719617197171981719917200172011720217203172041720517206172071720817209172101721117212172131721417215172161721717218172191722017221172221722317224172251722617227172281722917230172311723217233172341723517236172371723817239172401724117242172431724417245172461724717248172491725017251172521725317254172551725617257172581725917260172611726217263172641726517266172671726817269172701727117272172731727417275172761727717278172791728017281172821728317284172851728617287172881728917290172911729217293172941729517296172971729817299173001730117302173031730417305173061730717308173091731017311173121731317314173151731617317173181731917320173211732217323173241732517326173271732817329173301733117332173331733417335173361733717338173391734017341173421734317344173451734617347173481734917350173511735217353173541735517356173571735817359173601736117362173631736417365173661736717368173691737017371173721737317374173751737617377173781737917380173811738217383173841738517386173871738817389173901739117392173931739417395173961739717398173991740017401174021740317404174051740617407174081740917410174111741217413174141741517416174171741817419174201742117422174231742417425174261742717428174291743017431174321743317434174351743617437174381743917440174411744217443174441744517446174471744817449174501745117452174531745417455174561745717458174591746017461174621746317464174651746617467174681746917470174711747217473174741747517476174771747817479174801748117482174831748417485174861748717488174891749017491174921749317494174951749617497174981749917500175011750217503175041750517506175071750817509175101751117512175131751417515175161751717518175191752017521175221752317524175251752617527175281752917530175311753217533175341753517536175371753817539175401754117542175431754417545175461754717548175491755017551175521755317554175551755617557175581755917560175611756217563175641756517566175671756817569175701757117572175731757417575175761757717578175791758017581175821758317584175851758617587175881758917590175911759217593175941759517596175971759817599176001760117602176031760417605176061760717608176091761017611176121761317614176151761617617176181761917620176211762217623176241762517626176271762817629176301763117632176331763417635176361763717638176391764017641176421764317644176451764617647176481764917650176511765217653176541765517656176571765817659176601766117662176631766417665176661766717668176691767017671176721767317674176751767617677176781767917680176811768217683176841768517686176871768817689176901769117692176931769417695176961769717698176991770017701177021770317704177051770617707177081770917710177111771217713177141771517716177171771817719
  1. #define LLAMA_API_INTERNAL
  2. #include "llama.h"
  3. #include "unicode.h"
  4. #include "ggml.h"
  5. #include "ggml-alloc.h"
  6. #include "ggml-backend.h"
  7. #ifdef GGML_USE_CUDA
  8. # include "ggml-cuda.h"
  9. #elif defined(GGML_USE_CLBLAST)
  10. # include "ggml-opencl.h"
  11. #elif defined(GGML_USE_VULKAN)
  12. # include "ggml-vulkan.h"
  13. #elif defined(GGML_USE_SYCL)
  14. # include "ggml-sycl.h"
  15. #elif defined(GGML_USE_KOMPUTE)
  16. # include "ggml-kompute.h"
  17. #endif
  18. #ifdef GGML_USE_METAL
  19. # include "ggml-metal.h"
  20. #endif
  21. #ifdef GGML_USE_MPI
  22. # include "ggml-mpi.h"
  23. #endif
  24. #ifndef QK_K
  25. # ifdef GGML_QKK_64
  26. # define QK_K 64
  27. # else
  28. # define QK_K 256
  29. # endif
  30. #endif
  31. #ifdef __has_include
  32. #if __has_include(<unistd.h>)
  33. #include <unistd.h>
  34. #if defined(_POSIX_MAPPED_FILES)
  35. #include <sys/mman.h>
  36. #include <fcntl.h>
  37. #endif
  38. #if defined(_POSIX_MEMLOCK_RANGE)
  39. #include <sys/resource.h>
  40. #endif
  41. #endif
  42. #endif
  43. #if defined(_WIN32)
  44. #define WIN32_LEAN_AND_MEAN
  45. #ifndef NOMINMAX
  46. #define NOMINMAX
  47. #endif
  48. #include <windows.h>
  49. #ifndef PATH_MAX
  50. #define PATH_MAX MAX_PATH
  51. #endif
  52. #include <io.h>
  53. #endif
  54. #include <algorithm>
  55. #include <array>
  56. #include <cassert>
  57. #include <cctype>
  58. #include <cfloat>
  59. #include <cinttypes>
  60. #include <climits>
  61. #include <cmath>
  62. #include <cstdarg>
  63. #include <cstddef>
  64. #include <cstdint>
  65. #include <cstdio>
  66. #include <cstring>
  67. #include <ctime>
  68. #include <forward_list>
  69. #include <fstream>
  70. #include <functional>
  71. #include <initializer_list>
  72. #include <locale>
  73. #include <map>
  74. #include <memory>
  75. #include <mutex>
  76. #include <numeric>
  77. #include <queue>
  78. #include <random>
  79. #include <regex>
  80. #include <set>
  81. #include <sstream>
  82. #include <thread>
  83. #include <type_traits>
  84. #include <unordered_map>
  85. #if defined(_MSC_VER)
  86. #pragma warning(disable: 4244 4267) // possible loss of data
  87. #endif
  88. #ifdef __GNUC__
  89. #ifdef __MINGW32__
  90. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  91. #else
  92. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  93. #endif
  94. #else
  95. #define LLAMA_ATTRIBUTE_FORMAT(...)
  96. #endif
  97. #define LLAMA_MAX_NODES 8192
  98. #define LLAMA_MAX_EXPERTS 60
  99. //
  100. // logging
  101. //
  102. LLAMA_ATTRIBUTE_FORMAT(2, 3)
  103. static void llama_log_internal (ggml_log_level level, const char* format, ...);
  104. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data);
  105. #define LLAMA_LOG_INFO(...) llama_log_internal(GGML_LOG_LEVEL_INFO , __VA_ARGS__)
  106. #define LLAMA_LOG_WARN(...) llama_log_internal(GGML_LOG_LEVEL_WARN , __VA_ARGS__)
  107. #define LLAMA_LOG_ERROR(...) llama_log_internal(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
  108. //
  109. // helpers
  110. //
  111. static size_t utf8_len(char src) {
  112. const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
  113. uint8_t highbits = static_cast<uint8_t>(src) >> 4;
  114. return lookup[highbits];
  115. }
  116. static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
  117. std::string result;
  118. for (size_t pos = 0; ; pos += search.length()) {
  119. auto new_pos = s.find(search, pos);
  120. if (new_pos == std::string::npos) {
  121. result += s.substr(pos, s.size() - pos);
  122. break;
  123. }
  124. result += s.substr(pos, new_pos - pos) + replace;
  125. pos = new_pos;
  126. }
  127. s = std::move(result);
  128. }
  129. static bool is_float_close(float a, float b, float abs_tol) {
  130. // Check for non-negative tolerance
  131. if (abs_tol < 0.0) {
  132. throw std::invalid_argument("Tolerance must be non-negative");
  133. }
  134. // Exact equality check
  135. if (a == b) {
  136. return true;
  137. }
  138. // Check for infinities
  139. if (std::isinf(a) || std::isinf(b)) {
  140. return false;
  141. }
  142. // Regular comparison using the provided absolute tolerance
  143. return std::fabs(b - a) <= abs_tol;
  144. }
  145. static void zeros(std::ofstream & file, size_t n) {
  146. char zero = 0;
  147. for (size_t i = 0; i < n; ++i) {
  148. file.write(&zero, 1);
  149. }
  150. }
  151. LLAMA_ATTRIBUTE_FORMAT(1, 2)
  152. static std::string format(const char * fmt, ...) {
  153. va_list ap;
  154. va_list ap2;
  155. va_start(ap, fmt);
  156. va_copy(ap2, ap);
  157. int size = vsnprintf(NULL, 0, fmt, ap);
  158. GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
  159. std::vector<char> buf(size + 1);
  160. int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
  161. GGML_ASSERT(size2 == size);
  162. va_end(ap2);
  163. va_end(ap);
  164. return std::string(buf.data(), size);
  165. }
  166. //
  167. // gguf constants (sync with gguf.py)
  168. //
  169. enum llm_arch {
  170. LLM_ARCH_LLAMA,
  171. LLM_ARCH_FALCON,
  172. LLM_ARCH_BAICHUAN,
  173. LLM_ARCH_GROK,
  174. LLM_ARCH_GPT2,
  175. LLM_ARCH_GPTJ,
  176. LLM_ARCH_GPTNEOX,
  177. LLM_ARCH_MPT,
  178. LLM_ARCH_STARCODER,
  179. LLM_ARCH_PERSIMMON,
  180. LLM_ARCH_REFACT,
  181. LLM_ARCH_BERT,
  182. LLM_ARCH_NOMIC_BERT,
  183. LLM_ARCH_BLOOM,
  184. LLM_ARCH_STABLELM,
  185. LLM_ARCH_QWEN,
  186. LLM_ARCH_QWEN2,
  187. LLM_ARCH_QWEN2MOE,
  188. LLM_ARCH_PHI2,
  189. LLM_ARCH_PHI3,
  190. LLM_ARCH_PLAMO,
  191. LLM_ARCH_CODESHELL,
  192. LLM_ARCH_ORION,
  193. LLM_ARCH_INTERNLM2,
  194. LLM_ARCH_MINICPM,
  195. LLM_ARCH_GEMMA,
  196. LLM_ARCH_STARCODER2,
  197. LLM_ARCH_MAMBA,
  198. LLM_ARCH_XVERSE,
  199. LLM_ARCH_COMMAND_R,
  200. LLM_ARCH_DBRX,
  201. LLM_ARCH_OLMO,
  202. LLM_ARCH_UNKNOWN,
  203. };
  204. static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
  205. { LLM_ARCH_LLAMA, "llama" },
  206. { LLM_ARCH_FALCON, "falcon" },
  207. { LLM_ARCH_GROK, "grok" },
  208. { LLM_ARCH_GPT2, "gpt2" },
  209. { LLM_ARCH_GPTJ, "gptj" },
  210. { LLM_ARCH_GPTNEOX, "gptneox" },
  211. { LLM_ARCH_MPT, "mpt" },
  212. { LLM_ARCH_BAICHUAN, "baichuan" },
  213. { LLM_ARCH_STARCODER, "starcoder" },
  214. { LLM_ARCH_PERSIMMON, "persimmon" },
  215. { LLM_ARCH_REFACT, "refact" },
  216. { LLM_ARCH_BERT, "bert" },
  217. { LLM_ARCH_NOMIC_BERT, "nomic-bert" },
  218. { LLM_ARCH_BLOOM, "bloom" },
  219. { LLM_ARCH_STABLELM, "stablelm" },
  220. { LLM_ARCH_QWEN, "qwen" },
  221. { LLM_ARCH_QWEN2, "qwen2" },
  222. { LLM_ARCH_QWEN2MOE, "qwen2moe" },
  223. { LLM_ARCH_PHI2, "phi2" },
  224. { LLM_ARCH_PHI3, "phi3" },
  225. { LLM_ARCH_PLAMO, "plamo" },
  226. { LLM_ARCH_CODESHELL, "codeshell" },
  227. { LLM_ARCH_ORION, "orion" },
  228. { LLM_ARCH_INTERNLM2, "internlm2" },
  229. { LLM_ARCH_MINICPM, "minicpm" },
  230. { LLM_ARCH_GEMMA, "gemma" },
  231. { LLM_ARCH_STARCODER2, "starcoder2" },
  232. { LLM_ARCH_MAMBA, "mamba" },
  233. { LLM_ARCH_XVERSE, "xverse" },
  234. { LLM_ARCH_COMMAND_R, "command-r" },
  235. { LLM_ARCH_DBRX, "dbrx" },
  236. { LLM_ARCH_OLMO, "olmo" },
  237. { LLM_ARCH_UNKNOWN, "(unknown)" },
  238. };
  239. enum llm_kv {
  240. LLM_KV_GENERAL_ARCHITECTURE,
  241. LLM_KV_GENERAL_QUANTIZATION_VERSION,
  242. LLM_KV_GENERAL_ALIGNMENT,
  243. LLM_KV_GENERAL_NAME,
  244. LLM_KV_GENERAL_AUTHOR,
  245. LLM_KV_GENERAL_VERSION,
  246. LLM_KV_GENERAL_URL,
  247. LLM_KV_GENERAL_DESCRIPTION,
  248. LLM_KV_GENERAL_LICENSE,
  249. LLM_KV_GENERAL_SOURCE_URL,
  250. LLM_KV_GENERAL_SOURCE_HF_REPO,
  251. LLM_KV_VOCAB_SIZE,
  252. LLM_KV_CONTEXT_LENGTH,
  253. LLM_KV_EMBEDDING_LENGTH,
  254. LLM_KV_BLOCK_COUNT,
  255. LLM_KV_FEED_FORWARD_LENGTH,
  256. LLM_KV_USE_PARALLEL_RESIDUAL,
  257. LLM_KV_TENSOR_DATA_LAYOUT,
  258. LLM_KV_EXPERT_COUNT,
  259. LLM_KV_EXPERT_USED_COUNT,
  260. LLM_KV_POOLING_TYPE,
  261. LLM_KV_LOGIT_SCALE,
  262. LLM_KV_ATTENTION_HEAD_COUNT,
  263. LLM_KV_ATTENTION_HEAD_COUNT_KV,
  264. LLM_KV_ATTENTION_MAX_ALIBI_BIAS,
  265. LLM_KV_ATTENTION_CLAMP_KQV,
  266. LLM_KV_ATTENTION_KEY_LENGTH,
  267. LLM_KV_ATTENTION_VALUE_LENGTH,
  268. LLM_KV_ATTENTION_LAYERNORM_EPS,
  269. LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,
  270. LLM_KV_ATTENTION_CAUSAL,
  271. LLM_KV_ROPE_DIMENSION_COUNT,
  272. LLM_KV_ROPE_FREQ_BASE,
  273. LLM_KV_ROPE_SCALE_LINEAR,
  274. LLM_KV_ROPE_SCALING_TYPE,
  275. LLM_KV_ROPE_SCALING_FACTOR,
  276. LLM_KV_ROPE_SCALING_ORIG_CTX_LEN,
  277. LLM_KV_ROPE_SCALING_FINETUNED,
  278. LLM_KV_SPLIT_NO,
  279. LLM_KV_SPLIT_COUNT,
  280. LLM_KV_SPLIT_TENSORS_COUNT,
  281. LLM_KV_SSM_INNER_SIZE,
  282. LLM_KV_SSM_CONV_KERNEL,
  283. LLM_KV_SSM_STATE_SIZE,
  284. LLM_KV_SSM_TIME_STEP_RANK,
  285. LLM_KV_TOKENIZER_MODEL,
  286. LLM_KV_TOKENIZER_LIST,
  287. LLM_KV_TOKENIZER_TOKEN_TYPE,
  288. LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT,
  289. LLM_KV_TOKENIZER_SCORES,
  290. LLM_KV_TOKENIZER_MERGES,
  291. LLM_KV_TOKENIZER_BOS_ID,
  292. LLM_KV_TOKENIZER_EOS_ID,
  293. LLM_KV_TOKENIZER_UNK_ID,
  294. LLM_KV_TOKENIZER_SEP_ID,
  295. LLM_KV_TOKENIZER_PAD_ID,
  296. LLM_KV_TOKENIZER_CLS_ID,
  297. LLM_KV_TOKENIZER_MASK_ID,
  298. LLM_KV_TOKENIZER_ADD_BOS,
  299. LLM_KV_TOKENIZER_ADD_EOS,
  300. LLM_KV_TOKENIZER_ADD_PREFIX,
  301. LLM_KV_TOKENIZER_HF_JSON,
  302. LLM_KV_TOKENIZER_RWKV,
  303. LLM_KV_TOKENIZER_PREFIX_ID,
  304. LLM_KV_TOKENIZER_SUFFIX_ID,
  305. LLM_KV_TOKENIZER_MIDDLE_ID,
  306. LLM_KV_TOKENIZER_EOT_ID,
  307. };
  308. static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
  309. { LLM_KV_GENERAL_ARCHITECTURE, "general.architecture" },
  310. { LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" },
  311. { LLM_KV_GENERAL_ALIGNMENT, "general.alignment" },
  312. { LLM_KV_GENERAL_NAME, "general.name" },
  313. { LLM_KV_GENERAL_AUTHOR, "general.author" },
  314. { LLM_KV_GENERAL_VERSION, "general.version" },
  315. { LLM_KV_GENERAL_URL, "general.url" },
  316. { LLM_KV_GENERAL_DESCRIPTION, "general.description" },
  317. { LLM_KV_GENERAL_LICENSE, "general.license" },
  318. { LLM_KV_GENERAL_SOURCE_URL, "general.source.url" },
  319. { LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source.huggingface.repository" },
  320. { LLM_KV_VOCAB_SIZE, "%s.vocab_size" },
  321. { LLM_KV_CONTEXT_LENGTH, "%s.context_length" },
  322. { LLM_KV_EMBEDDING_LENGTH, "%s.embedding_length" },
  323. { LLM_KV_BLOCK_COUNT, "%s.block_count" },
  324. { LLM_KV_FEED_FORWARD_LENGTH, "%s.feed_forward_length" },
  325. { LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" },
  326. { LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" },
  327. { LLM_KV_EXPERT_COUNT, "%s.expert_count" },
  328. { LLM_KV_EXPERT_USED_COUNT, "%s.expert_used_count" },
  329. { LLM_KV_POOLING_TYPE , "%s.pooling_type" },
  330. { LLM_KV_LOGIT_SCALE, "%s.logit_scale" },
  331. { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
  332. { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
  333. { LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" },
  334. { LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" },
  335. { LLM_KV_ATTENTION_KEY_LENGTH, "%s.attention.key_length" },
  336. { LLM_KV_ATTENTION_VALUE_LENGTH, "%s.attention.value_length" },
  337. { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" },
  338. { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" },
  339. { LLM_KV_ATTENTION_CAUSAL, "%s.attention.causal" },
  340. { LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
  341. { LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
  342. { LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" },
  343. { LLM_KV_ROPE_SCALING_TYPE, "%s.rope.scaling.type" },
  344. { LLM_KV_ROPE_SCALING_FACTOR, "%s.rope.scaling.factor" },
  345. { LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, "%s.rope.scaling.original_context_length" },
  346. { LLM_KV_ROPE_SCALING_FINETUNED, "%s.rope.scaling.finetuned" },
  347. { LLM_KV_SPLIT_NO, "split.no" },
  348. { LLM_KV_SPLIT_COUNT, "split.count" },
  349. { LLM_KV_SPLIT_TENSORS_COUNT, "split.tensors.count" },
  350. { LLM_KV_SSM_CONV_KERNEL, "%s.ssm.conv_kernel" },
  351. { LLM_KV_SSM_INNER_SIZE, "%s.ssm.inner_size" },
  352. { LLM_KV_SSM_STATE_SIZE, "%s.ssm.state_size" },
  353. { LLM_KV_SSM_TIME_STEP_RANK, "%s.ssm.time_step_rank" },
  354. { LLM_KV_TOKENIZER_MODEL, "tokenizer.ggml.model" },
  355. { LLM_KV_TOKENIZER_LIST, "tokenizer.ggml.tokens" },
  356. { LLM_KV_TOKENIZER_TOKEN_TYPE, "tokenizer.ggml.token_type" },
  357. { LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, "tokenizer.ggml.token_type_count" },
  358. { LLM_KV_TOKENIZER_SCORES, "tokenizer.ggml.scores" },
  359. { LLM_KV_TOKENIZER_MERGES, "tokenizer.ggml.merges" },
  360. { LLM_KV_TOKENIZER_BOS_ID, "tokenizer.ggml.bos_token_id" },
  361. { LLM_KV_TOKENIZER_EOS_ID, "tokenizer.ggml.eos_token_id" },
  362. { LLM_KV_TOKENIZER_UNK_ID, "tokenizer.ggml.unknown_token_id" },
  363. { LLM_KV_TOKENIZER_SEP_ID, "tokenizer.ggml.seperator_token_id" },
  364. { LLM_KV_TOKENIZER_PAD_ID, "tokenizer.ggml.padding_token_id" },
  365. { LLM_KV_TOKENIZER_CLS_ID, "tokenizer.ggml.cls_token_id" },
  366. { LLM_KV_TOKENIZER_MASK_ID, "tokenizer.ggml.mask_token_id" },
  367. { LLM_KV_TOKENIZER_ADD_BOS, "tokenizer.ggml.add_bos_token" },
  368. { LLM_KV_TOKENIZER_ADD_EOS, "tokenizer.ggml.add_eos_token" },
  369. { LLM_KV_TOKENIZER_ADD_PREFIX, "tokenizer.ggml.add_space_prefix" },
  370. { LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" },
  371. { LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" },
  372. { LLM_KV_TOKENIZER_PREFIX_ID, "tokenizer.ggml.prefix_token_id" },
  373. { LLM_KV_TOKENIZER_SUFFIX_ID, "tokenizer.ggml.suffix_token_id" },
  374. { LLM_KV_TOKENIZER_MIDDLE_ID, "tokenizer.ggml.middle_token_id" },
  375. { LLM_KV_TOKENIZER_EOT_ID, "tokenizer.ggml.eot_token_id" },
  376. };
  377. struct LLM_KV {
  378. LLM_KV(llm_arch arch) : arch(arch) {}
  379. llm_arch arch;
  380. std::string operator()(llm_kv kv) const {
  381. return ::format(LLM_KV_NAMES.at(kv), LLM_ARCH_NAMES.at(arch));
  382. }
  383. };
  384. enum llm_tensor {
  385. LLM_TENSOR_TOKEN_EMBD,
  386. LLM_TENSOR_TOKEN_EMBD_NORM,
  387. LLM_TENSOR_TOKEN_TYPES,
  388. LLM_TENSOR_POS_EMBD,
  389. LLM_TENSOR_OUTPUT,
  390. LLM_TENSOR_OUTPUT_NORM,
  391. LLM_TENSOR_ROPE_FREQS,
  392. LLM_TENSOR_ATTN_Q,
  393. LLM_TENSOR_ATTN_K,
  394. LLM_TENSOR_ATTN_V,
  395. LLM_TENSOR_ATTN_QKV,
  396. LLM_TENSOR_ATTN_OUT,
  397. LLM_TENSOR_ATTN_NORM,
  398. LLM_TENSOR_ATTN_NORM_2,
  399. LLM_TENSOR_ATTN_OUT_NORM,
  400. LLM_TENSOR_ATTN_ROT_EMBD,
  401. LLM_TENSOR_FFN_GATE_INP,
  402. LLM_TENSOR_FFN_GATE_INP_SHEXP,
  403. LLM_TENSOR_FFN_NORM,
  404. LLM_TENSOR_FFN_GATE,
  405. LLM_TENSOR_FFN_DOWN,
  406. LLM_TENSOR_FFN_UP,
  407. LLM_TENSOR_FFN_ACT,
  408. LLM_TENSOR_FFN_DOWN_EXP, // split experts for backward compatibility
  409. LLM_TENSOR_FFN_GATE_EXP,
  410. LLM_TENSOR_FFN_UP_EXP,
  411. LLM_TENSOR_FFN_DOWN_EXPS, // merged experts
  412. LLM_TENSOR_FFN_GATE_EXPS,
  413. LLM_TENSOR_FFN_UP_EXPS,
  414. LLM_TENSOR_FFN_DOWN_SHEXP,
  415. LLM_TENSOR_FFN_GATE_SHEXP,
  416. LLM_TENSOR_FFN_UP_SHEXP,
  417. LLM_TENSOR_ATTN_Q_NORM,
  418. LLM_TENSOR_ATTN_K_NORM,
  419. LLM_TENSOR_LAYER_OUT_NORM,
  420. LLM_TENSOR_SSM_IN,
  421. LLM_TENSOR_SSM_CONV1D,
  422. LLM_TENSOR_SSM_X,
  423. LLM_TENSOR_SSM_DT,
  424. LLM_TENSOR_SSM_A,
  425. LLM_TENSOR_SSM_D,
  426. LLM_TENSOR_SSM_OUT,
  427. };
  428. static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = {
  429. {
  430. LLM_ARCH_LLAMA,
  431. {
  432. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  433. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  434. { LLM_TENSOR_OUTPUT, "output" },
  435. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  436. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  437. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  438. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  439. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  440. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  441. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  442. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  443. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  444. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  445. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  446. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  447. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  448. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  449. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  450. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  451. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  452. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  453. },
  454. },
  455. {
  456. LLM_ARCH_BAICHUAN,
  457. {
  458. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  459. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  460. { LLM_TENSOR_OUTPUT, "output" },
  461. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  462. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  463. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  464. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  465. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  466. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  467. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  468. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  469. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  470. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  471. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  472. },
  473. },
  474. {
  475. LLM_ARCH_FALCON,
  476. {
  477. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  478. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  479. { LLM_TENSOR_OUTPUT, "output" },
  480. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  481. { LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" },
  482. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  483. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  484. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  485. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  486. },
  487. },
  488. {
  489. LLM_ARCH_GROK,
  490. {
  491. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  492. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  493. { LLM_TENSOR_OUTPUT, "output" },
  494. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  495. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  496. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  497. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  498. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  499. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  500. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  501. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  502. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  503. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  504. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  505. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  506. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  507. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  508. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  509. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  510. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  511. },
  512. },
  513. {
  514. LLM_ARCH_GPT2,
  515. {
  516. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  517. { LLM_TENSOR_POS_EMBD, "position_embd" },
  518. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  519. { LLM_TENSOR_OUTPUT, "output" },
  520. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  521. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  522. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  523. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  524. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  525. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  526. },
  527. },
  528. {
  529. LLM_ARCH_GPTJ,
  530. {
  531. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  532. },
  533. },
  534. {
  535. LLM_ARCH_GPTNEOX,
  536. {
  537. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  538. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  539. { LLM_TENSOR_OUTPUT, "output" },
  540. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  541. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  542. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  543. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  544. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  545. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  546. },
  547. },
  548. {
  549. LLM_ARCH_PERSIMMON,
  550. {
  551. { LLM_TENSOR_TOKEN_EMBD, "token_embd"},
  552. { LLM_TENSOR_OUTPUT_NORM, "output_norm"},
  553. { LLM_TENSOR_OUTPUT, "output"},
  554. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm"},
  555. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv"},
  556. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output"},
  557. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"},
  558. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"},
  559. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm"},
  560. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down"},
  561. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up"},
  562. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd"},
  563. },
  564. },
  565. {
  566. LLM_ARCH_MPT,
  567. {
  568. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  569. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  570. { LLM_TENSOR_OUTPUT, "output"},
  571. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  572. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  573. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  574. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  575. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  576. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  577. { LLM_TENSOR_FFN_ACT, "blk.%d.ffn.act" },
  578. { LLM_TENSOR_POS_EMBD, "position_embd" },
  579. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"},
  580. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"},
  581. },
  582. },
  583. {
  584. LLM_ARCH_STARCODER,
  585. {
  586. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  587. { LLM_TENSOR_POS_EMBD, "position_embd" },
  588. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  589. { LLM_TENSOR_OUTPUT, "output" },
  590. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  591. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  592. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  593. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  594. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  595. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  596. },
  597. },
  598. {
  599. LLM_ARCH_REFACT,
  600. {
  601. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  602. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  603. { LLM_TENSOR_OUTPUT, "output" },
  604. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  605. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  606. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  607. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  608. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  609. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  610. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  611. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  612. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  613. },
  614. },
  615. {
  616. LLM_ARCH_BERT,
  617. {
  618. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  619. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  620. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  621. { LLM_TENSOR_POS_EMBD, "position_embd" },
  622. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  623. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  624. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  625. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  626. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  627. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  628. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  629. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  630. },
  631. },
  632. {
  633. LLM_ARCH_NOMIC_BERT,
  634. {
  635. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  636. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  637. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  638. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  639. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  640. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  641. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  642. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  643. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  644. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  645. },
  646. },
  647. {
  648. LLM_ARCH_BLOOM,
  649. {
  650. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  651. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  652. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  653. { LLM_TENSOR_OUTPUT, "output" },
  654. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  655. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  656. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  657. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  658. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  659. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  660. },
  661. },
  662. {
  663. LLM_ARCH_STABLELM,
  664. {
  665. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  666. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  667. { LLM_TENSOR_OUTPUT, "output" },
  668. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  669. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  670. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  671. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  672. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  673. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  674. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  675. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  676. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  677. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  678. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  679. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  680. },
  681. },
  682. {
  683. LLM_ARCH_QWEN,
  684. {
  685. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  686. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  687. { LLM_TENSOR_OUTPUT, "output" },
  688. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  689. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  690. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  691. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  692. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  693. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  694. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  695. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  696. },
  697. },
  698. {
  699. LLM_ARCH_QWEN2,
  700. {
  701. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  702. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  703. { LLM_TENSOR_OUTPUT, "output" },
  704. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  705. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  706. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  707. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  708. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  709. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  710. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  711. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  712. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  713. },
  714. },
  715. {
  716. LLM_ARCH_QWEN2MOE,
  717. {
  718. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  719. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  720. { LLM_TENSOR_OUTPUT, "output" },
  721. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  722. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  723. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  724. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  725. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  726. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  727. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  728. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  729. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  730. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  731. { LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" },
  732. { LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" },
  733. { LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
  734. { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
  735. },
  736. },
  737. {
  738. LLM_ARCH_PHI2,
  739. {
  740. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  741. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  742. { LLM_TENSOR_OUTPUT, "output" },
  743. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  744. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  745. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  746. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  747. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  748. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  749. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  750. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  751. },
  752. },
  753. {
  754. LLM_ARCH_PHI3,
  755. {
  756. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  757. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  758. { LLM_TENSOR_OUTPUT, "output" },
  759. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  760. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  761. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  762. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  763. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  764. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  765. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  766. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  767. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  768. },
  769. },
  770. {
  771. LLM_ARCH_PLAMO,
  772. {
  773. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  774. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  775. { LLM_TENSOR_OUTPUT, "output" },
  776. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  777. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  778. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  779. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  780. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  781. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  782. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  783. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  784. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  785. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  786. },
  787. },
  788. {
  789. LLM_ARCH_CODESHELL,
  790. {
  791. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  792. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  793. { LLM_TENSOR_OUTPUT, "output" },
  794. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  795. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  796. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  797. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  798. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  799. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  800. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  801. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  802. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  803. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  804. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  805. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  806. },
  807. },
  808. {
  809. LLM_ARCH_ORION,
  810. {
  811. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  812. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  813. { LLM_TENSOR_OUTPUT, "output" },
  814. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  815. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  816. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  817. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  818. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  819. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  820. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  821. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  822. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  823. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  824. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  825. },
  826. },
  827. {
  828. LLM_ARCH_INTERNLM2,
  829. {
  830. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  831. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  832. { LLM_TENSOR_OUTPUT, "output" },
  833. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  834. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  835. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  836. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  837. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  838. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  839. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  840. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  841. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  842. },
  843. },
  844. {
  845. LLM_ARCH_MINICPM,
  846. {
  847. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  848. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  849. { LLM_TENSOR_OUTPUT, "output" },
  850. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  851. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  852. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  853. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  854. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  855. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  856. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  857. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  858. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  859. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  860. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  861. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  862. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  863. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  864. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  865. },
  866. },
  867. {
  868. LLM_ARCH_GEMMA,
  869. {
  870. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  871. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  872. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  873. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  874. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  875. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  876. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  877. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  878. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  879. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  880. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  881. },
  882. },
  883. {
  884. LLM_ARCH_STARCODER2,
  885. {
  886. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  887. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  888. { LLM_TENSOR_OUTPUT, "output" },
  889. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  890. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  891. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  892. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  893. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  894. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  895. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  896. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  897. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  898. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  899. },
  900. },
  901. {
  902. LLM_ARCH_MAMBA,
  903. {
  904. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  905. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  906. { LLM_TENSOR_OUTPUT, "output" },
  907. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  908. { LLM_TENSOR_SSM_IN, "blk.%d.ssm_in" },
  909. { LLM_TENSOR_SSM_CONV1D, "blk.%d.ssm_conv1d" },
  910. { LLM_TENSOR_SSM_X, "blk.%d.ssm_x" },
  911. { LLM_TENSOR_SSM_DT, "blk.%d.ssm_dt" },
  912. { LLM_TENSOR_SSM_A, "blk.%d.ssm_a" },
  913. { LLM_TENSOR_SSM_D, "blk.%d.ssm_d" },
  914. { LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" },
  915. },
  916. },
  917. {
  918. LLM_ARCH_XVERSE,
  919. {
  920. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  921. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  922. { LLM_TENSOR_OUTPUT, "output" },
  923. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  924. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  925. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  926. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  927. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  928. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  929. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  930. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  931. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  932. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  933. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  934. },
  935. },
  936. {
  937. LLM_ARCH_COMMAND_R,
  938. {
  939. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  940. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  941. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  942. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  943. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  944. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  945. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  946. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  947. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  948. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  949. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  950. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  951. },
  952. },
  953. {
  954. LLM_ARCH_DBRX,
  955. {
  956. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  957. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  958. { LLM_TENSOR_OUTPUT, "output" },
  959. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  960. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  961. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  962. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  963. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  964. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  965. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  966. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  967. },
  968. },
  969. {
  970. LLM_ARCH_OLMO,
  971. {
  972. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  973. { LLM_TENSOR_OUTPUT, "output" },
  974. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  975. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  976. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  977. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  978. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  979. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  980. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  981. },
  982. },
  983. {
  984. LLM_ARCH_UNKNOWN,
  985. {
  986. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  987. },
  988. },
  989. };
  990. static llm_arch llm_arch_from_string(const std::string & name) {
  991. for (const auto & kv : LLM_ARCH_NAMES) { // NOLINT
  992. if (kv.second == name) {
  993. return kv.first;
  994. }
  995. }
  996. return LLM_ARCH_UNKNOWN;
  997. }
  998. // helper to handle gguf constants
  999. // usage:
  1000. //
  1001. // const auto tn = LLM_TN(LLM_ARCH_LLAMA);
  1002. //
  1003. // std::string name = tn(LLM_TENSOR_OUTPUT); -> "output"
  1004. // std::string name = tn(LLM_TENSOR_TOKEN_EMBD, "bias"); -> "token_embd.bias"
  1005. // std::string name = tn(LLM_TENSOR_ATTN_NORM, "weight", 3); -> "blk.3.attn_norm.weight"
  1006. //
  1007. struct LLM_TN {
  1008. LLM_TN(llm_arch arch) : arch(arch) {}
  1009. llm_arch arch;
  1010. std::string operator()(llm_tensor tensor) const {
  1011. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1012. return "__missing__";
  1013. }
  1014. return LLM_TENSOR_NAMES.at(arch).at(tensor);
  1015. }
  1016. std::string operator()(llm_tensor tensor, const std::string & suffix) const {
  1017. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1018. return "__missing__";
  1019. }
  1020. return LLM_TENSOR_NAMES.at(arch).at(tensor) + "." + suffix;
  1021. }
  1022. std::string operator()(llm_tensor tensor, int bid) const {
  1023. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1024. return "__missing__";
  1025. }
  1026. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid);
  1027. }
  1028. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid) const {
  1029. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1030. return "__missing__";
  1031. }
  1032. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid) + "." + suffix;
  1033. }
  1034. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid, int xid) const {
  1035. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1036. return "__missing__";
  1037. }
  1038. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid, xid) + "." + suffix;
  1039. }
  1040. };
  1041. //
  1042. // gguf helpers
  1043. //
  1044. static const std::map<llama_rope_scaling_type, const char *> LLAMA_ROPE_SCALING_TYPES = {
  1045. { LLAMA_ROPE_SCALING_TYPE_NONE, "none" },
  1046. { LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
  1047. { LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" },
  1048. };
  1049. static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) {
  1050. for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) {
  1051. if (kv.second == name) {
  1052. return (llama_rope_scaling_type) kv.first;
  1053. }
  1054. }
  1055. return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
  1056. }
  1057. static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
  1058. switch (type) {
  1059. case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]);
  1060. case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]);
  1061. case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]);
  1062. case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]);
  1063. case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]);
  1064. case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]);
  1065. case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]);
  1066. case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]);
  1067. case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]);
  1068. case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]);
  1069. case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false";
  1070. default: return format("unknown type %d", type);
  1071. }
  1072. }
  1073. static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
  1074. const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
  1075. switch (type) {
  1076. case GGUF_TYPE_STRING:
  1077. return gguf_get_val_str(ctx_gguf, i);
  1078. case GGUF_TYPE_ARRAY:
  1079. {
  1080. const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
  1081. int arr_n = gguf_get_arr_n(ctx_gguf, i);
  1082. const void * data = gguf_get_arr_data(ctx_gguf, i);
  1083. std::stringstream ss;
  1084. ss << "[";
  1085. for (int j = 0; j < arr_n; j++) {
  1086. if (arr_type == GGUF_TYPE_STRING) {
  1087. std::string val = gguf_get_arr_str(ctx_gguf, i, j);
  1088. // escape quotes
  1089. replace_all(val, "\\", "\\\\");
  1090. replace_all(val, "\"", "\\\"");
  1091. ss << '"' << val << '"';
  1092. } else if (arr_type == GGUF_TYPE_ARRAY) {
  1093. ss << "???";
  1094. } else {
  1095. ss << gguf_data_to_str(arr_type, data, j);
  1096. }
  1097. if (j < arr_n - 1) {
  1098. ss << ", ";
  1099. }
  1100. }
  1101. ss << "]";
  1102. return ss.str();
  1103. }
  1104. default:
  1105. return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0);
  1106. }
  1107. }
  1108. //
  1109. // llama helpers
  1110. //
  1111. #if defined(_WIN32)
  1112. static std::string llama_format_win_err(DWORD err) {
  1113. LPSTR buf;
  1114. size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
  1115. NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
  1116. if (!size) {
  1117. return "FormatMessageA failed";
  1118. }
  1119. std::string ret(buf, size);
  1120. LocalFree(buf);
  1121. return ret;
  1122. }
  1123. #endif
  1124. template <typename T>
  1125. struct no_init {
  1126. T value;
  1127. no_init() { /* do nothing */ }
  1128. };
  1129. struct llama_file {
  1130. // use FILE * so we don't have to re-open the file to mmap
  1131. FILE * fp;
  1132. size_t size;
  1133. llama_file(const char * fname, const char * mode) {
  1134. fp = ggml_fopen(fname, mode);
  1135. if (fp == NULL) {
  1136. throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
  1137. }
  1138. seek(0, SEEK_END);
  1139. size = tell();
  1140. seek(0, SEEK_SET);
  1141. }
  1142. size_t tell() const {
  1143. #ifdef _WIN32
  1144. __int64 ret = _ftelli64(fp);
  1145. #else
  1146. long ret = std::ftell(fp);
  1147. #endif
  1148. GGML_ASSERT(ret != -1); // this really shouldn't fail
  1149. return (size_t) ret;
  1150. }
  1151. void seek(size_t offset, int whence) const {
  1152. #ifdef _WIN32
  1153. int ret = _fseeki64(fp, (__int64) offset, whence);
  1154. #else
  1155. int ret = std::fseek(fp, (long) offset, whence);
  1156. #endif
  1157. GGML_ASSERT(ret == 0); // same
  1158. }
  1159. void read_raw(void * ptr, size_t len) const {
  1160. if (len == 0) {
  1161. return;
  1162. }
  1163. errno = 0;
  1164. std::size_t ret = std::fread(ptr, len, 1, fp);
  1165. if (ferror(fp)) {
  1166. throw std::runtime_error(format("read error: %s", strerror(errno)));
  1167. }
  1168. if (ret != 1) {
  1169. throw std::runtime_error("unexpectedly reached end of file");
  1170. }
  1171. }
  1172. uint32_t read_u32() const {
  1173. uint32_t ret;
  1174. read_raw(&ret, sizeof(ret));
  1175. return ret;
  1176. }
  1177. void write_raw(const void * ptr, size_t len) const {
  1178. if (len == 0) {
  1179. return;
  1180. }
  1181. errno = 0;
  1182. size_t ret = std::fwrite(ptr, len, 1, fp);
  1183. if (ret != 1) {
  1184. throw std::runtime_error(format("write error: %s", strerror(errno)));
  1185. }
  1186. }
  1187. void write_u32(std::uint32_t val) const {
  1188. write_raw(&val, sizeof(val));
  1189. }
  1190. ~llama_file() {
  1191. if (fp) {
  1192. std::fclose(fp);
  1193. }
  1194. }
  1195. };
  1196. using llama_files = std::vector<std::unique_ptr<llama_file>>;
  1197. struct llama_mmap {
  1198. void * addr;
  1199. size_t size;
  1200. llama_mmap(const llama_mmap &) = delete;
  1201. #ifdef _POSIX_MAPPED_FILES
  1202. static constexpr bool SUPPORTED = true;
  1203. // list of mapped fragments (first_offset, last_offset)
  1204. std::vector<std::pair<size_t, size_t>> mapped_fragments;
  1205. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) {
  1206. size = file->size;
  1207. int fd = fileno(file->fp);
  1208. int flags = MAP_SHARED;
  1209. // prefetch/readahead impairs performance on NUMA systems
  1210. if (numa) { prefetch = 0; }
  1211. #ifdef __linux__
  1212. // advise the kernel to read the file sequentially (increases readahead)
  1213. if (posix_fadvise(fd, 0, 0, POSIX_FADV_SEQUENTIAL)) {
  1214. LLAMA_LOG_WARN("warning: posix_fadvise(.., POSIX_FADV_SEQUENTIAL) failed: %s\n",
  1215. strerror(errno));
  1216. }
  1217. if (prefetch) { flags |= MAP_POPULATE; }
  1218. #endif
  1219. addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
  1220. if (addr == MAP_FAILED) { // NOLINT
  1221. throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
  1222. }
  1223. if (prefetch > 0) {
  1224. // advise the kernel to preload the mapped memory
  1225. if (posix_madvise(addr, std::min(file->size, prefetch), POSIX_MADV_WILLNEED)) {
  1226. LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_WILLNEED) failed: %s\n",
  1227. strerror(errno));
  1228. }
  1229. }
  1230. if (numa) {
  1231. // advise the kernel not to use readahead
  1232. // (because the next page might not belong on the same node)
  1233. if (posix_madvise(addr, file->size, POSIX_MADV_RANDOM)) {
  1234. LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_RANDOM) failed: %s\n",
  1235. strerror(errno));
  1236. }
  1237. }
  1238. // initialize list of mapped_fragments
  1239. mapped_fragments.emplace_back(0, file->size);
  1240. }
  1241. static void align_range(size_t * first, size_t * last, size_t page_size) {
  1242. // align first to the next page
  1243. size_t offset_in_page = *first & (page_size - 1);
  1244. size_t offset_to_page = offset_in_page == 0 ? 0 : page_size - offset_in_page;
  1245. *first += offset_to_page;
  1246. // align last to the previous page
  1247. *last = *last & ~(page_size - 1);
  1248. if (*last <= *first) {
  1249. *last = *first;
  1250. }
  1251. }
  1252. // partially unmap the file in the range [first, last)
  1253. void unmap_fragment(size_t first, size_t last) {
  1254. // note: this function must not be called multiple times with overlapping ranges
  1255. // otherwise, there is a risk of invalidating addresses that have been repurposed for other mappings
  1256. int page_size = sysconf(_SC_PAGESIZE);
  1257. align_range(&first, &last, page_size);
  1258. size_t len = last - first;
  1259. if (len == 0) {
  1260. return;
  1261. }
  1262. GGML_ASSERT(first % page_size == 0);
  1263. GGML_ASSERT(last % page_size == 0);
  1264. GGML_ASSERT(last > first);
  1265. void * next_page_start = (uint8_t *) addr + first;
  1266. // unmap the range
  1267. if (munmap(next_page_start, len)) {
  1268. LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
  1269. }
  1270. // update the list of mapped fragments to avoid unmapping the same range again in the destructor
  1271. std::vector<std::pair<size_t, size_t>> new_mapped_fragments;
  1272. for (const auto & frag : mapped_fragments) {
  1273. if (frag.first < first && frag.second > last) {
  1274. // the range is in the middle of the fragment, split it
  1275. new_mapped_fragments.emplace_back(frag.first, first);
  1276. new_mapped_fragments.emplace_back(last, frag.second);
  1277. } else if (frag.first < first && frag.second > first) {
  1278. // the range starts in the middle of the fragment
  1279. new_mapped_fragments.emplace_back(frag.first, first);
  1280. } else if (frag.first < last && frag.second > last) {
  1281. // the range ends in the middle of the fragment
  1282. new_mapped_fragments.emplace_back(last, frag.second);
  1283. } else if (frag.first >= first && frag.second <= last) {
  1284. // the range covers the entire fragment
  1285. } else {
  1286. // the range is outside the fragment
  1287. new_mapped_fragments.push_back(frag);
  1288. }
  1289. }
  1290. mapped_fragments = std::move(new_mapped_fragments);
  1291. }
  1292. ~llama_mmap() {
  1293. for (const auto & frag : mapped_fragments) {
  1294. if (munmap((char *) addr + frag.first, frag.second - frag.first)) {
  1295. LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
  1296. }
  1297. }
  1298. }
  1299. #elif defined(_WIN32)
  1300. static constexpr bool SUPPORTED = true;
  1301. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1, bool numa = false) {
  1302. GGML_UNUSED(numa);
  1303. size = file->size;
  1304. HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp));
  1305. HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
  1306. if (hMapping == NULL) {
  1307. DWORD error = GetLastError();
  1308. throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
  1309. }
  1310. addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
  1311. DWORD error = GetLastError();
  1312. CloseHandle(hMapping);
  1313. if (addr == NULL) {
  1314. throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
  1315. }
  1316. if (prefetch > 0) {
  1317. #if _WIN32_WINNT >= 0x602
  1318. // PrefetchVirtualMemory is only present on Windows 8 and above, so we dynamically load it
  1319. BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG);
  1320. HMODULE hKernel32 = GetModuleHandleW(L"kernel32.dll");
  1321. // may fail on pre-Windows 8 systems
  1322. pPrefetchVirtualMemory = reinterpret_cast<decltype(pPrefetchVirtualMemory)> (GetProcAddress(hKernel32, "PrefetchVirtualMemory"));
  1323. if (pPrefetchVirtualMemory) {
  1324. // advise the kernel to preload the mapped memory
  1325. WIN32_MEMORY_RANGE_ENTRY range;
  1326. range.VirtualAddress = addr;
  1327. range.NumberOfBytes = (SIZE_T) std::min(size, prefetch);
  1328. if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
  1329. LLAMA_LOG_WARN("warning: PrefetchVirtualMemory failed: %s\n",
  1330. llama_format_win_err(GetLastError()).c_str());
  1331. }
  1332. }
  1333. #else
  1334. throw std::runtime_error("PrefetchVirtualMemory unavailable");
  1335. #endif
  1336. }
  1337. }
  1338. void unmap_fragment(size_t first, size_t last) {
  1339. // not supported
  1340. GGML_UNUSED(first);
  1341. GGML_UNUSED(last);
  1342. }
  1343. ~llama_mmap() {
  1344. if (!UnmapViewOfFile(addr)) {
  1345. LLAMA_LOG_WARN("warning: UnmapViewOfFile failed: %s\n",
  1346. llama_format_win_err(GetLastError()).c_str());
  1347. }
  1348. }
  1349. #else
  1350. static constexpr bool SUPPORTED = false;
  1351. llama_mmap(struct llama_file * file, size_t prefetch = -1, bool numa = false) {
  1352. GGML_UNUSED(file);
  1353. GGML_UNUSED(prefetch);
  1354. GGML_UNUSED(numa);
  1355. throw std::runtime_error("mmap not supported");
  1356. }
  1357. void unmap_fragment(size_t first, size_t last) {
  1358. GGML_UNUSED(first);
  1359. GGML_UNUSED(last);
  1360. throw std::runtime_error("mmap not supported");
  1361. }
  1362. #endif
  1363. };
  1364. using llama_mmaps = std::vector<std::unique_ptr<llama_mmap>>;
  1365. // Represents some region of memory being locked using mlock or VirtualLock;
  1366. // will automatically unlock on destruction.
  1367. struct llama_mlock {
  1368. void * addr = NULL;
  1369. size_t size = 0;
  1370. bool failed_already = false;
  1371. llama_mlock() {}
  1372. llama_mlock(const llama_mlock &) = delete;
  1373. ~llama_mlock() {
  1374. if (size) {
  1375. raw_unlock(addr, size);
  1376. }
  1377. }
  1378. void init(void * ptr) {
  1379. GGML_ASSERT(addr == NULL && size == 0); // NOLINT
  1380. addr = ptr;
  1381. }
  1382. void grow_to(size_t target_size) {
  1383. GGML_ASSERT(addr);
  1384. if (failed_already) {
  1385. return;
  1386. }
  1387. size_t granularity = lock_granularity();
  1388. target_size = (target_size + granularity - 1) & ~(granularity - 1);
  1389. if (target_size > size) {
  1390. if (raw_lock((uint8_t *) addr + size, target_size - size)) {
  1391. size = target_size;
  1392. } else {
  1393. failed_already = true;
  1394. }
  1395. }
  1396. }
  1397. #ifdef _POSIX_MEMLOCK_RANGE
  1398. static constexpr bool SUPPORTED = true;
  1399. static size_t lock_granularity() {
  1400. return (size_t) sysconf(_SC_PAGESIZE);
  1401. }
  1402. #ifdef __APPLE__
  1403. #define MLOCK_SUGGESTION \
  1404. "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
  1405. "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MEMLOCK (ulimit -l).\n"
  1406. #else
  1407. #define MLOCK_SUGGESTION \
  1408. "Try increasing RLIMIT_MEMLOCK ('ulimit -l' as root).\n"
  1409. #endif
  1410. bool raw_lock(const void * addr, size_t size) const {
  1411. if (!mlock(addr, size)) {
  1412. return true;
  1413. }
  1414. char* errmsg = std::strerror(errno);
  1415. bool suggest = (errno == ENOMEM);
  1416. // Check if the resource limit is fine after all
  1417. struct rlimit lock_limit;
  1418. if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit)) {
  1419. suggest = false;
  1420. }
  1421. if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size)) {
  1422. suggest = false;
  1423. }
  1424. LLAMA_LOG_WARN("warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
  1425. size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
  1426. return false;
  1427. }
  1428. #undef MLOCK_SUGGESTION
  1429. static void raw_unlock(void * addr, size_t size) {
  1430. if (munlock(addr, size)) {
  1431. LLAMA_LOG_WARN("warning: failed to munlock buffer: %s\n", std::strerror(errno));
  1432. }
  1433. }
  1434. #elif defined(_WIN32)
  1435. static constexpr bool SUPPORTED = true;
  1436. static size_t lock_granularity() {
  1437. SYSTEM_INFO si;
  1438. GetSystemInfo(&si);
  1439. return (size_t) si.dwPageSize;
  1440. }
  1441. bool raw_lock(void * ptr, size_t len) const {
  1442. for (int tries = 1; ; tries++) {
  1443. if (VirtualLock(ptr, len)) {
  1444. return true;
  1445. }
  1446. if (tries == 2) {
  1447. LLAMA_LOG_WARN("warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
  1448. len, size, llama_format_win_err(GetLastError()).c_str());
  1449. return false;
  1450. }
  1451. // It failed but this was only the first try; increase the working
  1452. // set size and try again.
  1453. SIZE_T min_ws_size, max_ws_size;
  1454. if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
  1455. LLAMA_LOG_WARN("warning: GetProcessWorkingSetSize failed: %s\n",
  1456. llama_format_win_err(GetLastError()).c_str());
  1457. return false;
  1458. }
  1459. // Per MSDN: "The maximum number of pages that a process can lock
  1460. // is equal to the number of pages in its minimum working set minus
  1461. // a small overhead."
  1462. // Hopefully a megabyte is enough overhead:
  1463. size_t increment = len + 1048576;
  1464. // The minimum must be <= the maximum, so we need to increase both:
  1465. min_ws_size += increment;
  1466. max_ws_size += increment;
  1467. if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
  1468. LLAMA_LOG_WARN("warning: SetProcessWorkingSetSize failed: %s\n",
  1469. llama_format_win_err(GetLastError()).c_str());
  1470. return false;
  1471. }
  1472. }
  1473. }
  1474. static void raw_unlock(void * ptr, size_t len) {
  1475. if (!VirtualUnlock(ptr, len)) {
  1476. LLAMA_LOG_WARN("warning: failed to VirtualUnlock buffer: %s\n",
  1477. llama_format_win_err(GetLastError()).c_str());
  1478. }
  1479. }
  1480. #else
  1481. static constexpr bool SUPPORTED = false;
  1482. static size_t lock_granularity() {
  1483. return (size_t) 65536;
  1484. }
  1485. bool raw_lock(const void * addr, size_t len) const {
  1486. LLAMA_LOG_WARN("warning: mlock not supported on this system\n");
  1487. return false;
  1488. }
  1489. static void raw_unlock(const void * addr, size_t len) {}
  1490. #endif
  1491. };
  1492. using llama_mlocks = std::vector<std::unique_ptr<llama_mlock>>;
  1493. static std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token, bool special) {
  1494. std::vector<char> result(8, 0);
  1495. const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), special);
  1496. if (n_tokens < 0) {
  1497. result.resize(-n_tokens);
  1498. int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), special);
  1499. GGML_ASSERT(check == -n_tokens);
  1500. }
  1501. else {
  1502. result.resize(n_tokens);
  1503. }
  1504. return std::string(result.data(), result.size());
  1505. }
  1506. static ggml_backend_buffer_type_t llama_default_buffer_type_cpu(bool host_buffer) {
  1507. ggml_backend_buffer_type_t buft = nullptr;
  1508. #if defined(GGML_USE_CUDA)
  1509. // host buffers should only be used when data is expected to be copied to/from the GPU
  1510. if (host_buffer) {
  1511. buft = ggml_backend_cuda_host_buffer_type();
  1512. }
  1513. #elif defined(GGML_USE_SYCL)
  1514. if (host_buffer) {
  1515. buft = ggml_backend_sycl_host_buffer_type();
  1516. }
  1517. #elif defined(GGML_USE_CPU_HBM)
  1518. buft = ggml_backend_cpu_hbm_buffer_type();
  1519. #elif defined(GGML_USE_VULKAN)
  1520. if (host_buffer) {
  1521. buft = ggml_backend_vk_host_buffer_type();
  1522. }
  1523. #endif
  1524. if (buft == nullptr) {
  1525. buft = ggml_backend_cpu_buffer_type();
  1526. }
  1527. return buft;
  1528. GGML_UNUSED(host_buffer);
  1529. }
  1530. static ggml_backend_buffer_type_t llama_default_buffer_type_offload(int gpu) {
  1531. ggml_backend_buffer_type_t buft = nullptr;
  1532. #ifdef GGML_USE_METAL
  1533. buft = ggml_backend_metal_buffer_type();
  1534. #elif defined(GGML_USE_CUDA)
  1535. buft = ggml_backend_cuda_buffer_type(gpu);
  1536. #elif defined(GGML_USE_VULKAN)
  1537. buft = ggml_backend_vk_buffer_type(gpu);
  1538. #elif defined(GGML_USE_SYCL)
  1539. buft = ggml_backend_sycl_buffer_type(gpu);
  1540. #elif defined(GGML_USE_CLBLAST)
  1541. buft = ggml_backend_opencl_buffer_type();
  1542. #elif defined(GGML_USE_KOMPUTE)
  1543. buft = ggml_backend_kompute_buffer_type(gpu);
  1544. if (buft == nullptr) {
  1545. LLAMA_LOG_WARN("%s: cannot use GPU %d, check `vulkaninfo --summary`\n", __func__, gpu);
  1546. }
  1547. #endif
  1548. if (buft == nullptr) {
  1549. buft = llama_default_buffer_type_cpu(true);
  1550. }
  1551. return buft;
  1552. GGML_UNUSED(gpu);
  1553. }
  1554. static ggml_backend_buffer_type_t llama_default_buffer_type_split(int fallback_gpu, const float * tensor_split) {
  1555. ggml_backend_buffer_type_t buft = nullptr;
  1556. #ifdef GGML_USE_CUDA
  1557. if (ggml_backend_cuda_get_device_count() > 1) {
  1558. buft = ggml_backend_cuda_split_buffer_type(tensor_split);
  1559. }
  1560. #endif
  1561. #ifdef GGML_USE_SYCL
  1562. if (ggml_backend_sycl_get_device_count() > 1) {
  1563. buft = ggml_backend_sycl_split_buffer_type(tensor_split);
  1564. }
  1565. #endif
  1566. if (buft == nullptr) {
  1567. buft = llama_default_buffer_type_offload(fallback_gpu);
  1568. }
  1569. return buft;
  1570. GGML_UNUSED(tensor_split);
  1571. }
  1572. static size_t llama_get_device_count() {
  1573. #if defined(GGML_USE_CUDA)
  1574. return ggml_backend_cuda_get_device_count();
  1575. #elif defined(GGML_USE_SYCL)
  1576. return ggml_backend_sycl_get_device_count();
  1577. #elif defined(GGML_USE_VULKAN)
  1578. return ggml_backend_vk_get_device_count();
  1579. #else
  1580. return 1;
  1581. #endif
  1582. }
  1583. static size_t llama_get_device_memory(int device) {
  1584. #if defined(GGML_USE_CUDA)
  1585. size_t total;
  1586. size_t free;
  1587. ggml_backend_cuda_get_device_memory(device, &free, &total);
  1588. return free;
  1589. #elif defined(GGML_USE_SYCL)
  1590. size_t total;
  1591. size_t free;
  1592. ggml_backend_sycl_get_device_memory(device, &free, &total);
  1593. return free;
  1594. #elif defined(GGML_USE_VULKAN)
  1595. size_t total;
  1596. size_t free;
  1597. ggml_backend_vk_get_device_memory(device, &free, &total);
  1598. return free;
  1599. #else
  1600. return 1;
  1601. GGML_UNUSED(device);
  1602. #endif
  1603. }
  1604. //
  1605. // globals
  1606. //
  1607. struct llama_state {
  1608. llama_state() {
  1609. #ifdef GGML_USE_METAL
  1610. ggml_backend_metal_log_set_callback(log_callback, log_callback_user_data);
  1611. #endif
  1612. }
  1613. // We save the log callback globally
  1614. ggml_log_callback log_callback = llama_log_callback_default;
  1615. void * log_callback_user_data = nullptr;
  1616. };
  1617. static llama_state g_state;
  1618. // available llama models
  1619. enum e_model {
  1620. MODEL_UNKNOWN,
  1621. MODEL_17M,
  1622. MODEL_22M,
  1623. MODEL_33M,
  1624. MODEL_109M,
  1625. MODEL_137M,
  1626. MODEL_335M,
  1627. MODEL_0_5B,
  1628. MODEL_1B,
  1629. MODEL_2B,
  1630. MODEL_3B,
  1631. MODEL_4B,
  1632. MODEL_7B,
  1633. MODEL_8B,
  1634. MODEL_12B,
  1635. MODEL_13B,
  1636. MODEL_14B,
  1637. MODEL_15B,
  1638. MODEL_20B,
  1639. MODEL_30B,
  1640. MODEL_34B,
  1641. MODEL_35B,
  1642. MODEL_40B,
  1643. MODEL_65B,
  1644. MODEL_70B,
  1645. MODEL_314B,
  1646. MODEL_SMALL,
  1647. MODEL_MEDIUM,
  1648. MODEL_LARGE,
  1649. MODEL_XL,
  1650. MODEL_A2_7B,
  1651. MODEL_8x7B,
  1652. MODEL_8x22B,
  1653. MODEL_16x12B,
  1654. };
  1655. static const size_t kiB = 1024;
  1656. static const size_t MiB = 1024*kiB;
  1657. static const size_t GiB = 1024*MiB;
  1658. struct llama_hparams {
  1659. bool vocab_only;
  1660. bool rope_finetuned;
  1661. uint32_t n_vocab;
  1662. uint32_t n_ctx_train; // context size the model was trained on
  1663. uint32_t n_embd;
  1664. uint32_t n_head;
  1665. uint32_t n_head_kv;
  1666. uint32_t n_layer;
  1667. uint32_t n_rot;
  1668. uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads
  1669. uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
  1670. uint32_t n_ff;
  1671. uint32_t n_expert = 0;
  1672. uint32_t n_expert_used = 0;
  1673. uint32_t n_vocab_type = 0; // for BERT-style token types
  1674. float f_norm_eps;
  1675. float f_norm_rms_eps;
  1676. float rope_freq_base_train;
  1677. float rope_freq_scale_train;
  1678. uint32_t n_yarn_orig_ctx;
  1679. // for State Space Models
  1680. uint32_t ssm_d_conv = 0;
  1681. uint32_t ssm_d_inner = 0;
  1682. uint32_t ssm_d_state = 0;
  1683. uint32_t ssm_dt_rank = 0;
  1684. float f_clamp_kqv = 0.0f;
  1685. float f_max_alibi_bias = 0.0f;
  1686. float f_logit_scale = 0.0f;
  1687. bool causal_attn = true;
  1688. bool need_kq_pos = false;
  1689. enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE;
  1690. enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE;
  1691. enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE;
  1692. bool operator!=(const llama_hparams & other) const {
  1693. if (this->vocab_only != other.vocab_only) return true;
  1694. if (this->n_vocab != other.n_vocab) return true;
  1695. if (this->n_ctx_train != other.n_ctx_train) return true;
  1696. if (this->n_embd != other.n_embd) return true;
  1697. if (this->n_head != other.n_head) return true;
  1698. if (this->n_head_kv != other.n_head_kv) return true;
  1699. if (this->n_layer != other.n_layer) return true;
  1700. if (this->n_rot != other.n_rot) return true;
  1701. if (this->n_embd_head_k != other.n_embd_head_k) return true;
  1702. if (this->n_embd_head_v != other.n_embd_head_v) return true;
  1703. if (this->n_ff != other.n_ff) return true;
  1704. if (this->n_expert != other.n_expert) return true;
  1705. if (this->n_expert_used != other.n_expert_used) return true;
  1706. if (this->rope_finetuned != other.rope_finetuned) return true;
  1707. if (this->n_yarn_orig_ctx != other.n_yarn_orig_ctx) return true;
  1708. if (this->ssm_d_conv != other.ssm_d_conv) return true;
  1709. if (this->ssm_d_inner != other.ssm_d_inner) return true;
  1710. if (this->ssm_d_state != other.ssm_d_state) return true;
  1711. if (this->ssm_dt_rank != other.ssm_dt_rank) return true;
  1712. const float EPSILON = 1e-9f;
  1713. if (!is_float_close(this->f_norm_eps, other.f_norm_eps, EPSILON)) return true;
  1714. if (!is_float_close(this->f_norm_rms_eps, other.f_norm_rms_eps, EPSILON)) return true;
  1715. if (!is_float_close(this->rope_freq_base_train, other.rope_freq_base_train, EPSILON)) return true;
  1716. if (!is_float_close(this->rope_freq_scale_train, other.rope_freq_scale_train, EPSILON)) return true;
  1717. return false;
  1718. }
  1719. uint32_t n_gqa() const {
  1720. if (n_head_kv == 0) {
  1721. return 0;
  1722. }
  1723. return n_head/n_head_kv;
  1724. }
  1725. uint32_t n_embd_k_gqa() const { // dimension of key embeddings across all k-v heads
  1726. return n_embd_head_k * n_head_kv;
  1727. }
  1728. uint32_t n_embd_v_gqa() const { // dimension of value embeddings across all k-v heads
  1729. return n_embd_head_v * n_head_kv;
  1730. }
  1731. uint32_t n_embd_k_s() const { // dimension of the rolling state embeddings
  1732. // corresponds to Mamba's conv_states size
  1733. // TODO: maybe support other convolution strides than 1
  1734. // NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed
  1735. return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * ssm_d_inner;
  1736. }
  1737. uint32_t n_embd_v_s() const { // dimension of the recurrent state embeddings
  1738. // corresponds to Mamba's ssm_states size
  1739. return ssm_d_state * ssm_d_inner;
  1740. }
  1741. };
  1742. struct llama_cparams {
  1743. uint32_t n_ctx; // context size used during inference
  1744. uint32_t n_batch;
  1745. uint32_t n_ubatch;
  1746. uint32_t n_seq_max;
  1747. uint32_t n_threads; // number of threads to use for generation
  1748. uint32_t n_threads_batch; // number of threads to use for batch processing
  1749. float rope_freq_base;
  1750. float rope_freq_scale;
  1751. uint32_t n_yarn_orig_ctx;
  1752. // These hyperparameters are not exposed in GGUF, because all
  1753. // existing YaRN models use the same values for them.
  1754. float yarn_ext_factor;
  1755. float yarn_attn_factor;
  1756. float yarn_beta_fast;
  1757. float yarn_beta_slow;
  1758. float defrag_thold;
  1759. bool embeddings;
  1760. bool causal_attn;
  1761. bool offload_kqv;
  1762. enum llama_pooling_type pooling_type;
  1763. ggml_backend_sched_eval_callback cb_eval;
  1764. void * cb_eval_user_data;
  1765. };
  1766. struct llama_layer {
  1767. // normalization
  1768. struct ggml_tensor * attn_norm;
  1769. struct ggml_tensor * attn_norm_b;
  1770. struct ggml_tensor * attn_norm_2;
  1771. struct ggml_tensor * attn_norm_2_b;
  1772. struct ggml_tensor * attn_q_norm;
  1773. struct ggml_tensor * attn_q_norm_b;
  1774. struct ggml_tensor * attn_k_norm;
  1775. struct ggml_tensor * attn_k_norm_b;
  1776. struct ggml_tensor * attn_out_norm;
  1777. struct ggml_tensor * attn_out_norm_b;
  1778. // attention
  1779. struct ggml_tensor * wq;
  1780. struct ggml_tensor * wk;
  1781. struct ggml_tensor * wv;
  1782. struct ggml_tensor * wo;
  1783. struct ggml_tensor * wqkv;
  1784. // attention bias
  1785. struct ggml_tensor * bq;
  1786. struct ggml_tensor * bk;
  1787. struct ggml_tensor * bv;
  1788. struct ggml_tensor * bo;
  1789. struct ggml_tensor * bqkv;
  1790. // normalization
  1791. struct ggml_tensor * ffn_norm;
  1792. struct ggml_tensor * ffn_norm_b;
  1793. struct ggml_tensor * layer_out_norm;
  1794. struct ggml_tensor * layer_out_norm_b;
  1795. // ff
  1796. struct ggml_tensor * ffn_gate; // w1
  1797. struct ggml_tensor * ffn_down; // w2
  1798. struct ggml_tensor * ffn_up; // w3
  1799. // ff MoE
  1800. struct ggml_tensor * ffn_gate_inp;
  1801. struct ggml_tensor * ffn_gate_exps;
  1802. struct ggml_tensor * ffn_down_exps;
  1803. struct ggml_tensor * ffn_up_exps ;
  1804. // ff shared expert (shexp)
  1805. struct ggml_tensor * ffn_gate_inp_shexp;
  1806. struct ggml_tensor * ffn_gate_shexp;
  1807. struct ggml_tensor * ffn_down_shexp;
  1808. struct ggml_tensor * ffn_up_shexp;
  1809. // ff bias
  1810. struct ggml_tensor * ffn_down_b; // b2
  1811. struct ggml_tensor * ffn_up_b; // b3
  1812. struct ggml_tensor * ffn_act;
  1813. // mamba proj
  1814. struct ggml_tensor * ssm_in;
  1815. struct ggml_tensor * ssm_x;
  1816. struct ggml_tensor * ssm_dt;
  1817. struct ggml_tensor * ssm_out;
  1818. // mamba
  1819. struct ggml_tensor * ssm_conv1d;
  1820. struct ggml_tensor * ssm_a;
  1821. struct ggml_tensor * ssm_d;
  1822. // mamba bias
  1823. struct ggml_tensor * ssm_conv1d_b;
  1824. struct ggml_tensor * ssm_dt_b;
  1825. };
  1826. struct llama_kv_cell {
  1827. llama_pos pos = -1;
  1828. llama_pos delta = 0;
  1829. int32_t src = 0; // used by recurrent state models to copy states
  1830. std::set<llama_seq_id> seq_id;
  1831. bool has_seq_id(const llama_seq_id & id) const {
  1832. return seq_id.find(id) != seq_id.end();
  1833. }
  1834. bool is_empty() const {
  1835. return seq_id.empty();
  1836. }
  1837. bool is_same_seq(const llama_kv_cell & other) const {
  1838. return seq_id == other.seq_id;
  1839. }
  1840. };
  1841. // ring-buffer of cached KV data
  1842. struct llama_kv_cache {
  1843. bool has_shift = false;
  1844. bool do_defrag = false;
  1845. bool do_copy = false;
  1846. // with recurrent state models, a cell can hold the state for more than one past token
  1847. bool recurrent = false;
  1848. // Note: The value of head isn't only used to optimize searching
  1849. // for a free KV slot. llama_decode_internal also uses it, so it
  1850. // cannot be freely changed after a slot has been allocated.
  1851. uint32_t head = 0;
  1852. uint32_t size = 0;
  1853. uint32_t used = 0; // used cells (i.e. at least one seq_id)
  1854. // computed before each graph build
  1855. uint32_t n = 0;
  1856. ggml_type type_k = GGML_TYPE_F16;
  1857. ggml_type type_v = GGML_TYPE_F16;
  1858. std::vector<llama_kv_cell> cells;
  1859. std::vector<struct ggml_tensor *> k_l; // per layer
  1860. std::vector<struct ggml_tensor *> v_l;
  1861. std::vector<struct ggml_context *> ctxs;
  1862. std::vector<ggml_backend_buffer_t> bufs;
  1863. size_t total_size() const {
  1864. size_t size = 0;
  1865. for (ggml_backend_buffer_t buf : bufs) {
  1866. size += ggml_backend_buffer_get_size(buf);
  1867. }
  1868. return size;
  1869. }
  1870. ~llama_kv_cache() {
  1871. for (struct ggml_context * ctx : ctxs) {
  1872. ggml_free(ctx);
  1873. }
  1874. for (ggml_backend_buffer_t buf : bufs) {
  1875. ggml_backend_buffer_free(buf);
  1876. }
  1877. }
  1878. };
  1879. struct llama_control_vector {
  1880. std::vector<struct ggml_tensor *> tensors; // per layer
  1881. std::vector<struct ggml_context *> ctxs;
  1882. std::vector<ggml_backend_buffer_t> bufs;
  1883. int32_t layer_start = -1;
  1884. int32_t layer_end = -1;
  1885. ggml_tensor * tensor_for(int il) const {
  1886. if (il < 0 || il < layer_start || il > layer_end || (size_t) il >= tensors.size()) {
  1887. return nullptr;
  1888. }
  1889. return tensors[il];
  1890. }
  1891. ~llama_control_vector() {
  1892. for (struct ggml_context * ctx : ctxs) {
  1893. ggml_free(ctx);
  1894. }
  1895. for (ggml_backend_buffer_t buf : bufs) {
  1896. ggml_backend_buffer_free(buf);
  1897. }
  1898. }
  1899. };
  1900. struct llama_vocab {
  1901. using id = int32_t;
  1902. using token = std::string;
  1903. using ttype = llama_token_type;
  1904. struct token_data {
  1905. token text;
  1906. float score;
  1907. ttype type;
  1908. };
  1909. enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM;
  1910. std::unordered_map<token, id> token_to_id;
  1911. std::vector<token_data> id_to_token;
  1912. std::unordered_map<token, id> special_tokens_cache;
  1913. std::map<std::pair<std::string, std::string>, int> bpe_ranks;
  1914. // default LLaMA special tokens
  1915. id special_bos_id = 1;
  1916. id special_eos_id = 2;
  1917. id special_unk_id = 0;
  1918. id special_sep_id = -1;
  1919. id special_pad_id = -1;
  1920. id special_cls_id = -1;
  1921. id special_mask_id = -1;
  1922. int special_add_bos = -1; // -1 unknown, 1 add, 0 don't add.
  1923. int special_add_eos = -1; // -1 unknown, 1 add, 0 don't add.
  1924. id linefeed_id = 13;
  1925. id special_prefix_id = -1;
  1926. id special_suffix_id = -1;
  1927. id special_middle_id = -1;
  1928. id special_eot_id = -1; // TODO: move above after "eos_id", and here add "file separator" token
  1929. bool add_space_prefix = true;
  1930. int find_bpe_rank(const std::string & token_left, const std::string & token_right) const {
  1931. GGML_ASSERT(token_left.find(' ') == std::string::npos);
  1932. GGML_ASSERT(token_left.find('\n') == std::string::npos);
  1933. GGML_ASSERT(token_right.find(' ') == std::string::npos);
  1934. GGML_ASSERT(token_right.find('\n') == std::string::npos);
  1935. auto it = bpe_ranks.find(std::make_pair(token_left, token_right));
  1936. if (it == bpe_ranks.end()) {
  1937. return -1;
  1938. }
  1939. return it->second;
  1940. }
  1941. };
  1942. struct llama_model {
  1943. e_model type = MODEL_UNKNOWN;
  1944. llm_arch arch = LLM_ARCH_UNKNOWN;
  1945. llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
  1946. std::string name = "n/a";
  1947. llama_hparams hparams = {};
  1948. llama_vocab vocab;
  1949. struct ggml_tensor * tok_embd;
  1950. struct ggml_tensor * type_embd;
  1951. struct ggml_tensor * pos_embd;
  1952. struct ggml_tensor * tok_norm;
  1953. struct ggml_tensor * tok_norm_b;
  1954. struct ggml_tensor * output_norm;
  1955. struct ggml_tensor * output_norm_b;
  1956. struct ggml_tensor * output;
  1957. struct ggml_tensor * output_b;
  1958. std::vector<llama_layer> layers;
  1959. llama_split_mode split_mode;
  1960. int main_gpu;
  1961. int n_gpu_layers;
  1962. // gguf metadata
  1963. std::unordered_map<std::string, std::string> gguf_kv;
  1964. // layer -> buffer type mapping
  1965. struct layer_buft {
  1966. layer_buft() : buft_matrix(nullptr), buft(nullptr) {}
  1967. layer_buft(ggml_backend_buffer_type_t matrix) : buft_matrix(matrix), buft(matrix) {}
  1968. layer_buft(ggml_backend_buffer_type_t matrix, ggml_backend_buffer_type_t other) : buft_matrix(matrix), buft(other) {}
  1969. ggml_backend_buffer_type_t buft_matrix; // matrices only - used by split buffers and backends that support only matrix multiplication
  1970. ggml_backend_buffer_type_t buft; // everything else
  1971. };
  1972. layer_buft buft_input;
  1973. layer_buft buft_output;
  1974. std::vector<layer_buft> buft_layer;
  1975. // contexts where the model tensors metadata is stored
  1976. std::vector<struct ggml_context *> ctxs;
  1977. // the model memory buffers for the tensor data
  1978. std::vector<ggml_backend_buffer_t> bufs;
  1979. // model memory mapped files
  1980. llama_mmaps mappings;
  1981. // objects representing data potentially being locked in memory
  1982. llama_mlocks mlock_bufs;
  1983. llama_mlocks mlock_mmaps;
  1984. // for quantize-stats only
  1985. std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
  1986. int64_t t_load_us = 0;
  1987. int64_t t_start_us = 0;
  1988. ~llama_model() {
  1989. for (struct ggml_context * ctx : ctxs) {
  1990. ggml_free(ctx);
  1991. }
  1992. for (ggml_backend_buffer_t buf : bufs) {
  1993. #ifdef GGML_USE_CUDA
  1994. if (ggml_backend_buffer_get_type(buf) == ggml_backend_cpu_buffer_type()) {
  1995. ggml_backend_cuda_unregister_host_buffer(ggml_backend_buffer_get_base(buf));
  1996. }
  1997. #endif
  1998. ggml_backend_buffer_free(buf);
  1999. }
  2000. }
  2001. };
  2002. struct llama_context {
  2003. llama_context(const llama_model & model) : model(model), t_start_us(model.t_start_us), t_load_us(model.t_load_us) {}
  2004. ~llama_context() {
  2005. ggml_backend_sched_free(sched);
  2006. for (ggml_backend_t backend : backends) {
  2007. ggml_backend_free(backend);
  2008. }
  2009. ggml_backend_buffer_free(buf_output);
  2010. }
  2011. llama_cparams cparams;
  2012. std::vector<ggml_backend_t> backends;
  2013. #ifdef GGML_USE_METAL
  2014. ggml_backend_t backend_metal = nullptr;
  2015. #endif
  2016. ggml_backend_t backend_cpu = nullptr;
  2017. const llama_model & model;
  2018. // key + value cache for the self attention
  2019. struct llama_kv_cache kv_self;
  2020. std::mt19937 rng;
  2021. bool has_evaluated_once = false;
  2022. int64_t t_start_us;
  2023. int64_t t_load_us;
  2024. int64_t t_sample_us = 0;
  2025. int64_t t_p_eval_us = 0;
  2026. int64_t t_eval_us = 0;
  2027. int64_t t_compute_start_us = 0;
  2028. int64_t n_queued_tokens = 0;
  2029. int32_t n_sample = 0; // number of tokens sampled
  2030. int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
  2031. int32_t n_eval = 0; // number of eval calls
  2032. // host buffer for the model output (logits and embeddings)
  2033. ggml_backend_buffer_t buf_output = nullptr;
  2034. // decode output (2-dimensional array: [n_outputs][n_vocab])
  2035. size_t logits_size = 0; // capacity (of floats) for logits
  2036. float * logits = nullptr;
  2037. std::vector<int32_t> output_ids; // map batch token positions to ids of the logits and embd buffers
  2038. size_t output_size = 0; // capacity (of tokens positions) for the output buffers
  2039. int32_t n_outputs = 0; // number of actually-used outputs in the current ubatch or last logical batch
  2040. bool logits_all = false;
  2041. // embeddings output (2-dimensional array: [n_outputs][n_embd])
  2042. // populated only when pooling_type == LLAMA_POOLING_TYPE_NONE
  2043. size_t embd_size = 0; // capacity (of floats) for embeddings
  2044. float * embd = nullptr;
  2045. // sequence embeddings output (map of [n_embd] vectors)
  2046. // populated only when pooling_type != LLAMA_POOLING_TYPE_NONE
  2047. std::map<llama_seq_id, std::vector<float>> embd_seq;
  2048. // memory buffers used to evaluate the model
  2049. std::vector<uint8_t> buf_compute_meta;
  2050. ggml_backend_sched_t sched = nullptr;
  2051. ggml_abort_callback abort_callback = nullptr;
  2052. void * abort_callback_data = nullptr;
  2053. // input tensors
  2054. struct ggml_tensor * inp_tokens; // I32 [n_batch]
  2055. struct ggml_tensor * inp_embd; // F32 [n_embd, n_batch]
  2056. struct ggml_tensor * inp_pos; // I32 [n_batch]
  2057. struct ggml_tensor * inp_out_ids; // I32 [n_outputs]
  2058. struct ggml_tensor * inp_KQ_mask; // F32 [kv_size, n_batch]
  2059. struct ggml_tensor * inp_KQ_pos; // F32 [n_kv]
  2060. struct ggml_tensor * inp_K_shift; // I32 [kv_size]
  2061. struct ggml_tensor * inp_mean; // F32 [n_batch, n_batch]
  2062. struct ggml_tensor * inp_cls; // I32 [n_batch]
  2063. struct ggml_tensor * inp_s_copy; // I32 [kv_size]
  2064. struct ggml_tensor * inp_s_mask; // F32 [1, n_kv]
  2065. struct ggml_tensor * inp_s_seq; // I32 [n_kv, n_batch]
  2066. // control vectors
  2067. struct llama_control_vector cvec;
  2068. #ifdef GGML_USE_MPI
  2069. ggml_mpi_context * ctx_mpi = NULL;
  2070. #endif
  2071. };
  2072. //
  2073. // kv cache helpers
  2074. //
  2075. static bool llama_kv_cache_init(
  2076. struct llama_kv_cache & cache,
  2077. const llama_model & model,
  2078. ggml_type type_k,
  2079. ggml_type type_v,
  2080. uint32_t kv_size,
  2081. bool offload) {
  2082. const struct llama_hparams & hparams = model.hparams;
  2083. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  2084. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  2085. const int64_t n_layer = hparams.n_layer;
  2086. cache.has_shift = false;
  2087. // TODO: find a nicer way to add other recurrent model architectures
  2088. cache.recurrent = model.arch == LLM_ARCH_MAMBA;
  2089. // TODO: support mixed reccurent Transformer architectues
  2090. // NOTE: (!a || b) is a logical implication (a -> b)
  2091. GGML_ASSERT(!cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_s());
  2092. GGML_ASSERT(!cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_s());
  2093. GGML_ASSERT( cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_gqa());
  2094. GGML_ASSERT( cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_gqa());
  2095. cache.head = 0;
  2096. cache.size = kv_size;
  2097. cache.used = 0;
  2098. cache.type_k = type_k;
  2099. cache.type_v = type_v;
  2100. cache.cells.clear();
  2101. cache.cells.resize(kv_size);
  2102. if (cache.recurrent) {
  2103. // init state copy sources
  2104. for (uint32_t i = 0; i < cache.size; ++i) {
  2105. cache.cells[i].src = i;
  2106. }
  2107. }
  2108. #ifdef GGML_USE_CLBLAST
  2109. offload = false;
  2110. #endif
  2111. // count used buffer types
  2112. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  2113. if (offload) {
  2114. for (int64_t i = 0; i < n_layer; ++i) {
  2115. buft_layer_count[model.buft_layer[i].buft]++;
  2116. }
  2117. } else {
  2118. buft_layer_count[llama_default_buffer_type_cpu(true)] = n_layer;
  2119. }
  2120. // create a context for each buffer type
  2121. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  2122. for (auto & it : buft_layer_count) {
  2123. int n_layers = it.second;
  2124. struct ggml_init_params params = {
  2125. /*.mem_size =*/ 2u*n_layers*ggml_tensor_overhead(),
  2126. /*.mem_buffer =*/ NULL,
  2127. /*.no_alloc =*/ true,
  2128. };
  2129. ggml_context * ctx = ggml_init(params);
  2130. if (!ctx) {
  2131. LLAMA_LOG_ERROR("%s: failed to allocate context for kv cache\n", __func__);
  2132. return false;
  2133. }
  2134. ctx_map[it.first] = ctx;
  2135. cache.ctxs.push_back(ctx);
  2136. }
  2137. cache.k_l.reserve(n_layer);
  2138. cache.v_l.reserve(n_layer);
  2139. for (int i = 0; i < (int) n_layer; i++) {
  2140. struct ggml_context * ctx = offload ? ctx_map.at(model.buft_layer[i].buft) : cache.ctxs.front();
  2141. ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
  2142. ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size);
  2143. ggml_format_name(k, "cache_k_l%d", i);
  2144. ggml_format_name(v, "cache_v_l%d", i);
  2145. cache.k_l.push_back(k);
  2146. cache.v_l.push_back(v);
  2147. }
  2148. // allocate tensors and initialize the buffers to avoid NaNs in the padding
  2149. for (auto it : ctx_map) {
  2150. ggml_backend_buffer_type_t buft = it.first;
  2151. ggml_context * ctx = it.second;
  2152. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  2153. if (!buf) {
  2154. LLAMA_LOG_ERROR("%s: failed to allocate buffer for kv cache\n", __func__);
  2155. return false;
  2156. }
  2157. ggml_backend_buffer_clear(buf, 0);
  2158. LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
  2159. cache.bufs.push_back(buf);
  2160. }
  2161. return true;
  2162. }
  2163. // find an empty slot of size "n_tokens" in the cache
  2164. // updates the cache head
  2165. // Note: On success, it's important that cache.head points
  2166. // to the first cell of the slot.
  2167. static bool llama_kv_cache_find_slot(
  2168. struct llama_kv_cache & cache,
  2169. const struct llama_batch & batch) {
  2170. const uint32_t n_ctx = cache.size;
  2171. const uint32_t n_tokens = batch.n_tokens;
  2172. if (cache.recurrent) {
  2173. // For recurrent state architectures (like Mamba),
  2174. // each KV cache cell can store the state for a whole sequence.
  2175. llama_seq_id min = cache.size - 1;
  2176. llama_seq_id max = 0;
  2177. for (uint32_t i = 0; i < n_tokens; ++i) {
  2178. for (int32_t j = 0; j < batch.n_seq_id[i]; ++j) {
  2179. llama_seq_id seq_id = batch.seq_id[i][j];
  2180. // make sure it's a valid seq_id
  2181. if ((uint32_t) seq_id < cache.size) {
  2182. if (seq_id > max) {
  2183. max = seq_id;
  2184. }
  2185. if (seq_id < min) {
  2186. min = seq_id;
  2187. }
  2188. // Assuming the tokens are in-order
  2189. if (batch.pos[i] != cache.cells[seq_id].pos + 1) {
  2190. // What should happen when the pos backtracks or skips a value?
  2191. // Clearing the state mid-batch would require special-casing which isn't done.
  2192. LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d\n",
  2193. __func__, batch.pos[i], cache.cells[seq_id].pos, seq_id);
  2194. }
  2195. if (cache.cells[seq_id].pos < 0 && 0 <= batch.pos[i]) {
  2196. cache.used += 1;
  2197. }
  2198. cache.cells[seq_id].pos = batch.pos[i];
  2199. // NOTE: seq_ids are not inserted here; they are handled when the input tensors are set
  2200. } else {
  2201. // too big seq_id
  2202. // TODO: would it be possible to resize the KV cache size instead?
  2203. LLAMA_LOG_ERROR("%s: seq_id=%d >= kv_size=%d Try using a bigger --parallel value\n", __func__, seq_id, cache.size);
  2204. return false;
  2205. }
  2206. }
  2207. }
  2208. // allow getting the range of used cells, from head to head + n
  2209. cache.head = min;
  2210. cache.n = max - min + 1;
  2211. // sanity check
  2212. return max >= min;
  2213. }
  2214. // otherwise, one cell per token.
  2215. if (n_tokens > n_ctx) {
  2216. LLAMA_LOG_ERROR("%s: n_tokens=%d > n_ctx=%d\n", __func__, n_tokens, n_ctx);
  2217. return false;
  2218. }
  2219. uint32_t n_tested = 0;
  2220. while (true) {
  2221. if (cache.head + n_tokens > n_ctx) {
  2222. n_tested += n_ctx - cache.head;
  2223. cache.head = 0;
  2224. continue;
  2225. }
  2226. bool found = true;
  2227. for (uint32_t i = 0; i < n_tokens; i++) {
  2228. if (cache.cells[cache.head + i].pos >= 0) {
  2229. found = false;
  2230. cache.head += i + 1;
  2231. n_tested += i + 1;
  2232. break;
  2233. }
  2234. }
  2235. if (found) {
  2236. break;
  2237. }
  2238. if (n_tested >= n_ctx) {
  2239. //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens);
  2240. return false;
  2241. }
  2242. }
  2243. for (uint32_t i = 0; i < n_tokens; i++) {
  2244. cache.cells[cache.head + i].pos = batch.pos[i];
  2245. for (int32_t j = 0; j < batch.n_seq_id[i]; j++) {
  2246. cache.cells[cache.head + i].seq_id.insert(batch.seq_id[i][j]);
  2247. }
  2248. }
  2249. cache.used += n_tokens;
  2250. return true;
  2251. }
  2252. // find how many cells are currently in use
  2253. static uint32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache) {
  2254. for (uint32_t i = cache.size; i > 0; --i) {
  2255. const llama_kv_cell & cell = cache.cells[i - 1];
  2256. if (cell.pos >= 0 && !cell.is_empty()) {
  2257. return i;
  2258. }
  2259. }
  2260. return 0;
  2261. }
  2262. static void llama_kv_cache_clear(struct llama_kv_cache & cache) {
  2263. for (int32_t i = 0; i < (int32_t) cache.size; ++i) {
  2264. cache.cells[i].pos = -1;
  2265. cache.cells[i].seq_id.clear();
  2266. }
  2267. cache.head = 0;
  2268. cache.used = 0;
  2269. }
  2270. static bool llama_kv_cache_seq_rm(
  2271. struct llama_kv_cache & cache,
  2272. llama_seq_id seq_id,
  2273. llama_pos p0,
  2274. llama_pos p1) {
  2275. uint32_t new_head = cache.size;
  2276. if (p0 < 0) p0 = 0;
  2277. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2278. // models like Mamba can't have a state partially erased
  2279. if (cache.recurrent) {
  2280. if (seq_id >= (int64_t) cache.size) {
  2281. // could be fatal
  2282. return false;
  2283. }
  2284. if (0 <= seq_id) {
  2285. // partial intersection is invalid
  2286. if ((0 < p0 && p0 <= cache.cells[seq_id].pos) || (0 < p1 && p1 <= cache.cells[seq_id].pos)) {
  2287. return false;
  2288. }
  2289. } else {
  2290. // seq_id is negative, then the range should include everything or nothing
  2291. if (p0 != p1 && (p0 != 0 || p1 != std::numeric_limits<llama_pos>::max())) {
  2292. return false;
  2293. }
  2294. }
  2295. }
  2296. for (uint32_t i = 0; i < cache.size; ++i) {
  2297. if (cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2298. if (seq_id < 0) {
  2299. cache.cells[i].seq_id.clear();
  2300. } else if (cache.cells[i].has_seq_id(seq_id)) {
  2301. cache.cells[i].seq_id.erase(seq_id);
  2302. } else {
  2303. continue;
  2304. }
  2305. if (cache.cells[i].is_empty()) {
  2306. // keep count of the number of used cells
  2307. if (cache.cells[i].pos >= 0) cache.used--;
  2308. cache.cells[i].pos = -1;
  2309. if (new_head == cache.size) new_head = i;
  2310. }
  2311. }
  2312. }
  2313. // If we freed up a slot, set head to it so searching can start there.
  2314. if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
  2315. return true;
  2316. }
  2317. static void llama_kv_cache_seq_cp(
  2318. struct llama_kv_cache & cache,
  2319. llama_seq_id seq_id_src,
  2320. llama_seq_id seq_id_dst,
  2321. llama_pos p0,
  2322. llama_pos p1) {
  2323. if (p0 < 0) p0 = 0;
  2324. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2325. if (cache.recurrent) {
  2326. if ((uint32_t) seq_id_dst < cache.size && (uint32_t) seq_id_src < cache.size) {
  2327. seq_id_src = cache.cells[seq_id_src].src;
  2328. GGML_ASSERT((uint32_t) seq_id_src < cache.size);
  2329. // intent to "copy from"
  2330. // supports copy chains thanks to taking the source of the source
  2331. cache.cells[seq_id_dst].src = seq_id_src;
  2332. // preserve the "keep or clear" status of the copied sequence
  2333. if (cache.cells[seq_id_src].has_seq_id(seq_id_src)) {
  2334. cache.cells[seq_id_dst].seq_id.insert(seq_id_dst);
  2335. } else {
  2336. cache.cells[seq_id_dst].seq_id.erase(seq_id_dst);
  2337. }
  2338. cache.do_copy = true;
  2339. cache.cells[seq_id_dst].pos = cache.cells[seq_id_src].pos;
  2340. }
  2341. return;
  2342. }
  2343. // otherwise, this is the KV cache of a Transformer-like model
  2344. cache.head = 0;
  2345. for (uint32_t i = 0; i < cache.size; ++i) {
  2346. if (cache.cells[i].has_seq_id(seq_id_src) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2347. cache.cells[i].seq_id.insert(seq_id_dst);
  2348. }
  2349. }
  2350. }
  2351. static void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id seq_id) {
  2352. uint32_t new_head = cache.size;
  2353. for (uint32_t i = 0; i < cache.size; ++i) {
  2354. if (!cache.cells[i].has_seq_id(seq_id)) {
  2355. if (cache.cells[i].pos >= 0) cache.used--;
  2356. cache.cells[i].pos = -1;
  2357. cache.cells[i].seq_id.clear();
  2358. if (new_head == cache.size) new_head = i;
  2359. } else {
  2360. cache.cells[i].seq_id.clear();
  2361. cache.cells[i].seq_id.insert(seq_id);
  2362. }
  2363. }
  2364. // If we freed up a slot, set head to it so searching can start there.
  2365. if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
  2366. }
  2367. static void llama_kv_cache_seq_add(
  2368. struct llama_kv_cache & cache,
  2369. llama_seq_id seq_id,
  2370. llama_pos p0,
  2371. llama_pos p1,
  2372. llama_pos delta) {
  2373. uint32_t new_head = cache.size;
  2374. if (p0 < 0) p0 = 0;
  2375. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2376. if (cache.recurrent) {
  2377. // for Mamba-like models, only the pos needs to be shifted
  2378. if (0 <= seq_id && seq_id < (int64_t) cache.size) {
  2379. llama_kv_cell & cell = cache.cells[seq_id];
  2380. if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
  2381. cell.pos += delta;
  2382. }
  2383. }
  2384. return;
  2385. }
  2386. for (uint32_t i = 0; i < cache.size; ++i) {
  2387. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2388. cache.has_shift = true;
  2389. cache.cells[i].pos += delta;
  2390. cache.cells[i].delta += delta;
  2391. if (cache.cells[i].pos < 0) {
  2392. if (!cache.cells[i].is_empty()) {
  2393. cache.used--;
  2394. }
  2395. cache.cells[i].pos = -1;
  2396. cache.cells[i].seq_id.clear();
  2397. if (new_head == cache.size) {
  2398. new_head = i;
  2399. }
  2400. }
  2401. }
  2402. }
  2403. // If we freed up a slot, set head to it so searching can start there.
  2404. // Otherwise we just start the next search from the beginning.
  2405. cache.head = new_head != cache.size ? new_head : 0;
  2406. }
  2407. static void llama_kv_cache_seq_div(
  2408. struct llama_kv_cache & cache,
  2409. llama_seq_id seq_id,
  2410. llama_pos p0,
  2411. llama_pos p1,
  2412. int d) {
  2413. if (p0 < 0) p0 = 0;
  2414. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2415. if (cache.recurrent) {
  2416. // for Mamba-like models, only the pos needs to be changed
  2417. if (0 <= seq_id && seq_id < (int64_t) cache.size) {
  2418. llama_kv_cell & cell = cache.cells[seq_id];
  2419. if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
  2420. cell.pos /= d;
  2421. }
  2422. }
  2423. return;
  2424. }
  2425. for (uint32_t i = 0; i < cache.size; ++i) {
  2426. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2427. cache.has_shift = true;
  2428. {
  2429. llama_pos p_old = cache.cells[i].pos;
  2430. cache.cells[i].pos /= d;
  2431. cache.cells[i].delta += cache.cells[i].pos - p_old;
  2432. }
  2433. }
  2434. }
  2435. }
  2436. static llama_pos llama_kv_cache_seq_pos_max(struct llama_kv_cache & cache, llama_seq_id seq_id) {
  2437. llama_pos result = 0;
  2438. for (uint32_t i = 0; i < cache.size; ++i) {
  2439. if (cache.cells[i].has_seq_id(seq_id)) {
  2440. result = std::max(result, cache.cells[i].pos);
  2441. }
  2442. }
  2443. return result;
  2444. }
  2445. static void llama_kv_cache_defrag(struct llama_kv_cache & cache) {
  2446. cache.do_defrag = true;
  2447. }
  2448. //
  2449. // model loading and saving
  2450. //
  2451. enum llama_fver {
  2452. GGUF_FILE_VERSION_V1 = 1,
  2453. GGUF_FILE_VERSION_V2 = 2,
  2454. GGUF_FILE_VERSION_V3 = 3,
  2455. };
  2456. static const char * llama_file_version_name(llama_fver version) {
  2457. switch (version) {
  2458. case GGUF_FILE_VERSION_V1: return "GGUF V1 (support until nov 2023)";
  2459. case GGUF_FILE_VERSION_V2: return "GGUF V2";
  2460. case GGUF_FILE_VERSION_V3: return "GGUF V3 (latest)";
  2461. }
  2462. return "unknown";
  2463. }
  2464. static std::string llama_format_tensor_shape(const std::vector<int64_t> & ne) {
  2465. char buf[256];
  2466. snprintf(buf, sizeof(buf), "%5" PRId64, ne.at(0));
  2467. for (size_t i = 1; i < ne.size(); i++) {
  2468. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, ne.at(i));
  2469. }
  2470. return buf;
  2471. }
  2472. static std::string llama_format_tensor_shape(const struct ggml_tensor * t) {
  2473. char buf[256];
  2474. snprintf(buf, sizeof(buf), "%5" PRId64, t->ne[0]);
  2475. for (int i = 1; i < GGML_MAX_DIMS; i++) {
  2476. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, t->ne[i]);
  2477. }
  2478. return buf;
  2479. }
  2480. namespace GGUFMeta {
  2481. template <typename T, gguf_type gt_, T (*gfun)(const gguf_context *, const int)>
  2482. struct GKV_Base_Type {
  2483. static constexpr gguf_type gt = gt_;
  2484. static T getter(const gguf_context * ctx, const int kid) {
  2485. return gfun(ctx, kid);
  2486. }
  2487. };
  2488. template<typename T> struct GKV_Base;
  2489. template<> struct GKV_Base<bool >: GKV_Base_Type<bool, GGUF_TYPE_BOOL, gguf_get_val_bool> {};
  2490. template<> struct GKV_Base<uint8_t >: GKV_Base_Type<uint8_t, GGUF_TYPE_UINT8, gguf_get_val_u8 > {};
  2491. template<> struct GKV_Base<uint16_t >: GKV_Base_Type<uint16_t, GGUF_TYPE_UINT16, gguf_get_val_u16 > {};
  2492. template<> struct GKV_Base<uint32_t >: GKV_Base_Type<uint32_t, GGUF_TYPE_UINT32, gguf_get_val_u32 > {};
  2493. template<> struct GKV_Base<uint64_t >: GKV_Base_Type<uint64_t, GGUF_TYPE_UINT64, gguf_get_val_u64 > {};
  2494. template<> struct GKV_Base<int8_t >: GKV_Base_Type<int8_t, GGUF_TYPE_INT8, gguf_get_val_i8 > {};
  2495. template<> struct GKV_Base<int16_t >: GKV_Base_Type<int16_t, GGUF_TYPE_INT16, gguf_get_val_i16 > {};
  2496. template<> struct GKV_Base<int32_t >: GKV_Base_Type<int32_t, GGUF_TYPE_INT32, gguf_get_val_i32 > {};
  2497. template<> struct GKV_Base<int64_t >: GKV_Base_Type<int64_t, GGUF_TYPE_INT64, gguf_get_val_i64 > {};
  2498. template<> struct GKV_Base<float >: GKV_Base_Type<float, GGUF_TYPE_FLOAT32, gguf_get_val_f32 > {};
  2499. template<> struct GKV_Base<double >: GKV_Base_Type<double, GGUF_TYPE_FLOAT64, gguf_get_val_f64 > {};
  2500. template<> struct GKV_Base<const char *>: GKV_Base_Type<const char *, GGUF_TYPE_STRING, gguf_get_val_str > {};
  2501. template<> struct GKV_Base<std::string> {
  2502. static constexpr gguf_type gt = GGUF_TYPE_STRING;
  2503. static std::string getter(const gguf_context * ctx, const int kid) {
  2504. return gguf_get_val_str(ctx, kid);
  2505. }
  2506. };
  2507. struct ArrayInfo {
  2508. const gguf_type gt;
  2509. const size_t length;
  2510. const void * data;
  2511. };
  2512. template<> struct GKV_Base<ArrayInfo> {
  2513. public:
  2514. static constexpr gguf_type gt = GGUF_TYPE_ARRAY;
  2515. static ArrayInfo getter(const gguf_context *ctx, const int k) {
  2516. return ArrayInfo {
  2517. gguf_get_arr_type(ctx, k),
  2518. size_t(gguf_get_arr_n(ctx, k)),
  2519. gguf_get_arr_data(ctx, k),
  2520. };
  2521. }
  2522. };
  2523. template<typename T>
  2524. class GKV : public GKV_Base<T> {
  2525. GKV() = delete;
  2526. public:
  2527. static T get_kv(const gguf_context * ctx, const int k) {
  2528. const enum gguf_type kt = gguf_get_kv_type(ctx, k);
  2529. if (kt != GKV::gt) {
  2530. throw std::runtime_error(format("key %s has wrong type %s but expected type %s",
  2531. gguf_get_key(ctx, k), gguf_type_name(kt), gguf_type_name(GKV::gt)));
  2532. }
  2533. return GKV::getter(ctx, k);
  2534. }
  2535. static const char * override_type_to_str(const llama_model_kv_override_type ty) {
  2536. switch (ty) {
  2537. case LLAMA_KV_OVERRIDE_TYPE_BOOL: return "bool";
  2538. case LLAMA_KV_OVERRIDE_TYPE_INT: return "int";
  2539. case LLAMA_KV_OVERRIDE_TYPE_FLOAT: return "float";
  2540. }
  2541. return "unknown";
  2542. }
  2543. static bool validate_override(const llama_model_kv_override_type expected_type, const struct llama_model_kv_override * ovrd) {
  2544. if (!ovrd) { return false; }
  2545. if (ovrd->tag == expected_type) {
  2546. LLAMA_LOG_INFO("%s: Using metadata override (%5s) '%s' = ",
  2547. __func__, override_type_to_str(ovrd->tag), ovrd->key);
  2548. switch (ovrd->tag) {
  2549. case LLAMA_KV_OVERRIDE_TYPE_BOOL: {
  2550. LLAMA_LOG_INFO("%s\n", ovrd->bool_value ? "true" : "false");
  2551. } break;
  2552. case LLAMA_KV_OVERRIDE_TYPE_INT: {
  2553. LLAMA_LOG_INFO("%" PRId64 "\n", ovrd->int_value);
  2554. } break;
  2555. case LLAMA_KV_OVERRIDE_TYPE_FLOAT: {
  2556. LLAMA_LOG_INFO("%.6f\n", ovrd->float_value);
  2557. } break;
  2558. default:
  2559. // Shouldn't be possible to end up here, but just in case...
  2560. throw std::runtime_error(
  2561. format("Unsupported attempt to override %s type for metadata key %s\n",
  2562. override_type_to_str(ovrd->tag), ovrd->key));
  2563. }
  2564. return true;
  2565. }
  2566. LLAMA_LOG_WARN("%s: Warning: Bad metadata override type for key '%s', expected %s but got %s\n",
  2567. __func__, ovrd->key, override_type_to_str(expected_type), override_type_to_str(ovrd->tag));
  2568. return false;
  2569. }
  2570. template<typename OT>
  2571. static typename std::enable_if<std::is_same<OT, bool>::value, bool>::type
  2572. try_override(OT & target, const struct llama_model_kv_override * ovrd) {
  2573. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_BOOL, ovrd)) {
  2574. target = ovrd->bool_value;
  2575. return true;
  2576. }
  2577. return false;
  2578. }
  2579. template<typename OT>
  2580. static typename std::enable_if<!std::is_same<OT, bool>::value && std::is_integral<OT>::value, bool>::type
  2581. try_override(OT & target, const struct llama_model_kv_override * ovrd) {
  2582. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_INT, ovrd)) {
  2583. target = ovrd->int_value;
  2584. return true;
  2585. }
  2586. return false;
  2587. }
  2588. template<typename OT>
  2589. static typename std::enable_if<std::is_floating_point<OT>::value, bool>::type
  2590. try_override(T & target, const struct llama_model_kv_override * ovrd) {
  2591. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_FLOAT, ovrd)) {
  2592. target = ovrd->float_value;
  2593. return true;
  2594. }
  2595. return false;
  2596. }
  2597. template<typename OT>
  2598. static typename std::enable_if<std::is_same<OT, std::string>::value, bool>::type
  2599. try_override(T & target, const struct llama_model_kv_override * ovrd) {
  2600. (void)target;
  2601. (void)ovrd;
  2602. if (!ovrd) { return false; }
  2603. // Currently, we should never end up here so it would be a bug if we do.
  2604. throw std::runtime_error(format("Unsupported attempt to override string type for metadata key %s\n",
  2605. ovrd ? ovrd->key : "NULL"));
  2606. }
  2607. static bool set(const gguf_context * ctx, const int k, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2608. if (try_override<T>(target, ovrd)) {
  2609. return true;
  2610. }
  2611. if (k < 0) { return false; }
  2612. target = get_kv(ctx, k);
  2613. return true;
  2614. }
  2615. static bool set(const gguf_context * ctx, const char * key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2616. return set(ctx, gguf_find_key(ctx, key), target, ovrd);
  2617. }
  2618. static bool set(const gguf_context * ctx, const std::string & key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2619. return set(ctx, key.c_str(), target, ovrd);
  2620. }
  2621. };
  2622. }
  2623. using llama_buf_map = std::unordered_map<uint32_t, ggml_backend_buffer_t>;
  2624. struct llama_model_loader {
  2625. int n_kv = 0;
  2626. int n_tensors = 0;
  2627. int n_created = 0;
  2628. int64_t n_elements = 0;
  2629. size_t n_bytes = 0;
  2630. bool use_mmap = false;
  2631. llama_files files;
  2632. llama_ftype ftype;
  2633. llama_fver fver;
  2634. llama_mmaps mappings;
  2635. // Holds information on a model weight
  2636. struct llama_tensor_weight {
  2637. uint16_t idx; // source file index
  2638. size_t offs; // tensor data offset in the original file
  2639. ggml_tensor * tensor;
  2640. llama_tensor_weight(uint16_t idx, const char * name, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) {
  2641. const int tensor_idx = gguf_find_tensor(gguf_ctx, name);
  2642. offs = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, tensor_idx);
  2643. }
  2644. };
  2645. std::vector<llama_tensor_weight> weights;
  2646. std::unordered_map<std::string, struct llama_model_kv_override> kv_overrides;
  2647. struct gguf_context * meta = NULL;
  2648. std::vector<ggml_context *> contexts;
  2649. std::string arch_name;
  2650. LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN);
  2651. llama_model_loader(const std::string & fname, bool use_mmap, const struct llama_model_kv_override * param_overrides_p) {
  2652. int trace = 0;
  2653. if (getenv("LLAMA_TRACE")) {
  2654. trace = atoi(getenv("LLAMA_TRACE"));
  2655. }
  2656. if (param_overrides_p != nullptr) {
  2657. for (const struct llama_model_kv_override *p = param_overrides_p; p->key[0] != 0; p++) {
  2658. kv_overrides.insert({std::string(p->key), *p});
  2659. }
  2660. }
  2661. struct ggml_context * ctx = NULL;
  2662. struct gguf_init_params params = {
  2663. /*.no_alloc = */ true,
  2664. /*.ctx = */ &ctx,
  2665. };
  2666. meta = gguf_init_from_file(fname.c_str(), params);
  2667. if (!meta) {
  2668. throw std::runtime_error(format("%s: failed to load model from %s\n", __func__, fname.c_str()));
  2669. }
  2670. get_key(llm_kv(LLM_KV_GENERAL_ARCHITECTURE), arch_name, false);
  2671. llm_kv = LLM_KV(llm_arch_from_string(arch_name));
  2672. // Save tensors data offset of the main file.
  2673. // For subsidiary files, `meta` tensor data offset must not be used,
  2674. // so we build a unified tensors index for weights.
  2675. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
  2676. weights.emplace_back(0, cur->name, meta, cur);
  2677. }
  2678. files.emplace_back(new llama_file(fname.c_str(), "rb"));
  2679. contexts.emplace_back(ctx);
  2680. uint16_t n_split = 0;
  2681. get_key(llm_kv(LLM_KV_SPLIT_COUNT), n_split, false);
  2682. // Load additional GGML contexts
  2683. if (n_split > 1) {
  2684. uint16_t idx = 0;
  2685. get_key(llm_kv(LLM_KV_SPLIT_NO), idx);
  2686. if (idx != 0) {
  2687. throw std::runtime_error(format("illegal split file: %d, model must be loaded with the first split", idx));
  2688. }
  2689. char split_prefix[PATH_MAX] = {0};
  2690. if (!llama_split_prefix(split_prefix, sizeof(split_prefix), fname.c_str(), idx, n_split)) {
  2691. throw std::runtime_error(format("invalid split file: %s", fname.c_str()));
  2692. }
  2693. if (trace > 0) {
  2694. LLAMA_LOG_INFO("%s: loading additional %d GGUFs\n", __func__, n_split);
  2695. }
  2696. char split_path[PATH_MAX] = {0};
  2697. for (idx = 1; idx < n_split; idx++) {
  2698. llama_split_path(split_path, sizeof(split_path), split_prefix, idx, n_split);
  2699. struct gguf_init_params split_params = {
  2700. /*.no_alloc = */ true,
  2701. /*.ctx = */ &ctx,
  2702. };
  2703. struct gguf_context * ctx_gguf = gguf_init_from_file(split_path, split_params);
  2704. if (!ctx_gguf) {
  2705. throw std::runtime_error(format("%s: failed to load GGUF split from %s\n", __func__, split_path));
  2706. }
  2707. // Save tensors data offset info of the shard.
  2708. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
  2709. weights.emplace_back(idx, cur->name, ctx_gguf, cur);
  2710. }
  2711. files.emplace_back(new llama_file(split_path, "rb"));
  2712. contexts.emplace_back(ctx);
  2713. gguf_free(ctx_gguf);
  2714. }
  2715. get_key(llm_kv(LLM_KV_SPLIT_TENSORS_COUNT), n_tensors);
  2716. // sanity check
  2717. {
  2718. const int n_tensors_loaded = (int) weights.size();
  2719. if (n_tensors != n_tensors_loaded) {
  2720. throw std::runtime_error(format("corrupted model: %d tensors expected but %d found", n_tensors, n_tensors_loaded));
  2721. }
  2722. }
  2723. LLAMA_LOG_INFO("%s: additional %d GGUFs metadata loaded.\n", __func__, n_split - 1);
  2724. }
  2725. n_kv = gguf_get_n_kv(meta);
  2726. n_tensors = weights.size();
  2727. fver = (enum llama_fver) gguf_get_version(meta);
  2728. for (auto & w : weights) {
  2729. n_elements += ggml_nelements(w.tensor);
  2730. n_bytes += ggml_nbytes(w.tensor);
  2731. }
  2732. LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n",
  2733. __func__, n_kv, n_tensors, fname.c_str(), llama_file_version_name(fver));
  2734. // determine file type based on the number of tensors for each quantization and print meta data
  2735. // TODO: make optional
  2736. {
  2737. std::map<enum ggml_type, uint32_t> n_type;
  2738. uint32_t n_type_max = 0;
  2739. enum ggml_type type_max = GGML_TYPE_F32;
  2740. for (int i = 0; i < n_tensors; i++) {
  2741. const ggml_tensor * tensor = weights.at(i).tensor;
  2742. enum ggml_type type = tensor->type;
  2743. n_type[type]++;
  2744. if (n_type_max < n_type[type]) {
  2745. n_type_max = n_type[type];
  2746. type_max = type;
  2747. }
  2748. if (trace > 0) {
  2749. const uint16_t sid = weights.at(i).idx;
  2750. LLAMA_LOG_INFO("%s: - tensor %4d, split %2d: %32s %-8s [ %s ]\n", __func__, i, sid, ggml_get_name(tensor), ggml_type_name(type), llama_format_tensor_shape(tensor).c_str());
  2751. }
  2752. }
  2753. switch (type_max) {
  2754. case GGML_TYPE_F32: ftype = LLAMA_FTYPE_ALL_F32; break;
  2755. case GGML_TYPE_F16: ftype = LLAMA_FTYPE_MOSTLY_F16; break;
  2756. case GGML_TYPE_Q4_0: ftype = LLAMA_FTYPE_MOSTLY_Q4_0; break;
  2757. case GGML_TYPE_Q4_1: ftype = LLAMA_FTYPE_MOSTLY_Q4_1; break;
  2758. case GGML_TYPE_Q5_0: ftype = LLAMA_FTYPE_MOSTLY_Q5_0; break;
  2759. case GGML_TYPE_Q5_1: ftype = LLAMA_FTYPE_MOSTLY_Q5_1; break;
  2760. case GGML_TYPE_Q8_0: ftype = LLAMA_FTYPE_MOSTLY_Q8_0; break;
  2761. case GGML_TYPE_Q2_K: ftype = LLAMA_FTYPE_MOSTLY_Q2_K; break;
  2762. case GGML_TYPE_Q3_K: ftype = LLAMA_FTYPE_MOSTLY_Q3_K_M; break;
  2763. case GGML_TYPE_Q4_K: ftype = LLAMA_FTYPE_MOSTLY_Q4_K_M; break;
  2764. case GGML_TYPE_Q5_K: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M; break;
  2765. case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break;
  2766. case GGML_TYPE_IQ2_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XXS; break;
  2767. case GGML_TYPE_IQ2_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XS; break;
  2768. case GGML_TYPE_IQ2_S: ftype = LLAMA_FTYPE_MOSTLY_IQ2_S; break;
  2769. case GGML_TYPE_IQ3_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ3_XXS; break;
  2770. case GGML_TYPE_IQ1_S: ftype = LLAMA_FTYPE_MOSTLY_IQ1_S; break;
  2771. case GGML_TYPE_IQ1_M: ftype = LLAMA_FTYPE_MOSTLY_IQ1_M; break;
  2772. case GGML_TYPE_IQ4_NL: ftype = LLAMA_FTYPE_MOSTLY_IQ4_NL; break;
  2773. case GGML_TYPE_IQ4_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ4_XS; break;
  2774. case GGML_TYPE_IQ3_S: ftype = LLAMA_FTYPE_MOSTLY_IQ3_S; break;
  2775. default:
  2776. {
  2777. LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max));
  2778. ftype = LLAMA_FTYPE_ALL_F32;
  2779. } break;
  2780. }
  2781. // this is a way to mark that we have "guessed" the file type
  2782. ftype = (llama_ftype) (ftype | LLAMA_FTYPE_GUESSED);
  2783. {
  2784. const int kid = gguf_find_key(meta, "general.file_type");
  2785. if (kid >= 0) {
  2786. ftype = (llama_ftype) gguf_get_val_u32(meta, kid);
  2787. }
  2788. }
  2789. LLAMA_LOG_INFO("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
  2790. for (int i = 0; i < n_kv; i++) {
  2791. const char * name = gguf_get_key(meta, i);
  2792. const enum gguf_type type = gguf_get_kv_type(meta, i);
  2793. const std::string type_name =
  2794. type == GGUF_TYPE_ARRAY
  2795. ? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(meta, i)), gguf_get_arr_n(meta, i))
  2796. : gguf_type_name(type);
  2797. std::string value = gguf_kv_to_str(meta, i);
  2798. const size_t MAX_VALUE_LEN = 40;
  2799. if (value.size() > MAX_VALUE_LEN) {
  2800. value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str());
  2801. }
  2802. replace_all(value, "\n", "\\n");
  2803. LLAMA_LOG_INFO("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
  2804. }
  2805. // print type counts
  2806. for (auto & kv : n_type) {
  2807. if (kv.second == 0) {
  2808. continue;
  2809. }
  2810. LLAMA_LOG_INFO("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
  2811. }
  2812. }
  2813. if (!llama_mmap::SUPPORTED) {
  2814. LLAMA_LOG_WARN("%s: mmap is not supported on this platform\n", __func__);
  2815. use_mmap = false;
  2816. }
  2817. this->use_mmap = use_mmap;
  2818. }
  2819. ~llama_model_loader() {
  2820. if (meta) {
  2821. gguf_free(meta);
  2822. }
  2823. for (auto * ctx : contexts) {
  2824. ggml_free(ctx);
  2825. }
  2826. }
  2827. template<typename T>
  2828. typename std::enable_if<std::is_integral<T>::value, bool>::type
  2829. get_arr_n(const std::string & key, T & result, const bool required = true) {
  2830. const int kid = gguf_find_key(meta, key.c_str());
  2831. if (kid < 0) {
  2832. if (required) {
  2833. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  2834. }
  2835. return false;
  2836. }
  2837. struct GGUFMeta::ArrayInfo arr_info =
  2838. GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta, kid);
  2839. result = arr_info.length;
  2840. return true;
  2841. }
  2842. template<typename T>
  2843. typename std::enable_if<std::is_integral<T>::value, bool>::type
  2844. get_arr_n(const enum llm_kv kid, T & result, const bool required = true) {
  2845. return get_arr_n(llm_kv(kid), result, required);
  2846. }
  2847. template<typename T>
  2848. bool get_key(const std::string & key, T & result, const bool required = true) {
  2849. auto it = kv_overrides.find(key);
  2850. const struct llama_model_kv_override * override =
  2851. it != kv_overrides.end() ? &it->second : nullptr;
  2852. const bool found = GGUFMeta::GKV<T>::set(meta, key, result, override);
  2853. if (required && !found) {
  2854. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  2855. }
  2856. return found;
  2857. }
  2858. template<typename T>
  2859. bool get_key(const enum llm_kv kid, T & result, const bool required = true) {
  2860. return get_key(llm_kv(kid), result, required);
  2861. }
  2862. std::string get_arch_name() const {
  2863. return arch_name;
  2864. }
  2865. enum llm_arch get_arch() const {
  2866. return llm_kv.arch;
  2867. }
  2868. const char * get_tensor_name(int i) const {
  2869. return weights.at(i).tensor->name;
  2870. }
  2871. const llama_tensor_weight * get_weight(const char * name) const {
  2872. for (const auto & weight : weights) {
  2873. if (strcmp(name, weight.tensor->name) == 0) {
  2874. return &weight;
  2875. }
  2876. }
  2877. return nullptr;
  2878. }
  2879. const llama_tensor_weight * get_weight(int i) const {
  2880. return get_weight(get_tensor_name(i));
  2881. }
  2882. const llama_tensor_weight & require_weight(const char * name) const {
  2883. const llama_tensor_weight * weight = get_weight(name);
  2884. if (!weight) {
  2885. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
  2886. }
  2887. return *weight;
  2888. }
  2889. struct ggml_tensor * get_tensor_meta(const char * name) const {
  2890. const auto * weight = get_weight(name);
  2891. if (!weight) {
  2892. return nullptr;
  2893. }
  2894. return weight->tensor;
  2895. }
  2896. struct ggml_tensor * require_tensor_meta(const char * name) const {
  2897. struct ggml_tensor * tensor = get_tensor_meta(name);
  2898. if (!tensor) {
  2899. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
  2900. }
  2901. return tensor;
  2902. }
  2903. struct ggml_tensor * get_tensor_meta(int i) const {
  2904. return get_tensor_meta(get_tensor_name(i));
  2905. }
  2906. struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, const struct ggml_tensor * cur) {
  2907. struct ggml_tensor * tensor = ggml_dup_tensor(ctx, cur);
  2908. ggml_set_name(tensor, ggml_get_name(cur));
  2909. n_created++;
  2910. return tensor;
  2911. }
  2912. const struct ggml_tensor * check_tensor_dims(const std::string & name, const std::vector<int64_t> & ne, bool required) const {
  2913. const struct ggml_tensor * cur = get_tensor_meta(name.c_str());
  2914. if (cur == NULL) {
  2915. if (!required) {
  2916. return NULL;
  2917. }
  2918. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str()));
  2919. }
  2920. {
  2921. bool is_ok = true;
  2922. for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
  2923. if ((i < ne.size() && ne[i] != cur->ne[i]) || (i >= ne.size() && cur->ne[i] != 1)) {
  2924. is_ok = false;
  2925. break;
  2926. }
  2927. }
  2928. if (!is_ok) {
  2929. throw std::runtime_error(
  2930. format("%s: tensor '%s' has wrong shape; expected %s, got %s",
  2931. __func__, name.c_str(),
  2932. llama_format_tensor_shape(ne).c_str(),
  2933. llama_format_tensor_shape(cur).c_str()));
  2934. }
  2935. }
  2936. return cur;
  2937. }
  2938. struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector<int64_t> & ne, bool required = true) {
  2939. const struct ggml_tensor * cur = check_tensor_dims(name, ne, required);
  2940. if (cur == NULL) {
  2941. return NULL;
  2942. }
  2943. return create_tensor_for(ctx, cur);
  2944. }
  2945. struct ggml_tensor * create_tensor_as_view(struct ggml_context * ctx, struct ggml_tensor * base, const std::string & name, const std::vector<int64_t> & ne, size_t offset, bool required = true) {
  2946. const struct ggml_tensor * cur = check_tensor_dims(name, ne, required);
  2947. if (cur == NULL) {
  2948. return NULL;
  2949. }
  2950. if (cur->type != base->type) {
  2951. throw std::runtime_error(format("%s: tensor '%s' has wrong type; expected %s, got %s", __func__, name.c_str(), ggml_type_name(base->type), ggml_type_name(cur->type)));
  2952. }
  2953. std::array<int64_t, GGML_MAX_DIMS> dims;
  2954. for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
  2955. dims[i] = i < ne.size() ? ne[i] : 1;
  2956. }
  2957. struct ggml_tensor * tensor = ggml_view_4d(ctx, base,
  2958. dims[0], dims[1], dims[2], dims[3],
  2959. cur->nb[1], cur->nb[2], cur->nb[3],
  2960. offset);
  2961. ggml_set_name(tensor, name.c_str());
  2962. n_created++;
  2963. return tensor;
  2964. }
  2965. void done_getting_tensors() const {
  2966. if (n_created != n_tensors) {
  2967. throw std::runtime_error(format("%s: wrong number of tensors; expected %d, got %d", __func__, n_tensors, n_created));
  2968. }
  2969. }
  2970. void init_mappings(bool prefetch = true, llama_mlocks * mlock_mmaps = nullptr) {
  2971. if (use_mmap) {
  2972. mappings.reserve(files.size());
  2973. mmaps_used.reserve(files.size());
  2974. for (const auto & file : files) {
  2975. std::unique_ptr<llama_mmap> mapping(new llama_mmap(file.get(), prefetch ? -1 : 0, ggml_is_numa()));
  2976. mmaps_used.emplace_back(mapping->size, 0);
  2977. if (mlock_mmaps) {
  2978. std::unique_ptr<llama_mlock> mlock_mmap(new llama_mlock());
  2979. mlock_mmap->init(mapping->addr);
  2980. mlock_mmaps->emplace_back(std::move(mlock_mmap));
  2981. }
  2982. mappings.emplace_back(std::move(mapping));
  2983. }
  2984. }
  2985. // compute the total size of all tensors for progress reporting
  2986. for (auto & w : weights) {
  2987. size_data += ggml_nbytes(w.tensor);
  2988. }
  2989. }
  2990. void get_mapping_range(size_t * first, size_t * last, void ** addr, int idx, ggml_context * ctx) const {
  2991. GGML_ASSERT(!mappings.empty());
  2992. const auto & mapping = mappings.at(idx);
  2993. *first = mapping->size;
  2994. *last = 0;
  2995. *addr = mapping->addr;
  2996. for (ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2997. try {
  2998. const auto * weight = get_weight(ggml_get_name(tensor));
  2999. if (!weight) {
  3000. continue;
  3001. }
  3002. if (weight->idx != idx) {
  3003. continue;
  3004. }
  3005. *first = std::min(*first, weight->offs);
  3006. *last = std::max(*last, weight->offs + ggml_nbytes(tensor));
  3007. } catch(...) {
  3008. // the tensor is not in the model
  3009. }
  3010. }
  3011. }
  3012. // for backwards compatibility, does not support ggml-backend
  3013. void load_data_for(struct ggml_tensor * cur) const {
  3014. const auto & w = require_weight(ggml_get_name(cur));
  3015. if (use_mmap) {
  3016. const auto & mapping = mappings.at(w.idx);
  3017. if (cur->data == nullptr) {
  3018. cur->data = (uint8_t *)mapping->addr + w.offs;
  3019. } else {
  3020. memcpy(cur->data, (uint8_t *)mapping->addr + w.offs, ggml_nbytes(cur));
  3021. }
  3022. } else {
  3023. GGML_ASSERT(cur->data != nullptr);
  3024. GGML_ASSERT(w.idx < files.size());
  3025. const auto & file = files.at(w.idx);
  3026. file->seek(w.offs, SEEK_SET);
  3027. file->read_raw(cur->data, ggml_nbytes(cur));
  3028. }
  3029. }
  3030. size_t size_done = 0;
  3031. size_t size_data = 0;
  3032. std::vector<std::pair<size_t, size_t>> mmaps_used;
  3033. // Returns false if cancelled by progress_callback
  3034. bool load_all_data(
  3035. struct ggml_context * ctx,
  3036. llama_buf_map & bufs_mmap,
  3037. llama_mlocks * lmlocks,
  3038. llama_progress_callback progress_callback,
  3039. void * progress_callback_user_data) {
  3040. GGML_ASSERT(size_data != 0 && "call init_mappings() first");
  3041. std::vector<no_init<uint8_t>> read_buf;
  3042. for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
  3043. const auto * weight = get_weight(ggml_get_name(cur));
  3044. if (weight == nullptr) {
  3045. // this can happen with split experts models
  3046. continue;
  3047. }
  3048. if (progress_callback) {
  3049. if (!progress_callback((float) size_done / size_data, progress_callback_user_data)) {
  3050. return false;
  3051. }
  3052. }
  3053. size_t n_size = ggml_nbytes(cur);
  3054. if (use_mmap) {
  3055. const auto & mapping = mappings.at(weight->idx);
  3056. ggml_backend_buffer_t buf_mmap = nullptr;
  3057. if (bufs_mmap.count(weight->idx)) {
  3058. buf_mmap = bufs_mmap.at(weight->idx);
  3059. }
  3060. GGML_ASSERT(buf_mmap || cur->data); // either we have a buffer to allocate the tensor in, or it is already allocated
  3061. if (buf_mmap && cur->data == nullptr) {
  3062. ggml_backend_tensor_alloc(buf_mmap, cur, (uint8_t *) mapping->addr + weight->offs);
  3063. if (lmlocks) {
  3064. const auto & lmlock = lmlocks->at(weight->idx);
  3065. lmlock->grow_to(weight->offs + ggml_nbytes(cur));
  3066. }
  3067. auto & mmap_used = mmaps_used[weight->idx];
  3068. mmap_used.first = std::min(mmap_used.first, weight->offs);
  3069. mmap_used.second = std::max(mmap_used.second, weight->offs + n_size);
  3070. } else {
  3071. ggml_backend_tensor_set(cur, (uint8_t *) mapping->addr + weight->offs, 0, n_size);
  3072. }
  3073. } else {
  3074. GGML_ASSERT(weight->idx < files.size());
  3075. const auto & file = files.at(weight->idx);
  3076. if (ggml_backend_buffer_is_host(cur->buffer)) {
  3077. file->seek(weight->offs, SEEK_SET);
  3078. file->read_raw(cur->data, ggml_nbytes(cur));
  3079. } else {
  3080. read_buf.resize(ggml_nbytes(cur));
  3081. file->seek(weight->offs, SEEK_SET);
  3082. file->read_raw(read_buf.data(), ggml_nbytes(cur));
  3083. ggml_backend_tensor_set(cur, read_buf.data(), 0, n_size);
  3084. }
  3085. }
  3086. size_done += n_size;
  3087. }
  3088. // check if this is the last call and do final cleanup
  3089. if (size_done >= size_data) {
  3090. // unmap offloaded tensors and metadata
  3091. if (use_mmap) {
  3092. for (uint32_t idx = 0; idx < mappings.size(); idx++) {
  3093. const auto & mmap_used = mmaps_used.at(idx);
  3094. auto & mapping = mappings.at(idx);
  3095. mapping->unmap_fragment(0, mmap_used.first);
  3096. if (mmap_used.second != 0) {
  3097. mapping->unmap_fragment(mmap_used.second, mapping->size);
  3098. }
  3099. }
  3100. }
  3101. if (progress_callback) {
  3102. // Even though the model is done loading, we still honor
  3103. // cancellation since we need to free allocations.
  3104. return progress_callback(1.0f, progress_callback_user_data);
  3105. }
  3106. }
  3107. return true;
  3108. }
  3109. };
  3110. template<>
  3111. bool llama_model_loader::get_key(const enum llm_kv kid, enum llama_pooling_type & result, const bool required) {
  3112. uint32_t tmp;
  3113. const bool found = get_key(kid, tmp, required);
  3114. if (found) {
  3115. result = (enum llama_pooling_type) tmp;
  3116. } else {
  3117. result = LLAMA_POOLING_TYPE_UNSPECIFIED;
  3118. }
  3119. return found;
  3120. }
  3121. //
  3122. // load LLaMA models
  3123. //
  3124. static const char * llama_model_arch_name(llm_arch arch) {
  3125. auto it = LLM_ARCH_NAMES.find(arch);
  3126. if (it == LLM_ARCH_NAMES.end()) {
  3127. return "unknown";
  3128. }
  3129. return it->second;
  3130. }
  3131. static std::string llama_model_ftype_name(llama_ftype ftype) {
  3132. if (ftype & LLAMA_FTYPE_GUESSED) {
  3133. return llama_model_ftype_name((enum llama_ftype) (ftype & ~LLAMA_FTYPE_GUESSED)) + " (guessed)";
  3134. }
  3135. switch (ftype) {
  3136. case LLAMA_FTYPE_ALL_F32: return "all F32";
  3137. case LLAMA_FTYPE_MOSTLY_F16: return "F16";
  3138. case LLAMA_FTYPE_MOSTLY_Q4_0: return "Q4_0";
  3139. case LLAMA_FTYPE_MOSTLY_Q4_1: return "Q4_1";
  3140. case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16:
  3141. return "Q4_1, some F16";
  3142. case LLAMA_FTYPE_MOSTLY_Q5_0: return "Q5_0";
  3143. case LLAMA_FTYPE_MOSTLY_Q5_1: return "Q5_1";
  3144. case LLAMA_FTYPE_MOSTLY_Q8_0: return "Q8_0";
  3145. // K-quants
  3146. case LLAMA_FTYPE_MOSTLY_Q2_K: return "Q2_K - Medium";
  3147. case LLAMA_FTYPE_MOSTLY_Q2_K_S: return "Q2_K - Small";
  3148. case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "Q3_K - Small";
  3149. case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "Q3_K - Medium";
  3150. case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "Q3_K - Large";
  3151. case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "Q4_K - Small";
  3152. case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "Q4_K - Medium";
  3153. case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "Q5_K - Small";
  3154. case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "Q5_K - Medium";
  3155. case LLAMA_FTYPE_MOSTLY_Q6_K: return "Q6_K";
  3156. case LLAMA_FTYPE_MOSTLY_IQ2_XXS:return "IQ2_XXS - 2.0625 bpw";
  3157. case LLAMA_FTYPE_MOSTLY_IQ2_XS: return "IQ2_XS - 2.3125 bpw";
  3158. case LLAMA_FTYPE_MOSTLY_IQ2_S: return "IQ2_S - 2.5 bpw";
  3159. case LLAMA_FTYPE_MOSTLY_IQ2_M: return "IQ2_M - 2.7 bpw";
  3160. case LLAMA_FTYPE_MOSTLY_IQ3_XS: return "IQ3_XS - 3.3 bpw";
  3161. case LLAMA_FTYPE_MOSTLY_IQ3_XXS:return "IQ3_XXS - 3.0625 bpw";
  3162. case LLAMA_FTYPE_MOSTLY_IQ1_S :return "IQ1_S - 1.5625 bpw";
  3163. case LLAMA_FTYPE_MOSTLY_IQ1_M :return "IQ1_M - 1.75 bpw";
  3164. case LLAMA_FTYPE_MOSTLY_IQ4_NL: return "IQ4_NL - 4.5 bpw";
  3165. case LLAMA_FTYPE_MOSTLY_IQ4_XS: return "IQ4_XS - 4.25 bpw";
  3166. case LLAMA_FTYPE_MOSTLY_IQ3_S: return "IQ3_S - 3.4375 bpw";
  3167. case LLAMA_FTYPE_MOSTLY_IQ3_M: return "IQ3_S mix - 3.66 bpw";
  3168. default: return "unknown, may not work";
  3169. }
  3170. }
  3171. static const char * llama_model_type_name(e_model type) {
  3172. switch (type) {
  3173. case MODEL_22M: return "22M";
  3174. case MODEL_33M: return "33M";
  3175. case MODEL_109M: return "109M";
  3176. case MODEL_137M: return "137M";
  3177. case MODEL_0_5B: return "0.5B";
  3178. case MODEL_1B: return "1B";
  3179. case MODEL_2B: return "2B";
  3180. case MODEL_3B: return "3B";
  3181. case MODEL_7B: return "7B";
  3182. case MODEL_8B: return "8B";
  3183. case MODEL_12B: return "12B";
  3184. case MODEL_13B: return "13B";
  3185. case MODEL_14B: return "14B";
  3186. case MODEL_15B: return "15B";
  3187. case MODEL_20B: return "20B";
  3188. case MODEL_30B: return "30B";
  3189. case MODEL_34B: return "34B";
  3190. case MODEL_35B: return "35B";
  3191. case MODEL_40B: return "40B";
  3192. case MODEL_65B: return "65B";
  3193. case MODEL_70B: return "70B";
  3194. case MODEL_314B: return "314B";
  3195. case MODEL_SMALL: return "0.1B";
  3196. case MODEL_MEDIUM: return "0.4B";
  3197. case MODEL_LARGE: return "0.8B";
  3198. case MODEL_XL: return "1.5B";
  3199. case MODEL_A2_7B: return "A2.7B";
  3200. case MODEL_8x7B: return "8x7B";
  3201. case MODEL_8x22B: return "8x22B";
  3202. case MODEL_16x12B: return "16x12B";
  3203. default: return "?B";
  3204. }
  3205. }
  3206. static const char * llama_model_vocab_type_name(enum llama_vocab_type type){
  3207. switch (type) {
  3208. case LLAMA_VOCAB_TYPE_NONE: return "no vocab";
  3209. case LLAMA_VOCAB_TYPE_SPM: return "SPM";
  3210. case LLAMA_VOCAB_TYPE_BPE: return "BPE";
  3211. case LLAMA_VOCAB_TYPE_WPM: return "WPM";
  3212. default: return "unknown";
  3213. }
  3214. }
  3215. static void llm_load_arch(llama_model_loader & ml, llama_model & model) {
  3216. model.arch = ml.get_arch();
  3217. if (model.arch == LLM_ARCH_UNKNOWN) {
  3218. throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'");
  3219. }
  3220. }
  3221. static void llm_load_hparams(
  3222. llama_model_loader & ml,
  3223. llama_model & model) {
  3224. auto & hparams = model.hparams;
  3225. const gguf_context * ctx = ml.meta;
  3226. // get metadata as string
  3227. for (int i = 0; i < gguf_get_n_kv(ctx); i++) {
  3228. enum gguf_type type = gguf_get_kv_type(ctx, i);
  3229. if (type == GGUF_TYPE_ARRAY) {
  3230. continue;
  3231. }
  3232. const char * name = gguf_get_key(ctx, i);
  3233. const std::string value = gguf_kv_to_str(ctx, i);
  3234. model.gguf_kv.emplace(name, value);
  3235. }
  3236. // get general kv
  3237. ml.get_key(LLM_KV_GENERAL_NAME, model.name, false);
  3238. // get hparams kv
  3239. ml.get_key(LLM_KV_VOCAB_SIZE, hparams.n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, hparams.n_vocab);
  3240. ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
  3241. ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
  3242. ml.get_key(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff);
  3243. ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head);
  3244. ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer);
  3245. ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false);
  3246. ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
  3247. GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS);
  3248. GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert);
  3249. if (hparams.n_expert > 0) {
  3250. GGML_ASSERT(hparams.n_expert_used > 0);
  3251. } else {
  3252. GGML_ASSERT(hparams.n_expert_used == 0);
  3253. }
  3254. // n_head_kv is optional, default to n_head
  3255. hparams.n_head_kv = hparams.n_head;
  3256. ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv, false);
  3257. bool rope_finetuned = false;
  3258. ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
  3259. hparams.rope_finetuned = rope_finetuned;
  3260. hparams.n_yarn_orig_ctx = hparams.n_ctx_train;
  3261. ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_yarn_orig_ctx, false);
  3262. // rope_freq_base (optional)
  3263. hparams.rope_freq_base_train = 10000.0f;
  3264. ml.get_key(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train, false);
  3265. std::string rope_scaling("linear");
  3266. ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false);
  3267. hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling);
  3268. GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED);
  3269. // rope_freq_scale (inverse of the kv) is optional
  3270. float ropescale = 0.0f;
  3271. if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) {
  3272. // try the old key name
  3273. ml.get_key(LLM_KV_ROPE_SCALE_LINEAR, ropescale, false);
  3274. }
  3275. hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale;
  3276. // sanity check for n_rot (optional)
  3277. {
  3278. hparams.n_rot = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3279. ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
  3280. if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) {
  3281. if (hparams.n_rot != hparams.n_embd / hparams.n_head) {
  3282. throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd / hparams.n_head));
  3283. }
  3284. }
  3285. // gpt-neox n_rot = rotary_pct * (n_embd / n_head)
  3286. // gpt-j n_rot = rotary_dim
  3287. }
  3288. hparams.n_embd_head_k = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3289. ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);
  3290. hparams.n_embd_head_v = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3291. ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
  3292. // arch-specific KVs
  3293. switch (model.arch) {
  3294. case LLM_ARCH_LLAMA:
  3295. {
  3296. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3297. if (hparams.n_expert == 8) {
  3298. switch (hparams.n_layer) {
  3299. case 32: model.type = e_model::MODEL_8x7B; break;
  3300. case 56: model.type = e_model::MODEL_8x22B; break;
  3301. default: model.type = e_model::MODEL_UNKNOWN;
  3302. }
  3303. } else {
  3304. switch (hparams.n_layer) {
  3305. case 22: model.type = e_model::MODEL_1B; break;
  3306. case 26: model.type = e_model::MODEL_3B; break;
  3307. case 32: model.type = hparams.n_head == hparams.n_head_kv ? e_model::MODEL_7B : e_model::MODEL_8B; break; // LLaMa 8B v3 uses GQA
  3308. case 40: model.type = e_model::MODEL_13B; break;
  3309. case 48: model.type = e_model::MODEL_34B; break;
  3310. case 60: model.type = e_model::MODEL_30B; break;
  3311. case 80: model.type = hparams.n_head == hparams.n_head_kv ? e_model::MODEL_65B : e_model::MODEL_70B; break;
  3312. default: model.type = e_model::MODEL_UNKNOWN;
  3313. }
  3314. }
  3315. } break;
  3316. case LLM_ARCH_MINICPM:
  3317. {
  3318. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3319. switch (hparams.n_layer) {
  3320. case 40: model.type = e_model::MODEL_2B; break;
  3321. default: model.type = e_model::MODEL_UNKNOWN;
  3322. }
  3323. } break;
  3324. case LLM_ARCH_GROK:
  3325. {
  3326. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3327. switch (hparams.n_layer) {
  3328. case 64: model.type = e_model::MODEL_314B; break;
  3329. default: model.type = e_model::MODEL_UNKNOWN;
  3330. }
  3331. } break;
  3332. case LLM_ARCH_FALCON:
  3333. {
  3334. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3335. switch (hparams.n_layer) {
  3336. case 32: model.type = e_model::MODEL_7B; break;
  3337. case 60: model.type = e_model::MODEL_40B; break;
  3338. default: model.type = e_model::MODEL_UNKNOWN;
  3339. }
  3340. } break;
  3341. case LLM_ARCH_BAICHUAN:
  3342. {
  3343. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3344. switch (hparams.n_layer) {
  3345. case 32: model.type = e_model::MODEL_7B; break;
  3346. case 40: model.type = e_model::MODEL_13B; break;
  3347. default: model.type = e_model::MODEL_UNKNOWN;
  3348. }
  3349. if (model.type == e_model::MODEL_13B) {
  3350. // TODO: become GGUF KV parameter
  3351. hparams.f_max_alibi_bias = 8.0f;
  3352. }
  3353. } break;
  3354. case LLM_ARCH_STARCODER:
  3355. {
  3356. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3357. switch (hparams.n_layer) {
  3358. case 24: model.type = e_model::MODEL_1B; break;
  3359. case 36: model.type = e_model::MODEL_3B; break;
  3360. case 42: model.type = e_model::MODEL_7B; break;
  3361. case 40: model.type = e_model::MODEL_15B; break;
  3362. default: model.type = e_model::MODEL_UNKNOWN;
  3363. }
  3364. } break;
  3365. case LLM_ARCH_PERSIMMON:
  3366. {
  3367. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3368. switch (hparams.n_layer) {
  3369. case 36: model.type = e_model::MODEL_8B; break;
  3370. default: model.type = e_model::MODEL_UNKNOWN;
  3371. }
  3372. } break;
  3373. case LLM_ARCH_REFACT:
  3374. {
  3375. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3376. switch (hparams.n_layer) {
  3377. case 32: model.type = e_model::MODEL_1B; break;
  3378. default: model.type = e_model::MODEL_UNKNOWN;
  3379. }
  3380. // TODO: become GGUF KV parameter
  3381. hparams.f_max_alibi_bias = 8.0f;
  3382. } break;
  3383. case LLM_ARCH_BERT:
  3384. {
  3385. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3386. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3387. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3388. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  3389. switch (hparams.n_layer) {
  3390. case 3:
  3391. model.type = e_model::MODEL_17M; break; // bge-micro
  3392. case 6:
  3393. model.type = e_model::MODEL_22M; break; // MiniLM-L6
  3394. case 12:
  3395. switch (hparams.n_embd) {
  3396. case 384: model.type = e_model::MODEL_33M; break; // MiniLM-L12, bge-small
  3397. case 768: model.type = e_model::MODEL_109M; break; // bge-base
  3398. } break;
  3399. case 24:
  3400. model.type = e_model::MODEL_335M; break; // bge-large
  3401. }
  3402. } break;
  3403. case LLM_ARCH_NOMIC_BERT:
  3404. {
  3405. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3406. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3407. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3408. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  3409. if (hparams.n_layer == 12 && hparams.n_embd == 768) {
  3410. model.type = e_model::MODEL_137M;
  3411. }
  3412. } break;
  3413. case LLM_ARCH_BLOOM:
  3414. {
  3415. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3416. switch (hparams.n_layer) {
  3417. case 24: model.type = e_model::MODEL_1B; break;
  3418. case 30:
  3419. switch (hparams.n_embd) {
  3420. case 2560: model.type = e_model::MODEL_3B; break;
  3421. case 4096: model.type = e_model::MODEL_7B; break;
  3422. } break;
  3423. }
  3424. // TODO: become GGUF KV parameter
  3425. hparams.f_max_alibi_bias = 8.0f;
  3426. } break;
  3427. case LLM_ARCH_MPT:
  3428. {
  3429. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3430. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  3431. ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
  3432. switch (hparams.n_layer) {
  3433. case 32: model.type = e_model::MODEL_7B; break;
  3434. case 48: model.type = e_model::MODEL_30B; break;
  3435. default: model.type = e_model::MODEL_UNKNOWN;
  3436. }
  3437. } break;
  3438. case LLM_ARCH_STABLELM:
  3439. {
  3440. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3441. switch (hparams.n_layer) {
  3442. case 24: model.type = e_model::MODEL_1B; break;
  3443. case 32: model.type = e_model::MODEL_3B; break;
  3444. case 40: model.type = e_model::MODEL_12B; break;
  3445. default: model.type = e_model::MODEL_UNKNOWN;
  3446. }
  3447. } break;
  3448. case LLM_ARCH_QWEN:
  3449. {
  3450. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3451. switch (hparams.n_layer) {
  3452. case 32: model.type = e_model::MODEL_7B; break;
  3453. case 40: model.type = e_model::MODEL_13B; break;
  3454. default: model.type = e_model::MODEL_UNKNOWN;
  3455. }
  3456. } break;
  3457. case LLM_ARCH_QWEN2:
  3458. {
  3459. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3460. switch (hparams.n_layer) {
  3461. case 24: model.type = hparams.n_embd == 1024 ? e_model::MODEL_0_5B : e_model::MODEL_1B; break;
  3462. case 32: model.type = e_model::MODEL_7B; break;
  3463. case 40: model.type = hparams.n_head == 20 ? e_model::MODEL_4B : e_model::MODEL_13B; break;
  3464. case 80: model.type = e_model::MODEL_70B; break;
  3465. default: model.type = e_model::MODEL_UNKNOWN;
  3466. }
  3467. } break;
  3468. case LLM_ARCH_QWEN2MOE:
  3469. {
  3470. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3471. switch (hparams.n_layer) {
  3472. case 24: model.type = e_model::MODEL_A2_7B; break;
  3473. default: model.type = e_model::MODEL_UNKNOWN;
  3474. }
  3475. } break;
  3476. case LLM_ARCH_PHI2:
  3477. {
  3478. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3479. switch (hparams.n_layer) {
  3480. case 24: model.type = e_model::MODEL_1B; break;
  3481. case 32: model.type = e_model::MODEL_3B; break;
  3482. default: model.type = e_model::MODEL_UNKNOWN;
  3483. }
  3484. } break;
  3485. case LLM_ARCH_PHI3:
  3486. {
  3487. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3488. switch (hparams.n_layer) {
  3489. case 24: model.type = e_model::MODEL_1B; break;
  3490. case 32: model.type = e_model::MODEL_3B; break;
  3491. default: model.type = e_model::MODEL_UNKNOWN;
  3492. }
  3493. } break;
  3494. case LLM_ARCH_PLAMO:
  3495. {
  3496. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3497. switch (hparams.n_layer) {
  3498. case 40: model.type = e_model::MODEL_13B; break;
  3499. default: model.type = e_model::MODEL_UNKNOWN;
  3500. }
  3501. } break;
  3502. case LLM_ARCH_GPT2:
  3503. {
  3504. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3505. switch (hparams.n_layer) {
  3506. case 12: model.type = e_model::MODEL_SMALL; break;
  3507. case 24: model.type = e_model::MODEL_MEDIUM; break;
  3508. case 36: model.type = e_model::MODEL_LARGE; break;
  3509. case 48: model.type = e_model::MODEL_XL; break;
  3510. default: model.type = e_model::MODEL_UNKNOWN;
  3511. }
  3512. } break;
  3513. case LLM_ARCH_CODESHELL:
  3514. {
  3515. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3516. switch (hparams.n_layer) {
  3517. case 42: model.type = e_model::MODEL_SMALL; break;
  3518. default: model.type = e_model::MODEL_UNKNOWN;
  3519. }
  3520. } break;
  3521. case LLM_ARCH_ORION:
  3522. {
  3523. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3524. switch (hparams.n_layer) {
  3525. case 40: model.type = e_model::MODEL_14B; break;
  3526. default: model.type = e_model::MODEL_UNKNOWN;
  3527. }
  3528. } break;
  3529. case LLM_ARCH_INTERNLM2:
  3530. {
  3531. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3532. switch (hparams.n_layer) {
  3533. case 32: model.type = e_model::MODEL_7B; break;
  3534. case 48: model.type = e_model::MODEL_20B; break;
  3535. default: model.type = e_model::MODEL_UNKNOWN;
  3536. }
  3537. } break;
  3538. case LLM_ARCH_GEMMA:
  3539. {
  3540. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3541. switch (hparams.n_layer) {
  3542. case 18: model.type = e_model::MODEL_2B; break;
  3543. case 28: model.type = e_model::MODEL_7B; break;
  3544. default: model.type = e_model::MODEL_UNKNOWN;
  3545. }
  3546. } break;
  3547. case LLM_ARCH_STARCODER2:
  3548. {
  3549. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3550. switch (hparams.n_layer) {
  3551. case 30: model.type = e_model::MODEL_3B; break;
  3552. case 32: model.type = e_model::MODEL_7B; break;
  3553. case 40: model.type = e_model::MODEL_15B; break;
  3554. default: model.type = e_model::MODEL_UNKNOWN;
  3555. }
  3556. } break;
  3557. case LLM_ARCH_MAMBA:
  3558. {
  3559. ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
  3560. ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
  3561. ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
  3562. ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
  3563. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3564. switch (hparams.n_layer) {
  3565. case 24:
  3566. switch (hparams.n_embd) {
  3567. case 768: model.type = e_model::MODEL_SMALL; break;
  3568. default: model.type = e_model::MODEL_UNKNOWN;
  3569. } break;
  3570. case 48:
  3571. switch (hparams.n_embd) {
  3572. case 1024: model.type = e_model::MODEL_MEDIUM; break;
  3573. case 1536: model.type = e_model::MODEL_LARGE; break;
  3574. case 2048: model.type = e_model::MODEL_XL; break;
  3575. default: model.type = e_model::MODEL_UNKNOWN;
  3576. } break;
  3577. case 64:
  3578. switch (hparams.n_embd) {
  3579. case 2560: model.type = e_model::MODEL_3B; break;
  3580. default: model.type = e_model::MODEL_UNKNOWN;
  3581. } break;
  3582. default: model.type = e_model::MODEL_UNKNOWN;
  3583. }
  3584. } break;
  3585. case LLM_ARCH_XVERSE:
  3586. {
  3587. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3588. switch (hparams.n_layer) {
  3589. case 32: model.type = e_model::MODEL_7B; break;
  3590. case 40: model.type = e_model::MODEL_13B; break;
  3591. case 80: model.type = e_model::MODEL_65B; break;
  3592. default: model.type = e_model::MODEL_UNKNOWN;
  3593. }
  3594. } break;
  3595. case LLM_ARCH_COMMAND_R:
  3596. {
  3597. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  3598. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3599. switch (hparams.n_layer) {
  3600. case 40: model.type = e_model::MODEL_35B; break;
  3601. default: model.type = e_model::MODEL_UNKNOWN;
  3602. }
  3603. } break;
  3604. case LLM_ARCH_DBRX:
  3605. {
  3606. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3607. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv);
  3608. switch (hparams.n_layer) {
  3609. case 40: model.type = e_model::MODEL_16x12B; break;
  3610. default: model.type = e_model::MODEL_UNKNOWN;
  3611. }
  3612. } break;
  3613. case LLM_ARCH_OLMO:
  3614. {
  3615. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3616. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  3617. switch (hparams.n_layer) {
  3618. case 22: model.type = e_model::MODEL_1B; break;
  3619. case 32: model.type = e_model::MODEL_7B; break;
  3620. case 80: model.type = e_model::MODEL_70B; break;
  3621. default: model.type = e_model::MODEL_UNKNOWN;
  3622. }
  3623. } break;
  3624. default: (void)0;
  3625. }
  3626. model.ftype = ml.ftype;
  3627. if (hparams.f_max_alibi_bias > 0.0f) {
  3628. hparams.need_kq_pos = true;
  3629. }
  3630. hparams.rope_type = llama_rope_type(&model);
  3631. }
  3632. // TODO: This should probably be in llama.h
  3633. static std::vector<llama_vocab::id> llama_tokenize_internal(
  3634. const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special = false
  3635. );
  3636. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch);
  3637. static void llm_load_vocab(
  3638. llama_model_loader & ml,
  3639. llama_model & model) {
  3640. auto & vocab = model.vocab;
  3641. struct gguf_context * ctx = ml.meta;
  3642. const auto kv = LLM_KV(model.arch);
  3643. // determine vocab type
  3644. {
  3645. std::string tokenizer_name;
  3646. ml.get_key(LLM_KV_TOKENIZER_MODEL, tokenizer_name);
  3647. if (tokenizer_name == "no_vocab") {
  3648. vocab.type = LLAMA_VOCAB_TYPE_NONE;
  3649. // default special tokens
  3650. vocab.special_bos_id = -1;
  3651. vocab.special_eos_id = -1;
  3652. vocab.special_unk_id = -1;
  3653. vocab.special_sep_id = -1;
  3654. vocab.special_pad_id = -1;
  3655. vocab.special_cls_id = -1;
  3656. vocab.special_mask_id = -1;
  3657. vocab.linefeed_id = -1;
  3658. return;
  3659. } else if (tokenizer_name == "llama") {
  3660. vocab.type = LLAMA_VOCAB_TYPE_SPM;
  3661. // default special tokens
  3662. vocab.special_bos_id = 1;
  3663. vocab.special_eos_id = 2;
  3664. vocab.special_unk_id = 0;
  3665. vocab.special_sep_id = -1;
  3666. vocab.special_pad_id = -1;
  3667. vocab.special_cls_id = -1;
  3668. vocab.special_mask_id = -1;
  3669. // For Fill-In-the-Middle (FIM)/infill models which where converted
  3670. // prior to support of FIM special tokens in GGUF, the following
  3671. // will allow those models to continue to work. The general names
  3672. // of the known models are currently CodeLlama (LLM_ARCH_LLAMA) and
  3673. // CodeGemma (LLM_ARCH_GEMMA). This can potentially be removed once
  3674. // new versions of these models have been published.
  3675. std::string gen_name;
  3676. ml.get_key(LLM_KV_GENERAL_NAME, gen_name, false);
  3677. std::transform(gen_name.begin(), gen_name.end(), gen_name.begin(),
  3678. [](unsigned char c){ return std::tolower(c); });
  3679. if (gen_name.find("code") != std::string::npos) {
  3680. if (model.arch == LLM_ARCH_LLAMA) {
  3681. vocab.special_prefix_id = 32007;
  3682. vocab.special_suffix_id = 32008;
  3683. vocab.special_middle_id = 32009;
  3684. vocab.special_eot_id = 32010;
  3685. } else if (model.arch == LLM_ARCH_GEMMA) {
  3686. vocab.special_prefix_id = 67;
  3687. vocab.special_suffix_id = 69;
  3688. vocab.special_middle_id = 68;
  3689. // TODO: this is not EOT, it is "file separator" token, needs fix
  3690. // https://huggingface.co/google/codegemma-7b-it/blob/9b1d9231388358c04d90bd003458f5070d97db44/tokenizer_config.json#L565-L572
  3691. //vocab.special_eot_id = 70;
  3692. vocab.special_eot_id = 107;
  3693. }
  3694. }
  3695. const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str());
  3696. if (add_space_prefix_keyidx != -1) {
  3697. vocab.add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx);
  3698. } // The default value of add_space_prefix is true.
  3699. } else if (tokenizer_name == "gpt2") {
  3700. vocab.type = LLAMA_VOCAB_TYPE_BPE;
  3701. // read bpe merges and populate bpe ranks
  3702. const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str());
  3703. if (merges_keyidx == -1) {
  3704. throw std::runtime_error("cannot find tokenizer merges in model file\n");
  3705. }
  3706. const int n_merges = gguf_get_arr_n(ctx, merges_keyidx);
  3707. for (int i = 0; i < n_merges; i++) {
  3708. const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i);
  3709. GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
  3710. std::string first;
  3711. std::string second;
  3712. const size_t pos = word.find(' ', 1);
  3713. if (pos != std::string::npos) {
  3714. first = word.substr(0, pos);
  3715. second = word.substr(pos + 1);
  3716. }
  3717. vocab.bpe_ranks.emplace(std::make_pair(first, second), i);
  3718. }
  3719. // default special tokens
  3720. vocab.special_bos_id = 11;
  3721. vocab.special_eos_id = 11;
  3722. vocab.special_unk_id = -1;
  3723. vocab.special_sep_id = -1;
  3724. vocab.special_pad_id = -1;
  3725. vocab.special_cls_id = -1;
  3726. vocab.special_mask_id = -1;
  3727. } else if (tokenizer_name == "bert") {
  3728. vocab.type = LLAMA_VOCAB_TYPE_WPM;
  3729. // default special tokens
  3730. vocab.special_bos_id = -1;
  3731. vocab.special_eos_id = -1;
  3732. vocab.special_unk_id = 100;
  3733. vocab.special_sep_id = 102;
  3734. vocab.special_pad_id = 0;
  3735. vocab.special_cls_id = 101;
  3736. vocab.special_mask_id = 103;
  3737. vocab.add_space_prefix = false;
  3738. } else {
  3739. LLAMA_LOG_WARN("%s: unknown tokenizer: '%s'", __func__, tokenizer_name.c_str());
  3740. LLAMA_LOG_WARN("%s: using default tokenizer: 'llama'", __func__);
  3741. vocab.type = LLAMA_VOCAB_TYPE_SPM;
  3742. }
  3743. }
  3744. const int token_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_LIST).c_str());
  3745. if (token_idx == -1) {
  3746. throw std::runtime_error("cannot find tokenizer vocab in model file\n");
  3747. }
  3748. const float * scores = nullptr;
  3749. const int score_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_SCORES).c_str());
  3750. if (score_idx != -1) {
  3751. scores = (const float * ) gguf_get_arr_data(ctx, score_idx);
  3752. }
  3753. const int * toktypes = nullptr;
  3754. const int toktype_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE).c_str());
  3755. if (toktype_idx != -1) {
  3756. toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
  3757. }
  3758. const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
  3759. vocab.id_to_token.resize(n_vocab);
  3760. for (uint32_t i = 0; i < n_vocab; i++) {
  3761. std::string word = gguf_get_arr_str(ctx, token_idx, i);
  3762. GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
  3763. vocab.token_to_id[word] = i;
  3764. auto & token_data = vocab.id_to_token[i];
  3765. token_data.text = std::move(word);
  3766. token_data.score = scores ? scores[i] : 0.0f;
  3767. token_data.type = toktypes ? (llama_token_type) toktypes[i] : LLAMA_TOKEN_TYPE_NORMAL;
  3768. }
  3769. GGML_ASSERT(vocab.id_to_token.size() == vocab.token_to_id.size());
  3770. // determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n'
  3771. if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
  3772. try {
  3773. vocab.linefeed_id = llama_byte_to_token(vocab, '\n');
  3774. } catch (const std::exception & e) {
  3775. LLAMA_LOG_WARN("%s: SPM vocabulary, but newline token not found: %s! Using special_pad_id instead.", __func__, e.what());
  3776. vocab.linefeed_id = vocab.special_pad_id;
  3777. }
  3778. } else if (vocab.type == LLAMA_VOCAB_TYPE_WPM) {
  3779. vocab.linefeed_id = vocab.special_pad_id;
  3780. } else {
  3781. const std::vector<int> ids = llama_tokenize_internal(vocab, "\xC4\x8A", false); // U+010A
  3782. GGML_ASSERT(!ids.empty() && "model vocab missing newline token");
  3783. vocab.linefeed_id = ids[0];
  3784. }
  3785. // special tokens
  3786. {
  3787. const std::vector<std::pair<enum llm_kv, int32_t &>> special_token_types = {
  3788. { LLM_KV_TOKENIZER_BOS_ID, vocab.special_bos_id },
  3789. { LLM_KV_TOKENIZER_EOS_ID, vocab.special_eos_id },
  3790. { LLM_KV_TOKENIZER_UNK_ID, vocab.special_unk_id },
  3791. { LLM_KV_TOKENIZER_SEP_ID, vocab.special_sep_id },
  3792. { LLM_KV_TOKENIZER_PAD_ID, vocab.special_pad_id },
  3793. { LLM_KV_TOKENIZER_CLS_ID, vocab.special_cls_id },
  3794. { LLM_KV_TOKENIZER_MASK_ID, vocab.special_mask_id },
  3795. { LLM_KV_TOKENIZER_PREFIX_ID, vocab.special_prefix_id },
  3796. { LLM_KV_TOKENIZER_SUFFIX_ID, vocab.special_suffix_id },
  3797. { LLM_KV_TOKENIZER_MIDDLE_ID, vocab.special_middle_id },
  3798. { LLM_KV_TOKENIZER_EOT_ID, vocab.special_eot_id },
  3799. };
  3800. for (const auto & it : special_token_types) {
  3801. const std::string & key = kv(std::get<0>(it));
  3802. int32_t & id = std::get<1>(it);
  3803. uint32_t new_id;
  3804. if (!ml.get_key(std::get<0>(it), new_id, false)) {
  3805. continue;
  3806. }
  3807. if (new_id >= vocab.id_to_token.size()) {
  3808. LLAMA_LOG_WARN("%s: bad special token: '%s' = %ud, using default id %d\n",
  3809. __func__, key.c_str(), new_id, id);
  3810. } else {
  3811. id = new_id;
  3812. }
  3813. }
  3814. // Handle add_bos_token and add_eos_token
  3815. {
  3816. bool temp = true;
  3817. if (ml.get_key(LLM_KV_TOKENIZER_ADD_BOS, temp, false)) {
  3818. vocab.special_add_bos = int(temp);
  3819. }
  3820. if (ml.get_key(LLM_KV_TOKENIZER_ADD_EOS, temp, false)) {
  3821. vocab.special_add_eos = int(temp);
  3822. }
  3823. }
  3824. // find EOT token: "<|eot_id|>", "<|im_end|>", "<end_of_turn>", etc.
  3825. //
  3826. // TODO: convert scripts should provide this token through the KV metadata LLAMA_KV_TOKENIZER_EOT_ID
  3827. // for now, we apply this workaround to find the EOT token based on its text
  3828. if (vocab.special_eot_id == -1) {
  3829. for (const auto & t : vocab.token_to_id) {
  3830. if (
  3831. // TODO: gemma "<end_of_turn>" is exported as a normal token, so the following check does not work
  3832. // need to fix convert script
  3833. //vocab.id_to_token[t.second].type == LLAMA_TOKEN_TYPE_CONTROL &&
  3834. (t.first == "<|eot_id|>" ||
  3835. t.first == "<|im_end|>" ||
  3836. t.first == "<|end|>" ||
  3837. t.first == "<end_of_turn>"
  3838. )
  3839. ) {
  3840. vocab.special_eot_id = t.second;
  3841. break;
  3842. }
  3843. }
  3844. }
  3845. }
  3846. // build special tokens cache
  3847. {
  3848. // TODO: It is unclear (to me) at this point, whether special tokes are guaranteed to be of a deterministic type,
  3849. // and will always be correctly labeled in 'added_tokens.json' etc.
  3850. // The assumption is, since special tokens aren't meant to be exposed to end user, they are designed
  3851. // to be unmatchable by the tokenizer, therefore tokens from the vocab, which are unmatchable by the tokenizer
  3852. // are special tokens.
  3853. // From testing, this appears to correlate 1:1 with special tokens.
  3854. //
  3855. // Counting special tokens and verifying in only one direction
  3856. // is sufficient to detect difference in those two sets.
  3857. //
  3858. uint32_t special_tokens_count_by_type = 0;
  3859. uint32_t special_tokens_count_from_verification = 0;
  3860. bool special_tokens_definition_mismatch = false;
  3861. for (const auto & t : vocab.token_to_id) {
  3862. const auto & token = t.first;
  3863. const auto & id = t.second;
  3864. // Count all non-normal tokens in the vocab while iterating
  3865. if (vocab.id_to_token[id].type != LLAMA_TOKEN_TYPE_NORMAL) {
  3866. special_tokens_count_by_type++;
  3867. }
  3868. // Skip single character tokens
  3869. if (token.length() > 1) {
  3870. bool is_tokenizable = false;
  3871. // Split token string representation in two, in all possible ways
  3872. // and check if both halves can be matched to a valid token
  3873. for (unsigned i = 1; i < token.length();) {
  3874. const auto left = token.substr(0, i);
  3875. const auto right = token.substr(i);
  3876. // check if we didnt partition in the middle of a utf sequence
  3877. auto utf = utf8_len(left.at(left.length() - 1));
  3878. if (utf == 1) {
  3879. if (vocab.token_to_id.find(left) != vocab.token_to_id.end() &&
  3880. vocab.token_to_id.find(right) != vocab.token_to_id.end() ) {
  3881. is_tokenizable = true;
  3882. break;
  3883. }
  3884. i++;
  3885. } else {
  3886. // skip over the rest of multibyte utf sequence
  3887. i += utf - 1;
  3888. }
  3889. }
  3890. if (!is_tokenizable) {
  3891. // Some tokens are multibyte, but they are utf sequences with equivalent text length of 1
  3892. // it's faster to re-filter them here, since there are way less candidates now
  3893. // Calculate a total "utf" length of a token string representation
  3894. size_t utf8_str_len = 0;
  3895. for (unsigned i = 0; i < token.length();) {
  3896. utf8_str_len++;
  3897. i += utf8_len(token.at(i));
  3898. }
  3899. // And skip the ones which are one character
  3900. if (utf8_str_len > 1) {
  3901. // At this point what we have left are special tokens only
  3902. vocab.special_tokens_cache[token] = id;
  3903. // Count manually found special tokens
  3904. special_tokens_count_from_verification++;
  3905. // If this manually found special token is not marked as such, flag a mismatch
  3906. if (vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL) {
  3907. special_tokens_definition_mismatch = true;
  3908. }
  3909. }
  3910. }
  3911. }
  3912. }
  3913. if (special_tokens_definition_mismatch || special_tokens_count_from_verification != special_tokens_count_by_type) {
  3914. LLAMA_LOG_WARN("%s: mismatch in special tokens definition ( %u/%zu vs %u/%zu ).\n",
  3915. __func__,
  3916. special_tokens_count_from_verification, vocab.id_to_token.size(),
  3917. special_tokens_count_by_type, vocab.id_to_token.size()
  3918. );
  3919. } else {
  3920. LLAMA_LOG_INFO("%s: special tokens definition check successful ( %u/%zu ).\n",
  3921. __func__,
  3922. special_tokens_count_from_verification, vocab.id_to_token.size()
  3923. );
  3924. }
  3925. }
  3926. }
  3927. static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
  3928. const auto & hparams = model.hparams;
  3929. const auto & vocab = model.vocab;
  3930. const char * rope_scaling_type = LLAMA_ROPE_SCALING_TYPES.at(hparams.rope_scaling_type_train);
  3931. // hparams
  3932. LLAMA_LOG_INFO("%s: format = %s\n", __func__, llama_file_version_name(ml.fver));
  3933. LLAMA_LOG_INFO("%s: arch = %s\n", __func__, LLM_ARCH_NAMES.at(model.arch));
  3934. LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, llama_model_vocab_type_name(vocab.type));
  3935. LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, hparams.n_vocab);
  3936. LLAMA_LOG_INFO("%s: n_merges = %u\n", __func__, (int) vocab.bpe_ranks.size());
  3937. LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
  3938. LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
  3939. LLAMA_LOG_INFO("%s: n_head = %u\n", __func__, hparams.n_head);
  3940. LLAMA_LOG_INFO("%s: n_head_kv = %u\n", __func__, hparams.n_head_kv);
  3941. LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
  3942. LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot);
  3943. LLAMA_LOG_INFO("%s: n_embd_head_k = %u\n", __func__, hparams.n_embd_head_k);
  3944. LLAMA_LOG_INFO("%s: n_embd_head_v = %u\n", __func__, hparams.n_embd_head_v);
  3945. LLAMA_LOG_INFO("%s: n_gqa = %u\n", __func__, hparams.n_gqa());
  3946. LLAMA_LOG_INFO("%s: n_embd_k_gqa = %u\n", __func__, hparams.n_embd_k_gqa());
  3947. LLAMA_LOG_INFO("%s: n_embd_v_gqa = %u\n", __func__, hparams.n_embd_v_gqa());
  3948. LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps);
  3949. LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
  3950. LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
  3951. LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
  3952. LLAMA_LOG_INFO("%s: f_logit_scale = %.1e\n", __func__, hparams.f_logit_scale);
  3953. LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, hparams.n_ff);
  3954. LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert);
  3955. LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used);
  3956. LLAMA_LOG_INFO("%s: causal attn = %d\n", __func__, hparams.causal_attn);
  3957. LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type);
  3958. LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type);
  3959. LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type);
  3960. LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
  3961. LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
  3962. LLAMA_LOG_INFO("%s: n_yarn_orig_ctx = %u\n", __func__, hparams.n_yarn_orig_ctx);
  3963. LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown");
  3964. LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
  3965. LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
  3966. LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state);
  3967. LLAMA_LOG_INFO("%s: ssm_dt_rank = %u\n", __func__, hparams.ssm_dt_rank);
  3968. LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type));
  3969. LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str());
  3970. if (ml.n_elements >= 1e12) {
  3971. LLAMA_LOG_INFO("%s: model params = %.2f T\n", __func__, ml.n_elements*1e-12);
  3972. } else if (ml.n_elements >= 1e9) {
  3973. LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, ml.n_elements*1e-9);
  3974. } else if (ml.n_elements >= 1e6) {
  3975. LLAMA_LOG_INFO("%s: model params = %.2f M\n", __func__, ml.n_elements*1e-6);
  3976. } else {
  3977. LLAMA_LOG_INFO("%s: model params = %.2f K\n", __func__, ml.n_elements*1e-3);
  3978. }
  3979. if (ml.n_bytes < GiB) {
  3980. LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  3981. } else {
  3982. LLAMA_LOG_INFO("%s: model size = %.2f GiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  3983. }
  3984. // general kv
  3985. LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, model.name.c_str());
  3986. // special tokens
  3987. if (vocab.special_bos_id != -1) { LLAMA_LOG_INFO( "%s: BOS token = %d '%s'\n", __func__, vocab.special_bos_id, vocab.id_to_token[vocab.special_bos_id].text.c_str() ); }
  3988. if (vocab.special_eos_id != -1) { LLAMA_LOG_INFO( "%s: EOS token = %d '%s'\n", __func__, vocab.special_eos_id, vocab.id_to_token[vocab.special_eos_id].text.c_str() ); }
  3989. if (vocab.special_unk_id != -1) { LLAMA_LOG_INFO( "%s: UNK token = %d '%s'\n", __func__, vocab.special_unk_id, vocab.id_to_token[vocab.special_unk_id].text.c_str() ); }
  3990. if (vocab.special_sep_id != -1) { LLAMA_LOG_INFO( "%s: SEP token = %d '%s'\n", __func__, vocab.special_sep_id, vocab.id_to_token[vocab.special_sep_id].text.c_str() ); }
  3991. if (vocab.special_pad_id != -1) { LLAMA_LOG_INFO( "%s: PAD token = %d '%s'\n", __func__, vocab.special_pad_id, vocab.id_to_token[vocab.special_pad_id].text.c_str() ); }
  3992. if (vocab.special_cls_id != -1) { LLAMA_LOG_INFO( "%s: CLS token = %d '%s'\n", __func__, vocab.special_cls_id, vocab.id_to_token[vocab.special_cls_id].text.c_str() ); }
  3993. if (vocab.special_mask_id != -1) { LLAMA_LOG_INFO( "%s: MASK token = %d '%s'\n", __func__, vocab.special_mask_id, vocab.id_to_token[vocab.special_mask_id].text.c_str() ); }
  3994. if (vocab.linefeed_id != -1) { LLAMA_LOG_INFO( "%s: LF token = %d '%s'\n", __func__, vocab.linefeed_id, vocab.id_to_token[vocab.linefeed_id].text.c_str() ); }
  3995. if (vocab.special_prefix_id != -1) { LLAMA_LOG_INFO( "%s: PRE token = %d '%s'\n", __func__, vocab.special_prefix_id, vocab.id_to_token[vocab.special_prefix_id].text.c_str() ); }
  3996. if (vocab.special_suffix_id != -1) { LLAMA_LOG_INFO( "%s: SUF token = %d '%s'\n", __func__, vocab.special_suffix_id, vocab.id_to_token[vocab.special_suffix_id].text.c_str() ); }
  3997. if (vocab.special_middle_id != -1) { LLAMA_LOG_INFO( "%s: MID token = %d '%s'\n", __func__, vocab.special_middle_id, vocab.id_to_token[vocab.special_middle_id].text.c_str() ); }
  3998. if (vocab.special_eot_id != -1) { LLAMA_LOG_INFO( "%s: EOT token = %d '%s'\n", __func__, vocab.special_eot_id, vocab.id_to_token[vocab.special_eot_id].text.c_str() ); }
  3999. }
  4000. // Returns false if cancelled by progress_callback
  4001. static bool llm_load_tensors(
  4002. llama_model_loader & ml,
  4003. llama_model & model,
  4004. int n_gpu_layers,
  4005. enum llama_split_mode split_mode,
  4006. int main_gpu,
  4007. const float * tensor_split,
  4008. bool use_mlock,
  4009. llama_progress_callback progress_callback,
  4010. void * progress_callback_user_data) {
  4011. model.t_start_us = ggml_time_us();
  4012. auto & hparams = model.hparams;
  4013. #ifdef GGML_USE_SYCL
  4014. // disable MoE with SYCL until mul_mat_id is updated
  4015. if (hparams.n_expert > 0) {
  4016. n_gpu_layers = 0;
  4017. }
  4018. #endif
  4019. model.split_mode = split_mode;
  4020. model.main_gpu = main_gpu;
  4021. model.n_gpu_layers = n_gpu_layers;
  4022. const int64_t n_layer = hparams.n_layer;
  4023. const int64_t i_gpu_start = std::max((int64_t) hparams.n_layer - n_gpu_layers, (int64_t) 0);
  4024. bool use_mmap_buffer = true;
  4025. // there is very little benefit to offloading the input layer, so always keep it on the CPU
  4026. model.buft_input = llama_default_buffer_type_cpu(true);
  4027. //model.buft_input = llama_default_buffer_type_offload(main_gpu);
  4028. model.buft_layer.resize(n_layer);
  4029. // assign cpu layers
  4030. for (int64_t i = 0; i < i_gpu_start; ++i) {
  4031. model.buft_layer[i] = llama_default_buffer_type_cpu(true);
  4032. }
  4033. if (split_mode == LLAMA_SPLIT_MODE_LAYER) {
  4034. // calculate the split points
  4035. int device_count = llama_get_device_count();
  4036. bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + device_count, [](float x) { return x == 0.0f; });
  4037. std::vector<float> splits(device_count);
  4038. if (all_zero) {
  4039. // default split, by free memory
  4040. for (int i = 0; i < device_count; ++i) {
  4041. splits[i] = llama_get_device_memory(i);
  4042. }
  4043. } else {
  4044. std::copy(tensor_split, tensor_split + device_count, splits.begin());
  4045. }
  4046. // sum and normalize the splits to get the split points
  4047. float split_sum = 0.0f;
  4048. for (int i = 0; i < device_count; ++i) {
  4049. split_sum += splits[i];
  4050. splits[i] = split_sum;
  4051. }
  4052. for (int i = 0; i < device_count; ++i) {
  4053. splits[i] /= split_sum;
  4054. }
  4055. // assign the repeating layers to the devices according to the splits
  4056. int act_gpu_layers = std::min(n_gpu_layers, (int)n_layer + 1);
  4057. for (int64_t i = i_gpu_start; i < n_layer; ++i) {
  4058. int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(i - i_gpu_start)/act_gpu_layers) - splits.begin();
  4059. model.buft_layer[i] = llama_default_buffer_type_offload(layer_gpu);
  4060. }
  4061. // assign the output layer
  4062. if (n_gpu_layers > n_layer) {
  4063. int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(act_gpu_layers - 1)/act_gpu_layers) - splits.begin();
  4064. model.buft_output = llama_default_buffer_type_offload(layer_gpu);
  4065. } else {
  4066. model.buft_output = llama_default_buffer_type_cpu(true);
  4067. }
  4068. } else {
  4069. ggml_backend_buffer_type_t split_buft;
  4070. if (split_mode == LLAMA_SPLIT_MODE_ROW) {
  4071. split_buft = llama_default_buffer_type_split(main_gpu, tensor_split);
  4072. } else {
  4073. // LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_LAYER in backends where it is not supported
  4074. split_buft = llama_default_buffer_type_offload(main_gpu);
  4075. }
  4076. // assign the repeating layers
  4077. for (int64_t i = i_gpu_start; i < n_layer; ++i) {
  4078. model.buft_layer[i] = {
  4079. split_buft,
  4080. llama_default_buffer_type_offload(main_gpu)
  4081. };
  4082. }
  4083. // assign the output layer
  4084. if (n_gpu_layers > n_layer) {
  4085. model.buft_output = {
  4086. split_buft,
  4087. llama_default_buffer_type_offload(main_gpu)
  4088. };
  4089. } else {
  4090. model.buft_output = llama_default_buffer_type_cpu(true);
  4091. }
  4092. }
  4093. // count used buffer types
  4094. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  4095. buft_layer_count[model.buft_input.buft]++;
  4096. buft_layer_count[model.buft_input.buft_matrix]++;
  4097. buft_layer_count[model.buft_output.buft]++;
  4098. buft_layer_count[model.buft_output.buft_matrix]++;
  4099. for (int64_t i = 0; i < n_layer; ++i) {
  4100. buft_layer_count[model.buft_layer[i].buft]++;
  4101. buft_layer_count[model.buft_layer[i].buft_matrix]++;
  4102. }
  4103. // create one context per buffer type
  4104. size_t ctx_size = ggml_tensor_overhead()*(ml.n_tensors + 1); // +1 for models where tok_embd is duplicated as output
  4105. // for moe merged tensors
  4106. ctx_size += ggml_tensor_overhead()*n_layer*3;
  4107. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  4108. for (auto & it : buft_layer_count) {
  4109. struct ggml_init_params params = {
  4110. /*.mem_size =*/ ctx_size,
  4111. /*.mem_buffer =*/ NULL,
  4112. /*.no_alloc =*/ true,
  4113. };
  4114. ggml_context * ctx = ggml_init(params);
  4115. if (!ctx) {
  4116. throw std::runtime_error(format("failed to create context"));
  4117. }
  4118. ctx_map[it.first] = ctx;
  4119. model.ctxs.push_back(ctx);
  4120. }
  4121. LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MiB\n", __func__, model.ctxs.size()*ctx_size/1024.0/1024.0);
  4122. // create tensors for the weights
  4123. {
  4124. const int64_t n_embd = hparams.n_embd;
  4125. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  4126. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  4127. const int64_t n_embd_gqa = n_embd_v_gqa;
  4128. const int64_t n_vocab = hparams.n_vocab;
  4129. const int64_t n_vocab_type = hparams.n_vocab_type;
  4130. const int64_t n_ff = hparams.n_ff;
  4131. const int64_t n_expert = hparams.n_expert;
  4132. if (n_expert > 0 && hparams.n_expert_used == 0) {
  4133. throw std::runtime_error("model has expert layers but no expert layers are used");
  4134. }
  4135. GGML_ASSERT(n_embd_gqa == n_embd_k_gqa);
  4136. ggml_context * ctx_input = ctx_map.at(model.buft_input.buft);
  4137. ggml_context * ctx_output = ctx_map.at(model.buft_output.buft);
  4138. ggml_context * ctx_output_split = ctx_map.at(model.buft_output.buft_matrix);
  4139. auto ctx_for_layer = [&](int i) { return ctx_map.at(model.buft_layer[i].buft); };
  4140. auto ctx_for_layer_split = [&](int i) { return ctx_map.at(model.buft_layer[i].buft_matrix); };
  4141. model.layers.resize(n_layer);
  4142. const auto tn = LLM_TN(model.arch);
  4143. switch (model.arch) {
  4144. case LLM_ARCH_LLAMA:
  4145. case LLM_ARCH_REFACT:
  4146. case LLM_ARCH_MINICPM:
  4147. {
  4148. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4149. // output
  4150. {
  4151. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4152. if (model.arch != LLM_ARCH_MINICPM){
  4153. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4154. // if output is NULL, init from the input tok embed
  4155. if (model.output == NULL) {
  4156. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4157. ml.n_created--; // artificial tensor
  4158. ml.size_data += ggml_nbytes(model.output);
  4159. }
  4160. }
  4161. }
  4162. for (int i = 0; i < n_layer; ++i) {
  4163. ggml_context * ctx_layer = ctx_for_layer(i);
  4164. ggml_context * ctx_split = ctx_for_layer_split(i);
  4165. auto & layer = model.layers[i];
  4166. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4167. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4168. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4169. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4170. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4171. // optional bias tensors
  4172. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, false);
  4173. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, false);
  4174. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, false);
  4175. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, false);
  4176. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4177. if (n_expert == 0) {
  4178. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4179. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4180. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4181. } else {
  4182. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4183. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
  4184. if (layer.ffn_gate_exps) {
  4185. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
  4186. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4187. } else {
  4188. // merge split expert into a single tensor for compatibility with older models
  4189. // requires disabling mmap
  4190. use_mmap_buffer = false;
  4191. ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
  4192. ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
  4193. ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
  4194. layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
  4195. layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
  4196. layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
  4197. ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
  4198. ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
  4199. ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
  4200. for (uint32_t x = 0; x < n_expert; ++x) {
  4201. // the individual experts are loaded into a view of the merged tensor
  4202. ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
  4203. ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
  4204. ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
  4205. }
  4206. }
  4207. }
  4208. }
  4209. } break;
  4210. case LLM_ARCH_GROK:
  4211. {
  4212. if (n_expert == 0) {
  4213. throw std::runtime_error("Grok model cannot have zero experts");
  4214. }
  4215. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4216. // output
  4217. {
  4218. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4219. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4220. // if output is NULL, init from the input tok embed
  4221. if (model.output == NULL) {
  4222. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4223. ml.n_created--; // artificial tensor
  4224. ml.size_data += ggml_nbytes(model.output);
  4225. }
  4226. }
  4227. for (int i = 0; i < n_layer; ++i) {
  4228. ggml_context * ctx_layer = ctx_for_layer(i);
  4229. ggml_context * ctx_split = ctx_for_layer_split(i);
  4230. auto & layer = model.layers[i];
  4231. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4232. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4233. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4234. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4235. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4236. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4237. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4238. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4239. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
  4240. if (layer.ffn_gate_exps) {
  4241. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
  4242. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4243. } else {
  4244. // merge split expert into a single tensor for compatibility with older models
  4245. // requires disabling mmap
  4246. use_mmap_buffer = false;
  4247. ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
  4248. ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
  4249. ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
  4250. layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
  4251. layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
  4252. layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
  4253. ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
  4254. ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
  4255. ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
  4256. for (uint32_t x = 0; x < n_expert; ++x) {
  4257. // the individual experts are loaded into a view of the merged tensor
  4258. ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
  4259. ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
  4260. ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
  4261. }
  4262. }
  4263. layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  4264. }
  4265. } break;
  4266. case LLM_ARCH_DBRX:
  4267. {
  4268. if (n_expert == 0) {
  4269. throw std::runtime_error("DBRX model cannot have zero experts");
  4270. }
  4271. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4272. // output
  4273. {
  4274. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4275. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4276. }
  4277. for (int i = 0; i < n_layer; ++i) {
  4278. ggml_context * ctx_layer = ctx_for_layer(i);
  4279. ggml_context * ctx_split = ctx_for_layer_split(i);
  4280. auto & layer = model.layers[i];
  4281. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4282. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4283. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4284. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4285. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4286. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4287. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert});
  4288. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4289. }
  4290. } break;
  4291. case LLM_ARCH_BAICHUAN:
  4292. {
  4293. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4294. {
  4295. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4296. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4297. }
  4298. for (int i = 0; i < n_layer; ++i) {
  4299. ggml_context * ctx_layer = ctx_for_layer(i);
  4300. ggml_context * ctx_split = ctx_for_layer_split(i);
  4301. auto & layer = model.layers[i];
  4302. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4303. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4304. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4305. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4306. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4307. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4308. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4309. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4310. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4311. }
  4312. } break;
  4313. case LLM_ARCH_FALCON:
  4314. {
  4315. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4316. // output
  4317. {
  4318. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4319. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4320. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4321. if (!model.output) {
  4322. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // needs to be on GPU
  4323. ml.n_created--; // artificial tensor
  4324. ml.size_data += ggml_nbytes(model.output);
  4325. }
  4326. }
  4327. for (int i = 0; i < n_layer; ++i) {
  4328. ggml_context * ctx_layer = ctx_for_layer(i);
  4329. ggml_context * ctx_split = ctx_for_layer_split(i);
  4330. auto & layer = model.layers[i];
  4331. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4332. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4333. layer.attn_norm_2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, false);
  4334. layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, false);
  4335. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4336. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4337. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4338. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4339. }
  4340. } break;
  4341. case LLM_ARCH_STARCODER:
  4342. {
  4343. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4344. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  4345. // output
  4346. {
  4347. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4348. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4349. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4350. }
  4351. for (int i = 0; i < n_layer; ++i) {
  4352. ggml_context * ctx_layer = ctx_for_layer(i);
  4353. ggml_context * ctx_split = ctx_for_layer_split(i);
  4354. auto & layer = model.layers[i];
  4355. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4356. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4357. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4358. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4359. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4360. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4361. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4362. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4363. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4364. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4365. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4366. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4367. }
  4368. } break;
  4369. case LLM_ARCH_PERSIMMON:
  4370. {
  4371. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4372. {
  4373. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4374. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4375. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4376. }
  4377. for (int i = 0; i < n_layer; ++i) {
  4378. ggml_context * ctx_layer = ctx_for_layer(i);
  4379. ggml_context * ctx_split = ctx_for_layer_split(i);
  4380. auto & layer = model.layers[i];
  4381. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4382. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4383. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4384. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4385. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4386. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4387. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4388. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4389. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4390. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4391. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4392. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4393. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {64});
  4394. layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {64});
  4395. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {64});
  4396. layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {64});
  4397. }
  4398. } break;
  4399. case LLM_ARCH_BERT:
  4400. case LLM_ARCH_NOMIC_BERT:
  4401. {
  4402. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4403. model.type_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type});
  4404. if (model.arch == LLM_ARCH_BERT) {
  4405. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  4406. }
  4407. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
  4408. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
  4409. for (int i = 0; i < n_layer; ++i) {
  4410. ggml_context * ctx_layer = ctx_for_layer(i);
  4411. ggml_context * ctx_split = ctx_for_layer_split(i);
  4412. auto & layer = model.layers[i];
  4413. if (model.arch == LLM_ARCH_BERT) {
  4414. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4415. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4416. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4417. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4418. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4419. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4420. } else {
  4421. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4422. }
  4423. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4424. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4425. layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd});
  4426. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4427. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4428. if (model.arch == LLM_ARCH_BERT) {
  4429. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4430. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4431. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4432. } else {
  4433. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4434. }
  4435. layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  4436. layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd});
  4437. }
  4438. } break;
  4439. case LLM_ARCH_BLOOM:
  4440. {
  4441. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4442. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
  4443. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
  4444. // output
  4445. {
  4446. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4447. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4448. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4449. }
  4450. for (int i = 0; i < n_layer; ++i) {
  4451. ggml_context * ctx_layer = ctx_for_layer(i);
  4452. ggml_context * ctx_split = ctx_for_layer_split(i);
  4453. auto & layer = model.layers[i];
  4454. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4455. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4456. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4457. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4458. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4459. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4460. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4461. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4462. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4463. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4464. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4465. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4466. }
  4467. } break;
  4468. case LLM_ARCH_MPT:
  4469. {
  4470. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4471. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train}, false);
  4472. // output
  4473. {
  4474. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4475. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, false);
  4476. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4477. if (!model.output) {
  4478. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // needs to be on GPU
  4479. ml.n_created--; // artificial tensor
  4480. ml.size_data += ggml_nbytes(model.output);
  4481. }
  4482. }
  4483. for (int i = 0; i < n_layer; ++i) {
  4484. ggml_context * ctx_layer = ctx_for_layer(i);
  4485. ggml_context * ctx_split = ctx_for_layer_split(i);
  4486. auto & layer = model.layers[i];
  4487. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4488. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, false);
  4489. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4490. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, false);
  4491. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4492. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, false);
  4493. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4494. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, false);
  4495. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4496. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, false);
  4497. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4498. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, false);
  4499. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, false);
  4500. layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, false);
  4501. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, false);
  4502. layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, false);
  4503. // AWQ ScaleActivation layer
  4504. layer.ffn_act = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, false);
  4505. }
  4506. } break;
  4507. case LLM_ARCH_STABLELM:
  4508. {
  4509. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4510. // output
  4511. {
  4512. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4513. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4514. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4515. }
  4516. for (int i = 0; i < n_layer; ++i) {
  4517. ggml_context * ctx_layer = ctx_for_layer(i);
  4518. ggml_context * ctx_split = ctx_for_layer_split(i);
  4519. auto & layer = model.layers[i];
  4520. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4521. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4522. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4523. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4524. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4525. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4526. // optional bias tensors, present in Stable LM 2 1.6B
  4527. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, false);
  4528. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, false);
  4529. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, false);
  4530. // optional q and k layernorms, present in StableLM 2 12B
  4531. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head}, false);
  4532. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head_kv}, false);
  4533. // optional FFN norm, not present in StableLM 2 12B which uses parallel residual
  4534. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, false);
  4535. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, false);
  4536. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4537. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4538. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4539. }
  4540. } break;
  4541. case LLM_ARCH_QWEN:
  4542. {
  4543. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4544. // output
  4545. {
  4546. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4547. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4548. }
  4549. for (int i = 0; i < n_layer; ++i) {
  4550. ggml_context * ctx_layer = ctx_for_layer(i);
  4551. ggml_context * ctx_split = ctx_for_layer_split(i);
  4552. auto & layer = model.layers[i];
  4553. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4554. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd*3});
  4555. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd*3});
  4556. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4557. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4558. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2});
  4559. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd});
  4560. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff/2});
  4561. }
  4562. } break;
  4563. case LLM_ARCH_QWEN2:
  4564. {
  4565. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4566. // output
  4567. {
  4568. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4569. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4570. // if output is NULL, init from the input tok embed
  4571. if (model.output == NULL) {
  4572. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4573. ml.n_created--; // artificial tensor
  4574. ml.size_data += ggml_nbytes(model.output);
  4575. }
  4576. }
  4577. for (int i = 0; i < n_layer; ++i) {
  4578. ggml_context * ctx_layer = ctx_for_layer(i);
  4579. ggml_context * ctx_split = ctx_for_layer_split(i);
  4580. auto & layer = model.layers[i];
  4581. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4582. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4583. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4584. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4585. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4586. // optional bias tensors
  4587. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4588. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4589. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4590. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4591. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4592. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4593. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4594. }
  4595. } break;
  4596. case LLM_ARCH_QWEN2MOE:
  4597. {
  4598. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4599. // output
  4600. {
  4601. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4602. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4603. }
  4604. for (int i = 0; i < n_layer; ++i) {
  4605. ggml_context * ctx_layer = ctx_for_layer(i);
  4606. ggml_context * ctx_split = ctx_for_layer_split(i);
  4607. auto & layer = model.layers[i];
  4608. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4609. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4610. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4611. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4612. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4613. // optional bias tensors
  4614. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4615. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4616. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4617. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4618. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4619. GGML_ASSERT(hparams.n_expert > 0);
  4620. GGML_ASSERT(hparams.n_expert_used > 0);
  4621. // MoE branch
  4622. auto n_ff_exp = n_ff / hparams.n_expert_used;
  4623. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  4624. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert});
  4625. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  4626. // Shared expert branch
  4627. layer.ffn_gate_inp_shexp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), {n_embd});
  4628. layer.ffn_gate_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff});
  4629. layer.ffn_down_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff, n_embd});
  4630. layer.ffn_up_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff});
  4631. }
  4632. } break;
  4633. case LLM_ARCH_PHI2:
  4634. {
  4635. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4636. // output
  4637. {
  4638. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4639. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4640. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4641. model.output_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab});
  4642. }
  4643. for (int i = 0; i < n_layer; ++i) {
  4644. ggml_context * ctx_layer = ctx_for_layer(i);
  4645. ggml_context * ctx_split = ctx_for_layer_split(i);
  4646. auto & layer = model.layers[i];
  4647. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4648. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4649. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, false);
  4650. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, false);
  4651. if (layer.wqkv == nullptr) {
  4652. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4653. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4654. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4655. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4656. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4657. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4658. }
  4659. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4660. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4661. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4662. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4663. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4664. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4665. }
  4666. } break;
  4667. case LLM_ARCH_PHI3:
  4668. {
  4669. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab });
  4670. // output
  4671. {
  4672. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd });
  4673. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab });
  4674. }
  4675. for (int i = 0; i < n_layer; ++i) {
  4676. ggml_context* ctx_layer = ctx_for_layer(i);
  4677. ggml_context* ctx_split = ctx_for_layer_split(i);
  4678. auto& layer = model.layers[i];
  4679. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd });
  4680. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, false);
  4681. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd });
  4682. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd });
  4683. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd });
  4684. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff });
  4685. }
  4686. } break;
  4687. case LLM_ARCH_PLAMO:
  4688. {
  4689. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4690. // output
  4691. {
  4692. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4693. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4694. }
  4695. for (int i = 0; i < n_layer; ++i) {
  4696. ggml_context * ctx_layer = ctx_for_layer(i);
  4697. ggml_context * ctx_split = ctx_for_layer_split(i);
  4698. auto & layer = model.layers[i];
  4699. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4700. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4701. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4702. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4703. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4704. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4705. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4706. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4707. }
  4708. } break;
  4709. case LLM_ARCH_GPT2:
  4710. {
  4711. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4712. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  4713. // output
  4714. {
  4715. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4716. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4717. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4718. }
  4719. for (int i = 0; i < n_layer; ++i) {
  4720. ggml_context * ctx_layer = ctx_for_layer(i);
  4721. ggml_context * ctx_split = ctx_for_layer_split(i);
  4722. auto & layer = model.layers[i];
  4723. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4724. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4725. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4726. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4727. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4728. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4729. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4730. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4731. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4732. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4733. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4734. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4735. }
  4736. } break;
  4737. case LLM_ARCH_CODESHELL:
  4738. {
  4739. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4740. // output
  4741. {
  4742. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4743. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4744. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4745. }
  4746. for (int i = 0; i < n_layer; ++i) {
  4747. ggml_context * ctx_layer = ctx_for_layer(i);
  4748. ggml_context * ctx_split = ctx_for_layer_split(i);
  4749. auto & layer = model.layers[i];
  4750. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4751. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4752. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4753. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4754. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4755. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4756. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4757. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4758. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4759. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4760. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4761. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4762. }
  4763. } break;
  4764. case LLM_ARCH_ORION:
  4765. {
  4766. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4767. {
  4768. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4769. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4770. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4771. }
  4772. for (int i = 0; i < n_layer; ++i) {
  4773. ggml_context * ctx_layer = ctx_for_layer(i);
  4774. ggml_context * ctx_split = ctx_for_layer_split(i);
  4775. auto & layer = model.layers[i];
  4776. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4777. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4778. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4779. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4780. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4781. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4782. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4783. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4784. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4785. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4786. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4787. }
  4788. } break;
  4789. case LLM_ARCH_INTERNLM2:
  4790. {
  4791. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4792. // output
  4793. {
  4794. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4795. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4796. }
  4797. for (int i = 0; i < n_layer; ++i) {
  4798. ggml_context * ctx_layer = ctx_for_layer(i);
  4799. ggml_context * ctx_split = ctx_for_layer_split(i);
  4800. auto & layer = model.layers[i];
  4801. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4802. // layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4803. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4804. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4805. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4806. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4807. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4808. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4809. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4810. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4811. }
  4812. } break;
  4813. case LLM_ARCH_GEMMA:
  4814. {
  4815. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4816. // output
  4817. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4818. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // same as tok_embd, duplicated to allow offloading
  4819. ml.n_created--; // artificial tensor
  4820. ml.size_data += ggml_nbytes(model.output);
  4821. const int64_t n_ff = hparams.n_ff;
  4822. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  4823. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  4824. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  4825. for (uint32_t i = 0; i < n_layer; ++i) {
  4826. ggml_context * ctx_layer = ctx_for_layer(i);
  4827. ggml_context * ctx_split = ctx_for_layer_split(i);
  4828. auto & layer = model.layers[i];
  4829. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4830. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * hparams.n_head});
  4831. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
  4832. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
  4833. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * hparams.n_head, n_embd});
  4834. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4835. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4836. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4837. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4838. }
  4839. } break;
  4840. case LLM_ARCH_STARCODER2:
  4841. {
  4842. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4843. // output
  4844. {
  4845. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4846. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4847. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4848. // if output is NULL, init from the input tok embed
  4849. if (model.output == NULL) {
  4850. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4851. ml.n_created--; // artificial tensor
  4852. ml.size_data += ggml_nbytes(model.output);
  4853. }
  4854. }
  4855. for (int i = 0; i < n_layer; ++i) {
  4856. ggml_context * ctx_layer = ctx_for_layer(i);
  4857. ggml_context * ctx_split = ctx_for_layer_split(i);
  4858. auto & layer = model.layers[i];
  4859. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4860. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4861. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4862. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4863. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4864. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4865. // optional bias tensors
  4866. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4867. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4868. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4869. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4870. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4871. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4872. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4873. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4874. // optional bias tensors
  4875. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4876. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP , "bias", i), { n_ff});
  4877. }
  4878. } break;
  4879. case LLM_ARCH_MAMBA:
  4880. {
  4881. const int64_t d_conv = hparams.ssm_d_conv;
  4882. const int64_t d_inner = hparams.ssm_d_inner;
  4883. const int64_t d_state = hparams.ssm_d_state;
  4884. const int64_t dt_rank = hparams.ssm_dt_rank;
  4885. // only an expansion factor of 2 is supported for now
  4886. GGML_ASSERT(2 * n_embd == d_inner);
  4887. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4888. // output
  4889. {
  4890. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4891. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4892. // if output is NULL, init from the input tok embed, duplicated to allow offloading
  4893. if (model.output == NULL) {
  4894. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4895. ml.n_created--; // artificial tensor
  4896. ml.size_data += ggml_nbytes(model.output);
  4897. }
  4898. }
  4899. for (int i = 0; i < n_layer; ++i) {
  4900. ggml_context * ctx_layer = ctx_for_layer(i);
  4901. ggml_context * ctx_split = ctx_for_layer_split(i);
  4902. auto & layer = model.layers[i];
  4903. // norm
  4904. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4905. layer.ssm_in = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner});
  4906. layer.ssm_conv1d = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner});
  4907. layer.ssm_conv1d_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner});
  4908. layer.ssm_x = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state});
  4909. layer.ssm_dt = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner});
  4910. layer.ssm_dt_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner});
  4911. // no "weight" suffix for these
  4912. layer.ssm_a = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner});
  4913. layer.ssm_d = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_D, i), {d_inner});
  4914. // out_proj
  4915. layer.ssm_out = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd});
  4916. }
  4917. } break;
  4918. case LLM_ARCH_XVERSE:
  4919. {
  4920. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4921. {
  4922. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4923. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4924. }
  4925. for (int i = 0; i < n_layer; ++i) {
  4926. ggml_context * ctx_layer = ctx_for_layer(i);
  4927. ggml_context * ctx_split = ctx_for_layer_split(i);
  4928. auto & layer = model.layers[i];
  4929. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4930. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4931. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4932. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4933. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4934. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4935. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4936. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4937. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4938. }
  4939. } break;
  4940. case LLM_ARCH_COMMAND_R:
  4941. {
  4942. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4943. // output
  4944. {
  4945. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4946. // init output from the input tok embed
  4947. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4948. ml.n_created--; // artificial tensor
  4949. ml.size_data += ggml_nbytes(model.output);
  4950. }
  4951. for (int i = 0; i < n_layer; ++i) {
  4952. ggml_context * ctx_layer = ctx_for_layer(i);
  4953. ggml_context * ctx_split = ctx_for_layer_split(i);
  4954. auto & layer = model.layers[i];
  4955. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4956. if (n_layer >= 64){
  4957. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head});
  4958. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head_kv});
  4959. }
  4960. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4961. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4962. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4963. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4964. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4965. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4966. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4967. }
  4968. } break;
  4969. case LLM_ARCH_OLMO: // adapted from LLM_ARCH_LLAMA with norm params removed
  4970. {
  4971. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4972. // output
  4973. {
  4974. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4975. // if output is NULL, init from the input tok embed
  4976. if (model.output == NULL) {
  4977. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4978. ml.n_created--; // artificial tensor
  4979. ml.size_data += ggml_nbytes(model.output);
  4980. }
  4981. }
  4982. for (int i = 0; i < n_layer; ++i) {
  4983. ggml_context * ctx_split = ctx_for_layer_split(i);
  4984. auto & layer = model.layers[i];
  4985. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4986. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4987. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4988. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4989. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4990. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4991. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4992. }
  4993. } break;
  4994. default:
  4995. throw std::runtime_error("unknown architecture");
  4996. }
  4997. }
  4998. ml.done_getting_tensors();
  4999. ml.init_mappings(true, use_mlock ? &model.mlock_mmaps : nullptr);
  5000. model.mappings.reserve(ml.mappings.size());
  5001. // create the backend buffers
  5002. std::vector<std::pair<ggml_context *, llama_buf_map>> ctx_bufs;
  5003. ctx_bufs.reserve(ctx_map.size());
  5004. // Ensure we have enough capacity for the maximum backend buffer we will potentially create
  5005. size_t n_max_backend_buffer = ctx_map.size() * ml.files.size();
  5006. model.bufs.reserve(n_max_backend_buffer);
  5007. for (auto & it : ctx_map) {
  5008. ggml_backend_buffer_type_t buft = it.first;
  5009. ggml_context * ctx = it.second;
  5010. llama_buf_map bufs;
  5011. bufs.reserve(n_max_backend_buffer);
  5012. // only the mmap region containing the tensors in the model is mapped to the backend buffer
  5013. // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers
  5014. // this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
  5015. if (ml.use_mmap && use_mmap_buffer && buft == llama_default_buffer_type_cpu(true)) {
  5016. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5017. void * addr = nullptr;
  5018. size_t first, last;
  5019. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  5020. if (first >= last) {
  5021. continue;
  5022. }
  5023. ggml_backend_buffer_t buf = ggml_backend_cpu_buffer_from_ptr((char *) addr + first, last - first);
  5024. if (buf == nullptr) {
  5025. throw std::runtime_error("unable to allocate backend CPU buffer");
  5026. }
  5027. model.bufs.push_back(buf);
  5028. bufs.emplace(idx, buf);
  5029. #ifdef GGML_USE_CUDA
  5030. if (n_layer >= n_gpu_layers) {
  5031. ggml_backend_cuda_register_host_buffer(
  5032. ggml_backend_buffer_get_base(buf),
  5033. ggml_backend_buffer_get_size(buf));
  5034. }
  5035. #endif
  5036. }
  5037. }
  5038. #ifdef GGML_USE_METAL
  5039. else if (ml.use_mmap && use_mmap_buffer && buft == ggml_backend_metal_buffer_type()) {
  5040. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5041. const size_t max_size = ggml_get_max_tensor_size(ctx);
  5042. void * addr = nullptr;
  5043. size_t first, last;
  5044. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  5045. if (first >= last) {
  5046. continue;
  5047. }
  5048. ggml_backend_buffer_t buf = ggml_backend_metal_buffer_from_ptr((char *) addr + first, last - first, max_size);
  5049. if (buf == nullptr) {
  5050. throw std::runtime_error("unable to allocate backend metal buffer");
  5051. }
  5052. model.bufs.push_back(buf);
  5053. bufs.emplace(idx, buf);
  5054. }
  5055. }
  5056. #endif
  5057. else {
  5058. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  5059. if (buf == nullptr) {
  5060. throw std::runtime_error("unable to allocate backend buffer");
  5061. }
  5062. model.bufs.push_back(buf);
  5063. if (use_mlock && ggml_backend_buffer_is_host(buf)) {
  5064. model.mlock_bufs.emplace_back(new llama_mlock);
  5065. auto & mlock_buf = model.mlock_bufs.back();
  5066. mlock_buf->init (ggml_backend_buffer_get_base(buf));
  5067. mlock_buf->grow_to(ggml_backend_buffer_get_size(buf));
  5068. }
  5069. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5070. bufs.emplace(idx, buf);
  5071. }
  5072. }
  5073. if (bufs.empty()) {
  5074. throw std::runtime_error("failed to allocate buffer");
  5075. }
  5076. for (auto & buf : bufs) {
  5077. // indicate that this buffer contains weights
  5078. // this is used by ggml_backend_sched to improve op scheduling -> ops that use a weight are preferably scheduled to the backend that contains the weight
  5079. ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
  5080. }
  5081. ctx_bufs.emplace_back(ctx, bufs);
  5082. }
  5083. if (llama_supports_gpu_offload()) {
  5084. const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
  5085. LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
  5086. if (n_gpu_layers > (int) hparams.n_layer) {
  5087. LLAMA_LOG_INFO("%s: offloading non-repeating layers to GPU\n", __func__);
  5088. }
  5089. const int max_backend_supported_layers = hparams.n_layer + 1;
  5090. const int max_offloadable_layers = hparams.n_layer + 1;
  5091. LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
  5092. }
  5093. // print memory requirements
  5094. for (ggml_backend_buffer_t buf : model.bufs) {
  5095. LLAMA_LOG_INFO("%s: %10s buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf) / 1024.0 / 1024.0);
  5096. }
  5097. // populate tensors_by_name
  5098. for (ggml_context * ctx : model.ctxs) {
  5099. for (auto * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
  5100. model.tensors_by_name.emplace_back(ggml_get_name(cur), cur);
  5101. }
  5102. }
  5103. // load tensor data
  5104. for (auto & it : ctx_bufs) {
  5105. ggml_context * ctx = it.first;
  5106. auto & bufs = it.second;
  5107. if (!ml.load_all_data(ctx, bufs, use_mlock ? &model.mlock_mmaps : NULL, progress_callback, progress_callback_user_data)) {
  5108. return false;
  5109. }
  5110. }
  5111. if (use_mmap_buffer) {
  5112. for (auto & mapping : ml.mappings) {
  5113. model.mappings.emplace_back(std::move(mapping));
  5114. }
  5115. }
  5116. // loading time will be recalculate after the first eval, so
  5117. // we take page faults deferred by mmap() into consideration
  5118. model.t_load_us = ggml_time_us() - model.t_start_us;
  5119. return true;
  5120. }
  5121. // Returns 0 on success, -1 on error, and -2 on cancellation via llama_progress_callback
  5122. static int llama_model_load(const std::string & fname, llama_model & model, llama_model_params & params) {
  5123. try {
  5124. llama_model_loader ml(fname, params.use_mmap, params.kv_overrides);
  5125. model.hparams.vocab_only = params.vocab_only;
  5126. try {
  5127. llm_load_arch(ml, model);
  5128. } catch(const std::exception & e) {
  5129. throw std::runtime_error("error loading model architecture: " + std::string(e.what()));
  5130. }
  5131. try {
  5132. llm_load_hparams(ml, model);
  5133. } catch(const std::exception & e) {
  5134. throw std::runtime_error("error loading model hyperparameters: " + std::string(e.what()));
  5135. }
  5136. try {
  5137. llm_load_vocab(ml, model);
  5138. } catch(const std::exception & e) {
  5139. throw std::runtime_error("error loading model vocabulary: " + std::string(e.what()));
  5140. }
  5141. llm_load_print_meta(ml, model);
  5142. if (model.vocab.type != LLAMA_VOCAB_TYPE_NONE &&
  5143. model.hparams.n_vocab != model.vocab.id_to_token.size()) {
  5144. throw std::runtime_error("vocab size mismatch");
  5145. }
  5146. if (params.vocab_only) {
  5147. LLAMA_LOG_INFO("%s: vocab only - skipping tensors\n", __func__);
  5148. return 0;
  5149. }
  5150. #ifdef GGML_USE_KOMPUTE
  5151. if (params.n_gpu_layers > 0 && (
  5152. !(model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON)
  5153. || !(
  5154. model.ftype == LLAMA_FTYPE_ALL_F32 ||
  5155. model.ftype == LLAMA_FTYPE_MOSTLY_F16 ||
  5156. model.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ||
  5157. model.ftype == LLAMA_FTYPE_MOSTLY_Q4_1
  5158. )
  5159. )) {
  5160. // TODO(cebtenzzre): propagate this error outside of llama_load_model_from_file
  5161. LLAMA_LOG_WARN("%s: disabling Kompute due to unsupported model arch or quantization\n", __func__);
  5162. params.n_gpu_layers = 0;
  5163. }
  5164. #endif
  5165. #ifdef GGML_USE_SYCL
  5166. if (params.split_mode == LLAMA_SPLIT_MODE_NONE) {
  5167. ggml_backend_sycl_set_single_device_mode(params.main_gpu);
  5168. //SYCL use device index (0, 1, 2) directly, uer input device id, then convert to device index.
  5169. params.main_gpu = ggml_backend_sycl_get_device_index(params.main_gpu);
  5170. } else {
  5171. ggml_backend_sycl_set_mul_device_mode();
  5172. }
  5173. #endif
  5174. if (!llm_load_tensors(
  5175. ml, model, params.n_gpu_layers, params.split_mode, params.main_gpu, params.tensor_split, params.use_mlock,
  5176. params.progress_callback, params.progress_callback_user_data
  5177. )) {
  5178. return -2;
  5179. }
  5180. } catch (const std::exception & err) {
  5181. LLAMA_LOG_ERROR("%s: error loading model: %s\n", __func__, err.what());
  5182. return -1;
  5183. }
  5184. return 0;
  5185. }
  5186. //
  5187. // llm_build
  5188. //
  5189. using llm_build_cb = std::function<void(struct ggml_tensor * cur, const char * name, int nl)>;
  5190. enum llm_ffn_op_type {
  5191. LLM_FFN_SILU,
  5192. LLM_FFN_GELU,
  5193. LLM_FFN_RELU,
  5194. LLM_FFN_RELU_SQR,
  5195. };
  5196. enum llm_ffn_gate_type {
  5197. LLM_FFN_SEQ,
  5198. LLM_FFN_PAR, // ffn_gate is parallel to ffn_up
  5199. };
  5200. enum llm_norm_type {
  5201. LLM_NORM,
  5202. LLM_NORM_RMS,
  5203. };
  5204. static struct ggml_tensor * llm_build_inp_embd(
  5205. struct ggml_context * ctx,
  5206. struct llama_context & lctx,
  5207. const llama_hparams & hparams,
  5208. const llama_batch & batch,
  5209. struct ggml_tensor * tok_embd,
  5210. const llm_build_cb & cb) {
  5211. const int64_t n_embd = hparams.n_embd;
  5212. struct ggml_tensor * inpL;
  5213. if (batch.token) {
  5214. lctx.inp_tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, batch.n_tokens);
  5215. cb(lctx.inp_tokens, "inp_tokens", -1);
  5216. ggml_set_input(lctx.inp_tokens);
  5217. inpL = ggml_get_rows(ctx, tok_embd, lctx.inp_tokens);
  5218. } else {
  5219. #ifdef GGML_USE_MPI
  5220. GGML_ASSERT(false && "not implemented");
  5221. #endif
  5222. lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, batch.n_tokens);
  5223. inpL = lctx.inp_embd;
  5224. ggml_set_input(lctx.inp_embd);
  5225. }
  5226. cb(inpL, "inp_embd", -1);
  5227. return inpL;
  5228. }
  5229. static void llm_build_kv_store(
  5230. struct ggml_context * ctx,
  5231. const llama_hparams & hparams,
  5232. const llama_kv_cache & kv,
  5233. struct ggml_cgraph * graph,
  5234. struct ggml_tensor * k_cur,
  5235. struct ggml_tensor * v_cur,
  5236. int64_t n_ctx,
  5237. int32_t n_tokens,
  5238. int32_t kv_head,
  5239. const llm_build_cb & cb,
  5240. int64_t il) {
  5241. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  5242. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  5243. GGML_ASSERT(kv.size == n_ctx);
  5244. // compute the transposed [n_tokens, n_embd] V matrix
  5245. assert(v_cur->ne[0] == n_embd_v_gqa && v_cur->ne[1] == n_tokens);
  5246. struct ggml_tensor * v_cur_t = ggml_transpose(ctx, v_cur);
  5247. cb(v_cur_t, "v_cur_t", il);
  5248. struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, kv.k_l[il], n_tokens*n_embd_k_gqa,
  5249. (ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa))*kv_head);
  5250. cb(k_cache_view, "k_cache_view", il);
  5251. struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, kv.v_l[il], n_tokens, n_embd_v_gqa,
  5252. ( n_ctx)*ggml_element_size(kv.v_l[il]),
  5253. (kv_head)*ggml_element_size(kv.v_l[il]));
  5254. cb(v_cache_view, "v_cache_view", il);
  5255. // important: storing RoPE-ed version of K in the KV cache!
  5256. ggml_build_forward_expand(graph, ggml_cpy(ctx, k_cur, k_cache_view));
  5257. ggml_build_forward_expand(graph, ggml_cpy(ctx, v_cur_t, v_cache_view));
  5258. }
  5259. static struct ggml_tensor * llm_build_norm(
  5260. struct ggml_context * ctx,
  5261. struct ggml_tensor * cur,
  5262. const llama_hparams & hparams,
  5263. struct ggml_tensor * mw,
  5264. struct ggml_tensor * mb,
  5265. llm_norm_type type,
  5266. const llm_build_cb & cb,
  5267. int il) {
  5268. switch (type) {
  5269. case LLM_NORM: cur = ggml_norm (ctx, cur, hparams.f_norm_eps); break;
  5270. case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hparams.f_norm_rms_eps); break;
  5271. }
  5272. if (mw || mb) {
  5273. cb(cur, "norm", il);
  5274. }
  5275. if (mw) {
  5276. cur = ggml_mul(ctx, cur, mw);
  5277. if (mb) {
  5278. cb(cur, "norm_w", il);
  5279. }
  5280. }
  5281. if (mb) {
  5282. cur = ggml_add(ctx, cur, mb);
  5283. }
  5284. return cur;
  5285. }
  5286. static struct ggml_tensor * llm_build_ffn(
  5287. struct ggml_context * ctx,
  5288. struct ggml_tensor * cur,
  5289. struct ggml_tensor * up,
  5290. struct ggml_tensor * up_b,
  5291. struct ggml_tensor * gate,
  5292. struct ggml_tensor * gate_b,
  5293. struct ggml_tensor * down,
  5294. struct ggml_tensor * down_b,
  5295. struct ggml_tensor * act_scales,
  5296. llm_ffn_op_type type_op,
  5297. llm_ffn_gate_type type_gate,
  5298. const llm_build_cb & cb,
  5299. int il) {
  5300. struct ggml_tensor * tmp = ggml_mul_mat(ctx, up, cur);
  5301. cb(tmp, "ffn_up", il);
  5302. if (up_b) {
  5303. tmp = ggml_add(ctx, tmp, up_b);
  5304. cb(tmp, "ffn_up_b", il);
  5305. }
  5306. if (gate) {
  5307. switch (type_gate) {
  5308. case LLM_FFN_SEQ:
  5309. {
  5310. cur = ggml_mul_mat(ctx, gate, tmp);
  5311. cb(cur, "ffn_gate", il);
  5312. } break;
  5313. case LLM_FFN_PAR:
  5314. {
  5315. cur = ggml_mul_mat(ctx, gate, cur);
  5316. cb(cur, "ffn_gate", il);
  5317. } break;
  5318. }
  5319. if (gate_b) {
  5320. cur = ggml_add(ctx, cur, gate_b);
  5321. cb(cur, "ffn_gate_b", il);
  5322. }
  5323. } else {
  5324. cur = tmp;
  5325. }
  5326. switch (type_op) {
  5327. case LLM_FFN_SILU:
  5328. {
  5329. cur = ggml_silu(ctx, cur);
  5330. cb(cur, "ffn_silu", il);
  5331. } break;
  5332. case LLM_FFN_GELU:
  5333. {
  5334. cur = ggml_gelu(ctx, cur);
  5335. cb(cur, "ffn_gelu", il);
  5336. if (act_scales != NULL) {
  5337. cur = ggml_div(ctx, cur, act_scales);
  5338. cb(cur, "ffn_act", il);
  5339. }
  5340. } break;
  5341. case LLM_FFN_RELU:
  5342. {
  5343. cur = ggml_relu(ctx, cur);
  5344. cb(cur, "ffn_relu", il);
  5345. } break;
  5346. case LLM_FFN_RELU_SQR:
  5347. {
  5348. cur = ggml_relu(ctx, cur);
  5349. cb(cur, "ffn_relu", il);
  5350. cur = ggml_sqr(ctx, cur);
  5351. cb(cur, "ffn_sqr(relu)", il);
  5352. } break;
  5353. }
  5354. if (type_gate == LLM_FFN_PAR) {
  5355. cur = ggml_mul(ctx, cur, tmp);
  5356. cb(cur, "ffn_gate_par", il);
  5357. }
  5358. cur = ggml_mul_mat(ctx, down, cur);
  5359. if (down_b) {
  5360. cb(cur, "ffn_down", il);
  5361. }
  5362. if (down_b) {
  5363. cur = ggml_add(ctx, cur, down_b);
  5364. }
  5365. return cur;
  5366. }
  5367. static struct ggml_tensor * llm_build_moe_ffn(
  5368. struct ggml_context * ctx,
  5369. struct ggml_tensor * cur,
  5370. struct ggml_tensor * gate_inp,
  5371. struct ggml_tensor * up_exps,
  5372. struct ggml_tensor * gate_exps,
  5373. struct ggml_tensor * down_exps,
  5374. int64_t n_expert,
  5375. int64_t n_expert_used,
  5376. llm_ffn_op_type type_op,
  5377. bool norm_w,
  5378. const llm_build_cb & cb,
  5379. int il) {
  5380. int64_t n_embd = cur->ne[0];
  5381. int64_t n_tokens = cur->ne[1];
  5382. ggml_tensor * logits = ggml_mul_mat(ctx, gate_inp, cur); // [n_expert, n_tokens]
  5383. cb(logits, "ffn_moe_logits", il);
  5384. ggml_tensor * probs = ggml_soft_max(ctx, logits); // [n_expert, n_tokens]
  5385. cb(probs, "ffn_moe_probs", il);
  5386. // select experts
  5387. ggml_tensor * selected_experts = ggml_top_k(ctx, probs, n_expert_used); // [n_expert_used, n_tokens]
  5388. cb(selected_experts->src[0], "ffn_moe_argsort", il);
  5389. cb(selected_experts, "ffn_moe_topk", il);
  5390. ggml_tensor * weights = ggml_get_rows(ctx,
  5391. ggml_reshape_3d(ctx, probs, 1, n_expert, n_tokens), selected_experts); // [1, n_expert_used, n_tokens]
  5392. cb(weights, "ffn_moe_weights", il);
  5393. if (norm_w) {
  5394. weights = ggml_reshape_2d(ctx, weights, n_expert_used, n_tokens);
  5395. ggml_tensor * weights_sum = ggml_sum_rows(ctx, weights); // [1, n_tokens]
  5396. cb(weights_sum, "ffn_moe_weights_sum", il);
  5397. weights = ggml_div(ctx, weights, weights_sum); // [n_expert_used, n_tokens]
  5398. cb(weights, "ffn_moe_weights_norm", il);
  5399. weights = ggml_reshape_3d(ctx, weights, 1, n_expert_used, n_tokens);
  5400. }
  5401. cur = ggml_reshape_3d(ctx, cur, n_embd, 1, n_tokens);
  5402. ggml_tensor * up = ggml_mul_mat_id(ctx, up_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
  5403. cb(up, "ffn_moe_up", il);
  5404. ggml_tensor * gate = ggml_mul_mat_id(ctx, gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
  5405. cb(gate, "ffn_moe_gate", il);
  5406. switch (type_op) {
  5407. case LLM_FFN_SILU:
  5408. {
  5409. gate = ggml_silu(ctx, gate);
  5410. cb(gate, "ffn_moe_silu", il);
  5411. } break;
  5412. case LLM_FFN_GELU:
  5413. {
  5414. gate = ggml_gelu(ctx, gate);
  5415. cb(gate, "ffn_moe_gelu", il);
  5416. } break;
  5417. default:
  5418. GGML_ASSERT(false);
  5419. }
  5420. ggml_tensor * par = ggml_mul(ctx, up, gate); // [n_ff, n_expert_used, n_tokens]
  5421. cb(par, "ffn_moe_gate_par", il);
  5422. ggml_tensor * experts = ggml_mul_mat_id(ctx, down_exps, par, selected_experts); // [n_embd, n_expert_used, n_tokens]
  5423. cb(experts, "ffn_moe_down", il);
  5424. experts = ggml_mul(ctx, experts, weights);
  5425. // aggregate experts
  5426. ggml_tensor * moe_out = nullptr;
  5427. for (int i = 0; i < n_expert_used; ++i) {
  5428. ggml_tensor * cur_expert = ggml_view_2d(ctx, experts, n_embd, n_tokens,
  5429. experts->nb[2], i*experts->nb[1]);
  5430. if (i == 0) {
  5431. moe_out = cur_expert;
  5432. } else {
  5433. moe_out = ggml_add(ctx, moe_out, cur_expert);
  5434. }
  5435. }
  5436. if (n_expert_used == 1) {
  5437. // avoid returning a non-contiguous tensor
  5438. moe_out = ggml_cont(ctx, moe_out);
  5439. }
  5440. return moe_out;
  5441. }
  5442. // if max_alibi_bias > 0 then apply ALiBi
  5443. static struct ggml_tensor * llm_build_kqv(
  5444. struct ggml_context * ctx,
  5445. const llama_model & model,
  5446. const llama_hparams & hparams,
  5447. const llama_kv_cache & kv,
  5448. struct ggml_cgraph * graph,
  5449. struct ggml_tensor * wo,
  5450. struct ggml_tensor * wo_b,
  5451. struct ggml_tensor * q_cur,
  5452. struct ggml_tensor * kq_mask,
  5453. struct ggml_tensor * kq_pos,
  5454. int64_t n_ctx,
  5455. int32_t n_tokens,
  5456. int32_t n_kv,
  5457. float kq_scale,
  5458. const llm_build_cb & cb,
  5459. int il) {
  5460. const int64_t n_head = hparams.n_head;
  5461. const int64_t n_head_kv = hparams.n_head_kv;
  5462. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  5463. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  5464. const int64_t n_embd_head_v = hparams.n_embd_head_v;
  5465. struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
  5466. cb(q, "q", il);
  5467. struct ggml_tensor * k =
  5468. ggml_view_3d(ctx, kv.k_l[il],
  5469. n_embd_head_k, n_kv, n_head_kv,
  5470. ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa),
  5471. ggml_row_size(kv.k_l[il]->type, n_embd_head_k),
  5472. 0);
  5473. cb(k, "k", il);
  5474. struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
  5475. cb(kq, "kq", il);
  5476. if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3) {
  5477. // for this arch, we need to perform the KQ multiplication with F32 precision, otherwise we get NaNs
  5478. // ref: https://github.com/ggerganov/llama.cpp/pull/4490#issuecomment-1859055847
  5479. ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  5480. }
  5481. if (model.arch == LLM_ARCH_GROK) {
  5482. // need to do the following:
  5483. // multiply by attn_output_multiplyer of 0.08838834764831845
  5484. // and then :
  5485. // kq = 30 * tanh(kq / 30)
  5486. // before the softmax below
  5487. //try from phi2
  5488. //ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  5489. kq = ggml_tanh(ctx, ggml_scale(ctx, kq, 0.08838834764831845f/30.0f));
  5490. kq = ggml_scale(ctx, kq, 30);
  5491. }
  5492. #if defined(GGML_USE_KOMPUTE)
  5493. #pragma message("TODO: ALiBi support in ggml_soft_max_ext is not implemented for Kompute")
  5494. #pragma message(" Falling back to ggml_alibi(). Will become an error in Mar 2024")
  5495. #pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/5488")
  5496. if (hparams.f_max_alibi_bias > 0.0f) {
  5497. kq = ggml_scale(ctx, kq, kq_scale);
  5498. cb(kq, "kq_scaled", il);
  5499. kq = ggml_alibi(ctx, kq, /*n_past*/ 0, n_head, hparams.f_max_alibi_bias);
  5500. cb(kq, "kq_scaled_alibi", il);
  5501. kq = ggml_add(ctx, kq, kq_mask);
  5502. cb(kq, "kq_masked", il);
  5503. kq = ggml_soft_max(ctx, kq);
  5504. cb(kq, "kq_soft_max", il);
  5505. } else
  5506. #endif
  5507. {
  5508. kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_pos, kq_scale, hparams.f_max_alibi_bias);
  5509. cb(kq, "kq_soft_max_ext", il);
  5510. }
  5511. GGML_ASSERT(kv.size == n_ctx);
  5512. // split cached v into n_head heads
  5513. struct ggml_tensor * v =
  5514. ggml_view_3d(ctx, kv.v_l[il],
  5515. n_kv, n_embd_head_v, n_head_kv,
  5516. ggml_element_size(kv.v_l[il])*n_ctx,
  5517. ggml_element_size(kv.v_l[il])*n_ctx*n_embd_head_v,
  5518. 0);
  5519. cb(v, "v", il);
  5520. struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
  5521. cb(kqv, "kqv", il);
  5522. struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
  5523. cb(kqv_merged, "kqv_merged", il);
  5524. struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, n_embd_head_k*n_head, n_tokens);
  5525. cb(cur, "kqv_merged_cont", il);
  5526. ggml_build_forward_expand(graph, cur);
  5527. cur = ggml_mul_mat(ctx, wo, cur);
  5528. if (wo_b) {
  5529. cb(cur, "kqv_wo", il);
  5530. }
  5531. if (wo_b) {
  5532. cur = ggml_add(ctx, cur, wo_b);
  5533. }
  5534. return cur;
  5535. }
  5536. static struct ggml_tensor * llm_build_kv(
  5537. struct ggml_context * ctx,
  5538. const llama_model & model,
  5539. const llama_hparams & hparams,
  5540. const llama_kv_cache & kv,
  5541. struct ggml_cgraph * graph,
  5542. struct ggml_tensor * wo,
  5543. struct ggml_tensor * wo_b,
  5544. struct ggml_tensor * k_cur,
  5545. struct ggml_tensor * v_cur,
  5546. struct ggml_tensor * q_cur,
  5547. struct ggml_tensor * kq_mask,
  5548. struct ggml_tensor * kq_pos,
  5549. int64_t n_ctx,
  5550. int32_t n_tokens,
  5551. int32_t kv_head,
  5552. int32_t n_kv,
  5553. float kq_scale,
  5554. const llm_build_cb & cb,
  5555. int il) {
  5556. // these nodes are added to the graph together so that they are not reordered
  5557. // by doing so, the number of splits in the graph is reduced
  5558. ggml_build_forward_expand(graph, q_cur);
  5559. ggml_build_forward_expand(graph, k_cur);
  5560. ggml_build_forward_expand(graph, v_cur);
  5561. llm_build_kv_store(ctx, hparams, kv, graph, k_cur, v_cur, n_ctx, n_tokens, kv_head, cb, il);
  5562. struct ggml_tensor * cur;
  5563. cur = llm_build_kqv(ctx, model, hparams, kv, graph, wo, wo_b,
  5564. q_cur, kq_mask, kq_pos, n_ctx, n_tokens, n_kv, kq_scale, cb, il);
  5565. cb(cur, "kqv_out", il);
  5566. return cur;
  5567. }
  5568. struct llm_build_context {
  5569. const llama_model & model;
  5570. llama_context & lctx;
  5571. const llama_hparams & hparams;
  5572. const llama_cparams & cparams;
  5573. const llama_batch & batch;
  5574. const llama_kv_cache & kv_self;
  5575. const int64_t n_embd;
  5576. const int64_t n_layer;
  5577. const int64_t n_rot;
  5578. const int64_t n_ctx; // user-specified context size (can be different from n_ctx_train)
  5579. const int64_t n_head;
  5580. const int64_t n_head_kv;
  5581. const int64_t n_embd_head_k;
  5582. const int64_t n_embd_k_gqa;
  5583. const int64_t n_embd_head_v;
  5584. const int64_t n_embd_v_gqa;
  5585. const int64_t n_expert;
  5586. const int64_t n_expert_used;
  5587. const float freq_base;
  5588. const float freq_scale;
  5589. const float ext_factor;
  5590. const float attn_factor;
  5591. const float beta_fast;
  5592. const float beta_slow;
  5593. const float norm_eps;
  5594. const float norm_rms_eps;
  5595. const int32_t n_tokens;
  5596. const int32_t n_kv; // size of KV cache to consider (n_kv <= kv_self.size)
  5597. const int32_t n_outputs;
  5598. const int32_t kv_head; // index of where we store new KV data in the cache
  5599. const int32_t n_orig_ctx;
  5600. const enum llama_pooling_type pooling_type;
  5601. const enum llama_rope_type rope_type;
  5602. const llm_build_cb & cb;
  5603. std::vector<uint8_t> & buf_compute_meta;
  5604. struct ggml_context * ctx0 = nullptr;
  5605. // TODO: consider making the entire interface noexcept
  5606. llm_build_context(
  5607. llama_context & lctx,
  5608. const llama_batch & batch,
  5609. const llm_build_cb & cb,
  5610. bool worst_case) :
  5611. model (lctx.model),
  5612. lctx (lctx),
  5613. hparams (model.hparams),
  5614. cparams (lctx.cparams),
  5615. batch (batch),
  5616. kv_self (lctx.kv_self),
  5617. n_embd (hparams.n_embd),
  5618. n_layer (hparams.n_layer),
  5619. n_rot (hparams.n_rot),
  5620. n_ctx (cparams.n_ctx),
  5621. n_head (hparams.n_head),
  5622. n_head_kv (hparams.n_head_kv),
  5623. n_embd_head_k (hparams.n_embd_head_k),
  5624. n_embd_k_gqa (hparams.n_embd_k_gqa()),
  5625. n_embd_head_v (hparams.n_embd_head_v),
  5626. n_embd_v_gqa (hparams.n_embd_v_gqa()),
  5627. n_expert (hparams.n_expert),
  5628. n_expert_used (hparams.n_expert_used),
  5629. freq_base (cparams.rope_freq_base),
  5630. freq_scale (cparams.rope_freq_scale),
  5631. ext_factor (cparams.yarn_ext_factor),
  5632. attn_factor (cparams.yarn_attn_factor),
  5633. beta_fast (cparams.yarn_beta_fast),
  5634. beta_slow (cparams.yarn_beta_slow),
  5635. norm_eps (hparams.f_norm_eps),
  5636. norm_rms_eps (hparams.f_norm_rms_eps),
  5637. n_tokens (batch.n_tokens),
  5638. n_kv (worst_case ? kv_self.size : kv_self.n),
  5639. n_outputs (worst_case ? n_tokens : lctx.n_outputs),
  5640. kv_head (worst_case ? (kv_self.recurrent ? 0 : kv_self.size - n_tokens) : kv_self.head),
  5641. n_orig_ctx (cparams.n_yarn_orig_ctx),
  5642. pooling_type (cparams.pooling_type),
  5643. rope_type (hparams.rope_type),
  5644. cb (cb),
  5645. buf_compute_meta (lctx.buf_compute_meta) {
  5646. // all initializations should be done in init()
  5647. }
  5648. void init() {
  5649. struct ggml_init_params params = {
  5650. /*.mem_size =*/ buf_compute_meta.size(),
  5651. /*.mem_buffer =*/ buf_compute_meta.data(),
  5652. /*.no_alloc =*/ true,
  5653. };
  5654. ctx0 = ggml_init(params);
  5655. lctx.inp_tokens = nullptr;
  5656. lctx.inp_embd = nullptr;
  5657. lctx.inp_pos = nullptr;
  5658. lctx.inp_out_ids = nullptr;
  5659. lctx.inp_KQ_mask = nullptr;
  5660. lctx.inp_KQ_pos = nullptr;
  5661. lctx.inp_K_shift = nullptr;
  5662. lctx.inp_mean = nullptr;
  5663. lctx.inp_cls = nullptr;
  5664. lctx.inp_s_copy = nullptr;
  5665. lctx.inp_s_mask = nullptr;
  5666. lctx.inp_s_seq = nullptr;
  5667. }
  5668. void free() {
  5669. if (ctx0) {
  5670. ggml_free(ctx0);
  5671. ctx0 = nullptr;
  5672. }
  5673. }
  5674. struct ggml_cgraph * build_k_shift() {
  5675. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5676. GGML_ASSERT(kv_self.size == n_ctx);
  5677. lctx.inp_K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
  5678. cb(lctx.inp_K_shift, "K_shift", -1);
  5679. ggml_set_input(lctx.inp_K_shift);
  5680. for (int il = 0; il < n_layer; ++il) {
  5681. struct ggml_tensor * tmp =
  5682. // we rotate only the first n_rot dimensions
  5683. ggml_rope_custom_inplace(ctx0,
  5684. ggml_view_3d(ctx0, kv_self.k_l[il],
  5685. n_embd_head_k, n_head_kv, n_ctx,
  5686. ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k),
  5687. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  5688. 0),
  5689. lctx.inp_K_shift, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5690. ext_factor, attn_factor, beta_fast, beta_slow);
  5691. cb(tmp, "K_shifted", il);
  5692. ggml_build_forward_expand(gf, tmp);
  5693. }
  5694. return gf;
  5695. }
  5696. struct ggml_cgraph * build_s_copy() {
  5697. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5698. GGML_ASSERT(kv_self.recurrent);
  5699. struct ggml_tensor * state_copy = build_inp_s_copy();
  5700. for (int il = 0; il < n_layer; ++il) {
  5701. struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size);
  5702. struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size);
  5703. conv_states = ggml_get_rows(ctx0, conv_states, state_copy);
  5704. ssm_states = ggml_get_rows(ctx0, ssm_states, state_copy);
  5705. // TODO: name the intermediate tensors with cb()
  5706. ggml_build_forward_expand(gf, ggml_cpy(ctx0, conv_states, kv_self.k_l[il]));
  5707. ggml_build_forward_expand(gf, ggml_cpy(ctx0, ssm_states, kv_self.v_l[il]));
  5708. }
  5709. return gf;
  5710. }
  5711. struct ggml_cgraph * build_defrag(const std::vector<uint32_t> & ids) {
  5712. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5713. for (uint32_t i = 0; i < ids.size(); ++i) {
  5714. const uint32_t id = ids[i];
  5715. if (i == id || id == ids.size()) {
  5716. continue;
  5717. }
  5718. uint32_t nm = 1;
  5719. while (i + nm < ids.size() && ids[i + nm] == id + nm) {
  5720. nm++;
  5721. }
  5722. for (int il = 0; il < n_layer; ++il) {
  5723. ggml_tensor * view_k_src = ggml_view_2d(ctx0, kv_self.k_l[il],
  5724. n_embd_k_gqa, nm,
  5725. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  5726. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*i));
  5727. ggml_tensor * view_k_dst = ggml_view_2d(ctx0, kv_self.k_l[il],
  5728. n_embd_k_gqa, nm,
  5729. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  5730. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*id));
  5731. ggml_tensor * view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
  5732. nm, n_embd_v_gqa,
  5733. ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
  5734. ggml_row_size(kv_self.v_l[il]->type, i));
  5735. ggml_tensor * view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
  5736. nm, n_embd_v_gqa,
  5737. ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
  5738. ggml_row_size(kv_self.v_l[il]->type, id));
  5739. ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_k_src, view_k_dst));
  5740. ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_v_src, view_v_dst));
  5741. }
  5742. i += nm - 1;
  5743. }
  5744. //LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes);
  5745. return gf;
  5746. }
  5747. struct ggml_tensor * build_inp_pos() {
  5748. lctx.inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  5749. cb(lctx.inp_pos, "inp_pos", -1);
  5750. ggml_set_input(lctx.inp_pos);
  5751. return lctx.inp_pos;
  5752. }
  5753. struct ggml_tensor * build_inp_out_ids() {
  5754. lctx.inp_out_ids = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_outputs);
  5755. cb(lctx.inp_out_ids, "inp_out_ids", -1);
  5756. ggml_set_input(lctx.inp_out_ids);
  5757. return lctx.inp_out_ids;
  5758. }
  5759. struct ggml_tensor * build_inp_KQ_mask(bool causal = true) {
  5760. if (causal) {
  5761. lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, n_tokens);
  5762. } else {
  5763. lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens);
  5764. }
  5765. cb(lctx.inp_KQ_mask, "KQ_mask", -1);
  5766. ggml_set_input(lctx.inp_KQ_mask);
  5767. return lctx.inp_KQ_mask;
  5768. }
  5769. struct ggml_tensor * build_inp_KQ_pos() {
  5770. lctx.inp_KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, n_kv);
  5771. cb(lctx.inp_KQ_pos, "KQ_pos", -1);
  5772. ggml_set_input(lctx.inp_KQ_pos);
  5773. return lctx.inp_KQ_pos;
  5774. }
  5775. struct ggml_tensor * build_inp_mean() {
  5776. lctx.inp_mean = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens);
  5777. cb(lctx.inp_mean, "inp_mean", -1);
  5778. ggml_set_input(lctx.inp_mean);
  5779. return lctx.inp_mean;
  5780. }
  5781. struct ggml_tensor * build_inp_cls() {
  5782. lctx.inp_cls = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  5783. cb(lctx.inp_cls, "inp_cls", -1);
  5784. ggml_set_input(lctx.inp_cls);
  5785. return lctx.inp_cls;
  5786. }
  5787. struct ggml_tensor * build_inp_s_copy() {
  5788. lctx.inp_s_copy = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, kv_self.size);
  5789. cb(lctx.inp_s_copy, "inp_s_copy", -1);
  5790. ggml_set_input(lctx.inp_s_copy);
  5791. return lctx.inp_s_copy;
  5792. }
  5793. struct ggml_tensor * build_inp_s_mask() {
  5794. lctx.inp_s_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_kv);
  5795. cb(lctx.inp_s_mask, "inp_s_mask", -1);
  5796. ggml_set_input(lctx.inp_s_mask);
  5797. return lctx.inp_s_mask;
  5798. }
  5799. struct ggml_tensor * build_inp_s_seq() {
  5800. lctx.inp_s_seq = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_kv, n_tokens);
  5801. cb(lctx.inp_s_seq, "inp_s_seq", -1);
  5802. ggml_set_input(lctx.inp_s_seq);
  5803. return lctx.inp_s_seq;
  5804. }
  5805. struct ggml_cgraph * build_llama() {
  5806. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5807. // mutable variable, needed during the last layer of the computation to skip unused tokens
  5808. int32_t n_tokens = this->n_tokens;
  5809. const int64_t n_embd_head = hparams.n_embd_head_v;
  5810. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5811. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5812. struct ggml_tensor * cur;
  5813. struct ggml_tensor * inpL;
  5814. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  5815. // inp_pos - contains the positions
  5816. struct ggml_tensor * inp_pos = build_inp_pos();
  5817. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  5818. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  5819. for (int il = 0; il < n_layer; ++il) {
  5820. struct ggml_tensor * inpSA = inpL;
  5821. // norm
  5822. cur = llm_build_norm(ctx0, inpL, hparams,
  5823. model.layers[il].attn_norm, NULL,
  5824. LLM_NORM_RMS, cb, il);
  5825. cb(cur, "attn_norm", il);
  5826. // self-attention
  5827. {
  5828. // compute Q and K and RoPE them
  5829. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  5830. cb(Qcur, "Qcur", il);
  5831. if (model.layers[il].bq) {
  5832. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  5833. cb(Qcur, "Qcur", il);
  5834. }
  5835. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  5836. cb(Kcur, "Kcur", il);
  5837. if (model.layers[il].bk) {
  5838. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  5839. cb(Kcur, "Kcur", il);
  5840. }
  5841. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  5842. cb(Vcur, "Vcur", il);
  5843. if (model.layers[il].bv) {
  5844. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  5845. cb(Vcur, "Vcur", il);
  5846. }
  5847. Qcur = ggml_rope_custom(
  5848. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  5849. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5850. ext_factor, attn_factor, beta_fast, beta_slow
  5851. );
  5852. cb(Qcur, "Qcur", il);
  5853. Kcur = ggml_rope_custom(
  5854. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  5855. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5856. ext_factor, attn_factor, beta_fast, beta_slow
  5857. );
  5858. cb(Kcur, "Kcur", il);
  5859. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  5860. model.layers[il].wo, model.layers[il].bo,
  5861. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  5862. }
  5863. if (il == n_layer - 1) {
  5864. // skip computing output for unused tokens
  5865. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  5866. n_tokens = n_outputs;
  5867. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5868. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5869. }
  5870. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5871. cb(ffn_inp, "ffn_inp", il);
  5872. // feed-forward network
  5873. if (model.layers[il].ffn_gate_inp == nullptr) {
  5874. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  5875. model.layers[il].ffn_norm, NULL,
  5876. LLM_NORM_RMS, cb, il);
  5877. cb(cur, "ffn_norm", il);
  5878. cur = llm_build_ffn(ctx0, cur,
  5879. model.layers[il].ffn_up, NULL,
  5880. model.layers[il].ffn_gate, NULL,
  5881. model.layers[il].ffn_down, NULL,
  5882. NULL,
  5883. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  5884. cb(cur, "ffn_out", il);
  5885. } else {
  5886. // MoE branch
  5887. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  5888. model.layers[il].ffn_norm, NULL,
  5889. LLM_NORM_RMS, cb, il);
  5890. cb(cur, "ffn_norm", il);
  5891. cur = llm_build_moe_ffn(ctx0, cur,
  5892. model.layers[il].ffn_gate_inp,
  5893. model.layers[il].ffn_up_exps,
  5894. model.layers[il].ffn_gate_exps,
  5895. model.layers[il].ffn_down_exps,
  5896. n_expert, n_expert_used,
  5897. LLM_FFN_SILU, true,
  5898. cb, il);
  5899. cb(cur, "ffn_moe_out", il);
  5900. }
  5901. cur = ggml_add(ctx0, cur, ffn_inp);
  5902. cb(cur, "ffn_out", il);
  5903. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  5904. if (layer_dir != nullptr) {
  5905. cur = ggml_add(ctx0, cur, layer_dir);
  5906. }
  5907. cb(cur, "l_out", il);
  5908. // input for next layer
  5909. inpL = cur;
  5910. }
  5911. cur = inpL;
  5912. cur = llm_build_norm(ctx0, cur, hparams,
  5913. model.output_norm, NULL,
  5914. LLM_NORM_RMS, cb, -1);
  5915. cb(cur, "result_norm", -1);
  5916. // lm_head
  5917. cur = ggml_mul_mat(ctx0, model.output, cur);
  5918. cb(cur, "result_output", -1);
  5919. ggml_build_forward_expand(gf, cur);
  5920. return gf;
  5921. }
  5922. struct ggml_cgraph * build_baichuan() {
  5923. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5924. const int64_t n_embd_head = hparams.n_embd_head_v;
  5925. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5926. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5927. struct ggml_tensor * cur;
  5928. struct ggml_tensor * inpL;
  5929. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  5930. // inp_pos - contains the positions
  5931. struct ggml_tensor * inp_pos = model.type == MODEL_7B ? build_inp_pos() : nullptr;
  5932. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  5933. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  5934. // positions of the tokens in the KV cache
  5935. struct ggml_tensor * KQ_pos = build_inp_KQ_pos();
  5936. for (int il = 0; il < n_layer; ++il) {
  5937. struct ggml_tensor * inpSA = inpL;
  5938. cur = llm_build_norm(ctx0, inpL, hparams,
  5939. model.layers[il].attn_norm, NULL,
  5940. LLM_NORM_RMS, cb, il);
  5941. cb(cur, "attn_norm", il);
  5942. // self-attention
  5943. {
  5944. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  5945. cb(Qcur, "Qcur", il);
  5946. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  5947. cb(Kcur, "Kcur", il);
  5948. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  5949. cb(Vcur, "Vcur", il);
  5950. switch (model.type) {
  5951. case MODEL_7B:
  5952. Qcur = ggml_rope_custom(
  5953. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  5954. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5955. ext_factor, attn_factor, beta_fast, beta_slow
  5956. );
  5957. Kcur = ggml_rope_custom(
  5958. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  5959. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5960. ext_factor, attn_factor, beta_fast, beta_slow
  5961. );
  5962. break;
  5963. case MODEL_13B:
  5964. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd/n_head, n_head, n_tokens);
  5965. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd/n_head, n_head, n_tokens);
  5966. break;
  5967. default:
  5968. GGML_ASSERT(false);
  5969. }
  5970. cb(Qcur, "Qcur", il);
  5971. cb(Kcur, "Kcur", il);
  5972. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  5973. model.layers[il].wo, NULL,
  5974. Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  5975. }
  5976. if (il == n_layer - 1) {
  5977. // skip computing output for unused tokens
  5978. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  5979. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5980. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5981. }
  5982. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5983. cb(ffn_inp, "ffn_inp", il);
  5984. // feed-forward network
  5985. {
  5986. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  5987. model.layers[il].ffn_norm, NULL,
  5988. LLM_NORM_RMS, cb, il);
  5989. cb(cur, "ffn_norm", il);
  5990. cur = llm_build_ffn(ctx0, cur,
  5991. model.layers[il].ffn_up, NULL,
  5992. model.layers[il].ffn_gate, NULL,
  5993. model.layers[il].ffn_down, NULL,
  5994. NULL,
  5995. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  5996. cb(cur, "ffn_out", il);
  5997. }
  5998. cur = ggml_add(ctx0, cur, ffn_inp);
  5999. cb(cur, "l_out", il);
  6000. // input for next layer
  6001. inpL = cur;
  6002. }
  6003. cur = inpL;
  6004. cur = llm_build_norm(ctx0, cur, hparams,
  6005. model.output_norm, NULL,
  6006. LLM_NORM_RMS, cb, -1);
  6007. cb(cur, "result_norm", -1);
  6008. // lm_head
  6009. cur = ggml_mul_mat(ctx0, model.output, cur);
  6010. cb(cur, "result_output", -1);
  6011. ggml_build_forward_expand(gf, cur);
  6012. return gf;
  6013. }
  6014. struct ggml_cgraph * build_xverse() {
  6015. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6016. const int64_t n_embd_head = hparams.n_embd_head_v;
  6017. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6018. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6019. struct ggml_tensor * cur;
  6020. struct ggml_tensor * inpL;
  6021. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6022. // inp_pos - contains the positions
  6023. struct ggml_tensor * inp_pos = build_inp_pos();
  6024. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6025. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6026. // positions of the tokens in the KV cache
  6027. struct ggml_tensor * KQ_pos = build_inp_KQ_pos();
  6028. for (int il = 0; il < n_layer; ++il) {
  6029. struct ggml_tensor * inpSA = inpL;
  6030. cur = llm_build_norm(ctx0, inpL, hparams,
  6031. model.layers[il].attn_norm, NULL,
  6032. LLM_NORM_RMS, cb, il);
  6033. cb(cur, "attn_norm", il);
  6034. // self-attention
  6035. {
  6036. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6037. cb(Qcur, "Qcur", il);
  6038. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6039. cb(Kcur, "Kcur", il);
  6040. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6041. cb(Vcur, "Vcur", il);
  6042. Qcur = ggml_rope_custom(
  6043. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  6044. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6045. ext_factor, attn_factor, beta_fast, beta_slow
  6046. );
  6047. cb(Qcur, "Qcur", il);
  6048. Kcur = ggml_rope_custom(
  6049. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  6050. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6051. ext_factor, attn_factor, beta_fast, beta_slow
  6052. );
  6053. cb(Kcur, "Kcur", il);
  6054. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6055. model.layers[il].wo, NULL,
  6056. Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6057. }
  6058. if (il == n_layer - 1) {
  6059. // skip computing output for unused tokens
  6060. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6061. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6062. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6063. }
  6064. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6065. cb(ffn_inp, "ffn_inp", il);
  6066. // feed-forward network
  6067. {
  6068. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6069. model.layers[il].ffn_norm, NULL,
  6070. LLM_NORM_RMS, cb, il);
  6071. cb(cur, "ffn_norm", il);
  6072. cur = llm_build_ffn(ctx0, cur,
  6073. model.layers[il].ffn_up, NULL,
  6074. model.layers[il].ffn_gate, NULL,
  6075. model.layers[il].ffn_down, NULL,
  6076. NULL,
  6077. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6078. cb(cur, "ffn_out", il);
  6079. }
  6080. cur = ggml_add(ctx0, cur, ffn_inp);
  6081. cb(cur, "l_out", il);
  6082. // input for next layer
  6083. inpL = cur;
  6084. }
  6085. cur = inpL;
  6086. cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, NULL, LLM_NORM_RMS, cb, -1);
  6087. cb(cur, "result_norm", -1);
  6088. // lm_head
  6089. cur = ggml_mul_mat(ctx0, model.output, cur);
  6090. cb(cur, "result_output", -1);
  6091. ggml_build_forward_expand(gf, cur);
  6092. return gf;
  6093. }
  6094. struct ggml_cgraph * build_falcon() {
  6095. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6096. const int64_t n_embd_head = hparams.n_embd_head_v;
  6097. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6098. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6099. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6100. struct ggml_tensor * cur;
  6101. struct ggml_tensor * inpL;
  6102. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6103. // inp_pos - contains the positions
  6104. struct ggml_tensor * inp_pos = build_inp_pos();
  6105. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6106. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6107. for (int il = 0; il < n_layer; ++il) {
  6108. struct ggml_tensor * attn_norm;
  6109. attn_norm = llm_build_norm(ctx0, inpL, hparams,
  6110. model.layers[il].attn_norm,
  6111. model.layers[il].attn_norm_b,
  6112. LLM_NORM, cb, il);
  6113. cb(attn_norm, "attn_norm", il);
  6114. // self-attention
  6115. {
  6116. if (model.layers[il].attn_norm_2) {
  6117. // Falcon-40B
  6118. cur = llm_build_norm(ctx0, inpL, hparams,
  6119. model.layers[il].attn_norm_2,
  6120. model.layers[il].attn_norm_2_b,
  6121. LLM_NORM, cb, il);
  6122. cb(cur, "attn_norm_2", il);
  6123. } else {
  6124. cur = attn_norm;
  6125. }
  6126. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6127. cb(cur, "wqkv", il);
  6128. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6129. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6130. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6131. cb(Qcur, "Qcur", il);
  6132. cb(Kcur, "Kcur", il);
  6133. cb(Vcur, "Vcur", il);
  6134. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6135. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6136. // using mode = 2 for neox mode
  6137. Qcur = ggml_rope_custom(
  6138. ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  6139. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6140. );
  6141. cb(Qcur, "Qcur", il);
  6142. Kcur = ggml_rope_custom(
  6143. ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  6144. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6145. );
  6146. cb(Kcur, "Kcur", il);
  6147. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6148. model.layers[il].wo, NULL,
  6149. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6150. }
  6151. if (il == n_layer - 1) {
  6152. // skip computing output for unused tokens
  6153. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6154. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6155. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6156. attn_norm = ggml_get_rows(ctx0, attn_norm, inp_out_ids);
  6157. }
  6158. struct ggml_tensor * ffn_inp = cur;
  6159. // feed forward
  6160. {
  6161. cur = llm_build_ffn(ctx0, attn_norm, // !! use the attn norm, not the result
  6162. model.layers[il].ffn_up, NULL,
  6163. NULL, NULL,
  6164. model.layers[il].ffn_down, NULL,
  6165. NULL,
  6166. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6167. cb(cur, "ffn_out", il);
  6168. }
  6169. cur = ggml_add(ctx0, cur, ffn_inp);
  6170. cb(cur, "l_out", il);
  6171. cur = ggml_add(ctx0, cur, inpL);
  6172. cb(cur, "l_out", il);
  6173. // input for next layer
  6174. inpL = cur;
  6175. }
  6176. cur = inpL;
  6177. // norm
  6178. cur = llm_build_norm(ctx0, cur, hparams,
  6179. model.output_norm,
  6180. model.output_norm_b,
  6181. LLM_NORM, cb, -1);
  6182. cb(cur, "result_norm", -1);
  6183. cur = ggml_mul_mat(ctx0, model.output, cur);
  6184. cb(cur, "result_output", -1);
  6185. ggml_build_forward_expand(gf, cur);
  6186. return gf;
  6187. }
  6188. struct ggml_cgraph * build_grok() {
  6189. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6190. // mutable variable, needed during the last layer of the computation to skip unused tokens
  6191. int32_t n_tokens = this->n_tokens;
  6192. const int64_t n_embd_head = hparams.n_embd_head_v;
  6193. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6194. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6195. struct ggml_tensor * cur;
  6196. struct ggml_tensor * inpL;
  6197. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6198. // multiply by embedding_multiplier_scale of 78.38367176906169
  6199. inpL = ggml_scale(ctx0, inpL, 78.38367176906169f);
  6200. // inp_pos - contains the positions
  6201. struct ggml_tensor * inp_pos = build_inp_pos();
  6202. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6203. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6204. for (int il = 0; il < n_layer; ++il) {
  6205. struct ggml_tensor * inpSA = inpL;
  6206. // norm
  6207. cur = llm_build_norm(ctx0, inpL, hparams,
  6208. model.layers[il].attn_norm, NULL,
  6209. LLM_NORM_RMS, cb, il);
  6210. cb(cur, "attn_norm", il);
  6211. // self-attention
  6212. {
  6213. // compute Q and K and RoPE them
  6214. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6215. cb(Qcur, "Qcur", il);
  6216. if (model.layers[il].bq) {
  6217. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6218. cb(Qcur, "Qcur", il);
  6219. }
  6220. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6221. cb(Kcur, "Kcur", il);
  6222. if (model.layers[il].bk) {
  6223. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6224. cb(Kcur, "Kcur", il);
  6225. }
  6226. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6227. cb(Vcur, "Vcur", il);
  6228. if (model.layers[il].bv) {
  6229. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6230. cb(Vcur, "Vcur", il);
  6231. }
  6232. Qcur = ggml_rope_custom(
  6233. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  6234. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6235. ext_factor, attn_factor, beta_fast, beta_slow
  6236. );
  6237. cb(Qcur, "Qcur", il);
  6238. Kcur = ggml_rope_custom(
  6239. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  6240. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6241. ext_factor, attn_factor, beta_fast, beta_slow
  6242. );
  6243. cb(Kcur, "Kcur", il);
  6244. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6245. model.layers[il].wo, model.layers[il].bo,
  6246. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  6247. }
  6248. if (il == n_layer - 1) {
  6249. // skip computing output for unused tokens
  6250. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6251. n_tokens = n_outputs;
  6252. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6253. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6254. }
  6255. // Grok
  6256. // if attn_out_norm is present then apply it before adding the input
  6257. if (model.layers[il].attn_out_norm) {
  6258. cur = llm_build_norm(ctx0, cur, hparams,
  6259. model.layers[il].attn_out_norm, NULL,
  6260. LLM_NORM_RMS, cb, il);
  6261. cb(cur, "attn_out_norm", il);
  6262. }
  6263. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6264. cb(ffn_inp, "ffn_inp", il);
  6265. // feed-forward network
  6266. // MoE branch
  6267. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6268. model.layers[il].ffn_norm, NULL,
  6269. LLM_NORM_RMS, cb, il);
  6270. cb(cur, "ffn_norm", il);
  6271. cur = llm_build_moe_ffn(ctx0, cur,
  6272. model.layers[il].ffn_gate_inp,
  6273. model.layers[il].ffn_up_exps,
  6274. model.layers[il].ffn_gate_exps,
  6275. model.layers[il].ffn_down_exps,
  6276. n_expert, n_expert_used,
  6277. LLM_FFN_GELU, true,
  6278. cb, il);
  6279. cb(cur, "ffn_moe_out", il);
  6280. // Grok
  6281. // if layer_out_norm is present then apply it before adding the input
  6282. // Idea: maybe ffn_out_norm is a better name
  6283. if (model.layers[il].layer_out_norm) {
  6284. cur = llm_build_norm(ctx0, cur, hparams,
  6285. model.layers[il].layer_out_norm, NULL,
  6286. LLM_NORM_RMS, cb, il);
  6287. cb(cur, "layer_out_norm", il);
  6288. }
  6289. cur = ggml_add(ctx0, cur, ffn_inp);
  6290. cb(cur, "ffn_out", il);
  6291. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  6292. if (layer_dir != nullptr) {
  6293. cur = ggml_add(ctx0, cur, layer_dir);
  6294. }
  6295. cb(cur, "l_out", il);
  6296. // input for next layer
  6297. inpL = cur;
  6298. }
  6299. cur = inpL;
  6300. cur = llm_build_norm(ctx0, cur, hparams,
  6301. model.output_norm, NULL,
  6302. LLM_NORM_RMS, cb, -1);
  6303. cb(cur, "result_norm", -1);
  6304. // lm_head
  6305. cur = ggml_mul_mat(ctx0, model.output, cur);
  6306. // Grok
  6307. // multiply logits by output_multiplier_scale of 0.5773502691896257
  6308. cur = ggml_scale(ctx0, cur, 0.5773502691896257f);
  6309. cb(cur, "result_output", -1);
  6310. ggml_build_forward_expand(gf, cur);
  6311. return gf;
  6312. }
  6313. struct ggml_cgraph * build_dbrx() {
  6314. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6315. // mutable variable, needed during the last layer of the computation to skip unused tokens
  6316. int32_t n_tokens = this->n_tokens;
  6317. const int64_t n_embd_head = hparams.n_embd_head_v;
  6318. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6319. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6320. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6321. struct ggml_tensor * cur;
  6322. struct ggml_tensor * inpL;
  6323. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6324. // inp_pos - contains the positions
  6325. struct ggml_tensor * inp_pos = build_inp_pos();
  6326. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6327. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6328. for (int il = 0; il < n_layer; ++il) {
  6329. struct ggml_tensor * inpSA = inpL;
  6330. // norm
  6331. cur = llm_build_norm(ctx0, inpL, hparams,
  6332. model.layers[il].attn_norm, NULL,
  6333. LLM_NORM, cb, il);
  6334. cb(cur, "attn_norm", il);
  6335. // self-attention
  6336. {
  6337. struct ggml_tensor * Qcur = nullptr;
  6338. struct ggml_tensor * Kcur = nullptr;
  6339. struct ggml_tensor * Vcur = nullptr;
  6340. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6341. cb(cur, "wqkv", il);
  6342. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  6343. cb(cur, "wqkv_clamped", il);
  6344. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6345. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6346. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6347. cb(Qcur, "Qcur", il);
  6348. cb(Kcur, "Kcur", il);
  6349. cb(Vcur, "Vcur", il);
  6350. Qcur = ggml_rope_custom(
  6351. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  6352. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6353. ext_factor, attn_factor, beta_fast, beta_slow
  6354. );
  6355. cb(Qcur, "Qcur", il);
  6356. Kcur = ggml_rope_custom(
  6357. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  6358. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6359. ext_factor, attn_factor, beta_fast, beta_slow
  6360. );
  6361. cb(Kcur, "Kcur", il);
  6362. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6363. model.layers[il].wo, NULL,
  6364. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6365. }
  6366. if (il == n_layer - 1) {
  6367. // skip computing output for unused tokens
  6368. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6369. n_tokens = n_outputs;
  6370. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6371. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6372. }
  6373. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6374. cb(ffn_inp, "ffn_inp", il);
  6375. // feed-forward network
  6376. // MoE branch
  6377. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6378. model.layers[il].attn_out_norm, NULL,
  6379. LLM_NORM, cb, il);
  6380. cb(cur, "attn_out_norm", il);
  6381. cur = llm_build_moe_ffn(ctx0, cur,
  6382. model.layers[il].ffn_gate_inp,
  6383. model.layers[il].ffn_up_exps,
  6384. model.layers[il].ffn_gate_exps,
  6385. model.layers[il].ffn_down_exps,
  6386. n_expert, n_expert_used,
  6387. LLM_FFN_SILU, true,
  6388. cb, il);
  6389. cb(cur, "ffn_moe_out", il);
  6390. cur = ggml_add(ctx0, cur, ffn_inp);
  6391. cb(cur, "ffn_out", il);
  6392. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  6393. if (layer_dir != nullptr) {
  6394. cur = ggml_add(ctx0, cur, layer_dir);
  6395. }
  6396. cb(cur, "l_out", il);
  6397. // input for next layer
  6398. inpL = cur;
  6399. }
  6400. cur = inpL;
  6401. cur = llm_build_norm(ctx0, cur, hparams,
  6402. model.output_norm, NULL,
  6403. LLM_NORM, cb, -1);
  6404. cb(cur, "result_norm", -1);
  6405. // lm_head
  6406. cur = ggml_mul_mat(ctx0, model.output, cur);
  6407. cb(cur, "result_output", -1);
  6408. ggml_build_forward_expand(gf, cur);
  6409. return gf;
  6410. }
  6411. struct ggml_cgraph * build_starcoder() {
  6412. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6413. const int64_t n_embd_head = hparams.n_embd_head_v;
  6414. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6415. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6416. struct ggml_tensor * cur;
  6417. struct ggml_tensor * inpL;
  6418. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6419. // inp_pos - contains the positions
  6420. struct ggml_tensor * inp_pos = build_inp_pos();
  6421. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6422. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6423. struct ggml_tensor * pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  6424. cb(pos, "pos_embd", -1);
  6425. inpL = ggml_add(ctx0, inpL, pos);
  6426. cb(inpL, "inpL", -1);
  6427. for (int il = 0; il < n_layer; ++il) {
  6428. cur = llm_build_norm(ctx0, inpL, hparams,
  6429. model.layers[il].attn_norm,
  6430. model.layers[il].attn_norm_b,
  6431. LLM_NORM, cb, il);
  6432. cb(cur, "attn_norm", il);
  6433. // self-attention
  6434. {
  6435. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6436. cb(cur, "wqkv", il);
  6437. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6438. cb(cur, "bqkv", il);
  6439. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6440. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6441. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6442. cb(Qcur, "Qcur", il);
  6443. cb(Kcur, "Kcur", il);
  6444. cb(Vcur, "Vcur", il);
  6445. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6446. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6447. model.layers[il].wo, model.layers[il].bo,
  6448. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6449. }
  6450. if (il == n_layer - 1) {
  6451. // skip computing output for unused tokens
  6452. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6453. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6454. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6455. }
  6456. // add the input
  6457. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  6458. cb(ffn_inp, "ffn_inp", il);
  6459. // FF
  6460. {
  6461. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6462. model.layers[il].ffn_norm,
  6463. model.layers[il].ffn_norm_b,
  6464. LLM_NORM, cb, il);
  6465. cb(cur, "ffn_norm", il);
  6466. cur = llm_build_ffn(ctx0, cur,
  6467. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6468. NULL, NULL,
  6469. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6470. NULL,
  6471. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6472. cb(cur, "ffn_out", il);
  6473. }
  6474. inpL = ggml_add(ctx0, cur, ffn_inp);
  6475. cb(inpL, "l_out", il);
  6476. }
  6477. cur = llm_build_norm(ctx0, inpL, hparams,
  6478. model.output_norm,
  6479. model.output_norm_b,
  6480. LLM_NORM, cb, -1);
  6481. cb(cur, "result_norm", -1);
  6482. cur = ggml_mul_mat(ctx0, model.output, cur);
  6483. cb(cur, "result_output", -1);
  6484. ggml_build_forward_expand(gf, cur);
  6485. return gf;
  6486. }
  6487. struct ggml_cgraph * build_persimmon() {
  6488. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6489. const int64_t n_embd_head = hparams.n_embd_head_v;
  6490. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6491. GGML_ASSERT(n_embd_head/2 == hparams.n_rot);
  6492. struct ggml_tensor * cur;
  6493. struct ggml_tensor * inpL;
  6494. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6495. // inp_pos - contains the positions
  6496. struct ggml_tensor * inp_pos = build_inp_pos();
  6497. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6498. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6499. for (int il = 0; il < n_layer; ++il) {
  6500. struct ggml_tensor * residual = inpL;
  6501. cur = llm_build_norm(ctx0, inpL, hparams,
  6502. model.layers[il].attn_norm,
  6503. model.layers[il].attn_norm_b,
  6504. LLM_NORM, cb, il);
  6505. cb(cur, "attn_norm", il);
  6506. // self attention
  6507. {
  6508. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6509. cb(cur, "wqkv", il);
  6510. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6511. cb(cur, "bqkv", il);
  6512. // split qkv
  6513. GGML_ASSERT(n_head_kv == n_head);
  6514. struct ggml_tensor * tmpqkv = ggml_reshape_4d(ctx0, cur, n_embd_head, 3, n_head, n_tokens);
  6515. cb(tmpqkv, "tmpqkv", il);
  6516. struct ggml_tensor * tmpqkv_perm = ggml_cont(ctx0, ggml_permute(ctx0, tmpqkv, 0, 3, 1, 2));
  6517. cb(tmpqkv_perm, "tmpqkv", il);
  6518. struct ggml_tensor * tmpq = ggml_view_3d(
  6519. ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
  6520. ggml_element_size(tmpqkv_perm) * n_embd_head,
  6521. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
  6522. 0
  6523. );
  6524. cb(tmpq, "tmpq", il);
  6525. struct ggml_tensor * tmpk = ggml_view_3d(
  6526. ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
  6527. ggml_element_size(tmpqkv_perm) * n_embd_head,
  6528. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
  6529. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head * n_tokens
  6530. );
  6531. cb(tmpk, "tmpk", il);
  6532. // Q/K Layernorm
  6533. tmpq = llm_build_norm(ctx0, tmpq, hparams,
  6534. model.layers[il].attn_q_norm,
  6535. model.layers[il].attn_q_norm_b,
  6536. LLM_NORM, cb, il);
  6537. cb(tmpq, "tmpq", il);
  6538. tmpk = llm_build_norm(ctx0, tmpk, hparams,
  6539. model.layers[il].attn_k_norm,
  6540. model.layers[il].attn_k_norm_b,
  6541. LLM_NORM, cb, il);
  6542. cb(tmpk, "tmpk", il);
  6543. // RoPE the first n_rot of q/k, pass the other half, and concat.
  6544. struct ggml_tensor * qrot = ggml_view_3d(
  6545. ctx0, tmpq, n_rot, n_head, n_tokens,
  6546. ggml_element_size(tmpq) * n_embd_head,
  6547. ggml_element_size(tmpq) * n_embd_head * n_head,
  6548. 0
  6549. );
  6550. cb(qrot, "qrot", il);
  6551. struct ggml_tensor * krot = ggml_view_3d(
  6552. ctx0, tmpk, n_rot, n_head, n_tokens,
  6553. ggml_element_size(tmpk) * n_embd_head,
  6554. ggml_element_size(tmpk) * n_embd_head * n_head,
  6555. 0
  6556. );
  6557. cb(krot, "krot", il);
  6558. // get the second half of tmpq, e.g tmpq[n_rot:, :, :]
  6559. struct ggml_tensor * qpass = ggml_view_3d(
  6560. ctx0, tmpq, n_rot, n_head, n_tokens,
  6561. ggml_element_size(tmpq) * n_embd_head,
  6562. ggml_element_size(tmpq) * n_embd_head * n_head,
  6563. ggml_element_size(tmpq) * n_rot
  6564. );
  6565. cb(qpass, "qpass", il);
  6566. struct ggml_tensor * kpass = ggml_view_3d(
  6567. ctx0, tmpk, n_rot, n_head, n_tokens,
  6568. ggml_element_size(tmpk) * n_embd_head,
  6569. ggml_element_size(tmpk) * n_embd_head * n_head,
  6570. ggml_element_size(tmpk) * n_rot
  6571. );
  6572. cb(kpass, "kpass", il);
  6573. struct ggml_tensor * qrotated = ggml_rope_custom(
  6574. ctx0, qrot, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  6575. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6576. );
  6577. cb(qrotated, "qrotated", il);
  6578. struct ggml_tensor * krotated = ggml_rope_custom(
  6579. ctx0, krot, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  6580. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6581. );
  6582. cb(krotated, "krotated", il);
  6583. // ggml currently only supports concatenation on dim=2
  6584. // so we need to permute qrot, qpass, concat, then permute back.
  6585. qrotated = ggml_cont(ctx0, ggml_permute(ctx0, qrotated, 2, 1, 0, 3));
  6586. cb(qrotated, "qrotated", il);
  6587. krotated = ggml_cont(ctx0, ggml_permute(ctx0, krotated, 2, 1, 0, 3));
  6588. cb(krotated, "krotated", il);
  6589. qpass = ggml_cont(ctx0, ggml_permute(ctx0, qpass, 2, 1, 0, 3));
  6590. cb(qpass, "qpass", il);
  6591. kpass = ggml_cont(ctx0, ggml_permute(ctx0, kpass, 2, 1, 0, 3));
  6592. cb(kpass, "kpass", il);
  6593. struct ggml_tensor * Qcur = ggml_concat(ctx0, qrotated, qpass);
  6594. cb(Qcur, "Qcur", il);
  6595. struct ggml_tensor * Kcur = ggml_concat(ctx0, krotated, kpass);
  6596. cb(Kcur, "Kcur", il);
  6597. struct ggml_tensor * Q = ggml_cont(ctx0, ggml_permute(ctx0, Qcur, 2, 1, 0, 3));
  6598. cb(Q, "Q", il);
  6599. Kcur = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 2, 1, 0, 3));
  6600. cb(Kcur, "Kcur", il);
  6601. struct ggml_tensor * Vcur = ggml_view_3d(
  6602. ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
  6603. ggml_element_size(tmpqkv_perm) * n_embd_head,
  6604. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
  6605. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head * n_tokens * 2
  6606. );
  6607. cb(Vcur, "Vcur", il);
  6608. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6609. model.layers[il].wo, model.layers[il].bo,
  6610. Kcur, Vcur, Q, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6611. }
  6612. if (il == n_layer - 1) {
  6613. // skip computing output for unused tokens
  6614. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6615. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6616. residual = ggml_get_rows(ctx0, residual, inp_out_ids);
  6617. }
  6618. struct ggml_tensor * ffn_inp = ggml_add(ctx0, residual, cur);
  6619. cb(ffn_inp, "ffn_inp", il);
  6620. // feed-forward network
  6621. {
  6622. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6623. model.layers[il].ffn_norm,
  6624. model.layers[il].ffn_norm_b,
  6625. LLM_NORM, cb, il);
  6626. cb(cur, "ffn_norm", il);
  6627. cur = llm_build_ffn(ctx0, cur,
  6628. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6629. NULL, NULL,
  6630. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6631. NULL,
  6632. LLM_FFN_RELU_SQR, LLM_FFN_SEQ, cb, il);
  6633. cb(cur, "ffn_out", il);
  6634. }
  6635. cur = ggml_add(ctx0, cur, ffn_inp);
  6636. cb(cur, "l_out", il);
  6637. inpL = cur;
  6638. }
  6639. cur = inpL;
  6640. cur = llm_build_norm(ctx0, cur, hparams,
  6641. model.output_norm,
  6642. model.output_norm_b,
  6643. LLM_NORM, cb, -1);
  6644. cb(cur, "result_norm", -1);
  6645. cur = ggml_mul_mat(ctx0, model.output, cur);
  6646. cb(cur, "result_output", -1);
  6647. ggml_build_forward_expand(gf, cur);
  6648. return gf;
  6649. }
  6650. struct ggml_cgraph * build_refact() {
  6651. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6652. const int64_t n_embd_head = hparams.n_embd_head_v;
  6653. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6654. struct ggml_tensor * cur;
  6655. struct ggml_tensor * inpL;
  6656. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6657. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6658. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6659. // positions of the tokens in the KV cache
  6660. struct ggml_tensor * KQ_pos = build_inp_KQ_pos();
  6661. for (int il = 0; il < n_layer; ++il) {
  6662. struct ggml_tensor * inpSA = inpL;
  6663. cur = llm_build_norm(ctx0, inpL, hparams,
  6664. model.layers[il].attn_norm, NULL,
  6665. LLM_NORM_RMS, cb, il);
  6666. cb(cur, "attn_norm", il);
  6667. // self-attention
  6668. {
  6669. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6670. cb(Qcur, "Qcur", il);
  6671. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6672. cb(Kcur, "Kcur", il);
  6673. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6674. cb(Vcur, "Vcur", il);
  6675. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6676. cb(Kcur, "Kcur", il);
  6677. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6678. cb(Qcur, "Qcur", il);
  6679. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6680. model.layers[il].wo, NULL,
  6681. Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6682. }
  6683. if (il == n_layer - 1) {
  6684. // skip computing output for unused tokens
  6685. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6686. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6687. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6688. }
  6689. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6690. cb(ffn_inp, "ffn_inp", il);
  6691. // feed-forward network
  6692. {
  6693. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6694. model.layers[il].ffn_norm, NULL,
  6695. LLM_NORM_RMS, cb, il);
  6696. cb(cur, "ffn_norm", il);
  6697. cur = llm_build_ffn(ctx0, cur,
  6698. model.layers[il].ffn_up, NULL,
  6699. model.layers[il].ffn_gate, NULL,
  6700. model.layers[il].ffn_down, NULL,
  6701. NULL,
  6702. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6703. cb(cur, "ffn_out", il);
  6704. }
  6705. cur = ggml_add(ctx0, cur, ffn_inp);
  6706. cb(cur, "l_out", il);
  6707. // input for next layer
  6708. inpL = cur;
  6709. }
  6710. cur = inpL;
  6711. cur = llm_build_norm(ctx0, cur, hparams,
  6712. model.output_norm, NULL,
  6713. LLM_NORM_RMS, cb, -1);
  6714. cb(cur, "result_norm", -1);
  6715. // lm_head
  6716. cur = ggml_mul_mat(ctx0, model.output, cur);
  6717. cb(cur, "result_output", -1);
  6718. ggml_build_forward_expand(gf, cur);
  6719. return gf;
  6720. }
  6721. struct ggml_cgraph * build_bert() {
  6722. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6723. const int64_t n_embd_head = hparams.n_embd_head_v;
  6724. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6725. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6726. struct ggml_tensor * cur;
  6727. struct ggml_tensor * inpL;
  6728. struct ggml_tensor * inp_pos = build_inp_pos();
  6729. struct ggml_tensor * inp_mean = build_inp_mean();
  6730. struct ggml_tensor * inp_cls = build_inp_cls();
  6731. // construct input embeddings (token, type, position)
  6732. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6733. // token types are hardcoded to zero ("Sentence A")
  6734. struct ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0);
  6735. inpL = ggml_add(ctx0, inpL, type_row0);
  6736. if (model.arch == LLM_ARCH_BERT) {
  6737. inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.pos_embd, inp_pos), inpL);
  6738. }
  6739. cb(inpL, "inp_embd", -1);
  6740. // embed layer norm
  6741. inpL = llm_build_norm(ctx0, inpL, hparams, model.tok_norm, model.tok_norm_b, LLM_NORM, cb, -1);
  6742. cb(inpL, "inp_norm", -1);
  6743. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6744. struct ggml_tensor * KQ_mask = build_inp_KQ_mask(false);
  6745. // iterate layers
  6746. for (int il = 0; il < n_layer; ++il) {
  6747. struct ggml_tensor * cur = inpL;
  6748. struct ggml_tensor * Qcur;
  6749. struct ggml_tensor * Kcur;
  6750. struct ggml_tensor * Vcur;
  6751. // self-attention
  6752. if (model.arch == LLM_ARCH_BERT) {
  6753. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, cur), model.layers[il].bq);
  6754. cb(Qcur, "Qcur", il);
  6755. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, cur), model.layers[il].bk);
  6756. cb(Kcur, "Kcur", il);
  6757. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, cur), model.layers[il].bv);
  6758. cb(Vcur, "Vcur", il);
  6759. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6760. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6761. } else {
  6762. // compute Q and K and RoPE them
  6763. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6764. cb(cur, "wqkv", il);
  6765. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6766. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6767. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6768. cb(Qcur, "Qcur", il);
  6769. cb(Kcur, "Kcur", il);
  6770. cb(Vcur, "Vcur", il);
  6771. Qcur = ggml_rope_custom(
  6772. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  6773. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6774. ext_factor, attn_factor, beta_fast, beta_slow
  6775. );
  6776. cb(Qcur, "Qcur", il);
  6777. Kcur = ggml_rope_custom(
  6778. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  6779. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6780. ext_factor, attn_factor, beta_fast, beta_slow
  6781. );
  6782. cb(Kcur, "Kcur", il);
  6783. }
  6784. struct ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  6785. struct ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
  6786. struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  6787. cb(kq, "kq", il);
  6788. kq = ggml_soft_max_ext(ctx0, kq, KQ_mask, nullptr, 1.0f/sqrtf(float(n_embd_head)), hparams.f_max_alibi_bias);
  6789. cb(kq, "kq_soft_max_ext", il);
  6790. struct ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_tokens)));
  6791. cb(v, "v", il);
  6792. struct ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_tokens, n_embd_head, n_head_kv), kq);
  6793. cb(kqv, "kqv", il);
  6794. struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
  6795. cb(kqv_merged, "kqv_merged", il);
  6796. cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
  6797. cb(cur, "kqv_merged_cont", il);
  6798. ggml_build_forward_expand(gf, cur);
  6799. cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur);
  6800. if (model.layers[il].bo) {
  6801. cb(cur, "kqv_wo", il);
  6802. }
  6803. if (model.layers[il].bo) {
  6804. cur = ggml_add(ctx0, cur, model.layers[il].bo);
  6805. }
  6806. cb(cur, "kqv_out", il);
  6807. if (il == n_layer - 1 && pooling_type == LLAMA_POOLING_TYPE_NONE) {
  6808. // skip computing output for unused tokens
  6809. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6810. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6811. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6812. }
  6813. // re-add the layer input
  6814. cur = ggml_add(ctx0, cur, inpL);
  6815. // attention layer norm
  6816. cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].attn_out_norm, model.layers[il].attn_out_norm_b, LLM_NORM, cb, il);
  6817. struct ggml_tensor * ffn_inp = cur;
  6818. cb(ffn_inp, "ffn_inp", il);
  6819. // feed-forward network
  6820. if (model.arch == LLM_ARCH_BERT) {
  6821. cur = llm_build_ffn(ctx0, cur,
  6822. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6823. NULL, NULL,
  6824. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6825. NULL,
  6826. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6827. } else {
  6828. cur = llm_build_ffn(ctx0, cur,
  6829. model.layers[il].ffn_up, NULL,
  6830. model.layers[il].ffn_gate, NULL,
  6831. model.layers[il].ffn_down, NULL,
  6832. NULL,
  6833. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6834. }
  6835. cb(cur, "ffn_out", il);
  6836. // attentions bypass the intermediate layer
  6837. cur = ggml_add(ctx0, cur, ffn_inp);
  6838. // output layer norm
  6839. cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].layer_out_norm, model.layers[il].layer_out_norm_b, LLM_NORM, cb, il);
  6840. // input for next layer
  6841. inpL = cur;
  6842. }
  6843. // final output
  6844. cur = inpL;
  6845. cb(cur, "result_embd", -1);
  6846. // pooling layer
  6847. switch (pooling_type) {
  6848. case LLAMA_POOLING_TYPE_NONE:
  6849. {
  6850. // nop
  6851. } break;
  6852. case LLAMA_POOLING_TYPE_MEAN:
  6853. {
  6854. cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, cur)), inp_mean);
  6855. cb(cur, "result_embd_pooled", -1);
  6856. } break;
  6857. case LLAMA_POOLING_TYPE_CLS:
  6858. {
  6859. cur = ggml_get_rows(ctx0, cur, inp_cls);
  6860. cb(cur, "result_embd_pooled", -1);
  6861. } break;
  6862. case LLAMA_POOLING_TYPE_UNSPECIFIED:
  6863. {
  6864. GGML_ASSERT(false && "Invalid pooling type");
  6865. } break;
  6866. }
  6867. ggml_build_forward_expand(gf, cur);
  6868. return gf;
  6869. }
  6870. struct ggml_cgraph * build_bloom() {
  6871. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6872. const int64_t n_embd_head = hparams.n_embd_head_v;
  6873. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6874. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6875. struct ggml_tensor * cur;
  6876. struct ggml_tensor * inpL;
  6877. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6878. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6879. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6880. // positions of the tokens in the KV cache
  6881. struct ggml_tensor * KQ_pos = build_inp_KQ_pos();
  6882. inpL = llm_build_norm(ctx0, inpL, hparams,
  6883. model.tok_norm,
  6884. model.tok_norm_b,
  6885. LLM_NORM, cb, -1);
  6886. cb(inpL, "inp_norm", -1);
  6887. for (int il = 0; il < n_layer; ++il) {
  6888. cur = llm_build_norm(ctx0, inpL, hparams,
  6889. model.layers[il].attn_norm,
  6890. model.layers[il].attn_norm_b,
  6891. LLM_NORM, cb, il);
  6892. cb(cur, "attn_norm", il);
  6893. // self-attention
  6894. {
  6895. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6896. cb(cur, "wqkv", il);
  6897. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6898. cb(cur, "bqkv", il);
  6899. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6900. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6901. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6902. cb(Qcur, "Qcur", il);
  6903. cb(Kcur, "Kcur", il);
  6904. cb(Vcur, "Vcur", il);
  6905. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6906. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6907. model.layers[il].wo, model.layers[il].bo,
  6908. Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6909. }
  6910. if (il == n_layer - 1) {
  6911. // skip computing output for unused tokens
  6912. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6913. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6914. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6915. }
  6916. // Add the input
  6917. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  6918. cb(ffn_inp, "ffn_inp", il);
  6919. // FF
  6920. {
  6921. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6922. model.layers[il].ffn_norm,
  6923. model.layers[il].ffn_norm_b,
  6924. LLM_NORM, cb, il);
  6925. cb(cur, "ffn_norm", il);
  6926. cur = llm_build_ffn(ctx0, cur,
  6927. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6928. NULL, NULL,
  6929. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6930. NULL,
  6931. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6932. cb(cur, "ffn_out", il);
  6933. }
  6934. inpL = ggml_add(ctx0, cur, ffn_inp);
  6935. cb(inpL, "l_out", il);
  6936. }
  6937. cur = llm_build_norm(ctx0, inpL, hparams,
  6938. model.output_norm,
  6939. model.output_norm_b,
  6940. LLM_NORM, cb, -1);
  6941. cb(cur, "result_norm", -1);
  6942. cur = ggml_mul_mat(ctx0, model.output, cur);
  6943. cb(cur, "result_output", -1);
  6944. ggml_build_forward_expand(gf, cur);
  6945. return gf;
  6946. }
  6947. struct ggml_cgraph * build_mpt() {
  6948. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6949. const int64_t n_embd_head = hparams.n_embd_head_v;
  6950. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6951. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6952. struct ggml_tensor * cur;
  6953. struct ggml_tensor * pos;
  6954. struct ggml_tensor * inpL;
  6955. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6956. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6957. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6958. // positions of the tokens in the KV cache
  6959. struct ggml_tensor * KQ_pos = build_inp_KQ_pos();
  6960. if (model.pos_embd) {
  6961. // inp_pos - contains the positions
  6962. struct ggml_tensor * inp_pos = build_inp_pos();
  6963. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  6964. cb(pos, "pos_embd", -1);
  6965. inpL = ggml_add(ctx0, inpL, pos);
  6966. cb(inpL, "inpL", -1);
  6967. }
  6968. for (int il = 0; il < n_layer; ++il) {
  6969. struct ggml_tensor * attn_norm;
  6970. attn_norm = llm_build_norm(ctx0, inpL, hparams,
  6971. model.layers[il].attn_norm,
  6972. model.layers[il].attn_norm_b,
  6973. LLM_NORM, cb, il);
  6974. cb(attn_norm, "attn_norm", il);
  6975. // self-attention
  6976. {
  6977. cur = attn_norm;
  6978. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6979. cb(cur, "wqkv", il);
  6980. if (model.layers[il].bqkv){
  6981. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6982. cb(cur, "bqkv", il);
  6983. }
  6984. if (hparams.f_clamp_kqv > 0.0f) {
  6985. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  6986. cb(cur, "wqkv_clamped", il);
  6987. }
  6988. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6989. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6990. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6991. cb(Qcur, "Qcur", il);
  6992. cb(Kcur, "Kcur", il);
  6993. cb(Vcur, "Vcur", il);
  6994. // Q/K Layernorm
  6995. if (model.layers[il].attn_q_norm) {
  6996. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  6997. model.layers[il].attn_q_norm,
  6998. model.layers[il].attn_q_norm_b,
  6999. LLM_NORM, cb, il);
  7000. cb(Qcur, "Qcur", il);
  7001. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  7002. model.layers[il].attn_k_norm,
  7003. model.layers[il].attn_k_norm_b,
  7004. LLM_NORM, cb, il);
  7005. cb(Kcur, "Kcur", il);
  7006. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7007. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7008. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7009. model.layers[il].wo, model.layers[il].bo,
  7010. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7011. } else {
  7012. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7013. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7014. model.layers[il].wo, model.layers[il].bo,
  7015. Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7016. }
  7017. }
  7018. if (il == n_layer - 1) {
  7019. // skip computing output for unused tokens
  7020. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7021. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7022. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7023. }
  7024. // Add the input
  7025. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7026. cb(ffn_inp, "ffn_inp", il);
  7027. // feed forward
  7028. {
  7029. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7030. model.layers[il].ffn_norm,
  7031. model.layers[il].ffn_norm_b,
  7032. LLM_NORM, cb, il);
  7033. cb(cur, "ffn_norm", il);
  7034. cur = llm_build_ffn(ctx0, cur,
  7035. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7036. NULL, NULL,
  7037. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7038. model.layers[il].ffn_act,
  7039. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7040. cb(cur, "ffn_out", il);
  7041. }
  7042. cur = ggml_add(ctx0, cur, ffn_inp);
  7043. cb(cur, "l_out", il);
  7044. // input for next layer
  7045. inpL = cur;
  7046. }
  7047. cur = inpL;
  7048. cur = llm_build_norm(ctx0, cur, hparams,
  7049. model.output_norm,
  7050. model.output_norm_b,
  7051. LLM_NORM, cb, -1);
  7052. cb(cur, "result_norm", -1);
  7053. cur = ggml_mul_mat(ctx0, model.output, cur);
  7054. cb(cur, "result_output", -1);
  7055. ggml_build_forward_expand(gf, cur);
  7056. return gf;
  7057. }
  7058. struct ggml_cgraph * build_stablelm() {
  7059. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  7060. const int64_t n_embd_head = hparams.n_embd_head_v;
  7061. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7062. struct ggml_tensor * cur;
  7063. struct ggml_tensor * inpL;
  7064. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7065. // inp_pos - contains the positions
  7066. struct ggml_tensor * inp_pos = build_inp_pos();
  7067. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7068. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7069. for (int il = 0; il < n_layer; ++il) {
  7070. // norm
  7071. cur = llm_build_norm(ctx0, inpL, hparams,
  7072. model.layers[il].attn_norm,
  7073. model.layers[il].attn_norm_b,
  7074. LLM_NORM, cb, il);
  7075. cb(cur, "attn_norm", il);
  7076. struct ggml_tensor * inpSA = cur;
  7077. // self-attention
  7078. {
  7079. // compute Q and K and RoPE them
  7080. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7081. cb(Qcur, "Qcur", il);
  7082. if (model.layers[il].bq) {
  7083. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7084. cb(Qcur, "Qcur", il);
  7085. }
  7086. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7087. cb(Kcur, "Kcur", il);
  7088. if (model.layers[il].bk) {
  7089. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7090. cb(Kcur, "Kcur", il);
  7091. }
  7092. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7093. cb(Vcur, "Vcur", il);
  7094. if (model.layers[il].bv) {
  7095. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7096. cb(Vcur, "Vcur", il);
  7097. }
  7098. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7099. cb(Qcur, "Qcur", il);
  7100. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7101. cb(Kcur, "Kcur", il);
  7102. if (model.layers[il].attn_q_norm) {
  7103. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  7104. model.layers[il].attn_q_norm,
  7105. NULL,
  7106. LLM_NORM, cb, il);
  7107. cb(Qcur, "Qcur", il);
  7108. }
  7109. if (model.layers[il].attn_k_norm) {
  7110. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  7111. model.layers[il].attn_k_norm,
  7112. NULL,
  7113. LLM_NORM, cb, il);
  7114. cb(Kcur, "Kcur", il);
  7115. }
  7116. Qcur = ggml_rope_custom(
  7117. ctx0, Qcur, inp_pos,
  7118. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7119. ext_factor, attn_factor, beta_fast, beta_slow
  7120. );
  7121. cb(Qcur, "Qcur", il);
  7122. Kcur = ggml_rope_custom(
  7123. ctx0, Kcur, inp_pos,
  7124. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7125. ext_factor, attn_factor, beta_fast, beta_slow
  7126. );
  7127. cb(Kcur, "Kcur", il);
  7128. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7129. model.layers[il].wo, NULL,
  7130. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7131. }
  7132. if (il == n_layer - 1) {
  7133. // skip computing output for unused tokens
  7134. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7135. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7136. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7137. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7138. }
  7139. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7140. cb(ffn_inp, "ffn_inp", il);
  7141. // feed-forward network
  7142. {
  7143. if (model.layers[il].ffn_norm) {
  7144. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7145. model.layers[il].ffn_norm,
  7146. model.layers[il].ffn_norm_b,
  7147. LLM_NORM, cb, il);
  7148. cb(cur, "ffn_norm", il);
  7149. } else {
  7150. // parallel residual
  7151. cur = inpSA;
  7152. }
  7153. cur = llm_build_ffn(ctx0, cur,
  7154. model.layers[il].ffn_up, NULL,
  7155. model.layers[il].ffn_gate, NULL,
  7156. model.layers[il].ffn_down, NULL,
  7157. NULL,
  7158. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7159. cb(cur, "ffn_out", il);
  7160. }
  7161. cur = ggml_add(ctx0, cur, ffn_inp);
  7162. cb(cur, "l_out", il);
  7163. // input for next layer
  7164. inpL = cur;
  7165. }
  7166. cur = inpL;
  7167. cur = llm_build_norm(ctx0, cur, hparams,
  7168. model.output_norm,
  7169. model.output_norm_b,
  7170. LLM_NORM, cb, -1);
  7171. cb(cur, "result_norm", -1);
  7172. // lm_head
  7173. cur = ggml_mul_mat(ctx0, model.output, cur);
  7174. cb(cur, "result_output", -1);
  7175. ggml_build_forward_expand(gf, cur);
  7176. return gf;
  7177. }
  7178. struct ggml_cgraph * build_qwen() {
  7179. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7180. const int64_t n_embd_head = hparams.n_embd_head_v;
  7181. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7182. struct ggml_tensor * cur;
  7183. struct ggml_tensor * inpL;
  7184. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7185. // inp_pos - contains the positions
  7186. struct ggml_tensor * inp_pos = build_inp_pos();
  7187. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7188. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7189. for (int il = 0; il < n_layer; ++il) {
  7190. struct ggml_tensor * inpSA = inpL;
  7191. cur = llm_build_norm(ctx0, inpL, hparams,
  7192. model.layers[il].attn_norm, NULL,
  7193. LLM_NORM_RMS, cb, il);
  7194. cb(cur, "attn_norm", il);
  7195. // self-attention
  7196. {
  7197. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7198. cb(cur, "wqkv", il);
  7199. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7200. cb(cur, "bqkv", il);
  7201. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7202. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7203. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 2*sizeof(float)*(n_embd)));
  7204. cb(Qcur, "Qcur", il);
  7205. cb(Kcur, "Kcur", il);
  7206. cb(Vcur, "Vcur", il);
  7207. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7208. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7209. // using mode = 2 for neox mode
  7210. Qcur = ggml_rope_custom(
  7211. ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  7212. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7213. );
  7214. cb(Qcur, "Qcur", il);
  7215. Kcur = ggml_rope_custom(
  7216. ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  7217. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7218. );
  7219. cb(Kcur, "Kcur", il);
  7220. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7221. model.layers[il].wo, NULL,
  7222. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7223. }
  7224. if (il == n_layer - 1) {
  7225. // skip computing output for unused tokens
  7226. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7227. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7228. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7229. }
  7230. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7231. cb(ffn_inp, "ffn_inp", il);
  7232. // feed-forward forward
  7233. {
  7234. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7235. model.layers[il].ffn_norm, NULL,
  7236. LLM_NORM_RMS, cb, il);
  7237. cb(cur, "ffn_norm", il);
  7238. cur = llm_build_ffn(ctx0, cur,
  7239. model.layers[il].ffn_up, NULL,
  7240. model.layers[il].ffn_gate, NULL,
  7241. model.layers[il].ffn_down, NULL,
  7242. NULL,
  7243. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7244. cb(cur, "ffn_out", il);
  7245. }
  7246. cur = ggml_add(ctx0, cur, ffn_inp);
  7247. cb(cur, "l_out", il);
  7248. // input for next layer
  7249. inpL = cur;
  7250. }
  7251. cur = inpL;
  7252. cur = llm_build_norm(ctx0, cur, hparams,
  7253. model.output_norm, NULL,
  7254. LLM_NORM_RMS, cb, -1);
  7255. cb(cur, "result_norm", -1);
  7256. // lm_head
  7257. cur = ggml_mul_mat(ctx0, model.output, cur);
  7258. cb(cur, "result_output", -1);
  7259. ggml_build_forward_expand(gf, cur);
  7260. return gf;
  7261. }
  7262. struct ggml_cgraph * build_qwen2() {
  7263. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7264. const int64_t n_embd_head = hparams.n_embd_head_v;
  7265. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7266. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7267. struct ggml_tensor * cur;
  7268. struct ggml_tensor * inpL;
  7269. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7270. // inp_pos - contains the positions
  7271. struct ggml_tensor * inp_pos = build_inp_pos();
  7272. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7273. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7274. for (int il = 0; il < n_layer; ++il) {
  7275. struct ggml_tensor * inpSA = inpL;
  7276. // norm
  7277. cur = llm_build_norm(ctx0, inpL, hparams,
  7278. model.layers[il].attn_norm, NULL,
  7279. LLM_NORM_RMS, cb, il);
  7280. cb(cur, "attn_norm", il);
  7281. // self-attention
  7282. {
  7283. // compute Q and K and RoPE them
  7284. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7285. cb(Qcur, "Qcur", il);
  7286. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7287. cb(Qcur, "Qcur", il);
  7288. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7289. cb(Kcur, "Kcur", il);
  7290. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7291. cb(Kcur, "Kcur", il);
  7292. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7293. cb(Vcur, "Vcur", il);
  7294. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7295. cb(Vcur, "Vcur", il);
  7296. Qcur = ggml_rope_custom(
  7297. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  7298. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7299. ext_factor, attn_factor, beta_fast, beta_slow
  7300. );
  7301. cb(Qcur, "Qcur", il);
  7302. Kcur = ggml_rope_custom(
  7303. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  7304. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7305. ext_factor, attn_factor, beta_fast, beta_slow
  7306. );
  7307. cb(Kcur, "Kcur", il);
  7308. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7309. model.layers[il].wo, model.layers[il].bo,
  7310. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7311. }
  7312. if (il == n_layer - 1) {
  7313. // skip computing output for unused tokens
  7314. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7315. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7316. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7317. }
  7318. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7319. cb(ffn_inp, "ffn_inp", il);
  7320. // feed-forward network
  7321. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7322. model.layers[il].ffn_norm, NULL,
  7323. LLM_NORM_RMS, cb, il);
  7324. cb(cur, "ffn_norm", il);
  7325. cur = llm_build_ffn(ctx0, cur,
  7326. model.layers[il].ffn_up, NULL,
  7327. model.layers[il].ffn_gate, NULL,
  7328. model.layers[il].ffn_down, NULL,
  7329. NULL,
  7330. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7331. cb(cur, "ffn_out", il);
  7332. cur = ggml_add(ctx0, cur, ffn_inp);
  7333. cb(cur, "l_out", il);
  7334. // input for next layer
  7335. inpL = cur;
  7336. }
  7337. cur = inpL;
  7338. cur = llm_build_norm(ctx0, cur, hparams,
  7339. model.output_norm, NULL,
  7340. LLM_NORM_RMS, cb, -1);
  7341. cb(cur, "result_norm", -1);
  7342. // lm_head
  7343. cur = ggml_mul_mat(ctx0, model.output, cur);
  7344. cb(cur, "result_output", -1);
  7345. ggml_build_forward_expand(gf, cur);
  7346. return gf;
  7347. }
  7348. struct ggml_cgraph * build_qwen2moe() {
  7349. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7350. // mutable variable, needed during the last layer of the computation to skip unused tokens
  7351. int32_t n_tokens = this->n_tokens;
  7352. const int64_t n_embd_head = hparams.n_embd_head_v;
  7353. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7354. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7355. struct ggml_tensor * cur;
  7356. struct ggml_tensor * inpL;
  7357. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7358. // inp_pos - contains the positions
  7359. struct ggml_tensor * inp_pos = build_inp_pos();
  7360. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7361. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7362. for (int il = 0; il < n_layer; ++il) {
  7363. struct ggml_tensor * inpSA = inpL;
  7364. // norm
  7365. cur = llm_build_norm(ctx0, inpL, hparams,
  7366. model.layers[il].attn_norm, NULL,
  7367. LLM_NORM_RMS, cb, il);
  7368. cb(cur, "attn_norm", il);
  7369. // self_attention
  7370. {
  7371. // compute Q and K and RoPE them
  7372. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7373. cb(Qcur, "Qcur", il);
  7374. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7375. cb(Qcur, "Qcur", il);
  7376. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7377. cb(Kcur, "Kcur", il);
  7378. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7379. cb(Kcur, "Kcur", il);
  7380. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7381. cb(Vcur, "Vcur", il);
  7382. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7383. cb(Vcur, "Vcur", il);
  7384. Qcur = ggml_rope_custom(
  7385. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  7386. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7387. ext_factor, attn_factor, beta_fast, beta_slow
  7388. );
  7389. cb(Qcur, "Qcur", il);
  7390. Kcur = ggml_rope_custom(
  7391. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  7392. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7393. ext_factor, attn_factor, beta_fast, beta_slow
  7394. );
  7395. cb(Kcur, "Kcur", il);
  7396. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7397. model.layers[il].wo, model.layers[il].bo,
  7398. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7399. }
  7400. if (il == n_layer - 1) {
  7401. // skip computing output for unused tokens
  7402. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7403. n_tokens = n_outputs;
  7404. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7405. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7406. }
  7407. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7408. cb(ffn_inp, "ffn_inp", il);
  7409. // MoE branch
  7410. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7411. model.layers[il].ffn_norm, NULL,
  7412. LLM_NORM_RMS, cb, il);
  7413. cb(cur, "ffn_norm", il);
  7414. ggml_tensor * moe_out =
  7415. llm_build_moe_ffn(ctx0, cur,
  7416. model.layers[il].ffn_gate_inp,
  7417. model.layers[il].ffn_up_exps,
  7418. model.layers[il].ffn_gate_exps,
  7419. model.layers[il].ffn_down_exps,
  7420. n_expert, n_expert_used,
  7421. LLM_FFN_SILU, false,
  7422. cb, il);
  7423. cb(cur, "ffn_moe_out", il);
  7424. // FFN shared expert
  7425. {
  7426. ggml_tensor * cur_gate_inp = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp_shexp, cur);
  7427. cb(cur_gate_inp, "ffn_shexp_gate_inp", il);
  7428. // sigmoid
  7429. ggml_tensor * cur_gate = ggml_div(ctx0, ggml_silu(ctx0, cur_gate_inp), cur_gate_inp);
  7430. cb(cur_gate, "ffn_shexp_gate", il);
  7431. ggml_tensor * cur_ffn = llm_build_ffn(ctx0, cur,
  7432. model.layers[il].ffn_up_shexp, NULL,
  7433. model.layers[il].ffn_gate_shexp, NULL,
  7434. model.layers[il].ffn_down_shexp, NULL,
  7435. NULL,
  7436. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7437. cb(cur_ffn, "ffn_shexp", il);
  7438. ggml_tensor * ffn_shexp_out = ggml_mul(ctx0, cur_ffn, cur_gate);
  7439. cb(ffn_shexp_out, "ffn_shexp_out", il);
  7440. moe_out = ggml_add(ctx0, moe_out, ffn_shexp_out);
  7441. cb(moe_out, "ffn_out", il);
  7442. cur = moe_out;
  7443. }
  7444. cur = ggml_add(ctx0, cur, ffn_inp);
  7445. cb(cur, "l_out", il);
  7446. // input for next layer
  7447. inpL = cur;
  7448. }
  7449. cur = inpL;
  7450. cur = llm_build_norm(ctx0, cur, hparams,
  7451. model.output_norm, NULL,
  7452. LLM_NORM_RMS, cb, -1);
  7453. cb(cur, "result_norm", -1);
  7454. // lm_head
  7455. cur = ggml_mul_mat(ctx0, model.output, cur);
  7456. cb(cur, "result_output", -1);
  7457. ggml_build_forward_expand(gf, cur);
  7458. return gf;
  7459. }
  7460. struct ggml_cgraph * build_phi2() {
  7461. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7462. const int64_t n_embd_head = hparams.n_embd_head_v;
  7463. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7464. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7465. struct ggml_tensor * cur;
  7466. struct ggml_tensor * attn_norm_output;
  7467. struct ggml_tensor * ffn_output;
  7468. struct ggml_tensor * inpL;
  7469. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7470. // inp_pos - contains the positions
  7471. struct ggml_tensor * inp_pos = build_inp_pos();
  7472. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7473. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7474. for (int il = 0; il < n_layer; ++il) {
  7475. attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
  7476. model.layers[il].attn_norm,
  7477. model.layers[il].attn_norm_b,
  7478. LLM_NORM, cb, il);
  7479. cb(attn_norm_output, "attn_norm", il);
  7480. // self-attention
  7481. {
  7482. struct ggml_tensor * Qcur = nullptr;
  7483. struct ggml_tensor * Kcur = nullptr;
  7484. struct ggml_tensor * Vcur = nullptr;
  7485. if (model.layers[il].wqkv) {
  7486. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output);
  7487. cb(cur, "wqkv", il);
  7488. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7489. cb(cur, "bqkv", il);
  7490. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7491. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7492. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7493. } else {
  7494. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  7495. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  7496. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  7497. }
  7498. cb(Qcur, "Qcur", il);
  7499. cb(Kcur, "Kcur", il);
  7500. cb(Vcur, "Vcur", il);
  7501. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7502. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7503. Qcur = ggml_rope_custom(
  7504. ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  7505. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7506. );
  7507. cb(Qcur, "Qcur", il);
  7508. // with phi2, we scale the Q to avoid precision issues
  7509. // ref: https://github.com/ml-explore/mlx-examples/blob/08e862336ade809bc37d1035f94b359e7d1a5152/phi2/phi2.py#L64-L66
  7510. Qcur = ggml_scale(ctx0, Qcur, 1.0f/sqrtf(float(n_embd_head)));
  7511. cb(Qcur, "Qcur", il);
  7512. Kcur = ggml_rope_custom(
  7513. ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  7514. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7515. );
  7516. cb(Kcur, "Kcur", il);
  7517. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7518. model.layers[il].wo, model.layers[il].bo,
  7519. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  7520. }
  7521. if (il == n_layer - 1) {
  7522. // skip computing output for unused tokens
  7523. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7524. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7525. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7526. attn_norm_output = ggml_get_rows(ctx0, attn_norm_output, inp_out_ids);
  7527. }
  7528. // FF
  7529. {
  7530. ffn_output = llm_build_ffn(ctx0, attn_norm_output,
  7531. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7532. NULL, NULL,
  7533. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7534. NULL,
  7535. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7536. cb(ffn_output, "ffn_out", il);
  7537. }
  7538. cur = ggml_add(ctx0, cur, ffn_output);
  7539. cb(cur, "l_out", il);
  7540. cur = ggml_add(ctx0, cur, inpL);
  7541. cb(cur, "l_out", il);
  7542. inpL = cur;
  7543. }
  7544. cur = llm_build_norm(ctx0, inpL, hparams,
  7545. model.output_norm,
  7546. model.output_norm_b,
  7547. LLM_NORM, cb, -1);
  7548. cb(cur, "result_norm", -1);
  7549. cur = ggml_mul_mat(ctx0, model.output, cur);
  7550. cb(cur, "result_output_no_bias", -1);
  7551. cur = ggml_add(ctx0, cur, model.output_b);
  7552. cb(cur, "result_output", -1);
  7553. ggml_build_forward_expand(gf, cur);
  7554. return gf;
  7555. }
  7556. struct ggml_cgraph * build_phi3() {
  7557. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7558. const int64_t n_embd_head = hparams.n_embd_head_v;
  7559. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7560. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7561. struct ggml_tensor * cur;
  7562. struct ggml_tensor * inpL;
  7563. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7564. // inp_pos - contains the positions
  7565. struct ggml_tensor * inp_pos = build_inp_pos();
  7566. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7567. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7568. for (int il = 0; il < n_layer; ++il) {
  7569. auto residual = inpL;
  7570. // self-attention
  7571. {
  7572. struct ggml_tensor* attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
  7573. model.layers[il].attn_norm,
  7574. NULL,
  7575. LLM_NORM_RMS, cb, il);
  7576. cb(attn_norm_output, "attn_norm", il);
  7577. struct ggml_tensor * Qcur = nullptr;
  7578. struct ggml_tensor * Kcur = nullptr;
  7579. struct ggml_tensor * Vcur = nullptr;
  7580. if (model.layers[il].wqkv) {
  7581. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output);
  7582. cb(cur, "wqkv", il);
  7583. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0 * sizeof(float) * (n_embd)));
  7584. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd)));
  7585. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa)));
  7586. }
  7587. else {
  7588. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  7589. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  7590. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  7591. }
  7592. cb(Qcur, "Qcur", il);
  7593. cb(Kcur, "Kcur", il);
  7594. cb(Vcur, "Vcur", il);
  7595. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7596. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7597. Qcur = ggml_rope_custom(
  7598. ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  7599. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7600. );
  7601. cb(Qcur, "Qcur", il);
  7602. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head)));
  7603. cb(Qcur, "Qcur", il);
  7604. Kcur = ggml_rope_custom(
  7605. ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  7606. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7607. );
  7608. cb(Kcur, "Kcur", il);
  7609. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7610. model.layers[il].wo, NULL,
  7611. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  7612. }
  7613. if (il == n_layer - 1) {
  7614. // skip computing output for unused tokens
  7615. struct ggml_tensor* inp_out_ids = build_inp_out_ids();
  7616. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7617. residual = ggml_get_rows(ctx0, residual, inp_out_ids);
  7618. }
  7619. cur = ggml_add(ctx0, cur, residual);
  7620. residual = cur;
  7621. cur = llm_build_norm(ctx0, cur, hparams,
  7622. model.layers[il].ffn_norm, NULL,
  7623. LLM_NORM_RMS, cb, il);
  7624. cb(cur, "ffn_norm", il);
  7625. // FF
  7626. // special-case: the up and gate tensors are merged into a single tensor
  7627. // TOOD: support into llm_build_ffn
  7628. {
  7629. struct ggml_tensor* up = ggml_mul_mat(ctx0, model.layers[il].ffn_up, cur);
  7630. cb(up, "ffn_up", il);
  7631. auto g = ggml_cont(ctx0, ggml_view_2d(ctx0, up, up->ne[0] / 2, up->ne[1], ggml_row_size(up->type, up->ne[0]), 0));
  7632. auto y = ggml_cont(ctx0, ggml_view_2d(ctx0, up, up->ne[0] / 2, up->ne[1], ggml_row_size(up->type, up->ne[0]), up->nb[1] / 2));
  7633. y = ggml_mul(ctx0, y, ggml_silu(ctx0, g));
  7634. cb(y, "ffn_gate", il);
  7635. auto down = ggml_mul_mat(ctx0, model.layers[il].ffn_down, y);
  7636. cb(down, "ffn_down", il);
  7637. cur = down;
  7638. cb(cur, "ffn_out", il);
  7639. }
  7640. cur = ggml_add(ctx0, residual, cur);
  7641. cb(cur, "l_out", il);
  7642. inpL = cur;
  7643. }
  7644. cur = llm_build_norm(ctx0, inpL, hparams,
  7645. model.output_norm,
  7646. NULL,
  7647. LLM_NORM_RMS, cb, -1);
  7648. cb(cur, "result_norm", -1);
  7649. cur = ggml_mul_mat(ctx0, model.output, cur);
  7650. cb(cur, "result_output", -1);
  7651. ggml_build_forward_expand(gf, cur);
  7652. return gf;
  7653. }
  7654. struct ggml_cgraph * build_plamo() {
  7655. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  7656. const int64_t n_embd_head = hparams.n_embd_head_v;
  7657. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7658. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7659. struct ggml_tensor * cur;
  7660. struct ggml_tensor * inpL;
  7661. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7662. // inp_pos - contains the positions
  7663. struct ggml_tensor * inp_pos = build_inp_pos();
  7664. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7665. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7666. for (int il = 0; il < n_layer; ++il) {
  7667. // norm
  7668. cur = llm_build_norm(ctx0, inpL, hparams,
  7669. model.layers[il].attn_norm, NULL,
  7670. LLM_NORM_RMS, cb, il);
  7671. cb(cur, "attn_norm", il);
  7672. struct ggml_tensor * attention_norm = cur;
  7673. // self-attention
  7674. {
  7675. // compute Q and K and RoPE them
  7676. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7677. cb(Qcur, "Qcur", il);
  7678. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7679. cb(Kcur, "Kcur", il);
  7680. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7681. cb(Vcur, "Vcur", il);
  7682. Qcur = ggml_rope_custom(
  7683. ctx0, ggml_reshape_3d(ctx0, Qcur, n_rot, n_head, n_tokens), inp_pos,
  7684. n_embd_head, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7685. ext_factor, attn_factor, beta_fast, beta_slow);
  7686. cb(Qcur, "Qcur", il);
  7687. Kcur = ggml_rope_custom(
  7688. ctx0, ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens), inp_pos,
  7689. n_embd_head, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7690. ext_factor, attn_factor, beta_fast, beta_slow);
  7691. cb(Kcur, "Kcur", il);
  7692. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7693. model.layers[il].wo, NULL,
  7694. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7695. }
  7696. struct ggml_tensor * sa_out = cur;
  7697. cur = attention_norm;
  7698. if (il == n_layer - 1) {
  7699. // skip computing output for unused tokens
  7700. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7701. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7702. sa_out = ggml_get_rows(ctx0, sa_out, inp_out_ids);
  7703. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7704. }
  7705. // feed-forward network
  7706. {
  7707. cur = llm_build_ffn(ctx0, cur,
  7708. model.layers[il].ffn_up, NULL,
  7709. model.layers[il].ffn_gate, NULL,
  7710. model.layers[il].ffn_down, NULL,
  7711. NULL,
  7712. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7713. cb(cur, "ffn_out", il);
  7714. }
  7715. cur = ggml_add(ctx0, cur, sa_out);
  7716. cb(cur, "l_out", il);
  7717. cur = ggml_add(ctx0, cur, inpL);
  7718. cb(cur, "l_out", il);
  7719. // input for next layer
  7720. inpL = cur;
  7721. }
  7722. cur = inpL;
  7723. cur = llm_build_norm(ctx0, cur, hparams,
  7724. model.output_norm, NULL,
  7725. LLM_NORM_RMS, cb, -1);
  7726. cb(cur, "result_norm", -1);
  7727. // lm_head
  7728. cur = ggml_mul_mat(ctx0, model.output, cur);
  7729. cb(cur, "result_output", -1);
  7730. ggml_build_forward_expand(gf, cur);
  7731. return gf;
  7732. }
  7733. struct ggml_cgraph * build_gpt2() {
  7734. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7735. const int64_t n_embd_head = hparams.n_embd_head_v;
  7736. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7737. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7738. struct ggml_tensor * cur;
  7739. struct ggml_tensor * pos;
  7740. struct ggml_tensor * inpL;
  7741. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7742. // inp_pos - contains the positions
  7743. struct ggml_tensor * inp_pos = build_inp_pos();
  7744. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7745. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7746. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  7747. cb(pos, "pos_embd", -1);
  7748. inpL = ggml_add(ctx0, inpL, pos);
  7749. cb(inpL, "inpL", -1);
  7750. for (int il = 0; il < n_layer; ++il) {
  7751. cur = llm_build_norm(ctx0, inpL, hparams,
  7752. model.layers[il].attn_norm,
  7753. model.layers[il].attn_norm_b,
  7754. LLM_NORM, cb, il);
  7755. cb(cur, "attn_norm", il);
  7756. // self-attention
  7757. {
  7758. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7759. cb(cur, "wqkv", il);
  7760. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7761. cb(cur, "bqkv", il);
  7762. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7763. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7764. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7765. cb(Qcur, "Qcur", il);
  7766. cb(Kcur, "Kcur", il);
  7767. cb(Vcur, "Vcur", il);
  7768. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7769. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7770. model.layers[il].wo, model.layers[il].bo,
  7771. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7772. }
  7773. if (il == n_layer - 1) {
  7774. // skip computing output for unused tokens
  7775. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7776. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7777. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7778. }
  7779. // add the input
  7780. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7781. cb(ffn_inp, "ffn_inp", il);
  7782. // FF
  7783. {
  7784. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7785. model.layers[il].ffn_norm,
  7786. model.layers[il].ffn_norm_b,
  7787. LLM_NORM, cb, il);
  7788. cb(cur, "ffn_norm", il);
  7789. cur = llm_build_ffn(ctx0, cur,
  7790. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7791. NULL, NULL,
  7792. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7793. NULL,
  7794. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7795. cb(cur, "ffn_out", il);
  7796. }
  7797. inpL = ggml_add(ctx0, cur, ffn_inp);
  7798. cb(inpL, "l_out", il);
  7799. }
  7800. cur = llm_build_norm(ctx0, inpL, hparams,
  7801. model.output_norm,
  7802. model.output_norm_b,
  7803. LLM_NORM, cb, -1);
  7804. cb(cur, "result_norm", -1);
  7805. cur = ggml_mul_mat(ctx0, model.output, cur);
  7806. cb(cur, "result_output", -1);
  7807. ggml_build_forward_expand(gf, cur);
  7808. return gf;
  7809. }
  7810. struct ggml_cgraph * build_codeshell() {
  7811. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7812. const int64_t n_embd_head = hparams.n_embd_head_v;
  7813. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7814. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7815. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7816. struct ggml_tensor * cur;
  7817. struct ggml_tensor * inpL;
  7818. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7819. // inp_pos - contains the positions
  7820. struct ggml_tensor * inp_pos = build_inp_pos();
  7821. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7822. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7823. for (int il = 0; il < n_layer; ++il) {
  7824. cur = llm_build_norm(ctx0, inpL, hparams,
  7825. model.layers[il].attn_norm,
  7826. model.layers[il].attn_norm_b,
  7827. LLM_NORM, cb, il);
  7828. cb(cur, "attn_norm", il);
  7829. // self-attention
  7830. {
  7831. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7832. cb(cur, "wqkv", il);
  7833. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7834. cb(cur, "bqkv", il);
  7835. struct ggml_tensor * tmpq = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7836. struct ggml_tensor * tmpk = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7837. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7838. cb(tmpq, "tmpq", il);
  7839. cb(tmpk, "tmpk", il);
  7840. cb(Vcur, "Vcur", il);
  7841. struct ggml_tensor * Qcur = ggml_rope_custom(
  7842. ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens), inp_pos,
  7843. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7844. ext_factor, attn_factor, beta_fast, beta_slow
  7845. );
  7846. cb(Qcur, "Qcur", il);
  7847. struct ggml_tensor * Kcur = ggml_rope_custom(
  7848. ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), inp_pos,
  7849. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7850. ext_factor, attn_factor, beta_fast, beta_slow
  7851. );
  7852. cb(Kcur, "Kcur", il);
  7853. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7854. model.layers[il].wo, model.layers[il].bo,
  7855. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7856. }
  7857. if (il == n_layer - 1) {
  7858. // skip computing output for unused tokens
  7859. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7860. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7861. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7862. }
  7863. // add the input
  7864. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7865. cb(ffn_inp, "ffn_inp", il);
  7866. // FF
  7867. {
  7868. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7869. model.layers[il].ffn_norm,
  7870. model.layers[il].ffn_norm_b,
  7871. LLM_NORM, cb, il);
  7872. cb(cur, "ffn_norm", il);
  7873. cur = llm_build_ffn(ctx0, cur,
  7874. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7875. NULL, NULL,
  7876. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7877. NULL,
  7878. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7879. cb(cur, "ffn_out", il);
  7880. }
  7881. inpL = ggml_add(ctx0, cur, ffn_inp);
  7882. cb(inpL, "l_out", il);
  7883. }
  7884. cur = llm_build_norm(ctx0, inpL, hparams,
  7885. model.output_norm,
  7886. model.output_norm_b,
  7887. LLM_NORM, cb, -1);
  7888. cb(cur, "result_norm", -1);
  7889. cur = ggml_mul_mat(ctx0, model.output, cur);
  7890. cb(cur, "result_output", -1);
  7891. ggml_build_forward_expand(gf, cur);
  7892. return gf;
  7893. }
  7894. struct ggml_cgraph * build_orion() {
  7895. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7896. const int64_t n_embd_head = hparams.n_embd_head_v;
  7897. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7898. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7899. struct ggml_tensor * cur;
  7900. struct ggml_tensor * inpL;
  7901. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7902. // inp_pos - contains the positions
  7903. struct ggml_tensor * inp_pos = build_inp_pos();
  7904. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7905. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7906. for (int il = 0; il < n_layer; ++il) {
  7907. struct ggml_tensor * inpSA = inpL;
  7908. // norm
  7909. cur = llm_build_norm(ctx0, inpL, hparams,
  7910. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  7911. LLM_NORM, cb, il);
  7912. cb(cur, "attn_norm", il);
  7913. // self-attention
  7914. {
  7915. // compute Q and K and RoPE them
  7916. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7917. cb(Qcur, "Qcur", il);
  7918. // if (model.layers[il].bq) {
  7919. // Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7920. // cb(Qcur, "Qcur", il);
  7921. // }
  7922. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7923. cb(Kcur, "Kcur", il);
  7924. // if (model.layers[il].bk) {
  7925. // Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7926. // cb(Kcur, "Kcur", il);
  7927. // }
  7928. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7929. cb(Vcur, "Vcur", il);
  7930. // if (model.layers[il].bv) {
  7931. // Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7932. // cb(Vcur, "Vcur", il);
  7933. // }
  7934. Qcur = ggml_rope_custom(
  7935. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  7936. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7937. ext_factor, attn_factor, beta_fast, beta_slow
  7938. );
  7939. cb(Qcur, "Qcur", il);
  7940. Kcur = ggml_rope_custom(
  7941. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  7942. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7943. ext_factor, attn_factor, beta_fast, beta_slow
  7944. );
  7945. cb(Kcur, "Kcur", il);
  7946. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7947. model.layers[il].wo, NULL,
  7948. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7949. }
  7950. if (il == n_layer - 1) {
  7951. // skip computing output for unused tokens
  7952. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7953. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7954. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7955. }
  7956. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7957. cb(ffn_inp, "ffn_inp", il);
  7958. // feed-forward network
  7959. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7960. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  7961. LLM_NORM, cb, il);
  7962. cb(cur, "ffn_norm", il);
  7963. cur = llm_build_ffn(ctx0, cur,
  7964. model.layers[il].ffn_up, NULL,
  7965. model.layers[il].ffn_gate, NULL,
  7966. model.layers[il].ffn_down, NULL,
  7967. NULL,
  7968. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7969. cb(cur, "ffn_out", il);
  7970. cur = ggml_add(ctx0, cur, ffn_inp);
  7971. cb(cur, "l_out", il);
  7972. // input for next layer
  7973. inpL = cur;
  7974. }
  7975. cur = inpL;
  7976. cur = llm_build_norm(ctx0, cur, hparams,
  7977. model.output_norm, model.output_norm_b,
  7978. LLM_NORM, cb, -1);
  7979. cb(cur, "result_norm", -1);
  7980. // lm_head
  7981. cur = ggml_mul_mat(ctx0, model.output, cur);
  7982. cb(cur, "result_output", -1);
  7983. ggml_build_forward_expand(gf, cur);
  7984. return gf;
  7985. }
  7986. struct ggml_cgraph * build_internlm2() {
  7987. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7988. const int64_t n_embd_head = hparams.n_embd_head_v;
  7989. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7990. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7991. struct ggml_tensor * cur;
  7992. struct ggml_tensor * inpL;
  7993. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7994. // inp_pos - contains the positions
  7995. struct ggml_tensor * inp_pos = build_inp_pos();
  7996. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7997. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7998. for (int il = 0; il < n_layer; ++il) {
  7999. struct ggml_tensor * inpSA = inpL;
  8000. // norm
  8001. cur = llm_build_norm(ctx0, inpL, hparams,
  8002. model.layers[il].attn_norm, NULL,
  8003. LLM_NORM_RMS, cb, il);
  8004. cb(cur, "attn_norm", il);
  8005. // self-attention
  8006. {
  8007. // compute Q and K and RoPE them
  8008. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8009. cb(Qcur, "Qcur", il);
  8010. if (model.layers[il].bq) {
  8011. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8012. cb(Qcur, "Qcur", il);
  8013. }
  8014. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8015. cb(Kcur, "Kcur", il);
  8016. if (model.layers[il].bk) {
  8017. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8018. cb(Kcur, "Kcur", il);
  8019. }
  8020. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8021. cb(Vcur, "Vcur", il);
  8022. if (model.layers[il].bv) {
  8023. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8024. cb(Vcur, "Vcur", il);
  8025. }
  8026. Qcur = ggml_rope_custom(
  8027. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  8028. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8029. ext_factor, attn_factor, beta_fast, beta_slow
  8030. );
  8031. cb(Qcur, "Qcur", il);
  8032. Kcur = ggml_rope_custom(
  8033. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  8034. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8035. ext_factor, attn_factor, beta_fast, beta_slow
  8036. );
  8037. cb(Kcur, "Kcur", il);
  8038. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  8039. model.layers[il].wo, model.layers[il].bo,
  8040. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8041. }
  8042. if (il == n_layer - 1) {
  8043. // skip computing output for unused tokens
  8044. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8045. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8046. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8047. }
  8048. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8049. cb(ffn_inp, "ffn_inp", il);
  8050. // feed-forward network
  8051. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8052. model.layers[il].ffn_norm, NULL,
  8053. LLM_NORM_RMS, cb, il);
  8054. cb(cur, "ffn_norm", il);
  8055. cur = llm_build_ffn(ctx0, cur,
  8056. model.layers[il].ffn_up, NULL,
  8057. model.layers[il].ffn_gate, NULL,
  8058. model.layers[il].ffn_down, NULL,
  8059. NULL,
  8060. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8061. cb(cur, "ffn_out", il);
  8062. cur = ggml_add(ctx0, cur, ffn_inp);
  8063. cb(cur, "l_out", il);
  8064. // input for next layer
  8065. inpL = cur;
  8066. }
  8067. cur = inpL;
  8068. cur = llm_build_norm(ctx0, cur, hparams,
  8069. model.output_norm, NULL,
  8070. LLM_NORM_RMS, cb, -1);
  8071. cb(cur, "result_norm", -1);
  8072. // lm_head
  8073. cur = ggml_mul_mat(ctx0, model.output, cur);
  8074. cb(cur, "result_output", -1);
  8075. ggml_build_forward_expand(gf, cur);
  8076. return gf;
  8077. }
  8078. // ref: https://arxiv.org/abs/2203.03466
  8079. // https://github.com/ggerganov/llama.cpp/issues/5276#issuecomment-1925774738
  8080. // based on the original build_llama() function
  8081. struct ggml_cgraph * build_minicpm() {
  8082. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8083. const int64_t n_embd_head = hparams.n_embd_head_v;
  8084. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8085. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8086. const int64_t n_embd = hparams.n_embd;
  8087. //TODO: if the model varies, these parameters need to be read from the model
  8088. const int64_t n_embd_base = 256;
  8089. const float scale_embd = 12.0f;
  8090. const float scale_depth = 1.4f;
  8091. struct ggml_tensor * cur;
  8092. struct ggml_tensor * inpL;
  8093. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8094. // scale the input embeddings
  8095. inpL = ggml_scale(ctx0, inpL, scale_embd);
  8096. cb(inpL, "inp_scaled", -1);
  8097. // inp_pos - contains the positions
  8098. struct ggml_tensor * inp_pos = build_inp_pos();
  8099. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8100. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8101. for (int il = 0; il < n_layer; ++il) {
  8102. struct ggml_tensor * inpSA = inpL;
  8103. // norm
  8104. cur = llm_build_norm(ctx0, inpL, hparams,
  8105. model.layers[il].attn_norm, NULL,
  8106. LLM_NORM_RMS, cb, il);
  8107. cb(cur, "attn_norm", il);
  8108. // self-attention
  8109. {
  8110. // compute Q and K and RoPE them
  8111. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8112. cb(Qcur, "Qcur", il);
  8113. if (model.layers[il].bq) {
  8114. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8115. cb(Qcur, "Qcur", il);
  8116. }
  8117. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8118. cb(Kcur, "Kcur", il);
  8119. if (model.layers[il].bk) {
  8120. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8121. cb(Kcur, "Kcur", il);
  8122. }
  8123. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8124. cb(Vcur, "Vcur", il);
  8125. if (model.layers[il].bv) {
  8126. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8127. cb(Vcur, "Vcur", il);
  8128. }
  8129. Qcur = ggml_rope_custom(
  8130. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  8131. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8132. ext_factor, attn_factor, beta_fast, beta_slow
  8133. );
  8134. cb(Qcur, "Qcur", il);
  8135. Kcur = ggml_rope_custom(
  8136. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  8137. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8138. ext_factor, attn_factor, beta_fast, beta_slow
  8139. );
  8140. cb(Kcur, "Kcur", il);
  8141. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  8142. model.layers[il].wo, model.layers[il].bo,
  8143. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8144. }
  8145. if (il == n_layer - 1) {
  8146. // skip computing output for unused tokens
  8147. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8148. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8149. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8150. }
  8151. // scale_res - scale the hidden states for residual connection
  8152. const float scale_res = scale_depth/sqrtf(float(n_layer));
  8153. cur = ggml_scale(ctx0, cur, scale_res);
  8154. cb(cur, "hidden_scaled", -1);
  8155. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8156. cb(ffn_inp, "ffn_inp", il);
  8157. // feed-forward network
  8158. {
  8159. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8160. model.layers[il].ffn_norm, NULL,
  8161. LLM_NORM_RMS, cb, il);
  8162. cb(cur, "ffn_norm", il);
  8163. cur = llm_build_ffn(ctx0, cur,
  8164. model.layers[il].ffn_up, NULL,
  8165. model.layers[il].ffn_gate, NULL,
  8166. model.layers[il].ffn_down, NULL,
  8167. NULL,
  8168. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8169. cb(cur, "ffn_out", il);
  8170. }
  8171. // scale the hidden states for residual connection
  8172. cur = ggml_scale(ctx0, cur, scale_res);
  8173. cb(cur, "hidden_scaled_ffn", -1);
  8174. cur = ggml_add(ctx0, cur, ffn_inp);
  8175. cb(cur, "l_out", il);
  8176. // input for next layer
  8177. inpL = cur;
  8178. }
  8179. cur = inpL;
  8180. cur = llm_build_norm(ctx0, cur, hparams,
  8181. model.output_norm, NULL,
  8182. LLM_NORM_RMS, cb, -1);
  8183. cb(cur, "result_norm", -1);
  8184. // lm_head scaling
  8185. const float scale_lmhead = float(n_embd_base)/float(n_embd);
  8186. cur = ggml_scale(ctx0, cur, scale_lmhead);
  8187. cb(cur, "lmhead_scaling", -1);
  8188. // lm_head
  8189. cur = ggml_mul_mat(ctx0, model.tok_embd, cur);
  8190. cb(cur, "result_output", -1);
  8191. ggml_build_forward_expand(gf, cur);
  8192. return gf;
  8193. }
  8194. struct ggml_cgraph * build_gemma() {
  8195. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8196. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  8197. struct ggml_tensor * cur;
  8198. struct ggml_tensor * inpL;
  8199. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8200. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  8201. cb(inpL, "inp_scaled", -1);
  8202. // inp_pos - contains the positions
  8203. struct ggml_tensor * inp_pos = build_inp_pos();
  8204. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8205. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8206. for (int il = 0; il < n_layer; ++il) {
  8207. // norm
  8208. cur = llm_build_norm(ctx0, inpL, hparams,
  8209. model.layers[il].attn_norm, NULL,
  8210. LLM_NORM_RMS, cb, il);
  8211. cb(cur, "attn_norm", il);
  8212. // self-attention
  8213. {
  8214. // compute Q and K and RoPE them
  8215. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8216. cb(Qcur, "Qcur", il);
  8217. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8218. cb(Kcur, "Kcur", il);
  8219. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8220. cb(Vcur, "Vcur", il);
  8221. Qcur = ggml_rope_custom(
  8222. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head, n_tokens), inp_pos,
  8223. n_embd_head_k, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8224. ext_factor, attn_factor, beta_fast, beta_slow);
  8225. cb(Qcur, "Qcur", il);
  8226. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k)));
  8227. cb(Qcur, "Qcur_scaled", il);
  8228. Kcur = ggml_rope_custom(
  8229. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos,
  8230. n_embd_head_k, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8231. ext_factor, attn_factor, beta_fast, beta_slow);
  8232. cb(Kcur, "Kcur", il);
  8233. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  8234. model.layers[il].wo, NULL,
  8235. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  8236. }
  8237. if (il == n_layer - 1) {
  8238. // skip computing output for unused tokens
  8239. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8240. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8241. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8242. }
  8243. struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
  8244. cb(sa_out, "sa_out", il);
  8245. cur = llm_build_norm(ctx0, sa_out, hparams,
  8246. model.layers[il].ffn_norm, NULL,
  8247. LLM_NORM_RMS, cb, il);
  8248. cb(cur, "ffn_norm", il);
  8249. // feed-forward network
  8250. {
  8251. cur = llm_build_ffn(ctx0, cur,
  8252. model.layers[il].ffn_up, NULL,
  8253. model.layers[il].ffn_gate, NULL,
  8254. model.layers[il].ffn_down, NULL,
  8255. NULL,
  8256. LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
  8257. cb(cur, "ffn_out", il);
  8258. }
  8259. cur = ggml_add(ctx0, cur, sa_out);
  8260. cb(cur, "l_out", il);
  8261. // input for next layer
  8262. inpL = cur;
  8263. }
  8264. cur = inpL;
  8265. cur = llm_build_norm(ctx0, cur, hparams,
  8266. model.output_norm, NULL,
  8267. LLM_NORM_RMS, cb, -1);
  8268. cb(cur, "result_norm", -1);
  8269. // lm_head
  8270. cur = ggml_mul_mat(ctx0, model.output, cur);
  8271. cb(cur, "result_output", -1);
  8272. ggml_build_forward_expand(gf, cur);
  8273. return gf;
  8274. }
  8275. struct ggml_cgraph * build_starcoder2() {
  8276. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8277. const int64_t n_embd_head = hparams.n_embd_head_v;
  8278. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8279. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8280. struct ggml_tensor * cur;
  8281. struct ggml_tensor * inpL;
  8282. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8283. // inp_pos - contains the positions
  8284. struct ggml_tensor * inp_pos = build_inp_pos();
  8285. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8286. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8287. for (int il = 0; il < n_layer; ++il) {
  8288. struct ggml_tensor * inpSA = inpL;
  8289. // norm
  8290. cur = llm_build_norm(ctx0, inpL, hparams,
  8291. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  8292. LLM_NORM, cb, il);
  8293. cb(cur, "attn_norm", il);
  8294. // self-attention
  8295. {
  8296. // compute Q and K and RoPE them
  8297. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8298. cb(Qcur, "Qcur", il);
  8299. if (model.layers[il].bq) {
  8300. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8301. cb(Qcur, "Qcur", il);
  8302. }
  8303. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8304. cb(Kcur, "Kcur", il);
  8305. if (model.layers[il].bk) {
  8306. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8307. cb(Kcur, "Kcur", il);
  8308. }
  8309. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8310. cb(Vcur, "Vcur", il);
  8311. if (model.layers[il].bv) {
  8312. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8313. cb(Vcur, "Vcur", il);
  8314. }
  8315. Qcur = ggml_rope_custom(
  8316. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  8317. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8318. ext_factor, attn_factor, beta_fast, beta_slow
  8319. );
  8320. cb(Qcur, "Qcur", il);
  8321. Kcur = ggml_rope_custom(
  8322. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  8323. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8324. ext_factor, attn_factor, beta_fast, beta_slow
  8325. );
  8326. cb(Kcur, "Kcur", il);
  8327. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  8328. model.layers[il].wo, model.layers[il].bo,
  8329. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8330. }
  8331. if (il == n_layer - 1) {
  8332. // skip computing output for unused tokens
  8333. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8334. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8335. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8336. }
  8337. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8338. cb(ffn_inp, "ffn_inp", il);
  8339. // feed-forward network
  8340. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8341. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  8342. LLM_NORM, cb, il);
  8343. cb(cur, "ffn_norm", il);
  8344. cur = llm_build_ffn(ctx0, cur,
  8345. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  8346. NULL, NULL,
  8347. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  8348. NULL,
  8349. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  8350. cb(cur, "ffn_out", il);
  8351. cur = ggml_add(ctx0, cur, ffn_inp);
  8352. cb(cur, "l_out", il);
  8353. // input for next layer
  8354. inpL = cur;
  8355. }
  8356. cur = inpL;
  8357. cur = llm_build_norm(ctx0, cur, hparams,
  8358. model.output_norm, model.output_norm_b,
  8359. LLM_NORM, cb, -1);
  8360. cb(cur, "result_norm", -1);
  8361. // lm_head
  8362. cur = ggml_mul_mat(ctx0, model.output, cur);
  8363. cb(cur, "result_output", -1);
  8364. ggml_build_forward_expand(gf, cur);
  8365. return gf;
  8366. }
  8367. struct ggml_cgraph * build_mamba() {
  8368. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8369. const int64_t d_model = n_embd;
  8370. const int64_t d_conv = hparams.ssm_d_conv;
  8371. const int64_t d_inner = hparams.ssm_d_inner;
  8372. GGML_ASSERT(2 * d_model == d_inner);
  8373. const int64_t d_state = hparams.ssm_d_state;
  8374. const int64_t dt_rank = hparams.ssm_dt_rank;
  8375. struct ggml_tensor * cur;
  8376. struct ggml_tensor * inpL;
  8377. // {n_embd, n_tokens}
  8378. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8379. struct ggml_tensor * state_mask = build_inp_s_mask();
  8380. struct ggml_tensor * state_seq = build_inp_s_seq();
  8381. for (int il = 0; il < n_layer; ++il) {
  8382. // (ab)using the KV cache to store the states
  8383. struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size);
  8384. struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size);
  8385. // clear states of sequences which are starting at the beginning of this batch
  8386. {
  8387. conv_states = ggml_mul(ctx0,
  8388. ggml_view_2d(ctx0, conv_states, conv_states->ne[0], n_kv, conv_states->nb[1], kv_head*conv_states->nb[1]),
  8389. state_mask);
  8390. ssm_states = ggml_mul(ctx0,
  8391. ggml_view_2d(ctx0, ssm_states, ssm_states->ne[0], n_kv, ssm_states->nb[1], kv_head*ssm_states->nb[1]),
  8392. state_mask);
  8393. }
  8394. conv_states = ggml_reshape_3d(ctx0, conv_states, d_conv - 1, d_inner, n_kv);
  8395. ssm_states = ggml_reshape_3d(ctx0, ssm_states, d_state, d_inner, n_kv);
  8396. // norm
  8397. cur = llm_build_norm(ctx0, inpL, hparams,
  8398. model.layers[il].attn_norm, NULL,
  8399. LLM_NORM_RMS, cb, il);
  8400. cb(cur, "attn_norm", il);
  8401. // {n_embd, 2*d_inner} * {n_embd, n_tokens} => {2*d_inner, n_tokens}
  8402. struct ggml_tensor * xz = ggml_mul_mat(ctx0, model.layers[il].ssm_in, cur);
  8403. // split the above in two
  8404. // => {d_inner, n_tokens}
  8405. struct ggml_tensor * x = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], 0);
  8406. struct ggml_tensor * z = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], ggml_element_size(xz)*d_inner);
  8407. // conv
  8408. {
  8409. // Custom operator which is needed only to ease simultaneous sequence processing.
  8410. // For a single sequence, the equivalent is to concatenate the columns of conv_states and x,
  8411. // then make a self-overlapping view of that over d_conv columns at each stride in the 3rd dimension,
  8412. // then element-wise multiply that with the conv1d weigth,
  8413. // then sum the elements of each row,
  8414. // (the last two steps are a dot product over rows (also doable with mul_mat))
  8415. // then permute away the ne[0] dimension,
  8416. // and then you're left with the resulting x tensor.
  8417. // The new conv_states is the last (d_conv - 1) columns
  8418. // of the last 3rd dimensional "layer" of the self-overlapping view.
  8419. // For simultaneous sequences, it's more complicated.
  8420. struct ggml_tensor * x_conv = ggml_ssm_conv(ctx0, conv_states, x, model.layers[il].ssm_conv1d, state_seq);
  8421. // store last (d_conv - 1) columns of the conv_state part of x_conv back into the KV cache
  8422. ggml_build_forward_expand(gf,
  8423. ggml_cpy(ctx0,
  8424. ggml_view_2d(ctx0, x_conv, d_conv - 1, d_inner*n_kv, d_conv*ggml_element_size(x_conv), (1+d_inner*n_tokens)*ggml_element_size(x_conv)),
  8425. ggml_view_1d(ctx0, kv_self.k_l[il], (d_conv - 1)*(d_inner)*(n_kv), kv_head*(d_conv - 1)*(d_inner)*ggml_element_size(x_conv))));
  8426. // extract x from x_conv
  8427. x = ggml_view_2d(ctx0, x_conv, d_inner, n_tokens, d_inner*ggml_element_size(x_conv), 0);
  8428. // bias
  8429. x = ggml_add(ctx0, x, model.layers[il].ssm_conv1d_b);
  8430. x = ggml_silu(ctx0, x);
  8431. }
  8432. // ssm
  8433. {
  8434. // {d_inner, dt_rank + 2*d_state} * {d_inner, n_tokens} => {dt_rank + 2*d_state, n_tokens}
  8435. struct ggml_tensor * x_db = ggml_mul_mat(ctx0, model.layers[il].ssm_x, x);
  8436. // split
  8437. struct ggml_tensor * dt = ggml_view_2d(ctx0, x_db, dt_rank, n_tokens, x_db->nb[1], 0);
  8438. struct ggml_tensor * B = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*dt_rank);
  8439. struct ggml_tensor * C = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*(dt_rank+d_state));
  8440. // {dt_rank, d_inner} * {dt_rank, n_tokens} => {d_inner, n_tokens}
  8441. dt = ggml_mul_mat(ctx0, model.layers[il].ssm_dt, dt);
  8442. dt = ggml_add(ctx0, dt, model.layers[il].ssm_dt_b);
  8443. // Custom operator to optimize the parallel associative scan
  8444. // as described in the Annex D of the Mamba paper.
  8445. // => {d_inner, n_tokens} and {d_state, d_inner, n_kv} combined,
  8446. // because only a single tensor can be returned.
  8447. struct ggml_tensor * y_ssm_states = ggml_ssm_scan(ctx0, ssm_states, x, dt, model.layers[il].ssm_a, B, C, state_seq);
  8448. // store last states (the second part of y_ssm_states)
  8449. ggml_build_forward_expand(gf,
  8450. ggml_cpy(ctx0,
  8451. ggml_view_1d(ctx0, y_ssm_states, d_state*d_inner*n_kv, d_inner*n_tokens*ggml_element_size(y_ssm_states)),
  8452. ggml_view_1d(ctx0, kv_self.v_l[il], d_state*d_inner*n_kv, kv_head*d_state*d_inner*ggml_element_size(ssm_states))));
  8453. struct ggml_tensor * y = ggml_view_2d(ctx0, y_ssm_states, d_inner, n_tokens, d_inner*ggml_element_size(y_ssm_states), 0);
  8454. if (il == n_layer - 1) {
  8455. // skip computing output for unused tokens
  8456. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8457. x = ggml_get_rows(ctx0, x, inp_out_ids);
  8458. y = ggml_get_rows(ctx0, y, inp_out_ids);
  8459. z = ggml_get_rows(ctx0, z, inp_out_ids);
  8460. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8461. }
  8462. // {d_inner, n_tokens} * {d_inner} => {d_inner, n_tokens}
  8463. y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d));
  8464. y = ggml_mul(ctx0, y, ggml_silu(ctx0, z));
  8465. // {d_inner, n_embd} * {d_inner, n_tokens} => {n_embd, n_tokens}
  8466. cur = ggml_mul_mat(ctx0, model.layers[il].ssm_out, y);
  8467. }
  8468. // residual
  8469. cur = ggml_add(ctx0, cur, inpL);
  8470. cb(cur, "l_out", il);
  8471. // input for next layer
  8472. inpL = cur;
  8473. }
  8474. // final rmsnorm
  8475. cur = llm_build_norm(ctx0, inpL, hparams,
  8476. model.output_norm, NULL,
  8477. LLM_NORM_RMS, cb, -1);
  8478. cb(cur, "result_norm", -1);
  8479. // lm_head
  8480. cur = ggml_mul_mat(ctx0, model.output, cur);
  8481. cb(cur, "result_output", -1);
  8482. ggml_build_forward_expand(gf, cur);
  8483. return gf;
  8484. }
  8485. struct ggml_cgraph * build_command_r() {
  8486. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8487. const int64_t n_embd_head = hparams.n_embd_head_v;
  8488. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8489. const float f_logit_scale = hparams.f_logit_scale;
  8490. struct ggml_tensor * cur;
  8491. struct ggml_tensor * inpL;
  8492. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8493. // inp_pos - contains the positions
  8494. struct ggml_tensor * inp_pos = build_inp_pos();
  8495. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8496. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8497. for (int il = 0; il < n_layer; ++il) {
  8498. // norm
  8499. cur = llm_build_norm(ctx0, inpL, hparams,
  8500. model.layers[il].attn_norm, NULL,
  8501. LLM_NORM, cb, il);
  8502. cb(cur, "attn_norm", il);
  8503. struct ggml_tensor * ffn_inp = cur;
  8504. // self-attention
  8505. {
  8506. // compute Q and K and RoPE them
  8507. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8508. cb(Qcur, "Qcur", il);
  8509. if (model.layers[il].bq) {
  8510. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8511. cb(Qcur, "Qcur", il);
  8512. }
  8513. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8514. cb(Kcur, "Kcur", il);
  8515. if (model.layers[il].bk) {
  8516. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8517. cb(Kcur, "Kcur", il);
  8518. }
  8519. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8520. cb(Vcur, "Vcur", il);
  8521. if (model.layers[il].bv) {
  8522. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8523. cb(Vcur, "Vcur", il);
  8524. }
  8525. if (model.layers[il].attn_q_norm) {
  8526. Qcur = ggml_view_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens,
  8527. ggml_element_size(Qcur) * n_embd_head,
  8528. ggml_element_size(Qcur) * n_embd_head * n_head,
  8529. 0);
  8530. cb(Qcur, "Qcur", il);
  8531. Kcur = ggml_view_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens,
  8532. ggml_element_size(Kcur) * n_embd_head,
  8533. ggml_element_size(Kcur) * n_embd_head * n_head_kv,
  8534. 0);
  8535. cb(Kcur, "Kcur", il);
  8536. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  8537. model.layers[il].attn_q_norm,
  8538. NULL,
  8539. LLM_NORM, cb, il);
  8540. cb(Qcur, "Qcur", il);
  8541. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  8542. model.layers[il].attn_k_norm,
  8543. NULL,
  8544. LLM_NORM, cb, il);
  8545. cb(Kcur, "Kcur", il);
  8546. }
  8547. Qcur = ggml_rope_custom(
  8548. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  8549. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8550. ext_factor, attn_factor, beta_fast, beta_slow
  8551. );
  8552. cb(Qcur, "Qcur", il);
  8553. Kcur = ggml_rope_custom(
  8554. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  8555. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8556. ext_factor, attn_factor, beta_fast, beta_slow
  8557. );
  8558. cb(Kcur, "Kcur", il);
  8559. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  8560. model.layers[il].wo, model.layers[il].bo,
  8561. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8562. }
  8563. if (il == n_layer - 1) {
  8564. // skip computing output for unused tokens
  8565. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8566. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8567. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8568. ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
  8569. }
  8570. struct ggml_tensor * attn_out = cur;
  8571. // feed-forward network
  8572. {
  8573. cur = llm_build_ffn(ctx0, ffn_inp,
  8574. model.layers[il].ffn_up, NULL,
  8575. model.layers[il].ffn_gate, NULL,
  8576. model.layers[il].ffn_down, NULL,
  8577. NULL,
  8578. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8579. cb(cur, "ffn_out", il);
  8580. }
  8581. // add together residual + FFN + self-attention
  8582. cur = ggml_add(ctx0, cur, inpL);
  8583. cur = ggml_add(ctx0, cur, attn_out);
  8584. cb(cur, "l_out", il);
  8585. // input for next layer
  8586. inpL = cur;
  8587. }
  8588. cur = inpL;
  8589. cur = llm_build_norm(ctx0, cur, hparams,
  8590. model.output_norm, NULL,
  8591. LLM_NORM, cb, -1);
  8592. cb(cur, "result_norm", -1);
  8593. // lm_head
  8594. cur = ggml_mul_mat(ctx0, model.output, cur);
  8595. if (f_logit_scale) {
  8596. cur = ggml_scale(ctx0, cur, f_logit_scale);
  8597. }
  8598. cb(cur, "result_output", -1);
  8599. ggml_build_forward_expand(gf, cur);
  8600. return gf;
  8601. }
  8602. // ref: https://allenai.org/olmo
  8603. // based on the original build_llama() function, changes:
  8604. // * non-parametric layer norm
  8605. // * clamp qkv
  8606. // * removed bias
  8607. // * removed MoE
  8608. struct ggml_cgraph * build_olmo() {
  8609. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8610. // mutable variable, needed during the last layer of the computation to skip unused tokens
  8611. int32_t n_tokens = this->n_tokens;
  8612. const int64_t n_embd_head = hparams.n_embd_head_v;
  8613. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8614. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8615. struct ggml_tensor * cur;
  8616. struct ggml_tensor * inpL;
  8617. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8618. // inp_pos - contains the positions
  8619. struct ggml_tensor * inp_pos = build_inp_pos();
  8620. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8621. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8622. for (int il = 0; il < n_layer; ++il) {
  8623. struct ggml_tensor * inpSA = inpL;
  8624. // norm
  8625. cur = llm_build_norm(ctx0, inpL, hparams,
  8626. NULL, NULL,
  8627. LLM_NORM, cb, il);
  8628. cb(cur, "attn_norm", il);
  8629. // self-attention
  8630. {
  8631. // compute Q and K and RoPE them
  8632. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8633. cb(Qcur, "Qcur", il);
  8634. if (hparams.f_clamp_kqv > 0.0f) {
  8635. Qcur = ggml_clamp(ctx0, Qcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  8636. cb(Qcur, "Qcur", il);
  8637. }
  8638. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8639. cb(Kcur, "Kcur", il);
  8640. if (hparams.f_clamp_kqv > 0.0f) {
  8641. Kcur = ggml_clamp(ctx0, Kcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  8642. cb(Kcur, "Kcur", il);
  8643. }
  8644. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8645. cb(Vcur, "Vcur", il);
  8646. if (hparams.f_clamp_kqv > 0.0f) {
  8647. Vcur = ggml_clamp(ctx0, Vcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  8648. cb(Vcur, "Vcur", il);
  8649. }
  8650. Qcur = ggml_rope_custom(
  8651. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  8652. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8653. ext_factor, attn_factor, beta_fast, beta_slow
  8654. );
  8655. cb(Qcur, "Qcur", il);
  8656. Kcur = ggml_rope_custom(
  8657. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  8658. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8659. ext_factor, attn_factor, beta_fast, beta_slow
  8660. );
  8661. cb(Kcur, "Kcur", il);
  8662. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  8663. model.layers[il].wo, nullptr,
  8664. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8665. }
  8666. if (il == n_layer - 1) {
  8667. // skip computing output for unused tokens
  8668. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8669. n_tokens = n_outputs;
  8670. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8671. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8672. }
  8673. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8674. cb(ffn_inp, "ffn_inp", il);
  8675. // feed-forward network
  8676. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8677. NULL, NULL,
  8678. LLM_NORM, cb, il);
  8679. cb(cur, "ffn_norm", il);
  8680. cur = llm_build_ffn(ctx0, cur,
  8681. model.layers[il].ffn_up, NULL,
  8682. model.layers[il].ffn_gate, NULL,
  8683. model.layers[il].ffn_down, NULL,
  8684. NULL,
  8685. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8686. cb(cur, "ffn_out", il);
  8687. cur = ggml_add(ctx0, cur, ffn_inp);
  8688. cb(cur, "ffn_out", il);
  8689. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  8690. if (layer_dir != nullptr) {
  8691. cur = ggml_add(ctx0, cur, layer_dir);
  8692. }
  8693. cb(cur, "l_out", il);
  8694. // input for next layer
  8695. inpL = cur;
  8696. }
  8697. cur = inpL;
  8698. cur = llm_build_norm(ctx0, cur, hparams,
  8699. NULL, NULL,
  8700. LLM_NORM, cb, -1);
  8701. cb(cur, "result_norm", -1);
  8702. // lm_head
  8703. cur = ggml_mul_mat(ctx0, model.output, cur);
  8704. cb(cur, "result_output", -1);
  8705. ggml_build_forward_expand(gf, cur);
  8706. return gf;
  8707. }
  8708. };
  8709. static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
  8710. llama_batch dummy;
  8711. dummy.n_tokens = 0;
  8712. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  8713. struct llm_build_context llm(lctx, dummy, cb, false);
  8714. llm.init();
  8715. struct ggml_cgraph * result = llm.build_defrag(ids);
  8716. llm.free();
  8717. return result;
  8718. }
  8719. static struct ggml_cgraph * llama_build_graph_k_shift(llama_context & lctx) {
  8720. llama_batch dummy;
  8721. dummy.n_tokens = 0;
  8722. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  8723. struct llm_build_context llm(lctx, dummy, cb, false);
  8724. llm.init();
  8725. struct ggml_cgraph * result = llm.build_k_shift();
  8726. llm.free();
  8727. return result;
  8728. }
  8729. static struct ggml_cgraph * llama_build_graph_s_copy(llama_context & lctx) {
  8730. llama_batch dummy;
  8731. dummy.n_tokens = 0;
  8732. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  8733. struct llm_build_context llm(lctx, dummy, cb, false);
  8734. llm.init();
  8735. struct ggml_cgraph * result = llm.build_s_copy();
  8736. llm.free();
  8737. return result;
  8738. }
  8739. static struct ggml_cgraph * llama_build_graph(
  8740. llama_context & lctx,
  8741. const llama_batch & batch,
  8742. bool worst_case) {
  8743. const auto & model = lctx.model;
  8744. // this callback allows us to apply custom logic to each tensor (e.g. ggml-alloc, offloading, etc.)
  8745. llm_build_cb cb = [&](struct ggml_tensor * cur, const char * name, int il) {
  8746. if (il >= 0) {
  8747. ggml_format_name(cur, "%s-%d", name, il);
  8748. } else {
  8749. ggml_set_name(cur, name);
  8750. }
  8751. if (!lctx.cparams.offload_kqv) {
  8752. if (strcmp(name, "kqv_merged_cont") == 0) {
  8753. // all nodes between the KV store and the attention output are run on the CPU
  8754. ggml_backend_sched_set_tensor_backend(lctx.sched, cur, lctx.backend_cpu);
  8755. }
  8756. }
  8757. // norm may be automatically assigned to the backend of the previous layer, increasing data transfer between backends
  8758. // FIXME: fix in ggml_backend_sched
  8759. const bool full_offload = lctx.model.n_gpu_layers > (int)lctx.model.hparams.n_layer;
  8760. if (batch.n_tokens < 32 || full_offload) {
  8761. if (il != -1 && strcmp(name, "norm") == 0) {
  8762. for (auto * backend : lctx.backends) {
  8763. if (ggml_backend_buft_supports_backend(lctx.model.buft_layer[il].buft, backend)) {
  8764. ggml_backend_sched_set_tensor_backend(lctx.sched, cur, backend);
  8765. break;
  8766. }
  8767. }
  8768. }
  8769. }
  8770. };
  8771. struct ggml_cgraph * result = NULL;
  8772. struct llm_build_context llm(lctx, batch, cb, worst_case);
  8773. llm.init();
  8774. switch (model.arch) {
  8775. case LLM_ARCH_LLAMA:
  8776. {
  8777. result = llm.build_llama();
  8778. } break;
  8779. case LLM_ARCH_BAICHUAN:
  8780. {
  8781. result = llm.build_baichuan();
  8782. } break;
  8783. case LLM_ARCH_FALCON:
  8784. {
  8785. result = llm.build_falcon();
  8786. } break;
  8787. case LLM_ARCH_GROK:
  8788. {
  8789. result = llm.build_grok();
  8790. } break;
  8791. case LLM_ARCH_STARCODER:
  8792. {
  8793. result = llm.build_starcoder();
  8794. } break;
  8795. case LLM_ARCH_PERSIMMON:
  8796. {
  8797. result = llm.build_persimmon();
  8798. } break;
  8799. case LLM_ARCH_REFACT:
  8800. {
  8801. result = llm.build_refact();
  8802. } break;
  8803. case LLM_ARCH_BERT:
  8804. case LLM_ARCH_NOMIC_BERT:
  8805. {
  8806. result = llm.build_bert();
  8807. } break;
  8808. case LLM_ARCH_BLOOM:
  8809. {
  8810. result = llm.build_bloom();
  8811. } break;
  8812. case LLM_ARCH_MPT:
  8813. {
  8814. result = llm.build_mpt();
  8815. } break;
  8816. case LLM_ARCH_STABLELM:
  8817. {
  8818. result = llm.build_stablelm();
  8819. } break;
  8820. case LLM_ARCH_QWEN:
  8821. {
  8822. result = llm.build_qwen();
  8823. } break;
  8824. case LLM_ARCH_QWEN2:
  8825. {
  8826. result = llm.build_qwen2();
  8827. } break;
  8828. case LLM_ARCH_QWEN2MOE:
  8829. {
  8830. result = llm.build_qwen2moe();
  8831. } break;
  8832. case LLM_ARCH_PHI2:
  8833. {
  8834. result = llm.build_phi2();
  8835. } break;
  8836. case LLM_ARCH_PHI3:
  8837. {
  8838. result = llm.build_phi3();
  8839. } break;
  8840. case LLM_ARCH_PLAMO:
  8841. {
  8842. result = llm.build_plamo();
  8843. } break;
  8844. case LLM_ARCH_GPT2:
  8845. {
  8846. result = llm.build_gpt2();
  8847. } break;
  8848. case LLM_ARCH_CODESHELL:
  8849. {
  8850. result = llm.build_codeshell();
  8851. } break;
  8852. case LLM_ARCH_ORION:
  8853. {
  8854. result = llm.build_orion();
  8855. } break;
  8856. case LLM_ARCH_INTERNLM2:
  8857. {
  8858. result = llm.build_internlm2();
  8859. } break;
  8860. case LLM_ARCH_MINICPM:
  8861. {
  8862. result = llm.build_minicpm();
  8863. } break;
  8864. case LLM_ARCH_GEMMA:
  8865. {
  8866. result = llm.build_gemma();
  8867. } break;
  8868. case LLM_ARCH_STARCODER2:
  8869. {
  8870. result = llm.build_starcoder2();
  8871. } break;
  8872. case LLM_ARCH_MAMBA:
  8873. {
  8874. result = llm.build_mamba();
  8875. } break;
  8876. case LLM_ARCH_XVERSE:
  8877. {
  8878. result = llm.build_xverse();
  8879. } break;
  8880. case LLM_ARCH_COMMAND_R:
  8881. {
  8882. result = llm.build_command_r();
  8883. } break;
  8884. case LLM_ARCH_DBRX:
  8885. {
  8886. result = llm.build_dbrx();
  8887. } break;
  8888. case LLM_ARCH_OLMO:
  8889. {
  8890. result = llm.build_olmo();
  8891. } break;
  8892. default:
  8893. GGML_ASSERT(false);
  8894. }
  8895. llm.free();
  8896. return result;
  8897. }
  8898. static void llama_set_k_shift(llama_context & lctx) {
  8899. const int64_t kv_size = lctx.kv_self.size;
  8900. assert(ggml_backend_buffer_is_host(lctx.inp_K_shift->buffer));
  8901. int32_t * data = (int32_t *) lctx.inp_K_shift->data;
  8902. for (int i = 0; i < kv_size; ++i) {
  8903. data[i] = lctx.kv_self.cells[i].delta;
  8904. }
  8905. }
  8906. static void llama_set_s_copy(llama_context & lctx) {
  8907. const int64_t kv_size = lctx.kv_self.size;
  8908. assert(ggml_backend_buffer_is_host(lctx.inp_s_copy->buffer));
  8909. int32_t * data = (int32_t *) lctx.inp_s_copy->data;
  8910. for (int i = 0; i < kv_size; ++i) {
  8911. data[i] = lctx.kv_self.cells[i].src;
  8912. }
  8913. }
  8914. static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
  8915. //
  8916. // set input data
  8917. //
  8918. const auto & hparams = lctx.model.hparams;
  8919. const auto & cparams = lctx.cparams;
  8920. const auto & kv_self = lctx.kv_self;
  8921. if (batch.token) {
  8922. const int64_t n_tokens = batch.n_tokens;
  8923. ggml_backend_tensor_set(lctx.inp_tokens, batch.token, 0, n_tokens*ggml_element_size(lctx.inp_tokens));
  8924. }
  8925. if (batch.embd) {
  8926. const int64_t n_embd = hparams.n_embd;
  8927. const int64_t n_tokens = batch.n_tokens;
  8928. ggml_backend_tensor_set(lctx.inp_embd, batch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd));
  8929. }
  8930. if (batch.pos && lctx.inp_pos) {
  8931. const int64_t n_tokens = batch.n_tokens;
  8932. ggml_backend_tensor_set(lctx.inp_pos, batch.pos, 0, n_tokens*ggml_element_size(lctx.inp_pos));
  8933. }
  8934. if (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE) {
  8935. GGML_ASSERT(lctx.inp_out_ids && "every model that can must skip unused outputs");
  8936. const int64_t n_tokens = batch.n_tokens;
  8937. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_out_ids->buffer));
  8938. int32_t * data = (int32_t *) lctx.inp_out_ids->data;
  8939. if (lctx.n_outputs == n_tokens) {
  8940. for (int i = 0; i < n_tokens; ++i) {
  8941. data[i] = i;
  8942. }
  8943. } else if (batch.logits) {
  8944. int32_t n_outputs = 0;
  8945. for (int i = 0; i < n_tokens; ++i) {
  8946. if (batch.logits[i]) {
  8947. data[n_outputs++] = i;
  8948. }
  8949. }
  8950. // the graph needs to have been passed the correct number of outputs
  8951. GGML_ASSERT(lctx.n_outputs == n_outputs);
  8952. } else if (lctx.n_outputs == 1) {
  8953. // only keep last output
  8954. data[0] = n_tokens - 1;
  8955. } else {
  8956. GGML_ASSERT(lctx.n_outputs == 0);
  8957. }
  8958. }
  8959. GGML_ASSERT(
  8960. // (!a || b) is a logical implication (a -> b)
  8961. // !hparams.causal_attn -> !cparams.causal_attn
  8962. (hparams.causal_attn || !cparams.causal_attn) &&
  8963. "causal attention with embedding models is not supported"
  8964. );
  8965. if (lctx.inp_KQ_mask) {
  8966. // NOTE: hparams.causal_attn indicates the model is capable of generation and uses the kv cache.
  8967. if (cparams.causal_attn) {
  8968. const int64_t n_kv = kv_self.n;
  8969. const int64_t n_tokens = batch.n_tokens;
  8970. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
  8971. float * data = (float *) lctx.inp_KQ_mask->data;
  8972. // For causal attention, use only the previous KV cells
  8973. // of the correct sequence for each token of the batch.
  8974. // It's assumed that if a token in the batch has multiple sequences, they are equivalent.
  8975. for (int h = 0; h < 1; ++h) {
  8976. for (int j = 0; j < n_tokens; ++j) {
  8977. const llama_pos pos = batch.pos[j];
  8978. const llama_seq_id seq_id = batch.seq_id[j][0];
  8979. for (int i = 0; i < n_kv; ++i) {
  8980. float f;
  8981. if (!lctx.kv_self.cells[i].has_seq_id(seq_id) || lctx.kv_self.cells[i].pos > pos) {
  8982. f = -INFINITY;
  8983. } else {
  8984. f = 0.0f;
  8985. }
  8986. data[h*(n_kv*n_tokens) + j*n_kv + i] = f;
  8987. }
  8988. }
  8989. }
  8990. } else {
  8991. // when using kv cache, the mask needs to match the kv cache size
  8992. const int64_t n_tokens = batch.n_tokens;
  8993. const int64_t n_stride = hparams.causal_attn ? kv_self.n : n_tokens;
  8994. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
  8995. float * data = (float *) lctx.inp_KQ_mask->data;
  8996. for (int h = 0; h < 1; ++h) {
  8997. for (int j = 0; j < n_tokens; ++j) {
  8998. const llama_seq_id seq_id = batch.seq_id[j][0];
  8999. for (int i = 0; i < n_tokens; ++i) {
  9000. float f = -INFINITY;
  9001. for (int s = 0; s < batch.n_seq_id[i]; ++s) {
  9002. if (batch.seq_id[i][s] == seq_id) {
  9003. f = 0.0f;
  9004. break;
  9005. }
  9006. }
  9007. data[h*(n_tokens*n_tokens) + j*n_stride + i] = f;
  9008. }
  9009. for (int i = n_tokens; i < n_stride; ++i) {
  9010. data[h*(n_tokens*n_tokens) + j*n_stride + i] = -INFINITY;
  9011. }
  9012. }
  9013. }
  9014. }
  9015. }
  9016. if (hparams.need_kq_pos) {
  9017. const int64_t n_kv = kv_self.n;
  9018. GGML_ASSERT(lctx.inp_KQ_pos);
  9019. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_pos->buffer));
  9020. float * data = (float *) lctx.inp_KQ_pos->data;
  9021. for (int i = 0; i < n_kv; ++i) {
  9022. data[i] = float(lctx.kv_self.cells[i].pos);
  9023. }
  9024. }
  9025. if (cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) {
  9026. const int64_t n_tokens = batch.n_tokens;
  9027. GGML_ASSERT(lctx.inp_mean);
  9028. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_mean->buffer));
  9029. float * data = (float *) lctx.inp_mean->data;
  9030. memset(lctx.inp_mean->data, 0, n_tokens * n_tokens * ggml_element_size(lctx.inp_mean));
  9031. std::vector<uint64_t> sum(n_tokens, 0);
  9032. for (int i = 0; i < n_tokens; ++i) {
  9033. const llama_seq_id seq_id = batch.seq_id[i][0];
  9034. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == MEAN");
  9035. sum[seq_id] += 1;
  9036. }
  9037. std::vector<float> div(n_tokens, 0.0f);
  9038. for (int i = 0; i < n_tokens; ++i) {
  9039. const uint64_t s = sum[i];
  9040. if (s > 0) {
  9041. div[i] = 1.0f/float(s);
  9042. }
  9043. }
  9044. for (int i = 0; i < n_tokens; ++i) {
  9045. const llama_seq_id seq_id = batch.seq_id[i][0];
  9046. data[seq_id*n_tokens + i] = div[seq_id];
  9047. }
  9048. }
  9049. if (cparams.pooling_type == LLAMA_POOLING_TYPE_CLS) {
  9050. const int64_t n_tokens = batch.n_tokens;
  9051. GGML_ASSERT(lctx.inp_cls);
  9052. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer));
  9053. uint32_t * data = (uint32_t *) lctx.inp_cls->data;
  9054. memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls));
  9055. for (int i = 0; i < n_tokens; ++i) {
  9056. const llama_seq_id seq_id = batch.seq_id[i][0];
  9057. const llama_pos pos = batch.pos[i];
  9058. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == CLS");
  9059. if (pos == 0) {
  9060. data[seq_id] = i;
  9061. }
  9062. }
  9063. }
  9064. if (kv_self.recurrent) {
  9065. const int64_t n_kv = kv_self.n;
  9066. if (lctx.inp_s_mask) {
  9067. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_mask->buffer));
  9068. float * data = (float *) lctx.inp_s_mask->data;
  9069. // states which are not affected by the current batch are left untouched
  9070. for (int i = 0; i < n_kv; ++i) {
  9071. llama_seq_id seq_id = i + lctx.kv_self.head;
  9072. llama_kv_cell & kv_cell = lctx.kv_self.cells[seq_id];
  9073. bool has_self_seq = kv_cell.has_seq_id(seq_id);
  9074. data[i] = (float) has_self_seq;
  9075. // ensure current sequences will be kept
  9076. if (!has_self_seq && kv_cell.pos >= 0) {
  9077. kv_cell.seq_id.insert(seq_id);
  9078. }
  9079. }
  9080. }
  9081. // For Mamba (and other recurrent architectures),
  9082. // update the correct state(s)/sequence(s) for each token of the batch.
  9083. // Like with the KQ_mask, if a token in the batch has multiple sequences,
  9084. // they are assumed to be equivalent (not here, but in ggml_ssm_scan and ggml_ssm_conv).
  9085. if (lctx.inp_s_seq) {
  9086. const int64_t n_tokens = batch.n_tokens;
  9087. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_seq->buffer));
  9088. int32_t * data = (int32_t *) lctx.inp_s_seq->data;
  9089. for (int j = 0; j < n_tokens; ++j) {
  9090. const int32_t n_seq = batch.n_seq_id[j];
  9091. GGML_ASSERT(0 < n_seq); // a token should be part of at least 1 sequence
  9092. for (int i = 0; i < n_kv; ++i) {
  9093. if (i < n_seq) {
  9094. // for this type of model, the head is the minimum seq_id of the batch
  9095. data[j*n_kv + i] = batch.seq_id[j][i] - kv_self.head;
  9096. } else {
  9097. data[j*n_kv + i] = -1;
  9098. }
  9099. }
  9100. }
  9101. }
  9102. }
  9103. }
  9104. // Make sure enough space is available for outputs.
  9105. // Returns max number of outputs for which space was reserved.
  9106. static size_t llama_output_reserve(llama_context & lctx, size_t n_outputs) {
  9107. const auto & cparams = lctx.cparams;
  9108. const auto & hparams = lctx.model.hparams;
  9109. const size_t n_outputs_max = std::max(n_outputs, (size_t) cparams.n_seq_max);
  9110. const auto n_batch = cparams.n_batch;
  9111. const auto n_vocab = hparams.n_vocab;
  9112. const auto n_embd = hparams.n_embd;
  9113. // TODO: use a per-batch flag for logits presence instead
  9114. const bool has_logits = cparams.causal_attn;
  9115. const bool has_embd = cparams.embeddings && (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE);
  9116. const size_t logits_size = has_logits ? n_vocab*n_outputs_max : 0;
  9117. const size_t embd_size = has_embd ? n_embd*n_outputs_max : 0;
  9118. if (lctx.output_ids.empty()) {
  9119. // init, never resized afterwards
  9120. lctx.output_ids.resize(n_batch);
  9121. }
  9122. const size_t prev_size = lctx.buf_output ? ggml_backend_buffer_get_size(lctx.buf_output) : 0;
  9123. const size_t new_size = (logits_size + embd_size) * sizeof(float);
  9124. // alloc only when more than the current capacity is required
  9125. // TODO: also consider shrinking the buffer
  9126. if (!lctx.buf_output || prev_size < new_size) {
  9127. if (lctx.buf_output) {
  9128. #ifndef NDEBUG
  9129. // This doesn't happen often, but may be annoying in some cases (like the HellaSwag benchmark)
  9130. LLAMA_LOG_INFO("%s: reallocating output buffer from size %.02f MiB to %.02f MiB\n", __func__, prev_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
  9131. #endif
  9132. ggml_backend_buffer_free(lctx.buf_output);
  9133. lctx.buf_output = nullptr;
  9134. lctx.logits = nullptr;
  9135. lctx.embd = nullptr;
  9136. }
  9137. lctx.buf_output = ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), new_size);
  9138. if (lctx.buf_output == nullptr) {
  9139. LLAMA_LOG_ERROR("%s: failed to allocate output buffer of size %.2f MiB\n", __func__, new_size / (1024.0 * 1024.0));
  9140. return 0;
  9141. }
  9142. }
  9143. float * output_base = (float *) ggml_backend_buffer_get_base(lctx.buf_output);
  9144. lctx.logits = has_logits ? output_base : nullptr;
  9145. lctx.embd = has_embd ? output_base + logits_size : nullptr;
  9146. lctx.output_size = n_outputs_max;
  9147. lctx.logits_size = logits_size;
  9148. lctx.embd_size = embd_size;
  9149. // set all ids as invalid (negative)
  9150. std::fill(lctx.output_ids.begin(), lctx.output_ids.end(), -1);
  9151. ggml_backend_buffer_clear(lctx.buf_output, 0);
  9152. lctx.n_outputs = 0;
  9153. return n_outputs_max;
  9154. }
  9155. static void llama_graph_compute(
  9156. llama_context & lctx,
  9157. ggml_cgraph * gf,
  9158. int n_threads) {
  9159. #ifdef GGML_USE_MPI
  9160. const int64_t n_layer = lctx.model.hparams.n_layer;
  9161. ggml_mpi_graph_compute_pre(lctx.ctx_mpi, gf, n_layer);
  9162. #endif
  9163. #ifdef GGML_USE_METAL
  9164. if (ggml_backend_is_metal(lctx.backend_metal)) {
  9165. ggml_backend_metal_set_n_cb(lctx.backend_metal, n_threads);
  9166. }
  9167. #endif
  9168. if (lctx.backend_cpu != nullptr) {
  9169. ggml_backend_cpu_set_n_threads(lctx.backend_cpu, n_threads);
  9170. ggml_backend_cpu_set_abort_callback(lctx.backend_cpu, lctx.abort_callback, lctx.abort_callback_data);
  9171. }
  9172. ggml_backend_sched_graph_compute_async(lctx.sched, gf);
  9173. // fprintf(stderr, "splits: %d\n", ggml_backend_sched_get_n_splits(lctx.sched));
  9174. #ifdef GGML_USE_MPI
  9175. ggml_mpi_graph_compute_post(lctx.ctx_mpi, gf, n_layer);
  9176. #endif
  9177. }
  9178. // decode a batch of tokens by evaluating the transformer
  9179. //
  9180. // - lctx: llama context
  9181. // - batch: batch to evaluate
  9182. //
  9183. // return 0 on success
  9184. // return positive int on warning
  9185. // return negative int on error
  9186. //
  9187. static int llama_decode_internal(
  9188. llama_context & lctx,
  9189. llama_batch batch_all) { // TODO: rename back to batch
  9190. const uint32_t n_tokens_all = batch_all.n_tokens;
  9191. if (n_tokens_all == 0) {
  9192. LLAMA_LOG_ERROR("%s: n_tokens == 0", __func__);
  9193. return -1;
  9194. }
  9195. const auto & model = lctx.model;
  9196. const auto & hparams = model.hparams;
  9197. const auto & cparams = lctx.cparams;
  9198. GGML_ASSERT((!batch_all.token && batch_all.embd) || (batch_all.token && !batch_all.embd)); // NOLINT
  9199. GGML_ASSERT(n_tokens_all <= cparams.n_batch);
  9200. GGML_ASSERT((cparams.causal_attn || cparams.n_ubatch >= n_tokens_all) && "non-causal attention requires n_ubatch >= n_tokens");
  9201. if (lctx.t_compute_start_us == 0) {
  9202. lctx.t_compute_start_us = ggml_time_us();
  9203. }
  9204. lctx.n_queued_tokens += n_tokens_all;
  9205. #ifdef GGML_USE_MPI
  9206. // TODO: needs fix after #3228
  9207. GGML_ASSERT(false && "not implemented");
  9208. //ggml_mpi_eval_init(lctx.ctx_mpi, &n_tokens, &n_past, &n_threads);
  9209. #endif
  9210. auto & kv_self = lctx.kv_self;
  9211. const int64_t n_embd = hparams.n_embd;
  9212. const int64_t n_vocab = hparams.n_vocab;
  9213. uint32_t n_outputs = 0;
  9214. uint32_t n_outputs_prev = 0;
  9215. const auto n_ubatch = cparams.n_ubatch;
  9216. std::vector<llama_pos> pos;
  9217. std::vector<int32_t> n_seq_id;
  9218. std::vector<llama_seq_id *> seq_id_arr;
  9219. std::vector<std::vector<llama_seq_id>> seq_id;
  9220. // count outputs
  9221. if (batch_all.logits) {
  9222. for (uint32_t i = 0; i < n_tokens_all; ++i) {
  9223. n_outputs += batch_all.logits[i] != 0;
  9224. }
  9225. } else if (lctx.logits_all || (cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE)) {
  9226. n_outputs = n_tokens_all;
  9227. } else {
  9228. // keep last output only
  9229. n_outputs = 1;
  9230. }
  9231. // reserve output buffer
  9232. if (llama_output_reserve(lctx, n_outputs) < n_outputs) {
  9233. LLAMA_LOG_ERROR("%s: could not reserve space for batch with %u outputs\n", __func__, n_outputs);
  9234. return -2;
  9235. };
  9236. // set output mappings
  9237. if (batch_all.logits) {
  9238. int32_t i_logits = 0;
  9239. for (uint32_t i = 0; i < n_tokens_all; ++i) {
  9240. if (batch_all.logits[i]) {
  9241. lctx.output_ids[i] = i_logits++;
  9242. }
  9243. }
  9244. } else {
  9245. for (uint32_t i = 0; i < n_outputs; ++i) {
  9246. lctx.output_ids[i] = i;
  9247. }
  9248. }
  9249. for (uint32_t cur_token = 0; cur_token < n_tokens_all; cur_token += n_ubatch) {
  9250. const uint32_t n_tokens = std::min(n_ubatch, n_tokens_all - cur_token);
  9251. llama_batch u_batch = {
  9252. /* .n_tokens = */ (int32_t) n_tokens,
  9253. /* .token = */ batch_all.token ? batch_all.token + cur_token : nullptr,
  9254. /* .embd = */ batch_all.embd ? batch_all.embd + cur_token*n_embd : nullptr,
  9255. /* .pos = */ batch_all.pos ? batch_all.pos + cur_token : nullptr,
  9256. /* .n_seq_id = */ batch_all.n_seq_id ? batch_all.n_seq_id + cur_token : nullptr,
  9257. /* .seq_id = */ batch_all.seq_id ? batch_all.seq_id + cur_token : nullptr,
  9258. /* .logits = */ batch_all.logits ? batch_all.logits + cur_token : nullptr,
  9259. /* .all_pos_0 = */ batch_all.all_pos_0 + (llama_pos) cur_token*batch_all.all_pos_1,
  9260. /* .all_pos_1 = */ batch_all.all_pos_1,
  9261. /* .all_seq_id = */ batch_all.all_seq_id,
  9262. };
  9263. // count the outputs in this u_batch
  9264. {
  9265. int32_t n_outputs_new = 0;
  9266. if (u_batch.logits) {
  9267. for (uint32_t i = 0; i < n_tokens; i++) {
  9268. n_outputs_new += u_batch.logits[i] != 0;
  9269. }
  9270. } else if (n_outputs == n_tokens_all) {
  9271. n_outputs_new = n_tokens;
  9272. } else {
  9273. // keep last output only
  9274. if (cur_token + n_tokens >= n_tokens_all) {
  9275. n_outputs_new = 1;
  9276. }
  9277. }
  9278. // needs to happen before the graph is built
  9279. lctx.n_outputs = n_outputs_new;
  9280. }
  9281. int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch;
  9282. GGML_ASSERT(n_threads > 0);
  9283. // helpers for smoother batch API transition
  9284. // after deprecating the llama_eval calls, these will be removed
  9285. if (u_batch.pos == nullptr) {
  9286. pos.resize(n_tokens);
  9287. for (uint32_t i = 0; i < n_tokens; i++) {
  9288. pos[i] = u_batch.all_pos_0 + i*u_batch.all_pos_1;
  9289. }
  9290. u_batch.pos = pos.data();
  9291. }
  9292. if (u_batch.seq_id == nullptr) {
  9293. n_seq_id.resize(n_tokens);
  9294. seq_id.resize(n_tokens);
  9295. seq_id_arr.resize(n_tokens);
  9296. for (uint32_t i = 0; i < n_tokens; i++) {
  9297. n_seq_id[i] = 1;
  9298. seq_id[i].resize(1);
  9299. seq_id[i][0] = u_batch.all_seq_id;
  9300. seq_id_arr[i] = seq_id[i].data();
  9301. }
  9302. u_batch.n_seq_id = n_seq_id.data();
  9303. u_batch.seq_id = seq_id_arr.data();
  9304. }
  9305. // non-causal masks do not use the KV cache
  9306. if (hparams.causal_attn) {
  9307. llama_kv_cache_update(&lctx);
  9308. // if we have enough unused cells before the current head ->
  9309. // better to start searching from the beginning of the cache, hoping to fill it
  9310. if (kv_self.head > kv_self.used + 2*n_tokens) {
  9311. kv_self.head = 0;
  9312. }
  9313. if (!llama_kv_cache_find_slot(kv_self, u_batch)) {
  9314. return 1;
  9315. }
  9316. if (!kv_self.recurrent) {
  9317. // a heuristic, to avoid attending the full cache if it is not yet utilized
  9318. // after enough generations, the benefit from this heuristic disappears
  9319. // if we start defragmenting the cache, the benefit from this will be more important
  9320. kv_self.n = std::min(kv_self.size, std::max(32u, GGML_PAD(llama_kv_cache_cell_max(kv_self), 32)));
  9321. //kv_self.n = llama_kv_cache_cell_max(kv_self);
  9322. }
  9323. }
  9324. //printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self.n, kv_self.used, kv_self.head);
  9325. ggml_backend_sched_reset(lctx.sched);
  9326. ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data);
  9327. ggml_cgraph * gf = llama_build_graph(lctx, u_batch, false);
  9328. // the output is always the last tensor in the graph
  9329. struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1];
  9330. struct ggml_tensor * embd = gf->nodes[gf->n_nodes - 2];
  9331. if (lctx.n_outputs == 0) {
  9332. // no output
  9333. res = nullptr;
  9334. embd = nullptr;
  9335. } else if (!hparams.causal_attn) {
  9336. res = nullptr; // do not extract logits for embedding models such as BERT
  9337. // token or sequence embeddings
  9338. embd = gf->nodes[gf->n_nodes - 1];
  9339. GGML_ASSERT(strcmp(embd->name, "result_embd") == 0 || strcmp(embd->name, "result_embd_pooled") == 0);
  9340. } else if (cparams.embeddings) {
  9341. // the embeddings could be in the second to last tensor, or any of the previous tensors
  9342. int i_embd = gf->n_nodes - 2;
  9343. for (int i = 3; strcmp(embd->name, "result_norm") != 0; ++i) {
  9344. i_embd = gf->n_nodes - i;
  9345. if (i_embd < 0) { break; }
  9346. embd = gf->nodes[i_embd];
  9347. }
  9348. GGML_ASSERT(i_embd >= 0 && "missing result_norm tensor");
  9349. // TODO: use a per-batch flag to know when to skip logits while keeping embeddings
  9350. if (!cparams.causal_attn) {
  9351. res = nullptr; // do not extract logits when not needed
  9352. // skip computing logits
  9353. // TODO: is this safe?
  9354. gf->n_nodes = i_embd + 1;
  9355. }
  9356. } else {
  9357. embd = nullptr; // do not extract embeddings when not needed
  9358. GGML_ASSERT(strcmp(res->name, "result_output") == 0 && "missing result_output tensor");
  9359. }
  9360. // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
  9361. // for big prompts, if BLAS is enabled, it is better to use only one thread
  9362. // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
  9363. // TODO: this is mostly important for Apple Silicon where CBLAS is still performing very well
  9364. // we still need some threads to process all non-mul_mat ops, but not too much to avoid interfering
  9365. // with the BLAS calls. need a better solution
  9366. // MoE Special Case: This logic applies when hparams.n_expert == 0, i.e. the model is NOT an MoE model. When an MoE is
  9367. // being processed then Accelerate/BLAS will not be involved, so capping would limit performance.
  9368. if (n_tokens >= 32 && hparams.n_expert == 0 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas()) {
  9369. n_threads = std::min(4, n_threads);
  9370. }
  9371. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  9372. llama_set_inputs(lctx, u_batch);
  9373. llama_graph_compute(lctx, gf, n_threads);
  9374. // update the kv ring buffer
  9375. {
  9376. kv_self.head += n_tokens;
  9377. // Ensure kv cache head points to a valid index.
  9378. if (kv_self.head >= kv_self.size) {
  9379. kv_self.head = 0;
  9380. }
  9381. }
  9382. #ifdef GGML_PERF
  9383. // print timing information per ggml operation (for debugging purposes)
  9384. // requires GGML_PERF to be defined
  9385. ggml_graph_print(gf);
  9386. #endif
  9387. // plot the computation graph in dot format (for debugging purposes)
  9388. //if (n_past%100 == 0) {
  9389. // ggml_graph_dump_dot(gf, NULL, "llama.dot");
  9390. //}
  9391. // extract logits
  9392. if (res) {
  9393. ggml_backend_t backend_res = ggml_backend_sched_get_tensor_backend(lctx.sched, res);
  9394. GGML_ASSERT(backend_res != nullptr);
  9395. GGML_ASSERT(lctx.logits != nullptr);
  9396. float * logits_out = lctx.logits + n_outputs_prev*n_vocab;
  9397. const int32_t n_outputs_new = lctx.n_outputs;
  9398. if (n_outputs_new) {
  9399. GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
  9400. GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_vocab <= (int64_t) lctx.logits_size);
  9401. ggml_backend_tensor_get_async(backend_res, res, logits_out, 0, n_outputs_new*n_vocab*sizeof(float));
  9402. }
  9403. }
  9404. // extract embeddings
  9405. if (embd) {
  9406. ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(lctx.sched, embd);
  9407. GGML_ASSERT(backend_embd != nullptr);
  9408. switch (cparams.pooling_type) {
  9409. case LLAMA_POOLING_TYPE_NONE:
  9410. {
  9411. // extract token embeddings
  9412. GGML_ASSERT(lctx.embd != nullptr);
  9413. float * embd_out = lctx.embd + n_outputs_prev*n_embd;
  9414. const int32_t n_outputs_new = lctx.n_outputs;
  9415. if (n_outputs_new) {
  9416. GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
  9417. GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_embd <= (int64_t) lctx.embd_size);
  9418. ggml_backend_tensor_get_async(backend_embd, embd, embd_out, 0, n_outputs_new*n_embd*sizeof(float));
  9419. }
  9420. } break;
  9421. case LLAMA_POOLING_TYPE_CLS:
  9422. case LLAMA_POOLING_TYPE_MEAN:
  9423. {
  9424. GGML_ASSERT(strcmp(embd->name, "result_embd_pooled") == 0);
  9425. // extract sequence embeddings
  9426. auto & embd_seq_out = lctx.embd_seq;
  9427. embd_seq_out.clear();
  9428. for (uint32_t i = 0; i < n_tokens; i++) {
  9429. const llama_seq_id seq_id = u_batch.seq_id[i][0];
  9430. if (embd_seq_out.find(seq_id) != embd_seq_out.end()) {
  9431. continue;
  9432. }
  9433. embd_seq_out[seq_id].resize(n_embd);
  9434. ggml_backend_tensor_get_async(backend_embd, embd, embd_seq_out[seq_id].data(), (n_embd*seq_id)*sizeof(float), n_embd*sizeof(float));
  9435. }
  9436. } break;
  9437. case LLAMA_POOLING_TYPE_UNSPECIFIED:
  9438. {
  9439. GGML_ASSERT(false && "unknown pooling type");
  9440. } break;
  9441. }
  9442. }
  9443. n_outputs_prev += lctx.n_outputs;
  9444. }
  9445. // set to total number of outputs in the batch, for use in llama_get_logits_ith
  9446. lctx.n_outputs = n_outputs;
  9447. // wait for the computation to finish (automatically done when obtaining the model output)
  9448. //llama_synchronize(&lctx);
  9449. // decide if we need to defrag the kv cache
  9450. if (cparams.causal_attn && cparams.defrag_thold >= 0.0f) {
  9451. const float fragmentation = kv_self.n >= 128 ? 1.0f - float(kv_self.used)/float(kv_self.n) : 0.0f;
  9452. // queue defragmentation for next llama_kv_cache_update
  9453. if (fragmentation > cparams.defrag_thold) {
  9454. //LLAMA_LOG_INFO("fragmentation: %.2f\n", fragmentation);
  9455. llama_kv_cache_defrag(kv_self);
  9456. }
  9457. }
  9458. return 0;
  9459. }
  9460. // find holes from the beginning of the KV cache and fill them by moving data from the end of the cache
  9461. static void llama_kv_cache_defrag_internal(struct llama_context & lctx) {
  9462. auto & kv_self = lctx.kv_self;
  9463. const auto & hparams = lctx.model.hparams;
  9464. const uint32_t n_layer = hparams.n_layer;
  9465. const uint32_t n_kv = llama_kv_cache_cell_max(kv_self);
  9466. const uint32_t n_used = kv_self.used;
  9467. assert(n_used <= n_kv);
  9468. //const int64_t t_start = ggml_time_us();
  9469. // number of cells moved
  9470. uint32_t n_moves = 0;
  9471. // each move requires 6*n_layer tensors (see build_defrag)
  9472. // - source view, destination view, copy operation
  9473. // - x2 for keys and values
  9474. const uint32_t max_moves = LLAMA_MAX_NODES/(6*n_layer);
  9475. // determine which KV cells to move where
  9476. //
  9477. // cell i moves to ids[i]
  9478. //
  9479. // if ids[i] == i || ids[i] == n_kv, then cell i is not moved
  9480. //
  9481. std::vector<uint32_t> ids(n_kv, n_kv);
  9482. for (uint32_t i0 = 0; i0 < n_used; ++i0) {
  9483. const auto & cell0 = kv_self.cells[i0];
  9484. if (!cell0.is_empty()) {
  9485. ids[i0] = i0;
  9486. continue;
  9487. }
  9488. // found a hole - fill it with data from the end of the cache
  9489. uint32_t nh = 1;
  9490. // determine the size of the hole
  9491. while (i0 + nh < n_used && kv_self.cells[i0 + nh].is_empty()) {
  9492. nh++;
  9493. }
  9494. uint32_t nf = 0;
  9495. uint32_t is = n_kv - 1;
  9496. // starting from the end, find nh non-empty cells
  9497. for (; is > i0; --is) {
  9498. const auto & cell1 = kv_self.cells[is];
  9499. if (cell1.is_empty() || ids[is] != n_kv) {
  9500. continue;
  9501. }
  9502. // non-empty cell which is not yet moved
  9503. nf++;
  9504. if (nf == nh) {
  9505. break;
  9506. }
  9507. }
  9508. // this can only happen if `n_used` is not accurate, which would be a bug
  9509. GGML_ASSERT(nf == nh && "KV defrag bug: nf != nh");
  9510. nf = 0;
  9511. uint32_t i1 = is;
  9512. // are we moving a continuous block of memory?
  9513. bool cont = false;
  9514. // should we stop searching for the next move?
  9515. bool stop = false;
  9516. // go back and move the nf cells to the hole
  9517. for (; i1 < n_kv; ++i1) {
  9518. auto & cell1 = kv_self.cells[i1];
  9519. if (cell1.is_empty() || ids[i1] != n_kv) {
  9520. if (n_moves == max_moves) {
  9521. stop = true;
  9522. break;
  9523. }
  9524. cont = false;
  9525. continue;
  9526. }
  9527. // this cell goes to (i0 + nf)
  9528. ids[i1] = i0 + nf;
  9529. // move the cell meta data
  9530. kv_self.cells[i0 + nf] = cell1;
  9531. // clear the old cell and move the head there
  9532. cell1 = llama_kv_cell();
  9533. kv_self.head = n_used;
  9534. if (!cont) {
  9535. n_moves++;
  9536. cont = true;
  9537. }
  9538. nf++;
  9539. if (nf == nh) {
  9540. break;
  9541. }
  9542. }
  9543. if (stop || n_moves == max_moves) {
  9544. break;
  9545. }
  9546. //LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh);
  9547. i0 += nh - 1;
  9548. }
  9549. if (n_moves == 0) {
  9550. return;
  9551. }
  9552. //LLAMA_LOG_INFO("(tmp log) KV defrag cell moves: %u\n", n_moves);
  9553. //LLAMA_LOG_INFO("expected gf nodes: %u\n", 6*n_moves*n_layer);
  9554. #if 0
  9555. // CPU defrag
  9556. //
  9557. // TODO: optimizations are possible:
  9558. // - multiple threads
  9559. // - avoid copying to the host memory when already there
  9560. //
  9561. // likely not worth the effort, as we have ggml_graph based defrag
  9562. //
  9563. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  9564. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  9565. const uint32_t kv_size = kv_self.size;
  9566. std::vector<uint8_t> buf_k;
  9567. std::vector<uint8_t> buf_v;
  9568. for (uint32_t il = 0; il < n_layer; ++il) {
  9569. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  9570. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_size);
  9571. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  9572. const size_t v_size = ggml_row_size (kv_self.v_l[il]->type, n_embd_v_gqa*kv_size);
  9573. buf_k.resize(k_size);
  9574. buf_v.resize(v_size);
  9575. ggml_backend_tensor_get(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
  9576. ggml_backend_tensor_get(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
  9577. // batch move [i, i+nm) to [id, id+nm)
  9578. // note: cells can move only to a lower index
  9579. for (uint32_t i = 0; i < n_kv; ++i) {
  9580. const uint32_t id = ids[i];
  9581. if (i == id || id == n_kv) {
  9582. continue;
  9583. }
  9584. uint32_t nm = 1;
  9585. while (i + nm < n_kv && ids[i + nm] == id + nm) {
  9586. nm++;
  9587. }
  9588. // move keys
  9589. {
  9590. const int64_t os = i*k_size_row;
  9591. const int64_t od = id*k_size_row;
  9592. memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row);
  9593. }
  9594. // move values (note: they are transposed)
  9595. {
  9596. const int64_t os = i;
  9597. const int64_t od = id;
  9598. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  9599. memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el);
  9600. }
  9601. }
  9602. i += nm - 1;
  9603. }
  9604. ggml_backend_tensor_set(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
  9605. ggml_backend_tensor_set(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
  9606. }
  9607. #else
  9608. // ggml_graph defrag
  9609. ggml_backend_sched_reset(lctx.sched);
  9610. ggml_cgraph * gf = llama_build_graph_defrag(lctx, ids);
  9611. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  9612. #endif
  9613. //const int64_t t_end = ggml_time_us();
  9614. //LLAMA_LOG_INFO("(tmp log) KV defrag time: %.3f ms\n", (t_end - t_start)/1000.0);
  9615. }
  9616. static void llama_kv_cache_update_internal(struct llama_context & lctx) {
  9617. bool need_reserve = false;
  9618. // apply K-shift if needed
  9619. if (lctx.model.hparams.rope_type != LLAMA_ROPE_TYPE_NONE && lctx.kv_self.has_shift) {
  9620. {
  9621. ggml_backend_sched_reset(lctx.sched);
  9622. ggml_cgraph * gf = llama_build_graph_k_shift(lctx);
  9623. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  9624. llama_set_k_shift(lctx);
  9625. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  9626. need_reserve = true;
  9627. }
  9628. {
  9629. auto & kv_self = lctx.kv_self;
  9630. kv_self.has_shift = false;
  9631. for (uint32_t i = 0; i < kv_self.size; ++i) {
  9632. kv_self.cells[i].delta = 0;
  9633. }
  9634. }
  9635. }
  9636. if (lctx.kv_self.recurrent && lctx.kv_self.do_copy) {
  9637. {
  9638. ggml_backend_sched_reset(lctx.sched);
  9639. ggml_cgraph * gf = llama_build_graph_s_copy(lctx);
  9640. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  9641. llama_set_s_copy(lctx);
  9642. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  9643. need_reserve = true;
  9644. }
  9645. {
  9646. auto & kv_self = lctx.kv_self;
  9647. kv_self.do_copy = false;
  9648. for (uint32_t i = 0; i < kv_self.size; ++i) {
  9649. kv_self.cells[i].src = i;
  9650. }
  9651. }
  9652. }
  9653. // defragment the KV cache if needed
  9654. if (lctx.kv_self.do_defrag) {
  9655. llama_kv_cache_defrag_internal(lctx);
  9656. need_reserve = true;
  9657. lctx.kv_self.do_defrag = false;
  9658. }
  9659. // reserve a worst case graph again
  9660. if (need_reserve) {
  9661. // TODO: extract to a function
  9662. // build worst-case graph
  9663. int n_tokens = (int)std::min(lctx.cparams.n_ctx, lctx.cparams.n_ubatch);
  9664. int n_past = lctx.cparams.n_ctx - n_tokens;
  9665. llama_token token = llama_token_bos(&lctx.model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
  9666. ggml_cgraph * gf = llama_build_graph(lctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);
  9667. // initialize scheduler with the worst-case graph
  9668. ggml_backend_sched_reset(lctx.sched);
  9669. if (!ggml_backend_sched_reserve(lctx.sched, gf)) {
  9670. LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
  9671. }
  9672. }
  9673. }
  9674. //
  9675. // tokenizer
  9676. //
  9677. static enum llama_vocab_type llama_vocab_get_type(const llama_vocab & vocab) {
  9678. return vocab.type;
  9679. }
  9680. static bool llama_is_normal_token(const llama_vocab & vocab, llama_token id) {
  9681. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9682. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL;
  9683. }
  9684. static bool llama_is_unknown_token(const llama_vocab & vocab, llama_token id) {
  9685. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9686. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_UNKNOWN;
  9687. }
  9688. static bool llama_is_control_token(const llama_vocab & vocab, llama_token id) {
  9689. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9690. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_CONTROL;
  9691. }
  9692. static bool llama_is_byte_token(const llama_vocab & vocab, llama_token id) {
  9693. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9694. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_BYTE;
  9695. }
  9696. static bool llama_is_user_defined_token(const llama_vocab& vocab, llama_token id) {
  9697. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9698. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_USER_DEFINED;
  9699. }
  9700. static uint8_t llama_token_to_byte(const llama_vocab& vocab, llama_token id) {
  9701. GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
  9702. GGML_ASSERT(llama_is_byte_token(vocab, id));
  9703. const auto& token_data = vocab.id_to_token.at(id);
  9704. switch (llama_vocab_get_type(vocab)) {
  9705. case LLAMA_VOCAB_TYPE_SPM: {
  9706. auto buf = token_data.text.substr(3, 2);
  9707. return strtol(buf.c_str(), NULL, 16);
  9708. }
  9709. case LLAMA_VOCAB_TYPE_BPE: {
  9710. GGML_ASSERT(false);
  9711. return unicode_utf8_to_byte(token_data.text);
  9712. }
  9713. case LLAMA_VOCAB_TYPE_WPM: {
  9714. GGML_ASSERT(false);
  9715. }
  9716. default:
  9717. GGML_ASSERT(false);
  9718. }
  9719. }
  9720. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch) {
  9721. GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
  9722. static const char * hex = "0123456789ABCDEF";
  9723. switch (llama_vocab_get_type(vocab)) {
  9724. case LLAMA_VOCAB_TYPE_SPM: {
  9725. const char buf[7] = { '<', '0', 'x', hex[ch >> 4], hex[ch & 15], '>', 0 };
  9726. auto token = vocab.token_to_id.find(buf);
  9727. if (token != vocab.token_to_id.end()) {
  9728. return (*token).second;
  9729. }
  9730. // Try to fall back to just the byte as a string
  9731. const char buf2[2] = { (char)ch, 0 };
  9732. return vocab.token_to_id.at(buf2);
  9733. }
  9734. case LLAMA_VOCAB_TYPE_WPM:
  9735. case LLAMA_VOCAB_TYPE_BPE: {
  9736. return vocab.token_to_id.at(unicode_byte_to_utf8(ch));
  9737. }
  9738. default:
  9739. GGML_ASSERT(false);
  9740. }
  9741. }
  9742. static void llama_escape_whitespace(std::string & text) {
  9743. replace_all(text, " ", "\xe2\x96\x81");
  9744. }
  9745. static void llama_unescape_whitespace(std::string & word) {
  9746. replace_all(word, "\xe2\x96\x81", " ");
  9747. }
  9748. struct llm_symbol {
  9749. using index = int;
  9750. index prev;
  9751. index next;
  9752. const char * text;
  9753. size_t n;
  9754. };
  9755. static_assert(std::is_trivially_copyable<llm_symbol>::value, "llm_symbol is not trivially copyable");
  9756. // SPM tokenizer
  9757. // original implementation:
  9758. // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
  9759. struct llm_bigram_spm {
  9760. struct comparator {
  9761. bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) {
  9762. return (l.score < r.score) || (l.score == r.score && l.left > r.left);
  9763. }
  9764. };
  9765. using queue_storage = std::vector<llm_bigram_spm>;
  9766. using queue = std::priority_queue<llm_bigram_spm, queue_storage, comparator>;
  9767. llm_symbol::index left;
  9768. llm_symbol::index right;
  9769. float score;
  9770. size_t size;
  9771. };
  9772. struct llm_tokenizer_spm {
  9773. llm_tokenizer_spm(const llama_vocab & vocab) : vocab(vocab) {}
  9774. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  9775. // split string into utf8 chars
  9776. int index = 0;
  9777. size_t offs = 0;
  9778. while (offs < text.size()) {
  9779. llm_symbol sym;
  9780. size_t len = utf8_len(text[offs]);
  9781. sym.text = text.c_str() + offs;
  9782. sym.n = std::min(len, text.size() - offs);
  9783. offs += sym.n;
  9784. sym.prev = index - 1;
  9785. sym.next = offs == text.size() ? -1 : index + 1;
  9786. index++;
  9787. symbols.emplace_back(sym);
  9788. }
  9789. // seed the work queue with all possible 2-character tokens.
  9790. for (size_t i = 1; i < symbols.size(); ++i) {
  9791. try_add_bigram(i - 1, i);
  9792. }
  9793. // keep substituting the highest frequency pairs for as long as we can.
  9794. while (!work_queue.empty()) {
  9795. auto bigram = work_queue.top();
  9796. work_queue.pop();
  9797. auto & left_sym = symbols[bigram.left];
  9798. auto & right_sym = symbols[bigram.right];
  9799. // if one of the symbols already got merged, skip it.
  9800. if (left_sym.n == 0 || right_sym.n == 0 ||
  9801. left_sym.n + right_sym.n != bigram.size) {
  9802. continue;
  9803. }
  9804. // merge the right sym into the left one
  9805. left_sym.n += right_sym.n;
  9806. right_sym.n = 0;
  9807. //LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
  9808. // remove the right sym from the chain
  9809. left_sym.next = right_sym.next;
  9810. if (right_sym.next >= 0) {
  9811. symbols[right_sym.next].prev = bigram.left;
  9812. }
  9813. // find more substitutions
  9814. try_add_bigram(left_sym.prev, bigram.left);
  9815. try_add_bigram(bigram.left, left_sym.next);
  9816. }
  9817. for (int i = 0; i != -1; i = symbols[i].next) {
  9818. auto & symbol = symbols[i];
  9819. resegment(symbol, output);
  9820. }
  9821. }
  9822. private:
  9823. void resegment(llm_symbol & symbol, std::vector<llama_vocab::id> & output) {
  9824. auto text = std::string(symbol.text, symbol.n);
  9825. auto token = vocab.token_to_id.find(text);
  9826. // Do we need to support is_unused?
  9827. if (token != vocab.token_to_id.end()) {
  9828. output.push_back((*token).second);
  9829. return;
  9830. }
  9831. const auto p = rev_merge.find(text);
  9832. if (p == rev_merge.end()) {
  9833. // output any symbols that did not form tokens as bytes.
  9834. output.reserve(output.size() + symbol.n);
  9835. for (int j = 0; j < (int)symbol.n; ++j) {
  9836. llama_vocab::id token_id = llama_byte_to_token(vocab, symbol.text[j]);
  9837. output.push_back(token_id);
  9838. }
  9839. return;
  9840. }
  9841. resegment(symbols[p->second.first], output);
  9842. resegment(symbols[p->second.second], output);
  9843. }
  9844. void try_add_bigram(int left, int right) {
  9845. if (left == -1 || right == -1) {
  9846. return;
  9847. }
  9848. const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n);
  9849. auto token = vocab.token_to_id.find(text);
  9850. if (token == vocab.token_to_id.end()) {
  9851. return;
  9852. }
  9853. if (static_cast<size_t>((*token).second) >= vocab.id_to_token.size()) {
  9854. return;
  9855. }
  9856. const auto & tok_data = vocab.id_to_token[(*token).second];
  9857. llm_bigram_spm bigram;
  9858. bigram.left = left;
  9859. bigram.right = right;
  9860. bigram.score = tok_data.score;
  9861. bigram.size = text.size();
  9862. work_queue.push(bigram);
  9863. // Do we need to support is_unused?
  9864. rev_merge[text] = std::make_pair(left, right);
  9865. }
  9866. const llama_vocab & vocab;
  9867. std::vector<llm_symbol> symbols;
  9868. llm_bigram_spm::queue work_queue;
  9869. std::map<std::string, std::pair<int, int>> rev_merge;
  9870. };
  9871. // BPE tokenizer
  9872. // adapted from https://github.com/cmp-nct/ggllm.cpp [MIT License]
  9873. // tried to simplify unicode stuff, so most likely does not work 100% correctly!
  9874. // TODO: there are a lot of common parts between spm and bpe tokenizers, should be refactored and reused
  9875. struct llm_bigram_bpe {
  9876. struct comparator {
  9877. bool operator()(const llm_bigram_bpe & l, const llm_bigram_bpe & r) const {
  9878. return l.rank > r.rank || (l.rank == r.rank && l.left > r.left);
  9879. }
  9880. };
  9881. using queue_storage = std::vector<llm_bigram_bpe>;
  9882. using queue = std::priority_queue<llm_bigram_bpe, queue_storage, comparator>;
  9883. llm_symbol::index left;
  9884. llm_symbol::index right;
  9885. std::string text;
  9886. int rank;
  9887. size_t size;
  9888. };
  9889. struct llm_tokenizer_bpe {
  9890. llm_tokenizer_bpe(const llama_vocab & vocab): vocab(vocab) {}
  9891. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  9892. int final_prev_index = -1;
  9893. auto word_collection = bpe_gpt2_preprocess(text);
  9894. symbols_final.clear();
  9895. for (auto & word : word_collection) {
  9896. work_queue = llm_bigram_bpe::queue();
  9897. symbols.clear();
  9898. int index = 0;
  9899. size_t offset = 0;
  9900. while (offset < word.size()) {
  9901. llm_symbol sym;
  9902. size_t char_len = std::min(word.size() - offset, (size_t) ::utf8_len(word[offset]));
  9903. sym.text = word.c_str() + offset;
  9904. sym.n = char_len;
  9905. offset += sym.n;
  9906. sym.prev = index - 1;
  9907. sym.next = offset == word.size() ? -1 : index + 1;
  9908. index++;
  9909. symbols.emplace_back(sym);
  9910. }
  9911. for (size_t i = 1; i < symbols.size(); ++i) {
  9912. add_new_bigram(i - 1, i);
  9913. }
  9914. // build token(s)
  9915. while (!work_queue.empty()) {
  9916. auto bigram = work_queue.top();
  9917. work_queue.pop();
  9918. auto & left_symbol = symbols[bigram.left];
  9919. auto & right_symbol = symbols[bigram.right];
  9920. if (left_symbol.n == 0 || right_symbol.n == 0) {
  9921. continue;
  9922. }
  9923. std::string left_token = std::string(left_symbol.text, left_symbol.n);
  9924. std::string right_token = std::string(right_symbol.text, right_symbol.n);
  9925. if (left_token + right_token != bigram.text) {
  9926. continue; // Skip this bigram if it's outdated
  9927. }
  9928. // merge the right sym into the left one
  9929. left_symbol.n += right_symbol.n;
  9930. right_symbol.n = 0;
  9931. // remove the right sym from the chain
  9932. left_symbol.next = right_symbol.next;
  9933. if (right_symbol.next >= 0) {
  9934. symbols[right_symbol.next].prev = bigram.left;
  9935. }
  9936. add_new_bigram(left_symbol.prev, bigram.left); // left side of current symbol
  9937. add_new_bigram(bigram.left, left_symbol.next); // right side of current symbol
  9938. }
  9939. // add the finished tokens to the final list keeping correct order for next and prev
  9940. for (auto & sym : symbols) {
  9941. if (sym.n > 0) {
  9942. sym.prev = final_prev_index;
  9943. sym.next = -1;
  9944. if (final_prev_index != -1) {
  9945. symbols_final[final_prev_index].next = symbols_final.size();
  9946. }
  9947. symbols_final.emplace_back(sym);
  9948. final_prev_index = symbols_final.size() - 1;
  9949. }
  9950. }
  9951. }
  9952. symbols = symbols_final;
  9953. if (!symbols.empty()) {
  9954. for (int i = 0; i != -1; i = symbols[i].next) {
  9955. auto & symbol = symbols[i];
  9956. if (symbol.n == 0) {
  9957. continue;
  9958. }
  9959. const std::string str = std::string(symbol.text, symbol.n);
  9960. const auto token = vocab.token_to_id.find(str);
  9961. if (token == vocab.token_to_id.end()) {
  9962. for (auto j = str.begin(); j != str.end(); ++j) {
  9963. std::string byte_str(1, *j);
  9964. auto token_multibyte = vocab.token_to_id.find(byte_str);
  9965. if (token_multibyte == vocab.token_to_id.end()) {
  9966. throw std::runtime_error("ERROR: byte not found in vocab");
  9967. }
  9968. output.push_back((*token_multibyte).second);
  9969. }
  9970. } else {
  9971. output.push_back((*token).second);
  9972. }
  9973. }
  9974. }
  9975. }
  9976. private:
  9977. void add_new_bigram(int left, int right) {
  9978. if (left == -1 || right == -1) {
  9979. return;
  9980. }
  9981. std::string left_token = std::string(symbols[left].text, symbols[left].n);
  9982. std::string right_token = std::string(symbols[right].text, symbols[right].n);
  9983. int rank_found = -1;
  9984. rank_found = vocab.find_bpe_rank(left_token, right_token);
  9985. if (rank_found < 0) {
  9986. return;
  9987. }
  9988. llm_bigram_bpe bigram;
  9989. bigram.left = left;
  9990. bigram.right = right;
  9991. bigram.text = left_token + right_token;
  9992. bigram.size = left_token.size() + right_token.size();
  9993. bigram.rank = rank_found;
  9994. work_queue.push(bigram);
  9995. }
  9996. std::vector<std::string> bpe_gpt2_preprocess(const std::string & text) {
  9997. std::vector<std::string> bpe_words;
  9998. std::vector<std::string> bpe_encoded_words;
  9999. std::string token = "";
  10000. // GPT2 system regex: 's|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+
  10001. bool collecting_numeric = false;
  10002. bool collecting_letter = false;
  10003. bool collecting_special = false;
  10004. bool collecting_whitespace_lookahead = false;
  10005. bool collecting = false;
  10006. std::vector<std::string> text_utf;
  10007. text_utf.reserve(text.size());
  10008. bpe_words.reserve(text.size());
  10009. bpe_encoded_words.reserve(text.size());
  10010. const auto cpts = unicode_cpts_from_utf8(text);
  10011. for (size_t i = 0; i < cpts.size(); ++i)
  10012. text_utf.emplace_back(unicode_cpt_to_utf8(cpts[i]));
  10013. for (int i = 0; i < (int)text_utf.size(); i++) {
  10014. const std::string & utf_char = text_utf[i];
  10015. bool split_condition = false;
  10016. int bytes_remain = text_utf.size() - i;
  10017. // forward backward lookups
  10018. const std::string & utf_char_next = (i + 1 < (int)text_utf.size()) ? text_utf[i + 1] : "";
  10019. const std::string & utf_char_next_next = (i + 2 < (int)text_utf.size()) ? text_utf[i + 2] : "";
  10020. // handling contractions
  10021. if (!split_condition && bytes_remain >= 2) {
  10022. // 's|'t|'m|'d
  10023. if (utf_char == "\'" && (utf_char_next == "s" || utf_char_next == "t" || utf_char_next == "m" || utf_char_next == "d")) {
  10024. split_condition = true;
  10025. }
  10026. if (split_condition) {
  10027. if (token.size()) {
  10028. bpe_words.emplace_back(token); // push previous content as token
  10029. }
  10030. token = utf_char + utf_char_next;
  10031. bpe_words.emplace_back(token);
  10032. token = "";
  10033. i++;
  10034. continue;
  10035. }
  10036. }
  10037. if (!split_condition && bytes_remain >= 3) {
  10038. // 're|'ve|'ll
  10039. if (utf_char == "\'" && (
  10040. (utf_char_next == "r" && utf_char_next_next == "e") ||
  10041. (utf_char_next == "v" && utf_char_next_next == "e") ||
  10042. (utf_char_next == "l" && utf_char_next_next == "l"))
  10043. ) {
  10044. split_condition = true;
  10045. }
  10046. if (split_condition) {
  10047. // current token + next token can be defined
  10048. if (token.size()) {
  10049. bpe_words.emplace_back(token); // push previous content as token
  10050. }
  10051. token = utf_char + utf_char_next + utf_char_next_next;
  10052. bpe_words.emplace_back(token); // the contraction
  10053. token = "";
  10054. i += 2;
  10055. continue;
  10056. }
  10057. }
  10058. if (!split_condition && !collecting) {
  10059. if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_LETTER || (!token.size() && utf_char == " " && unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_LETTER)) {
  10060. collecting_letter = true;
  10061. collecting = true;
  10062. }
  10063. else if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_DIGIT || (!token.size() && utf_char == " " && unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_DIGIT)) {
  10064. collecting_numeric = true;
  10065. collecting = true;
  10066. }
  10067. else if (
  10068. ((unicode_cpt_type(utf_char) != CODEPOINT_TYPE_LETTER && unicode_cpt_type(utf_char) != CODEPOINT_TYPE_DIGIT) && (unicode_cpt_type(utf_char) != CODEPOINT_TYPE_WHITESPACE)) ||
  10069. (!token.size() && utf_char == " " && unicode_cpt_type(utf_char_next) != CODEPOINT_TYPE_LETTER && unicode_cpt_type(utf_char_next) != CODEPOINT_TYPE_DIGIT && unicode_cpt_type(utf_char_next) != CODEPOINT_TYPE_WHITESPACE)
  10070. ) {
  10071. collecting_special = true;
  10072. collecting = true;
  10073. }
  10074. else if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_WHITESPACE && unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_WHITESPACE) {
  10075. collecting_whitespace_lookahead = true;
  10076. collecting = true;
  10077. }
  10078. else if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_WHITESPACE) {
  10079. split_condition = true;
  10080. }
  10081. }
  10082. else if (!split_condition && collecting) {
  10083. if (collecting_letter && unicode_cpt_type(utf_char) != CODEPOINT_TYPE_LETTER) {
  10084. split_condition = true;
  10085. }
  10086. else if (collecting_numeric && unicode_cpt_type(utf_char) != CODEPOINT_TYPE_DIGIT) {
  10087. split_condition = true;
  10088. }
  10089. else if (collecting_special && (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_LETTER || unicode_cpt_type(utf_char) == CODEPOINT_TYPE_DIGIT || unicode_cpt_type(utf_char) == CODEPOINT_TYPE_WHITESPACE)) {
  10090. split_condition = true;
  10091. }
  10092. else if (collecting_whitespace_lookahead && (unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_LETTER || unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_DIGIT)) {
  10093. split_condition = true;
  10094. }
  10095. }
  10096. if (utf_char_next == "") {
  10097. split_condition = true; // final
  10098. token += utf_char;
  10099. }
  10100. if (split_condition) {
  10101. if (token.size()) {
  10102. bpe_words.emplace_back(token);
  10103. }
  10104. token = utf_char;
  10105. collecting = false;
  10106. collecting_letter = false;
  10107. collecting_numeric = false;
  10108. collecting_special = false;
  10109. collecting_whitespace_lookahead = false;
  10110. }
  10111. else {
  10112. token += utf_char;
  10113. }
  10114. }
  10115. for (std::string & word : bpe_words) {
  10116. std::string encoded_token = "";
  10117. for (char & c : word) {
  10118. encoded_token += unicode_byte_to_utf8(c);
  10119. }
  10120. bpe_encoded_words.emplace_back(encoded_token);
  10121. }
  10122. return bpe_encoded_words;
  10123. }
  10124. const llama_vocab & vocab;
  10125. std::vector<llm_symbol> symbols;
  10126. std::vector<llm_symbol> symbols_final;
  10127. llm_bigram_bpe::queue work_queue;
  10128. };
  10129. struct llm_tokenizer_wpm {
  10130. llm_tokenizer_wpm(const llama_vocab & vocab): vocab(vocab) {}
  10131. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  10132. auto * token_map = &vocab.token_to_id;
  10133. // normalize and split by whitespace
  10134. std::vector<std::string> words = preprocess(text);
  10135. // bos token prepended already
  10136. // find the longest tokens that form the words
  10137. for (const std::string &word : words) {
  10138. // skip empty words
  10139. if (word.size() == 0) {
  10140. continue;
  10141. }
  10142. // prepend phantom space
  10143. std::string word1 = "\xe2\x96\x81" + word;
  10144. int n = word1.size();
  10145. // we're at the start of a new word
  10146. int i = 0;
  10147. bool match_any = false;
  10148. // move through character position in word
  10149. while (i < n) {
  10150. // loop through possible match length
  10151. bool match = false;
  10152. for (int j = n; j > i; j--) {
  10153. auto it = token_map->find(word1.substr(i, j - i));
  10154. if (it != token_map->end()) {
  10155. output.push_back(it->second);
  10156. match = true;
  10157. match_any = true;
  10158. i = j;
  10159. break;
  10160. }
  10161. }
  10162. // must be an unknown character
  10163. if (!match) {
  10164. i++;
  10165. }
  10166. }
  10167. // we didn't find any matches for this word
  10168. if (!match_any) {
  10169. output.push_back(vocab.special_unk_id);
  10170. }
  10171. }
  10172. }
  10173. std::vector<std::string> preprocess(const std::string & text) {
  10174. std::vector<uint32_t> cpts_nfd = unicode_cpts_normalize_nfd(unicode_cpts_from_utf8(text));
  10175. // strip accents, strip control, uniformize whitespace,
  10176. // to lowercase, pad chinese characters, pad punctuation
  10177. std::string new_str = "";
  10178. for (uint32_t code : cpts_nfd) {
  10179. int type = unicode_cpt_type(code);
  10180. if (type == CODEPOINT_TYPE_ACCENT_MARK || type == CODEPOINT_TYPE_CONTROL) {
  10181. continue;
  10182. }
  10183. code = unicode_tolower(code);
  10184. if (type == CODEPOINT_TYPE_WHITESPACE) {
  10185. code = ' ';
  10186. }
  10187. std::string s = unicode_cpt_to_utf8(code);
  10188. if (type == CODEPOINT_TYPE_PUNCTUATION || is_ascii_punct(code) || is_chinese_char(code)) {
  10189. new_str += " ";
  10190. new_str += s;
  10191. new_str += " ";
  10192. } else {
  10193. new_str += s;
  10194. }
  10195. }
  10196. // split by whitespace
  10197. uint64_t l = 0;
  10198. uint64_t r = 0;
  10199. std::vector<std::string> words;
  10200. while (r < new_str.size()) {
  10201. // if is whitespace
  10202. if (isspace(new_str[r], std::locale::classic())) {
  10203. if (r > l) words.push_back(new_str.substr(l, (r - l)));
  10204. l = r + 1;
  10205. r = l;
  10206. } else {
  10207. r += 1;
  10208. }
  10209. }
  10210. if (r > l) {
  10211. words.push_back(new_str.substr(l, (r - l)));
  10212. }
  10213. return words;
  10214. }
  10215. bool is_ascii_punct(uint32_t code) {
  10216. if (code > 0xFF) {
  10217. return false;
  10218. }
  10219. auto c = char(static_cast<unsigned char>(code));
  10220. return ispunct(c, std::locale::classic());
  10221. }
  10222. bool is_chinese_char(uint32_t cpt) {
  10223. if ((cpt >= 0x4E00 && cpt <= 0x9FFF) ||
  10224. (cpt >= 0x3400 && cpt <= 0x4DBF) ||
  10225. (cpt >= 0x20000 && cpt <= 0x2A6DF) ||
  10226. (cpt >= 0x2A700 && cpt <= 0x2B73F) ||
  10227. (cpt >= 0x2B740 && cpt <= 0x2B81F) ||
  10228. (cpt >= 0x2B920 && cpt <= 0x2CEAF) || // this should be 0x2B820 but in hf rust code it is 0x2B920
  10229. (cpt >= 0xF900 && cpt <= 0xFAFF) ||
  10230. (cpt >= 0x2F800 && cpt <= 0x2FA1F) ||
  10231. (cpt >= 0x3000 && cpt <= 0x303F) ||
  10232. (cpt >= 0xFF00 && cpt <= 0xFFEF)) {
  10233. return true; // NOLINT
  10234. }
  10235. return false;
  10236. }
  10237. const llama_vocab & vocab;
  10238. };
  10239. typedef enum FRAGMENT_BUFFER_VARIANT_TYPE {
  10240. FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN,
  10241. FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT
  10242. } FRAGMENT_BUFFER_VARIANT_TYPE;
  10243. struct fragment_buffer_variant {
  10244. fragment_buffer_variant(llama_vocab::id _token)
  10245. :
  10246. type(FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN),
  10247. token(_token),
  10248. raw_text(_dummy),
  10249. offset(0),
  10250. length(0) {}
  10251. fragment_buffer_variant(const std::string & _raw_text, int64_t _offset, int64_t _length)
  10252. :
  10253. type(FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT),
  10254. token((llama_vocab::id) - 1),
  10255. raw_text(_raw_text),
  10256. offset(_offset),
  10257. length(_length){
  10258. GGML_ASSERT(_offset >= 0);
  10259. GGML_ASSERT(_length >= 1);
  10260. GGML_ASSERT(offset + length <= raw_text.length());
  10261. }
  10262. const FRAGMENT_BUFFER_VARIANT_TYPE type;
  10263. const llama_vocab::id token;
  10264. const std::string _dummy;
  10265. const std::string & raw_text;
  10266. const uint64_t offset;
  10267. const uint64_t length;
  10268. };
  10269. // #define PRETOKENIZERDEBUG
  10270. static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<fragment_buffer_variant> & buffer) {
  10271. // for each special token
  10272. for (const auto & st: vocab.special_tokens_cache) {
  10273. const auto & special_token = st.first;
  10274. const auto & special_id = st.second;
  10275. // for each text fragment
  10276. std::forward_list<fragment_buffer_variant>::iterator it = buffer.begin();
  10277. while (it != buffer.end()) {
  10278. auto & fragment = (*it);
  10279. // if a fragment is text ( not yet processed )
  10280. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  10281. auto * raw_text = &(fragment.raw_text);
  10282. auto raw_text_base_offset = fragment.offset;
  10283. auto raw_text_base_length = fragment.length;
  10284. // loop over the text
  10285. while (true) {
  10286. // find the first occurrence of a given special token in this fragment
  10287. // passing offset argument only limit the "search area" but match coordinates
  10288. // are still relative to the source full raw_text
  10289. auto match = raw_text->find(special_token, raw_text_base_offset);
  10290. // no occurrences found, stop processing this fragment for a given special token
  10291. if (match == std::string::npos) break;
  10292. // check if match is within bounds of offset <-> length
  10293. if (match + special_token.length() > raw_text_base_offset + raw_text_base_length) break;
  10294. #ifdef PRETOKENIZERDEBUG
  10295. LLAMA_LOG_WARN("FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  10296. #endif
  10297. auto source = std::distance(buffer.begin(), it);
  10298. // if match is further than base offset
  10299. // then we have some text to the left of it
  10300. if (match > raw_text_base_offset) {
  10301. // left
  10302. const int64_t left_reminder_offset = raw_text_base_offset + 0;
  10303. const int64_t left_reminder_length = match - raw_text_base_offset;
  10304. buffer.emplace_after(it, (*raw_text), left_reminder_offset, left_reminder_length);
  10305. #ifdef PRETOKENIZERDEBUG
  10306. LLAMA_LOG_WARN("FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str());
  10307. #endif
  10308. it++;
  10309. }
  10310. // special token
  10311. buffer.emplace_after(it, special_id);
  10312. it++;
  10313. // right
  10314. if (match + special_token.length() < raw_text_base_offset + raw_text_base_length) {
  10315. const int64_t right_reminder_offset = match + special_token.length();
  10316. const int64_t right_reminder_length = raw_text_base_length - ((match - raw_text_base_offset) + special_token.length());
  10317. buffer.emplace_after(it, (*raw_text), right_reminder_offset, right_reminder_length);
  10318. #ifdef PRETOKENIZERDEBUG
  10319. LLAMA_LOG_WARN("FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str());
  10320. #endif
  10321. it++;
  10322. if (source == 0) {
  10323. buffer.erase_after(buffer.before_begin());
  10324. } else {
  10325. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  10326. }
  10327. // repeat for the right side
  10328. raw_text_base_offset = right_reminder_offset;
  10329. raw_text_base_length = right_reminder_length;
  10330. #ifdef PRETOKENIZERDEBUG
  10331. LLAMA_LOG_WARN("RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  10332. #endif
  10333. } else {
  10334. if (source == 0) {
  10335. buffer.erase_after(buffer.before_begin());
  10336. } else {
  10337. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  10338. }
  10339. break;
  10340. }
  10341. }
  10342. }
  10343. it++;
  10344. }
  10345. }
  10346. }
  10347. static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special) {
  10348. std::vector<llama_vocab::id> output;
  10349. std::forward_list<fragment_buffer_variant> fragment_buffer;
  10350. if (!raw_text.empty()) {
  10351. fragment_buffer.emplace_front(raw_text, 0, raw_text.length());
  10352. if (parse_special) tokenizer_st_partition(vocab, fragment_buffer);
  10353. }
  10354. switch (vocab.type) {
  10355. case LLAMA_VOCAB_TYPE_SPM:
  10356. {
  10357. // OG tokenizer behavior:
  10358. //
  10359. // tokenizer.encode('', add_special_tokens=True) returns [1]
  10360. // tokenizer.encode('', add_special_tokens=False) returns []
  10361. if (add_special && vocab.special_add_bos != 0) {
  10362. GGML_ASSERT(vocab.special_bos_id != -1);
  10363. output.push_back(vocab.special_bos_id);
  10364. }
  10365. for (const auto & fragment : fragment_buffer) {
  10366. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  10367. // without adding this leading whitespace, we do not get the same results as the original tokenizer
  10368. // TODO: It's likely possible to get rid of this string copy entirely
  10369. // by modifying llm_tokenizer_x to operate with string offsets like pre-tokenizer
  10370. // and passing 'add space prefix' as bool argument
  10371. //
  10372. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  10373. if (&fragment == &fragment_buffer.front()) {
  10374. if (vocab.add_space_prefix) {
  10375. raw_text = " " + raw_text; // prefix with space if the first token is not special
  10376. }
  10377. }
  10378. #ifdef PRETOKENIZERDEBUG
  10379. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  10380. #endif
  10381. llm_tokenizer_spm tokenizer(vocab);
  10382. llama_escape_whitespace(raw_text);
  10383. tokenizer.tokenize(raw_text, output);
  10384. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  10385. output.push_back(fragment.token);
  10386. }
  10387. }
  10388. if (add_special && vocab.special_add_eos == 1) {
  10389. GGML_ASSERT(vocab.special_eos_id != -1);
  10390. output.push_back(vocab.special_eos_id);
  10391. }
  10392. } break;
  10393. case LLAMA_VOCAB_TYPE_BPE:
  10394. {
  10395. if (add_special && vocab.special_add_bos == 1) {
  10396. GGML_ASSERT(vocab.special_bos_id != -1);
  10397. output.push_back(vocab.special_bos_id);
  10398. }
  10399. for (const auto & fragment : fragment_buffer) {
  10400. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  10401. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  10402. #ifdef PRETOKENIZERDEBUG
  10403. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  10404. #endif
  10405. llm_tokenizer_bpe tokenizer(vocab);
  10406. tokenizer.tokenize(raw_text, output);
  10407. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  10408. output.push_back(fragment.token);
  10409. }
  10410. }
  10411. GGML_ASSERT(vocab.special_add_eos != 1);
  10412. } break;
  10413. case LLAMA_VOCAB_TYPE_WPM:
  10414. {
  10415. if (add_special) {
  10416. GGML_ASSERT(vocab.special_cls_id != -1);
  10417. output.push_back(vocab.special_cls_id);
  10418. }
  10419. for (const auto & fragment : fragment_buffer) {
  10420. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  10421. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  10422. #ifdef PRETOKENIZERDEBUG
  10423. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  10424. #endif
  10425. llm_tokenizer_wpm tokenizer(vocab);
  10426. tokenizer.tokenize(raw_text, output);
  10427. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  10428. output.push_back(fragment.token);
  10429. }
  10430. }
  10431. if (add_special) {
  10432. GGML_ASSERT(vocab.special_sep_id != -1);
  10433. output.push_back(vocab.special_sep_id);
  10434. }
  10435. } break;
  10436. case LLAMA_VOCAB_TYPE_NONE:
  10437. GGML_ASSERT(false);
  10438. }
  10439. return output;
  10440. }
  10441. //
  10442. // grammar - internal
  10443. //
  10444. // Decodes a UTF-8 string which may end in an incomplete sequence. Adds a terminating 0 for use as
  10445. // pointer. If an invalid sequence is encountered, returns `llama_partial_utf8.n_remain == -1`.
  10446. std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
  10447. const std::string & src,
  10448. llama_partial_utf8 partial_start) {
  10449. static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 3, 4 };
  10450. const char * pos = src.c_str();
  10451. std::vector<uint32_t> code_points;
  10452. // common english strings have the same number of codepoints and bytes. `+ 1` for the terminating 0.
  10453. code_points.reserve(src.size() + 1);
  10454. uint32_t value = partial_start.value;
  10455. int n_remain = partial_start.n_remain;
  10456. // continue previous decode, if applicable
  10457. while (*pos != 0 && n_remain > 0) {
  10458. uint8_t next_byte = static_cast<uint8_t>(*pos);
  10459. if ((next_byte >> 6) != 2) {
  10460. // invalid sequence, abort
  10461. code_points.push_back(0);
  10462. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, -1 });
  10463. }
  10464. value = (value << 6) + (next_byte & 0x3F);
  10465. ++pos;
  10466. --n_remain;
  10467. }
  10468. if (partial_start.n_remain > 0 && n_remain == 0) {
  10469. code_points.push_back(value);
  10470. }
  10471. // decode any subsequent utf-8 sequences, which may end in an incomplete one
  10472. while (*pos != 0) {
  10473. uint8_t first_byte = static_cast<uint8_t>(*pos);
  10474. uint8_t highbits = first_byte >> 4;
  10475. n_remain = lookup[highbits] - 1;
  10476. if (n_remain < 0) {
  10477. // invalid sequence, abort
  10478. code_points.clear();
  10479. code_points.push_back(0);
  10480. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, n_remain });
  10481. }
  10482. uint8_t mask = (1 << (7 - n_remain)) - 1;
  10483. value = first_byte & mask;
  10484. ++pos;
  10485. while (*pos != 0 && n_remain > 0) {
  10486. value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F);
  10487. ++pos;
  10488. --n_remain;
  10489. }
  10490. if (n_remain == 0) {
  10491. code_points.push_back(value);
  10492. }
  10493. }
  10494. code_points.push_back(0);
  10495. return std::make_pair(std::move(code_points), llama_partial_utf8{ value, n_remain });
  10496. }
  10497. // returns true iff pos points to the end of one of the definitions of a rule
  10498. static bool llama_grammar_is_end_of_sequence(const llama_grammar_element * pos) {
  10499. switch (pos->type) {
  10500. case LLAMA_GRETYPE_END: return true; // NOLINT
  10501. case LLAMA_GRETYPE_ALT: return true; // NOLINT
  10502. default: return false;
  10503. }
  10504. }
  10505. // returns true iff chr satisfies the char range at pos (regular or inverse range)
  10506. // asserts that pos is pointing to a char range element
  10507. static std::pair<bool, const llama_grammar_element *> llama_grammar_match_char(
  10508. const llama_grammar_element * pos,
  10509. const uint32_t chr) {
  10510. bool found = false;
  10511. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
  10512. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT); // NOLINT
  10513. do {
  10514. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  10515. // inclusive range, e.g. [a-z]
  10516. found = found || (pos->value <= chr && chr <= pos[1].value);
  10517. pos += 2;
  10518. } else {
  10519. // exact char match, e.g. [a] or "a"
  10520. found = found || pos->value == chr;
  10521. pos += 1;
  10522. }
  10523. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  10524. return std::make_pair(found == is_positive_char, pos);
  10525. }
  10526. // returns true iff some continuation of the given partial UTF-8 sequence could satisfy the char
  10527. // range at pos (regular or inverse range)
  10528. // asserts that pos is pointing to a char range element
  10529. static bool llama_grammar_match_partial_char(
  10530. const llama_grammar_element * pos,
  10531. const llama_partial_utf8 partial_utf8) {
  10532. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
  10533. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT);
  10534. uint32_t partial_value = partial_utf8.value;
  10535. int n_remain = partial_utf8.n_remain;
  10536. // invalid sequence or 7-bit char split across 2 bytes (overlong)
  10537. if (n_remain < 0 || (n_remain == 1 && partial_value < 2)) {
  10538. return false;
  10539. }
  10540. // range of possible code points this partial UTF-8 sequence could complete to
  10541. uint32_t low = partial_value << (n_remain * 6);
  10542. uint32_t high = low | ((1 << (n_remain * 6)) - 1);
  10543. if (low == 0) {
  10544. if (n_remain == 2) {
  10545. low = 1 << 11;
  10546. } else if (n_remain == 3) {
  10547. low = 1 << 16;
  10548. }
  10549. }
  10550. do {
  10551. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  10552. // inclusive range, e.g. [a-z]
  10553. if (pos->value <= high && low <= pos[1].value) {
  10554. return is_positive_char;
  10555. }
  10556. pos += 2;
  10557. } else {
  10558. // exact char match, e.g. [a] or "a"
  10559. if (low <= pos->value && pos->value <= high) {
  10560. return is_positive_char;
  10561. }
  10562. pos += 1;
  10563. }
  10564. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  10565. return !is_positive_char;
  10566. }
  10567. // transforms a grammar pushdown stack into N possible stacks, all ending
  10568. // at a character range (terminal element)
  10569. static void llama_grammar_advance_stack(
  10570. const std::vector<std::vector<llama_grammar_element>> & rules,
  10571. const std::vector<const llama_grammar_element *> & stack,
  10572. std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
  10573. if (stack.empty()) {
  10574. if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) {
  10575. new_stacks.emplace_back(stack);
  10576. }
  10577. return;
  10578. }
  10579. const llama_grammar_element * pos = stack.back();
  10580. switch (pos->type) {
  10581. case LLAMA_GRETYPE_RULE_REF: {
  10582. const size_t rule_id = static_cast<size_t>(pos->value);
  10583. const llama_grammar_element * subpos = rules[rule_id].data();
  10584. do {
  10585. // init new stack without the top (pos)
  10586. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  10587. if (!llama_grammar_is_end_of_sequence(pos + 1)) {
  10588. // if this rule ref is followed by another element, add that to stack
  10589. new_stack.push_back(pos + 1);
  10590. }
  10591. if (!llama_grammar_is_end_of_sequence(subpos)) {
  10592. // if alternate is nonempty, add to stack
  10593. new_stack.push_back(subpos);
  10594. }
  10595. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  10596. while (!llama_grammar_is_end_of_sequence(subpos)) {
  10597. // scan to end of alternate def
  10598. subpos++;
  10599. }
  10600. if (subpos->type == LLAMA_GRETYPE_ALT) {
  10601. // there's another alternate def of this rule to process
  10602. subpos++;
  10603. } else {
  10604. break;
  10605. }
  10606. } while (true);
  10607. break;
  10608. }
  10609. case LLAMA_GRETYPE_CHAR:
  10610. case LLAMA_GRETYPE_CHAR_NOT:
  10611. if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) {
  10612. // only add the stack if it's not a duplicate of one we already have
  10613. new_stacks.emplace_back(stack);
  10614. }
  10615. break;
  10616. default:
  10617. // end of alternate (LLAMA_GRETYPE_END, LLAMA_GRETYPE_ALT) or middle of char range
  10618. // (LLAMA_GRETYPE_CHAR_ALT, LLAMA_GRETYPE_CHAR_RNG_UPPER); stack should never be left on
  10619. // those
  10620. GGML_ASSERT(false);
  10621. }
  10622. }
  10623. // takes a set of possible pushdown stacks on a grammar, which are required to
  10624. // be positioned at a character range (see `llama_grammar_advance_stack`), and
  10625. // produces the N possible stacks if the given char is accepted at those
  10626. // positions
  10627. void llama_grammar_accept(
  10628. const std::vector<std::vector<llama_grammar_element>> & rules,
  10629. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  10630. const uint32_t chr,
  10631. std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
  10632. new_stacks.clear();
  10633. for (const auto & stack : stacks) {
  10634. if (stack.empty()) {
  10635. continue;
  10636. }
  10637. auto match = llama_grammar_match_char(stack.back(), chr);
  10638. if (match.first) {
  10639. const llama_grammar_element * pos = match.second;
  10640. // update top of stack to next element, if any
  10641. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  10642. if (!llama_grammar_is_end_of_sequence(pos)) {
  10643. new_stack.push_back(pos);
  10644. }
  10645. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  10646. }
  10647. }
  10648. }
  10649. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  10650. const std::vector<std::vector<llama_grammar_element>> & rules,
  10651. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  10652. const std::vector<llama_grammar_candidate> & candidates);
  10653. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_stack(
  10654. const std::vector<std::vector<llama_grammar_element>> & rules,
  10655. const std::vector<const llama_grammar_element *> & stack,
  10656. const std::vector<llama_grammar_candidate> & candidates) {
  10657. std::vector<llama_grammar_candidate> rejects;
  10658. rejects.reserve(candidates.size());
  10659. if (stack.empty()) {
  10660. for (const auto & tok : candidates) {
  10661. if (*tok.code_points != 0 || tok.partial_utf8.n_remain != 0) {
  10662. rejects.push_back(tok);
  10663. }
  10664. }
  10665. return rejects;
  10666. }
  10667. const llama_grammar_element * stack_pos = stack.back();
  10668. std::vector<llama_grammar_candidate> next_candidates;
  10669. next_candidates.reserve(candidates.size());
  10670. for (const auto & tok : candidates) {
  10671. if (*tok.code_points == 0) {
  10672. // reached end of full codepoints in token, reject iff it ended in a partial sequence
  10673. // that cannot satisfy this position in grammar
  10674. if (tok.partial_utf8.n_remain != 0 &&
  10675. !llama_grammar_match_partial_char(stack_pos, tok.partial_utf8)) {
  10676. rejects.push_back(tok);
  10677. }
  10678. } else if (llama_grammar_match_char(stack_pos, *tok.code_points).first) {
  10679. next_candidates.push_back({ tok.index, tok.code_points + 1, tok.partial_utf8 });
  10680. } else {
  10681. rejects.push_back(tok);
  10682. }
  10683. }
  10684. const auto * stack_pos_after = llama_grammar_match_char(stack_pos, 0).second;
  10685. // update top of stack to next element, if any
  10686. std::vector<const llama_grammar_element *> stack_after(stack.begin(), stack.end() - 1);
  10687. if (!llama_grammar_is_end_of_sequence(stack_pos_after)) {
  10688. stack_after.push_back(stack_pos_after);
  10689. }
  10690. std::vector<std::vector<const llama_grammar_element *>> next_stacks;
  10691. llama_grammar_advance_stack(rules, stack_after, next_stacks);
  10692. auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates);
  10693. for (const auto & tok : next_rejects) {
  10694. rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8 });
  10695. }
  10696. return rejects;
  10697. }
  10698. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  10699. const std::vector<std::vector<llama_grammar_element>> & rules,
  10700. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  10701. const std::vector<llama_grammar_candidate> & candidates) {
  10702. GGML_ASSERT(!stacks.empty()); // REVIEW
  10703. if (candidates.empty()) {
  10704. return std::vector<llama_grammar_candidate>();
  10705. }
  10706. auto rejects = llama_grammar_reject_candidates_for_stack(rules, stacks.front(), candidates);
  10707. for (size_t i = 1, size = stacks.size(); i < size; ++i) {
  10708. rejects = llama_grammar_reject_candidates_for_stack(rules, stacks[i], rejects);
  10709. }
  10710. return rejects;
  10711. }
  10712. //
  10713. // grammar - external
  10714. //
  10715. struct llama_grammar * llama_grammar_init(
  10716. const llama_grammar_element ** rules,
  10717. size_t n_rules,
  10718. size_t start_rule_index) {
  10719. const llama_grammar_element * pos;
  10720. // copy rule definitions into vectors
  10721. std::vector<std::vector<llama_grammar_element>> vec_rules(n_rules);
  10722. for (size_t i = 0; i < n_rules; i++) {
  10723. for (pos = rules[i]; pos->type != LLAMA_GRETYPE_END; pos++) {
  10724. vec_rules[i].push_back(*pos);
  10725. }
  10726. vec_rules[i].push_back({LLAMA_GRETYPE_END, 0});
  10727. }
  10728. // loop over alternates of start rule to build initial stacks
  10729. std::vector<std::vector<const llama_grammar_element *>> stacks;
  10730. pos = vec_rules[start_rule_index].data();
  10731. do {
  10732. std::vector<const llama_grammar_element *> stack;
  10733. if (!llama_grammar_is_end_of_sequence(pos)) {
  10734. // if alternate is nonempty, add to stack
  10735. stack.push_back(pos);
  10736. }
  10737. llama_grammar_advance_stack(vec_rules, stack, stacks);
  10738. while (!llama_grammar_is_end_of_sequence(pos)) {
  10739. // scan to end of alternate def
  10740. pos++;
  10741. }
  10742. if (pos->type == LLAMA_GRETYPE_ALT) {
  10743. // there's another alternate def of this rule to process
  10744. pos++;
  10745. } else {
  10746. break;
  10747. }
  10748. } while (true);
  10749. return new llama_grammar{ std::move(vec_rules), std::move(stacks), {} };
  10750. }
  10751. void llama_grammar_free(struct llama_grammar * grammar) {
  10752. delete grammar;
  10753. }
  10754. struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar) {
  10755. llama_grammar * result = new llama_grammar{ grammar->rules, grammar->stacks, grammar->partial_utf8 };
  10756. // redirect elements in stacks to point to new rules
  10757. for (size_t is = 0; is < result->stacks.size(); is++) {
  10758. for (size_t ie = 0; ie < result->stacks[is].size(); ie++) {
  10759. for (size_t ir0 = 0; ir0 < grammar->rules.size(); ir0++) {
  10760. for (size_t ir1 = 0; ir1 < grammar->rules[ir0].size(); ir1++) {
  10761. if (grammar->stacks[is][ie] == &grammar->rules[ir0][ir1]) {
  10762. result->stacks[is][ie] = &result->rules[ir0][ir1];
  10763. }
  10764. }
  10765. }
  10766. }
  10767. }
  10768. return result;
  10769. }
  10770. //
  10771. // sampling
  10772. //
  10773. void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed) {
  10774. if (seed == LLAMA_DEFAULT_SEED) {
  10775. seed = time(NULL);
  10776. }
  10777. ctx->rng.seed(seed);
  10778. }
  10779. void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) {
  10780. GGML_ASSERT(candidates->size > 0);
  10781. const int64_t t_start_sample_us = ggml_time_us();
  10782. // Sort the logits in descending order
  10783. if (!candidates->sorted) {
  10784. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  10785. return a.logit > b.logit;
  10786. });
  10787. candidates->sorted = true;
  10788. }
  10789. float max_l = candidates->data[0].logit;
  10790. float cum_sum = 0.0f;
  10791. for (size_t i = 0; i < candidates->size; ++i) {
  10792. float p = expf(candidates->data[i].logit - max_l);
  10793. candidates->data[i].p = p;
  10794. cum_sum += p;
  10795. }
  10796. for (size_t i = 0; i < candidates->size; ++i) {
  10797. candidates->data[i].p /= cum_sum;
  10798. }
  10799. if (ctx) {
  10800. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10801. }
  10802. }
  10803. void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int32_t k, size_t min_keep) {
  10804. // TODO: move bucket sort to separate function so that top_p/tail_free/typical/softmax first is equally fast
  10805. // if (k >= (int32_t)candidates->size) {
  10806. // return;
  10807. // }
  10808. const int64_t t_start_sample_us = ggml_time_us();
  10809. if (k <= 0) {
  10810. k = candidates->size;
  10811. }
  10812. k = std::max(k, (int) min_keep);
  10813. k = std::min(k, (int) candidates->size);
  10814. // Sort scores in descending order
  10815. if (!candidates->sorted) {
  10816. auto comp = [](const llama_token_data & a, const llama_token_data & b) {
  10817. return a.logit > b.logit;
  10818. };
  10819. if (k <= 128) {
  10820. std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp);
  10821. } else {
  10822. constexpr int nbuckets = 128;
  10823. constexpr float bucket_low = -10.0f;
  10824. constexpr float bucket_high = 10.0f;
  10825. constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low);
  10826. constexpr float bucker_inter = -bucket_low * bucket_scale;
  10827. std::vector<int> bucket_idx(candidates->size);
  10828. std::vector<int> histo(nbuckets, 0);
  10829. for (int i = 0; i < (int)candidates->size; ++i) {
  10830. const float val = candidates->data[i].logit;
  10831. int ib = int(bucket_scale * val + bucker_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low);
  10832. ib = std::max(0, std::min(nbuckets-1, ib));
  10833. bucket_idx[i] = ib;
  10834. ++histo[ib];
  10835. }
  10836. int nhave = 0;
  10837. int ib = nbuckets - 1;
  10838. for ( ; ib >= 0; --ib) {
  10839. nhave += histo[ib];
  10840. if (nhave >= k) break;
  10841. }
  10842. std::vector<llama_token_data> tmp_tokens(nhave);
  10843. auto ptr = tmp_tokens.data();
  10844. std::vector<llama_token_data*> bucket_ptrs;
  10845. bucket_ptrs.reserve(nbuckets - ib);
  10846. for (int j = nbuckets - 1; j >= ib; --j) {
  10847. bucket_ptrs.push_back(ptr);
  10848. ptr += histo[j];
  10849. }
  10850. for (int i = 0; i < (int)candidates->size; ++i) {
  10851. int j = bucket_idx[i];
  10852. if (j >= ib) {
  10853. *bucket_ptrs[nbuckets-1-j]++ = candidates->data[i];
  10854. }
  10855. }
  10856. ptr = tmp_tokens.data();
  10857. int ndone = 0;
  10858. for (int j = nbuckets-1; j > ib; --j) {
  10859. std::sort(ptr, ptr + histo[j], comp);
  10860. ptr += histo[j];
  10861. ndone += histo[j];
  10862. }
  10863. std::partial_sort(ptr, ptr + k - ndone, ptr + histo[ib], comp);
  10864. std::memcpy(candidates->data, tmp_tokens.data(), k*sizeof(llama_token_data));
  10865. }
  10866. candidates->sorted = true;
  10867. }
  10868. candidates->size = k;
  10869. if (ctx) {
  10870. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10871. }
  10872. }
  10873. void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  10874. if (p >= 1.0f) {
  10875. return;
  10876. }
  10877. llama_sample_softmax(ctx, candidates);
  10878. const int64_t t_start_sample_us = ggml_time_us();
  10879. // Compute the cumulative probabilities
  10880. float cum_sum = 0.0f;
  10881. size_t last_idx = candidates->size;
  10882. for (size_t i = 0; i < candidates->size; ++i) {
  10883. cum_sum += candidates->data[i].p;
  10884. // Check if the running sum is at least p or if we have kept at least min_keep tokens
  10885. // we set the last index to i+1 to indicate that the current iterate should be included in the set
  10886. if (cum_sum >= p && i + 1 >= min_keep) {
  10887. last_idx = i + 1;
  10888. break;
  10889. }
  10890. }
  10891. // Resize the output vector to keep only the top-p tokens
  10892. candidates->size = last_idx;
  10893. if (ctx) {
  10894. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10895. }
  10896. }
  10897. void llama_sample_min_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  10898. if (p <= 0.0f || !candidates->size) {
  10899. return;
  10900. }
  10901. const int64_t t_start_sample_us = ggml_time_us();
  10902. bool min_p_applied = false;
  10903. // if the candidates aren't sorted, try the unsorted implementation first
  10904. if (!candidates->sorted) {
  10905. std::vector<llama_token_data> filtered_tokens;
  10906. float max_logit = -FLT_MAX;
  10907. for (size_t i = 0; i < candidates->size; ++i) {
  10908. max_logit = std::max(max_logit, candidates->data[i].logit);
  10909. }
  10910. const float min_logit = max_logit + logf(p); // min logit for p_i >= p * p_max
  10911. for (size_t i = 0; i < candidates->size; ++i) {
  10912. if (candidates->data[i].logit >= min_logit) {
  10913. filtered_tokens.push_back(candidates->data[i]);
  10914. }
  10915. }
  10916. // if we have enough values the operation was a success
  10917. if (filtered_tokens.size() >= min_keep) {
  10918. memcpy(candidates->data, filtered_tokens.data(), filtered_tokens.size()*sizeof(llama_token_data));
  10919. candidates->size = filtered_tokens.size();
  10920. min_p_applied = true;
  10921. }
  10922. }
  10923. // if the candidates are sorted or the unsorted implementation failed, use this implementation
  10924. if (!min_p_applied) {
  10925. // Sort the logits in descending order
  10926. if (!candidates->sorted) {
  10927. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  10928. return a.logit > b.logit;
  10929. });
  10930. candidates->sorted = true;
  10931. }
  10932. const float min_logit = candidates->data[0].logit + logf(p); // min logit for p_i >= p * p_max
  10933. size_t i = 1; // first token always matches
  10934. for (; i < candidates->size; ++i) {
  10935. if (candidates->data[i].logit < min_logit && i >= min_keep) {
  10936. break; // prob too small
  10937. }
  10938. }
  10939. // Resize the output vector to keep only the matching tokens
  10940. candidates->size = i;
  10941. }
  10942. if (ctx) {
  10943. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10944. }
  10945. }
  10946. void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) {
  10947. if (z >= 1.0f || candidates->size <= 2) {
  10948. return;
  10949. }
  10950. llama_sample_softmax(nullptr, candidates);
  10951. const int64_t t_start_sample_us = ggml_time_us();
  10952. // Compute the first and second derivatives
  10953. std::vector<float> first_derivatives(candidates->size - 1);
  10954. std::vector<float> second_derivatives(candidates->size - 2);
  10955. for (size_t i = 0; i < first_derivatives.size(); ++i) {
  10956. first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p;
  10957. }
  10958. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  10959. second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1];
  10960. }
  10961. // Calculate absolute value of second derivatives
  10962. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  10963. second_derivatives[i] = std::abs(second_derivatives[i]);
  10964. }
  10965. // Normalize the second derivatives
  10966. {
  10967. const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f);
  10968. if (second_derivatives_sum > 1e-6f) {
  10969. for (float & value : second_derivatives) {
  10970. value /= second_derivatives_sum;
  10971. }
  10972. } else {
  10973. for (float & value : second_derivatives) {
  10974. value = 1.0f / second_derivatives.size();
  10975. }
  10976. }
  10977. }
  10978. float cum_sum = 0.0f;
  10979. size_t last_idx = candidates->size;
  10980. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  10981. cum_sum += second_derivatives[i];
  10982. // Check if the running sum is greater than z or if we have kept at least min_keep tokens
  10983. if (cum_sum > z && i >= min_keep) {
  10984. last_idx = i;
  10985. break;
  10986. }
  10987. }
  10988. // Resize the output vector to keep only the tokens above the tail location
  10989. candidates->size = last_idx;
  10990. if (ctx) {
  10991. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10992. }
  10993. }
  10994. void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  10995. // Reference implementation:
  10996. // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
  10997. if (p >= 1.0f) {
  10998. return;
  10999. }
  11000. // Compute the softmax of logits and calculate entropy
  11001. llama_sample_softmax(nullptr, candidates);
  11002. const int64_t t_start_sample_us = ggml_time_us();
  11003. float entropy = 0.0f;
  11004. for (size_t i = 0; i < candidates->size; ++i) {
  11005. entropy += -candidates->data[i].p * logf(candidates->data[i].p);
  11006. }
  11007. // Compute the absolute difference between negative log probability and entropy for each candidate
  11008. std::vector<float> shifted_scores;
  11009. for (size_t i = 0; i < candidates->size; ++i) {
  11010. float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy);
  11011. shifted_scores.push_back(shifted_score);
  11012. }
  11013. // Sort tokens based on the shifted_scores and their corresponding indices
  11014. std::vector<size_t> indices(candidates->size);
  11015. std::iota(indices.begin(), indices.end(), 0);
  11016. std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
  11017. return shifted_scores[a] < shifted_scores[b];
  11018. });
  11019. // Compute the cumulative probabilities
  11020. float cum_sum = 0.0f;
  11021. size_t last_idx = indices.size();
  11022. for (size_t i = 0; i < indices.size(); ++i) {
  11023. size_t idx = indices[i];
  11024. cum_sum += candidates->data[idx].p;
  11025. // Check if the running sum is greater than typical or if we have kept at least min_keep tokens
  11026. if (cum_sum > p && i >= min_keep - 1) {
  11027. last_idx = i + 1;
  11028. break;
  11029. }
  11030. }
  11031. // Resize the output vector to keep only the locally typical tokens
  11032. std::vector<llama_token_data> new_candidates;
  11033. for (size_t i = 0; i < last_idx; ++i) {
  11034. size_t idx = indices[i];
  11035. new_candidates.push_back(candidates->data[idx]);
  11036. }
  11037. // Replace the data in candidates with the new_candidates data
  11038. std::copy(new_candidates.begin(), new_candidates.end(), candidates->data);
  11039. candidates->size = new_candidates.size();
  11040. candidates->sorted = false;
  11041. if (ctx) {
  11042. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11043. }
  11044. }
  11045. void llama_sample_entropy(struct llama_context * ctx, llama_token_data_array * candidates_p, float min_temp, float max_temp, float exponent_val) {
  11046. const int64_t t_start_sample_us = ggml_time_us();
  11047. // no need to do anything if there is only one (or zero) candidates
  11048. if(candidates_p->size <= 1) {
  11049. return;
  11050. }
  11051. // Calculate maximum possible entropy
  11052. float max_entropy = -logf(1.0f / candidates_p->size);
  11053. llama_sample_softmax(nullptr, candidates_p);
  11054. // Calculate entropy of the softmax probabilities
  11055. float entropy = 0.0f;
  11056. for (size_t i = 0; i < candidates_p->size; ++i) {
  11057. float prob = candidates_p->data[i].p;
  11058. if (prob > 0.0f) { // Ensure no log(0)
  11059. entropy -= prob * logf(prob);
  11060. }
  11061. }
  11062. // Normalize the entropy (max_entropy cannot be 0 here because we checked candidates_p->size != 1 above)
  11063. float normalized_entropy = entropy / max_entropy;
  11064. // Map the normalized entropy to the desired temperature range using the power function
  11065. float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val);
  11066. #ifdef DEBUG
  11067. LLAMA_LOG_INFO("Your text maxtemp value is: %f\n", max_temp);
  11068. LLAMA_LOG_INFO("Entropy: %f\n", entropy);
  11069. LLAMA_LOG_INFO("Max Possible Entropy: %f\n", max_entropy);
  11070. LLAMA_LOG_INFO("Normalized Entropy: %f\n", normalized_entropy);
  11071. LLAMA_LOG_INFO("Exponent: %f\n", exponent_val);
  11072. LLAMA_LOG_INFO("Dynamic Temperature (dyn_temp): %f\n", dyn_temp);
  11073. #endif
  11074. // Apply the dynamically calculated temperature scaling
  11075. for (size_t i = 0; i < candidates_p->size; ++i) {
  11076. candidates_p->data[i].logit /= dyn_temp;
  11077. }
  11078. // Re-compute softmax probabilities after scaling logits with dynamic temperature
  11079. double max_l_double = candidates_p->data[0].logit;
  11080. double cum_sum_double = 0.0;
  11081. for (size_t i = 0; i < candidates_p->size; ++i) {
  11082. double p = exp(candidates_p->data[i].logit - max_l_double);
  11083. candidates_p->data[i].p = p; // Store the scaled probability
  11084. cum_sum_double += p;
  11085. }
  11086. for (size_t i = 0; i < candidates_p->size; ++i) {
  11087. candidates_p->data[i].p /= cum_sum_double; // Re-normalize the probabilities
  11088. }
  11089. #ifdef DEBUG
  11090. // Print the updated top 25 probabilities after temperature scaling
  11091. LLAMA_LOG_INFO("\nUpdated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages):\n");
  11092. for (size_t i = 0; i < 25 && i < candidates_p->size; ++i) {
  11093. LLAMA_LOG_INFO("Token %zu: %f%%\n", i + 1, candidates_p->data[i].p * 100.0f);
  11094. }
  11095. #endif
  11096. if (ctx) {
  11097. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11098. }
  11099. }
  11100. void llama_sample_temp(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
  11101. const int64_t t_start_sample_us = ggml_time_us();
  11102. for (size_t i = 0; i < candidates_p->size; ++i) {
  11103. candidates_p->data[i].logit /= temp;
  11104. }
  11105. if (ctx) {
  11106. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11107. }
  11108. }
  11109. void llama_sample_repetition_penalties(
  11110. struct llama_context * ctx,
  11111. llama_token_data_array * candidates,
  11112. const llama_token * last_tokens,
  11113. size_t penalty_last_n,
  11114. float penalty_repeat,
  11115. float penalty_freq,
  11116. float penalty_present) {
  11117. if (penalty_last_n == 0 || (penalty_repeat == 1.0f && penalty_freq == 0.0f && penalty_present == 0.0f)) {
  11118. return;
  11119. }
  11120. const int64_t t_start_sample_us = ggml_time_us();
  11121. // Create a frequency map to count occurrences of each token in last_tokens
  11122. std::unordered_map<llama_token, int> token_count;
  11123. for (size_t i = 0; i < penalty_last_n; ++i) {
  11124. token_count[last_tokens[i]]++;
  11125. }
  11126. // Apply frequency and presence penalties to the candidates
  11127. for (size_t i = 0; i < candidates->size; ++i) {
  11128. const auto token_iter = token_count.find(candidates->data[i].id);
  11129. if (token_iter == token_count.end()) {
  11130. continue;
  11131. }
  11132. const int count = token_iter->second;
  11133. // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
  11134. // This is common fix for this problem, which is to multiply by the penalty instead of dividing.
  11135. if (candidates->data[i].logit <= 0) {
  11136. candidates->data[i].logit *= penalty_repeat;
  11137. } else {
  11138. candidates->data[i].logit /= penalty_repeat;
  11139. }
  11140. candidates->data[i].logit -= float(count) * penalty_freq + float(count > 0) * penalty_present;
  11141. }
  11142. candidates->sorted = false;
  11143. if (ctx) {
  11144. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11145. }
  11146. }
  11147. void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar) {
  11148. GGML_ASSERT(ctx);
  11149. const int64_t t_start_sample_us = ggml_time_us();
  11150. bool allow_eog = false;
  11151. for (const auto & stack : grammar->stacks) {
  11152. if (stack.empty()) {
  11153. allow_eog = true;
  11154. break;
  11155. }
  11156. }
  11157. std::vector<std::pair<std::vector<uint32_t>, llama_partial_utf8>> candidates_decoded;
  11158. candidates_decoded.reserve(candidates->size);
  11159. std::vector<llama_grammar_candidate> candidates_grammar;
  11160. candidates_grammar.reserve(candidates->size);
  11161. for (size_t i = 0; i < candidates->size; ++i) {
  11162. const llama_token id = candidates->data[i].id;
  11163. const std::string piece = llama_token_to_piece(ctx, id, false);
  11164. if (llama_token_is_eog(&ctx->model, id)) {
  11165. if (!allow_eog) {
  11166. candidates->data[i].logit = -INFINITY;
  11167. }
  11168. } else if (piece.empty() || piece[0] == 0) {
  11169. candidates->data[i].logit = -INFINITY;
  11170. } else {
  11171. candidates_decoded.push_back(decode_utf8(piece, grammar->partial_utf8));
  11172. candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second });
  11173. }
  11174. }
  11175. const auto rejects = llama_grammar_reject_candidates(grammar->rules, grammar->stacks, candidates_grammar);
  11176. for (const auto & reject : rejects) {
  11177. candidates->data[reject.index].logit = -INFINITY;
  11178. }
  11179. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11180. }
  11181. static void llama_log_softmax(float * array, size_t size) {
  11182. float max_l = *std::max_element(array, array + size);
  11183. float sum = 0.f;
  11184. for (size_t i = 0; i < size; ++i) {
  11185. float p = expf(array[i] - max_l);
  11186. sum += p;
  11187. array[i] = p;
  11188. }
  11189. for (size_t i = 0; i < size; ++i) {
  11190. array[i] = logf(array[i] / sum);
  11191. }
  11192. }
  11193. void llama_sample_apply_guidance(
  11194. struct llama_context * ctx,
  11195. float * logits,
  11196. float * logits_guidance,
  11197. float scale) {
  11198. GGML_ASSERT(ctx);
  11199. const auto t_start_sample_us = ggml_time_us();
  11200. const auto n_vocab = llama_n_vocab(llama_get_model(ctx));
  11201. llama_log_softmax(logits, n_vocab);
  11202. llama_log_softmax(logits_guidance, n_vocab);
  11203. for (int i = 0; i < n_vocab; ++i) {
  11204. auto & l = logits[i];
  11205. const auto & g = logits_guidance[i];
  11206. l = scale * (l - g) + g;
  11207. }
  11208. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11209. }
  11210. llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int32_t m, float * mu) {
  11211. GGML_ASSERT(ctx);
  11212. auto N = float(llama_n_vocab(llama_get_model(ctx)));
  11213. int64_t t_start_sample_us;
  11214. t_start_sample_us = ggml_time_us();
  11215. llama_sample_softmax(nullptr, candidates);
  11216. // Estimate s_hat using the most probable m tokens
  11217. float s_hat = 0.0;
  11218. float sum_ti_bi = 0.0;
  11219. float sum_ti_sq = 0.0;
  11220. for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
  11221. float t_i = logf(float(i + 2) / float(i + 1));
  11222. float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
  11223. sum_ti_bi += t_i * b_i;
  11224. sum_ti_sq += t_i * t_i;
  11225. }
  11226. s_hat = sum_ti_bi / sum_ti_sq;
  11227. // Compute k from the estimated s_hat and target surprise value
  11228. float epsilon_hat = s_hat - 1;
  11229. float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat);
  11230. // Sample the next word X using top-k sampling
  11231. llama_sample_top_k(nullptr, candidates, int(k), 1);
  11232. if (ctx) {
  11233. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11234. }
  11235. llama_token X = llama_sample_token(ctx, candidates);
  11236. t_start_sample_us = ggml_time_us();
  11237. // Compute error as the difference between observed surprise and target surprise value
  11238. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  11239. return candidate.id == X;
  11240. }));
  11241. float observed_surprise = -log2f(candidates->data[X_idx].p);
  11242. float e = observed_surprise - tau;
  11243. // Update mu using the learning rate and error
  11244. *mu = *mu - eta * e;
  11245. if (ctx) {
  11246. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11247. }
  11248. return X;
  11249. }
  11250. llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) {
  11251. int64_t t_start_sample_us;
  11252. t_start_sample_us = ggml_time_us();
  11253. llama_sample_softmax(ctx, candidates);
  11254. // Truncate the words with surprise values greater than mu
  11255. candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  11256. return -log2f(candidate.p) > *mu;
  11257. }));
  11258. if (candidates->size == 0) {
  11259. candidates->size = 1;
  11260. }
  11261. if (ctx) {
  11262. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11263. }
  11264. // Normalize the probabilities of the remaining words
  11265. llama_sample_softmax(ctx, candidates);
  11266. // Sample the next word X from the remaining words
  11267. llama_token X = llama_sample_token(ctx, candidates);
  11268. t_start_sample_us = ggml_time_us();
  11269. // Compute error as the difference between observed surprise and target surprise value
  11270. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  11271. return candidate.id == X;
  11272. }));
  11273. float observed_surprise = -log2f(candidates->data[X_idx].p);
  11274. float e = observed_surprise - tau;
  11275. // Update mu using the learning rate and error
  11276. *mu = *mu - eta * e;
  11277. if (ctx) {
  11278. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11279. }
  11280. return X;
  11281. }
  11282. llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) {
  11283. const int64_t t_start_sample_us = ggml_time_us();
  11284. // Find max element
  11285. auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  11286. return a.logit < b.logit;
  11287. });
  11288. llama_token result = max_iter->id;
  11289. if (ctx) {
  11290. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11291. ctx->n_sample++;
  11292. }
  11293. return result;
  11294. }
  11295. llama_token llama_sample_token_with_rng(struct llama_context * ctx, llama_token_data_array * candidates, std::mt19937 & rng) {
  11296. GGML_ASSERT(ctx);
  11297. const int64_t t_start_sample_us = ggml_time_us();
  11298. llama_sample_softmax(nullptr, candidates);
  11299. std::vector<float> probs;
  11300. probs.reserve(candidates->size);
  11301. for (size_t i = 0; i < candidates->size; ++i) {
  11302. probs.push_back(candidates->data[i].p);
  11303. }
  11304. std::discrete_distribution<> dist(probs.begin(), probs.end());
  11305. int idx = dist(rng);
  11306. llama_token result = candidates->data[idx].id;
  11307. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11308. ctx->n_sample++;
  11309. return result;
  11310. }
  11311. llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) {
  11312. return llama_sample_token_with_rng(ctx, candidates, ctx->rng);
  11313. }
  11314. void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token) {
  11315. const int64_t t_start_sample_us = ggml_time_us();
  11316. if (llama_token_is_eog(&ctx->model, token)) {
  11317. for (const auto & stack : grammar->stacks) {
  11318. if (stack.empty()) {
  11319. return;
  11320. }
  11321. }
  11322. GGML_ASSERT(false);
  11323. }
  11324. const std::string piece = llama_token_to_piece(ctx, token, false);
  11325. // Note terminating 0 in decoded string
  11326. const auto decoded = decode_utf8(piece, grammar->partial_utf8);
  11327. const auto & code_points = decoded.first;
  11328. std::vector<std::vector<const llama_grammar_element *>> tmp_new_stacks;
  11329. for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
  11330. llama_grammar_accept(grammar->rules, grammar->stacks, *it, tmp_new_stacks);
  11331. grammar->stacks = tmp_new_stacks;
  11332. }
  11333. grammar->partial_utf8 = decoded.second;
  11334. GGML_ASSERT(!grammar->stacks.empty());
  11335. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11336. }
  11337. //
  11338. // Beam search
  11339. //
  11340. struct llama_beam {
  11341. std::vector<llama_token> tokens;
  11342. float p; // Cumulative beam probability (renormalized relative to all beams)
  11343. bool eob; // Initialize end-of-beam to false. Callback sets this to true.
  11344. // Sort beams by probability. In case of ties, prefer beams at eob.
  11345. bool operator<(const llama_beam & rhs) const {
  11346. return std::make_pair(p, eob) < std::make_pair(rhs.p, rhs.eob);
  11347. }
  11348. // Shift off first n tokens and discard them.
  11349. void shift_tokens(const size_t n) {
  11350. if (n) {
  11351. std::copy(tokens.begin() + n, tokens.end(), tokens.begin());
  11352. tokens.resize(tokens.size() - n);
  11353. }
  11354. }
  11355. llama_beam_view view() const { return {tokens.data(), tokens.size(), p, eob}; }
  11356. };
  11357. // A struct for calculating logit-related info.
  11358. struct llama_logit_info {
  11359. const float * const logits;
  11360. const int n_vocab;
  11361. const float max_l;
  11362. const float normalizer;
  11363. struct sum_exp {
  11364. float max_l;
  11365. float operator()(float sum, float l) const { return sum + std::exp(l - max_l); }
  11366. };
  11367. llama_logit_info(llama_context * ctx)
  11368. : logits(llama_get_logits(ctx))
  11369. , n_vocab(llama_n_vocab(llama_get_model(ctx)))
  11370. , max_l(*std::max_element(logits, logits + n_vocab))
  11371. , normalizer(1.0f / std::accumulate(logits, logits + n_vocab, 0.0f, sum_exp{max_l}))
  11372. { }
  11373. llama_token_data get_token_data(const llama_token token_id) const {
  11374. constexpr auto p = std::numeric_limits<float>::quiet_NaN(); // never used
  11375. return {token_id, logits[token_id], p};
  11376. }
  11377. // Return top k token_data by logit.
  11378. std::vector<llama_token_data> top_k(size_t k) {
  11379. std::vector<llama_token_data> min_heap; // min-heap by logit
  11380. const llama_token k_min = std::min(static_cast<llama_token>(k), n_vocab);
  11381. min_heap.reserve(k_min);
  11382. for (llama_token token_id = 0 ; token_id < k_min ; ++token_id) {
  11383. min_heap.push_back(get_token_data(token_id));
  11384. }
  11385. auto comp = [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; };
  11386. std::make_heap(min_heap.begin(), min_heap.end(), comp);
  11387. for (llama_token token_id = k_min ; token_id < n_vocab ; ++token_id) {
  11388. if (min_heap.front().logit < logits[token_id]) {
  11389. std::pop_heap(min_heap.begin(), min_heap.end(), comp);
  11390. min_heap.back().id = token_id;
  11391. min_heap.back().logit = logits[token_id];
  11392. std::push_heap(min_heap.begin(), min_heap.end(), comp);
  11393. }
  11394. }
  11395. return min_heap;
  11396. }
  11397. float probability_from_logit(float logit) const {
  11398. return normalizer * std::exp(logit - max_l);
  11399. }
  11400. };
  11401. struct llama_beam_search_data {
  11402. llama_context * ctx;
  11403. size_t n_beams;
  11404. int n_past;
  11405. int n_predict;
  11406. std::vector<llama_beam> beams;
  11407. std::vector<llama_beam> next_beams;
  11408. // Re-calculated on each loop iteration
  11409. size_t common_prefix_length;
  11410. // Used to communicate to/from callback on beams state.
  11411. std::vector<llama_beam_view> beam_views;
  11412. llama_beam_search_data(llama_context * ctx, size_t n_beams, int n_past, int n_predict)
  11413. : ctx(ctx)
  11414. , n_beams(n_beams)
  11415. , n_past(n_past)
  11416. , n_predict(n_predict)
  11417. , beam_views(n_beams) {
  11418. beams.reserve(n_beams);
  11419. next_beams.reserve(n_beams);
  11420. }
  11421. // Collapse beams to a single beam given by index.
  11422. void collapse_beams(const size_t beam_idx) {
  11423. if (0u < beam_idx) {
  11424. std::swap(beams[0], beams[beam_idx]);
  11425. }
  11426. beams.resize(1);
  11427. }
  11428. // Min-heaps are used to efficiently collect the top-k elements (k=n_beams).
  11429. // The repetitive patterns below reflect the 2 stages of heaps:
  11430. // * Gather elements until the vector is full, then call std::make_heap() on it.
  11431. // * If the heap is full and a new element is found that should be included, pop the
  11432. // least element to the back(), replace it with the new, then push it into the heap.
  11433. void fill_next_beams_by_top_probabilities(llama_beam & beam) {
  11434. // Min-heaps use a greater-than comparator.
  11435. const auto comp = [](const llama_beam & a, const llama_beam & b) { return a.p > b.p; };
  11436. if (beam.eob) {
  11437. // beam is at end-of-sentence, so just copy it to next_beams if its probability is high enough.
  11438. if (next_beams.size() < n_beams) {
  11439. next_beams.push_back(std::move(beam));
  11440. if (next_beams.size() == n_beams) {
  11441. std::make_heap(next_beams.begin(), next_beams.end(), comp);
  11442. }
  11443. } else if (next_beams.front().p < beam.p) {
  11444. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  11445. next_beams.back() = std::move(beam);
  11446. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  11447. }
  11448. } else {
  11449. // beam is not at end-of-sentence, so branch with next top_k tokens.
  11450. if (!beam.tokens.empty()) {
  11451. llama_decode(ctx, llama_batch_get_one(beam.tokens.data(), beam.tokens.size(), n_past, 0));
  11452. }
  11453. llama_logit_info logit_info(ctx);
  11454. std::vector<llama_token_data> next_tokens = logit_info.top_k(n_beams);
  11455. // Clear the kv slot so that other beams may try different tokens at this position. The llama_decode()
  11456. // call in loop() will conclusively fill in the kv slot once the beams converge at this position.
  11457. llama_kv_cache_seq_rm(ctx, 0, n_past, -1);
  11458. size_t i=0;
  11459. if (next_beams.size() < n_beams) {
  11460. for (; next_beams.size() < n_beams ; ++i) {
  11461. llama_beam next_beam = beam;
  11462. next_beam.tokens.push_back(next_tokens[i].id);
  11463. next_beam.p *= logit_info.probability_from_logit(next_tokens[i].logit);
  11464. next_beams.push_back(std::move(next_beam));
  11465. }
  11466. std::make_heap(next_beams.begin(), next_beams.end(), comp);
  11467. } else {
  11468. for (; next_beams.front().p == 0.0f ; ++i) {
  11469. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  11470. next_beams.back() = beam;
  11471. next_beams.back().tokens.push_back(next_tokens[i].id);
  11472. next_beams.back().p *= logit_info.probability_from_logit(next_tokens[i].logit);
  11473. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  11474. }
  11475. }
  11476. for (; i < n_beams ; ++i) {
  11477. const float next_p = beam.p * logit_info.probability_from_logit(next_tokens[i].logit);
  11478. if (next_beams.front().p < next_p) {
  11479. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  11480. next_beams.back() = beam;
  11481. next_beams.back().tokens.push_back(next_tokens[i].id);
  11482. next_beams.back().p = next_p;
  11483. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  11484. }
  11485. }
  11486. }
  11487. }
  11488. // Find common_prefix_length based on beams.
  11489. // Requires beams is not empty.
  11490. size_t find_common_prefix_length() {
  11491. size_t common_prefix_length = beams[0].tokens.size();
  11492. for (size_t i = 1 ; i < beams.size() ; ++i) {
  11493. common_prefix_length = std::min(common_prefix_length, beams[i].tokens.size());
  11494. for (size_t j = 0 ; j < common_prefix_length ; ++j) {
  11495. if (beams[0].tokens[j] != beams[i].tokens[j]) {
  11496. common_prefix_length = j;
  11497. break;
  11498. }
  11499. }
  11500. }
  11501. return common_prefix_length;
  11502. }
  11503. // Construct beams_state to send back to caller via the callback function.
  11504. // Side effect: set common_prefix_length = find_common_prefix_length();
  11505. llama_beams_state get_beams_state(const bool last_call) {
  11506. for (size_t i = 0 ; i < beams.size() ; ++i) {
  11507. beam_views[i] = beams[i].view();
  11508. }
  11509. common_prefix_length = find_common_prefix_length();
  11510. return {beam_views.data(), beams.size(), common_prefix_length, last_call};
  11511. }
  11512. // Loop:
  11513. // * while i < n_predict, AND
  11514. // * any of the beams have not yet reached end-of-beam (eob), AND
  11515. // * the highest probability beam(s) (plural in case of ties) are not at end-of-sentence
  11516. // (since all other beam probabilities can only decrease)
  11517. void loop(const llama_beam_search_callback_fn_t callback, void * const callback_data) {
  11518. beams.push_back({{}, 1.0f, false}); // Start with one empty beam w/ probability = 1.0 and !eob.
  11519. const auto not_eob = [](const llama_beam & beam) { return !beam.eob; };
  11520. for (int i = 0 ; i < n_predict && std::any_of(beams.begin(),beams.end(),not_eob) &&
  11521. !beams[top_beam_index()].eob ; ++i) {
  11522. callback(callback_data, get_beams_state(false)); // Sets common_prefix_length
  11523. update_beams_from_beam_views(); // Update values (p,eob) that callback may have changed.
  11524. if (common_prefix_length) {
  11525. llama_decode(ctx, llama_batch_get_one(beams[0].tokens.data(), common_prefix_length, n_past, 0));
  11526. n_past += common_prefix_length;
  11527. }
  11528. // Zero-out next_beam probabilities to place them last in following min-heap.
  11529. std::for_each(next_beams.begin(), next_beams.end(), [](llama_beam & beam) { beam.p = 0.0f; });
  11530. for (llama_beam & beam : beams) {
  11531. beam.shift_tokens(common_prefix_length);
  11532. fill_next_beams_by_top_probabilities(beam);
  11533. }
  11534. // next_beams become the beams of next/final iteration. Swap them to re-use memory.
  11535. beams.swap(next_beams);
  11536. renormalize_beam_probabilities(beams);
  11537. }
  11538. collapse_beams(top_beam_index());
  11539. callback(callback_data, get_beams_state(true));
  11540. }
  11541. // As beams grow, the cumulative probabilities decrease.
  11542. // Renormalize them to avoid floating point underflow.
  11543. static void renormalize_beam_probabilities(std::vector<llama_beam> & beams) {
  11544. const auto sum_p = [](float sum, llama_beam & beam) { return sum + beam.p; };
  11545. const float inv_sum = 1.0f / std::accumulate(beams.begin(), beams.end(), 0.0f, sum_p);
  11546. std::for_each(beams.begin(), beams.end(), [=](llama_beam & beam) { beam.p *= inv_sum; });
  11547. }
  11548. // Assumes beams is non-empty. Uses llama_beam::operator<() for ordering.
  11549. size_t top_beam_index() {
  11550. return std::max_element(beams.begin(), beams.end()) - beams.begin();
  11551. }
  11552. // Copy (p,eob) for each beam which may have been changed by the callback.
  11553. void update_beams_from_beam_views() {
  11554. for (size_t i = 0 ; i < beams.size() ; ++i) {
  11555. beams[i].p = beam_views[i].p;
  11556. beams[i].eob = beam_views[i].eob;
  11557. }
  11558. }
  11559. };
  11560. void llama_beam_search(llama_context * ctx,
  11561. llama_beam_search_callback_fn_t callback, void * callback_data,
  11562. size_t n_beams, int n_past, int n_predict) {
  11563. assert(ctx);
  11564. const int64_t t_start_sample_us = ggml_time_us();
  11565. llama_beam_search_data beam_search_data(ctx, n_beams, n_past, n_predict);
  11566. beam_search_data.loop(callback, callback_data);
  11567. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11568. ctx->n_sample++;
  11569. }
  11570. //
  11571. // quantization
  11572. //
  11573. struct quantize_state_internal {
  11574. const llama_model & model;
  11575. const llama_model_quantize_params * params;
  11576. int n_attention_wv = 0;
  11577. int n_ffn_down = 0;
  11578. int n_ffn_gate = 0;
  11579. int n_ffn_up = 0;
  11580. int i_attention_wv = 0;
  11581. int i_ffn_down = 0;
  11582. int i_ffn_gate = 0;
  11583. int i_ffn_up = 0;
  11584. int n_k_quantized = 0;
  11585. int n_fallback = 0;
  11586. bool has_imatrix = false;
  11587. // used to figure out if a model shares tok_embd with the output weight
  11588. bool has_output = false;
  11589. quantize_state_internal(const llama_model & model, const llama_model_quantize_params * params)
  11590. : model(model)
  11591. , params(params)
  11592. {}
  11593. };
  11594. static void llama_tensor_dequantize_internal(
  11595. struct ggml_tensor * tensor, std::vector<no_init<float>> & output, std::vector<std::thread> & workers,
  11596. const size_t nelements, const int nthread
  11597. ) {
  11598. if (output.size() < nelements) {
  11599. output.resize(nelements);
  11600. }
  11601. float * f32_output = (float *) output.data();
  11602. ggml_type_traits_t qtype;
  11603. if (ggml_is_quantized(tensor->type)) {
  11604. qtype = ggml_internal_get_type_traits(tensor->type);
  11605. if (qtype.to_float == NULL) {
  11606. throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor->type)));
  11607. }
  11608. } else if (tensor->type != GGML_TYPE_F16) {
  11609. throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor->type)));
  11610. }
  11611. if (nthread < 2) {
  11612. if (tensor->type == GGML_TYPE_F16) {
  11613. ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor->data, f32_output, nelements);
  11614. } else if (ggml_is_quantized(tensor->type)) {
  11615. qtype.to_float(tensor->data, f32_output, nelements);
  11616. } else {
  11617. GGML_ASSERT(false); // unreachable
  11618. }
  11619. return;
  11620. }
  11621. size_t block_size = tensor->type == GGML_TYPE_F16 ? 1 : (size_t)ggml_blck_size(tensor->type);
  11622. size_t block_size_bytes = ggml_type_size(tensor->type);
  11623. GGML_ASSERT(nelements % block_size == 0);
  11624. size_t nblocks = nelements / block_size;
  11625. size_t blocks_per_thread = nblocks / nthread;
  11626. size_t spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
  11627. size_t in_buff_offs = 0;
  11628. size_t out_buff_offs = 0;
  11629. for (int tnum = 0; tnum < nthread; tnum++) {
  11630. size_t thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
  11631. size_t thr_elems = thr_blocks * block_size; // number of elements for this thread
  11632. size_t thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread
  11633. auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
  11634. if (typ == GGML_TYPE_F16) {
  11635. ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
  11636. } else {
  11637. qtype.to_float(inbuf, outbuf, nels);
  11638. }
  11639. };
  11640. workers.emplace_back(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems);
  11641. in_buff_offs += thr_block_bytes;
  11642. out_buff_offs += thr_elems;
  11643. }
  11644. for (auto & w : workers) { w.join(); }
  11645. workers.clear();
  11646. }
  11647. static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) {
  11648. const std::string name = ggml_get_name(tensor);
  11649. // TODO: avoid hardcoded tensor names - use the TN_* constants
  11650. const llm_arch arch = qs.model.arch;
  11651. const auto tn = LLM_TN(arch);
  11652. auto use_more_bits = [](int i_layer, int num_layers) -> bool {
  11653. return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2;
  11654. };
  11655. const int n_expert = std::max(1, (int)qs.model.hparams.n_expert);
  11656. auto layer_info = [n_expert] (int i_layer, int n_layer, const char * name) {
  11657. if (n_expert > 1) {
  11658. // Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but iccasionally randomly
  11659. // sprinkled in the model. Hence, simply dividing i_ffn_down by n_expert does not work
  11660. // for getting the current layer as I initially thought, and we need to resort to parsing the
  11661. // tensor name.
  11662. if (sscanf(name, "blk.%d.", &i_layer) != 1) {
  11663. throw std::runtime_error(format("Failed to determine layer for tensor %s", name));
  11664. }
  11665. if (i_layer < 0 || i_layer >= n_layer) {
  11666. throw std::runtime_error(format("Bad layer %d for tensor %s. Must be in [0, %d)", i_layer, name, n_layer));
  11667. }
  11668. }
  11669. return std::make_pair(i_layer, n_layer);
  11670. };
  11671. // for arches that share the same tensor between the token embeddings and the output, we quantize the token embeddings
  11672. // with the quantization of the output tensor
  11673. if (name == tn(LLM_TENSOR_OUTPUT, "weight") || (!qs.has_output && name == tn(LLM_TENSOR_TOKEN_EMBD, "weight"))) {
  11674. if (qs.params->output_tensor_type < GGML_TYPE_COUNT) {
  11675. new_type = qs.params->output_tensor_type;
  11676. } else {
  11677. int nx = tensor->ne[0];
  11678. if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
  11679. new_type = GGML_TYPE_Q8_0;
  11680. }
  11681. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
  11682. ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ||
  11683. ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  11684. new_type = GGML_TYPE_Q5_K;
  11685. }
  11686. else if (new_type != GGML_TYPE_Q8_0) {
  11687. new_type = GGML_TYPE_Q6_K;
  11688. }
  11689. }
  11690. } else if (name == "token_embd.weight") {
  11691. if (qs.params->token_embedding_type < GGML_TYPE_COUNT) {
  11692. new_type = qs.params->token_embedding_type;
  11693. } else {
  11694. if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS ||
  11695. ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  11696. new_type = GGML_TYPE_Q2_K;
  11697. }
  11698. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) {
  11699. new_type = GGML_TYPE_IQ3_S;
  11700. }
  11701. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  11702. new_type = GGML_TYPE_IQ3_S;
  11703. }
  11704. }
  11705. } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S ||
  11706. ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  11707. if (name.find("attn_v.weight") != std::string::npos) {
  11708. if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K;
  11709. else new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
  11710. ++qs.i_attention_wv;
  11711. }
  11712. else if (qs.model.hparams.n_expert == 8 && name.find("attn_k.weight") != std::string::npos) {
  11713. new_type = GGML_TYPE_Q4_K;
  11714. }
  11715. else if (name.find("ffn_down") != std::string::npos) {
  11716. if (qs.i_ffn_down < qs.n_ffn_down/8) {
  11717. new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
  11718. }
  11719. ++qs.i_ffn_down;
  11720. }
  11721. else if (name.find("attn_output.weight") != std::string::npos) {
  11722. if (qs.model.hparams.n_expert == 8) {
  11723. new_type = GGML_TYPE_Q5_K;
  11724. } else {
  11725. if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) new_type = GGML_TYPE_IQ2_XXS;
  11726. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) new_type = GGML_TYPE_IQ3_S;
  11727. }
  11728. }
  11729. } else if (name.find("attn_v.weight") != std::string::npos) {
  11730. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) {
  11731. new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
  11732. }
  11733. else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && qs.model.hparams.n_gqa() >= 4) {
  11734. new_type = GGML_TYPE_Q4_K;
  11735. }
  11736. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  11737. new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : !qs.has_imatrix ? GGML_TYPE_IQ3_S : GGML_TYPE_IQ3_XXS;
  11738. }
  11739. else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S) && qs.model.hparams.n_gqa() >= 4) {
  11740. new_type = GGML_TYPE_Q4_K;
  11741. }
  11742. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
  11743. new_type = GGML_TYPE_Q4_K;
  11744. }
  11745. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  11746. new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  11747. }
  11748. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
  11749. else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && qs.model.hparams.n_gqa() >= 4) {
  11750. new_type = GGML_TYPE_Q5_K;
  11751. }
  11752. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
  11753. use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K;
  11754. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
  11755. else if (QK_K == 64 && (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S) &&
  11756. (qs.i_attention_wv < qs.n_attention_wv/8 || qs.i_attention_wv >= 7*qs.n_attention_wv/8)) new_type = GGML_TYPE_Q6_K;
  11757. if (qs.model.type == MODEL_70B) {
  11758. // In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
  11759. // 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
  11760. // nearly negligible increase in model size by quantizing this tensor with more bits:
  11761. if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K;
  11762. }
  11763. if (qs.model.hparams.n_expert == 8) {
  11764. // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
  11765. // TODO: explore better strategies
  11766. new_type = GGML_TYPE_Q8_0;
  11767. }
  11768. ++qs.i_attention_wv;
  11769. } else if (name.find("attn_k.weight") != std::string::npos) {
  11770. if (qs.model.hparams.n_expert == 8) {
  11771. // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
  11772. // TODO: explore better strategies
  11773. new_type = GGML_TYPE_Q8_0;
  11774. }
  11775. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
  11776. new_type = GGML_TYPE_IQ3_XXS;
  11777. }
  11778. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  11779. new_type = GGML_TYPE_IQ2_S;
  11780. }
  11781. } else if (name.find("attn_q.weight") != std::string::npos) {
  11782. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
  11783. new_type = GGML_TYPE_IQ3_XXS;
  11784. }
  11785. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  11786. new_type = GGML_TYPE_IQ2_S;
  11787. }
  11788. } else if (name.find("ffn_down") != std::string::npos) {
  11789. auto info = layer_info(qs.i_ffn_down, qs.n_ffn_down, name.c_str());
  11790. int i_layer = info.first, n_layer = info.second;
  11791. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  11792. else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S) {
  11793. if (i_layer < n_layer/8) new_type = GGML_TYPE_Q4_K;
  11794. }
  11795. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS && !qs.has_imatrix) {
  11796. new_type = i_layer < n_layer/8 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
  11797. }
  11798. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  11799. new_type = i_layer < n_layer/16 ? GGML_TYPE_Q5_K
  11800. : arch != LLM_ARCH_FALCON || use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q4_K
  11801. : GGML_TYPE_Q3_K;
  11802. }
  11803. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M && (i_layer < n_layer/8 ||
  11804. (qs.model.hparams.n_expert == 8 && use_more_bits(i_layer, n_layer)))) {
  11805. new_type = GGML_TYPE_Q4_K;
  11806. }
  11807. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
  11808. new_type = arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K;
  11809. }
  11810. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
  11811. if (arch == LLM_ARCH_FALCON) {
  11812. new_type = i_layer < n_layer/16 ? GGML_TYPE_Q6_K :
  11813. use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  11814. } else {
  11815. if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
  11816. }
  11817. }
  11818. else if (i_layer < n_layer/8 && (ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && !qs.has_imatrix) {
  11819. new_type = GGML_TYPE_Q5_K;
  11820. }
  11821. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
  11822. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) {
  11823. new_type = GGML_TYPE_Q5_K;
  11824. }
  11825. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_0 || ftype == LLAMA_FTYPE_MOSTLY_Q5_0)
  11826. && qs.has_imatrix && i_layer < n_layer/8) {
  11827. // Guard against craziness in the first few ffn_down layers that can happen even with imatrix for Q4_0/Q5_0.
  11828. // We only do it when an imatrix is provided because a) we want to make sure that one can always get the
  11829. // same quantization as before imatrix stuff, and b) Q4_1/Q5_1 do go crazy on ffn_down without an imatrix.
  11830. new_type = ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ? GGML_TYPE_Q4_1 : GGML_TYPE_Q5_1;
  11831. }
  11832. ++qs.i_ffn_down;
  11833. } else if (name.find("attn_output.weight") != std::string::npos) {
  11834. if (arch != LLM_ARCH_FALCON) {
  11835. if (qs.model.hparams.n_expert == 8) {
  11836. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
  11837. ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL ||
  11838. ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S ||
  11839. ftype == LLAMA_FTYPE_MOSTLY_IQ3_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) {
  11840. new_type = GGML_TYPE_Q5_K;
  11841. }
  11842. } else {
  11843. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
  11844. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) new_type = GGML_TYPE_IQ3_S;
  11845. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M ) new_type = GGML_TYPE_Q4_K;
  11846. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L ) new_type = GGML_TYPE_Q5_K;
  11847. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M ) new_type = GGML_TYPE_Q4_K;
  11848. }
  11849. } else {
  11850. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
  11851. }
  11852. }
  11853. else if (name.find("attn_qkv.weight") != std::string::npos) {
  11854. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
  11855. new_type = GGML_TYPE_Q4_K;
  11856. }
  11857. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K;
  11858. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
  11859. }
  11860. else if (name.find("ffn_gate") != std::string::npos) {
  11861. auto info = layer_info(qs.i_ffn_gate, qs.n_ffn_gate, name.c_str());
  11862. int i_layer = info.first, n_layer = info.second;
  11863. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
  11864. new_type = GGML_TYPE_IQ3_XXS;
  11865. }
  11866. ++qs.i_ffn_gate;
  11867. }
  11868. else if (name.find("ffn_up") != std::string::npos) {
  11869. auto info = layer_info(qs.i_ffn_up, qs.n_ffn_up, name.c_str());
  11870. int i_layer = info.first, n_layer = info.second;
  11871. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
  11872. new_type = GGML_TYPE_IQ3_XXS;
  11873. }
  11874. ++qs.i_ffn_up;
  11875. }
  11876. // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  11877. //}
  11878. // IK: let's remove this, else Q2_K is almost the same as Q3_K_S
  11879. //else if (name.find("ffn_gate") != std::string::npos || name.find("ffn_up") != std::string::npos) {
  11880. // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  11881. //}
  11882. // This can be used to reduce the size of the Q5_K_S model.
  11883. // The associated PPL increase is fully in line with the size reduction
  11884. //else {
  11885. // if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K;
  11886. //}
  11887. bool convert_incompatible_tensor = false;
  11888. if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
  11889. new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K || new_type == GGML_TYPE_IQ4_XS ||
  11890. new_type == GGML_TYPE_IQ2_XS || new_type == GGML_TYPE_IQ2_XXS || new_type == GGML_TYPE_IQ2_S ||
  11891. new_type == GGML_TYPE_IQ3_XXS || new_type == GGML_TYPE_IQ1_S || new_type == GGML_TYPE_IQ3_S ||
  11892. new_type == GGML_TYPE_IQ1_M) {
  11893. int nx = tensor->ne[0];
  11894. int ny = tensor->ne[1];
  11895. if (nx % QK_K != 0) {
  11896. LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for %s", __func__, nx, ny, QK_K, ggml_type_name(new_type));
  11897. convert_incompatible_tensor = true;
  11898. } else {
  11899. ++qs.n_k_quantized;
  11900. }
  11901. }
  11902. if (convert_incompatible_tensor) {
  11903. switch (new_type) {
  11904. case GGML_TYPE_IQ2_XXS:
  11905. case GGML_TYPE_IQ2_XS:
  11906. case GGML_TYPE_IQ2_S:
  11907. case GGML_TYPE_IQ3_XXS:
  11908. case GGML_TYPE_IQ3_S:
  11909. case GGML_TYPE_IQ1_S:
  11910. case GGML_TYPE_IQ1_M:
  11911. case GGML_TYPE_Q2_K:
  11912. case GGML_TYPE_Q3_K:
  11913. case GGML_TYPE_IQ4_XS: new_type = GGML_TYPE_IQ4_NL; break;
  11914. case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break;
  11915. case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q5_1; break;
  11916. case GGML_TYPE_Q6_K: new_type = GGML_TYPE_Q8_0; break;
  11917. default: throw std::runtime_error("\nUnsupported tensor size encountered\n");
  11918. }
  11919. LLAMA_LOG_WARN(" - using fallback quantization %s\n", ggml_type_name(new_type));
  11920. ++qs.n_fallback;
  11921. }
  11922. return new_type;
  11923. }
  11924. static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const float * f32_data, void * new_data, const int64_t chunk_size, int64_t nrows, int64_t n_per_row, const float * imatrix, std::vector<std::thread> & workers, const int nthread) {
  11925. std::mutex mutex;
  11926. int64_t counter = 0;
  11927. size_t new_size = 0;
  11928. if (nthread < 2) {
  11929. // single-thread
  11930. return ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, imatrix);
  11931. }
  11932. auto compute = [&mutex, &counter, &new_size, new_type, f32_data, new_data, chunk_size,
  11933. nrows, n_per_row, imatrix]() {
  11934. const int64_t nrows_per_chunk = chunk_size / n_per_row;
  11935. size_t local_size = 0;
  11936. while (true) {
  11937. std::unique_lock<std::mutex> lock(mutex);
  11938. int64_t first_row = counter; counter += nrows_per_chunk;
  11939. if (first_row >= nrows) {
  11940. if (local_size > 0) {
  11941. new_size += local_size;
  11942. }
  11943. break;
  11944. }
  11945. lock.unlock();
  11946. const int64_t this_nrow = std::min(nrows - first_row, nrows_per_chunk);
  11947. local_size += ggml_quantize_chunk(new_type, f32_data, new_data, first_row * n_per_row, this_nrow, n_per_row, imatrix);
  11948. }
  11949. };
  11950. for (int it = 0; it < nthread - 1; ++it) {
  11951. workers.emplace_back(compute);
  11952. }
  11953. compute();
  11954. for (auto & w : workers) { w.join(); }
  11955. workers.clear();
  11956. return new_size;
  11957. }
  11958. static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
  11959. ggml_type default_type;
  11960. llama_ftype ftype = params->ftype;
  11961. switch (params->ftype) {
  11962. case LLAMA_FTYPE_MOSTLY_Q4_0: default_type = GGML_TYPE_Q4_0; break;
  11963. case LLAMA_FTYPE_MOSTLY_Q4_1: default_type = GGML_TYPE_Q4_1; break;
  11964. case LLAMA_FTYPE_MOSTLY_Q5_0: default_type = GGML_TYPE_Q5_0; break;
  11965. case LLAMA_FTYPE_MOSTLY_Q5_1: default_type = GGML_TYPE_Q5_1; break;
  11966. case LLAMA_FTYPE_MOSTLY_Q8_0: default_type = GGML_TYPE_Q8_0; break;
  11967. case LLAMA_FTYPE_MOSTLY_F16: default_type = GGML_TYPE_F16; break;
  11968. case LLAMA_FTYPE_ALL_F32: default_type = GGML_TYPE_F32; break;
  11969. // K-quants
  11970. case LLAMA_FTYPE_MOSTLY_Q2_K_S:
  11971. case LLAMA_FTYPE_MOSTLY_Q2_K: default_type = GGML_TYPE_Q2_K; break;
  11972. case LLAMA_FTYPE_MOSTLY_IQ3_XS: default_type = GGML_TYPE_IQ3_S; break;
  11973. case LLAMA_FTYPE_MOSTLY_Q3_K_S:
  11974. case LLAMA_FTYPE_MOSTLY_Q3_K_M:
  11975. case LLAMA_FTYPE_MOSTLY_Q3_K_L: default_type = GGML_TYPE_Q3_K; break;
  11976. case LLAMA_FTYPE_MOSTLY_Q4_K_S:
  11977. case LLAMA_FTYPE_MOSTLY_Q4_K_M: default_type = GGML_TYPE_Q4_K; break;
  11978. case LLAMA_FTYPE_MOSTLY_Q5_K_S:
  11979. case LLAMA_FTYPE_MOSTLY_Q5_K_M: default_type = GGML_TYPE_Q5_K; break;
  11980. case LLAMA_FTYPE_MOSTLY_Q6_K: default_type = GGML_TYPE_Q6_K; break;
  11981. case LLAMA_FTYPE_MOSTLY_IQ2_XXS: default_type = GGML_TYPE_IQ2_XXS; break;
  11982. case LLAMA_FTYPE_MOSTLY_IQ2_XS: default_type = GGML_TYPE_IQ2_XS; break;
  11983. case LLAMA_FTYPE_MOSTLY_IQ2_S: default_type = GGML_TYPE_IQ2_XS; break;
  11984. case LLAMA_FTYPE_MOSTLY_IQ2_M: default_type = GGML_TYPE_IQ2_S; break;
  11985. case LLAMA_FTYPE_MOSTLY_IQ3_XXS: default_type = GGML_TYPE_IQ3_XXS; break;
  11986. case LLAMA_FTYPE_MOSTLY_IQ1_S: default_type = GGML_TYPE_IQ1_S; break;
  11987. case LLAMA_FTYPE_MOSTLY_IQ1_M: default_type = GGML_TYPE_IQ1_M; break;
  11988. case LLAMA_FTYPE_MOSTLY_IQ4_NL: default_type = GGML_TYPE_IQ4_NL; break;
  11989. case LLAMA_FTYPE_MOSTLY_IQ4_XS: default_type = GGML_TYPE_IQ4_XS; break;
  11990. case LLAMA_FTYPE_MOSTLY_IQ3_S: default_type = GGML_TYPE_IQ3_S; break;
  11991. case LLAMA_FTYPE_MOSTLY_IQ3_M: default_type = GGML_TYPE_IQ3_S; break;
  11992. default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
  11993. }
  11994. int nthread = params->nthread;
  11995. if (nthread <= 0) {
  11996. nthread = std::thread::hardware_concurrency();
  11997. }
  11998. // mmap consistently increases speed Linux, and also increases speed on Windows with
  11999. // hot cache. It may cause a slowdown on macOS, possibly related to free memory.
  12000. #if defined(__linux__) || defined(_WIN32)
  12001. constexpr bool use_mmap = true;
  12002. #else
  12003. constexpr bool use_mmap = false;
  12004. #endif
  12005. llama_model_kv_override * kv_overrides = nullptr;
  12006. if (params->kv_overrides) {
  12007. auto v = (std::vector<llama_model_kv_override>*)params->kv_overrides;
  12008. kv_overrides = v->data();
  12009. }
  12010. llama_model_loader ml(fname_inp, use_mmap, kv_overrides);
  12011. ml.init_mappings(false); // no prefetching
  12012. llama_model model;
  12013. llm_load_arch(ml, model);
  12014. llm_load_hparams(ml, model);
  12015. struct quantize_state_internal qs(model, params);
  12016. if (params->only_copy) {
  12017. ftype = model.ftype;
  12018. }
  12019. const std::unordered_map<std::string, std::vector<float>> * imatrix_data = nullptr;
  12020. if (params->imatrix) {
  12021. imatrix_data = static_cast<const std::unordered_map<std::string, std::vector<float>>*>(params->imatrix);
  12022. if (imatrix_data) {
  12023. LLAMA_LOG_INFO("================================ Have weights data with %d entries\n",int(imatrix_data->size()));
  12024. qs.has_imatrix = true;
  12025. }
  12026. }
  12027. const size_t align = GGUF_DEFAULT_ALIGNMENT;
  12028. struct gguf_context * ctx_out = gguf_init_empty();
  12029. // copy the KV pairs from the input file
  12030. gguf_set_kv (ctx_out, ml.meta);
  12031. gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
  12032. gguf_set_val_u32(ctx_out, "general.file_type", ftype);
  12033. // Remove split metadata
  12034. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_NO).c_str());
  12035. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str());
  12036. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str());
  12037. if (params->kv_overrides) {
  12038. const std::vector<llama_model_kv_override> & overrides = *(const std::vector<llama_model_kv_override> *)params->kv_overrides;
  12039. for (auto & o : overrides) {
  12040. if (o.key[0] == 0) break;
  12041. if (o.tag == LLAMA_KV_OVERRIDE_TYPE_FLOAT) {
  12042. gguf_set_val_f32(ctx_out, o.key, o.float_value);
  12043. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_INT) {
  12044. gguf_set_val_i32(ctx_out, o.key, o.int_value);
  12045. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_BOOL) {
  12046. gguf_set_val_bool(ctx_out, o.key, o.bool_value);
  12047. } else {
  12048. LLAMA_LOG_WARN("%s: unknown KV override type for key %s\n", __func__, o.key);
  12049. }
  12050. }
  12051. }
  12052. for (int i = 0; i < ml.n_tensors; ++i) {
  12053. const struct ggml_tensor * meta = ml.get_tensor_meta(i);
  12054. const std::string name = ggml_get_name(meta);
  12055. // TODO: avoid hardcoded tensor names - use the TN_* constants
  12056. if (name.find("attn_v.weight") != std::string::npos ||
  12057. name.find("attn_qkv.weight") != std::string::npos) {
  12058. ++qs.n_attention_wv;
  12059. } else if (name == LLM_TN(model.arch)(LLM_TENSOR_OUTPUT, "weight")) {
  12060. qs.has_output = true;
  12061. }
  12062. }
  12063. qs.n_ffn_down = qs.n_ffn_gate = qs.n_ffn_up = (int)model.hparams.n_layer;
  12064. // sanity checks
  12065. //
  12066. // - qs.n_attention_wv == 0 for Mamba models
  12067. // - qs.n_attention_wv == model.hparams.n_layer for Transformer models
  12068. //
  12069. GGML_ASSERT((qs.n_attention_wv == 0 || qs.n_attention_wv == (int)model.hparams.n_layer) && "n_attention_wv is unexpected");
  12070. size_t total_size_org = 0;
  12071. size_t total_size_new = 0;
  12072. std::vector<std::thread> workers;
  12073. workers.reserve(nthread);
  12074. int idx = 0;
  12075. std::vector<no_init<uint8_t>> read_data;
  12076. std::vector<no_init<uint8_t>> work;
  12077. std::vector<no_init<float>> f32_conv_buf;
  12078. uint16_t n_split = 1;
  12079. // Assume split index is continuous
  12080. if (params->keep_split) {
  12081. for (int i = 0; i < ml.n_tensors; ++i) {
  12082. n_split = std::max(uint16_t(ml.get_weight(i)->idx+1), n_split);
  12083. }
  12084. }
  12085. std::vector<gguf_context*> ctx_outs(n_split, NULL);
  12086. ctx_outs[0] = ctx_out;
  12087. // populate the original tensors so we get an initial meta data
  12088. for (int i = 0; i < ml.n_tensors; ++i) {
  12089. auto weight = ml.get_weight(i);
  12090. uint16_t i_split = params->keep_split ? weight->idx : 0;
  12091. struct ggml_tensor * tensor = weight->tensor;
  12092. if (ctx_outs[i_split] == NULL) {
  12093. ctx_outs[i_split] = gguf_init_empty();
  12094. }
  12095. gguf_add_tensor(ctx_outs[i_split], tensor);
  12096. }
  12097. // Set split info if needed
  12098. if (n_split > 1) {
  12099. for (size_t i = 0; i < ctx_outs.size(); ++i) {
  12100. gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_NO).c_str(), i);
  12101. gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str(), n_split);
  12102. gguf_set_val_i32(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str(), ml.n_tensors);
  12103. }
  12104. }
  12105. int cur_split = -1;
  12106. std::ofstream fout;
  12107. auto close_ofstream = [&]() {
  12108. // Write metadata and close file handler
  12109. if (fout.is_open()) {
  12110. fout.seekp(0);
  12111. std::vector<uint8_t> data(gguf_get_meta_size(ctx_outs[cur_split]));
  12112. gguf_get_meta_data(ctx_outs[cur_split], data.data());
  12113. fout.write((const char *) data.data(), data.size());
  12114. fout.close();
  12115. }
  12116. };
  12117. auto new_ofstream = [&](int index) {
  12118. cur_split = index;
  12119. GGML_ASSERT(ctx_outs[cur_split] && "Find uninitialized gguf_context");
  12120. std::string fname = fname_out;
  12121. if (params->keep_split) {
  12122. char split_path[PATH_MAX] = {0};
  12123. llama_split_path(split_path, sizeof(split_path), fname_out.c_str(), cur_split, n_split);
  12124. fname = std::string(split_path);
  12125. }
  12126. fout = std::ofstream(fname, std::ios::binary);
  12127. fout.exceptions(std::ofstream::failbit); // fail fast on write errors
  12128. const size_t meta_size = gguf_get_meta_size(ctx_outs[cur_split]);
  12129. // placeholder for the meta data
  12130. ::zeros(fout, meta_size);
  12131. };
  12132. const auto tn = LLM_TN(model.arch);
  12133. new_ofstream(0);
  12134. for (int i = 0; i < ml.n_tensors; ++i) {
  12135. auto weight = ml.get_weight(i);
  12136. struct ggml_tensor * tensor = weight->tensor;
  12137. if (weight->idx != cur_split && params->keep_split) {
  12138. close_ofstream();
  12139. new_ofstream(weight->idx);
  12140. }
  12141. const std::string name = ggml_get_name(tensor);
  12142. if (!ml.use_mmap) {
  12143. if (read_data.size() < ggml_nbytes(tensor)) {
  12144. read_data.resize(ggml_nbytes(tensor));
  12145. }
  12146. tensor->data = read_data.data();
  12147. }
  12148. ml.load_data_for(tensor);
  12149. LLAMA_LOG_INFO("[%4d/%4d] %36s - [%s], type = %6s, ",
  12150. ++idx, ml.n_tensors,
  12151. ggml_get_name(tensor),
  12152. llama_format_tensor_shape(tensor).c_str(),
  12153. ggml_type_name(tensor->type));
  12154. // This used to be a regex, but <regex> has an extreme cost to compile times.
  12155. bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
  12156. // quantize only 2D and 3D tensors (experts)
  12157. quantize &= (ggml_n_dims(tensor) >= 2);
  12158. // do not quantize norm tensors
  12159. quantize &= name.find("_norm.weight") == std::string::npos;
  12160. quantize &= params->quantize_output_tensor || name != "output.weight";
  12161. quantize &= !params->only_copy;
  12162. // do not quantize expert gating tensors
  12163. // NOTE: can't use LLM_TN here because the layer number is not known
  12164. quantize &= name.find("ffn_gate_inp.weight") == std::string::npos;
  12165. // do not quantize positional embeddings and token types (BERT)
  12166. quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_POS_EMBD, "weight");
  12167. quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_TOKEN_TYPES, "weight");
  12168. // do not quantize Mamba's small yet 2D weights
  12169. // NOTE: can't use LLM_TN here because the layer number is not known
  12170. quantize &= name.find("ssm_conv1d.weight") == std::string::npos;
  12171. quantize &= name.find("ssm_x.weight") == std::string::npos;
  12172. quantize &= name.find("ssm_dt.weight") == std::string::npos;
  12173. enum ggml_type new_type;
  12174. void * new_data;
  12175. size_t new_size;
  12176. if (quantize) {
  12177. new_type = default_type;
  12178. // get more optimal quantization type based on the tensor shape, layer, etc.
  12179. if (!params->pure && ggml_is_quantized(default_type)) {
  12180. new_type = llama_tensor_get_type(qs, new_type, tensor, ftype);
  12181. }
  12182. if (params->token_embedding_type < GGML_TYPE_COUNT && strcmp(tensor->name, "token_embd.weight") == 0) {
  12183. new_type = params->token_embedding_type;
  12184. }
  12185. if (params->output_tensor_type < GGML_TYPE_COUNT && strcmp(tensor->name, "output.weight") == 0) {
  12186. new_type = params->output_tensor_type;
  12187. }
  12188. // If we've decided to quantize to the same type the tensor is already
  12189. // in then there's nothing to do.
  12190. quantize = tensor->type != new_type;
  12191. }
  12192. if (!quantize) {
  12193. new_type = tensor->type;
  12194. new_data = tensor->data;
  12195. new_size = ggml_nbytes(tensor);
  12196. LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0);
  12197. } else {
  12198. const int64_t nelements = ggml_nelements(tensor);
  12199. const float * imatrix = nullptr;
  12200. if (imatrix_data) {
  12201. auto it = imatrix_data->find(tensor->name);
  12202. if (it == imatrix_data->end()) {
  12203. LLAMA_LOG_INFO("\n====== %s: did not find weights for %s\n", __func__, tensor->name);
  12204. } else {
  12205. if (it->second.size() == (size_t)tensor->ne[0]*tensor->ne[2]) {
  12206. imatrix = it->second.data();
  12207. } else {
  12208. LLAMA_LOG_INFO("\n====== %s: imatrix size %d is different from tensor size %d for %s\n", __func__,
  12209. int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name);
  12210. // this can happen when quantizing an old mixtral model with split tensors with a new incompatible imatrix
  12211. // this is a significant error and it may be good idea to abort the process if this happens,
  12212. // since many people will miss the error and not realize that most of the model is being quantized without an imatrix
  12213. // tok_embd should be ignored in this case, since it always causes this warning
  12214. if (name != tn(LLM_TENSOR_TOKEN_EMBD, "weight")) {
  12215. throw std::runtime_error(format("imatrix size %d is different from tensor size %d for %s",
  12216. int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name));
  12217. }
  12218. }
  12219. }
  12220. }
  12221. if ((new_type == GGML_TYPE_IQ2_XXS ||
  12222. new_type == GGML_TYPE_IQ2_XS ||
  12223. new_type == GGML_TYPE_IQ2_S ||
  12224. new_type == GGML_TYPE_IQ1_S ||
  12225. (new_type == GGML_TYPE_IQ1_M && strcmp(tensor->name, "token_embd.weight") && strcmp(tensor->name, "output.weight")) ||
  12226. (new_type == GGML_TYPE_Q2_K && params->ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && strcmp(tensor->name, "token_embd.weight") != 0)) && !imatrix) {
  12227. LLAMA_LOG_ERROR("\n\n============================================================\n");
  12228. LLAMA_LOG_ERROR("Missing importance matrix for tensor %s in a very low-bit quantization\n", tensor->name);
  12229. LLAMA_LOG_ERROR("The result will be garbage, so bailing out\n");
  12230. LLAMA_LOG_ERROR("============================================================\n\n");
  12231. throw std::runtime_error(format("Missing importance matrix for tensor %s in a very low-bit quantization", tensor->name));
  12232. }
  12233. float * f32_data;
  12234. if (tensor->type == GGML_TYPE_F32) {
  12235. f32_data = (float *) tensor->data;
  12236. } else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
  12237. throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
  12238. } else {
  12239. llama_tensor_dequantize_internal(tensor, f32_conv_buf, workers, nelements, nthread);
  12240. f32_data = (float *) f32_conv_buf.data();
  12241. }
  12242. LLAMA_LOG_INFO("converting to %s .. ", ggml_type_name(new_type));
  12243. fflush(stdout);
  12244. if (work.size() < (size_t)nelements * 4) {
  12245. work.resize(nelements * 4); // upper bound on size
  12246. }
  12247. new_data = work.data();
  12248. const int64_t n_per_row = tensor->ne[0];
  12249. const int64_t nrows = tensor->ne[1];
  12250. static const int64_t min_chunk_size = 32 * 512;
  12251. const int64_t chunk_size = n_per_row >= min_chunk_size ? n_per_row : n_per_row * ((min_chunk_size + n_per_row - 1)/n_per_row);
  12252. const int64_t nelements_matrix = tensor->ne[0] * tensor->ne[1];
  12253. const int64_t nchunk = (nelements_matrix + chunk_size - 1)/chunk_size;
  12254. const int64_t nthread_use = nthread > 1 ? std::max((int64_t)1, std::min((int64_t)nthread, nchunk)) : 1;
  12255. // quantize each expert separately since they have different importance matrices
  12256. new_size = 0;
  12257. for (int64_t i03 = 0; i03 < tensor->ne[2]; ++i03) {
  12258. const float * f32_data_03 = f32_data + i03 * nelements_matrix;
  12259. void * new_data_03 = (char *)new_data + ggml_row_size(new_type, n_per_row) * i03 * nrows;
  12260. const float * imatrix_03 = imatrix ? imatrix + i03 * n_per_row : nullptr;
  12261. new_size += llama_tensor_quantize_internal(new_type, f32_data_03, new_data_03, chunk_size, nrows, n_per_row, imatrix_03, workers, nthread_use);
  12262. }
  12263. LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB\n", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
  12264. }
  12265. total_size_org += ggml_nbytes(tensor);
  12266. total_size_new += new_size;
  12267. // update the gguf meta data as we go
  12268. gguf_set_tensor_type(ctx_outs[cur_split], name.c_str(), new_type);
  12269. gguf_set_tensor_data(ctx_outs[cur_split], name.c_str(), new_data, new_size);
  12270. // write tensor data + padding
  12271. fout.write((const char *) new_data, new_size);
  12272. zeros(fout, GGML_PAD(new_size, align) - new_size);
  12273. }
  12274. close_ofstream();
  12275. for (auto & c:ctx_outs) {
  12276. gguf_free(c);
  12277. }
  12278. LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
  12279. LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
  12280. if (qs.n_fallback > 0) {
  12281. LLAMA_LOG_WARN("%s: WARNING: %d of %d tensor(s) required fallback quantization\n",
  12282. __func__, qs.n_fallback, qs.n_k_quantized + qs.n_fallback);
  12283. }
  12284. }
  12285. static int llama_apply_lora_from_file_internal(
  12286. const struct llama_model & model, const char * path_lora, float scale, const char * path_base_model, int n_threads
  12287. ) {
  12288. LLAMA_LOG_INFO("%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
  12289. const int64_t t_start_lora_us = ggml_time_us();
  12290. llama_file fin(path_lora, "rb");
  12291. // verify magic and version
  12292. {
  12293. uint32_t magic = fin.read_u32();
  12294. if (magic != LLAMA_FILE_MAGIC_GGLA) {
  12295. LLAMA_LOG_ERROR("%s: bad file magic\n", __func__);
  12296. return 1;
  12297. }
  12298. uint32_t format_version = fin.read_u32();
  12299. if (format_version != 1) {
  12300. LLAMA_LOG_ERROR("%s: unsupported file version\n", __func__ );
  12301. return 1;
  12302. }
  12303. }
  12304. int32_t lora_r = fin.read_u32();
  12305. int32_t lora_alpha = fin.read_u32();
  12306. float scaling = scale * (float)lora_alpha / (float)lora_r;
  12307. LLAMA_LOG_INFO("%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
  12308. // load base model
  12309. std::unique_ptr<llama_model_loader> ml;
  12310. if (path_base_model) {
  12311. LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model);
  12312. ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*kv_overrides*/ nullptr));
  12313. ml->init_mappings(/*prefetch*/ false); // no prefetching
  12314. }
  12315. struct tensor_meta {
  12316. std::string name;
  12317. ggml_type type;
  12318. int32_t ne[2];
  12319. size_t offset;
  12320. };
  12321. std::map<std::string, tensor_meta> tensor_meta_map;
  12322. // load all tensor meta
  12323. while (true) {
  12324. if (fin.tell() == fin.size) {
  12325. // eof
  12326. break;
  12327. }
  12328. int32_t n_dims;
  12329. int32_t name_len;
  12330. int32_t ftype;
  12331. fin.read_raw(&n_dims, sizeof(n_dims));
  12332. fin.read_raw(&name_len, sizeof(name_len));
  12333. fin.read_raw(&ftype, sizeof(ftype));
  12334. if (n_dims != 1 && n_dims != 2) {
  12335. LLAMA_LOG_ERROR("%s: unsupported tensor dimension %d\n", __func__, n_dims);
  12336. return 1;
  12337. }
  12338. int32_t ne[2] = { 1, 1 };
  12339. for (int i = 0; i < n_dims; ++i) {
  12340. fin.read_raw(&ne[i], sizeof(ne[i]));
  12341. }
  12342. std::string name;
  12343. {
  12344. GGML_ASSERT(name_len < GGML_MAX_NAME);
  12345. char buf[GGML_MAX_NAME];
  12346. fin.read_raw(buf, name_len);
  12347. name = std::string(buf, name_len);
  12348. }
  12349. // check for lora suffix
  12350. std::string lora_suffix;
  12351. if (name.length() > 6) {
  12352. lora_suffix = name.substr(name.length() - 6);
  12353. }
  12354. if (lora_suffix != ".loraA" && lora_suffix != ".loraB") {
  12355. LLAMA_LOG_ERROR("%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
  12356. return 1;
  12357. }
  12358. // tensor type
  12359. ggml_type wtype;
  12360. switch (ftype) {
  12361. case 0: wtype = GGML_TYPE_F32; break;
  12362. case 1: wtype = GGML_TYPE_F16; break;
  12363. default:
  12364. {
  12365. LLAMA_LOG_ERROR("%s: invalid tensor data type '%d'\n",
  12366. __func__, ftype);
  12367. return 1;
  12368. }
  12369. }
  12370. // data offset
  12371. size_t offset = fin.tell();
  12372. offset = (offset + 31) & -32;
  12373. // skip tensor data
  12374. fin.seek(offset + ggml_row_size(wtype, ne[0]) * ne[1], SEEK_SET);
  12375. tensor_meta_map.emplace(name, tensor_meta{ name, wtype, { ne[0], ne[1] }, offset });
  12376. }
  12377. bool warned = false;
  12378. int n_tensors = 0;
  12379. // apply
  12380. ggml_backend_t backend_cpu = ggml_backend_cpu_init();
  12381. if (backend_cpu == nullptr) {
  12382. LLAMA_LOG_ERROR("%s: error: failed to initialize cpu backend\n", __func__);
  12383. return 1;
  12384. }
  12385. ggml_backend_cpu_set_n_threads(backend_cpu, n_threads);
  12386. std::vector<no_init<uint8_t>> read_buf;
  12387. for (const auto & it : model.tensors_by_name) {
  12388. const std::string & base_name = it.first;
  12389. ggml_tensor * model_t = it.second;
  12390. if (tensor_meta_map.find(base_name + ".loraA") == tensor_meta_map.end() ||
  12391. tensor_meta_map.find(base_name + ".loraB") == tensor_meta_map.end()) {
  12392. continue;
  12393. }
  12394. tensor_meta & metaA = tensor_meta_map.at(base_name + ".loraA");
  12395. tensor_meta & metaB = tensor_meta_map.at(base_name + ".loraB");
  12396. ggml_init_params lora_init_params = {
  12397. /* .mem_size */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  12398. /* .mem_buffer */ nullptr,
  12399. /* .no_alloc */ true,
  12400. };
  12401. ggml_context * lora_ctx = ggml_init(lora_init_params);
  12402. if (lora_ctx == nullptr) {
  12403. LLAMA_LOG_ERROR("%s: error: failed to initialize lora context\n", __func__);
  12404. ggml_backend_free(backend_cpu);
  12405. return 1;
  12406. }
  12407. // create tensors
  12408. ggml_tensor * loraA = ggml_new_tensor_2d(lora_ctx, metaA.type, metaA.ne[0], metaA.ne[1]);
  12409. ggml_tensor * loraB = ggml_new_tensor_2d(lora_ctx, metaB.type, metaB.ne[0], metaB.ne[1]);
  12410. ggml_set_name(loraA, metaA.name.c_str());
  12411. ggml_set_name(loraB, metaB.name.c_str());
  12412. ggml_tensor * base_t;
  12413. if (ml) {
  12414. if (!ml->get_tensor_meta(base_name.c_str())) {
  12415. LLAMA_LOG_ERROR("%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
  12416. return 1;
  12417. }
  12418. base_t = ggml_dup_tensor(lora_ctx, ml->get_tensor_meta(base_name.c_str()));
  12419. } else {
  12420. base_t = ggml_dup_tensor(lora_ctx, model_t);
  12421. }
  12422. ggml_set_name(base_t, base_name.c_str());
  12423. // allocate in backend buffer
  12424. ggml_backend_buffer_t lora_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
  12425. if (lora_buf == nullptr) {
  12426. LLAMA_LOG_ERROR("%s: error: failed to allocate lora tensors\n", __func__);
  12427. return 1;
  12428. }
  12429. // load tensor data
  12430. auto load_tensor = [&read_buf, &fin](const tensor_meta & tensor_meta, ggml_tensor * tensor) {
  12431. read_buf.resize(ggml_nbytes(tensor));
  12432. fin.seek(tensor_meta.offset, SEEK_SET);
  12433. fin.read_raw(read_buf.data(), ggml_nbytes(tensor));
  12434. ggml_backend_tensor_set(tensor, read_buf.data(), 0, read_buf.size());
  12435. };
  12436. load_tensor(metaA, loraA);
  12437. load_tensor(metaB, loraB);
  12438. // load base model tensor data
  12439. if (ml) {
  12440. ml->load_data_for(base_t);
  12441. } else {
  12442. ggml_backend_tensor_copy(model_t, base_t);
  12443. }
  12444. if (ggml_is_quantized(base_t->type) && !warned) {
  12445. LLAMA_LOG_WARN("%s: warning: using a lora adapter with a quantized model may result in poor quality, "
  12446. "use a f16 or f32 base model with --lora-base\n", __func__);
  12447. warned = true;
  12448. }
  12449. if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
  12450. LLAMA_LOG_ERROR("%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
  12451. " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
  12452. ggml_free(lora_ctx);
  12453. ggml_backend_buffer_free(lora_buf);
  12454. ggml_backend_free(backend_cpu);
  12455. return 1;
  12456. }
  12457. auto build_lora_graph = [&]() {
  12458. // w = w + BA*s
  12459. ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
  12460. ggml_set_name(BA, "BA");
  12461. if (scaling != 1.0f) {
  12462. BA = ggml_scale(lora_ctx, BA, scaling);
  12463. ggml_set_name(BA, "BA_scaled");
  12464. }
  12465. ggml_tensor * r;
  12466. r = ggml_add_inplace(lora_ctx, base_t, BA);
  12467. ggml_set_name(r, "r_add");
  12468. if (base_t->type != model_t->type) {
  12469. // convert the result to the model type
  12470. r = ggml_cast(lora_ctx, r, model_t->type);
  12471. ggml_set_name(r, "r_cast");
  12472. }
  12473. return r;
  12474. };
  12475. ggml_cgraph * gf = ggml_new_graph(lora_ctx);
  12476. ggml_tensor * r = build_lora_graph();
  12477. ggml_build_forward_expand(gf, r);
  12478. ggml_backend_buffer_t graph_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
  12479. if (graph_buf == nullptr) {
  12480. LLAMA_LOG_ERROR("%s: error: failed to allocate graph tensors\n", __func__);
  12481. ggml_free(lora_ctx);
  12482. ggml_backend_buffer_free(lora_buf);
  12483. ggml_backend_free(backend_cpu);
  12484. return 1;
  12485. }
  12486. ggml_backend_graph_compute(backend_cpu, gf);
  12487. ggml_backend_tensor_set(model_t, r->data, 0, ggml_nbytes(r));
  12488. #if 0
  12489. // TODO: use scheduler with fallback to CPU for less copies between CPU and GPU
  12490. //ggml_backend_sched_t sched = ggml_backend_sched_new(backends.data(), backends.size(), GGML_DEFAULT_GRAPH_SIZE);
  12491. // sched compute
  12492. ggml_build_forward_expand(gf, build_graph());
  12493. ggml_backend_sched_init_measure(sched, gf);
  12494. // create the graph again, since the previous one was destroyed by the measure
  12495. ggml_graph_clear(gf);
  12496. ggml_build_forward_expand(gf, build_graph());
  12497. ggml_backend_sched_graph_compute(sched, gf);
  12498. ggml_backend_sched_free(sched);
  12499. #endif
  12500. ggml_backend_buffer_free(lora_buf);
  12501. ggml_backend_buffer_free(graph_buf);
  12502. ggml_free(lora_ctx);
  12503. n_tensors++;
  12504. if (n_tensors % 4 == 0) {
  12505. LLAMA_LOG_INFO(".");
  12506. }
  12507. }
  12508. ggml_backend_free(backend_cpu);
  12509. const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
  12510. LLAMA_LOG_INFO(" done (%.2f ms)\n", t_lora_us / 1000.0);
  12511. return 0;
  12512. }
  12513. //
  12514. // interface implementation
  12515. //
  12516. struct llama_model_params llama_model_default_params() {
  12517. struct llama_model_params result = {
  12518. /*.n_gpu_layers =*/ 0,
  12519. /*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER,
  12520. /*.main_gpu =*/ 0,
  12521. /*.tensor_split =*/ nullptr,
  12522. /*.progress_callback =*/ nullptr,
  12523. /*.progress_callback_user_data =*/ nullptr,
  12524. /*.kv_overrides =*/ nullptr,
  12525. /*.vocab_only =*/ false,
  12526. /*.use_mmap =*/ true,
  12527. /*.use_mlock =*/ false,
  12528. };
  12529. #ifdef GGML_USE_METAL
  12530. // note: we usually have plenty of VRAM, so by default offload all layers to the GPU
  12531. result.n_gpu_layers = 999;
  12532. #endif
  12533. return result;
  12534. }
  12535. struct llama_context_params llama_context_default_params() {
  12536. struct llama_context_params result = {
  12537. /*.seed =*/ LLAMA_DEFAULT_SEED,
  12538. /*.n_ctx =*/ 512,
  12539. /*.n_batch =*/ 2048,
  12540. /*.n_ubatch =*/ 512,
  12541. /*.n_seq_max =*/ 1,
  12542. /*.n_threads =*/ GGML_DEFAULT_N_THREADS, // TODO: better default
  12543. /*.n_threads_batch =*/ GGML_DEFAULT_N_THREADS,
  12544. /*.rope_scaling_type =*/ LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED,
  12545. /*.pooling_type =*/ LLAMA_POOLING_TYPE_UNSPECIFIED,
  12546. /*.rope_freq_base =*/ 0.0f,
  12547. /*.rope_freq_scale =*/ 0.0f,
  12548. /*.yarn_ext_factor =*/ -1.0f,
  12549. /*.yarn_attn_factor =*/ 1.0f,
  12550. /*.yarn_beta_fast =*/ 32.0f,
  12551. /*.yarn_beta_slow =*/ 1.0f,
  12552. /*.yarn_orig_ctx =*/ 0,
  12553. /*.defrag_thold =*/ -1.0f,
  12554. /*.cb_eval =*/ nullptr,
  12555. /*.cb_eval_user_data =*/ nullptr,
  12556. /*.type_k =*/ GGML_TYPE_F16,
  12557. /*.type_v =*/ GGML_TYPE_F16,
  12558. /*.logits_all =*/ false,
  12559. /*.embeddings =*/ false,
  12560. /*.offload_kqv =*/ true,
  12561. /*.abort_callback =*/ nullptr,
  12562. /*.abort_callback_data =*/ nullptr,
  12563. };
  12564. return result;
  12565. }
  12566. struct llama_model_quantize_params llama_model_quantize_default_params() {
  12567. struct llama_model_quantize_params result = {
  12568. /*.nthread =*/ 0,
  12569. /*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
  12570. /*.output_tensor_type =*/ GGML_TYPE_COUNT,
  12571. /*.token_embedding_type =*/ GGML_TYPE_COUNT,
  12572. /*.allow_requantize =*/ false,
  12573. /*.quantize_output_tensor =*/ true,
  12574. /*.only_copy =*/ false,
  12575. /*.pure =*/ false,
  12576. /*.keep_split =*/ false,
  12577. /*.imatrix =*/ nullptr,
  12578. /*.kv_overrides =*/ nullptr,
  12579. };
  12580. return result;
  12581. }
  12582. size_t llama_max_devices(void) {
  12583. #if defined(GGML_USE_METAL)
  12584. return 1;
  12585. #elif defined(GGML_USE_CUDA)
  12586. return GGML_CUDA_MAX_DEVICES;
  12587. #elif defined(GGML_USE_SYCL)
  12588. return GGML_SYCL_MAX_DEVICES;
  12589. #elif defined(GGML_USE_VULKAN)
  12590. return GGML_VK_MAX_DEVICES;
  12591. #else
  12592. return 1;
  12593. #endif
  12594. }
  12595. bool llama_supports_mmap(void) {
  12596. return llama_mmap::SUPPORTED;
  12597. }
  12598. bool llama_supports_mlock(void) {
  12599. return llama_mlock::SUPPORTED;
  12600. }
  12601. bool llama_supports_gpu_offload(void) {
  12602. #if defined(GGML_USE_CUDA) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \
  12603. defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE)
  12604. // Defined when llama.cpp is compiled with support for offloading model layers to GPU.
  12605. return true;
  12606. #else
  12607. return false;
  12608. #endif
  12609. }
  12610. void llama_backend_init(void) {
  12611. ggml_time_init();
  12612. // needed to initialize f16 tables
  12613. {
  12614. struct ggml_init_params params = { 0, NULL, false };
  12615. struct ggml_context * ctx = ggml_init(params);
  12616. ggml_free(ctx);
  12617. }
  12618. #ifdef GGML_USE_MPI
  12619. ggml_mpi_backend_init();
  12620. #endif
  12621. }
  12622. void llama_numa_init(enum ggml_numa_strategy numa) {
  12623. if (numa != GGML_NUMA_STRATEGY_DISABLED) {
  12624. ggml_numa_init(numa);
  12625. }
  12626. }
  12627. void llama_backend_free(void) {
  12628. #ifdef GGML_USE_MPI
  12629. ggml_mpi_backend_free();
  12630. #endif
  12631. ggml_quantize_free();
  12632. }
  12633. int64_t llama_time_us(void) {
  12634. return ggml_time_us();
  12635. }
  12636. struct llama_model * llama_load_model_from_file(
  12637. const char * path_model,
  12638. struct llama_model_params params) {
  12639. ggml_time_init();
  12640. llama_model * model = new llama_model;
  12641. unsigned cur_percentage = 0;
  12642. if (params.progress_callback == NULL) {
  12643. params.progress_callback_user_data = &cur_percentage;
  12644. params.progress_callback = [](float progress, void * ctx) {
  12645. unsigned * cur_percentage_p = (unsigned *) ctx;
  12646. unsigned percentage = (unsigned) (100 * progress);
  12647. while (percentage > *cur_percentage_p) {
  12648. *cur_percentage_p = percentage;
  12649. LLAMA_LOG_INFO(".");
  12650. if (percentage >= 100) {
  12651. LLAMA_LOG_INFO("\n");
  12652. }
  12653. }
  12654. return true;
  12655. };
  12656. }
  12657. int status = llama_model_load(path_model, *model, params);
  12658. GGML_ASSERT(status <= 0);
  12659. if (status < 0) {
  12660. if (status == -1) {
  12661. LLAMA_LOG_ERROR("%s: failed to load model\n", __func__);
  12662. } else if (status == -2) {
  12663. LLAMA_LOG_INFO("%s: cancelled model load\n", __func__);
  12664. }
  12665. delete model;
  12666. return nullptr;
  12667. }
  12668. return model;
  12669. }
  12670. void llama_free_model(struct llama_model * model) {
  12671. delete model;
  12672. }
  12673. struct llama_context * llama_new_context_with_model(
  12674. struct llama_model * model,
  12675. struct llama_context_params params) {
  12676. if (!model) {
  12677. LLAMA_LOG_ERROR("%s: model cannot be NULL\n", __func__);
  12678. return nullptr;
  12679. }
  12680. if (params.n_batch == 0 && params.n_ubatch == 0) {
  12681. LLAMA_LOG_ERROR("%s: n_batch and n_ubatch cannot both be zero\n", __func__);
  12682. return nullptr;
  12683. }
  12684. if (params.n_ctx == 0 && model->hparams.n_ctx_train == 0) {
  12685. LLAMA_LOG_ERROR("%s: n_ctx and model->hparams.n_ctx_train cannot both be zero\n", __func__);
  12686. return nullptr;
  12687. }
  12688. llama_context * ctx = new llama_context(*model);
  12689. const auto & hparams = model->hparams;
  12690. auto & cparams = ctx->cparams;
  12691. cparams.n_seq_max = std::max(1u, params.n_seq_max);
  12692. cparams.n_threads = params.n_threads;
  12693. cparams.n_threads_batch = params.n_threads_batch;
  12694. cparams.yarn_ext_factor = params.yarn_ext_factor;
  12695. cparams.yarn_attn_factor = params.yarn_attn_factor;
  12696. cparams.yarn_beta_fast = params.yarn_beta_fast;
  12697. cparams.yarn_beta_slow = params.yarn_beta_slow;
  12698. cparams.defrag_thold = params.defrag_thold;
  12699. cparams.embeddings = params.embeddings;
  12700. cparams.offload_kqv = params.offload_kqv;
  12701. cparams.pooling_type = params.pooling_type;
  12702. cparams.n_ctx = params.n_ctx == 0 ? hparams.n_ctx_train : params.n_ctx;
  12703. cparams.rope_freq_base = params.rope_freq_base == 0.0f ? hparams.rope_freq_base_train : params.rope_freq_base;
  12704. cparams.rope_freq_scale = params.rope_freq_scale == 0.0f ? hparams.rope_freq_scale_train : params.rope_freq_scale;
  12705. // this is necessary due to kv_self.n being padded later during inference
  12706. cparams.n_ctx = GGML_PAD(cparams.n_ctx, 32);
  12707. // with causal attention, the batch size is limited by the context size
  12708. cparams.n_batch = hparams.causal_attn ? std::min(cparams.n_ctx, params.n_batch) : params.n_batch;
  12709. cparams.n_ubatch = std::min(cparams.n_batch, params.n_ubatch == 0 ? params.n_batch : params.n_ubatch);
  12710. cparams.n_yarn_orig_ctx = params.yarn_orig_ctx != 0 ? params.yarn_orig_ctx :
  12711. hparams.n_yarn_orig_ctx != 0 ? hparams.n_yarn_orig_ctx :
  12712. hparams.n_ctx_train;
  12713. cparams.cb_eval = params.cb_eval;
  12714. cparams.cb_eval_user_data = params.cb_eval_user_data;
  12715. auto rope_scaling_type = params.rope_scaling_type;
  12716. if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED) {
  12717. rope_scaling_type = hparams.rope_scaling_type_train;
  12718. }
  12719. if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_NONE) {
  12720. cparams.rope_freq_scale = 1.0f; // never scale if scaling type is none
  12721. }
  12722. if (cparams.yarn_ext_factor < 0.0f) { // negative indicates 'not set'
  12723. cparams.yarn_ext_factor = rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_YARN ? 1.0f : 0.0f;
  12724. }
  12725. cparams.causal_attn = hparams.causal_attn;
  12726. if (cparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
  12727. if (hparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
  12728. cparams.pooling_type = LLAMA_POOLING_TYPE_NONE;
  12729. } else {
  12730. cparams.pooling_type = hparams.pooling_type;
  12731. }
  12732. }
  12733. if (params.seed == LLAMA_DEFAULT_SEED) {
  12734. params.seed = time(NULL);
  12735. }
  12736. LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, cparams.n_ctx);
  12737. LLAMA_LOG_INFO("%s: n_batch = %u\n", __func__, cparams.n_batch);
  12738. LLAMA_LOG_INFO("%s: n_ubatch = %u\n", __func__, cparams.n_ubatch);
  12739. LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, cparams.rope_freq_base);
  12740. LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, cparams.rope_freq_scale);
  12741. ctx->abort_callback = params.abort_callback;
  12742. ctx->abort_callback_data = params.abort_callback_data;
  12743. ctx->rng = std::mt19937(params.seed);
  12744. ctx->logits_all = params.logits_all;
  12745. uint32_t kv_size = cparams.n_ctx;
  12746. ggml_type type_k = params.type_k;
  12747. ggml_type type_v = params.type_v;
  12748. // Mamba only needs a constant number of KV cache cells per sequence
  12749. if (model->arch == LLM_ARCH_MAMBA) {
  12750. // Mamba needs at least as many KV cells as there are sequences kept at any time
  12751. kv_size = std::max((uint32_t) 1, params.n_seq_max);
  12752. // it's probably best to keep as much precision as possible for the states
  12753. type_k = GGML_TYPE_F32; // required by ggml_ssm_conv for Mamba's conv_states
  12754. type_v = GGML_TYPE_F32; // required by ggml_ssm_scan for Mamba's ssm_states
  12755. }
  12756. GGML_ASSERT(hparams.n_embd_head_k % ggml_blck_size(type_k) == 0);
  12757. GGML_ASSERT(hparams.n_embd_head_v % ggml_blck_size(type_v) == 0);
  12758. if (!hparams.vocab_only) {
  12759. // initialize backends
  12760. #ifdef GGML_USE_METAL
  12761. if (model->n_gpu_layers > 0) {
  12762. ctx->backend_metal = ggml_backend_metal_init();
  12763. if (ctx->backend_metal == nullptr) {
  12764. LLAMA_LOG_ERROR("%s: failed to initialize Metal backend\n", __func__);
  12765. llama_free(ctx);
  12766. return nullptr;
  12767. }
  12768. ctx->backends.push_back(ctx->backend_metal);
  12769. }
  12770. #elif defined(GGML_USE_CUDA)
  12771. if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  12772. // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
  12773. ggml_backend_t backend = ggml_backend_cuda_init(model->main_gpu);
  12774. if (backend == nullptr) {
  12775. LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, model->main_gpu);
  12776. llama_free(ctx);
  12777. return nullptr;
  12778. }
  12779. ctx->backends.push_back(backend);
  12780. } else {
  12781. // LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU
  12782. for (int device = 0; device < ggml_backend_cuda_get_device_count(); ++device) {
  12783. ggml_backend_t backend = ggml_backend_cuda_init(device);
  12784. if (backend == nullptr) {
  12785. LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, device);
  12786. llama_free(ctx);
  12787. return nullptr;
  12788. }
  12789. ctx->backends.push_back(backend);
  12790. }
  12791. }
  12792. #elif defined(GGML_USE_VULKAN)
  12793. if (model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  12794. LLAMA_LOG_ERROR("%s: Row split not supported. Failed to initialize Vulkan backend\n", __func__);
  12795. llama_free(ctx);
  12796. return nullptr;
  12797. }
  12798. if (model->split_mode == LLAMA_SPLIT_MODE_NONE) {
  12799. ggml_backend_t backend = ggml_backend_vk_init(0);
  12800. if (backend == nullptr) {
  12801. LLAMA_LOG_ERROR("%s: failed to initialize Vulkan backend\n", __func__);
  12802. llama_free(ctx);
  12803. return nullptr;
  12804. }
  12805. ctx->backends.push_back(backend);
  12806. } else {
  12807. for (int device = 0; device < ggml_backend_vk_get_device_count(); ++device) {
  12808. ggml_backend_t backend = ggml_backend_vk_init(device);
  12809. if (backend == nullptr) {
  12810. LLAMA_LOG_ERROR("%s: failed to initialize Vulkan%d backend\n", __func__, device);
  12811. llama_free(ctx);
  12812. return nullptr;
  12813. }
  12814. ctx->backends.push_back(backend);
  12815. }
  12816. }
  12817. #elif defined(GGML_USE_SYCL)
  12818. // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
  12819. if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  12820. ggml_backend_t backend = ggml_backend_sycl_init(model->main_gpu);
  12821. if (backend == nullptr) {
  12822. int main_gpu_id = ggml_backend_sycl_get_device_id(model->main_gpu);
  12823. LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d) backend\n", __func__, main_gpu_id, model->main_gpu);
  12824. llama_free(ctx);
  12825. return nullptr;
  12826. }
  12827. ctx->backends.push_back(backend);
  12828. } else {
  12829. // LLAMA_SPLIT_LAYER requires a backend for each GPU
  12830. for (int i = 0; i < ggml_backend_sycl_get_device_count(); ++i) {
  12831. ggml_backend_t backend = ggml_backend_sycl_init(i);
  12832. if (backend == nullptr) {
  12833. int id_list[GGML_SYCL_MAX_DEVICES];
  12834. ggml_sycl_get_gpu_list(id_list, GGML_SYCL_MAX_DEVICES);
  12835. LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d) backend\n", __func__, id_list[i], i);
  12836. llama_free(ctx);
  12837. return nullptr;
  12838. }
  12839. ctx->backends.push_back(backend);
  12840. }
  12841. }
  12842. #elif defined(GGML_USE_KOMPUTE)
  12843. if (model->n_gpu_layers > 0) {
  12844. auto * backend = ggml_backend_kompute_init(model->main_gpu);
  12845. if (backend == nullptr) {
  12846. LLAMA_LOG_ERROR("%s: failed to initialize Kompute backend\n", __func__);
  12847. llama_free(ctx);
  12848. return nullptr;
  12849. }
  12850. ctx->backends.push_back(backend);
  12851. }
  12852. #endif
  12853. ctx->backend_cpu = ggml_backend_cpu_init();
  12854. if (ctx->backend_cpu == nullptr) {
  12855. LLAMA_LOG_ERROR("%s: failed to initialize CPU backend\n", __func__);
  12856. llama_free(ctx);
  12857. return nullptr;
  12858. }
  12859. ctx->backends.push_back(ctx->backend_cpu);
  12860. if (!llama_kv_cache_init(ctx->kv_self, ctx->model, type_k, type_v, kv_size, cparams.offload_kqv)) {
  12861. LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__);
  12862. llama_free(ctx);
  12863. return nullptr;
  12864. }
  12865. {
  12866. size_t memory_size_k = 0;
  12867. size_t memory_size_v = 0;
  12868. for (auto & k : ctx->kv_self.k_l) {
  12869. memory_size_k += ggml_nbytes(k);
  12870. }
  12871. for (auto & v : ctx->kv_self.v_l) {
  12872. memory_size_v += ggml_nbytes(v);
  12873. }
  12874. LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__,
  12875. (float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f),
  12876. ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f),
  12877. ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
  12878. }
  12879. // graph outputs buffer
  12880. {
  12881. // resized during inference when a batch uses more outputs
  12882. if (llama_output_reserve(*ctx, params.n_seq_max) < params.n_seq_max) {
  12883. LLAMA_LOG_ERROR("%s: failed to reserve initial output buffer\n", __func__);
  12884. llama_free(ctx);
  12885. return nullptr;
  12886. }
  12887. LLAMA_LOG_INFO("%s: %10s output buffer size = %8.2f MiB\n", __func__,
  12888. ggml_backend_buffer_name(ctx->buf_output),
  12889. ggml_backend_buffer_get_size(ctx->buf_output) / 1024.0 / 1024.0);
  12890. }
  12891. // scheduler and compute buffers
  12892. {
  12893. // buffer types used for the compute buffer of each backend
  12894. std::vector<ggml_backend_buffer_type_t> backend_buft;
  12895. for (auto * backend : ctx->backends) {
  12896. if (ggml_backend_is_cpu(backend)) {
  12897. // use host buffers for the CPU backend compute buffer
  12898. backend_buft.push_back(llama_default_buffer_type_cpu(true));
  12899. } else {
  12900. backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
  12901. }
  12902. }
  12903. // buffer used to store the computation graph and the tensor meta data
  12904. ctx->buf_compute_meta.resize(ggml_tensor_overhead()*LLAMA_MAX_NODES + ggml_graph_overhead_custom(LLAMA_MAX_NODES, false));
  12905. // enabling pipeline parallelism in the scheduler increases memory usage, so it is only done when necessary
  12906. bool pipeline_parallel = llama_get_device_count() > 1 && model->n_gpu_layers > (int)model->hparams.n_layer && model->split_mode == LLAMA_SPLIT_MODE_LAYER;
  12907. #ifndef GGML_USE_CUDA
  12908. // pipeline parallelism requires support for async compute and events
  12909. // currently this is only implemented in the CUDA backend
  12910. pipeline_parallel = false;
  12911. #endif
  12912. ctx->sched = ggml_backend_sched_new(ctx->backends.data(), backend_buft.data(), ctx->backends.size(), LLAMA_MAX_NODES, pipeline_parallel);
  12913. if (pipeline_parallel) {
  12914. LLAMA_LOG_INFO("%s: pipeline parallelism enabled (n_copies=%d)\n", __func__, ggml_backend_sched_get_n_copies(ctx->sched));
  12915. }
  12916. // build worst-case graph
  12917. int n_tokens = (int)std::min(cparams.n_ctx, cparams.n_ubatch);
  12918. int n_past = cparams.n_ctx - n_tokens;
  12919. llama_token token = llama_token_bos(&ctx->model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
  12920. ggml_cgraph * gf = llama_build_graph(*ctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);
  12921. // initialize scheduler with the worst-case graph
  12922. if (!ggml_backend_sched_reserve(ctx->sched, gf)) {
  12923. LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
  12924. llama_free(ctx);
  12925. return nullptr;
  12926. }
  12927. for (size_t i = 0; i < ctx->backends.size(); i++) {
  12928. ggml_backend_t backend = ctx->backends[i];
  12929. ggml_backend_buffer_type_t buft = backend_buft[i];
  12930. size_t size = ggml_backend_sched_get_buffer_size(ctx->sched, backend);
  12931. if (size > 1) {
  12932. LLAMA_LOG_INFO("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
  12933. ggml_backend_buft_name(buft),
  12934. size / 1024.0 / 1024.0);
  12935. }
  12936. }
  12937. // note: the number of splits during measure is higher than during inference due to the kv shift
  12938. int n_splits = ggml_backend_sched_get_n_splits(ctx->sched);
  12939. LLAMA_LOG_INFO("%s: graph nodes = %d\n", __func__, gf->n_nodes);
  12940. LLAMA_LOG_INFO("%s: graph splits = %d\n", __func__, n_splits);
  12941. }
  12942. }
  12943. #ifdef GGML_USE_MPI
  12944. ctx->ctx_mpi = ggml_mpi_init();
  12945. if (ggml_mpi_rank(ctx->ctx_mpi) > 0) {
  12946. // Enter a blocking eval loop with dummy input, letting rank=0 drive the process
  12947. // TODO: needs fix after #3228
  12948. GGML_ASSERT(false && "not implemented");
  12949. //const std::vector<llama_token> tmp(ctx->model.hparams.n_ctx, llama_token_bos(ctx));
  12950. //while (!llama_eval(ctx, tmp.data(), tmp.size(), 0, 0)) {};
  12951. llama_backend_free();
  12952. exit(1);
  12953. }
  12954. #endif
  12955. return ctx;
  12956. }
  12957. void llama_free(struct llama_context * ctx) {
  12958. delete ctx;
  12959. }
  12960. const llama_model * llama_get_model(const struct llama_context * ctx) {
  12961. return &ctx->model;
  12962. }
  12963. uint32_t llama_n_ctx(const struct llama_context * ctx) {
  12964. return ctx->cparams.n_ctx;
  12965. }
  12966. uint32_t llama_n_batch(const struct llama_context * ctx) {
  12967. return ctx->cparams.n_batch;
  12968. }
  12969. uint32_t llama_n_ubatch(const struct llama_context * ctx) {
  12970. return ctx->cparams.n_ubatch;
  12971. }
  12972. uint32_t llama_n_seq_max(const struct llama_context * ctx) {
  12973. return ctx->kv_self.size;
  12974. }
  12975. enum llama_vocab_type llama_vocab_type(const struct llama_model * model) {
  12976. return model->vocab.type;
  12977. }
  12978. enum llama_rope_type llama_rope_type(const struct llama_model * model) {
  12979. switch (model->arch) {
  12980. // these models do not use RoPE
  12981. case LLM_ARCH_GPT2:
  12982. case LLM_ARCH_GPTJ:
  12983. case LLM_ARCH_GPTNEOX:
  12984. case LLM_ARCH_MPT:
  12985. case LLM_ARCH_REFACT:
  12986. case LLM_ARCH_BLOOM:
  12987. case LLM_ARCH_MAMBA:
  12988. return LLAMA_ROPE_TYPE_NONE;
  12989. // use what we call a normal RoPE, operating on pairs of consecutive head values
  12990. case LLM_ARCH_LLAMA:
  12991. case LLM_ARCH_BAICHUAN:
  12992. case LLM_ARCH_STARCODER:
  12993. case LLM_ARCH_PLAMO:
  12994. case LLM_ARCH_CODESHELL:
  12995. case LLM_ARCH_ORION:
  12996. case LLM_ARCH_INTERNLM2:
  12997. case LLM_ARCH_MINICPM:
  12998. case LLM_ARCH_XVERSE:
  12999. case LLM_ARCH_COMMAND_R:
  13000. case LLM_ARCH_OLMO:
  13001. return LLAMA_ROPE_TYPE_NORM;
  13002. // the pairs of head values are offset by n_rot/2
  13003. case LLM_ARCH_FALCON:
  13004. case LLM_ARCH_GROK:
  13005. case LLM_ARCH_DBRX:
  13006. case LLM_ARCH_PERSIMMON:
  13007. case LLM_ARCH_BERT:
  13008. case LLM_ARCH_NOMIC_BERT:
  13009. case LLM_ARCH_STABLELM:
  13010. case LLM_ARCH_QWEN:
  13011. case LLM_ARCH_QWEN2:
  13012. case LLM_ARCH_QWEN2MOE:
  13013. case LLM_ARCH_PHI2:
  13014. case LLM_ARCH_PHI3:
  13015. case LLM_ARCH_GEMMA:
  13016. case LLM_ARCH_STARCODER2:
  13017. return LLAMA_ROPE_TYPE_NEOX;
  13018. // all model arches should be listed explicitly here
  13019. case LLM_ARCH_UNKNOWN:
  13020. GGML_ASSERT(false && "unknown architecture");
  13021. break;
  13022. }
  13023. return LLAMA_ROPE_TYPE_NONE;
  13024. }
  13025. enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx) {
  13026. return ctx->cparams.pooling_type;
  13027. }
  13028. int32_t llama_n_vocab(const struct llama_model * model) {
  13029. return model->hparams.n_vocab;
  13030. }
  13031. int32_t llama_n_ctx_train(const struct llama_model * model) {
  13032. return model->hparams.n_ctx_train;
  13033. }
  13034. int32_t llama_n_embd(const struct llama_model * model) {
  13035. return model->hparams.n_embd;
  13036. }
  13037. int32_t llama_n_layer(const struct llama_model * model) {
  13038. return model->hparams.n_layer;
  13039. }
  13040. float llama_rope_freq_scale_train(const struct llama_model * model) {
  13041. return model->hparams.rope_freq_scale_train;
  13042. }
  13043. int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size) {
  13044. const auto & it = model->gguf_kv.find(key);
  13045. if (it == model->gguf_kv.end()) {
  13046. if (buf_size > 0) {
  13047. buf[0] = '\0';
  13048. }
  13049. return -1;
  13050. }
  13051. return snprintf(buf, buf_size, "%s", it->second.c_str());
  13052. }
  13053. int32_t llama_model_meta_count(const struct llama_model * model) {
  13054. return (int)model->gguf_kv.size();
  13055. }
  13056. int32_t llama_model_meta_key_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size) {
  13057. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  13058. if (buf_size > 0) {
  13059. buf[0] = '\0';
  13060. }
  13061. return -1;
  13062. }
  13063. auto it = model->gguf_kv.begin();
  13064. std::advance(it, i);
  13065. return snprintf(buf, buf_size, "%s", it->first.c_str());
  13066. }
  13067. int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size) {
  13068. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  13069. if (buf_size > 0) {
  13070. buf[0] = '\0';
  13071. }
  13072. return -1;
  13073. }
  13074. auto it = model->gguf_kv.begin();
  13075. std::advance(it, i);
  13076. return snprintf(buf, buf_size, "%s", it->second.c_str());
  13077. }
  13078. int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) {
  13079. return snprintf(buf, buf_size, "%s %s %s",
  13080. llama_model_arch_name(model->arch),
  13081. llama_model_type_name(model->type),
  13082. llama_model_ftype_name(model->ftype).c_str());
  13083. }
  13084. uint64_t llama_model_size(const struct llama_model * model) {
  13085. uint64_t size = 0;
  13086. for (const auto & it : model->tensors_by_name) {
  13087. size += ggml_nbytes(it.second);
  13088. }
  13089. return size;
  13090. }
  13091. uint64_t llama_model_n_params(const struct llama_model * model) {
  13092. uint64_t nparams = 0;
  13093. for (const auto & it : model->tensors_by_name) {
  13094. nparams += ggml_nelements(it.second);
  13095. }
  13096. return nparams;
  13097. }
  13098. struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name) {
  13099. auto it = std::find_if(model->tensors_by_name.begin(), model->tensors_by_name.end(),
  13100. [name](const std::pair<std::string, struct ggml_tensor *> & it) {
  13101. return it.first == name;
  13102. });
  13103. if (it == model->tensors_by_name.end()) {
  13104. return nullptr;
  13105. }
  13106. return it->second;
  13107. }
  13108. uint32_t llama_model_quantize(
  13109. const char * fname_inp,
  13110. const char * fname_out,
  13111. const llama_model_quantize_params * params) {
  13112. try {
  13113. llama_model_quantize_internal(fname_inp, fname_out, params);
  13114. return 0;
  13115. } catch (const std::exception & err) {
  13116. LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what());
  13117. return 1;
  13118. }
  13119. }
  13120. int32_t llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, float scale, const char * path_base_model, int32_t n_threads) {
  13121. try {
  13122. return llama_apply_lora_from_file_internal(*model, path_lora, scale, path_base_model, n_threads);
  13123. } catch (const std::exception & err) {
  13124. LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
  13125. return 1;
  13126. }
  13127. }
  13128. static bool llama_control_vector_init(struct llama_control_vector & cvec, const llama_model & model) {
  13129. GGML_ASSERT(cvec.tensors.empty());
  13130. GGML_ASSERT(cvec.ctxs.empty());
  13131. GGML_ASSERT(cvec.bufs.empty());
  13132. // count layer buffer types
  13133. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  13134. for (int64_t i = 0; i < model.hparams.n_layer; i++) {
  13135. buft_layer_count[model.buft_layer[i].buft]++;
  13136. }
  13137. // allocate contexts
  13138. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  13139. for (auto & it : buft_layer_count) {
  13140. int n_layers = it.second;
  13141. struct ggml_init_params params = {
  13142. /*.mem_size =*/ n_layers * ggml_tensor_overhead(),
  13143. /*.mem_buffer =*/ NULL,
  13144. /*.no_alloc =*/ true,
  13145. };
  13146. ggml_context * ctx = ggml_init(params);
  13147. if (!ctx) {
  13148. LLAMA_LOG_ERROR("%s: failed to allocate context for control vector\n", __func__);
  13149. return 1;
  13150. }
  13151. ctx_map[it.first] = ctx;
  13152. }
  13153. // make tensors
  13154. cvec.tensors.push_back(nullptr); // there's never a tensor for layer 0
  13155. for (size_t il = 1; il < model.hparams.n_layer; il++) {
  13156. struct ggml_context * ctx = ctx_map.at(model.buft_layer[il].buft);
  13157. ggml_tensor * tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, model.hparams.n_embd);
  13158. cvec.tensors.push_back(tensor);
  13159. }
  13160. // allocate tensors / buffers and zero
  13161. for (auto it : ctx_map) {
  13162. ggml_backend_buffer_type_t buft = it.first;
  13163. ggml_context * ctx = it.second;
  13164. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  13165. if (!buf) {
  13166. LLAMA_LOG_ERROR("%s: failed to allocate buffer for control vector\n", __func__);
  13167. return false;
  13168. }
  13169. ggml_backend_buffer_clear(buf, 0);
  13170. cvec.ctxs.push_back(ctx);
  13171. cvec.bufs.push_back(buf);
  13172. }
  13173. return true;
  13174. }
  13175. int32_t llama_control_vector_apply(struct llama_context * lctx, const float * data, size_t len, int32_t n_embd, int32_t il_start, int32_t il_end) {
  13176. const llama_model & model = lctx->model;
  13177. llama_control_vector & cvec = lctx->cvec;
  13178. if (data == nullptr) {
  13179. // disable the current control vector (but leave allocated for later)
  13180. cvec.layer_start = -1;
  13181. cvec.layer_end = -1;
  13182. return 0;
  13183. }
  13184. if (n_embd != (int) model.hparams.n_embd) {
  13185. LLAMA_LOG_ERROR("%s: control vector n_embd does not match model\n", __func__);
  13186. return 1;
  13187. }
  13188. if (cvec.tensors.empty()) {
  13189. if (!llama_control_vector_init(cvec, model)) {
  13190. return 1;
  13191. }
  13192. }
  13193. cvec.layer_start = il_start;
  13194. cvec.layer_end = il_end;
  13195. for (size_t il = 1; il < model.hparams.n_layer; il++) {
  13196. assert(cvec.tensors[il] != nullptr);
  13197. const size_t off = n_embd * (il - 1); // buffer doesn't have data for layer 0, since it's never present
  13198. if (off + n_embd <= len) {
  13199. ggml_backend_tensor_set(cvec.tensors[il], data + off, 0, n_embd * ggml_element_size(cvec.tensors[il]));
  13200. }
  13201. }
  13202. return 0;
  13203. }
  13204. struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max) {
  13205. struct llama_kv_cache_view result = {
  13206. /*.n_cells = */ 0,
  13207. /*.n_seq_max = */ n_seq_max,
  13208. /*.token_count = */ 0,
  13209. /*.used_cells = */ llama_get_kv_cache_used_cells(ctx),
  13210. /*.max_contiguous = */ 0,
  13211. /*.max_contiguous_idx = */ -1,
  13212. /*.cells = */ nullptr,
  13213. /*.cells_sequences = */ nullptr,
  13214. };
  13215. return result;
  13216. }
  13217. void llama_kv_cache_view_free(struct llama_kv_cache_view * view) {
  13218. if (view->cells != nullptr) {
  13219. free(view->cells);
  13220. view->cells = nullptr;
  13221. }
  13222. if (view->cells_sequences != nullptr) {
  13223. free(view->cells_sequences);
  13224. view->cells_sequences = nullptr;
  13225. }
  13226. }
  13227. void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view) {
  13228. if (uint32_t(view->n_cells) < ctx->kv_self.size || view->cells == nullptr) {
  13229. view->n_cells = int32_t(ctx->kv_self.size);
  13230. void * p = realloc(view->cells, sizeof(struct llama_kv_cache_view_cell) * view->n_cells);
  13231. GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells");
  13232. view->cells = (struct llama_kv_cache_view_cell *)p;
  13233. p = realloc(view->cells_sequences, sizeof(llama_seq_id) * view->n_seq_max * view->n_cells);
  13234. GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells sequences");
  13235. view->cells_sequences = (llama_seq_id *)p;
  13236. }
  13237. const std::vector<llama_kv_cell> & kv_cells = ctx->kv_self.cells;
  13238. llama_kv_cache_view_cell * c_curr = view->cells;
  13239. llama_seq_id * cs_curr = view->cells_sequences;
  13240. int32_t used_cells = 0;
  13241. int32_t token_count = 0;
  13242. int32_t curr_contig_idx = -1;
  13243. uint32_t max_contig = 0;
  13244. int32_t max_contig_idx = -1;
  13245. for (int32_t i = 0; i < int32_t(ctx->kv_self.size); i++, c_curr++, cs_curr += view->n_seq_max) {
  13246. const size_t curr_size = kv_cells[i].seq_id.size();
  13247. token_count += curr_size;
  13248. c_curr->pos = kv_cells[i].pos + kv_cells[i].delta;
  13249. if (curr_size > 0) {
  13250. if (curr_contig_idx >= 0 && uint32_t(i - curr_contig_idx) > max_contig) {
  13251. max_contig = i - curr_contig_idx;
  13252. max_contig_idx = curr_contig_idx;
  13253. }
  13254. curr_contig_idx = -1;
  13255. } else if (curr_contig_idx < 0) {
  13256. curr_contig_idx = i;
  13257. }
  13258. int seq_idx = 0;
  13259. for (const llama_seq_id it : kv_cells[i].seq_id) {
  13260. if (seq_idx >= view->n_seq_max) {
  13261. break;
  13262. }
  13263. cs_curr[seq_idx] = it;
  13264. seq_idx++;
  13265. }
  13266. if (seq_idx != 0) {
  13267. used_cells++;
  13268. }
  13269. for (; seq_idx < view->n_seq_max; seq_idx++) {
  13270. cs_curr[seq_idx] = -1;
  13271. }
  13272. }
  13273. if (curr_contig_idx >= 0 && kv_cells.size() - curr_contig_idx > max_contig) {
  13274. max_contig_idx = curr_contig_idx;
  13275. max_contig = kv_cells.size() - curr_contig_idx;
  13276. }
  13277. view->max_contiguous = max_contig;
  13278. view->max_contiguous_idx = max_contig_idx;
  13279. view->token_count = token_count;
  13280. view->used_cells = used_cells;
  13281. if (uint32_t(used_cells) != ctx->kv_self.used) {
  13282. LLAMA_LOG_ERROR("%s: used cells mismatch. kv_cache says %d but we calculated %d\n",
  13283. __func__, ctx->kv_self.used, used_cells);
  13284. }
  13285. }
  13286. int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx) {
  13287. int result = 0;
  13288. for (uint32_t i = 0; i < ctx->kv_self.size; i++) {
  13289. result += ctx->kv_self.cells[i].seq_id.size();
  13290. }
  13291. return result;
  13292. }
  13293. int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx) {
  13294. return ctx->kv_self.used;
  13295. }
  13296. void llama_kv_cache_clear(struct llama_context * ctx) {
  13297. llama_kv_cache_clear(ctx->kv_self);
  13298. }
  13299. bool llama_kv_cache_seq_rm(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
  13300. return llama_kv_cache_seq_rm(ctx->kv_self, seq_id, p0, p1);
  13301. }
  13302. void llama_kv_cache_seq_cp(struct llama_context * ctx, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
  13303. if (seq_id_src == seq_id_dst) {
  13304. return;
  13305. }
  13306. llama_kv_cache_seq_cp(ctx->kv_self, seq_id_src, seq_id_dst, p0, p1);
  13307. }
  13308. void llama_kv_cache_seq_keep(struct llama_context * ctx, llama_seq_id seq_id) {
  13309. llama_kv_cache_seq_keep(ctx->kv_self, seq_id);
  13310. }
  13311. void llama_kv_cache_seq_add(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) {
  13312. if (delta == 0) {
  13313. return;
  13314. }
  13315. llama_kv_cache_seq_add(ctx->kv_self, seq_id, p0, p1, delta);
  13316. }
  13317. void llama_kv_cache_seq_div(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
  13318. if (d == 1) {
  13319. return;
  13320. }
  13321. llama_kv_cache_seq_div(ctx->kv_self, seq_id, p0, p1, d);
  13322. }
  13323. llama_pos llama_kv_cache_seq_pos_max(struct llama_context * ctx, llama_seq_id seq_id) {
  13324. return llama_kv_cache_seq_pos_max(ctx->kv_self, seq_id);
  13325. }
  13326. void llama_kv_cache_defrag(struct llama_context * ctx) {
  13327. llama_kv_cache_defrag(ctx->kv_self);
  13328. }
  13329. void llama_kv_cache_update(struct llama_context * ctx) {
  13330. llama_kv_cache_update_internal(*ctx);
  13331. }
  13332. // deprecated
  13333. size_t llama_get_state_size(const struct llama_context * ctx) {
  13334. return llama_state_get_size(ctx);
  13335. }
  13336. // deprecated
  13337. size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
  13338. return llama_state_get_data(ctx, dst);
  13339. }
  13340. // deprecated
  13341. size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) {
  13342. return llama_state_set_data(ctx, src);
  13343. }
  13344. // deprecated
  13345. bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  13346. return llama_state_load_file(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
  13347. }
  13348. // deprecated
  13349. bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  13350. return llama_state_save_file(ctx, path_session, tokens, n_token_count);
  13351. }
  13352. // Returns the *maximum* size of the state
  13353. size_t llama_state_get_size(const struct llama_context * ctx) {
  13354. const auto & cparams = ctx->cparams;
  13355. const auto & hparams = ctx->model.hparams;
  13356. // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
  13357. // for reference, std::mt19937(1337) serializes to 6701 bytes.
  13358. const size_t s_rng_size = sizeof(size_t);
  13359. const size_t s_rng = LLAMA_MAX_RNG_STATE;
  13360. const size_t s_n_outputs = sizeof(size_t);
  13361. // assume worst case for outputs although only currently set ones are serialized
  13362. const size_t s_output_pos = ctx->cparams.n_batch * sizeof(int32_t);
  13363. const size_t s_logits_size = sizeof(size_t);
  13364. const size_t s_logits = ctx->logits_size ? cparams.n_batch * hparams.n_vocab * sizeof(float) : 0;
  13365. const size_t s_embedding_size = sizeof(size_t);
  13366. const size_t s_embedding = ctx->embd_size ? cparams.n_batch * hparams.n_embd * sizeof(float) : 0;
  13367. const size_t s_kv_buf_size = sizeof(size_t);
  13368. const size_t s_kv_head = sizeof(uint32_t);
  13369. const size_t s_kv_size = sizeof(uint32_t);
  13370. const size_t s_kv_used = sizeof(uint32_t);
  13371. const size_t s_kv = ctx->kv_self.total_size();
  13372. const size_t s_kv_cell = sizeof(llama_pos) + sizeof(size_t) + cparams.n_seq_max*sizeof(llama_seq_id);
  13373. const size_t s_kv_cells = ctx->kv_self.size * s_kv_cell;
  13374. const size_t s_total = (
  13375. + s_rng_size
  13376. + s_rng
  13377. + s_n_outputs
  13378. + s_output_pos
  13379. + s_logits_size
  13380. + s_logits
  13381. + s_embedding_size
  13382. + s_embedding
  13383. + s_kv_buf_size
  13384. + s_kv_head
  13385. + s_kv_size
  13386. + s_kv_used
  13387. + s_kv
  13388. + s_kv_cells
  13389. );
  13390. return s_total;
  13391. }
  13392. // llama_context_data
  13393. struct llama_data_context {
  13394. virtual void write(const void * src, size_t size) = 0;
  13395. virtual size_t get_size_written() = 0;
  13396. virtual ~llama_data_context() = default;
  13397. };
  13398. struct llama_data_buffer_context : llama_data_context {
  13399. uint8_t * ptr;
  13400. size_t size_written = 0;
  13401. llama_data_buffer_context(uint8_t * p) : ptr(p) {}
  13402. void write(const void * src, size_t size) override {
  13403. memcpy(ptr, src, size);
  13404. ptr += size;
  13405. size_written += size;
  13406. }
  13407. size_t get_size_written() override {
  13408. return size_written;
  13409. }
  13410. };
  13411. struct llama_data_file_context : llama_data_context {
  13412. llama_file * file;
  13413. size_t size_written = 0;
  13414. llama_data_file_context(llama_file * f) : file(f) {}
  13415. void write(const void * src, size_t size) override {
  13416. file->write_raw(src, size);
  13417. size_written += size;
  13418. }
  13419. size_t get_size_written() override {
  13420. return size_written;
  13421. }
  13422. };
  13423. /** copy state data into either a buffer or file depending on the passed in context
  13424. *
  13425. * file context:
  13426. * llama_file file("/path", "wb");
  13427. * llama_data_file_context data_ctx(&file);
  13428. * llama_state_get_data(ctx, &data_ctx);
  13429. *
  13430. * buffer context:
  13431. * std::vector<uint8_t> buf(max_size, 0);
  13432. * llama_data_buffer_context data_ctx(&buf.data());
  13433. * llama_state_get_data(ctx, &data_ctx);
  13434. *
  13435. */
  13436. static void llama_state_get_data_internal(struct llama_context * ctx, llama_data_context * data_ctx) {
  13437. // copy rng
  13438. {
  13439. std::ostringstream rng_ss;
  13440. rng_ss << ctx->rng;
  13441. const std::string & rng_str = rng_ss.str();
  13442. const size_t rng_size = rng_str.size();
  13443. GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
  13444. data_ctx->write(&rng_size, sizeof(rng_size));
  13445. data_ctx->write(rng_str.data(), rng_size);
  13446. }
  13447. // copy outputs
  13448. {
  13449. // Can't use ctx->n_outputs because it's not for the
  13450. // entire last batch when n_ubatch is smaller than n_batch
  13451. size_t n_outputs = 0;
  13452. // copy output ids
  13453. {
  13454. std::vector<int32_t> output_pos;
  13455. const size_t n_batch = ctx->cparams.n_batch;
  13456. const auto & output_ids = ctx->output_ids;
  13457. output_pos.resize(ctx->output_size);
  13458. // build a more compact representation of the output ids
  13459. for (size_t i = 0; i < n_batch; ++i) {
  13460. // map an output id to a position in the batch
  13461. int32_t pos = output_ids[i];
  13462. if (pos >= 0) {
  13463. if ((size_t) pos >= n_outputs) {
  13464. n_outputs = pos + 1;
  13465. }
  13466. GGML_ASSERT((size_t) pos < ctx->output_size);
  13467. output_pos[pos] = i;
  13468. }
  13469. }
  13470. data_ctx->write(&n_outputs, sizeof(n_outputs));
  13471. if (n_outputs) {
  13472. data_ctx->write(output_pos.data(), n_outputs * sizeof(int32_t));
  13473. }
  13474. }
  13475. // copy logits
  13476. {
  13477. const size_t logits_size = std::min(ctx->logits_size, n_outputs * ctx->model.hparams.n_vocab);
  13478. data_ctx->write(&logits_size, sizeof(logits_size));
  13479. if (logits_size) {
  13480. data_ctx->write(ctx->logits, logits_size * sizeof(float));
  13481. }
  13482. }
  13483. // copy embeddings
  13484. {
  13485. const size_t embeddings_size = std::min(ctx->embd_size, n_outputs * ctx->model.hparams.n_embd);
  13486. data_ctx->write(&embeddings_size, sizeof(embeddings_size));
  13487. if (embeddings_size) {
  13488. data_ctx->write(ctx->embd, embeddings_size * sizeof(float));
  13489. }
  13490. }
  13491. }
  13492. // copy kv cache
  13493. {
  13494. const auto & kv_self = ctx->kv_self;
  13495. const auto & hparams = ctx->model.hparams;
  13496. const uint32_t n_layer = hparams.n_layer;
  13497. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  13498. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  13499. // NOTE: kv_size and kv_buf_size are mostly used for sanity checks
  13500. const uint32_t kv_head = llama_kv_cache_cell_max(kv_self);
  13501. const uint32_t kv_size = kv_self.size;
  13502. const size_t kv_buf_size = kv_self.total_size() / (kv_size ? kv_size : 1) * kv_head;
  13503. const uint32_t kv_used = kv_self.used;
  13504. data_ctx->write(&kv_buf_size, sizeof(kv_buf_size));
  13505. data_ctx->write(&kv_head, sizeof(kv_head));
  13506. data_ctx->write(&kv_size, sizeof(kv_size));
  13507. data_ctx->write(&kv_used, sizeof(kv_used));
  13508. if (kv_buf_size) {
  13509. const size_t pre_kv_buf_size = data_ctx->get_size_written();
  13510. std::vector<uint8_t> tmp_buf;
  13511. for (int il = 0; il < (int) n_layer; ++il) {
  13512. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
  13513. tmp_buf.resize(k_size);
  13514. ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), 0, tmp_buf.size());
  13515. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  13516. if (kv_self.recurrent) {
  13517. // v is contiguous for recurrent models
  13518. // TODO: use other tensors for state models than k and v
  13519. const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head);
  13520. tmp_buf.resize(v_size);
  13521. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), 0, tmp_buf.size());
  13522. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  13523. continue;
  13524. }
  13525. // v is not contiguous, copy row by row
  13526. const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head);
  13527. const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_size);
  13528. tmp_buf.resize(v_row_size);
  13529. for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
  13530. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), ir*v_row_stride, tmp_buf.size());
  13531. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  13532. }
  13533. }
  13534. GGML_ASSERT(kv_buf_size == data_ctx->get_size_written() - pre_kv_buf_size);
  13535. }
  13536. for (uint32_t i = 0; i < kv_head; ++i) {
  13537. const auto & cell = kv_self.cells[i];
  13538. const llama_pos pos = cell.pos;
  13539. const size_t seq_id_size = cell.seq_id.size();
  13540. data_ctx->write(&pos, sizeof(pos));
  13541. data_ctx->write(&seq_id_size, sizeof(seq_id_size));
  13542. for (auto seq_id : cell.seq_id) {
  13543. data_ctx->write(&seq_id, sizeof(seq_id));
  13544. }
  13545. }
  13546. }
  13547. }
  13548. size_t llama_state_get_data(struct llama_context * ctx, uint8_t * dst) {
  13549. llama_data_buffer_context data_ctx(dst);
  13550. llama_state_get_data_internal(ctx, &data_ctx);
  13551. return data_ctx.get_size_written();
  13552. }
  13553. // Sets the state reading from the specified source address
  13554. size_t llama_state_set_data(struct llama_context * ctx, const uint8_t * src) {
  13555. const uint8_t * inp = src;
  13556. // set rng
  13557. {
  13558. size_t rng_size;
  13559. memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size);
  13560. GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
  13561. std::string rng_str((const char *)inp, rng_size); inp += rng_size;
  13562. std::istringstream rng_ss(rng_str);
  13563. rng_ss >> ctx->rng;
  13564. GGML_ASSERT(!rng_ss.fail());
  13565. }
  13566. // set output ids
  13567. {
  13568. size_t n_outputs;
  13569. std::vector<int32_t> output_pos;
  13570. memcpy(&n_outputs, inp, sizeof(n_outputs)); inp += sizeof(n_outputs);
  13571. GGML_ASSERT(n_outputs <= llama_output_reserve(*ctx, n_outputs));
  13572. if (n_outputs) {
  13573. output_pos.resize(n_outputs);
  13574. memcpy(output_pos.data(), inp, n_outputs * sizeof(int32_t));
  13575. inp += n_outputs * sizeof(int32_t);
  13576. for (int32_t i = 0; i < (int32_t) output_pos.size(); ++i) {
  13577. int32_t id = output_pos[i];
  13578. GGML_ASSERT((uint32_t) id < ctx->cparams.n_batch);
  13579. ctx->output_ids[id] = i;
  13580. }
  13581. ctx->n_outputs = n_outputs;
  13582. }
  13583. }
  13584. // set logits
  13585. {
  13586. size_t logits_size;
  13587. memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size);
  13588. GGML_ASSERT(ctx->logits_size >= logits_size);
  13589. if (logits_size) {
  13590. memcpy(ctx->logits, inp, logits_size * sizeof(float));
  13591. inp += logits_size * sizeof(float);
  13592. }
  13593. }
  13594. // set embeddings
  13595. {
  13596. size_t embeddings_size;
  13597. memcpy(&embeddings_size, inp, sizeof(embeddings_size)); inp += sizeof(embeddings_size);
  13598. GGML_ASSERT(ctx->embd_size >= embeddings_size);
  13599. if (embeddings_size) {
  13600. memcpy(ctx->embd, inp, embeddings_size * sizeof(float));
  13601. inp += embeddings_size * sizeof(float);
  13602. }
  13603. }
  13604. // set kv cache
  13605. {
  13606. const auto & kv_self = ctx->kv_self;
  13607. const auto & hparams = ctx->model.hparams;
  13608. const uint32_t n_layer = hparams.n_layer;
  13609. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  13610. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  13611. size_t kv_buf_size;
  13612. uint32_t kv_head;
  13613. uint32_t kv_size;
  13614. uint32_t kv_used;
  13615. memcpy(&kv_buf_size, inp, sizeof(kv_buf_size)); inp += sizeof(kv_buf_size);
  13616. memcpy(&kv_head, inp, sizeof(kv_head)); inp += sizeof(kv_head);
  13617. memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size);
  13618. memcpy(&kv_used, inp, sizeof(kv_used)); inp += sizeof(kv_used);
  13619. if (kv_self.size != kv_size) {
  13620. // the KV cache needs to be big enough to load all the KV cells from the saved state
  13621. GGML_ASSERT(kv_self.size >= kv_head);
  13622. LLAMA_LOG_INFO("%s: state contains %d KV cells, was saved with kv_size=%d, but is loaded with kv_size=%d (fine, but different)\n",
  13623. __func__, kv_head, kv_size, kv_self.size);
  13624. }
  13625. if (kv_buf_size) {
  13626. const size_t pre_kv_buf_size = inp - src;
  13627. GGML_ASSERT(kv_self.total_size() >= kv_buf_size);
  13628. for (int il = 0; il < (int) n_layer; ++il) {
  13629. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
  13630. ggml_backend_tensor_set(kv_self.k_l[il], inp, 0, k_size);
  13631. inp += k_size;
  13632. if (kv_self.recurrent) {
  13633. // v is contiguous for recurrent models
  13634. // TODO: use other tensors for state models than k and v
  13635. const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head);
  13636. ggml_backend_tensor_set(kv_self.v_l[il], inp, 0, v_size);
  13637. inp += v_size;
  13638. continue;
  13639. }
  13640. // v is not contiguous, copy row by row
  13641. const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head);
  13642. const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_self.size);
  13643. for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
  13644. ggml_backend_tensor_set(kv_self.v_l[il], inp, ir*v_row_stride, v_row_size);
  13645. inp += v_row_size;
  13646. }
  13647. }
  13648. GGML_ASSERT(kv_buf_size == inp - src - pre_kv_buf_size);
  13649. }
  13650. llama_kv_cache_clear(ctx);
  13651. ctx->kv_self.head = kv_head;
  13652. ctx->kv_self.used = kv_used;
  13653. for (uint32_t i = 0; i < kv_head; ++i) {
  13654. llama_pos pos;
  13655. size_t seq_id_size;
  13656. memcpy(&pos, inp, sizeof(pos)); inp += sizeof(pos);
  13657. memcpy(&seq_id_size, inp, sizeof(seq_id_size)); inp += sizeof(seq_id_size);
  13658. ctx->kv_self.cells[i].pos = pos;
  13659. llama_seq_id seq_id;
  13660. for (size_t j = 0; j < seq_id_size; ++j) {
  13661. memcpy(&seq_id, inp, sizeof(seq_id)); inp += sizeof(seq_id);
  13662. ctx->kv_self.cells[i].seq_id.insert(seq_id);
  13663. }
  13664. }
  13665. }
  13666. const size_t nread = inp - src;
  13667. const size_t max_size = llama_state_get_size(ctx);
  13668. GGML_ASSERT(nread <= max_size);
  13669. return nread;
  13670. }
  13671. static bool llama_state_load_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  13672. llama_file file(path_session, "rb");
  13673. // sanity checks
  13674. {
  13675. const uint32_t magic = file.read_u32();
  13676. const uint32_t version = file.read_u32();
  13677. if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
  13678. LLAMA_LOG_ERROR("%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
  13679. return false;
  13680. }
  13681. llama_hparams session_hparams;
  13682. file.read_raw(&session_hparams, sizeof(llama_hparams));
  13683. if (session_hparams != ctx->model.hparams) {
  13684. LLAMA_LOG_INFO("%s : model hparams didn't match from session file!\n", __func__);
  13685. return false;
  13686. }
  13687. }
  13688. // load the prompt
  13689. {
  13690. const uint32_t n_token_count = file.read_u32();
  13691. if (n_token_count > n_token_capacity) {
  13692. LLAMA_LOG_ERROR("%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  13693. return false;
  13694. }
  13695. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  13696. *n_token_count_out = n_token_count;
  13697. }
  13698. // restore the context state
  13699. {
  13700. const size_t n_state_size_cur = file.size - file.tell();
  13701. const size_t n_state_size_max = llama_state_get_size(ctx);
  13702. if (n_state_size_cur > n_state_size_max) {
  13703. LLAMA_LOG_ERROR("%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur);
  13704. return false;
  13705. }
  13706. std::vector<uint8_t> state_data(n_state_size_max);
  13707. file.read_raw(state_data.data(), n_state_size_cur);
  13708. llama_state_set_data(ctx, state_data.data());
  13709. }
  13710. return true;
  13711. }
  13712. bool llama_state_load_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  13713. try {
  13714. return llama_state_load_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
  13715. } catch (const std::exception & err) {
  13716. LLAMA_LOG_ERROR("error loading session file: %s\n", err.what());
  13717. return false;
  13718. }
  13719. }
  13720. static bool llama_state_save_file_internal(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  13721. llama_file file(path_session, "wb");
  13722. file.write_u32(LLAMA_SESSION_MAGIC);
  13723. file.write_u32(LLAMA_SESSION_VERSION);
  13724. file.write_raw(&ctx->model.hparams, sizeof(llama_hparams));
  13725. // save the prompt
  13726. file.write_u32((uint32_t) n_token_count);
  13727. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  13728. // save the context state using stream saving
  13729. llama_data_file_context data_ctx(&file);
  13730. llama_state_get_data_internal(ctx, &data_ctx);
  13731. return true;
  13732. }
  13733. bool llama_state_save_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  13734. try {
  13735. return llama_state_save_file_internal(ctx, path_session, tokens, n_token_count);
  13736. } catch (const std::exception & err) {
  13737. LLAMA_LOG_ERROR("error saving session file: %s\n", err.what());
  13738. return false;
  13739. }
  13740. }
  13741. size_t llama_state_seq_get_size(struct llama_context* ctx, llama_seq_id seq_id) {
  13742. // save the size of size_t as a uint32_t for safety check
  13743. const size_t size_t_size_size = sizeof(uint32_t);
  13744. // other values
  13745. const size_t s_cell_count_size = sizeof(uint32_t);
  13746. const size_t s_layer_count_size = sizeof(uint32_t);
  13747. const size_t n_embd_v_gqa_size = sizeof(uint32_t);
  13748. size_t s_cell_count = 0;
  13749. size_t s_cell_data_size = 0;
  13750. const auto & kv_self = ctx->kv_self;
  13751. const auto & hparams = ctx->model.hparams;
  13752. const uint32_t n_layer = hparams.n_layer;
  13753. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  13754. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  13755. for (uint32_t i = 0; i < kv_self.size; ++i) {
  13756. const auto & cell = kv_self.cells[i];
  13757. if (cell.seq_id.count(seq_id) > 0) {
  13758. ++s_cell_count;
  13759. s_cell_data_size += sizeof(llama_pos);
  13760. }
  13761. }
  13762. for (int il = 0; il < (int)n_layer; ++il) {
  13763. // types of keys and values
  13764. s_cell_data_size += sizeof(int32_t) * 2;
  13765. // k_size_row and v_size_el values of layer
  13766. s_cell_data_size += sizeof(size_t) * 2;
  13767. // keys
  13768. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  13769. s_cell_data_size += k_size_row * s_cell_count;
  13770. // values (transposed)
  13771. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  13772. s_cell_data_size += v_size_el * s_cell_count * n_embd_v_gqa;
  13773. }
  13774. const size_t s_total = (
  13775. size_t_size_size +
  13776. s_cell_count_size +
  13777. s_layer_count_size +
  13778. n_embd_v_gqa_size +
  13779. s_cell_data_size
  13780. );
  13781. return s_total;
  13782. }
  13783. static size_t llama_state_seq_get_data_internal(struct llama_context * ctx, llama_data_context & data_ctx, llama_seq_id seq_id) {
  13784. const auto & kv_self = ctx->kv_self;
  13785. GGML_ASSERT(!kv_self.recurrent); // not implemented
  13786. // Save the size of size_t as a uint32_t for safety check
  13787. const uint32_t size_t_size = sizeof(size_t);
  13788. data_ctx.write(&size_t_size, sizeof(size_t_size));
  13789. std::vector<std::pair<uint32_t, uint32_t>> cell_ranges; // ranges, from inclusive, to exclusive
  13790. uint32_t cell_count = 0;
  13791. // Count the number of cells with the specified seq_id
  13792. // Find all the ranges of cells with this seq id
  13793. {
  13794. uint32_t cell_range_begin = kv_self.size;
  13795. for (uint32_t i = 0; i < kv_self.size; ++i) {
  13796. const auto & cell = kv_self.cells[i];
  13797. if (cell.has_seq_id(seq_id)) {
  13798. ++cell_count;
  13799. if (cell_range_begin == kv_self.size) {
  13800. cell_range_begin = i;
  13801. }
  13802. }
  13803. else {
  13804. if (cell_range_begin != kv_self.size) {
  13805. cell_ranges.push_back({ cell_range_begin, i });
  13806. cell_range_begin = kv_self.size;
  13807. }
  13808. }
  13809. }
  13810. if (cell_range_begin != kv_self.size) {
  13811. cell_ranges.push_back({ cell_range_begin, kv_self.size });
  13812. }
  13813. // DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count
  13814. uint32_t cell_count_check = 0;
  13815. for (const auto & range : cell_ranges) {
  13816. cell_count_check += range.second - range.first;
  13817. }
  13818. GGML_ASSERT(cell_count == cell_count_check);
  13819. }
  13820. // Write the cell count
  13821. data_ctx.write(&cell_count, sizeof(cell_count));
  13822. const auto & hparams = ctx->model.hparams;
  13823. const uint32_t n_layer = hparams.n_layer;
  13824. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  13825. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  13826. // Write the layer count
  13827. data_ctx.write(&n_layer, sizeof(n_layer));
  13828. // Write n_embd_v_gqa
  13829. data_ctx.write(&n_embd_v_gqa, sizeof(n_embd_v_gqa));
  13830. // Iterate the ranges and write all the pos (this is the token position in the prompt)
  13831. for (const auto & range : cell_ranges) {
  13832. for (uint32_t i = range.first; i < range.second; ++i) {
  13833. const auto & cell = kv_self.cells[i];
  13834. data_ctx.write(&cell.pos, sizeof(cell.pos));
  13835. }
  13836. }
  13837. // Iterate and write all the keys first, each row is a cell
  13838. // Get whole range at a time
  13839. std::vector<uint8_t> tmp_buf;
  13840. for (int il = 0; il < (int)n_layer; ++il) {
  13841. // Write key type
  13842. const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
  13843. data_ctx.write(&k_type_i, sizeof(k_type_i));
  13844. // Write row size of key
  13845. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  13846. data_ctx.write(&k_size_row, sizeof(k_size_row));
  13847. // Read each range of cells of k_size length each into tmp_buf and write out
  13848. for (const auto & range : cell_ranges) {
  13849. const size_t range_size = range.second - range.first;
  13850. tmp_buf.resize(range_size * k_size_row);
  13851. ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), range.first * k_size_row, range_size * k_size_row);
  13852. data_ctx.write(tmp_buf.data(), tmp_buf.size());
  13853. }
  13854. }
  13855. // For the values, they are transposed, so we also need the element size and get the element ranges from each row
  13856. const uint32_t kv_size = kv_self.size;
  13857. for (int il = 0; il < (int)n_layer; ++il) {
  13858. // Write value type
  13859. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  13860. data_ctx.write(&v_type_i, sizeof(v_type_i));
  13861. // Write element size
  13862. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  13863. data_ctx.write(&v_size_el, sizeof(v_size_el));
  13864. // For each row, we get the element values of each cell
  13865. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  13866. // Read each range of cells of v_size_el length each into tmp_buf and write out
  13867. for (const auto & range : cell_ranges) {
  13868. const size_t range_size = range.second - range.first;
  13869. const size_t src_offset = (range.first + j * kv_size) * v_size_el;
  13870. tmp_buf.resize(range_size * v_size_el);
  13871. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), src_offset, tmp_buf.size());
  13872. data_ctx.write(tmp_buf.data(), tmp_buf.size());
  13873. }
  13874. }
  13875. }
  13876. return data_ctx.get_size_written();
  13877. }
  13878. size_t llama_state_seq_get_data(struct llama_context* ctx, uint8_t* dst, llama_seq_id seq_id) {
  13879. llama_data_buffer_context data_ctx(dst);
  13880. return llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
  13881. }
  13882. size_t llama_state_seq_set_data(struct llama_context * ctx, const uint8_t * src, llama_seq_id dest_seq_id) {
  13883. auto & kv_self = ctx->kv_self;
  13884. GGML_ASSERT(!kv_self.recurrent); // not implemented
  13885. // Wipe the slot
  13886. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  13887. const uint8_t * inp = src;
  13888. // Read size of size_t
  13889. uint32_t size_t_size;
  13890. memcpy(&size_t_size, inp, sizeof(size_t_size));
  13891. inp += sizeof(size_t_size);
  13892. if (size_t_size != sizeof(size_t)) {
  13893. LLAMA_LOG_ERROR("%s: size_t size mismatch\n", __func__);
  13894. return 0;
  13895. }
  13896. // Read the cell count
  13897. uint32_t cell_count;
  13898. memcpy(&cell_count, inp, sizeof(cell_count));
  13899. inp += sizeof(cell_count);
  13900. // Read the layer count
  13901. uint32_t n_layer_ref;
  13902. memcpy(&n_layer_ref, inp, sizeof(n_layer_ref));
  13903. inp += sizeof(n_layer_ref);
  13904. // Read n_embd_v_gqa
  13905. uint32_t n_embd_v_gqa_ref;
  13906. memcpy(&n_embd_v_gqa_ref, inp, sizeof(n_embd_v_gqa_ref));
  13907. inp += sizeof(n_embd_v_gqa_ref);
  13908. // Sanity check model compatibility
  13909. const auto & hparams = ctx->model.hparams;
  13910. const uint32_t n_layer = hparams.n_layer;
  13911. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  13912. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  13913. if (n_layer != n_layer_ref) {
  13914. LLAMA_LOG_ERROR("%s: mismatched n_layer (%d != %d)\n", __func__, n_layer, n_layer_ref);
  13915. return 0;
  13916. }
  13917. if (n_embd_v_gqa != n_embd_v_gqa_ref) {
  13918. LLAMA_LOG_ERROR("%s: mismatched n_embd_v_gqa (%d != %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref);
  13919. return 0;
  13920. }
  13921. // Allocate the new cells for the slot
  13922. if (cell_count) {
  13923. llama_batch batch = llama_batch_init(cell_count, 0, 1);
  13924. batch.n_tokens = cell_count;
  13925. for (uint32_t i = 0; i < cell_count; ++i) {
  13926. llama_pos pos;
  13927. memcpy(&pos, inp, sizeof(pos));
  13928. inp += sizeof(pos);
  13929. batch.pos[i] = pos;
  13930. batch.n_seq_id[i] = 1;
  13931. batch.seq_id[i][0] = dest_seq_id;
  13932. }
  13933. if (!llama_kv_cache_find_slot(kv_self, batch)) {
  13934. llama_batch_free(batch);
  13935. LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__);
  13936. return 0;
  13937. }
  13938. // DEBUG CHECK: kv_self.head should be our first cell, kv_self.head + cell_count - 1 should be our last cell (verify seq_id and pos values)
  13939. // Assume that this is one contiguous block of cells
  13940. GGML_ASSERT(kv_self.head + cell_count <= kv_self.size);
  13941. GGML_ASSERT(kv_self.cells[kv_self.head].pos == batch.pos[0]);
  13942. GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].pos == batch.pos[cell_count - 1]);
  13943. GGML_ASSERT(kv_self.cells[kv_self.head].has_seq_id(dest_seq_id));
  13944. GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].has_seq_id(dest_seq_id));
  13945. // Cleanup
  13946. llama_batch_free(batch);
  13947. }
  13948. const uint32_t kv_size = kv_self.size;
  13949. const uint32_t kv_head = kv_self.head;
  13950. // For each layer, read the keys for each cell, one row is one cell, read as one contiguous blo
  13951. for (int il = 0; il < (int)n_layer; ++il) {
  13952. // Read type of key
  13953. int32_t k_type_i_ref;
  13954. memcpy(&k_type_i_ref, inp, sizeof(k_type_i_ref));
  13955. inp += sizeof(k_type_i_ref);
  13956. const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
  13957. if (k_type_i != k_type_i_ref) {
  13958. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  13959. LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il);
  13960. return 0;
  13961. }
  13962. // Read row size of key
  13963. size_t k_size_row_ref;
  13964. memcpy(&k_size_row_ref, inp, sizeof(k_size_row_ref));
  13965. inp += sizeof(k_size_row_ref);
  13966. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  13967. if (k_size_row != k_size_row_ref) {
  13968. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  13969. LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, k_size_row_ref, il);
  13970. return 0;
  13971. }
  13972. if (cell_count) {
  13973. // Read and set the keys for the whole cell range
  13974. ggml_backend_tensor_set(kv_self.k_l[il], inp, kv_head * k_size_row, cell_count * k_size_row);
  13975. inp += cell_count * k_size_row;
  13976. }
  13977. }
  13978. // For each layer, read the values for each cell (transposed)
  13979. for (int il = 0; il < (int)n_layer; ++il) {
  13980. // Read type of value
  13981. int32_t v_type_i_ref;
  13982. memcpy(&v_type_i_ref, inp, sizeof(v_type_i_ref));
  13983. inp += sizeof(v_type_i_ref);
  13984. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  13985. if (v_type_i != v_type_i_ref) {
  13986. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  13987. LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
  13988. return 0;
  13989. }
  13990. // Read element size of value
  13991. size_t v_size_el_ref;
  13992. memcpy(&v_size_el_ref, inp, sizeof(v_size_el_ref));
  13993. inp += sizeof(v_size_el_ref);
  13994. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  13995. if (v_size_el != v_size_el_ref) {
  13996. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  13997. LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, v_size_el_ref, il);
  13998. return 0;
  13999. }
  14000. if (cell_count) {
  14001. // For each row in the transposed matrix, read the values for the whole cell range
  14002. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  14003. const size_t dst_offset = (kv_head + j * kv_size) * v_size_el;
  14004. ggml_backend_tensor_set(kv_self.v_l[il], inp, dst_offset, cell_count * v_size_el);
  14005. inp += cell_count * v_size_el;
  14006. }
  14007. }
  14008. }
  14009. const size_t nread = inp - src;
  14010. return nread;
  14011. }
  14012. static size_t llama_state_seq_save_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
  14013. llama_file file(filepath, "wb");
  14014. file.write_u32(LLAMA_STATE_SEQ_MAGIC);
  14015. file.write_u32(LLAMA_STATE_SEQ_VERSION);
  14016. // save the prompt
  14017. file.write_u32((uint32_t)n_token_count);
  14018. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  14019. // save the context state using stream saving
  14020. llama_data_file_context data_ctx(&file);
  14021. llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
  14022. const size_t res = file.tell();
  14023. GGML_ASSERT(res == sizeof(uint32_t) * 3 + sizeof(llama_token) * n_token_count + data_ctx.get_size_written());
  14024. return res;
  14025. }
  14026. static size_t llama_state_seq_load_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14027. llama_file file(filepath, "rb");
  14028. // version checks
  14029. {
  14030. const uint32_t magic = file.read_u32();
  14031. const uint32_t version = file.read_u32();
  14032. if (magic != LLAMA_STATE_SEQ_MAGIC || version != LLAMA_STATE_SEQ_VERSION) {
  14033. LLAMA_LOG_ERROR("%s: unknown (magic, version) for sequence state file: %08x, %08x\n", __func__, magic, version);
  14034. return 0;
  14035. }
  14036. }
  14037. // load the prompt
  14038. {
  14039. const uint32_t n_token_count = file.read_u32();
  14040. if (n_token_count > n_token_capacity) {
  14041. LLAMA_LOG_ERROR("%s: token count in sequence state file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  14042. return 0;
  14043. }
  14044. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  14045. *n_token_count_out = n_token_count;
  14046. }
  14047. // restore the context state
  14048. {
  14049. const size_t state_size = file.size - file.tell();
  14050. std::vector<uint8_t> state_data(state_size);
  14051. file.read_raw(state_data.data(), state_size);
  14052. const size_t nread = llama_state_seq_set_data(ctx, state_data.data(), dest_seq_id);
  14053. if (!nread) {
  14054. LLAMA_LOG_ERROR("%s: failed to restore sequence state\n", __func__);
  14055. return 0;
  14056. }
  14057. GGML_ASSERT(nread <= state_size);
  14058. GGML_ASSERT(nread + sizeof(uint32_t) * 3 + sizeof(llama_token) * *n_token_count_out == file.tell());
  14059. }
  14060. return file.tell();
  14061. }
  14062. size_t llama_state_seq_save_file(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
  14063. try {
  14064. return llama_state_seq_save_file_internal(ctx, filepath, seq_id, tokens, n_token_count);
  14065. } catch (const std::exception & err) {
  14066. LLAMA_LOG_ERROR("error saving sequence state file: %s\n", err.what());
  14067. return 0;
  14068. }
  14069. }
  14070. size_t llama_state_seq_load_file(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14071. try {
  14072. return llama_state_seq_load_file_internal(ctx, filepath, dest_seq_id, tokens_out, n_token_capacity, n_token_count_out);
  14073. } catch (const std::exception & err) {
  14074. LLAMA_LOG_ERROR("error loading sequence state file: %s\n", err.what());
  14075. return 0;
  14076. }
  14077. }
  14078. void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch) {
  14079. ctx->cparams.n_threads = n_threads;
  14080. ctx->cparams.n_threads_batch = n_threads_batch;
  14081. }
  14082. void llama_set_abort_callback(struct llama_context * ctx, bool (*abort_callback)(void * data), void * abort_callback_data) {
  14083. ctx->abort_callback = abort_callback;
  14084. ctx->abort_callback_data = abort_callback_data;
  14085. }
  14086. void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn) {
  14087. ctx->cparams.causal_attn = causal_attn;
  14088. }
  14089. struct llama_batch llama_batch_get_one(
  14090. llama_token * tokens,
  14091. int32_t n_tokens,
  14092. llama_pos pos_0,
  14093. llama_seq_id seq_id) {
  14094. return {
  14095. /*n_tokens =*/ n_tokens,
  14096. /*tokens =*/ tokens,
  14097. /*embd =*/ nullptr,
  14098. /*pos =*/ nullptr,
  14099. /*n_seq_id =*/ nullptr,
  14100. /*seq_id =*/ nullptr,
  14101. /*logits =*/ nullptr,
  14102. /*all_pos_0 =*/ pos_0,
  14103. /*all_pos_1 =*/ 1,
  14104. /*all_seq_id =*/ seq_id,
  14105. };
  14106. }
  14107. struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_t n_seq_max) {
  14108. llama_batch batch = { 0, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, 0, 0, 0, };
  14109. if (embd) {
  14110. batch.embd = (float *) malloc(sizeof(float) * n_tokens_alloc * embd);
  14111. } else {
  14112. batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens_alloc);
  14113. }
  14114. batch.pos = (llama_pos *) malloc(sizeof(llama_pos) * n_tokens_alloc);
  14115. batch.n_seq_id = (int32_t *) malloc(sizeof(int32_t) * n_tokens_alloc);
  14116. batch.seq_id = (llama_seq_id **) malloc(sizeof(llama_seq_id *) * (n_tokens_alloc + 1));
  14117. for (int i = 0; i < n_tokens_alloc; ++i) {
  14118. batch.seq_id[i] = (llama_seq_id *) malloc(sizeof(llama_seq_id) * n_seq_max);
  14119. }
  14120. batch.seq_id[n_tokens_alloc] = nullptr;
  14121. batch.logits = (int8_t *) malloc(sizeof(int8_t) * n_tokens_alloc);
  14122. return batch;
  14123. }
  14124. void llama_batch_free(struct llama_batch batch) {
  14125. if (batch.token) free(batch.token);
  14126. if (batch.embd) free(batch.embd);
  14127. if (batch.pos) free(batch.pos);
  14128. if (batch.n_seq_id) free(batch.n_seq_id);
  14129. if (batch.seq_id) {
  14130. for (int i = 0; batch.seq_id[i] != nullptr; ++i) {
  14131. free(batch.seq_id[i]);
  14132. }
  14133. free(batch.seq_id);
  14134. }
  14135. if (batch.logits) free(batch.logits);
  14136. }
  14137. int32_t llama_decode(
  14138. struct llama_context * ctx,
  14139. struct llama_batch batch) {
  14140. const int ret = llama_decode_internal(*ctx, batch);
  14141. if (ret < 0) {
  14142. LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
  14143. }
  14144. return ret;
  14145. }
  14146. void llama_synchronize(struct llama_context * ctx) {
  14147. ggml_backend_sched_synchronize(ctx->sched);
  14148. // FIXME: if multiple single tokens are evaluated without a synchronization,
  14149. // the stats will be added to the prompt evaluation stats
  14150. // this should only happen when using batch size 1 to evaluate a batch
  14151. // add the evaluation to the stats
  14152. if (ctx->n_queued_tokens == 1) {
  14153. ctx->t_eval_us += ggml_time_us() - ctx->t_compute_start_us;
  14154. ctx->n_eval++;
  14155. } else if (ctx->n_queued_tokens > 1) {
  14156. ctx->t_p_eval_us += ggml_time_us() - ctx->t_compute_start_us;
  14157. ctx->n_p_eval += ctx->n_queued_tokens;
  14158. }
  14159. // get a more accurate load time, upon first eval
  14160. if (ctx->n_queued_tokens > 0 && !ctx->has_evaluated_once) {
  14161. ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
  14162. ctx->has_evaluated_once = true;
  14163. }
  14164. ctx->n_queued_tokens = 0;
  14165. ctx->t_compute_start_us = 0;
  14166. }
  14167. float * llama_get_logits(struct llama_context * ctx) {
  14168. llama_synchronize(ctx);
  14169. return ctx->logits;
  14170. }
  14171. float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) {
  14172. int32_t j = -1;
  14173. llama_synchronize(ctx);
  14174. try {
  14175. if (ctx->logits == nullptr) {
  14176. throw std::runtime_error("no logits");
  14177. }
  14178. if (i < 0) {
  14179. j = ctx->n_outputs + i;
  14180. if (j < 0) {
  14181. throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
  14182. }
  14183. } else if ((size_t) i >= ctx->output_ids.size()) {
  14184. throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
  14185. } else {
  14186. j = ctx->output_ids[i];
  14187. }
  14188. if (j < 0) {
  14189. throw std::runtime_error(format("batch.logits[%d] != true", i));
  14190. }
  14191. if (j >= ctx->n_outputs) {
  14192. // This should not happen
  14193. throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
  14194. }
  14195. return ctx->logits + j*ctx->model.hparams.n_vocab;
  14196. } catch (const std::exception & err) {
  14197. LLAMA_LOG_ERROR("%s: invalid logits id %d, reason: %s\n", __func__, i, err.what());
  14198. #ifndef NDEBUG
  14199. GGML_ASSERT(false);
  14200. #endif
  14201. return nullptr;
  14202. }
  14203. }
  14204. float * llama_get_embeddings(struct llama_context * ctx) {
  14205. llama_synchronize(ctx);
  14206. return ctx->embd;
  14207. }
  14208. float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i) {
  14209. int32_t j = -1;
  14210. llama_synchronize(ctx);
  14211. try {
  14212. if (ctx->embd == nullptr) {
  14213. throw std::runtime_error("no embeddings");
  14214. }
  14215. if (i < 0) {
  14216. j = ctx->n_outputs + i;
  14217. if (j < 0) {
  14218. throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
  14219. }
  14220. } else if ((size_t) i >= ctx->output_ids.size()) {
  14221. throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
  14222. } else {
  14223. j = ctx->output_ids[i];
  14224. }
  14225. if (j < 0) {
  14226. throw std::runtime_error(format("batch.logits[%d] != true", i));
  14227. }
  14228. if (j >= ctx->n_outputs) {
  14229. // This should not happen
  14230. throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
  14231. }
  14232. return ctx->embd + j*ctx->model.hparams.n_embd;
  14233. } catch (const std::exception & err) {
  14234. LLAMA_LOG_ERROR("%s: invalid embeddings id %d, reason: %s\n", __func__, i, err.what());
  14235. #ifndef NDEBUG
  14236. GGML_ASSERT(false);
  14237. #endif
  14238. return nullptr;
  14239. }
  14240. }
  14241. float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id) {
  14242. llama_synchronize(ctx);
  14243. auto it = ctx->embd_seq.find(seq_id);
  14244. if (it == ctx->embd_seq.end()) {
  14245. return nullptr;
  14246. }
  14247. return it->second.data();
  14248. }
  14249. const char * llama_token_get_text(const struct llama_model * model, llama_token token) {
  14250. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  14251. return model->vocab.id_to_token[token].text.c_str();
  14252. }
  14253. float llama_token_get_score(const struct llama_model * model, llama_token token) {
  14254. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  14255. return model->vocab.id_to_token[token].score;
  14256. }
  14257. llama_token_type llama_token_get_type(const struct llama_model * model, llama_token token) {
  14258. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  14259. return model->vocab.id_to_token[token].type;
  14260. }
  14261. bool llama_token_is_eog(const struct llama_model * model, llama_token token) {
  14262. return token != -1 && (
  14263. token == llama_token_eos(model) ||
  14264. token == llama_token_eot(model)
  14265. );
  14266. }
  14267. llama_token llama_token_bos(const struct llama_model * model) {
  14268. return model->vocab.special_bos_id;
  14269. }
  14270. llama_token llama_token_eos(const struct llama_model * model) {
  14271. return model->vocab.special_eos_id;
  14272. }
  14273. llama_token llama_token_cls(const struct llama_model * model) {
  14274. return model->vocab.special_cls_id;
  14275. }
  14276. llama_token llama_token_sep(const struct llama_model * model) {
  14277. return model->vocab.special_sep_id;
  14278. }
  14279. llama_token llama_token_nl(const struct llama_model * model) {
  14280. return model->vocab.linefeed_id;
  14281. }
  14282. int32_t llama_add_bos_token(const struct llama_model * model) {
  14283. return model->vocab.special_add_bos;
  14284. }
  14285. int32_t llama_add_eos_token(const struct llama_model * model) {
  14286. return model->vocab.special_add_eos;
  14287. }
  14288. llama_token llama_token_prefix(const struct llama_model * model) {
  14289. return model->vocab.special_prefix_id;
  14290. }
  14291. llama_token llama_token_middle(const struct llama_model * model) {
  14292. return model->vocab.special_middle_id;
  14293. }
  14294. llama_token llama_token_suffix(const struct llama_model * model) {
  14295. return model->vocab.special_suffix_id;
  14296. }
  14297. llama_token llama_token_eot(const struct llama_model * model) {
  14298. return model->vocab.special_eot_id;
  14299. }
  14300. int32_t llama_tokenize(
  14301. const struct llama_model * model,
  14302. const char * text,
  14303. int32_t text_len,
  14304. llama_token * tokens,
  14305. int32_t n_tokens_max,
  14306. bool add_special,
  14307. bool parse_special) {
  14308. auto res = llama_tokenize_internal(model->vocab, std::string(text, text_len), add_special, parse_special);
  14309. if (n_tokens_max < (int) res.size()) {
  14310. // LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
  14311. return -((int) res.size());
  14312. }
  14313. for (size_t i = 0; i < res.size(); i++) {
  14314. tokens[i] = res[i];
  14315. }
  14316. return res.size();
  14317. }
  14318. static std::string llama_decode_text(const std::string & text) {
  14319. std::string decoded_text;
  14320. auto unicode_sequences = unicode_cpts_from_utf8(text);
  14321. for (auto & unicode_sequence : unicode_sequences) {
  14322. decoded_text += unicode_utf8_to_byte(unicode_cpt_to_utf8(unicode_sequence));
  14323. }
  14324. return decoded_text;
  14325. }
  14326. // does not write null-terminator to buf
  14327. int32_t llama_token_to_piece(const struct llama_model * model, llama_token token, char * buf, int32_t length, bool special) {
  14328. if (0 <= token && token < llama_n_vocab(model)) {
  14329. switch (llama_vocab_get_type(model->vocab)) {
  14330. case LLAMA_VOCAB_TYPE_WPM:
  14331. case LLAMA_VOCAB_TYPE_SPM: {
  14332. // NOTE: we accept all unsupported token types,
  14333. // suppressing them like CONTROL tokens.
  14334. if (llama_is_normal_token(model->vocab, token)) {
  14335. std::string result = model->vocab.id_to_token[token].text;
  14336. llama_unescape_whitespace(result);
  14337. if (length < (int) result.length()) {
  14338. return -(int) result.length();
  14339. }
  14340. memcpy(buf, result.c_str(), result.length());
  14341. return result.length();
  14342. } else if (
  14343. (llama_is_user_defined_token(model->vocab, token)) ||
  14344. (llama_is_control_token (model->vocab, token) && special)) {
  14345. std::string result = model->vocab.id_to_token[token].text;
  14346. if (length < (int) result.length()) {
  14347. return -(int) result.length();
  14348. }
  14349. memcpy(buf, result.c_str(), result.length());
  14350. return result.length();
  14351. } else if (llama_is_unknown_token(model->vocab, token)) { // NOLINT
  14352. if (length < 3) {
  14353. return -3;
  14354. }
  14355. memcpy(buf, "\xe2\x96\x85", 3);
  14356. return 3;
  14357. } else if (llama_is_byte_token(model->vocab, token)) {
  14358. if (length < 1) {
  14359. return -1;
  14360. }
  14361. buf[0] = llama_token_to_byte(model->vocab, token);
  14362. return 1;
  14363. }
  14364. break;
  14365. }
  14366. case LLAMA_VOCAB_TYPE_BPE: {
  14367. // NOTE: we accept all unsupported token types,
  14368. // suppressing them like CONTROL tokens.
  14369. if (llama_is_normal_token(model->vocab, token)) {
  14370. std::string result = model->vocab.id_to_token[token].text;
  14371. result = llama_decode_text(result);
  14372. if (length < (int) result.length()) {
  14373. return -(int) result.length();
  14374. }
  14375. memcpy(buf, result.c_str(), result.length());
  14376. return result.length();
  14377. } else if (
  14378. (llama_is_user_defined_token(model->vocab, token)) ||
  14379. (llama_is_control_token (model->vocab, token) && special)) {
  14380. std::string result = model->vocab.id_to_token[token].text;
  14381. if (length < (int) result.length()) {
  14382. return -(int) result.length();
  14383. }
  14384. memcpy(buf, result.c_str(), result.length());
  14385. return result.length();
  14386. }
  14387. break;
  14388. }
  14389. default:
  14390. GGML_ASSERT(false);
  14391. }
  14392. }
  14393. return 0;
  14394. }
  14395. // trim whitespace from the beginning and end of a string
  14396. static std::string trim(const std::string & str) {
  14397. size_t start = 0;
  14398. size_t end = str.size();
  14399. while (start < end && isspace(str[start])) {
  14400. start += 1;
  14401. }
  14402. while (end > start && isspace(str[end - 1])) {
  14403. end -= 1;
  14404. }
  14405. return str.substr(start, end - start);
  14406. }
  14407. // Simple version of "llama_apply_chat_template" that only works with strings
  14408. // This function uses heuristic checks to determine commonly used template. It is not a jinja parser.
  14409. static int32_t llama_chat_apply_template_internal(
  14410. const std::string & tmpl,
  14411. const std::vector<const llama_chat_message *> & chat,
  14412. std::string & dest, bool add_ass) {
  14413. // Taken from the research: https://github.com/ggerganov/llama.cpp/issues/5527
  14414. std::stringstream ss;
  14415. if (tmpl == "chatml" || tmpl.find("<|im_start|>") != std::string::npos) {
  14416. // chatml template
  14417. for (auto message : chat) {
  14418. ss << "<|im_start|>" << message->role << "\n" << message->content << "<|im_end|>\n";
  14419. }
  14420. if (add_ass) {
  14421. ss << "<|im_start|>assistant\n";
  14422. }
  14423. } else if (tmpl == "llama2" || tmpl.find("[INST]") != std::string::npos) {
  14424. // llama2 template and its variants
  14425. // [variant] support system message
  14426. bool support_system_message = tmpl.find("<<SYS>>") != std::string::npos;
  14427. // [variant] space before + after response
  14428. bool space_around_response = tmpl.find("' ' + eos_token") != std::string::npos;
  14429. // [variant] add BOS inside history
  14430. bool add_bos_inside_history = tmpl.find("bos_token + '[INST]") != std::string::npos;
  14431. // [variant] trim spaces from the input message
  14432. bool strip_message = tmpl.find("content.strip()") != std::string::npos;
  14433. // construct the prompt
  14434. bool is_inside_turn = true; // skip BOS at the beginning
  14435. ss << "[INST] ";
  14436. for (auto message : chat) {
  14437. std::string content = strip_message ? trim(message->content) : message->content;
  14438. std::string role(message->role);
  14439. if (!is_inside_turn) {
  14440. is_inside_turn = true;
  14441. ss << (add_bos_inside_history ? "<s>[INST] " : "[INST] ");
  14442. }
  14443. if (role == "system") {
  14444. if (support_system_message) {
  14445. ss << "<<SYS>>\n" << content << "\n<</SYS>>\n\n";
  14446. } else {
  14447. // if the model does not support system message, we still include it in the first message, but without <<SYS>>
  14448. ss << content << "\n";
  14449. }
  14450. } else if (role == "user") {
  14451. ss << content << " [/INST]";
  14452. } else {
  14453. ss << (space_around_response ? " " : "") << content << (space_around_response ? " " : "") << "</s>";
  14454. is_inside_turn = false;
  14455. }
  14456. }
  14457. // llama2 templates seem to not care about "add_generation_prompt"
  14458. } else if (tmpl == "zephyr" || tmpl.find("<|user|>") != std::string::npos) {
  14459. // zephyr template
  14460. for (auto message : chat) {
  14461. ss << "<|" << message->role << "|>" << "\n" << message->content << "<|endoftext|>\n";
  14462. }
  14463. if (add_ass) {
  14464. ss << "<|assistant|>\n";
  14465. }
  14466. } else if (tmpl == "monarch" || tmpl.find("bos_token + message['role']") != std::string::npos) {
  14467. // mlabonne/AlphaMonarch-7B template (the <s> is included inside history)
  14468. for (auto message : chat) {
  14469. std::string bos = (message == chat.front()) ? "" : "<s>"; // skip BOS for first message
  14470. ss << bos << message->role << "\n" << message->content << "</s>\n";
  14471. }
  14472. if (add_ass) {
  14473. ss << "<s>assistant\n";
  14474. }
  14475. } else if (tmpl == "gemma" || tmpl.find("<start_of_turn>") != std::string::npos) {
  14476. // google/gemma-7b-it
  14477. std::string system_prompt = "";
  14478. for (auto message : chat) {
  14479. std::string role(message->role);
  14480. if (role == "system") {
  14481. // there is no system message for gemma, but we will merge it with user prompt, so nothing is broken
  14482. system_prompt = trim(message->content);
  14483. continue;
  14484. }
  14485. // in gemma, "assistant" is "model"
  14486. role = role == "assistant" ? "model" : message->role;
  14487. ss << "<start_of_turn>" << role << "\n";
  14488. if (!system_prompt.empty() && role != "model") {
  14489. ss << system_prompt << "\n\n";
  14490. system_prompt = "";
  14491. }
  14492. ss << trim(message->content) << "<end_of_turn>\n";
  14493. }
  14494. if (add_ass) {
  14495. ss << "<start_of_turn>model\n";
  14496. }
  14497. } else if (tmpl == "orion" || tmpl.find("'\\n\\nAssistant: ' + eos_token") != std::string::npos) {
  14498. // OrionStarAI/Orion-14B-Chat
  14499. std::string system_prompt = "";
  14500. for (auto message : chat) {
  14501. std::string role(message->role);
  14502. if (role == "system") {
  14503. // there is no system message support, we will merge it with user prompt
  14504. system_prompt = message->content;
  14505. continue;
  14506. } else if (role == "user") {
  14507. ss << "Human: ";
  14508. if (!system_prompt.empty()) {
  14509. ss << system_prompt << "\n\n";
  14510. system_prompt = "";
  14511. }
  14512. ss << message->content << "\n\nAssistant: </s>";
  14513. } else {
  14514. ss << message->content << "</s>";
  14515. }
  14516. }
  14517. } else if (tmpl == "openchat" || tmpl.find("GPT4 Correct ") != std::string::npos) {
  14518. // openchat/openchat-3.5-0106,
  14519. for (auto message : chat) {
  14520. std::string role(message->role);
  14521. if (role == "system") {
  14522. ss << message->content << "<|end_of_turn|>";
  14523. } else {
  14524. role[0] = toupper(role[0]);
  14525. ss << "GPT4 Correct " << role << ": " << message->content << "<|end_of_turn|>";
  14526. }
  14527. }
  14528. if (add_ass) {
  14529. ss << "GPT4 Correct Assistant:";
  14530. }
  14531. } else if (tmpl == "vicuna" || tmpl == "vicuna-orca" || (tmpl.find("USER: ") != std::string::npos && tmpl.find("ASSISTANT: ") != std::string::npos)) {
  14532. // eachadea/vicuna-13b-1.1 (and Orca variant)
  14533. for (auto message : chat) {
  14534. std::string role(message->role);
  14535. if (role == "system") {
  14536. // Orca-Vicuna variant uses a system prefix
  14537. if (tmpl == "vicuna-orca" || tmpl.find("SYSTEM: ") != std::string::npos) {
  14538. ss << "SYSTEM: " << message->content << "\n";
  14539. } else {
  14540. ss << message->content << "\n\n";
  14541. }
  14542. } else if (role == "user") {
  14543. ss << "USER: " << message->content << "\n";
  14544. } else if (role == "assistant") {
  14545. ss << "ASSISTANT: " << message->content << "</s>\n";
  14546. }
  14547. }
  14548. if (add_ass) {
  14549. ss << "ASSISTANT:";
  14550. }
  14551. } else if (tmpl == "deepseek" || (tmpl.find("### Instruction:") != std::string::npos && tmpl.find("<|EOT|>") != std::string::npos)) {
  14552. // deepseek-ai/deepseek-coder-33b-instruct
  14553. for (auto message : chat) {
  14554. std::string role(message->role);
  14555. if (role == "system") {
  14556. ss << message->content;
  14557. } else if (role == "user") {
  14558. ss << "### Instruction:\n" << message->content << "\n";
  14559. } else if (role == "assistant") {
  14560. ss << "### Response:\n" << message->content << "\n<|EOT|>\n";
  14561. }
  14562. }
  14563. if (add_ass) {
  14564. ss << "### Response:\n";
  14565. }
  14566. } else if (tmpl == "command-r" || (tmpl.find("<|START_OF_TURN_TOKEN|>") != std::string::npos && tmpl.find("<|USER_TOKEN|>") != std::string::npos)) {
  14567. // CohereForAI/c4ai-command-r-plus
  14568. for (auto message : chat) {
  14569. std::string role(message->role);
  14570. if (role == "system") {
  14571. ss << "<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  14572. } else if (role == "user") {
  14573. ss << "<|START_OF_TURN_TOKEN|><|USER_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  14574. } else if (role == "assistant") {
  14575. ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  14576. }
  14577. }
  14578. if (add_ass) {
  14579. ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>";
  14580. }
  14581. } else if (tmpl == "llama3" || (tmpl.find("<|start_header_id|>") != std::string::npos && tmpl.find("<|end_header_id|>") != std::string::npos)) {
  14582. // Llama 3
  14583. for (auto message : chat) {
  14584. std::string role(message->role);
  14585. ss << "<|start_header_id|>" << role << "<|end_header_id|>\n\n" << trim(message->content) << "<|eot_id|>";
  14586. }
  14587. if (add_ass) {
  14588. ss << "<|start_header_id|>assistant<|end_header_id|>\n\n";
  14589. }
  14590. } else if (tmpl == "phi3" || (tmpl.find("<|assistant|>") != std::string::npos && tmpl.find("<|end|>") != std::string::npos )) {
  14591. // Phi 3
  14592. for (auto message : chat) {
  14593. std::string role(message->role);
  14594. ss << "<|" << role << "|>\n" << trim(message->content) << "<|end|>\n";
  14595. }
  14596. if (add_ass) {
  14597. ss << "<|assistant|>\n";
  14598. }
  14599. } else {
  14600. // template not supported
  14601. return -1;
  14602. }
  14603. dest = ss.str();
  14604. return dest.size();
  14605. }
  14606. LLAMA_API int32_t llama_chat_apply_template(
  14607. const struct llama_model * model,
  14608. const char * tmpl,
  14609. const struct llama_chat_message * chat,
  14610. size_t n_msg,
  14611. bool add_ass,
  14612. char * buf,
  14613. int32_t length) {
  14614. std::string curr_tmpl(tmpl == nullptr ? "" : tmpl);
  14615. if (tmpl == nullptr) {
  14616. GGML_ASSERT(model != nullptr);
  14617. // load template from model
  14618. std::vector<char> model_template(2048, 0); // longest known template is about 1200 bytes
  14619. std::string template_key = "tokenizer.chat_template";
  14620. int32_t res = llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size());
  14621. if (res < 0) {
  14622. // worst case: there is no information about template, we will use chatml by default
  14623. curr_tmpl = "chatml"; // see llama_chat_apply_template_internal
  14624. } else {
  14625. curr_tmpl = std::string(model_template.data(), model_template.size());
  14626. }
  14627. }
  14628. // format the chat to string
  14629. std::vector<const llama_chat_message *> chat_vec;
  14630. chat_vec.resize(n_msg);
  14631. for (size_t i = 0; i < n_msg; i++) {
  14632. chat_vec[i] = &chat[i];
  14633. }
  14634. std::string formatted_chat;
  14635. int32_t res = llama_chat_apply_template_internal(curr_tmpl, chat_vec, formatted_chat, add_ass);
  14636. if (res < 0) {
  14637. return res;
  14638. }
  14639. if (buf && length > 0) {
  14640. strncpy(buf, formatted_chat.c_str(), length);
  14641. }
  14642. return res;
  14643. }
  14644. LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count) {
  14645. static const char * const SPLIT_PATH_FORMAT = "%s-%05d-of-%05d.gguf";
  14646. if (snprintf(split_path, maxlen, SPLIT_PATH_FORMAT, path_prefix, split_no + 1, split_count)) {
  14647. return strlen(split_path);
  14648. }
  14649. return 0;
  14650. }
  14651. int llama_split_prefix(char * dest, size_t maxlen, const char * split_path, int split_no, int split_count) {
  14652. std::string str_split_path(split_path);
  14653. char postfix[32];
  14654. snprintf(postfix, 32, "-%05d-of-%05d.gguf", split_no + 1, split_count);
  14655. std::string str_postfix(postfix);
  14656. // check if dest ends with postfix
  14657. int size_prefix = str_split_path.size() - str_postfix.size();
  14658. if (size_prefix > 0 && str_split_path.find(str_postfix, size_prefix) != std::string::npos) {
  14659. snprintf(dest, std::min((size_t) size_prefix + 1, maxlen), "%s", split_path);
  14660. return size_prefix;
  14661. }
  14662. return 0;
  14663. }
  14664. struct llama_timings llama_get_timings(struct llama_context * ctx) {
  14665. struct llama_timings result = {
  14666. /*.t_start_ms =*/ 1e-3 * ctx->t_start_us,
  14667. /*.t_end_ms =*/ 1.00 * ggml_time_ms(),
  14668. /*.t_load_ms =*/ 1e-3 * ctx->t_load_us,
  14669. /*.t_sample_ms =*/ 1e-3 * ctx->t_sample_us,
  14670. /*.t_p_eval_ms =*/ 1e-3 * ctx->t_p_eval_us,
  14671. /*.t_eval_ms =*/ 1e-3 * ctx->t_eval_us,
  14672. /*.n_sample =*/ std::max(1, ctx->n_sample),
  14673. /*.n_p_eval =*/ std::max(1, ctx->n_p_eval),
  14674. /*.n_eval =*/ std::max(1, ctx->n_eval),
  14675. };
  14676. return result;
  14677. }
  14678. void llama_print_timings(struct llama_context * ctx) {
  14679. const llama_timings timings = llama_get_timings(ctx);
  14680. LLAMA_LOG_INFO("\n");
  14681. LLAMA_LOG_INFO("%s: load time = %10.2f ms\n", __func__, timings.t_load_ms);
  14682. LLAMA_LOG_INFO("%s: sample time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  14683. __func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample);
  14684. LLAMA_LOG_INFO("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
  14685. __func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval);
  14686. LLAMA_LOG_INFO("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  14687. __func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval);
  14688. LLAMA_LOG_INFO("%s: total time = %10.2f ms / %5d tokens\n", __func__, (timings.t_end_ms - timings.t_start_ms), (timings.n_p_eval + timings.n_eval));
  14689. }
  14690. void llama_reset_timings(struct llama_context * ctx) {
  14691. ctx->t_start_us = ggml_time_us();
  14692. ctx->t_sample_us = ctx->n_sample = 0;
  14693. ctx->t_eval_us = ctx->n_eval = 0;
  14694. ctx->t_p_eval_us = ctx->n_p_eval = 0;
  14695. }
  14696. const char * llama_print_system_info(void) {
  14697. static std::string s;
  14698. s = "";
  14699. s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
  14700. s += "AVX_VNNI = " + std::to_string(ggml_cpu_has_avx_vnni()) + " | ";
  14701. s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
  14702. s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
  14703. s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
  14704. s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
  14705. s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
  14706. s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
  14707. s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
  14708. s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
  14709. s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
  14710. s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
  14711. s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
  14712. s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
  14713. s += "SSSE3 = " + std::to_string(ggml_cpu_has_ssse3()) + " | ";
  14714. s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
  14715. s += "MATMUL_INT8 = " + std::to_string(ggml_cpu_has_matmul_int8()) + " | ";
  14716. return s.c_str();
  14717. }
  14718. void llama_dump_timing_info_yaml(FILE * stream, const llama_context * ctx) {
  14719. fprintf(stream, "\n");
  14720. fprintf(stream, "###########\n");
  14721. fprintf(stream, "# Timings #\n");
  14722. fprintf(stream, "###########\n");
  14723. fprintf(stream, "\n");
  14724. fprintf(stream, "mst_eval: %.2f # ms / token during generation\n",
  14725. 1.0e-3 * ctx->t_eval_us / ctx->n_eval);
  14726. fprintf(stream, "mst_p_eval: %.2f # ms / token during prompt processing\n",
  14727. 1.0e-3 * ctx->t_p_eval_us / ctx->n_p_eval);
  14728. fprintf(stream, "mst_sample: %.2f # ms / token during sampling\n",
  14729. 1.0e-3 * ctx->t_sample_us / ctx->n_sample);
  14730. fprintf(stream, "n_eval: %d # number of tokens generated (excluding the first one)\n", ctx->n_eval);
  14731. fprintf(stream, "n_p_eval: %d # number of tokens processed in batches at the beginning\n", ctx->n_p_eval);
  14732. fprintf(stream, "n_sample: %d # number of sampled tokens\n", ctx->n_sample);
  14733. fprintf(stream, "t_eval_us: %" PRId64 " # total microseconds spent generating tokens\n", ctx->t_eval_us);
  14734. fprintf(stream, "t_load_us: %" PRId64 " # total microseconds spent loading the model\n", ctx->t_load_us);
  14735. fprintf(stream, "t_p_eval_us: %" PRId64 " # total microseconds spent prompt processing\n", ctx->t_p_eval_us);
  14736. fprintf(stream, "t_sample_us: %" PRId64 " # total microseconds spent sampling\n", ctx->t_sample_us);
  14737. fprintf(stream, "ts_eval: %.2f # tokens / second during generation\n",
  14738. 1.0e6 * ctx->n_eval / ctx->t_eval_us);
  14739. fprintf(stream, "ts_p_eval: %.2f # tokens / second during prompt processing\n",
  14740. 1.0e6 * ctx->n_p_eval / ctx->t_p_eval_us);
  14741. fprintf(stream, "ts_sample: %.2f # tokens / second during sampling\n",
  14742. 1.0e6 * ctx->n_sample / ctx->t_sample_us);
  14743. }
  14744. // For internal test use
  14745. const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
  14746. struct llama_context * ctx
  14747. ) {
  14748. return ctx->model.tensors_by_name;
  14749. }
  14750. void llama_log_set(ggml_log_callback log_callback, void * user_data) {
  14751. g_state.log_callback = log_callback ? log_callback : llama_log_callback_default;
  14752. g_state.log_callback_user_data = user_data;
  14753. #ifdef GGML_USE_METAL
  14754. ggml_backend_metal_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
  14755. #endif
  14756. }
  14757. static void llama_log_internal_v(ggml_log_level level, const char * format, va_list args) {
  14758. va_list args_copy;
  14759. va_copy(args_copy, args);
  14760. char buffer[128];
  14761. int len = vsnprintf(buffer, 128, format, args);
  14762. if (len < 128) {
  14763. g_state.log_callback(level, buffer, g_state.log_callback_user_data);
  14764. } else {
  14765. char* buffer2 = new char[len+1];
  14766. vsnprintf(buffer2, len+1, format, args_copy);
  14767. buffer2[len] = 0;
  14768. g_state.log_callback(level, buffer2, g_state.log_callback_user_data);
  14769. delete[] buffer2;
  14770. }
  14771. va_end(args_copy);
  14772. }
  14773. static void llama_log_internal(ggml_log_level level, const char * format, ...) {
  14774. va_list args;
  14775. va_start(args, format);
  14776. llama_log_internal_v(level, format, args);
  14777. va_end(args);
  14778. }
  14779. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data) {
  14780. (void) level;
  14781. (void) user_data;
  14782. fputs(text, stderr);
  14783. fflush(stderr);
  14784. }