llama-vocab.cpp 75 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975
  1. #include "llama-vocab.h"
  2. #include "llama-impl.h"
  3. #include "unicode.h"
  4. #include <algorithm>
  5. #include <cassert>
  6. #include <cfloat>
  7. #include <climits>
  8. #include <cstdarg>
  9. #include <cstring>
  10. #include <forward_list>
  11. #include <queue>
  12. #include <sstream>
  13. //
  14. // helpers
  15. //
  16. struct naive_trie {
  17. naive_trie() : has_value(false), value(0) {
  18. }
  19. void insert(const char * key, size_t len, int32_t value = 0) {
  20. if (len == 0) {
  21. this->has_value = true;
  22. this->value = value;
  23. return;
  24. }
  25. char c = key[0];
  26. auto res = children.find(c);
  27. if (res != children.end()) {
  28. res->second.insert(key + 1, len - 1, value);
  29. } else {
  30. auto res = children.insert(std::make_pair(c, naive_trie()));
  31. res.first->second.insert(key + 1, len - 1, value);
  32. }
  33. }
  34. std::pair<const char *, size_t> get_longest_prefix(const char * key, size_t len, size_t offset = 0) const {
  35. if (len == 0 || offset == len) {
  36. return std::make_pair(key, offset);
  37. }
  38. char c = key[offset];
  39. auto res = children.find(c);
  40. if (res != children.end()) {
  41. return res->second.get_longest_prefix(key, len, offset + 1);
  42. }
  43. return std::make_pair(key, offset);
  44. }
  45. const struct naive_trie * traverse(const char c) const {
  46. auto res = children.find(c);
  47. if (res != children.end()) {
  48. return &res->second;
  49. }
  50. return NULL;
  51. }
  52. std::map<char, struct naive_trie> children;
  53. bool has_value;
  54. llama_token value;
  55. };
  56. //
  57. // impl
  58. //
  59. struct llm_tokenizer {
  60. llm_tokenizer() {}
  61. virtual ~llm_tokenizer() = default;
  62. };
  63. llama_vocab::~llama_vocab() {
  64. delete tokenizer;
  65. }
  66. int llama_vocab::find_bpe_rank(const std::string & token_left, const std::string & token_right) const {
  67. GGML_ASSERT(token_left.find(' ') == std::string::npos);
  68. GGML_ASSERT(token_left.find('\n') == std::string::npos);
  69. GGML_ASSERT(token_right.find(' ') == std::string::npos);
  70. GGML_ASSERT(token_right.find('\n') == std::string::npos);
  71. auto it = bpe_ranks.find(std::make_pair(token_left, token_right));
  72. if (it == bpe_ranks.end()) {
  73. return -1;
  74. }
  75. return it->second;
  76. }
  77. static enum llama_vocab_type llama_vocab_get_type(const llama_vocab & vocab) {
  78. return vocab.type;
  79. }
  80. static bool llama_is_normal_token(const llama_vocab & vocab, llama_token id) {
  81. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  82. return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_NORMAL;
  83. }
  84. static bool llama_is_unknown_token(const llama_vocab & vocab, llama_token id) {
  85. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  86. return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_UNKNOWN;
  87. }
  88. static bool llama_is_control_token(const llama_vocab & vocab, llama_token id) {
  89. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  90. return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_CONTROL;
  91. }
  92. static bool llama_is_byte_token(const llama_vocab & vocab, llama_token id) {
  93. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  94. return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_BYTE;
  95. }
  96. static bool llama_is_user_defined_token(const llama_vocab & vocab, llama_token id) {
  97. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  98. return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_USER_DEFINED;
  99. }
  100. static bool llama_is_unused_token(const llama_vocab & vocab, llama_token id) {
  101. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  102. return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_UNUSED;
  103. }
  104. static uint8_t llama_token_to_byte(const llama_vocab & vocab, llama_token id) {
  105. GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
  106. GGML_ASSERT(llama_is_byte_token(vocab, id));
  107. const auto & token_data = vocab.id_to_token.at(id);
  108. switch (llama_vocab_get_type(vocab)) {
  109. case LLAMA_VOCAB_TYPE_SPM:
  110. case LLAMA_VOCAB_TYPE_UGM: {
  111. auto buf = token_data.text.substr(3, 2);
  112. return strtol(buf.c_str(), NULL, 16);
  113. }
  114. case LLAMA_VOCAB_TYPE_BPE: {
  115. GGML_ABORT("fatal error");
  116. //return unicode_utf8_to_byte(token_data.text); // TODO: why is this here after GGML_ASSERT?
  117. }
  118. case LLAMA_VOCAB_TYPE_WPM: {
  119. GGML_ABORT("fatal error");
  120. }
  121. default:
  122. GGML_ABORT("fatal error");
  123. }
  124. }
  125. static void llama_escape_whitespace(std::string & text) {
  126. replace_all(text, " ", "\xe2\x96\x81");
  127. }
  128. static void llama_unescape_whitespace(std::string & word) {
  129. replace_all(word, "\xe2\x96\x81", " ");
  130. }
  131. struct llm_symbol {
  132. using index = int;
  133. index prev;
  134. index next;
  135. const char * text;
  136. size_t n;
  137. };
  138. static_assert(std::is_trivially_copyable<llm_symbol>::value, "llm_symbol is not trivially copyable");
  139. //
  140. // SPM tokenizer
  141. // original implementation:
  142. // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
  143. //
  144. struct llm_bigram_spm {
  145. struct comparator {
  146. bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) {
  147. return (l.score < r.score) || (l.score == r.score && l.left > r.left);
  148. }
  149. };
  150. using queue_storage = std::vector<llm_bigram_spm>;
  151. using queue = std::priority_queue<llm_bigram_spm, queue_storage, comparator>;
  152. llm_symbol::index left;
  153. llm_symbol::index right;
  154. float score;
  155. size_t size;
  156. };
  157. struct llm_tokenizer_spm : llm_tokenizer {
  158. llm_tokenizer_spm(const llama_vocab & /*vocab*/) : llm_tokenizer() {}
  159. };
  160. struct llm_tokenizer_spm_session {
  161. llm_tokenizer_spm_session(const llama_vocab & vocab) : vocab(vocab) {}
  162. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  163. // split string into utf8 chars
  164. int index = 0;
  165. size_t offs = 0;
  166. while (offs < text.size()) {
  167. llm_symbol sym;
  168. size_t len = unicode_len_utf8(text[offs]);
  169. sym.text = text.c_str() + offs;
  170. sym.n = std::min(len, text.size() - offs);
  171. offs += sym.n;
  172. sym.prev = index - 1;
  173. sym.next = offs == text.size() ? -1 : index + 1;
  174. index++;
  175. symbols.emplace_back(sym);
  176. }
  177. // seed the work queue with all possible 2-character tokens.
  178. for (int i = 1; i < (int) symbols.size(); ++i) {
  179. try_add_bigram(i - 1, i);
  180. }
  181. // keep substituting the highest frequency pairs for as long as we can.
  182. while (!work_queue.empty()) {
  183. auto bigram = work_queue.top();
  184. work_queue.pop();
  185. auto & left_sym = symbols[bigram.left];
  186. auto & right_sym = symbols[bigram.right];
  187. // if one of the symbols already got merged, skip it.
  188. if (left_sym.n == 0 || right_sym.n == 0 ||
  189. left_sym.n + right_sym.n != bigram.size) {
  190. continue;
  191. }
  192. // merge the right sym into the left one
  193. left_sym.n += right_sym.n;
  194. right_sym.n = 0;
  195. //LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
  196. // remove the right sym from the chain
  197. left_sym.next = right_sym.next;
  198. if (right_sym.next >= 0) {
  199. symbols[right_sym.next].prev = bigram.left;
  200. }
  201. // find more substitutions
  202. try_add_bigram(left_sym.prev, bigram.left);
  203. try_add_bigram(bigram.left, left_sym.next);
  204. }
  205. for (int i = 0; i != -1; i = symbols[i].next) {
  206. auto & symbol = symbols[i];
  207. resegment(symbol, output);
  208. }
  209. }
  210. private:
  211. void resegment(llm_symbol & symbol, std::vector<llama_vocab::id> & output) {
  212. auto text = std::string(symbol.text, symbol.n);
  213. auto token = vocab.token_to_id.find(text);
  214. // Do we need to support is_unused?
  215. if (token != vocab.token_to_id.end()) {
  216. output.push_back((*token).second);
  217. return;
  218. }
  219. const auto p = rev_merge.find(text);
  220. if (p == rev_merge.end()) {
  221. // output any symbols that did not form tokens as bytes.
  222. output.reserve(output.size() + symbol.n);
  223. for (int j = 0; j < (int)symbol.n; ++j) {
  224. llama_vocab::id token_id = llama_byte_to_token_impl(vocab, symbol.text[j]);
  225. output.push_back(token_id);
  226. }
  227. return;
  228. }
  229. resegment(symbols[p->second.first], output);
  230. resegment(symbols[p->second.second], output);
  231. }
  232. void try_add_bigram(int left, int right) {
  233. if (left == -1 || right == -1) {
  234. return;
  235. }
  236. const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n);
  237. auto token = vocab.token_to_id.find(text);
  238. if (token == vocab.token_to_id.end()) {
  239. return;
  240. }
  241. if (static_cast<size_t>((*token).second) >= vocab.id_to_token.size()) {
  242. return;
  243. }
  244. const auto & tok_data = vocab.id_to_token[(*token).second];
  245. llm_bigram_spm bigram;
  246. bigram.left = left;
  247. bigram.right = right;
  248. bigram.score = tok_data.score;
  249. bigram.size = text.size();
  250. work_queue.push(bigram);
  251. // Do we need to support is_unused?
  252. rev_merge[text] = std::make_pair(left, right);
  253. }
  254. const llama_vocab & vocab;
  255. // currently unused
  256. // const llm_tokenizer_spm * spm_tokenizer;
  257. std::vector<llm_symbol> symbols;
  258. llm_bigram_spm::queue work_queue;
  259. std::map<std::string, std::pair<int, int>> rev_merge;
  260. };
  261. //
  262. // BPE tokenizer
  263. // adapted from https://github.com/cmp-nct/ggllm.cpp [MIT License]
  264. // tried to simplify unicode stuff, so most likely does not work 100% correctly!
  265. //
  266. // TODO: there are a lot of common parts between spm and bpe tokenizers, should be refactored and reused
  267. template<typename T, typename Container = std::vector<T>, typename Compare = std::less<typename Container::value_type>>
  268. class llama_priority_queue : public std::priority_queue<T, Container, Compare> {
  269. public:
  270. using std::priority_queue<T, Container, Compare>::priority_queue;
  271. T pop_move() {
  272. T item = std::move(this->c.front());
  273. std::pop_heap(this->c.begin(), this->c.end(), this->comp);
  274. this->c.pop_back();
  275. return item;
  276. }
  277. void pop() = delete;
  278. };
  279. struct llm_bigram_bpe {
  280. struct comparator {
  281. bool operator()(const llm_bigram_bpe & l, const llm_bigram_bpe & r) const {
  282. return l.rank > r.rank || (l.rank == r.rank && l.left > r.left);
  283. }
  284. };
  285. using queue_storage = std::vector<llm_bigram_bpe>;
  286. using queue = llama_priority_queue<llm_bigram_bpe, queue_storage, comparator>;
  287. llm_symbol::index left;
  288. llm_symbol::index right;
  289. std::string text;
  290. int rank;
  291. size_t size;
  292. };
  293. struct llm_tokenizer_bpe : llm_tokenizer {
  294. llm_tokenizer_bpe(const llama_vocab & vocab) : llm_tokenizer() {
  295. GGML_ASSERT(vocab.type == LLAMA_VOCAB_TYPE_BPE);
  296. switch (vocab.type_pre) {
  297. case LLAMA_VOCAB_PRE_TYPE_LLAMA3:
  298. regex_exprs = {
  299. // original regex from tokenizer.json
  300. //"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  301. // adapted: https://github.com/ggerganov/llama.cpp/pull/6920#issuecomment-2080233989
  302. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  303. };
  304. break;
  305. case LLAMA_VOCAB_PRE_TYPE_DBRX:
  306. case LLAMA_VOCAB_PRE_TYPE_SMAUG:
  307. regex_exprs = {
  308. // same as llama3
  309. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  310. };
  311. break;
  312. case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM:
  313. regex_exprs = {
  314. "[\r\n]",
  315. "\\s?[A-Za-zµÀ-ÖØ-öø-ƺƼ-ƿDŽ-ʓʕ-ʯͰ-ͳͶͷͻ-ͽͿΆΈ-ΊΌΎ-ΡΣ-ϵϷ-ҁҊ-ԯԱ-ՖႠ-ჅᎠ-Ᏽᏸ-ᏽᲐ-ᲺᲽ-Ჿᴀ-ᴫᵫ-ᵷᵹ-ᶚḀ-ἕἘ-Ἕἠ-ὅὈ-Ὅὐ-ὗὙὛὝὟ-ώᾀ-ᾴᾶ-ᾼιῂ-ῄῆ-ῌῐ-ΐῖ-Ίῠ-Ῥῲ-ῴῶ-ῼℂℇℊ-ℓℕℙ-ℝℤΩℨK-ℭℯ-ℴℹℼ-ℿⅅ-ⅉⅎↃↄⰀ-ⱻⱾ-ⳤⳫ-ⳮⳲⳳꙀ-ꙭꚀ-ꚛꜢ-ꝯꝱ-ꞇꞋ-ꞎꭰ-ꮿff-stﬓ-ﬗA-Za-z𐐀-𐑏𐒰-𐓓𐓘-𐓻𐲀-𐲲𐳀-𐳲𑢠-𑣟𞤀-𞥃]+",
  316. "\\s?[!-/:-~!-/:-~‘-‟ -。]+",
  317. "\\s+$",
  318. "[一-龥ࠀ-一가-퟿]+",
  319. "\\p{N}+",
  320. };
  321. break;
  322. case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER:
  323. regex_exprs = {
  324. "[\r\n]",
  325. "\\s?\\p{L}+",
  326. "\\s?\\p{P}+",
  327. "[一-龥ࠀ-一가-퟿]+",
  328. "\\p{N}",
  329. };
  330. break;
  331. case LLAMA_VOCAB_PRE_TYPE_FALCON:
  332. regex_exprs = {
  333. "[\\p{P}\\$\\+<=>\\^~\\|`]+",
  334. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  335. "[0-9][0-9][0-9]",
  336. };
  337. break;
  338. case LLAMA_VOCAB_PRE_TYPE_STARCODER:
  339. case LLAMA_VOCAB_PRE_TYPE_REFACT:
  340. case LLAMA_VOCAB_PRE_TYPE_COMMAND_R:
  341. case LLAMA_VOCAB_PRE_TYPE_SMOLLM:
  342. case LLAMA_VOCAB_PRE_TYPE_CODESHELL:
  343. case LLAMA_VOCAB_PRE_TYPE_EXAONE:
  344. case LLAMA_VOCAB_PRE_TYPE_MINERVA:
  345. regex_exprs = {
  346. "\\p{N}",
  347. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  348. };
  349. break;
  350. case LLAMA_VOCAB_PRE_TYPE_GPT2:
  351. case LLAMA_VOCAB_PRE_TYPE_MPT:
  352. case LLAMA_VOCAB_PRE_TYPE_OLMO:
  353. case LLAMA_VOCAB_PRE_TYPE_JAIS:
  354. regex_exprs = {
  355. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  356. };
  357. break;
  358. case LLAMA_VOCAB_PRE_TYPE_STABLELM2:
  359. case LLAMA_VOCAB_PRE_TYPE_QWEN2:
  360. regex_exprs = {
  361. // original regex from tokenizer.json
  362. // "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
  363. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  364. };
  365. break;
  366. case LLAMA_VOCAB_PRE_TYPE_PORO:
  367. case LLAMA_VOCAB_PRE_TYPE_BLOOM:
  368. case LLAMA_VOCAB_PRE_TYPE_GPT3_FINNISH:
  369. regex_exprs = {
  370. " ?[^(\\s|.,!?…。,、।۔،)]+",
  371. };
  372. break;
  373. case LLAMA_VOCAB_PRE_TYPE_CHATGLM4:
  374. regex_exprs = {
  375. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  376. };
  377. break;
  378. case LLAMA_VOCAB_PRE_TYPE_VIKING:
  379. regex_exprs = {
  380. " ?[^(\\s|.,!?…。,、।۔،)]+",
  381. "\\p{N}",
  382. };
  383. break;
  384. case LLAMA_VOCAB_PRE_TYPE_TEKKEN:
  385. // original regex from tokenizer.json
  386. // "[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]*[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]+|[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]+[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]*|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
  387. regex_exprs = {
  388. "[^\\r\\n\\p{L}\\p{N}]?((?=[\\p{L}])([^a-z]))*((?=[\\p{L}])([^A-Z]))+|[^\\r\\n\\p{L}\\p{N}]?((?=[\\p{L}])([^a-z]))+((?=[\\p{L}])([^A-Z]))*|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  389. };
  390. break;
  391. case LLAMA_VOCAB_PRE_TYPE_CHAMELEON:
  392. // Note: in theory, the special token (sentinel and image token) regex_exprs below
  393. // are unnecessary, as they are split in `tokenizer_st_partition` anyway.
  394. // However, since the upstream pre-tokenizer uses them, they are also
  395. // included here (see https://huggingface.co/facebook/chameleon-7b).
  396. regex_exprs = {
  397. "<sentinel:[0-9]+>", // Sentinel tokens
  398. "(IMGIMG)((A|B|C|D|E|F|G|H|I){1,4})Z", // Image tokens
  399. "([\\t\\n]| | )", // directly from tokenizer.json
  400. "\\p{N}", // Individual digits
  401. "[\\p{P}!-/:-@\\[-`{-~]", // Punctuation, Isolated
  402. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  403. };
  404. break;
  405. default:
  406. // default regex for BPE tokenization pre-processing
  407. regex_exprs = {
  408. "[\\p{P}\\$\\+<=>\\^~\\|]+",
  409. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  410. "\\p{N}+",
  411. "[0-9][0-9][0-9]",
  412. };
  413. break;
  414. }
  415. }
  416. std::vector<std::string> regex_exprs;
  417. };
  418. struct llm_tokenizer_bpe_session {
  419. llm_tokenizer_bpe_session(const llama_vocab & vocab) : vocab(vocab),
  420. bpe_tokenizer(static_cast<const llm_tokenizer_bpe *>(vocab.tokenizer)) {}
  421. static void append(const llama_vocab::id token_id, std::vector<llama_vocab::id> & output) {
  422. output.push_back(token_id);
  423. }
  424. bool append_bos(std::vector<llama_vocab::id> & output) const {
  425. if (vocab.tokenizer_add_bos) {
  426. GGML_ASSERT(vocab.special_bos_id != -1);
  427. output.push_back(vocab.special_bos_id);
  428. return true;
  429. }
  430. return false;
  431. }
  432. bool append_eos(std::vector<llama_vocab::id> & output) const {
  433. if (vocab.tokenizer_add_eos) {
  434. GGML_ASSERT(vocab.special_eos_id != -1);
  435. output.push_back(vocab.special_eos_id);
  436. return true;
  437. }
  438. return false;
  439. }
  440. void check_double_bos_eos(const std::vector<llama_vocab::id> & output) const {
  441. if (vocab.tokenizer_add_bos && output.size() >= 2 && output[1] == vocab.special_bos_id) {
  442. LLAMA_LOG_WARN(
  443. "%s: Added a BOS token to the prompt as specified by the model but the prompt "
  444. "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
  445. "Are you sure this is what you want?\n", __FUNCTION__);
  446. }
  447. if (vocab.tokenizer_add_eos && output.size() >= 2 && *(output.end()-2) == vocab.special_eos_id) {
  448. LLAMA_LOG_WARN(
  449. "%s: Added a EOS token to the prompt as specified by the model but the prompt "
  450. "also ends with a EOS token. So now the final prompt ends with 2 EOS tokens. "
  451. "Are you sure this is what you want?\n", __FUNCTION__);
  452. }
  453. }
  454. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  455. int final_prev_index = -1;
  456. const auto word_collection = unicode_regex_split(text, bpe_tokenizer->regex_exprs);
  457. symbols_final.clear();
  458. for (const auto & word : word_collection) {
  459. work_queue = llm_bigram_bpe::queue();
  460. symbols.clear();
  461. int index = 0;
  462. size_t offset = 0;
  463. if (vocab.tokenizer_ignore_merges && vocab.token_to_id.find(word) != vocab.token_to_id.end()) {
  464. symbols.emplace_back(llm_symbol{-1, -1, word.c_str(), word.size()});
  465. offset = word.size();
  466. }
  467. while (offset < word.size()) {
  468. llm_symbol sym;
  469. size_t char_len = std::min(word.size() - offset, (size_t) unicode_len_utf8(word[offset]));
  470. sym.text = word.c_str() + offset;
  471. sym.n = char_len;
  472. offset += sym.n;
  473. sym.prev = index - 1;
  474. sym.next = offset == word.size() ? -1 : index + 1;
  475. index++;
  476. symbols.emplace_back(sym);
  477. }
  478. for (int i = 1; i < (int) symbols.size(); ++i) {
  479. add_new_bigram(i - 1, i);
  480. }
  481. // build token(s)
  482. while (!work_queue.empty()) {
  483. auto bigram = work_queue.pop_move();
  484. auto & left_symbol = symbols[bigram.left];
  485. auto & right_symbol = symbols[bigram.right];
  486. if (left_symbol.n == 0 || right_symbol.n == 0) {
  487. continue;
  488. }
  489. std::string left_token = std::string(left_symbol.text, left_symbol.n);
  490. std::string right_token = std::string(right_symbol.text, right_symbol.n);
  491. if (left_token + right_token != bigram.text) {
  492. continue; // Skip this bigram if it's outdated
  493. }
  494. // merge the right sym into the left one
  495. left_symbol.n += right_symbol.n;
  496. right_symbol.n = 0;
  497. // remove the right sym from the chain
  498. left_symbol.next = right_symbol.next;
  499. if (right_symbol.next >= 0) {
  500. symbols[right_symbol.next].prev = bigram.left;
  501. }
  502. add_new_bigram(left_symbol.prev, bigram.left); // left side of current symbol
  503. add_new_bigram(bigram.left, left_symbol.next); // right side of current symbol
  504. }
  505. // add the finished tokens to the final list keeping correct order for next and prev
  506. for (auto & sym : symbols) {
  507. if (sym.n > 0) {
  508. sym.prev = final_prev_index;
  509. sym.next = -1;
  510. if (final_prev_index != -1) {
  511. symbols_final[final_prev_index].next = symbols_final.size();
  512. }
  513. symbols_final.emplace_back(sym);
  514. final_prev_index = symbols_final.size() - 1;
  515. }
  516. }
  517. }
  518. symbols = symbols_final;
  519. if (!symbols.empty()) {
  520. for (int i = 0; i != -1; i = symbols[i].next) {
  521. auto & symbol = symbols[i];
  522. if (symbol.n == 0) {
  523. continue;
  524. }
  525. const std::string str = std::string(symbol.text, symbol.n);
  526. const auto token = vocab.token_to_id.find(str);
  527. if (token == vocab.token_to_id.end()) {
  528. for (auto j = str.begin(); j != str.end(); ++j) {
  529. std::string byte_str(1, *j);
  530. auto token_multibyte = vocab.token_to_id.find(byte_str);
  531. if (token_multibyte != vocab.token_to_id.end()) {
  532. output.push_back(token_multibyte->second);
  533. }
  534. }
  535. } else {
  536. output.push_back((*token).second);
  537. }
  538. }
  539. }
  540. }
  541. private:
  542. void add_new_bigram(int left, int right) {
  543. if (left == -1 || right == -1) {
  544. return;
  545. }
  546. std::string left_token = std::string(symbols[left].text, symbols[left].n);
  547. std::string right_token = std::string(symbols[right].text, symbols[right].n);
  548. int rank_found = -1;
  549. rank_found = vocab.find_bpe_rank(left_token, right_token);
  550. if (rank_found < 0) {
  551. return;
  552. }
  553. llm_bigram_bpe bigram;
  554. bigram.left = left;
  555. bigram.right = right;
  556. bigram.text = left_token + right_token;
  557. bigram.size = left_token.size() + right_token.size();
  558. bigram.rank = rank_found;
  559. work_queue.push(bigram);
  560. }
  561. const llama_vocab & vocab;
  562. const llm_tokenizer_bpe * bpe_tokenizer;
  563. std::vector<llm_symbol> symbols;
  564. std::vector<llm_symbol> symbols_final;
  565. llm_bigram_bpe::queue work_queue;
  566. };
  567. //
  568. // WPM tokenizer
  569. //
  570. struct llm_tokenizer_wpm : llm_tokenizer {
  571. llm_tokenizer_wpm(const llama_vocab & /*vocab*/) : llm_tokenizer() {}
  572. };
  573. struct llm_tokenizer_wpm_session {
  574. llm_tokenizer_wpm_session(const llama_vocab & vocab) : vocab(vocab) {}
  575. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  576. const auto & token_map = vocab.token_to_id;
  577. // normalize and split by whitespace
  578. std::vector<std::string> words = preprocess(text);
  579. // bos token prepended already
  580. // find the longest tokens that form the words
  581. for (const std::string & word : words) {
  582. // skip empty words
  583. if (word.size() == 0) {
  584. continue;
  585. }
  586. // prepend phantom space
  587. const std::string word1 = "\xe2\x96\x81" + word;
  588. const int n = word1.size();
  589. const size_t current_tokens = output.size();
  590. // we're at the start of a new word
  591. // move through character position in word
  592. for (int i = 0; i < n; ++i) {
  593. // loop through possible match length
  594. bool match = false;
  595. for (int j = std::min(n, i + vocab.max_token_len + 1); j > i; j--) {
  596. auto it = token_map.find(word1.substr(i, j - i));
  597. if (it != token_map.end()) {
  598. output.push_back(it->second);
  599. match = true;
  600. i = j - 1;
  601. break;
  602. }
  603. }
  604. if (!match) { // discard all
  605. output.resize(current_tokens);
  606. break; // and discard next tokens
  607. }
  608. }
  609. // we didn't find any matches for this word
  610. if (current_tokens == output.size()) {
  611. output.push_back(vocab.special_unk_id);
  612. }
  613. }
  614. }
  615. // TODO: reduce string copies by using cpts_offs array
  616. static std::vector<std::string> preprocess(const std::string & text) {
  617. const std::vector<uint32_t> cpts_nfd = unicode_cpts_normalize_nfd(unicode_cpts_from_utf8(text));
  618. std::vector<std::string> words(1, "");
  619. for (const uint32_t cpt : cpts_nfd) {
  620. const auto flags = unicode_cpt_flags_from_cpt(cpt);
  621. if (flags.is_whitespace) {
  622. if (words.back().size()) { // finish previous word if any
  623. words.emplace_back();
  624. }
  625. continue;
  626. }
  627. assert (!flags.is_separator);
  628. if (cpt == 0 || cpt == 0xFFFD || flags.is_control) {
  629. continue;
  630. }
  631. const std::string s = unicode_cpt_to_utf8(unicode_tolower(cpt));
  632. if (flags.is_punctuation || ( cpt < 0x7F && flags.is_symbol ) || is_chinese_char(cpt)) {
  633. if (words.back().size()) { // finish previous word if any
  634. words.emplace_back();
  635. }
  636. words.back() = s; // single char word
  637. words.emplace_back(); // start a new word
  638. } else {
  639. words.back() += s; // append char to word
  640. }
  641. }
  642. if (!words.back().size()) {
  643. words.pop_back();
  644. }
  645. return words;
  646. }
  647. static bool is_chinese_char(uint32_t cpt) {
  648. return
  649. (cpt >= 0x04E00 && cpt <= 0x09FFF) ||
  650. (cpt >= 0x03400 && cpt <= 0x04DBF) ||
  651. (cpt >= 0x20000 && cpt <= 0x2A6DF) ||
  652. (cpt >= 0x2A700 && cpt <= 0x2B73F) ||
  653. (cpt >= 0x2B740 && cpt <= 0x2B81F) ||
  654. (cpt >= 0x2B920 && cpt <= 0x2CEAF) || // this should be 0x2B820 but in hf rust code it is 0x2B920
  655. (cpt >= 0x0F900 && cpt <= 0x0FAFF) ||
  656. (cpt >= 0x2F800 && cpt <= 0x2FA1F);
  657. //(cpt >= 0x3000 && cpt <= 0x303F) ||
  658. //(cpt >= 0xFF00 && cpt <= 0xFFEF);
  659. }
  660. private:
  661. const llama_vocab & vocab;
  662. // currently unused
  663. // const llm_tokenizer_wpm * wpm_tokenizer;
  664. };
  665. //
  666. // UGM tokenizer
  667. //
  668. struct llm_tokenizer_ugm : llm_tokenizer {
  669. llm_tokenizer_ugm(const llama_vocab & vocab) : llm_tokenizer() {
  670. if (vocab.precompiled_charsmap.size() > 0) {
  671. size_t charsmap_offset = 0;
  672. // First four bytes of precompiled_charsmap contains length of binary
  673. // blob containing XOR-compressed compact double array (XCDA) entries
  674. uint32_t xcda_blob_size = *(const uint32_t *) &vocab.precompiled_charsmap[0];
  675. charsmap_offset += sizeof(xcda_blob_size);
  676. if (xcda_blob_size + charsmap_offset >= vocab.precompiled_charsmap.size()) {
  677. throw std::runtime_error("Index out of array bounds in precompiled charsmap!");
  678. }
  679. // Next xcda_blob_size bytes contain entries of XOR-compressed compact
  680. // double array (XCDA). Each entry is bit-packed into a 32-bit integer.
  681. xcda_array = (const uint32_t *) &vocab.precompiled_charsmap[charsmap_offset];
  682. xcda_array_size = xcda_blob_size / sizeof(uint32_t);
  683. charsmap_offset += xcda_blob_size;
  684. // Remaining bytes of precompiled charsmap contain null-terminated
  685. // replacement strings for prefixes matched by the XCDA.
  686. prefix_replacements = &vocab.precompiled_charsmap[charsmap_offset];
  687. prefix_replacements_size = vocab.precompiled_charsmap.size() - charsmap_offset;
  688. }
  689. for (unsigned int id = 0; id < vocab.id_to_token.size(); ++id) {
  690. const auto &token_data = vocab.id_to_token[id];
  691. if (llama_is_normal_token(vocab, id)) {
  692. min_score = std::min<float>(min_score, token_data.score);
  693. max_score = std::max<float>(max_score, token_data.score);
  694. }
  695. if (llama_is_normal_token(vocab, id) ||
  696. llama_is_user_defined_token(vocab, id) ||
  697. llama_is_unused_token(vocab, id)) {
  698. token_matcher.insert(token_data.text.data(), token_data.text.size(), id);
  699. }
  700. if (llama_is_user_defined_token(vocab, id)) {
  701. user_defined_token_matcher.insert(token_data.text.data(), token_data.text.size());
  702. }
  703. }
  704. unknown_token_score = min_score - unknown_token_score_penalty;
  705. }
  706. // escaped space symbol - U+2581 (Lower One Eighth Block)
  707. const std::string escaped_space = "\xE2\x96\x81";
  708. const char * prefix_replacements = NULL;
  709. size_t prefix_replacements_size = 0;
  710. const uint32_t * xcda_array = NULL;
  711. size_t xcda_array_size = 0;
  712. struct naive_trie user_defined_token_matcher;
  713. float min_score = FLT_MAX;
  714. float max_score = -FLT_MAX;
  715. float unknown_token_score_penalty = 10.0;
  716. float unknown_token_score;
  717. struct naive_trie token_matcher;
  718. };
  719. struct llm_tokenizer_ugm_session {
  720. llm_tokenizer_ugm_session(const llama_vocab & vocab) : vocab(vocab),
  721. ugm_tokenizer(static_cast<const llm_tokenizer_ugm *>(vocab.tokenizer)) {}
  722. /* This implementation is based on SentencePiece optimized Viterbi algorithm for
  723. * unigram language models. The general idea is to:
  724. * - move along the input sequence in steps of one UTF code point,
  725. * - at each step find all possible tokenizations of the prefix by
  726. * traversing the tokens trie,
  727. * - for each tokenization store the best one so far (by higher score)
  728. * - use the position in sequence after given token as an index to store
  729. * results
  730. * - if there was no valid tokenization of the current UTF code point
  731. * then use unknown token with additional score penalty
  732. * After processing the whole sequence we backtrack from the end to get
  733. * the best tokenization.
  734. */
  735. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  736. // get current size of output (for reversal later)
  737. size_t output_size = output.size();
  738. // normalize the input first
  739. std::string normalized;
  740. normalize(text, &normalized);
  741. size_t input_len = normalized.size();
  742. if (input_len == 0) {
  743. return;
  744. }
  745. // initialize score_sum to -FLT_MAX so it will be always lower than sums of token scores
  746. std::vector<struct best_tokenization> tokenization_results(input_len + 1, {vocab.special_unk_id, 0, -FLT_MAX});
  747. // at the beginning tokenization score is zero
  748. tokenization_results[0] = { vocab.special_unk_id, 0, 0 };
  749. for (size_t input_offset = 0; input_offset < input_len;) {
  750. size_t prefix_offset = input_offset;
  751. // calculate how many code units are in the currently processed UTF code point
  752. size_t n_utf8_code_units = std::min<size_t>(unicode_len_utf8(normalized[input_offset]), input_len - input_offset);
  753. // traverse the token matcher trie to find a matching token
  754. bool single_codepoint_token_found = false;
  755. const struct best_tokenization & current_best = tokenization_results[input_offset];
  756. const struct naive_trie * node = ugm_tokenizer->token_matcher.traverse(normalized[prefix_offset++]);
  757. while (prefix_offset <= input_len && node != NULL) {
  758. // check if we found valid token in prefix
  759. if (node->has_value) {
  760. // check if it corresponds to the whole UTF code point
  761. if (prefix_offset - input_offset == n_utf8_code_units) {
  762. single_codepoint_token_found = true;
  763. }
  764. llama_token token_id = node->value;
  765. const auto & token_data = vocab.id_to_token[token_id];
  766. // we set the user-defined token scores to 0 to make them more likely to be selected
  767. // (normal token scores are log probabilities, so they are negative)
  768. // score type is double here to make tokenization results exactly
  769. // the same as in the HF tokenizer using SentencePiece
  770. const double token_score = llama_is_user_defined_token(vocab, token_id) ? 0.0 : token_data.score;
  771. const double challenger_score = current_best.score_sum + token_score;
  772. struct best_tokenization & current_champ = tokenization_results[prefix_offset];
  773. if (challenger_score > current_champ.score_sum) {
  774. struct best_tokenization challenger = { token_id, input_offset, (float) challenger_score };
  775. current_champ = challenger;
  776. }
  777. }
  778. node = node->traverse(normalized[prefix_offset++]);
  779. }
  780. // if we didn't find a valid token corresponding to the whole UTF code point
  781. // then use unknown token as the tokenization of this UTF code point
  782. if (!single_codepoint_token_found) {
  783. const double challenger_score = current_best.score_sum + ugm_tokenizer->unknown_token_score;
  784. prefix_offset = input_offset + n_utf8_code_units;
  785. struct best_tokenization & current_champ = tokenization_results[prefix_offset];
  786. if (challenger_score > current_champ.score_sum) {
  787. struct best_tokenization challenger = { vocab.special_unk_id, input_offset, (float) challenger_score };
  788. current_champ = challenger;
  789. }
  790. }
  791. // move to the next UTF code point
  792. input_offset += n_utf8_code_units;
  793. }
  794. // now backtrack from the end to gather token ids of the best tokenization
  795. // merge sequences of consecutive unknown tokens into single unknown tokens
  796. bool is_prev_unknown = false;
  797. for (struct best_tokenization & tokenization = tokenization_results[input_len]; ; tokenization = tokenization_results[tokenization.input_offset]) {
  798. bool is_unknown = tokenization.token_id == vocab.special_unk_id;
  799. if (!(is_prev_unknown && is_unknown)) {
  800. output.push_back(tokenization.token_id);
  801. }
  802. if (tokenization.input_offset == 0) {
  803. break;
  804. }
  805. is_prev_unknown = is_unknown;
  806. }
  807. // reverse the output since we added tokens starting from the end of the input
  808. std::reverse(output.begin() + output_size, output.end());
  809. }
  810. private:
  811. // helper structure for returning normalization results
  812. struct normalization_result {
  813. const char * normalized;
  814. size_t normalized_len;
  815. size_t consumed_input;
  816. };
  817. void normalize(const std::string& input, std::string * normalized) {
  818. normalized->clear();
  819. normalized->reserve(input.size() * 3);
  820. const std::string space = vocab.tokenizer_escape_whitespaces ? ugm_tokenizer->escaped_space : " ";
  821. bool shall_prepend_space = !vocab.tokenizer_treat_whitespace_as_suffix && vocab.tokenizer_add_space_prefix;
  822. bool shall_append_space = vocab.tokenizer_treat_whitespace_as_suffix && vocab.tokenizer_add_space_prefix;
  823. bool shall_merge_spaces = vocab.tokenizer_remove_extra_whitespaces;
  824. bool is_space_prepended = false;
  825. bool processing_non_ws = false;
  826. size_t input_len = input.size();
  827. for (size_t input_offset = 0; input_offset < input_len; ) {
  828. auto norm_res = normalize_prefix(input, input_offset);
  829. for (size_t i = 0; i < norm_res.normalized_len; i++) {
  830. char c = norm_res.normalized[i];
  831. if (c != ' ') {
  832. if (!processing_non_ws) {
  833. processing_non_ws = true;
  834. if ((shall_prepend_space && !is_space_prepended) || shall_merge_spaces) {
  835. normalized->append(space);
  836. is_space_prepended = true;
  837. }
  838. }
  839. normalized->push_back(c);
  840. } else {
  841. if (processing_non_ws) {
  842. processing_non_ws = false;
  843. }
  844. if (!shall_merge_spaces) {
  845. normalized->append(space);
  846. }
  847. }
  848. }
  849. input_offset += norm_res.consumed_input;
  850. }
  851. if (shall_append_space) {
  852. normalized->append(space);
  853. }
  854. }
  855. /*
  856. * This structure is a view wrapper for XOR-compressed double array (XCDA)
  857. * See Shunsuke Kanda (2018). Space- and Time-Efficient String Dictionaries.
  858. * Each bit-packed entry contains:
  859. * - BASE array value in bits 10-30
  860. * - LCHECK array value in bits 0-7
  861. * - LEAF array value in bit 9
  862. * Entries containing indexes of replacement sequences have set bit 31
  863. */
  864. struct xcda_array_view {
  865. public:
  866. xcda_array_view(const uint32_t * xcda_array, size_t xcda_array_size) : xcda_array(xcda_array), xcda_array_size(xcda_array_size) {
  867. }
  868. uint32_t get_base(size_t index) {
  869. uint32_t packed_node = get_node(index);
  870. return (packed_node >> 10) << ((packed_node & (1U << 9)) >> 6);
  871. }
  872. uint32_t get_lcheck(size_t index) {
  873. uint32_t packed_node = get_node(index);
  874. return packed_node & ((1U << 31) | 0xff);
  875. }
  876. bool get_leaf(size_t index) {
  877. uint32_t packed_node = get_node(index);
  878. return (packed_node >> 8) & 1;
  879. }
  880. uint32_t get_value(size_t index) {
  881. uint32_t packed_node = get_node(index);
  882. return packed_node & ((1U << 31) - 1);
  883. }
  884. private:
  885. uint32_t get_node(size_t index) {
  886. if (index > xcda_array_size) {
  887. throw std::runtime_error("Index out of array bounds in XCDA array!");
  888. }
  889. return xcda_array[index];
  890. }
  891. const uint32_t * xcda_array;
  892. size_t xcda_array_size;
  893. };
  894. // this structure stores the best tokenization so far at input_offset
  895. struct best_tokenization {
  896. llama_token token_id;
  897. size_t input_offset;
  898. float score_sum;
  899. };
  900. struct normalization_result normalize_prefix(const std::string & input, size_t input_offset) {
  901. if (input_offset == input.size()) {
  902. return { &input[input_offset], 0, 0 };
  903. }
  904. // if input prefix matches some user-defined token return this token as normalization result
  905. auto user_defined_token_match =
  906. ugm_tokenizer->user_defined_token_matcher.get_longest_prefix(&input[input_offset], input.size() - input_offset);
  907. if (user_defined_token_match.second > 0) {
  908. return { &input[input_offset], user_defined_token_match.second, user_defined_token_match.second };
  909. }
  910. size_t longest_prefix_length = 0;
  911. size_t longest_prefix_offset = 0;
  912. if (ugm_tokenizer->xcda_array_size > 0) {
  913. struct xcda_array_view xcda_view(ugm_tokenizer->xcda_array, ugm_tokenizer->xcda_array_size);
  914. // Find the longest normalized sequence matching the input prefix by walking
  915. // the XOR-compressed compact double array (XCDA) starting from the root node
  916. // We find the index of the next node by calculating BASE[s] ^ c where s is
  917. // the index of the previous node and c is a numerical character value
  918. uint32_t node_index = 0;
  919. // get BASE of the root node
  920. node_index = xcda_view.get_base(node_index);
  921. for (size_t prefix_offset = input_offset; prefix_offset < input.size(); prefix_offset++) {
  922. unsigned char c = input[prefix_offset];
  923. if (c == 0) {
  924. break;
  925. }
  926. node_index ^= c;
  927. // if value of LCHECK is not c it means that this is not a child of
  928. // the previous node, so we stop matching
  929. if (xcda_view.get_lcheck(node_index) != c) {
  930. break;
  931. }
  932. bool is_leaf = xcda_view.get_leaf(node_index);
  933. // get BASE of the current node
  934. node_index ^= xcda_view.get_base(node_index);
  935. // if LEAF of the current node is true, it means that its BASE points to the node
  936. // containing index of replacement sequence for currently matched input prefix
  937. if (is_leaf)
  938. {
  939. longest_prefix_length = prefix_offset - input_offset + 1;
  940. // get index of replacement sequence for currently matched input prefix
  941. longest_prefix_offset = xcda_view.get_value(node_index);
  942. }
  943. }
  944. }
  945. if (longest_prefix_length > 0) {
  946. // we have a match, so return the replacement sequence
  947. if (longest_prefix_offset >= ugm_tokenizer->prefix_replacements_size) {
  948. throw std::runtime_error("Index out of array bounds in precompiled charsmap!");
  949. }
  950. const char * prefix_replacement = &(ugm_tokenizer->prefix_replacements)[longest_prefix_offset];
  951. return { prefix_replacement, strlen(prefix_replacement), longest_prefix_length };
  952. }
  953. // check if the input prefix contains a valid sequence of UTF-8 code units
  954. try {
  955. // if yes, return this sequence unmodified
  956. size_t prefix_offset = input_offset;
  957. unicode_cpt_from_utf8(input, prefix_offset);
  958. return { &input[input_offset], prefix_offset - input_offset, prefix_offset - input_offset };
  959. } catch (std::invalid_argument & /*ex*/) {
  960. // if no, consume 1 byte and return U+FFFD - REPLACEMENT CHARACTER
  961. return { "\xEF\xBF\xBD", 3, 1 };
  962. }
  963. }
  964. const llama_vocab & vocab;
  965. const llm_tokenizer_ugm * ugm_tokenizer;
  966. };
  967. //
  968. // RWKV tokenizer
  969. //
  970. static std::vector<uint8_t> llama_unescape_rwkv_token(const std::string & escaped) {
  971. std::vector<uint8_t> output;
  972. output.reserve(escaped.size());
  973. // Parser state
  974. bool escaping = false;
  975. uint8_t hex_remaining = 0;
  976. uint8_t hex_acc = 0;
  977. // Step through characters, performing parsing
  978. for (const char & c : escaped) {
  979. // If we're parsing a hex code, interpret the next character
  980. if (hex_remaining != 0) {
  981. uint8_t value = (c >= 'a') ? (c - 'a' + 10) : (c - '0');
  982. hex_acc = (hex_acc << 4) + value;
  983. hex_remaining -= 1;
  984. if (hex_remaining == 0) {
  985. output.push_back(hex_acc);
  986. hex_acc = 0;
  987. }
  988. continue;
  989. }
  990. // If we got an escape character, interpret it
  991. if (escaping) {
  992. if (c == 't') {
  993. output.push_back('\t');
  994. } else if (c == 'n') {
  995. output.push_back('\n');
  996. } else if (c == 'r') {
  997. output.push_back('\r');
  998. } else if (c == 'x') {
  999. hex_remaining = 2;
  1000. } else {
  1001. output.push_back(c);
  1002. }
  1003. escaping = false;
  1004. continue;
  1005. }
  1006. if (c == '\\') {
  1007. escaping = true;
  1008. continue;
  1009. }
  1010. output.push_back(c);
  1011. }
  1012. return output;
  1013. }
  1014. struct llm_tokenizer_rwkv : llm_tokenizer {
  1015. llm_tokenizer_rwkv(const llama_vocab & vocab) : llm_tokenizer() {
  1016. // RWKV supports arbitrary byte tokens, but the vocab struct only supports string tokens.
  1017. // For now, we decode the vocab here into the lookup we'll use for tokenization.
  1018. // build trie
  1019. for (unsigned int id = 0; id < vocab.id_to_token.size(); ++id) {
  1020. const auto & token = vocab.id_to_token[id];
  1021. const auto data = llama_unescape_rwkv_token(token.text);
  1022. token_matcher.insert((const char *) data.data(), data.size(), id);
  1023. }
  1024. }
  1025. struct naive_trie token_matcher;
  1026. };
  1027. struct llm_tokenizer_rwkv_session {
  1028. llm_tokenizer_rwkv_session(const llama_vocab & vocab) : vocab(vocab),
  1029. rwkv_tokenizer(static_cast<const llm_tokenizer_rwkv &>(*vocab.tokenizer)) {}
  1030. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  1031. uint32_t position = 0;
  1032. while (position < text.size()) {
  1033. const struct naive_trie * node = rwkv_tokenizer.token_matcher.traverse(text[position]);
  1034. if (node == NULL) {
  1035. // no matching token found, add unknown token
  1036. output.push_back(vocab.special_unk_id);
  1037. position += 1;
  1038. continue;
  1039. }
  1040. // traverse the trie to find the longest matching token
  1041. uint32_t token_id = 0;
  1042. uint32_t token_length = 0;
  1043. while (node != NULL) {
  1044. if (node->has_value) {
  1045. token_id = node->value;
  1046. token_length = position + 1;
  1047. }
  1048. node = node->traverse(text[++position]);
  1049. }
  1050. // add the longest matching token
  1051. output.push_back(token_id);
  1052. position = token_length;
  1053. }
  1054. }
  1055. private:
  1056. const llama_vocab & vocab;
  1057. const llm_tokenizer_rwkv & rwkv_tokenizer;
  1058. };
  1059. void llama_vocab::init_tokenizer() {
  1060. switch (type) {
  1061. case LLAMA_VOCAB_TYPE_SPM:
  1062. tokenizer = new llm_tokenizer_spm(*this);
  1063. break;
  1064. case LLAMA_VOCAB_TYPE_BPE:
  1065. tokenizer = new llm_tokenizer_bpe(*this);
  1066. break;
  1067. case LLAMA_VOCAB_TYPE_WPM:
  1068. tokenizer = new llm_tokenizer_wpm(*this);
  1069. break;
  1070. case LLAMA_VOCAB_TYPE_UGM:
  1071. tokenizer = new llm_tokenizer_ugm(*this);
  1072. break;
  1073. case LLAMA_VOCAB_TYPE_RWKV:
  1074. tokenizer = new llm_tokenizer_rwkv(*this);
  1075. break;
  1076. default:
  1077. GGML_ABORT("unsupported vocab type");
  1078. }
  1079. }
  1080. //
  1081. // (de-) tokenize
  1082. //
  1083. typedef enum FRAGMENT_BUFFER_VARIANT_TYPE {
  1084. FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN,
  1085. FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT
  1086. } FRAGMENT_BUFFER_VARIANT_TYPE;
  1087. struct fragment_buffer_variant {
  1088. fragment_buffer_variant(llama_vocab::id _token)
  1089. :
  1090. type(FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN),
  1091. token(_token),
  1092. raw_text(_dummy),
  1093. offset(0),
  1094. length(0) {}
  1095. fragment_buffer_variant(const std::string & _raw_text, int64_t _offset, int64_t _length)
  1096. :
  1097. type(FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT),
  1098. token((llama_vocab::id) - 1),
  1099. raw_text(_raw_text),
  1100. offset(_offset),
  1101. length(_length){
  1102. GGML_ASSERT(_offset >= 0);
  1103. GGML_ASSERT(_length >= 1);
  1104. GGML_ASSERT(offset + length <= raw_text.length());
  1105. }
  1106. const FRAGMENT_BUFFER_VARIANT_TYPE type;
  1107. const llama_vocab::id token;
  1108. const std::string _dummy;
  1109. const std::string & raw_text;
  1110. const uint64_t offset;
  1111. const uint64_t length;
  1112. };
  1113. // #define PRETOKENIZERDEBUG
  1114. static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<fragment_buffer_variant> & buffer, bool parse_special) {
  1115. // for each special token
  1116. for (const llama_vocab::id special_id : vocab.cache_special_tokens) {
  1117. const auto & data = vocab.id_to_token[special_id];
  1118. const auto & special_token = data.text;
  1119. if (!parse_special && (data.attr & (LLAMA_TOKEN_ATTR_CONTROL | LLAMA_TOKEN_ATTR_UNKNOWN))) {
  1120. // Ignore control and unknown tokens when parse_special == false
  1121. continue;
  1122. // User-defined tokens are still pre-tokenized before everything else
  1123. // ref: https://github.com/huggingface/tokenizers/blob/fdd26ba9a3f0c133427aab0423888cbde91362d7/tokenizers/src/tokenizer/mod.rs#L726
  1124. // This is mostly relevant for neox-style tokenizers (mpt, olmo, stablelm, etc.)
  1125. }
  1126. // for each text fragment
  1127. std::forward_list<fragment_buffer_variant>::iterator it = buffer.begin();
  1128. while (it != buffer.end()) {
  1129. auto & fragment = (*it);
  1130. // if a fragment is text ( not yet processed )
  1131. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  1132. const auto & raw_text = fragment.raw_text;
  1133. auto raw_text_base_offset = fragment.offset;
  1134. auto raw_text_base_length = fragment.length;
  1135. // loop over the text
  1136. while (true) {
  1137. // find the first occurrence of a given special token in this fragment
  1138. // passing offset argument only limit the "search area" but match coordinates
  1139. // are still relative to the source full raw_text
  1140. auto match = raw_text.find(special_token, raw_text_base_offset);
  1141. // no occurrences found, stop processing this fragment for a given special token
  1142. if (match == std::string::npos) break;
  1143. // check if match is within bounds of offset <-> length
  1144. if (match + special_token.length() > raw_text_base_offset + raw_text_base_length) break;
  1145. #ifdef PRETOKENIZERDEBUG
  1146. LLAMA_LOG_WARN("FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  1147. #endif
  1148. auto source = std::distance(buffer.begin(), it);
  1149. // if match is further than base offset
  1150. // then we have some text to the left of it
  1151. if (match > raw_text_base_offset) {
  1152. // left
  1153. const int64_t left_reminder_offset = raw_text_base_offset + 0;
  1154. int64_t left_reminder_length = match - raw_text_base_offset;
  1155. if (data.attr & LLAMA_TOKEN_ATTR_LSTRIP) {
  1156. while (left_reminder_length > 0 && isspace(raw_text[left_reminder_offset + left_reminder_length - 1])) {
  1157. left_reminder_length--;
  1158. }
  1159. }
  1160. if (left_reminder_length > 0) {
  1161. buffer.emplace_after(it, raw_text, left_reminder_offset, left_reminder_length);
  1162. it++;
  1163. }
  1164. #ifdef PRETOKENIZERDEBUG
  1165. LLAMA_LOG_WARN("FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str());
  1166. #endif
  1167. }
  1168. // special token
  1169. buffer.emplace_after(it, special_id);
  1170. it++;
  1171. // right
  1172. if (match + special_token.length() < raw_text_base_offset + raw_text_base_length) {
  1173. int64_t right_reminder_offset = match + special_token.length();
  1174. int64_t right_reminder_length = raw_text_base_length - ((match - raw_text_base_offset) + special_token.length());
  1175. if (data.attr & LLAMA_TOKEN_ATTR_RSTRIP) {
  1176. while (right_reminder_length > 0 && isspace(raw_text[right_reminder_offset])) {
  1177. right_reminder_offset++;
  1178. right_reminder_length--;
  1179. }
  1180. }
  1181. if (right_reminder_length > 0) {
  1182. buffer.emplace_after(it, raw_text, right_reminder_offset, right_reminder_length);
  1183. it++;
  1184. }
  1185. #ifdef PRETOKENIZERDEBUG
  1186. LLAMA_LOG_WARN("FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str());
  1187. #endif
  1188. if (source == 0) {
  1189. buffer.erase_after(buffer.before_begin());
  1190. } else {
  1191. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  1192. }
  1193. // repeat for the right side
  1194. raw_text_base_offset = right_reminder_offset;
  1195. raw_text_base_length = right_reminder_length;
  1196. #ifdef PRETOKENIZERDEBUG
  1197. LLAMA_LOG_WARN("RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  1198. #endif
  1199. } else {
  1200. if (source == 0) {
  1201. buffer.erase_after(buffer.before_begin());
  1202. } else {
  1203. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  1204. }
  1205. break;
  1206. }
  1207. }
  1208. }
  1209. it++;
  1210. }
  1211. }
  1212. }
  1213. std::vector<llama_vocab::id> llama_tokenize_internal(
  1214. const llama_vocab & vocab,
  1215. std::string raw_text,
  1216. bool add_special,
  1217. bool parse_special) {
  1218. GGML_ASSERT(vocab.tokenizer && "Tokenizer not initialized. Call llama_vocab::init_tokenizer() first.");
  1219. std::vector<llama_vocab::id> output;
  1220. std::forward_list<fragment_buffer_variant> fragment_buffer;
  1221. if (!raw_text.empty()) {
  1222. fragment_buffer.emplace_front(raw_text, 0, raw_text.length());
  1223. tokenizer_st_partition(vocab, fragment_buffer, parse_special);
  1224. }
  1225. switch (vocab.type) {
  1226. case LLAMA_VOCAB_TYPE_SPM:
  1227. {
  1228. // OG tokenizer behavior:
  1229. //
  1230. // tokenizer.encode('', add_special_tokens=True) returns [1]
  1231. // tokenizer.encode('', add_special_tokens=False) returns []
  1232. bool is_prev_special = true; // prefix with space if first token
  1233. if (add_special && vocab.tokenizer_add_bos) {
  1234. GGML_ASSERT(vocab.special_bos_id != -1);
  1235. output.push_back(vocab.special_bos_id);
  1236. is_prev_special = true;
  1237. }
  1238. for (const auto & fragment : fragment_buffer) {
  1239. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  1240. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  1241. // prefix with space if previous is special
  1242. if (vocab.tokenizer_add_space_prefix && is_prev_special) {
  1243. raw_text = " " + raw_text;
  1244. }
  1245. #ifdef PRETOKENIZERDEBUG
  1246. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  1247. #endif
  1248. llama_escape_whitespace(raw_text);
  1249. llm_tokenizer_spm_session session(vocab);
  1250. session.tokenize(raw_text, output);
  1251. is_prev_special = false;
  1252. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  1253. output.push_back(fragment.token);
  1254. is_prev_special = true;
  1255. }
  1256. }
  1257. if (add_special && vocab.tokenizer_add_bos && output.size() >= 2 && output[1] == vocab.special_bos_id) {
  1258. LLAMA_LOG_WARN(
  1259. "%s: Added a BOS token to the prompt as specified by the model but the prompt "
  1260. "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
  1261. "Are you sure this is what you want?\n", __FUNCTION__);
  1262. }
  1263. if (add_special && vocab.tokenizer_add_eos) {
  1264. GGML_ASSERT(vocab.special_eos_id != -1);
  1265. output.push_back(vocab.special_eos_id);
  1266. }
  1267. } break;
  1268. case LLAMA_VOCAB_TYPE_BPE:
  1269. {
  1270. llm_tokenizer_bpe_session session(vocab);
  1271. // it calls some other methods that are not exist in llm_tokenizer,
  1272. // here just cast it to bpe tokenizer object
  1273. if (add_special) {
  1274. session.append_bos(output);
  1275. }
  1276. for (const auto & fragment : fragment_buffer) {
  1277. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  1278. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  1279. #ifdef PRETOKENIZERDEBUG
  1280. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  1281. #endif
  1282. session.tokenize(raw_text, output);
  1283. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  1284. session.append(fragment.token, output);
  1285. }
  1286. }
  1287. if (add_special) {
  1288. session.append_eos(output);
  1289. session.check_double_bos_eos(output);
  1290. }
  1291. } break;
  1292. case LLAMA_VOCAB_TYPE_WPM:
  1293. {
  1294. if (add_special) {
  1295. GGML_ASSERT(vocab.special_cls_id != -1);
  1296. output.push_back(vocab.special_cls_id);
  1297. }
  1298. llm_tokenizer_wpm_session session(vocab);
  1299. for (const auto & fragment : fragment_buffer) {
  1300. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  1301. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  1302. #ifdef PRETOKENIZERDEBUG
  1303. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  1304. #endif
  1305. session.tokenize(raw_text, output);
  1306. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  1307. output.push_back(fragment.token);
  1308. }
  1309. }
  1310. if (add_special) {
  1311. GGML_ASSERT(vocab.special_sep_id != -1);
  1312. output.push_back(vocab.special_sep_id);
  1313. }
  1314. } break;
  1315. case LLAMA_VOCAB_TYPE_UGM:
  1316. {
  1317. if (add_special && vocab.tokenizer_add_bos) {
  1318. GGML_ASSERT(vocab.special_bos_id != -1);
  1319. output.push_back(vocab.special_bos_id);
  1320. }
  1321. llm_tokenizer_ugm_session session(vocab);
  1322. for (const auto & fragment : fragment_buffer) {
  1323. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  1324. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  1325. #ifdef PRETOKENIZERDEBUG
  1326. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  1327. #endif
  1328. session.tokenize(raw_text, output);
  1329. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  1330. output.push_back(fragment.token);
  1331. }
  1332. }
  1333. if (add_special && vocab.tokenizer_add_bos && output.size() >= 2 && output[1] == vocab.special_bos_id) {
  1334. LLAMA_LOG_WARN(
  1335. "%s: Added a BOS token to the prompt as specified by the model but the prompt "
  1336. "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
  1337. "Are you sure this is what you want?\n", __FUNCTION__);
  1338. }
  1339. if (add_special && vocab.tokenizer_add_eos) {
  1340. GGML_ASSERT(vocab.special_eos_id != -1);
  1341. output.push_back(vocab.special_eos_id);
  1342. }
  1343. } break;
  1344. case LLAMA_VOCAB_TYPE_RWKV:
  1345. {
  1346. llm_tokenizer_rwkv_session session(vocab);
  1347. for (const auto & fragment : fragment_buffer) {
  1348. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  1349. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  1350. #ifdef PRETOKENIZERDEBUG
  1351. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  1352. #endif
  1353. session.tokenize(raw_text, output);
  1354. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  1355. output.push_back(fragment.token);
  1356. }
  1357. }
  1358. } break;
  1359. case LLAMA_VOCAB_TYPE_NONE:
  1360. GGML_ABORT("fatal error");
  1361. }
  1362. return output;
  1363. }
  1364. llama_token llama_byte_to_token_impl(const llama_vocab & vocab, uint8_t ch) {
  1365. GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
  1366. static const char * hex = "0123456789ABCDEF";
  1367. switch (llama_vocab_get_type(vocab)) {
  1368. case LLAMA_VOCAB_TYPE_SPM:
  1369. case LLAMA_VOCAB_TYPE_UGM: {
  1370. const char buf[7] = { '<', '0', 'x', hex[ch >> 4], hex[ch & 15], '>', 0 };
  1371. auto token = vocab.token_to_id.find(buf);
  1372. if (token != vocab.token_to_id.end()) {
  1373. return (*token).second;
  1374. }
  1375. // Try to fall back to just the byte as a string
  1376. const char buf2[2] = { (char)ch, 0 };
  1377. return vocab.token_to_id.at(buf2);
  1378. }
  1379. case LLAMA_VOCAB_TYPE_WPM:
  1380. case LLAMA_VOCAB_TYPE_BPE: {
  1381. return vocab.token_to_id.at(unicode_byte_to_utf8(ch));
  1382. }
  1383. default:
  1384. GGML_ABORT("fatal error");
  1385. }
  1386. }
  1387. const char * llama_token_get_text_impl(const struct llama_vocab & vocab, llama_token token) {
  1388. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  1389. return vocab.id_to_token[token].text.c_str();
  1390. }
  1391. float llama_token_get_score_impl(const struct llama_vocab & vocab, llama_token token) {
  1392. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  1393. return vocab.id_to_token[token].score;
  1394. }
  1395. llama_token_attr llama_token_get_attr_impl(const struct llama_vocab & vocab, llama_token token) {
  1396. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  1397. return vocab.id_to_token[token].attr;
  1398. }
  1399. bool llama_token_is_eog_impl(const struct llama_vocab & vocab, llama_token token) {
  1400. return token != -1 && vocab.special_eog_ids.count(token) > 0;
  1401. }
  1402. bool llama_token_is_control_impl(const struct llama_vocab & vocab, llama_token token) {
  1403. return llama_is_control_token(vocab, token);
  1404. }
  1405. llama_token llama_token_bos_impl(const struct llama_vocab & vocab) {
  1406. return vocab.type != LLAMA_VOCAB_TYPE_WPM ? vocab.special_bos_id : vocab.special_cls_id;
  1407. }
  1408. llama_token llama_token_eos_impl(const struct llama_vocab & vocab) {
  1409. return vocab.special_eos_id;
  1410. }
  1411. llama_token llama_token_eot_impl(const struct llama_vocab & vocab) {
  1412. return vocab.special_eot_id;
  1413. }
  1414. llama_token llama_token_eom_impl(const struct llama_vocab & vocab) {
  1415. return vocab.special_eom_id;
  1416. }
  1417. llama_token llama_token_cls_impl(const struct llama_vocab & vocab) {
  1418. return vocab.special_cls_id;
  1419. }
  1420. llama_token llama_token_sep_impl(const struct llama_vocab & vocab) {
  1421. return vocab.special_sep_id;
  1422. }
  1423. llama_token llama_token_nl_impl(const struct llama_vocab & vocab) {
  1424. return vocab.linefeed_id;
  1425. }
  1426. llama_token llama_token_pad_impl(const struct llama_vocab & vocab) {
  1427. return vocab.special_pad_id;
  1428. }
  1429. bool llama_add_bos_token_impl(const struct llama_vocab & vocab) {
  1430. return vocab.tokenizer_add_bos;
  1431. }
  1432. bool llama_add_eos_token_impl(const struct llama_vocab & vocab) {
  1433. return vocab.tokenizer_add_eos;
  1434. }
  1435. llama_token llama_token_prefix_impl(const struct llama_vocab & vocab) {
  1436. return vocab.special_fim_pre_id;
  1437. }
  1438. llama_token llama_token_middle_impl(const struct llama_vocab & vocab) {
  1439. return vocab.special_fim_mid_id;
  1440. }
  1441. llama_token llama_token_suffix_impl(const struct llama_vocab & vocab) {
  1442. return vocab.special_fim_suf_id;
  1443. }
  1444. llama_token llama_token_fim_pre_impl(const struct llama_vocab & vocab) {
  1445. return vocab.special_fim_pre_id;
  1446. }
  1447. llama_token llama_token_fim_suf_impl(const struct llama_vocab & vocab) {
  1448. return vocab.special_fim_suf_id;
  1449. }
  1450. llama_token llama_token_fim_mid_impl(const struct llama_vocab & vocab) {
  1451. return vocab.special_fim_mid_id;
  1452. }
  1453. llama_token llama_token_fim_pad_impl(const struct llama_vocab & vocab) {
  1454. return vocab.special_fim_pad_id;
  1455. }
  1456. llama_token llama_token_fim_rep_impl(const struct llama_vocab & vocab) {
  1457. return vocab.special_fim_rep_id;
  1458. }
  1459. llama_token llama_token_fim_sep_impl(const struct llama_vocab & vocab) {
  1460. return vocab.special_fim_sep_id;
  1461. }
  1462. int32_t llama_tokenize_impl(
  1463. const struct llama_vocab & vocab,
  1464. const char * text,
  1465. int32_t text_len,
  1466. llama_token * tokens,
  1467. int32_t n_tokens_max,
  1468. bool add_special,
  1469. bool parse_special) {
  1470. auto res = llama_tokenize_internal(vocab, std::string(text, text_len), add_special, parse_special);
  1471. if (n_tokens_max < (int) res.size()) {
  1472. // LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
  1473. return -((int) res.size());
  1474. }
  1475. for (size_t i = 0; i < res.size(); i++) {
  1476. tokens[i] = res[i];
  1477. }
  1478. return res.size();
  1479. }
  1480. static std::string llama_decode_text(const std::string & text) {
  1481. std::string decoded_text;
  1482. const auto cpts = unicode_cpts_from_utf8(text);
  1483. for (const auto cpt : cpts) {
  1484. const auto utf8 = unicode_cpt_to_utf8(cpt);
  1485. try {
  1486. decoded_text += unicode_utf8_to_byte(utf8);
  1487. } catch (const std::out_of_range & /*e*/) {
  1488. decoded_text += "[UNK_BYTE_0x";
  1489. for (const auto c : utf8) {
  1490. decoded_text += format("%02x", (uint8_t) c);
  1491. }
  1492. decoded_text += text + "]";
  1493. }
  1494. }
  1495. return decoded_text;
  1496. }
  1497. // does not write null-terminator to buf
  1498. int32_t llama_token_to_piece_impl(const struct llama_vocab & vocab, llama_token token, char * buf, int32_t length, int32_t lstrip, bool special) {
  1499. // ref: https://github.com/ggerganov/llama.cpp/pull/7587#discussion_r1620983843
  1500. static const int attr_special = LLAMA_TOKEN_ATTR_UNKNOWN | LLAMA_TOKEN_ATTR_CONTROL;
  1501. const llama_token_attr attr = llama_token_get_attr_impl(vocab, token);
  1502. if (!special && (attr & attr_special)) {
  1503. return 0;
  1504. }
  1505. // copy piece chars to output text buffer
  1506. // skip up to 'lstrip' leading spaces before copying
  1507. auto _try_copy = [=] (const char * token, size_t size) -> int32_t {
  1508. for (int32_t i = 0; i < lstrip && size && *token == ' '; ++i) {
  1509. token++;
  1510. size--;
  1511. }
  1512. if (length < (int32_t)size) {
  1513. return -(int32_t) size;
  1514. }
  1515. memcpy(buf, token, size);
  1516. return (int32_t) size;
  1517. };
  1518. // if we have a cache - use it
  1519. {
  1520. const auto & cache = vocab.cache_token_to_piece;
  1521. if (!cache.empty()) {
  1522. const auto & result = cache.at(token);
  1523. return _try_copy(result.data(), result.size());
  1524. }
  1525. }
  1526. if (0 <= token && token < (int32_t) vocab.id_to_token.size()) {
  1527. const std::string & token_text = vocab.id_to_token[token].text;
  1528. switch (llama_vocab_get_type(vocab)) {
  1529. case LLAMA_VOCAB_TYPE_WPM:
  1530. case LLAMA_VOCAB_TYPE_SPM:
  1531. case LLAMA_VOCAB_TYPE_UGM: {
  1532. // NOTE: we accept all unsupported token types,
  1533. // suppressing them like CONTROL tokens.
  1534. if (attr & (attr_special | LLAMA_TOKEN_ATTR_USER_DEFINED)) {
  1535. return _try_copy(token_text.data(), token_text.size());
  1536. }
  1537. if (attr & LLAMA_TOKEN_ATTR_NORMAL) {
  1538. std::string result = token_text;
  1539. llama_unescape_whitespace(result);
  1540. return _try_copy(result.data(), result.size());
  1541. }
  1542. if (attr & LLAMA_TOKEN_ATTR_BYTE) {
  1543. char byte = (char) llama_token_to_byte(vocab, token);
  1544. return _try_copy((char*) &byte, 1);
  1545. }
  1546. break;
  1547. }
  1548. case LLAMA_VOCAB_TYPE_BPE: {
  1549. // NOTE: we accept all unsupported token types,
  1550. // suppressing them like CONTROL tokens.
  1551. if (attr & (attr_special | LLAMA_TOKEN_ATTR_USER_DEFINED)) {
  1552. return _try_copy(token_text.data(), token_text.size());
  1553. }
  1554. if (attr & LLAMA_TOKEN_ATTR_NORMAL) {
  1555. std::string result = llama_decode_text(token_text);
  1556. return _try_copy(result.data(), result.size());
  1557. }
  1558. break;
  1559. }
  1560. case LLAMA_VOCAB_TYPE_RWKV: {
  1561. std::vector<uint8_t> result = llama_unescape_rwkv_token(token_text);
  1562. // If we don't have enough space, return an error
  1563. if (result.size() > (size_t)length) {
  1564. return -(int)result.size();
  1565. }
  1566. memcpy(buf, result.data(), result.size());
  1567. return (int)result.size();
  1568. }
  1569. default:
  1570. GGML_ABORT("fatal error");
  1571. }
  1572. }
  1573. return 0;
  1574. }
  1575. int32_t llama_detokenize_impl(
  1576. const struct llama_vocab & vocab,
  1577. const llama_token * tokens,
  1578. int32_t n_tokens,
  1579. char * text,
  1580. int32_t text_len_max,
  1581. bool remove_special,
  1582. bool unparse_special) {
  1583. if (vocab.type == LLAMA_VOCAB_TYPE_NONE) {
  1584. return 0;
  1585. }
  1586. GGML_ASSERT(vocab.tokenizer && "Tokenizer not initialized. Call llama_vocab::init_tokenizer() first.");
  1587. int32_t avail = text_len_max;
  1588. int32_t total = 0;
  1589. // remove the leading space
  1590. bool remove_space = vocab.tokenizer_add_space_prefix;
  1591. if (remove_special && vocab.tokenizer_add_bos) {
  1592. if (n_tokens > 0 && tokens[0] == vocab.special_bos_id) {
  1593. remove_space = false;
  1594. n_tokens--;
  1595. tokens++;
  1596. }
  1597. }
  1598. if (remove_special && vocab.tokenizer_add_eos) {
  1599. if (n_tokens > 0 && tokens[n_tokens-1] == vocab.special_eos_id) {
  1600. n_tokens--;
  1601. }
  1602. }
  1603. for (int32_t i = 0; i < n_tokens; ++i) {
  1604. GGML_ASSERT(avail >= 0);
  1605. int32_t n_chars = llama_token_to_piece_impl(vocab, tokens[i], text, avail, remove_space, unparse_special);
  1606. remove_space = false;
  1607. if (n_chars < 0) {
  1608. avail = 0;
  1609. total -= n_chars;
  1610. } else if (n_chars > 0) {
  1611. avail -= n_chars;
  1612. text += n_chars;
  1613. total += n_chars;
  1614. }
  1615. }
  1616. if (total > text_len_max) {
  1617. return -total;
  1618. }
  1619. if (vocab.tokenizer_clean_spaces) {
  1620. text -= total; // restart text
  1621. // first pass: characters ?!., //TODO: where do these characters come from?
  1622. const int32_t total1 = total;
  1623. total = total ? 1 : 0;
  1624. for (int32_t i = 1; i < total1; ++i) {
  1625. const char x = text[i];
  1626. if (text[i - 1] == ' ') {
  1627. if (x == '?' || x == '!' || x == '.' || x == ',') { // " ?", " !", " .", " ,"
  1628. total--; // remove space
  1629. }
  1630. }
  1631. text[total++] = x;
  1632. }
  1633. // second pass: strip single apostrophe between spaces
  1634. const int32_t total2 = total;
  1635. total = total ? 1 : 0;
  1636. for (int32_t i = 1; i < total2; ++i) {
  1637. const char x = text[i];
  1638. if (x == '\'' && i + 1 < total2 && text[i - 1] == ' ' && text[i + 1] == ' ') { // " ' "
  1639. total--; // remove prev space
  1640. text[++i] = '\0'; // remove next space
  1641. }
  1642. text[total++] = x;
  1643. }
  1644. // third pass: apostrophe contractions //NOTE: this makes sense?
  1645. const int32_t total3 = total;
  1646. total = total ? 1 : 0;
  1647. for (int32_t i = 1; i < total3; ++i) {
  1648. const char x = text[i];
  1649. if (text[i - 1] == ' ') {
  1650. if (x == '\'' && i + 1 < total3) {
  1651. const char x1 = text[i + 1];
  1652. if (x1 == 't' || x1 == 'd') { // " 't", " 'd"
  1653. //total--; // remove space
  1654. } else if (x1 == 's' || x1 == 'm') { // " 's", " 'm"
  1655. total--; // remove space
  1656. } else if (i + 2 < total3) {
  1657. const char x2 = text[i + 2];
  1658. if ((x1 == 'l' && x2 == 'l')) { // " 'll"
  1659. //total--; // remove space
  1660. } else if ((x1 == 'r' && x2 == 'e') || (x1 == 'v' && x2 == 'e')) { // " 're", " 've"
  1661. total--; // remove space
  1662. } else {
  1663. //total--; // remove space
  1664. }
  1665. } else {
  1666. //total--; // remove space
  1667. }
  1668. }
  1669. }
  1670. text[total++] = x;
  1671. }
  1672. }
  1673. return total <= text_len_max ? total : -total;
  1674. }
  1675. std::string llama_detokenize(const struct llama_vocab & vocab, const std::vector<llama_token> & tokens, bool special) {
  1676. std::string text;
  1677. text.resize(std::max(text.capacity(), tokens.size()));
  1678. int32_t n_chars = llama_detokenize_impl(vocab, tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special);
  1679. if (n_chars < 0) {
  1680. text.resize(-n_chars);
  1681. n_chars = llama_detokenize_impl(vocab, tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special);
  1682. GGML_ASSERT(n_chars <= (int32_t)text.size()); // whitespace trimming is performed after per-token detokenization
  1683. }
  1684. text.resize(n_chars);
  1685. // NOTE: the original tokenizer decodes bytes after collecting the pieces.
  1686. return text;
  1687. }