llama-hparams.cpp 5.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231
  1. #include "llama-hparams.h"
  2. #include "ggml.h"
  3. #include <cassert>
  4. void llama_hparams::set_swa_pattern(uint32_t n_pattern, bool dense_first) {
  5. if (dense_first) {
  6. for (uint32_t il = 0; il < n_layer; ++il) {
  7. swa_layers[il] = n_pattern == 0 || (il % n_pattern != 0);
  8. }
  9. } else {
  10. for (uint32_t il = 0; il < n_layer; ++il) {
  11. swa_layers[il] = n_pattern == 0 || (il % n_pattern < (n_pattern - 1));
  12. }
  13. }
  14. }
  15. bool llama_hparams::is_swa_any() const {
  16. for (uint32_t il = 0; il < n_layer; ++il) {
  17. if (swa_layers[il]) {
  18. return true;
  19. }
  20. }
  21. return false;
  22. }
  23. uint32_t llama_hparams::n_head(uint32_t il) const {
  24. if (il < n_layer) {
  25. return n_head_arr[il];
  26. }
  27. GGML_ABORT("fatal error");
  28. }
  29. uint32_t llama_hparams::n_head_kv(uint32_t il) const {
  30. if (il < n_layer) {
  31. return n_head_kv_arr[il];
  32. }
  33. GGML_ABORT("fatal error");
  34. }
  35. uint32_t llama_hparams::n_ff(uint32_t il) const {
  36. if (il < n_layer) {
  37. return n_ff_arr[il];
  38. }
  39. GGML_ABORT("fatal error");
  40. }
  41. uint32_t llama_hparams::n_gqa(uint32_t il) const {
  42. const uint32_t n_head = this->n_head(il);
  43. const uint32_t n_head_kv = this->n_head_kv(il);
  44. if (n_head_kv == 0) {
  45. return 0;
  46. }
  47. return n_head/n_head_kv;
  48. }
  49. uint32_t llama_hparams::n_embd_inp() const {
  50. uint32_t n_embd_inp = n_embd;
  51. if (n_deepstack_layers > 0) {
  52. n_embd_inp += n_embd * n_deepstack_layers;
  53. }
  54. return n_embd_inp;
  55. }
  56. uint32_t llama_hparams::n_embd_k_gqa(uint32_t il) const {
  57. const uint32_t n_head_kv = this->n_head_kv(il);
  58. return n_embd_head_k * n_head_kv;
  59. }
  60. uint32_t llama_hparams::n_embd_v_gqa(uint32_t il) const {
  61. const uint32_t n_head_kv = this->n_head_kv(il);
  62. return n_embd_head_v * n_head_kv;
  63. }
  64. bool llama_hparams::is_n_embd_k_gqa_variable() const {
  65. const uint32_t val = n_embd_k_gqa();
  66. for (uint32_t il = 0; il < n_layer; ++il) {
  67. if (val != n_embd_k_gqa(il)) {
  68. return true;
  69. }
  70. }
  71. return false;
  72. }
  73. bool llama_hparams::is_n_embd_v_gqa_variable() const {
  74. const uint32_t val = n_embd_v_gqa();
  75. for (uint32_t il = 0; il < n_layer; ++il) {
  76. if (val != n_embd_v_gqa(il)) {
  77. return true;
  78. }
  79. }
  80. return false;
  81. }
  82. uint32_t llama_hparams::n_embd_k_gqa_max() const {
  83. uint32_t val = n_embd_k_gqa();
  84. for (uint32_t il = 0; il < n_layer; ++il) {
  85. val = std::max(val, n_embd_k_gqa(il));
  86. }
  87. return val;
  88. }
  89. uint32_t llama_hparams::n_embd_v_gqa_max() const {
  90. uint32_t val = n_embd_v_gqa();
  91. for (uint32_t il = 0; il < n_layer; ++il) {
  92. val = std::max(val, n_embd_v_gqa(il));
  93. }
  94. return val;
  95. }
  96. uint32_t llama_hparams::n_embd_r() const {
  97. if (wkv_head_size != 0) {
  98. // for RWKV models
  99. return token_shift_count * n_embd;
  100. }
  101. if (n_shortconv_l_cache != 0) {
  102. // for LFM2 models
  103. return n_embd * (n_shortconv_l_cache - 1);
  104. }
  105. // TODO: maybe support other convolution strides than 1
  106. // NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed
  107. // Corresponds to Mamba's conv_states size
  108. return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * (ssm_d_inner + 2*ssm_n_group*ssm_d_state);
  109. }
  110. uint32_t llama_hparams::n_embd_s() const {
  111. if (wkv_head_size != 0) {
  112. // corresponds to RWKV's wkv_states size
  113. return n_embd * wkv_head_size;
  114. }
  115. // corresponds to Mamba's ssm_states size
  116. return ssm_d_state * ssm_d_inner;
  117. }
  118. bool llama_hparams::is_recurrent(uint32_t il) const {
  119. if (il < n_layer) {
  120. return recurrent_layer_arr[il];
  121. }
  122. GGML_ABORT("%s: il (%u) out of bounds (n_layer: %u)\n", __func__, il, n_layer);
  123. }
  124. uint32_t llama_hparams::n_pos_per_embd() const {
  125. return rope_type == LLAMA_ROPE_TYPE_MROPE || rope_type == LLAMA_ROPE_TYPE_IMROPE ? 4 : 1;
  126. }
  127. bool llama_hparams::is_swa(uint32_t il) const {
  128. if (il < n_layer) {
  129. return swa_layers[il];
  130. }
  131. GGML_ABORT("fatal error");
  132. }
  133. bool llama_hparams::has_kv(uint32_t il) const {
  134. if (n_layer_kv_from_start >= 0) {
  135. if (il < (uint32_t) n_layer_kv_from_start) {
  136. return true;
  137. }
  138. return false;
  139. }
  140. // by default, all layers have kv
  141. return true;
  142. }
  143. uint32_t llama_hparams::n_layer_kv() const {
  144. uint32_t res = 0;
  145. for (uint32_t il = 0; il < n_layer; ++il) {
  146. if (has_kv(il)) {
  147. res++;
  148. }
  149. }
  150. return res;
  151. }
  152. bool llama_hparams::is_masked_swa(uint32_t n_swa, llama_swa_type swa_type, llama_pos p0, llama_pos p1) {
  153. assert(p0 >= 0 && p1 >= 0);
  154. switch (swa_type) {
  155. case LLAMA_SWA_TYPE_NONE:
  156. {
  157. } break;
  158. case LLAMA_SWA_TYPE_STANDARD:
  159. {
  160. if (p1 - p0 >= (int32_t) n_swa) {
  161. return true;
  162. }
  163. } break;
  164. case LLAMA_SWA_TYPE_CHUNKED:
  165. {
  166. const llama_pos pos_chunk_start = (p1 / n_swa) * n_swa;
  167. if (p0 < pos_chunk_start) {
  168. return true;
  169. }
  170. } break;
  171. case LLAMA_SWA_TYPE_SYMMETRIC:
  172. {
  173. const int32_t half_n_swa = (int32_t) n_swa / 2;
  174. const int32_t pos_diff = p1 - p0;
  175. // Mask if outside the symmetric window
  176. if (pos_diff < -half_n_swa || pos_diff > half_n_swa) {
  177. return true;
  178. }
  179. } break;
  180. }
  181. return false;
  182. }