clip.cpp 217 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108
  1. // NOTE: This is modified from clip.cpp only for LLaVA,
  2. // so there might be still unnecessary artifacts hanging around
  3. // I'll gradually clean and extend it
  4. // Note: Even when using identical normalized image inputs (see normalize_image_u8_to_f32()) we have a significant difference in resulting embeddings compared to pytorch
  5. #include "clip.h"
  6. #include "clip-impl.h"
  7. #include "ggml.h"
  8. #include "ggml-cpp.h"
  9. #include "ggml-alloc.h"
  10. #include "ggml-backend.h"
  11. #include "gguf.h"
  12. #include <cassert>
  13. #include <cmath>
  14. #include <cstdlib>
  15. #include <cstring>
  16. #include <fstream>
  17. #include <map>
  18. #include <stdexcept>
  19. #include <unordered_set>
  20. #include <vector>
  21. #include <cinttypes>
  22. #include <limits>
  23. #include <array>
  24. #include <functional>
  25. // TODO: allow to pass callback from user code
  26. struct clip_logger_state g_logger_state = {GGML_LOG_LEVEL_CONT, clip_log_callback_default, NULL};
  27. enum ffn_op_type {
  28. FFN_GELU,
  29. FFN_GELU_ERF,
  30. FFN_SILU,
  31. FFN_GELU_QUICK,
  32. };
  33. enum norm_type {
  34. NORM_TYPE_NORMAL,
  35. NORM_TYPE_RMS,
  36. };
  37. //#define CLIP_DEBUG_FUNCTIONS
  38. #ifdef CLIP_DEBUG_FUNCTIONS
  39. static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::string& filename) {
  40. std::ofstream file(filename, std::ios::binary);
  41. if (!file.is_open()) {
  42. LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
  43. return;
  44. }
  45. // PPM header: P6 format, width, height, and max color value
  46. file << "P6\n" << img.nx << " " << img.ny << "\n255\n";
  47. // Write pixel data
  48. for (size_t i = 0; i < img.buf.size(); i += 3) {
  49. // PPM expects binary data in RGB format, which matches our image buffer
  50. file.write(reinterpret_cast<const char*>(&img.buf[i]), 3);
  51. }
  52. file.close();
  53. }
  54. static void clip_image_save_to_bmp(const clip_image_u8& img, const std::string& filename) {
  55. std::ofstream file(filename, std::ios::binary);
  56. if (!file.is_open()) {
  57. LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
  58. return;
  59. }
  60. int fileSize = 54 + 3 * img.nx * img.ny; // File header + info header + pixel data
  61. int bytesPerPixel = 3;
  62. int widthInBytes = img.nx * bytesPerPixel;
  63. int paddingAmount = (4 - (widthInBytes % 4)) % 4;
  64. int stride = widthInBytes + paddingAmount;
  65. // Bitmap file header
  66. unsigned char fileHeader[14] = {
  67. 'B','M', // Signature
  68. 0,0,0,0, // Image file size in bytes
  69. 0,0,0,0, // Reserved
  70. 54,0,0,0 // Start of pixel array
  71. };
  72. // Total file size
  73. fileSize = 54 + (stride * img.ny);
  74. fileHeader[2] = (unsigned char)(fileSize);
  75. fileHeader[3] = (unsigned char)(fileSize >> 8);
  76. fileHeader[4] = (unsigned char)(fileSize >> 16);
  77. fileHeader[5] = (unsigned char)(fileSize >> 24);
  78. // Bitmap information header (BITMAPINFOHEADER)
  79. unsigned char infoHeader[40] = {
  80. 40,0,0,0, // Size of this header (40 bytes)
  81. 0,0,0,0, // Image width
  82. 0,0,0,0, // Image height
  83. 1,0, // Number of color planes
  84. 24,0, // Bits per pixel
  85. 0,0,0,0, // No compression
  86. 0,0,0,0, // Image size (can be 0 for no compression)
  87. 0,0,0,0, // X pixels per meter (not specified)
  88. 0,0,0,0, // Y pixels per meter (not specified)
  89. 0,0,0,0, // Total colors (color table not used)
  90. 0,0,0,0 // Important colors (all are important)
  91. };
  92. // Width and height in the information header
  93. infoHeader[4] = (unsigned char)(img.nx);
  94. infoHeader[5] = (unsigned char)(img.nx >> 8);
  95. infoHeader[6] = (unsigned char)(img.nx >> 16);
  96. infoHeader[7] = (unsigned char)(img.nx >> 24);
  97. infoHeader[8] = (unsigned char)(img.ny);
  98. infoHeader[9] = (unsigned char)(img.ny >> 8);
  99. infoHeader[10] = (unsigned char)(img.ny >> 16);
  100. infoHeader[11] = (unsigned char)(img.ny >> 24);
  101. // Write file headers
  102. file.write(reinterpret_cast<char*>(fileHeader), sizeof(fileHeader));
  103. file.write(reinterpret_cast<char*>(infoHeader), sizeof(infoHeader));
  104. // Pixel data
  105. std::vector<unsigned char> padding(3, 0); // Max padding size to be added to each row
  106. for (int y = img.ny - 1; y >= 0; --y) { // BMP files are stored bottom-to-top
  107. for (int x = 0; x < img.nx; ++x) {
  108. // Each pixel
  109. size_t pixelIndex = (y * img.nx + x) * 3;
  110. unsigned char pixel[3] = {
  111. img.buf[pixelIndex + 2], // BMP stores pixels in BGR format
  112. img.buf[pixelIndex + 1],
  113. img.buf[pixelIndex]
  114. };
  115. file.write(reinterpret_cast<char*>(pixel), 3);
  116. }
  117. // Write padding for the row
  118. file.write(reinterpret_cast<char*>(padding.data()), paddingAmount);
  119. }
  120. file.close();
  121. }
  122. // debug function to convert f32 to u8
  123. static void clip_image_convert_f32_to_u8(const clip_image_f32& src, clip_image_u8& dst) {
  124. dst.nx = src.nx;
  125. dst.ny = src.ny;
  126. dst.buf.resize(3 * src.nx * src.ny);
  127. for (size_t i = 0; i < src.buf.size(); ++i) {
  128. dst.buf[i] = static_cast<uint8_t>(std::min(std::max(int(src.buf[i] * 255.0f), 0), 255));
  129. }
  130. }
  131. #endif
  132. //
  133. // clip layers
  134. //
  135. enum patch_merge_type {
  136. PATCH_MERGE_FLAT,
  137. PATCH_MERGE_SPATIAL_UNPAD,
  138. };
  139. struct clip_hparams {
  140. int32_t image_size = 0;
  141. int32_t patch_size = 0;
  142. int32_t n_embd = 0;
  143. int32_t n_ff = 0;
  144. int32_t projection_dim = 0;
  145. int32_t n_head = 0;
  146. int32_t n_layer = 0;
  147. // idefics3
  148. int32_t image_longest_edge = 0;
  149. int32_t image_min_pixels = -1;
  150. int32_t image_max_pixels = -1;
  151. int32_t n_merge = 0; // number of patch merges **per-side**
  152. float image_mean[3];
  153. float image_std[3];
  154. // for models using dynamic image size, we need to have a smaller image size to warmup
  155. // otherwise, user will get OOM everytime they load the model
  156. int32_t warmup_image_size = 0;
  157. int32_t warmup_audio_size = 3000;
  158. ffn_op_type ffn_op = FFN_GELU;
  159. patch_merge_type mm_patch_merge_type = PATCH_MERGE_FLAT;
  160. float eps = 1e-6;
  161. float rope_theta = 0.0;
  162. std::vector<clip_image_size> image_res_candidates; // for llava-uhd style models
  163. int32_t image_crop_resolution;
  164. std::unordered_set<int32_t> vision_feature_layer;
  165. int32_t attn_window_size = 0;
  166. int32_t n_wa_pattern = 0;
  167. // audio
  168. int32_t n_mel_bins = 0; // whisper preprocessor
  169. int32_t proj_stack_factor = 0; // ultravox
  170. // legacy
  171. bool has_llava_projector = false;
  172. int minicpmv_version = 0;
  173. int32_t minicpmv_query_num = 0; // MiniCPM-V query number
  174. // custom value provided by user, can be undefined if not set
  175. int32_t custom_image_min_tokens = -1;
  176. int32_t custom_image_max_tokens = -1;
  177. void set_limit_image_tokens(int n_tokens_min, int n_tokens_max) {
  178. const int cur_merge = n_merge == 0 ? 1 : n_merge;
  179. const int patch_area = patch_size * patch_size * cur_merge * cur_merge;
  180. image_min_pixels = (custom_image_min_tokens > 0 ? custom_image_min_tokens : n_tokens_min) * patch_area;
  181. image_max_pixels = (custom_image_max_tokens > 0 ? custom_image_max_tokens : n_tokens_max) * patch_area;
  182. warmup_image_size = static_cast<int>(std::sqrt(image_max_pixels));
  183. }
  184. void set_warmup_n_tokens(int n_tokens) {
  185. int n_tok_per_side = static_cast<int>(std::sqrt(n_tokens));
  186. GGML_ASSERT(n_tok_per_side * n_tok_per_side == n_tokens && "n_tokens must be n*n");
  187. const int cur_merge = n_merge == 0 ? 1 : n_merge;
  188. warmup_image_size = n_tok_per_side * patch_size * cur_merge;
  189. // TODO: support warmup size for custom token numbers
  190. }
  191. };
  192. struct clip_layer {
  193. // attention
  194. ggml_tensor * k_w = nullptr;
  195. ggml_tensor * k_b = nullptr;
  196. ggml_tensor * q_w = nullptr;
  197. ggml_tensor * q_b = nullptr;
  198. ggml_tensor * v_w = nullptr;
  199. ggml_tensor * v_b = nullptr;
  200. ggml_tensor * qkv_w = nullptr;
  201. ggml_tensor * qkv_b = nullptr;
  202. ggml_tensor * o_w = nullptr;
  203. ggml_tensor * o_b = nullptr;
  204. ggml_tensor * k_norm = nullptr;
  205. ggml_tensor * q_norm = nullptr;
  206. // layernorm 1
  207. ggml_tensor * ln_1_w = nullptr;
  208. ggml_tensor * ln_1_b = nullptr;
  209. ggml_tensor * ff_up_w = nullptr;
  210. ggml_tensor * ff_up_b = nullptr;
  211. ggml_tensor * ff_gate_w = nullptr;
  212. ggml_tensor * ff_gate_b = nullptr;
  213. ggml_tensor * ff_down_w = nullptr;
  214. ggml_tensor * ff_down_b = nullptr;
  215. // layernorm 2
  216. ggml_tensor * ln_2_w = nullptr;
  217. ggml_tensor * ln_2_b = nullptr;
  218. // layer scale (no bias)
  219. ggml_tensor * ls_1_w = nullptr;
  220. ggml_tensor * ls_2_w = nullptr;
  221. // qwen3vl deepstack merger
  222. ggml_tensor * deepstack_norm_w = nullptr;
  223. ggml_tensor * deepstack_norm_b = nullptr;
  224. ggml_tensor * deepstack_fc1_w = nullptr;
  225. ggml_tensor * deepstack_fc1_b = nullptr;
  226. ggml_tensor * deepstack_fc2_w = nullptr;
  227. ggml_tensor * deepstack_fc2_b = nullptr;
  228. bool has_deepstack() const {
  229. return deepstack_fc1_w != nullptr;
  230. }
  231. };
  232. struct clip_model {
  233. clip_modality modality = CLIP_MODALITY_VISION;
  234. projector_type proj_type = PROJECTOR_TYPE_MLP;
  235. clip_hparams hparams;
  236. // embeddings
  237. ggml_tensor * class_embedding = nullptr;
  238. ggml_tensor * patch_embeddings_0 = nullptr;
  239. ggml_tensor * patch_embeddings_1 = nullptr; // second Conv2D kernel when we decouple Conv3D along temproal dimension (Qwen2VL)
  240. ggml_tensor * patch_bias = nullptr;
  241. ggml_tensor * position_embeddings = nullptr;
  242. ggml_tensor * pre_ln_w = nullptr;
  243. ggml_tensor * pre_ln_b = nullptr;
  244. std::vector<clip_layer> layers;
  245. int32_t n_deepstack_layers = 0; // used by Qwen3-VL, calculated from clip_layer
  246. ggml_tensor * post_ln_w;
  247. ggml_tensor * post_ln_b;
  248. ggml_tensor * projection; // TODO: rename it to fc (fully connected layer)
  249. ggml_tensor * mm_fc_w;
  250. ggml_tensor * mm_fc_b;
  251. // LLaVA projection
  252. ggml_tensor * mm_input_norm_w = nullptr;
  253. ggml_tensor * mm_input_norm_b = nullptr;
  254. ggml_tensor * mm_0_w = nullptr;
  255. ggml_tensor * mm_0_b = nullptr;
  256. ggml_tensor * mm_2_w = nullptr;
  257. ggml_tensor * mm_2_b = nullptr;
  258. ggml_tensor * image_newline = nullptr;
  259. // Yi type models with mlp+normalization projection
  260. ggml_tensor * mm_1_w = nullptr; // Yi type models have 0, 1, 3, 4
  261. ggml_tensor * mm_1_b = nullptr;
  262. ggml_tensor * mm_3_w = nullptr;
  263. ggml_tensor * mm_3_b = nullptr;
  264. ggml_tensor * mm_4_w = nullptr;
  265. ggml_tensor * mm_4_b = nullptr;
  266. // GLMV-Edge projection
  267. ggml_tensor * mm_model_adapter_conv_w = nullptr;
  268. ggml_tensor * mm_model_adapter_conv_b = nullptr;
  269. // MobileVLM projection
  270. ggml_tensor * mm_model_mlp_1_w = nullptr;
  271. ggml_tensor * mm_model_mlp_1_b = nullptr;
  272. ggml_tensor * mm_model_mlp_3_w = nullptr;
  273. ggml_tensor * mm_model_mlp_3_b = nullptr;
  274. ggml_tensor * mm_model_block_1_block_0_0_w = nullptr;
  275. ggml_tensor * mm_model_block_1_block_0_1_w = nullptr;
  276. ggml_tensor * mm_model_block_1_block_0_1_b = nullptr;
  277. ggml_tensor * mm_model_block_1_block_1_fc1_w = nullptr;
  278. ggml_tensor * mm_model_block_1_block_1_fc1_b = nullptr;
  279. ggml_tensor * mm_model_block_1_block_1_fc2_w = nullptr;
  280. ggml_tensor * mm_model_block_1_block_1_fc2_b = nullptr;
  281. ggml_tensor * mm_model_block_1_block_2_0_w = nullptr;
  282. ggml_tensor * mm_model_block_1_block_2_1_w = nullptr;
  283. ggml_tensor * mm_model_block_1_block_2_1_b = nullptr;
  284. ggml_tensor * mm_model_block_2_block_0_0_w = nullptr;
  285. ggml_tensor * mm_model_block_2_block_0_1_w = nullptr;
  286. ggml_tensor * mm_model_block_2_block_0_1_b = nullptr;
  287. ggml_tensor * mm_model_block_2_block_1_fc1_w = nullptr;
  288. ggml_tensor * mm_model_block_2_block_1_fc1_b = nullptr;
  289. ggml_tensor * mm_model_block_2_block_1_fc2_w = nullptr;
  290. ggml_tensor * mm_model_block_2_block_1_fc2_b = nullptr;
  291. ggml_tensor * mm_model_block_2_block_2_0_w = nullptr;
  292. ggml_tensor * mm_model_block_2_block_2_1_w = nullptr;
  293. ggml_tensor * mm_model_block_2_block_2_1_b = nullptr;
  294. // MobileVLM_V2 projection
  295. ggml_tensor * mm_model_mlp_0_w = nullptr;
  296. ggml_tensor * mm_model_mlp_0_b = nullptr;
  297. ggml_tensor * mm_model_mlp_2_w = nullptr;
  298. ggml_tensor * mm_model_mlp_2_b = nullptr;
  299. ggml_tensor * mm_model_peg_0_w = nullptr;
  300. ggml_tensor * mm_model_peg_0_b = nullptr;
  301. // MINICPMV projection
  302. ggml_tensor * mm_model_pos_embed_k = nullptr;
  303. ggml_tensor * mm_model_query = nullptr;
  304. ggml_tensor * mm_model_proj = nullptr;
  305. ggml_tensor * mm_model_kv_proj = nullptr;
  306. ggml_tensor * mm_model_attn_q_w = nullptr;
  307. ggml_tensor * mm_model_attn_q_b = nullptr;
  308. ggml_tensor * mm_model_attn_k_w = nullptr;
  309. ggml_tensor * mm_model_attn_k_b = nullptr;
  310. ggml_tensor * mm_model_attn_v_w = nullptr;
  311. ggml_tensor * mm_model_attn_v_b = nullptr;
  312. ggml_tensor * mm_model_attn_o_w = nullptr;
  313. ggml_tensor * mm_model_attn_o_b = nullptr;
  314. ggml_tensor * mm_model_ln_q_w = nullptr;
  315. ggml_tensor * mm_model_ln_q_b = nullptr;
  316. ggml_tensor * mm_model_ln_kv_w = nullptr;
  317. ggml_tensor * mm_model_ln_kv_b = nullptr;
  318. ggml_tensor * mm_model_ln_post_w = nullptr;
  319. ggml_tensor * mm_model_ln_post_b = nullptr;
  320. // gemma3
  321. ggml_tensor * mm_input_proj_w = nullptr;
  322. ggml_tensor * mm_soft_emb_norm_w = nullptr;
  323. // pixtral
  324. ggml_tensor * token_embd_img_break = nullptr;
  325. ggml_tensor * mm_patch_merger_w = nullptr;
  326. // ultravox / whisper encoder
  327. ggml_tensor * conv1d_1_w = nullptr;
  328. ggml_tensor * conv1d_1_b = nullptr;
  329. ggml_tensor * conv1d_2_w = nullptr;
  330. ggml_tensor * conv1d_2_b = nullptr;
  331. ggml_tensor * mm_norm_pre_w = nullptr;
  332. ggml_tensor * mm_norm_mid_w = nullptr;
  333. // cogvlm
  334. ggml_tensor * mm_post_fc_norm_w = nullptr;
  335. ggml_tensor * mm_post_fc_norm_b = nullptr;
  336. ggml_tensor * mm_h_to_4h_w = nullptr;
  337. ggml_tensor * mm_gate_w = nullptr;
  338. ggml_tensor * mm_4h_to_h_w = nullptr;
  339. ggml_tensor * mm_boi = nullptr;
  340. ggml_tensor * mm_eoi = nullptr;
  341. bool audio_has_avgpool() const {
  342. return proj_type == PROJECTOR_TYPE_QWEN2A
  343. || proj_type == PROJECTOR_TYPE_VOXTRAL;
  344. }
  345. bool audio_has_stack_frames() const {
  346. return proj_type == PROJECTOR_TYPE_ULTRAVOX
  347. || proj_type == PROJECTOR_TYPE_VOXTRAL;
  348. }
  349. };
  350. struct clip_ctx {
  351. clip_model model;
  352. gguf_context_ptr ctx_gguf;
  353. ggml_context_ptr ctx_data;
  354. std::vector<uint8_t> buf_compute_meta;
  355. std::vector<ggml_backend_t> backend_ptrs;
  356. std::vector<ggml_backend_buffer_type_t> backend_buft;
  357. ggml_backend_t backend = nullptr;
  358. ggml_backend_t backend_cpu = nullptr;
  359. ggml_backend_buffer_ptr buf;
  360. int max_nodes = 8192;
  361. ggml_backend_sched_ptr sched;
  362. clip_flash_attn_type flash_attn_type = CLIP_FLASH_ATTN_TYPE_AUTO;
  363. // for debugging
  364. bool debug_graph = false;
  365. std::vector<ggml_tensor *> debug_print_tensors;
  366. clip_ctx(clip_context_params & ctx_params) {
  367. flash_attn_type = ctx_params.flash_attn_type;
  368. debug_graph = std::getenv("MTMD_DEBUG_GRAPH") != nullptr;
  369. backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, nullptr);
  370. if (!backend_cpu) {
  371. throw std::runtime_error("failed to initialize CPU backend");
  372. }
  373. if (ctx_params.use_gpu) {
  374. auto backend_name = std::getenv("MTMD_BACKEND_DEVICE");
  375. if (backend_name != nullptr) {
  376. backend = ggml_backend_init_by_name(backend_name, nullptr);
  377. if (!backend) {
  378. LOG_WRN("%s: Warning: Failed to initialize \"%s\" backend, falling back to default GPU backend\n", __func__, backend_name);
  379. }
  380. }
  381. if (!backend) {
  382. backend = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_GPU, nullptr);
  383. backend = backend ? backend : ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_IGPU, nullptr);
  384. }
  385. }
  386. if (backend) {
  387. LOG_INF("%s: CLIP using %s backend\n", __func__, ggml_backend_name(backend));
  388. backend_ptrs.push_back(backend);
  389. backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
  390. } else {
  391. backend = backend_cpu;
  392. LOG_INF("%s: CLIP using CPU backend\n", __func__);
  393. }
  394. if (ctx_params.image_min_tokens > 0) {
  395. model.hparams.custom_image_min_tokens = ctx_params.image_min_tokens;
  396. }
  397. if (ctx_params.image_max_tokens > 0) {
  398. model.hparams.custom_image_max_tokens = ctx_params.image_max_tokens;
  399. }
  400. backend_ptrs.push_back(backend_cpu);
  401. backend_buft.push_back(ggml_backend_get_default_buffer_type(backend_cpu));
  402. sched.reset(
  403. ggml_backend_sched_new(backend_ptrs.data(), backend_buft.data(), backend_ptrs.size(), 8192, false, true)
  404. );
  405. }
  406. ~clip_ctx() {
  407. ggml_backend_free(backend);
  408. if (backend != backend_cpu) {
  409. ggml_backend_free(backend_cpu);
  410. }
  411. }
  412. // this function is added so that we don't change too much of the existing code
  413. projector_type proj_type() const {
  414. return model.proj_type;
  415. }
  416. };
  417. struct clip_graph {
  418. clip_ctx * ctx;
  419. const clip_model & model;
  420. const clip_hparams & hparams;
  421. // we only support single image per batch
  422. const clip_image_f32 & img;
  423. const int patch_size;
  424. const int n_patches_x;
  425. const int n_patches_y;
  426. const int n_patches;
  427. const int n_embd;
  428. const int n_head;
  429. const int d_head;
  430. const int n_layer;
  431. const float eps;
  432. const float kq_scale;
  433. ggml_context_ptr ctx0_ptr;
  434. ggml_context * ctx0;
  435. ggml_cgraph * gf;
  436. clip_graph(clip_ctx * ctx, const clip_image_f32 & img) :
  437. ctx(ctx),
  438. model(ctx->model),
  439. hparams(model.hparams),
  440. img(img),
  441. patch_size(hparams.patch_size),
  442. n_patches_x(img.nx / patch_size),
  443. n_patches_y(img.ny / patch_size),
  444. n_patches(n_patches_x * n_patches_y),
  445. n_embd(hparams.n_embd),
  446. n_head(hparams.n_head),
  447. d_head(n_embd / n_head),
  448. n_layer(hparams.n_layer),
  449. eps(hparams.eps),
  450. kq_scale(1.0f / sqrtf((float)d_head)) {
  451. struct ggml_init_params params = {
  452. /*.mem_size =*/ ctx->buf_compute_meta.size(),
  453. /*.mem_buffer =*/ ctx->buf_compute_meta.data(),
  454. /*.no_alloc =*/ true,
  455. };
  456. ctx0_ptr.reset(ggml_init(params));
  457. ctx0 = ctx0_ptr.get();
  458. gf = ggml_new_graph_custom(ctx0, ctx->max_nodes, false);
  459. }
  460. ggml_cgraph * build_siglip() {
  461. ggml_tensor * inp = build_inp();
  462. ggml_tensor * learned_pos_embd = model.position_embeddings;
  463. if (ctx->proj_type() == PROJECTOR_TYPE_LFM2) {
  464. learned_pos_embd = resize_position_embeddings();
  465. }
  466. ggml_tensor * cur = build_vit(
  467. inp, n_patches,
  468. NORM_TYPE_NORMAL,
  469. hparams.ffn_op,
  470. learned_pos_embd,
  471. nullptr);
  472. if (ctx->proj_type() == PROJECTOR_TYPE_GEMMA3) {
  473. const int batch_size = 1;
  474. GGML_ASSERT(n_patches_x == n_patches_y);
  475. const int patches_per_image = n_patches_x;
  476. const int kernel_size = hparams.n_merge;
  477. cur = ggml_transpose(ctx0, cur);
  478. cur = ggml_cont_4d(ctx0, cur, patches_per_image, patches_per_image, n_embd, batch_size);
  479. // doing a pool2d to reduce the number of output tokens
  480. cur = ggml_pool_2d(ctx0, cur, GGML_OP_POOL_AVG, kernel_size, kernel_size, kernel_size, kernel_size, 0, 0);
  481. cur = ggml_reshape_3d(ctx0, cur, cur->ne[0] * cur->ne[0], n_embd, batch_size);
  482. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  483. // apply norm before projection
  484. cur = ggml_rms_norm(ctx0, cur, eps);
  485. cur = ggml_mul(ctx0, cur, model.mm_soft_emb_norm_w);
  486. // apply projection
  487. cur = ggml_mul_mat(ctx0,
  488. ggml_cont(ctx0, ggml_transpose(ctx0, model.mm_input_proj_w)),
  489. cur);
  490. } else if (ctx->proj_type() == PROJECTOR_TYPE_IDEFICS3) {
  491. // pixel_shuffle
  492. // https://github.com/huggingface/transformers/blob/0a950e0bbe1ed58d5401a6b547af19f15f0c195e/src/transformers/models/idefics3/modeling_idefics3.py#L578
  493. const int scale_factor = model.hparams.n_merge;
  494. cur = build_patch_merge_permute(cur, scale_factor);
  495. cur = ggml_mul_mat(ctx0, model.projection, cur);
  496. } else if (ctx->proj_type() == PROJECTOR_TYPE_LFM2) {
  497. // pixel unshuffle block
  498. const int scale_factor = model.hparams.n_merge;
  499. cur = build_patch_merge_permute(cur, scale_factor);
  500. // projection
  501. cur = ggml_norm(ctx0, cur, 1e-5); // default nn.LayerNorm
  502. cur = ggml_mul(ctx0, cur, model.mm_input_norm_w);
  503. cur = ggml_add(ctx0, cur, model.mm_input_norm_b);
  504. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  505. cur = ggml_add(ctx0, cur, model.mm_1_b);
  506. cur = ggml_gelu(ctx0, cur);
  507. cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
  508. cur = ggml_add(ctx0, cur, model.mm_2_b);
  509. } else if (ctx->proj_type() == PROJECTOR_TYPE_JANUS_PRO) {
  510. cur = build_ffn(cur,
  511. model.mm_0_w, model.mm_0_b,
  512. nullptr, nullptr,
  513. model.mm_1_w, model.mm_1_b,
  514. hparams.ffn_op,
  515. -1);
  516. } else {
  517. GGML_ABORT("SigLIP: Unsupported projector type");
  518. }
  519. // build the graph
  520. ggml_build_forward_expand(gf, cur);
  521. return gf;
  522. }
  523. ggml_cgraph * build_pixtral() {
  524. const int n_merge = hparams.n_merge;
  525. // 2D input positions
  526. ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
  527. ggml_set_name(pos_h, "pos_h");
  528. ggml_set_input(pos_h);
  529. ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
  530. ggml_set_name(pos_w, "pos_w");
  531. ggml_set_input(pos_w);
  532. auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
  533. return build_rope_2d(ctx0, cur, pos_h, pos_w, hparams.rope_theta, true);
  534. };
  535. ggml_tensor * inp = build_inp();
  536. ggml_tensor * cur = build_vit(
  537. inp, n_patches,
  538. NORM_TYPE_RMS,
  539. hparams.ffn_op,
  540. nullptr, // no learned pos embd
  541. add_pos);
  542. // mistral small 3.1 patch merger
  543. // ref: https://github.com/huggingface/transformers/blob/7a3e208892c06a5e278144eaf38c8599a42f53e7/src/transformers/models/mistral3/modeling_mistral3.py#L67
  544. if (model.mm_patch_merger_w) {
  545. GGML_ASSERT(hparams.n_merge > 0);
  546. cur = ggml_mul(ctx0, ggml_rms_norm(ctx0, cur, eps), model.mm_input_norm_w);
  547. // reshape image tokens to 2D grid
  548. cur = ggml_reshape_3d(ctx0, cur, n_embd, n_patches_x, n_patches_y);
  549. cur = ggml_permute(ctx0, cur, 2, 0, 1, 3); // [x, y, n_embd]
  550. cur = ggml_cont(ctx0, cur);
  551. // torch.nn.functional.unfold is just an im2col under the hood
  552. // we just need a dummy kernel to make it work
  553. ggml_tensor * kernel = ggml_view_3d(ctx0, cur, n_merge, n_merge, cur->ne[2], 0, 0, 0);
  554. cur = ggml_im2col(ctx0, kernel, cur, n_merge, n_merge, 0, 0, 1, 1, true, inp->type);
  555. // project to n_embd
  556. cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], cur->ne[1] * cur->ne[2]);
  557. cur = ggml_mul_mat(ctx0, model.mm_patch_merger_w, cur);
  558. }
  559. // LlavaMultiModalProjector (always using GELU activation)
  560. {
  561. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  562. if (model.mm_1_b) {
  563. cur = ggml_add(ctx0, cur, model.mm_1_b);
  564. }
  565. cur = ggml_gelu(ctx0, cur);
  566. cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
  567. if (model.mm_2_b) {
  568. cur = ggml_add(ctx0, cur, model.mm_2_b);
  569. }
  570. }
  571. // arrangement of the [IMG_BREAK] token
  572. if (model.token_embd_img_break) {
  573. // not efficient, but works
  574. // the trick is to view the embeddings as a 3D tensor with shape [n_embd, n_patches_per_row, n_rows]
  575. // and then concatenate the [IMG_BREAK] token to the end of each row, aka n_patches_per_row dimension
  576. // after the concatenation, we have a tensor with shape [n_embd, n_patches_per_row + 1, n_rows]
  577. const int p_y = n_merge > 0 ? n_patches_y / n_merge : n_patches_y;
  578. const int p_x = n_merge > 0 ? n_patches_x / n_merge : n_patches_x;
  579. const int p_total = p_x * p_y;
  580. const int n_embd_text = cur->ne[0];
  581. const int n_tokens_output = p_total + p_y - 1; // one [IMG_BREAK] per row, except the last row
  582. ggml_tensor * tmp = ggml_reshape_3d(ctx0, cur, n_embd_text, p_x, p_y);
  583. ggml_tensor * tok = ggml_new_tensor_3d(ctx0, tmp->type, n_embd_text, 1, p_y);
  584. tok = ggml_scale(ctx0, tok, 0.0); // clear the tensor
  585. tok = ggml_add(ctx0, tok, model.token_embd_img_break);
  586. tmp = ggml_concat(ctx0, tmp, tok, 1);
  587. cur = ggml_view_2d(ctx0, tmp,
  588. n_embd_text, n_tokens_output,
  589. ggml_row_size(tmp->type, n_embd_text), 0);
  590. }
  591. // build the graph
  592. ggml_build_forward_expand(gf, cur);
  593. return gf;
  594. }
  595. // Qwen2VL and Qwen2.5VL use M-RoPE
  596. ggml_cgraph * build_qwen2vl() {
  597. GGML_ASSERT(model.patch_bias == nullptr);
  598. GGML_ASSERT(model.class_embedding == nullptr);
  599. const int batch_size = 1;
  600. const bool use_window_attn = hparams.n_wa_pattern > 0;
  601. const int n_wa_pattern = hparams.n_wa_pattern;
  602. const int n_pos = n_patches;
  603. const int num_position_ids = n_pos * 4; // m-rope requires 4 dim per position
  604. norm_type norm_t = ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL
  605. ? NORM_TYPE_RMS // qwen 2.5 vl
  606. : NORM_TYPE_NORMAL; // qwen 2 vl
  607. int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
  608. ggml_tensor * inp_raw = build_inp_raw();
  609. ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  610. GGML_ASSERT(img.nx % (patch_size * 2) == 0);
  611. GGML_ASSERT(img.ny % (patch_size * 2) == 0);
  612. // second conv dimension
  613. {
  614. auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  615. inp = ggml_add(ctx0, inp, inp_1);
  616. inp = ggml_permute(ctx0, inp, 1, 2, 0, 3); // [w, h, c, b] -> [c, w, h, b]
  617. inp = ggml_cont_4d(
  618. ctx0, inp,
  619. n_embd * 2, n_patches_x / 2, n_patches_y, batch_size);
  620. inp = ggml_reshape_4d(
  621. ctx0, inp,
  622. n_embd * 2, n_patches_x / 2, 2, batch_size * (n_patches_y / 2));
  623. inp = ggml_permute(ctx0, inp, 0, 2, 1, 3);
  624. inp = ggml_cont_3d(
  625. ctx0, inp,
  626. n_embd, n_patches_x * n_patches_y, batch_size);
  627. }
  628. ggml_tensor * inpL = inp;
  629. ggml_tensor * window_mask = nullptr;
  630. ggml_tensor * window_idx = nullptr;
  631. ggml_tensor * inv_window_idx = nullptr;
  632. ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
  633. ggml_set_name(positions, "positions");
  634. ggml_set_input(positions);
  635. // pre-layernorm
  636. if (model.pre_ln_w) {
  637. inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
  638. }
  639. if (use_window_attn) {
  640. // handle window attention inputs
  641. inv_window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos / 4);
  642. ggml_set_name(inv_window_idx, "inv_window_idx");
  643. ggml_set_input(inv_window_idx);
  644. // mask for window attention
  645. window_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_pos, n_pos);
  646. ggml_set_name(window_mask, "window_mask");
  647. ggml_set_input(window_mask);
  648. // if flash attn is used, we need to pad the mask and cast to f16
  649. if (ctx->flash_attn_type == CLIP_FLASH_ATTN_TYPE_ENABLED) {
  650. int n_pad = GGML_PAD(window_mask->ne[1], GGML_KQ_MASK_PAD) - window_mask->ne[1];
  651. if (n_pad > 0) {
  652. window_mask = ggml_pad(ctx0, window_mask, 0, n_pad, 0, 0);
  653. }
  654. window_mask = ggml_cast(ctx0, window_mask, GGML_TYPE_F16);
  655. }
  656. // inpL shape: [n_embd, n_patches_x * n_patches_y, batch_size]
  657. GGML_ASSERT(batch_size == 1);
  658. inpL = ggml_reshape_2d(ctx0, inpL, n_embd * 4, n_patches_x * n_patches_y * batch_size / 4);
  659. inpL = ggml_get_rows(ctx0, inpL, inv_window_idx);
  660. inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_patches_x * n_patches_y, batch_size);
  661. }
  662. // loop over layers
  663. for (int il = 0; il < n_layer; il++) {
  664. auto & layer = model.layers[il];
  665. const bool full_attn = use_window_attn ? (il + 1) % n_wa_pattern == 0 : true;
  666. ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
  667. // layernorm1
  668. cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
  669. cb(cur, "ln1", il);
  670. // self-attention
  671. {
  672. ggml_tensor * Qcur = ggml_add(ctx0,
  673. ggml_mul_mat(ctx0, layer.q_w, cur), layer.q_b);
  674. ggml_tensor * Kcur = ggml_add(ctx0,
  675. ggml_mul_mat(ctx0, layer.k_w, cur), layer.k_b);
  676. ggml_tensor * Vcur = ggml_add(ctx0,
  677. ggml_mul_mat(ctx0, layer.v_w, cur), layer.v_b);
  678. Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_patches);
  679. Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_patches);
  680. Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_patches);
  681. cb(Qcur, "Qcur", il);
  682. cb(Kcur, "Kcur", il);
  683. cb(Vcur, "Vcur", il);
  684. // apply M-RoPE
  685. Qcur = ggml_rope_multi(
  686. ctx0, Qcur, positions, nullptr,
  687. d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
  688. Kcur = ggml_rope_multi(
  689. ctx0, Kcur, positions, nullptr,
  690. d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
  691. cb(Qcur, "Qcur_rope", il);
  692. cb(Kcur, "Kcur_rope", il);
  693. ggml_tensor * attn_mask = full_attn ? nullptr : window_mask;
  694. cur = build_attn(layer.o_w, layer.o_b,
  695. Qcur, Kcur, Vcur, attn_mask, kq_scale, il);
  696. cb(cur, "attn_out", il);
  697. }
  698. // re-add the layer input, e.g., residual
  699. cur = ggml_add(ctx0, cur, inpL);
  700. inpL = cur; // inpL = residual, cur = hidden_states
  701. cb(cur, "ffn_inp", il);
  702. // layernorm2
  703. cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
  704. cb(cur, "ffn_inp_normed", il);
  705. // ffn
  706. cur = build_ffn(cur,
  707. layer.ff_up_w, layer.ff_up_b,
  708. layer.ff_gate_w, layer.ff_gate_b,
  709. layer.ff_down_w, layer.ff_down_b,
  710. hparams.ffn_op, il);
  711. cb(cur, "ffn_out", il);
  712. // residual 2
  713. cur = ggml_add(ctx0, inpL, cur);
  714. cb(cur, "layer_out", il);
  715. inpL = cur;
  716. }
  717. // post-layernorm
  718. if (model.post_ln_w) {
  719. inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, n_layer);
  720. }
  721. // multimodal projection
  722. ggml_tensor * embeddings = inpL;
  723. embeddings = ggml_reshape_3d(ctx0, embeddings, n_embd * 4, n_pos / 4, batch_size);
  724. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  725. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  726. // GELU activation
  727. embeddings = ggml_gelu(ctx0, embeddings);
  728. // Second linear layer
  729. embeddings = ggml_mul_mat(ctx0, model.mm_1_w, embeddings);
  730. embeddings = ggml_add(ctx0, embeddings, model.mm_1_b);
  731. if (use_window_attn) {
  732. window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos / 4);
  733. ggml_set_name(window_idx, "window_idx");
  734. ggml_set_input(window_idx);
  735. // embeddings shape: [n_embd, n_patches_x * n_patches_y, batch_size]
  736. GGML_ASSERT(batch_size == 1);
  737. embeddings = ggml_reshape_2d(ctx0, embeddings, hparams.projection_dim, n_patches_x * n_patches_y / 4);
  738. embeddings = ggml_get_rows(ctx0, embeddings, window_idx);
  739. embeddings = ggml_reshape_3d(ctx0, embeddings, hparams.projection_dim, n_patches_x * n_patches_y / 4, batch_size);
  740. }
  741. // build the graph
  742. ggml_build_forward_expand(gf, embeddings);
  743. return gf;
  744. }
  745. // Qwen3VL
  746. ggml_cgraph * build_qwen3vl() {
  747. GGML_ASSERT(model.patch_bias != nullptr);
  748. GGML_ASSERT(model.position_embeddings != nullptr);
  749. GGML_ASSERT(model.class_embedding == nullptr);
  750. const int batch_size = 1;
  751. const int n_pos = n_patches;
  752. const int num_position_ids = n_pos * 4; // m-rope requires 4 dim per position
  753. norm_type norm_t = NORM_TYPE_NORMAL;
  754. int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
  755. ggml_tensor * inp_raw = build_inp_raw();
  756. ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  757. GGML_ASSERT(img.nx % (patch_size * 2) == 0);
  758. GGML_ASSERT(img.ny % (patch_size * 2) == 0);
  759. // second conv dimension
  760. {
  761. auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  762. inp = ggml_add(ctx0, inp, inp_1);
  763. inp = ggml_permute(ctx0, inp, 1, 2, 0, 3); // [w, h, c, b] -> [c, w, h, b]
  764. inp = ggml_cont_4d(
  765. ctx0, inp,
  766. n_embd * 2, n_patches_x / 2, n_patches_y, batch_size);
  767. inp = ggml_reshape_4d(
  768. ctx0, inp,
  769. n_embd * 2, n_patches_x / 2, 2, batch_size * (n_patches_y / 2));
  770. inp = ggml_permute(ctx0, inp, 0, 2, 1, 3);
  771. inp = ggml_cont_3d(
  772. ctx0, inp,
  773. n_embd, n_patches_x * n_patches_y, batch_size);
  774. }
  775. // add patch bias
  776. if (model.patch_bias != nullptr) {
  777. inp = ggml_add(ctx0, inp, model.patch_bias);
  778. cb(inp, "patch_bias", -1);
  779. }
  780. // calculate absolute position embedding and apply
  781. ggml_tensor * learned_pos_embd = resize_position_embeddings();
  782. learned_pos_embd = ggml_cont_4d(
  783. ctx0, learned_pos_embd,
  784. n_embd * 2, n_patches_x / 2, n_patches_y, batch_size);
  785. learned_pos_embd = ggml_reshape_4d(
  786. ctx0, learned_pos_embd,
  787. n_embd * 2, n_patches_x / 2, 2, batch_size * (n_patches_y / 2));
  788. learned_pos_embd = ggml_permute(ctx0, learned_pos_embd, 0, 2, 1, 3);
  789. learned_pos_embd = ggml_cont_3d(
  790. ctx0, learned_pos_embd,
  791. n_embd, n_patches_x * n_patches_y, batch_size);
  792. inp = ggml_add(ctx0, inp, learned_pos_embd);
  793. cb(inp, "inp_pos_emb", -1);
  794. ggml_tensor * inpL = inp;
  795. ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
  796. ggml_set_name(positions, "positions");
  797. ggml_set_input(positions);
  798. // pre-layernorm
  799. if (model.pre_ln_w) {
  800. inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
  801. }
  802. // deepstack features (stack along the feature dimension), [n_embd * len(deepstack_layers), n_patches_x * n_patches_y, batch_size]
  803. ggml_tensor * deepstack_features = nullptr;
  804. const int merge_factor = hparams.n_merge > 0 ? hparams.n_merge * hparams.n_merge : 4; // default 2x2=4 for qwen3vl
  805. // loop over layers
  806. for (int il = 0; il < n_layer; il++) {
  807. auto & layer = model.layers[il];
  808. ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
  809. // layernorm1
  810. cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
  811. cb(cur, "ln1", il);
  812. // self-attention
  813. {
  814. cur = ggml_mul_mat(ctx0, layer.qkv_w, cur);
  815. cur = ggml_add(ctx0, cur, layer.qkv_b);
  816. ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos, d_head*sizeof(float),
  817. cur->nb[1], 0);
  818. ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos, d_head*sizeof(float),
  819. cur->nb[1], n_embd * sizeof(float));
  820. ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos, d_head*sizeof(float),
  821. cur->nb[1], 2 * n_embd * sizeof(float));
  822. cb(Qcur, "Qcur", il);
  823. cb(Kcur, "Kcur", il);
  824. cb(Vcur, "Vcur", il);
  825. // apply M-RoPE
  826. Qcur = ggml_rope_multi(
  827. ctx0, Qcur, positions, nullptr,
  828. d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
  829. Kcur = ggml_rope_multi(
  830. ctx0, Kcur, positions, nullptr,
  831. d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
  832. cb(Qcur, "Qcur_rope", il);
  833. cb(Kcur, "Kcur_rope", il);
  834. cur = build_attn(layer.o_w, layer.o_b,
  835. Qcur, Kcur, Vcur, nullptr, kq_scale, il);
  836. cb(cur, "attn_out", il);
  837. }
  838. // re-add the layer input, e.g., residual
  839. cur = ggml_add(ctx0, cur, inpL);
  840. inpL = cur; // inpL = residual, cur = hidden_states
  841. cb(cur, "ffn_inp", il);
  842. // layernorm2
  843. cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
  844. cb(cur, "ffn_inp_normed", il);
  845. // ffn
  846. cur = build_ffn(cur,
  847. layer.ff_up_w, layer.ff_up_b,
  848. layer.ff_gate_w, layer.ff_gate_b,
  849. layer.ff_down_w, layer.ff_down_b,
  850. hparams.ffn_op, il);
  851. cb(cur, "ffn_out", il);
  852. // residual 2
  853. cur = ggml_add(ctx0, inpL, cur);
  854. cb(cur, "layer_out", il);
  855. if (layer.has_deepstack()) {
  856. ggml_tensor * feat = ggml_reshape_3d(ctx0, cur, n_embd * merge_factor, n_pos / merge_factor, batch_size);
  857. feat = build_norm(feat, layer.deepstack_norm_w, layer.deepstack_norm_b, norm_t, eps, il);
  858. feat = build_ffn(feat,
  859. layer.deepstack_fc1_w, layer.deepstack_fc1_b,
  860. nullptr, nullptr,
  861. layer.deepstack_fc2_w, layer.deepstack_fc2_b,
  862. ffn_op_type::FFN_GELU, il);
  863. if(!deepstack_features) {
  864. deepstack_features = feat;
  865. } else {
  866. // concat along the feature dimension
  867. deepstack_features = ggml_concat(ctx0, deepstack_features, feat, 0);
  868. }
  869. }
  870. inpL = cur;
  871. }
  872. // post-layernorm
  873. if (model.post_ln_w) {
  874. inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, n_layer);
  875. }
  876. // multimodal projection
  877. ggml_tensor * embeddings = inpL;
  878. embeddings = ggml_reshape_3d(ctx0, embeddings, n_embd * 4, n_pos / 4, batch_size);
  879. embeddings = build_ffn(embeddings,
  880. model.mm_0_w, model.mm_0_b,
  881. nullptr, nullptr,
  882. model.mm_1_w, model.mm_1_b,
  883. ffn_op_type::FFN_GELU, -1);
  884. embeddings = ggml_concat(ctx0, embeddings, deepstack_features, 0); // concat along the feature dimension
  885. // build the graph
  886. ggml_build_forward_expand(gf, embeddings);
  887. return gf;
  888. }
  889. ggml_cgraph * build_minicpmv() {
  890. GGML_ASSERT(model.class_embedding == nullptr);
  891. const int n_pos = n_patches;
  892. const int n_embd_proj = clip_n_mmproj_embd(ctx);
  893. // position embeddings for the projector (not for ViT)
  894. // see: https://huggingface.co/openbmb/MiniCPM-o-2_6/blob/main/resampler.py#L70
  895. // base frequency omega
  896. ggml_tensor * omega = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, n_embd_proj / 4);
  897. ggml_set_name(omega, "omega");
  898. ggml_set_input(omega);
  899. // 2D input positions (using float for sinusoidal embeddings)
  900. ggml_tensor * pos_h = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_pos);
  901. ggml_set_name(pos_h, "pos_h");
  902. ggml_set_input(pos_h);
  903. ggml_tensor * pos_w = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_pos);
  904. ggml_set_name(pos_w, "pos_w");
  905. ggml_set_input(pos_w);
  906. // for selecting learned pos embd, used by ViT
  907. struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
  908. ggml_set_name(positions, "positions");
  909. ggml_set_input(positions);
  910. ggml_tensor * learned_pos_embd = ggml_get_rows(ctx0, model.position_embeddings, positions);
  911. ggml_tensor * inp = build_inp();
  912. ggml_tensor * embeddings = build_vit(
  913. inp, n_pos,
  914. NORM_TYPE_NORMAL,
  915. hparams.ffn_op,
  916. learned_pos_embd,
  917. nullptr);
  918. // resampler projector (it is just another transformer)
  919. ggml_tensor * q = model.mm_model_query;
  920. ggml_tensor * v = ggml_mul_mat(ctx0, model.mm_model_kv_proj, embeddings);
  921. // norm
  922. q = build_norm(q, model.mm_model_ln_q_w, model.mm_model_ln_q_b, NORM_TYPE_NORMAL, eps, -1);
  923. v = build_norm(v, model.mm_model_ln_kv_w, model.mm_model_ln_kv_b, NORM_TYPE_NORMAL, eps, -1);
  924. // calculate sinusoidal pos embd
  925. ggml_tensor * pos_embed = nullptr;
  926. {
  927. // outer product
  928. ggml_tensor * omega_b = ggml_repeat_4d(ctx0, omega, omega->ne[0], n_pos, 1, 1); // n_pos rows
  929. ggml_tensor * theta_x = ggml_mul(ctx0, omega_b, pos_w);
  930. ggml_tensor * theta_y = ggml_mul(ctx0, omega_b, pos_h);
  931. // sin and cos
  932. ggml_tensor * pos_embd_x = ggml_concat(
  933. ctx0,
  934. ggml_sin(ctx0, theta_x),
  935. ggml_cos(ctx0, theta_x),
  936. 0 // concat on first dim
  937. );
  938. ggml_tensor * pos_embd_y = ggml_concat(
  939. ctx0,
  940. ggml_sin(ctx0, theta_y),
  941. ggml_cos(ctx0, theta_y),
  942. 0 // concat on first dim
  943. );
  944. pos_embed = ggml_concat(ctx0, pos_embd_x, pos_embd_y, 0);
  945. }
  946. // k = v + pos_embed
  947. ggml_tensor * k = ggml_add(ctx0, v, pos_embed);
  948. // attention
  949. {
  950. const int d_head = 128;
  951. int n_head = n_embd_proj/d_head;
  952. // Use actual config value if available, otherwise fall back to hardcoded values
  953. int num_query = ctx->model.hparams.minicpmv_query_num;
  954. ggml_tensor * Q = ggml_add(ctx0,
  955. ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q),
  956. model.mm_model_attn_q_b);
  957. ggml_tensor * K = ggml_add(ctx0,
  958. ggml_mul_mat(ctx0, model.mm_model_attn_k_w, k),
  959. model.mm_model_attn_k_b);
  960. ggml_tensor * V = ggml_add(ctx0,
  961. ggml_mul_mat(ctx0, model.mm_model_attn_v_w, v),
  962. model.mm_model_attn_v_b);
  963. Q = ggml_reshape_3d(ctx0, Q, d_head, n_head, num_query);
  964. K = ggml_reshape_3d(ctx0, K, d_head, n_head, n_pos);
  965. V = ggml_reshape_3d(ctx0, V, d_head, n_head, n_pos);
  966. cb(Q, "resampler_Q", -1);
  967. cb(K, "resampler_K", -1);
  968. cb(V, "resampler_V", -1);
  969. embeddings = build_attn(
  970. model.mm_model_attn_o_w,
  971. model.mm_model_attn_o_b,
  972. Q, K, V, nullptr, kq_scale, -1);
  973. cb(embeddings, "resampler_attn_out", -1);
  974. }
  975. // layernorm
  976. embeddings = build_norm(embeddings, model.mm_model_ln_post_w, model.mm_model_ln_post_b, NORM_TYPE_NORMAL, eps, -1);
  977. // projection
  978. embeddings = ggml_mul_mat(ctx0, model.mm_model_proj, embeddings);
  979. // build the graph
  980. ggml_build_forward_expand(gf, embeddings);
  981. return gf;
  982. }
  983. ggml_cgraph * build_internvl() {
  984. GGML_ASSERT(model.class_embedding != nullptr);
  985. GGML_ASSERT(model.position_embeddings != nullptr);
  986. const int n_pos = n_patches + 1;
  987. ggml_tensor * inp = build_inp();
  988. // add CLS token
  989. inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
  990. // The larger models use a different ViT, which uses RMS norm instead of layer norm
  991. // ref: https://github.com/ggml-org/llama.cpp/pull/13443#issuecomment-2869786188
  992. norm_type norm_t = (hparams.n_embd == 3200 && hparams.n_layer == 45)
  993. ? NORM_TYPE_RMS // 6B ViT (Used by InternVL 2.5/3 - 26B, 38B, 78B)
  994. : NORM_TYPE_NORMAL; // 300M ViT (Used by all smaller InternVL models)
  995. ggml_tensor * cur = build_vit(
  996. inp, n_pos,
  997. norm_t,
  998. hparams.ffn_op,
  999. model.position_embeddings,
  1000. nullptr);
  1001. // remove CLS token
  1002. cur = ggml_view_2d(ctx0, cur,
  1003. n_embd, n_patches,
  1004. ggml_row_size(cur->type, n_embd), 0);
  1005. // pixel shuffle
  1006. {
  1007. const int scale_factor = model.hparams.n_merge;
  1008. const int bsz = 1; // batch size, always 1 for now since we don't support batching
  1009. const int height = n_patches_y;
  1010. const int width = n_patches_x;
  1011. GGML_ASSERT(scale_factor > 0);
  1012. cur = ggml_reshape_4d(ctx0, cur, n_embd * scale_factor, height / scale_factor, width, bsz);
  1013. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  1014. cur = ggml_cont_4d(ctx0, cur,
  1015. n_embd * scale_factor * scale_factor,
  1016. height / scale_factor,
  1017. width / scale_factor,
  1018. bsz);
  1019. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  1020. // flatten to 2D
  1021. cur = ggml_cont_2d(ctx0, cur,
  1022. n_embd * scale_factor * scale_factor,
  1023. cur->ne[1] * cur->ne[2]);
  1024. }
  1025. // projector (always using GELU activation)
  1026. {
  1027. // projector LayerNorm uses pytorch's default eps = 1e-5
  1028. // ref: https://huggingface.co/OpenGVLab/InternVL3-8B-Instruct/blob/a34d3e4e129a5856abfd6aa6de79776484caa14e/modeling_internvl_chat.py#L79
  1029. cur = build_norm(cur, model.mm_0_w, model.mm_0_b, NORM_TYPE_NORMAL, 1e-5, -1);
  1030. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  1031. cur = ggml_add(ctx0, cur, model.mm_1_b);
  1032. cur = ggml_gelu(ctx0, cur);
  1033. cur = ggml_mul_mat(ctx0, model.mm_3_w, cur);
  1034. cur = ggml_add(ctx0, cur, model.mm_3_b);
  1035. }
  1036. // build the graph
  1037. ggml_build_forward_expand(gf, cur);
  1038. return gf;
  1039. }
  1040. ggml_cgraph * build_llama4() {
  1041. GGML_ASSERT(model.class_embedding != nullptr);
  1042. GGML_ASSERT(model.position_embeddings != nullptr);
  1043. const int n_pos = n_patches + 1; // +1 for [CLS]
  1044. // 2D input positions
  1045. ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
  1046. ggml_set_name(pos_h, "pos_h");
  1047. ggml_set_input(pos_h);
  1048. ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
  1049. ggml_set_name(pos_w, "pos_w");
  1050. ggml_set_input(pos_w);
  1051. ggml_tensor * inp = build_inp_raw();
  1052. // Llama4UnfoldConvolution
  1053. {
  1054. ggml_tensor * kernel = ggml_reshape_4d(ctx0, model.patch_embeddings_0,
  1055. patch_size, patch_size, 3, n_embd);
  1056. inp = ggml_im2col(ctx0, kernel, inp, patch_size, patch_size, 0, 0, 1, 1, true, inp->type);
  1057. inp = ggml_mul_mat(ctx0, model.patch_embeddings_0, inp);
  1058. inp = ggml_reshape_2d(ctx0, inp, n_embd, n_patches);
  1059. cb(inp, "patch_conv", -1);
  1060. }
  1061. // add CLS token
  1062. inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
  1063. // build ViT with 2D position embeddings
  1064. auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
  1065. // first half is X axis and second half is Y axis
  1066. // ref: https://github.com/huggingface/transformers/blob/40a493c7ed4f19f08eadb0639cf26d49bfa5e180/src/transformers/models/llama4/modeling_llama4.py#L1312
  1067. // ref: https://github.com/Blaizzy/mlx-vlm/blob/a57156aa87b33cca6e5ee6cfc14dd4ef8f611be6/mlx_vlm/models/llama4/vision.py#L441
  1068. return build_rope_2d(ctx0, cur, pos_w, pos_h, hparams.rope_theta, false);
  1069. };
  1070. ggml_tensor * cur = build_vit(
  1071. inp, n_pos,
  1072. NORM_TYPE_NORMAL,
  1073. hparams.ffn_op,
  1074. model.position_embeddings,
  1075. add_pos);
  1076. // remove CLS token
  1077. cur = ggml_view_2d(ctx0, cur,
  1078. n_embd, n_patches,
  1079. ggml_row_size(cur->type, n_embd), 0);
  1080. // pixel shuffle
  1081. // based on Llama4VisionPixelShuffleMLP
  1082. // https://github.com/huggingface/transformers/blob/2932f318a20d9e54cc7aea052e040164d85de7d6/src/transformers/models/llama4/modeling_llama4.py#L1151
  1083. {
  1084. const int scale_factor = model.hparams.n_merge;
  1085. const int bsz = 1; // batch size, always 1 for now since we don't support batching
  1086. GGML_ASSERT(scale_factor > 0);
  1087. GGML_ASSERT(n_patches_x == n_patches_y); // llama4 only supports square images
  1088. cur = ggml_reshape_4d(ctx0, cur,
  1089. n_embd * scale_factor,
  1090. n_patches_x / scale_factor,
  1091. n_patches_y,
  1092. bsz);
  1093. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  1094. cur = ggml_cont_4d(ctx0, cur,
  1095. n_embd * scale_factor * scale_factor,
  1096. n_patches_x / scale_factor,
  1097. n_patches_y / scale_factor,
  1098. bsz);
  1099. //cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  1100. // flatten to 2D
  1101. cur = ggml_cont_2d(ctx0, cur,
  1102. n_embd * scale_factor * scale_factor,
  1103. n_patches / scale_factor / scale_factor);
  1104. cb(cur, "pixel_shuffle", -1);
  1105. }
  1106. // based on Llama4VisionMLP2 (always uses GELU activation, no bias)
  1107. {
  1108. cur = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, cur);
  1109. cur = ggml_gelu(ctx0, cur);
  1110. cur = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, cur);
  1111. cur = ggml_gelu(ctx0, cur);
  1112. cb(cur, "adapter_mlp", -1);
  1113. }
  1114. // Llama4MultiModalProjector
  1115. cur = ggml_mul_mat(ctx0, model.mm_model_proj, cur);
  1116. cb(cur, "projected", -1);
  1117. // build the graph
  1118. ggml_build_forward_expand(gf, cur);
  1119. return gf;
  1120. }
  1121. ggml_cgraph * build_kimivl() {
  1122. // 2D input positions
  1123. ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
  1124. ggml_set_name(pos_h, "pos_h");
  1125. ggml_set_input(pos_h);
  1126. ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
  1127. ggml_set_name(pos_w, "pos_w");
  1128. ggml_set_input(pos_w);
  1129. ggml_tensor * learned_pos_embd = resize_position_embeddings();
  1130. // build ViT with 2D position embeddings
  1131. auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
  1132. // first half is X axis and second half is Y axis
  1133. return build_rope_2d(ctx0, cur, pos_w, pos_h, hparams.rope_theta, false);
  1134. };
  1135. ggml_tensor * inp = build_inp();
  1136. ggml_tensor * cur = build_vit(
  1137. inp, n_patches,
  1138. NORM_TYPE_NORMAL,
  1139. hparams.ffn_op,
  1140. learned_pos_embd,
  1141. add_pos);
  1142. cb(cur, "vit_out", -1);
  1143. {
  1144. // patch_merger
  1145. const int scale_factor = model.hparams.n_merge;
  1146. cur = build_patch_merge_permute(cur, scale_factor);
  1147. // projection norm
  1148. int proj_inp_dim = cur->ne[0];
  1149. cur = ggml_view_2d(ctx0, cur,
  1150. n_embd, cur->ne[1] * scale_factor * scale_factor,
  1151. ggml_row_size(cur->type, n_embd), 0);
  1152. cur = ggml_norm(ctx0, cur, 1e-5); // default nn.LayerNorm
  1153. cur = ggml_mul(ctx0, cur, model.mm_input_norm_w);
  1154. cur = ggml_add(ctx0, cur, model.mm_input_norm_b);
  1155. cur = ggml_view_2d(ctx0, cur,
  1156. proj_inp_dim, cur->ne[1] / scale_factor / scale_factor,
  1157. ggml_row_size(cur->type, proj_inp_dim), 0);
  1158. cb(cur, "proj_inp_normed", -1);
  1159. // projection mlp
  1160. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  1161. cur = ggml_add(ctx0, cur, model.mm_1_b);
  1162. cur = ggml_gelu(ctx0, cur);
  1163. cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
  1164. cur = ggml_add(ctx0, cur, model.mm_2_b);
  1165. cb(cur, "proj_out", -1);
  1166. }
  1167. // build the graph
  1168. ggml_build_forward_expand(gf, cur);
  1169. return gf;
  1170. }
  1171. // this graph is used by llava, granite and glm
  1172. // due to having embedding_stack (used by granite), we cannot reuse build_vit
  1173. ggml_cgraph * build_llava() {
  1174. const int batch_size = 1;
  1175. const int n_pos = n_patches + (model.class_embedding ? 1 : 0);
  1176. GGML_ASSERT(n_patches_x == n_patches_y && "only square images supported");
  1177. // Calculate the deepest feature layer based on hparams and projector type
  1178. int max_feature_layer = n_layer;
  1179. {
  1180. // Get the index of the second to last layer; this is the default for models that have a llava projector
  1181. int il_last = hparams.n_layer - 1;
  1182. int deepest_feature_layer = -1;
  1183. if (ctx->proj_type() == PROJECTOR_TYPE_MINICPMV || ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE) {
  1184. il_last += 1;
  1185. }
  1186. // If we set explicit vision feature layers, only go up to the deepest one
  1187. // NOTE: only used by granite-vision models for now
  1188. for (const auto & feature_layer : hparams.vision_feature_layer) {
  1189. if (feature_layer > deepest_feature_layer) {
  1190. deepest_feature_layer = feature_layer;
  1191. }
  1192. }
  1193. max_feature_layer = deepest_feature_layer < 0 ? il_last : deepest_feature_layer;
  1194. }
  1195. ggml_tensor * inp = build_inp();
  1196. // concat class_embeddings and patch_embeddings
  1197. if (model.class_embedding) {
  1198. inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
  1199. }
  1200. ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
  1201. ggml_set_name(positions, "positions");
  1202. ggml_set_input(positions);
  1203. inp = ggml_add(ctx0, inp, ggml_get_rows(ctx0, model.position_embeddings, positions));
  1204. ggml_tensor * inpL = inp;
  1205. // pre-layernorm
  1206. if (model.pre_ln_w) {
  1207. inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, NORM_TYPE_NORMAL, eps, -1);
  1208. cb(inpL, "pre_ln", -1);
  1209. }
  1210. std::vector<ggml_tensor *> embedding_stack;
  1211. const auto & vision_feature_layer = hparams.vision_feature_layer;
  1212. // loop over layers
  1213. for (int il = 0; il < max_feature_layer; il++) {
  1214. auto & layer = model.layers[il];
  1215. ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
  1216. // If this is an embedding feature layer, save the output.
  1217. // NOTE: 0 index here refers to the input to the encoder.
  1218. if (vision_feature_layer.find(il) != vision_feature_layer.end()) {
  1219. embedding_stack.push_back(cur);
  1220. }
  1221. // layernorm1
  1222. cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, NORM_TYPE_NORMAL, eps, il);
  1223. cb(cur, "layer_inp_normed", il);
  1224. // self-attention
  1225. {
  1226. ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.q_w, cur);
  1227. if (layer.q_b) {
  1228. Qcur = ggml_add(ctx0, Qcur, layer.q_b);
  1229. }
  1230. ggml_tensor * Kcur = ggml_mul_mat(ctx0, layer.k_w, cur);
  1231. if (layer.k_b) {
  1232. Kcur = ggml_add(ctx0, Kcur, layer.k_b);
  1233. }
  1234. ggml_tensor * Vcur = ggml_mul_mat(ctx0, layer.v_w, cur);
  1235. if (layer.v_b) {
  1236. Vcur = ggml_add(ctx0, Vcur, layer.v_b);
  1237. }
  1238. Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_pos);
  1239. Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_pos);
  1240. Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_pos);
  1241. cb(Qcur, "Qcur", il);
  1242. cb(Kcur, "Kcur", il);
  1243. cb(Vcur, "Vcur", il);
  1244. cur = build_attn(layer.o_w, layer.o_b,
  1245. Qcur, Kcur, Vcur, nullptr, kq_scale, il);
  1246. cb(cur, "attn_out", il);
  1247. }
  1248. // re-add the layer input, e.g., residual
  1249. cur = ggml_add(ctx0, cur, inpL);
  1250. inpL = cur; // inpL = residual, cur = hidden_states
  1251. cb(cur, "ffn_inp", il);
  1252. // layernorm2
  1253. cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, NORM_TYPE_NORMAL, eps, il);
  1254. cb(cur, "ffn_inp_normed", il);
  1255. // ffn
  1256. cur = build_ffn(cur,
  1257. layer.ff_up_w, layer.ff_up_b,
  1258. layer.ff_gate_w, layer.ff_gate_b,
  1259. layer.ff_down_w, layer.ff_down_b,
  1260. hparams.ffn_op, il);
  1261. cb(cur, "ffn_out", il);
  1262. // residual 2
  1263. cur = ggml_add(ctx0, inpL, cur);
  1264. cb(cur, "layer_out", il);
  1265. inpL = cur;
  1266. }
  1267. // post-layernorm
  1268. if (model.post_ln_w) {
  1269. inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, NORM_TYPE_NORMAL, eps, -1);
  1270. }
  1271. ggml_tensor * embeddings = inpL;
  1272. // process vision feature layers (used by granite)
  1273. {
  1274. // final layer is a vision feature layer
  1275. if (vision_feature_layer.find(max_feature_layer) != vision_feature_layer.end()) {
  1276. embedding_stack.push_back(inpL);
  1277. }
  1278. // If feature layers are explicitly set, stack them (if we have multiple)
  1279. if (!embedding_stack.empty()) {
  1280. embeddings = embedding_stack[0];
  1281. for (size_t i = 1; i < embedding_stack.size(); i++) {
  1282. embeddings = ggml_concat(ctx0, embeddings, embedding_stack[i], 0);
  1283. }
  1284. }
  1285. }
  1286. // llava projector (also used by granite)
  1287. if (ctx->model.hparams.has_llava_projector) {
  1288. embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
  1289. ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
  1290. ggml_set_name(patches, "patches");
  1291. ggml_set_input(patches);
  1292. // shape [1, 576, 1024]
  1293. // ne is whcn, ne = [1024, 576, 1, 1]
  1294. embeddings = ggml_get_rows(ctx0, embeddings, patches);
  1295. // print_tensor_info(embeddings, "embeddings");
  1296. // llava projector
  1297. if (ctx->proj_type() == PROJECTOR_TYPE_MLP) {
  1298. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  1299. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  1300. embeddings = ggml_gelu(ctx0, embeddings);
  1301. if (model.mm_2_w) {
  1302. embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
  1303. embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
  1304. }
  1305. }
  1306. else if (ctx->proj_type() == PROJECTOR_TYPE_MLP_NORM) {
  1307. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  1308. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  1309. // ggml_tensor_printf(embeddings, "mm_0_w",0,true,false);
  1310. // First LayerNorm
  1311. embeddings = ggml_norm(ctx0, embeddings, eps);
  1312. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_1_w),
  1313. model.mm_1_b);
  1314. // GELU activation
  1315. embeddings = ggml_gelu(ctx0, embeddings);
  1316. // Second linear layer
  1317. embeddings = ggml_mul_mat(ctx0, model.mm_3_w, embeddings);
  1318. embeddings = ggml_add(ctx0, embeddings, model.mm_3_b);
  1319. // Second LayerNorm
  1320. embeddings = ggml_norm(ctx0, embeddings, eps);
  1321. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_4_w),
  1322. model.mm_4_b);
  1323. }
  1324. else if (ctx->proj_type() == PROJECTOR_TYPE_LDP) {
  1325. // MobileVLM projector
  1326. int n_patch = 24;
  1327. ggml_tensor * mlp_1 = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, embeddings);
  1328. mlp_1 = ggml_add(ctx0, mlp_1, model.mm_model_mlp_1_b);
  1329. mlp_1 = ggml_gelu(ctx0, mlp_1);
  1330. ggml_tensor * mlp_3 = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, mlp_1);
  1331. mlp_3 = ggml_add(ctx0, mlp_3, model.mm_model_mlp_3_b);
  1332. // mlp_3 shape = [1, 576, 2048], ne = [2048, 576, 1, 1]
  1333. // block 1
  1334. ggml_tensor * block_1 = nullptr;
  1335. {
  1336. // transpose from [1, 576, 2048] --> [1, 2048, 576] --> [1, 2048, 24, 24]
  1337. mlp_3 = ggml_permute(ctx0, mlp_3, 1, 0, 2, 3);
  1338. mlp_3 = ggml_cont_4d(ctx0, mlp_3, n_patch, n_patch, mlp_3->ne[1], mlp_3->ne[2]);
  1339. // stride = 1, padding = 1, bias is nullptr
  1340. block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, 1, 1, 1, 1, 1, 1);
  1341. // layer norm
  1342. // // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  1343. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
  1344. // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
  1345. block_1 = ggml_norm(ctx0, block_1, eps);
  1346. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_0_1_w), model.mm_model_block_1_block_0_1_b);
  1347. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  1348. // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  1349. // hardswish
  1350. ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
  1351. block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
  1352. // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  1353. // pointwise conv
  1354. block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
  1355. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc1_w, block_1);
  1356. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc1_b);
  1357. block_1 = ggml_relu(ctx0, block_1);
  1358. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc2_w, block_1);
  1359. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc2_b);
  1360. block_1 = ggml_hardsigmoid(ctx0, block_1);
  1361. // block_1_hw shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1], block_1 shape = [1, 2048], ne = [2048, 1, 1, 1]
  1362. block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
  1363. block_1 = ggml_mul(ctx0, block_1_hw, block_1);
  1364. int w = block_1->ne[0], h = block_1->ne[1];
  1365. block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
  1366. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
  1367. // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
  1368. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_2_0_w, block_1);
  1369. block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
  1370. // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
  1371. block_1 = ggml_norm(ctx0, block_1, eps);
  1372. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_2_1_w), model.mm_model_block_1_block_2_1_b);
  1373. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  1374. // block1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  1375. // residual
  1376. block_1 = ggml_add(ctx0, mlp_3, block_1);
  1377. }
  1378. // block_2
  1379. {
  1380. // stride = 2
  1381. block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_2_block_0_0_w, block_1, 2, 2, 1, 1, 1, 1);
  1382. // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
  1383. // layer norm
  1384. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
  1385. // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
  1386. block_1 = ggml_norm(ctx0, block_1, eps);
  1387. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_0_1_w), model.mm_model_block_2_block_0_1_b);
  1388. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  1389. // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
  1390. // hardswish
  1391. ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
  1392. // not sure the parameters is right for globalAvgPooling
  1393. block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
  1394. // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  1395. // pointwise conv
  1396. block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
  1397. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc1_w, block_1);
  1398. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc1_b);
  1399. block_1 = ggml_relu(ctx0, block_1);
  1400. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc2_w, block_1);
  1401. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc2_b);
  1402. block_1 = ggml_hardsigmoid(ctx0, block_1);
  1403. // block_1_hw shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1], block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  1404. block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
  1405. block_1 = ggml_mul(ctx0, block_1_hw, block_1);
  1406. int w = block_1->ne[0], h = block_1->ne[1];
  1407. block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
  1408. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
  1409. // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
  1410. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_2_0_w, block_1);
  1411. block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
  1412. // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
  1413. block_1 = ggml_norm(ctx0, block_1, eps);
  1414. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_2_1_w), model.mm_model_block_2_block_2_1_b);
  1415. block_1 = ggml_reshape_3d(ctx0, block_1, block_1->ne[0], block_1->ne[1] * block_1->ne[2], block_1->ne[3]);
  1416. // block_1 shape = [1, 144, 2048], ne = [2048, 144, 1]
  1417. }
  1418. embeddings = block_1;
  1419. }
  1420. else if (ctx->proj_type() == PROJECTOR_TYPE_LDPV2)
  1421. {
  1422. int n_patch = 24;
  1423. ggml_tensor * mlp_0 = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
  1424. mlp_0 = ggml_add(ctx0, mlp_0, model.mm_model_mlp_0_b);
  1425. mlp_0 = ggml_gelu(ctx0, mlp_0);
  1426. ggml_tensor * mlp_2 = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, mlp_0);
  1427. mlp_2 = ggml_add(ctx0, mlp_2, model.mm_model_mlp_2_b);
  1428. // mlp_2 ne = [2048, 576, 1, 1]
  1429. // // AVG Pool Layer 2*2, strides = 2
  1430. mlp_2 = ggml_permute(ctx0, mlp_2, 1, 0, 2, 3);
  1431. // mlp_2 ne = [576, 2048, 1, 1]
  1432. mlp_2 = ggml_cont_4d(ctx0, mlp_2, n_patch, n_patch, mlp_2->ne[1], mlp_2->ne[2]);
  1433. // mlp_2 ne [24, 24, 2048, 1]
  1434. mlp_2 = ggml_pool_2d(ctx0, mlp_2, GGML_OP_POOL_AVG, 2, 2, 2, 2, 0, 0);
  1435. // weight ne = [3, 3, 2048, 1]
  1436. ggml_tensor * peg_0 = ggml_conv_2d_dw(ctx0, model.mm_model_peg_0_w, mlp_2, 1, 1, 1, 1, 1, 1);
  1437. peg_0 = ggml_cont(ctx0, ggml_permute(ctx0, peg_0, 1, 2, 0, 3));
  1438. peg_0 = ggml_add(ctx0, peg_0, model.mm_model_peg_0_b);
  1439. mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 2, 0, 3));
  1440. peg_0 = ggml_add(ctx0, peg_0, mlp_2);
  1441. peg_0 = ggml_reshape_3d(ctx0, peg_0, peg_0->ne[0], peg_0->ne[1] * peg_0->ne[2], peg_0->ne[3]);
  1442. embeddings = peg_0;
  1443. }
  1444. else {
  1445. GGML_ABORT("fatal error");
  1446. }
  1447. }
  1448. // glm projector
  1449. else if (ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE) {
  1450. size_t gridsz = (size_t)sqrt(embeddings->ne[1]);
  1451. embeddings = ggml_permute(ctx0,embeddings,1,0,2,3);
  1452. embeddings = ggml_cont_3d(ctx0, embeddings, gridsz, gridsz, embeddings->ne[1]);
  1453. embeddings = ggml_conv_2d(ctx0, model.mm_model_adapter_conv_w, embeddings, 2, 2, 0, 0, 1, 1);
  1454. embeddings = ggml_reshape_3d(ctx0, embeddings,embeddings->ne[0]*embeddings->ne[1] , embeddings->ne[2], batch_size);
  1455. embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings, 1, 0, 2, 3));
  1456. embeddings = ggml_add(ctx0, embeddings, model.mm_model_adapter_conv_b);
  1457. // GLU
  1458. {
  1459. embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
  1460. embeddings = ggml_norm(ctx0, embeddings, eps);
  1461. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_q_w), model.mm_model_ln_q_b);
  1462. embeddings = ggml_gelu_inplace(ctx0, embeddings);
  1463. ggml_tensor * x = embeddings;
  1464. embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, embeddings);
  1465. x = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w,x);
  1466. embeddings = ggml_swiglu_split(ctx0, embeddings, x);
  1467. embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, embeddings);
  1468. }
  1469. // arrangement of BOI/EOI token embeddings
  1470. // note: these embeddings are not present in text model, hence we cannot process them as text tokens
  1471. // see: https://huggingface.co/THUDM/glm-edge-v-2b/blob/main/siglip.py#L53
  1472. {
  1473. embeddings = ggml_concat(ctx0, model.mm_boi, embeddings, 1); // BOI
  1474. embeddings = ggml_concat(ctx0, embeddings, model.mm_eoi, 1); // EOI
  1475. }
  1476. }
  1477. else {
  1478. GGML_ABORT("llava: unknown projector type");
  1479. }
  1480. // build the graph
  1481. ggml_build_forward_expand(gf, embeddings);
  1482. return gf;
  1483. }
  1484. // whisper encoder with custom projector
  1485. ggml_cgraph * build_whisper_enc() {
  1486. const int n_frames = img.nx;
  1487. const int n_pos = n_frames / 2;
  1488. GGML_ASSERT(model.position_embeddings->ne[1] >= n_pos);
  1489. ggml_tensor * inp = build_inp_raw(1);
  1490. // conv1d block
  1491. {
  1492. // convolution + gelu
  1493. ggml_tensor * cur = ggml_conv_1d_ph(ctx0, model.conv1d_1_w, inp, 1, 1);
  1494. cur = ggml_add(ctx0, cur, model.conv1d_1_b);
  1495. cur = ggml_gelu_erf(ctx0, cur);
  1496. cur = ggml_conv_1d_ph(ctx0, model.conv1d_2_w, cur, 2, 1);
  1497. cur = ggml_add(ctx0, cur, model.conv1d_2_b);
  1498. cur = ggml_gelu_erf(ctx0, cur);
  1499. // transpose
  1500. inp = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  1501. cb(inp, "after_conv1d", -1);
  1502. }
  1503. // sanity check (only check one layer, but it should be the same for all)
  1504. GGML_ASSERT(model.layers[0].ln_1_w && model.layers[0].ln_1_b);
  1505. GGML_ASSERT(model.layers[0].ln_2_w && model.layers[0].ln_2_b);
  1506. GGML_ASSERT(model.layers[0].q_b);
  1507. GGML_ASSERT(model.layers[0].v_b);
  1508. GGML_ASSERT(!model.layers[0].k_b); // no bias for k
  1509. GGML_ASSERT(model.post_ln_w && model.post_ln_b);
  1510. ggml_tensor * pos_embd_selected = ggml_view_2d(
  1511. ctx0, model.position_embeddings,
  1512. model.position_embeddings->ne[0], n_pos,
  1513. model.position_embeddings->nb[1], 0
  1514. );
  1515. ggml_tensor * cur = build_vit(
  1516. inp, n_pos,
  1517. NORM_TYPE_NORMAL,
  1518. hparams.ffn_op,
  1519. pos_embd_selected,
  1520. nullptr);
  1521. cb(cur, "after_transformer", -1);
  1522. if (model.audio_has_stack_frames()) {
  1523. // StackAudioFrames
  1524. // https://huggingface.co/fixie-ai/ultravox-v0_5-llama-3_2-1b/blob/main/ultravox_model.py
  1525. int64_t stride = n_embd * hparams.proj_stack_factor;
  1526. int64_t padded_len = GGML_PAD(ggml_nelements(cur), stride);
  1527. int64_t pad = padded_len - ggml_nelements(cur);
  1528. if (pad > 0) {
  1529. cur = ggml_view_1d(ctx0, cur, ggml_nelements(cur), 0);
  1530. cur = ggml_pad(ctx0, cur, pad, 0, 0, 0);
  1531. }
  1532. cur = ggml_view_2d(ctx0, cur, stride, padded_len / stride,
  1533. ggml_row_size(cur->type, stride), 0);
  1534. cb(cur, "after_stacked", -1);
  1535. }
  1536. if (ctx->proj_type() == PROJECTOR_TYPE_ULTRAVOX) {
  1537. // UltravoxProjector
  1538. // pre-norm
  1539. cur = ggml_rms_norm(ctx0, cur, 1e-6);
  1540. cur = ggml_mul(ctx0, cur, model.mm_norm_pre_w);
  1541. // ffn in
  1542. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  1543. // swiglu
  1544. // see SwiGLU in ultravox_model.py, the second half passed through is silu, not the first half
  1545. cur = ggml_swiglu_swapped(ctx0, cur);
  1546. // mid-norm
  1547. cur = ggml_rms_norm(ctx0, cur, 1e-6);
  1548. cur = ggml_mul(ctx0, cur, model.mm_norm_mid_w);
  1549. // ffn out
  1550. cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
  1551. } else if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2A) {
  1552. // projector
  1553. cur = ggml_mul_mat(ctx0, model.mm_fc_w, cur);
  1554. cur = ggml_add(ctx0, cur, model.mm_fc_b);
  1555. } else if (ctx->proj_type() == PROJECTOR_TYPE_VOXTRAL) {
  1556. // projector
  1557. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  1558. cur = ggml_gelu_erf(ctx0, cur);
  1559. cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
  1560. } else {
  1561. GGML_ABORT("%s: unknown projector type", __func__);
  1562. }
  1563. cb(cur, "projected", -1);
  1564. ggml_build_forward_expand(gf, cur);
  1565. return gf;
  1566. }
  1567. // cogvlm vision encoder
  1568. ggml_cgraph * build_cogvlm() {
  1569. GGML_ASSERT(model.class_embedding != nullptr);
  1570. GGML_ASSERT(model.position_embeddings != nullptr);
  1571. const int n_pos = n_patches + 1; // +1 for [CLS]
  1572. // build input and concatenate class embedding
  1573. ggml_tensor * inp = build_inp();
  1574. inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
  1575. inp = ggml_add(ctx0, inp, model.position_embeddings);
  1576. cb(inp, "inp_pos", -1);
  1577. ggml_tensor * inpL = inp;
  1578. for (int il = 0; il < n_layer; il++) {
  1579. auto & layer = model.layers[il];
  1580. ggml_tensor * cur = inpL;
  1581. cur = ggml_mul_mat(ctx0, layer.qkv_w, cur);
  1582. cur = ggml_add(ctx0, cur, layer.qkv_b);
  1583. ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos, d_head*sizeof(float),
  1584. cur->nb[1], 0);
  1585. ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos, d_head*sizeof(float),
  1586. cur->nb[1], n_embd * sizeof(float));
  1587. ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos, d_head*sizeof(float),
  1588. cur->nb[1], 2 * n_embd * sizeof(float));
  1589. cb(Qcur, "Qcur", il);
  1590. cb(Kcur, "Kcur", il);
  1591. cb(Vcur, "Vcur", il);
  1592. cur = build_attn(layer.o_w, layer.o_b,
  1593. Qcur, Kcur, Vcur, nullptr, kq_scale, il);
  1594. cb(cur, "attn_out", il);
  1595. cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, NORM_TYPE_NORMAL, eps, il);
  1596. cb(cur, "attn_post_norm", il);
  1597. cur = ggml_add(ctx0, cur, inpL);
  1598. inpL = cur;
  1599. cur = build_ffn(cur,
  1600. layer.ff_up_w, layer.ff_up_b,
  1601. layer.ff_gate_w, layer.ff_gate_b,
  1602. layer.ff_down_w, layer.ff_down_b,
  1603. hparams.ffn_op, il);
  1604. cb(cur, "ffn_out", il);
  1605. cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, NORM_TYPE_NORMAL, eps, il);
  1606. cb(cur, "ffn_post_norm", il);
  1607. cur = ggml_add(ctx0, cur, inpL);
  1608. cb(cur, "layer_out", il);
  1609. inpL = cur;
  1610. }
  1611. // remove CLS token (like build_llama4 does)
  1612. ggml_tensor * cur = ggml_view_2d(ctx0, inpL,
  1613. n_embd, n_patches,
  1614. ggml_row_size(inpL->type, n_embd), 0);
  1615. // Multiply with mm_model_proj
  1616. cur = ggml_mul_mat(ctx0, model.mm_model_proj, cur);
  1617. // Apply layernorm, weight, bias
  1618. cur = build_norm(cur, model.mm_post_fc_norm_w, model.mm_post_fc_norm_b, NORM_TYPE_NORMAL, 1e-5, -1);
  1619. // Apply GELU
  1620. cur = ggml_gelu_inplace(ctx0, cur);
  1621. // Branch 1: multiply with mm_h_to_4h_w
  1622. ggml_tensor * h_to_4h = ggml_mul_mat(ctx0, model.mm_h_to_4h_w, cur);
  1623. // Branch 2: multiply with mm_gate_w
  1624. ggml_tensor * gate = ggml_mul_mat(ctx0, model.mm_gate_w, cur);
  1625. // Apply silu
  1626. gate = ggml_swiglu_split(ctx0, gate, h_to_4h);
  1627. // Apply mm_4h_to_h_w
  1628. cur = ggml_mul_mat(ctx0, model.mm_4h_to_h_w, gate);
  1629. // Concatenate with boi and eoi
  1630. cur = ggml_concat(ctx0, model.mm_boi, cur, 1);
  1631. cur = ggml_concat(ctx0, cur, model.mm_eoi, 1);
  1632. // build the graph
  1633. ggml_build_forward_expand(gf, cur);
  1634. return gf;
  1635. }
  1636. private:
  1637. //
  1638. // utility functions
  1639. //
  1640. void cb(ggml_tensor * cur0, const char * name, int il) const {
  1641. if (ctx->debug_graph) {
  1642. ggml_tensor * cur = ggml_cpy(ctx0, cur0, ggml_dup_tensor(ctx0, cur0));
  1643. std::string cur_name = il >= 0 ? std::string(name) + "_" + std::to_string(il) : name;
  1644. ggml_set_name(cur, cur_name.c_str());
  1645. ggml_set_output(cur);
  1646. ggml_build_forward_expand(gf, cur);
  1647. ctx->debug_print_tensors.push_back(cur);
  1648. }
  1649. }
  1650. // siglip2 naflex
  1651. ggml_tensor * resize_position_embeddings() {
  1652. ggml_tensor * pos_embd = model.position_embeddings;
  1653. const int height = img.ny / patch_size;
  1654. const int width = img.nx / patch_size;
  1655. const uint32_t mode = GGML_SCALE_MODE_BILINEAR;
  1656. const int n_per_side = (int)std::sqrt(pos_embd->ne[1]);
  1657. GGML_ASSERT(pos_embd);
  1658. if (height == n_per_side && width == n_per_side) {
  1659. return pos_embd;
  1660. }
  1661. pos_embd = ggml_reshape_3d(ctx0, pos_embd, n_embd, n_per_side, n_per_side); // -> (n_embd, n_per_side, n_per_side)
  1662. pos_embd = ggml_permute(ctx0, pos_embd, 2, 0, 1, 3); // -> (n_per_side, n_per_side, n_embd)
  1663. pos_embd = ggml_interpolate(ctx0, pos_embd, width, height, n_embd, 1, mode); // -> (width, height, n_embd)
  1664. pos_embd = ggml_permute(ctx0, pos_embd, 1, 2, 0, 3); // -> (n_embd, width, height)
  1665. pos_embd = ggml_cont_2d(ctx0, pos_embd, n_embd, width * height); // -> (n_embd, width * height)
  1666. return pos_embd;
  1667. }
  1668. // build vision transformer (ViT) cgraph
  1669. // this function should cover most of the models
  1670. // if your model has specific features, you should probably duplicate this function
  1671. ggml_tensor * build_vit(
  1672. ggml_tensor * inp,
  1673. int64_t n_pos,
  1674. norm_type norm_t,
  1675. ffn_op_type ffn_t,
  1676. ggml_tensor * learned_pos_embd,
  1677. std::function<ggml_tensor *(ggml_tensor *, const clip_layer &)> add_pos
  1678. ) {
  1679. if (learned_pos_embd) {
  1680. inp = ggml_add(ctx0, inp, learned_pos_embd);
  1681. cb(inp, "pos_embed", -1);
  1682. }
  1683. ggml_tensor * inpL = inp;
  1684. // pre-layernorm
  1685. if (model.pre_ln_w) {
  1686. inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
  1687. cb(inpL, "pre_ln", -1);
  1688. }
  1689. // loop over layers
  1690. for (int il = 0; il < n_layer; il++) {
  1691. auto & layer = model.layers[il];
  1692. ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
  1693. // layernorm1
  1694. cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
  1695. cb(cur, "layer_inp_normed", il);
  1696. // self-attention
  1697. {
  1698. ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.q_w, cur);
  1699. if (layer.q_b) {
  1700. Qcur = ggml_add(ctx0, Qcur, layer.q_b);
  1701. }
  1702. ggml_tensor * Kcur = ggml_mul_mat(ctx0, layer.k_w, cur);
  1703. if (layer.k_b) {
  1704. Kcur = ggml_add(ctx0, Kcur, layer.k_b);
  1705. }
  1706. ggml_tensor * Vcur = ggml_mul_mat(ctx0, layer.v_w, cur);
  1707. if (layer.v_b) {
  1708. Vcur = ggml_add(ctx0, Vcur, layer.v_b);
  1709. }
  1710. if (layer.q_norm) {
  1711. Qcur = build_norm(Qcur, layer.q_norm, NULL, norm_t, eps, il);
  1712. cb(Qcur, "Qcur_norm", il);
  1713. }
  1714. if (layer.k_norm) {
  1715. Kcur = build_norm(Kcur, layer.k_norm, NULL, norm_t, eps, il);
  1716. cb(Kcur, "Kcur_norm", il);
  1717. }
  1718. Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_pos);
  1719. Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_pos);
  1720. Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_pos);
  1721. cb(Qcur, "Qcur", il);
  1722. cb(Kcur, "Kcur", il);
  1723. cb(Vcur, "Vcur", il);
  1724. if (add_pos) {
  1725. Qcur = add_pos(Qcur, layer);
  1726. Kcur = add_pos(Kcur, layer);
  1727. cb(Qcur, "Qcur_pos", il);
  1728. cb(Kcur, "Kcur_pos", il);
  1729. }
  1730. cur = build_attn(layer.o_w, layer.o_b,
  1731. Qcur, Kcur, Vcur, nullptr, kq_scale, il);
  1732. cb(cur, "attn_out", il);
  1733. }
  1734. if (layer.ls_1_w) {
  1735. cur = ggml_mul(ctx0, cur, layer.ls_1_w);
  1736. cb(cur, "attn_out_scaled", il);
  1737. }
  1738. // re-add the layer input, e.g., residual
  1739. cur = ggml_add(ctx0, cur, inpL);
  1740. inpL = cur; // inpL = residual, cur = hidden_states
  1741. cb(cur, "ffn_inp", il);
  1742. // layernorm2
  1743. cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
  1744. cb(cur, "ffn_inp_normed", il);
  1745. // ffn
  1746. cur = build_ffn(cur,
  1747. layer.ff_up_w, layer.ff_up_b,
  1748. layer.ff_gate_w, layer.ff_gate_b,
  1749. layer.ff_down_w, layer.ff_down_b,
  1750. ffn_t, il);
  1751. cb(cur, "ffn_out", il);
  1752. if (layer.ls_2_w) {
  1753. cur = ggml_mul(ctx0, cur, layer.ls_2_w);
  1754. cb(cur, "ffn_out_scaled", il);
  1755. }
  1756. // residual 2
  1757. cur = ggml_add(ctx0, inpL, cur);
  1758. cb(cur, "layer_out", il);
  1759. inpL = cur;
  1760. }
  1761. if (ctx->model.audio_has_avgpool()) {
  1762. ggml_tensor * cur = inpL;
  1763. cur = ggml_transpose(ctx0, cur);
  1764. cur = ggml_cont(ctx0, cur);
  1765. cur = ggml_pool_1d(ctx0, cur, GGML_OP_POOL_AVG, 2, 2, 0);
  1766. cur = ggml_transpose(ctx0, cur);
  1767. cur = ggml_cont(ctx0, cur);
  1768. inpL = cur;
  1769. }
  1770. // post-layernorm
  1771. if (model.post_ln_w) {
  1772. inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, -1);
  1773. }
  1774. return inpL;
  1775. }
  1776. // build the input after conv2d (inp_raw --> patches)
  1777. // returns tensor with shape [n_embd, n_patches]
  1778. ggml_tensor * build_inp() {
  1779. ggml_tensor * inp_raw = build_inp_raw();
  1780. ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  1781. inp = ggml_reshape_2d(ctx0, inp, n_patches, n_embd);
  1782. inp = ggml_cont(ctx0, ggml_transpose(ctx0, inp));
  1783. if (model.patch_bias) {
  1784. inp = ggml_add(ctx0, inp, model.patch_bias);
  1785. cb(inp, "patch_bias", -1);
  1786. }
  1787. return inp;
  1788. }
  1789. ggml_tensor * build_inp_raw(int channels = 3) {
  1790. ggml_tensor * inp_raw = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, img.nx, img.ny, channels);
  1791. ggml_set_name(inp_raw, "inp_raw");
  1792. ggml_set_input(inp_raw);
  1793. return inp_raw;
  1794. }
  1795. ggml_tensor * build_norm(
  1796. ggml_tensor * cur,
  1797. ggml_tensor * mw,
  1798. ggml_tensor * mb,
  1799. norm_type type,
  1800. float norm_eps,
  1801. int il) const {
  1802. cur = type == NORM_TYPE_RMS
  1803. ? ggml_rms_norm(ctx0, cur, norm_eps)
  1804. : ggml_norm(ctx0, cur, norm_eps);
  1805. if (mw || mb) {
  1806. cb(cur, "norm", il);
  1807. }
  1808. if (mw) {
  1809. cur = ggml_mul(ctx0, cur, mw);
  1810. if (mb) {
  1811. cb(cur, "norm_w", il);
  1812. }
  1813. }
  1814. if (mb) {
  1815. cur = ggml_add(ctx0, cur, mb);
  1816. }
  1817. return cur;
  1818. }
  1819. ggml_tensor * build_ffn(
  1820. ggml_tensor * cur,
  1821. ggml_tensor * up,
  1822. ggml_tensor * up_b,
  1823. ggml_tensor * gate,
  1824. ggml_tensor * gate_b,
  1825. ggml_tensor * down,
  1826. ggml_tensor * down_b,
  1827. ffn_op_type type_op,
  1828. int il) const {
  1829. ggml_tensor * tmp = up ? ggml_mul_mat(ctx0, up, cur) : cur;
  1830. cb(tmp, "ffn_up", il);
  1831. if (up_b) {
  1832. tmp = ggml_add(ctx0, tmp, up_b);
  1833. cb(tmp, "ffn_up_b", il);
  1834. }
  1835. if (gate) {
  1836. cur = ggml_mul_mat(ctx0, gate, cur);
  1837. cb(cur, "ffn_gate", il);
  1838. if (gate_b) {
  1839. cur = ggml_add(ctx0, cur, gate_b);
  1840. cb(cur, "ffn_gate_b", il);
  1841. }
  1842. } else {
  1843. cur = tmp;
  1844. }
  1845. // we only support parallel ffn for now
  1846. switch (type_op) {
  1847. case FFN_SILU:
  1848. if (gate) {
  1849. cur = ggml_swiglu_split(ctx0, cur, tmp);
  1850. cb(cur, "ffn_swiglu", il);
  1851. } else {
  1852. cur = ggml_silu(ctx0, cur);
  1853. cb(cur, "ffn_silu", il);
  1854. } break;
  1855. case FFN_GELU:
  1856. if (gate) {
  1857. cur = ggml_geglu_split(ctx0, cur, tmp);
  1858. cb(cur, "ffn_geglu", il);
  1859. } else {
  1860. cur = ggml_gelu(ctx0, cur);
  1861. cb(cur, "ffn_gelu", il);
  1862. } break;
  1863. case FFN_GELU_ERF:
  1864. if (gate) {
  1865. cur = ggml_geglu_erf_split(ctx0, cur, tmp);
  1866. cb(cur, "ffn_geglu_erf", il);
  1867. } else {
  1868. cur = ggml_gelu_erf(ctx0, cur);
  1869. cb(cur, "ffn_gelu_erf", il);
  1870. } break;
  1871. case FFN_GELU_QUICK:
  1872. if (gate) {
  1873. cur = ggml_geglu_quick_split(ctx0, cur, tmp);
  1874. cb(cur, "ffn_geglu_quick", il);
  1875. } else {
  1876. cur = ggml_gelu_quick(ctx0, cur);
  1877. cb(cur, "ffn_gelu_quick", il);
  1878. } break;
  1879. }
  1880. if (down) {
  1881. cur = ggml_mul_mat(ctx0, down, cur);
  1882. }
  1883. if (down_b) {
  1884. cb(cur, "ffn_down", il);
  1885. }
  1886. if (down_b) {
  1887. cur = ggml_add(ctx0, cur, down_b);
  1888. }
  1889. return cur;
  1890. }
  1891. ggml_tensor * build_attn(
  1892. ggml_tensor * wo,
  1893. ggml_tensor * wo_b,
  1894. ggml_tensor * q_cur,
  1895. ggml_tensor * k_cur,
  1896. ggml_tensor * v_cur,
  1897. ggml_tensor * kq_mask,
  1898. float kq_scale,
  1899. int il) const {
  1900. // these nodes are added to the graph together so that they are not reordered
  1901. // by doing so, the number of splits in the graph is reduced
  1902. ggml_build_forward_expand(gf, q_cur);
  1903. ggml_build_forward_expand(gf, k_cur);
  1904. ggml_build_forward_expand(gf, v_cur);
  1905. ggml_tensor * q = ggml_permute(ctx0, q_cur, 0, 2, 1, 3);
  1906. //cb(q, "q", il);
  1907. ggml_tensor * k = ggml_permute(ctx0, k_cur, 0, 2, 1, 3);
  1908. //cb(k, "k", il);
  1909. ggml_tensor * cur;
  1910. if (ctx->flash_attn_type == CLIP_FLASH_ATTN_TYPE_ENABLED) {
  1911. ggml_tensor * v = ggml_permute(ctx0, v_cur, 0, 2, 1, 3);
  1912. k = ggml_cast(ctx0, k, GGML_TYPE_F16);
  1913. v = ggml_cast(ctx0, v, GGML_TYPE_F16);
  1914. cur = ggml_flash_attn_ext(ctx0, q, k, v, kq_mask, kq_scale, 0.0f, 0.0f);
  1915. ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
  1916. cur = ggml_reshape_2d(ctx0, cur, cur->ne[0]*cur->ne[1], cur->ne[2]*cur->ne[3]);
  1917. } else {
  1918. ggml_tensor * v = ggml_permute(ctx0, v_cur, 1, 2, 0, 3);
  1919. v = ggml_cont(ctx0, v);
  1920. const auto n_tokens = q->ne[1];
  1921. const auto n_head = q->ne[2];
  1922. ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  1923. // F32 may not needed for vision encoders?
  1924. // ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  1925. kq = ggml_soft_max_ext(ctx0, kq, kq_mask, kq_scale, 0.0f);
  1926. ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq);
  1927. cur = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
  1928. cur = ggml_cont_2d(ctx0, cur, cur->ne[0]*n_head, n_tokens);
  1929. }
  1930. cb(cur, "kqv_out", il);
  1931. if (wo) {
  1932. cur = ggml_mul_mat(ctx0, wo, cur);
  1933. }
  1934. if (wo_b) {
  1935. cur = ggml_add(ctx0, cur, wo_b);
  1936. }
  1937. return cur;
  1938. }
  1939. // implementation of the 2D RoPE without adding a new op in ggml
  1940. // this is not efficient (use double the memory), but works on all backends
  1941. // TODO: there was a more efficient which relies on ggml_view and ggml_rope_ext_inplace, but the rope inplace does not work well with non-contiguous tensors ; we should fix that and revert back to the original implementation in https://github.com/ggml-org/llama.cpp/pull/13065
  1942. static ggml_tensor * build_rope_2d(
  1943. ggml_context * ctx0,
  1944. ggml_tensor * cur,
  1945. ggml_tensor * pos_a, // first half
  1946. ggml_tensor * pos_b, // second half
  1947. const float freq_base,
  1948. const bool interleave_freq
  1949. ) {
  1950. const int64_t n_dim = cur->ne[0];
  1951. const int64_t n_head = cur->ne[1];
  1952. const int64_t n_pos = cur->ne[2];
  1953. // for example, if we have cur tensor of shape (n_dim=8, n_head, n_pos)
  1954. // we will have a list of 4 inv_freq: 1e-0, 1e-1, 1e-2, 1e-3
  1955. // first half of cur will use 1e-0, 1e-2 (even)
  1956. // second half of cur will use 1e-1, 1e-3 (odd)
  1957. // the trick here is to rotate just half of n_dim, so inv_freq will automatically be even
  1958. // ^ don't ask me why, it's math! -2(2i) / n_dim == -2i / (n_dim/2)
  1959. // then for the second half, we use freq_scale to shift the inv_freq
  1960. // ^ why? replace (2i) with (2i+1) in the above equation
  1961. const float freq_scale_odd = interleave_freq
  1962. ? std::pow(freq_base, (float)-2/n_dim)
  1963. : 1.0;
  1964. // first half
  1965. ggml_tensor * first;
  1966. {
  1967. first = ggml_view_3d(ctx0, cur,
  1968. n_dim/2, n_head, n_pos,
  1969. ggml_row_size(cur->type, n_dim),
  1970. ggml_row_size(cur->type, n_dim*n_head),
  1971. 0);
  1972. first = ggml_rope_ext(
  1973. ctx0,
  1974. first,
  1975. pos_a, // positions
  1976. nullptr, // freq factors
  1977. n_dim/2, // n_dims
  1978. 0, 0, freq_base,
  1979. 1.0f, 0.0f, 1.0f, 0.0f, 0.0f
  1980. );
  1981. }
  1982. // second half
  1983. ggml_tensor * second;
  1984. {
  1985. second = ggml_view_3d(ctx0, cur,
  1986. n_dim/2, n_head, n_pos,
  1987. ggml_row_size(cur->type, n_dim),
  1988. ggml_row_size(cur->type, n_dim*n_head),
  1989. n_dim/2 * ggml_element_size(cur));
  1990. second = ggml_rope_ext(
  1991. ctx0,
  1992. second,
  1993. pos_b, // positions
  1994. nullptr, // freq factors
  1995. n_dim/2, // n_dims
  1996. 0, 0, freq_base,
  1997. freq_scale_odd,
  1998. 0.0f, 1.0f, 0.0f, 0.0f
  1999. );
  2000. }
  2001. cur = ggml_concat(ctx0, first, second, 0);
  2002. return cur;
  2003. }
  2004. // aka pixel_shuffle / pixel_unshuffle / patch_merger (Kimi-VL)
  2005. // support dynamic resolution
  2006. ggml_tensor * build_patch_merge_permute(ggml_tensor * cur, int scale_factor) {
  2007. GGML_ASSERT(scale_factor > 1);
  2008. const int n_embd = cur->ne[0];
  2009. int width = img.nx / patch_size;
  2010. int height = img.ny / patch_size;
  2011. // pad width and height to factor
  2012. const int64_t pad_width = CLIP_ALIGN(width, scale_factor) - width;
  2013. const int64_t pad_height = CLIP_ALIGN(height, scale_factor) - height;
  2014. cur = ggml_reshape_3d(ctx0, cur, n_embd, width, height);
  2015. if (pad_width || pad_height) {
  2016. cur = ggml_pad(ctx0, cur, 0, pad_width, pad_height, 0);
  2017. width += pad_width;
  2018. height += pad_height;
  2019. }
  2020. // unshuffle h
  2021. cur = ggml_reshape_3d(ctx0, cur, n_embd * scale_factor, width / scale_factor, height);
  2022. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  2023. // unshuffle w
  2024. cur = ggml_cont_3d(ctx0, cur, n_embd * scale_factor * scale_factor, height / scale_factor, width / scale_factor);
  2025. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  2026. cur = ggml_cont_2d(ctx0, cur, cur->ne[0], cur->ne[1] * cur->ne[2]);
  2027. cb(cur, "pixel_shuffle", -1);
  2028. return cur;
  2029. }
  2030. };
  2031. static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch & imgs) {
  2032. GGML_ASSERT(imgs.entries.size() == 1 && "n_batch > 1 is not supported");
  2033. clip_graph graph(ctx, *imgs.entries[0]);
  2034. ggml_cgraph * res;
  2035. switch (ctx->proj_type()) {
  2036. case PROJECTOR_TYPE_GEMMA3:
  2037. case PROJECTOR_TYPE_IDEFICS3:
  2038. case PROJECTOR_TYPE_LFM2:
  2039. {
  2040. res = graph.build_siglip();
  2041. } break;
  2042. case PROJECTOR_TYPE_PIXTRAL:
  2043. case PROJECTOR_TYPE_LIGHTONOCR:
  2044. {
  2045. res = graph.build_pixtral();
  2046. } break;
  2047. case PROJECTOR_TYPE_QWEN2VL:
  2048. case PROJECTOR_TYPE_QWEN25VL:
  2049. {
  2050. res = graph.build_qwen2vl();
  2051. } break;
  2052. case PROJECTOR_TYPE_QWEN3VL:
  2053. {
  2054. res = graph.build_qwen3vl();
  2055. } break;
  2056. case PROJECTOR_TYPE_MINICPMV:
  2057. {
  2058. res = graph.build_minicpmv();
  2059. } break;
  2060. case PROJECTOR_TYPE_INTERNVL:
  2061. {
  2062. res = graph.build_internvl();
  2063. } break;
  2064. case PROJECTOR_TYPE_LLAMA4:
  2065. {
  2066. res = graph.build_llama4();
  2067. } break;
  2068. case PROJECTOR_TYPE_ULTRAVOX:
  2069. case PROJECTOR_TYPE_VOXTRAL:
  2070. case PROJECTOR_TYPE_QWEN2A:
  2071. {
  2072. res = graph.build_whisper_enc();
  2073. } break;
  2074. case PROJECTOR_TYPE_KIMIVL:
  2075. {
  2076. res = graph.build_kimivl();
  2077. } break;
  2078. case PROJECTOR_TYPE_JANUS_PRO:
  2079. {
  2080. res = graph.build_siglip();
  2081. } break;
  2082. case PROJECTOR_TYPE_COGVLM:
  2083. {
  2084. res = graph.build_cogvlm();
  2085. } break;
  2086. default:
  2087. {
  2088. res = graph.build_llava();
  2089. } break;
  2090. }
  2091. return res;
  2092. }
  2093. struct clip_model_loader {
  2094. ggml_context_ptr ctx_meta;
  2095. gguf_context_ptr ctx_gguf;
  2096. std::string fname;
  2097. size_t model_size = 0; // in bytes
  2098. bool has_vision = false;
  2099. bool has_audio = false;
  2100. // TODO @ngxson : we should not pass clip_ctx here, it should be clip_model
  2101. clip_model_loader(const char * fname) : fname(fname) {
  2102. struct ggml_context * meta = nullptr;
  2103. struct gguf_init_params params = {
  2104. /*.no_alloc = */ true,
  2105. /*.ctx = */ &meta,
  2106. };
  2107. ctx_gguf = gguf_context_ptr(gguf_init_from_file(fname, params));
  2108. if (!ctx_gguf.get()) {
  2109. throw std::runtime_error(string_format("%s: failed to load CLIP model from %s. Does this file exist?\n", __func__, fname));
  2110. }
  2111. ctx_meta.reset(meta);
  2112. const int n_tensors = gguf_get_n_tensors(ctx_gguf.get());
  2113. // print gguf info
  2114. {
  2115. std::string name;
  2116. get_string(KEY_NAME, name, false);
  2117. std::string description;
  2118. get_string(KEY_DESCRIPTION, description, false);
  2119. LOG_INF("%s: model name: %s\n", __func__, name.c_str());
  2120. LOG_INF("%s: description: %s\n", __func__, description.c_str());
  2121. LOG_INF("%s: GGUF version: %d\n", __func__, gguf_get_version(ctx_gguf.get()));
  2122. LOG_INF("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx_gguf.get()));
  2123. LOG_INF("%s: n_tensors: %d\n", __func__, n_tensors);
  2124. LOG_INF("%s: n_kv: %d\n", __func__, (int)gguf_get_n_kv(ctx_gguf.get()));
  2125. LOG_INF("\n");
  2126. }
  2127. // modalities
  2128. {
  2129. get_bool(KEY_HAS_VISION_ENC, has_vision, false);
  2130. get_bool(KEY_HAS_AUDIO_ENC, has_audio, false);
  2131. if (has_vision) {
  2132. LOG_INF("%s: has vision encoder\n", __func__);
  2133. }
  2134. if (has_audio) {
  2135. LOG_INF("%s: has audio encoder\n", __func__);
  2136. }
  2137. }
  2138. // tensors
  2139. {
  2140. for (int i = 0; i < n_tensors; ++i) {
  2141. const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
  2142. const size_t offset = gguf_get_tensor_offset(ctx_gguf.get(), i);
  2143. enum ggml_type type = gguf_get_tensor_type(ctx_gguf.get(), i);
  2144. ggml_tensor * cur = ggml_get_tensor(meta, name);
  2145. size_t tensor_size = ggml_nbytes(cur);
  2146. model_size += tensor_size;
  2147. LOG_DBG("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n",
  2148. __func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type));
  2149. }
  2150. }
  2151. }
  2152. void load_hparams(clip_model & model, clip_modality modality) {
  2153. auto & hparams = model.hparams;
  2154. std::string log_ffn_op; // for logging
  2155. // sanity check
  2156. if (modality == CLIP_MODALITY_VISION) {
  2157. GGML_ASSERT(has_vision);
  2158. } else if (modality == CLIP_MODALITY_AUDIO) {
  2159. GGML_ASSERT(has_audio);
  2160. }
  2161. model.modality = modality;
  2162. // projector type
  2163. std::string proj_type;
  2164. {
  2165. // default key
  2166. get_string(KEY_PROJ_TYPE, proj_type, false);
  2167. // for models with mixed modalities
  2168. if (proj_type.empty()) {
  2169. if (modality == CLIP_MODALITY_VISION) {
  2170. get_string(KEY_VISION_PROJ_TYPE, proj_type, false);
  2171. } else if (modality == CLIP_MODALITY_AUDIO) {
  2172. get_string(KEY_AUDIO_PROJ_TYPE, proj_type, false);
  2173. } else {
  2174. GGML_ABORT("unknown modality");
  2175. }
  2176. }
  2177. model.proj_type = clip_projector_type_from_string(proj_type);
  2178. if (model.proj_type == PROJECTOR_TYPE_UNKNOWN) {
  2179. throw std::runtime_error(string_format("%s: unknown projector type: %s\n", __func__, proj_type.c_str()));
  2180. }
  2181. // correct arch for multimodal models (legacy method)
  2182. if (model.proj_type == PROJECTOR_TYPE_QWEN25O) {
  2183. model.proj_type = modality == CLIP_MODALITY_VISION
  2184. ? PROJECTOR_TYPE_QWEN25VL
  2185. : PROJECTOR_TYPE_QWEN2A;
  2186. }
  2187. }
  2188. const bool is_vision = model.modality == CLIP_MODALITY_VISION;
  2189. const bool is_audio = model.modality == CLIP_MODALITY_AUDIO;
  2190. // other hparams
  2191. {
  2192. const char * prefix = is_vision ? "vision" : "audio";
  2193. get_u32(string_format(KEY_N_EMBD, prefix), hparams.n_embd);
  2194. get_u32(string_format(KEY_N_HEAD, prefix), hparams.n_head);
  2195. get_u32(string_format(KEY_N_FF, prefix), hparams.n_ff);
  2196. get_u32(string_format(KEY_N_BLOCK, prefix), hparams.n_layer);
  2197. get_u32(string_format(KEY_PROJ_DIM, prefix), hparams.projection_dim);
  2198. get_f32(string_format(KEY_LAYER_NORM_EPS, prefix), hparams.eps);
  2199. if (is_vision) {
  2200. get_u32(KEY_IMAGE_SIZE, hparams.image_size);
  2201. get_u32(KEY_PATCH_SIZE, hparams.patch_size);
  2202. get_u32(KEY_IMAGE_CROP_RESOLUTION, hparams.image_crop_resolution, false);
  2203. get_i32(KEY_MINICPMV_VERSION, hparams.minicpmv_version, false); // legacy
  2204. get_u32(KEY_MINICPMV_QUERY_NUM, hparams.minicpmv_query_num, false);
  2205. if (hparams.minicpmv_query_num == 0) {
  2206. // Fallback to hardcoded values for legacy models
  2207. if (hparams.minicpmv_version == 3) {
  2208. hparams.minicpmv_query_num = 64;
  2209. } else if (hparams.minicpmv_version == 4) {
  2210. hparams.minicpmv_query_num = 64;
  2211. } else if (hparams.minicpmv_version == 5) {
  2212. hparams.minicpmv_query_num = 64;
  2213. } else if (hparams.minicpmv_version == 6) {
  2214. hparams.minicpmv_query_num = 64;
  2215. } else {
  2216. hparams.minicpmv_query_num = 96;
  2217. }
  2218. }
  2219. } else if (is_audio) {
  2220. get_u32(KEY_A_NUM_MEL_BINS, hparams.n_mel_bins);
  2221. // some hparams are unused, but still need to set to avoid issues
  2222. hparams.image_size = 0;
  2223. hparams.patch_size = 1;
  2224. } else {
  2225. GGML_ASSERT(false && "unknown modality");
  2226. }
  2227. // for pinpoints, we need to convert it into a list of resolution candidates
  2228. {
  2229. std::vector<int> pinpoints;
  2230. get_arr_int(KEY_IMAGE_GRID_PINPOINTS, pinpoints, false);
  2231. if (!pinpoints.empty()) {
  2232. for (size_t i = 0; i < pinpoints.size(); i += 2) {
  2233. hparams.image_res_candidates.push_back({
  2234. pinpoints[i],
  2235. pinpoints[i+1],
  2236. });
  2237. }
  2238. }
  2239. }
  2240. // default warmup value
  2241. hparams.warmup_image_size = hparams.image_size;
  2242. hparams.has_llava_projector = model.proj_type == PROJECTOR_TYPE_MLP
  2243. || model.proj_type == PROJECTOR_TYPE_MLP_NORM
  2244. || model.proj_type == PROJECTOR_TYPE_LDP
  2245. || model.proj_type == PROJECTOR_TYPE_LDPV2;
  2246. {
  2247. bool use_gelu = false;
  2248. bool use_silu = false;
  2249. get_bool(KEY_USE_GELU, use_gelu, false);
  2250. get_bool(KEY_USE_SILU, use_silu, false);
  2251. if (use_gelu && use_silu) {
  2252. throw std::runtime_error(string_format("%s: both use_gelu and use_silu are set to true\n", __func__));
  2253. }
  2254. if (use_gelu) {
  2255. hparams.ffn_op = FFN_GELU;
  2256. log_ffn_op = "gelu";
  2257. } else if (use_silu) {
  2258. hparams.ffn_op = FFN_SILU;
  2259. log_ffn_op = "silu";
  2260. } else {
  2261. hparams.ffn_op = FFN_GELU_QUICK;
  2262. log_ffn_op = "gelu_quick";
  2263. }
  2264. }
  2265. {
  2266. std::string mm_patch_merge_type;
  2267. get_string(KEY_MM_PATCH_MERGE_TYPE, mm_patch_merge_type, false);
  2268. if (mm_patch_merge_type == "spatial_unpad") {
  2269. hparams.mm_patch_merge_type = PATCH_MERGE_SPATIAL_UNPAD;
  2270. }
  2271. }
  2272. if (is_vision) {
  2273. int idx_mean = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_MEAN);
  2274. int idx_std = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_STD);
  2275. GGML_ASSERT(idx_mean >= 0 && "image_mean not found");
  2276. GGML_ASSERT(idx_std >= 0 && "image_std not found");
  2277. const float * mean_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_mean);
  2278. const float * std_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_std);
  2279. for (int i = 0; i < 3; ++i) {
  2280. hparams.image_mean[i] = mean_data[i];
  2281. hparams.image_std[i] = std_data[i];
  2282. }
  2283. }
  2284. // Load the vision feature layer indices if they are explicitly provided;
  2285. // if multiple vision feature layers are present, the values will be concatenated
  2286. // to form the final visual features.
  2287. // NOTE: gguf conversions should standardize the values of the vision feature layer to
  2288. // be non-negative, since we use -1 to mark values as unset here.
  2289. std::vector<int> vision_feature_layer;
  2290. get_arr_int(KEY_FEATURE_LAYER, vision_feature_layer, false);
  2291. // convert std::vector to std::unordered_set
  2292. for (auto & layer : vision_feature_layer) {
  2293. hparams.vision_feature_layer.insert(layer);
  2294. }
  2295. // model-specific params
  2296. switch (model.proj_type) {
  2297. case PROJECTOR_TYPE_MINICPMV:
  2298. {
  2299. if (hparams.minicpmv_version == 0) {
  2300. hparams.minicpmv_version = 2; // default to 2 if not set
  2301. }
  2302. } break;
  2303. case PROJECTOR_TYPE_INTERNVL:
  2304. {
  2305. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
  2306. } break;
  2307. case PROJECTOR_TYPE_IDEFICS3:
  2308. {
  2309. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
  2310. get_u32(KEY_PREPROC_IMAGE_SIZE, hparams.image_longest_edge, false);
  2311. } break;
  2312. case PROJECTOR_TYPE_LFM2:
  2313. {
  2314. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
  2315. // ref: https://huggingface.co/LiquidAI/LFM2-VL-3B/blob/main/preprocessor_config.json
  2316. hparams.set_limit_image_tokens(64, 256);
  2317. } break;
  2318. case PROJECTOR_TYPE_PIXTRAL:
  2319. case PROJECTOR_TYPE_LIGHTONOCR:
  2320. {
  2321. // ref: https://huggingface.co/mistral-community/pixtral-12b/blob/main/preprocessor_config.json
  2322. // TODO: verify the image_min_tokens
  2323. hparams.n_merge = 1; // the original pixtral does not use patch merging
  2324. hparams.rope_theta = 10000.0f;
  2325. get_u32(KEY_SPATIAL_MERGE_SIZE, hparams.n_merge, false);
  2326. hparams.set_limit_image_tokens(8, 1024);
  2327. hparams.set_warmup_n_tokens(256); // avoid OOM on warmup
  2328. } break;
  2329. case PROJECTOR_TYPE_KIMIVL:
  2330. {
  2331. hparams.rope_theta = 10000.0f;
  2332. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
  2333. // TODO: check kimivl preprocessor for exact values
  2334. hparams.set_limit_image_tokens(8, 1024);
  2335. hparams.set_warmup_n_tokens(256); // avoid OOM on warmup
  2336. } break;
  2337. case PROJECTOR_TYPE_GEMMA3:
  2338. {
  2339. // default value (used by all model sizes in gemma 3 family)
  2340. // number of patches for each **side** is reduced by a factor of 4
  2341. hparams.n_merge = 4;
  2342. // test model (tinygemma3) has a different value, we optionally read it
  2343. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
  2344. } break;
  2345. case PROJECTOR_TYPE_QWEN2VL:
  2346. case PROJECTOR_TYPE_QWEN25VL:
  2347. case PROJECTOR_TYPE_QWEN3VL:
  2348. {
  2349. hparams.n_merge = 2; // default value for Qwen 2 and 2.5
  2350. get_u32(KEY_SPATIAL_MERGE_SIZE, hparams.n_merge, false);
  2351. get_u32(KEY_WIN_ATTN_PATTERN, hparams.n_wa_pattern, model.proj_type == PROJECTOR_TYPE_QWEN25VL); // only 2.5 requires it
  2352. // ref: https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct/blob/main/preprocessor_config.json
  2353. hparams.set_limit_image_tokens(8, 4096);
  2354. hparams.set_warmup_n_tokens(46*46); // avoid OOM on warmup
  2355. const int warn_min_pixels = 1024 * hparams.n_merge * hparams.n_merge * hparams.patch_size * hparams.patch_size;
  2356. if (hparams.image_min_pixels < warn_min_pixels) {
  2357. LOG_WRN("%s: Qwen-VL models require at minimum 1024 image tokens to function correctly on grounding tasks\n", __func__);
  2358. LOG_WRN("%s: if you encounter problems with accuracy, try adding --image-min-tokens 1024\n", __func__);
  2359. LOG_WRN("%s: more info: https://github.com/ggml-org/llama.cpp/issues/16842\n\n", __func__);
  2360. }
  2361. } break;
  2362. case PROJECTOR_TYPE_LLAMA4:
  2363. {
  2364. hparams.rope_theta = 10000.0f;
  2365. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
  2366. set_llava_uhd_res_candidates(model, 3);
  2367. } break;
  2368. case PROJECTOR_TYPE_ULTRAVOX:
  2369. case PROJECTOR_TYPE_QWEN2A:
  2370. case PROJECTOR_TYPE_VOXTRAL:
  2371. {
  2372. bool require_stack = model.proj_type == PROJECTOR_TYPE_ULTRAVOX ||
  2373. model.proj_type == PROJECTOR_TYPE_VOXTRAL;
  2374. get_u32(KEY_A_PROJ_STACK_FACTOR, hparams.proj_stack_factor, require_stack);
  2375. if (hparams.n_mel_bins != 128) {
  2376. throw std::runtime_error(string_format("%s: only 128 mel bins are supported for ultravox\n", __func__));
  2377. }
  2378. hparams.ffn_op = FFN_GELU_ERF;
  2379. log_ffn_op = "gelu_erf"; // temporary solution for logging
  2380. } break;
  2381. default:
  2382. break;
  2383. }
  2384. // sanity check
  2385. {
  2386. if (hparams.image_max_pixels < hparams.image_min_pixels) {
  2387. throw std::runtime_error(string_format("%s: image_max_pixels (%d) is less than image_min_pixels (%d)\n", __func__, hparams.image_max_pixels, hparams.image_min_pixels));
  2388. }
  2389. }
  2390. LOG_INF("%s: projector: %s\n", __func__, proj_type.c_str());
  2391. LOG_INF("%s: n_embd: %d\n", __func__, hparams.n_embd);
  2392. LOG_INF("%s: n_head: %d\n", __func__, hparams.n_head);
  2393. LOG_INF("%s: n_ff: %d\n", __func__, hparams.n_ff);
  2394. LOG_INF("%s: n_layer: %d\n", __func__, hparams.n_layer);
  2395. LOG_INF("%s: ffn_op: %s\n", __func__, log_ffn_op.c_str());
  2396. LOG_INF("%s: projection_dim: %d\n", __func__, hparams.projection_dim);
  2397. if (is_vision) {
  2398. LOG_INF("\n--- vision hparams ---\n");
  2399. LOG_INF("%s: image_size: %d\n", __func__, hparams.image_size);
  2400. LOG_INF("%s: patch_size: %d\n", __func__, hparams.patch_size);
  2401. LOG_INF("%s: has_llava_proj: %d\n", __func__, hparams.has_llava_projector);
  2402. LOG_INF("%s: minicpmv_version: %d\n", __func__, hparams.minicpmv_version);
  2403. LOG_INF("%s: n_merge: %d\n", __func__, hparams.n_merge);
  2404. LOG_INF("%s: n_wa_pattern: %d\n", __func__, hparams.n_wa_pattern);
  2405. if (hparams.image_min_pixels > 0) {
  2406. LOG_INF("%s: image_min_pixels: %d%s\n", __func__, hparams.image_min_pixels, hparams.custom_image_min_tokens > 0 ? " (custom value)" : "");
  2407. }
  2408. if (hparams.image_max_pixels > 0) {
  2409. LOG_INF("%s: image_max_pixels: %d%s\n", __func__, hparams.image_max_pixels, hparams.custom_image_max_tokens > 0 ? " (custom value)" : "");
  2410. }
  2411. } else if (is_audio) {
  2412. LOG_INF("\n--- audio hparams ---\n");
  2413. LOG_INF("%s: n_mel_bins: %d\n", __func__, hparams.n_mel_bins);
  2414. LOG_INF("%s: proj_stack_factor: %d\n", __func__, hparams.proj_stack_factor);
  2415. }
  2416. LOG_INF("\n");
  2417. LOG_INF("%s: model size: %.2f MiB\n", __func__, model_size / 1024.0 / 1024.0);
  2418. LOG_INF("%s: metadata size: %.2f MiB\n", __func__, ggml_get_mem_size(ctx_meta.get()) / 1024.0 / 1024.0);
  2419. }
  2420. }
  2421. void load_tensors(clip_ctx & ctx_clip) {
  2422. auto & model = ctx_clip.model;
  2423. auto & hparams = model.hparams;
  2424. std::map<std::string, size_t> tensor_offset;
  2425. std::vector<ggml_tensor *> tensors_to_load;
  2426. // TODO @ngxson : support both audio and video in the future
  2427. const char * prefix = model.modality == CLIP_MODALITY_AUDIO ? "a" : "v";
  2428. // get offsets
  2429. for (int64_t i = 0; i < gguf_get_n_tensors(ctx_gguf.get()); ++i) {
  2430. const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
  2431. tensor_offset[name] = gguf_get_data_offset(ctx_gguf.get()) + gguf_get_tensor_offset(ctx_gguf.get(), i);
  2432. }
  2433. // create data context
  2434. struct ggml_init_params params = {
  2435. /*.mem_size =*/ static_cast<size_t>(gguf_get_n_tensors(ctx_gguf.get()) + 1) * ggml_tensor_overhead(),
  2436. /*.mem_buffer =*/ NULL,
  2437. /*.no_alloc =*/ true,
  2438. };
  2439. ctx_clip.ctx_data.reset(ggml_init(params));
  2440. if (!ctx_clip.ctx_data) {
  2441. throw std::runtime_error(string_format("%s: failed to init ggml context\n", __func__));
  2442. }
  2443. // helper function
  2444. auto get_tensor = [&](const std::string & name, bool required = true) {
  2445. ggml_tensor * cur = ggml_get_tensor(ctx_meta.get(), name.c_str());
  2446. if (!cur && required) {
  2447. throw std::runtime_error(string_format("%s: unable to find tensor %s\n", __func__, name.c_str()));
  2448. }
  2449. if (cur) {
  2450. tensors_to_load.push_back(cur);
  2451. // add tensors to context
  2452. ggml_tensor * data_tensor = ggml_dup_tensor(ctx_clip.ctx_data.get(), cur);
  2453. ggml_set_name(data_tensor, cur->name);
  2454. cur = data_tensor;
  2455. }
  2456. return cur;
  2457. };
  2458. model.class_embedding = get_tensor(TN_CLASS_EMBD, false);
  2459. model.pre_ln_w = get_tensor(string_format(TN_LN_PRE, prefix, "weight"), false);
  2460. model.pre_ln_b = get_tensor(string_format(TN_LN_PRE, prefix, "bias"), false);
  2461. model.post_ln_w = get_tensor(string_format(TN_LN_POST, prefix, "weight"), false);
  2462. model.post_ln_b = get_tensor(string_format(TN_LN_POST, prefix, "bias"), false);
  2463. model.patch_bias = get_tensor(TN_PATCH_BIAS, false);
  2464. model.patch_embeddings_0 = get_tensor(TN_PATCH_EMBD, false);
  2465. model.patch_embeddings_1 = get_tensor(TN_PATCH_EMBD_1, false);
  2466. model.position_embeddings = get_tensor(string_format(TN_POS_EMBD, prefix), false);
  2467. // layers
  2468. model.layers.resize(hparams.n_layer);
  2469. for (int il = 0; il < hparams.n_layer; ++il) {
  2470. auto & layer = model.layers[il];
  2471. layer.k_w = get_tensor(string_format(TN_ATTN_K, prefix, il, "weight"), false);
  2472. layer.q_w = get_tensor(string_format(TN_ATTN_Q, prefix, il, "weight"), false);
  2473. layer.v_w = get_tensor(string_format(TN_ATTN_V, prefix, il, "weight"), false);
  2474. layer.o_w = get_tensor(string_format(TN_ATTN_OUTPUT, prefix, il, "weight"));
  2475. layer.qkv_w = get_tensor(string_format(TN_ATTN_QKV, prefix, il, "weight"), false);
  2476. layer.k_norm = get_tensor(string_format(TN_ATTN_K_NORM, prefix, il, "weight"), false);
  2477. layer.q_norm = get_tensor(string_format(TN_ATTN_Q_NORM, prefix, il, "weight"), false);
  2478. layer.ln_1_w = get_tensor(string_format(TN_LN_1, prefix, il, "weight"), false);
  2479. layer.ln_2_w = get_tensor(string_format(TN_LN_2, prefix, il, "weight"), false);
  2480. layer.ls_1_w = get_tensor(string_format(TN_LS_1, prefix, il, "weight"), false); // no bias
  2481. layer.ls_2_w = get_tensor(string_format(TN_LS_2, prefix, il, "weight"), false); // no bias
  2482. layer.k_b = get_tensor(string_format(TN_ATTN_K, prefix, il, "bias"), false);
  2483. layer.q_b = get_tensor(string_format(TN_ATTN_Q, prefix, il, "bias"), false);
  2484. layer.v_b = get_tensor(string_format(TN_ATTN_V, prefix, il, "bias"), false);
  2485. layer.o_b = get_tensor(string_format(TN_ATTN_OUTPUT, prefix, il, "bias"), false);
  2486. layer.qkv_b = get_tensor(string_format(TN_ATTN_QKV, prefix, il, "bias"), false);
  2487. layer.ln_1_b = get_tensor(string_format(TN_LN_1, prefix, il, "bias"), false);
  2488. layer.ln_2_b = get_tensor(string_format(TN_LN_2, prefix, il, "bias"), false);
  2489. // ffn
  2490. layer.ff_up_w = get_tensor(string_format(TN_FFN_UP, prefix, il, "weight"));
  2491. layer.ff_up_b = get_tensor(string_format(TN_FFN_UP, prefix, il, "bias"), false);
  2492. layer.ff_gate_w = get_tensor(string_format(TN_FFN_GATE, prefix, il, "weight"), false);
  2493. layer.ff_gate_b = get_tensor(string_format(TN_FFN_GATE, prefix, il, "bias"), false);
  2494. layer.ff_down_w = get_tensor(string_format(TN_FFN_DOWN, prefix, il, "weight"));
  2495. layer.ff_down_b = get_tensor(string_format(TN_FFN_DOWN, prefix, il, "bias"), false);
  2496. // qwen3vl deepstack layer
  2497. layer.deepstack_norm_w = get_tensor(string_format(TN_DEEPSTACK_NORM, il, "weight"), false);
  2498. layer.deepstack_norm_b = get_tensor(string_format(TN_DEEPSTACK_NORM, il, "bias"), false);
  2499. layer.deepstack_fc1_w = get_tensor(string_format(TN_DEEPSTACK_FC1, il, "weight"), false);
  2500. layer.deepstack_fc1_b = get_tensor(string_format(TN_DEEPSTACK_FC1, il, "bias"), false);
  2501. layer.deepstack_fc2_w = get_tensor(string_format(TN_DEEPSTACK_FC2, il, "weight"), false);
  2502. layer.deepstack_fc2_b = get_tensor(string_format(TN_DEEPSTACK_FC2, il, "bias"), false);
  2503. if (layer.has_deepstack()) {
  2504. model.n_deepstack_layers++;
  2505. }
  2506. // some models already exported with legacy (incorrect) naming which is quite messy, let's fix it here
  2507. // note: Qwen model converted from the old surgery script has n_ff = 0, so we cannot use n_ff to check!
  2508. bool is_ffn_swapped = (
  2509. // only old models need this fix
  2510. model.proj_type == PROJECTOR_TYPE_MLP
  2511. || model.proj_type == PROJECTOR_TYPE_MLP_NORM
  2512. || model.proj_type == PROJECTOR_TYPE_LDP
  2513. || model.proj_type == PROJECTOR_TYPE_LDPV2
  2514. || model.proj_type == PROJECTOR_TYPE_QWEN2VL
  2515. || model.proj_type == PROJECTOR_TYPE_QWEN25VL
  2516. || model.proj_type == PROJECTOR_TYPE_GLM_EDGE
  2517. || model.proj_type == PROJECTOR_TYPE_GEMMA3
  2518. || model.proj_type == PROJECTOR_TYPE_IDEFICS3
  2519. || model.proj_type == PROJECTOR_TYPE_MINICPMV
  2520. ) && layer.ff_up_w && layer.ff_down_w && layer.ff_down_w->ne[0] == hparams.n_embd;
  2521. if (is_ffn_swapped) {
  2522. // swap up and down weights
  2523. ggml_tensor * tmp = layer.ff_up_w;
  2524. layer.ff_up_w = layer.ff_down_w;
  2525. layer.ff_down_w = tmp;
  2526. // swap up and down biases
  2527. tmp = layer.ff_up_b;
  2528. layer.ff_up_b = layer.ff_down_b;
  2529. layer.ff_down_b = tmp;
  2530. if (il == 0) {
  2531. LOG_WRN("%s: ffn up/down are swapped\n", __func__);
  2532. }
  2533. }
  2534. }
  2535. switch (model.proj_type) {
  2536. case PROJECTOR_TYPE_MLP:
  2537. case PROJECTOR_TYPE_MLP_NORM:
  2538. {
  2539. // LLaVA projection
  2540. model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"), false);
  2541. model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"), false);
  2542. // Yi-type llava
  2543. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"), false);
  2544. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
  2545. // missing in Yi-type llava
  2546. model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"), false);
  2547. model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
  2548. // Yi-type llava
  2549. model.mm_3_w = get_tensor(string_format(TN_LLAVA_PROJ, 3, "weight"), false);
  2550. model.mm_3_b = get_tensor(string_format(TN_LLAVA_PROJ, 3, "bias"), false);
  2551. model.mm_4_w = get_tensor(string_format(TN_LLAVA_PROJ, 4, "weight"), false);
  2552. model.mm_4_b = get_tensor(string_format(TN_LLAVA_PROJ, 4, "bias"), false);
  2553. if (model.mm_3_w) {
  2554. // TODO: this is a hack to support Yi-type llava
  2555. model.proj_type = PROJECTOR_TYPE_MLP_NORM;
  2556. }
  2557. model.image_newline = get_tensor(TN_IMAGE_NEWLINE, false);
  2558. } break;
  2559. case PROJECTOR_TYPE_LDP:
  2560. {
  2561. // MobileVLM projection
  2562. model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
  2563. model.mm_model_mlp_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias"));
  2564. model.mm_model_mlp_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
  2565. model.mm_model_mlp_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias"));
  2566. model.mm_model_block_1_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "0.weight"));
  2567. model.mm_model_block_1_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.weight"));
  2568. model.mm_model_block_1_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.bias"));
  2569. model.mm_model_block_1_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.weight"));
  2570. model.mm_model_block_1_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.bias"));
  2571. model.mm_model_block_1_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.weight"));
  2572. model.mm_model_block_1_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.bias"));
  2573. model.mm_model_block_1_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "0.weight"));
  2574. model.mm_model_block_1_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.weight"));
  2575. model.mm_model_block_1_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.bias"));
  2576. model.mm_model_block_2_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "0.weight"));
  2577. model.mm_model_block_2_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.weight"));
  2578. model.mm_model_block_2_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.bias"));
  2579. model.mm_model_block_2_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.weight"));
  2580. model.mm_model_block_2_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.bias"));
  2581. model.mm_model_block_2_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.weight"));
  2582. model.mm_model_block_2_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.bias"));
  2583. model.mm_model_block_2_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight"));
  2584. model.mm_model_block_2_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight"));
  2585. model.mm_model_block_2_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias"));
  2586. } break;
  2587. case PROJECTOR_TYPE_LDPV2:
  2588. {
  2589. // MobilVLM_V2 projection
  2590. model.mm_model_mlp_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
  2591. model.mm_model_mlp_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias"));
  2592. model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight"));
  2593. model.mm_model_mlp_2_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "bias"));
  2594. model.mm_model_peg_0_w = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "weight"));
  2595. model.mm_model_peg_0_b = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "bias"));
  2596. } break;
  2597. case PROJECTOR_TYPE_MINICPMV:
  2598. {
  2599. // model.mm_model_pos_embed = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD);
  2600. model.mm_model_pos_embed_k = get_tensor(TN_MINICPMV_POS_EMBD_K);
  2601. model.mm_model_query = get_tensor(TN_MINICPMV_QUERY);
  2602. model.mm_model_proj = get_tensor(TN_MINICPMV_PROJ);
  2603. model.mm_model_kv_proj = get_tensor(TN_MINICPMV_KV_PROJ);
  2604. model.mm_model_attn_q_w = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "weight"));
  2605. model.mm_model_attn_k_w = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "weight"));
  2606. model.mm_model_attn_v_w = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "weight"));
  2607. model.mm_model_attn_q_b = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "bias"));
  2608. model.mm_model_attn_k_b = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "bias"));
  2609. model.mm_model_attn_v_b = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "bias"));
  2610. model.mm_model_attn_o_w = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "weight"));
  2611. model.mm_model_attn_o_b = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "bias"));
  2612. model.mm_model_ln_q_w = get_tensor(string_format(TN_MINICPMV_LN, "q", "weight"));
  2613. model.mm_model_ln_q_b = get_tensor(string_format(TN_MINICPMV_LN, "q", "bias"));
  2614. model.mm_model_ln_kv_w = get_tensor(string_format(TN_MINICPMV_LN, "kv", "weight"));
  2615. model.mm_model_ln_kv_b = get_tensor(string_format(TN_MINICPMV_LN, "kv", "bias"));
  2616. model.mm_model_ln_post_w = get_tensor(string_format(TN_MINICPMV_LN, "post", "weight"));
  2617. model.mm_model_ln_post_b = get_tensor(string_format(TN_MINICPMV_LN, "post", "bias"));
  2618. } break;
  2619. case PROJECTOR_TYPE_GLM_EDGE:
  2620. {
  2621. model.mm_model_adapter_conv_w = get_tensor(string_format(TN_GLM_ADAPER_CONV, "weight"));
  2622. model.mm_model_adapter_conv_b = get_tensor(string_format(TN_GLM_ADAPER_CONV, "bias"));
  2623. model.mm_model_mlp_0_w = get_tensor(string_format(TN_GLM_ADAPTER_LINEAR, "weight"));
  2624. model.mm_model_ln_q_w = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1, "weight"));
  2625. model.mm_model_ln_q_b = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1, "bias"));
  2626. model.mm_model_mlp_1_w = get_tensor(string_format(TN_GLM_ADAPTER_D_H_2_4H, "weight"));
  2627. model.mm_model_mlp_2_w = get_tensor(string_format(TN_GLM_ADAPTER_GATE, "weight"));
  2628. model.mm_model_mlp_3_w = get_tensor(string_format(TN_GLM_ADAPTER_D_4H_2_H, "weight"));
  2629. model.mm_boi = get_tensor(string_format(TN_TOK_GLM_BOI, "weight"));
  2630. model.mm_eoi = get_tensor(string_format(TN_TOK_GLM_EOI, "weight"));
  2631. } break;
  2632. case PROJECTOR_TYPE_QWEN2VL:
  2633. case PROJECTOR_TYPE_QWEN25VL:
  2634. {
  2635. model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"));
  2636. model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"));
  2637. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  2638. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
  2639. } break;
  2640. case PROJECTOR_TYPE_QWEN3VL:
  2641. {
  2642. model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"));
  2643. model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"));
  2644. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  2645. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
  2646. } break;
  2647. case PROJECTOR_TYPE_GEMMA3:
  2648. {
  2649. model.mm_input_proj_w = get_tensor(TN_MM_INP_PROJ);
  2650. model.mm_soft_emb_norm_w = get_tensor(TN_MM_SOFT_EMB_N);
  2651. } break;
  2652. case PROJECTOR_TYPE_IDEFICS3:
  2653. {
  2654. model.projection = get_tensor(TN_MM_PROJECTOR);
  2655. } break;
  2656. case PROJECTOR_TYPE_LFM2:
  2657. case PROJECTOR_TYPE_KIMIVL:
  2658. {
  2659. model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM);
  2660. model.mm_input_norm_b = get_tensor(TN_MM_INP_NORM_B);
  2661. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
  2662. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"));
  2663. model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  2664. model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
  2665. } break;
  2666. case PROJECTOR_TYPE_PIXTRAL:
  2667. {
  2668. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
  2669. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
  2670. model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  2671. model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
  2672. // [IMG_BREAK] token embedding
  2673. model.token_embd_img_break = get_tensor(TN_TOK_IMG_BREAK);
  2674. // for mistral small 3.1
  2675. model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM, false);
  2676. model.mm_patch_merger_w = get_tensor(TN_MM_PATCH_MERGER, false);
  2677. } break;
  2678. case PROJECTOR_TYPE_LIGHTONOCR:
  2679. {
  2680. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
  2681. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
  2682. model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  2683. model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
  2684. model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM, false);
  2685. model.mm_patch_merger_w = get_tensor(TN_MM_PATCH_MERGER, false);
  2686. } break;
  2687. case PROJECTOR_TYPE_ULTRAVOX:
  2688. {
  2689. model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
  2690. model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
  2691. model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
  2692. model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
  2693. model.mm_1_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 1, "weight"));
  2694. model.mm_2_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 2, "weight"));
  2695. model.mm_norm_pre_w = get_tensor(string_format(TN_MM_NORM_PRE, "weight"));
  2696. model.mm_norm_mid_w = get_tensor(string_format(TN_MM_NORM_MID, "weight"));
  2697. } break;
  2698. case PROJECTOR_TYPE_QWEN2A:
  2699. {
  2700. model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
  2701. model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
  2702. model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
  2703. model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
  2704. model.mm_fc_w = get_tensor(string_format(TN_MM_AUDIO_FC, "weight"));
  2705. model.mm_fc_b = get_tensor(string_format(TN_MM_AUDIO_FC, "bias"));
  2706. } break;
  2707. case PROJECTOR_TYPE_VOXTRAL:
  2708. {
  2709. model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
  2710. model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
  2711. model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
  2712. model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
  2713. model.mm_1_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 1, "weight"));
  2714. model.mm_2_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 2, "weight"));
  2715. } break;
  2716. case PROJECTOR_TYPE_INTERNVL:
  2717. {
  2718. model.mm_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
  2719. model.mm_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias"));
  2720. model.mm_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
  2721. model.mm_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias"));
  2722. model.mm_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
  2723. model.mm_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias"));
  2724. } break;
  2725. case PROJECTOR_TYPE_LLAMA4:
  2726. {
  2727. model.mm_model_proj = get_tensor(TN_MM_PROJECTOR);
  2728. model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
  2729. model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight"));
  2730. } break;
  2731. case PROJECTOR_TYPE_COGVLM:
  2732. {
  2733. model.mm_model_proj = get_tensor(TN_MM_PROJECTOR);
  2734. model.mm_post_fc_norm_w = get_tensor(string_format(TN_MM_POST_FC_NORM, "weight"));
  2735. model.mm_post_fc_norm_b = get_tensor(string_format(TN_MM_POST_FC_NORM, "bias"));
  2736. model.mm_h_to_4h_w = get_tensor(string_format(TN_MM_H_TO_4H, "weight"));
  2737. model.mm_gate_w = get_tensor(string_format(TN_MM_GATE, "weight"));
  2738. model.mm_4h_to_h_w = get_tensor(string_format(TN_MM_4H_TO_H, "weight"));
  2739. model.mm_boi = get_tensor(TN_TOK_BOI);
  2740. model.mm_eoi = get_tensor(TN_TOK_EOI);
  2741. } break;
  2742. case PROJECTOR_TYPE_JANUS_PRO:
  2743. {
  2744. model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"));
  2745. model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"));
  2746. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
  2747. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"));
  2748. } break;
  2749. default:
  2750. GGML_ASSERT(false && "unknown projector type");
  2751. }
  2752. // load data
  2753. {
  2754. std::vector<uint8_t> read_buf;
  2755. auto fin = std::ifstream(fname, std::ios::binary);
  2756. if (!fin) {
  2757. throw std::runtime_error(string_format("%s: failed to open %s\n", __func__, fname.c_str()));
  2758. }
  2759. // alloc memory and offload data
  2760. ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(ctx_clip.backend);
  2761. ctx_clip.buf.reset(ggml_backend_alloc_ctx_tensors_from_buft(ctx_clip.ctx_data.get(), buft));
  2762. ggml_backend_buffer_set_usage(ctx_clip.buf.get(), GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
  2763. for (auto & t : tensors_to_load) {
  2764. ggml_tensor * cur = ggml_get_tensor(ctx_clip.ctx_data.get(), t->name);
  2765. const size_t offset = tensor_offset[t->name];
  2766. fin.seekg(offset, std::ios::beg);
  2767. if (!fin) {
  2768. throw std::runtime_error(string_format("%s: failed to seek for tensor %s\n", __func__, t->name));
  2769. }
  2770. size_t num_bytes = ggml_nbytes(cur);
  2771. if (ggml_backend_buft_is_host(buft)) {
  2772. // for the CPU and Metal backend, we can read directly into the tensor
  2773. fin.read(reinterpret_cast<char *>(cur->data), num_bytes);
  2774. } else {
  2775. // read into a temporary buffer first, then copy to device memory
  2776. read_buf.resize(num_bytes);
  2777. fin.read(reinterpret_cast<char *>(read_buf.data()), num_bytes);
  2778. ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
  2779. }
  2780. }
  2781. fin.close();
  2782. LOG_DBG("%s: loaded %zu tensors from %s\n", __func__, tensors_to_load.size(), fname.c_str());
  2783. }
  2784. }
  2785. struct support_info_op {
  2786. ggml_tensor * op;
  2787. // true if the op runs on the accelerated ctx_clip.backend
  2788. bool is_accel = true;
  2789. };
  2790. struct support_info_graph {
  2791. // whether the clip_ctx.backend supports flash attention
  2792. bool fattn = true;
  2793. ggml_tensor * fattn_op = nullptr; // for debugging
  2794. std::vector<support_info_op> ops;
  2795. };
  2796. static void warmup(clip_ctx & ctx_clip) {
  2797. support_info_graph info;
  2798. if (ctx_clip.flash_attn_type == CLIP_FLASH_ATTN_TYPE_AUTO) {
  2799. // try to enable flash attention to see if it's supported
  2800. ctx_clip.flash_attn_type = CLIP_FLASH_ATTN_TYPE_ENABLED;
  2801. info = alloc_compute_meta(ctx_clip);
  2802. if (!info.fattn && info.fattn_op) {
  2803. auto op = info.fattn_op;
  2804. LOG_WRN("%s: *****************************************************************\n", __func__);
  2805. LOG_WRN("%s: WARNING: flash attention not supported by %s, memory usage will increase\n", __func__, ggml_backend_name(ctx_clip.backend));
  2806. LOG_WRN("%s: op params: \n", __func__);
  2807. static auto print_shape = [](const char * fn, const char * name, ggml_tensor * t) {
  2808. LOG_WRN("%s: %s: type = %s, ne = [%d %d %d %d], nb = [%d %d %d %d]\n", fn,
  2809. name, ggml_type_name(t->type),
  2810. t->ne[0], t->ne[1], t->ne[2], t->ne[3],
  2811. t->nb[0], t->nb[1], t->nb[2], t->nb[3]);
  2812. };
  2813. print_shape(__func__, " dst", op);
  2814. print_shape(__func__, "src0", op->src[0]);
  2815. print_shape(__func__, "src1", op->src[1]);
  2816. print_shape(__func__, "src2", op->src[2]);
  2817. LOG_WRN("%s: please report this on github as an issue\n", __func__);
  2818. LOG_WRN("%s: *****************************************************************\n", __func__);
  2819. ctx_clip.flash_attn_type = CLIP_FLASH_ATTN_TYPE_DISABLED;
  2820. alloc_compute_meta(ctx_clip);
  2821. }
  2822. } else {
  2823. info = alloc_compute_meta(ctx_clip);
  2824. if (!info.fattn && ctx_clip.flash_attn_type == CLIP_FLASH_ATTN_TYPE_ENABLED) {
  2825. LOG_WRN("%s: flash attention is not supported by the current backend; falling back to CPU (performance will be degraded)\n", __func__);
  2826. }
  2827. }
  2828. LOG_INF("%s: flash attention is %s\n", __func__,
  2829. (ctx_clip.flash_attn_type == CLIP_FLASH_ATTN_TYPE_ENABLED) ? "enabled" : "disabled");
  2830. // print ops that are not supported by the GPU backend (if there is one)
  2831. if (ctx_clip.backend && ctx_clip.backend != ctx_clip.backend_cpu) {
  2832. std::vector<support_info_op> unsupported_ops;
  2833. for (const auto & op : info.ops) {
  2834. if (!op.is_accel) {
  2835. unsupported_ops.push_back(op);
  2836. }
  2837. }
  2838. if (!unsupported_ops.empty()) {
  2839. LOG_WRN("%s: *****************************************************************\n", __func__);
  2840. LOG_WRN("%s: WARNING: the CLIP graph uses unsupported operators by the backend\n", __func__);
  2841. LOG_WRN("%s: the performance will be suboptimal \n", __func__);
  2842. LOG_WRN("%s: list of unsupported ops (backend=%s):\n", __func__, ggml_backend_name(ctx_clip.backend));
  2843. for (const auto & op : unsupported_ops) {
  2844. LOG_WRN("%s: %16s: type = %s, ne = [%d %d %d %d]\n", __func__,
  2845. ggml_op_name(op.op->op),
  2846. ggml_type_name(op.op->type),
  2847. op.op->ne[0], op.op->ne[1], op.op->ne[2], op.op->ne[3]);
  2848. }
  2849. LOG_WRN("%s: flash attention is %s\n", __func__,
  2850. (ctx_clip.flash_attn_type == CLIP_FLASH_ATTN_TYPE_ENABLED) ? "enabled" : "disabled");
  2851. LOG_WRN("%s: please report this on github as an issue\n", __func__);
  2852. LOG_WRN("%s: ref: https://github.com/ggml-org/llama.cpp/pull/16837#issuecomment-3461676118\n", __func__);
  2853. LOG_WRN("%s: *****************************************************************\n", __func__);
  2854. }
  2855. }
  2856. }
  2857. static support_info_graph alloc_compute_meta(clip_ctx & ctx_clip) {
  2858. const auto & hparams = ctx_clip.model.hparams;
  2859. ctx_clip.buf_compute_meta.resize(ctx_clip.max_nodes * ggml_tensor_overhead() + ggml_graph_overhead());
  2860. // create a fake batch
  2861. clip_image_f32_batch batch;
  2862. clip_image_f32_ptr img(clip_image_f32_init());
  2863. if (ctx_clip.model.modality == CLIP_MODALITY_VISION) {
  2864. img->nx = hparams.warmup_image_size;
  2865. img->ny = hparams.warmup_image_size;
  2866. LOG_INF("%s: warmup with image size = %d x %d\n", __func__, img->nx, img->ny);
  2867. } else {
  2868. img->nx = hparams.warmup_audio_size;
  2869. img->ny = hparams.n_mel_bins;
  2870. LOG_INF("%s: warmup with audio size = %d\n", __func__, img->nx);
  2871. }
  2872. batch.entries.push_back(std::move(img));
  2873. ggml_cgraph * gf = clip_image_build_graph(&ctx_clip, batch);
  2874. ggml_backend_sched_reserve(ctx_clip.sched.get(), gf);
  2875. for (size_t i = 0; i < ctx_clip.backend_ptrs.size(); ++i) {
  2876. ggml_backend_t backend = ctx_clip.backend_ptrs[i];
  2877. ggml_backend_buffer_type_t buft = ctx_clip.backend_buft[i];
  2878. size_t size = ggml_backend_sched_get_buffer_size(ctx_clip.sched.get(), backend);
  2879. if (size > 1) {
  2880. LOG_INF("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
  2881. ggml_backend_buft_name(buft),
  2882. size / 1024.0 / 1024.0);
  2883. }
  2884. }
  2885. const int n_splits = ggml_backend_sched_get_n_splits(ctx_clip.sched.get());
  2886. const int n_nodes = ggml_graph_n_nodes(gf);
  2887. LOG_INF("%s: graph splits = %d, nodes = %d\n", __func__, n_splits, n_nodes);
  2888. support_info_graph res {
  2889. /*.fattn = */ true,
  2890. /*.fattn_op = */ nullptr,
  2891. /*.ops = */ {},
  2892. };
  2893. // check op support
  2894. for (int i = 0; i < ggml_graph_n_nodes(gf); i++) {
  2895. ggml_tensor * node = ggml_graph_node(gf, i);
  2896. res.ops.push_back({node, true});
  2897. if (!ggml_backend_supports_op(ctx_clip.backend, node)) {
  2898. res.ops.back().is_accel = false;
  2899. if (node->op == GGML_OP_FLASH_ATTN_EXT) {
  2900. res.fattn = false;
  2901. res.fattn_op = node;
  2902. }
  2903. }
  2904. }
  2905. return res;
  2906. }
  2907. void get_bool(const std::string & key, bool & output, bool required = true) const {
  2908. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2909. if (i < 0) {
  2910. if (required) {
  2911. throw std::runtime_error("Key not found: " + key);
  2912. }
  2913. return;
  2914. }
  2915. output = gguf_get_val_bool(ctx_gguf.get(), i);
  2916. }
  2917. void get_i32(const std::string & key, int & output, bool required = true) const {
  2918. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2919. if (i < 0) {
  2920. if (required) {
  2921. throw std::runtime_error("Key not found: " + key);
  2922. }
  2923. return;
  2924. }
  2925. output = gguf_get_val_i32(ctx_gguf.get(), i);
  2926. }
  2927. void get_u32(const std::string & key, int & output, bool required = true) const {
  2928. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2929. if (i < 0) {
  2930. if (required) {
  2931. throw std::runtime_error("Key not found: " + key);
  2932. }
  2933. return;
  2934. }
  2935. output = gguf_get_val_u32(ctx_gguf.get(), i);
  2936. }
  2937. void get_f32(const std::string & key, float & output, bool required = true) const {
  2938. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2939. if (i < 0) {
  2940. if (required) {
  2941. throw std::runtime_error("Key not found: " + key);
  2942. }
  2943. return;
  2944. }
  2945. output = gguf_get_val_f32(ctx_gguf.get(), i);
  2946. }
  2947. void get_string(const std::string & key, std::string & output, bool required = true) const {
  2948. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2949. if (i < 0) {
  2950. if (required) {
  2951. throw std::runtime_error("Key not found: " + key);
  2952. }
  2953. return;
  2954. }
  2955. output = std::string(gguf_get_val_str(ctx_gguf.get(), i));
  2956. }
  2957. void get_arr_int(const std::string & key, std::vector<int> & output, bool required = true) const {
  2958. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2959. if (i < 0) {
  2960. if (required) {
  2961. throw std::runtime_error("Key not found: " + key);
  2962. }
  2963. return;
  2964. }
  2965. int n = gguf_get_arr_n(ctx_gguf.get(), i);
  2966. output.resize(n);
  2967. const int32_t * values = (const int32_t *)gguf_get_arr_data(ctx_gguf.get(), i);
  2968. for (int i = 0; i < n; ++i) {
  2969. output[i] = values[i];
  2970. }
  2971. }
  2972. static void set_llava_uhd_res_candidates(clip_model & model, const int max_patches_per_side) {
  2973. auto & hparams = model.hparams;
  2974. for (int x = 1; x <= max_patches_per_side; x++) {
  2975. for (int y = 1; y <= max_patches_per_side; y++) {
  2976. if (x == 1 && y == 1) {
  2977. continue; // skip the first point
  2978. }
  2979. hparams.image_res_candidates.push_back(clip_image_size{
  2980. x*hparams.image_size,
  2981. y*hparams.image_size,
  2982. });
  2983. }
  2984. }
  2985. }
  2986. };
  2987. struct clip_init_result clip_init(const char * fname, struct clip_context_params ctx_params) {
  2988. g_logger_state.verbosity_thold = ctx_params.verbosity;
  2989. clip_ctx * ctx_vision = nullptr;
  2990. clip_ctx * ctx_audio = nullptr;
  2991. try {
  2992. clip_model_loader loader(fname);
  2993. if (loader.has_vision) {
  2994. ctx_vision = new clip_ctx(ctx_params);
  2995. loader.load_hparams(ctx_vision->model, CLIP_MODALITY_VISION);
  2996. loader.load_tensors(*ctx_vision);
  2997. loader.warmup(*ctx_vision);
  2998. }
  2999. if (loader.has_audio) {
  3000. ctx_audio = new clip_ctx(ctx_params);
  3001. loader.load_hparams(ctx_audio->model, CLIP_MODALITY_AUDIO);
  3002. loader.load_tensors(*ctx_audio);
  3003. loader.warmup(*ctx_audio);
  3004. }
  3005. } catch (const std::exception & e) {
  3006. LOG_ERR("%s: failed to load model '%s': %s\n", __func__, fname, e.what());
  3007. delete ctx_vision;
  3008. delete ctx_audio;
  3009. return {nullptr, nullptr};
  3010. }
  3011. return {ctx_vision, ctx_audio};
  3012. }
  3013. struct clip_image_size * clip_image_size_init() {
  3014. struct clip_image_size * load_image_size = new struct clip_image_size();
  3015. load_image_size->width = 448;
  3016. load_image_size->height = 448;
  3017. return load_image_size;
  3018. }
  3019. struct clip_image_u8 * clip_image_u8_init() {
  3020. return new clip_image_u8();
  3021. }
  3022. struct clip_image_f32 * clip_image_f32_init() {
  3023. return new clip_image_f32();
  3024. }
  3025. struct clip_image_f32_batch * clip_image_f32_batch_init() {
  3026. return new clip_image_f32_batch();
  3027. }
  3028. unsigned char * clip_image_u8_get_data(struct clip_image_u8 * img, uint32_t * nx, uint32_t * ny) {
  3029. if (nx) *nx = img->nx;
  3030. if (ny) *ny = img->ny;
  3031. return img->buf.data();
  3032. }
  3033. void clip_image_size_free(struct clip_image_size * load_image_size) {
  3034. if (load_image_size == nullptr) {
  3035. return;
  3036. }
  3037. delete load_image_size;
  3038. }
  3039. void clip_image_u8_free(struct clip_image_u8 * img) { delete img; }
  3040. void clip_image_f32_free(struct clip_image_f32 * img) { delete img; }
  3041. void clip_image_u8_batch_free(struct clip_image_u8_batch * batch) { delete batch; }
  3042. void clip_image_f32_batch_free(struct clip_image_f32_batch * batch) { delete batch; }
  3043. size_t clip_image_f32_batch_n_images(const struct clip_image_f32_batch * batch) {
  3044. return batch->entries.size();
  3045. }
  3046. size_t clip_image_f32_batch_nx(const struct clip_image_f32_batch * batch, int idx) {
  3047. if (idx < 0 || idx >= (int)batch->entries.size()) {
  3048. LOG_ERR("%s: invalid index %d\n", __func__, idx);
  3049. return 0;
  3050. }
  3051. return batch->entries[idx]->nx;
  3052. }
  3053. size_t clip_image_f32_batch_ny(const struct clip_image_f32_batch * batch, int idx) {
  3054. if (idx < 0 || idx >= (int)batch->entries.size()) {
  3055. LOG_ERR("%s: invalid index %d\n", __func__, idx);
  3056. return 0;
  3057. }
  3058. return batch->entries[idx]->ny;
  3059. }
  3060. clip_image_f32 * clip_image_f32_get_img(const struct clip_image_f32_batch * batch, int idx) {
  3061. if (idx < 0 || idx >= (int)batch->entries.size()) {
  3062. LOG_ERR("%s: invalid index %d\n", __func__, idx);
  3063. return nullptr;
  3064. }
  3065. return batch->entries[idx].get();
  3066. }
  3067. void clip_build_img_from_pixels(const unsigned char * rgb_pixels, int nx, int ny, clip_image_u8 * img) {
  3068. img->nx = nx;
  3069. img->ny = ny;
  3070. img->buf.resize(3 * nx * ny);
  3071. memcpy(img->buf.data(), rgb_pixels, img->buf.size());
  3072. }
  3073. // Normalize image to float32 - careful with pytorch .to(model.device, dtype=torch.float16) - this sometimes reduces precision (32>16>32), sometimes not
  3074. static void normalize_image_u8_to_f32(const clip_image_u8 & src, clip_image_f32 & dst, const float mean[3], const float std[3]) {
  3075. dst.nx = src.nx;
  3076. dst.ny = src.ny;
  3077. dst.buf.resize(src.buf.size());
  3078. // TODO @ngxson : seems like this could be done more efficiently on cgraph
  3079. for (size_t i = 0; i < src.buf.size(); ++i) {
  3080. int c = i % 3; // rgb
  3081. dst.buf[i] = (static_cast<float>(src.buf[i]) / 255.0f - mean[c]) / std[c];
  3082. }
  3083. }
  3084. // set of tools to manupulate images
  3085. // in the future, we can have HW acceleration by allowing this struct to access 3rd party lib like imagick or opencv
  3086. struct img_tool {
  3087. enum resize_algo {
  3088. RESIZE_ALGO_BILINEAR,
  3089. RESIZE_ALGO_BICUBIC,
  3090. // RESIZE_ALGO_LANCZOS, // TODO
  3091. };
  3092. static void resize(
  3093. const clip_image_u8 & src,
  3094. clip_image_u8 & dst,
  3095. const clip_image_size & target_resolution,
  3096. resize_algo algo,
  3097. bool add_padding = true, // TODO: define the behavior for add_padding = false
  3098. std::array<uint8_t, 3> pad_color = {0, 0, 0}) {
  3099. dst.nx = target_resolution.width;
  3100. dst.ny = target_resolution.height;
  3101. dst.buf.resize(3 * dst.nx * dst.ny);
  3102. if (dst.nx == src.nx && dst.ny == src.ny) {
  3103. // no resize needed, simple copy
  3104. dst.buf = src.buf;
  3105. return;
  3106. }
  3107. if (!add_padding) {
  3108. // direct resize
  3109. switch (algo) {
  3110. case RESIZE_ALGO_BILINEAR:
  3111. resize_bilinear(src, dst, target_resolution.width, target_resolution.height);
  3112. break;
  3113. case RESIZE_ALGO_BICUBIC:
  3114. resize_bicubic(src, dst, target_resolution.width, target_resolution.height);
  3115. break;
  3116. default:
  3117. throw std::runtime_error("Unsupported resize algorithm");
  3118. }
  3119. } else {
  3120. // resize with padding
  3121. clip_image_u8 resized_image;
  3122. float scale_w = static_cast<float>(target_resolution.width) / src.nx;
  3123. float scale_h = static_cast<float>(target_resolution.height) / src.ny;
  3124. float scale = std::min(scale_w, scale_h);
  3125. int new_width = std::min(static_cast<int>(std::ceil(src.nx * scale)), target_resolution.width);
  3126. int new_height = std::min(static_cast<int>(std::ceil(src.ny * scale)), target_resolution.height);
  3127. switch (algo) {
  3128. case RESIZE_ALGO_BILINEAR:
  3129. resize_bilinear(src, resized_image, new_width, new_height);
  3130. break;
  3131. case RESIZE_ALGO_BICUBIC:
  3132. resize_bicubic(src, resized_image, new_width, new_height);
  3133. break;
  3134. default:
  3135. throw std::runtime_error("Unsupported resize algorithm");
  3136. }
  3137. // fill dst with pad_color
  3138. fill(dst, pad_color);
  3139. int offset_x = (target_resolution.width - new_width) / 2;
  3140. int offset_y = (target_resolution.height - new_height) / 2;
  3141. composite(dst, resized_image, offset_x, offset_y);
  3142. }
  3143. }
  3144. static void crop(const clip_image_u8 & image, clip_image_u8 & dst, int x, int y, int w, int h) {
  3145. dst.nx = w;
  3146. dst.ny = h;
  3147. dst.buf.resize(3 * w * h);
  3148. for (int i = 0; i < h; ++i) {
  3149. for (int j = 0; j < w; ++j) {
  3150. int src_idx = 3 * ((y + i)*image.nx + (x + j));
  3151. int dst_idx = 3 * (i*w + j);
  3152. dst.buf[dst_idx] = image.buf[src_idx];
  3153. dst.buf[dst_idx + 1] = image.buf[src_idx + 1];
  3154. dst.buf[dst_idx + 2] = image.buf[src_idx + 2];
  3155. }
  3156. }
  3157. }
  3158. // calculate the size of the **resized** image, while preserving the aspect ratio
  3159. // the calculated size will be aligned to the nearest multiple of align_size
  3160. // if H or W size is larger than longest_edge, it will be resized to longest_edge
  3161. static clip_image_size calc_size_preserved_ratio(const clip_image_size & inp_size, const int align_size, const int longest_edge) {
  3162. GGML_ASSERT(align_size > 0);
  3163. if (inp_size.width <= 0 || inp_size.height <= 0 || longest_edge <= 0) {
  3164. return {0, 0};
  3165. }
  3166. float scale = std::min(static_cast<float>(longest_edge) / inp_size.width,
  3167. static_cast<float>(longest_edge) / inp_size.height);
  3168. float target_width_f = static_cast<float>(inp_size.width) * scale;
  3169. float target_height_f = static_cast<float>(inp_size.height) * scale;
  3170. auto ceil_by_factor = [f = align_size](float x) { return static_cast<int>(std::ceil(x / static_cast<float>(f))) * f; };
  3171. int aligned_width = ceil_by_factor(target_width_f);
  3172. int aligned_height = ceil_by_factor(target_height_f);
  3173. return {aligned_width, aligned_height};
  3174. }
  3175. // calculate the size of the **resized** image, while preserving the aspect ratio
  3176. // the calculated size will have min_pixels <= W*H <= max_pixels
  3177. // this is referred as "smart_resize" in transformers code
  3178. static clip_image_size calc_size_preserved_ratio(const clip_image_size & inp_size, const int align_size, const int min_pixels, const int max_pixels) {
  3179. GGML_ASSERT(align_size > 0);
  3180. const int width = inp_size.width;
  3181. const int height = inp_size.height;
  3182. auto ceil_by_factor = [f = align_size](float x) { return static_cast<int>(std::ceil(x / static_cast<float>(f))) * f; };
  3183. auto floor_by_factor = [f = align_size](float x) { return static_cast<int>(std::floor(x / static_cast<float>(f))) * f; };
  3184. // always align up first
  3185. int h_bar = std::max(align_size, ceil_by_factor(height));
  3186. int w_bar = std::max(align_size, ceil_by_factor(width));
  3187. if (h_bar * w_bar > max_pixels) {
  3188. const auto beta = std::sqrt(static_cast<float>(height * width) / max_pixels);
  3189. h_bar = std::max(align_size, floor_by_factor(height / beta));
  3190. w_bar = std::max(align_size, floor_by_factor(width / beta));
  3191. } else if (h_bar * w_bar < min_pixels) {
  3192. const auto beta = std::sqrt(static_cast<float>(min_pixels) / (height * width));
  3193. h_bar = ceil_by_factor(height * beta);
  3194. w_bar = ceil_by_factor(width * beta);
  3195. }
  3196. return {w_bar, h_bar};
  3197. }
  3198. // draw src image into dst image at offset (offset_x, offset_y)
  3199. static void composite(clip_image_u8 & dst, const clip_image_u8 & src, int offset_x, int offset_y) {
  3200. for (int y = 0; y < src.ny; ++y) {
  3201. for (int x = 0; x < src.nx; ++x) {
  3202. int dx = x + offset_x;
  3203. int dy = y + offset_y;
  3204. // skip pixels that would be out of bounds in the destination
  3205. if (dx < 0 || dy < 0 || dx >= dst.nx || dy >= dst.ny) {
  3206. continue;
  3207. }
  3208. size_t dst_idx = 3 * (static_cast<size_t>(dy) * dst.nx + static_cast<size_t>(dx));
  3209. size_t src_idx = 3 * (static_cast<size_t>(y) * src.nx + static_cast<size_t>(x));
  3210. dst.buf[dst_idx + 0] = src.buf[src_idx + 0];
  3211. dst.buf[dst_idx + 1] = src.buf[src_idx + 1];
  3212. dst.buf[dst_idx + 2] = src.buf[src_idx + 2];
  3213. }
  3214. }
  3215. }
  3216. // fill the image with a solid color
  3217. static void fill(clip_image_u8 & img, const std::array<uint8_t, 3> & color) {
  3218. for (size_t i = 0; i < img.buf.size(); i += 3) {
  3219. img.buf[i] = color[0];
  3220. img.buf[i + 1] = color[1];
  3221. img.buf[i + 2] = color[2];
  3222. }
  3223. }
  3224. private:
  3225. // Bilinear resize function
  3226. static void resize_bilinear(const clip_image_u8 & src, clip_image_u8 & dst, int target_width, int target_height) {
  3227. dst.nx = target_width;
  3228. dst.ny = target_height;
  3229. dst.buf.resize(3 * target_width * target_height);
  3230. float x_ratio = static_cast<float>(src.nx - 1) / target_width;
  3231. float y_ratio = static_cast<float>(src.ny - 1) / target_height;
  3232. for (int y = 0; y < target_height; y++) {
  3233. for (int x = 0; x < target_width; x++) {
  3234. float px = x_ratio * x;
  3235. float py = y_ratio * y;
  3236. int x_floor = static_cast<int>(px);
  3237. int y_floor = static_cast<int>(py);
  3238. float x_lerp = px - x_floor;
  3239. float y_lerp = py - y_floor;
  3240. for (int c = 0; c < 3; c++) {
  3241. float top = lerp(
  3242. static_cast<float>(src.buf[3 * (y_floor * src.nx + x_floor) + c]),
  3243. static_cast<float>(src.buf[3 * (y_floor * src.nx + (x_floor + 1)) + c]),
  3244. x_lerp
  3245. );
  3246. float bottom = lerp(
  3247. static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + x_floor) + c]),
  3248. static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + (x_floor + 1)) + c]),
  3249. x_lerp
  3250. );
  3251. dst.buf[3 * (y * target_width + x) + c] = static_cast<uint8_t>(lerp(top, bottom, y_lerp));
  3252. }
  3253. }
  3254. }
  3255. }
  3256. // Bicubic resize function
  3257. // part of image will be cropped if the aspect ratio is different
  3258. static bool resize_bicubic(const clip_image_u8 & img, clip_image_u8 & dst, int target_width, int target_height) {
  3259. const int nx = img.nx;
  3260. const int ny = img.ny;
  3261. dst.nx = target_width;
  3262. dst.ny = target_height;
  3263. dst.buf.resize(3 * target_width * target_height);
  3264. float Cc;
  3265. float C[5] = {};
  3266. float d0, d2, d3, a0, a1, a2, a3;
  3267. int i, j, k, jj;
  3268. int x, y;
  3269. float dx, dy;
  3270. float tx, ty;
  3271. tx = (float)nx / (float)target_width;
  3272. ty = (float)ny / (float)target_height;
  3273. // Bicubic interpolation; adapted from ViT.cpp, inspired from :
  3274. // -> https://github.com/yglukhov/bicubic-interpolation-image-processing/blob/master/libimage.c#L36
  3275. // -> https://en.wikipedia.org/wiki/Bicubic_interpolation
  3276. for (i = 0; i < target_height; i++) {
  3277. for (j = 0; j < target_width; j++) {
  3278. x = (int)(tx * j);
  3279. y = (int)(ty * i);
  3280. dx = tx * j - x;
  3281. dy = ty * i - y;
  3282. for (k = 0; k < 3; k++) {
  3283. for (jj = 0; jj <= 3; jj++) {
  3284. d0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x - 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  3285. d2 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  3286. d3 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 2, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  3287. a0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  3288. a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
  3289. a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
  3290. a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
  3291. C[jj] = a0 + a1 * dx + a2 * dx * dx + a3 * dx * dx * dx;
  3292. d0 = C[0] - C[1];
  3293. d2 = C[2] - C[1];
  3294. d3 = C[3] - C[1];
  3295. a0 = C[1];
  3296. a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
  3297. a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
  3298. a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
  3299. Cc = a0 + a1 * dy + a2 * dy * dy + a3 * dy * dy * dy;
  3300. const uint8_t Cc2 = std::min(std::max(std::round(Cc), 0.0f), 255.0f);
  3301. dst.buf[(i * target_width + j) * 3 + k] = float(Cc2);
  3302. }
  3303. }
  3304. }
  3305. }
  3306. return true;
  3307. }
  3308. static inline int clip(int x, int lower, int upper) {
  3309. return std::max(lower, std::min(x, upper));
  3310. }
  3311. // Linear interpolation between two points
  3312. static inline float lerp(float s, float e, float t) {
  3313. return s + (e - s) * t;
  3314. }
  3315. };
  3316. /**
  3317. * implementation of LLaVA-UHD:
  3318. * - https://arxiv.org/pdf/2403.11703
  3319. * - https://github.com/thunlp/LLaVA-UHD
  3320. * - https://github.com/thunlp/LLaVA-UHD/blob/302301bc2175f7e717fb8548516188e89f649753/llava_uhd/train/llava-uhd/slice_logic.py#L118
  3321. *
  3322. * overview:
  3323. * - an image always have a single overview (downscaled image)
  3324. * - an image can have 0 or multiple slices, depending on the image size
  3325. * - each slice can then be considered as a separate image
  3326. *
  3327. * for example:
  3328. *
  3329. * [overview] --> [slice 1] --> [slice 2]
  3330. * | |
  3331. * +--> [slice 3] --> [slice 4]
  3332. */
  3333. struct llava_uhd {
  3334. struct slice_coordinates {
  3335. int x;
  3336. int y;
  3337. clip_image_size size;
  3338. };
  3339. struct slice_instructions {
  3340. clip_image_size overview_size; // size of downscaled image
  3341. clip_image_size refined_size; // size of image right before slicing (must be multiple of slice size)
  3342. clip_image_size grid_size; // grid_size.width * grid_size.height = number of slices
  3343. std::vector<slice_coordinates> slices;
  3344. bool padding_refined = false; // if true, refine image will be padded to the grid size (e.g. llava-1.6)
  3345. };
  3346. static slice_instructions get_slice_instructions(struct clip_ctx * ctx, const clip_image_size & original_size) {
  3347. slice_instructions res;
  3348. const int patch_size = clip_get_patch_size(ctx);
  3349. const int slice_size = clip_get_image_size(ctx);
  3350. const int original_width = original_size.width;
  3351. const int original_height = original_size.height;
  3352. const bool has_slices = original_size.width > slice_size || original_size.height > slice_size;
  3353. const bool has_pinpoints = !ctx->model.hparams.image_res_candidates.empty();
  3354. if (!has_slices) {
  3355. // skip slicing logic
  3356. res.overview_size = clip_image_size{slice_size, slice_size};
  3357. res.refined_size = clip_image_size{0, 0};
  3358. res.grid_size = clip_image_size{0, 0};
  3359. return res;
  3360. }
  3361. if (has_pinpoints) {
  3362. // has pinpoints, use them to calculate the grid size (e.g. llava-1.6)
  3363. auto refine_size = llava_uhd::select_best_resolution(
  3364. original_size,
  3365. ctx->model.hparams.image_res_candidates);
  3366. res.overview_size = clip_image_size{slice_size, slice_size};
  3367. res.refined_size = refine_size;
  3368. res.grid_size = clip_image_size{0, 0};
  3369. res.padding_refined = true;
  3370. LOG_DBG("%s: using pinpoints for slicing\n", __func__);
  3371. LOG_DBG("%s: original size: %d x %d, overview size: %d x %d, refined size: %d x %d\n",
  3372. __func__, original_width, original_height,
  3373. res.overview_size.width, res.overview_size.height,
  3374. res.refined_size.width, res.refined_size.height);
  3375. for (int y = 0; y < refine_size.height; y += slice_size) {
  3376. for (int x = 0; x < refine_size.width; x += slice_size) {
  3377. slice_coordinates slice;
  3378. slice.x = x;
  3379. slice.y = y;
  3380. slice.size.width = std::min(slice_size, refine_size.width - x);
  3381. slice.size.height = std::min(slice_size, refine_size.height - y);
  3382. res.slices.push_back(slice);
  3383. LOG_DBG("%s: slice %d: x=%d, y=%d, size=%dx%d\n",
  3384. __func__, (int)res.slices.size() - 1,
  3385. slice.x, slice.y, slice.size.width, slice.size.height);
  3386. }
  3387. }
  3388. res.grid_size.height = refine_size.height / slice_size;
  3389. res.grid_size.width = refine_size.width / slice_size;
  3390. LOG_DBG("%s: grid size: %d x %d\n", __func__, res.grid_size.width, res.grid_size.height);
  3391. return res;
  3392. }
  3393. // no pinpoints, dynamically calculate the grid size (e.g. minicpmv)
  3394. auto best_size = get_best_resize(original_size, slice_size, patch_size, !has_slices);
  3395. res.overview_size = best_size;
  3396. {
  3397. const int max_slice_nums = 9; // TODO: this is only used by minicpmv, maybe remove it
  3398. const float log_ratio = log((float)original_width / original_height);
  3399. const float ratio = (float)original_width * original_height / (slice_size * slice_size);
  3400. const int multiple = fmin(ceil(ratio), max_slice_nums);
  3401. auto best_grid = get_best_grid(max_slice_nums, multiple, log_ratio);
  3402. auto refine_size = get_refine_size(original_size, best_grid, slice_size, patch_size, true);
  3403. res.grid_size = best_grid;
  3404. res.refined_size = refine_size;
  3405. LOG_DBG("%s: original size: %d x %d, overview size: %d x %d, refined size: %d x %d, grid size: %d x %d\n",
  3406. __func__, original_width, original_height,
  3407. res.overview_size.width, res.overview_size.height,
  3408. res.refined_size.width, res.refined_size.height,
  3409. res.grid_size.width, res.grid_size.height);
  3410. int width = refine_size.width;
  3411. int height = refine_size.height;
  3412. int grid_x = int(width / best_grid.width);
  3413. int grid_y = int(height / best_grid.height);
  3414. for (int patches_y = 0, ic = 0;
  3415. patches_y < refine_size.height && ic < best_grid.height;
  3416. patches_y += grid_y, ic += 1) {
  3417. for (int patches_x = 0, jc = 0;
  3418. patches_x < refine_size.width && jc < best_grid.width;
  3419. patches_x += grid_x, jc += 1) {
  3420. slice_coordinates slice;
  3421. slice.x = patches_x;
  3422. slice.y = patches_y;
  3423. slice.size.width = grid_x;
  3424. slice.size.height = grid_y;
  3425. res.slices.push_back(slice);
  3426. LOG_DBG("%s: slice %d: x=%d, y=%d, size=%dx%d\n",
  3427. __func__, (int)res.slices.size() - 1,
  3428. slice.x, slice.y, slice.size.width, slice.size.height);
  3429. }
  3430. }
  3431. }
  3432. return res;
  3433. }
  3434. static std::vector<clip_image_u8_ptr> slice_image(const clip_image_u8 * img, const slice_instructions & inst) {
  3435. std::vector<clip_image_u8_ptr> output;
  3436. img_tool::resize_algo interpolation = img_tool::RESIZE_ALGO_BILINEAR; // TODO: make it configurable
  3437. // resize to overview size
  3438. clip_image_u8_ptr resized_img(clip_image_u8_init());
  3439. img_tool::resize(*img, *resized_img, inst.overview_size, interpolation);
  3440. output.push_back(std::move(resized_img));
  3441. if (inst.slices.empty()) {
  3442. // no slices, just return the resized image
  3443. return output;
  3444. }
  3445. // resize to refined size
  3446. clip_image_u8_ptr refined_img(clip_image_u8_init());
  3447. if (inst.padding_refined) {
  3448. img_tool::resize(*img, *refined_img, inst.refined_size, interpolation);
  3449. } else {
  3450. // only algo bicubic preserves the ratio; old models rely on this behavior
  3451. // TODO: do we need to support other algos here?
  3452. img_tool::resize(*img, *refined_img, inst.refined_size, img_tool::RESIZE_ALGO_BICUBIC, false);
  3453. }
  3454. // create slices
  3455. for (const auto & slice : inst.slices) {
  3456. int x = slice.x;
  3457. int y = slice.y;
  3458. int w = slice.size.width;
  3459. int h = slice.size.height;
  3460. clip_image_u8_ptr img_slice(clip_image_u8_init());
  3461. img_tool::crop(*refined_img, *img_slice, x, y, w, h);
  3462. output.push_back(std::move(img_slice));
  3463. }
  3464. return output;
  3465. }
  3466. private:
  3467. static clip_image_size get_best_resize(const clip_image_size & original_size, int scale_resolution, int patch_size, bool allow_upscale = false) {
  3468. int width = original_size.width;
  3469. int height = original_size.height;
  3470. if ((width * height > scale_resolution * scale_resolution) || allow_upscale) {
  3471. float r = static_cast<float>(width) / height;
  3472. height = static_cast<int>(scale_resolution / std::sqrt(r));
  3473. width = static_cast<int>(height * r);
  3474. }
  3475. clip_image_size res;
  3476. res.width = ensure_divide(width, patch_size);
  3477. res.height = ensure_divide(height, patch_size);
  3478. return res;
  3479. }
  3480. static clip_image_size resize_maintain_aspect_ratio(const clip_image_size & orig, const clip_image_size & target_max) {
  3481. float scale_width = static_cast<float>(target_max.width) / orig.width;
  3482. float scale_height = static_cast<float>(target_max.height) / orig.height;
  3483. float scale = std::min(scale_width, scale_height);
  3484. return clip_image_size{
  3485. static_cast<int>(orig.width * scale),
  3486. static_cast<int>(orig.height * scale),
  3487. };
  3488. }
  3489. /**
  3490. * Selects the best resolution from a list of possible resolutions based on the original size.
  3491. *
  3492. * For example, when given a list of resolutions:
  3493. * - 100x100
  3494. * - 200x100
  3495. * - 100x200
  3496. * - 200x200
  3497. *
  3498. * And an input image of size 111x200, then 100x200 is the best fit (least wasted resolution).
  3499. *
  3500. * @param original_size The original size of the image
  3501. * @param possible_resolutions A list of possible resolutions
  3502. * @return The best fit resolution
  3503. */
  3504. static clip_image_size select_best_resolution(const clip_image_size & original_size, const std::vector<clip_image_size> & possible_resolutions) {
  3505. clip_image_size best_fit;
  3506. int min_wasted_area = std::numeric_limits<int>::max();
  3507. int max_effective_resolution = 0;
  3508. for (const clip_image_size & candidate : possible_resolutions) {
  3509. auto target_size = resize_maintain_aspect_ratio(original_size, candidate);
  3510. int effective_resolution = std::min(
  3511. target_size.width * target_size.height,
  3512. original_size.width * original_size.height);
  3513. int wasted_area = (candidate.width * candidate.height) - effective_resolution;
  3514. if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_area < min_wasted_area)) {
  3515. max_effective_resolution = effective_resolution;
  3516. min_wasted_area = wasted_area;
  3517. best_fit = candidate;
  3518. }
  3519. LOG_DBG("%s: candidate: %d x %d, target: %d x %d, wasted: %d, effective: %d\n", __func__, candidate.width, candidate.height, target_size.width, target_size.height, wasted_area, effective_resolution);
  3520. }
  3521. return best_fit;
  3522. }
  3523. static int ensure_divide(int length, int patch_size) {
  3524. return std::max(static_cast<int>(std::round(static_cast<float>(length) / patch_size) * patch_size), patch_size);
  3525. }
  3526. static clip_image_size get_refine_size(const clip_image_size & original_size, const clip_image_size & grid, int scale_resolution, int patch_size, bool allow_upscale = false) {
  3527. int width = original_size.width;
  3528. int height = original_size.height;
  3529. int grid_x = grid.width;
  3530. int grid_y = grid.height;
  3531. int refine_width = ensure_divide(width, grid_x);
  3532. int refine_height = ensure_divide(height, grid_y);
  3533. clip_image_size grid_size;
  3534. grid_size.width = refine_width / grid_x;
  3535. grid_size.height = refine_height / grid_y;
  3536. auto best_grid_size = get_best_resize(grid_size, scale_resolution, patch_size, allow_upscale);
  3537. int best_grid_width = best_grid_size.width;
  3538. int best_grid_height = best_grid_size.height;
  3539. clip_image_size refine_size;
  3540. refine_size.width = best_grid_width * grid_x;
  3541. refine_size.height = best_grid_height * grid_y;
  3542. return refine_size;
  3543. }
  3544. static clip_image_size get_best_grid(const int max_slice_nums, const int multiple, const float log_ratio) {
  3545. std::vector<int> candidate_split_grids_nums;
  3546. for (int i : {multiple - 1, multiple, multiple + 1}) {
  3547. if (i == 1 || i > max_slice_nums) {
  3548. continue;
  3549. }
  3550. candidate_split_grids_nums.push_back(i);
  3551. }
  3552. std::vector<clip_image_size> candidate_grids;
  3553. for (int split_grids_nums : candidate_split_grids_nums) {
  3554. int m = 1;
  3555. while (m <= split_grids_nums) {
  3556. if (split_grids_nums % m == 0) {
  3557. candidate_grids.push_back(clip_image_size{m, split_grids_nums / m});
  3558. }
  3559. ++m;
  3560. }
  3561. }
  3562. clip_image_size best_grid{1, 1};
  3563. float min_error = std::numeric_limits<float>::infinity();
  3564. for (const auto& grid : candidate_grids) {
  3565. float error = std::abs(log_ratio - std::log(1.0 * grid.width / grid.height));
  3566. if (error < min_error) {
  3567. best_grid = grid;
  3568. min_error = error;
  3569. }
  3570. }
  3571. return best_grid;
  3572. }
  3573. };
  3574. // returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector
  3575. // res_imgs memory is being allocated here, previous allocations will be freed if found
  3576. bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, struct clip_image_f32_batch * res_imgs) {
  3577. clip_image_size original_size{img->nx, img->ny};
  3578. auto & params = ctx->model.hparams;
  3579. switch (ctx->proj_type()) {
  3580. case PROJECTOR_TYPE_MINICPMV:
  3581. {
  3582. auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
  3583. std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
  3584. for (size_t i = 0; i < imgs.size(); ++i) {
  3585. // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
  3586. clip_image_f32_ptr res(clip_image_f32_init());
  3587. normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
  3588. res_imgs->entries.push_back(std::move(res));
  3589. }
  3590. res_imgs->grid_x = inst.grid_size.width;
  3591. res_imgs->grid_y = inst.grid_size.height;
  3592. } break;
  3593. case PROJECTOR_TYPE_QWEN2VL:
  3594. case PROJECTOR_TYPE_QWEN25VL:
  3595. case PROJECTOR_TYPE_QWEN3VL:
  3596. {
  3597. GGML_ASSERT(params.image_min_pixels > 0 && params.image_max_pixels > 0);
  3598. clip_image_u8 resized;
  3599. const clip_image_size new_size = img_tool::calc_size_preserved_ratio(
  3600. original_size,
  3601. params.patch_size * 2,
  3602. params.image_min_pixels,
  3603. params.image_max_pixels);
  3604. img_tool::resize(*img, resized, new_size, img_tool::RESIZE_ALGO_BILINEAR, false);
  3605. // clip_image_save_to_bmp(resized, "preproc.bmp");
  3606. clip_image_f32_ptr img_f32(clip_image_f32_init());
  3607. // clip_image_f32_ptr res(clip_image_f32_init());
  3608. normalize_image_u8_to_f32(resized, *img_f32, params.image_mean, params.image_std);
  3609. // res_imgs->data[0] = *res;
  3610. res_imgs->entries.push_back(std::move(img_f32));
  3611. } break;
  3612. case PROJECTOR_TYPE_IDEFICS3:
  3613. {
  3614. // The refined size has two steps:
  3615. // 1. Resize w/ aspect-ratio preserving such that the longer side is
  3616. // the preprocessor longest size
  3617. // 2. Resize w/out preserving aspect ratio such that both sides are
  3618. // multiples of image_size (always rounding up)
  3619. //
  3620. // CITE: https://github.com/huggingface/transformers/blob/main/src/transformers/models/idefics3/image_processing_idefics3.py#L737
  3621. const clip_image_size refined_size = img_tool::calc_size_preserved_ratio(
  3622. original_size, params.image_size, params.image_longest_edge);
  3623. // LOG_INF("%s: original size: %d x %d, refined size: %d x %d\n",
  3624. // __func__, original_size.width, original_size.height,
  3625. // refined_size.width, refined_size.height);
  3626. llava_uhd::slice_instructions instructions;
  3627. instructions.overview_size = clip_image_size{params.image_size, params.image_size};
  3628. instructions.refined_size = refined_size;
  3629. instructions.grid_size = clip_image_size{
  3630. static_cast<int>(std::ceil(static_cast<float>(refined_size.width) / params.image_size)),
  3631. static_cast<int>(std::ceil(static_cast<float>(refined_size.height) / params.image_size)),
  3632. };
  3633. for (int y = 0; y < refined_size.height; y += params.image_size) {
  3634. for (int x = 0; x < refined_size.width; x += params.image_size) {
  3635. // LOG_INF("%s: adding slice at x=%d, y=%d\n", __func__, x, y);
  3636. instructions.slices.push_back(llava_uhd::slice_coordinates{
  3637. /* x */x,
  3638. /* y */y,
  3639. /* size */clip_image_size{
  3640. std::min(params.image_size, refined_size.width - x),
  3641. std::min(params.image_size, refined_size.height - y)
  3642. }
  3643. });
  3644. }
  3645. }
  3646. auto imgs = llava_uhd::slice_image(img, instructions);
  3647. // cast and normalize to f32
  3648. for (size_t i = 0; i < imgs.size(); ++i) {
  3649. // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
  3650. clip_image_f32_ptr res(clip_image_f32_init());
  3651. normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
  3652. res_imgs->entries.push_back(std::move(res));
  3653. }
  3654. res_imgs->grid_x = instructions.grid_size.width;
  3655. res_imgs->grid_y = instructions.grid_size.height;
  3656. } break;
  3657. case PROJECTOR_TYPE_GLM_EDGE:
  3658. case PROJECTOR_TYPE_GEMMA3:
  3659. case PROJECTOR_TYPE_INTERNVL: // TODO @ngxson : support dynamic resolution
  3660. {
  3661. clip_image_u8 resized_image;
  3662. int sz = params.image_size;
  3663. img_tool::resize(*img, resized_image, {sz, sz}, img_tool::RESIZE_ALGO_BILINEAR);
  3664. clip_image_f32_ptr img_f32(clip_image_f32_init());
  3665. //clip_image_save_to_bmp(resized_image, "resized.bmp");
  3666. normalize_image_u8_to_f32(resized_image, *img_f32, params.image_mean, params.image_std);
  3667. res_imgs->entries.push_back(std::move(img_f32));
  3668. } break;
  3669. case PROJECTOR_TYPE_JANUS_PRO:
  3670. {
  3671. // Janus Pro preprocessing: pad to square with gray(127), resize to 384x384
  3672. const std::array<uint8_t, 3> pad_color = {127, 127, 127};
  3673. clip_image_u8 resized_image;
  3674. int sz = params.image_size;
  3675. img_tool::resize(*img, resized_image, {sz, sz}, img_tool::RESIZE_ALGO_BILINEAR, true, pad_color);
  3676. clip_image_f32_ptr img_f32(clip_image_f32_init());
  3677. normalize_image_u8_to_f32(resized_image, *img_f32, params.image_mean, params.image_std);
  3678. res_imgs->entries.push_back(std::move(img_f32));
  3679. } break;
  3680. case PROJECTOR_TYPE_PIXTRAL:
  3681. case PROJECTOR_TYPE_LIGHTONOCR:
  3682. {
  3683. GGML_ASSERT(params.image_min_pixels > 0 && params.image_max_pixels > 0);
  3684. clip_image_u8 resized_image;
  3685. // the original pixtral model doesn't have n_merge
  3686. const int cur_merge = params.n_merge == 0 ? 1 : params.n_merge;
  3687. const clip_image_size target_size = img_tool::calc_size_preserved_ratio(
  3688. original_size,
  3689. params.patch_size * cur_merge,
  3690. params.image_min_pixels,
  3691. params.image_max_pixels);
  3692. img_tool::resize(*img, resized_image, target_size, img_tool::RESIZE_ALGO_BILINEAR);
  3693. clip_image_f32_ptr img_f32(clip_image_f32_init());
  3694. normalize_image_u8_to_f32(resized_image, *img_f32, params.image_mean, params.image_std);
  3695. res_imgs->entries.push_back(std::move(img_f32));
  3696. } break;
  3697. case PROJECTOR_TYPE_LLAMA4:
  3698. {
  3699. GGML_ASSERT(!params.image_res_candidates.empty());
  3700. auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
  3701. std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
  3702. for (size_t i = 0; i < imgs.size(); ++i) {
  3703. clip_image_f32_ptr res(clip_image_f32_init());
  3704. normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
  3705. res_imgs->entries.push_back(std::move(res));
  3706. }
  3707. res_imgs->grid_x = inst.grid_size.width;
  3708. res_imgs->grid_y = inst.grid_size.height;
  3709. } break;
  3710. case PROJECTOR_TYPE_LFM2:
  3711. case PROJECTOR_TYPE_KIMIVL:
  3712. {
  3713. GGML_ASSERT(params.image_min_pixels > 0 && params.image_max_pixels > 0);
  3714. const clip_image_size target_size = img_tool::calc_size_preserved_ratio(
  3715. original_size,
  3716. params.patch_size * params.n_merge,
  3717. params.image_min_pixels,
  3718. params.image_max_pixels);
  3719. const std::array<uint8_t, 3> pad_color = {122, 116, 104};
  3720. clip_image_u8 resized_img;
  3721. img_tool::resize(*img, resized_img, target_size, img_tool::RESIZE_ALGO_BILINEAR, true, pad_color);
  3722. clip_image_f32_ptr res(clip_image_f32_init());
  3723. normalize_image_u8_to_f32(resized_img, *res, params.image_mean, params.image_std);
  3724. res_imgs->entries.push_back(std::move(res));
  3725. } break;
  3726. case PROJECTOR_TYPE_MLP:
  3727. case PROJECTOR_TYPE_MLP_NORM:
  3728. case PROJECTOR_TYPE_LDP:
  3729. case PROJECTOR_TYPE_LDPV2:
  3730. case PROJECTOR_TYPE_COGVLM: // TODO @ngxson : is this correct for cogvlm?
  3731. {
  3732. // TODO @ngxson : refactor the code below to avoid duplicated logic
  3733. // the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104)
  3734. // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
  3735. clip_image_u8_ptr temp(clip_image_u8_init()); // we will keep the input image data here temporarily
  3736. // The model config actually contains all we need to decide on how to preprocess, here we automatically switch to the new llava-1.6 preprocessing
  3737. if (params.image_res_candidates.empty()) { // pad_to_square
  3738. // for llava-1.5, we resize image to a square, and pad the shorter side with a background color
  3739. // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
  3740. const int longer_side = std::max(img->nx, img->ny);
  3741. temp->nx = longer_side;
  3742. temp->ny = longer_side;
  3743. temp->buf.resize(3 * longer_side * longer_side);
  3744. // background color in RGB from LLaVA (this is the mean rgb color * 255)
  3745. const std::array<uint8_t, 3> pad_color = {122, 116, 104};
  3746. // resize the image to the target_size
  3747. img_tool::resize(*img, *temp, clip_image_size{params.image_size, params.image_size}, img_tool::RESIZE_ALGO_BILINEAR, true, pad_color);
  3748. clip_image_f32_ptr res(clip_image_f32_init());
  3749. normalize_image_u8_to_f32(*temp, *res, params.image_mean, params.image_std);
  3750. res_imgs->entries.push_back(std::move(res));
  3751. } else {
  3752. // "spatial_unpad" with "anyres" processing for llava-1.6
  3753. auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
  3754. std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
  3755. for (size_t i = 0; i < imgs.size(); ++i) {
  3756. // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
  3757. clip_image_f32_ptr res(clip_image_f32_init());
  3758. normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
  3759. res_imgs->entries.push_back(std::move(res));
  3760. }
  3761. }
  3762. } break;
  3763. default:
  3764. LOG_ERR("%s: unsupported projector type %d\n", __func__, ctx->proj_type());
  3765. return false;
  3766. }
  3767. return true;
  3768. }
  3769. ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx) {
  3770. return ctx->model.image_newline;
  3771. }
  3772. void clip_free(clip_ctx * ctx) {
  3773. if (ctx == nullptr) {
  3774. return;
  3775. }
  3776. delete ctx;
  3777. }
  3778. // deprecated
  3779. size_t clip_embd_nbytes(const struct clip_ctx * ctx) {
  3780. const int32_t nx = ctx->model.hparams.image_size;
  3781. const int32_t ny = ctx->model.hparams.image_size;
  3782. return clip_embd_nbytes_by_img(ctx, nx, ny);
  3783. }
  3784. size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_w, int img_h) {
  3785. clip_image_f32 img;
  3786. img.nx = img_w;
  3787. img.ny = img_h;
  3788. return clip_n_output_tokens(ctx, &img) * clip_n_mmproj_embd(ctx) * sizeof(float);
  3789. }
  3790. int32_t clip_get_image_size(const struct clip_ctx * ctx) {
  3791. return ctx->model.hparams.image_size;
  3792. }
  3793. int32_t clip_get_patch_size(const struct clip_ctx * ctx) {
  3794. return ctx->model.hparams.patch_size;
  3795. }
  3796. int32_t clip_get_hidden_size(const struct clip_ctx * ctx) {
  3797. return ctx->model.hparams.n_embd;
  3798. }
  3799. const char * clip_patch_merge_type(const struct clip_ctx * ctx) {
  3800. return ctx->model.hparams.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD ? "spatial_unpad" : "flat";
  3801. }
  3802. int clip_n_output_tokens_x(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
  3803. const auto & params = ctx->model.hparams;
  3804. const int n_total = clip_n_output_tokens(ctx, img);
  3805. if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN3VL) {
  3806. return img->nx / (params.patch_size * 2);
  3807. }
  3808. return n_total;
  3809. }
  3810. int clip_n_output_tokens_y(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
  3811. const auto & params = ctx->model.hparams;
  3812. if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN3VL) {
  3813. return img->ny / (params.patch_size * 2);
  3814. }
  3815. return 1;
  3816. }
  3817. int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
  3818. const auto & params = ctx->model.hparams;
  3819. // for models with fixed size image, the input image is already pre-processed and resized to square
  3820. int patch_size = params.patch_size;
  3821. int n_patches = (img->nx / patch_size) * (img->ny / patch_size);
  3822. projector_type proj = ctx->proj_type();
  3823. switch (proj) {
  3824. case PROJECTOR_TYPE_MLP:
  3825. case PROJECTOR_TYPE_MLP_NORM:
  3826. case PROJECTOR_TYPE_JANUS_PRO:
  3827. {
  3828. // do nothing
  3829. } break;
  3830. case PROJECTOR_TYPE_LDP:
  3831. case PROJECTOR_TYPE_LDPV2:
  3832. case PROJECTOR_TYPE_GLM_EDGE:
  3833. {
  3834. n_patches /= 4;
  3835. if (ctx->model.mm_boi) {
  3836. n_patches += 2; // for BOI and EOI token embeddings
  3837. }
  3838. } break;
  3839. case PROJECTOR_TYPE_MINICPMV:
  3840. {
  3841. // Use actual config value if available, otherwise fall back to hardcoded values
  3842. if (params.minicpmv_query_num > 0) {
  3843. n_patches = params.minicpmv_query_num;
  3844. } else {
  3845. // Fallback to hardcoded values for legacy models
  3846. if (params.minicpmv_version == 2) {
  3847. n_patches = 96;
  3848. } else if (params.minicpmv_version == 3) {
  3849. n_patches = 64;
  3850. } else if (params.minicpmv_version == 4) {
  3851. n_patches = 64;
  3852. } else if (params.minicpmv_version == 5) {
  3853. // MiniCPM-V 4.0
  3854. n_patches = 64;
  3855. } else if (params.minicpmv_version == 6) {
  3856. // MiniCPM-V 4.5
  3857. n_patches = 64;
  3858. } else {
  3859. GGML_ABORT("Unknown minicpmv version");
  3860. }
  3861. }
  3862. } break;
  3863. case PROJECTOR_TYPE_QWEN2VL:
  3864. case PROJECTOR_TYPE_QWEN25VL:
  3865. case PROJECTOR_TYPE_QWEN3VL:
  3866. {
  3867. // dynamic size (2 conv, so double patch size)
  3868. int x_patch = img->nx / (params.patch_size * 2);
  3869. int y_patch = img->ny / (params.patch_size * 2);
  3870. n_patches = x_patch * y_patch;
  3871. } break;
  3872. case PROJECTOR_TYPE_GEMMA3:
  3873. case PROJECTOR_TYPE_IDEFICS3:
  3874. case PROJECTOR_TYPE_INTERNVL:
  3875. case PROJECTOR_TYPE_LLAMA4:
  3876. {
  3877. // both X and Y are downscaled by the scale factor
  3878. int scale_factor = ctx->model.hparams.n_merge;
  3879. n_patches /= (scale_factor * scale_factor);
  3880. } break;
  3881. case PROJECTOR_TYPE_LFM2:
  3882. case PROJECTOR_TYPE_KIMIVL:
  3883. {
  3884. // dynamic size
  3885. int out_patch_size = params.patch_size * ctx->model.hparams.n_merge;
  3886. int x_patch = CLIP_ALIGN(img->nx, out_patch_size) / out_patch_size;
  3887. int y_patch = CLIP_ALIGN(img->ny, out_patch_size) / out_patch_size;
  3888. n_patches = x_patch * y_patch;
  3889. } break;
  3890. case PROJECTOR_TYPE_PIXTRAL:
  3891. case PROJECTOR_TYPE_LIGHTONOCR:
  3892. {
  3893. // dynamic size
  3894. int n_merge = ctx->model.hparams.n_merge;
  3895. int n_patches_x = img->nx / patch_size / (n_merge > 0 ? n_merge : 1);
  3896. int n_patches_y = img->ny / patch_size / (n_merge > 0 ? n_merge : 1);
  3897. if (ctx->model.token_embd_img_break) {
  3898. n_patches = n_patches_y * n_patches_x + n_patches_y - 1; // + one [IMG_BREAK] per row, except the last row
  3899. } else {
  3900. n_patches = n_patches_y * n_patches_x;
  3901. }
  3902. } break;
  3903. case PROJECTOR_TYPE_VOXTRAL:
  3904. case PROJECTOR_TYPE_ULTRAVOX:
  3905. case PROJECTOR_TYPE_QWEN2A:
  3906. {
  3907. n_patches = img->nx;
  3908. const int proj_stack_factor = ctx->model.hparams.proj_stack_factor;
  3909. if (ctx->model.audio_has_stack_frames()) {
  3910. GGML_ASSERT(proj_stack_factor > 0);
  3911. const int n_len = CLIP_ALIGN(n_patches, proj_stack_factor);
  3912. n_patches = n_len / proj_stack_factor;
  3913. }
  3914. // whisper downscales input token by half after conv1d
  3915. n_patches /= 2;
  3916. if (ctx->model.audio_has_avgpool()) {
  3917. // divide by 2 because of nn.AvgPool1d(2, stride=2)
  3918. n_patches /= 2;
  3919. }
  3920. } break;
  3921. case PROJECTOR_TYPE_COGVLM:
  3922. {
  3923. n_patches += 2; // for BOI and EOI token embeddings
  3924. } break;
  3925. default:
  3926. GGML_ABORT("unsupported projector type");
  3927. }
  3928. return n_patches;
  3929. }
  3930. bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
  3931. clip_image_f32_batch imgs;
  3932. clip_image_f32_ptr img_copy(clip_image_f32_init());
  3933. *img_copy = *img;
  3934. imgs.entries.push_back(std::move(img_copy));
  3935. return clip_image_batch_encode(ctx, n_threads, &imgs, vec);
  3936. }
  3937. bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs_c_ptr, float * vec) {
  3938. const clip_image_f32_batch & imgs = *imgs_c_ptr;
  3939. int batch_size = imgs.entries.size();
  3940. // TODO @ngxson : implement batch size > 1 as a loop
  3941. // we don't need true batching support because the cgraph will gonna be big anyway
  3942. if (batch_size != 1) {
  3943. return false; // only support batch size of 1
  3944. }
  3945. // build the inference graph
  3946. ctx->debug_print_tensors.clear();
  3947. ggml_backend_sched_reset(ctx->sched.get());
  3948. ggml_cgraph * gf = clip_image_build_graph(ctx, imgs);
  3949. ggml_backend_sched_alloc_graph(ctx->sched.get(), gf);
  3950. // set inputs
  3951. const auto & model = ctx->model;
  3952. const auto & hparams = model.hparams;
  3953. const int image_size_width = imgs.entries[0]->nx;
  3954. const int image_size_height = imgs.entries[0]->ny;
  3955. const int patch_size = hparams.patch_size;
  3956. const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
  3957. const int n_pos = num_patches + (model.class_embedding ? 1 : 0);
  3958. const int pos_w = image_size_width / patch_size;
  3959. const int pos_h = image_size_height / patch_size;
  3960. const bool use_window_attn = hparams.n_wa_pattern > 0; // for qwen2.5vl
  3961. auto get_inp_tensor = [&gf](const char * name) {
  3962. ggml_tensor * inp = ggml_graph_get_tensor(gf, name);
  3963. if (inp == nullptr) {
  3964. GGML_ABORT("Failed to get tensor %s", name);
  3965. }
  3966. if (!(inp->flags & GGML_TENSOR_FLAG_INPUT)) {
  3967. GGML_ABORT("Tensor %s is not an input tensor", name);
  3968. }
  3969. return inp;
  3970. };
  3971. auto set_input_f32 = [&get_inp_tensor](const char * name, std::vector<float> & values) {
  3972. ggml_tensor * cur = get_inp_tensor(name);
  3973. GGML_ASSERT(cur->type == GGML_TYPE_F32);
  3974. GGML_ASSERT(ggml_nelements(cur) == (int64_t)values.size());
  3975. ggml_backend_tensor_set(cur, values.data(), 0, ggml_nbytes(cur));
  3976. };
  3977. auto set_input_i32 = [&get_inp_tensor](const char * name, std::vector<int32_t> & values) {
  3978. ggml_tensor * cur = get_inp_tensor(name);
  3979. GGML_ASSERT(cur->type == GGML_TYPE_I32);
  3980. GGML_ASSERT(ggml_nelements(cur) == (int64_t)values.size());
  3981. ggml_backend_tensor_set(cur, values.data(), 0, ggml_nbytes(cur));
  3982. };
  3983. // set input pixel values
  3984. if (!imgs.is_audio) {
  3985. size_t nelem = 0;
  3986. for (const auto & img : imgs.entries) {
  3987. nelem += img->nx * img->ny * 3;
  3988. }
  3989. std::vector<float> inp_raw(nelem);
  3990. // layout of data (note: the channel dim is unrolled to better visualize the layout):
  3991. //
  3992. // ┌──W──┐
  3993. // │ H │ channel = R
  3994. // ├─────┤ │
  3995. // │ H │ channel = G
  3996. // ├─────┤ │
  3997. // │ H │ channel = B
  3998. // └─────┘ │
  3999. // ──────┘ x B
  4000. for (size_t i = 0; i < imgs.entries.size(); i++) {
  4001. const int nx = imgs.entries[i]->nx;
  4002. const int ny = imgs.entries[i]->ny;
  4003. const int n = nx * ny;
  4004. for (int b = 0; b < batch_size; b++) {
  4005. float * batch_entry = inp_raw.data() + b * (3*n);
  4006. for (int y = 0; y < ny; y++) {
  4007. for (int x = 0; x < nx; x++) {
  4008. size_t base_src = 3*(y * nx + x); // idx of the first channel
  4009. size_t base_dst = y * nx + x; // idx of the first channel
  4010. batch_entry[ base_dst] = imgs.entries[b]->buf[base_src ];
  4011. batch_entry[1*n + base_dst] = imgs.entries[b]->buf[base_src + 1];
  4012. batch_entry[2*n + base_dst] = imgs.entries[b]->buf[base_src + 2];
  4013. }
  4014. }
  4015. }
  4016. }
  4017. set_input_f32("inp_raw", inp_raw);
  4018. } else {
  4019. // audio input
  4020. GGML_ASSERT(imgs.entries.size() == 1);
  4021. const auto & mel_inp = imgs.entries[0];
  4022. const int n_step = mel_inp->nx;
  4023. const int n_mel = mel_inp->ny;
  4024. std::vector<float> inp_raw(n_step * n_mel);
  4025. std::memcpy(inp_raw.data(), mel_inp->buf.data(), n_step * n_mel * sizeof(float));
  4026. set_input_f32("inp_raw", inp_raw);
  4027. }
  4028. // set input per projector
  4029. switch (ctx->model.proj_type) {
  4030. case PROJECTOR_TYPE_MINICPMV:
  4031. {
  4032. // inspired from siglip:
  4033. // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit
  4034. // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit/blob/d66538faeba44480d0bfaa42145eef26f9423199/modeling_siglip.py#L316
  4035. std::vector<int32_t> positions(pos_h * pos_w);
  4036. int bucket_coords_h[1024];
  4037. int bucket_coords_w[1024];
  4038. for (int i = 0; i < pos_h; i++){
  4039. bucket_coords_h[i] = std::floor(70.0*i/pos_h);
  4040. }
  4041. for (int i = 0; i < pos_w; i++){
  4042. bucket_coords_w[i] = std::floor(70.0*i/pos_w);
  4043. }
  4044. for (int i = 0, id = 0; i < pos_h; i++){
  4045. for (int j = 0; j < pos_w; j++){
  4046. positions[id++] = bucket_coords_h[i]*70 + bucket_coords_w[j];
  4047. }
  4048. }
  4049. set_input_i32("positions", positions);
  4050. // inputs for resampler projector
  4051. // set the 2D positions (using float for sinusoidal embedding)
  4052. int n_patches_per_col = image_size_width / patch_size;
  4053. std::vector<float> pos_data(n_pos);
  4054. // dimension H
  4055. for (int i = 0; i < n_pos; i++) {
  4056. pos_data[i] = static_cast<float>(i / n_patches_per_col);
  4057. }
  4058. set_input_f32("pos_h", pos_data);
  4059. // dimension W
  4060. for (int i = 0; i < n_pos; i++) {
  4061. pos_data[i] = static_cast<float>(i % n_patches_per_col);
  4062. }
  4063. set_input_f32("pos_w", pos_data);
  4064. // base frequency omega
  4065. const float base_freq = 10000.0f;
  4066. const int n_embd_proj = clip_n_mmproj_embd(ctx);
  4067. std::vector<float> omega(n_embd_proj / 4);
  4068. for (int i = 0; i < n_embd_proj / 4; ++i) {
  4069. omega[i] = 1.0f / std::pow(base_freq, static_cast<float>(i) / (n_embd_proj / 4));
  4070. }
  4071. set_input_f32("omega", omega);
  4072. } break;
  4073. case PROJECTOR_TYPE_QWEN2VL:
  4074. case PROJECTOR_TYPE_QWEN3VL:
  4075. {
  4076. const int merge_ratio = hparams.n_merge;
  4077. const int pw = image_size_width / patch_size;
  4078. const int ph = image_size_height / patch_size;
  4079. std::vector<int> positions(n_pos * 4);
  4080. int ptr = 0;
  4081. for (int y = 0; y < ph; y += merge_ratio) {
  4082. for (int x = 0; x < pw; x += merge_ratio) {
  4083. for (int dy = 0; dy < 2; dy++) {
  4084. for (int dx = 0; dx < 2; dx++) {
  4085. positions[ ptr] = y + dy;
  4086. positions[ num_patches + ptr] = x + dx;
  4087. positions[2 * num_patches + ptr] = y + dy;
  4088. positions[3 * num_patches + ptr] = x + dx;
  4089. ptr++;
  4090. }
  4091. }
  4092. }
  4093. }
  4094. set_input_i32("positions", positions);
  4095. } break;
  4096. case PROJECTOR_TYPE_QWEN25VL:
  4097. {
  4098. // pw * ph = number of tokens output by ViT after apply patch merger
  4099. // ipw * ipw = number of vision token been processed inside ViT
  4100. const int merge_ratio = 2;
  4101. const int pw = image_size_width / patch_size / merge_ratio;
  4102. const int ph = image_size_height / patch_size / merge_ratio;
  4103. const int ipw = image_size_width / patch_size;
  4104. const int iph = image_size_height / patch_size;
  4105. std::vector<int> idx (ph * pw);
  4106. std::vector<int> inv_idx(ph * pw);
  4107. if (use_window_attn) {
  4108. const int attn_window_size = 112;
  4109. const int grid_window = attn_window_size / patch_size / merge_ratio;
  4110. int dst = 0;
  4111. // [num_vision_tokens, num_vision_tokens] attention mask tensor
  4112. std::vector<float> mask(pow(ipw * iph, 2), std::numeric_limits<float>::lowest());
  4113. int mask_row = 0;
  4114. for (int y = 0; y < ph; y += grid_window) {
  4115. for (int x = 0; x < pw; x += grid_window) {
  4116. const int win_h = std::min(grid_window, ph - y);
  4117. const int win_w = std::min(grid_window, pw - x);
  4118. const int dst_0 = dst;
  4119. // group all tokens belong to the same window togather (to a continue range)
  4120. for (int dy = 0; dy < win_h; dy++) {
  4121. for (int dx = 0; dx < win_w; dx++) {
  4122. const int src = (y + dy) * pw + (x + dx);
  4123. GGML_ASSERT(src < (int)idx.size());
  4124. GGML_ASSERT(dst < (int)inv_idx.size());
  4125. idx [src] = dst;
  4126. inv_idx[dst] = src;
  4127. dst++;
  4128. }
  4129. }
  4130. for (int r=0; r < win_h * win_w * merge_ratio * merge_ratio; r++) {
  4131. int row_offset = mask_row * (ipw * iph);
  4132. std::fill(
  4133. mask.begin() + row_offset + (dst_0 * merge_ratio * merge_ratio),
  4134. mask.begin() + row_offset + (dst * merge_ratio * merge_ratio),
  4135. 0.0);
  4136. mask_row++;
  4137. }
  4138. }
  4139. }
  4140. set_input_i32("window_idx", idx);
  4141. set_input_i32("inv_window_idx", inv_idx);
  4142. set_input_f32("window_mask", mask);
  4143. } else {
  4144. for (int i = 0; i < ph * pw; i++) {
  4145. idx[i] = i;
  4146. }
  4147. }
  4148. const int mpow = merge_ratio * merge_ratio;
  4149. std::vector<int> positions(n_pos * 4);
  4150. int ptr = 0;
  4151. for (int y = 0; y < iph; y += merge_ratio) {
  4152. for (int x = 0; x < ipw; x += merge_ratio) {
  4153. for (int dy = 0; dy < 2; dy++) {
  4154. for (int dx = 0; dx < 2; dx++) {
  4155. auto remap = idx[ptr / mpow];
  4156. remap = (remap * mpow) + (ptr % mpow);
  4157. positions[ remap] = y + dy;
  4158. positions[ num_patches + remap] = x + dx;
  4159. positions[2 * num_patches + remap] = y + dy;
  4160. positions[3 * num_patches + remap] = x + dx;
  4161. ptr++;
  4162. }
  4163. }
  4164. }
  4165. }
  4166. set_input_i32("positions", positions);
  4167. } break;
  4168. case PROJECTOR_TYPE_PIXTRAL:
  4169. case PROJECTOR_TYPE_KIMIVL:
  4170. case PROJECTOR_TYPE_LIGHTONOCR:
  4171. {
  4172. // set the 2D positions
  4173. int n_patches_per_col = image_size_width / patch_size;
  4174. std::vector<int> pos_data(n_pos);
  4175. // dimension H
  4176. for (int i = 0; i < n_pos; i++) {
  4177. pos_data[i] = i / n_patches_per_col;
  4178. }
  4179. set_input_i32("pos_h", pos_data);
  4180. // dimension W
  4181. for (int i = 0; i < n_pos; i++) {
  4182. pos_data[i] = i % n_patches_per_col;
  4183. }
  4184. set_input_i32("pos_w", pos_data);
  4185. } break;
  4186. case PROJECTOR_TYPE_GLM_EDGE:
  4187. {
  4188. // llava and other models
  4189. std::vector<int32_t> positions(n_pos);
  4190. for (int i = 0; i < n_pos; i++) {
  4191. positions[i] = i;
  4192. }
  4193. set_input_i32("positions", positions);
  4194. } break;
  4195. case PROJECTOR_TYPE_MLP:
  4196. case PROJECTOR_TYPE_MLP_NORM:
  4197. case PROJECTOR_TYPE_LDP:
  4198. case PROJECTOR_TYPE_LDPV2:
  4199. {
  4200. // llava and other models
  4201. std::vector<int32_t> positions(n_pos);
  4202. for (int i = 0; i < n_pos; i++) {
  4203. positions[i] = i;
  4204. }
  4205. set_input_i32("positions", positions);
  4206. // The patches vector is used to get rows to index into the embeds with;
  4207. // we should skip dim 0 only if we have CLS to avoid going out of bounds
  4208. // when retrieving the rows.
  4209. int patch_offset = model.class_embedding ? 1 : 0;
  4210. std::vector<int32_t> patches(num_patches);
  4211. for (int i = 0; i < num_patches; i++) {
  4212. patches[i] = i + patch_offset;
  4213. }
  4214. set_input_i32("patches", patches);
  4215. } break;
  4216. case PROJECTOR_TYPE_GEMMA3:
  4217. case PROJECTOR_TYPE_IDEFICS3:
  4218. case PROJECTOR_TYPE_INTERNVL:
  4219. case PROJECTOR_TYPE_QWEN2A:
  4220. case PROJECTOR_TYPE_ULTRAVOX:
  4221. case PROJECTOR_TYPE_LFM2:
  4222. case PROJECTOR_TYPE_VOXTRAL:
  4223. case PROJECTOR_TYPE_JANUS_PRO:
  4224. case PROJECTOR_TYPE_COGVLM:
  4225. {
  4226. // do nothing
  4227. } break;
  4228. case PROJECTOR_TYPE_LLAMA4:
  4229. {
  4230. // set the 2D positions
  4231. int n_patches_per_col = image_size_width / patch_size;
  4232. std::vector<int> pos_data(num_patches + 1, 0); // +1 for the [CLS] token
  4233. // last pos is always kept 0, it's for CLS
  4234. // dimension H
  4235. for (int i = 0; i < num_patches; i++) {
  4236. pos_data[i] = (i / n_patches_per_col) + 1;
  4237. }
  4238. set_input_i32("pos_h", pos_data);
  4239. // dimension W
  4240. for (int i = 0; i < num_patches; i++) {
  4241. pos_data[i] = (i % n_patches_per_col) + 1;
  4242. }
  4243. set_input_i32("pos_w", pos_data);
  4244. } break;
  4245. default:
  4246. GGML_ABORT("Unknown projector type");
  4247. }
  4248. // ggml_backend_cpu_set_n_threads(ctx->backend_cpu, n_threads);
  4249. ggml_backend_dev_t dev = ggml_backend_get_device(ctx->backend_cpu);
  4250. ggml_backend_reg_t reg = dev ? ggml_backend_dev_backend_reg(dev) : nullptr;
  4251. if (reg) {
  4252. auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
  4253. if (ggml_backend_set_n_threads_fn) {
  4254. ggml_backend_set_n_threads_fn(ctx->backend_cpu, n_threads);
  4255. }
  4256. }
  4257. auto status = ggml_backend_sched_graph_compute(ctx->sched.get(), gf);
  4258. if (status != GGML_STATUS_SUCCESS) {
  4259. LOG_ERR("%s: ggml_backend_sched_graph_compute failed with error %d\n", __func__, status);
  4260. return false;
  4261. }
  4262. // print debug nodes
  4263. if (ctx->debug_graph) {
  4264. LOG_INF("\n\n---\n\n");
  4265. LOG_INF("\n\nDebug graph:\n\n");
  4266. for (ggml_tensor * t : ctx->debug_print_tensors) {
  4267. std::vector<uint8_t> data(ggml_nbytes(t));
  4268. ggml_backend_tensor_get(t, data.data(), 0, ggml_nbytes(t));
  4269. print_tensor_shape(t);
  4270. print_tensor_data(t, data.data(), 3);
  4271. }
  4272. }
  4273. // the last node is the embedding tensor
  4274. ggml_tensor * embeddings = ggml_graph_node(gf, -1);
  4275. // sanity check (only support batch size of 1 for now)
  4276. const int n_tokens_out = embeddings->ne[1];
  4277. const int expected_n_tokens_out = clip_n_output_tokens(ctx, imgs.entries[0].get());
  4278. if (n_tokens_out != expected_n_tokens_out) {
  4279. LOG_ERR("%s: expected output %d tokens, got %d\n", __func__, expected_n_tokens_out, n_tokens_out);
  4280. GGML_ABORT("Invalid number of output tokens");
  4281. }
  4282. // copy the embeddings to the location passed by the user
  4283. ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));
  4284. return true;
  4285. }
  4286. int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
  4287. switch (ctx->model.proj_type) {
  4288. case PROJECTOR_TYPE_LDP:
  4289. return ctx->model.mm_model_block_1_block_2_1_b->ne[0];
  4290. case PROJECTOR_TYPE_LDPV2:
  4291. return ctx->model.mm_model_peg_0_b->ne[0];
  4292. case PROJECTOR_TYPE_MLP:
  4293. case PROJECTOR_TYPE_PIXTRAL:
  4294. case PROJECTOR_TYPE_LIGHTONOCR:
  4295. return ctx->model.mm_2_w->ne[1];
  4296. case PROJECTOR_TYPE_MLP_NORM:
  4297. return ctx->model.mm_3_b->ne[0];
  4298. case PROJECTOR_TYPE_MINICPMV:
  4299. return ctx->model.mm_model_proj->ne[0];
  4300. case PROJECTOR_TYPE_GLM_EDGE:
  4301. return ctx->model.mm_model_mlp_3_w->ne[1];
  4302. case PROJECTOR_TYPE_QWEN2VL:
  4303. case PROJECTOR_TYPE_QWEN25VL:
  4304. case PROJECTOR_TYPE_JANUS_PRO:
  4305. return ctx->model.mm_1_b->ne[0];
  4306. case PROJECTOR_TYPE_QWEN3VL:
  4307. // main path + deepstack paths
  4308. return ctx->model.mm_1_b->ne[0] * (1 + ctx->model.n_deepstack_layers);
  4309. case PROJECTOR_TYPE_GEMMA3:
  4310. return ctx->model.mm_input_proj_w->ne[0];
  4311. case PROJECTOR_TYPE_IDEFICS3:
  4312. return ctx->model.projection->ne[1];
  4313. case PROJECTOR_TYPE_ULTRAVOX:
  4314. case PROJECTOR_TYPE_VOXTRAL:
  4315. return ctx->model.mm_2_w->ne[1];
  4316. case PROJECTOR_TYPE_INTERNVL:
  4317. return ctx->model.mm_3_w->ne[1];
  4318. case PROJECTOR_TYPE_LLAMA4:
  4319. return ctx->model.mm_model_proj->ne[1];
  4320. case PROJECTOR_TYPE_QWEN2A:
  4321. return ctx->model.mm_fc_w->ne[1];
  4322. case PROJECTOR_TYPE_LFM2:
  4323. case PROJECTOR_TYPE_KIMIVL:
  4324. return ctx->model.mm_2_w->ne[1];
  4325. case PROJECTOR_TYPE_COGVLM:
  4326. return ctx->model.mm_4h_to_h_w->ne[1];
  4327. default:
  4328. GGML_ABORT("Unknown projector type");
  4329. }
  4330. }
  4331. int clip_is_minicpmv(const struct clip_ctx * ctx) {
  4332. if (ctx->proj_type() == PROJECTOR_TYPE_MINICPMV) {
  4333. return ctx->model.hparams.minicpmv_version;
  4334. }
  4335. return 0;
  4336. }
  4337. bool clip_is_glm(const struct clip_ctx * ctx) {
  4338. return ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE;
  4339. }
  4340. bool clip_is_qwen2vl(const struct clip_ctx * ctx) {
  4341. return ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL
  4342. || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL
  4343. || ctx->proj_type() == PROJECTOR_TYPE_QWEN3VL;
  4344. }
  4345. bool clip_is_llava(const struct clip_ctx * ctx) {
  4346. return ctx->model.hparams.has_llava_projector;
  4347. }
  4348. bool clip_is_gemma3(const struct clip_ctx * ctx) {
  4349. return ctx->proj_type() == PROJECTOR_TYPE_GEMMA3;
  4350. }
  4351. bool clip_has_vision_encoder(const struct clip_ctx * ctx) {
  4352. return ctx->model.modality == CLIP_MODALITY_VISION;
  4353. }
  4354. bool clip_has_audio_encoder(const struct clip_ctx * ctx) {
  4355. return ctx->model.modality == CLIP_MODALITY_AUDIO;
  4356. }
  4357. bool clip_has_whisper_encoder(const struct clip_ctx * ctx) {
  4358. return ctx->proj_type() == PROJECTOR_TYPE_ULTRAVOX
  4359. || ctx->proj_type() == PROJECTOR_TYPE_QWEN2A
  4360. || ctx->proj_type() == PROJECTOR_TYPE_VOXTRAL;
  4361. }
  4362. bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec) {
  4363. clip_image_f32 clip_img;
  4364. clip_img.buf.resize(h * w * 3);
  4365. for (int i = 0; i < h*w*3; i++)
  4366. {
  4367. clip_img.buf[i] = img[i];
  4368. }
  4369. clip_img.nx = w;
  4370. clip_img.ny = h;
  4371. clip_image_encode(ctx, n_threads, &clip_img, vec);
  4372. return true;
  4373. }
  4374. //
  4375. // API used internally with mtmd
  4376. //
  4377. projector_type clip_get_projector_type(const struct clip_ctx * ctx) {
  4378. return ctx->proj_type();
  4379. }
  4380. void clip_image_f32_batch_add_mel(struct clip_image_f32_batch * batch, int n_mel, int n_frames, float * mel) {
  4381. clip_image_f32 * audio = new clip_image_f32;
  4382. audio->nx = n_frames;
  4383. audio->ny = n_mel;
  4384. audio->buf.resize(n_frames * n_mel);
  4385. std::memcpy(audio->buf.data(), mel, n_frames * n_mel * sizeof(float));
  4386. batch->entries.push_back(clip_image_f32_ptr(audio));
  4387. batch->is_audio = true;
  4388. }