| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415 |
- #include "arg.h"
- #include "chat.h"
- #include "common.h"
- #include "json-schema-to-grammar.h"
- #include "log.h"
- #include "sampling.h"
- #include "download.h"
- // fix problem with std::min and std::max
- #if defined(_WIN32)
- #define WIN32_LEAN_AND_MEAN
- #ifndef NOMINMAX
- # define NOMINMAX
- #endif
- #include <windows.h>
- #endif
- #define JSON_ASSERT GGML_ASSERT
- #include <nlohmann/json.hpp>
- #include <algorithm>
- #include <cinttypes>
- #include <climits>
- #include <cstdarg>
- #include <fstream>
- #include <list>
- #include <regex>
- #include <set>
- #include <string>
- #include <thread> // for hardware_concurrency
- #include <vector>
- #ifndef __EMSCRIPTEN__
- #ifdef __linux__
- #include <linux/limits.h>
- #elif defined(_WIN32)
- # if !defined(PATH_MAX)
- # define PATH_MAX MAX_PATH
- # endif
- #elif defined(_AIX)
- #include <sys/limits.h>
- #else
- #include <sys/syslimits.h>
- #endif
- #endif
- #define LLAMA_MAX_URL_LENGTH 2084 // Maximum URL Length in Chrome: 2083
- using json = nlohmann::ordered_json;
- using namespace common_arg_utils;
- static std::initializer_list<enum llama_example> mmproj_examples = {
- LLAMA_EXAMPLE_MTMD,
- LLAMA_EXAMPLE_SERVER,
- LLAMA_EXAMPLE_CLI,
- };
- static std::string read_file(const std::string & fname) {
- std::ifstream file(fname);
- if (!file) {
- throw std::runtime_error(string_format("error: failed to open file '%s'\n", fname.c_str()));
- }
- std::string content((std::istreambuf_iterator<char>(file)), std::istreambuf_iterator<char>());
- file.close();
- return content;
- }
- static const std::vector<common_arg> & get_common_arg_defs() {
- static const std::vector<common_arg> options = [] {
- common_params params;
- auto ctx = common_params_parser_init(params, LLAMA_EXAMPLE_SERVER, nullptr);
- return ctx.options;
- }();
- return options;
- }
- common_arg & common_arg::set_examples(std::initializer_list<enum llama_example> examples) {
- this->examples = examples;
- return *this;
- }
- common_arg & common_arg::set_excludes(std::initializer_list<enum llama_example> excludes) {
- this->excludes = excludes;
- return *this;
- }
- common_arg & common_arg::set_env(const char * env) {
- help = help + "\n(env: " + env + ")";
- this->env = env;
- return *this;
- }
- common_arg & common_arg::set_sparam() {
- is_sparam = true;
- return *this;
- }
- bool common_arg::in_example(enum llama_example ex) {
- return examples.find(ex) != examples.end();
- }
- bool common_arg::is_exclude(enum llama_example ex) {
- return excludes.find(ex) != excludes.end();
- }
- bool common_arg::get_value_from_env(std::string & output) const {
- if (env == nullptr) return false;
- if (!args_neg.empty()) {
- // for compatibility, we need to check LLAMA_ARG_NO_ env as well
- std::string neg_env = env;
- string_replace_all(neg_env, "LLAMA_ARG_", "LLAMA_ARG_NO_");
- char * neg_value = std::getenv(neg_env.c_str());
- if (neg_value) {
- output = "0"; // falsey
- return true;
- }
- }
- char * value = std::getenv(env);
- if (value) {
- output = value;
- return true;
- }
- return false;
- }
- bool common_arg::has_value_from_env() const {
- if (env != nullptr && !args_neg.empty()) {
- // for compatibility, we need to check LLAMA_ARG_NO_ env as well
- std::string neg_env = env;
- string_replace_all(neg_env, "LLAMA_ARG_", "LLAMA_ARG_NO_");
- if (std::getenv(neg_env.c_str())) {
- return true;
- }
- }
- return env != nullptr && std::getenv(env);
- }
- static std::vector<std::string> break_str_into_lines(std::string input, size_t max_char_per_line) {
- std::vector<std::string> result;
- std::istringstream iss(input);
- std::string line;
- auto add_line = [&](const std::string& l) {
- if (l.length() <= max_char_per_line) {
- result.push_back(l);
- } else {
- std::istringstream line_stream(l);
- std::string word, current_line;
- while (line_stream >> word) {
- if (current_line.length() + !current_line.empty() + word.length() > max_char_per_line) {
- if (!current_line.empty()) result.push_back(current_line);
- current_line = word;
- } else {
- current_line += (!current_line.empty() ? " " : "") + word;
- }
- }
- if (!current_line.empty()) result.push_back(current_line);
- }
- };
- while (std::getline(iss, line)) {
- add_line(line);
- }
- return result;
- }
- std::string common_arg::to_string() const {
- // params for printing to console
- const static int n_leading_spaces = 40;
- const static int n_char_per_line_help = 70; // TODO: detect this based on current console
- std::string leading_spaces(n_leading_spaces, ' ');
- std::ostringstream ss;
- auto all_args = get_args(); // also contains args_neg
- for (const auto & arg : all_args) {
- if (arg == all_args.front()) {
- if (all_args.size() == 1) {
- ss << arg;
- } else {
- // first arg is usually abbreviation, we need padding to make it more beautiful
- auto tmp = std::string(arg) + ", ";
- auto spaces = std::string(std::max(0, 7 - (int)tmp.size()), ' ');
- ss << tmp << spaces;
- }
- } else {
- ss << arg << (arg != all_args.back() ? ", " : "");
- }
- }
- if (value_hint) ss << " " << value_hint;
- if (value_hint_2) ss << " " << value_hint_2;
- if (ss.tellp() > n_leading_spaces - 3) {
- // current line is too long, add new line
- ss << "\n" << leading_spaces;
- } else {
- // padding between arg and help, same line
- ss << std::string(leading_spaces.size() - ss.tellp(), ' ');
- }
- const auto help_lines = break_str_into_lines(help, n_char_per_line_help);
- for (const auto & line : help_lines) {
- ss << (&line == &help_lines.front() ? "" : leading_spaces) << line << "\n";
- }
- return ss.str();
- }
- std::vector<std::string> common_arg::get_args() const {
- std::vector<std::string> result;
- for (const auto & arg : args) {
- result.push_back(std::string(arg));
- }
- for (const auto & arg : args_neg) {
- result.push_back(std::string(arg));
- }
- return result;
- }
- std::vector<std::string> common_arg::get_env() const {
- std::vector<std::string> result;
- if (env) {
- result.push_back(std::string(env));
- }
- if (!args_neg.empty() && env) {
- // for compatibility, we need to add LLAMA_ARG_NO_ variant
- std::string neg_env = env;
- string_replace_all(neg_env, "LLAMA_ARG_", "LLAMA_ARG_NO_");
- result.push_back(neg_env);
- }
- return result;
- }
- //
- // utils
- //
- // Helper function to parse tensor buffer override strings
- static void parse_tensor_buffer_overrides(const std::string & value, std::vector<llama_model_tensor_buft_override> & overrides) {
- std::map<std::string, ggml_backend_buffer_type_t> buft_list;
- for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
- auto * dev = ggml_backend_dev_get(i);
- auto * buft = ggml_backend_dev_buffer_type(dev);
- if (buft) {
- buft_list[ggml_backend_buft_name(buft)] = buft;
- }
- }
- for (const auto & override : string_split<std::string>(value, ',')) {
- std::string::size_type pos = override.find('=');
- if (pos == std::string::npos) {
- throw std::invalid_argument("invalid value");
- }
- std::string tensor_name = override.substr(0, pos);
- std::string buffer_type = override.substr(pos + 1);
- if (buft_list.find(buffer_type) == buft_list.end()) {
- printf("Available buffer types:\n");
- for (const auto & it : buft_list) {
- printf(" %s\n", ggml_backend_buft_name(it.second));
- }
- throw std::invalid_argument("unknown buffer type");
- }
- // keep strings alive and avoid leaking memory by storing them in a static vector
- static std::list<std::string> buft_overrides;
- buft_overrides.push_back(tensor_name);
- overrides.push_back({buft_overrides.back().c_str(), buft_list.at(buffer_type)});
- }
- }
- struct handle_model_result {
- bool found_mmproj = false;
- common_params_model mmproj;
- };
- static handle_model_result common_params_handle_model(
- struct common_params_model & model,
- const std::string & bearer_token,
- bool offline) {
- handle_model_result result;
- // handle pre-fill default model path and url based on hf_repo and hf_file
- {
- if (!model.docker_repo.empty()) { // Handle Docker URLs by resolving them to local paths
- model.path = common_docker_resolve_model(model.docker_repo);
- model.name = model.docker_repo; // set name for consistency
- } else if (!model.hf_repo.empty()) {
- // short-hand to avoid specifying --hf-file -> default it to --model
- if (model.hf_file.empty()) {
- if (model.path.empty()) {
- auto auto_detected = common_get_hf_file(model.hf_repo, bearer_token, offline);
- if (auto_detected.repo.empty() || auto_detected.ggufFile.empty()) {
- exit(1); // built without CURL, error message already printed
- }
- model.name = model.hf_repo; // repo name with tag
- model.hf_repo = auto_detected.repo; // repo name without tag
- model.hf_file = auto_detected.ggufFile;
- if (!auto_detected.mmprojFile.empty()) {
- result.found_mmproj = true;
- result.mmproj.hf_repo = model.hf_repo;
- result.mmproj.hf_file = auto_detected.mmprojFile;
- }
- } else {
- model.hf_file = model.path;
- }
- }
- std::string model_endpoint = get_model_endpoint();
- model.url = model_endpoint + model.hf_repo + "/resolve/main/" + model.hf_file;
- // make sure model path is present (for caching purposes)
- if (model.path.empty()) {
- // this is to avoid different repo having same file name, or same file name in different subdirs
- std::string filename = model.hf_repo + "_" + model.hf_file;
- // to make sure we don't have any slashes in the filename
- string_replace_all(filename, "/", "_");
- model.path = fs_get_cache_file(filename);
- }
- } else if (!model.url.empty()) {
- if (model.path.empty()) {
- auto f = string_split<std::string>(model.url, '#').front();
- f = string_split<std::string>(f, '?').front();
- model.path = fs_get_cache_file(string_split<std::string>(f, '/').back());
- }
- }
- }
- // then, download it if needed
- if (!model.url.empty()) {
- bool ok = common_download_model(model, bearer_token, offline);
- if (!ok) {
- LOG_ERR("error: failed to download model from %s\n", model.url.c_str());
- exit(1);
- }
- }
- return result;
- }
- const std::vector<ggml_type> kv_cache_types = {
- GGML_TYPE_F32,
- GGML_TYPE_F16,
- GGML_TYPE_BF16,
- GGML_TYPE_Q8_0,
- GGML_TYPE_Q4_0,
- GGML_TYPE_Q4_1,
- GGML_TYPE_IQ4_NL,
- GGML_TYPE_Q5_0,
- GGML_TYPE_Q5_1,
- };
- static ggml_type kv_cache_type_from_str(const std::string & s) {
- for (const auto & type : kv_cache_types) {
- if (ggml_type_name(type) == s) {
- return type;
- }
- }
- throw std::runtime_error("Unsupported cache type: " + s);
- }
- static std::string get_all_kv_cache_types() {
- std::ostringstream msg;
- for (const auto & type : kv_cache_types) {
- msg << ggml_type_name(type) << (&type == &kv_cache_types.back() ? "" : ", ");
- }
- return msg.str();
- }
- static bool parse_bool_value(const std::string & value) {
- if (is_truthy(value)) {
- return true;
- } else if (is_falsey(value)) {
- return false;
- } else {
- throw std::invalid_argument("invalid boolean value");
- }
- }
- //
- // CLI argument parsing functions
- //
- static bool common_params_parse_ex(int argc, char ** argv, common_params_context & ctx_arg) {
- common_params & params = ctx_arg.params;
- std::unordered_map<std::string, std::pair<common_arg *, bool>> arg_to_options;
- for (auto & opt : ctx_arg.options) {
- for (const auto & arg : opt.args) {
- arg_to_options[arg] = {&opt, /* is_positive */ true};
- }
- for (const auto & arg : opt.args_neg) {
- arg_to_options[arg] = {&opt, /* is_positive */ false};
- }
- }
- // handle environment variables
- for (auto & opt : ctx_arg.options) {
- std::string value;
- if (opt.get_value_from_env(value)) {
- try {
- if (opt.handler_void && is_truthy(value)) {
- opt.handler_void(params);
- }
- if (opt.handler_int) {
- opt.handler_int(params, std::stoi(value));
- }
- if (opt.handler_bool) {
- opt.handler_bool(params, parse_bool_value(value));
- }
- if (opt.handler_string) {
- opt.handler_string(params, value);
- continue;
- }
- } catch (std::exception & e) {
- throw std::invalid_argument(string_format(
- "error while handling environment variable \"%s\": %s\n\n", opt.env, e.what()));
- }
- }
- }
- // handle command line arguments
- auto check_arg = [&](int i) {
- if (i+1 >= argc) {
- throw std::invalid_argument("expected value for argument");
- }
- };
- for (int i = 1; i < argc; i++) {
- const std::string arg_prefix = "--";
- std::string arg = argv[i];
- if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
- std::replace(arg.begin(), arg.end(), '_', '-');
- }
- if (arg_to_options.find(arg) == arg_to_options.end()) {
- throw std::invalid_argument(string_format("error: invalid argument: %s", arg.c_str()));
- }
- auto & tmp = arg_to_options[arg];
- auto opt = *tmp.first;
- bool is_positive = tmp.second;
- if (opt.has_value_from_env()) {
- fprintf(stderr, "warn: %s environment variable is set, but will be overwritten by command line argument %s\n", opt.env, arg.c_str());
- }
- try {
- if (opt.handler_void) {
- opt.handler_void(params);
- continue;
- }
- if (opt.handler_bool) {
- opt.handler_bool(params, is_positive);
- continue;
- }
- // arg with single value
- check_arg(i);
- std::string val = argv[++i];
- if (opt.handler_int) {
- opt.handler_int(params, std::stoi(val));
- continue;
- }
- if (opt.handler_string) {
- opt.handler_string(params, val);
- continue;
- }
- // arg with 2 values
- check_arg(i);
- std::string val2 = argv[++i];
- if (opt.handler_str_str) {
- opt.handler_str_str(params, val, val2);
- continue;
- }
- } catch (std::exception & e) {
- throw std::invalid_argument(string_format(
- "error while handling argument \"%s\": %s\n\n"
- "usage:\n%s\n\nto show complete usage, run with -h",
- arg.c_str(), e.what(), opt.to_string().c_str()));
- }
- }
- postprocess_cpu_params(params.cpuparams, nullptr);
- postprocess_cpu_params(params.cpuparams_batch, ¶ms.cpuparams);
- postprocess_cpu_params(params.speculative.cpuparams, ¶ms.cpuparams);
- postprocess_cpu_params(params.speculative.cpuparams_batch, ¶ms.cpuparams_batch);
- if (params.prompt_cache_all && (params.interactive || params.interactive_first)) {
- throw std::invalid_argument("error: --prompt-cache-all not supported in interactive mode yet\n");
- }
- // handle model and download
- {
- auto res = common_params_handle_model(params.model, params.hf_token, params.offline);
- if (params.no_mmproj) {
- params.mmproj = {};
- } else if (res.found_mmproj && params.mmproj.path.empty() && params.mmproj.url.empty()) {
- // optionally, handle mmproj model when -hf is specified
- params.mmproj = res.mmproj;
- }
- // only download mmproj if the current example is using it
- for (auto & ex : mmproj_examples) {
- if (ctx_arg.ex == ex) {
- common_params_handle_model(params.mmproj, params.hf_token, params.offline);
- break;
- }
- }
- common_params_handle_model(params.speculative.model, params.hf_token, params.offline);
- common_params_handle_model(params.vocoder.model, params.hf_token, params.offline);
- }
- // model is required (except for server)
- // TODO @ngxson : maybe show a list of available models in CLI in this case
- if (params.model.path.empty() && ctx_arg.ex != LLAMA_EXAMPLE_SERVER && !params.usage && !params.completion) {
- throw std::invalid_argument("error: --model is required\n");
- }
- if (params.escape) {
- string_process_escapes(params.prompt);
- string_process_escapes(params.input_prefix);
- string_process_escapes(params.input_suffix);
- for (auto & antiprompt : params.antiprompt) {
- string_process_escapes(antiprompt);
- }
- for (auto & seq_breaker : params.sampling.dry_sequence_breakers) {
- string_process_escapes(seq_breaker);
- }
- for (auto & pair : params.speculative.replacements) {
- string_process_escapes(pair.first);
- string_process_escapes(pair.second);
- }
- }
- if (!params.kv_overrides.empty()) {
- params.kv_overrides.emplace_back();
- params.kv_overrides.back().key[0] = 0;
- }
- // pad tensor_buft_overrides for llama_params_fit:
- const size_t ntbo = llama_max_tensor_buft_overrides();
- while (params.tensor_buft_overrides.size() < ntbo) {
- params.tensor_buft_overrides.push_back({nullptr, nullptr});
- }
- if (!params.speculative.tensor_buft_overrides.empty()) {
- params.speculative.tensor_buft_overrides.push_back({nullptr, nullptr});
- }
- if (!params.chat_template.empty() && !common_chat_verify_template(params.chat_template, params.use_jinja)) {
- throw std::runtime_error(string_format(
- "error: the supplied chat template is not supported: %s%s\n",
- params.chat_template.c_str(),
- params.use_jinja ? "" : "\nnote: llama.cpp was started without --jinja, we only support commonly used templates"
- ));
- }
- common_log_set_verbosity_thold(params.verbosity);
- return true;
- }
- static void common_params_print_usage(common_params_context & ctx_arg) {
- auto print_options = [](std::vector<common_arg *> & options) {
- for (common_arg * opt : options) {
- printf("%s", opt->to_string().c_str());
- }
- };
- std::vector<common_arg *> common_options;
- std::vector<common_arg *> sparam_options;
- std::vector<common_arg *> specific_options;
- for (auto & opt : ctx_arg.options) {
- // in case multiple LLAMA_EXAMPLE_* are set, we prioritize the LLAMA_EXAMPLE_* matching current example
- if (opt.is_sparam) {
- sparam_options.push_back(&opt);
- } else if (opt.in_example(ctx_arg.ex)) {
- specific_options.push_back(&opt);
- } else {
- common_options.push_back(&opt);
- }
- }
- printf("----- common params -----\n\n");
- print_options(common_options);
- printf("\n\n----- sampling params -----\n\n");
- print_options(sparam_options);
- // TODO: maybe convert enum llama_example to string
- printf("\n\n----- example-specific params -----\n\n");
- print_options(specific_options);
- }
- static void common_params_print_completion(common_params_context & ctx_arg) {
- std::vector<common_arg *> common_options;
- std::vector<common_arg *> sparam_options;
- std::vector<common_arg *> specific_options;
- for (auto & opt : ctx_arg.options) {
- if (opt.is_sparam) {
- sparam_options.push_back(&opt);
- } else if (opt.in_example(ctx_arg.ex)) {
- specific_options.push_back(&opt);
- } else {
- common_options.push_back(&opt);
- }
- }
- printf("_llama_completions() {\n");
- printf(" local cur prev opts\n");
- printf(" COMPREPLY=()\n");
- printf(" cur=\"${COMP_WORDS[COMP_CWORD]}\"\n");
- printf(" prev=\"${COMP_WORDS[COMP_CWORD-1]}\"\n\n");
- printf(" opts=\"");
- auto print_options = [](const std::vector<common_arg *> & options) {
- for (const common_arg * opt : options) {
- for (const char * arg : opt->args) {
- printf("%s ", arg);
- }
- }
- };
- print_options(common_options);
- print_options(sparam_options);
- print_options(specific_options);
- printf("\"\n\n");
- printf(" case \"$prev\" in\n");
- printf(" --model|-m)\n");
- printf(" COMPREPLY=( $(compgen -f -X '!*.gguf' -- \"$cur\") $(compgen -d -- \"$cur\") )\n");
- printf(" return 0\n");
- printf(" ;;\n");
- printf(" --grammar-file)\n");
- printf(" COMPREPLY=( $(compgen -f -X '!*.gbnf' -- \"$cur\") $(compgen -d -- \"$cur\") )\n");
- printf(" return 0\n");
- printf(" ;;\n");
- printf(" --chat-template-file)\n");
- printf(" COMPREPLY=( $(compgen -f -X '!*.jinja' -- \"$cur\") $(compgen -d -- \"$cur\") )\n");
- printf(" return 0\n");
- printf(" ;;\n");
- printf(" *)\n");
- printf(" COMPREPLY=( $(compgen -W \"${opts}\" -- \"$cur\") )\n");
- printf(" return 0\n");
- printf(" ;;\n");
- printf(" esac\n");
- printf("}\n\n");
- std::set<std::string> executables = {
- "llama-batched",
- "llama-batched-bench",
- "llama-bench",
- "llama-cli",
- "llama-completion",
- "llama-convert-llama2c-to-ggml",
- "llama-cvector-generator",
- "llama-embedding",
- "llama-eval-callback",
- "llama-export-lora",
- "llama-gen-docs",
- "llama-gguf",
- "llama-gguf-hash",
- "llama-gguf-split",
- "llama-gritlm",
- "llama-imatrix",
- "llama-infill",
- "llama-mtmd-cli",
- "llama-llava-clip-quantize-cli",
- "llama-lookahead",
- "llama-lookup",
- "llama-lookup-create",
- "llama-lookup-merge",
- "llama-lookup-stats",
- "llama-parallel",
- "llama-passkey",
- "llama-perplexity",
- "llama-q8dot",
- "llama-quantize",
- "llama-qwen2vl-cli",
- "llama-retrieval",
- "llama-run",
- "llama-save-load-state",
- "llama-server",
- "llama-simple",
- "llama-simple-chat",
- "llama-speculative",
- "llama-speculative-simple",
- "llama-tokenize",
- "llama-tts",
- "llama-vdot"
- };
- for (const auto& exe : executables) {
- printf("complete -F _llama_completions %s\n", exe.c_str());
- }
- }
- static std::vector<ggml_backend_dev_t> parse_device_list(const std::string & value) {
- std::vector<ggml_backend_dev_t> devices;
- auto dev_names = string_split<std::string>(value, ',');
- if (dev_names.empty()) {
- throw std::invalid_argument("no devices specified");
- }
- if (dev_names.size() == 1 && dev_names[0] == "none") {
- devices.push_back(nullptr);
- } else {
- for (const auto & device : dev_names) {
- auto * dev = ggml_backend_dev_by_name(device.c_str());
- if (!dev || ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU) {
- throw std::invalid_argument(string_format("invalid device: %s", device.c_str()));
- }
- devices.push_back(dev);
- }
- devices.push_back(nullptr);
- }
- return devices;
- }
- static void add_rpc_devices(const std::string & servers) {
- auto rpc_servers = string_split<std::string>(servers, ',');
- if (rpc_servers.empty()) {
- throw std::invalid_argument("no RPC servers specified");
- }
- ggml_backend_reg_t rpc_reg = ggml_backend_reg_by_name("RPC");
- if (!rpc_reg) {
- throw std::invalid_argument("failed to find RPC backend");
- }
- typedef ggml_backend_reg_t (*ggml_backend_rpc_add_server_t)(const char * endpoint);
- ggml_backend_rpc_add_server_t ggml_backend_rpc_add_server_fn = (ggml_backend_rpc_add_server_t) ggml_backend_reg_get_proc_address(rpc_reg, "ggml_backend_rpc_add_server");
- if (!ggml_backend_rpc_add_server_fn) {
- throw std::invalid_argument("failed to find RPC add server function");
- }
- for (const auto & server : rpc_servers) {
- auto reg = ggml_backend_rpc_add_server_fn(server.c_str());
- ggml_backend_register(reg);
- }
- }
- bool common_params_to_map(int argc, char ** argv, llama_example ex, std::map<common_arg, std::string> & out_map) {
- common_params dummy_params;
- common_params_context ctx_arg = common_params_parser_init(dummy_params, ex, nullptr);
- std::unordered_map<std::string, common_arg *> arg_to_options;
- for (auto & opt : ctx_arg.options) {
- for (const auto & arg : opt.args) {
- arg_to_options[arg] = &opt;
- }
- for (const auto & arg : opt.args_neg) {
- arg_to_options[arg] = &opt;
- }
- }
- // TODO @ngxson : find a way to deduplicate this code
- // handle command line arguments
- auto check_arg = [&](int i) {
- if (i+1 >= argc) {
- throw std::invalid_argument("expected value for argument");
- }
- };
- for (int i = 1; i < argc; i++) {
- const std::string arg_prefix = "--";
- std::string arg = argv[i];
- if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
- std::replace(arg.begin(), arg.end(), '_', '-');
- }
- if (arg_to_options.find(arg) == arg_to_options.end()) {
- throw std::invalid_argument(string_format("error: invalid argument: %s", arg.c_str()));
- }
- auto opt = *arg_to_options[arg];
- std::string val;
- if (opt.value_hint != nullptr) {
- // arg with single value
- check_arg(i);
- val = argv[++i];
- }
- if (opt.value_hint_2 != nullptr) {
- // TODO: support arg with 2 values
- throw std::invalid_argument("error: argument with 2 values is not yet supported\n");
- }
- out_map[opt] = val;
- }
- return true;
- }
- bool common_params_parse(int argc, char ** argv, common_params & params, llama_example ex, void(*print_usage)(int, char **)) {
- auto ctx_arg = common_params_parser_init(params, ex, print_usage);
- const common_params params_org = ctx_arg.params; // the example can modify the default params
- try {
- if (!common_params_parse_ex(argc, argv, ctx_arg)) {
- ctx_arg.params = params_org;
- return false;
- }
- if (ctx_arg.params.usage) {
- common_params_print_usage(ctx_arg);
- if (ctx_arg.print_usage) {
- ctx_arg.print_usage(argc, argv);
- }
- exit(0);
- }
- if (ctx_arg.params.completion) {
- common_params_print_completion(ctx_arg);
- exit(0);
- }
- params.lr.init();
- } catch (const std::invalid_argument & ex) {
- fprintf(stderr, "%s\n", ex.what());
- ctx_arg.params = params_org;
- return false;
- } catch (std::exception & ex) {
- fprintf(stderr, "%s\n", ex.what());
- exit(1); // for other exceptions, we exit with status code 1
- }
- return true;
- }
- static std::string list_builtin_chat_templates() {
- std::vector<const char *> supported_tmpl;
- int32_t res = llama_chat_builtin_templates(nullptr, 0);
- supported_tmpl.resize(res);
- res = llama_chat_builtin_templates(supported_tmpl.data(), supported_tmpl.size());
- std::ostringstream msg;
- for (auto & tmpl : supported_tmpl) {
- msg << tmpl << (&tmpl == &supported_tmpl.back() ? "" : ", ");
- }
- return msg.str();
- }
- bool common_arg_utils::is_truthy(const std::string & value) {
- return value == "on" || value == "enabled" || value == "true" || value == "1";
- }
- bool common_arg_utils::is_falsey(const std::string & value) {
- return value == "off" || value == "disabled" || value == "false" || value == "0";
- }
- bool common_arg_utils::is_autoy(const std::string & value) {
- return value == "auto" || value == "-1";
- }
- common_params_context common_params_parser_init(common_params & params, llama_example ex, void(*print_usage)(int, char **)) {
- // per-example default params
- // we define here to make sure it's included in llama-gen-docs
- if (ex == LLAMA_EXAMPLE_COMPLETION) {
- params.use_jinja = false; // disable jinja by default
- } else if (ex == LLAMA_EXAMPLE_MTMD) {
- params.use_jinja = false; // disable jinja by default
- params.sampling.temp = 0.2; // lower temp by default for better quality
- } else if (ex == LLAMA_EXAMPLE_SERVER) {
- params.n_parallel = -1; // auto by default
- }
- params.use_color = tty_can_use_colors();
- // load dynamic backends
- ggml_backend_load_all();
- common_params_context ctx_arg(params);
- ctx_arg.print_usage = print_usage;
- ctx_arg.ex = ex;
- std::string sampler_type_chars;
- std::string sampler_type_names;
- for (const auto & sampler : params.sampling.samplers) {
- sampler_type_chars += common_sampler_type_to_chr(sampler);
- sampler_type_names += common_sampler_type_to_str(sampler) + ";";
- }
- sampler_type_names.pop_back();
- /**
- * filter options by example
- * rules:
- * - all examples inherit options from LLAMA_EXAMPLE_COMMON
- * - if LLAMA_EXAMPLE_* is set (other than COMMON), we only show the option in the corresponding example
- * - if both {LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_*,} are set, we will prioritize the LLAMA_EXAMPLE_* matching current example
- */
- auto add_opt = [&](common_arg arg) {
- if ((arg.in_example(ex) || arg.in_example(LLAMA_EXAMPLE_COMMON)) && !arg.is_exclude(ex)) {
- ctx_arg.options.push_back(std::move(arg));
- }
- };
- add_opt(common_arg(
- {"-h", "--help", "--usage"},
- "print usage and exit",
- [](common_params & params) {
- params.usage = true;
- }
- ));
- add_opt(common_arg(
- {"--version"},
- "show version and build info",
- [](common_params &) {
- fprintf(stderr, "version: %d (%s)\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT);
- fprintf(stderr, "built with %s for %s\n", LLAMA_COMPILER, LLAMA_BUILD_TARGET);
- exit(0);
- }
- ));
- add_opt(common_arg(
- {"-cl", "--cache-list"},
- "show list of models in cache",
- [](common_params &) {
- printf("model cache directory: %s\n", fs_get_cache_directory().c_str());
- auto models = common_list_cached_models();
- printf("number of models in cache: %zu\n", models.size());
- for (size_t i = 0; i < models.size(); i++) {
- auto & model = models[i];
- printf("%4d. %s\n", (int) i + 1, model.to_string().c_str());
- }
- exit(0);
- }
- ));
- add_opt(common_arg(
- {"--completion-bash"},
- "print source-able bash completion script for llama.cpp",
- [](common_params & params) {
- params.completion = true;
- }
- ));
- add_opt(common_arg(
- {"--verbose-prompt"},
- string_format("print a verbose prompt before generation (default: %s)", params.verbose_prompt ? "true" : "false"),
- [](common_params & params) {
- params.verbose_prompt = true;
- }
- ));
- add_opt(common_arg(
- {"--display-prompt"},
- {"--no-display-prompt"},
- string_format("whether to print prompt at generation (default: %s)", params.display_prompt ? "true" : "false"),
- [](common_params & params, bool value) {
- params.display_prompt = value;
- }
- ).set_examples({LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_CLI}));
- add_opt(common_arg(
- {"-co", "--color"}, "[on|off|auto]",
- "Colorize output to distinguish prompt and user input from generations ('on', 'off', or 'auto', default: 'auto')\n"
- "'auto' enables colors when output is to a terminal",
- [](common_params & params, const std::string & value) {
- if (is_truthy(value)) {
- params.use_color = true;
- } else if (is_falsey(value)) {
- params.use_color = false;
- } else if (is_autoy(value)) {
- params.use_color = tty_can_use_colors();
- } else {
- throw std::invalid_argument(
- string_format("error: unknown value for --color: '%s'\n", value.c_str()));
- }
- }
- ).set_examples({LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_CLI, LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP}));
- add_opt(common_arg(
- {"-t", "--threads"}, "N",
- string_format("number of CPU threads to use during generation (default: %d)", params.cpuparams.n_threads),
- [](common_params & params, int value) {
- params.cpuparams.n_threads = value;
- if (params.cpuparams.n_threads <= 0) {
- params.cpuparams.n_threads = std::thread::hardware_concurrency();
- }
- }
- ).set_env("LLAMA_ARG_THREADS"));
- add_opt(common_arg(
- {"-tb", "--threads-batch"}, "N",
- "number of threads to use during batch and prompt processing (default: same as --threads)",
- [](common_params & params, int value) {
- params.cpuparams_batch.n_threads = value;
- if (params.cpuparams_batch.n_threads <= 0) {
- params.cpuparams_batch.n_threads = std::thread::hardware_concurrency();
- }
- }
- ));
- add_opt(common_arg(
- {"-C", "--cpu-mask"}, "M",
- "CPU affinity mask: arbitrarily long hex. Complements cpu-range (default: \"\")",
- [](common_params & params, const std::string & mask) {
- params.cpuparams.mask_valid = true;
- if (!parse_cpu_mask(mask, params.cpuparams.cpumask)) {
- throw std::invalid_argument("invalid cpumask");
- }
- }
- ));
- add_opt(common_arg(
- {"-Cr", "--cpu-range"}, "lo-hi",
- "range of CPUs for affinity. Complements --cpu-mask",
- [](common_params & params, const std::string & range) {
- params.cpuparams.mask_valid = true;
- if (!parse_cpu_range(range, params.cpuparams.cpumask)) {
- throw std::invalid_argument("invalid range");
- }
- }
- ));
- add_opt(common_arg(
- {"--cpu-strict"}, "<0|1>",
- string_format("use strict CPU placement (default: %u)\n", (unsigned) params.cpuparams.strict_cpu),
- [](common_params & params, const std::string & value) {
- params.cpuparams.strict_cpu = std::stoul(value);
- }
- ));
- add_opt(common_arg(
- {"--prio"}, "N",
- string_format("set process/thread priority : low(-1), normal(0), medium(1), high(2), realtime(3) (default: %d)\n", params.cpuparams.priority),
- [](common_params & params, int prio) {
- if (prio < GGML_SCHED_PRIO_LOW || prio > GGML_SCHED_PRIO_REALTIME) {
- throw std::invalid_argument("invalid value");
- }
- params.cpuparams.priority = (enum ggml_sched_priority) prio;
- }
- ));
- add_opt(common_arg(
- {"--poll"}, "<0...100>",
- string_format("use polling level to wait for work (0 - no polling, default: %u)\n", (unsigned) params.cpuparams.poll),
- [](common_params & params, const std::string & value) {
- params.cpuparams.poll = std::stoul(value);
- }
- ));
- add_opt(common_arg(
- {"-Cb", "--cpu-mask-batch"}, "M",
- "CPU affinity mask: arbitrarily long hex. Complements cpu-range-batch (default: same as --cpu-mask)",
- [](common_params & params, const std::string & mask) {
- params.cpuparams_batch.mask_valid = true;
- if (!parse_cpu_mask(mask, params.cpuparams_batch.cpumask)) {
- throw std::invalid_argument("invalid cpumask");
- }
- }
- ));
- add_opt(common_arg(
- {"-Crb", "--cpu-range-batch"}, "lo-hi",
- "ranges of CPUs for affinity. Complements --cpu-mask-batch",
- [](common_params & params, const std::string & range) {
- params.cpuparams_batch.mask_valid = true;
- if (!parse_cpu_range(range, params.cpuparams_batch.cpumask)) {
- throw std::invalid_argument("invalid range");
- }
- }
- ));
- add_opt(common_arg(
- {"--cpu-strict-batch"}, "<0|1>",
- "use strict CPU placement (default: same as --cpu-strict)",
- [](common_params & params, int value) {
- params.cpuparams_batch.strict_cpu = value;
- }
- ));
- add_opt(common_arg(
- {"--prio-batch"}, "N",
- string_format("set process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.cpuparams_batch.priority),
- [](common_params & params, int prio) {
- if (prio < 0 || prio > 3) {
- throw std::invalid_argument("invalid value");
- }
- params.cpuparams_batch.priority = (enum ggml_sched_priority) prio;
- }
- ));
- add_opt(common_arg(
- {"--poll-batch"}, "<0|1>",
- "use polling to wait for work (default: same as --poll)",
- [](common_params & params, int value) {
- params.cpuparams_batch.poll = value;
- }
- ));
- add_opt(common_arg(
- {"-lcs", "--lookup-cache-static"}, "FNAME",
- "path to static lookup cache to use for lookup decoding (not updated by generation)",
- [](common_params & params, const std::string & value) {
- params.lookup_cache_static = value;
- }
- ).set_examples({LLAMA_EXAMPLE_LOOKUP}));
- add_opt(common_arg(
- {"-lcd", "--lookup-cache-dynamic"}, "FNAME",
- "path to dynamic lookup cache to use for lookup decoding (updated by generation)",
- [](common_params & params, const std::string & value) {
- params.lookup_cache_dynamic = value;
- }
- ).set_examples({LLAMA_EXAMPLE_LOOKUP}));
- add_opt(common_arg(
- {"-c", "--ctx-size"}, "N",
- string_format("size of the prompt context (default: %d, 0 = loaded from model)", params.n_ctx),
- [](common_params & params, int value) {
- params.n_ctx = value;
- }
- ).set_env("LLAMA_ARG_CTX_SIZE"));
- add_opt(common_arg(
- {"-n", "--predict", "--n-predict"}, "N",
- string_format(
- ex == LLAMA_EXAMPLE_COMPLETION
- ? "number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)"
- : "number of tokens to predict (default: %d, -1 = infinity)",
- params.n_predict),
- [](common_params & params, int value) {
- params.n_predict = value;
- }
- ).set_env("LLAMA_ARG_N_PREDICT"));
- add_opt(common_arg(
- {"-b", "--batch-size"}, "N",
- string_format("logical maximum batch size (default: %d)", params.n_batch),
- [](common_params & params, int value) {
- params.n_batch = value;
- }
- ).set_env("LLAMA_ARG_BATCH"));
- add_opt(common_arg(
- {"-ub", "--ubatch-size"}, "N",
- string_format("physical maximum batch size (default: %d)", params.n_ubatch),
- [](common_params & params, int value) {
- params.n_ubatch = value;
- }
- ).set_env("LLAMA_ARG_UBATCH"));
- add_opt(common_arg(
- {"--keep"}, "N",
- string_format("number of tokens to keep from the initial prompt (default: %d, -1 = all)", params.n_keep),
- [](common_params & params, int value) {
- params.n_keep = value;
- }
- ));
- add_opt(common_arg(
- {"--swa-full"},
- string_format("use full-size SWA cache (default: %s)\n"
- "[(more info)](https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055)", params.swa_full ? "true" : "false"),
- [](common_params & params) {
- params.swa_full = true;
- }
- ).set_env("LLAMA_ARG_SWA_FULL"));
- add_opt(common_arg(
- {"--ctx-checkpoints", "--swa-checkpoints"}, "N",
- string_format("max number of context checkpoints to create per slot (default: %d)"
- "[(more info)](https://github.com/ggml-org/llama.cpp/pull/15293)", params.n_ctx_checkpoints),
- [](common_params & params, int value) {
- params.n_ctx_checkpoints = value;
- }
- ).set_env("LLAMA_ARG_CTX_CHECKPOINTS").set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_CLI}));
- add_opt(common_arg(
- {"--cache-ram", "-cram"}, "N",
- string_format("set the maximum cache size in MiB (default: %d, -1 - no limit, 0 - disable)"
- "[(more info)](https://github.com/ggml-org/llama.cpp/pull/16391)", params.cache_ram_mib),
- [](common_params & params, int value) {
- params.cache_ram_mib = value;
- }
- ).set_env("LLAMA_ARG_CACHE_RAM").set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_CLI}));
- add_opt(common_arg(
- {"--kv-unified", "-kvu"},
- "use single unified KV buffer shared across all sequences (default: enabled if number of slots is auto)",
- [](common_params & params) {
- params.kv_unified = true;
- }
- ).set_env("LLAMA_ARG_KV_UNIFIED").set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_PERPLEXITY}));
- add_opt(common_arg(
- {"--context-shift"},
- {"--no-context-shift"},
- string_format("whether to use context shift on infinite text generation (default: %s)", params.ctx_shift ? "enabled" : "disabled"),
- [](common_params & params, bool value) {
- params.ctx_shift = value;
- }
- ).set_examples({LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_CLI, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_PERPLEXITY}).set_env("LLAMA_ARG_CONTEXT_SHIFT"));
- add_opt(common_arg(
- {"--chunks"}, "N",
- string_format("max number of chunks to process (default: %d, -1 = all)", params.n_chunks),
- [](common_params & params, int value) {
- params.n_chunks = value;
- }
- ).set_examples({LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_PERPLEXITY, LLAMA_EXAMPLE_RETRIEVAL}));
- add_opt(common_arg({ "-fa", "--flash-attn" }, "[on|off|auto]",
- string_format("set Flash Attention use ('on', 'off', or 'auto', default: '%s')",
- llama_flash_attn_type_name(params.flash_attn_type)),
- [](common_params & params, const std::string & value) {
- if (is_truthy(value)) {
- params.flash_attn_type = LLAMA_FLASH_ATTN_TYPE_ENABLED;
- } else if (is_falsey(value)) {
- params.flash_attn_type = LLAMA_FLASH_ATTN_TYPE_DISABLED;
- } else if (is_autoy(value)) {
- params.flash_attn_type = LLAMA_FLASH_ATTN_TYPE_AUTO;
- } else {
- throw std::runtime_error(
- string_format("error: unknown value for --flash-attn: '%s'\n", value.c_str()));
- }
- }).set_env("LLAMA_ARG_FLASH_ATTN"));
- add_opt(common_arg(
- {"-p", "--prompt"}, "PROMPT",
- "prompt to start generation with; for system message, use -sys",
- [](common_params & params, const std::string & value) {
- params.prompt = value;
- }
- ).set_excludes({LLAMA_EXAMPLE_SERVER}));
- add_opt(common_arg(
- {"-sys", "--system-prompt"}, "PROMPT",
- "system prompt to use with model (if applicable, depending on chat template)",
- [](common_params & params, const std::string & value) {
- params.system_prompt = value;
- }
- ).set_examples({LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_CLI, LLAMA_EXAMPLE_DIFFUSION}));
- add_opt(common_arg(
- {"--perf"},
- {"--no-perf"},
- string_format("whether to enable internal libllama performance timings (default: %s)", params.no_perf ? "true" : "false"),
- [](common_params & params, bool value) {
- params.no_perf = !value;
- params.sampling.no_perf = !value;
- }
- ).set_env("LLAMA_ARG_PERF"));
- add_opt(common_arg(
- {"--show-timings"},
- {"--no-show-timings"},
- string_format("whether to show timing information after each response (default: %s)", params.show_timings ? "true" : "false"),
- [](common_params & params, bool value) {
- params.show_timings = value;
- }
- ).set_examples({LLAMA_EXAMPLE_CLI}).set_env("LLAMA_ARG_SHOW_TIMINGS"));
- add_opt(common_arg(
- {"-f", "--file"}, "FNAME",
- "a file containing the prompt (default: none)",
- [](common_params & params, const std::string & value) {
- params.prompt = read_file(value);
- // store the external file name in params
- params.prompt_file = value;
- if (!params.prompt.empty() && params.prompt.back() == '\n') {
- params.prompt.pop_back();
- }
- }
- ).set_excludes({LLAMA_EXAMPLE_SERVER}));
- add_opt(common_arg(
- {"-sysf", "--system-prompt-file"}, "FNAME",
- "a file containing the system prompt (default: none)",
- [](common_params & params, const std::string & value) {
- params.system_prompt = read_file(value);
- if (!params.system_prompt.empty() && params.system_prompt.back() == '\n') {
- params.system_prompt.pop_back();
- }
- }
- ).set_examples({LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_CLI, LLAMA_EXAMPLE_DIFFUSION}));
- add_opt(common_arg(
- {"--in-file"}, "FNAME",
- "an input file (repeat to specify multiple files)",
- [](common_params & params, const std::string & value) {
- std::ifstream file(value);
- if (!file) {
- throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
- }
- params.in_files.push_back(value);
- }
- ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
- add_opt(common_arg(
- {"-bf", "--binary-file"}, "FNAME",
- "binary file containing the prompt (default: none)",
- [](common_params & params, const std::string & value) {
- std::ifstream file(value, std::ios::binary);
- if (!file) {
- throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
- }
- // store the external file name in params
- params.prompt_file = value;
- std::ostringstream ss;
- ss << file.rdbuf();
- params.prompt = ss.str();
- fprintf(stderr, "Read %zu bytes from binary file %s\n", params.prompt.size(), value.c_str());
- }
- ).set_excludes({LLAMA_EXAMPLE_SERVER}));
- add_opt(common_arg(
- {"-e", "--escape"},
- {"--no-escape"},
- string_format("whether to process escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\) (default: %s)", params.escape ? "true" : "false"),
- [](common_params & params, bool value) {
- params.escape = value;
- }
- ));
- add_opt(common_arg(
- {"-ptc", "--print-token-count"}, "N",
- string_format("print token count every N tokens (default: %d)", params.n_print),
- [](common_params & params, int value) {
- params.n_print = value;
- }
- ).set_examples({LLAMA_EXAMPLE_COMPLETION}));
- add_opt(common_arg(
- {"--prompt-cache"}, "FNAME",
- "file to cache prompt state for faster startup (default: none)",
- [](common_params & params, const std::string & value) {
- params.path_prompt_cache = value;
- }
- ).set_examples({LLAMA_EXAMPLE_COMPLETION}));
- add_opt(common_arg(
- {"--prompt-cache-all"},
- "if specified, saves user input and generations to cache as well\n",
- [](common_params & params) {
- params.prompt_cache_all = true;
- }
- ).set_examples({LLAMA_EXAMPLE_COMPLETION}));
- add_opt(common_arg(
- {"--prompt-cache-ro"},
- "if specified, uses the prompt cache but does not update it",
- [](common_params & params) {
- params.prompt_cache_ro = true;
- }
- ).set_examples({LLAMA_EXAMPLE_COMPLETION}));
- add_opt(common_arg(
- {"-r", "--reverse-prompt"}, "PROMPT",
- "halt generation at PROMPT, return control in interactive mode\n",
- [](common_params & params, const std::string & value) {
- params.antiprompt.emplace_back(value);
- }
- ).set_examples({LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_CLI, LLAMA_EXAMPLE_SERVER}));
- add_opt(common_arg(
- {"-sp", "--special"},
- string_format("special tokens output enabled (default: %s)", params.special ? "true" : "false"),
- [](common_params & params) {
- params.special = true;
- }
- ).set_examples({LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_CLI, LLAMA_EXAMPLE_SERVER}));
- add_opt(common_arg(
- {"-cnv", "--conversation"},
- {"-no-cnv", "--no-conversation"},
- "whether to run in conversation mode:\n"
- "- does not print special tokens and suffix/prefix\n"
- "- interactive mode is also enabled\n"
- "(default: auto enabled if chat template is available)",
- [](common_params & params, bool value) {
- params.conversation_mode = value ? COMMON_CONVERSATION_MODE_ENABLED : COMMON_CONVERSATION_MODE_DISABLED;
- }
- ).set_examples({LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_CLI}));
- add_opt(common_arg(
- {"-st", "--single-turn"},
- "run conversation for a single turn only, then exit when done\n"
- "will not be interactive if first turn is predefined with --prompt\n"
- "(default: false)",
- [](common_params & params) {
- params.single_turn = true;
- }
- ).set_examples({LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_CLI}));
- add_opt(common_arg(
- {"-i", "--interactive"},
- string_format("run in interactive mode (default: %s)", params.interactive ? "true" : "false"),
- [](common_params & params) {
- params.interactive = true;
- }
- ).set_examples({LLAMA_EXAMPLE_COMPLETION}));
- add_opt(common_arg(
- {"-if", "--interactive-first"},
- string_format("run in interactive mode and wait for input right away (default: %s)", params.interactive_first ? "true" : "false"),
- [](common_params & params) {
- params.interactive_first = true;
- }
- ).set_examples({LLAMA_EXAMPLE_COMPLETION}));
- add_opt(common_arg(
- {"-mli", "--multiline-input"},
- "allows you to write or paste multiple lines without ending each in '\\'",
- [](common_params & params) {
- params.multiline_input = true;
- }
- ).set_examples({LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_CLI}));
- add_opt(common_arg(
- {"--in-prefix-bos"},
- "prefix BOS to user inputs, preceding the `--in-prefix` string",
- [](common_params & params) {
- params.input_prefix_bos = true;
- params.enable_chat_template = false;
- }
- ).set_examples({LLAMA_EXAMPLE_COMPLETION}));
- add_opt(common_arg(
- {"--in-prefix"}, "STRING",
- "string to prefix user inputs with (default: empty)",
- [](common_params & params, const std::string & value) {
- params.input_prefix = value;
- params.enable_chat_template = false;
- }
- ).set_examples({LLAMA_EXAMPLE_COMPLETION}));
- add_opt(common_arg(
- {"--in-suffix"}, "STRING",
- "string to suffix after user inputs with (default: empty)",
- [](common_params & params, const std::string & value) {
- params.input_suffix = value;
- params.enable_chat_template = false;
- }
- ).set_examples({LLAMA_EXAMPLE_COMPLETION}));
- add_opt(common_arg(
- {"--warmup"},
- {"--no-warmup"},
- string_format("whether to perform warmup with an empty run (default: %s)", params.warmup ? "enabled" : "disabled"),
- [](common_params & params, bool value) {
- params.warmup = value;
- }
- ).set_examples({LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_CLI, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MTMD, LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_RETRIEVAL, LLAMA_EXAMPLE_PERPLEXITY}));
- add_opt(common_arg(
- {"--spm-infill"},
- string_format(
- "use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this. (default: %s)",
- params.spm_infill ? "enabled" : "disabled"
- ),
- [](common_params & params) {
- params.spm_infill = true;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}));
- add_opt(common_arg(
- {"--samplers"}, "SAMPLERS",
- string_format("samplers that will be used for generation in the order, separated by \';\'\n(default: %s)", sampler_type_names.c_str()),
- [](common_params & params, const std::string & value) {
- const auto sampler_names = string_split<std::string>(value, ';');
- params.sampling.samplers = common_sampler_types_from_names(sampler_names, true);
- params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_SAMPLERS;
- }
- ).set_sparam());
- add_opt(common_arg(
- {"-s", "--seed"}, "SEED",
- string_format("RNG seed (default: %d, use random seed for %d)", params.sampling.seed, LLAMA_DEFAULT_SEED),
- [](common_params & params, const std::string & value) {
- params.sampling.seed = std::stoul(value);
- }
- ).set_sparam());
- add_opt(common_arg(
- {"--sampling-seq", "--sampler-seq"}, "SEQUENCE",
- string_format("simplified sequence for samplers that will be used (default: %s)", sampler_type_chars.c_str()),
- [](common_params & params, const std::string & value) {
- params.sampling.samplers = common_sampler_types_from_chars(value);
- }
- ).set_sparam());
- add_opt(common_arg(
- {"--ignore-eos"},
- "ignore end of stream token and continue generating (implies --logit-bias EOS-inf)",
- [](common_params & params) {
- params.sampling.ignore_eos = true;
- }
- ).set_sparam());
- add_opt(common_arg(
- {"--temp"}, "N",
- string_format("temperature (default: %.1f)", (double)params.sampling.temp),
- [](common_params & params, const std::string & value) {
- params.sampling.temp = std::stof(value);
- params.sampling.temp = std::max(params.sampling.temp, 0.0f);
- params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_TEMP;
- }
- ).set_sparam());
- add_opt(common_arg(
- {"--top-k"}, "N",
- string_format("top-k sampling (default: %d, 0 = disabled)", params.sampling.top_k),
- [](common_params & params, int value) {
- params.sampling.top_k = value;
- params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_TOP_K;
- }
- ).set_sparam().set_env("LLAMA_ARG_TOP_K"));
- add_opt(common_arg(
- {"--top-p"}, "N",
- string_format("top-p sampling (default: %.1f, 1.0 = disabled)", (double)params.sampling.top_p),
- [](common_params & params, const std::string & value) {
- params.sampling.top_p = std::stof(value);
- params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_TOP_P;
- }
- ).set_sparam());
- add_opt(common_arg(
- {"--min-p"}, "N",
- string_format("min-p sampling (default: %.1f, 0.0 = disabled)", (double)params.sampling.min_p),
- [](common_params & params, const std::string & value) {
- params.sampling.min_p = std::stof(value);
- params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIN_P;
- }
- ).set_sparam());
- add_opt(common_arg(
- {"--top-nsigma"}, "N",
- string_format("top-n-sigma sampling (default: %.1f, -1.0 = disabled)", params.sampling.top_n_sigma),
- [](common_params & params, const std::string & value) {
- params.sampling.top_n_sigma = std::stof(value);
- }
- ).set_sparam());
- add_opt(common_arg(
- {"--xtc-probability"}, "N",
- string_format("xtc probability (default: %.1f, 0.0 = disabled)", (double)params.sampling.xtc_probability),
- [](common_params & params, const std::string & value) {
- params.sampling.xtc_probability = std::stof(value);
- params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_XTC_PROBABILITY;
- }
- ).set_sparam());
- add_opt(common_arg(
- {"--xtc-threshold"}, "N",
- string_format("xtc threshold (default: %.1f, 1.0 = disabled)", (double)params.sampling.xtc_threshold),
- [](common_params & params, const std::string & value) {
- params.sampling.xtc_threshold = std::stof(value);
- params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_XTC_THRESHOLD;
- }
- ).set_sparam());
- add_opt(common_arg(
- {"--typical"}, "N",
- string_format("locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)", (double)params.sampling.typ_p),
- [](common_params & params, const std::string & value) {
- params.sampling.typ_p = std::stof(value);
- }
- ).set_sparam());
- add_opt(common_arg(
- {"--repeat-last-n"}, "N",
- string_format("last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)", params.sampling.penalty_last_n),
- [](common_params & params, int value) {
- if (value < -1) {
- throw std::runtime_error(string_format("error: invalid repeat-last-n = %d\n", value));
- }
- params.sampling.penalty_last_n = value;
- params.sampling.n_prev = std::max(params.sampling.n_prev, params.sampling.penalty_last_n);
- params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_LAST_N;
- }
- ).set_sparam());
- add_opt(common_arg(
- {"--repeat-penalty"}, "N",
- string_format("penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)", (double)params.sampling.penalty_repeat),
- [](common_params & params, const std::string & value) {
- params.sampling.penalty_repeat = std::stof(value);
- params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_REPEAT;
- }
- ).set_sparam());
- add_opt(common_arg(
- {"--presence-penalty"}, "N",
- string_format("repeat alpha presence penalty (default: %.1f, 0.0 = disabled)", (double)params.sampling.penalty_present),
- [](common_params & params, const std::string & value) {
- params.sampling.penalty_present = std::stof(value);
- }
- ).set_sparam());
- add_opt(common_arg(
- {"--frequency-penalty"}, "N",
- string_format("repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)", (double)params.sampling.penalty_freq),
- [](common_params & params, const std::string & value) {
- params.sampling.penalty_freq = std::stof(value);
- }
- ).set_sparam());
- add_opt(common_arg(
- {"--dry-multiplier"}, "N",
- string_format("set DRY sampling multiplier (default: %.1f, 0.0 = disabled)", (double)params.sampling.dry_multiplier),
- [](common_params & params, const std::string & value) {
- params.sampling.dry_multiplier = std::stof(value);
- }
- ).set_sparam());
- add_opt(common_arg(
- {"--dry-base"}, "N",
- string_format("set DRY sampling base value (default: %.2f)", (double)params.sampling.dry_base),
- [](common_params & params, const std::string & value) {
- float potential_base = std::stof(value);
- if (potential_base >= 1.0f)
- {
- params.sampling.dry_base = potential_base;
- }
- }
- ).set_sparam());
- add_opt(common_arg(
- {"--dry-allowed-length"}, "N",
- string_format("set allowed length for DRY sampling (default: %d)", params.sampling.dry_allowed_length),
- [](common_params & params, int value) {
- params.sampling.dry_allowed_length = value;
- }
- ).set_sparam());
- add_opt(common_arg(
- {"--dry-penalty-last-n"}, "N",
- string_format("set DRY penalty for the last n tokens (default: %d, 0 = disable, -1 = context size)", params.sampling.dry_penalty_last_n),
- [](common_params & params, int value) {
- if (value < -1) {
- throw std::runtime_error(string_format("error: invalid dry-penalty-last-n = %d\n", value));
- }
- params.sampling.dry_penalty_last_n = value;
- }
- ).set_sparam());
- add_opt(common_arg(
- {"--dry-sequence-breaker"}, "STRING",
- string_format("add sequence breaker for DRY sampling, clearing out default breakers (%s) in the process; use \"none\" to not use any sequence breakers\n",
- params.sampling.dry_sequence_breakers.empty() ? "none" :
- std::accumulate(std::next(params.sampling.dry_sequence_breakers.begin()),
- params.sampling.dry_sequence_breakers.end(),
- std::string("'") + (params.sampling.dry_sequence_breakers[0] == "\n" ? "\\n" : params.sampling.dry_sequence_breakers[0]) + "'",
- [](const std::string& a, const std::string& b) {
- std::string formatted_b = (b == "\n") ? "\\n" : b;
- return a + ", '" + formatted_b + "'";
- }).c_str()),
- [](common_params & params, const std::string & value) {
- static bool defaults_cleared = false;
- if (!defaults_cleared) {
- params.sampling.dry_sequence_breakers.clear();
- defaults_cleared = true;
- }
- if (value == "none") {
- params.sampling.dry_sequence_breakers.clear();
- } else {
- params.sampling.dry_sequence_breakers.emplace_back(value);
- }
- }
- ).set_sparam());
- add_opt(common_arg(
- {"--dynatemp-range"}, "N",
- string_format("dynamic temperature range (default: %.1f, 0.0 = disabled)", (double)params.sampling.dynatemp_range),
- [](common_params & params, const std::string & value) {
- params.sampling.dynatemp_range = std::stof(value);
- }
- ).set_sparam());
- add_opt(common_arg(
- {"--dynatemp-exp"}, "N",
- string_format("dynamic temperature exponent (default: %.1f)", (double)params.sampling.dynatemp_exponent),
- [](common_params & params, const std::string & value) {
- params.sampling.dynatemp_exponent = std::stof(value);
- }
- ).set_sparam());
- add_opt(common_arg(
- {"--mirostat"}, "N",
- string_format("use Mirostat sampling.\nTop K, Nucleus and Locally Typical samplers are ignored if used.\n"
- "(default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)", params.sampling.mirostat),
- [](common_params & params, int value) {
- params.sampling.mirostat = value;
- params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT;
- }
- ).set_sparam());
- add_opt(common_arg(
- {"--mirostat-lr"}, "N",
- string_format("Mirostat learning rate, parameter eta (default: %.1f)", (double)params.sampling.mirostat_eta),
- [](common_params & params, const std::string & value) {
- params.sampling.mirostat_eta = std::stof(value);
- params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_ETA;
- }
- ).set_sparam());
- add_opt(common_arg(
- {"--mirostat-ent"}, "N",
- string_format("Mirostat target entropy, parameter tau (default: %.1f)", (double)params.sampling.mirostat_tau),
- [](common_params & params, const std::string & value) {
- params.sampling.mirostat_tau = std::stof(value);
- params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_TAU;
- }
- ).set_sparam());
- add_opt(common_arg(
- {"-l", "--logit-bias"}, "TOKEN_ID(+/-)BIAS",
- "modifies the likelihood of token appearing in the completion,\n"
- "i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n"
- "or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'",
- [](common_params & params, const std::string & value) {
- std::stringstream ss(value);
- llama_token key;
- char sign;
- std::string value_str;
- try {
- if (ss >> key && ss >> sign && std::getline(ss, value_str) && (sign == '+' || sign == '-')) {
- const float bias = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f);
- params.sampling.logit_bias.push_back({key, bias});
- } else {
- throw std::invalid_argument("invalid input format");
- }
- } catch (const std::exception&) {
- throw std::invalid_argument("invalid input format");
- }
- }
- ).set_sparam());
- add_opt(common_arg(
- {"--grammar"}, "GRAMMAR",
- string_format("BNF-like grammar to constrain generations (see samples in grammars/ dir) (default: '%s')", params.sampling.grammar.c_str()),
- [](common_params & params, const std::string & value) {
- params.sampling.grammar = value;
- }
- ).set_sparam());
- add_opt(common_arg(
- {"--grammar-file"}, "FNAME",
- "file to read grammar from",
- [](common_params & params, const std::string & value) {
- params.sampling.grammar = read_file(value);
- }
- ).set_sparam());
- add_opt(common_arg(
- {"-j", "--json-schema"}, "SCHEMA",
- "JSON schema to constrain generations (https://json-schema.org/), e.g. `{}` for any JSON object\nFor schemas w/ external $refs, use --grammar + example/json_schema_to_grammar.py instead",
- [](common_params & params, const std::string & value) {
- params.sampling.grammar = json_schema_to_grammar(json::parse(value));
- }
- ).set_sparam());
- add_opt(common_arg(
- {"-jf", "--json-schema-file"}, "FILE",
- "File containing a JSON schema to constrain generations (https://json-schema.org/), e.g. `{}` for any JSON object\nFor schemas w/ external $refs, use --grammar + example/json_schema_to_grammar.py instead",
- [](common_params & params, const std::string & value) {
- std::ifstream file(value);
- if (!file) {
- throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
- }
- std::string schema;
- std::copy(
- std::istreambuf_iterator<char>(file),
- std::istreambuf_iterator<char>(),
- std::back_inserter(schema)
- );
- params.sampling.grammar = json_schema_to_grammar(json::parse(schema));
- }
- ).set_sparam());
- add_opt(common_arg(
- {"--pooling"}, "{none,mean,cls,last,rank}",
- "pooling type for embeddings, use model default if unspecified",
- [](common_params & params, const std::string & value) {
- /**/ if (value == "none") { params.pooling_type = LLAMA_POOLING_TYPE_NONE; }
- else if (value == "mean") { params.pooling_type = LLAMA_POOLING_TYPE_MEAN; }
- else if (value == "cls") { params.pooling_type = LLAMA_POOLING_TYPE_CLS; }
- else if (value == "last") { params.pooling_type = LLAMA_POOLING_TYPE_LAST; }
- else if (value == "rank") { params.pooling_type = LLAMA_POOLING_TYPE_RANK; }
- else { throw std::invalid_argument("invalid value"); }
- }
- ).set_examples({LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_RETRIEVAL, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_POOLING"));
- add_opt(common_arg(
- {"--attention"}, "{causal,non-causal}",
- "attention type for embeddings, use model default if unspecified",
- [](common_params & params, const std::string & value) {
- /**/ if (value == "causal") { params.attention_type = LLAMA_ATTENTION_TYPE_CAUSAL; }
- else if (value == "non-causal") { params.attention_type = LLAMA_ATTENTION_TYPE_NON_CAUSAL; }
- else { throw std::invalid_argument("invalid value"); }
- }
- ).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
- add_opt(common_arg(
- {"--rope-scaling"}, "{none,linear,yarn}",
- "RoPE frequency scaling method, defaults to linear unless specified by the model",
- [](common_params & params, const std::string & value) {
- /**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_NONE; }
- else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR; }
- else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN; }
- else { throw std::invalid_argument("invalid value"); }
- }
- ).set_env("LLAMA_ARG_ROPE_SCALING_TYPE"));
- add_opt(common_arg(
- {"--rope-scale"}, "N",
- "RoPE context scaling factor, expands context by a factor of N",
- [](common_params & params, const std::string & value) {
- params.rope_freq_scale = 1.0f / std::stof(value);
- }
- ).set_env("LLAMA_ARG_ROPE_SCALE"));
- add_opt(common_arg(
- {"--rope-freq-base"}, "N",
- "RoPE base frequency, used by NTK-aware scaling (default: loaded from model)",
- [](common_params & params, const std::string & value) {
- params.rope_freq_base = std::stof(value);
- }
- ).set_env("LLAMA_ARG_ROPE_FREQ_BASE"));
- add_opt(common_arg(
- {"--rope-freq-scale"}, "N",
- "RoPE frequency scaling factor, expands context by a factor of 1/N",
- [](common_params & params, const std::string & value) {
- params.rope_freq_scale = std::stof(value);
- }
- ).set_env("LLAMA_ARG_ROPE_FREQ_SCALE"));
- add_opt(common_arg(
- {"--yarn-orig-ctx"}, "N",
- string_format("YaRN: original context size of model (default: %d = model training context size)", params.yarn_orig_ctx),
- [](common_params & params, int value) {
- params.yarn_orig_ctx = value;
- }
- ).set_env("LLAMA_ARG_YARN_ORIG_CTX"));
- add_opt(common_arg(
- {"--yarn-ext-factor"}, "N",
- string_format("YaRN: extrapolation mix factor (default: %.1f, 0.0 = full interpolation)", (double)params.yarn_ext_factor),
- [](common_params & params, const std::string & value) {
- params.yarn_ext_factor = std::stof(value);
- }
- ).set_env("LLAMA_ARG_YARN_EXT_FACTOR"));
- add_opt(common_arg(
- {"--yarn-attn-factor"}, "N",
- string_format("YaRN: scale sqrt(t) or attention magnitude (default: %.1f)", (double)params.yarn_attn_factor),
- [](common_params & params, const std::string & value) {
- params.yarn_attn_factor = std::stof(value);
- }
- ).set_env("LLAMA_ARG_YARN_ATTN_FACTOR"));
- add_opt(common_arg(
- {"--yarn-beta-slow"}, "N",
- string_format("YaRN: high correction dim or alpha (default: %.1f)", (double)params.yarn_beta_slow),
- [](common_params & params, const std::string & value) {
- params.yarn_beta_slow = std::stof(value);
- }
- ).set_env("LLAMA_ARG_YARN_BETA_SLOW"));
- add_opt(common_arg(
- {"--yarn-beta-fast"}, "N",
- string_format("YaRN: low correction dim or beta (default: %.1f)", (double)params.yarn_beta_fast),
- [](common_params & params, const std::string & value) {
- params.yarn_beta_fast = std::stof(value);
- }
- ).set_env("LLAMA_ARG_YARN_BETA_FAST"));
- add_opt(common_arg(
- {"-gan", "--grp-attn-n"}, "N",
- string_format("group-attention factor (default: %d)", params.grp_attn_n),
- [](common_params & params, int value) {
- params.grp_attn_n = value;
- }
- ).set_env("LLAMA_ARG_GRP_ATTN_N").set_examples({LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_PASSKEY}));
- add_opt(common_arg(
- {"-gaw", "--grp-attn-w"}, "N",
- string_format("group-attention width (default: %d)", params.grp_attn_w),
- [](common_params & params, int value) {
- params.grp_attn_w = value;
- }
- ).set_env("LLAMA_ARG_GRP_ATTN_W").set_examples({LLAMA_EXAMPLE_COMPLETION}));
- add_opt(common_arg(
- {"-kvo", "--kv-offload"},
- {"-nkvo", "--no-kv-offload"},
- string_format("whether to enable KV cache offloading (default: %s)", params.no_kv_offload ? "disabled" : "enabled"),
- [](common_params & params, bool value) {
- params.no_kv_offload = !value;
- }
- ).set_env("LLAMA_ARG_KV_OFFLOAD"));
- add_opt(common_arg(
- {"--repack"},
- {"-nr", "--no-repack"},
- string_format("whether to enable weight repacking (default: %s)", params.no_extra_bufts ? "disabled" : "enabled"),
- [](common_params & params, bool value) {
- params.no_extra_bufts = !value;
- }
- ).set_env("LLAMA_ARG_REPACK"));
- add_opt(common_arg(
- {"--no-host"},
- "bypass host buffer allowing extra buffers to be used",
- [](common_params & params) {
- params.no_host = true;
- }
- ).set_env("LLAMA_ARG_NO_HOST"));
- add_opt(common_arg(
- {"-ctk", "--cache-type-k"}, "TYPE",
- string_format(
- "KV cache data type for K\n"
- "allowed values: %s\n"
- "(default: %s)",
- get_all_kv_cache_types().c_str(),
- ggml_type_name(params.cache_type_k)
- ),
- [](common_params & params, const std::string & value) {
- params.cache_type_k = kv_cache_type_from_str(value);
- }
- ).set_env("LLAMA_ARG_CACHE_TYPE_K"));
- add_opt(common_arg(
- {"-ctv", "--cache-type-v"}, "TYPE",
- string_format(
- "KV cache data type for V\n"
- "allowed values: %s\n"
- "(default: %s)",
- get_all_kv_cache_types().c_str(),
- ggml_type_name(params.cache_type_v)
- ),
- [](common_params & params, const std::string & value) {
- params.cache_type_v = kv_cache_type_from_str(value);
- }
- ).set_env("LLAMA_ARG_CACHE_TYPE_V"));
- add_opt(common_arg(
- {"--hellaswag"},
- "compute HellaSwag score over random tasks from datafile supplied with -f",
- [](common_params & params) {
- params.hellaswag = true;
- }
- ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
- add_opt(common_arg(
- {"--hellaswag-tasks"}, "N",
- string_format("number of tasks to use when computing the HellaSwag score (default: %zu)", params.hellaswag_tasks),
- [](common_params & params, int value) {
- params.hellaswag_tasks = value;
- }
- ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
- add_opt(common_arg(
- {"--winogrande"},
- "compute Winogrande score over random tasks from datafile supplied with -f",
- [](common_params & params) {
- params.winogrande = true;
- }
- ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
- add_opt(common_arg(
- {"--winogrande-tasks"}, "N",
- string_format("number of tasks to use when computing the Winogrande score (default: %zu)", params.winogrande_tasks),
- [](common_params & params, int value) {
- params.winogrande_tasks = value;
- }
- ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
- add_opt(common_arg(
- {"--multiple-choice"},
- "compute multiple choice score over random tasks from datafile supplied with -f",
- [](common_params & params) {
- params.multiple_choice = true;
- }
- ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
- add_opt(common_arg(
- {"--multiple-choice-tasks"}, "N",
- string_format("number of tasks to use when computing the multiple choice score (default: %zu)", params.multiple_choice_tasks),
- [](common_params & params, int value) {
- params.multiple_choice_tasks = value;
- }
- ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
- add_opt(common_arg(
- {"--kl-divergence"},
- "computes KL-divergence to logits provided via --kl-divergence-base",
- [](common_params & params) {
- params.kl_divergence = true;
- }
- ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
- add_opt(common_arg(
- {"--save-all-logits", "--kl-divergence-base"}, "FNAME",
- "set logits file",
- [](common_params & params, const std::string & value) {
- params.logits_file = value;
- }
- ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
- add_opt(common_arg(
- {"--ppl-stride"}, "N",
- string_format("stride for perplexity calculation (default: %d)", params.ppl_stride),
- [](common_params & params, int value) {
- params.ppl_stride = value;
- }
- ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
- add_opt(common_arg(
- {"--ppl-output-type"}, "<0|1>",
- string_format("output type for perplexity calculation (default: %d)", params.ppl_output_type),
- [](common_params & params, int value) {
- params.ppl_output_type = value;
- }
- ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
- add_opt(common_arg(
- {"-dt", "--defrag-thold"}, "N",
- string_format("KV cache defragmentation threshold (DEPRECATED)"),
- [](common_params & params, const std::string & value) {
- GGML_UNUSED(params);
- GGML_UNUSED(value);
- LOG_WRN("DEPRECATED: --defrag-thold is deprecated and no longer necessary to specify\n");
- }
- ).set_env("LLAMA_ARG_DEFRAG_THOLD"));
- if (ex == LLAMA_EXAMPLE_SERVER) {
- // this is to make sure this option appears in the server-specific section of the help message
- add_opt(common_arg(
- {"-np", "--parallel"}, "N",
- string_format("number of server slots (default: %d, -1 = auto)", params.n_parallel),
- [](common_params & params, int value) {
- if (value == 0) {
- throw std::invalid_argument("error: invalid value for n_parallel\n");
- }
- params.n_parallel = value;
- }
- ).set_env("LLAMA_ARG_N_PARALLEL").set_examples({LLAMA_EXAMPLE_SERVER}));
- } else {
- add_opt(common_arg(
- {"-np", "--parallel"}, "N",
- string_format("number of parallel sequences to decode (default: %d)", params.n_parallel),
- [](common_params & params, int value) {
- params.n_parallel = value;
- }
- ).set_env("LLAMA_ARG_N_PARALLEL"));
- }
- add_opt(common_arg(
- {"-ns", "--sequences"}, "N",
- string_format("number of sequences to decode (default: %d)", params.n_sequences),
- [](common_params & params, int value) {
- params.n_sequences = value;
- }
- ).set_examples({LLAMA_EXAMPLE_PARALLEL}));
- add_opt(common_arg(
- {"-cb", "--cont-batching"},
- {"-nocb", "--no-cont-batching"},
- string_format("whether to enable continuous batching (a.k.a dynamic batching) (default: %s)", params.cont_batching ? "enabled" : "disabled"),
- [](common_params & params, bool value) {
- params.cont_batching = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CONT_BATCHING"));
- add_opt(common_arg(
- {"-mm", "--mmproj"}, "FILE",
- "path to a multimodal projector file. see tools/mtmd/README.md\n"
- "note: if -hf is used, this argument can be omitted",
- [](common_params & params, const std::string & value) {
- params.mmproj.path = value;
- }
- ).set_examples(mmproj_examples).set_env("LLAMA_ARG_MMPROJ"));
- add_opt(common_arg(
- {"-mmu", "--mmproj-url"}, "URL",
- "URL to a multimodal projector file. see tools/mtmd/README.md",
- [](common_params & params, const std::string & value) {
- params.mmproj.url = value;
- }
- ).set_examples(mmproj_examples).set_env("LLAMA_ARG_MMPROJ_URL"));
- add_opt(common_arg(
- {"--mmproj-auto"},
- {"--no-mmproj", "--no-mmproj-auto"},
- string_format("whether to use multimodal projector file (if available), useful when using -hf (default: %s)", params.no_mmproj ? "disabled" : "enabled"),
- [](common_params & params, bool value) {
- params.no_mmproj = !value;
- }
- ).set_examples(mmproj_examples).set_env("LLAMA_ARG_MMPROJ_AUTO"));
- add_opt(common_arg(
- {"--mmproj-offload"},
- {"--no-mmproj-offload"},
- string_format("whether to enable GPU offloading for multimodal projector (default: %s)", params.mmproj_use_gpu ? "enabled" : "disabled"),
- [](common_params & params, bool value) {
- params.mmproj_use_gpu = value;
- }
- ).set_examples(mmproj_examples).set_env("LLAMA_ARG_MMPROJ_OFFLOAD"));
- add_opt(common_arg(
- {"--image", "--audio"}, "FILE",
- "path to an image or audio file. use with multimodal models, can be repeated if you have multiple files\n",
- [](common_params & params, const std::string & value) {
- params.image.emplace_back(value);
- }
- ).set_examples({LLAMA_EXAMPLE_MTMD, LLAMA_EXAMPLE_CLI}));
- add_opt(common_arg(
- {"--image-min-tokens"}, "N",
- "minimum number of tokens each image can take, only used by vision models with dynamic resolution (default: read from model)",
- [](common_params & params, int value) {
- params.image_min_tokens = value;
- }
- ).set_examples(mmproj_examples).set_env("LLAMA_ARG_IMAGE_MIN_TOKENS"));
- add_opt(common_arg(
- {"--image-max-tokens"}, "N",
- "maximum number of tokens each image can take, only used by vision models with dynamic resolution (default: read from model)",
- [](common_params & params, int value) {
- params.image_max_tokens = value;
- }
- ).set_examples(mmproj_examples).set_env("LLAMA_ARG_IMAGE_MAX_TOKENS"));
- if (llama_supports_rpc()) {
- add_opt(common_arg(
- {"--rpc"}, "SERVERS",
- "comma separated list of RPC servers",
- [](common_params & params, const std::string & value) {
- add_rpc_devices(value);
- GGML_UNUSED(params);
- }
- ).set_env("LLAMA_ARG_RPC"));
- }
- add_opt(common_arg(
- {"--mlock"},
- "force system to keep model in RAM rather than swapping or compressing",
- [](common_params & params) {
- params.use_mlock = true;
- }
- ).set_env("LLAMA_ARG_MLOCK"));
- add_opt(common_arg(
- {"--mmap"},
- {"--no-mmap"},
- string_format("whether to memory-map model (if disabled, slower load but may reduce pageouts if not using mlock) (default: %s)", params.use_mmap ? "enabled" : "disabled"),
- [](common_params & params, bool value) {
- params.use_mmap = value;
- }
- ).set_env("LLAMA_ARG_MMAP"));
- add_opt(common_arg(
- {"--numa"}, "TYPE",
- "attempt optimizations that help on some NUMA systems\n"
- "- distribute: spread execution evenly over all nodes\n"
- "- isolate: only spawn threads on CPUs on the node that execution started on\n"
- "- numactl: use the CPU map provided by numactl\n"
- "if run without this previously, it is recommended to drop the system page cache before using this\n"
- "see https://github.com/ggml-org/llama.cpp/issues/1437",
- [](common_params & params, const std::string & value) {
- /**/ if (value == "distribute" || value == "") { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; }
- else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; }
- else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; }
- else { throw std::invalid_argument("invalid value"); }
- }
- ).set_env("LLAMA_ARG_NUMA"));
- add_opt(common_arg(
- {"-dev", "--device"}, "<dev1,dev2,..>",
- "comma-separated list of devices to use for offloading (none = don't offload)\n"
- "use --list-devices to see a list of available devices",
- [](common_params & params, const std::string & value) {
- params.devices = parse_device_list(value);
- }
- ).set_env("LLAMA_ARG_DEVICE"));
- add_opt(common_arg(
- {"--list-devices"},
- "print list of available devices and exit",
- [](common_params &) {
- std::vector<ggml_backend_dev_t> devices;
- for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
- auto * dev = ggml_backend_dev_get(i);
- if (ggml_backend_dev_type(dev) != GGML_BACKEND_DEVICE_TYPE_CPU) {
- devices.push_back(dev);
- }
- }
- printf("Available devices:\n");
- for (auto * dev : devices) {
- size_t free, total;
- ggml_backend_dev_memory(dev, &free, &total);
- printf(" %s: %s (%zu MiB, %zu MiB free)\n", ggml_backend_dev_name(dev), ggml_backend_dev_description(dev), total / 1024 / 1024, free / 1024 / 1024);
- }
- exit(0);
- }
- ));
- add_opt(common_arg(
- {"--override-tensor", "-ot"}, "<tensor name pattern>=<buffer type>,...",
- "override tensor buffer type", [](common_params & params, const std::string & value) {
- parse_tensor_buffer_overrides(value, params.tensor_buft_overrides);
- }
- ));
- add_opt(common_arg(
- {"--override-tensor-draft", "-otd"}, "<tensor name pattern>=<buffer type>,...",
- "override tensor buffer type for draft model", [](common_params & params, const std::string & value) {
- parse_tensor_buffer_overrides(value, params.speculative.tensor_buft_overrides);
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_CLI}));
- add_opt(common_arg(
- {"--cpu-moe", "-cmoe"},
- "keep all Mixture of Experts (MoE) weights in the CPU",
- [](common_params & params) {
- params.tensor_buft_overrides.push_back(llm_ffn_exps_cpu_override());
- }
- ).set_env("LLAMA_ARG_CPU_MOE"));
- add_opt(common_arg(
- {"--n-cpu-moe", "-ncmoe"}, "N",
- "keep the Mixture of Experts (MoE) weights of the first N layers in the CPU",
- [](common_params & params, int value) {
- if (value < 0) {
- throw std::invalid_argument("invalid value");
- }
- for (int i = 0; i < value; ++i) {
- // keep strings alive and avoid leaking memory by storing them in a static vector
- static std::list<std::string> buft_overrides;
- buft_overrides.push_back(llm_ffn_exps_block_regex(i));
- params.tensor_buft_overrides.push_back({buft_overrides.back().c_str(), ggml_backend_cpu_buffer_type()});
- }
- }
- ).set_env("LLAMA_ARG_N_CPU_MOE"));
- add_opt(common_arg(
- {"--cpu-moe-draft", "-cmoed"},
- "keep all Mixture of Experts (MoE) weights in the CPU for the draft model",
- [](common_params & params) {
- params.speculative.tensor_buft_overrides.push_back(llm_ffn_exps_cpu_override());
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_CLI}).set_env("LLAMA_ARG_CPU_MOE_DRAFT"));
- add_opt(common_arg(
- {"--n-cpu-moe-draft", "-ncmoed"}, "N",
- "keep the Mixture of Experts (MoE) weights of the first N layers in the CPU for the draft model",
- [](common_params & params, int value) {
- if (value < 0) {
- throw std::invalid_argument("invalid value");
- }
- for (int i = 0; i < value; ++i) {
- static std::list<std::string> buft_overrides_draft;
- buft_overrides_draft.push_back(llm_ffn_exps_block_regex(i));
- params.speculative.tensor_buft_overrides.push_back({buft_overrides_draft.back().c_str(), ggml_backend_cpu_buffer_type()});
- }
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_CLI}).set_env("LLAMA_ARG_N_CPU_MOE_DRAFT"));
- add_opt(common_arg(
- {"-ngl", "--gpu-layers", "--n-gpu-layers"}, "N",
- string_format("max. number of layers to store in VRAM (default: %d)", params.n_gpu_layers),
- [](common_params & params, int value) {
- params.n_gpu_layers = value;
- if (!llama_supports_gpu_offload()) {
- fprintf(stderr, "warning: no usable GPU found, --gpu-layers option will be ignored\n");
- fprintf(stderr, "warning: one possible reason is that llama.cpp was compiled without GPU support\n");
- fprintf(stderr, "warning: consult docs/build.md for compilation instructions\n");
- }
- }
- ).set_env("LLAMA_ARG_N_GPU_LAYERS"));
- add_opt(common_arg(
- {"-sm", "--split-mode"}, "{none,layer,row}",
- "how to split the model across multiple GPUs, one of:\n"
- "- none: use one GPU only\n"
- "- layer (default): split layers and KV across GPUs\n"
- "- row: split rows across GPUs",
- [](common_params & params, const std::string & value) {
- std::string arg_next = value;
- if (arg_next == "none") {
- params.split_mode = LLAMA_SPLIT_MODE_NONE;
- } else if (arg_next == "layer") {
- params.split_mode = LLAMA_SPLIT_MODE_LAYER;
- } else if (arg_next == "row") {
- params.split_mode = LLAMA_SPLIT_MODE_ROW;
- } else {
- throw std::invalid_argument("invalid value");
- }
- if (!llama_supports_gpu_offload()) {
- fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting the split mode has no effect.\n");
- }
- }
- ).set_env("LLAMA_ARG_SPLIT_MODE"));
- add_opt(common_arg(
- {"-ts", "--tensor-split"}, "N0,N1,N2,...",
- "fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1",
- [](common_params & params, const std::string & value) {
- std::string arg_next = value;
- // split string by , and /
- const std::regex regex{ R"([,/]+)" };
- std::sregex_token_iterator it{ arg_next.begin(), arg_next.end(), regex, -1 };
- std::vector<std::string> split_arg{ it, {} };
- if (split_arg.size() >= llama_max_devices()) {
- throw std::invalid_argument(
- string_format("got %d input configs, but system only has %d devices", (int)split_arg.size(), (int)llama_max_devices())
- );
- }
- for (size_t i = 0; i < llama_max_devices(); ++i) {
- if (i < split_arg.size()) {
- params.tensor_split[i] = std::stof(split_arg[i]);
- } else {
- params.tensor_split[i] = 0.0f;
- }
- }
- if (!llama_supports_gpu_offload()) {
- fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting a tensor split has no effect.\n");
- }
- }
- ).set_env("LLAMA_ARG_TENSOR_SPLIT"));
- add_opt(common_arg(
- {"-mg", "--main-gpu"}, "INDEX",
- string_format("the GPU to use for the model (with split-mode = none), or for intermediate results and KV (with split-mode = row) (default: %d)", params.main_gpu),
- [](common_params & params, int value) {
- params.main_gpu = value;
- if (!llama_supports_gpu_offload()) {
- fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting the main GPU has no effect.\n");
- }
- }
- ).set_env("LLAMA_ARG_MAIN_GPU"));
- add_opt(common_arg(
- { "-fit", "--fit" }, "[on|off]",
- string_format("whether to adjust unset arguments to fit in device memory ('on' or 'off', default: '%s')", params.fit_params ? "on" : "off"),
- [](common_params & params, const std::string & value) {
- if (is_truthy(value)) {
- params.fit_params = true;
- } else if (is_falsey(value)) {
- params.fit_params = false;
- } else {
- throw std::runtime_error(
- string_format("error: unkown value for --fit: '%s'\n", value.c_str()));
- }
- }
- ).set_env("LLAMA_ARG_FIT"));
- add_opt(common_arg(
- { "-fitt", "--fit-target" }, "MiB",
- string_format("target margin per device for --fit option, default: %zu", params.fit_params_target/(1024*1024)),
- [](common_params & params, int value) {
- params.fit_params_target = value * size_t(1024*1024);
- }
- ).set_env("LLAMA_ARG_FIT_TARGET"));
- add_opt(common_arg(
- { "-fitc", "--fit-ctx" }, "N",
- string_format("minimum ctx size that can be set by --fit option, default: %" PRIu32, params.fit_params_min_ctx),
- [](common_params & params, int value) {
- params.fit_params_min_ctx = value;
- }
- ).set_env("LLAMA_ARG_FIT_CTX"));
- add_opt(common_arg(
- {"--check-tensors"},
- string_format("check model tensor data for invalid values (default: %s)", params.check_tensors ? "true" : "false"),
- [](common_params & params) {
- params.check_tensors = true;
- }
- ));
- add_opt(common_arg(
- {"--override-kv"}, "KEY=TYPE:VALUE",
- "advanced option to override model metadata by key. may be specified multiple times.\n"
- "types: int, float, bool, str. example: --override-kv tokenizer.ggml.add_bos_token=bool:false",
- [](common_params & params, const std::string & value) {
- if (!string_parse_kv_override(value.c_str(), params.kv_overrides)) {
- throw std::runtime_error(string_format("error: Invalid type for KV override: %s\n", value.c_str()));
- }
- }
- ));
- add_opt(common_arg(
- {"--op-offload"},
- {"--no-op-offload"},
- string_format("whether to offload host tensor operations to device (default: %s)", params.no_op_offload ? "false" : "true"),
- [](common_params & params, bool value) {
- params.no_op_offload = !value;
- }
- ));
- add_opt(common_arg(
- {"--lora"}, "FNAME",
- "path to LoRA adapter (can be repeated to use multiple adapters)",
- [](common_params & params, const std::string & value) {
- params.lora_adapters.push_back({ std::string(value), 1.0, "", "", nullptr });
- }
- // we define this arg on both COMMON and EXPORT_LORA, so when showing help message of export-lora, it will be categorized as "example-specific" arg
- ).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}));
- add_opt(common_arg(
- {"--lora-scaled"}, "FNAME", "SCALE",
- "path to LoRA adapter with user defined scaling (can be repeated to use multiple adapters)",
- [](common_params & params, const std::string & fname, const std::string & scale) {
- params.lora_adapters.push_back({ fname, std::stof(scale), "", "", nullptr });
- }
- // we define this arg on both COMMON and EXPORT_LORA, so when showing help message of export-lora, it will be categorized as "example-specific" arg
- ).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}));
- add_opt(common_arg(
- {"--control-vector"}, "FNAME",
- "add a control vector\nnote: this argument can be repeated to add multiple control vectors",
- [](common_params & params, const std::string & value) {
- params.control_vectors.push_back({ 1.0f, value, });
- }
- ));
- add_opt(common_arg(
- {"--control-vector-scaled"}, "FNAME", "SCALE",
- "add a control vector with user defined scaling SCALE\n"
- "note: this argument can be repeated to add multiple scaled control vectors",
- [](common_params & params, const std::string & fname, const std::string & scale) {
- params.control_vectors.push_back({ std::stof(scale), fname });
- }
- ));
- add_opt(common_arg(
- {"--control-vector-layer-range"}, "START", "END",
- "layer range to apply the control vector(s) to, start and end inclusive",
- [](common_params & params, const std::string & start, const std::string & end) {
- params.control_vector_layer_start = std::stoi(start);
- params.control_vector_layer_end = std::stoi(end);
- }
- ));
- add_opt(common_arg(
- {"-a", "--alias"}, "STRING",
- "set alias for model name (to be used by REST API)",
- [](common_params & params, const std::string & value) {
- params.model_alias = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ALIAS"));
- add_opt(common_arg(
- {"-m", "--model"}, "FNAME",
- ex == LLAMA_EXAMPLE_EXPORT_LORA
- ? "model path from which to load base model"
- : "model path to load",
- [](common_params & params, const std::string & value) {
- params.model.path = value;
- }
- ).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}).set_env("LLAMA_ARG_MODEL"));
- add_opt(common_arg(
- {"-mu", "--model-url"}, "MODEL_URL",
- "model download url (default: unused)",
- [](common_params & params, const std::string & value) {
- params.model.url = value;
- }
- ).set_env("LLAMA_ARG_MODEL_URL"));
- add_opt(common_arg(
- { "-dr", "--docker-repo" }, "[<repo>/]<model>[:quant]",
- "Docker Hub model repository. repo is optional, default to ai/. quant is optional, default to :latest.\n"
- "example: gemma3\n"
- "(default: unused)",
- [](common_params & params, const std::string & value) {
- params.model.docker_repo = value;
- }
- ).set_env("LLAMA_ARG_DOCKER_REPO"));
- add_opt(common_arg(
- {"-hf", "-hfr", "--hf-repo"}, "<user>/<model>[:quant]",
- "Hugging Face model repository; quant is optional, case-insensitive, default to Q4_K_M, or falls back to the first file in the repo if Q4_K_M doesn't exist.\n"
- "mmproj is also downloaded automatically if available. to disable, add --no-mmproj\n"
- "example: unsloth/phi-4-GGUF:q4_k_m\n"
- "(default: unused)",
- [](common_params & params, const std::string & value) {
- params.model.hf_repo = value;
- }
- ).set_env("LLAMA_ARG_HF_REPO"));
- add_opt(common_arg(
- {"-hfd", "-hfrd", "--hf-repo-draft"}, "<user>/<model>[:quant]",
- "Same as --hf-repo, but for the draft model (default: unused)",
- [](common_params & params, const std::string & value) {
- params.speculative.model.hf_repo = value;
- }
- ).set_env("LLAMA_ARG_HFD_REPO"));
- add_opt(common_arg(
- {"-hff", "--hf-file"}, "FILE",
- "Hugging Face model file. If specified, it will override the quant in --hf-repo (default: unused)",
- [](common_params & params, const std::string & value) {
- params.model.hf_file = value;
- }
- ).set_env("LLAMA_ARG_HF_FILE"));
- add_opt(common_arg(
- {"-hfv", "-hfrv", "--hf-repo-v"}, "<user>/<model>[:quant]",
- "Hugging Face model repository for the vocoder model (default: unused)",
- [](common_params & params, const std::string & value) {
- params.vocoder.model.hf_repo = value;
- }
- ).set_env("LLAMA_ARG_HF_REPO_V"));
- add_opt(common_arg(
- {"-hffv", "--hf-file-v"}, "FILE",
- "Hugging Face model file for the vocoder model (default: unused)",
- [](common_params & params, const std::string & value) {
- params.vocoder.model.hf_file = value;
- }
- ).set_env("LLAMA_ARG_HF_FILE_V"));
- add_opt(common_arg(
- {"-hft", "--hf-token"}, "TOKEN",
- "Hugging Face access token (default: value from HF_TOKEN environment variable)",
- [](common_params & params, const std::string & value) {
- params.hf_token = value;
- }
- ).set_env("HF_TOKEN"));
- add_opt(common_arg(
- {"--context-file"}, "FNAME",
- "file to load context from (repeat to specify multiple files)",
- [](common_params & params, const std::string & value) {
- std::ifstream file(value, std::ios::binary);
- if (!file) {
- throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
- }
- params.context_files.push_back(value);
- }
- ).set_examples({LLAMA_EXAMPLE_RETRIEVAL}));
- add_opt(common_arg(
- {"--chunk-size"}, "N",
- string_format("minimum length of embedded text chunks (default: %d)", params.chunk_size),
- [](common_params & params, int value) {
- params.chunk_size = value;
- }
- ).set_examples({LLAMA_EXAMPLE_RETRIEVAL}));
- add_opt(common_arg(
- {"--chunk-separator"}, "STRING",
- string_format("separator between chunks (default: '%s')", params.chunk_separator.c_str()),
- [](common_params & params, const std::string & value) {
- params.chunk_separator = value;
- }
- ).set_examples({LLAMA_EXAMPLE_RETRIEVAL}));
- add_opt(common_arg(
- {"--junk"}, "N",
- string_format("number of times to repeat the junk text (default: %d)", params.n_junk),
- [](common_params & params, int value) {
- params.n_junk = value;
- }
- ).set_examples({LLAMA_EXAMPLE_PASSKEY, LLAMA_EXAMPLE_PARALLEL}));
- add_opt(common_arg(
- {"--pos"}, "N",
- string_format("position of the passkey in the junk text (default: %d)", params.i_pos),
- [](common_params & params, int value) {
- params.i_pos = value;
- }
- ).set_examples({LLAMA_EXAMPLE_PASSKEY}));
- add_opt(common_arg(
- {"-o", "--output", "--output-file"}, "FNAME",
- string_format("output file (default: '%s')", params.out_file.c_str()),
- [](common_params & params, const std::string & value) {
- params.out_file = value;
- }
- ).set_examples({LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_CVECTOR_GENERATOR, LLAMA_EXAMPLE_EXPORT_LORA, LLAMA_EXAMPLE_TTS, LLAMA_EXAMPLE_FINETUNE}));
- add_opt(common_arg(
- {"-ofreq", "--output-frequency"}, "N",
- string_format("output the imatrix every N iterations (default: %d)", params.n_out_freq),
- [](common_params & params, int value) {
- params.n_out_freq = value;
- }
- ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
- add_opt(common_arg(
- {"--output-format"}, "{gguf,dat}",
- string_format("output format for imatrix file (default: %s)", params.imat_dat > 0 ? "dat" : "gguf"),
- [](common_params & params, const std::string & value) {
- /**/ if (value == "gguf") { params.imat_dat = -1; }
- else if (value == "dat") { params.imat_dat = 1; }
- else { throw std::invalid_argument("invalid output format"); }
- }
- ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
- add_opt(common_arg(
- {"--save-frequency"}, "N",
- string_format("save an imatrix copy every N iterations (default: %d)", params.n_save_freq),
- [](common_params & params, int value) {
- params.n_save_freq = value;
- }
- ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
- add_opt(common_arg(
- {"--process-output"},
- string_format("collect data for the output tensor (default: %s)", params.process_output ? "true" : "false"),
- [](common_params & params) {
- params.process_output = true;
- }
- ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
- add_opt(common_arg(
- {"--ppl"},
- {"--no-ppl"},
- string_format("whether to compute perplexity (default: %s)", params.compute_ppl ? "true" : "false"),
- [](common_params & params, bool value) {
- params.compute_ppl = value;
- }
- ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
- add_opt(common_arg(
- {"--chunk", "--from-chunk"}, "N",
- string_format("start processing the input from chunk N (default: %d)", params.i_chunk),
- [](common_params & params, int value) {
- params.i_chunk = value;
- }
- ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
- add_opt(common_arg(
- {"--show-statistics"},
- string_format("show imatrix statistics and then exit (default: %s)", params.show_statistics ? "true" : "false"),
- [](common_params & params) {
- params.show_statistics = true;
- }
- ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
- add_opt(common_arg(
- {"--parse-special"},
- string_format("parse special tokens (chat, tool, etc) (default: %s)", params.parse_special ? "true" : "false"),
- [](common_params & params) {
- params.parse_special = true;
- }
- ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
- add_opt(common_arg(
- {"-pps"},
- string_format("is the prompt shared across parallel sequences (default: %s)", params.is_pp_shared ? "true" : "false"),
- [](common_params & params) {
- params.is_pp_shared = true;
- }
- ).set_examples({LLAMA_EXAMPLE_BENCH, LLAMA_EXAMPLE_PARALLEL}));
- add_opt(common_arg(
- {"-tgs"},
- string_format("is the text generation separated across the different sequences (default: %s)", params.is_tg_separate ? "true" : "false"),
- [](common_params & params) {
- params.is_tg_separate = true;
- }
- ).set_examples({LLAMA_EXAMPLE_BENCH, LLAMA_EXAMPLE_PARALLEL}));
- add_opt(common_arg(
- {"-npp"}, "n0,n1,...",
- "number of prompt tokens",
- [](common_params & params, const std::string & value) {
- auto p = string_split<int>(value, ',');
- params.n_pp.insert(params.n_pp.end(), p.begin(), p.end());
- }
- ).set_examples({LLAMA_EXAMPLE_BENCH}));
- add_opt(common_arg(
- {"-ntg"}, "n0,n1,...",
- "number of text generation tokens",
- [](common_params & params, const std::string & value) {
- auto p = string_split<int>(value, ',');
- params.n_tg.insert(params.n_tg.end(), p.begin(), p.end());
- }
- ).set_examples({LLAMA_EXAMPLE_BENCH}));
- add_opt(common_arg(
- {"-npl"}, "n0,n1,...",
- "number of parallel prompts",
- [](common_params & params, const std::string & value) {
- auto p = string_split<int>(value, ',');
- params.n_pl.insert(params.n_pl.end(), p.begin(), p.end());
- }
- ).set_examples({LLAMA_EXAMPLE_BENCH}));
- add_opt(common_arg(
- {"--embd-normalize"}, "N",
- string_format("normalisation for embeddings (default: %d) (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)", params.embd_normalize),
- [](common_params & params, int value) {
- params.embd_normalize = value;
- }
- ).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
- add_opt(common_arg(
- {"--embd-output-format"}, "FORMAT",
- "empty = default, \"array\" = [[],[]...], \"json\" = openai style, \"json+\" = same \"json\" + cosine similarity matrix, \"raw\" = plain whitespace-delimited output (one embedding per line)",
- [](common_params & params, const std::string & value) {
- params.embd_out = value;
- }
- ).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
- add_opt(common_arg(
- {"--embd-separator"}, "STRING",
- "separator of embeddings (default \\n) for example \"<#sep#>\"",
- [](common_params & params, const std::string & value) {
- params.embd_sep = value;
- }
- ).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
- add_opt(common_arg(
- {"--cls-separator"}, "STRING",
- "separator of classification sequences (default \\t) for example \"<#seq#>\"",
- [](common_params & params, const std::string & value) {
- params.cls_sep = value;
- }
- ).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
- add_opt(common_arg(
- {"--host"}, "HOST",
- string_format("ip address to listen, or bind to an UNIX socket if the address ends with .sock (default: %s)", params.hostname.c_str()),
- [](common_params & params, const std::string & value) {
- params.hostname = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_HOST"));
- add_opt(common_arg(
- {"--port"}, "PORT",
- string_format("port to listen (default: %d)", params.port),
- [](common_params & params, int value) {
- params.port = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_PORT"));
- add_opt(common_arg(
- {"--path"}, "PATH",
- string_format("path to serve static files from (default: %s)", params.public_path.c_str()),
- [](common_params & params, const std::string & value) {
- params.public_path = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_STATIC_PATH"));
- add_opt(common_arg(
- {"--api-prefix"}, "PREFIX",
- string_format("prefix path the server serves from, without the trailing slash (default: %s)", params.api_prefix.c_str()),
- [](common_params & params, const std::string & value) {
- params.api_prefix = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_API_PREFIX"));
- add_opt(common_arg(
- {"--webui"},
- {"--no-webui"},
- string_format("whether to enable the Web UI (default: %s)", params.webui ? "enabled" : "disabled"),
- [](common_params & params, bool value) {
- params.webui = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_WEBUI"));
- add_opt(common_arg(
- {"--embedding", "--embeddings"},
- string_format("restrict to only support embedding use case; use only with dedicated embedding models (default: %s)", params.embedding ? "enabled" : "disabled"),
- [](common_params & params) {
- params.embedding = true;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_EMBEDDINGS"));
- add_opt(common_arg(
- {"--reranking", "--rerank"},
- string_format("enable reranking endpoint on server (default: %s)", "disabled"),
- [](common_params & params) {
- params.embedding = true;
- params.pooling_type = LLAMA_POOLING_TYPE_RANK;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_RERANKING"));
- add_opt(common_arg(
- {"--api-key"}, "KEY",
- "API key to use for authentication (default: none)",
- [](common_params & params, const std::string & value) {
- params.api_keys.push_back(value);
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_API_KEY"));
- add_opt(common_arg(
- {"--api-key-file"}, "FNAME",
- "path to file containing API keys (default: none)",
- [](common_params & params, const std::string & value) {
- std::ifstream key_file(value);
- if (!key_file) {
- throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
- }
- std::string key;
- while (std::getline(key_file, key)) {
- if (!key.empty()) {
- params.api_keys.push_back(key);
- }
- }
- key_file.close();
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}));
- add_opt(common_arg(
- {"--ssl-key-file"}, "FNAME",
- "path to file a PEM-encoded SSL private key",
- [](common_params & params, const std::string & value) {
- params.ssl_file_key = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_SSL_KEY_FILE"));
- add_opt(common_arg(
- {"--ssl-cert-file"}, "FNAME",
- "path to file a PEM-encoded SSL certificate",
- [](common_params & params, const std::string & value) {
- params.ssl_file_cert = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_SSL_CERT_FILE"));
- add_opt(common_arg(
- {"--chat-template-kwargs"}, "STRING",
- string_format("sets additional params for the json template parser"),
- [](common_params & params, const std::string & value) {
- auto parsed = json::parse(value);
- for (const auto & item : parsed.items()) {
- params.default_template_kwargs[item.key()] = item.value().dump();
- }
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_CLI}).set_env("LLAMA_CHAT_TEMPLATE_KWARGS"));
- add_opt(common_arg(
- {"-to", "--timeout"}, "N",
- string_format("server read/write timeout in seconds (default: %d)", params.timeout_read),
- [](common_params & params, int value) {
- params.timeout_read = value;
- params.timeout_write = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_TIMEOUT"));
- add_opt(common_arg(
- {"--threads-http"}, "N",
- string_format("number of threads used to process HTTP requests (default: %d)", params.n_threads_http),
- [](common_params & params, int value) {
- params.n_threads_http = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_THREADS_HTTP"));
- add_opt(common_arg(
- {"--cache-reuse"}, "N",
- string_format(
- "min chunk size to attempt reusing from the cache via KV shifting (default: %d)\n"
- "[(card)](https://ggml.ai/f0.png)", params.n_cache_reuse
- ),
- [](common_params & params, int value) {
- params.n_cache_reuse = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CACHE_REUSE"));
- add_opt(common_arg(
- {"--metrics"},
- string_format("enable prometheus compatible metrics endpoint (default: %s)", params.endpoint_metrics ? "enabled" : "disabled"),
- [](common_params & params) {
- params.endpoint_metrics = true;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_METRICS"));
- add_opt(common_arg(
- {"--props"},
- string_format("enable changing global properties via POST /props (default: %s)", params.endpoint_props ? "enabled" : "disabled"),
- [](common_params & params) {
- params.endpoint_props = true;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_PROPS"));
- add_opt(common_arg(
- {"--slots"},
- {"--no-slots"},
- string_format("expose slots monitoring endpoint (default: %s)", params.endpoint_slots ? "enabled" : "disabled"),
- [](common_params & params, bool value) {
- params.endpoint_slots = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_SLOTS"));
- add_opt(common_arg(
- {"--slot-save-path"}, "PATH",
- "path to save slot kv cache (default: disabled)",
- [](common_params & params, const std::string & value) {
- params.slot_save_path = value;
- if (!fs_is_directory(params.slot_save_path)) {
- throw std::invalid_argument("not a directory: " + value);
- }
- // if doesn't end with DIRECTORY_SEPARATOR, add it
- if (!params.slot_save_path.empty() && params.slot_save_path[params.slot_save_path.size() - 1] != DIRECTORY_SEPARATOR) {
- params.slot_save_path += DIRECTORY_SEPARATOR;
- }
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}));
- add_opt(common_arg(
- {"--media-path"}, "PATH",
- "directory for loading local media files; files can be accessed via file:// URLs using relative paths (default: disabled)",
- [](common_params & params, const std::string & value) {
- params.media_path = value;
- if (!fs_is_directory(params.media_path)) {
- throw std::invalid_argument("not a directory: " + value);
- }
- // if doesn't end with DIRECTORY_SEPARATOR, add it
- if (!params.media_path.empty() && params.media_path[params.media_path.size() - 1] != DIRECTORY_SEPARATOR) {
- params.media_path += DIRECTORY_SEPARATOR;
- }
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}));
- add_opt(common_arg(
- {"--models-dir"}, "PATH",
- "directory containing models for the router server (default: disabled)",
- [](common_params & params, const std::string & value) {
- params.models_dir = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_MODELS_DIR"));
- add_opt(common_arg(
- {"--models-preset"}, "PATH",
- "path to INI file containing model presets for the router server (default: disabled)",
- [](common_params & params, const std::string & value) {
- params.models_preset = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_MODELS_PRESET"));
- add_opt(common_arg(
- {"--models-max"}, "N",
- string_format("for router server, maximum number of models to load simultaneously (default: %d, 0 = unlimited)", params.models_max),
- [](common_params & params, int value) {
- params.models_max = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_MODELS_MAX"));
- add_opt(common_arg(
- {"--models-autoload"},
- {"--no-models-autoload"},
- string_format("for router server, whether to automatically load models (default: %s)", params.models_autoload ? "enabled" : "disabled"),
- [](common_params & params, bool value) {
- params.models_autoload = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_MODELS_AUTOLOAD"));
- add_opt(common_arg(
- {"--jinja"},
- {"--no-jinja"},
- string_format("whether to use jinja template engine for chat (default: %s)", params.use_jinja ? "enabled" : "disabled"),
- [](common_params & params, bool value) {
- params.use_jinja = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_CLI, LLAMA_EXAMPLE_MTMD}).set_env("LLAMA_ARG_JINJA"));
- add_opt(common_arg(
- {"--reasoning-format"}, "FORMAT",
- "controls whether thought tags are allowed and/or extracted from the response, and in which format they're returned; one of:\n"
- "- none: leaves thoughts unparsed in `message.content`\n"
- "- deepseek: puts thoughts in `message.reasoning_content`\n"
- "- deepseek-legacy: keeps `<think>` tags in `message.content` while also populating `message.reasoning_content`\n"
- "(default: auto)",
- [](common_params & params, const std::string & value) {
- params.reasoning_format = common_reasoning_format_from_name(value);
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_CLI}).set_env("LLAMA_ARG_THINK"));
- add_opt(common_arg(
- {"--reasoning-budget"}, "N",
- "controls the amount of thinking allowed; currently only one of: -1 for unrestricted thinking budget, or 0 to disable thinking (default: -1)",
- [](common_params & params, int value) {
- if (value != 0 && value != -1) { throw std::invalid_argument("invalid value"); }
- params.reasoning_budget = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_CLI}).set_env("LLAMA_ARG_THINK_BUDGET"));
- add_opt(common_arg(
- {"--chat-template"}, "JINJA_TEMPLATE",
- string_format(
- "set custom jinja chat template (default: template taken from model's metadata)\n"
- "if suffix/prefix are specified, template will be disabled\n"
- "only commonly used templates are accepted (unless --jinja is set before this flag):\n"
- "list of built-in templates:\n%s", list_builtin_chat_templates().c_str()
- ),
- [](common_params & params, const std::string & value) {
- params.chat_template = value;
- }
- ).set_examples({LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_CLI, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MTMD}).set_env("LLAMA_ARG_CHAT_TEMPLATE"));
- add_opt(common_arg(
- {"--chat-template-file"}, "JINJA_TEMPLATE_FILE",
- string_format(
- "set custom jinja chat template file (default: template taken from model's metadata)\n"
- "if suffix/prefix are specified, template will be disabled\n"
- "only commonly used templates are accepted (unless --jinja is set before this flag):\n"
- "list of built-in templates:\n%s", list_builtin_chat_templates().c_str()
- ),
- [](common_params & params, const std::string & value) {
- params.chat_template = read_file(value);
- }
- ).set_examples({LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_CLI, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CHAT_TEMPLATE_FILE"));
- add_opt(common_arg(
- {"--prefill-assistant"},
- {"--no-prefill-assistant"},
- string_format(
- "whether to prefill the assistant's response if the last message is an assistant message (default: prefill enabled)\n"
- "when this flag is set, if the last message is an assistant message then it will be treated as a full message and not prefilled\n"
- ),
- [](common_params & params, bool value) {
- params.prefill_assistant = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_PREFILL_ASSISTANT"));
- add_opt(common_arg(
- {"-sps", "--slot-prompt-similarity"}, "SIMILARITY",
- string_format("how much the prompt of a request must match the prompt of a slot in order to use that slot (default: %.2f, 0.0 = disabled)\n", params.slot_prompt_similarity),
- [](common_params & params, const std::string & value) {
- params.slot_prompt_similarity = std::stof(value);
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}));
- add_opt(common_arg(
- {"--lora-init-without-apply"},
- string_format("load LoRA adapters without applying them (apply later via POST /lora-adapters) (default: %s)", params.lora_init_without_apply ? "enabled" : "disabled"),
- [](common_params & params) {
- params.lora_init_without_apply = true;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}));
- add_opt(common_arg(
- {"--simple-io"},
- "use basic IO for better compatibility in subprocesses and limited consoles",
- [](common_params & params) {
- params.simple_io = true;
- }
- ).set_examples({LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_CLI}));
- add_opt(common_arg(
- {"--positive-file"}, "FNAME",
- string_format("positive prompts file, one prompt per line (default: '%s')", params.cvector_positive_file.c_str()),
- [](common_params & params, const std::string & value) {
- params.cvector_positive_file = value;
- }
- ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
- add_opt(common_arg(
- {"--negative-file"}, "FNAME",
- string_format("negative prompts file, one prompt per line (default: '%s')", params.cvector_negative_file.c_str()),
- [](common_params & params, const std::string & value) {
- params.cvector_negative_file = value;
- }
- ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
- add_opt(common_arg(
- {"--pca-batch"}, "N",
- string_format("batch size used for PCA. Larger batch runs faster, but uses more memory (default: %d)", params.n_pca_batch),
- [](common_params & params, int value) {
- params.n_pca_batch = value;
- }
- ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
- add_opt(common_arg(
- {"--pca-iter"}, "N",
- string_format("number of iterations used for PCA (default: %d)", params.n_pca_iterations),
- [](common_params & params, int value) {
- params.n_pca_iterations = value;
- }
- ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
- add_opt(common_arg(
- {"--method"}, "{pca, mean}",
- "dimensionality reduction method to be used (default: pca)",
- [](common_params & params, const std::string & value) {
- /**/ if (value == "pca") { params.cvector_dimre_method = DIMRE_METHOD_PCA; }
- else if (value == "mean") { params.cvector_dimre_method = DIMRE_METHOD_MEAN; }
- else { throw std::invalid_argument("invalid value"); }
- }
- ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
- add_opt(common_arg(
- {"--output-format"}, "{md,jsonl}",
- "output format for batched-bench results (default: md)",
- [](common_params & params, const std::string & value) {
- /**/ if (value == "jsonl") { params.batched_bench_output_jsonl = true; }
- else if (value == "md") { params.batched_bench_output_jsonl = false; }
- else { throw std::invalid_argument("invalid value"); }
- }
- ).set_examples({LLAMA_EXAMPLE_BENCH}));
- add_opt(common_arg(
- {"--log-disable"},
- "Log disable",
- [](common_params &) {
- common_log_pause(common_log_main());
- }
- ));
- add_opt(common_arg(
- {"--log-file"}, "FNAME",
- "Log to file",
- [](common_params &, const std::string & value) {
- common_log_set_file(common_log_main(), value.c_str());
- }
- ).set_env("LLAMA_LOG_FILE"));
- add_opt(common_arg(
- {"--log-colors"}, "[on|off|auto]",
- "Set colored logging ('on', 'off', or 'auto', default: 'auto')\n"
- "'auto' enables colors when output is to a terminal",
- [](common_params &, const std::string & value) {
- if (is_truthy(value)) {
- common_log_set_colors(common_log_main(), LOG_COLORS_ENABLED);
- } else if (is_falsey(value)) {
- common_log_set_colors(common_log_main(), LOG_COLORS_DISABLED);
- } else if (is_autoy(value)) {
- common_log_set_colors(common_log_main(), LOG_COLORS_AUTO);
- } else {
- throw std::invalid_argument(
- string_format("error: unknown value for --log-colors: '%s'\n", value.c_str()));
- }
- }
- ).set_env("LLAMA_LOG_COLORS"));
- add_opt(common_arg(
- {"-v", "--verbose", "--log-verbose"},
- "Set verbosity level to infinity (i.e. log all messages, useful for debugging)",
- [](common_params & params) {
- params.verbosity = INT_MAX;
- }
- ));
- add_opt(common_arg(
- {"--offline"},
- "Offline mode: forces use of cache, prevents network access",
- [](common_params & params) {
- params.offline = true;
- }
- ).set_env("LLAMA_OFFLINE"));
- add_opt(common_arg(
- {"-lv", "--verbosity", "--log-verbosity"}, "N",
- string_format("Set the verbosity threshold. Messages with a higher verbosity will be ignored. Values:\n"
- " - 0: generic output\n"
- " - 1: error\n"
- " - 2: warning\n"
- " - 3: info\n"
- " - 4: debug\n"
- "(default: %d)\n", params.verbosity),
- [](common_params & params, int value) {
- params.verbosity = value;
- }
- ).set_env("LLAMA_LOG_VERBOSITY"));
- add_opt(common_arg(
- {"--log-prefix"},
- "Enable prefix in log messages",
- [](common_params &) {
- common_log_set_prefix(common_log_main(), true);
- }
- ).set_env("LLAMA_LOG_PREFIX"));
- add_opt(common_arg(
- {"--log-timestamps"},
- "Enable timestamps in log messages",
- [](common_params &) {
- common_log_set_timestamps(common_log_main(), true);
- }
- ).set_env("LLAMA_LOG_TIMESTAMPS"));
- // speculative parameters
- add_opt(common_arg(
- {"-td", "--threads-draft"}, "N",
- "number of threads to use during generation (default: same as --threads)",
- [](common_params & params, int value) {
- params.speculative.cpuparams.n_threads = value;
- if (params.speculative.cpuparams.n_threads <= 0) {
- params.speculative.cpuparams.n_threads = std::thread::hardware_concurrency();
- }
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}));
- add_opt(common_arg(
- {"-tbd", "--threads-batch-draft"}, "N",
- "number of threads to use during batch and prompt processing (default: same as --threads-draft)",
- [](common_params & params, int value) {
- params.speculative.cpuparams_batch.n_threads = value;
- if (params.speculative.cpuparams_batch.n_threads <= 0) {
- params.speculative.cpuparams_batch.n_threads = std::thread::hardware_concurrency();
- }
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}));
- add_opt(common_arg(
- {"-Cd", "--cpu-mask-draft"}, "M",
- "Draft model CPU affinity mask. Complements cpu-range-draft (default: same as --cpu-mask)",
- [](common_params & params, const std::string & mask) {
- params.speculative.cpuparams.mask_valid = true;
- if (!parse_cpu_mask(mask, params.speculative.cpuparams.cpumask)) {
- throw std::invalid_argument("invalid cpumask");
- }
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
- add_opt(common_arg(
- {"-Crd", "--cpu-range-draft"}, "lo-hi",
- "Ranges of CPUs for affinity. Complements --cpu-mask-draft",
- [](common_params & params, const std::string & range) {
- params.speculative.cpuparams.mask_valid = true;
- if (!parse_cpu_range(range, params.speculative.cpuparams.cpumask)) {
- throw std::invalid_argument("invalid range");
- }
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
- add_opt(common_arg(
- {"--cpu-strict-draft"}, "<0|1>",
- "Use strict CPU placement for draft model (default: same as --cpu-strict)",
- [](common_params & params, int value) {
- params.speculative.cpuparams.strict_cpu = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
- add_opt(common_arg(
- {"--prio-draft"}, "N",
- string_format("set draft process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.speculative.cpuparams.priority),
- [](common_params & params, int prio) {
- if (prio < 0 || prio > 3) {
- throw std::invalid_argument("invalid value");
- }
- params.speculative.cpuparams.priority = (enum ggml_sched_priority) prio;
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
- add_opt(common_arg(
- {"--poll-draft"}, "<0|1>",
- "Use polling to wait for draft model work (default: same as --poll])",
- [](common_params & params, int value) {
- params.speculative.cpuparams.poll = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
- add_opt(common_arg(
- {"-Cbd", "--cpu-mask-batch-draft"}, "M",
- "Draft model CPU affinity mask. Complements cpu-range-draft (default: same as --cpu-mask)",
- [](common_params & params, const std::string & mask) {
- params.speculative.cpuparams_batch.mask_valid = true;
- if (!parse_cpu_mask(mask, params.speculative.cpuparams_batch.cpumask)) {
- throw std::invalid_argument("invalid cpumask");
- }
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
- add_opt(common_arg(
- {"-Crbd", "--cpu-range-batch-draft"}, "lo-hi",
- "Ranges of CPUs for affinity. Complements --cpu-mask-draft-batch)",
- [](common_params & params, const std::string & range) {
- params.speculative.cpuparams_batch.mask_valid = true;
- if (!parse_cpu_range(range, params.speculative.cpuparams_batch.cpumask)) {
- throw std::invalid_argument("invalid cpumask");
- }
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
- add_opt(common_arg(
- {"--cpu-strict-batch-draft"}, "<0|1>",
- "Use strict CPU placement for draft model (default: --cpu-strict-draft)",
- [](common_params & params, int value) {
- params.speculative.cpuparams_batch.strict_cpu = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
- add_opt(common_arg(
- {"--prio-batch-draft"}, "N",
- string_format("set draft process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.speculative.cpuparams_batch.priority),
- [](common_params & params, int prio) {
- if (prio < 0 || prio > 3) {
- throw std::invalid_argument("invalid value");
- }
- params.speculative.cpuparams_batch.priority = (enum ggml_sched_priority) prio;
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
- add_opt(common_arg(
- {"--poll-batch-draft"}, "<0|1>",
- "Use polling to wait for draft model work (default: --poll-draft)",
- [](common_params & params, int value) {
- params.speculative.cpuparams_batch.poll = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
- add_opt(common_arg(
- {"--draft-max", "--draft", "--draft-n"}, "N",
- string_format("number of tokens to draft for speculative decoding (default: %d)", params.speculative.n_max),
- [](common_params & params, int value) {
- params.speculative.n_max = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_CLI}).set_env("LLAMA_ARG_DRAFT_MAX"));
- add_opt(common_arg(
- {"--draft-min", "--draft-n-min"}, "N",
- string_format("minimum number of draft tokens to use for speculative decoding (default: %d)", params.speculative.n_min),
- [](common_params & params, int value) {
- params.speculative.n_min = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_CLI}).set_env("LLAMA_ARG_DRAFT_MIN"));
- add_opt(common_arg(
- {"--draft-p-split"}, "P",
- string_format("speculative decoding split probability (default: %.1f)", (double)params.speculative.p_split),
- [](common_params & params, const std::string & value) {
- params.speculative.p_split = std::stof(value);
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}).set_env("LLAMA_ARG_DRAFT_P_SPLIT"));
- add_opt(common_arg(
- {"--draft-p-min"}, "P",
- string_format("minimum speculative decoding probability (greedy) (default: %.1f)", (double)params.speculative.p_min),
- [](common_params & params, const std::string & value) {
- params.speculative.p_min = std::stof(value);
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_CLI}).set_env("LLAMA_ARG_DRAFT_P_MIN"));
- add_opt(common_arg(
- {"-cd", "--ctx-size-draft"}, "N",
- string_format("size of the prompt context for the draft model (default: %d, 0 = loaded from model)", params.speculative.n_ctx),
- [](common_params & params, int value) {
- params.speculative.n_ctx = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_CLI}).set_env("LLAMA_ARG_CTX_SIZE_DRAFT"));
- add_opt(common_arg(
- {"-devd", "--device-draft"}, "<dev1,dev2,..>",
- "comma-separated list of devices to use for offloading the draft model (none = don't offload)\n"
- "use --list-devices to see a list of available devices",
- [](common_params & params, const std::string & value) {
- params.speculative.devices = parse_device_list(value);
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_CLI}));
- add_opt(common_arg(
- {"-ngld", "--gpu-layers-draft", "--n-gpu-layers-draft"}, "N",
- "number of layers to store in VRAM for the draft model",
- [](common_params & params, int value) {
- params.speculative.n_gpu_layers = value;
- if (!llama_supports_gpu_offload()) {
- fprintf(stderr, "warning: no usable GPU found, --gpu-layers-draft option will be ignored\n");
- fprintf(stderr, "warning: one possible reason is that llama.cpp was compiled without GPU support\n");
- fprintf(stderr, "warning: consult docs/build.md for compilation instructions\n");
- }
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_CLI}).set_env("LLAMA_ARG_N_GPU_LAYERS_DRAFT"));
- add_opt(common_arg(
- {"-md", "--model-draft"}, "FNAME",
- "draft model for speculative decoding (default: unused)",
- [](common_params & params, const std::string & value) {
- params.speculative.model.path = value;
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_CLI}).set_env("LLAMA_ARG_MODEL_DRAFT"));
- add_opt(common_arg(
- {"--spec-replace"}, "TARGET", "DRAFT",
- "translate the string in TARGET into DRAFT if the draft model and main model are not compatible",
- [](common_params & params, const std::string & tgt, const std::string & dft) {
- params.speculative.replacements.push_back({ tgt, dft });
- }
- ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_CLI}));
- add_opt(common_arg(
- {"-ctkd", "--cache-type-k-draft"}, "TYPE",
- string_format(
- "KV cache data type for K for the draft model\n"
- "allowed values: %s\n"
- "(default: %s)",
- get_all_kv_cache_types().c_str(),
- ggml_type_name(params.speculative.cache_type_k)
- ),
- [](common_params & params, const std::string & value) {
- params.speculative.cache_type_k = kv_cache_type_from_str(value);
- }
- ).set_env("LLAMA_ARG_CACHE_TYPE_K_DRAFT"));
- add_opt(common_arg(
- {"-ctvd", "--cache-type-v-draft"}, "TYPE",
- string_format(
- "KV cache data type for V for the draft model\n"
- "allowed values: %s\n"
- "(default: %s)",
- get_all_kv_cache_types().c_str(),
- ggml_type_name(params.speculative.cache_type_v)
- ),
- [](common_params & params, const std::string & value) {
- params.speculative.cache_type_v = kv_cache_type_from_str(value);
- }
- ).set_env("LLAMA_ARG_CACHE_TYPE_V_DRAFT"));
- add_opt(common_arg(
- {"-mv", "--model-vocoder"}, "FNAME",
- "vocoder model for audio generation (default: unused)",
- [](common_params & params, const std::string & value) {
- params.vocoder.model.path = value;
- }
- ).set_examples({LLAMA_EXAMPLE_TTS, LLAMA_EXAMPLE_SERVER}));
- add_opt(common_arg(
- {"--tts-use-guide-tokens"},
- "Use guide tokens to improve TTS word recall",
- [](common_params & params) {
- params.vocoder.use_guide_tokens = true;
- }
- ).set_examples({LLAMA_EXAMPLE_TTS, LLAMA_EXAMPLE_SERVER}));
- add_opt(common_arg(
- {"--tts-speaker-file"}, "FNAME",
- "speaker file path for audio generation",
- [](common_params & params, const std::string & value) {
- params.vocoder.speaker_file = value;
- }
- ).set_examples({LLAMA_EXAMPLE_TTS}));
- add_opt(common_arg(
- {"--diffusion-steps"}, "N",
- string_format("number of diffusion steps (default: %d)", params.diffusion.steps),
- [](common_params & params, int value) { params.diffusion.steps = value; }
- ).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
- add_opt(common_arg(
- {"--diffusion-visual"},
- string_format("enable visual diffusion mode (show progressive generation) (default: %s)", params.diffusion.visual_mode ? "true" : "false"),
- [](common_params & params) { params.diffusion.visual_mode = true; }
- ).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
- add_opt(common_arg(
- {"--diffusion-eps"}, "F",
- string_format("epsilon for timesteps (default: %.6f)", (double) params.diffusion.eps),
- [](common_params & params, const std::string & value) { params.diffusion.eps = std::stof(value); }
- ).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
- add_opt(common_arg(
- {"--diffusion-algorithm"}, "N",
- string_format("diffusion algorithm: 0=ORIGIN, 1=ENTROPY_BASED, 2=MARGIN_BASED, 3=RANDOM, 4=LOW_CONFIDENCE (default: %d)", params.diffusion.algorithm),
- [](common_params & params, int value) { params.diffusion.algorithm = value; }
- ).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
- add_opt(common_arg(
- {"--diffusion-alg-temp"}, "F",
- string_format("dream algorithm temperature (default: %.3f)", (double) params.diffusion.alg_temp),
- [](common_params & params, const std::string & value) { params.diffusion.alg_temp = std::stof(value); }
- ).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
- add_opt(common_arg(
- {"--diffusion-block-length"}, "N",
- string_format("llada block length for generation (default: %d)", params.diffusion.block_length),
- [](common_params & params, int value) { params.diffusion.block_length = value; }
- ).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
- add_opt(common_arg(
- {"--diffusion-cfg-scale"}, "F",
- string_format("llada classifier-free guidance scale (default: %.3f)", (double) params.diffusion.cfg_scale),
- [](common_params & params, const std::string & value) { params.diffusion.cfg_scale = std::stof(value); }
- ).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
- add_opt(common_arg(
- {"--diffusion-add-gumbel-noise"}, "F",
- string_format("add gumbel noise to the logits if temp > 0.0 (default: %s)", params.diffusion.add_gumbel_noise ? "true" : "false"),
- [](common_params & params, const std::string & value) { params.diffusion.add_gumbel_noise = std::stof(value); }
- ).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
- add_opt(common_arg(
- { "-lr", "--learning-rate" }, "ALPHA",
- string_format("adamw or sgd optimizer alpha (default: %.2g); note: sgd alpha recommended ~10x (no momentum)", (double) params.lr.lr0),
- [](common_params & params, const std::string & value) { params.lr.lr0 = std::stof(value); }
- ).set_examples({ LLAMA_EXAMPLE_FINETUNE }));
- add_opt(common_arg({ "-lr-min", "--learning-rate-min" }, "ALPHA",
- string_format("(if >0) final learning rate after decay (if -decay-epochs is set, default=%.2g)",
- (double) params.lr.lr_min),
- [](common_params & params, const std::string & value) { params.lr.lr_min = std::stof(value); }
- ).set_examples({ LLAMA_EXAMPLE_FINETUNE }));
- add_opt(common_arg(
- {"-decay-epochs", "--learning-rate-decay-epochs"}, "ALPHA",
- string_format("(if >0) decay learning rate to -lr-min after this many epochs (exponential decay, default=%.2g)", (double) params.lr.decay_epochs),
- [](common_params & params, const std::string & value) { params.lr.decay_epochs = std::stof(value); }
- ).set_examples({ LLAMA_EXAMPLE_FINETUNE }));
- add_opt(common_arg(
- {"-wd", "--weight-decay"}, "WD",
- string_format("adamw or sgd optimizer weight decay (0 is off; recommend very small e.g. 1e-9) (default: %.2g).", (double) params.lr.wd),
- [](common_params & params, const std::string & value) { params.lr.wd = std::stof(value); }
- ).set_examples({ LLAMA_EXAMPLE_FINETUNE }));
- add_opt(common_arg(
- {"-val-split", "--val-split"}, "FRACTION",
- string_format("fraction of data to use as validation set for training (default: %.2g).", (double) params.val_split),
- [](common_params & params, const std::string & value) { params.val_split = std::stof(value); }
- ).set_examples({ LLAMA_EXAMPLE_FINETUNE }));
- add_opt(common_arg(
- {"-epochs", "--epochs"}, "N",
- string_format("optimizer max # of epochs (default: %d)", params.lr.epochs),
- [](common_params & params, int epochs) { params.lr.epochs = epochs; }
- ).set_examples({ LLAMA_EXAMPLE_FINETUNE }));
- add_opt(common_arg(
- {"-opt", "--optimizer"}, "sgd|adamw", "adamw or sgd",
- [](common_params & params, const std::string & name) {
- params.optimizer = common_opt_get_optimizer(name.c_str());
- if (params.optimizer == GGML_OPT_OPTIMIZER_TYPE_COUNT) {
- throw std::invalid_argument("invalid --optimizer, valid options: adamw, sgd");
- }
- }
- ).set_examples({ LLAMA_EXAMPLE_FINETUNE }));
- // presets
- add_opt(common_arg(
- {"--tts-oute-default"},
- string_format("use default OuteTTS models (note: can download weights from the internet)"),
- [](common_params & params) {
- params.model.hf_repo = "OuteAI/OuteTTS-0.2-500M-GGUF";
- params.model.hf_file = "OuteTTS-0.2-500M-Q8_0.gguf";
- params.vocoder.model.hf_repo = "ggml-org/WavTokenizer";
- params.vocoder.model.hf_file = "WavTokenizer-Large-75-F16.gguf";
- }
- ).set_examples({LLAMA_EXAMPLE_TTS}));
- add_opt(common_arg(
- {"--embd-gemma-default"},
- string_format("use default EmbeddingGemma model (note: can download weights from the internet)"),
- [](common_params & params) {
- params.model.hf_repo = "ggml-org/embeddinggemma-300M-qat-q4_0-GGUF";
- params.model.hf_file = "embeddinggemma-300M-qat-Q4_0.gguf";
- params.port = 8011;
- params.n_ubatch = 2048;
- params.n_batch = 2048;
- params.n_parallel = 32;
- params.n_ctx = 2048*params.n_parallel;
- params.verbose_prompt = true;
- params.embedding = true;
- }
- ).set_examples({LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_SERVER}));
- add_opt(common_arg(
- {"--fim-qwen-1.5b-default"},
- string_format("use default Qwen 2.5 Coder 1.5B (note: can download weights from the internet)"),
- [](common_params & params) {
- params.model.hf_repo = "ggml-org/Qwen2.5-Coder-1.5B-Q8_0-GGUF";
- params.model.hf_file = "qwen2.5-coder-1.5b-q8_0.gguf";
- params.port = 8012;
- params.n_ubatch = 1024;
- params.n_batch = 1024;
- params.n_ctx = 0;
- params.n_cache_reuse = 256;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}));
- add_opt(common_arg(
- {"--fim-qwen-3b-default"},
- string_format("use default Qwen 2.5 Coder 3B (note: can download weights from the internet)"),
- [](common_params & params) {
- params.model.hf_repo = "ggml-org/Qwen2.5-Coder-3B-Q8_0-GGUF";
- params.model.hf_file = "qwen2.5-coder-3b-q8_0.gguf";
- params.port = 8012;
- params.n_ubatch = 1024;
- params.n_batch = 1024;
- params.n_ctx = 0;
- params.n_cache_reuse = 256;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}));
- add_opt(common_arg(
- {"--fim-qwen-7b-default"},
- string_format("use default Qwen 2.5 Coder 7B (note: can download weights from the internet)"),
- [](common_params & params) {
- params.model.hf_repo = "ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF";
- params.model.hf_file = "qwen2.5-coder-7b-q8_0.gguf";
- params.port = 8012;
- params.n_ubatch = 1024;
- params.n_batch = 1024;
- params.n_ctx = 0;
- params.n_cache_reuse = 256;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}));
- add_opt(common_arg(
- {"--fim-qwen-7b-spec"},
- string_format("use Qwen 2.5 Coder 7B + 0.5B draft for speculative decoding (note: can download weights from the internet)"),
- [](common_params & params) {
- params.model.hf_repo = "ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF";
- params.model.hf_file = "qwen2.5-coder-7b-q8_0.gguf";
- params.speculative.model.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
- params.speculative.model.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
- params.port = 8012;
- params.n_ubatch = 1024;
- params.n_batch = 1024;
- params.n_ctx = 0;
- params.n_cache_reuse = 256;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}));
- add_opt(common_arg(
- {"--fim-qwen-14b-spec"},
- string_format("use Qwen 2.5 Coder 14B + 0.5B draft for speculative decoding (note: can download weights from the internet)"),
- [](common_params & params) {
- params.model.hf_repo = "ggml-org/Qwen2.5-Coder-14B-Q8_0-GGUF";
- params.model.hf_file = "qwen2.5-coder-14b-q8_0.gguf";
- params.speculative.model.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
- params.speculative.model.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
- params.port = 8012;
- params.n_ubatch = 1024;
- params.n_batch = 1024;
- params.n_ctx = 0;
- params.n_cache_reuse = 256;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}));
- add_opt(common_arg(
- {"--fim-qwen-30b-default"},
- string_format("use default Qwen 3 Coder 30B A3B Instruct (note: can download weights from the internet)"),
- [](common_params & params) {
- params.model.hf_repo = "ggml-org/Qwen3-Coder-30B-A3B-Instruct-Q8_0-GGUF";
- params.model.hf_file = "qwen3-coder-30b-a3b-instruct-q8_0.gguf";
- params.port = 8012;
- params.n_ubatch = 1024;
- params.n_batch = 1024;
- params.n_ctx = 0;
- params.n_cache_reuse = 256;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER}));
- add_opt(common_arg(
- {"--gpt-oss-20b-default"},
- string_format("use gpt-oss-20b (note: can download weights from the internet)"),
- [](common_params & params) {
- params.model.hf_repo = "ggml-org/gpt-oss-20b-GGUF";
- params.model.hf_file = "gpt-oss-20b-mxfp4.gguf";
- params.port = 8013;
- params.n_ubatch = 2048;
- params.n_batch = 32768;
- params.n_parallel = 2;
- params.n_ctx = 131072*params.n_parallel;
- params.sampling.temp = 1.0f;
- params.sampling.top_p = 1.0f;
- params.sampling.top_k = 0;
- params.sampling.min_p = 0.01f;
- params.use_jinja = true;
- //params.default_template_kwargs["reasoning_effort"] = "\"high\"";
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_CLI}));
- add_opt(common_arg(
- {"--gpt-oss-120b-default"},
- string_format("use gpt-oss-120b (note: can download weights from the internet)"),
- [](common_params & params) {
- params.model.hf_repo = "ggml-org/gpt-oss-120b-GGUF";
- params.port = 8013;
- params.n_ubatch = 2048;
- params.n_batch = 32768;
- params.n_parallel = 2;
- params.n_ctx = 131072*params.n_parallel;
- params.sampling.temp = 1.0f;
- params.sampling.top_p = 1.0f;
- params.sampling.top_k = 0;
- params.sampling.min_p = 0.01f;
- params.use_jinja = true;
- //params.default_template_kwargs["reasoning_effort"] = "\"high\"";
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_CLI}));
- add_opt(common_arg(
- {"--vision-gemma-4b-default"},
- string_format("use Gemma 3 4B QAT (note: can download weights from the internet)"),
- [](common_params & params) {
- params.model.hf_repo = "ggml-org/gemma-3-4b-it-qat-GGUF";
- params.port = 8014;
- params.n_ctx = 0;
- params.use_jinja = true;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_CLI}));
- add_opt(common_arg(
- {"--vision-gemma-12b-default"},
- string_format("use Gemma 3 12B QAT (note: can download weights from the internet)"),
- [](common_params & params) {
- params.model.hf_repo = "ggml-org/gemma-3-12b-it-qat-GGUF";
- params.port = 8014;
- params.n_ctx = 0;
- params.use_jinja = true;
- }
- ).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_CLI}));
- return ctx_arg;
- }
|