ggml.c 317 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507
  1. // Defines CLOCK_MONOTONIC and asprintf on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <stdio.h>
  17. #include <float.h>
  18. // if C99 - static_assert is noop
  19. // ref: https://stackoverflow.com/a/53923785/4039976
  20. #ifndef static_assert
  21. #define static_assert(cond, msg) struct global_scope_noop_trick
  22. #endif
  23. #if defined _MSC_VER || defined(__MINGW32__)
  24. #if !defined(__MINGW32__)
  25. #include <Windows.h>
  26. #else
  27. // ref: https://github.com/ggerganov/whisper.cpp/issues/168
  28. #include <windows.h>
  29. #endif
  30. typedef volatile LONG atomic_int;
  31. typedef atomic_int atomic_bool;
  32. static void atomic_store(atomic_int* ptr, LONG val) {
  33. InterlockedExchange(ptr, val);
  34. }
  35. static LONG atomic_load(atomic_int* ptr) {
  36. return InterlockedCompareExchange(ptr, 0, 0);
  37. }
  38. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  39. return InterlockedExchangeAdd(ptr, inc);
  40. }
  41. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  42. return atomic_fetch_add(ptr, -(dec));
  43. }
  44. typedef HANDLE pthread_t;
  45. typedef DWORD thread_ret_t;
  46. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  47. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  48. if (handle == NULL)
  49. {
  50. return EAGAIN;
  51. }
  52. *out = handle;
  53. return 0;
  54. }
  55. static int pthread_join(pthread_t thread, void* unused) {
  56. return (int) WaitForSingleObject(thread, INFINITE);
  57. }
  58. static int sched_yield (void) {
  59. Sleep (0);
  60. return 0;
  61. }
  62. #else
  63. #include <pthread.h>
  64. #include <stdatomic.h>
  65. typedef void* thread_ret_t;
  66. #endif
  67. #ifdef __HAIKU__
  68. #define static_assert(cond, msg) _Static_assert(cond, msg)
  69. #endif
  70. #define GGML_MLOCK_SUPPORT 0
  71. #ifdef __has_include
  72. #if __has_include(<sys/mman.h>)
  73. #undef GGML_MLOCK_SUPPORT
  74. #define GGML_MLOCK_SUPPORT 1
  75. #include <sys/mman.h>
  76. #endif
  77. #endif
  78. /*#define GGML_PERF*/
  79. #define GGML_DEBUG 0
  80. #define GGML_GELU_FP16
  81. #define GGML_SILU_FP16
  82. #define GGML_SOFT_MAX_UNROLL 4
  83. #define GGML_VEC_DOT_UNROLL 2
  84. #ifdef GGML_USE_ACCELERATE
  85. // uncomment to use vDSP for soft max computation
  86. // note: not sure if it is actually faster
  87. //#define GGML_SOFT_MAX_ACCELERATE
  88. #endif
  89. #if UINTPTR_MAX == 0xFFFFFFFF
  90. #define GGML_MEM_ALIGN 4
  91. #else
  92. #define GGML_MEM_ALIGN 16
  93. #endif
  94. #define UNUSED(x) (void)(x)
  95. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  96. #define GGML_ASSERT(x) \
  97. do { \
  98. if (!(x)) { \
  99. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  100. abort(); \
  101. } \
  102. } while (0)
  103. #ifdef GGML_USE_ACCELERATE
  104. #include <Accelerate/Accelerate.h>
  105. #elif GGML_USE_OPENBLAS
  106. #include <cblas.h>
  107. #endif
  108. #undef MIN
  109. #undef MAX
  110. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  111. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  112. // floating point type used to accumulate sums
  113. typedef double ggml_float;
  114. // 16-bit float
  115. // on Arm, we use __fp16
  116. // on x86, we use uint16_t
  117. #ifdef __ARM_NEON
  118. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  119. //
  120. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  121. //
  122. #include <arm_neon.h>
  123. #define GGML_COMPUTE_FP16_TO_FP32(x) (x)
  124. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  125. #define GGML_FP16_TO_FP32(x) (x)
  126. #define GGML_FP32_TO_FP16(x) (x)
  127. #else
  128. #ifdef __wasm_simd128__
  129. #include <wasm_simd128.h>
  130. #else
  131. #ifdef __POWER9_VECTOR__
  132. #include <altivec.h>
  133. #undef bool
  134. #define bool _Bool
  135. #else
  136. #include <immintrin.h>
  137. #endif
  138. #endif
  139. #ifdef __F16C__
  140. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  141. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  142. #elif defined(__POWER9_VECTOR__)
  143. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  144. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  145. /* the inline asm below is about 12% faster than the lookup method */
  146. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  147. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  148. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  149. register float f;
  150. register double d;
  151. __asm__(
  152. "mtfprd %0,%2\n"
  153. "xscvhpdp %0,%0\n"
  154. "frsp %1,%0\n" :
  155. /* temp */ "=d"(d),
  156. /* out */ "=f"(f):
  157. /* in */ "r"(h));
  158. return f;
  159. }
  160. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  161. register double d;
  162. register ggml_fp16_t r;
  163. __asm__( /* xscvdphp can work on double or single precision */
  164. "xscvdphp %0,%2\n"
  165. "mffprd %1,%0\n" :
  166. /* temp */ "=d"(d),
  167. /* out */ "=r"(r):
  168. /* in */ "f"(f));
  169. return r;
  170. }
  171. #else
  172. // FP16 <-> FP32
  173. // ref: https://github.com/Maratyszcza/FP16
  174. static inline float fp32_from_bits(uint32_t w) {
  175. union {
  176. uint32_t as_bits;
  177. float as_value;
  178. } fp32;
  179. fp32.as_bits = w;
  180. return fp32.as_value;
  181. }
  182. static inline uint32_t fp32_to_bits(float f) {
  183. union {
  184. float as_value;
  185. uint32_t as_bits;
  186. } fp32;
  187. fp32.as_value = f;
  188. return fp32.as_bits;
  189. }
  190. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  191. const uint32_t w = (uint32_t) h << 16;
  192. const uint32_t sign = w & UINT32_C(0x80000000);
  193. const uint32_t two_w = w + w;
  194. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  195. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  196. const float exp_scale = 0x1.0p-112f;
  197. #else
  198. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  199. #endif
  200. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  201. const uint32_t magic_mask = UINT32_C(126) << 23;
  202. const float magic_bias = 0.5f;
  203. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  204. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  205. const uint32_t result = sign |
  206. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  207. return fp32_from_bits(result);
  208. }
  209. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  210. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  211. const float scale_to_inf = 0x1.0p+112f;
  212. const float scale_to_zero = 0x1.0p-110f;
  213. #else
  214. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  215. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  216. #endif
  217. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  218. const uint32_t w = fp32_to_bits(f);
  219. const uint32_t shl1_w = w + w;
  220. const uint32_t sign = w & UINT32_C(0x80000000);
  221. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  222. if (bias < UINT32_C(0x71000000)) {
  223. bias = UINT32_C(0x71000000);
  224. }
  225. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  226. const uint32_t bits = fp32_to_bits(base);
  227. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  228. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  229. const uint32_t nonsign = exp_bits + mantissa_bits;
  230. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  231. }
  232. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  233. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  234. #endif // __F16C__
  235. #endif // __ARM_NEON
  236. //
  237. // global data
  238. //
  239. // precomputed gelu table for f16 (128 KB)
  240. static ggml_fp16_t table_gelu_f16[1 << 16];
  241. // precomputed silu table for f16 (128 KB)
  242. static ggml_fp16_t table_silu_f16[1 << 16];
  243. // precomputed exp table for f16 (128 KB)
  244. static ggml_fp16_t table_exp_f16[1 << 16];
  245. // precomputed f32 table for f16 (256 KB)
  246. static float table_f32_f16[1 << 16];
  247. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  248. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  249. // This is also true for POWER9.
  250. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  251. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  252. uint16_t s;
  253. memcpy(&s, &f, sizeof(uint16_t));
  254. return table_f32_f16[s];
  255. }
  256. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  257. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  258. #endif
  259. // note: do not use these inside ggml.c
  260. // these are meant to be used via the ggml.h API
  261. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  262. return GGML_FP16_TO_FP32(x);
  263. }
  264. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  265. return GGML_FP32_TO_FP16(x);
  266. }
  267. //
  268. // timing
  269. //
  270. #if defined(_MSC_VER) || defined(__MINGW32__)
  271. static int64_t timer_freq;
  272. void ggml_time_init(void) {
  273. LARGE_INTEGER frequency;
  274. QueryPerformanceFrequency(&frequency);
  275. timer_freq = frequency.QuadPart;
  276. }
  277. int64_t ggml_time_ms(void) {
  278. LARGE_INTEGER t;
  279. QueryPerformanceCounter(&t);
  280. return (t.QuadPart * 1000) / timer_freq;
  281. }
  282. int64_t ggml_time_us(void) {
  283. LARGE_INTEGER t;
  284. QueryPerformanceCounter(&t);
  285. return (t.QuadPart * 1000000) / timer_freq;
  286. }
  287. #else
  288. void ggml_time_init(void) {}
  289. int64_t ggml_time_ms(void) {
  290. struct timespec ts;
  291. clock_gettime(CLOCK_MONOTONIC, &ts);
  292. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  293. }
  294. int64_t ggml_time_us(void) {
  295. struct timespec ts;
  296. clock_gettime(CLOCK_MONOTONIC, &ts);
  297. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  298. }
  299. #endif
  300. int64_t ggml_cycles(void) {
  301. return clock();
  302. }
  303. int64_t ggml_cycles_per_ms(void) {
  304. return CLOCKS_PER_SEC/1000;
  305. }
  306. #ifdef GGML_PERF
  307. #define ggml_perf_time_ms() ggml_time_ms()
  308. #define ggml_perf_time_us() ggml_time_us()
  309. #define ggml_perf_cycles() ggml_cycles()
  310. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  311. #else
  312. #define ggml_perf_time_ms() 0
  313. #define ggml_perf_time_us() 0
  314. #define ggml_perf_cycles() 0
  315. #define ggml_perf_cycles_per_ms() 0
  316. #endif
  317. //
  318. // cache line
  319. //
  320. #if defined(__cpp_lib_hardware_interference_size)
  321. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  322. #else
  323. #if defined(__POWER9_VECTOR__)
  324. #define CACHE_LINE_SIZE 128
  325. #else
  326. #define CACHE_LINE_SIZE 64
  327. #endif
  328. #endif
  329. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  330. //
  331. // quantization
  332. //
  333. #define QK 32
  334. // AVX routines provided by GH user Const-me
  335. // ref: https://github.com/ggerganov/ggml/pull/27#issuecomment-1464934600
  336. #if __AVX2__ || __AVX512F__
  337. // Unpack 32 4-bit fields into 32 bytes
  338. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  339. static inline __m256i bytesFromNibbles( const uint8_t* rsi )
  340. {
  341. // Load 16 bytes from memory
  342. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  343. // Expand bytes into uint16_t values
  344. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  345. // Unpack values into individual bytes
  346. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  347. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  348. __m256i low = _mm256_and_si256( lowMask, bytes );
  349. high = _mm256_slli_epi16( high, 4 );
  350. bytes = _mm256_or_si256( low, high );
  351. return bytes;
  352. }
  353. static inline __m128i packNibbles( __m256i bytes )
  354. {
  355. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  356. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  357. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  358. __m256i low = _mm256_and_si256( lowByte, bytes );
  359. high = _mm256_srli_epi16( high, 4 );
  360. bytes = _mm256_or_si256( low, high );
  361. // Compress uint16_t lanes into bytes
  362. __m128i r0 = _mm256_castsi256_si128( bytes );
  363. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  364. return _mm_packus_epi16( r0, r1 );
  365. }
  366. #endif
  367. // method 5
  368. // blocks of QK elements
  369. // represented with a single float (delta) and QK/2 8-bit ints (i.e QK 4-bit signed integer factors)
  370. // reference implementation for deterministic creation of model files
  371. static void quantize_row_q4_0_reference(const float * restrict x, void * restrict y, int k) {
  372. assert(k % QK == 0);
  373. const int nb = k / QK;
  374. const size_t bs = sizeof(float) + QK/2;
  375. uint8_t * restrict pd = ((uint8_t *)y + 0*bs);
  376. uint8_t * restrict pb = ((uint8_t *)y + 0*bs + sizeof(float));
  377. uint8_t pp[QK/2];
  378. for (int i = 0; i < nb; i++) {
  379. float amax = 0.0f; // absolute max
  380. for (int l = 0; l < QK; l++) {
  381. const float v = x[i*QK + l];
  382. amax = MAX(amax, fabsf(v));
  383. }
  384. const float d = amax / ((1 << 3) - 1);
  385. const float id = d ? 1.0f/d : 0.0f;
  386. *(float *)pd = d;
  387. pd += bs;
  388. for (int l = 0; l < QK; l += 2) {
  389. const float v0 = x[i*QK + l + 0]*id;
  390. const float v1 = x[i*QK + l + 1]*id;
  391. const uint8_t vi0 = ((int8_t) (round(v0))) + 8;
  392. const uint8_t vi1 = ((int8_t) (round(v1))) + 8;
  393. assert(vi0 >= 0 && vi0 < 16);
  394. assert(vi1 >= 0 && vi1 < 16);
  395. pp[l/2] = vi0 | (vi1 << 4);
  396. }
  397. memcpy(pb, pp, sizeof(pp));
  398. pb += bs;
  399. }
  400. }
  401. void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  402. assert(k % QK == 0);
  403. #if defined(__ARM_NEON) || defined(__AVX2__) || defined(__wasm_simd128__) || defined(__POWER9_VECTOR__)
  404. const int nb = k / QK;
  405. const size_t bs = sizeof(float) + QK/2;
  406. uint8_t * restrict pd = ((uint8_t *)y + 0*bs);
  407. uint8_t * restrict pb = ((uint8_t *)y + 0*bs + sizeof(float));
  408. uint8_t pp[QK/2];
  409. #endif
  410. #if defined(__POWER9_VECTOR__)
  411. const vector float v85 = vec_splats(8.5f);
  412. for (int i = 0; i < nb; i++) {
  413. float amax = 0.0f; // absolute max
  414. vector float srcv [8];
  415. vector float asrcv[8];
  416. vector float amaxv[8];
  417. for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
  418. for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
  419. for (int l = 0; l < 4; l++) amaxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
  420. //for (int l = 0; l < 2; l++) amaxv[4*l] = vec_max(amaxv[4*l], amaxv[4*l+2]);
  421. amaxv[0] = vec_max(amaxv[0], amaxv[2]);
  422. amaxv[4] = vec_max(amaxv[4], amaxv[6]);
  423. //for (int l = 0; l < 1; l++) amaxv[8*l] = vec_max(amaxv[8*l], amaxv[8*l+4]);
  424. amaxv[0] = vec_max(amaxv[0], amaxv[4]);
  425. amax = MAX(
  426. MAX(vec_extract(amaxv[0], 0), vec_extract(amaxv[0], 1)),
  427. MAX(vec_extract(amaxv[0], 2), vec_extract(amaxv[0], 3)));
  428. const float d = amax / ((1 << 3) - 1);
  429. const float id = d ? 1.0/d : 0.0;
  430. *(float *)pd = d;
  431. pd += bs;
  432. const vector float vid = vec_splats(id);
  433. for (int l = 0; l < 8; l++) {
  434. const vector float vf = vec_madd(srcv[l], vid, v85);
  435. const vector signed int vi = vec_signed(vf);
  436. pb[2*l + 0] = vec_extract(vi, 0) | (vec_extract(vi, 1) << 4);
  437. pb[2*l + 1] = vec_extract(vi, 2) | (vec_extract(vi, 3) << 4);
  438. }
  439. //memcpy(pb, pp, sizeof(pp));
  440. pb += bs;
  441. }
  442. #elif __ARM_NEON
  443. for (int i = 0; i < nb; i++) {
  444. float amax = 0.0f; // absolute max
  445. float32x4_t srcv [8];
  446. float32x4_t asrcv[8];
  447. float32x4_t amaxv[8];
  448. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  449. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  450. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  451. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  452. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  453. amax = MAX(
  454. MAX(vgetq_lane_f32(amaxv[0], 0), vgetq_lane_f32(amaxv[0], 1)),
  455. MAX(vgetq_lane_f32(amaxv[0], 2), vgetq_lane_f32(amaxv[0], 3)));
  456. const float d = amax / ((1 << 3) - 1);
  457. const float id = d ? 1.0/d : 0.0;
  458. *(float *)pd = d;
  459. pd += bs;
  460. for (int l = 0; l < 8; l++) {
  461. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  462. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  463. const int32x4_t vi = vcvtq_s32_f32(vf);
  464. pp[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  465. pp[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  466. }
  467. memcpy(pb, pp, sizeof(pp));
  468. pb += bs;
  469. }
  470. #elif defined(__AVX2__)
  471. for (int i = 0; i < nb; i++) {
  472. // Load elements into 4 AVX vectors
  473. __m256 v0 = _mm256_loadu_ps( x );
  474. __m256 v1 = _mm256_loadu_ps( x + 8 );
  475. __m256 v2 = _mm256_loadu_ps( x + 16 );
  476. __m256 v3 = _mm256_loadu_ps( x + 24 );
  477. x += 32;
  478. // Compute max(abs(e)) for the block
  479. const __m256 signBit = _mm256_set1_ps( -0.0f );
  480. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  481. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  482. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  483. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  484. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  485. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  486. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  487. const float maxScalar = _mm_cvtss_f32( max4 );
  488. // Quantize these floats
  489. const float d = maxScalar / 7.0f;
  490. *(float *)pd = d;
  491. pd += bs;
  492. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  493. const __m256 mul = _mm256_set1_ps( id );
  494. // Apply the multiplier
  495. v0 = _mm256_mul_ps( v0, mul );
  496. v1 = _mm256_mul_ps( v1, mul );
  497. v2 = _mm256_mul_ps( v2, mul );
  498. v3 = _mm256_mul_ps( v3, mul );
  499. // Round to nearest integer
  500. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  501. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  502. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  503. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  504. // Convert floats to integers
  505. __m256i i0 = _mm256_cvtps_epi32( v0 );
  506. __m256i i1 = _mm256_cvtps_epi32( v1 );
  507. __m256i i2 = _mm256_cvtps_epi32( v2 );
  508. __m256i i3 = _mm256_cvtps_epi32( v3 );
  509. // Convert int32 to int16
  510. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  511. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  512. // Convert int16 to int8
  513. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  514. // We got our precious signed bytes, but the order is now wrong
  515. // These AVX2 pack instructions process 16-byte pieces independently
  516. // The following instruction is fixing the order
  517. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  518. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  519. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  520. const __m256i off = _mm256_set1_epi8( 8 );
  521. i0 = _mm256_add_epi8( i0, off );
  522. // Compress the vector into 4 bit/value, and store
  523. __m128i res = packNibbles( i0 );
  524. _mm_storeu_si128( ( __m128i* )pb, res );
  525. pb += bs;
  526. }
  527. #elif defined(__wasm_simd128__)
  528. for (int i = 0; i < nb; i++) {
  529. float amax = 0.0f; // absolute max
  530. v128_t srcv [8];
  531. v128_t asrcv[8];
  532. v128_t amaxv[8];
  533. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  534. for (int l = 0; l < 8; l++) asrcv[l] = wasm_f32x4_abs(srcv[l]);
  535. for (int l = 0; l < 4; l++) amaxv[2*l] = wasm_f32x4_max(asrcv[2*l], asrcv[2*l+1]);
  536. for (int l = 0; l < 2; l++) amaxv[4*l] = wasm_f32x4_max(amaxv[4*l], amaxv[4*l+2]);
  537. for (int l = 0; l < 1; l++) amaxv[8*l] = wasm_f32x4_max(amaxv[8*l], amaxv[8*l+4]);
  538. amax = MAX(
  539. MAX(wasm_f32x4_extract_lane(amaxv[0], 0), wasm_f32x4_extract_lane(amaxv[0], 1)),
  540. MAX(wasm_f32x4_extract_lane(amaxv[0], 2), wasm_f32x4_extract_lane(amaxv[0], 3)));
  541. const float d = amax / ((1 << 3) - 1);
  542. const float id = d ? 1.0/d : 0.0;
  543. *(float *)pd = d;
  544. pd += bs;
  545. for (int l = 0; l < 8; l++) {
  546. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  547. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  548. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  549. pp[2*l + 0] = wasm_i32x4_extract_lane(vi, 0) | (wasm_i32x4_extract_lane(vi, 1) << 4);
  550. pp[2*l + 1] = wasm_i32x4_extract_lane(vi, 2) | (wasm_i32x4_extract_lane(vi, 3) << 4);
  551. }
  552. memcpy(pb, pp, sizeof(pp));
  553. pb += bs;
  554. }
  555. #else
  556. // scalar
  557. quantize_row_q4_0_reference(x, y, k);
  558. #endif
  559. }
  560. // method 4
  561. // blocks of QK elements
  562. // represented with 2 floats (min + delta) and QK/2 8-bit ints (i.e QK 4-bit unsigned integer factors)
  563. void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  564. assert(k % QK == 0);
  565. const int nb = k / QK;
  566. const size_t bs = 2*sizeof(float) + QK/2;
  567. uint8_t * restrict pd = ((uint8_t *)y + 0*bs);
  568. uint8_t * restrict pm = ((uint8_t *)y + 0*bs + sizeof(float));
  569. uint8_t * restrict pb = ((uint8_t *)y + 0*bs + 2*sizeof(float));
  570. uint8_t pp[QK/2];
  571. for (int i = 0; i < nb; i++) {
  572. float min = FLT_MAX;
  573. float max = -FLT_MAX;
  574. for (int l = 0; l < QK; l++) {
  575. const float v = x[i*QK + l];
  576. if (v < min) min = v;
  577. if (v > max) max = v;
  578. }
  579. const float d = (max - min) / ((1 << 4) - 1);
  580. const float id = d ? 1.0f/d : 0.0f;
  581. *(float *)pm = min;
  582. *(float *)pd = d;
  583. pm += bs;
  584. pd += bs;
  585. for (int l = 0; l < QK; l += 2) {
  586. const float v0 = (x[i*QK + l + 0] - min)*id;
  587. const float v1 = (x[i*QK + l + 1] - min)*id;
  588. const uint8_t vi0 = round(v0);
  589. const uint8_t vi1 = round(v1);
  590. assert(vi0 >= 0 && vi0 < 16);
  591. assert(vi1 >= 0 && vi1 < 16);
  592. pp[l/2] = vi0 | (vi1 << 4);
  593. }
  594. memcpy(pb, pp, sizeof(pp));
  595. pb += bs;
  596. }
  597. }
  598. // TODO: vectorize
  599. void dequantize_row_q4_0(const void * restrict x, float * restrict y, int k) {
  600. assert(k % QK == 0);
  601. const int nb = k / QK;
  602. const size_t bs = sizeof(float) + QK/2;
  603. const uint8_t * restrict pd = ((const uint8_t *)x + 0*bs);
  604. const uint8_t * restrict pb = ((const uint8_t *)x + 0*bs + sizeof(float));
  605. #if defined(__AVX2__)
  606. for (int i = 0; i < nb; i++) {
  607. // scale factor
  608. const __m256 d_v = _mm256_broadcast_ss((const float *) (pd + i*bs));
  609. const uint8_t * restrict pp = pb + i*bs;
  610. for (int l = 0; l < QK; l += 32) {
  611. // Load 32x4-bit integers into 32x8-bit integers
  612. __m256i vx8 = bytesFromNibbles(pp+l/2);
  613. // Subtract 8 from the integers
  614. vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8));
  615. // Convert to 16-bit int
  616. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  617. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  618. // Convert to 32-bit int -> float 32
  619. const __m256 vf[4] = {
  620. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  621. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  622. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  623. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  624. };
  625. // Scale and store
  626. for (int j = 0; j < 4; j++) {
  627. const __m256 result = _mm256_mul_ps(vf[j], d_v);
  628. _mm256_storeu_ps(y + i * QK + l + j*8, result);
  629. }
  630. }
  631. }
  632. #elif defined(__ARM_NEON)
  633. for (int i = 0; i < nb; i++) {
  634. const float d = *(const float *) (pd + i*bs);
  635. const uint8_t * restrict pp = pb + i*bs;
  636. const float32x4_t vd = vdupq_n_f32(d);
  637. for (int l = 0; l < QK; l += 16) {
  638. // Load 16x4-bit integers into 8x8-bit integers
  639. const uint8x8_t v8 = vld1_u8(pp + l/2);
  640. // Expand 4-bit nibbles to 8-bit bytes
  641. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  642. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  643. // Convert to signed 8-bit integers
  644. const int8x8_t vs_0 = vreinterpret_s8_u8(v0);
  645. const int8x8_t vs_1 = vreinterpret_s8_u8(v1);
  646. // Subtract 8 from each byte
  647. const int8x8_t vb_0 = vsub_s8(vs_0, vdup_n_s8(8));
  648. const int8x8_t vb_1 = vsub_s8(vs_1, vdup_n_s8(8));
  649. // Interleave and combine
  650. const int8x8_t vx_0 = vzip1_s8(vb_0, vb_1);
  651. const int8x8_t vx_1 = vzip2_s8(vb_0, vb_1);
  652. const int8x16_t vq = vcombine_s8(vx_0, vx_1);
  653. // convert to 2x int16x8_t
  654. const int16x8_t vi_0 = vmovl_s8(vget_low_s8 (vq));
  655. const int16x8_t vi_1 = vmovl_s8(vget_high_s8(vq));
  656. // convert to 4x float32x4_t
  657. const float32x4_t vf_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_0)));
  658. const float32x4_t vf_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_0)));
  659. const float32x4_t vf_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_1)));
  660. const float32x4_t vf_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_1)));
  661. // Multiply by d
  662. const float32x4_t r0 = vmulq_f32(vf_0, vd);
  663. const float32x4_t r1 = vmulq_f32(vf_1, vd);
  664. const float32x4_t r2 = vmulq_f32(vf_2, vd);
  665. const float32x4_t r3 = vmulq_f32(vf_3, vd);
  666. // Store
  667. vst1q_f32(y + i*QK + l + 0, r0);
  668. vst1q_f32(y + i*QK + l + 4, r1);
  669. vst1q_f32(y + i*QK + l + 8, r2);
  670. vst1q_f32(y + i*QK + l + 12, r3);
  671. }
  672. }
  673. #else
  674. // scalar
  675. for (int i = 0; i < nb; i++) {
  676. const float d = *(const float *) (pd + i*bs);
  677. const uint8_t * restrict pp = pb + i*bs;
  678. for (int l = 0; l < QK; l += 2) {
  679. const uint8_t vi = pp[l/2];
  680. const int8_t vi0 = vi & 0xf;
  681. const int8_t vi1 = vi >> 4;
  682. const float v0 = (vi0 - 8)*d;
  683. const float v1 = (vi1 - 8)*d;
  684. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  685. y[i*QK + l + 0] = v0;
  686. y[i*QK + l + 1] = v1;
  687. assert(!isnan(y[i*QK + l + 0]));
  688. assert(!isnan(y[i*QK + l + 1]));
  689. }
  690. }
  691. #endif
  692. }
  693. void dequantize_row_q4_1(const void * restrict x, float * restrict y, int k) {
  694. assert(k % QK == 0);
  695. const int nb = k / QK;
  696. const size_t bs = 2*sizeof(float) + QK/2;
  697. const uint8_t * restrict pd = ((const uint8_t *)x + 0*bs);
  698. const uint8_t * restrict pm = ((const uint8_t *)x + 0*bs + sizeof(float));
  699. const uint8_t * restrict pb = ((const uint8_t *)x + 0*bs + 2*sizeof(float));
  700. #if defined(__AVX2__)
  701. for (int i = 0; i < nb; i++) {
  702. const __m256 d_v = _mm256_broadcast_ss((const float *) (pd + i*bs));
  703. const __m256 d_m = _mm256_broadcast_ss((const float *) (pm + i*bs));
  704. const uint8_t * restrict pp = pb + i*bs;
  705. for (int l = 0; l < QK; l += 32) {
  706. // Load 32x4-bit integers into 32x8-bit integers
  707. __m256i vx8 = bytesFromNibbles(pp+l/2);
  708. // Convert to 16-bit int
  709. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  710. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  711. // Convert to 32-bit int -> float 32
  712. const __m256 vf[4] = {
  713. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  714. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  715. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  716. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  717. };
  718. // Scale, add m and store
  719. for (int j = 0; j < 4; j++) {
  720. const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m);
  721. _mm256_storeu_ps(y + i * QK + l + j*8, result);
  722. }
  723. }
  724. }
  725. #else
  726. for (int i = 0; i < nb; i++) {
  727. const float d = *(const float *) (pd + i*bs);
  728. const float m = *(const float *) (pm + i*bs);
  729. const uint8_t * restrict pp = pb + i*bs;
  730. for (int l = 0; l < QK; l += 2) {
  731. const uint8_t vi = pp[l/2];
  732. const int8_t vi0 = vi & 0xf;
  733. const int8_t vi1 = vi >> 4;
  734. const float v0 = vi0*d + m;
  735. const float v1 = vi1*d + m;
  736. y[i*QK + l + 0] = v0;
  737. y[i*QK + l + 1] = v1;
  738. assert(!isnan(y[i*QK + l + 0]));
  739. assert(!isnan(y[i*QK + l + 1]));
  740. }
  741. }
  742. #endif
  743. }
  744. //
  745. // simd mappings
  746. //
  747. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  748. // we then implement the fundamental computation operations below using only these macros
  749. // adding support for new architectures requires to define the corresponding SIMD macros
  750. //
  751. // GGML_F32_STEP / GGML_F16_STEP
  752. // number of elements to process in a single step
  753. //
  754. // GGML_F32_EPR / GGML_F16_EPR
  755. // number of elements to fit in a single register
  756. //
  757. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  758. #define GGML_SIMD
  759. // F32 NEON
  760. #define GGML_F32_STEP 16
  761. #define GGML_F32_EPR 4
  762. #define GGML_F32x4 float32x4_t
  763. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  764. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  765. #define GGML_F32x4_LOAD vld1q_f32
  766. #define GGML_F32x4_STORE vst1q_f32
  767. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  768. #define GGML_F32x4_ADD vaddq_f32
  769. #define GGML_F32x4_MUL vmulq_f32
  770. #if defined(__ARM_FEATURE_QRDMX)
  771. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  772. #else
  773. #define GGML_F32x4_REDUCE_ONE(x) \
  774. (vgetq_lane_f32(x, 0) + \
  775. vgetq_lane_f32(x, 1) + \
  776. vgetq_lane_f32(x, 2) + \
  777. vgetq_lane_f32(x, 3))
  778. #endif
  779. #define GGML_F32x4_REDUCE(res, x) \
  780. { \
  781. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  782. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  783. } \
  784. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  785. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  786. } \
  787. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  788. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  789. } \
  790. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  791. }
  792. #define GGML_F32_VEC GGML_F32x4
  793. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  794. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  795. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  796. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  797. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  798. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  799. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  800. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  801. // F16 NEON
  802. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  803. #define GGML_F16_STEP 32
  804. #define GGML_F16_EPR 8
  805. #define GGML_F16x8 float16x8_t
  806. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  807. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  808. #define GGML_F16x8_LOAD vld1q_f16
  809. #define GGML_F16x8_STORE vst1q_f16
  810. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  811. #define GGML_F16x8_ADD vaddq_f16
  812. #define GGML_F16x8_MUL vmulq_f16
  813. #define GGML_F16x8_REDUCE(res, x) \
  814. { \
  815. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  816. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  817. } \
  818. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  819. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  820. } \
  821. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  822. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  823. } \
  824. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  825. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  826. res = vaddvq_f32(vaddq_f32(t0, t1)); \
  827. }
  828. #define GGML_F16_VEC GGML_F16x8
  829. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  830. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  831. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  832. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  833. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  834. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  835. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  836. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  837. #else
  838. // if FP16 vector arithmetic is not supported, we use FP32 instead
  839. // and take advantage of the vcvt_ functions to convert to/from FP16
  840. #define GGML_F16_STEP 16
  841. #define GGML_F16_EPR 4
  842. #define GGML_F32Cx4 float32x4_t
  843. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  844. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  845. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  846. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  847. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  848. #define GGML_F32Cx4_ADD vaddq_f32
  849. #define GGML_F32Cx4_MUL vmulq_f32
  850. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  851. #define GGML_F16_VEC GGML_F32Cx4
  852. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  853. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  854. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  855. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  856. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  857. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  858. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  859. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  860. #endif
  861. #elif defined(__AVX__)
  862. #define GGML_SIMD
  863. // F32 AVX
  864. #define GGML_F32_STEP 32
  865. #define GGML_F32_EPR 8
  866. #define GGML_F32x8 __m256
  867. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  868. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  869. #define GGML_F32x8_LOAD _mm256_loadu_ps
  870. #define GGML_F32x8_STORE _mm256_storeu_ps
  871. #if defined(__FMA__)
  872. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  873. #else
  874. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  875. #endif
  876. #define GGML_F32x8_ADD _mm256_add_ps
  877. #define GGML_F32x8_MUL _mm256_mul_ps
  878. #define GGML_F32x8_REDUCE(res, x) \
  879. { \
  880. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  881. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  882. } \
  883. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  884. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  885. } \
  886. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  887. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  888. } \
  889. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  890. _mm256_extractf128_ps(x[0], 1)); \
  891. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  892. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  893. }
  894. // TODO: is this optimal ?
  895. #define GGML_F32_VEC GGML_F32x8
  896. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  897. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  898. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  899. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  900. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  901. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  902. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  903. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  904. // F16 AVX
  905. #define GGML_F16_STEP 32
  906. #define GGML_F16_EPR 8
  907. // F16 arithmetic is not supported by AVX, so we use F32 instead
  908. // we take advantage of the _mm256_cvt intrinsics to convert F16 <-> F32
  909. #define GGML_F32Cx8 __m256
  910. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  911. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  912. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  913. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  914. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  915. #define GGML_F32Cx8_ADD _mm256_add_ps
  916. #define GGML_F32Cx8_MUL _mm256_mul_ps
  917. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  918. #define GGML_F16_VEC GGML_F32Cx8
  919. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  920. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  921. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  922. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  923. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  924. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  925. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  926. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  927. #elif defined(__POWER9_VECTOR__)
  928. #define GGML_SIMD
  929. // F32 POWER9
  930. #define GGML_F32_STEP 32
  931. #define GGML_F32_EPR 4
  932. #define GGML_F32x4 vector float
  933. #define GGML_F32x4_ZERO 0.0f
  934. #define GGML_F32x4_SET1 vec_splats
  935. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  936. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  937. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  938. #define GGML_F32x4_ADD vec_add
  939. #define GGML_F32x4_MUL vec_mul
  940. #define GGML_F32x4_REDUCE(res, x) \
  941. { \
  942. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  943. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  944. } \
  945. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  946. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  947. } \
  948. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  949. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  950. } \
  951. res = vec_extract(x[0], 0) + \
  952. vec_extract(x[0], 1) + \
  953. vec_extract(x[0], 2) + \
  954. vec_extract(x[0], 3); \
  955. }
  956. #define GGML_F32_VEC GGML_F32x4
  957. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  958. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  959. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  960. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  961. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  962. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  963. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  964. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  965. // F16 POWER9
  966. #define GGML_F16_STEP GGML_F32_STEP
  967. #define GGML_F16_EPR GGML_F32_EPR
  968. #define GGML_F16_VEC GGML_F32x4
  969. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  970. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  971. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  972. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  973. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  974. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  975. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  976. vec_extract_fp32_from_shortl(vec_xl(0, p))
  977. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  978. #define GGML_F16_VEC_STORE(p, r, i) \
  979. if (i & 0x1) \
  980. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  981. r[i - GGML_ENDIAN_BYTE(0)]), \
  982. 0, p - GGML_F16_EPR)
  983. #elif defined(__wasm_simd128__)
  984. #define GGML_SIMD
  985. // F32 WASM
  986. #define GGML_F32_STEP 16
  987. #define GGML_F32_EPR 4
  988. #define GGML_F32x4 v128_t
  989. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  990. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  991. #define GGML_F32x4_LOAD wasm_v128_load
  992. #define GGML_F32x4_STORE wasm_v128_store
  993. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  994. #define GGML_F32x4_ADD wasm_f32x4_add
  995. #define GGML_F32x4_MUL wasm_f32x4_mul
  996. #define GGML_F32x4_REDUCE(res, x) \
  997. { \
  998. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  999. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1000. } \
  1001. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1002. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1003. } \
  1004. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1005. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1006. } \
  1007. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1008. wasm_f32x4_extract_lane(x[0], 1) + \
  1009. wasm_f32x4_extract_lane(x[0], 2) + \
  1010. wasm_f32x4_extract_lane(x[0], 3); \
  1011. }
  1012. #define GGML_F32_VEC GGML_F32x4
  1013. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1014. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1015. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1016. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1017. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1018. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1019. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1020. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1021. // F16 WASM
  1022. #define GGML_F16_STEP 16
  1023. #define GGML_F16_EPR 4
  1024. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1025. float tmp[4];
  1026. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1027. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1028. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1029. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1030. return wasm_v128_load(tmp);
  1031. }
  1032. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1033. float tmp[4];
  1034. wasm_v128_store(tmp, x);
  1035. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1036. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1037. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1038. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1039. }
  1040. #define GGML_F16x4 v128_t
  1041. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1042. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1043. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1044. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1045. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1046. #define GGML_F16x4_ADD wasm_f32x4_add
  1047. #define GGML_F16x4_MUL wasm_f32x4_mul
  1048. #define GGML_F16x4_REDUCE(res, x) \
  1049. { \
  1050. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1051. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1052. } \
  1053. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1054. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1055. } \
  1056. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1057. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1058. } \
  1059. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1060. wasm_f32x4_extract_lane(x[0], 1) + \
  1061. wasm_f32x4_extract_lane(x[0], 2) + \
  1062. wasm_f32x4_extract_lane(x[0], 3); \
  1063. }
  1064. #define GGML_F16_VEC GGML_F16x4
  1065. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1066. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1067. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1068. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1069. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1070. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1071. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1072. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1073. #elif defined(__SSE3__)
  1074. #define GGML_SIMD
  1075. // F32 SSE
  1076. #define GGML_F32_STEP 32
  1077. #define GGML_F32_EPR 4
  1078. #define GGML_F32x4 __m128
  1079. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1080. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1081. #define GGML_F32x4_LOAD _mm_loadu_ps
  1082. #define GGML_F32x4_STORE _mm_storeu_ps
  1083. #if defined(__FMA__)
  1084. // TODO: Does this work?
  1085. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1086. #else
  1087. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1088. #endif
  1089. #define GGML_F32x4_ADD _mm_add_ps
  1090. #define GGML_F32x4_MUL _mm_mul_ps
  1091. #define GGML_F32x4_REDUCE(res, x) \
  1092. { \
  1093. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1094. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1095. } \
  1096. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1097. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1098. } \
  1099. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1100. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1101. } \
  1102. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1103. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1104. }
  1105. // TODO: is this optimal ?
  1106. #define GGML_F32_VEC GGML_F32x4
  1107. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1108. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1109. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1110. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1111. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1112. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1113. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1114. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1115. // F16 SSE
  1116. #define GGML_F16_STEP 32
  1117. #define GGML_F16_EPR 4
  1118. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1119. float tmp[4];
  1120. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1121. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1122. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1123. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1124. return _mm_loadu_ps(tmp);
  1125. }
  1126. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1127. float arr[4];
  1128. _mm_storeu_ps(arr, y);
  1129. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1130. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1131. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1132. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1133. }
  1134. #define GGML_F32Cx4 __m128
  1135. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1136. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1137. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1138. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1139. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1140. #define GGML_F32Cx4_ADD _mm_add_ps
  1141. #define GGML_F32Cx4_MUL _mm_mul_ps
  1142. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1143. #define GGML_F16_VEC GGML_F32Cx4
  1144. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1145. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1146. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1147. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1148. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1149. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1150. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1151. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1152. #endif
  1153. // GGML_F32_ARR / GGML_F16_ARR
  1154. // number of registers to use per step
  1155. #ifdef GGML_SIMD
  1156. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1157. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1158. #endif
  1159. //
  1160. // fundamental operations
  1161. //
  1162. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1163. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1164. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1165. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1166. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1167. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1168. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1169. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1170. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1171. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1172. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1173. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1174. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1175. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1176. ggml_float sumf = 0.0;
  1177. #ifdef GGML_SIMD
  1178. const int np = (n & ~(GGML_F32_STEP - 1));
  1179. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1180. GGML_F32_VEC ax[GGML_F32_ARR];
  1181. GGML_F32_VEC ay[GGML_F32_ARR];
  1182. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1183. for (int j = 0; j < GGML_F32_ARR; j++) {
  1184. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1185. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1186. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1187. }
  1188. }
  1189. // reduce sum0..sum3 to sum0
  1190. GGML_F32_VEC_REDUCE(sumf, sum);
  1191. // leftovers
  1192. for (int i = np; i < n; ++i) {
  1193. sumf += x[i]*y[i];
  1194. }
  1195. #else
  1196. // scalar
  1197. for (int i = 0; i < n; ++i) {
  1198. sumf += x[i]*y[i];
  1199. }
  1200. #endif
  1201. *s = sumf;
  1202. }
  1203. #if __AVX512F__ && QK == 32
  1204. static inline __m512 dot_q4_0_oneblock_avx512(
  1205. __m512 acc,
  1206. const uint8_t * pd0,
  1207. const uint8_t * pd1,
  1208. const uint8_t * pb0,
  1209. const uint8_t * pb1,
  1210. size_t bs,
  1211. int i
  1212. ) {
  1213. const float * d0_0 = (const float *) (pd0 + i*bs);
  1214. const float * d1_0 = (const float *) (pd1 + i*bs);
  1215. const uint8_t * restrict p0 = pb0 + (i+0)*bs;
  1216. const uint8_t * restrict p1 = pb1 + (i+0)*bs;
  1217. // Compute combined scale for the block
  1218. float scaleScalar = d0_0[0] * d1_0[0];
  1219. __m512 scale = _mm512_set1_ps( scaleScalar );
  1220. __m256i bx = bytesFromNibbles( p0 );
  1221. __m256i by = bytesFromNibbles( p1 );
  1222. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1223. const __m256i off = _mm256_set1_epi8( 8 );
  1224. bx = _mm256_sub_epi8( bx, off );
  1225. by = _mm256_sub_epi8( by, off );
  1226. // Sign-extend 16 signed bytes into int16_t
  1227. __m512i x32 = _mm512_cvtepi8_epi16( bx );
  1228. __m512i y32 = _mm512_cvtepi8_epi16( by );
  1229. // Compute products of int16_t integers, add pairwise
  1230. __m512i i64 = _mm512_madd_epi16( x32, y32 );
  1231. // Convert int32_t to float
  1232. __m512 p = _mm512_cvtepi32_ps( i64 );
  1233. // Apply the scale, and accumulate
  1234. return _mm512_fmadd_ps( scale, p, acc );
  1235. }
  1236. #endif
  1237. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1238. ggml_float sumf = 0.0;
  1239. #if defined(GGML_SIMD)
  1240. const int np = (n & ~(GGML_F16_STEP - 1));
  1241. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1242. GGML_F16_VEC ax[GGML_F16_ARR];
  1243. GGML_F16_VEC ay[GGML_F16_ARR];
  1244. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1245. for (int j = 0; j < GGML_F16_ARR; j++) {
  1246. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1247. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1248. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1249. }
  1250. }
  1251. // reduce sum0..sum3 to sum0
  1252. GGML_F16_VEC_REDUCE(sumf, sum);
  1253. // leftovers
  1254. for (int i = np; i < n; ++i) {
  1255. sumf += GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]);
  1256. }
  1257. #else
  1258. for (int i = 0; i < n; ++i) {
  1259. sumf += GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]);
  1260. }
  1261. #endif
  1262. *s = sumf;
  1263. }
  1264. inline static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void * restrict x, const void * restrict y) {
  1265. const int nb = n / QK;
  1266. assert(n % QK == 0);
  1267. assert(nb % 2 == 0);
  1268. const size_t bs = sizeof(float) + QK/2;
  1269. const uint8_t * restrict pd0 = ((const uint8_t *)x + 0*bs);
  1270. const uint8_t * restrict pd1 = ((const uint8_t *)y + 0*bs);
  1271. const uint8_t * restrict pb0 = ((const uint8_t *)x + 0*bs + sizeof(float));
  1272. const uint8_t * restrict pb1 = ((const uint8_t *)y + 0*bs + sizeof(float));
  1273. float sumf = 0.0;
  1274. #if defined(__ARM_NEON)
  1275. float sum0 = 0.0f;
  1276. float sum1 = 0.0f;
  1277. for (int i = 0; i < nb; i += 2) {
  1278. const float d0_0 = *(const float *) (pd0 + i*bs);
  1279. const float d1_0 = *(const float *) (pd1 + i*bs);
  1280. const float d0_1 = *(const float *) (pd0 + (i + 1)*bs);
  1281. const float d1_1 = *(const float *) (pd1 + (i + 1)*bs);
  1282. //printf("d0_0: %f, d1_0: %f, d0_1: %f, d1_1: %f\n", d0_0, d1_0, d0_1, d1_1);
  1283. const uint8_t * restrict p0 = pb0 + i*bs;
  1284. const uint8_t * restrict p1 = pb1 + i*bs;
  1285. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1286. const int8x16_t s8b = vdupq_n_s8(0x8);
  1287. const uint8x16_t v0_0 = vld1q_u8(p0);
  1288. const uint8x16_t v1_0 = vld1q_u8(p1);
  1289. const uint8x16_t v0_1 = vld1q_u8(p0 + bs);
  1290. const uint8x16_t v1_1 = vld1q_u8(p1 + bs);
  1291. // 4-bit -> 8-bit
  1292. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8(v0_0, m4b));
  1293. const int8x16_t v1_0l = vreinterpretq_s8_u8(vandq_u8(v1_0, m4b));
  1294. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1295. const int8x16_t v1_0h = vreinterpretq_s8_u8(vshrq_n_u8(v1_0, 4));
  1296. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8(v0_1, m4b));
  1297. const int8x16_t v1_1l = vreinterpretq_s8_u8(vandq_u8(v1_1, m4b));
  1298. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1299. const int8x16_t v1_1h = vreinterpretq_s8_u8(vshrq_n_u8(v1_1, 4));
  1300. // sub 8
  1301. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1302. const int8x16_t v1_0ls = vsubq_s8(v1_0l, s8b);
  1303. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1304. const int8x16_t v1_0hs = vsubq_s8(v1_0h, s8b);
  1305. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1306. const int8x16_t v1_1ls = vsubq_s8(v1_1l, s8b);
  1307. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1308. const int8x16_t v1_1hs = vsubq_s8(v1_1h, s8b);
  1309. #if defined(__ARM_FEATURE_DOTPROD)
  1310. // dot product into int16x8_t
  1311. int32x4_t p_0 = vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls);
  1312. int32x4_t p_1 = vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls);
  1313. p_0 = vdotq_s32(p_0, v0_0hs, v1_0hs);
  1314. p_1 = vdotq_s32(p_1, v0_1hs, v1_1hs);
  1315. // scalar
  1316. #if defined(__ARM_FEATURE_QRDMX)
  1317. sum0 += d0_0*d1_0*vaddvq_s32(p_0);
  1318. sum1 += d0_1*d1_1*vaddvq_s32(p_1);
  1319. #else
  1320. sum0 += d0_0*d1_0*(vgetq_lane_s32(p_0, 0) + vgetq_lane_s32(p_0, 1) + vgetq_lane_s32(p_0, 2) + vgetq_lane_s32(p_0, 3));
  1321. sum1 += d0_1*d1_1*(vgetq_lane_s32(p_1, 0) + vgetq_lane_s32(p_1, 1) + vgetq_lane_s32(p_1, 2) + vgetq_lane_s32(p_1, 3));
  1322. #endif
  1323. #else
  1324. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls));
  1325. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls));
  1326. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs));
  1327. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs));
  1328. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls));
  1329. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls));
  1330. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs));
  1331. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs));
  1332. const int16x8_t pl_0 = vaddq_s16(pl0l, pl0h);
  1333. const int16x8_t ph_0 = vaddq_s16(ph0l, ph0h);
  1334. const int16x8_t pl_1 = vaddq_s16(pl1l, pl1h);
  1335. const int16x8_t ph_1 = vaddq_s16(ph1l, ph1h);
  1336. const int16x8_t p_0 = vaddq_s16(pl_0, ph_0);
  1337. const int16x8_t p_1 = vaddq_s16(pl_1, ph_1);
  1338. // scalar
  1339. #if defined(__ARM_FEATURE_QRDMX)
  1340. sum0 += d0_0*d1_0*vaddvq_s16(p_0);
  1341. sum1 += d0_1*d1_1*vaddvq_s16(p_1);
  1342. #else
  1343. sum0 += d0_0*d1_0*(vgetq_lane_s16(p_0, 0) + vgetq_lane_s16(p_0, 1) + vgetq_lane_s16(p_0, 2) + vgetq_lane_s16(p_0, 3) + vgetq_lane_s16(p_0, 4) + vgetq_lane_s16(p_0, 5) + vgetq_lane_s16(p_0, 6) + vgetq_lane_s16(p_0, 7));
  1344. sum1 += d0_1*d1_1*(vgetq_lane_s16(p_1, 0) + vgetq_lane_s16(p_1, 1) + vgetq_lane_s16(p_1, 2) + vgetq_lane_s16(p_1, 3) + vgetq_lane_s16(p_1, 4) + vgetq_lane_s16(p_1, 5) + vgetq_lane_s16(p_1, 6) + vgetq_lane_s16(p_1, 7));
  1345. #endif
  1346. #endif
  1347. }
  1348. sumf = sum0 + sum1;
  1349. #elif defined(__AVX512F__)
  1350. // Initialize accumulator with zeros
  1351. __m512 acc0 = _mm512_setzero_ps();
  1352. __m512 acc1 = _mm512_setzero_ps();
  1353. const int superblock_size = 8;
  1354. const int superblock_count = nb / superblock_size;
  1355. const int remainder = nb % superblock_size;
  1356. for (int superblock_ix = 0; superblock_ix < superblock_count; superblock_ix += 1) {
  1357. int i = superblock_ix * superblock_size;
  1358. acc0 = dot_q4_0_oneblock_avx512( acc0, pd0, pd1, pb0, pb1, bs, i+0 );
  1359. acc1 = dot_q4_0_oneblock_avx512( acc1, pd0, pd1, pb0, pb1, bs, i+1 );
  1360. acc0 = dot_q4_0_oneblock_avx512( acc0, pd0, pd1, pb0, pb1, bs, i+2 );
  1361. acc1 = dot_q4_0_oneblock_avx512( acc1, pd0, pd1, pb0, pb1, bs, i+3 );
  1362. acc0 = dot_q4_0_oneblock_avx512( acc0, pd0, pd1, pb0, pb1, bs, i+4 );
  1363. acc1 = dot_q4_0_oneblock_avx512( acc1, pd0, pd1, pb0, pb1, bs, i+5 );
  1364. acc0 = dot_q4_0_oneblock_avx512( acc0, pd0, pd1, pb0, pb1, bs, i+6 );
  1365. acc1 = dot_q4_0_oneblock_avx512( acc1, pd0, pd1, pb0, pb1, bs, i+7 );
  1366. }
  1367. // Remainders
  1368. for (int i = superblock_count * superblock_size; i < nb; ++i) {
  1369. acc0 = dot_q4_0_oneblock_avx512( acc0, pd0, pd1, pb0, pb1, bs, i );
  1370. }
  1371. // Horizontal sum of all lanes of the accumulator
  1372. sumf = _mm512_reduce_add_ps( acc0 ) + _mm512_reduce_add_ps( acc1 );
  1373. #elif defined(__AVX2__)
  1374. // Initialize accumulator with zeros
  1375. __m256 acc = _mm256_setzero_ps();
  1376. // Main loop
  1377. for (int i = 0; i < nb; ++i) {
  1378. const float * d0_0 = (const float *) (pd0 + i*bs);
  1379. const float * d1_0 = (const float *) (pd1 + i*bs);
  1380. const uint8_t * restrict p0 = pb0 + i*bs;
  1381. const uint8_t * restrict p1 = pb1 + i*bs;
  1382. // Compute combined scale for the block
  1383. const __m256 scale = _mm256_mul_ps( _mm256_broadcast_ss( d0_0 ), _mm256_broadcast_ss( d1_0 ) );
  1384. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  1385. __m256i bx = bytesFromNibbles( p0 );
  1386. __m256i by = bytesFromNibbles( p1 );
  1387. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1388. const __m256i off = _mm256_set1_epi8( 8 );
  1389. bx = _mm256_sub_epi8( bx, off );
  1390. by = _mm256_sub_epi8( by, off );
  1391. // Sign-extend first 16 signed bytes into int16_t
  1392. __m256i x16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( bx ) );
  1393. __m256i y16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  1394. // Compute products of int16_t integers, add pairwise
  1395. __m256i i32 = _mm256_madd_epi16( x16, y16 );
  1396. // Sign-extend last 16 signed bytes into int16_t vectors
  1397. x16 = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( bx, 1 ) );
  1398. y16 = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  1399. // Accumulate products of int16_t integers
  1400. i32 = _mm256_add_epi32( i32, _mm256_madd_epi16( x16, y16 ) );
  1401. // Convert int32_t to float
  1402. __m256 p = _mm256_cvtepi32_ps( i32 );
  1403. // Apply the scale, and accumulate
  1404. acc = _mm256_fmadd_ps( scale, p, acc );
  1405. }
  1406. // Return horizontal sum of the acc vector
  1407. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1408. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1409. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1410. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1411. sumf = _mm_cvtss_f32( res );
  1412. #elif defined(__wasm_simd128__)
  1413. // wasm simd
  1414. float sum0 = 0.0f;
  1415. float sum1 = 0.0f;
  1416. for (int i = 0; i < nb; i += 2) {
  1417. const float d0_0 = *(const float *) (pd0 + i*bs);
  1418. const float d1_0 = *(const float *) (pd1 + i*bs);
  1419. const float d0_1 = *(const float *) (pd0 + (i + 1)*bs);
  1420. const float d1_1 = *(const float *) (pd1 + (i + 1)*bs);
  1421. const uint8_t * restrict p0 = pb0 + i*bs;
  1422. const uint8_t * restrict p1 = pb1 + i*bs;
  1423. const v128_t m4b = wasm_u8x16_splat(0xf);
  1424. const v128_t s8b = wasm_i8x16_splat(0x8);
  1425. const v128_t v0_0 = wasm_v128_load(p0);
  1426. const v128_t v0_1 = wasm_v128_load(p0 + bs);
  1427. const v128_t v1_0 = wasm_v128_load(p1);
  1428. const v128_t v1_1 = wasm_v128_load(p1 + bs);
  1429. // 4-bit -> 8-bit
  1430. const v128_t v0_0l = wasm_v128_and(v0_0, m4b);
  1431. const v128_t v1_0l = wasm_v128_and(v1_0, m4b);
  1432. const v128_t v0_0h = wasm_u8x16_shr(v0_0, 4);
  1433. const v128_t v1_0h = wasm_u8x16_shr(v1_0, 4);
  1434. const v128_t v0_1l = wasm_v128_and(v0_1, m4b);
  1435. const v128_t v1_1l = wasm_v128_and(v1_1, m4b);
  1436. const v128_t v0_1h = wasm_u8x16_shr(v0_1, 4);
  1437. const v128_t v1_1h = wasm_u8x16_shr(v1_1, 4);
  1438. // sub 8
  1439. const v128_t v0_0ls = wasm_i8x16_sub(v0_0l, s8b);
  1440. const v128_t v1_0ls = wasm_i8x16_sub(v1_0l, s8b);
  1441. const v128_t v0_0hs = wasm_i8x16_sub(v0_0h, s8b);
  1442. const v128_t v1_0hs = wasm_i8x16_sub(v1_0h, s8b);
  1443. const v128_t v0_1ls = wasm_i8x16_sub(v0_1l, s8b);
  1444. const v128_t v1_1ls = wasm_i8x16_sub(v1_1l, s8b);
  1445. const v128_t v0_1hs = wasm_i8x16_sub(v0_1h, s8b);
  1446. const v128_t v1_1hs = wasm_i8x16_sub(v1_1h, s8b);
  1447. // dot product into int16x8_t
  1448. const v128_t pl0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0ls), wasm_i16x8_extend_low_i8x16(v1_0ls));
  1449. const v128_t pl0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0ls), wasm_i16x8_extend_high_i8x16(v1_0ls));
  1450. const v128_t ph0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0hs), wasm_i16x8_extend_low_i8x16(v1_0hs));
  1451. const v128_t ph0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0hs), wasm_i16x8_extend_high_i8x16(v1_0hs));
  1452. const v128_t pl1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1ls), wasm_i16x8_extend_low_i8x16(v1_1ls));
  1453. const v128_t pl1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1ls), wasm_i16x8_extend_high_i8x16(v1_1ls));
  1454. const v128_t ph1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1hs), wasm_i16x8_extend_low_i8x16(v1_1hs));
  1455. const v128_t ph1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1hs), wasm_i16x8_extend_high_i8x16(v1_1hs));
  1456. const v128_t pl_0 = wasm_i16x8_add(pl0l, pl0h);
  1457. const v128_t ph_0 = wasm_i16x8_add(ph0l, ph0h);
  1458. const v128_t pl_1 = wasm_i16x8_add(pl1l, pl1h);
  1459. const v128_t ph_1 = wasm_i16x8_add(ph1l, ph1h);
  1460. const v128_t p_0 = wasm_i16x8_add(pl_0, ph_0);
  1461. const v128_t p_1 = wasm_i16x8_add(pl_1, ph_1);
  1462. sum0 += d0_0*d1_0*(
  1463. wasm_i16x8_extract_lane(p_0, 0) + wasm_i16x8_extract_lane(p_0, 1) +
  1464. wasm_i16x8_extract_lane(p_0, 2) + wasm_i16x8_extract_lane(p_0, 3) +
  1465. wasm_i16x8_extract_lane(p_0, 4) + wasm_i16x8_extract_lane(p_0, 5) +
  1466. wasm_i16x8_extract_lane(p_0, 6) + wasm_i16x8_extract_lane(p_0, 7));
  1467. sum1 += d0_1*d1_1*(
  1468. wasm_i16x8_extract_lane(p_1, 0) + wasm_i16x8_extract_lane(p_1, 1) +
  1469. wasm_i16x8_extract_lane(p_1, 2) + wasm_i16x8_extract_lane(p_1, 3) +
  1470. wasm_i16x8_extract_lane(p_1, 4) + wasm_i16x8_extract_lane(p_1, 5) +
  1471. wasm_i16x8_extract_lane(p_1, 6) + wasm_i16x8_extract_lane(p_1, 7));
  1472. }
  1473. sumf = sum0 + sum1;
  1474. #else
  1475. // scalar
  1476. for (int i = 0; i < nb; i++) {
  1477. const float d0 = *(const float *) (pd0 + i*bs);
  1478. const float d1 = *(const float *) (pd1 + i*bs);
  1479. const uint8_t * restrict p0 = pb0 + i*bs;
  1480. const uint8_t * restrict p1 = pb1 + i*bs;
  1481. for (int j = 0; j < QK/2; j++) {
  1482. const uint8_t v0 = p0[j];
  1483. const uint8_t v1 = p1[j];
  1484. const float f0 = d0*((int8_t) (v0 & 0xf) - 8);
  1485. const float f1 = d0*((int8_t) (v0 >> 4) - 8);
  1486. const float f2 = d1*((int8_t) (v1 & 0xf) - 8);
  1487. const float f3 = d1*((int8_t) (v1 >> 4) - 8);
  1488. sumf += f0*f2 + f1*f3;
  1489. }
  1490. }
  1491. #endif
  1492. *s = sumf;
  1493. }
  1494. inline static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void * restrict x, const void * restrict y) {
  1495. const int nb = n / QK;
  1496. const size_t bs = 2*sizeof(float) + QK/2;
  1497. const uint8_t * restrict pd0 = ((const uint8_t *)x + 0*bs);
  1498. const uint8_t * restrict pd1 = ((const uint8_t *)y + 0*bs);
  1499. const uint8_t * restrict pm0 = ((const uint8_t *)x + 0*bs + sizeof(float));
  1500. const uint8_t * restrict pm1 = ((const uint8_t *)y + 0*bs + sizeof(float));
  1501. const uint8_t * restrict pb0 = ((const uint8_t *)x + 0*bs + 2*sizeof(float));
  1502. const uint8_t * restrict pb1 = ((const uint8_t *)y + 0*bs + 2*sizeof(float));
  1503. float sumf = 0.0;
  1504. #if defined(__AVX2__)
  1505. // Initialize accumulator with zeros
  1506. __m256 acc = _mm256_setzero_ps();
  1507. // Accumulator for constant offsets
  1508. float acc_offset = 0.0f;
  1509. // Main loop
  1510. for (int i = 0; i < nb; ++i) {
  1511. const float * m0 = (const float *) (pm0 + i*bs);
  1512. const float * m1 = (const float *) (pm1 + i*bs);
  1513. const float * d0 = (const float *) (pd0 + i*bs);
  1514. const float * d1 = (const float *) (pd1 + i*bs);
  1515. const uint8_t * restrict p0 = pb0 + i*bs;
  1516. const uint8_t * restrict p1 = pb1 + i*bs;
  1517. const __m256 d0v = _mm256_broadcast_ss( d0 );
  1518. const __m256 d1v = _mm256_broadcast_ss( d1 );
  1519. const __m256 m0v = _mm256_broadcast_ss( m0 );
  1520. const __m256 m1v = _mm256_broadcast_ss( m1 );
  1521. // Compute combined scale for the block
  1522. const __m256 scale_01 = _mm256_mul_ps( d0v, d1v );
  1523. // Compute cross scales for the block
  1524. const __m256 scale_0 = _mm256_mul_ps( d0v, m1v );
  1525. const __m256 scale_1 = _mm256_mul_ps( m0v, d1v );
  1526. const __m256 cross_scales = _mm256_blend_ps( scale_0, scale_1, 0b10101010 );
  1527. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  1528. __m256i bx = bytesFromNibbles( p0 );
  1529. __m256i by = bytesFromNibbles( p1 );
  1530. // Now we have a vector with bytes in [ 0 .. 15 ] interval.
  1531. // Sign-extend first 16 signed bytes into int16_t
  1532. __m256i x16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( bx ) );
  1533. __m256i y16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  1534. // Compute products of int16_t integers, add pairwise
  1535. __m256i i32 = _mm256_madd_epi16( x16, y16 );
  1536. // Sign-extend last 16 signed bytes into int16_t vectors
  1537. __m256i x16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( bx, 1 ) );
  1538. __m256i y16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  1539. // Accumulate products of int16_t integers
  1540. i32 = _mm256_add_epi32( i32, _mm256_madd_epi16( x16_h, y16_h ) );
  1541. // compute sums of unsigned bytes in bx, by in blocks of 8.
  1542. // This results in a layout like X100 0000 X200 0000 X300 0000 X400 0000,
  1543. // which we then interleave as X100 Y100 X200 Y200 X300 Y300 X400 Y400.
  1544. // so if we then cast to 8 singles, we get 8 floats like [ x0_7, y0_7, x8_15, y8_15, x16_23, y16_23, x24_31, y24_31 ]
  1545. __m256i xsumi = _mm256_sad_epu8( bx, _mm256_setzero_si256() );
  1546. __m256i ysumi = _mm256_sad_epu8( by, _mm256_setzero_si256() );
  1547. __m256i sumsi = _mm256_or_si256( xsumi, _mm256_slli_si256( ysumi, 4 ) );
  1548. __m256 sums = _mm256_cvtepi32_ps( sumsi );
  1549. // Convert int32_t to float
  1550. __m256 p = _mm256_cvtepi32_ps( i32 );
  1551. // Apply the scale, and accumulate
  1552. // acc += d0*d1*x*y + d0*m1*x + d1*m0*y
  1553. acc = _mm256_fmadd_ps( scale_01, p, acc );
  1554. acc = _mm256_fmadd_ps( cross_scales, sums, acc );
  1555. // acc_offset += m0*m1 (for each entry in the block)
  1556. acc_offset += (*m0)*(*m1);
  1557. }
  1558. // Return horizontal sum of the acc vector
  1559. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1560. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1561. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1562. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1563. sumf = _mm_cvtss_f32( res ) + acc_offset * QK;
  1564. #else
  1565. // scalar
  1566. for (int i = 0; i < nb; i++) {
  1567. const float m0 = *(const float *) (pm0 + i*bs);
  1568. const float m1 = *(const float *) (pm1 + i*bs);
  1569. const float d0 = *(const float *) (pd0 + i*bs);
  1570. const float d1 = *(const float *) (pd1 + i*bs);
  1571. const uint8_t * restrict p0 = pb0 + i*bs;
  1572. const uint8_t * restrict p1 = pb1 + i*bs;
  1573. for (int j = 0; j < QK/2; j++) {
  1574. const uint8_t v0 = p0[j];
  1575. const uint8_t v1 = p1[j];
  1576. const float f0 = d0*(v0 & 0xf) + m0;
  1577. const float f1 = d0*(v0 >> 4) + m0;
  1578. const float f2 = d1*(v1 & 0xf) + m1;
  1579. const float f3 = d1*(v1 >> 4) + m1;
  1580. sumf += f0*f2 + f1*f3;
  1581. }
  1582. }
  1583. #endif
  1584. *s = sumf;
  1585. }
  1586. // compute GGML_VEC_DOT_UNROLL dot products at once
  1587. // xs - x row stride in bytes
  1588. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1589. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1590. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1591. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1592. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1593. }
  1594. #if defined(GGML_SIMD)
  1595. const int np = (n & ~(GGML_F16_STEP - 1));
  1596. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1597. GGML_F16_VEC ax[GGML_F16_ARR];
  1598. GGML_F16_VEC ay[GGML_F16_ARR];
  1599. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1600. for (int j = 0; j < GGML_F16_ARR; j++) {
  1601. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1602. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1603. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1604. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1605. }
  1606. }
  1607. }
  1608. // reduce sum0..sum3 to sum0
  1609. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1610. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1611. }
  1612. // leftovers
  1613. for (int i = np; i < n; ++i) {
  1614. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1615. sumf[j] += GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]);
  1616. }
  1617. }
  1618. #else
  1619. for (int i = 0; i < n; ++i) {
  1620. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1621. sumf[j] += GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]);
  1622. }
  1623. }
  1624. #endif
  1625. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1626. s[i] = sumf[i];
  1627. }
  1628. }
  1629. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1630. #if defined(GGML_SIMD)
  1631. const int np = (n & ~(GGML_F32_STEP - 1));
  1632. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1633. GGML_F32_VEC ax[GGML_F32_ARR];
  1634. GGML_F32_VEC ay[GGML_F32_ARR];
  1635. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1636. for (int j = 0; j < GGML_F32_ARR; j++) {
  1637. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1638. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1639. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1640. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1641. }
  1642. }
  1643. // leftovers
  1644. for (int i = np; i < n; ++i) {
  1645. y[i] += x[i]*v;
  1646. }
  1647. #else
  1648. // scalar
  1649. for (int i = 0; i < n; ++i) {
  1650. y[i] += x[i]*v;
  1651. }
  1652. #endif
  1653. }
  1654. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1655. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1656. #if defined(GGML_SIMD)
  1657. const int np = (n & ~(GGML_F32_STEP - 1));
  1658. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1659. GGML_F32_VEC ay[GGML_F32_ARR];
  1660. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1661. for (int j = 0; j < GGML_F32_ARR; j++) {
  1662. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1663. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1664. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1665. }
  1666. }
  1667. // leftovers
  1668. for (int i = np; i < n; ++i) {
  1669. y[i] *= v;
  1670. }
  1671. #else
  1672. // scalar
  1673. for (int i = 0; i < n; ++i) {
  1674. y[i] *= v;
  1675. }
  1676. #endif
  1677. }
  1678. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrt(*s); }
  1679. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1680. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrt(x[i]); }
  1681. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1682. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1683. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1684. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1685. static const ggml_float GELU_COEF_A = 0.044715;
  1686. static const ggml_float SQRT_2_OVER_PI = 0.79788456080286535587989211986876;
  1687. inline static float ggml_gelu_f32(float x) {
  1688. return 0.5*x*(1.0 + tanh(SQRT_2_OVER_PI*x*(1.0 + GELU_COEF_A*x*x)));
  1689. }
  1690. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1691. const uint16_t * i16 = (const uint16_t *) x;
  1692. for (int i = 0; i < n; ++i) {
  1693. y[i] = table_gelu_f16[i16[i]];
  1694. }
  1695. }
  1696. #ifdef GGML_GELU_FP16
  1697. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1698. uint16_t t;
  1699. for (int i = 0; i < n; ++i) {
  1700. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1701. memcpy(&t, &fp16, sizeof(uint16_t));
  1702. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  1703. }
  1704. }
  1705. #else
  1706. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1707. for (int i = 0; i < n; ++i) {
  1708. y[i] = ggml_gelu_f32(x[i]);
  1709. }
  1710. }
  1711. #endif
  1712. // Sigmoid Linear Unit (SiLU) function
  1713. inline static float ggml_silu_f32(float x) {
  1714. return x/(1.0 + exp(-x));
  1715. }
  1716. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1717. const uint16_t * i16 = (const uint16_t *) x;
  1718. for (int i = 0; i < n; ++i) {
  1719. y[i] = table_silu_f16[i16[i]];
  1720. }
  1721. }
  1722. #ifdef GGML_SILU_FP16
  1723. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1724. uint16_t t;
  1725. for (int i = 0; i < n; ++i) {
  1726. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1727. memcpy(&t, &fp16, sizeof(uint16_t));
  1728. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  1729. }
  1730. }
  1731. #else
  1732. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1733. for (int i = 0; i < n; ++i) {
  1734. y[i] = ggml_silu_f32(x[i]);
  1735. }
  1736. }
  1737. #endif
  1738. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1739. #ifndef GGML_USE_ACCELERATE
  1740. ggml_float sum = 0.0;
  1741. for (int i = 0; i < n; ++i) {
  1742. sum += x[i];
  1743. }
  1744. *s = sum;
  1745. #else
  1746. vDSP_sve(x, 1, s, n);
  1747. #endif
  1748. }
  1749. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1750. #ifndef GGML_USE_ACCELERATE
  1751. ggml_float max = -INFINITY;
  1752. for (int i = 0; i < n; ++i) {
  1753. max = MAX(max, x[i]);
  1754. }
  1755. *s = max;
  1756. #else
  1757. vDSP_maxv(x, 1, s, n);
  1758. #endif
  1759. }
  1760. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) { ggml_vec_norm_f32(n, s, x); *s = 1./(*s); }
  1761. //
  1762. // logging
  1763. //
  1764. #if (GGML_DEBUG >= 1)
  1765. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  1766. #else
  1767. #define GGML_PRINT_DEBUG(...)
  1768. #endif
  1769. #if (GGML_DEBUG >= 5)
  1770. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  1771. #else
  1772. #define GGML_PRINT_DEBUG_5(...)
  1773. #endif
  1774. #if (GGML_DEBUG >= 10)
  1775. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  1776. #else
  1777. #define GGML_PRINT_DEBUG_10(...)
  1778. #endif
  1779. #define GGML_PRINT(...) printf(__VA_ARGS__)
  1780. //
  1781. // data types
  1782. //
  1783. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  1784. QK,
  1785. QK,
  1786. 1,
  1787. 1,
  1788. 1,
  1789. 1,
  1790. 1,
  1791. };
  1792. static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_COUNT != 5");
  1793. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  1794. sizeof(float ) + QK/2,
  1795. sizeof(float )*2 + QK/2,
  1796. sizeof(int8_t ),
  1797. sizeof(int16_t),
  1798. sizeof(int32_t),
  1799. sizeof(ggml_fp16_t),
  1800. sizeof(float ),
  1801. };
  1802. // don't forget to update the array above when adding new types
  1803. static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_COUNT != 5");
  1804. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  1805. "NONE",
  1806. "DUP",
  1807. "ADD",
  1808. "SUB",
  1809. "MUL",
  1810. "DIV",
  1811. "SQR",
  1812. "SQRT",
  1813. "SUM",
  1814. "MEAN",
  1815. "REPEAT",
  1816. "ABS",
  1817. "SGN",
  1818. "NEG",
  1819. "STEP",
  1820. "RELU",
  1821. "GELU",
  1822. "SILU",
  1823. "NORM",
  1824. "RMS_NORM",
  1825. "MUL_MAT",
  1826. "SCALE",
  1827. "CPY",
  1828. "RESHAPE",
  1829. "VIEW",
  1830. "PERMUTE",
  1831. "TRANSPOSE",
  1832. "GET_ROWS",
  1833. "DIAG_MASK_INF",
  1834. "SOFT_MAX",
  1835. "ROPE",
  1836. "CONV_1D_1S",
  1837. "CONV_1D_2S",
  1838. "FLASH_ATTN",
  1839. "FLASH_FF",
  1840. };
  1841. static_assert(GGML_OP_COUNT == 35, "GGML_OP_COUNT != 35");
  1842. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1843. "none",
  1844. "x",
  1845. "x+y",
  1846. "x-y",
  1847. "x*y",
  1848. "x/y",
  1849. "x^2",
  1850. "√x",
  1851. "Σx",
  1852. "Σx/n",
  1853. "repeat(x)",
  1854. "abs(x)",
  1855. "sgn(x)",
  1856. "-x",
  1857. "step(x)",
  1858. "relu(x)",
  1859. "gelu(x)",
  1860. "silu(x)",
  1861. "norm(x)",
  1862. "rms_norm(x)",
  1863. "X*Y",
  1864. "x*v",
  1865. "x-\\>y",
  1866. "reshape(x)",
  1867. "view(x)",
  1868. "permute(x)",
  1869. "transpose(x)",
  1870. "get_rows(x)",
  1871. "diag_mask_inf(x)",
  1872. "soft_max(x)",
  1873. "rope(x)",
  1874. "conv_1d_1s(x)",
  1875. "conv_1d_2s(x)",
  1876. "flash_attn(x)",
  1877. "flash_ff(x)",
  1878. };
  1879. static_assert(GGML_OP_COUNT == 35, "GGML_OP_COUNT != 35");
  1880. //
  1881. // ggml object
  1882. //
  1883. struct ggml_object {
  1884. size_t offs;
  1885. size_t size;
  1886. struct ggml_object * next;
  1887. char padding[8];
  1888. };
  1889. static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
  1890. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1891. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1892. //
  1893. // ggml context
  1894. //
  1895. struct ggml_context {
  1896. size_t mem_size;
  1897. void * mem_buffer;
  1898. bool mem_buffer_owned;
  1899. bool mem_buffer_mlocked;
  1900. int n_objects;
  1901. struct ggml_object * objects_begin;
  1902. struct ggml_object * objects_end;
  1903. struct ggml_scratch scratch;
  1904. struct ggml_scratch scratch_save;
  1905. };
  1906. struct ggml_context_container {
  1907. bool used;
  1908. struct ggml_context context;
  1909. };
  1910. //
  1911. // compute types
  1912. //
  1913. enum ggml_task_type {
  1914. GGML_TASK_INIT = 0,
  1915. GGML_TASK_COMPUTE,
  1916. GGML_TASK_FINALIZE,
  1917. };
  1918. struct ggml_compute_params {
  1919. enum ggml_task_type type;
  1920. int ith, nth;
  1921. // work buffer for all threads
  1922. size_t wsize;
  1923. void * wdata;
  1924. };
  1925. //
  1926. // ggml state
  1927. //
  1928. struct ggml_state {
  1929. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1930. };
  1931. // global state
  1932. static struct ggml_state g_state;
  1933. static atomic_int g_state_barrier = 0;
  1934. // barrier via spin lock
  1935. inline static void ggml_critical_section_start(void) {
  1936. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1937. while (processing > 0) {
  1938. // wait for other threads to finish
  1939. atomic_fetch_sub(&g_state_barrier, 1);
  1940. sched_yield(); // TODO: reconsider this
  1941. processing = atomic_fetch_add(&g_state_barrier, 1);
  1942. }
  1943. }
  1944. // TODO: make this somehow automatically executed
  1945. // some sort of "sentry" mechanism
  1946. inline static void ggml_critical_section_end(void) {
  1947. atomic_fetch_sub(&g_state_barrier, 1);
  1948. }
  1949. ////////////////////////////////////////////////////////////////////////////////
  1950. void ggml_print_object(const struct ggml_object * obj) {
  1951. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  1952. obj->offs, obj->size, (const void *) obj->next);
  1953. }
  1954. void ggml_print_objects(const struct ggml_context * ctx) {
  1955. struct ggml_object * obj = ctx->objects_begin;
  1956. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  1957. while (obj != NULL) {
  1958. ggml_print_object(obj);
  1959. obj = obj->next;
  1960. }
  1961. GGML_PRINT("%s: --- end ---\n", __func__);
  1962. }
  1963. int ggml_nelements(const struct ggml_tensor * tensor) {
  1964. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1965. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1966. }
  1967. int ggml_nrows(const struct ggml_tensor * tensor) {
  1968. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1969. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1970. }
  1971. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  1972. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1973. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  1974. }
  1975. int ggml_blck_size(enum ggml_type type) {
  1976. return GGML_BLCK_SIZE[type];
  1977. }
  1978. size_t ggml_type_size(enum ggml_type type) {
  1979. return GGML_TYPE_SIZE[type];
  1980. }
  1981. float ggml_type_sizef(enum ggml_type type) {
  1982. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  1983. }
  1984. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  1985. return GGML_TYPE_SIZE[tensor->type];
  1986. }
  1987. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  1988. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1989. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1990. }
  1991. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  1992. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1993. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1994. }
  1995. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  1996. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1997. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1998. }
  1999. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2000. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2001. return
  2002. (t0->ne[0] == t1->ne[0]) &&
  2003. (t0->ne[2] == t1->ne[2]) &&
  2004. (t0->ne[3] == t1->ne[3]);
  2005. }
  2006. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2007. return tensor->nb[0] > tensor->nb[1];
  2008. }
  2009. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2010. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2011. return
  2012. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2013. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  2014. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2015. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2016. }
  2017. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2018. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2019. return
  2020. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2021. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2022. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2023. }
  2024. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2025. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2026. return
  2027. (t0->ne[0] == t1->ne[0] ) &&
  2028. (t0->ne[1] == t1->ne[1] ) &&
  2029. (t0->ne[2] == t1->ne[2] ) &&
  2030. (t0->ne[3] == t1->ne[3] );
  2031. }
  2032. // check if t1 can be represented as a repeatition of t0
  2033. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2034. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2035. return
  2036. (t1->ne[0]%t0->ne[0] == 0) &&
  2037. (t1->ne[1]%t0->ne[1] == 0) &&
  2038. (t1->ne[2]%t0->ne[2] == 0) &&
  2039. (t1->ne[3]%t0->ne[3] == 0);
  2040. }
  2041. static inline int ggml_up32(int n) {
  2042. return (n + 31) & ~31;
  2043. }
  2044. static inline int ggml_up64(int n) {
  2045. return (n + 63) & ~63;
  2046. }
  2047. static inline int ggml_up(int n, int m) {
  2048. // assert m is a power of 2
  2049. GGML_ASSERT((m & (m - 1)) == 0);
  2050. return (n + m - 1) & ~(m - 1);
  2051. }
  2052. // assert that pointer is aligned to GGML_MEM_ALIGN
  2053. #define ggml_assert_aligned(ptr) \
  2054. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2055. ////////////////////////////////////////////////////////////////////////////////
  2056. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2057. // make this function thread safe
  2058. ggml_critical_section_start();
  2059. static bool is_first_call = true;
  2060. if (is_first_call) {
  2061. // initialize GELU, SILU and EXP F32 tables
  2062. {
  2063. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2064. ggml_fp16_t ii;
  2065. for (int i = 0; i < (1 << 16); ++i) {
  2066. uint16_t ui = i;
  2067. memcpy(&ii, &ui, sizeof(ii));
  2068. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2069. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2070. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2071. table_exp_f16[i] = GGML_FP32_TO_FP16(exp(f));
  2072. }
  2073. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2074. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2075. }
  2076. // initialize g_state
  2077. {
  2078. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2079. g_state = (struct ggml_state) {
  2080. /*.contexts =*/ { { 0 } },
  2081. };
  2082. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2083. g_state.contexts[i].used = false;
  2084. }
  2085. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2086. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2087. }
  2088. is_first_call = false;
  2089. }
  2090. // find non-used context in g_state
  2091. struct ggml_context * ctx = NULL;
  2092. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2093. if (!g_state.contexts[i].used) {
  2094. g_state.contexts[i].used = true;
  2095. ctx = &g_state.contexts[i].context;
  2096. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2097. break;
  2098. }
  2099. }
  2100. if (ctx == NULL) {
  2101. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2102. ggml_critical_section_end();
  2103. return NULL;
  2104. }
  2105. *ctx = (struct ggml_context) {
  2106. /*.mem_size =*/ params.mem_size,
  2107. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : malloc(params.mem_size),
  2108. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2109. /*.mem_buffer_mlocked =*/ false,
  2110. /*.n_objects =*/ 0,
  2111. /*.objects_begin =*/ NULL,
  2112. /*.objects_end =*/ NULL,
  2113. /*.scratch =*/ { 0, 0, NULL, },
  2114. /*.scratch_save =*/ { 0, 0, NULL, },
  2115. };
  2116. GGML_ASSERT(ctx->mem_buffer != NULL); // check for allocation failure
  2117. ggml_assert_aligned(ctx->mem_buffer);
  2118. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2119. ggml_critical_section_end();
  2120. return ctx;
  2121. }
  2122. void ggml_free(struct ggml_context * ctx) {
  2123. // make this function thread safe
  2124. ggml_critical_section_start();
  2125. bool found = false;
  2126. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2127. if (&g_state.contexts[i].context == ctx) {
  2128. g_state.contexts[i].used = false;
  2129. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  2130. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  2131. #if GGML_MLOCK_SUPPORT
  2132. if (ctx->mem_buffer_mlocked) {
  2133. if (munlock(ctx->mem_buffer, ctx->mem_size)) {
  2134. fprintf(stderr, "%s: failed to munlock buffer: %s\n", __func__, strerror(errno));
  2135. }
  2136. }
  2137. #endif
  2138. if (ctx->mem_buffer_owned) {
  2139. free(ctx->mem_buffer);
  2140. }
  2141. found = true;
  2142. break;
  2143. }
  2144. }
  2145. if (!found) {
  2146. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2147. }
  2148. ggml_critical_section_end();
  2149. }
  2150. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2151. return ctx->objects_end->offs + ctx->objects_end->size;
  2152. }
  2153. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2154. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2155. ctx->scratch = scratch;
  2156. return result;
  2157. }
  2158. bool ggml_mlock_supported(void) {
  2159. return GGML_MLOCK_SUPPORT;
  2160. }
  2161. #if GGML_MLOCK_SUPPORT
  2162. #ifdef __APPLE__
  2163. #define MLOCK_SUGGESTION "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or\n" \
  2164. "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MLOCK (ulimit -l)."
  2165. #else
  2166. #define MLOCK_SUGGESTION "Try increasing RLIMIT_MLOCK (ulimit -l)."
  2167. #endif
  2168. bool ggml_mlock(struct ggml_context * ctx, char ** err_p) {
  2169. if (ctx->mem_buffer_mlocked) {
  2170. return true;
  2171. }
  2172. if (mlock(ctx->mem_buffer, ctx->mem_size)) {
  2173. int ret = asprintf(err_p, "failed to mlock %zu-byte buffer: %s\n" MLOCK_SUGGESTION,
  2174. ctx->mem_size, strerror(errno));
  2175. GGML_ASSERT(ret >= 0);
  2176. return false;
  2177. }
  2178. ctx->mem_buffer_mlocked = true;
  2179. return true;
  2180. }
  2181. #else // GGML_MLOCK_SUPPORT
  2182. bool ggml_mlock(struct ggml_context * ctx, char ** err_p) {
  2183. *err_p = strdup("can't mlock because it's not supported on this system");
  2184. return false;
  2185. }
  2186. #endif // GGML_MLOCK_SUPPORT
  2187. ////////////////////////////////////////////////////////////////////////////////
  2188. struct ggml_tensor * ggml_new_tensor_impl(
  2189. struct ggml_context * ctx,
  2190. enum ggml_type type,
  2191. int n_dims,
  2192. const int* ne,
  2193. void* data) {
  2194. // always insert objects at the end of the context's memory pool
  2195. struct ggml_object * obj_cur = ctx->objects_end;
  2196. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2197. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2198. const size_t cur_end = cur_offs + cur_size;
  2199. size_t size_needed = 0;
  2200. if (data == NULL) {
  2201. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  2202. for (int i = 1; i < n_dims; i++) {
  2203. size_needed *= ne[i];
  2204. }
  2205. // align to GGML_MEM_ALIGN
  2206. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  2207. }
  2208. char * const mem_buffer = ctx->mem_buffer;
  2209. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2210. if (ctx->scratch.data == NULL || data != NULL) {
  2211. size_needed += sizeof(struct ggml_tensor);
  2212. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2213. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2214. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  2215. assert(false);
  2216. return NULL;
  2217. }
  2218. *obj_new = (struct ggml_object) {
  2219. .offs = cur_end + GGML_OBJECT_SIZE,
  2220. .size = size_needed,
  2221. .next = NULL,
  2222. };
  2223. } else {
  2224. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  2225. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  2226. assert(false);
  2227. return NULL;
  2228. }
  2229. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  2230. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2231. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  2232. assert(false);
  2233. return NULL;
  2234. }
  2235. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2236. *obj_new = (struct ggml_object) {
  2237. .offs = cur_end + GGML_OBJECT_SIZE,
  2238. .size = sizeof(struct ggml_tensor),
  2239. .next = NULL,
  2240. };
  2241. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  2242. ctx->scratch.offs += size_needed;
  2243. }
  2244. if (obj_cur != NULL) {
  2245. obj_cur->next = obj_new;
  2246. } else {
  2247. // this is the first object in this context
  2248. ctx->objects_begin = obj_new;
  2249. }
  2250. ctx->objects_end = obj_new;
  2251. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2252. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  2253. ggml_assert_aligned(result);
  2254. *result = (struct ggml_tensor) {
  2255. /*.type =*/ type,
  2256. /*.n_dims =*/ n_dims,
  2257. /*.ne =*/ { 1, 1, 1, 1 },
  2258. /*.nb =*/ { 0, 0, 0, 0 },
  2259. /*.op =*/ GGML_OP_NONE,
  2260. /*.is_param =*/ false,
  2261. /*.grad =*/ NULL,
  2262. /*.src0 =*/ NULL,
  2263. /*.src1 =*/ NULL,
  2264. /*.opt =*/ { NULL },
  2265. /*.n_tasks =*/ 0,
  2266. /*.perf_runs =*/ 0,
  2267. /*.perf_cycles =*/ 0,
  2268. /*.perf_time_us =*/ 0,
  2269. /*.data =*/ data == NULL ? (void *)(result + 1) : data,
  2270. /*.pad =*/ { 0 },
  2271. };
  2272. ggml_assert_aligned(result->data);
  2273. for (int i = 0; i < n_dims; i++) {
  2274. result->ne[i] = ne[i];
  2275. }
  2276. result->nb[0] = GGML_TYPE_SIZE[type];
  2277. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  2278. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2279. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2280. }
  2281. ctx->n_objects++;
  2282. return result;
  2283. }
  2284. struct ggml_tensor * ggml_new_tensor(
  2285. struct ggml_context * ctx,
  2286. enum ggml_type type,
  2287. int n_dims,
  2288. const int * ne) {
  2289. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  2290. }
  2291. struct ggml_tensor * ggml_new_tensor_1d(
  2292. struct ggml_context * ctx,
  2293. enum ggml_type type,
  2294. int ne0) {
  2295. return ggml_new_tensor(ctx, type, 1, &ne0);
  2296. }
  2297. struct ggml_tensor * ggml_new_tensor_2d(
  2298. struct ggml_context * ctx,
  2299. enum ggml_type type,
  2300. int ne0,
  2301. int ne1) {
  2302. const int ne[2] = { ne0, ne1 };
  2303. return ggml_new_tensor(ctx, type, 2, ne);
  2304. }
  2305. struct ggml_tensor * ggml_new_tensor_3d(
  2306. struct ggml_context * ctx,
  2307. enum ggml_type type,
  2308. int ne0,
  2309. int ne1,
  2310. int ne2) {
  2311. const int ne[3] = { ne0, ne1, ne2 };
  2312. return ggml_new_tensor(ctx, type, 3, ne);
  2313. }
  2314. struct ggml_tensor * ggml_new_tensor_4d(
  2315. struct ggml_context * ctx,
  2316. enum ggml_type type,
  2317. int ne0,
  2318. int ne1,
  2319. int ne2,
  2320. int ne3) {
  2321. const int ne[4] = { ne0, ne1, ne2, ne3 };
  2322. return ggml_new_tensor(ctx, type, 4, ne);
  2323. }
  2324. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2325. ctx->scratch_save = ctx->scratch;
  2326. ctx->scratch.data = NULL;
  2327. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2328. ctx->scratch = ctx->scratch_save;
  2329. ggml_set_i32(result, value);
  2330. return result;
  2331. }
  2332. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2333. ctx->scratch_save = ctx->scratch;
  2334. ctx->scratch.data = NULL;
  2335. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2336. ctx->scratch = ctx->scratch_save;
  2337. ggml_set_f32(result, value);
  2338. return result;
  2339. }
  2340. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2341. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  2342. }
  2343. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2344. memset(tensor->data, 0, ggml_nbytes(tensor));
  2345. return tensor;
  2346. }
  2347. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2348. const int n = ggml_nrows(tensor);
  2349. const int nc = tensor->ne[0];
  2350. const size_t n1 = tensor->nb[1];
  2351. char * const data = tensor->data;
  2352. switch (tensor->type) {
  2353. case GGML_TYPE_Q4_0:
  2354. {
  2355. GGML_ASSERT(false);
  2356. } break;
  2357. case GGML_TYPE_Q4_1:
  2358. {
  2359. GGML_ASSERT(false);
  2360. } break;
  2361. case GGML_TYPE_I8:
  2362. {
  2363. assert(tensor->nb[0] == sizeof(int8_t));
  2364. for (int i = 0; i < n; i++) {
  2365. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2366. }
  2367. } break;
  2368. case GGML_TYPE_I16:
  2369. {
  2370. assert(tensor->nb[0] == sizeof(int16_t));
  2371. for (int i = 0; i < n; i++) {
  2372. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2373. }
  2374. } break;
  2375. case GGML_TYPE_I32:
  2376. {
  2377. assert(tensor->nb[0] == sizeof(int32_t));
  2378. for (int i = 0; i < n; i++) {
  2379. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2380. }
  2381. } break;
  2382. case GGML_TYPE_F16:
  2383. {
  2384. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2385. for (int i = 0; i < n; i++) {
  2386. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2387. }
  2388. } break;
  2389. case GGML_TYPE_F32:
  2390. {
  2391. assert(tensor->nb[0] == sizeof(float));
  2392. for (int i = 0; i < n; i++) {
  2393. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2394. }
  2395. } break;
  2396. case GGML_TYPE_COUNT:
  2397. {
  2398. GGML_ASSERT(false);
  2399. } break;
  2400. }
  2401. return tensor;
  2402. }
  2403. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2404. const int n = ggml_nrows(tensor);
  2405. const int nc = tensor->ne[0];
  2406. const size_t n1 = tensor->nb[1];
  2407. char * const data = tensor->data;
  2408. switch (tensor->type) {
  2409. case GGML_TYPE_Q4_0:
  2410. {
  2411. GGML_ASSERT(false);
  2412. } break;
  2413. case GGML_TYPE_Q4_1:
  2414. {
  2415. GGML_ASSERT(false);
  2416. } break;
  2417. case GGML_TYPE_I8:
  2418. {
  2419. assert(tensor->nb[0] == sizeof(int8_t));
  2420. for (int i = 0; i < n; i++) {
  2421. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2422. }
  2423. } break;
  2424. case GGML_TYPE_I16:
  2425. {
  2426. assert(tensor->nb[0] == sizeof(int16_t));
  2427. for (int i = 0; i < n; i++) {
  2428. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2429. }
  2430. } break;
  2431. case GGML_TYPE_I32:
  2432. {
  2433. assert(tensor->nb[0] == sizeof(int32_t));
  2434. for (int i = 0; i < n; i++) {
  2435. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2436. }
  2437. } break;
  2438. case GGML_TYPE_F16:
  2439. {
  2440. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2441. for (int i = 0; i < n; i++) {
  2442. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2443. }
  2444. } break;
  2445. case GGML_TYPE_F32:
  2446. {
  2447. assert(tensor->nb[0] == sizeof(float));
  2448. for (int i = 0; i < n; i++) {
  2449. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2450. }
  2451. } break;
  2452. case GGML_TYPE_COUNT:
  2453. {
  2454. GGML_ASSERT(false);
  2455. } break;
  2456. }
  2457. return tensor;
  2458. }
  2459. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2460. switch (tensor->type) {
  2461. case GGML_TYPE_Q4_0:
  2462. {
  2463. GGML_ASSERT(false);
  2464. } break;
  2465. case GGML_TYPE_Q4_1:
  2466. {
  2467. GGML_ASSERT(false);
  2468. } break;
  2469. case GGML_TYPE_I8:
  2470. {
  2471. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2472. return ((int8_t *)(tensor->data))[i];
  2473. } break;
  2474. case GGML_TYPE_I16:
  2475. {
  2476. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2477. return ((int16_t *)(tensor->data))[i];
  2478. } break;
  2479. case GGML_TYPE_I32:
  2480. {
  2481. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2482. return ((int32_t *)(tensor->data))[i];
  2483. } break;
  2484. case GGML_TYPE_F16:
  2485. {
  2486. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2487. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2488. } break;
  2489. case GGML_TYPE_F32:
  2490. {
  2491. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2492. return ((float *)(tensor->data))[i];
  2493. } break;
  2494. case GGML_TYPE_COUNT:
  2495. {
  2496. GGML_ASSERT(false);
  2497. } break;
  2498. }
  2499. return 0.0f;
  2500. }
  2501. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2502. switch (tensor->type) {
  2503. case GGML_TYPE_Q4_0:
  2504. {
  2505. GGML_ASSERT(false);
  2506. } break;
  2507. case GGML_TYPE_Q4_1:
  2508. {
  2509. GGML_ASSERT(false);
  2510. } break;
  2511. case GGML_TYPE_I8:
  2512. {
  2513. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2514. ((int8_t *)(tensor->data))[i] = value;
  2515. } break;
  2516. case GGML_TYPE_I16:
  2517. {
  2518. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2519. ((int16_t *)(tensor->data))[i] = value;
  2520. } break;
  2521. case GGML_TYPE_I32:
  2522. {
  2523. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2524. ((int32_t *)(tensor->data))[i] = value;
  2525. } break;
  2526. case GGML_TYPE_F16:
  2527. {
  2528. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2529. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2530. } break;
  2531. case GGML_TYPE_F32:
  2532. {
  2533. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2534. ((float *)(tensor->data))[i] = value;
  2535. } break;
  2536. case GGML_TYPE_COUNT:
  2537. {
  2538. GGML_ASSERT(false);
  2539. } break;
  2540. }
  2541. }
  2542. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2543. switch (tensor->type) {
  2544. case GGML_TYPE_Q4_0:
  2545. {
  2546. GGML_ASSERT(false);
  2547. } break;
  2548. case GGML_TYPE_Q4_1:
  2549. {
  2550. GGML_ASSERT(false);
  2551. } break;
  2552. case GGML_TYPE_I8:
  2553. {
  2554. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2555. return ((int8_t *)(tensor->data))[i];
  2556. } break;
  2557. case GGML_TYPE_I16:
  2558. {
  2559. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2560. return ((int16_t *)(tensor->data))[i];
  2561. } break;
  2562. case GGML_TYPE_I32:
  2563. {
  2564. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2565. return ((int32_t *)(tensor->data))[i];
  2566. } break;
  2567. case GGML_TYPE_F16:
  2568. {
  2569. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2570. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2571. } break;
  2572. case GGML_TYPE_F32:
  2573. {
  2574. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2575. return ((float *)(tensor->data))[i];
  2576. } break;
  2577. case GGML_TYPE_COUNT:
  2578. {
  2579. GGML_ASSERT(false);
  2580. } break;
  2581. }
  2582. return 0.0f;
  2583. }
  2584. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2585. switch (tensor->type) {
  2586. case GGML_TYPE_Q4_0:
  2587. {
  2588. GGML_ASSERT(false);
  2589. } break;
  2590. case GGML_TYPE_Q4_1:
  2591. {
  2592. GGML_ASSERT(false);
  2593. } break;
  2594. case GGML_TYPE_I8:
  2595. {
  2596. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2597. ((int8_t *)(tensor->data))[i] = value;
  2598. } break;
  2599. case GGML_TYPE_I16:
  2600. {
  2601. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2602. ((int16_t *)(tensor->data))[i] = value;
  2603. } break;
  2604. case GGML_TYPE_I32:
  2605. {
  2606. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2607. ((int32_t *)(tensor->data))[i] = value;
  2608. } break;
  2609. case GGML_TYPE_F16:
  2610. {
  2611. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2612. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2613. } break;
  2614. case GGML_TYPE_F32:
  2615. {
  2616. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2617. ((float *)(tensor->data))[i] = value;
  2618. } break;
  2619. case GGML_TYPE_COUNT:
  2620. {
  2621. GGML_ASSERT(false);
  2622. } break;
  2623. }
  2624. }
  2625. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2626. return tensor->data;
  2627. }
  2628. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2629. assert(tensor->type == GGML_TYPE_F32);
  2630. return (float *)(tensor->data);
  2631. }
  2632. struct ggml_tensor * ggml_view_tensor(
  2633. struct ggml_context * ctx,
  2634. const struct ggml_tensor * src) {
  2635. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  2636. }
  2637. ////////////////////////////////////////////////////////////////////////////////
  2638. // ggml_dup
  2639. struct ggml_tensor * ggml_dup_impl(
  2640. struct ggml_context * ctx,
  2641. struct ggml_tensor * a,
  2642. bool inplace) {
  2643. bool is_node = false;
  2644. if (!inplace && (a->grad)) {
  2645. is_node = true;
  2646. }
  2647. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2648. result->op = GGML_OP_DUP;
  2649. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2650. result->src0 = a;
  2651. result->src1 = NULL;
  2652. return result;
  2653. }
  2654. struct ggml_tensor * ggml_dup(
  2655. struct ggml_context * ctx,
  2656. struct ggml_tensor * a) {
  2657. return ggml_dup_impl(ctx, a, false);
  2658. }
  2659. struct ggml_tensor * ggml_dup_inplace(
  2660. struct ggml_context * ctx,
  2661. struct ggml_tensor * a) {
  2662. return ggml_dup_impl(ctx, a, true);
  2663. }
  2664. // ggml_add
  2665. struct ggml_tensor * ggml_add_impl(
  2666. struct ggml_context * ctx,
  2667. struct ggml_tensor * a,
  2668. struct ggml_tensor * b,
  2669. bool inplace) {
  2670. GGML_ASSERT(ggml_are_same_shape(a, b));
  2671. bool is_node = false;
  2672. if (!inplace && (a->grad || b->grad)) {
  2673. is_node = true;
  2674. }
  2675. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2676. result->op = GGML_OP_ADD;
  2677. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2678. result->src0 = a;
  2679. result->src1 = b;
  2680. return result;
  2681. }
  2682. struct ggml_tensor * ggml_add(
  2683. struct ggml_context * ctx,
  2684. struct ggml_tensor * a,
  2685. struct ggml_tensor * b) {
  2686. return ggml_add_impl(ctx, a, b, false);
  2687. }
  2688. struct ggml_tensor * ggml_add_inplace(
  2689. struct ggml_context * ctx,
  2690. struct ggml_tensor * a,
  2691. struct ggml_tensor * b) {
  2692. return ggml_add_impl(ctx, a, b, true);
  2693. }
  2694. // ggml_sub
  2695. struct ggml_tensor * ggml_sub_impl(
  2696. struct ggml_context * ctx,
  2697. struct ggml_tensor * a,
  2698. struct ggml_tensor * b,
  2699. bool inplace) {
  2700. GGML_ASSERT(ggml_are_same_shape(a, b));
  2701. bool is_node = false;
  2702. if (!inplace && (a->grad || b->grad)) {
  2703. is_node = true;
  2704. }
  2705. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2706. result->op = GGML_OP_SUB;
  2707. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2708. result->src0 = a;
  2709. result->src1 = b;
  2710. return result;
  2711. }
  2712. struct ggml_tensor * ggml_sub(
  2713. struct ggml_context * ctx,
  2714. struct ggml_tensor * a,
  2715. struct ggml_tensor * b) {
  2716. return ggml_sub_impl(ctx, a, b, false);
  2717. }
  2718. struct ggml_tensor * ggml_sub_inplace(
  2719. struct ggml_context * ctx,
  2720. struct ggml_tensor * a,
  2721. struct ggml_tensor * b) {
  2722. return ggml_sub_impl(ctx, a, b, true);
  2723. }
  2724. // ggml_mul
  2725. struct ggml_tensor * ggml_mul_impl(
  2726. struct ggml_context * ctx,
  2727. struct ggml_tensor * a,
  2728. struct ggml_tensor * b,
  2729. bool inplace) {
  2730. GGML_ASSERT(ggml_are_same_shape(a, b));
  2731. bool is_node = false;
  2732. if (!inplace && (a->grad || b->grad)) {
  2733. is_node = true;
  2734. }
  2735. if (inplace) {
  2736. GGML_ASSERT(is_node == false);
  2737. }
  2738. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2739. result->op = GGML_OP_MUL;
  2740. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2741. result->src0 = a;
  2742. result->src1 = b;
  2743. return result;
  2744. }
  2745. struct ggml_tensor * ggml_mul(
  2746. struct ggml_context * ctx,
  2747. struct ggml_tensor * a,
  2748. struct ggml_tensor * b) {
  2749. return ggml_mul_impl(ctx, a, b, false);
  2750. }
  2751. struct ggml_tensor * ggml_mul_inplace(
  2752. struct ggml_context * ctx,
  2753. struct ggml_tensor * a,
  2754. struct ggml_tensor * b) {
  2755. return ggml_mul_impl(ctx, a, b, true);
  2756. }
  2757. // ggml_div
  2758. struct ggml_tensor * ggml_div_impl(
  2759. struct ggml_context * ctx,
  2760. struct ggml_tensor * a,
  2761. struct ggml_tensor * b,
  2762. bool inplace) {
  2763. GGML_ASSERT(ggml_are_same_shape(a, b));
  2764. bool is_node = false;
  2765. if (!inplace && (a->grad || b->grad)) {
  2766. is_node = true;
  2767. }
  2768. if (inplace) {
  2769. GGML_ASSERT(is_node == false);
  2770. }
  2771. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2772. result->op = GGML_OP_DIV;
  2773. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2774. result->src0 = a;
  2775. result->src1 = b;
  2776. return result;
  2777. }
  2778. struct ggml_tensor * ggml_div(
  2779. struct ggml_context * ctx,
  2780. struct ggml_tensor * a,
  2781. struct ggml_tensor * b) {
  2782. return ggml_div_impl(ctx, a, b, false);
  2783. }
  2784. struct ggml_tensor * ggml_div_inplace(
  2785. struct ggml_context * ctx,
  2786. struct ggml_tensor * a,
  2787. struct ggml_tensor * b) {
  2788. return ggml_div_impl(ctx, a, b, true);
  2789. }
  2790. // ggml_sqr
  2791. struct ggml_tensor * ggml_sqr_impl(
  2792. struct ggml_context * ctx,
  2793. struct ggml_tensor * a,
  2794. bool inplace) {
  2795. bool is_node = false;
  2796. if (!inplace && (a->grad)) {
  2797. is_node = true;
  2798. }
  2799. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2800. result->op = GGML_OP_SQR;
  2801. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2802. result->src0 = a;
  2803. result->src1 = NULL;
  2804. return result;
  2805. }
  2806. struct ggml_tensor * ggml_sqr(
  2807. struct ggml_context * ctx,
  2808. struct ggml_tensor * a) {
  2809. return ggml_sqr_impl(ctx, a, false);
  2810. }
  2811. struct ggml_tensor * ggml_sqr_inplace(
  2812. struct ggml_context * ctx,
  2813. struct ggml_tensor * a) {
  2814. return ggml_sqr_impl(ctx, a, true);
  2815. }
  2816. // ggml_sqrt
  2817. struct ggml_tensor * ggml_sqrt_impl(
  2818. struct ggml_context * ctx,
  2819. struct ggml_tensor * a,
  2820. bool inplace) {
  2821. bool is_node = false;
  2822. if (!inplace && (a->grad)) {
  2823. is_node = true;
  2824. }
  2825. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2826. result->op = GGML_OP_SQRT;
  2827. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2828. result->src0 = a;
  2829. result->src1 = NULL;
  2830. return result;
  2831. }
  2832. struct ggml_tensor * ggml_sqrt(
  2833. struct ggml_context * ctx,
  2834. struct ggml_tensor * a) {
  2835. return ggml_sqrt_impl(ctx, a, false);
  2836. }
  2837. struct ggml_tensor * ggml_sqrt_inplace(
  2838. struct ggml_context * ctx,
  2839. struct ggml_tensor * a) {
  2840. return ggml_sqrt_impl(ctx, a, true);
  2841. }
  2842. // ggml_sum
  2843. struct ggml_tensor * ggml_sum(
  2844. struct ggml_context * ctx,
  2845. struct ggml_tensor * a) {
  2846. bool is_node = false;
  2847. if (a->grad) {
  2848. is_node = true;
  2849. }
  2850. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  2851. result->op = GGML_OP_SUM;
  2852. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2853. result->src0 = a;
  2854. result->src1 = NULL;
  2855. return result;
  2856. }
  2857. // ggml_mean
  2858. struct ggml_tensor * ggml_mean(
  2859. struct ggml_context * ctx,
  2860. struct ggml_tensor * a) {
  2861. bool is_node = false;
  2862. if (a->grad) {
  2863. GGML_ASSERT(false); // TODO: implement
  2864. is_node = true;
  2865. }
  2866. int ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  2867. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  2868. result->op = GGML_OP_MEAN;
  2869. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2870. result->src0 = a;
  2871. result->src1 = NULL;
  2872. return result;
  2873. }
  2874. // ggml_repeat
  2875. struct ggml_tensor * ggml_repeat(
  2876. struct ggml_context * ctx,
  2877. struct ggml_tensor * a,
  2878. struct ggml_tensor * b) {
  2879. GGML_ASSERT(ggml_can_repeat(a, b));
  2880. bool is_node = false;
  2881. if (a->grad) {
  2882. is_node = true;
  2883. }
  2884. if (ggml_are_same_shape(a, b) && !is_node) {
  2885. return a;
  2886. }
  2887. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  2888. result->op = GGML_OP_REPEAT;
  2889. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2890. result->src0 = a;
  2891. result->src1 = b;
  2892. return result;
  2893. }
  2894. // ggml_abs
  2895. struct ggml_tensor * ggml_abs_impl(
  2896. struct ggml_context * ctx,
  2897. struct ggml_tensor * a,
  2898. bool inplace) {
  2899. bool is_node = false;
  2900. if (!inplace && (a->grad)) {
  2901. is_node = true;
  2902. }
  2903. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2904. result->op = GGML_OP_ABS;
  2905. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2906. result->src0 = a;
  2907. result->src1 = NULL;
  2908. return result;
  2909. }
  2910. struct ggml_tensor * ggml_abs(
  2911. struct ggml_context * ctx,
  2912. struct ggml_tensor * a) {
  2913. return ggml_abs_impl(ctx, a, false);
  2914. }
  2915. struct ggml_tensor * ggml_abs_inplace(
  2916. struct ggml_context * ctx,
  2917. struct ggml_tensor * a) {
  2918. return ggml_abs_impl(ctx, a, true);
  2919. }
  2920. // ggml_sgn
  2921. struct ggml_tensor * ggml_sgn_impl(
  2922. struct ggml_context * ctx,
  2923. struct ggml_tensor * a,
  2924. bool inplace) {
  2925. bool is_node = false;
  2926. if (!inplace && (a->grad)) {
  2927. is_node = true;
  2928. }
  2929. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2930. result->op = GGML_OP_SGN;
  2931. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2932. result->src0 = a;
  2933. result->src1 = NULL;
  2934. return result;
  2935. }
  2936. struct ggml_tensor * ggml_sgn(
  2937. struct ggml_context * ctx,
  2938. struct ggml_tensor * a) {
  2939. return ggml_sgn_impl(ctx, a, false);
  2940. }
  2941. struct ggml_tensor * ggml_sgn_inplace(
  2942. struct ggml_context * ctx,
  2943. struct ggml_tensor * a) {
  2944. return ggml_sgn_impl(ctx, a, true);
  2945. }
  2946. // ggml_neg
  2947. struct ggml_tensor * ggml_neg_impl(
  2948. struct ggml_context * ctx,
  2949. struct ggml_tensor * a,
  2950. bool inplace) {
  2951. bool is_node = false;
  2952. if (!inplace && (a->grad)) {
  2953. is_node = true;
  2954. }
  2955. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2956. result->op = GGML_OP_NEG;
  2957. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2958. result->src0 = a;
  2959. result->src1 = NULL;
  2960. return result;
  2961. }
  2962. struct ggml_tensor * ggml_neg(
  2963. struct ggml_context * ctx,
  2964. struct ggml_tensor * a) {
  2965. return ggml_neg_impl(ctx, a, false);
  2966. }
  2967. struct ggml_tensor * ggml_neg_inplace(
  2968. struct ggml_context * ctx,
  2969. struct ggml_tensor * a) {
  2970. return ggml_neg_impl(ctx, a, true);
  2971. }
  2972. // ggml_step
  2973. struct ggml_tensor * ggml_step_impl(
  2974. struct ggml_context * ctx,
  2975. struct ggml_tensor * a,
  2976. bool inplace) {
  2977. bool is_node = false;
  2978. if (!inplace && (a->grad)) {
  2979. is_node = true;
  2980. }
  2981. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2982. result->op = GGML_OP_STEP;
  2983. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2984. result->src0 = a;
  2985. result->src1 = NULL;
  2986. return result;
  2987. }
  2988. struct ggml_tensor * ggml_step(
  2989. struct ggml_context * ctx,
  2990. struct ggml_tensor * a) {
  2991. return ggml_step_impl(ctx, a, false);
  2992. }
  2993. struct ggml_tensor * ggml_step_inplace(
  2994. struct ggml_context * ctx,
  2995. struct ggml_tensor * a) {
  2996. return ggml_step_impl(ctx, a, true);
  2997. }
  2998. // ggml_relu
  2999. struct ggml_tensor * ggml_relu_impl(
  3000. struct ggml_context * ctx,
  3001. struct ggml_tensor * a,
  3002. bool inplace) {
  3003. bool is_node = false;
  3004. if (!inplace && (a->grad)) {
  3005. is_node = true;
  3006. }
  3007. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3008. result->op = GGML_OP_RELU;
  3009. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3010. result->src0 = a;
  3011. result->src1 = NULL;
  3012. return result;
  3013. }
  3014. struct ggml_tensor * ggml_relu(
  3015. struct ggml_context * ctx,
  3016. struct ggml_tensor * a) {
  3017. return ggml_relu_impl(ctx, a, false);
  3018. }
  3019. struct ggml_tensor * ggml_relu_inplace(
  3020. struct ggml_context * ctx,
  3021. struct ggml_tensor * a) {
  3022. return ggml_relu_impl(ctx, a, true);
  3023. }
  3024. // ggml_gelu
  3025. struct ggml_tensor * ggml_gelu_impl(
  3026. struct ggml_context * ctx,
  3027. struct ggml_tensor * a,
  3028. bool inplace) {
  3029. bool is_node = false;
  3030. if (!inplace && (a->grad)) {
  3031. is_node = true;
  3032. }
  3033. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3034. result->op = GGML_OP_GELU;
  3035. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3036. result->src0 = a;
  3037. result->src1 = NULL;
  3038. return result;
  3039. }
  3040. struct ggml_tensor * ggml_gelu(
  3041. struct ggml_context * ctx,
  3042. struct ggml_tensor * a) {
  3043. return ggml_gelu_impl(ctx, a, false);
  3044. }
  3045. struct ggml_tensor * ggml_gelu_inplace(
  3046. struct ggml_context * ctx,
  3047. struct ggml_tensor * a) {
  3048. return ggml_gelu_impl(ctx, a, true);
  3049. }
  3050. // ggml_silu
  3051. struct ggml_tensor * ggml_silu_impl(
  3052. struct ggml_context * ctx,
  3053. struct ggml_tensor * a,
  3054. bool inplace) {
  3055. bool is_node = false;
  3056. if (!inplace && (a->grad)) {
  3057. is_node = true;
  3058. }
  3059. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3060. result->op = GGML_OP_SILU;
  3061. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3062. result->src0 = a;
  3063. result->src1 = NULL;
  3064. return result;
  3065. }
  3066. struct ggml_tensor * ggml_silu(
  3067. struct ggml_context * ctx,
  3068. struct ggml_tensor * a) {
  3069. return ggml_silu_impl(ctx, a, false);
  3070. }
  3071. struct ggml_tensor * ggml_silu_inplace(
  3072. struct ggml_context * ctx,
  3073. struct ggml_tensor * a) {
  3074. return ggml_silu_impl(ctx, a, true);
  3075. }
  3076. // ggml_norm
  3077. struct ggml_tensor * ggml_norm_impl(
  3078. struct ggml_context * ctx,
  3079. struct ggml_tensor * a,
  3080. bool inplace) {
  3081. bool is_node = false;
  3082. if (!inplace && (a->grad)) {
  3083. GGML_ASSERT(false); // TODO: implement backward
  3084. is_node = true;
  3085. }
  3086. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3087. result->op = GGML_OP_NORM;
  3088. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3089. result->src0 = a;
  3090. result->src1 = NULL; // TODO: maybe store epsilon here?
  3091. return result;
  3092. }
  3093. struct ggml_tensor * ggml_norm(
  3094. struct ggml_context * ctx,
  3095. struct ggml_tensor * a) {
  3096. return ggml_norm_impl(ctx, a, false);
  3097. }
  3098. struct ggml_tensor * ggml_norm_inplace(
  3099. struct ggml_context * ctx,
  3100. struct ggml_tensor * a) {
  3101. return ggml_norm_impl(ctx, a, true);
  3102. }
  3103. struct ggml_tensor * ggml_rms_norm_impl(
  3104. struct ggml_context * ctx,
  3105. struct ggml_tensor * a,
  3106. bool inplace) {
  3107. bool is_node = false;
  3108. if (!inplace && (a->grad)) {
  3109. GGML_ASSERT(false); // TODO: implement backward
  3110. is_node = true;
  3111. }
  3112. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3113. result->op = GGML_OP_RMS_NORM;
  3114. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3115. result->src0 = a;
  3116. result->src1 = NULL; // TODO: maybe store epsilon here?
  3117. return result;
  3118. }
  3119. struct ggml_tensor * ggml_rms_norm(
  3120. struct ggml_context * ctx,
  3121. struct ggml_tensor * a) {
  3122. return ggml_rms_norm_impl(ctx, a, false);
  3123. }
  3124. struct ggml_tensor * ggml_rms_norm_inplace(
  3125. struct ggml_context * ctx,
  3126. struct ggml_tensor * a) {
  3127. return ggml_rms_norm_impl(ctx, a, true);
  3128. }
  3129. // ggml_mul_mat
  3130. struct ggml_tensor * ggml_mul_mat(
  3131. struct ggml_context * ctx,
  3132. struct ggml_tensor * a,
  3133. struct ggml_tensor * b) {
  3134. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3135. GGML_ASSERT(!ggml_is_transposed(a));
  3136. bool is_node = false;
  3137. if (a->grad || b->grad) {
  3138. is_node = true;
  3139. }
  3140. const int ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  3141. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  3142. result->op = GGML_OP_MUL_MAT;
  3143. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3144. result->src0 = a;
  3145. result->src1 = b;
  3146. return result;
  3147. }
  3148. // ggml_scale
  3149. struct ggml_tensor * ggml_scale_impl(
  3150. struct ggml_context * ctx,
  3151. struct ggml_tensor * a,
  3152. struct ggml_tensor * b,
  3153. bool inplace) {
  3154. GGML_ASSERT(ggml_is_scalar(b));
  3155. GGML_ASSERT(ggml_is_padded_1d(a));
  3156. bool is_node = false;
  3157. if (!inplace && (a->grad || b->grad)) {
  3158. GGML_ASSERT(false); // TODO: implement backward
  3159. is_node = true;
  3160. }
  3161. // TODO: when implement backward, fix this:
  3162. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3163. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3164. result->op = GGML_OP_SCALE;
  3165. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3166. result->src0 = a;
  3167. result->src1 = b;
  3168. return result;
  3169. }
  3170. struct ggml_tensor * ggml_scale(
  3171. struct ggml_context * ctx,
  3172. struct ggml_tensor * a,
  3173. struct ggml_tensor * b) {
  3174. return ggml_scale_impl(ctx, a, b, false);
  3175. }
  3176. struct ggml_tensor * ggml_scale_inplace(
  3177. struct ggml_context * ctx,
  3178. struct ggml_tensor * a,
  3179. struct ggml_tensor * b) {
  3180. return ggml_scale_impl(ctx, a, b, true);
  3181. }
  3182. // ggml_cpy
  3183. struct ggml_tensor * ggml_cpy_impl(
  3184. struct ggml_context * ctx,
  3185. struct ggml_tensor * a,
  3186. struct ggml_tensor * b,
  3187. bool inplace) {
  3188. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3189. bool is_node = false;
  3190. if (!inplace && (a->grad || b->grad)) {
  3191. GGML_ASSERT(false); // TODO: implement backward
  3192. is_node = true;
  3193. }
  3194. // make a view of the destination
  3195. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3196. result->op = GGML_OP_CPY;
  3197. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3198. result->src0 = a;
  3199. result->src1 = b;
  3200. return result;
  3201. }
  3202. struct ggml_tensor * ggml_cpy(
  3203. struct ggml_context * ctx,
  3204. struct ggml_tensor * a,
  3205. struct ggml_tensor * b) {
  3206. return ggml_cpy_impl(ctx, a, b, false);
  3207. }
  3208. struct ggml_tensor * ggml_cpy_inplace(
  3209. struct ggml_context * ctx,
  3210. struct ggml_tensor * a,
  3211. struct ggml_tensor * b) {
  3212. return ggml_cpy_impl(ctx, a, b, true);
  3213. }
  3214. // ggml_reshape
  3215. struct ggml_tensor * ggml_reshape(
  3216. struct ggml_context * ctx,
  3217. struct ggml_tensor * a,
  3218. struct ggml_tensor * b) {
  3219. GGML_ASSERT(ggml_is_contiguous(a));
  3220. GGML_ASSERT(ggml_is_contiguous(b));
  3221. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3222. bool is_node = false;
  3223. if (a->grad || b->grad) {
  3224. GGML_ASSERT(false); // TODO: implement backward
  3225. is_node = true;
  3226. }
  3227. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  3228. result->op = GGML_OP_RESHAPE;
  3229. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3230. result->src0 = a;
  3231. result->src1 = NULL;
  3232. return result;
  3233. }
  3234. struct ggml_tensor * ggml_reshape_2d(
  3235. struct ggml_context * ctx,
  3236. struct ggml_tensor * a,
  3237. int ne0,
  3238. int ne1) {
  3239. GGML_ASSERT(ggml_is_contiguous(a));
  3240. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3241. bool is_node = false;
  3242. if (a->grad) {
  3243. GGML_ASSERT(false); // TODO: implement backward
  3244. is_node = true;
  3245. }
  3246. const int ne[2] = { ne0, ne1 };
  3247. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  3248. result->op = GGML_OP_RESHAPE;
  3249. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3250. result->src0 = a;
  3251. result->src1 = NULL;
  3252. return result;
  3253. }
  3254. struct ggml_tensor * ggml_reshape_3d(
  3255. struct ggml_context * ctx,
  3256. struct ggml_tensor * a,
  3257. int ne0,
  3258. int ne1,
  3259. int ne2) {
  3260. GGML_ASSERT(ggml_is_contiguous(a));
  3261. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3262. bool is_node = false;
  3263. if (a->grad) {
  3264. GGML_ASSERT(false); // TODO: implement backward
  3265. is_node = true;
  3266. }
  3267. const int ne[3] = { ne0, ne1, ne2 };
  3268. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  3269. result->op = GGML_OP_RESHAPE;
  3270. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3271. result->src0 = a;
  3272. result->src1 = NULL;
  3273. return result;
  3274. }
  3275. // ggml_view_1d
  3276. struct ggml_tensor * ggml_view_1d(
  3277. struct ggml_context * ctx,
  3278. struct ggml_tensor * a,
  3279. int ne0,
  3280. size_t offset) {
  3281. if (a->grad) {
  3282. GGML_ASSERT(false); // gradient propagation is not supported
  3283. }
  3284. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  3285. result->op = GGML_OP_VIEW;
  3286. result->grad = NULL;
  3287. result->src0 = a;
  3288. result->src1 = NULL; // TODO: maybe store the offset here?
  3289. return result;
  3290. }
  3291. // ggml_view_2d
  3292. struct ggml_tensor * ggml_view_2d(
  3293. struct ggml_context * ctx,
  3294. struct ggml_tensor * a,
  3295. int ne0,
  3296. int ne1,
  3297. size_t nb1,
  3298. size_t offset) {
  3299. if (a->grad) {
  3300. GGML_ASSERT(false); // gradient propagation is not supported
  3301. }
  3302. const int ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  3303. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  3304. result->nb[1] = nb1;
  3305. result->nb[2] = result->nb[1]*ne1;
  3306. result->nb[3] = result->nb[2];
  3307. result->op = GGML_OP_VIEW;
  3308. result->grad = NULL;
  3309. result->src0 = a;
  3310. result->src1 = NULL; // TODO: maybe store the offset here?
  3311. return result;
  3312. }
  3313. // ggml_permute
  3314. struct ggml_tensor * ggml_permute(
  3315. struct ggml_context * ctx,
  3316. struct ggml_tensor * a,
  3317. int axis0,
  3318. int axis1,
  3319. int axis2,
  3320. int axis3) {
  3321. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3322. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3323. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3324. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3325. GGML_ASSERT(axis0 != axis1);
  3326. GGML_ASSERT(axis0 != axis2);
  3327. GGML_ASSERT(axis0 != axis3);
  3328. GGML_ASSERT(axis1 != axis2);
  3329. GGML_ASSERT(axis1 != axis3);
  3330. GGML_ASSERT(axis2 != axis3);
  3331. bool is_node = false;
  3332. if (a->grad) {
  3333. GGML_ASSERT(false); // TODO: implement backward
  3334. is_node = true;
  3335. }
  3336. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3337. int ne[GGML_MAX_DIMS];
  3338. int nb[GGML_MAX_DIMS];
  3339. ne[axis0] = a->ne[0];
  3340. ne[axis1] = a->ne[1];
  3341. ne[axis2] = a->ne[2];
  3342. ne[axis3] = a->ne[3];
  3343. nb[axis0] = a->nb[0];
  3344. nb[axis1] = a->nb[1];
  3345. nb[axis2] = a->nb[2];
  3346. nb[axis3] = a->nb[3];
  3347. result->ne[0] = ne[0];
  3348. result->ne[1] = ne[1];
  3349. result->ne[2] = ne[2];
  3350. result->ne[3] = ne[3];
  3351. result->nb[0] = nb[0];
  3352. result->nb[1] = nb[1];
  3353. result->nb[2] = nb[2];
  3354. result->nb[3] = nb[3];
  3355. result->op = GGML_OP_PERMUTE;
  3356. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3357. result->src0 = a;
  3358. result->src1 = NULL; // TODO: maybe store the permutation here?
  3359. return result;
  3360. }
  3361. // ggml_transpose
  3362. struct ggml_tensor * ggml_transpose(
  3363. struct ggml_context * ctx,
  3364. struct ggml_tensor * a) {
  3365. bool is_node = false;
  3366. if (a->grad) {
  3367. GGML_ASSERT(false); // TODO: implement backward
  3368. is_node = true;
  3369. }
  3370. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3371. result->ne[0] = a->ne[1];
  3372. result->ne[1] = a->ne[0];
  3373. result->nb[0] = a->nb[1];
  3374. result->nb[1] = a->nb[0];
  3375. result->op = GGML_OP_TRANSPOSE;
  3376. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3377. result->src0 = a;
  3378. result->src1 = NULL;
  3379. return result;
  3380. }
  3381. // ggml_get_rows
  3382. struct ggml_tensor * ggml_get_rows(
  3383. struct ggml_context * ctx,
  3384. struct ggml_tensor * a,
  3385. struct ggml_tensor * b) {
  3386. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3387. bool is_node = false;
  3388. if (a->grad || b->grad) {
  3389. GGML_ASSERT(false); // TODO: implement backward
  3390. is_node = true;
  3391. }
  3392. // TODO: implement non F32 return
  3393. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3394. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  3395. result->op = GGML_OP_GET_ROWS;
  3396. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3397. result->src0 = a;
  3398. result->src1 = b;
  3399. return result;
  3400. }
  3401. // ggml_diag_mask_inf
  3402. struct ggml_tensor * ggml_diag_mask_inf(
  3403. struct ggml_context * ctx,
  3404. struct ggml_tensor * a,
  3405. int n_past) {
  3406. bool is_node = false;
  3407. if (a->grad) {
  3408. GGML_ASSERT(false); // TODO: implement backward
  3409. is_node = true;
  3410. }
  3411. // TODO: when implement backward, fix this:
  3412. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3413. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3414. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  3415. result->op = GGML_OP_DIAG_MASK_INF;
  3416. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3417. result->src0 = a;
  3418. result->src1 = b;
  3419. return result;
  3420. }
  3421. // ggml_soft_max
  3422. struct ggml_tensor * ggml_soft_max(
  3423. struct ggml_context * ctx,
  3424. struct ggml_tensor * a) {
  3425. bool is_node = false;
  3426. if (a->grad) {
  3427. GGML_ASSERT(false); // TODO: implement backward
  3428. is_node = true;
  3429. }
  3430. // TODO: when implement backward, fix this:
  3431. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3432. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3433. result->op = GGML_OP_SOFT_MAX;
  3434. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3435. result->src0 = a;
  3436. result->src1 = NULL;
  3437. return result;
  3438. }
  3439. // ggml_rope
  3440. struct ggml_tensor * ggml_rope(
  3441. struct ggml_context * ctx,
  3442. struct ggml_tensor * a,
  3443. int n_past,
  3444. int n_dims,
  3445. int mode) {
  3446. GGML_ASSERT(n_past >= 0);
  3447. bool is_node = false;
  3448. if (a->grad) {
  3449. GGML_ASSERT(false); // TODO: implement backward
  3450. is_node = true;
  3451. }
  3452. // TODO: when implement backward, fix this:
  3453. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3454. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3455. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  3456. ((int32_t *) b->data)[0] = n_past;
  3457. ((int32_t *) b->data)[1] = n_dims;
  3458. ((int32_t *) b->data)[2] = mode;
  3459. result->op = GGML_OP_ROPE;
  3460. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3461. result->src0 = a;
  3462. result->src1 = b;
  3463. return result;
  3464. }
  3465. // ggml_conv_1d_1s
  3466. struct ggml_tensor * ggml_conv_1d_1s(
  3467. struct ggml_context * ctx,
  3468. struct ggml_tensor * a,
  3469. struct ggml_tensor * b) {
  3470. GGML_ASSERT(ggml_is_matrix(b));
  3471. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3472. GGML_ASSERT(a->ne[3] == 1);
  3473. bool is_node = false;
  3474. if (a->grad || b->grad) {
  3475. GGML_ASSERT(false); // TODO: implement backward
  3476. is_node = true;
  3477. }
  3478. const int ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  3479. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3480. result->op = GGML_OP_CONV_1D_1S;
  3481. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3482. result->src0 = a;
  3483. result->src1 = b;
  3484. return result;
  3485. }
  3486. // ggml_conv_1d_2s
  3487. struct ggml_tensor * ggml_conv_1d_2s(
  3488. struct ggml_context * ctx,
  3489. struct ggml_tensor * a,
  3490. struct ggml_tensor * b) {
  3491. GGML_ASSERT(ggml_is_matrix(b));
  3492. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3493. GGML_ASSERT(a->ne[3] == 1);
  3494. bool is_node = false;
  3495. if (a->grad || b->grad) {
  3496. GGML_ASSERT(false); // TODO: implement backward
  3497. is_node = true;
  3498. }
  3499. const int ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  3500. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3501. result->op = GGML_OP_CONV_1D_2S;
  3502. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3503. result->src0 = a;
  3504. result->src1 = b;
  3505. return result;
  3506. }
  3507. // ggml_flash_attn
  3508. struct ggml_tensor * ggml_flash_attn(
  3509. struct ggml_context * ctx,
  3510. struct ggml_tensor * q,
  3511. struct ggml_tensor * k,
  3512. struct ggml_tensor * v,
  3513. bool masked) {
  3514. GGML_ASSERT(ggml_can_mul_mat(k, q));
  3515. // TODO: check if vT can be multiplied by (k*qT)
  3516. bool is_node = false;
  3517. if (q->grad || k->grad || v->grad) {
  3518. GGML_ASSERT(false); // TODO: implement backward
  3519. is_node = true;
  3520. }
  3521. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  3522. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  3523. result->op = GGML_OP_FLASH_ATTN;
  3524. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3525. result->src0 = q;
  3526. result->src1 = k;
  3527. result->opt[0] = v;
  3528. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  3529. return result;
  3530. }
  3531. // ggml_flash_ff
  3532. struct ggml_tensor * ggml_flash_ff(
  3533. struct ggml_context * ctx,
  3534. struct ggml_tensor * a,
  3535. struct ggml_tensor * b0,
  3536. struct ggml_tensor * b1,
  3537. struct ggml_tensor * c0,
  3538. struct ggml_tensor * c1) {
  3539. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  3540. // TODO: more checks
  3541. bool is_node = false;
  3542. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  3543. GGML_ASSERT(false); // TODO: implement backward
  3544. is_node = true;
  3545. }
  3546. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3547. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  3548. result->op = GGML_OP_FLASH_FF;
  3549. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3550. result->src0 = a;
  3551. result->src1 = b0;
  3552. result->opt[0] = b1;
  3553. result->opt[1] = c0;
  3554. result->opt[2] = c1;
  3555. return result;
  3556. }
  3557. ////////////////////////////////////////////////////////////////////////////////
  3558. void ggml_set_param(
  3559. struct ggml_context * ctx,
  3560. struct ggml_tensor * tensor) {
  3561. tensor->is_param = true;
  3562. GGML_ASSERT(tensor->grad == NULL);
  3563. tensor->grad = ggml_dup_tensor(ctx, tensor);
  3564. }
  3565. // ggml_compute_forward_dup
  3566. static void ggml_compute_forward_dup_f16(
  3567. const struct ggml_compute_params * params,
  3568. const struct ggml_tensor * src0,
  3569. struct ggml_tensor * dst) {
  3570. GGML_ASSERT(params->ith == 0);
  3571. GGML_ASSERT(ggml_is_contiguous(dst));
  3572. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  3573. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3574. return;
  3575. }
  3576. const int ne00 = src0->ne[0];
  3577. const int ne01 = src0->ne[1];
  3578. const int ne02 = src0->ne[2];
  3579. const int ne03 = src0->ne[3];
  3580. const size_t nb00 = src0->nb[0];
  3581. const size_t nb01 = src0->nb[1];
  3582. const size_t nb02 = src0->nb[2];
  3583. const size_t nb03 = src0->nb[3];
  3584. if (ggml_is_contiguous(src0) && src0->type == dst->type) {
  3585. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  3586. return;
  3587. }
  3588. if (src0->nb[0] == sizeof(ggml_fp16_t)) {
  3589. if (dst->type == GGML_TYPE_F16) {
  3590. size_t id = 0;
  3591. const size_t rs = ne00*nb00;
  3592. for (int i03 = 0; i03 < ne03; i03++) {
  3593. for (int i02 = 0; i02 < ne02; i02++) {
  3594. for (int i01 = 0; i01 < ne01; i01++) {
  3595. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  3596. char * dst_ptr = (char *) dst->data + id*rs;
  3597. memcpy(dst_ptr, src0_ptr, rs);
  3598. id++;
  3599. }
  3600. }
  3601. }
  3602. } else if (dst->type == GGML_TYPE_F32) {
  3603. size_t id = 0;
  3604. float * dst_ptr = (float *) dst->data;
  3605. for (int i03 = 0; i03 < ne03; i03++) {
  3606. for (int i02 = 0; i02 < ne02; i02++) {
  3607. for (int i01 = 0; i01 < ne01; i01++) {
  3608. for (int i00 = 0; i00 < ne00; i00++) {
  3609. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3610. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  3611. id++;
  3612. }
  3613. }
  3614. }
  3615. }
  3616. } else {
  3617. GGML_ASSERT(false); // TODO: implement
  3618. }
  3619. } else {
  3620. //printf("%s: this is not optimal - fix me\n", __func__);
  3621. if (dst->type == GGML_TYPE_F32) {
  3622. size_t id = 0;
  3623. float * dst_ptr = (float *) dst->data;
  3624. for (int i03 = 0; i03 < ne03; i03++) {
  3625. for (int i02 = 0; i02 < ne02; i02++) {
  3626. for (int i01 = 0; i01 < ne01; i01++) {
  3627. for (int i00 = 0; i00 < ne00; i00++) {
  3628. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3629. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  3630. id++;
  3631. }
  3632. }
  3633. }
  3634. }
  3635. } else if (dst->type == GGML_TYPE_F16) {
  3636. size_t id = 0;
  3637. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3638. for (int i03 = 0; i03 < ne03; i03++) {
  3639. for (int i02 = 0; i02 < ne02; i02++) {
  3640. for (int i01 = 0; i01 < ne01; i01++) {
  3641. for (int i00 = 0; i00 < ne00; i00++) {
  3642. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3643. dst_ptr[id] = *src0_ptr;
  3644. id++;
  3645. }
  3646. }
  3647. }
  3648. }
  3649. } else {
  3650. GGML_ASSERT(false); // TODO: implement
  3651. }
  3652. }
  3653. }
  3654. static void ggml_compute_forward_dup_f32(
  3655. const struct ggml_compute_params * params,
  3656. const struct ggml_tensor * src0,
  3657. struct ggml_tensor * dst) {
  3658. GGML_ASSERT(params->ith == 0);
  3659. GGML_ASSERT(ggml_is_contiguous(dst));
  3660. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  3661. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3662. return;
  3663. }
  3664. const int ne00 = src0->ne[0];
  3665. const int ne01 = src0->ne[1];
  3666. const int ne02 = src0->ne[2];
  3667. const int ne03 = src0->ne[3];
  3668. const size_t nb00 = src0->nb[0];
  3669. const size_t nb01 = src0->nb[1];
  3670. const size_t nb02 = src0->nb[2];
  3671. const size_t nb03 = src0->nb[3];
  3672. if (ggml_is_contiguous(src0) && src0->type == dst->type) {
  3673. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  3674. return;
  3675. }
  3676. if (src0->nb[0] == sizeof(float)) {
  3677. if (dst->type == GGML_TYPE_F32) {
  3678. size_t id = 0;
  3679. const size_t rs = ne00*nb00;
  3680. for (int i03 = 0; i03 < ne03; i03++) {
  3681. for (int i02 = 0; i02 < ne02; i02++) {
  3682. for (int i01 = 0; i01 < ne01; i01++) {
  3683. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  3684. char * dst_ptr = (char *) dst->data + id*rs;
  3685. memcpy(dst_ptr, src0_ptr, rs);
  3686. id++;
  3687. }
  3688. }
  3689. }
  3690. } else if (dst->type == GGML_TYPE_F16) {
  3691. size_t id = 0;
  3692. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3693. for (int i03 = 0; i03 < ne03; i03++) {
  3694. for (int i02 = 0; i02 < ne02; i02++) {
  3695. for (int i01 = 0; i01 < ne01; i01++) {
  3696. for (int i00 = 0; i00 < ne00; i00++) {
  3697. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3698. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  3699. id++;
  3700. }
  3701. }
  3702. }
  3703. }
  3704. } else {
  3705. GGML_ASSERT(false); // TODO: implement
  3706. }
  3707. } else {
  3708. //printf("%s: this is not optimal - fix me\n", __func__);
  3709. if (dst->type == GGML_TYPE_F32) {
  3710. size_t id = 0;
  3711. float * dst_ptr = (float *) dst->data;
  3712. for (int i03 = 0; i03 < ne03; i03++) {
  3713. for (int i02 = 0; i02 < ne02; i02++) {
  3714. for (int i01 = 0; i01 < ne01; i01++) {
  3715. for (int i00 = 0; i00 < ne00; i00++) {
  3716. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3717. dst_ptr[id] = *src0_ptr;
  3718. id++;
  3719. }
  3720. }
  3721. }
  3722. }
  3723. } else if (dst->type == GGML_TYPE_F16) {
  3724. size_t id = 0;
  3725. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3726. for (int i03 = 0; i03 < ne03; i03++) {
  3727. for (int i02 = 0; i02 < ne02; i02++) {
  3728. for (int i01 = 0; i01 < ne01; i01++) {
  3729. for (int i00 = 0; i00 < ne00; i00++) {
  3730. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3731. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  3732. id++;
  3733. }
  3734. }
  3735. }
  3736. }
  3737. } else {
  3738. GGML_ASSERT(false); // TODO: implement
  3739. }
  3740. }
  3741. }
  3742. static void ggml_compute_forward_dup(
  3743. const struct ggml_compute_params * params,
  3744. const struct ggml_tensor * src0,
  3745. struct ggml_tensor * dst) {
  3746. switch (src0->type) {
  3747. case GGML_TYPE_F16:
  3748. {
  3749. ggml_compute_forward_dup_f16(params, src0, dst);
  3750. } break;
  3751. case GGML_TYPE_F32:
  3752. {
  3753. ggml_compute_forward_dup_f32(params, src0, dst);
  3754. } break;
  3755. case GGML_TYPE_Q4_0:
  3756. case GGML_TYPE_Q4_1:
  3757. case GGML_TYPE_I8:
  3758. case GGML_TYPE_I16:
  3759. case GGML_TYPE_I32:
  3760. case GGML_TYPE_COUNT:
  3761. {
  3762. GGML_ASSERT(false);
  3763. } break;
  3764. }
  3765. }
  3766. // ggml_compute_forward_add
  3767. static void ggml_compute_forward_add_f32(
  3768. const struct ggml_compute_params * params,
  3769. const struct ggml_tensor * src0,
  3770. const struct ggml_tensor * src1,
  3771. struct ggml_tensor * dst) {
  3772. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3773. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3774. return;
  3775. }
  3776. const int ith = params->ith;
  3777. const int nth = params->nth;
  3778. const int n = ggml_nrows(src0);
  3779. const int nc = src0->ne[0];
  3780. const size_t nb00 = src0->nb[0];
  3781. const size_t nb01 = src0->nb[1];
  3782. const size_t nb10 = src1->nb[0];
  3783. const size_t nb11 = src1->nb[1];
  3784. const size_t nb0 = dst->nb[0];
  3785. const size_t nb1 = dst->nb[1];
  3786. GGML_ASSERT( nb0 == sizeof(float));
  3787. GGML_ASSERT(nb00 == sizeof(float));
  3788. if (nb10 == sizeof(float)) {
  3789. const int j0 = (n/nth)*ith;
  3790. const int j1 = ith == nth - 1 ? n : (n/nth)*(ith + 1);
  3791. for (int j = j0; j < j1; j++) {
  3792. ggml_vec_add_f32(nc,
  3793. (float *) ((char *) dst->data + j*nb1),
  3794. (float *) ((char *) src0->data + j*nb01),
  3795. (float *) ((char *) src1->data + j*nb11));
  3796. }
  3797. } else {
  3798. // src1 is not contiguous
  3799. for (int j = ith; j < n; j += nth) {
  3800. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  3801. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  3802. for (int i = 0; i < nc; i++) {
  3803. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  3804. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  3805. }
  3806. }
  3807. }
  3808. }
  3809. static void ggml_compute_forward_add(
  3810. const struct ggml_compute_params * params,
  3811. const struct ggml_tensor * src0,
  3812. const struct ggml_tensor * src1,
  3813. struct ggml_tensor * dst) {
  3814. switch (src0->type) {
  3815. case GGML_TYPE_F32:
  3816. {
  3817. ggml_compute_forward_add_f32(params, src0, src1, dst);
  3818. } break;
  3819. case GGML_TYPE_Q4_0:
  3820. case GGML_TYPE_Q4_1:
  3821. case GGML_TYPE_I8:
  3822. case GGML_TYPE_I16:
  3823. case GGML_TYPE_I32:
  3824. case GGML_TYPE_F16:
  3825. case GGML_TYPE_COUNT:
  3826. {
  3827. GGML_ASSERT(false);
  3828. } break;
  3829. }
  3830. }
  3831. // ggml_compute_forward_sub
  3832. static void ggml_compute_forward_sub_f32(
  3833. const struct ggml_compute_params * params,
  3834. const struct ggml_tensor * src0,
  3835. const struct ggml_tensor * src1,
  3836. struct ggml_tensor * dst) {
  3837. assert(params->ith == 0);
  3838. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3839. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3840. return;
  3841. }
  3842. const int n = ggml_nrows(src0);
  3843. const int nc = src0->ne[0];
  3844. assert( dst->nb[0] == sizeof(float));
  3845. assert(src0->nb[0] == sizeof(float));
  3846. assert(src1->nb[0] == sizeof(float));
  3847. for (int i = 0; i < n; i++) {
  3848. ggml_vec_sub_f32(nc,
  3849. (float *) ((char *) dst->data + i*( dst->nb[1])),
  3850. (float *) ((char *) src0->data + i*(src0->nb[1])),
  3851. (float *) ((char *) src1->data + i*(src1->nb[1])));
  3852. }
  3853. }
  3854. static void ggml_compute_forward_sub(
  3855. const struct ggml_compute_params * params,
  3856. const struct ggml_tensor * src0,
  3857. const struct ggml_tensor * src1,
  3858. struct ggml_tensor * dst) {
  3859. switch (src0->type) {
  3860. case GGML_TYPE_F32:
  3861. {
  3862. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  3863. } break;
  3864. case GGML_TYPE_Q4_0:
  3865. case GGML_TYPE_Q4_1:
  3866. case GGML_TYPE_I8:
  3867. case GGML_TYPE_I16:
  3868. case GGML_TYPE_I32:
  3869. case GGML_TYPE_F16:
  3870. case GGML_TYPE_COUNT:
  3871. {
  3872. GGML_ASSERT(false);
  3873. } break;
  3874. }
  3875. }
  3876. // ggml_compute_forward_mul
  3877. static void ggml_compute_forward_mul_f32(
  3878. const struct ggml_compute_params * params,
  3879. const struct ggml_tensor * src0,
  3880. const struct ggml_tensor * src1,
  3881. struct ggml_tensor * dst) {
  3882. assert(params->ith == 0);
  3883. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3884. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3885. return;
  3886. }
  3887. const int n = ggml_nrows(src0);
  3888. const int nc = src0->ne[0];
  3889. assert( dst->nb[0] == sizeof(float));
  3890. assert(src0->nb[0] == sizeof(float));
  3891. assert(src1->nb[0] == sizeof(float));
  3892. for (int i = 0; i < n; i++) {
  3893. ggml_vec_mul_f32(nc,
  3894. (float *) ((char *) dst->data + i*( dst->nb[1])),
  3895. (float *) ((char *) src0->data + i*(src0->nb[1])),
  3896. (float *) ((char *) src1->data + i*(src1->nb[1])));
  3897. }
  3898. }
  3899. static void ggml_compute_forward_mul(
  3900. const struct ggml_compute_params * params,
  3901. const struct ggml_tensor * src0,
  3902. const struct ggml_tensor * src1,
  3903. struct ggml_tensor * dst) {
  3904. switch (src0->type) {
  3905. case GGML_TYPE_F32:
  3906. {
  3907. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  3908. } break;
  3909. case GGML_TYPE_Q4_0:
  3910. case GGML_TYPE_Q4_1:
  3911. case GGML_TYPE_I8:
  3912. case GGML_TYPE_I16:
  3913. case GGML_TYPE_I32:
  3914. case GGML_TYPE_F16:
  3915. case GGML_TYPE_COUNT:
  3916. {
  3917. GGML_ASSERT(false);
  3918. } break;
  3919. }
  3920. }
  3921. // ggml_compute_forward_div
  3922. static void ggml_compute_forward_div_f32(
  3923. const struct ggml_compute_params * params,
  3924. const struct ggml_tensor * src0,
  3925. const struct ggml_tensor * src1,
  3926. struct ggml_tensor * dst) {
  3927. assert(params->ith == 0);
  3928. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3929. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3930. return;
  3931. }
  3932. const int n = ggml_nrows(src0);
  3933. const int nc = src0->ne[0];
  3934. assert( dst->nb[0] == sizeof(float));
  3935. assert(src0->nb[0] == sizeof(float));
  3936. assert(src1->nb[0] == sizeof(float));
  3937. for (int i = 0; i < n; i++) {
  3938. ggml_vec_div_f32(nc,
  3939. (float *) ((char *) dst->data + i*( dst->nb[1])),
  3940. (float *) ((char *) src0->data + i*(src0->nb[1])),
  3941. (float *) ((char *) src1->data + i*(src1->nb[1])));
  3942. }
  3943. }
  3944. static void ggml_compute_forward_div(
  3945. const struct ggml_compute_params * params,
  3946. const struct ggml_tensor * src0,
  3947. const struct ggml_tensor * src1,
  3948. struct ggml_tensor * dst) {
  3949. switch (src0->type) {
  3950. case GGML_TYPE_F32:
  3951. {
  3952. ggml_compute_forward_div_f32(params, src0, src1, dst);
  3953. } break;
  3954. case GGML_TYPE_Q4_0:
  3955. case GGML_TYPE_Q4_1:
  3956. case GGML_TYPE_I8:
  3957. case GGML_TYPE_I16:
  3958. case GGML_TYPE_I32:
  3959. case GGML_TYPE_F16:
  3960. case GGML_TYPE_COUNT:
  3961. {
  3962. GGML_ASSERT(false);
  3963. } break;
  3964. }
  3965. }
  3966. // ggml_compute_forward_sqr
  3967. static void ggml_compute_forward_sqr_f32(
  3968. const struct ggml_compute_params * params,
  3969. const struct ggml_tensor * src0,
  3970. struct ggml_tensor * dst) {
  3971. assert(params->ith == 0);
  3972. assert(ggml_are_same_shape(src0, dst));
  3973. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3974. return;
  3975. }
  3976. const int n = ggml_nrows(src0);
  3977. const int nc = src0->ne[0];
  3978. assert( dst->nb[0] == sizeof(float));
  3979. assert(src0->nb[0] == sizeof(float));
  3980. for (int i = 0; i < n; i++) {
  3981. ggml_vec_sqr_f32(nc,
  3982. (float *) ((char *) dst->data + i*( dst->nb[1])),
  3983. (float *) ((char *) src0->data + i*(src0->nb[1])));
  3984. }
  3985. }
  3986. static void ggml_compute_forward_sqr(
  3987. const struct ggml_compute_params * params,
  3988. const struct ggml_tensor * src0,
  3989. struct ggml_tensor * dst) {
  3990. switch (src0->type) {
  3991. case GGML_TYPE_F32:
  3992. {
  3993. ggml_compute_forward_sqr_f32(params, src0, dst);
  3994. } break;
  3995. case GGML_TYPE_Q4_0:
  3996. case GGML_TYPE_Q4_1:
  3997. case GGML_TYPE_I8:
  3998. case GGML_TYPE_I16:
  3999. case GGML_TYPE_I32:
  4000. case GGML_TYPE_F16:
  4001. case GGML_TYPE_COUNT:
  4002. {
  4003. GGML_ASSERT(false);
  4004. } break;
  4005. }
  4006. }
  4007. // ggml_compute_forward_sqrt
  4008. static void ggml_compute_forward_sqrt_f32(
  4009. const struct ggml_compute_params * params,
  4010. const struct ggml_tensor * src0,
  4011. struct ggml_tensor * dst) {
  4012. assert(params->ith == 0);
  4013. assert(ggml_are_same_shape(src0, dst));
  4014. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4015. return;
  4016. }
  4017. const int n = ggml_nrows(src0);
  4018. const int nc = src0->ne[0];
  4019. assert( dst->nb[0] == sizeof(float));
  4020. assert(src0->nb[0] == sizeof(float));
  4021. for (int i = 0; i < n; i++) {
  4022. ggml_vec_sqrt_f32(nc,
  4023. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4024. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4025. }
  4026. }
  4027. static void ggml_compute_forward_sqrt(
  4028. const struct ggml_compute_params * params,
  4029. const struct ggml_tensor * src0,
  4030. struct ggml_tensor * dst) {
  4031. switch (src0->type) {
  4032. case GGML_TYPE_F32:
  4033. {
  4034. ggml_compute_forward_sqrt_f32(params, src0, dst);
  4035. } break;
  4036. case GGML_TYPE_Q4_0:
  4037. case GGML_TYPE_Q4_1:
  4038. case GGML_TYPE_I8:
  4039. case GGML_TYPE_I16:
  4040. case GGML_TYPE_I32:
  4041. case GGML_TYPE_F16:
  4042. case GGML_TYPE_COUNT:
  4043. {
  4044. GGML_ASSERT(false);
  4045. } break;
  4046. }
  4047. }
  4048. // ggml_compute_forward_sum
  4049. static void ggml_compute_forward_sum_f32(
  4050. const struct ggml_compute_params * params,
  4051. const struct ggml_tensor * src0,
  4052. struct ggml_tensor * dst) {
  4053. assert(params->ith == 0);
  4054. assert(ggml_is_scalar(dst));
  4055. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4056. return;
  4057. }
  4058. assert(ggml_is_scalar(dst));
  4059. assert(src0->nb[0] == sizeof(float));
  4060. const int ne00 = src0->ne[0];
  4061. const int ne01 = src0->ne[1];
  4062. const int ne02 = src0->ne[2];
  4063. const int ne03 = src0->ne[3];
  4064. const size_t nb01 = src0->nb[1];
  4065. const size_t nb02 = src0->nb[2];
  4066. const size_t nb03 = src0->nb[3];
  4067. for (int i03 = 0; i03 < ne03; i03++) {
  4068. for (int i02 = 0; i02 < ne02; i02++) {
  4069. for (int i01 = 0; i01 < ne01; i01++) {
  4070. ggml_vec_sum_f32(ne00,
  4071. (float *) (dst->data),
  4072. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4073. }
  4074. }
  4075. }
  4076. }
  4077. static void ggml_compute_forward_sum(
  4078. const struct ggml_compute_params * params,
  4079. const struct ggml_tensor * src0,
  4080. struct ggml_tensor * dst) {
  4081. switch (src0->type) {
  4082. case GGML_TYPE_F32:
  4083. {
  4084. ggml_compute_forward_sum_f32(params, src0, dst);
  4085. } break;
  4086. case GGML_TYPE_Q4_0:
  4087. case GGML_TYPE_Q4_1:
  4088. case GGML_TYPE_I8:
  4089. case GGML_TYPE_I16:
  4090. case GGML_TYPE_I32:
  4091. case GGML_TYPE_F16:
  4092. case GGML_TYPE_COUNT:
  4093. {
  4094. GGML_ASSERT(false);
  4095. } break;
  4096. }
  4097. }
  4098. // ggml_compute_forward_mean
  4099. static void ggml_compute_forward_mean_f32(
  4100. const struct ggml_compute_params * params,
  4101. const struct ggml_tensor * src0,
  4102. struct ggml_tensor * dst) {
  4103. assert(params->ith == 0);
  4104. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4105. return;
  4106. }
  4107. assert(src0->nb[0] == sizeof(float));
  4108. const int ne00 = src0->ne[0];
  4109. const int ne01 = src0->ne[1];
  4110. const int ne02 = src0->ne[2];
  4111. const int ne03 = src0->ne[3];
  4112. const size_t nb01 = src0->nb[1];
  4113. const size_t nb02 = src0->nb[2];
  4114. const size_t nb03 = src0->nb[3];
  4115. const int ne0 = dst->ne[0];
  4116. const int ne1 = dst->ne[1];
  4117. const int ne2 = dst->ne[2];
  4118. const int ne3 = dst->ne[3];
  4119. assert(ne0 == 1);
  4120. assert(ne1 == ne01);
  4121. assert(ne2 == ne02);
  4122. assert(ne3 == ne03);
  4123. UNUSED(ne0);
  4124. UNUSED(ne1);
  4125. UNUSED(ne2);
  4126. UNUSED(ne3);
  4127. const size_t nb1 = dst->nb[1];
  4128. const size_t nb2 = dst->nb[2];
  4129. const size_t nb3 = dst->nb[3];
  4130. for (int i03 = 0; i03 < ne03; i03++) {
  4131. for (int i02 = 0; i02 < ne02; i02++) {
  4132. for (int i01 = 0; i01 < ne01; i01++) {
  4133. ggml_vec_sum_f32(ne00,
  4134. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4135. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4136. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  4137. }
  4138. }
  4139. }
  4140. }
  4141. static void ggml_compute_forward_mean(
  4142. const struct ggml_compute_params * params,
  4143. const struct ggml_tensor * src0,
  4144. struct ggml_tensor * dst) {
  4145. switch (src0->type) {
  4146. case GGML_TYPE_F32:
  4147. {
  4148. ggml_compute_forward_mean_f32(params, src0, dst);
  4149. } break;
  4150. case GGML_TYPE_Q4_0:
  4151. case GGML_TYPE_Q4_1:
  4152. case GGML_TYPE_I8:
  4153. case GGML_TYPE_I16:
  4154. case GGML_TYPE_I32:
  4155. case GGML_TYPE_F16:
  4156. case GGML_TYPE_COUNT:
  4157. {
  4158. GGML_ASSERT(false);
  4159. } break;
  4160. }
  4161. }
  4162. // ggml_compute_forward_repeat
  4163. static void ggml_compute_forward_repeat_f32(
  4164. const struct ggml_compute_params * params,
  4165. const struct ggml_tensor * src0,
  4166. struct ggml_tensor * dst) {
  4167. assert(params->ith == 0);
  4168. assert(ggml_can_repeat(src0, dst));
  4169. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4170. return;
  4171. }
  4172. // TODO: implement support for rank > 2 tensors
  4173. assert(src0->ne[2] == 1);
  4174. assert(src0->ne[3] == 1);
  4175. assert( dst->ne[2] == 1);
  4176. assert( dst->ne[3] == 1);
  4177. const int nc = dst->ne[0];
  4178. const int nr = dst->ne[1];
  4179. const int nc0 = src0->ne[0];
  4180. const int nr0 = src0->ne[1];
  4181. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4182. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4183. // TODO: support for transposed / permuted tensors
  4184. assert( dst->nb[0] == sizeof(float));
  4185. assert(src0->nb[0] == sizeof(float));
  4186. // TODO: maybe this is not optimal?
  4187. for (int i = 0; i < nrr; i++) {
  4188. for (int j = 0; j < ncr; j++) {
  4189. for (int k = 0; k < nr0; k++) {
  4190. ggml_vec_cpy_f32(nc0,
  4191. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  4192. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  4193. }
  4194. }
  4195. }
  4196. }
  4197. static void ggml_compute_forward_repeat(
  4198. const struct ggml_compute_params * params,
  4199. const struct ggml_tensor * src0,
  4200. struct ggml_tensor * dst) {
  4201. switch (src0->type) {
  4202. case GGML_TYPE_F32:
  4203. {
  4204. ggml_compute_forward_repeat_f32(params, src0, dst);
  4205. } break;
  4206. case GGML_TYPE_Q4_0:
  4207. case GGML_TYPE_Q4_1:
  4208. case GGML_TYPE_I8:
  4209. case GGML_TYPE_I16:
  4210. case GGML_TYPE_I32:
  4211. case GGML_TYPE_F16:
  4212. case GGML_TYPE_COUNT:
  4213. {
  4214. GGML_ASSERT(false);
  4215. } break;
  4216. }
  4217. }
  4218. // ggml_compute_forward_abs
  4219. static void ggml_compute_forward_abs_f32(
  4220. const struct ggml_compute_params * params,
  4221. const struct ggml_tensor * src0,
  4222. struct ggml_tensor * dst) {
  4223. assert(params->ith == 0);
  4224. assert(ggml_are_same_shape(src0, dst));
  4225. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4226. return;
  4227. }
  4228. const int n = ggml_nrows(src0);
  4229. const int nc = src0->ne[0];
  4230. assert(dst->nb[0] == sizeof(float));
  4231. assert(src0->nb[0] == sizeof(float));
  4232. for (int i = 0; i < n; i++) {
  4233. ggml_vec_abs_f32(nc,
  4234. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4235. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4236. }
  4237. }
  4238. static void ggml_compute_forward_abs(
  4239. const struct ggml_compute_params * params,
  4240. const struct ggml_tensor * src0,
  4241. struct ggml_tensor * dst) {
  4242. switch (src0->type) {
  4243. case GGML_TYPE_F32:
  4244. {
  4245. ggml_compute_forward_abs_f32(params, src0, dst);
  4246. } break;
  4247. case GGML_TYPE_Q4_0:
  4248. case GGML_TYPE_Q4_1:
  4249. case GGML_TYPE_I8:
  4250. case GGML_TYPE_I16:
  4251. case GGML_TYPE_I32:
  4252. case GGML_TYPE_F16:
  4253. case GGML_TYPE_COUNT:
  4254. {
  4255. GGML_ASSERT(false);
  4256. } break;
  4257. }
  4258. }
  4259. // ggml_compute_forward_sgn
  4260. static void ggml_compute_forward_sgn_f32(
  4261. const struct ggml_compute_params * params,
  4262. const struct ggml_tensor * src0,
  4263. struct ggml_tensor * dst) {
  4264. assert(params->ith == 0);
  4265. assert(ggml_are_same_shape(src0, dst));
  4266. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4267. return;
  4268. }
  4269. const int n = ggml_nrows(src0);
  4270. const int nc = src0->ne[0];
  4271. assert(dst->nb[0] == sizeof(float));
  4272. assert(src0->nb[0] == sizeof(float));
  4273. for (int i = 0; i < n; i++) {
  4274. ggml_vec_sgn_f32(nc,
  4275. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4276. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4277. }
  4278. }
  4279. static void ggml_compute_forward_sgn(
  4280. const struct ggml_compute_params * params,
  4281. const struct ggml_tensor * src0,
  4282. struct ggml_tensor * dst) {
  4283. switch (src0->type) {
  4284. case GGML_TYPE_F32:
  4285. {
  4286. ggml_compute_forward_sgn_f32(params, src0, dst);
  4287. } break;
  4288. case GGML_TYPE_Q4_0:
  4289. case GGML_TYPE_Q4_1:
  4290. case GGML_TYPE_I8:
  4291. case GGML_TYPE_I16:
  4292. case GGML_TYPE_I32:
  4293. case GGML_TYPE_F16:
  4294. case GGML_TYPE_COUNT:
  4295. {
  4296. GGML_ASSERT(false);
  4297. } break;
  4298. }
  4299. }
  4300. // ggml_compute_forward_neg
  4301. static void ggml_compute_forward_neg_f32(
  4302. const struct ggml_compute_params * params,
  4303. const struct ggml_tensor * src0,
  4304. struct ggml_tensor * dst) {
  4305. assert(params->ith == 0);
  4306. assert(ggml_are_same_shape(src0, dst));
  4307. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4308. return;
  4309. }
  4310. const int n = ggml_nrows(src0);
  4311. const int nc = src0->ne[0];
  4312. assert(dst->nb[0] == sizeof(float));
  4313. assert(src0->nb[0] == sizeof(float));
  4314. for (int i = 0; i < n; i++) {
  4315. ggml_vec_neg_f32(nc,
  4316. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4317. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4318. }
  4319. }
  4320. static void ggml_compute_forward_neg(
  4321. const struct ggml_compute_params * params,
  4322. const struct ggml_tensor * src0,
  4323. struct ggml_tensor * dst) {
  4324. switch (src0->type) {
  4325. case GGML_TYPE_F32:
  4326. {
  4327. ggml_compute_forward_neg_f32(params, src0, dst);
  4328. } break;
  4329. case GGML_TYPE_Q4_0:
  4330. case GGML_TYPE_Q4_1:
  4331. case GGML_TYPE_I8:
  4332. case GGML_TYPE_I16:
  4333. case GGML_TYPE_I32:
  4334. case GGML_TYPE_F16:
  4335. case GGML_TYPE_COUNT:
  4336. {
  4337. GGML_ASSERT(false);
  4338. } break;
  4339. }
  4340. }
  4341. // ggml_compute_forward_step
  4342. static void ggml_compute_forward_step_f32(
  4343. const struct ggml_compute_params * params,
  4344. const struct ggml_tensor * src0,
  4345. struct ggml_tensor * dst) {
  4346. assert(params->ith == 0);
  4347. assert(ggml_are_same_shape(src0, dst));
  4348. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4349. return;
  4350. }
  4351. const int n = ggml_nrows(src0);
  4352. const int nc = src0->ne[0];
  4353. assert(dst->nb[0] == sizeof(float));
  4354. assert(src0->nb[0] == sizeof(float));
  4355. for (int i = 0; i < n; i++) {
  4356. ggml_vec_step_f32(nc,
  4357. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4358. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4359. }
  4360. }
  4361. static void ggml_compute_forward_step(
  4362. const struct ggml_compute_params * params,
  4363. const struct ggml_tensor * src0,
  4364. struct ggml_tensor * dst) {
  4365. switch (src0->type) {
  4366. case GGML_TYPE_F32:
  4367. {
  4368. ggml_compute_forward_step_f32(params, src0, dst);
  4369. } break;
  4370. case GGML_TYPE_Q4_0:
  4371. case GGML_TYPE_Q4_1:
  4372. case GGML_TYPE_I8:
  4373. case GGML_TYPE_I16:
  4374. case GGML_TYPE_I32:
  4375. case GGML_TYPE_F16:
  4376. case GGML_TYPE_COUNT:
  4377. {
  4378. GGML_ASSERT(false);
  4379. } break;
  4380. }
  4381. }
  4382. // ggml_compute_forward_relu
  4383. static void ggml_compute_forward_relu_f32(
  4384. const struct ggml_compute_params * params,
  4385. const struct ggml_tensor * src0,
  4386. struct ggml_tensor * dst) {
  4387. assert(params->ith == 0);
  4388. assert(ggml_are_same_shape(src0, dst));
  4389. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4390. return;
  4391. }
  4392. const int n = ggml_nrows(src0);
  4393. const int nc = src0->ne[0];
  4394. assert(dst->nb[0] == sizeof(float));
  4395. assert(src0->nb[0] == sizeof(float));
  4396. for (int i = 0; i < n; i++) {
  4397. ggml_vec_relu_f32(nc,
  4398. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4399. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4400. }
  4401. }
  4402. static void ggml_compute_forward_relu(
  4403. const struct ggml_compute_params * params,
  4404. const struct ggml_tensor * src0,
  4405. struct ggml_tensor * dst) {
  4406. switch (src0->type) {
  4407. case GGML_TYPE_F32:
  4408. {
  4409. ggml_compute_forward_relu_f32(params, src0, dst);
  4410. } break;
  4411. case GGML_TYPE_Q4_0:
  4412. case GGML_TYPE_Q4_1:
  4413. case GGML_TYPE_I8:
  4414. case GGML_TYPE_I16:
  4415. case GGML_TYPE_I32:
  4416. case GGML_TYPE_F16:
  4417. case GGML_TYPE_COUNT:
  4418. {
  4419. GGML_ASSERT(false);
  4420. } break;
  4421. }
  4422. }
  4423. // ggml_compute_forward_gelu
  4424. static void ggml_compute_forward_gelu_f32(
  4425. const struct ggml_compute_params * params,
  4426. const struct ggml_tensor * src0,
  4427. struct ggml_tensor * dst) {
  4428. GGML_ASSERT(ggml_is_contiguous(src0));
  4429. GGML_ASSERT(ggml_is_contiguous(dst));
  4430. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4431. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4432. return;
  4433. }
  4434. const int ith = params->ith;
  4435. const int nth = params->nth;
  4436. const int nc = src0->ne[0];
  4437. const int nr = ggml_nrows(src0);
  4438. // rows per thread
  4439. const int dr = (nr + nth - 1)/nth;
  4440. // row range for this thread
  4441. const int ir0 = dr*ith;
  4442. const int ir1 = MIN(ir0 + dr, nr);
  4443. for (int i1 = ir0; i1 < ir1; i1++) {
  4444. ggml_vec_gelu_f32(nc,
  4445. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  4446. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  4447. #ifndef NDEBUG
  4448. for (int k = 0; k < nc; k++) {
  4449. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  4450. UNUSED(x);
  4451. assert(!isnan(x));
  4452. assert(!isinf(x));
  4453. }
  4454. #endif
  4455. }
  4456. }
  4457. static void ggml_compute_forward_gelu(
  4458. const struct ggml_compute_params * params,
  4459. const struct ggml_tensor * src0,
  4460. struct ggml_tensor * dst) {
  4461. switch (src0->type) {
  4462. case GGML_TYPE_F32:
  4463. {
  4464. ggml_compute_forward_gelu_f32(params, src0, dst);
  4465. } break;
  4466. case GGML_TYPE_Q4_0:
  4467. case GGML_TYPE_Q4_1:
  4468. case GGML_TYPE_I8:
  4469. case GGML_TYPE_I16:
  4470. case GGML_TYPE_I32:
  4471. case GGML_TYPE_F16:
  4472. case GGML_TYPE_COUNT:
  4473. {
  4474. GGML_ASSERT(false);
  4475. } break;
  4476. }
  4477. //printf("XXXXXXXX gelu\n");
  4478. }
  4479. // ggml_compute_forward_silu
  4480. static void ggml_compute_forward_silu_f32(
  4481. const struct ggml_compute_params * params,
  4482. const struct ggml_tensor * src0,
  4483. struct ggml_tensor * dst) {
  4484. GGML_ASSERT(ggml_is_contiguous(src0));
  4485. GGML_ASSERT(ggml_is_contiguous(dst));
  4486. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4487. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4488. return;
  4489. }
  4490. const int ith = params->ith;
  4491. const int nth = params->nth;
  4492. const int nc = src0->ne[0];
  4493. const int nr = ggml_nrows(src0);
  4494. // rows per thread
  4495. const int dr = (nr + nth - 1)/nth;
  4496. // row range for this thread
  4497. const int ir0 = dr*ith;
  4498. const int ir1 = MIN(ir0 + dr, nr);
  4499. for (int i1 = ir0; i1 < ir1; i1++) {
  4500. ggml_vec_silu_f32(nc,
  4501. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  4502. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  4503. #ifndef NDEBUG
  4504. for (int k = 0; k < nc; k++) {
  4505. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  4506. UNUSED(x);
  4507. assert(!isnan(x));
  4508. assert(!isinf(x));
  4509. }
  4510. #endif
  4511. }
  4512. }
  4513. static void ggml_compute_forward_silu(
  4514. const struct ggml_compute_params * params,
  4515. const struct ggml_tensor * src0,
  4516. struct ggml_tensor * dst) {
  4517. switch (src0->type) {
  4518. case GGML_TYPE_F32:
  4519. {
  4520. ggml_compute_forward_silu_f32(params, src0, dst);
  4521. } break;
  4522. case GGML_TYPE_Q4_0:
  4523. case GGML_TYPE_Q4_1:
  4524. case GGML_TYPE_I8:
  4525. case GGML_TYPE_I16:
  4526. case GGML_TYPE_I32:
  4527. case GGML_TYPE_F16:
  4528. case GGML_TYPE_COUNT:
  4529. {
  4530. GGML_ASSERT(false);
  4531. } break;
  4532. }
  4533. }
  4534. // ggml_compute_forward_norm
  4535. static void ggml_compute_forward_norm_f32(
  4536. const struct ggml_compute_params * params,
  4537. const struct ggml_tensor * src0,
  4538. struct ggml_tensor * dst) {
  4539. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4540. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4541. return;
  4542. }
  4543. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4544. const int ith = params->ith;
  4545. const int nth = params->nth;
  4546. const int ne00 = src0->ne[0];
  4547. const int ne01 = src0->ne[1];
  4548. const int ne02 = src0->ne[2];
  4549. const int ne03 = src0->ne[3];
  4550. const size_t nb01 = src0->nb[1];
  4551. const size_t nb02 = src0->nb[2];
  4552. const size_t nb03 = src0->nb[3];
  4553. const size_t nb1 = dst->nb[1];
  4554. const size_t nb2 = dst->nb[2];
  4555. const size_t nb3 = dst->nb[3];
  4556. const ggml_float eps = 1e-5f; // TODO: make this a parameter
  4557. // TODO: optimize
  4558. for (int i03 = 0; i03 < ne03; i03++) {
  4559. for (int i02 = 0; i02 < ne02; i02++) {
  4560. for (int i01 = ith; i01 < ne01; i01 += nth) {
  4561. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4562. ggml_float mean = 0.0;
  4563. for (int i00 = 0; i00 < ne00; i00++) {
  4564. mean += x[i00];
  4565. }
  4566. mean /= ne00;
  4567. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  4568. ggml_float sum2 = 0.0;
  4569. for (int i00 = 0; i00 < ne00; i00++) {
  4570. ggml_float v = x[i00] - mean;
  4571. y[i00] = v;
  4572. sum2 += v*v;
  4573. }
  4574. const float scale = 1.0/sqrt(sum2/ne00 + eps);
  4575. ggml_vec_scale_f32(ne00, y, scale);
  4576. }
  4577. }
  4578. }
  4579. }
  4580. static void ggml_compute_forward_norm(
  4581. const struct ggml_compute_params * params,
  4582. const struct ggml_tensor * src0,
  4583. struct ggml_tensor * dst) {
  4584. switch (src0->type) {
  4585. case GGML_TYPE_F32:
  4586. {
  4587. ggml_compute_forward_norm_f32(params, src0, dst);
  4588. } break;
  4589. case GGML_TYPE_Q4_0:
  4590. case GGML_TYPE_Q4_1:
  4591. case GGML_TYPE_I8:
  4592. case GGML_TYPE_I16:
  4593. case GGML_TYPE_I32:
  4594. case GGML_TYPE_F16:
  4595. case GGML_TYPE_COUNT:
  4596. {
  4597. GGML_ASSERT(false);
  4598. } break;
  4599. }
  4600. }
  4601. static void ggml_compute_forward_rms_norm_f32(
  4602. const struct ggml_compute_params * params,
  4603. const struct ggml_tensor * src0,
  4604. struct ggml_tensor * dst) {
  4605. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4606. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4607. return;
  4608. }
  4609. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4610. const int ith = params->ith;
  4611. const int nth = params->nth;
  4612. const int ne00 = src0->ne[0];
  4613. const int ne01 = src0->ne[1];
  4614. const int ne02 = src0->ne[2];
  4615. const int ne03 = src0->ne[3];
  4616. const size_t nb01 = src0->nb[1];
  4617. const size_t nb02 = src0->nb[2];
  4618. const size_t nb03 = src0->nb[3];
  4619. const size_t nb1 = dst->nb[1];
  4620. const size_t nb2 = dst->nb[2];
  4621. const size_t nb3 = dst->nb[3];
  4622. const ggml_float eps = 1e-6f; // TODO: make this a parameter
  4623. // TODO: optimize
  4624. for (int i03 = 0; i03 < ne03; i03++) {
  4625. for (int i02 = 0; i02 < ne02; i02++) {
  4626. for (int i01 = ith; i01 < ne01; i01 += nth) {
  4627. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4628. ggml_float mean = 0.0;
  4629. for (int i00 = 0; i00 < ne00; i00++) {
  4630. mean += x[i00] * x[i00];
  4631. }
  4632. mean /= ne00;
  4633. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  4634. memcpy(y, x, ne00 * sizeof(float));
  4635. // for (int i00 = 0; i00 < ne00; i00++) {
  4636. // y[i00] = x[i00];
  4637. // }
  4638. const float scale = 1.0/sqrt(mean + eps);
  4639. ggml_vec_scale_f32(ne00, y, scale);
  4640. }
  4641. }
  4642. }
  4643. }
  4644. static void ggml_compute_forward_rms_norm(
  4645. const struct ggml_compute_params * params,
  4646. const struct ggml_tensor * src0,
  4647. struct ggml_tensor * dst) {
  4648. switch (src0->type) {
  4649. case GGML_TYPE_F32:
  4650. {
  4651. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  4652. } break;
  4653. case GGML_TYPE_Q4_0:
  4654. case GGML_TYPE_Q4_1:
  4655. case GGML_TYPE_I8:
  4656. case GGML_TYPE_I16:
  4657. case GGML_TYPE_I32:
  4658. case GGML_TYPE_F16:
  4659. case GGML_TYPE_COUNT:
  4660. {
  4661. GGML_ASSERT(false);
  4662. } break;
  4663. }
  4664. }
  4665. // ggml_compute_forward_mul_mat
  4666. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4667. // helper function to determine if it is better to use BLAS or not
  4668. // for large matrices, BLAS is faster
  4669. static bool ggml_compute_forward_mul_mat_use_blas(
  4670. const struct ggml_tensor * src0,
  4671. const struct ggml_tensor * src1,
  4672. struct ggml_tensor * dst) {
  4673. //const int ne00 = src0->ne[0];
  4674. //const int ne01 = src0->ne[1];
  4675. const int ne10 = src1->ne[0];
  4676. const int ne0 = dst->ne[0];
  4677. const int ne1 = dst->ne[1];
  4678. // TODO: find the optimal values for these
  4679. if (ggml_is_contiguous(src0) &&
  4680. ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
  4681. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  4682. return true;
  4683. }
  4684. return false;
  4685. }
  4686. #endif
  4687. static void ggml_compute_forward_mul_mat_f32(
  4688. const struct ggml_compute_params * params,
  4689. const struct ggml_tensor * src0,
  4690. const struct ggml_tensor * src1,
  4691. struct ggml_tensor * dst) {
  4692. int64_t t0 = ggml_perf_time_us();
  4693. UNUSED(t0);
  4694. const int ne00 = src0->ne[0];
  4695. const int ne01 = src0->ne[1];
  4696. const int ne02 = src0->ne[2];
  4697. const int ne03 = src0->ne[3];
  4698. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4699. const int ne10 = src1->ne[0];
  4700. #endif
  4701. const int ne11 = src1->ne[1];
  4702. #ifndef NDEBUG
  4703. const int ne12 = src1->ne[2];
  4704. const int ne13 = src1->ne[3];
  4705. const int ne0 = dst->ne[0];
  4706. const int ne1 = dst->ne[1];
  4707. const int ne2 = dst->ne[2];
  4708. const int ne3 = dst->ne[3];
  4709. const int nb00 = src0->nb[0];
  4710. #endif
  4711. const int nb01 = src0->nb[1];
  4712. const int nb02 = src0->nb[2];
  4713. const int nb03 = src0->nb[3];
  4714. #ifndef NDEBUG
  4715. const int nb10 = src1->nb[0];
  4716. #endif
  4717. const int nb11 = src1->nb[1];
  4718. const int nb12 = src1->nb[2];
  4719. const int nb13 = src1->nb[3];
  4720. const int nb0 = dst->nb[0];
  4721. const int nb1 = dst->nb[1];
  4722. const int nb2 = dst->nb[2];
  4723. const int nb3 = dst->nb[3];
  4724. const int ith = params->ith;
  4725. const int nth = params->nth;
  4726. assert(ne02 == ne12);
  4727. assert(ne03 == ne13);
  4728. assert(ne2 == ne12);
  4729. assert(ne3 == ne13);
  4730. // we don't support permuted src0 or src1
  4731. assert(nb00 == sizeof(float));
  4732. assert(nb10 == sizeof(float));
  4733. // dst cannot be transposed or permuted
  4734. assert(nb0 == sizeof(float));
  4735. assert(nb0 <= nb1);
  4736. assert(nb1 <= nb2);
  4737. assert(nb2 <= nb3);
  4738. assert(ne0 == ne01);
  4739. assert(ne1 == ne11);
  4740. assert(ne2 == ne02);
  4741. assert(ne3 == ne03);
  4742. // nb01 >= nb00 - src0 is not transposed
  4743. // compute by src0 rows
  4744. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4745. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  4746. if (params->ith != 0) {
  4747. return;
  4748. }
  4749. if (params->type == GGML_TASK_INIT) {
  4750. return;
  4751. }
  4752. if (params->type == GGML_TASK_FINALIZE) {
  4753. return;
  4754. }
  4755. for (int i03 = 0; i03 < ne03; i03++) {
  4756. for (int i02 = 0; i02 < ne02; i02++) {
  4757. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  4758. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  4759. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  4760. // zT = y * xT
  4761. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  4762. ne11, ne01, ne10,
  4763. 1.0f, y, ne10,
  4764. x, ne10,
  4765. 0.0f, d, ne01);
  4766. }
  4767. }
  4768. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  4769. return;
  4770. }
  4771. #endif
  4772. if (params->type == GGML_TASK_INIT) {
  4773. return;
  4774. }
  4775. if (params->type == GGML_TASK_FINALIZE) {
  4776. return;
  4777. }
  4778. // parallelize by src0 rows using ggml_vec_dot_f32
  4779. // total rows in src0
  4780. const int nr = ne01*ne02*ne03;
  4781. // rows per thread
  4782. const int dr = (nr + nth - 1)/nth;
  4783. // row range for this thread
  4784. const int ir0 = dr*ith;
  4785. const int ir1 = MIN(ir0 + dr, nr);
  4786. for (int ir = ir0; ir < ir1; ++ir) {
  4787. // src0 indices
  4788. const int i03 = ir/(ne02*ne01);
  4789. const int i02 = (ir - i03*ne02*ne01)/ne01;
  4790. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  4791. for (int ic = 0; ic < ne11; ++ic) {
  4792. // src1 indices
  4793. const int i13 = i03;
  4794. const int i12 = i02;
  4795. const int i11 = ic;
  4796. // dst indices
  4797. const int i0 = i01;
  4798. const int i1 = i11;
  4799. const int i2 = i02;
  4800. const int i3 = i03;
  4801. ggml_vec_dot_f32(ne00,
  4802. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  4803. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  4804. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  4805. }
  4806. }
  4807. //int64_t t1 = ggml_perf_time_us();
  4808. //static int64_t acc = 0;
  4809. //acc += t1 - t0;
  4810. //if (t1 - t0 > 10) {
  4811. // printf("\n");
  4812. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  4813. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  4814. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  4815. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  4816. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  4817. //}
  4818. }
  4819. static void ggml_compute_forward_mul_mat_f16_f32(
  4820. const struct ggml_compute_params * params,
  4821. const struct ggml_tensor * src0,
  4822. const struct ggml_tensor * src1,
  4823. struct ggml_tensor * dst) {
  4824. int64_t t0 = ggml_perf_time_us();
  4825. UNUSED(t0);
  4826. const int ne00 = src0->ne[0];
  4827. const int ne01 = src0->ne[1];
  4828. const int ne02 = src0->ne[2];
  4829. const int ne03 = src0->ne[3];
  4830. const int ne10 = src1->ne[0];
  4831. const int ne11 = src1->ne[1];
  4832. const int ne12 = src1->ne[2];
  4833. const int ne13 = src1->ne[3];
  4834. const int ne0 = dst->ne[0];
  4835. const int ne1 = dst->ne[1];
  4836. const int ne2 = dst->ne[2];
  4837. const int ne3 = dst->ne[3];
  4838. //const int ne = ne0*ne1*ne2*ne3;
  4839. const int nb00 = src0->nb[0];
  4840. const int nb01 = src0->nb[1];
  4841. const int nb02 = src0->nb[2];
  4842. const int nb03 = src0->nb[3];
  4843. const int nb10 = src1->nb[0];
  4844. const int nb11 = src1->nb[1];
  4845. const int nb12 = src1->nb[2];
  4846. const int nb13 = src1->nb[3];
  4847. const int nb0 = dst->nb[0];
  4848. const int nb1 = dst->nb[1];
  4849. const int nb2 = dst->nb[2];
  4850. const int nb3 = dst->nb[3];
  4851. const int ith = params->ith;
  4852. const int nth = params->nth;
  4853. GGML_ASSERT(ne02 == ne12);
  4854. GGML_ASSERT(ne03 == ne13);
  4855. GGML_ASSERT(ne2 == ne12);
  4856. GGML_ASSERT(ne3 == ne13);
  4857. // TODO: we don't support permuted src0
  4858. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  4859. // dst cannot be transposed or permuted
  4860. GGML_ASSERT(nb0 == sizeof(float));
  4861. GGML_ASSERT(nb0 <= nb1);
  4862. GGML_ASSERT(nb1 <= nb2);
  4863. GGML_ASSERT(nb2 <= nb3);
  4864. GGML_ASSERT(ne0 == ne01);
  4865. GGML_ASSERT(ne1 == ne11);
  4866. GGML_ASSERT(ne2 == ne02);
  4867. GGML_ASSERT(ne3 == ne03);
  4868. // nb01 >= nb00 - src0 is not transposed
  4869. // compute by src0 rows
  4870. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4871. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  4872. GGML_ASSERT(nb10 == sizeof(float));
  4873. if (params->ith != 0) {
  4874. return;
  4875. }
  4876. if (params->type == GGML_TASK_INIT) {
  4877. return;
  4878. }
  4879. if (params->type == GGML_TASK_FINALIZE) {
  4880. return;
  4881. }
  4882. float * const wdata = params->wdata;
  4883. for (int i03 = 0; i03 < ne03; i03++) {
  4884. for (int i02 = 0; i02 < ne02; i02++) {
  4885. {
  4886. size_t id = 0;
  4887. for (int i01 = 0; i01 < ne01; ++i01) {
  4888. for (int i00 = 0; i00 < ne00; ++i00) {
  4889. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  4890. }
  4891. }
  4892. }
  4893. const float * x = wdata;
  4894. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  4895. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  4896. // zT = y * xT
  4897. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  4898. ne11, ne01, ne10,
  4899. 1.0f, y, ne10,
  4900. x, ne10,
  4901. 0.0f, d, ne01);
  4902. }
  4903. }
  4904. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  4905. return;
  4906. }
  4907. #endif
  4908. if (params->type == GGML_TASK_INIT) {
  4909. ggml_fp16_t * const wdata = params->wdata;
  4910. size_t id = 0;
  4911. for (int i13 = 0; i13 < ne13; ++i13) {
  4912. for (int i12 = 0; i12 < ne12; ++i12) {
  4913. for (int i11 = 0; i11 < ne11; ++i11) {
  4914. for (int i10 = 0; i10 < ne10; ++i10) {
  4915. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  4916. }
  4917. }
  4918. }
  4919. }
  4920. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  4921. return;
  4922. }
  4923. if (params->type == GGML_TASK_FINALIZE) {
  4924. return;
  4925. }
  4926. // fp16 -> half the size, so divide by 2
  4927. // TODO: do not support transposed src1
  4928. assert(nb10/2 == sizeof(ggml_fp16_t));
  4929. // parallelize by src0 rows using ggml_vec_dot_f16
  4930. // total rows in src0
  4931. const int nr = ne01*ne02*ne03;
  4932. // rows per thread
  4933. const int dr = (nr + nth - 1)/nth;
  4934. // row range for this thread
  4935. const int ir0 = dr*ith;
  4936. const int ir1 = MIN(ir0 + dr, nr);
  4937. ggml_fp16_t * wdata = params->wdata;
  4938. for (int ir = ir0; ir < ir1; ++ir) {
  4939. // src0 indices
  4940. const int i03 = ir/(ne02*ne01);
  4941. const int i02 = (ir - i03*ne02*ne01)/ne01;
  4942. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  4943. const int i13 = i03;
  4944. const int i12 = i02;
  4945. const int i0 = i01;
  4946. const int i2 = i02;
  4947. const int i3 = i03;
  4948. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  4949. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  4950. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  4951. for (int ic = 0; ic < ne11; ++ic) {
  4952. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  4953. }
  4954. }
  4955. //int64_t t1 = ggml_time_us();
  4956. //static int64_t acc = 0;
  4957. //acc += t1 - t0;
  4958. //if (t1 - t0 > 10) {
  4959. // printf("\n");
  4960. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  4961. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  4962. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  4963. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  4964. //}
  4965. }
  4966. static void ggml_compute_forward_mul_mat_q4_0_f32(
  4967. const struct ggml_compute_params * params,
  4968. const struct ggml_tensor * src0,
  4969. const struct ggml_tensor * src1,
  4970. struct ggml_tensor * dst) {
  4971. int64_t t0 = ggml_perf_time_us();
  4972. UNUSED(t0);
  4973. const int ne00 = src0->ne[0];
  4974. const int ne01 = src0->ne[1];
  4975. const int ne02 = src0->ne[2];
  4976. const int ne03 = src0->ne[3];
  4977. const int ne10 = src1->ne[0];
  4978. const int ne11 = src1->ne[1];
  4979. const int ne12 = src1->ne[2];
  4980. const int ne13 = src1->ne[3];
  4981. const int ne0 = dst->ne[0];
  4982. const int ne1 = dst->ne[1];
  4983. const int ne2 = dst->ne[2];
  4984. const int ne3 = dst->ne[3];
  4985. const int nb00 = src0->nb[0];
  4986. const int nb01 = src0->nb[1];
  4987. const int nb02 = src0->nb[2];
  4988. const int nb03 = src0->nb[3];
  4989. const int nb10 = src1->nb[0];
  4990. const int nb11 = src1->nb[1];
  4991. const int nb12 = src1->nb[2];
  4992. const int nb13 = src1->nb[3];
  4993. const int nb0 = dst->nb[0];
  4994. const int nb1 = dst->nb[1];
  4995. const int nb2 = dst->nb[2];
  4996. const int nb3 = dst->nb[3];
  4997. const int ith = params->ith;
  4998. const int nth = params->nth;
  4999. GGML_ASSERT(ne02 == ne12);
  5000. GGML_ASSERT(ne03 == ne13);
  5001. GGML_ASSERT(ne2 == ne12);
  5002. GGML_ASSERT(ne3 == ne13);
  5003. // we don't support permuted src0 or src1
  5004. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[GGML_TYPE_Q4_0]);
  5005. GGML_ASSERT(nb10 == sizeof(float));
  5006. // dst cannot be transposed or permuted
  5007. GGML_ASSERT(nb0 == sizeof(float));
  5008. GGML_ASSERT(nb0 <= nb1);
  5009. GGML_ASSERT(nb1 <= nb2);
  5010. GGML_ASSERT(nb2 <= nb3);
  5011. GGML_ASSERT(ne0 == ne01);
  5012. GGML_ASSERT(ne1 == ne11);
  5013. GGML_ASSERT(ne2 == ne02);
  5014. GGML_ASSERT(ne3 == ne03);
  5015. // nb01 >= nb00 - src0 is not transposed
  5016. // compute by src0 rows
  5017. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5018. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5019. if (params->ith != 0) {
  5020. return;
  5021. }
  5022. if (params->type == GGML_TASK_INIT) {
  5023. return;
  5024. }
  5025. if (params->type == GGML_TASK_FINALIZE) {
  5026. return;
  5027. }
  5028. float * const wdata = params->wdata;
  5029. for (int i03 = 0; i03 < ne03; i03++) {
  5030. for (int i02 = 0; i02 < ne02; i02++) {
  5031. {
  5032. size_t id = 0;
  5033. for (int i01 = 0; i01 < ne01; ++i01) {
  5034. dequantize_row_q4_0((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  5035. id += ne00;
  5036. }
  5037. }
  5038. const float * x = wdata;
  5039. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5040. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5041. // zT = y * xT
  5042. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5043. ne11, ne01, ne10,
  5044. 1.0f, y, ne10,
  5045. x, ne10,
  5046. 0.0f, d, ne01);
  5047. }
  5048. }
  5049. /*printf("CBLAS Q4_0 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  5050. return;
  5051. }
  5052. #endif
  5053. if (params->type == GGML_TASK_INIT) {
  5054. char * wdata = params->wdata;
  5055. for (int i13 = 0; i13 < ne13; ++i13) {
  5056. for (int i12 = 0; i12 < ne12; ++i12) {
  5057. for (int i11 = 0; i11 < ne11; ++i11) {
  5058. quantize_row_q4_0((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  5059. wdata += (ne10*GGML_TYPE_SIZE[GGML_TYPE_Q4_0])/GGML_BLCK_SIZE[GGML_TYPE_Q4_0];
  5060. }
  5061. }
  5062. }
  5063. return;
  5064. }
  5065. if (params->type == GGML_TASK_FINALIZE) {
  5066. return;
  5067. }
  5068. // parallelize by src0 rows using ggml_vec_dot_q4_0
  5069. // total rows in src0
  5070. const int nr = ne01*ne02*ne03;
  5071. // rows per thread
  5072. const int dr = (nr + nth - 1)/nth;
  5073. // row range for this thread
  5074. const int ir0 = dr*ith;
  5075. const int ir1 = MIN(ir0 + dr, nr);
  5076. void * wdata = params->wdata;
  5077. for (int ir = ir0; ir < ir1; ++ir) {
  5078. // src0 indices
  5079. const int i03 = ir/(ne02*ne01);
  5080. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5081. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5082. const int i13 = i03;
  5083. const int i12 = i02;
  5084. const int i0 = i01;
  5085. const int i2 = i02;
  5086. const int i3 = i03;
  5087. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5088. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*ne00*GGML_TYPE_SIZE[GGML_TYPE_Q4_0])/GGML_BLCK_SIZE[GGML_TYPE_Q4_0]);
  5089. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5090. assert(ne00 % 32 == 0);
  5091. for (int ic = 0; ic < ne11; ++ic) {
  5092. ggml_vec_dot_q4_0(ne00, &dst_col[ic*ne0], src0_row, ((void *) (src1_col + (ic*ne00*GGML_TYPE_SIZE[GGML_TYPE_Q4_0])/GGML_BLCK_SIZE[GGML_TYPE_Q4_0])));
  5093. }
  5094. }
  5095. //int64_t t1 = ggml_time_us();
  5096. //static int64_t acc = 0;
  5097. //acc += t1 - t0;
  5098. //if (t1 - t0 > 10) {
  5099. // printf("\n");
  5100. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5101. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5102. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5103. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5104. //}
  5105. }
  5106. static void ggml_compute_forward_mul_mat_q4_1_f32(
  5107. const struct ggml_compute_params * params,
  5108. const struct ggml_tensor * src0,
  5109. const struct ggml_tensor * src1,
  5110. struct ggml_tensor * dst) {
  5111. int64_t t0 = ggml_perf_time_us();
  5112. UNUSED(t0);
  5113. const int ne00 = src0->ne[0];
  5114. const int ne01 = src0->ne[1];
  5115. const int ne02 = src0->ne[2];
  5116. const int ne03 = src0->ne[3];
  5117. const int ne10 = src1->ne[0];
  5118. const int ne11 = src1->ne[1];
  5119. const int ne12 = src1->ne[2];
  5120. const int ne13 = src1->ne[3];
  5121. const int ne0 = dst->ne[0];
  5122. const int ne1 = dst->ne[1];
  5123. const int ne2 = dst->ne[2];
  5124. const int ne3 = dst->ne[3];
  5125. const int nb00 = src0->nb[0];
  5126. const int nb01 = src0->nb[1];
  5127. const int nb02 = src0->nb[2];
  5128. const int nb03 = src0->nb[3];
  5129. const int nb10 = src1->nb[0];
  5130. const int nb11 = src1->nb[1];
  5131. const int nb12 = src1->nb[2];
  5132. const int nb13 = src1->nb[3];
  5133. const int nb0 = dst->nb[0];
  5134. const int nb1 = dst->nb[1];
  5135. const int nb2 = dst->nb[2];
  5136. const int nb3 = dst->nb[3];
  5137. const int ith = params->ith;
  5138. const int nth = params->nth;
  5139. GGML_ASSERT(ne02 == ne12);
  5140. GGML_ASSERT(ne03 == ne13);
  5141. GGML_ASSERT(ne2 == ne12);
  5142. GGML_ASSERT(ne3 == ne13);
  5143. // we don't support permuted src0 or src1
  5144. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[GGML_TYPE_Q4_1]);
  5145. GGML_ASSERT(nb10 == sizeof(float));
  5146. // dst cannot be transposed or permuted
  5147. GGML_ASSERT(nb0 == sizeof(float));
  5148. GGML_ASSERT(nb0 <= nb1);
  5149. GGML_ASSERT(nb1 <= nb2);
  5150. GGML_ASSERT(nb2 <= nb3);
  5151. GGML_ASSERT(ne0 == ne01);
  5152. GGML_ASSERT(ne1 == ne11);
  5153. GGML_ASSERT(ne2 == ne02);
  5154. GGML_ASSERT(ne3 == ne03);
  5155. // nb01 >= nb00 - src0 is not transposed
  5156. // compute by src0 rows
  5157. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5158. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5159. if (params->ith != 0) {
  5160. return;
  5161. }
  5162. if (params->type == GGML_TASK_INIT) {
  5163. return;
  5164. }
  5165. if (params->type == GGML_TASK_FINALIZE) {
  5166. return;
  5167. }
  5168. float * const wdata = params->wdata;
  5169. for (int i03 = 0; i03 < ne03; i03++) {
  5170. for (int i02 = 0; i02 < ne02; i02++) {
  5171. {
  5172. size_t id = 0;
  5173. for (int i01 = 0; i01 < ne01; ++i01) {
  5174. dequantize_row_q4_1((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  5175. id += ne00;
  5176. }
  5177. }
  5178. const float * x = wdata;
  5179. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5180. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5181. // zT = y * xT
  5182. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5183. ne11, ne01, ne10,
  5184. 1.0f, y, ne10,
  5185. x, ne10,
  5186. 0.0f, d, ne01);
  5187. }
  5188. }
  5189. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  5190. return;
  5191. }
  5192. #endif
  5193. if (params->type == GGML_TASK_INIT) {
  5194. char * wdata = params->wdata;
  5195. for (int i13 = 0; i13 < ne13; ++i13) {
  5196. for (int i12 = 0; i12 < ne12; ++i12) {
  5197. for (int i11 = 0; i11 < ne11; ++i11) {
  5198. //for (int i10 = 0; i10 < ne10; ++i10) {
  5199. // wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  5200. //}
  5201. quantize_row_q4_1((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  5202. wdata += (ne10*GGML_TYPE_SIZE[GGML_TYPE_Q4_1])/GGML_BLCK_SIZE[GGML_TYPE_Q4_1];
  5203. }
  5204. }
  5205. }
  5206. return;
  5207. }
  5208. if (params->type == GGML_TASK_FINALIZE) {
  5209. return;
  5210. }
  5211. // parallelize by src0 rows using ggml_vec_dot_q4_1
  5212. // total rows in src0
  5213. const int nr = ne01*ne02*ne03;
  5214. // rows per thread
  5215. const int dr = (nr + nth - 1)/nth;
  5216. // row range for this thread
  5217. const int ir0 = dr*ith;
  5218. const int ir1 = MIN(ir0 + dr, nr);
  5219. void * wdata = params->wdata;
  5220. for (int ir = ir0; ir < ir1; ++ir) {
  5221. // src0 indices
  5222. const int i03 = ir/(ne02*ne01);
  5223. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5224. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5225. const int i13 = i03;
  5226. const int i12 = i02;
  5227. const int i0 = i01;
  5228. const int i2 = i02;
  5229. const int i3 = i03;
  5230. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5231. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*ne00*GGML_TYPE_SIZE[GGML_TYPE_Q4_1])/GGML_BLCK_SIZE[GGML_TYPE_Q4_1]);
  5232. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5233. assert(ne00 % 32 == 0);
  5234. for (int ic = 0; ic < ne11; ++ic) {
  5235. ggml_vec_dot_q4_1(ne00, &dst_col[ic*ne0], src0_row, ((void *) (src1_col + (ic*ne00*GGML_TYPE_SIZE[GGML_TYPE_Q4_1])/GGML_BLCK_SIZE[GGML_TYPE_Q4_1])));
  5236. }
  5237. }
  5238. //int64_t t1 = ggml_time_us();
  5239. //static int64_t acc = 0;
  5240. //acc += t1 - t0;
  5241. //if (t1 - t0 > 10) {
  5242. // printf("\n");
  5243. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5244. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5245. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5246. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5247. //}
  5248. }
  5249. static void ggml_compute_forward_mul_mat(
  5250. const struct ggml_compute_params * params,
  5251. const struct ggml_tensor * src0,
  5252. const struct ggml_tensor * src1,
  5253. struct ggml_tensor * dst) {
  5254. switch (src0->type) {
  5255. case GGML_TYPE_Q4_0:
  5256. {
  5257. ggml_compute_forward_mul_mat_q4_0_f32(params, src0, src1, dst);
  5258. } break;
  5259. case GGML_TYPE_Q4_1:
  5260. {
  5261. ggml_compute_forward_mul_mat_q4_1_f32(params, src0, src1, dst);
  5262. } break;
  5263. case GGML_TYPE_F16:
  5264. {
  5265. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  5266. } break;
  5267. case GGML_TYPE_F32:
  5268. {
  5269. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  5270. } break;
  5271. case GGML_TYPE_I8:
  5272. case GGML_TYPE_I16:
  5273. case GGML_TYPE_I32:
  5274. case GGML_TYPE_COUNT:
  5275. {
  5276. GGML_ASSERT(false);
  5277. } break;
  5278. }
  5279. #if 0
  5280. if (src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_Q4_1) {
  5281. static int first = 8;
  5282. printf("src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5283. printf("src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5284. printf("dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5285. if (first) {
  5286. --first;
  5287. } else {
  5288. for (int k = 0; k < dst->ne[1]; ++k) {
  5289. for (int j = 0; j < dst->ne[0]/16; ++j) {
  5290. for (int i = 0; i < 16; ++i) {
  5291. printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5292. }
  5293. printf("\n");
  5294. }
  5295. printf("\n");
  5296. }
  5297. printf("\n");
  5298. exit(0);
  5299. }
  5300. } else {
  5301. printf("aaaa src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5302. printf("aaaa src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5303. printf("aaaa dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5304. }
  5305. #endif
  5306. }
  5307. // ggml_compute_forward_scale
  5308. static void ggml_compute_forward_scale_f32(
  5309. const struct ggml_compute_params * params,
  5310. const struct ggml_tensor * src0,
  5311. const struct ggml_tensor * src1,
  5312. struct ggml_tensor * dst) {
  5313. GGML_ASSERT(ggml_is_contiguous(src0));
  5314. GGML_ASSERT(ggml_is_contiguous(dst));
  5315. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5316. GGML_ASSERT(ggml_is_scalar(src1));
  5317. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5318. return;
  5319. }
  5320. // scale factor
  5321. const float v = *(float *) src1->data;
  5322. const int ith = params->ith;
  5323. const int nth = params->nth;
  5324. const int nc = src0->ne[0];
  5325. const int nr = ggml_nrows(src0);
  5326. // rows per thread
  5327. const int dr = (nr + nth - 1)/nth;
  5328. // row range for this thread
  5329. const int ir0 = dr*ith;
  5330. const int ir1 = MIN(ir0 + dr, nr);
  5331. for (int i1 = ir0; i1 < ir1; i1++) {
  5332. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  5333. }
  5334. }
  5335. static void ggml_compute_forward_scale(
  5336. const struct ggml_compute_params * params,
  5337. const struct ggml_tensor * src0,
  5338. const struct ggml_tensor * src1,
  5339. struct ggml_tensor * dst) {
  5340. switch (src0->type) {
  5341. case GGML_TYPE_F32:
  5342. {
  5343. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  5344. } break;
  5345. case GGML_TYPE_Q4_0:
  5346. case GGML_TYPE_Q4_1:
  5347. case GGML_TYPE_I8:
  5348. case GGML_TYPE_I16:
  5349. case GGML_TYPE_I32:
  5350. case GGML_TYPE_F16:
  5351. case GGML_TYPE_COUNT:
  5352. {
  5353. GGML_ASSERT(false);
  5354. } break;
  5355. }
  5356. }
  5357. // ggml_compute_forward_cpy
  5358. static void ggml_compute_forward_cpy(
  5359. const struct ggml_compute_params * params,
  5360. const struct ggml_tensor * src0,
  5361. struct ggml_tensor * dst) {
  5362. ggml_compute_forward_dup(params, src0, dst);
  5363. }
  5364. // ggml_compute_forward_reshape
  5365. static void ggml_compute_forward_reshape(
  5366. const struct ggml_compute_params * params,
  5367. const struct ggml_tensor * src0,
  5368. struct ggml_tensor * dst) {
  5369. // NOP
  5370. UNUSED(params);
  5371. UNUSED(src0);
  5372. UNUSED(dst);
  5373. }
  5374. // ggml_compute_forward_view
  5375. static void ggml_compute_forward_view(
  5376. const struct ggml_compute_params * params,
  5377. const struct ggml_tensor * src0) {
  5378. // NOP
  5379. UNUSED(params);
  5380. UNUSED(src0);
  5381. }
  5382. // ggml_compute_forward_permute
  5383. static void ggml_compute_forward_permute(
  5384. const struct ggml_compute_params * params,
  5385. const struct ggml_tensor * src0) {
  5386. // NOP
  5387. UNUSED(params);
  5388. UNUSED(src0);
  5389. }
  5390. // ggml_compute_forward_transpose
  5391. static void ggml_compute_forward_transpose(
  5392. const struct ggml_compute_params * params,
  5393. const struct ggml_tensor * src0) {
  5394. // NOP
  5395. UNUSED(params);
  5396. UNUSED(src0);
  5397. }
  5398. // ggml_compute_forward_get_rows
  5399. static void ggml_compute_forward_get_rows_q4_0(
  5400. const struct ggml_compute_params * params,
  5401. const struct ggml_tensor * src0,
  5402. const struct ggml_tensor * src1,
  5403. struct ggml_tensor * dst) {
  5404. assert(params->ith == 0);
  5405. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5406. return;
  5407. }
  5408. const int nc = src0->ne[0];
  5409. const int nr = ggml_nelements(src1);
  5410. assert( dst->ne[0] == nc);
  5411. assert( dst->ne[1] == nr);
  5412. assert(src0->nb[0] == GGML_TYPE_SIZE[GGML_TYPE_Q4_0]);
  5413. for (int i = 0; i < nr; ++i) {
  5414. const int r = ((int32_t *) src1->data)[i];
  5415. dequantize_row_q4_0(
  5416. (const void *) ((char *) src0->data + r*src0->nb[1]),
  5417. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  5418. }
  5419. }
  5420. static void ggml_compute_forward_get_rows_q4_1(
  5421. const struct ggml_compute_params * params,
  5422. const struct ggml_tensor * src0,
  5423. const struct ggml_tensor * src1,
  5424. struct ggml_tensor * dst) {
  5425. assert(params->ith == 0);
  5426. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5427. return;
  5428. }
  5429. const int nc = src0->ne[0];
  5430. const int nr = ggml_nelements(src1);
  5431. assert( dst->ne[0] == nc);
  5432. assert( dst->ne[1] == nr);
  5433. assert(src0->nb[0] == GGML_TYPE_SIZE[GGML_TYPE_Q4_1]);
  5434. for (int i = 0; i < nr; ++i) {
  5435. const int r = ((int32_t *) src1->data)[i];
  5436. dequantize_row_q4_1(
  5437. (const void *) ((char *) src0->data + r*src0->nb[1]),
  5438. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  5439. }
  5440. }
  5441. static void ggml_compute_forward_get_rows_f16(
  5442. const struct ggml_compute_params * params,
  5443. const struct ggml_tensor * src0,
  5444. const struct ggml_tensor * src1,
  5445. struct ggml_tensor * dst) {
  5446. assert(params->ith == 0);
  5447. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5448. return;
  5449. }
  5450. const int nc = src0->ne[0];
  5451. const int nr = ggml_nelements(src1);
  5452. assert( dst->ne[0] == nc);
  5453. assert( dst->ne[1] == nr);
  5454. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  5455. for (int i = 0; i < nr; ++i) {
  5456. const int r = ((int32_t *) src1->data)[i];
  5457. for (int j = 0; j < nc; ++j) {
  5458. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  5459. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  5460. }
  5461. }
  5462. }
  5463. static void ggml_compute_forward_get_rows_f32(
  5464. const struct ggml_compute_params * params,
  5465. const struct ggml_tensor * src0,
  5466. const struct ggml_tensor * src1,
  5467. struct ggml_tensor * dst) {
  5468. assert(params->ith == 0);
  5469. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5470. return;
  5471. }
  5472. const int nc = src0->ne[0];
  5473. const int nr = ggml_nelements(src1);
  5474. assert( dst->ne[0] == nc);
  5475. assert( dst->ne[1] == nr);
  5476. assert(src0->nb[0] == sizeof(float));
  5477. for (int i = 0; i < nr; ++i) {
  5478. const int r = ((int32_t *) src1->data)[i];
  5479. ggml_vec_cpy_f32(nc,
  5480. (float *) ((char *) dst->data + i*dst->nb[1]),
  5481. (float *) ((char *) src0->data + r*src0->nb[1]));
  5482. }
  5483. }
  5484. static void ggml_compute_forward_get_rows(
  5485. const struct ggml_compute_params * params,
  5486. const struct ggml_tensor * src0,
  5487. const struct ggml_tensor * src1,
  5488. struct ggml_tensor * dst) {
  5489. switch (src0->type) {
  5490. case GGML_TYPE_Q4_0:
  5491. {
  5492. ggml_compute_forward_get_rows_q4_0(params, src0, src1, dst);
  5493. } break;
  5494. case GGML_TYPE_Q4_1:
  5495. {
  5496. ggml_compute_forward_get_rows_q4_1(params, src0, src1, dst);
  5497. } break;
  5498. case GGML_TYPE_F16:
  5499. {
  5500. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  5501. } break;
  5502. case GGML_TYPE_F32:
  5503. {
  5504. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  5505. } break;
  5506. case GGML_TYPE_I8:
  5507. case GGML_TYPE_I16:
  5508. case GGML_TYPE_I32:
  5509. case GGML_TYPE_COUNT:
  5510. {
  5511. GGML_ASSERT(false);
  5512. } break;
  5513. }
  5514. //static bool first = true;
  5515. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5516. //if (first) {
  5517. // first = false;
  5518. //} else {
  5519. // for (int k = 0; k < dst->ne[1]; ++k) {
  5520. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  5521. // for (int i = 0; i < 16; ++i) {
  5522. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5523. // }
  5524. // printf("\n");
  5525. // }
  5526. // printf("\n");
  5527. // }
  5528. // printf("\n");
  5529. // exit(0);
  5530. //}
  5531. }
  5532. // ggml_compute_forward_diag_mask_inf
  5533. static void ggml_compute_forward_diag_mask_inf_f32(
  5534. const struct ggml_compute_params * params,
  5535. const struct ggml_tensor * src0,
  5536. const struct ggml_tensor * src1,
  5537. struct ggml_tensor * dst) {
  5538. assert(params->ith == 0);
  5539. assert(src1->type == GGML_TYPE_I32);
  5540. assert(ggml_nelements(src1) == 1);
  5541. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5542. return;
  5543. }
  5544. const int n_past = ((int32_t *) src1->data)[0];
  5545. // TODO: handle transposed/permuted matrices
  5546. const int n = ggml_nrows(src0);
  5547. const int nc = src0->ne[0];
  5548. const int nr = src0->ne[1];
  5549. const int nz = n/nr;
  5550. assert( dst->nb[0] == sizeof(float));
  5551. assert(src0->nb[0] == sizeof(float));
  5552. for (int k = 0; k < nz; k++) {
  5553. for (int j = 0; j < nr; j++) {
  5554. for (int i = n_past; i < nc; i++) {
  5555. if (i > n_past + j) {
  5556. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  5557. }
  5558. }
  5559. }
  5560. }
  5561. }
  5562. static void ggml_compute_forward_diag_mask_inf(
  5563. const struct ggml_compute_params * params,
  5564. const struct ggml_tensor * src0,
  5565. const struct ggml_tensor * src1,
  5566. struct ggml_tensor * dst) {
  5567. switch (src0->type) {
  5568. case GGML_TYPE_F32:
  5569. {
  5570. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  5571. } break;
  5572. case GGML_TYPE_Q4_0:
  5573. case GGML_TYPE_Q4_1:
  5574. case GGML_TYPE_I8:
  5575. case GGML_TYPE_I16:
  5576. case GGML_TYPE_I32:
  5577. case GGML_TYPE_F16:
  5578. case GGML_TYPE_COUNT:
  5579. {
  5580. GGML_ASSERT(false);
  5581. } break;
  5582. }
  5583. }
  5584. // ggml_compute_forward_soft_max
  5585. static void ggml_compute_forward_soft_max_f32(
  5586. const struct ggml_compute_params * params,
  5587. const struct ggml_tensor * src0,
  5588. struct ggml_tensor * dst) {
  5589. GGML_ASSERT(ggml_is_contiguous(src0));
  5590. GGML_ASSERT(ggml_is_contiguous(dst));
  5591. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5592. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5593. return;
  5594. }
  5595. // TODO: handle transposed/permuted matrices
  5596. const int ith = params->ith;
  5597. const int nth = params->nth;
  5598. const int nc = src0->ne[0];
  5599. const int nr = ggml_nrows(src0);
  5600. // rows per thread
  5601. const int dr = (nr + nth - 1)/nth;
  5602. // row range for this thread
  5603. const int ir0 = dr*ith;
  5604. const int ir1 = MIN(ir0 + dr, nr);
  5605. for (int i1 = ir0; i1 < ir1; i1++) {
  5606. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  5607. #ifndef NDEBUG
  5608. for (int i = 0; i < nc; ++i) {
  5609. //printf("p[%d] = %f\n", i, p[i]);
  5610. assert(!isnan(p[i]));
  5611. }
  5612. #endif
  5613. float max = -INFINITY;
  5614. ggml_vec_max_f32(nc, &max, p);
  5615. ggml_float sum = 0.0;
  5616. uint16_t scvt;
  5617. for (int i = 0; i < nc; i++) {
  5618. if (p[i] == -INFINITY) {
  5619. p[i] = 0.0f;
  5620. } else {
  5621. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  5622. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  5623. memcpy(&scvt, &s, sizeof(scvt));
  5624. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  5625. sum += val;
  5626. p[i] = val;
  5627. }
  5628. }
  5629. assert(sum > 0.0f);
  5630. sum = 1.0/sum;
  5631. ggml_vec_scale_f32(nc, p, sum);
  5632. #ifndef NDEBUG
  5633. for (int i = 0; i < nc; ++i) {
  5634. assert(!isnan(p[i]));
  5635. assert(!isinf(p[i]));
  5636. }
  5637. #endif
  5638. }
  5639. }
  5640. static void ggml_compute_forward_soft_max(
  5641. const struct ggml_compute_params * params,
  5642. const struct ggml_tensor * src0,
  5643. struct ggml_tensor * dst) {
  5644. switch (src0->type) {
  5645. case GGML_TYPE_F32:
  5646. {
  5647. ggml_compute_forward_soft_max_f32(params, src0, dst);
  5648. } break;
  5649. case GGML_TYPE_Q4_0:
  5650. case GGML_TYPE_Q4_1:
  5651. case GGML_TYPE_I8:
  5652. case GGML_TYPE_I16:
  5653. case GGML_TYPE_I32:
  5654. case GGML_TYPE_F16:
  5655. case GGML_TYPE_COUNT:
  5656. {
  5657. GGML_ASSERT(false);
  5658. } break;
  5659. }
  5660. }
  5661. // ggml_compute_forward_rope
  5662. static void ggml_compute_forward_rope_f32(
  5663. const struct ggml_compute_params * params,
  5664. const struct ggml_tensor * src0,
  5665. const struct ggml_tensor * src1,
  5666. struct ggml_tensor * dst) {
  5667. assert(params->ith == 0);
  5668. assert(src1->type == GGML_TYPE_I32);
  5669. assert(ggml_nelements(src1) == 3);
  5670. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5671. return;
  5672. }
  5673. const int n_past = ((int32_t *) src1->data)[0];
  5674. const int n_dims = ((int32_t *) src1->data)[1];
  5675. const int mode = ((int32_t *) src1->data)[2];
  5676. //const int ne0 = src0->ne[0];
  5677. const int ne1 = src0->ne[1];
  5678. const int ne2 = src0->ne[2];
  5679. const int ne3 = src0->ne[3];
  5680. const int nb0 = src0->nb[0];
  5681. const int nb1 = src0->nb[1];
  5682. const int nb2 = src0->nb[2];
  5683. const int nb3 = src0->nb[3];
  5684. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  5685. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  5686. assert(nb0 == sizeof(float));
  5687. // TODO: optimize
  5688. for (int i3 = 0; i3 < ne3; i3++) {
  5689. for (int i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  5690. const int p = (mode == 0 ? n_past + i2 : i2);
  5691. for (int i1 = 0; i1 < ne1; i1++) {
  5692. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  5693. const double theta = pow(10000.0, ((double)-i0)/n_dims);
  5694. const double cos_theta = cos(p*theta);
  5695. const double sin_theta = sin(p*theta);
  5696. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5697. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5698. double x0 = src[0];
  5699. double x1 = src[1];
  5700. dst_data[0] = x0*cos_theta - x1*sin_theta;
  5701. dst_data[1] = x0*sin_theta + x1*cos_theta;
  5702. }
  5703. }
  5704. }
  5705. }
  5706. }
  5707. static void ggml_compute_forward_rope_f16(
  5708. const struct ggml_compute_params * params,
  5709. const struct ggml_tensor * src0,
  5710. const struct ggml_tensor * src1,
  5711. struct ggml_tensor * dst) {
  5712. assert(params->ith == 0);
  5713. assert(src1->type == GGML_TYPE_I32);
  5714. assert(ggml_nelements(src1) == 3);
  5715. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5716. return;
  5717. }
  5718. const int n_past = ((int32_t *) src1->data)[0];
  5719. const int n_dims = ((int32_t *) src1->data)[1];
  5720. const int mode = ((int32_t *) src1->data)[2];
  5721. //const int ne0 = src0->ne[0];
  5722. const int ne1 = src0->ne[1];
  5723. const int ne2 = src0->ne[2];
  5724. const int ne3 = src0->ne[3];
  5725. const int nb0 = src0->nb[0];
  5726. const int nb1 = src0->nb[1];
  5727. const int nb2 = src0->nb[2];
  5728. const int nb3 = src0->nb[3];
  5729. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  5730. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  5731. assert(nb0 == sizeof(ggml_fp16_t));
  5732. for (int i3 = 0; i3 < ne3; i3++) {
  5733. for (int i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  5734. const int p = (mode == 0 ? n_past + i2 : i2);
  5735. for (int i1 = 0; i1 < ne1; i1++) {
  5736. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  5737. const double theta = pow(10000.0, ((double)-i0)/n_dims);
  5738. const double cos_theta = cos(p*theta);
  5739. const double sin_theta = sin(p*theta);
  5740. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5741. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5742. double x0 = ggml_fp16_to_fp32(src[0]);
  5743. double x1 = ggml_fp16_to_fp32(src[1]);
  5744. dst_data[0] = ggml_fp32_to_fp16(x0*cos_theta - x1*sin_theta);
  5745. dst_data[1] = ggml_fp32_to_fp16(x0*sin_theta + x1*cos_theta);
  5746. }
  5747. }
  5748. }
  5749. }
  5750. }
  5751. static void ggml_compute_forward_rope(
  5752. const struct ggml_compute_params * params,
  5753. const struct ggml_tensor * src0,
  5754. const struct ggml_tensor * src1,
  5755. struct ggml_tensor * dst) {
  5756. switch (src0->type) {
  5757. case GGML_TYPE_F16:
  5758. {
  5759. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  5760. } break;
  5761. case GGML_TYPE_F32:
  5762. {
  5763. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  5764. } break;
  5765. case GGML_TYPE_Q4_0:
  5766. case GGML_TYPE_Q4_1:
  5767. case GGML_TYPE_I8:
  5768. case GGML_TYPE_I16:
  5769. case GGML_TYPE_I32:
  5770. case GGML_TYPE_COUNT:
  5771. {
  5772. GGML_ASSERT(false);
  5773. } break;
  5774. }
  5775. }
  5776. // ggml_compute_forward_conv_1d_1s
  5777. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  5778. const struct ggml_compute_params * params,
  5779. const struct ggml_tensor * src0,
  5780. const struct ggml_tensor * src1,
  5781. struct ggml_tensor * dst) {
  5782. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5783. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5784. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  5785. int64_t t0 = ggml_perf_time_us();
  5786. UNUSED(t0);
  5787. const int ne00 = src0->ne[0];
  5788. const int ne01 = src0->ne[1];
  5789. const int ne02 = src0->ne[2];
  5790. //const int ne03 = src0->ne[3];
  5791. const int ne10 = src1->ne[0];
  5792. const int ne11 = src1->ne[1];
  5793. //const int ne12 = src1->ne[2];
  5794. //const int ne13 = src1->ne[3];
  5795. //const int ne0 = dst->ne[0];
  5796. //const int ne1 = dst->ne[1];
  5797. //const int ne2 = dst->ne[2];
  5798. //const int ne3 = dst->ne[3];
  5799. //const int ne = ne0*ne1*ne2*ne3;
  5800. const int nb00 = src0->nb[0];
  5801. const int nb01 = src0->nb[1];
  5802. const int nb02 = src0->nb[2];
  5803. //const int nb03 = src0->nb[3];
  5804. const int nb10 = src1->nb[0];
  5805. const int nb11 = src1->nb[1];
  5806. //const int nb12 = src1->nb[2];
  5807. //const int nb13 = src1->nb[3];
  5808. //const int nb0 = dst->nb[0];
  5809. const int nb1 = dst->nb[1];
  5810. //const int nb2 = dst->nb[2];
  5811. //const int nb3 = dst->nb[3];
  5812. const int ith = params->ith;
  5813. const int nth = params->nth;
  5814. const int nk = ne00;
  5815. const int nh = nk/2;
  5816. const int ew0 = ggml_up32(ne01);
  5817. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  5818. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5819. GGML_ASSERT(nb10 == sizeof(float));
  5820. if (params->type == GGML_TASK_INIT) {
  5821. // TODO: fix this memset (wsize is overestimated)
  5822. memset(params->wdata, 0, params->wsize);
  5823. // prepare kernel data (src0)
  5824. {
  5825. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  5826. for (int i02 = 0; i02 < ne02; i02++) {
  5827. for (int i01 = 0; i01 < ne01; i01++) {
  5828. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  5829. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  5830. for (int i00 = 0; i00 < ne00; i00++) {
  5831. dst_data[i00*ew0 + i01] = src[i00];
  5832. }
  5833. }
  5834. }
  5835. }
  5836. // prepare source data (src1)
  5837. {
  5838. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  5839. for (int i11 = 0; i11 < ne11; i11++) {
  5840. const float * const src = (float *)((char *) src1->data + i11*nb11);
  5841. ggml_fp16_t * dst_data = wdata;
  5842. for (int i10 = 0; i10 < ne10; i10++) {
  5843. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  5844. }
  5845. }
  5846. }
  5847. return;
  5848. }
  5849. if (params->type == GGML_TASK_FINALIZE) {
  5850. return;
  5851. }
  5852. // total rows in dst
  5853. const int nr = ne02;
  5854. // rows per thread
  5855. const int dr = (nr + nth - 1)/nth;
  5856. // row range for this thread
  5857. const int ir0 = dr*ith;
  5858. const int ir1 = MIN(ir0 + dr, nr);
  5859. for (int i1 = ir0; i1 < ir1; i1++) {
  5860. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  5861. for (int i0 = 0; i0 < ne10; ++i0) {
  5862. dst_data[i0] = 0;
  5863. for (int k = -nh; k <= nh; k++) {
  5864. float v = 0.0f;
  5865. ggml_vec_dot_f16(ew0, &v,
  5866. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  5867. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  5868. dst_data[i0] += v;
  5869. }
  5870. }
  5871. }
  5872. }
  5873. static void ggml_compute_forward_conv_1d_1s_f32(
  5874. const struct ggml_compute_params * params,
  5875. const struct ggml_tensor * src0,
  5876. const struct ggml_tensor * src1,
  5877. struct ggml_tensor * dst) {
  5878. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  5879. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5880. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  5881. int64_t t0 = ggml_perf_time_us();
  5882. UNUSED(t0);
  5883. const int ne00 = src0->ne[0];
  5884. const int ne01 = src0->ne[1];
  5885. const int ne02 = src0->ne[2];
  5886. //const int ne03 = src0->ne[3];
  5887. const int ne10 = src1->ne[0];
  5888. const int ne11 = src1->ne[1];
  5889. //const int ne12 = src1->ne[2];
  5890. //const int ne13 = src1->ne[3];
  5891. //const int ne0 = dst->ne[0];
  5892. //const int ne1 = dst->ne[1];
  5893. //const int ne2 = dst->ne[2];
  5894. //const int ne3 = dst->ne[3];
  5895. //const int ne = ne0*ne1*ne2*ne3;
  5896. const int nb00 = src0->nb[0];
  5897. const int nb01 = src0->nb[1];
  5898. const int nb02 = src0->nb[2];
  5899. //const int nb03 = src0->nb[3];
  5900. const int nb10 = src1->nb[0];
  5901. const int nb11 = src1->nb[1];
  5902. //const int nb12 = src1->nb[2];
  5903. //const int nb13 = src1->nb[3];
  5904. //const int nb0 = dst->nb[0];
  5905. const int nb1 = dst->nb[1];
  5906. //const int nb2 = dst->nb[2];
  5907. //const int nb3 = dst->nb[3];
  5908. const int ith = params->ith;
  5909. const int nth = params->nth;
  5910. const int nk = ne00;
  5911. const int nh = nk/2;
  5912. const int ew0 = ggml_up32(ne01);
  5913. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  5914. GGML_ASSERT(nb00 == sizeof(float));
  5915. GGML_ASSERT(nb10 == sizeof(float));
  5916. if (params->type == GGML_TASK_INIT) {
  5917. // TODO: fix this memset (wsize is overestimated)
  5918. memset(params->wdata, 0, params->wsize);
  5919. // prepare kernel data (src0)
  5920. {
  5921. float * const wdata = (float *) params->wdata + 0;
  5922. for (int i02 = 0; i02 < ne02; i02++) {
  5923. for (int i01 = 0; i01 < ne01; i01++) {
  5924. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  5925. float * dst_data = wdata + i02*ew0*ne00;
  5926. for (int i00 = 0; i00 < ne00; i00++) {
  5927. dst_data[i00*ew0 + i01] = src[i00];
  5928. }
  5929. }
  5930. }
  5931. }
  5932. // prepare source data (src1)
  5933. {
  5934. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  5935. for (int i11 = 0; i11 < ne11; i11++) {
  5936. const float * const src = (float *)((char *) src1->data + i11*nb11);
  5937. float * dst_data = wdata;
  5938. for (int i10 = 0; i10 < ne10; i10++) {
  5939. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  5940. }
  5941. }
  5942. }
  5943. return;
  5944. }
  5945. if (params->type == GGML_TASK_FINALIZE) {
  5946. return;
  5947. }
  5948. // total rows in dst
  5949. const int nr = ne02;
  5950. // rows per thread
  5951. const int dr = (nr + nth - 1)/nth;
  5952. // row range for this thread
  5953. const int ir0 = dr*ith;
  5954. const int ir1 = MIN(ir0 + dr, nr);
  5955. for (int i1 = ir0; i1 < ir1; i1++) {
  5956. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  5957. for (int i0 = 0; i0 < ne10; ++i0) {
  5958. dst_data[i0] = 0;
  5959. for (int k = -nh; k <= nh; k++) {
  5960. float v = 0.0f;
  5961. ggml_vec_dot_f32(ew0, &v,
  5962. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  5963. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  5964. dst_data[i0] += v;
  5965. }
  5966. }
  5967. }
  5968. }
  5969. static void ggml_compute_forward_conv_1d_1s(
  5970. const struct ggml_compute_params * params,
  5971. const struct ggml_tensor * src0,
  5972. const struct ggml_tensor * src1,
  5973. struct ggml_tensor * dst) {
  5974. switch (src0->type) {
  5975. case GGML_TYPE_F16:
  5976. {
  5977. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  5978. } break;
  5979. case GGML_TYPE_F32:
  5980. {
  5981. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  5982. } break;
  5983. case GGML_TYPE_Q4_0:
  5984. case GGML_TYPE_Q4_1:
  5985. case GGML_TYPE_I8:
  5986. case GGML_TYPE_I16:
  5987. case GGML_TYPE_I32:
  5988. case GGML_TYPE_COUNT:
  5989. {
  5990. GGML_ASSERT(false);
  5991. } break;
  5992. }
  5993. }
  5994. // ggml_compute_forward_conv_1d_2s
  5995. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  5996. const struct ggml_compute_params * params,
  5997. const struct ggml_tensor * src0,
  5998. const struct ggml_tensor * src1,
  5999. struct ggml_tensor * dst) {
  6000. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6001. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6002. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6003. int64_t t0 = ggml_perf_time_us();
  6004. UNUSED(t0);
  6005. const int ne00 = src0->ne[0];
  6006. const int ne01 = src0->ne[1];
  6007. const int ne02 = src0->ne[2];
  6008. //const int ne03 = src0->ne[3];
  6009. const int ne10 = src1->ne[0];
  6010. const int ne11 = src1->ne[1];
  6011. //const int ne12 = src1->ne[2];
  6012. //const int ne13 = src1->ne[3];
  6013. //const int ne0 = dst->ne[0];
  6014. //const int ne1 = dst->ne[1];
  6015. //const int ne2 = dst->ne[2];
  6016. //const int ne3 = dst->ne[3];
  6017. //const int ne = ne0*ne1*ne2*ne3;
  6018. const int nb00 = src0->nb[0];
  6019. const int nb01 = src0->nb[1];
  6020. const int nb02 = src0->nb[2];
  6021. //const int nb03 = src0->nb[3];
  6022. const int nb10 = src1->nb[0];
  6023. const int nb11 = src1->nb[1];
  6024. //const int nb12 = src1->nb[2];
  6025. //const int nb13 = src1->nb[3];
  6026. //const int nb0 = dst->nb[0];
  6027. const int nb1 = dst->nb[1];
  6028. //const int nb2 = dst->nb[2];
  6029. //const int nb3 = dst->nb[3];
  6030. const int ith = params->ith;
  6031. const int nth = params->nth;
  6032. const int nk = ne00;
  6033. const int nh = nk/2;
  6034. const int ew0 = ggml_up32(ne01);
  6035. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6036. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6037. GGML_ASSERT(nb10 == sizeof(float));
  6038. if (params->type == GGML_TASK_INIT) {
  6039. // TODO: fix this memset (wsize is overestimated)
  6040. memset(params->wdata, 0, params->wsize);
  6041. // prepare kernel data (src0)
  6042. {
  6043. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  6044. for (int i02 = 0; i02 < ne02; i02++) {
  6045. for (int i01 = 0; i01 < ne01; i01++) {
  6046. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  6047. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  6048. for (int i00 = 0; i00 < ne00; i00++) {
  6049. dst_data[i00*ew0 + i01] = src[i00];
  6050. }
  6051. }
  6052. }
  6053. }
  6054. // prepare source data (src1)
  6055. {
  6056. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  6057. for (int i11 = 0; i11 < ne11; i11++) {
  6058. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6059. ggml_fp16_t * dst_data = wdata;
  6060. for (int i10 = 0; i10 < ne10; i10++) {
  6061. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  6062. }
  6063. }
  6064. }
  6065. return;
  6066. }
  6067. if (params->type == GGML_TASK_FINALIZE) {
  6068. return;
  6069. }
  6070. // total rows in dst
  6071. const int nr = ne02;
  6072. // rows per thread
  6073. const int dr = (nr + nth - 1)/nth;
  6074. // row range for this thread
  6075. const int ir0 = dr*ith;
  6076. const int ir1 = MIN(ir0 + dr, nr);
  6077. for (int i1 = ir0; i1 < ir1; i1++) {
  6078. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6079. for (int i0 = 0; i0 < ne10; i0 += 2) {
  6080. dst_data[i0/2] = 0;
  6081. for (int k = -nh; k <= nh; k++) {
  6082. float v = 0.0f;
  6083. ggml_vec_dot_f16(ew0, &v,
  6084. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6085. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6086. dst_data[i0/2] += v;
  6087. }
  6088. }
  6089. }
  6090. }
  6091. static void ggml_compute_forward_conv_1d_2s_f32(
  6092. const struct ggml_compute_params * params,
  6093. const struct ggml_tensor * src0,
  6094. const struct ggml_tensor * src1,
  6095. struct ggml_tensor * dst) {
  6096. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6097. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6098. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6099. int64_t t0 = ggml_perf_time_us();
  6100. UNUSED(t0);
  6101. const int ne00 = src0->ne[0];
  6102. const int ne01 = src0->ne[1];
  6103. const int ne02 = src0->ne[2];
  6104. //const int ne03 = src0->ne[3];
  6105. const int ne10 = src1->ne[0];
  6106. const int ne11 = src1->ne[1];
  6107. //const int ne12 = src1->ne[2];
  6108. //const int ne13 = src1->ne[3];
  6109. //const int ne0 = dst->ne[0];
  6110. //const int ne1 = dst->ne[1];
  6111. //const int ne2 = dst->ne[2];
  6112. //const int ne3 = dst->ne[3];
  6113. //const int ne = ne0*ne1*ne2*ne3;
  6114. const int nb00 = src0->nb[0];
  6115. const int nb01 = src0->nb[1];
  6116. const int nb02 = src0->nb[2];
  6117. //const int nb03 = src0->nb[3];
  6118. const int nb10 = src1->nb[0];
  6119. const int nb11 = src1->nb[1];
  6120. //const int nb12 = src1->nb[2];
  6121. //const int nb13 = src1->nb[3];
  6122. //const int nb0 = dst->nb[0];
  6123. const int nb1 = dst->nb[1];
  6124. //const int nb2 = dst->nb[2];
  6125. //const int nb3 = dst->nb[3];
  6126. const int ith = params->ith;
  6127. const int nth = params->nth;
  6128. const int nk = ne00;
  6129. const int nh = nk/2;
  6130. const int ew0 = ggml_up32(ne01);
  6131. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6132. GGML_ASSERT(nb00 == sizeof(float));
  6133. GGML_ASSERT(nb10 == sizeof(float));
  6134. if (params->type == GGML_TASK_INIT) {
  6135. // TODO: fix this memset (wsize is overestimated)
  6136. memset(params->wdata, 0, params->wsize);
  6137. // prepare kernel data (src0)
  6138. {
  6139. float * const wdata = (float *) params->wdata + 0;
  6140. for (int i02 = 0; i02 < ne02; i02++) {
  6141. for (int i01 = 0; i01 < ne01; i01++) {
  6142. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  6143. float * dst_data = wdata + i02*ew0*ne00;
  6144. for (int i00 = 0; i00 < ne00; i00++) {
  6145. dst_data[i00*ew0 + i01] = src[i00];
  6146. }
  6147. }
  6148. }
  6149. }
  6150. // prepare source data (src1)
  6151. {
  6152. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  6153. for (int i11 = 0; i11 < ne11; i11++) {
  6154. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6155. float * dst_data = wdata;
  6156. for (int i10 = 0; i10 < ne10; i10++) {
  6157. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  6158. }
  6159. }
  6160. }
  6161. return;
  6162. }
  6163. if (params->type == GGML_TASK_FINALIZE) {
  6164. return;
  6165. }
  6166. // total rows in dst
  6167. const int nr = ne02;
  6168. // rows per thread
  6169. const int dr = (nr + nth - 1)/nth;
  6170. // row range for this thread
  6171. const int ir0 = dr*ith;
  6172. const int ir1 = MIN(ir0 + dr, nr);
  6173. for (int i1 = ir0; i1 < ir1; i1++) {
  6174. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6175. for (int i0 = 0; i0 < ne10; i0 += 2) {
  6176. dst_data[i0/2] = 0;
  6177. for (int k = -nh; k <= nh; k++) {
  6178. float v = 0.0f;
  6179. ggml_vec_dot_f32(ew0, &v,
  6180. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6181. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6182. dst_data[i0/2] += v;
  6183. }
  6184. }
  6185. }
  6186. }
  6187. static void ggml_compute_forward_conv_1d_2s(
  6188. const struct ggml_compute_params * params,
  6189. const struct ggml_tensor * src0,
  6190. const struct ggml_tensor * src1,
  6191. struct ggml_tensor * dst) {
  6192. switch (src0->type) {
  6193. case GGML_TYPE_F16:
  6194. {
  6195. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  6196. } break;
  6197. case GGML_TYPE_F32:
  6198. {
  6199. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  6200. } break;
  6201. case GGML_TYPE_Q4_0:
  6202. case GGML_TYPE_Q4_1:
  6203. case GGML_TYPE_I8:
  6204. case GGML_TYPE_I16:
  6205. case GGML_TYPE_I32:
  6206. case GGML_TYPE_COUNT:
  6207. {
  6208. GGML_ASSERT(false);
  6209. } break;
  6210. }
  6211. }
  6212. // ggml_compute_forward_flash_attn
  6213. static void ggml_compute_forward_flash_attn_f32(
  6214. const struct ggml_compute_params * params,
  6215. const struct ggml_tensor * q,
  6216. const struct ggml_tensor * k,
  6217. const struct ggml_tensor * v,
  6218. const bool masked,
  6219. struct ggml_tensor * dst) {
  6220. int64_t t0 = ggml_perf_time_us();
  6221. UNUSED(t0);
  6222. const int neq0 = q->ne[0];
  6223. const int neq1 = q->ne[1];
  6224. const int neq2 = q->ne[2];
  6225. const int neq3 = q->ne[3];
  6226. const int nek0 = k->ne[0];
  6227. const int nek1 = k->ne[1];
  6228. //const int nek2 = k->ne[2];
  6229. //const int nek3 = k->ne[3];
  6230. //const int nev0 = v->ne[0];
  6231. const int nev1 = v->ne[1];
  6232. //const int nev2 = v->ne[2];
  6233. //const int nev3 = v->ne[3];
  6234. const int ne0 = dst->ne[0];
  6235. const int ne1 = dst->ne[1];
  6236. //const int ne2 = dst->ne[2];
  6237. //const int ne3 = dst->ne[3];
  6238. const int nbk0 = k->nb[0];
  6239. const int nbk1 = k->nb[1];
  6240. const int nbk2 = k->nb[2];
  6241. const int nbk3 = k->nb[3];
  6242. const int nbq0 = q->nb[0];
  6243. const int nbq1 = q->nb[1];
  6244. const int nbq2 = q->nb[2];
  6245. const int nbq3 = q->nb[3];
  6246. const int nbv0 = v->nb[0];
  6247. const int nbv1 = v->nb[1];
  6248. const int nbv2 = v->nb[2];
  6249. const int nbv3 = v->nb[3];
  6250. const int nb0 = dst->nb[0];
  6251. const int nb1 = dst->nb[1];
  6252. const int nb2 = dst->nb[2];
  6253. const int nb3 = dst->nb[3];
  6254. const int ith = params->ith;
  6255. const int nth = params->nth;
  6256. const int D = neq0;
  6257. const int N = neq1;
  6258. const int P = nek1 - N;
  6259. const int M = P + N;
  6260. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6261. GGML_ASSERT(ne0 == D);
  6262. GGML_ASSERT(ne1 == N);
  6263. GGML_ASSERT(P >= 0);
  6264. GGML_ASSERT(nbq0 == sizeof(float));
  6265. GGML_ASSERT(nbk0 == sizeof(float));
  6266. GGML_ASSERT(nbv0 == sizeof(float));
  6267. GGML_ASSERT(neq0 == D);
  6268. GGML_ASSERT(nek0 == D);
  6269. GGML_ASSERT(nev1 == D);
  6270. GGML_ASSERT(neq1 == N);
  6271. GGML_ASSERT(nek1 == N + P);
  6272. GGML_ASSERT(nev1 == D);
  6273. // dst cannot be transposed or permuted
  6274. GGML_ASSERT(nb0 == sizeof(float));
  6275. GGML_ASSERT(nb0 <= nb1);
  6276. GGML_ASSERT(nb1 <= nb2);
  6277. GGML_ASSERT(nb2 <= nb3);
  6278. if (params->type == GGML_TASK_INIT) {
  6279. return;
  6280. }
  6281. if (params->type == GGML_TASK_FINALIZE) {
  6282. return;
  6283. }
  6284. // parallelize by q rows using ggml_vec_dot_f32
  6285. // total rows in q
  6286. const int nr = neq1*neq2*neq3;
  6287. // rows per thread
  6288. const int dr = (nr + nth - 1)/nth;
  6289. // row range for this thread
  6290. const int ir0 = dr*ith;
  6291. const int ir1 = MIN(ir0 + dr, nr);
  6292. const float scale = 1.0/sqrt((double) D);
  6293. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6294. for (int ir = ir0; ir < ir1; ++ir) {
  6295. // q indices
  6296. const int iq3 = ir/(neq2*neq1);
  6297. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6298. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6299. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  6300. for (int i = M; i < Mup; ++i) {
  6301. S[i] = -INFINITY;
  6302. }
  6303. for (int ic = 0; ic < nek1; ++ic) {
  6304. // k indices
  6305. const int ik3 = iq3;
  6306. const int ik2 = iq2;
  6307. const int ik1 = ic;
  6308. // S indices
  6309. const int i1 = ik1;
  6310. ggml_vec_dot_f32(neq0,
  6311. S + i1,
  6312. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6313. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6314. }
  6315. // scale
  6316. ggml_vec_scale_f32(nek1, S, scale);
  6317. if (masked) {
  6318. for (int i = P; i < M; i++) {
  6319. if (i > P + iq1) {
  6320. S[i] = -INFINITY;
  6321. }
  6322. }
  6323. }
  6324. // softmax
  6325. {
  6326. float max = -INFINITY;
  6327. ggml_vec_max_f32(M, &max, S);
  6328. float sum = 0.0f;
  6329. {
  6330. #ifdef GGML_SOFT_MAX_ACCELERATE
  6331. max = -max;
  6332. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6333. vvexpf(S, S, &Mup);
  6334. ggml_vec_sum_f32(Mup, &sum, S);
  6335. #else
  6336. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6337. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6338. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6339. float * SS = S + i;
  6340. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6341. if (SS[j] == -INFINITY) {
  6342. SS[j] = 0.0f;
  6343. } else {
  6344. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6345. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6346. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6347. sump[j] += val;
  6348. SS[j] = val;
  6349. }
  6350. }
  6351. }
  6352. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6353. sum += sump[i];
  6354. }
  6355. #endif
  6356. }
  6357. assert(sum > 0.0f);
  6358. sum = 1.0/sum;
  6359. ggml_vec_scale_f32(M, S, sum);
  6360. #ifndef NDEBUG
  6361. for (int i = 0; i < M; ++i) {
  6362. assert(!isnan(S[i]));
  6363. assert(!isinf(S[i]));
  6364. }
  6365. #endif
  6366. }
  6367. for (int ic = 0; ic < nev1; ++ic) {
  6368. // dst indices
  6369. const int i1 = iq1;
  6370. const int i2 = iq2;
  6371. const int i3 = iq3;
  6372. ggml_vec_dot_f32(nek1,
  6373. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6374. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6375. S);
  6376. }
  6377. }
  6378. }
  6379. static void ggml_compute_forward_flash_attn_f16(
  6380. const struct ggml_compute_params * params,
  6381. const struct ggml_tensor * q,
  6382. const struct ggml_tensor * k,
  6383. const struct ggml_tensor * v,
  6384. const bool masked,
  6385. struct ggml_tensor * dst) {
  6386. int64_t t0 = ggml_perf_time_us();
  6387. UNUSED(t0);
  6388. const int neq0 = q->ne[0];
  6389. const int neq1 = q->ne[1];
  6390. const int neq2 = q->ne[2];
  6391. const int neq3 = q->ne[3];
  6392. const int nek0 = k->ne[0];
  6393. const int nek1 = k->ne[1];
  6394. //const int nek2 = k->ne[2];
  6395. //const int nek3 = k->ne[3];
  6396. //const int nev0 = v->ne[0];
  6397. const int nev1 = v->ne[1];
  6398. //const int nev2 = v->ne[2];
  6399. //const int nev3 = v->ne[3];
  6400. const int ne0 = dst->ne[0];
  6401. const int ne1 = dst->ne[1];
  6402. //const int ne2 = dst->ne[2];
  6403. //const int ne3 = dst->ne[3];
  6404. const int nbk0 = k->nb[0];
  6405. const int nbk1 = k->nb[1];
  6406. const int nbk2 = k->nb[2];
  6407. const int nbk3 = k->nb[3];
  6408. const int nbq0 = q->nb[0];
  6409. const int nbq1 = q->nb[1];
  6410. const int nbq2 = q->nb[2];
  6411. const int nbq3 = q->nb[3];
  6412. const int nbv0 = v->nb[0];
  6413. const int nbv1 = v->nb[1];
  6414. const int nbv2 = v->nb[2];
  6415. const int nbv3 = v->nb[3];
  6416. const int nb0 = dst->nb[0];
  6417. const int nb1 = dst->nb[1];
  6418. const int nb2 = dst->nb[2];
  6419. const int nb3 = dst->nb[3];
  6420. const int ith = params->ith;
  6421. const int nth = params->nth;
  6422. const int D = neq0;
  6423. const int N = neq1;
  6424. const int P = nek1 - N;
  6425. const int M = P + N;
  6426. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6427. GGML_ASSERT(ne0 == D);
  6428. GGML_ASSERT(ne1 == N);
  6429. GGML_ASSERT(P >= 0);
  6430. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  6431. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  6432. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  6433. GGML_ASSERT(neq0 == D);
  6434. GGML_ASSERT(nek0 == D);
  6435. GGML_ASSERT(nev1 == D);
  6436. GGML_ASSERT(neq1 == N);
  6437. GGML_ASSERT(nek1 == N + P);
  6438. GGML_ASSERT(nev1 == D);
  6439. // dst cannot be transposed or permuted
  6440. GGML_ASSERT(nb0 == sizeof(float));
  6441. GGML_ASSERT(nb0 <= nb1);
  6442. GGML_ASSERT(nb1 <= nb2);
  6443. GGML_ASSERT(nb2 <= nb3);
  6444. if (params->type == GGML_TASK_INIT) {
  6445. return;
  6446. }
  6447. if (params->type == GGML_TASK_FINALIZE) {
  6448. return;
  6449. }
  6450. // parallelize by q rows using ggml_vec_dot_f32
  6451. // total rows in q
  6452. const int nr = neq1*neq2*neq3;
  6453. // rows per thread
  6454. const int dr = (nr + nth - 1)/nth;
  6455. // row range for this thread
  6456. const int ir0 = dr*ith;
  6457. const int ir1 = MIN(ir0 + dr, nr);
  6458. const float scale = 1.0/sqrt((double) D);
  6459. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6460. for (int ir = ir0; ir < ir1; ++ir) {
  6461. // q indices
  6462. const int iq3 = ir/(neq2*neq1);
  6463. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6464. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6465. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  6466. for (int i = M; i < Mup; ++i) {
  6467. S[i] = -INFINITY;
  6468. }
  6469. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  6470. for (int ic = 0; ic < nek1; ++ic) {
  6471. // k indices
  6472. const int ik3 = iq3;
  6473. const int ik2 = iq2;
  6474. const int ik1 = ic;
  6475. // S indices
  6476. const int i1 = ik1;
  6477. ggml_vec_dot_f16(neq0,
  6478. S + i1,
  6479. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6480. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6481. }
  6482. } else {
  6483. for (int ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  6484. // k indices
  6485. const int ik3 = iq3;
  6486. const int ik2 = iq2;
  6487. const int ik1 = ic;
  6488. // S indices
  6489. const int i1 = ik1;
  6490. ggml_vec_dot_f16_unroll(neq0, nbk1,
  6491. S + i1,
  6492. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6493. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6494. }
  6495. }
  6496. // scale
  6497. ggml_vec_scale_f32(nek1, S, scale);
  6498. if (masked) {
  6499. for (int i = P; i < M; i++) {
  6500. if (i > P + iq1) {
  6501. S[i] = -INFINITY;
  6502. }
  6503. }
  6504. }
  6505. // softmax
  6506. {
  6507. float max = -INFINITY;
  6508. ggml_vec_max_f32(M, &max, S);
  6509. float sum = 0.0f;
  6510. {
  6511. #ifdef GGML_SOFT_MAX_ACCELERATE
  6512. max = -max;
  6513. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6514. vvexpf(S, S, &Mup);
  6515. ggml_vec_sum_f32(Mup, &sum, S);
  6516. #else
  6517. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6518. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6519. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6520. float * SS = S + i;
  6521. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6522. if (SS[j] == -INFINITY) {
  6523. SS[j] = 0.0f;
  6524. } else {
  6525. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6526. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6527. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6528. sump[j] += val;
  6529. SS[j] = val;
  6530. }
  6531. }
  6532. }
  6533. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6534. sum += sump[i];
  6535. }
  6536. #endif
  6537. }
  6538. assert(sum > 0.0f);
  6539. sum = 1.0/sum;
  6540. ggml_vec_scale_f32(M, S, sum);
  6541. #ifndef NDEBUG
  6542. for (int i = 0; i < M; ++i) {
  6543. assert(!isnan(S[i]));
  6544. assert(!isinf(S[i]));
  6545. }
  6546. #endif
  6547. }
  6548. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  6549. for (int i = 0; i < M; i++) {
  6550. S16[i] = GGML_FP32_TO_FP16(S[i]);
  6551. }
  6552. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  6553. for (int ic = 0; ic < nev1; ++ic) {
  6554. // dst indices
  6555. const int i1 = iq1;
  6556. const int i2 = iq2;
  6557. const int i3 = iq3;
  6558. ggml_vec_dot_f16(nek1,
  6559. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6560. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6561. S16);
  6562. }
  6563. } else {
  6564. for (int ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  6565. // dst indices
  6566. const int i1 = iq1;
  6567. const int i2 = iq2;
  6568. const int i3 = iq3;
  6569. ggml_vec_dot_f16_unroll(nek1, nbv1,
  6570. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6571. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6572. S16);
  6573. }
  6574. }
  6575. }
  6576. }
  6577. static void ggml_compute_forward_flash_attn(
  6578. const struct ggml_compute_params * params,
  6579. const struct ggml_tensor * q,
  6580. const struct ggml_tensor * k,
  6581. const struct ggml_tensor * v,
  6582. const bool masked,
  6583. struct ggml_tensor * dst) {
  6584. switch (q->type) {
  6585. case GGML_TYPE_F16:
  6586. {
  6587. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  6588. } break;
  6589. case GGML_TYPE_F32:
  6590. {
  6591. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  6592. } break;
  6593. case GGML_TYPE_Q4_0:
  6594. case GGML_TYPE_Q4_1:
  6595. case GGML_TYPE_I8:
  6596. case GGML_TYPE_I16:
  6597. case GGML_TYPE_I32:
  6598. case GGML_TYPE_COUNT:
  6599. {
  6600. GGML_ASSERT(false);
  6601. } break;
  6602. }
  6603. }
  6604. // ggml_compute_forward_flash_ff
  6605. static void ggml_compute_forward_flash_ff_f16(
  6606. const struct ggml_compute_params * params,
  6607. const struct ggml_tensor * a, // F16
  6608. const struct ggml_tensor * b0, // F16 fc_w
  6609. const struct ggml_tensor * b1, // F32 fc_b
  6610. const struct ggml_tensor * c0, // F16 proj_w
  6611. const struct ggml_tensor * c1, // F32 proj_b
  6612. struct ggml_tensor * dst) {
  6613. int64_t t0 = ggml_perf_time_us();
  6614. UNUSED(t0);
  6615. const int nea0 = a->ne[0];
  6616. const int nea1 = a->ne[1];
  6617. const int nea2 = a->ne[2];
  6618. const int nea3 = a->ne[3];
  6619. const int neb00 = b0->ne[0];
  6620. const int neb01 = b0->ne[1];
  6621. //const int neb02 = b0->ne[2];
  6622. //const int neb03 = b0->ne[3];
  6623. const int neb10 = b1->ne[0];
  6624. const int neb11 = b1->ne[1];
  6625. //const int neb12 = b1->ne[2];
  6626. //const int neb13 = b1->ne[3];
  6627. const int nec00 = c0->ne[0];
  6628. const int nec01 = c0->ne[1];
  6629. //const int nec02 = c0->ne[2];
  6630. //const int nec03 = c0->ne[3];
  6631. const int nec10 = c1->ne[0];
  6632. const int nec11 = c1->ne[1];
  6633. //const int nec12 = c1->ne[2];
  6634. //const int nec13 = c1->ne[3];
  6635. const int ne0 = dst->ne[0];
  6636. const int ne1 = dst->ne[1];
  6637. const int ne2 = dst->ne[2];
  6638. //const int ne3 = dst->ne[3];
  6639. const int nba0 = a->nb[0];
  6640. const int nba1 = a->nb[1];
  6641. const int nba2 = a->nb[2];
  6642. const int nba3 = a->nb[3];
  6643. const int nbb00 = b0->nb[0];
  6644. const int nbb01 = b0->nb[1];
  6645. const int nbb02 = b0->nb[2];
  6646. const int nbb03 = b0->nb[3];
  6647. const int nbb10 = b1->nb[0];
  6648. //const int nbb11 = b1->nb[1];
  6649. //const int nbb12 = b1->nb[2];
  6650. //const int nbb13 = b1->nb[3];
  6651. const int nbc00 = c0->nb[0];
  6652. const int nbc01 = c0->nb[1];
  6653. const int nbc02 = c0->nb[2];
  6654. const int nbc03 = c0->nb[3];
  6655. const int nbc10 = c1->nb[0];
  6656. //const int nbc11 = c1->nb[1];
  6657. //const int nbc12 = c1->nb[2];
  6658. //const int nbc13 = c1->nb[3];
  6659. const int nb0 = dst->nb[0];
  6660. const int nb1 = dst->nb[1];
  6661. const int nb2 = dst->nb[2];
  6662. const int nb3 = dst->nb[3];
  6663. const int ith = params->ith;
  6664. const int nth = params->nth;
  6665. const int D = nea0;
  6666. //const int N = nea1;
  6667. const int M = neb01;
  6668. GGML_ASSERT(ne0 == nea0);
  6669. GGML_ASSERT(ne1 == nea1);
  6670. GGML_ASSERT(ne2 == nea2);
  6671. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  6672. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  6673. GGML_ASSERT(nbb10 == sizeof(float));
  6674. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  6675. GGML_ASSERT(nbc10 == sizeof(float));
  6676. GGML_ASSERT(neb00 == D);
  6677. GGML_ASSERT(neb01 == M);
  6678. GGML_ASSERT(neb10 == M);
  6679. GGML_ASSERT(neb11 == 1);
  6680. GGML_ASSERT(nec00 == M);
  6681. GGML_ASSERT(nec01 == D);
  6682. GGML_ASSERT(nec10 == D);
  6683. GGML_ASSERT(nec11 == 1);
  6684. // dst cannot be transposed or permuted
  6685. GGML_ASSERT(nb0 == sizeof(float));
  6686. GGML_ASSERT(nb0 <= nb1);
  6687. GGML_ASSERT(nb1 <= nb2);
  6688. GGML_ASSERT(nb2 <= nb3);
  6689. if (params->type == GGML_TASK_INIT) {
  6690. return;
  6691. }
  6692. if (params->type == GGML_TASK_FINALIZE) {
  6693. return;
  6694. }
  6695. // parallelize by a rows using ggml_vec_dot_f32
  6696. // total rows in a
  6697. const int nr = nea1*nea2*nea3;
  6698. // rows per thread
  6699. const int dr = (nr + nth - 1)/nth;
  6700. // row range for this thread
  6701. const int ir0 = dr*ith;
  6702. const int ir1 = MIN(ir0 + dr, nr);
  6703. for (int ir = ir0; ir < ir1; ++ir) {
  6704. // a indices
  6705. const int ia3 = ir/(nea2*nea1);
  6706. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  6707. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  6708. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  6709. for (int ic = 0; ic < neb01; ++ic) {
  6710. // b0 indices
  6711. const int ib03 = ia3;
  6712. const int ib02 = ia2;
  6713. const int ib01 = ic;
  6714. // S indices
  6715. const int i1 = ib01;
  6716. ggml_vec_dot_f16(nea0,
  6717. S + i1,
  6718. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  6719. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  6720. }
  6721. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  6722. //ggml_vec_gelu_f32(neb01, S, S);
  6723. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  6724. for (int i = 0; i < M; i++) {
  6725. S16[i] = GGML_FP32_TO_FP16(S[i]);
  6726. }
  6727. ggml_vec_gelu_f16(neb01, S16, S16);
  6728. {
  6729. // dst indices
  6730. const int i1 = ia1;
  6731. const int i2 = ia2;
  6732. const int i3 = ia3;
  6733. for (int ic = 0; ic < nec01; ++ic) {
  6734. ggml_vec_dot_f16(neb01,
  6735. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6736. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  6737. S16);
  6738. }
  6739. ggml_vec_add_f32(nec01,
  6740. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  6741. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  6742. (float *) c1->data);
  6743. }
  6744. }
  6745. }
  6746. static void ggml_compute_forward_flash_ff(
  6747. const struct ggml_compute_params * params,
  6748. const struct ggml_tensor * a,
  6749. const struct ggml_tensor * b0,
  6750. const struct ggml_tensor * b1,
  6751. const struct ggml_tensor * c0,
  6752. const struct ggml_tensor * c1,
  6753. struct ggml_tensor * dst) {
  6754. switch (b0->type) {
  6755. case GGML_TYPE_F16:
  6756. {
  6757. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  6758. } break;
  6759. case GGML_TYPE_F32:
  6760. {
  6761. GGML_ASSERT(false); // TODO
  6762. } break;
  6763. case GGML_TYPE_Q4_0:
  6764. case GGML_TYPE_Q4_1:
  6765. case GGML_TYPE_I8:
  6766. case GGML_TYPE_I16:
  6767. case GGML_TYPE_I32:
  6768. case GGML_TYPE_COUNT:
  6769. {
  6770. GGML_ASSERT(false);
  6771. } break;
  6772. }
  6773. }
  6774. /////////////////////////////////
  6775. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  6776. GGML_ASSERT(params);
  6777. switch (tensor->op) {
  6778. case GGML_OP_DUP:
  6779. {
  6780. ggml_compute_forward_dup(params, tensor->src0, tensor);
  6781. } break;
  6782. case GGML_OP_ADD:
  6783. {
  6784. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  6785. } break;
  6786. case GGML_OP_SUB:
  6787. {
  6788. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  6789. } break;
  6790. case GGML_OP_MUL:
  6791. {
  6792. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  6793. } break;
  6794. case GGML_OP_DIV:
  6795. {
  6796. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  6797. } break;
  6798. case GGML_OP_SQR:
  6799. {
  6800. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  6801. } break;
  6802. case GGML_OP_SQRT:
  6803. {
  6804. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  6805. } break;
  6806. case GGML_OP_SUM:
  6807. {
  6808. ggml_compute_forward_sum(params, tensor->src0, tensor);
  6809. } break;
  6810. case GGML_OP_MEAN:
  6811. {
  6812. ggml_compute_forward_mean(params, tensor->src0, tensor);
  6813. } break;
  6814. case GGML_OP_REPEAT:
  6815. {
  6816. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  6817. } break;
  6818. case GGML_OP_ABS:
  6819. {
  6820. ggml_compute_forward_abs(params, tensor->src0, tensor);
  6821. } break;
  6822. case GGML_OP_SGN:
  6823. {
  6824. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  6825. } break;
  6826. case GGML_OP_NEG:
  6827. {
  6828. ggml_compute_forward_neg(params, tensor->src0, tensor);
  6829. } break;
  6830. case GGML_OP_STEP:
  6831. {
  6832. ggml_compute_forward_step(params, tensor->src0, tensor);
  6833. } break;
  6834. case GGML_OP_RELU:
  6835. {
  6836. ggml_compute_forward_relu(params, tensor->src0, tensor);
  6837. } break;
  6838. case GGML_OP_GELU:
  6839. {
  6840. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  6841. } break;
  6842. case GGML_OP_SILU:
  6843. {
  6844. ggml_compute_forward_silu(params, tensor->src0, tensor);
  6845. } break;
  6846. case GGML_OP_NORM:
  6847. {
  6848. ggml_compute_forward_norm(params, tensor->src0, tensor);
  6849. } break;
  6850. case GGML_OP_RMS_NORM:
  6851. {
  6852. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  6853. } break;
  6854. case GGML_OP_MUL_MAT:
  6855. {
  6856. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  6857. } break;
  6858. case GGML_OP_SCALE:
  6859. {
  6860. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  6861. } break;
  6862. case GGML_OP_CPY:
  6863. {
  6864. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  6865. } break;
  6866. case GGML_OP_RESHAPE:
  6867. {
  6868. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  6869. } break;
  6870. case GGML_OP_VIEW:
  6871. {
  6872. ggml_compute_forward_view(params, tensor->src0);
  6873. } break;
  6874. case GGML_OP_PERMUTE:
  6875. {
  6876. ggml_compute_forward_permute(params, tensor->src0);
  6877. } break;
  6878. case GGML_OP_TRANSPOSE:
  6879. {
  6880. ggml_compute_forward_transpose(params, tensor->src0);
  6881. } break;
  6882. case GGML_OP_GET_ROWS:
  6883. {
  6884. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  6885. } break;
  6886. case GGML_OP_DIAG_MASK_INF:
  6887. {
  6888. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  6889. } break;
  6890. case GGML_OP_SOFT_MAX:
  6891. {
  6892. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  6893. } break;
  6894. case GGML_OP_ROPE:
  6895. {
  6896. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  6897. } break;
  6898. case GGML_OP_CONV_1D_1S:
  6899. {
  6900. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  6901. } break;
  6902. case GGML_OP_CONV_1D_2S:
  6903. {
  6904. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  6905. } break;
  6906. case GGML_OP_FLASH_ATTN:
  6907. {
  6908. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  6909. GGML_ASSERT(t == 0 || t == 1);
  6910. bool masked = t != 0;
  6911. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  6912. } break;
  6913. case GGML_OP_FLASH_FF:
  6914. {
  6915. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  6916. } break;
  6917. case GGML_OP_NONE:
  6918. {
  6919. // nop
  6920. } break;
  6921. case GGML_OP_COUNT:
  6922. {
  6923. GGML_ASSERT(false);
  6924. } break;
  6925. }
  6926. }
  6927. ////////////////////////////////////////////////////////////////////////////////
  6928. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  6929. struct ggml_tensor * src0 = tensor->src0;
  6930. struct ggml_tensor * src1 = tensor->src1;
  6931. switch (tensor->op) {
  6932. case GGML_OP_DUP:
  6933. {
  6934. if (src0->grad) {
  6935. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  6936. }
  6937. } break;
  6938. case GGML_OP_ADD:
  6939. {
  6940. if (src0->grad) {
  6941. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  6942. }
  6943. if (src1->grad) {
  6944. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  6945. }
  6946. } break;
  6947. case GGML_OP_SUB:
  6948. {
  6949. if (src0->grad) {
  6950. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  6951. }
  6952. if (src1->grad) {
  6953. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  6954. }
  6955. } break;
  6956. case GGML_OP_MUL:
  6957. {
  6958. if (src0->grad) {
  6959. src0->grad =
  6960. ggml_add_impl(ctx,
  6961. src0->grad,
  6962. ggml_mul(ctx, src1, tensor->grad),
  6963. inplace);
  6964. }
  6965. if (src1->grad) {
  6966. src1->grad =
  6967. ggml_add_impl(ctx,
  6968. src1->grad,
  6969. ggml_mul(ctx, src0, tensor->grad),
  6970. inplace);
  6971. }
  6972. } break;
  6973. case GGML_OP_DIV:
  6974. {
  6975. if (src0->grad) {
  6976. src0->grad =
  6977. ggml_add_impl(ctx,
  6978. src0->grad,
  6979. ggml_div(ctx, tensor->grad, src1),
  6980. inplace);
  6981. }
  6982. if (src1->grad) {
  6983. src1->grad =
  6984. ggml_sub_impl(ctx,
  6985. src1->grad,
  6986. ggml_mul(ctx,
  6987. tensor->grad,
  6988. ggml_div(ctx, tensor, src1)),
  6989. inplace);
  6990. }
  6991. } break;
  6992. case GGML_OP_SQR:
  6993. {
  6994. if (src0->grad) {
  6995. src0->grad =
  6996. ggml_add_impl(ctx,
  6997. src0->grad,
  6998. ggml_mul(ctx,
  6999. ggml_mul(ctx, src0, tensor->grad),
  7000. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  7001. inplace);
  7002. }
  7003. } break;
  7004. case GGML_OP_SQRT:
  7005. {
  7006. if (src0->grad) {
  7007. src0->grad =
  7008. ggml_add_impl(ctx,
  7009. src0->grad,
  7010. ggml_div(ctx,
  7011. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  7012. tensor),
  7013. inplace);
  7014. }
  7015. } break;
  7016. case GGML_OP_SUM:
  7017. {
  7018. if (src0->grad) {
  7019. src0->grad =
  7020. ggml_add_impl(ctx,
  7021. src0->grad,
  7022. ggml_repeat(ctx, tensor->grad, src0->grad),
  7023. inplace);
  7024. }
  7025. } break;
  7026. case GGML_OP_MEAN:
  7027. {
  7028. GGML_ASSERT(false); // TODO: implement
  7029. } break;
  7030. case GGML_OP_REPEAT:
  7031. {
  7032. if (src0->grad) {
  7033. src0->grad =
  7034. ggml_add_impl(ctx,
  7035. src0->grad,
  7036. ggml_sum(ctx, tensor->grad),
  7037. inplace);
  7038. }
  7039. } break;
  7040. case GGML_OP_ABS:
  7041. {
  7042. if (src0->grad) {
  7043. src0->grad =
  7044. ggml_add_impl(ctx,
  7045. src0->grad,
  7046. ggml_mul(ctx,
  7047. ggml_sgn(ctx, src0),
  7048. tensor->grad),
  7049. inplace);
  7050. }
  7051. } break;
  7052. case GGML_OP_SGN:
  7053. {
  7054. if (src0->grad) {
  7055. // noop
  7056. }
  7057. } break;
  7058. case GGML_OP_NEG:
  7059. {
  7060. if (src0->grad) {
  7061. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  7062. }
  7063. } break;
  7064. case GGML_OP_STEP:
  7065. {
  7066. if (src0->grad) {
  7067. // noop
  7068. }
  7069. } break;
  7070. case GGML_OP_RELU:
  7071. {
  7072. if (src0->grad) {
  7073. src0->grad = ggml_sub_impl(ctx,
  7074. src0->grad,
  7075. ggml_mul(ctx,
  7076. ggml_step(ctx, src0),
  7077. tensor->grad),
  7078. inplace);
  7079. }
  7080. } break;
  7081. case GGML_OP_GELU:
  7082. {
  7083. GGML_ASSERT(false); // TODO: not implemented
  7084. } break;
  7085. case GGML_OP_SILU:
  7086. {
  7087. GGML_ASSERT(false); // TODO: not implemented
  7088. } break;
  7089. case GGML_OP_NORM:
  7090. {
  7091. GGML_ASSERT(false); // TODO: not implemented
  7092. } break;
  7093. case GGML_OP_RMS_NORM:
  7094. {
  7095. GGML_ASSERT(false); // TODO: not implemented
  7096. } break;
  7097. case GGML_OP_MUL_MAT:
  7098. {
  7099. if (src0->grad) {
  7100. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  7101. GGML_ASSERT(false);
  7102. }
  7103. if (src1->grad) {
  7104. src1->grad =
  7105. ggml_add_impl(ctx,
  7106. src1->grad,
  7107. // TODO: fix transpose, the node will break the graph connections
  7108. ggml_mul_mat(ctx, ggml_transpose(ctx, src0), tensor->grad),
  7109. inplace);
  7110. }
  7111. } break;
  7112. case GGML_OP_SCALE:
  7113. {
  7114. GGML_ASSERT(false); // TODO: not implemented
  7115. } break;
  7116. case GGML_OP_CPY:
  7117. {
  7118. GGML_ASSERT(false); // TODO: not implemented
  7119. } break;
  7120. case GGML_OP_RESHAPE:
  7121. {
  7122. GGML_ASSERT(false); // TODO: not implemented
  7123. } break;
  7124. case GGML_OP_VIEW:
  7125. {
  7126. GGML_ASSERT(false); // not supported
  7127. } break;
  7128. case GGML_OP_PERMUTE:
  7129. {
  7130. GGML_ASSERT(false); // TODO: not implemented
  7131. } break;
  7132. case GGML_OP_TRANSPOSE:
  7133. {
  7134. GGML_ASSERT(false); // TODO: not implemented
  7135. } break;
  7136. case GGML_OP_GET_ROWS:
  7137. {
  7138. GGML_ASSERT(false); // TODO: not implemented
  7139. } break;
  7140. case GGML_OP_DIAG_MASK_INF:
  7141. {
  7142. GGML_ASSERT(false); // TODO: not implemented
  7143. } break;
  7144. case GGML_OP_SOFT_MAX:
  7145. {
  7146. GGML_ASSERT(false); // TODO: not implemented
  7147. } break;
  7148. case GGML_OP_ROPE:
  7149. {
  7150. GGML_ASSERT(false); // TODO: not implemented
  7151. } break;
  7152. case GGML_OP_CONV_1D_1S:
  7153. {
  7154. GGML_ASSERT(false); // TODO: not implemented
  7155. } break;
  7156. case GGML_OP_CONV_1D_2S:
  7157. {
  7158. GGML_ASSERT(false); // TODO: not implemented
  7159. } break;
  7160. case GGML_OP_FLASH_ATTN:
  7161. {
  7162. GGML_ASSERT(false); // not supported
  7163. } break;
  7164. case GGML_OP_FLASH_FF:
  7165. {
  7166. GGML_ASSERT(false); // not supported
  7167. } break;
  7168. case GGML_OP_NONE:
  7169. {
  7170. // nop
  7171. } break;
  7172. case GGML_OP_COUNT:
  7173. {
  7174. GGML_ASSERT(false);
  7175. } break;
  7176. }
  7177. }
  7178. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  7179. if (node->grad == NULL) {
  7180. // this usually happens when we generate intermediate nodes from constants in the backward pass
  7181. // it can also happen during forward pass, if the user performs computations with constants
  7182. if (node->op != GGML_OP_NONE) {
  7183. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  7184. }
  7185. }
  7186. // check if already visited
  7187. for (int i = 0; i < cgraph->n_nodes; i++) {
  7188. if (cgraph->nodes[i] == node) {
  7189. return;
  7190. }
  7191. }
  7192. for (int i = 0; i < cgraph->n_leafs; i++) {
  7193. if (cgraph->leafs[i] == node) {
  7194. return;
  7195. }
  7196. }
  7197. if (node->src0) {
  7198. ggml_visit_parents(cgraph, node->src0);
  7199. }
  7200. if (node->src1) {
  7201. ggml_visit_parents(cgraph, node->src1);
  7202. }
  7203. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  7204. if (node->opt[i]) {
  7205. ggml_visit_parents(cgraph, node->opt[i]);
  7206. }
  7207. }
  7208. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  7209. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  7210. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  7211. cgraph->leafs[cgraph->n_leafs] = node;
  7212. cgraph->n_leafs++;
  7213. } else {
  7214. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  7215. cgraph->nodes[cgraph->n_nodes] = node;
  7216. cgraph->grads[cgraph->n_nodes] = node->grad;
  7217. cgraph->n_nodes++;
  7218. }
  7219. }
  7220. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  7221. if (!expand) {
  7222. cgraph->n_nodes = 0;
  7223. cgraph->n_leafs = 0;
  7224. }
  7225. const int n0 = cgraph->n_nodes;
  7226. UNUSED(n0);
  7227. ggml_visit_parents(cgraph, tensor);
  7228. const int n_new = cgraph->n_nodes - n0;
  7229. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  7230. if (n_new > 0) {
  7231. // the last added node should always be starting point
  7232. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  7233. }
  7234. }
  7235. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  7236. ggml_build_forward_impl(cgraph, tensor, true);
  7237. }
  7238. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  7239. struct ggml_cgraph result = {
  7240. /*.n_nodes =*/ 0,
  7241. /*.n_leafs =*/ 0,
  7242. /*.n_threads =*/ 0,
  7243. /*.work_size =*/ 0,
  7244. /*.work =*/ NULL,
  7245. /*.nodes =*/ { NULL },
  7246. /*.grads =*/ { NULL },
  7247. /*.leafs =*/ { NULL },
  7248. /*.perf_runs =*/ 0,
  7249. /*.perf_cycles =*/ 0,
  7250. /*.perf_time_us =*/ 0,
  7251. };
  7252. ggml_build_forward_impl(&result, tensor, false);
  7253. return result;
  7254. }
  7255. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  7256. struct ggml_cgraph result = *gf;
  7257. GGML_ASSERT(gf->n_nodes > 0);
  7258. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  7259. if (keep) {
  7260. for (int i = 0; i < gf->n_nodes; i++) {
  7261. struct ggml_tensor * node = gf->nodes[i];
  7262. if (node->grad) {
  7263. node->grad = ggml_dup_tensor(ctx, node);
  7264. gf->grads[i] = node->grad;
  7265. }
  7266. }
  7267. }
  7268. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7269. struct ggml_tensor * node = gf->nodes[i];
  7270. // because we detached the grad nodes from the original graph, we can afford inplace operations
  7271. if (node->grad) {
  7272. ggml_compute_backward(ctx, node, keep);
  7273. }
  7274. }
  7275. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7276. struct ggml_tensor * node = gf->nodes[i];
  7277. if (node->is_param) {
  7278. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  7279. ggml_build_forward_impl(&result, node->grad, true);
  7280. }
  7281. }
  7282. return result;
  7283. }
  7284. //
  7285. // thread data
  7286. //
  7287. // synchronization is done via busy loops
  7288. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  7289. //
  7290. #ifdef __APPLE__
  7291. //#include <os/lock.h>
  7292. //
  7293. //typedef os_unfair_lock ggml_lock_t;
  7294. //
  7295. //#define ggml_lock_init(x) UNUSED(x)
  7296. //#define ggml_lock_destroy(x) UNUSED(x)
  7297. //#define ggml_lock_lock os_unfair_lock_lock
  7298. //#define ggml_lock_unlock os_unfair_lock_unlock
  7299. //
  7300. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  7301. typedef int ggml_lock_t;
  7302. #define ggml_lock_init(x) UNUSED(x)
  7303. #define ggml_lock_destroy(x) UNUSED(x)
  7304. #define ggml_lock_lock(x) UNUSED(x)
  7305. #define ggml_lock_unlock(x) UNUSED(x)
  7306. #define GGML_LOCK_INITIALIZER 0
  7307. typedef pthread_t ggml_thread_t;
  7308. #define ggml_thread_create pthread_create
  7309. #define ggml_thread_join pthread_join
  7310. #else
  7311. //typedef pthread_spinlock_t ggml_lock_t;
  7312. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  7313. //#define ggml_lock_destroy pthread_spin_destroy
  7314. //#define ggml_lock_lock pthread_spin_lock
  7315. //#define ggml_lock_unlock pthread_spin_unlock
  7316. typedef int ggml_lock_t;
  7317. #define ggml_lock_init(x) UNUSED(x)
  7318. #define ggml_lock_destroy(x) UNUSED(x)
  7319. #define ggml_lock_lock(x) UNUSED(x)
  7320. #define ggml_lock_unlock(x) UNUSED(x)
  7321. #define GGML_LOCK_INITIALIZER 0
  7322. typedef pthread_t ggml_thread_t;
  7323. #define ggml_thread_create pthread_create
  7324. #define ggml_thread_join pthread_join
  7325. #endif
  7326. struct ggml_compute_state_shared {
  7327. ggml_lock_t spin;
  7328. int n_threads;
  7329. // synchronization primitives
  7330. atomic_int n_ready;
  7331. atomic_bool has_work;
  7332. atomic_bool stop; // stop all threads
  7333. };
  7334. struct ggml_compute_state {
  7335. ggml_thread_t thrd;
  7336. struct ggml_compute_params params;
  7337. struct ggml_tensor * node;
  7338. struct ggml_compute_state_shared * shared;
  7339. };
  7340. static thread_ret_t ggml_graph_compute_thread(void * data) {
  7341. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  7342. const int n_threads = state->shared->n_threads;
  7343. while (true) {
  7344. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  7345. atomic_store(&state->shared->has_work, false);
  7346. } else {
  7347. while (atomic_load(&state->shared->has_work)) {
  7348. if (atomic_load(&state->shared->stop)) {
  7349. return 0;
  7350. }
  7351. ggml_lock_lock (&state->shared->spin);
  7352. ggml_lock_unlock(&state->shared->spin);
  7353. }
  7354. }
  7355. atomic_fetch_sub(&state->shared->n_ready, 1);
  7356. // wait for work
  7357. while (!atomic_load(&state->shared->has_work)) {
  7358. if (atomic_load(&state->shared->stop)) {
  7359. return 0;
  7360. }
  7361. ggml_lock_lock (&state->shared->spin);
  7362. ggml_lock_unlock(&state->shared->spin);
  7363. }
  7364. // check if we should stop
  7365. if (atomic_load(&state->shared->stop)) {
  7366. break;
  7367. }
  7368. if (state->node) {
  7369. if (state->params.ith < state->params.nth) {
  7370. ggml_compute_forward(&state->params, state->node);
  7371. }
  7372. state->node = NULL;
  7373. } else {
  7374. break;
  7375. }
  7376. }
  7377. return 0;
  7378. }
  7379. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  7380. const int n_threads = cgraph->n_threads;
  7381. struct ggml_compute_state_shared state_shared = {
  7382. /*.spin =*/ GGML_LOCK_INITIALIZER,
  7383. /*.n_threads =*/ n_threads,
  7384. /*.n_ready =*/ 0,
  7385. /*.has_work =*/ false,
  7386. /*.stop =*/ false,
  7387. };
  7388. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  7389. // create thread pool
  7390. if (n_threads > 1) {
  7391. ggml_lock_init(&state_shared.spin);
  7392. atomic_store(&state_shared.has_work, true);
  7393. for (int j = 0; j < n_threads - 1; j++) {
  7394. workers[j] = (struct ggml_compute_state) {
  7395. .thrd = 0,
  7396. .params = {
  7397. .type = GGML_TASK_COMPUTE,
  7398. .ith = j + 1,
  7399. .nth = n_threads,
  7400. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7401. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7402. },
  7403. .node = NULL,
  7404. .shared = &state_shared,
  7405. };
  7406. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  7407. GGML_ASSERT(rc == 0);
  7408. UNUSED(rc);
  7409. }
  7410. }
  7411. // initialize tasks + work buffer
  7412. {
  7413. size_t work_size = 0;
  7414. // thread scheduling for the different operations
  7415. for (int i = 0; i < cgraph->n_nodes; i++) {
  7416. struct ggml_tensor * node = cgraph->nodes[i];
  7417. switch (node->op) {
  7418. case GGML_OP_DUP:
  7419. {
  7420. node->n_tasks = 1;
  7421. } break;
  7422. case GGML_OP_ADD:
  7423. {
  7424. node->n_tasks = n_threads;
  7425. } break;
  7426. case GGML_OP_SUB:
  7427. case GGML_OP_MUL:
  7428. case GGML_OP_DIV:
  7429. case GGML_OP_SQR:
  7430. case GGML_OP_SQRT:
  7431. case GGML_OP_SUM:
  7432. case GGML_OP_MEAN:
  7433. case GGML_OP_REPEAT:
  7434. case GGML_OP_ABS:
  7435. case GGML_OP_SGN:
  7436. case GGML_OP_NEG:
  7437. case GGML_OP_STEP:
  7438. case GGML_OP_RELU:
  7439. {
  7440. node->n_tasks = 1;
  7441. } break;
  7442. case GGML_OP_GELU:
  7443. {
  7444. node->n_tasks = n_threads;
  7445. } break;
  7446. case GGML_OP_SILU:
  7447. {
  7448. node->n_tasks = n_threads;
  7449. } break;
  7450. case GGML_OP_NORM:
  7451. case GGML_OP_RMS_NORM:
  7452. {
  7453. node->n_tasks = n_threads;
  7454. } break;
  7455. case GGML_OP_MUL_MAT:
  7456. {
  7457. node->n_tasks = n_threads;
  7458. // TODO: use different scheduling for different matrix sizes
  7459. //const int nr0 = ggml_nrows(node->src0);
  7460. //const int nr1 = ggml_nrows(node->src1);
  7461. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  7462. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  7463. size_t cur = 0;
  7464. if (node->src0->type == GGML_TYPE_F16 &&
  7465. node->src1->type == GGML_TYPE_F32) {
  7466. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7467. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7468. node->n_tasks = 1; // TODO: this actually is doing nothing
  7469. // the threads are still spinning
  7470. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7471. //printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
  7472. //printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
  7473. //printf("cur = %zu\n", cur);
  7474. } else {
  7475. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7476. }
  7477. #else
  7478. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7479. #endif
  7480. } else if (node->src0->type == GGML_TYPE_F32 &&
  7481. node->src1->type == GGML_TYPE_F32) {
  7482. cur = 0;
  7483. } else if (node->src0->type == GGML_TYPE_Q4_0 &&
  7484. node->src1->type == GGML_TYPE_F32) {
  7485. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7486. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7487. node->n_tasks = 1;
  7488. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7489. } else {
  7490. cur = (GGML_TYPE_SIZE[GGML_TYPE_Q4_0]*ggml_nelements(node->src1))/GGML_BLCK_SIZE[GGML_TYPE_Q4_0];
  7491. }
  7492. #else
  7493. cur = (GGML_TYPE_SIZE[GGML_TYPE_Q4_0]*ggml_nelements(node->src1))/GGML_BLCK_SIZE[GGML_TYPE_Q4_0];
  7494. #endif
  7495. } else if (node->src0->type == GGML_TYPE_Q4_1 &&
  7496. node->src1->type == GGML_TYPE_F32) {
  7497. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7498. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7499. node->n_tasks = 1;
  7500. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7501. } else {
  7502. cur = (GGML_TYPE_SIZE[GGML_TYPE_Q4_1]*ggml_nelements(node->src1))/GGML_BLCK_SIZE[GGML_TYPE_Q4_1];
  7503. }
  7504. #else
  7505. cur = (GGML_TYPE_SIZE[GGML_TYPE_Q4_1]*ggml_nelements(node->src1))/GGML_BLCK_SIZE[GGML_TYPE_Q4_1];
  7506. #endif
  7507. } else {
  7508. GGML_ASSERT(false);
  7509. }
  7510. work_size = MAX(work_size, cur);
  7511. } break;
  7512. case GGML_OP_SCALE:
  7513. {
  7514. node->n_tasks = n_threads;
  7515. } break;
  7516. case GGML_OP_CPY:
  7517. case GGML_OP_RESHAPE:
  7518. case GGML_OP_VIEW:
  7519. case GGML_OP_PERMUTE:
  7520. case GGML_OP_TRANSPOSE:
  7521. case GGML_OP_GET_ROWS:
  7522. case GGML_OP_DIAG_MASK_INF:
  7523. {
  7524. node->n_tasks = 1;
  7525. } break;
  7526. case GGML_OP_SOFT_MAX:
  7527. {
  7528. node->n_tasks = n_threads;
  7529. } break;
  7530. case GGML_OP_ROPE:
  7531. {
  7532. node->n_tasks = 1;
  7533. } break;
  7534. case GGML_OP_CONV_1D_1S:
  7535. case GGML_OP_CONV_1D_2S:
  7536. {
  7537. node->n_tasks = n_threads;
  7538. GGML_ASSERT(node->src0->ne[3] == 1);
  7539. GGML_ASSERT(node->src1->ne[2] == 1);
  7540. GGML_ASSERT(node->src1->ne[3] == 1);
  7541. size_t cur = 0;
  7542. const int nk = node->src0->ne[0];
  7543. if (node->src0->type == GGML_TYPE_F16 &&
  7544. node->src1->type == GGML_TYPE_F32) {
  7545. cur = sizeof(ggml_fp16_t)*(
  7546. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7547. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7548. );
  7549. } else if (node->src0->type == GGML_TYPE_F32 &&
  7550. node->src1->type == GGML_TYPE_F32) {
  7551. cur = sizeof(float)*(
  7552. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7553. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7554. );
  7555. } else {
  7556. GGML_ASSERT(false);
  7557. }
  7558. work_size = MAX(work_size, cur);
  7559. } break;
  7560. case GGML_OP_FLASH_ATTN:
  7561. {
  7562. node->n_tasks = n_threads;
  7563. size_t cur = 0;
  7564. const int ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  7565. if (node->src1->type == GGML_TYPE_F32) {
  7566. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  7567. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  7568. }
  7569. if (node->src1->type == GGML_TYPE_F16) {
  7570. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  7571. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  7572. }
  7573. work_size = MAX(work_size, cur);
  7574. } break;
  7575. case GGML_OP_FLASH_FF:
  7576. {
  7577. node->n_tasks = n_threads;
  7578. size_t cur = 0;
  7579. if (node->src1->type == GGML_TYPE_F32) {
  7580. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  7581. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  7582. }
  7583. if (node->src1->type == GGML_TYPE_F16) {
  7584. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  7585. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  7586. }
  7587. work_size = MAX(work_size, cur);
  7588. } break;
  7589. case GGML_OP_NONE:
  7590. {
  7591. node->n_tasks = 1;
  7592. } break;
  7593. case GGML_OP_COUNT:
  7594. {
  7595. GGML_ASSERT(false);
  7596. } break;
  7597. }
  7598. }
  7599. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  7600. GGML_ASSERT(false); // TODO: better handling
  7601. }
  7602. if (work_size > 0 && cgraph->work == NULL) {
  7603. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  7604. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  7605. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  7606. }
  7607. }
  7608. const int64_t perf_start_cycles = ggml_perf_cycles();
  7609. const int64_t perf_start_time_us = ggml_perf_time_us();
  7610. for (int i = 0; i < cgraph->n_nodes; i++) {
  7611. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  7612. struct ggml_tensor * node = cgraph->nodes[i];
  7613. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  7614. //if (node->grad == NULL && node->perf_runs > 0) {
  7615. // continue;
  7616. //}
  7617. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  7618. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  7619. // INIT
  7620. struct ggml_compute_params params = {
  7621. /*.type =*/ GGML_TASK_INIT,
  7622. /*.ith =*/ 0,
  7623. /*.nth =*/ node->n_tasks,
  7624. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7625. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  7626. };
  7627. ggml_compute_forward(&params, node);
  7628. // COMPUTE
  7629. if (node->n_tasks > 1) {
  7630. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7631. atomic_store(&state_shared.has_work, false);
  7632. }
  7633. while (atomic_load(&state_shared.has_work)) {
  7634. ggml_lock_lock (&state_shared.spin);
  7635. ggml_lock_unlock(&state_shared.spin);
  7636. }
  7637. // launch thread pool
  7638. for (int j = 0; j < n_threads - 1; j++) {
  7639. workers[j].params = (struct ggml_compute_params) {
  7640. .type = GGML_TASK_COMPUTE,
  7641. .ith = j + 1,
  7642. .nth = node->n_tasks,
  7643. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7644. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7645. };
  7646. workers[j].node = node;
  7647. }
  7648. atomic_fetch_sub(&state_shared.n_ready, 1);
  7649. while (atomic_load(&state_shared.n_ready) > 0) {
  7650. ggml_lock_lock (&state_shared.spin);
  7651. ggml_lock_unlock(&state_shared.spin);
  7652. }
  7653. atomic_store(&state_shared.has_work, true);
  7654. }
  7655. params.type = GGML_TASK_COMPUTE;
  7656. ggml_compute_forward(&params, node);
  7657. // wait for thread pool
  7658. if (node->n_tasks > 1) {
  7659. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7660. atomic_store(&state_shared.has_work, false);
  7661. }
  7662. while (atomic_load(&state_shared.has_work)) {
  7663. ggml_lock_lock (&state_shared.spin);
  7664. ggml_lock_unlock(&state_shared.spin);
  7665. }
  7666. atomic_fetch_sub(&state_shared.n_ready, 1);
  7667. while (atomic_load(&state_shared.n_ready) != 0) {
  7668. ggml_lock_lock (&state_shared.spin);
  7669. ggml_lock_unlock(&state_shared.spin);
  7670. }
  7671. }
  7672. // FINALIZE
  7673. if (node->n_tasks > 1) {
  7674. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7675. atomic_store(&state_shared.has_work, false);
  7676. }
  7677. while (atomic_load(&state_shared.has_work)) {
  7678. ggml_lock_lock (&state_shared.spin);
  7679. ggml_lock_unlock(&state_shared.spin);
  7680. }
  7681. // launch thread pool
  7682. for (int j = 0; j < n_threads - 1; j++) {
  7683. workers[j].params = (struct ggml_compute_params) {
  7684. .type = GGML_TASK_FINALIZE,
  7685. .ith = j + 1,
  7686. .nth = node->n_tasks,
  7687. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7688. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7689. };
  7690. workers[j].node = node;
  7691. }
  7692. atomic_fetch_sub(&state_shared.n_ready, 1);
  7693. while (atomic_load(&state_shared.n_ready) > 0) {
  7694. ggml_lock_lock (&state_shared.spin);
  7695. ggml_lock_unlock(&state_shared.spin);
  7696. }
  7697. atomic_store(&state_shared.has_work, true);
  7698. }
  7699. params.type = GGML_TASK_FINALIZE;
  7700. ggml_compute_forward(&params, node);
  7701. // wait for thread pool
  7702. if (node->n_tasks > 1) {
  7703. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7704. atomic_store(&state_shared.has_work, false);
  7705. }
  7706. while (atomic_load(&state_shared.has_work)) {
  7707. ggml_lock_lock (&state_shared.spin);
  7708. ggml_lock_unlock(&state_shared.spin);
  7709. }
  7710. atomic_fetch_sub(&state_shared.n_ready, 1);
  7711. while (atomic_load(&state_shared.n_ready) != 0) {
  7712. ggml_lock_lock (&state_shared.spin);
  7713. ggml_lock_unlock(&state_shared.spin);
  7714. }
  7715. }
  7716. // performance stats (node)
  7717. {
  7718. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  7719. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  7720. node->perf_runs++;
  7721. node->perf_cycles += perf_cycles_cur;
  7722. node->perf_time_us += perf_time_us_cur;
  7723. }
  7724. }
  7725. // join thread pool
  7726. if (n_threads > 1) {
  7727. atomic_store(&state_shared.stop, true);
  7728. atomic_store(&state_shared.has_work, true);
  7729. for (int j = 0; j < n_threads - 1; j++) {
  7730. int rc = ggml_thread_join(workers[j].thrd, NULL);
  7731. GGML_ASSERT(rc == 0);
  7732. UNUSED(rc);
  7733. }
  7734. ggml_lock_destroy(&state_shared.spin);
  7735. }
  7736. // performance stats (graph)
  7737. {
  7738. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  7739. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  7740. cgraph->perf_runs++;
  7741. cgraph->perf_cycles += perf_cycles_cur;
  7742. cgraph->perf_time_us += perf_time_us_cur;
  7743. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  7744. __func__, cgraph->perf_runs,
  7745. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  7746. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  7747. (double) perf_time_us_cur / 1000.0,
  7748. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  7749. }
  7750. }
  7751. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  7752. for (int i = 0; i < cgraph->n_nodes; i++) {
  7753. struct ggml_tensor * grad = cgraph->grads[i];
  7754. if (grad) {
  7755. ggml_set_zero(grad);
  7756. }
  7757. }
  7758. }
  7759. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  7760. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  7761. GGML_PRINT("=== GRAPH ===\n");
  7762. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  7763. GGML_PRINT_DEBUG("total work size = %zu bytes\n",cgraph->work_size);
  7764. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  7765. for (int i = 0; i < cgraph->n_nodes; i++) {
  7766. struct ggml_tensor * node = cgraph->nodes[i];
  7767. perf_total_per_op_us[node->op] += node->perf_time_us;
  7768. GGML_PRINT(" - %3d: [ %6d, %6d, %6d] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  7769. i,
  7770. node->ne[0], node->ne[1], node->ne[2],
  7771. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  7772. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  7773. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  7774. (double) node->perf_time_us / 1000.0,
  7775. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  7776. }
  7777. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  7778. for (int i = 0; i < cgraph->n_leafs; i++) {
  7779. struct ggml_tensor * node = cgraph->leafs[i];
  7780. GGML_PRINT(" - %3d: [ %6d, %6d] %8s\n",
  7781. i,
  7782. node->ne[0], node->ne[1],
  7783. GGML_OP_LABEL[node->op]);
  7784. }
  7785. for (int i = 0; i < GGML_OP_COUNT; i++) {
  7786. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  7787. }
  7788. GGML_PRINT("========================================\n");
  7789. }
  7790. // check if node is part of the graph
  7791. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  7792. if (cgraph == NULL) {
  7793. return true;
  7794. }
  7795. for (int i = 0; i < cgraph->n_nodes; i++) {
  7796. if (cgraph->nodes[i] == node) {
  7797. return true;
  7798. }
  7799. }
  7800. return false;
  7801. }
  7802. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  7803. for (int i = 0; i < cgraph->n_nodes; i++) {
  7804. struct ggml_tensor * parent = cgraph->nodes[i];
  7805. if (parent->grad == node) {
  7806. return parent;
  7807. }
  7808. }
  7809. return NULL;
  7810. }
  7811. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  7812. char color[16];
  7813. FILE * fp = fopen(filename, "w");
  7814. GGML_ASSERT(fp);
  7815. fprintf(fp, "digraph G {\n");
  7816. fprintf(fp, " newrank = true;\n");
  7817. fprintf(fp, " rankdir = LR;\n");
  7818. for (int i = 0; i < gb->n_nodes; i++) {
  7819. struct ggml_tensor * node = gb->nodes[i];
  7820. if (ggml_graph_get_parent(gb, node) != NULL) {
  7821. continue;
  7822. }
  7823. if (node->is_param) {
  7824. snprintf(color, sizeof(color), "yellow");
  7825. } else if (node->grad) {
  7826. if (ggml_graph_find(gf, node)) {
  7827. snprintf(color, sizeof(color), "green");
  7828. } else {
  7829. snprintf(color, sizeof(color), "lightblue");
  7830. }
  7831. } else {
  7832. snprintf(color, sizeof(color), "white");
  7833. }
  7834. fprintf(fp, " \"%p\" [ \
  7835. style = filled; fillcolor = %s; shape = record; \
  7836. label=\"%d [%d, %d] | <x>%s",
  7837. (void *) node, color,
  7838. i, node->ne[0], node->ne[1],
  7839. GGML_OP_SYMBOL[node->op]);
  7840. if (node->grad) {
  7841. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  7842. } else {
  7843. fprintf(fp, "\"; ]\n");
  7844. }
  7845. }
  7846. for (int i = 0; i < gb->n_leafs; i++) {
  7847. struct ggml_tensor * node = gb->leafs[i];
  7848. snprintf(color, sizeof(color), "pink");
  7849. if (ggml_nelements(node) == 1) {
  7850. fprintf(fp, " \"%p\" [ \
  7851. style = filled; fillcolor = %s; shape = record; \
  7852. label=\"<x>%.1e\"; ]\n",
  7853. (void *) node, color, ggml_get_f32_1d(node, 0));
  7854. } else {
  7855. fprintf(fp, " \"%p\" [ \
  7856. style = filled; fillcolor = %s; shape = record; \
  7857. label=\"<x>CONST %d [%d, %d]\"; ]\n",
  7858. (void *) node, color,
  7859. i, node->ne[0], node->ne[1]);
  7860. }
  7861. }
  7862. for (int i = 0; i < gb->n_nodes; i++) {
  7863. struct ggml_tensor * node = gb->nodes[i];
  7864. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  7865. if (node->src0) {
  7866. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  7867. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  7868. parent0 ? (void *) parent0 : (void *) node->src0,
  7869. parent0 ? "g" : "x",
  7870. parent ? (void *) parent : (void *) node,
  7871. parent ? "g" : "x",
  7872. parent ? "empty" : "vee",
  7873. parent ? "dashed" : "solid");
  7874. }
  7875. if (node->src1) {
  7876. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  7877. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  7878. parent1 ? (void *) parent1 : (void *) node->src1,
  7879. parent1 ? "g" : "x",
  7880. parent ? (void *) parent : (void *) node,
  7881. parent ? "g" : "x",
  7882. parent ? "empty" : "vee",
  7883. parent ? "dashed" : "solid");
  7884. }
  7885. }
  7886. for (int i = 0; i < gb->n_leafs; i++) {
  7887. struct ggml_tensor * node = gb->leafs[i];
  7888. if (node->src0) {
  7889. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  7890. (void *) node->src0, "x",
  7891. (void *) node, "x");
  7892. }
  7893. if (node->src1) {
  7894. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  7895. (void *) node->src1, "x",
  7896. (void *) node, "x");
  7897. }
  7898. }
  7899. fprintf(fp, "}\n");
  7900. fclose(fp);
  7901. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  7902. }
  7903. ////////////////////////////////////////////////////////////////////////////////
  7904. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  7905. int i = 0;
  7906. for (int p = 0; p < np; ++p) {
  7907. const int ne = ggml_nelements(ps[p]) ;
  7908. // TODO: add function to set tensor from array
  7909. for (int j = 0; j < ne; ++j) {
  7910. ggml_set_f32_1d(ps[p], j, x[i++]);
  7911. }
  7912. }
  7913. }
  7914. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  7915. int i = 0;
  7916. for (int p = 0; p < np; ++p) {
  7917. const int ne = ggml_nelements(ps[p]) ;
  7918. // TODO: add function to get all elements at once
  7919. for (int j = 0; j < ne; ++j) {
  7920. x[i++] = ggml_get_f32_1d(ps[p], j);
  7921. }
  7922. }
  7923. }
  7924. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  7925. int i = 0;
  7926. for (int p = 0; p < np; ++p) {
  7927. const int ne = ggml_nelements(ps[p]) ;
  7928. // TODO: add function to get all elements at once
  7929. for (int j = 0; j < ne; ++j) {
  7930. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  7931. }
  7932. }
  7933. }
  7934. //
  7935. // ADAM
  7936. //
  7937. // ref: https://arxiv.org/pdf/1412.6980.pdf
  7938. //
  7939. static enum ggml_opt_result ggml_opt_adam(
  7940. struct ggml_context * ctx,
  7941. struct ggml_opt_params params,
  7942. struct ggml_tensor * f,
  7943. struct ggml_cgraph * gf,
  7944. struct ggml_cgraph * gb) {
  7945. GGML_ASSERT(ggml_is_scalar(f));
  7946. gf->n_threads = params.n_threads;
  7947. gb->n_threads = params.n_threads;
  7948. // these will store the parameters we want to optimize
  7949. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  7950. int np = 0;
  7951. int nx = 0;
  7952. for (int i = 0; i < gf->n_nodes; ++i) {
  7953. if (gf->nodes[i]->is_param) {
  7954. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  7955. GGML_ASSERT(np < GGML_MAX_PARAMS);
  7956. ps[np++] = gf->nodes[i];
  7957. nx += ggml_nelements(gf->nodes[i]);
  7958. }
  7959. }
  7960. // constants
  7961. const float alpha = params.adam.alpha;
  7962. const float beta1 = params.adam.beta1;
  7963. const float beta2 = params.adam.beta2;
  7964. const float eps = params.adam.eps;
  7965. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  7966. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  7967. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  7968. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  7969. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  7970. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  7971. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  7972. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  7973. // initialize
  7974. ggml_vec_set_f32(nx, m, 0.0f);
  7975. ggml_vec_set_f32(nx, v, 0.0f);
  7976. // update view
  7977. ggml_opt_get_params(np, ps, x);
  7978. // compute the function value
  7979. ggml_graph_reset (gf);
  7980. ggml_set_f32 (f->grad, 1.0f);
  7981. ggml_graph_compute(ctx, gb);
  7982. float fx_prev = ggml_get_f32_1d(f, 0);
  7983. if (pf) {
  7984. pf[0] = fx_prev;
  7985. }
  7986. int n_no_improvement = 0;
  7987. float fx_best = fx_prev;
  7988. // run the optimizer
  7989. for (int t = 0; t < params.adam.n_iter; ++t) {
  7990. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  7991. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  7992. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  7993. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  7994. for (int i = 0; i < np; ++i) {
  7995. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  7996. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  7997. }
  7998. const int64_t t_start_wall = ggml_time_us();
  7999. const int64_t t_start_cpu = ggml_cycles();
  8000. UNUSED(t_start_wall);
  8001. UNUSED(t_start_cpu);
  8002. {
  8003. // update the gradient
  8004. ggml_opt_get_grad(np, ps, g1);
  8005. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  8006. ggml_vec_scale_f32(nx, m, beta1);
  8007. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  8008. // g2 = g1^2
  8009. ggml_vec_sqr_f32 (nx, g2, g1);
  8010. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  8011. ggml_vec_scale_f32(nx, v, beta2);
  8012. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  8013. // m^hat = m_t / (1 - beta1^t)
  8014. // v^hat = v_t / (1 - beta2^t)
  8015. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  8016. ggml_vec_cpy_f32 (nx, mh, m);
  8017. ggml_vec_cpy_f32 (nx, vh, v);
  8018. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  8019. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  8020. ggml_vec_sqrt_f32 (nx, vh, vh);
  8021. ggml_vec_acc1_f32 (nx, vh, eps);
  8022. ggml_vec_div_f32 (nx, mh, mh, vh);
  8023. ggml_vec_sub_f32 (nx, x, x, mh);
  8024. // update the parameters
  8025. ggml_opt_set_params(np, ps, x);
  8026. }
  8027. ggml_graph_reset (gf);
  8028. ggml_set_f32 (f->grad, 1.0f);
  8029. ggml_graph_compute(ctx, gb);
  8030. const float fx = ggml_get_f32_1d(f, 0);
  8031. // check convergence
  8032. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  8033. GGML_PRINT_DEBUG("converged\n");
  8034. return GGML_OPT_OK;
  8035. }
  8036. // delta-based convergence test
  8037. if (pf != NULL) {
  8038. // need at least params.past iterations to start checking for convergence
  8039. if (params.past <= t) {
  8040. const float rate = (pf[t%params.past] - fx)/fx;
  8041. if (fabs(rate) < params.delta) {
  8042. return GGML_OPT_OK;
  8043. }
  8044. }
  8045. pf[t%params.past] = fx;
  8046. }
  8047. // check for improvement
  8048. if (params.max_no_improvement > 0) {
  8049. if (fx_best > fx) {
  8050. fx_best = fx;
  8051. n_no_improvement = 0;
  8052. } else {
  8053. ++n_no_improvement;
  8054. if (n_no_improvement >= params.max_no_improvement) {
  8055. return GGML_OPT_OK;
  8056. }
  8057. }
  8058. }
  8059. fx_prev = fx;
  8060. {
  8061. const int64_t t_end_cpu = ggml_cycles();
  8062. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  8063. UNUSED(t_end_cpu);
  8064. const int64_t t_end_wall = ggml_time_us();
  8065. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  8066. UNUSED(t_end_wall);
  8067. }
  8068. }
  8069. return GGML_OPT_DID_NOT_CONVERGE;
  8070. }
  8071. //
  8072. // L-BFGS
  8073. //
  8074. // the L-BFGS implementation below is based on the following implementation:
  8075. //
  8076. // https://github.com/chokkan/liblbfgs
  8077. //
  8078. struct ggml_lbfgs_iteration_data {
  8079. float alpha;
  8080. float ys;
  8081. float * s;
  8082. float * y;
  8083. };
  8084. static enum ggml_opt_result linesearch_backtracking(
  8085. struct ggml_context * ctx,
  8086. const struct ggml_opt_params * params,
  8087. int nx,
  8088. float * x,
  8089. float * fx,
  8090. float * g,
  8091. float * d,
  8092. float * step,
  8093. const float * xp,
  8094. struct ggml_tensor * f,
  8095. struct ggml_cgraph * gf,
  8096. struct ggml_cgraph * gb,
  8097. const int np,
  8098. struct ggml_tensor * ps[]) {
  8099. int count = 0;
  8100. float width = 0.0f;
  8101. float dg = 0.0f;
  8102. float finit = 0.0f;
  8103. float dginit = 0.0f;
  8104. float dgtest = 0.0f;
  8105. const float dec = 0.5f;
  8106. const float inc = 2.1f;
  8107. if (*step <= 0.) {
  8108. return GGML_LINESEARCH_INVALID_PARAMETERS;
  8109. }
  8110. // compute the initial gradient in the search direction
  8111. ggml_vec_dot_f32(nx, &dginit, g, d);
  8112. // make sure that d points to a descent direction
  8113. if (0 < dginit) {
  8114. return GGML_LINESEARCH_FAIL;
  8115. }
  8116. // initialize local variables
  8117. finit = *fx;
  8118. dgtest = params->lbfgs.ftol*dginit;
  8119. while (true) {
  8120. ggml_vec_cpy_f32(nx, x, xp);
  8121. ggml_vec_mad_f32(nx, x, d, *step);
  8122. // evaluate the function and gradient values
  8123. {
  8124. ggml_opt_set_params(np, ps, x);
  8125. ggml_graph_reset (gf);
  8126. ggml_set_f32 (f->grad, 1.0f);
  8127. ggml_graph_compute(ctx, gb);
  8128. ggml_opt_get_grad(np, ps, g);
  8129. *fx = ggml_get_f32_1d(f, 0);
  8130. }
  8131. ++count;
  8132. if (*fx > finit + (*step)*dgtest) {
  8133. width = dec;
  8134. } else {
  8135. // Armijo condition is satisfied
  8136. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  8137. return count;
  8138. }
  8139. ggml_vec_dot_f32(nx, &dg, g, d);
  8140. // check the Wolfe condition
  8141. if (dg < params->lbfgs.wolfe * dginit) {
  8142. width = inc;
  8143. } else {
  8144. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  8145. // regular Wolfe conditions
  8146. return count;
  8147. }
  8148. if(dg > -params->lbfgs.wolfe*dginit) {
  8149. width = dec;
  8150. } else {
  8151. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  8152. return count;
  8153. }
  8154. return count;
  8155. }
  8156. }
  8157. if (*step < params->lbfgs.min_step) {
  8158. return GGML_LINESEARCH_MINIMUM_STEP;
  8159. }
  8160. if (*step > params->lbfgs.max_step) {
  8161. return GGML_LINESEARCH_MAXIMUM_STEP;
  8162. }
  8163. if (params->lbfgs.max_linesearch <= count) {
  8164. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  8165. }
  8166. (*step) *= width;
  8167. }
  8168. return GGML_LINESEARCH_FAIL;
  8169. }
  8170. static enum ggml_opt_result ggml_opt_lbfgs(
  8171. struct ggml_context * ctx,
  8172. struct ggml_opt_params params,
  8173. struct ggml_tensor * f,
  8174. struct ggml_cgraph * gf,
  8175. struct ggml_cgraph * gb) {
  8176. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  8177. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  8178. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1. <= params.lbfgs.wolfe) {
  8179. return GGML_OPT_INVALID_WOLFE;
  8180. }
  8181. }
  8182. gf->n_threads = params.n_threads;
  8183. gb->n_threads = params.n_threads;
  8184. const int m = params.lbfgs.m;
  8185. // these will store the parameters we want to optimize
  8186. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  8187. int np = 0;
  8188. int nx = 0;
  8189. for (int i = 0; i < gf->n_nodes; ++i) {
  8190. if (gf->nodes[i]->is_param) {
  8191. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  8192. GGML_ASSERT(np < GGML_MAX_PARAMS);
  8193. ps[np++] = gf->nodes[i];
  8194. nx += ggml_nelements(gf->nodes[i]);
  8195. }
  8196. }
  8197. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  8198. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  8199. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  8200. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  8201. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  8202. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  8203. float fx = 0.0f; // cost function value
  8204. float xnorm = 0.0f; // ||x||
  8205. float gnorm = 0.0f; // ||g||
  8206. float step = 0.0f;
  8207. // initialize x from the graph nodes
  8208. ggml_opt_get_params(np, ps, x);
  8209. // the L-BFGS memory
  8210. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  8211. for (int i = 0; i < m; ++i) {
  8212. lm[i].alpha = 0.0f;
  8213. lm[i].ys = 0.0f;
  8214. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8215. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8216. }
  8217. // evaluate the function value and its gradient
  8218. {
  8219. ggml_opt_set_params(np, ps, x);
  8220. ggml_graph_reset (gf);
  8221. ggml_set_f32 (f->grad, 1.0f);
  8222. ggml_graph_compute(ctx, gb);
  8223. ggml_opt_get_grad(np, ps, g);
  8224. fx = ggml_get_f32_1d(f, 0);
  8225. }
  8226. if (pf) {
  8227. pf[0] = fx;
  8228. }
  8229. float fx_best = fx;
  8230. // search direction = -gradient
  8231. ggml_vec_neg_f32(nx, d, g);
  8232. // ||x||, ||g||
  8233. ggml_vec_norm_f32(nx, &xnorm, x);
  8234. ggml_vec_norm_f32(nx, &gnorm, g);
  8235. if (xnorm < 1.0f) {
  8236. xnorm = 1.0f;
  8237. }
  8238. // already optimized
  8239. if (gnorm/xnorm <= params.lbfgs.eps) {
  8240. return GGML_OPT_OK;
  8241. }
  8242. // initial step
  8243. ggml_vec_norm_inv_f32(nx, &step, d);
  8244. int j = 0;
  8245. int k = 1;
  8246. int ls = 0;
  8247. int end = 0;
  8248. int bound = 0;
  8249. int n_no_improvement = 0;
  8250. float ys = 0.0f;
  8251. float yy = 0.0f;
  8252. float beta = 0.0f;
  8253. while (true) {
  8254. // store the current position and gradient vectors
  8255. ggml_vec_cpy_f32(nx, xp, x);
  8256. ggml_vec_cpy_f32(nx, gp, g);
  8257. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  8258. if (ls < 0) {
  8259. // linesearch failed - go back to the previous point and return
  8260. ggml_vec_cpy_f32(nx, x, xp);
  8261. ggml_vec_cpy_f32(nx, g, gp);
  8262. return ls;
  8263. }
  8264. ggml_vec_norm_f32(nx, &xnorm, x);
  8265. ggml_vec_norm_f32(nx, &gnorm, g);
  8266. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  8267. if (xnorm < 1.0) {
  8268. xnorm = 1.0;
  8269. }
  8270. if (gnorm/xnorm <= params.lbfgs.eps) {
  8271. // converged
  8272. return GGML_OPT_OK;
  8273. }
  8274. // delta-based convergence test
  8275. if (pf != NULL) {
  8276. // need at least params.past iterations to start checking for convergence
  8277. if (params.past <= k) {
  8278. const float rate = (pf[k%params.past] - fx)/fx;
  8279. if (fabs(rate) < params.delta) {
  8280. return GGML_OPT_OK;
  8281. }
  8282. }
  8283. pf[k%params.past] = fx;
  8284. }
  8285. // check for improvement
  8286. if (params.max_no_improvement > 0) {
  8287. if (fx < fx_best) {
  8288. fx_best = fx;
  8289. n_no_improvement = 0;
  8290. } else {
  8291. n_no_improvement++;
  8292. if (n_no_improvement >= params.max_no_improvement) {
  8293. return GGML_OPT_OK;
  8294. }
  8295. }
  8296. }
  8297. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  8298. // reached the maximum number of iterations
  8299. return GGML_OPT_DID_NOT_CONVERGE;
  8300. }
  8301. // update vectors s and y:
  8302. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  8303. // y_{k+1} = g_{k+1} - g_{k}.
  8304. //
  8305. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  8306. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  8307. // compute scalars ys and yy:
  8308. // ys = y^t \cdot s -> 1 / \rho.
  8309. // yy = y^t \cdot y.
  8310. //
  8311. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  8312. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  8313. lm[end].ys = ys;
  8314. // find new search direction
  8315. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  8316. bound = (m <= k) ? m : k;
  8317. k++;
  8318. end = (end + 1)%m;
  8319. // initialize search direction with -g
  8320. ggml_vec_neg_f32(nx, d, g);
  8321. j = end;
  8322. for (int i = 0; i < bound; ++i) {
  8323. j = (j + m - 1) % m;
  8324. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  8325. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  8326. lm[j].alpha /= lm[j].ys;
  8327. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  8328. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  8329. }
  8330. ggml_vec_scale_f32(nx, d, ys/yy);
  8331. for (int i = 0; i < bound; ++i) {
  8332. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  8333. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  8334. beta /= lm[j].ys;
  8335. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  8336. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  8337. j = (j + 1)%m;
  8338. }
  8339. step = 1.0;
  8340. }
  8341. return GGML_OPT_DID_NOT_CONVERGE;
  8342. }
  8343. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  8344. struct ggml_opt_params result;
  8345. switch (type) {
  8346. case GGML_OPT_ADAM:
  8347. {
  8348. result = (struct ggml_opt_params) {
  8349. .type = GGML_OPT_ADAM,
  8350. .n_threads = 1,
  8351. .past = 0,
  8352. .delta = 1e-5f,
  8353. .max_no_improvement = 100,
  8354. .print_forward_graph = true,
  8355. .print_backward_graph = true,
  8356. .adam = {
  8357. .n_iter = 10000,
  8358. .alpha = 0.001f,
  8359. .beta1 = 0.9f,
  8360. .beta2 = 0.999f,
  8361. .eps = 1e-8f,
  8362. .eps_f = 1e-5f,
  8363. .eps_g = 1e-3f,
  8364. },
  8365. };
  8366. } break;
  8367. case GGML_OPT_LBFGS:
  8368. {
  8369. result = (struct ggml_opt_params) {
  8370. .type = GGML_OPT_LBFGS,
  8371. .n_threads = 1,
  8372. .past = 0,
  8373. .delta = 1e-5f,
  8374. .max_no_improvement = 0,
  8375. .print_forward_graph = true,
  8376. .print_backward_graph = true,
  8377. .lbfgs = {
  8378. .m = 6,
  8379. .n_iter = 100,
  8380. .max_linesearch = 20,
  8381. .eps = 1e-5f,
  8382. .ftol = 1e-4f,
  8383. .wolfe = 0.9f,
  8384. .min_step = 1e-20f,
  8385. .max_step = 1e+20f,
  8386. .linesearch = GGML_LINESEARCH_DEFAULT,
  8387. },
  8388. };
  8389. } break;
  8390. }
  8391. return result;
  8392. }
  8393. enum ggml_opt_result ggml_opt(
  8394. struct ggml_context * ctx,
  8395. struct ggml_opt_params params,
  8396. struct ggml_tensor * f) {
  8397. bool free_ctx = false;
  8398. if (ctx == NULL) {
  8399. struct ggml_init_params params_ctx = {
  8400. .mem_size = 16*1024*1024,
  8401. .mem_buffer = NULL,
  8402. };
  8403. ctx = ggml_init(params_ctx);
  8404. if (ctx == NULL) {
  8405. return GGML_OPT_NO_CONTEXT;
  8406. }
  8407. free_ctx = true;
  8408. }
  8409. enum ggml_opt_result result = GGML_OPT_OK;
  8410. // build forward + backward compute graphs
  8411. struct ggml_cgraph gf = ggml_build_forward (f);
  8412. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  8413. switch (params.type) {
  8414. case GGML_OPT_ADAM:
  8415. {
  8416. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  8417. } break;
  8418. case GGML_OPT_LBFGS:
  8419. {
  8420. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  8421. } break;
  8422. }
  8423. if (params.print_forward_graph) {
  8424. ggml_graph_print (&gf);
  8425. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  8426. }
  8427. if (params.print_backward_graph) {
  8428. ggml_graph_print (&gb);
  8429. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  8430. }
  8431. if (free_ctx) {
  8432. ggml_free(ctx);
  8433. }
  8434. return result;
  8435. }
  8436. ////////////////////////////////////////////////////////////////////////////////
  8437. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int qk, int64_t * hist) {
  8438. const int nb = k / qk;
  8439. const size_t bs = (sizeof(float) + sizeof(uint8_t)*qk/2);
  8440. const size_t row_size = nb*bs;
  8441. assert(k % qk == 0);
  8442. char * pdst = (char *) dst;
  8443. for (int j = 0; j < n; j += k) {
  8444. uint8_t * pd = (uint8_t *) (pdst + (j/k)*row_size + 0*bs);
  8445. uint8_t * pb = (uint8_t *) (pdst + (j/k)*row_size + 0*bs + sizeof(float));
  8446. quantize_row_q4_0_reference(src + j, pd, k);
  8447. for (int i = 0; i < nb; i++) {
  8448. for (int l = 0; l < qk; l += 2) {
  8449. const uint8_t vi0 = pb[l/2] & 0xF;
  8450. const uint8_t vi1 = pb[l/2] >> 4;
  8451. hist[vi0]++;
  8452. hist[vi1]++;
  8453. }
  8454. pb += bs;
  8455. }
  8456. }
  8457. return (n/k)*row_size;
  8458. }
  8459. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int qk, int64_t * hist) {
  8460. const int nb = k / qk;
  8461. const size_t bs = (2*sizeof(float) + sizeof(uint8_t)*qk/2);
  8462. const size_t row_size = nb*bs;
  8463. assert(k % qk == 0);
  8464. char * pdst = (char *) dst;
  8465. for (int j = 0; j < n; j += k) {
  8466. uint8_t * pd = (uint8_t *) (pdst + (j/k)*row_size + 0*bs);
  8467. uint8_t * pb = (uint8_t *) (pdst + (j/k)*row_size + 0*bs + 2*sizeof(float));
  8468. quantize_row_q4_1(src + j, pd, k);
  8469. for (int i = 0; i < nb; i++) {
  8470. for (int l = 0; l < qk; l += 2) {
  8471. const uint8_t vi0 = pb[l/2] & 0xF;
  8472. const uint8_t vi1 = pb[l/2] >> 4;
  8473. hist[vi0]++;
  8474. hist[vi1]++;
  8475. }
  8476. pb += bs;
  8477. }
  8478. }
  8479. return (n/k)*row_size;
  8480. }
  8481. ////////////////////////////////////////////////////////////////////////////////
  8482. int ggml_cpu_has_avx(void) {
  8483. #if defined(__AVX__)
  8484. return 1;
  8485. #else
  8486. return 0;
  8487. #endif
  8488. }
  8489. int ggml_cpu_has_avx2(void) {
  8490. #if defined(__AVX2__)
  8491. return 1;
  8492. #else
  8493. return 0;
  8494. #endif
  8495. }
  8496. int ggml_cpu_has_avx512(void) {
  8497. #if defined(__AVX512F__)
  8498. return 1;
  8499. #else
  8500. return 0;
  8501. #endif
  8502. }
  8503. int ggml_cpu_has_fma(void) {
  8504. #if defined(__FMA__)
  8505. return 1;
  8506. #else
  8507. return 0;
  8508. #endif
  8509. }
  8510. int ggml_cpu_has_neon(void) {
  8511. #if defined(__ARM_NEON)
  8512. return 1;
  8513. #else
  8514. return 0;
  8515. #endif
  8516. }
  8517. int ggml_cpu_has_arm_fma(void) {
  8518. #if defined(__ARM_FEATURE_FMA)
  8519. return 1;
  8520. #else
  8521. return 0;
  8522. #endif
  8523. }
  8524. int ggml_cpu_has_f16c(void) {
  8525. #if defined(__F16C__)
  8526. return 1;
  8527. #else
  8528. return 0;
  8529. #endif
  8530. }
  8531. int ggml_cpu_has_fp16_va(void) {
  8532. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  8533. return 1;
  8534. #else
  8535. return 0;
  8536. #endif
  8537. }
  8538. int ggml_cpu_has_wasm_simd(void) {
  8539. #if defined(__wasm_simd128__)
  8540. return 1;
  8541. #else
  8542. return 0;
  8543. #endif
  8544. }
  8545. int ggml_cpu_has_blas(void) {
  8546. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8547. return 1;
  8548. #else
  8549. return 0;
  8550. #endif
  8551. }
  8552. int ggml_cpu_has_sse3(void) {
  8553. #if defined(__SSE3__)
  8554. return 1;
  8555. #else
  8556. return 0;
  8557. #endif
  8558. }
  8559. int ggml_cpu_has_vsx(void) {
  8560. #if defined(__POWER9_VECTOR__)
  8561. return 1;
  8562. #else
  8563. return 0;
  8564. #endif
  8565. }
  8566. ////////////////////////////////////////////////////////////////////////////////