convert_hf_to_gguf.py 347 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. from transformers import AutoConfig
  18. import math
  19. import numpy as np
  20. import torch
  21. if TYPE_CHECKING:
  22. from torch import Tensor
  23. if 'NO_LOCAL_GGUF' not in os.environ:
  24. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  25. import gguf
  26. logger = logging.getLogger("hf-to-gguf")
  27. ###### MODEL DEFINITIONS ######
  28. class SentencePieceTokenTypes(IntEnum):
  29. NORMAL = 1
  30. UNKNOWN = 2
  31. CONTROL = 3
  32. USER_DEFINED = 4
  33. UNUSED = 5
  34. BYTE = 6
  35. class ModelType(IntEnum):
  36. TEXT = 1
  37. MMPROJ = 2
  38. AnyModel = TypeVar("AnyModel", bound="type[ModelBase]")
  39. class ModelBase:
  40. _model_classes: dict[ModelType, dict[str, type[ModelBase]]] = {
  41. ModelType.TEXT: {},
  42. ModelType.MMPROJ: {},
  43. }
  44. dir_model: Path
  45. ftype: gguf.LlamaFileType
  46. fname_out: Path
  47. is_big_endian: bool
  48. endianess: gguf.GGUFEndian
  49. use_temp_file: bool
  50. lazy: bool
  51. part_names: list[str]
  52. is_safetensors: bool
  53. hparams: dict[str, Any]
  54. tensor_names: set[str] | None
  55. gguf_writer: gguf.GGUFWriter
  56. model_name: str | None
  57. metadata_override: Path | None
  58. dir_model_card: Path
  59. remote_hf_model_id: str | None
  60. # subclasses should define this!
  61. model_arch: gguf.MODEL_ARCH
  62. # subclasses should initialize this!
  63. block_count: int
  64. tensor_map: gguf.TensorNameMap
  65. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, *, is_big_endian: bool = False,
  66. use_temp_file: bool = False, eager: bool = False,
  67. metadata_override: Path | None = None, model_name: str | None = None,
  68. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  69. small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None):
  70. if type(self) is ModelBase or \
  71. type(self) is TextModel or \
  72. type(self) is MmprojModel:
  73. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  74. self.dir_model = dir_model
  75. self.ftype = ftype
  76. self.fname_out = fname_out
  77. self.is_big_endian = is_big_endian
  78. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  79. self.use_temp_file = use_temp_file
  80. self.lazy = not eager or (remote_hf_model_id is not None)
  81. self.remote_hf_model_id = remote_hf_model_id
  82. if remote_hf_model_id is not None:
  83. self.is_safetensors = True
  84. def get_remote_tensors() -> Iterator[tuple[str, Tensor]]:
  85. logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
  86. remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
  87. self.tensor_names = set(name for name in remote_tensors.keys())
  88. for name, remote_tensor in gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id).items():
  89. yield (name, LazyTorchTensor.from_remote_tensor(remote_tensor))
  90. self.get_tensors = get_remote_tensors
  91. else:
  92. self.part_names = ModelBase.get_model_part_names(self.dir_model, "model", ".safetensors")
  93. self.is_safetensors = len(self.part_names) > 0
  94. if not self.is_safetensors:
  95. self.part_names = ModelBase.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  96. self.hparams = ModelBase.load_hparams(self.dir_model) if hparams is None else hparams
  97. self.tensor_names = None
  98. self.metadata_override = metadata_override
  99. self.model_name = model_name
  100. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  101. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  102. if self.ftype == gguf.LlamaFileType.GUESSED:
  103. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  104. _, first_tensor = next(self.get_tensors())
  105. if first_tensor.dtype == torch.float16:
  106. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  107. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  108. else:
  109. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  110. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  111. # Configure GGUF Writer
  112. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  113. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  114. @classmethod
  115. def add_prefix_to_filename(cls, path: Path, prefix: str) -> Path:
  116. stem, suffix = path.stem, path.suffix
  117. new_name = f"{prefix}{stem}{suffix}"
  118. return path.with_name(new_name)
  119. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  120. key = next((k for k in keys if k in self.hparams), None)
  121. if key is not None:
  122. return self.hparams[key]
  123. if optional:
  124. return None
  125. raise KeyError(f"could not find any of: {keys}")
  126. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  127. tensor_names_from_parts: set[str] = set()
  128. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  129. index_name += ".index.json"
  130. index_file = self.dir_model / index_name
  131. if index_file.is_file():
  132. self.tensor_names = set()
  133. logger.info(f"gguf: loading model weight map from '{index_name}'")
  134. with open(index_file, "r", encoding="utf-8") as f:
  135. index: dict[str, Any] = json.load(f)
  136. weight_map = index.get("weight_map")
  137. if weight_map is None or not isinstance(weight_map, dict):
  138. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  139. self.tensor_names.update(weight_map.keys())
  140. else:
  141. self.tensor_names = tensor_names_from_parts
  142. weight_map = {}
  143. for part_name in self.part_names:
  144. logger.info(f"gguf: loading model part '{part_name}'")
  145. ctx: ContextManager[Any]
  146. if self.is_safetensors:
  147. from safetensors import safe_open
  148. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  149. else:
  150. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  151. with ctx as model_part:
  152. tensor_names_from_parts.update(model_part.keys())
  153. for name in model_part.keys():
  154. if self.is_safetensors:
  155. if self.lazy:
  156. data = model_part.get_slice(name)
  157. data = LazyTorchTensor.from_safetensors_slice(data)
  158. else:
  159. data = model_part.get_tensor(name)
  160. else:
  161. data = model_part[name]
  162. if self.lazy:
  163. data = LazyTorchTensor.from_eager(data)
  164. yield name, data
  165. # verify tensor name presence and identify potentially missing files
  166. if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  167. missing = sorted(self.tensor_names.difference(tensor_names_from_parts))
  168. extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
  169. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  170. if len(extra) == 0 and len(missing_files) > 0:
  171. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  172. f"Missing tensors: {missing}")
  173. else:
  174. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  175. f"Missing tensors: {missing}\n"
  176. f"Extra tensors: {extra}")
  177. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  178. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  179. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  180. name: str = gguf.TENSOR_NAMES[key]
  181. if "{bid}" in name:
  182. assert bid is not None
  183. name = name.format(bid=bid)
  184. return name + suffix
  185. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  186. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  187. return False
  188. key_name: str = gguf.TENSOR_NAMES[key]
  189. if "{bid}" in key_name:
  190. if bid is None:
  191. return False
  192. key_name = key_name.format(bid=bid)
  193. else:
  194. if bid is not None:
  195. return False
  196. return name == (key_name + suffix)
  197. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  198. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  199. if new_name is None:
  200. raise ValueError(f"Can not map tensor {name!r}")
  201. return new_name
  202. def set_gguf_parameters(self):
  203. raise NotImplementedError("set_gguf_parameters() must be implemented in subclasses")
  204. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  205. del bid # unused
  206. return [(self.map_tensor_name(name), data_torch)]
  207. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  208. del name, new_name, bid, n_dims # unused
  209. return False
  210. # some models need extra generated tensors (like rope_freqs)
  211. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  212. return ()
  213. def prepare_tensors(self):
  214. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  215. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  216. # we don't need these
  217. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  218. continue
  219. old_dtype = data_torch.dtype
  220. # convert any unsupported data types to float32
  221. if data_torch.dtype not in (torch.float16, torch.float32):
  222. data_torch = data_torch.to(torch.float32)
  223. # use the first number-like part of the tensor name as the block id
  224. bid = None
  225. for part in name.split("."):
  226. if part.isdecimal():
  227. bid = int(part)
  228. break
  229. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  230. # TODO: why do we squeeze here?
  231. # data = data_torch.squeeze().numpy()
  232. data = data_torch.numpy()
  233. # if data ends up empty, it means data_torch was a scalar tensor -> restore
  234. if len(data.shape) == 0:
  235. data = data_torch.numpy()
  236. n_dims = len(data.shape)
  237. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  238. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  239. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  240. data_qtype = gguf.GGMLQuantizationType.F32
  241. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  242. # Some tensor types are always in float32
  243. if data_qtype is False and (
  244. any(
  245. self.match_model_tensor_name(new_name, key, bid)
  246. for key in (
  247. gguf.MODEL_TENSOR.FFN_GATE_INP,
  248. gguf.MODEL_TENSOR.POS_EMBD,
  249. gguf.MODEL_TENSOR.TOKEN_TYPES,
  250. gguf.MODEL_TENSOR.SSM_CONV1D,
  251. gguf.MODEL_TENSOR.SHORTCONV_CONV,
  252. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  253. gguf.MODEL_TENSOR.TIME_MIX_W1,
  254. gguf.MODEL_TENSOR.TIME_MIX_W2,
  255. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  256. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  257. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  258. gguf.MODEL_TENSOR.POSNET_NORM1,
  259. gguf.MODEL_TENSOR.POSNET_NORM2,
  260. gguf.MODEL_TENSOR.V_ENC_EMBD_POS,
  261. gguf.MODEL_TENSOR.A_ENC_EMBD_POS,
  262. gguf.MODEL_TENSOR.ALTUP_CORRECT_COEF,
  263. gguf.MODEL_TENSOR.ALTUP_PREDICT_COEF,
  264. )
  265. )
  266. or not new_name.endswith(".weight")
  267. ):
  268. data_qtype = gguf.GGMLQuantizationType.F32
  269. if data_qtype is False and any(
  270. self.match_model_tensor_name(new_name, key, bid)
  271. for key in (
  272. gguf.MODEL_TENSOR.TOKEN_EMBD,
  273. gguf.MODEL_TENSOR.PER_LAYER_TOKEN_EMBD,
  274. gguf.MODEL_TENSOR.OUTPUT,
  275. gguf.MODEL_TENSOR.ALTUP_ROUTER,
  276. gguf.MODEL_TENSOR.LAUREL_L,
  277. gguf.MODEL_TENSOR.LAUREL_R,
  278. )
  279. ):
  280. if self.ftype in (
  281. gguf.LlamaFileType.MOSTLY_TQ1_0,
  282. gguf.LlamaFileType.MOSTLY_TQ2_0,
  283. ):
  284. # TODO: use Q4_K and Q6_K
  285. data_qtype = gguf.GGMLQuantizationType.F16
  286. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  287. if isinstance(data_qtype, bool):
  288. if self.ftype == gguf.LlamaFileType.ALL_F32:
  289. data_qtype = gguf.GGMLQuantizationType.F32
  290. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  291. data_qtype = gguf.GGMLQuantizationType.F16
  292. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  293. data_qtype = gguf.GGMLQuantizationType.BF16
  294. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  295. data_qtype = gguf.GGMLQuantizationType.Q8_0
  296. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  297. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  298. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  299. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  300. else:
  301. raise ValueError(f"Unknown file type: {self.ftype.name}")
  302. try:
  303. data = gguf.quants.quantize(data, data_qtype)
  304. except gguf.QuantError as e:
  305. logger.warning("%s, %s", e, "falling back to F16")
  306. data_qtype = gguf.GGMLQuantizationType.F16
  307. data = gguf.quants.quantize(data, data_qtype)
  308. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  309. # reverse shape to make it similar to the internal ggml dimension order
  310. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  311. # n_dims is implicit in the shape
  312. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  313. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  314. def set_type(self):
  315. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  316. def prepare_metadata(self, vocab_only: bool):
  317. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  318. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  319. # If we are using HF model id, set the metadata name to the model id
  320. if self.remote_hf_model_id:
  321. self.metadata.name = self.remote_hf_model_id
  322. # Fallback to model directory name if metadata name is still missing
  323. if self.metadata.name is None:
  324. self.metadata.name = self.dir_model.name
  325. # Generate parameter weight class (useful for leader boards) if not yet determined
  326. if self.metadata.size_label is None and total_params > 0:
  327. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  328. self.set_type()
  329. logger.info("Set meta model")
  330. self.metadata.set_gguf_meta_model(self.gguf_writer)
  331. logger.info("Set model parameters")
  332. self.set_gguf_parameters()
  333. logger.info("Set model quantization version")
  334. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  335. def write_vocab(self):
  336. raise NotImplementedError("write_vocab() must be implemented in subclasses")
  337. def write(self):
  338. self.prepare_tensors()
  339. self.prepare_metadata(vocab_only=False)
  340. self.gguf_writer.write_header_to_file(path=self.fname_out)
  341. self.gguf_writer.write_kv_data_to_file()
  342. self.gguf_writer.write_tensors_to_file(progress=True)
  343. self.gguf_writer.close()
  344. @staticmethod
  345. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  346. part_names: list[str] = []
  347. for filename in os.listdir(dir_model):
  348. if filename.startswith(prefix) and filename.endswith(suffix):
  349. part_names.append(filename)
  350. part_names.sort()
  351. return part_names
  352. @staticmethod
  353. def load_hparams(dir_model: Path):
  354. try:
  355. # for security reason, we don't allow loading remote code by default
  356. # if a model need remote code, we will fallback to config.json
  357. config = AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
  358. except Exception as e:
  359. logger.warning(f"Failed to load model config from {dir_model}: {e}")
  360. logger.warning("Trying to load config.json instead")
  361. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  362. config = json.load(f)
  363. if "llm_config" in config:
  364. # rename for InternVL
  365. config["text_config"] = config["llm_config"]
  366. if "thinker_config" in config:
  367. # rename for Qwen2.5-Omni
  368. config["text_config"] = config["thinker_config"]["text_config"]
  369. return config
  370. @classmethod
  371. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  372. assert names
  373. def func(modelcls: AnyModel) -> AnyModel:
  374. model_type = ModelType.MMPROJ if modelcls.model_arch == gguf.MODEL_ARCH.MMPROJ else ModelType.TEXT
  375. for name in names:
  376. cls._model_classes[model_type][name] = modelcls
  377. return modelcls
  378. return func
  379. @classmethod
  380. def print_registered_models(cls):
  381. for model_type, model_classes in cls._model_classes.items():
  382. logger.error(f"{model_type.name} models:")
  383. for name in sorted(model_classes.keys()):
  384. logger.error(f" - {name}")
  385. @classmethod
  386. def from_model_architecture(cls, arch: str, model_type = ModelType.TEXT) -> type[ModelBase]:
  387. try:
  388. return cls._model_classes[model_type][arch]
  389. except KeyError:
  390. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  391. class TextModel(ModelBase):
  392. model_type = ModelType.TEXT
  393. hf_arch: str
  394. def __init__(self, *args, **kwargs):
  395. super().__init__(*args, **kwargs)
  396. self.hf_arch = get_model_architecture(self.hparams, self.model_type)
  397. if "text_config" in self.hparams:
  398. # move the text_config to the root level
  399. self.hparams = {**self.hparams, **self.hparams["text_config"]}
  400. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  401. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  402. @classmethod
  403. def __init_subclass__(cls):
  404. # can't use an abstract property, because overriding it without type errors
  405. # would require using decorated functions instead of simply defining the property
  406. if "model_arch" not in cls.__dict__:
  407. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  408. def set_vocab(self):
  409. self._set_vocab_gpt2()
  410. def prepare_metadata(self, vocab_only: bool):
  411. super().prepare_metadata(vocab_only=vocab_only)
  412. total_params = self.gguf_writer.get_total_parameter_count()[0]
  413. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  414. output_type: str = self.ftype.name.partition("_")[2]
  415. # Filename Output
  416. if self.fname_out.is_dir():
  417. # Generate default filename based on model specification and available metadata
  418. if not vocab_only:
  419. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  420. else:
  421. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  422. # Use the default filename
  423. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  424. else:
  425. # Output path is a custom defined templated filename
  426. # Note: `not is_dir()` is used because `.is_file()` will not detect
  427. # file template strings as it doesn't actually exist as a file
  428. # Process templated file name with the output ftype, useful with the "auto" ftype
  429. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  430. logger.info("Set model tokenizer")
  431. self.set_vocab()
  432. def set_gguf_parameters(self):
  433. self.gguf_writer.add_block_count(self.block_count)
  434. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions", "max_length"], optional=True)) is not None:
  435. self.gguf_writer.add_context_length(n_ctx)
  436. logger.info(f"gguf: context length = {n_ctx}")
  437. if (n_embd := self.find_hparam(["hidden_size", "n_embd", "dim"], optional=True)) is not None:
  438. self.gguf_writer.add_embedding_length(n_embd)
  439. logger.info(f"gguf: embedding length = {n_embd}")
  440. if (n_ff := self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"], optional=True)) is not None:
  441. self.gguf_writer.add_feed_forward_length(n_ff)
  442. logger.info(f"gguf: feed forward length = {n_ff}")
  443. if (n_head := self.find_hparam(["num_attention_heads", "n_head", "n_heads"], optional=True)) is not None:
  444. self.gguf_writer.add_head_count(n_head)
  445. logger.info(f"gguf: head count = {n_head}")
  446. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  447. self.gguf_writer.add_head_count_kv(n_head_kv)
  448. logger.info(f"gguf: key-value head count = {n_head_kv}")
  449. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  450. self.gguf_writer.add_rope_freq_base(rope_theta)
  451. logger.info(f"gguf: rope theta = {rope_theta}")
  452. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  453. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  454. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  455. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  456. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  457. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  458. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  459. self.gguf_writer.add_expert_count(n_experts)
  460. logger.info(f"gguf: expert count = {n_experts}")
  461. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  462. self.gguf_writer.add_expert_used_count(n_experts_used)
  463. logger.info(f"gguf: experts used count = {n_experts_used}")
  464. if (head_dim := self.hparams.get("head_dim")) is not None:
  465. self.gguf_writer.add_key_length(head_dim)
  466. self.gguf_writer.add_value_length(head_dim)
  467. self.gguf_writer.add_file_type(self.ftype)
  468. logger.info(f"gguf: file type = {self.ftype}")
  469. def write_vocab(self):
  470. if len(self.gguf_writer.tensors) != 1:
  471. raise ValueError('Splitting the vocabulary is not supported')
  472. self.prepare_metadata(vocab_only=True)
  473. self.gguf_writer.write_header_to_file(path=self.fname_out)
  474. self.gguf_writer.write_kv_data_to_file()
  475. self.gguf_writer.close()
  476. def does_token_look_special(self, token: str | bytes) -> bool:
  477. if isinstance(token, (bytes, bytearray)):
  478. token_text = token.decode(encoding="utf-8")
  479. elif isinstance(token, memoryview):
  480. token_text = token.tobytes().decode(encoding="utf-8")
  481. else:
  482. token_text = token
  483. # Some models mark some added tokens which ought to be control tokens as not special.
  484. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  485. seems_special = token_text in (
  486. "<pad>", # deepseek-coder
  487. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  488. )
  489. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  490. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  491. # TODO: should these be marked as UNUSED instead? (maybe not)
  492. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  493. return seems_special
  494. # used for GPT-2 BPE and WordPiece vocabs
  495. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  496. tokens: list[str] = []
  497. toktypes: list[int] = []
  498. from transformers import AutoTokenizer
  499. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  500. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  501. assert max(tokenizer.vocab.values()) < vocab_size
  502. tokpre = self.get_vocab_base_pre(tokenizer)
  503. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  504. added_vocab = tokenizer.get_added_vocab()
  505. added_tokens_decoder = tokenizer.added_tokens_decoder
  506. for i in range(vocab_size):
  507. if i not in reverse_vocab:
  508. tokens.append(f"[PAD{i}]")
  509. toktypes.append(gguf.TokenType.UNUSED)
  510. else:
  511. token: str = reverse_vocab[i]
  512. if token in added_vocab:
  513. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  514. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  515. if not added_tokens_decoder[i].normalized:
  516. previous_token = token
  517. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  518. if previous_token != token:
  519. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  520. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  521. toktypes.append(gguf.TokenType.CONTROL)
  522. else:
  523. # NOTE: this was added for Gemma.
  524. # Encoding and decoding the tokens above isn't sufficient for this case.
  525. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  526. toktypes.append(gguf.TokenType.USER_DEFINED)
  527. else:
  528. toktypes.append(gguf.TokenType.NORMAL)
  529. tokens.append(token)
  530. return tokens, toktypes, tokpre
  531. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  532. # do not modify it manually!
  533. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  534. # Marker: Start get_vocab_base_pre
  535. def get_vocab_base_pre(self, tokenizer) -> str:
  536. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  537. # is specific for the BPE pre-tokenizer used by the model
  538. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  539. # use in llama.cpp to implement the same pre-tokenizer
  540. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  541. chktok = tokenizer.encode(chktxt)
  542. chkhsh = sha256(str(chktok).encode()).hexdigest()
  543. logger.debug(f"chktok: {chktok}")
  544. logger.debug(f"chkhsh: {chkhsh}")
  545. res = None
  546. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  547. # or pull the latest version of the model from Huggingface
  548. # don't edit the hashes manually!
  549. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  550. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  551. res = "chatglm-bpe"
  552. if chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  553. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  554. res = "chatglm-bpe"
  555. if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
  556. # ref: https://huggingface.co/THUDM/glm-4-9b-hf
  557. res = "glm4"
  558. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  559. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  560. res = "minerva-7b"
  561. if chkhsh == "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664":
  562. # ref: https://huggingface.co/tencent/Hunyuan-A13B-Instruct
  563. res = "hunyuan"
  564. if chkhsh == "a6b57017d60e6edb4d88ecc2845188e0eb333a70357e45dcc9b53964a73bbae6":
  565. # ref: https://huggingface.co/tiiuae/Falcon-H1-0.5B-Base
  566. res = "falcon-h1"
  567. if chkhsh == "60476e1243776c4fb1b993dbd7a5f15ac22f83c80afdf425fa5ae01c8d44ef86":
  568. # ref: https://huggingface.co/tiiuae/Falcon-H1-1B-Base
  569. res = "falcon-h1"
  570. if chkhsh == "3eda48b4c4dc7de733d1a8b3e3b4a85243dbbf704da2ee9d42c6beced8897896":
  571. # ref: https://huggingface.co/tiiuae/Falcon-H1-7B-Base
  572. res = "falcon-h1"
  573. if chkhsh == "48f8e02c0359c0bbdd82f26909171fac1c18a457bb47573ed1fe3bbb2c1cfd4b":
  574. # ref: https://huggingface.co/tiiuae/Falcon-H1-34B-Base
  575. res = "falcon-h1"
  576. if chkhsh == "81212dc7cdb7e0c1074ca62c5aeab0d43c9f52b8a737be7b12a777c953027890":
  577. # ref: https://huggingface.co/moonshotai/Kimi-K2-Base
  578. res = "kimi-k2"
  579. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  580. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  581. res = "llama-bpe"
  582. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  583. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  584. res = "deepseek-llm"
  585. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  586. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  587. res = "deepseek-coder"
  588. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  589. # ref: https://huggingface.co/tiiuae/falcon-7b
  590. res = "falcon"
  591. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  592. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  593. res = "bert-bge"
  594. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  595. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  596. res = "falcon3"
  597. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  598. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  599. res = "bert-bge-large"
  600. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  601. # ref: https://huggingface.co/mosaicml/mpt-7b
  602. res = "mpt"
  603. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  604. # ref: https://huggingface.co/bigcode/starcoder2-3b
  605. res = "starcoder"
  606. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  607. # ref: https://huggingface.co/openai-community/gpt2
  608. res = "gpt-2"
  609. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  610. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  611. res = "stablelm2"
  612. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  613. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  614. res = "refact"
  615. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  616. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  617. res = "command-r"
  618. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  619. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  620. res = "qwen2"
  621. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  622. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  623. res = "olmo"
  624. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  625. # ref: https://huggingface.co/databricks/dbrx-base
  626. res = "dbrx"
  627. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  628. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  629. res = "jina-v1-en"
  630. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  631. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  632. res = "jina-v2-en"
  633. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  634. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  635. res = "jina-v2-es"
  636. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  637. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  638. res = "jina-v2-de"
  639. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  640. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  641. res = "smaug-bpe"
  642. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  643. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  644. res = "poro-chat"
  645. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  646. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  647. res = "jina-v2-code"
  648. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  649. # ref: https://huggingface.co/LumiOpen/Viking-7B
  650. res = "viking"
  651. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  652. # ref: https://huggingface.co/core42/jais-13b
  653. res = "jais"
  654. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  655. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  656. res = "codeshell"
  657. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  658. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  659. res = "tekken"
  660. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  661. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  662. res = "smollm"
  663. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  664. # ref: https://huggingface.co/bigscience/bloom
  665. res = "bloom"
  666. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  667. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  668. res = "gpt3-finnish"
  669. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  670. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  671. res = "exaone"
  672. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  673. # ref: https://huggingface.co/microsoft/phi-2
  674. res = "phi-2"
  675. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  676. # ref: https://huggingface.co/facebook/chameleon-7b
  677. res = "chameleon"
  678. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  679. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  680. res = "roberta-bpe"
  681. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  682. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  683. res = "gigachat"
  684. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  685. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  686. res = "megrez"
  687. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  688. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  689. res = "deepseek-v3"
  690. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  691. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  692. res = "deepseek-r1-qwen"
  693. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  694. # ref: https://huggingface.co/Xenova/gpt-4o
  695. res = "gpt-4o"
  696. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  697. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  698. res = "superbpe"
  699. if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
  700. # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
  701. res = "trillion"
  702. if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
  703. # ref: https://huggingface.co/inclusionAI/Ling-lite
  704. res = "bailingmoe"
  705. if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
  706. # ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
  707. res = "llama4"
  708. if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
  709. # ref: https://huggingface.co/mistral-community/pixtral-12b
  710. res = "pixtral"
  711. if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec":
  712. # ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base
  713. res = "seed-coder"
  714. if chkhsh == "b0a6b1c0bd5998ebd9df08611efde34a4ff03faed45ae09c43e6b31ebd4b94cf":
  715. # ref: https://huggingface.co/skt/A.X-4.0
  716. res = "a.x-4.0"
  717. if chkhsh == "f6791d196f87ce6b56a7d234be618e0d58f8cda3549416635b2bebcd22cd95c4":
  718. # ref: https://huggingface.co/K-intelligence/Midm-2.0-Base-Instruct
  719. res = "midm-2.0"
  720. if chkhsh == "169bf0296a13c4d9b7672313f749eb36501d931022de052aad6e36f2bf34dd51":
  721. # ref: https://huggingface.co/LiquidAI/LFM2-Tokenizer
  722. res = "lfm2"
  723. if res is None:
  724. logger.warning("\n")
  725. logger.warning("**************************************************************************************")
  726. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  727. logger.warning("** There are 2 possible reasons for this:")
  728. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  729. logger.warning("** - the pre-tokenization config has changed upstream")
  730. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  731. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  732. logger.warning("**")
  733. logger.warning(f"** chkhsh: {chkhsh}")
  734. logger.warning("**************************************************************************************")
  735. logger.warning("\n")
  736. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  737. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  738. logger.debug(f"chkhsh: {chkhsh}")
  739. return res
  740. # Marker: End get_vocab_base_pre
  741. def _set_vocab_none(self) -> None:
  742. self.gguf_writer.add_tokenizer_model("none")
  743. def _set_vocab_gpt2(self) -> None:
  744. tokens, toktypes, tokpre = self.get_vocab_base()
  745. self.gguf_writer.add_tokenizer_model("gpt2")
  746. self.gguf_writer.add_tokenizer_pre(tokpre)
  747. self.gguf_writer.add_token_list(tokens)
  748. self.gguf_writer.add_token_types(toktypes)
  749. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  750. special_vocab.add_to_gguf(self.gguf_writer)
  751. def _set_vocab_qwen(self):
  752. dir_model = self.dir_model
  753. hparams = self.hparams
  754. tokens: list[str] = []
  755. toktypes: list[int] = []
  756. from transformers import AutoTokenizer
  757. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  758. vocab_size = hparams["vocab_size"]
  759. assert max(tokenizer.get_vocab().values()) < vocab_size
  760. tokpre = self.get_vocab_base_pre(tokenizer)
  761. merges = []
  762. vocab = {}
  763. mergeable_ranks = tokenizer.mergeable_ranks
  764. for token, rank in mergeable_ranks.items():
  765. vocab[QwenModel.token_bytes_to_string(token)] = rank
  766. if len(token) == 1:
  767. continue
  768. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  769. assert len(merged) == 2
  770. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  771. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  772. added_vocab = tokenizer.special_tokens
  773. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  774. for i in range(vocab_size):
  775. if i not in reverse_vocab:
  776. tokens.append(f"[PAD{i}]")
  777. toktypes.append(gguf.TokenType.UNUSED)
  778. elif reverse_vocab[i] in added_vocab:
  779. tokens.append(reverse_vocab[i])
  780. toktypes.append(gguf.TokenType.CONTROL)
  781. else:
  782. tokens.append(reverse_vocab[i])
  783. toktypes.append(gguf.TokenType.NORMAL)
  784. self.gguf_writer.add_tokenizer_model("gpt2")
  785. self.gguf_writer.add_tokenizer_pre(tokpre)
  786. self.gguf_writer.add_token_list(tokens)
  787. self.gguf_writer.add_token_types(toktypes)
  788. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  789. special_vocab.merges = merges
  790. # only add special tokens when they were not already loaded from config.json
  791. if len(special_vocab.special_token_ids) == 0:
  792. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  793. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  794. # this one is usually not in config.json anyway
  795. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  796. special_vocab.add_to_gguf(self.gguf_writer)
  797. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  798. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  799. self.gguf_writer.add_tokenizer_model("llama")
  800. self.gguf_writer.add_tokenizer_pre("default")
  801. self.gguf_writer.add_token_list(tokens)
  802. self.gguf_writer.add_token_scores(scores)
  803. self.gguf_writer.add_token_types(toktypes)
  804. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  805. special_vocab.add_to_gguf(self.gguf_writer)
  806. def _create_vocab_sentencepiece(self):
  807. from sentencepiece import SentencePieceProcessor
  808. tokenizer_path = self.dir_model / 'tokenizer.model'
  809. if not tokenizer_path.is_file():
  810. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  811. tokenizer = SentencePieceProcessor()
  812. tokenizer.LoadFromFile(str(tokenizer_path))
  813. vocab_size = self.find_hparam([
  814. "vocab_size_per_layer_input", # gemma3n
  815. "vocab_size",
  816. ], optional=True) or tokenizer.vocab_size()
  817. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  818. scores: list[float] = [-10000.0] * vocab_size
  819. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  820. for token_id in range(tokenizer.vocab_size()):
  821. if token_id >= vocab_size:
  822. logger.warning(f'ignore tokens from {token_id}: id is out of range, max={vocab_size - 1}')
  823. break
  824. piece = tokenizer.IdToPiece(token_id)
  825. text = piece.encode("utf-8")
  826. score = tokenizer.GetScore(token_id)
  827. toktype = SentencePieceTokenTypes.NORMAL
  828. if tokenizer.IsUnknown(token_id):
  829. toktype = SentencePieceTokenTypes.UNKNOWN
  830. elif tokenizer.IsControl(token_id):
  831. toktype = SentencePieceTokenTypes.CONTROL
  832. elif tokenizer.IsUnused(token_id):
  833. toktype = SentencePieceTokenTypes.UNUSED
  834. elif tokenizer.IsByte(token_id):
  835. toktype = SentencePieceTokenTypes.BYTE
  836. tokens[token_id] = text
  837. scores[token_id] = score
  838. toktypes[token_id] = toktype
  839. added_tokens_file = self.dir_model / 'added_tokens.json'
  840. if added_tokens_file.is_file():
  841. with open(added_tokens_file, "r", encoding="utf-8") as f:
  842. added_tokens_json = json.load(f)
  843. for key in added_tokens_json:
  844. token_id = added_tokens_json[key]
  845. if token_id >= vocab_size:
  846. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  847. continue
  848. tokens[token_id] = key.encode("utf-8")
  849. scores[token_id] = -1000.0
  850. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  851. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  852. if tokenizer_config_file.is_file():
  853. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  854. tokenizer_config_json = json.load(f)
  855. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  856. for token_id, token_data in added_tokens_decoder.items():
  857. token_id = int(token_id)
  858. token: str = token_data["content"]
  859. if token_id >= vocab_size:
  860. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  861. continue
  862. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  863. if tokens[token_id] != token.encode("utf-8"):
  864. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  865. if token_data.get("special") or self.does_token_look_special(token):
  866. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  867. else:
  868. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  869. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  870. scores[token_id] = -1000.0
  871. tokens[token_id] = token.encode("utf-8")
  872. if vocab_size > len(tokens):
  873. pad_count = vocab_size - len(tokens)
  874. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  875. for i in range(1, pad_count + 1):
  876. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  877. scores.append(-1000.0)
  878. toktypes.append(SentencePieceTokenTypes.UNUSED)
  879. return tokens, scores, toktypes
  880. def _set_vocab_llama_hf(self):
  881. vocab = gguf.LlamaHfVocab(self.dir_model)
  882. tokens = []
  883. scores = []
  884. toktypes = []
  885. for text, score, toktype in vocab.all_tokens():
  886. tokens.append(text)
  887. scores.append(score)
  888. toktypes.append(toktype)
  889. assert len(tokens) == vocab.vocab_size
  890. self.gguf_writer.add_tokenizer_model("llama")
  891. self.gguf_writer.add_tokenizer_pre("default")
  892. self.gguf_writer.add_token_list(tokens)
  893. self.gguf_writer.add_token_scores(scores)
  894. self.gguf_writer.add_token_types(toktypes)
  895. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  896. special_vocab.add_to_gguf(self.gguf_writer)
  897. def _set_vocab_rwkv_world(self):
  898. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  899. vocab_size = self.hparams.get("vocab_size", 65536)
  900. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  901. toktypes: list[int] = [gguf.TokenType.CONTROL]
  902. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  903. lines = f.readlines()
  904. for line in lines:
  905. parts = line.split(' ')
  906. assert len(parts) >= 3
  907. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  908. token = token.encode("utf-8") if isinstance(token, str) else token
  909. assert isinstance(token, bytes)
  910. assert len(token) == token_len
  911. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  912. tokens.append(token_text.encode("utf-8"))
  913. toktypes.append(gguf.TokenType.NORMAL)
  914. remainder = vocab_size - len(tokens)
  915. assert remainder >= 0
  916. for i in range(len(tokens), vocab_size):
  917. tokens.append(f"[PAD{i}]".encode("utf-8"))
  918. toktypes.append(gguf.TokenType.UNUSED)
  919. self.gguf_writer.add_tokenizer_model("rwkv")
  920. self.gguf_writer.add_token_list(tokens)
  921. self.gguf_writer.add_token_types(toktypes)
  922. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  923. if special_vocab.chat_template is None:
  924. template_path = Path(__file__).parent / "models" / "templates" / "llama-cpp-rwkv-world.jinja"
  925. if template_path.is_file():
  926. with open(template_path, "r", encoding="utf-8") as f:
  927. template = f.read()
  928. else:
  929. template = "rwkv-world"
  930. special_vocab.chat_template = template
  931. # hack: Add '\n\n' as the EOT token to make it chat normally
  932. special_vocab._set_special_token("eot", 261)
  933. # hack: Override these as they have already been set (incorrectly)
  934. special_vocab.special_token_ids["bos"] = 0
  935. special_vocab.special_token_ids["eos"] = 0
  936. special_vocab.add_to_gguf(self.gguf_writer)
  937. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  938. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  939. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  940. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  941. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  942. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  943. assert field # tokenizer model
  944. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  945. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  946. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  947. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  948. assert field # token list
  949. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  950. if model_name == "llama-spm":
  951. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  952. assert field # token scores
  953. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  954. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  955. assert field # token types
  956. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  957. if model_name != "llama-spm":
  958. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  959. assert field # token merges
  960. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  961. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  962. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  963. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  964. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  965. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  966. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  967. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  968. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  969. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  970. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  971. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  972. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  973. def _try_set_pooling_type(self) -> None:
  974. # get pooling path
  975. pooling_path = None
  976. module_path = self.dir_model / "modules.json"
  977. if module_path.is_file():
  978. with open(module_path, encoding="utf-8") as f:
  979. modules = json.load(f)
  980. for mod in modules:
  981. if mod["type"] == "sentence_transformers.models.Pooling":
  982. pooling_path = mod["path"]
  983. break
  984. # get pooling type
  985. if pooling_path is not None:
  986. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  987. pooling = json.load(f)
  988. if pooling["pooling_mode_mean_tokens"]:
  989. pooling_type = gguf.PoolingType.MEAN
  990. elif pooling["pooling_mode_cls_token"]:
  991. pooling_type = gguf.PoolingType.CLS
  992. elif pooling["pooling_mode_lasttoken"]:
  993. pooling_type = gguf.PoolingType.LAST
  994. else:
  995. raise NotImplementedError("Only MEAN, CLS, and LAST pooling types supported")
  996. self.gguf_writer.add_pooling_type(pooling_type)
  997. class MmprojModel(ModelBase):
  998. model_type = ModelType.MMPROJ
  999. model_arch = gguf.MODEL_ARCH.MMPROJ
  1000. preprocessor_config: dict[str, Any]
  1001. global_config: dict[str, Any]
  1002. n_block_keys = ["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth"]
  1003. has_vision_encoder: bool = True # by default
  1004. has_audio_encoder: bool = False
  1005. # for models having multiple encoders, we need to separate their hparams
  1006. hparams_vision: dict[str, Any] | None = None
  1007. hparams_audio: dict[str, Any] | None = None
  1008. def __init__(self, *args, **kwargs):
  1009. super().__init__(*args, **kwargs)
  1010. if self.model_arch != gguf.MODEL_ARCH.MMPROJ:
  1011. raise TypeError("MmprojModel must be subclassed with model_arch = gguf.MODEL_ARCH.MMPROJ")
  1012. # get n_embd of the text model
  1013. if "text_config" not in self.hparams:
  1014. self.hparams["text_config"] = {}
  1015. if "audio_config" not in self.hparams:
  1016. self.hparams["audio_config"] = {}
  1017. text_config = {**self.hparams, **self.hparams["text_config"]}
  1018. self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
  1019. assert self.n_embd_text > 0, "n_embd not found in hparams"
  1020. # move vision config to the top level, while preserving the original hparams in global_config
  1021. import copy
  1022. self.global_config = copy.deepcopy(self.hparams)
  1023. self.hparams_vision = self.get_vision_config()
  1024. self.hparams_audio = self.get_audio_config()
  1025. if self.hparams_vision is None and self.hparams_audio is None:
  1026. raise ValueError("vision_config / audio_config not found in hparams")
  1027. # for compat with vision-only models
  1028. self.hparams = self.hparams_vision or self.hparams_audio or self.hparams
  1029. # TODO @ngxson : this is a hack to support both vision and audio encoders
  1030. have_multiple_encoders = self.has_audio_encoder and self.has_vision_encoder
  1031. self.block_count = 128 if have_multiple_encoders else self.find_hparam(self.n_block_keys, True)
  1032. self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.MMPROJ, self.block_count)
  1033. # load preprocessor config
  1034. with open(self.dir_model / "preprocessor_config.json", "r", encoding="utf-8") as f:
  1035. self.preprocessor_config = json.load(f)
  1036. def get_vision_config(self) -> dict[str, Any] | None:
  1037. return self.global_config.get("vision_config")
  1038. def get_audio_config(self) -> dict[str, Any] | None:
  1039. return self.global_config.get("audio_config")
  1040. def set_type(self):
  1041. self.gguf_writer.add_type(gguf.GGUFType.MMPROJ)
  1042. def set_gguf_parameters(self):
  1043. self.gguf_writer.add_file_type(self.ftype)
  1044. if self.has_vision_encoder:
  1045. self.gguf_writer.add_clip_has_vision_encoder(True)
  1046. self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
  1047. # vision config
  1048. self.gguf_writer.add_vision_image_size(self.find_vparam(["image_size"]))
  1049. self.gguf_writer.add_vision_patch_size(self.find_vparam(["patch_size"]))
  1050. self.gguf_writer.add_vision_embedding_length(self.find_vparam(["hidden_size"]))
  1051. self.gguf_writer.add_vision_feed_forward_length(self.find_vparam(["intermediate_size"]))
  1052. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys))
  1053. self.gguf_writer.add_vision_head_count(self.find_vparam(["num_attention_heads"]))
  1054. # preprocessor config
  1055. self.gguf_writer.add_vision_image_mean(self.preprocessor_config["image_mean"])
  1056. self.gguf_writer.add_vision_image_std(self.preprocessor_config["image_std"])
  1057. if self.has_audio_encoder:
  1058. self.gguf_writer.add_clip_has_audio_encoder(True)
  1059. self.gguf_writer.add_audio_projection_dim(self.n_embd_text)
  1060. # audio config
  1061. self.gguf_writer.add_audio_embedding_length(self.find_aparam(["hidden_size"]))
  1062. self.gguf_writer.add_audio_feed_forward_length(self.find_aparam(["intermediate_size"]))
  1063. self.gguf_writer.add_audio_block_count(self.find_aparam(self.n_block_keys))
  1064. self.gguf_writer.add_audio_head_count(self.find_aparam(["num_attention_heads"]))
  1065. if not self.has_vision_encoder and not self.has_audio_encoder:
  1066. raise ValueError("MmprojModel must have either vision or audio encoder")
  1067. def write_vocab(self):
  1068. raise ValueError("MmprojModel does not support vocab writing")
  1069. def find_vparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1070. assert self.hparams_vision is not None
  1071. return self._find_param(self.hparams_vision, keys, optional)
  1072. def find_aparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1073. assert self.hparams_audio is not None
  1074. return self._find_param(self.hparams_audio, keys, optional)
  1075. def _find_param(self, obj: dict[str, Any], keys: Iterable[str], optional: bool = False) -> Any:
  1076. key = next((k for k in keys if k in obj), None)
  1077. if key is not None:
  1078. return obj[key]
  1079. if optional:
  1080. return None
  1081. raise KeyError(f"could not find any of: {keys}")
  1082. @ModelBase.register("GPTNeoXForCausalLM")
  1083. class GPTNeoXModel(TextModel):
  1084. model_arch = gguf.MODEL_ARCH.GPTNEOX
  1085. def set_gguf_parameters(self):
  1086. block_count = self.hparams["num_hidden_layers"]
  1087. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1088. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1089. self.gguf_writer.add_block_count(block_count)
  1090. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1091. self.gguf_writer.add_rope_dimension_count(
  1092. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  1093. )
  1094. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1095. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  1096. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  1097. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1098. del bid # unused
  1099. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1100. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1101. tensors: list[tuple[str, Tensor]] = []
  1102. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  1103. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1104. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1105. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1106. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1107. data_torch = torch.cat(
  1108. (
  1109. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1110. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1111. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1112. ),
  1113. dim=0,
  1114. )
  1115. logger.info("re-format attention.linear_qkv.weight")
  1116. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  1117. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1118. data_torch = torch.cat(
  1119. (
  1120. qkv_bias[:, 0, :].reshape((n_embed,)),
  1121. qkv_bias[:, 1, :].reshape((n_embed,)),
  1122. qkv_bias[:, 2, :].reshape((n_embed,)),
  1123. ),
  1124. dim=0,
  1125. )
  1126. logger.info("re-format attention.linear_qkv.bias")
  1127. tensors.append((self.map_tensor_name(name), data_torch))
  1128. return tensors
  1129. @ModelBase.register("BloomForCausalLM", "BloomModel")
  1130. class BloomModel(TextModel):
  1131. model_arch = gguf.MODEL_ARCH.BLOOM
  1132. def set_gguf_parameters(self):
  1133. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1134. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1135. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  1136. self.gguf_writer.add_embedding_length(n_embed)
  1137. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  1138. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1139. self.gguf_writer.add_head_count(n_head)
  1140. self.gguf_writer.add_head_count_kv(n_head)
  1141. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1142. self.gguf_writer.add_file_type(self.ftype)
  1143. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1144. del bid # unused
  1145. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1146. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1147. name = re.sub(r'transformer\.', '', name)
  1148. tensors: list[tuple[str, Tensor]] = []
  1149. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  1150. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1151. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1152. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1153. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1154. data_torch = torch.cat(
  1155. (
  1156. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1157. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1158. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1159. ),
  1160. dim=0,
  1161. )
  1162. logger.info("re-format attention.linear_qkv.weight")
  1163. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  1164. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1165. data_torch = torch.cat(
  1166. (
  1167. qkv_bias[:, 0, :].reshape((n_embed,)),
  1168. qkv_bias[:, 1, :].reshape((n_embed,)),
  1169. qkv_bias[:, 2, :].reshape((n_embed,)),
  1170. ),
  1171. dim=0,
  1172. )
  1173. logger.info("re-format attention.linear_qkv.bias")
  1174. tensors.append((self.map_tensor_name(name), data_torch))
  1175. return tensors
  1176. @ModelBase.register("MPTForCausalLM")
  1177. class MPTModel(TextModel):
  1178. model_arch = gguf.MODEL_ARCH.MPT
  1179. def set_vocab(self):
  1180. try:
  1181. self._set_vocab_gpt2()
  1182. except Exception:
  1183. # Fallback for SEA-LION model
  1184. self._set_vocab_sentencepiece()
  1185. self.gguf_writer.add_add_bos_token(False)
  1186. self.gguf_writer.add_pad_token_id(3)
  1187. self.gguf_writer.add_eos_token_id(1)
  1188. self.gguf_writer.add_unk_token_id(0)
  1189. def set_gguf_parameters(self):
  1190. block_count = self.hparams["n_layers"]
  1191. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1192. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1193. self.gguf_writer.add_block_count(block_count)
  1194. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  1195. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1196. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  1197. self.gguf_writer.add_head_count_kv(kv_n_heads)
  1198. self.gguf_writer.add_layer_norm_eps(1e-5)
  1199. if self.hparams["attn_config"]["clip_qkv"] is not None:
  1200. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  1201. if self.hparams["attn_config"]["alibi"]:
  1202. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  1203. else:
  1204. self.gguf_writer.add_max_alibi_bias(0.0)
  1205. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1206. del bid # unused
  1207. if "scales" in name:
  1208. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  1209. new_name = new_name.replace("scales", "act.scales")
  1210. else:
  1211. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  1212. return [(new_name, data_torch)]
  1213. @ModelBase.register("OrionForCausalLM")
  1214. class OrionModel(TextModel):
  1215. model_arch = gguf.MODEL_ARCH.ORION
  1216. def set_vocab(self):
  1217. self._set_vocab_sentencepiece()
  1218. def set_gguf_parameters(self):
  1219. block_count = self.hparams["num_hidden_layers"]
  1220. head_count = self.hparams["num_attention_heads"]
  1221. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1222. ctx_length = 0
  1223. if "max_sequence_length" in self.hparams:
  1224. ctx_length = self.hparams["max_sequence_length"]
  1225. elif "max_position_embeddings" in self.hparams:
  1226. ctx_length = self.hparams["max_position_embeddings"]
  1227. elif "model_max_length" in self.hparams:
  1228. ctx_length = self.hparams["model_max_length"]
  1229. else:
  1230. raise ValueError("gguf: can not find ctx length parameter.")
  1231. self.gguf_writer.add_file_type(self.ftype)
  1232. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1233. self.gguf_writer.add_context_length(ctx_length)
  1234. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1235. self.gguf_writer.add_block_count(block_count)
  1236. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1237. self.gguf_writer.add_head_count(head_count)
  1238. self.gguf_writer.add_head_count_kv(head_count_kv)
  1239. # note: config provides rms norm but it is actually layer norm
  1240. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  1241. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  1242. @ModelBase.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  1243. class BaichuanModel(TextModel):
  1244. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1245. def set_vocab(self):
  1246. self._set_vocab_sentencepiece()
  1247. def set_gguf_parameters(self):
  1248. block_count = self.hparams["num_hidden_layers"]
  1249. head_count = self.hparams["num_attention_heads"]
  1250. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1251. ctx_length = 0
  1252. if "max_sequence_length" in self.hparams:
  1253. ctx_length = self.hparams["max_sequence_length"]
  1254. elif "max_position_embeddings" in self.hparams:
  1255. ctx_length = self.hparams["max_position_embeddings"]
  1256. elif "model_max_length" in self.hparams:
  1257. ctx_length = self.hparams["model_max_length"]
  1258. else:
  1259. raise ValueError("gguf: can not find ctx length parameter.")
  1260. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1261. self.gguf_writer.add_context_length(ctx_length)
  1262. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1263. self.gguf_writer.add_block_count(block_count)
  1264. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1265. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1266. self.gguf_writer.add_head_count(head_count)
  1267. self.gguf_writer.add_head_count_kv(head_count_kv)
  1268. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1269. self.gguf_writer.add_file_type(self.ftype)
  1270. rope_scaling = self.hparams.get("rope_scaling") or {}
  1271. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1272. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1273. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1274. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1275. head_count = self.hparams["num_attention_heads"]
  1276. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1277. tensors: list[tuple[str, Tensor]] = []
  1278. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1279. logger.info(f"Unpacking and permuting layer {bid}")
  1280. tensors = [
  1281. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1282. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1283. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1284. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1285. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1286. self._reverse_hf_part(data_torch, 2)),
  1287. ]
  1288. else:
  1289. tensors = [(self.map_tensor_name(name), data_torch)]
  1290. return tensors
  1291. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1292. if n_kv_head is not None and n_head != n_kv_head:
  1293. n_head //= n_kv_head
  1294. return (
  1295. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1296. .swapaxes(1, 2)
  1297. .reshape(weights.shape)
  1298. )
  1299. def _reverse_hf_permute_part(
  1300. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1301. ) -> Tensor:
  1302. r = weights.shape[0] // 3
  1303. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1304. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1305. r = weights.shape[0] // 3
  1306. return weights[r * n_part:r * n_part + r, ...]
  1307. @ModelBase.register("XverseForCausalLM")
  1308. class XverseModel(TextModel):
  1309. model_arch = gguf.MODEL_ARCH.XVERSE
  1310. def set_vocab(self):
  1311. assert (self.dir_model / "tokenizer.json").is_file()
  1312. dir_model = self.dir_model
  1313. hparams = self.hparams
  1314. tokens: list[bytes] = []
  1315. toktypes: list[int] = []
  1316. from transformers import AutoTokenizer
  1317. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1318. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1319. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1320. # because vocab_size is the count of items, and indexes start at 0.
  1321. max_vocab_index = max(tokenizer.get_vocab().values())
  1322. if max_vocab_index >= vocab_size:
  1323. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1324. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1325. added_vocab = tokenizer.get_added_vocab()
  1326. for token_id in range(vocab_size):
  1327. token_text = reverse_vocab[token_id].encode('utf-8')
  1328. # replace "\x00" to string with length > 0
  1329. if token_text == b"\x00":
  1330. toktype = gguf.TokenType.BYTE # special
  1331. token_text = f"<{token_text}>".encode('utf-8')
  1332. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1333. toktype = gguf.TokenType.BYTE # special
  1334. elif reverse_vocab[token_id] in added_vocab:
  1335. if tokenizer.added_tokens_decoder[token_id].special:
  1336. toktype = gguf.TokenType.CONTROL
  1337. else:
  1338. toktype = gguf.TokenType.USER_DEFINED
  1339. else:
  1340. toktype = gguf.TokenType.NORMAL
  1341. tokens.append(token_text)
  1342. toktypes.append(toktype)
  1343. self.gguf_writer.add_tokenizer_model("llama")
  1344. self.gguf_writer.add_tokenizer_pre("default")
  1345. self.gguf_writer.add_token_list(tokens)
  1346. self.gguf_writer.add_token_types(toktypes)
  1347. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1348. special_vocab.add_to_gguf(self.gguf_writer)
  1349. def set_gguf_parameters(self):
  1350. block_count = self.hparams["num_hidden_layers"]
  1351. head_count = self.hparams["num_attention_heads"]
  1352. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1353. ctx_length = 0
  1354. if "max_sequence_length" in self.hparams:
  1355. ctx_length = self.hparams["max_sequence_length"]
  1356. elif "max_position_embeddings" in self.hparams:
  1357. ctx_length = self.hparams["max_position_embeddings"]
  1358. elif "model_max_length" in self.hparams:
  1359. ctx_length = self.hparams["model_max_length"]
  1360. else:
  1361. raise ValueError("gguf: can not find ctx length parameter.")
  1362. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1363. self.gguf_writer.add_context_length(ctx_length)
  1364. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1365. self.gguf_writer.add_block_count(block_count)
  1366. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1367. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1368. self.gguf_writer.add_head_count(head_count)
  1369. self.gguf_writer.add_head_count_kv(head_count_kv)
  1370. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1371. self.gguf_writer.add_file_type(self.ftype)
  1372. rope_scaling = self.hparams.get("rope_scaling") or {}
  1373. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1374. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1375. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1376. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1377. del bid # unused
  1378. head_count = self.hparams["num_attention_heads"]
  1379. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1380. # HF models permute some of the tensors, so we need to undo that
  1381. if name.endswith("q_proj.weight"):
  1382. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1383. if name.endswith("k_proj.weight"):
  1384. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1385. return [(self.map_tensor_name(name), data_torch)]
  1386. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1387. if n_kv_head is not None and n_head != n_kv_head:
  1388. n_head //= n_kv_head
  1389. return (
  1390. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1391. .swapaxes(1, 2)
  1392. .reshape(weights.shape)
  1393. )
  1394. @ModelBase.register("FalconForCausalLM", "RWForCausalLM")
  1395. class FalconModel(TextModel):
  1396. model_arch = gguf.MODEL_ARCH.FALCON
  1397. def set_gguf_parameters(self):
  1398. block_count = self.hparams.get("num_hidden_layers")
  1399. if block_count is None:
  1400. block_count = self.hparams["n_layer"] # old name
  1401. n_head = self.hparams.get("num_attention_heads")
  1402. if n_head is None:
  1403. n_head = self.hparams["n_head"] # old name
  1404. n_head_kv = self.hparams.get("num_kv_heads")
  1405. if n_head_kv is None:
  1406. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1407. self.gguf_writer.add_context_length(2048) # not in config.json
  1408. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1409. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1410. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1411. self.gguf_writer.add_block_count(block_count)
  1412. self.gguf_writer.add_head_count(n_head)
  1413. self.gguf_writer.add_head_count_kv(n_head_kv)
  1414. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1415. self.gguf_writer.add_file_type(self.ftype)
  1416. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1417. del bid # unused
  1418. # QKV tensor transform
  1419. # The original query_key_value tensor contains n_head_kv "kv groups",
  1420. # each consisting of n_head/n_head_kv query weights followed by one key
  1421. # and one value weight (shared by all query heads in the kv group).
  1422. # This layout makes it a big pain to work with in GGML.
  1423. # So we rearrange them here,, so that we have n_head query weights
  1424. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1425. # in contiguous fashion.
  1426. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1427. if "query_key_value" in name:
  1428. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1429. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1430. head_dim = self.hparams["hidden_size"] // n_head
  1431. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1432. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1433. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1434. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1435. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1436. return [(self.map_tensor_name(name), data_torch)]
  1437. @ModelBase.register("GPTBigCodeForCausalLM")
  1438. class StarCoderModel(TextModel):
  1439. model_arch = gguf.MODEL_ARCH.STARCODER
  1440. def set_gguf_parameters(self):
  1441. block_count = self.hparams["n_layer"]
  1442. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1443. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1444. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1445. self.gguf_writer.add_block_count(block_count)
  1446. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1447. self.gguf_writer.add_head_count_kv(1)
  1448. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1449. self.gguf_writer.add_file_type(self.ftype)
  1450. @ModelBase.register("GPTRefactForCausalLM")
  1451. class RefactModel(TextModel):
  1452. model_arch = gguf.MODEL_ARCH.REFACT
  1453. def set_vocab(self):
  1454. super().set_vocab()
  1455. # TODO: how to determine special FIM tokens automatically?
  1456. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1457. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1458. special_vocab._set_special_token("prefix", 1)
  1459. special_vocab._set_special_token("suffix", 3)
  1460. special_vocab._set_special_token("middle", 2)
  1461. special_vocab.chat_template = None # do not add it twice
  1462. special_vocab.add_to_gguf(self.gguf_writer)
  1463. def set_gguf_parameters(self):
  1464. hidden_dim = self.hparams["n_embd"]
  1465. inner_dim = 4 * hidden_dim
  1466. hidden_dim = int(2 * inner_dim / 3)
  1467. multiple_of = 256
  1468. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1469. block_count = self.hparams["n_layer"]
  1470. # refact uses Alibi. So this is from config.json which might be used by training.
  1471. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1472. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1473. self.gguf_writer.add_feed_forward_length(ff_dim)
  1474. self.gguf_writer.add_block_count(block_count)
  1475. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1476. self.gguf_writer.add_head_count_kv(1)
  1477. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1478. self.gguf_writer.add_file_type(self.ftype)
  1479. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1480. hidden_dim = self.hparams["n_embd"]
  1481. inner_dim = 4 * hidden_dim
  1482. hidden_dim = int(2 * inner_dim / 3)
  1483. multiple_of = 256
  1484. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1485. n_head = self.hparams["n_head"]
  1486. n_head_kv = 1
  1487. head_dim = self.hparams["n_embd"] // n_head
  1488. tensors: list[tuple[str, Tensor]] = []
  1489. if bid is not None:
  1490. if name == f"transformer.h.{bid}.attn.kv.weight":
  1491. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1492. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1493. elif name == f"transformer.h.{bid}.attn.q.weight":
  1494. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1495. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1496. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1497. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1498. if len(tensors) == 0:
  1499. tensors.append((self.map_tensor_name(name), data_torch))
  1500. return tensors
  1501. @ModelBase.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1502. class StableLMModel(TextModel):
  1503. model_arch = gguf.MODEL_ARCH.STABLELM
  1504. def set_vocab(self):
  1505. if (self.dir_model / "tokenizer.json").is_file():
  1506. self._set_vocab_gpt2()
  1507. else:
  1508. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1509. self._set_vocab_qwen()
  1510. def set_gguf_parameters(self):
  1511. hparams = self.hparams
  1512. block_count = hparams["num_hidden_layers"]
  1513. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1514. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1515. self.gguf_writer.add_block_count(block_count)
  1516. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1517. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1518. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1519. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1520. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1521. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1522. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1523. self.gguf_writer.add_file_type(self.ftype)
  1524. _q_norms: list[dict[str, Tensor]] | None = None
  1525. _k_norms: list[dict[str, Tensor]] | None = None
  1526. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1527. n_head = self.hparams["num_attention_heads"]
  1528. n_kv_head = self.hparams["num_key_value_heads"]
  1529. if name.find("q_layernorm.norms") != -1:
  1530. assert bid is not None
  1531. if self._q_norms is None:
  1532. self._q_norms = [{} for _ in range(self.block_count)]
  1533. self._q_norms[bid][name] = data_torch
  1534. if len(self._q_norms[bid]) >= n_head:
  1535. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1536. else:
  1537. return []
  1538. if name.find("k_layernorm.norms") != -1:
  1539. assert bid is not None
  1540. if self._k_norms is None:
  1541. self._k_norms = [{} for _ in range(self.block_count)]
  1542. self._k_norms[bid][name] = data_torch
  1543. if len(self._k_norms[bid]) >= n_kv_head:
  1544. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1545. else:
  1546. return []
  1547. return [(self.map_tensor_name(name), data_torch)]
  1548. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1549. datas: list[Tensor] = []
  1550. # extract the norms in order
  1551. for xid in range(n_head):
  1552. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1553. datas.append(norms[ename])
  1554. del norms[ename]
  1555. data_torch = torch.stack(datas, dim=0)
  1556. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1557. new_name = self.map_tensor_name(merged_name)
  1558. return [(new_name, data_torch)]
  1559. def prepare_tensors(self):
  1560. super().prepare_tensors()
  1561. if self._q_norms is not None or self._k_norms is not None:
  1562. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1563. norms = (
  1564. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1565. ) + (
  1566. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1567. )
  1568. if len(norms) > 0:
  1569. raise ValueError(f"Unprocessed norms: {norms}")
  1570. @ModelBase.register(
  1571. "LLaMAForCausalLM",
  1572. "LlamaForCausalLM",
  1573. "MistralForCausalLM",
  1574. "MixtralForCausalLM",
  1575. "VLlama3ForCausalLM",
  1576. "LlavaForConditionalGeneration",
  1577. "LlamaModel")
  1578. class LlamaModel(TextModel):
  1579. model_arch = gguf.MODEL_ARCH.LLAMA
  1580. undo_permute = True
  1581. def __init__(self, *args, **kwargs):
  1582. super().__init__(*args, **kwargs)
  1583. # fix for SmolVLM2, missing `num_attention_heads` in config.json
  1584. if self.hf_arch == "VLlama3ForCausalLM":
  1585. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
  1586. def set_vocab(self):
  1587. try:
  1588. self._set_vocab_sentencepiece()
  1589. except FileNotFoundError:
  1590. try:
  1591. self._set_vocab_llama_hf()
  1592. except (FileNotFoundError, TypeError):
  1593. # Llama 3
  1594. self._set_vocab_gpt2()
  1595. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1596. if self.hparams.get("vocab_size", 32000) == 32016:
  1597. special_vocab = gguf.SpecialVocab(
  1598. self.dir_model, load_merges=False,
  1599. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1600. )
  1601. special_vocab._set_special_token("prefix", 32007)
  1602. special_vocab._set_special_token("suffix", 32008)
  1603. special_vocab._set_special_token("middle", 32009)
  1604. special_vocab._set_special_token("eot", 32010)
  1605. special_vocab.add_to_gguf(self.gguf_writer)
  1606. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1607. if tokenizer_config_file.is_file():
  1608. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1609. tokenizer_config_json = json.load(f)
  1610. if "add_prefix_space" in tokenizer_config_json:
  1611. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1612. # Apply to granite small models only
  1613. if self.hparams.get("vocab_size", 32000) == 49152:
  1614. self.gguf_writer.add_add_bos_token(False)
  1615. def set_gguf_parameters(self):
  1616. super().set_gguf_parameters()
  1617. hparams = self.hparams
  1618. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1619. if (rope_dim := hparams.get("head_dim")) is None:
  1620. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1621. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1622. rope_scaling = self.hparams.get("rope_scaling") or {}
  1623. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1624. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1625. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1626. @staticmethod
  1627. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1628. if n_head_kv is not None and n_head != n_head_kv:
  1629. n_head = n_head_kv
  1630. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1631. .swapaxes(1, 2)
  1632. .reshape(weights.shape))
  1633. _experts: list[dict[str, Tensor]] | None = None
  1634. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1635. n_head = self.hparams["num_attention_heads"]
  1636. n_kv_head = self.hparams.get("num_key_value_heads")
  1637. is_vision_tensor = "vision_tower" in name \
  1638. or "vision_model" in name \
  1639. or "model.connector" in name \
  1640. or "multi_modal_projector" in name
  1641. if is_vision_tensor:
  1642. return [] # skip vision tensors
  1643. elif self.hf_arch == "LlamaModel":
  1644. name = "model." + name
  1645. elif name.startswith("model.text_model"):
  1646. name = name.replace("text_model.", "") # for SmolVLM
  1647. elif name.startswith("language_model."):
  1648. name = name.replace("language_model.", "") # for the rest
  1649. if self.undo_permute:
  1650. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1651. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1652. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1653. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1654. # process the experts separately
  1655. if name.find("block_sparse_moe.experts") != -1:
  1656. n_experts = self.hparams["num_local_experts"]
  1657. assert bid is not None
  1658. if self._experts is None:
  1659. self._experts = [{} for _ in range(self.block_count)]
  1660. self._experts[bid][name] = data_torch
  1661. if len(self._experts[bid]) >= n_experts * 3:
  1662. tensors: list[tuple[str, Tensor]] = []
  1663. # merge the experts into a single 3d tensor
  1664. for wid in ["w1", "w2", "w3"]:
  1665. datas: list[Tensor] = []
  1666. for xid in range(n_experts):
  1667. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1668. datas.append(self._experts[bid][ename])
  1669. del self._experts[bid][ename]
  1670. data_torch = torch.stack(datas, dim=0)
  1671. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1672. new_name = self.map_tensor_name(merged_name)
  1673. tensors.append((new_name, data_torch))
  1674. return tensors
  1675. else:
  1676. return []
  1677. return [(self.map_tensor_name(name), data_torch)]
  1678. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1679. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1680. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1681. base = self.hparams.get("rope_theta", 10000.0)
  1682. if (dim := self.hparams.get("head_dim")) is None:
  1683. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  1684. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1685. factor = rope_scaling.get("factor", 8.0)
  1686. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1687. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1688. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1689. low_freq_wavelen = old_context_len / low_freq_factor
  1690. high_freq_wavelen = old_context_len / high_freq_factor
  1691. # assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
  1692. rope_factors = []
  1693. for freq in freqs:
  1694. wavelen = 2 * math.pi / freq
  1695. if wavelen < high_freq_wavelen:
  1696. rope_factors.append(1)
  1697. elif wavelen > low_freq_wavelen:
  1698. rope_factors.append(factor)
  1699. else:
  1700. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1701. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1702. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1703. def prepare_tensors(self):
  1704. super().prepare_tensors()
  1705. if self._experts is not None:
  1706. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1707. experts = [k for d in self._experts for k in d.keys()]
  1708. if len(experts) > 0:
  1709. raise ValueError(f"Unprocessed experts: {experts}")
  1710. @ModelBase.register("ArceeForCausalLM")
  1711. class ArceeModel(LlamaModel):
  1712. model_arch = gguf.MODEL_ARCH.ARCEE
  1713. def set_gguf_parameters(self):
  1714. super().set_gguf_parameters()
  1715. self._try_set_pooling_type()
  1716. rope_scaling = self.hparams.get("rope_scaling") or {}
  1717. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  1718. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  1719. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1720. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  1721. @ModelBase.register(
  1722. "LlavaForConditionalGeneration", # pixtral
  1723. "Mistral3ForConditionalGeneration", # mistral small 3.1
  1724. )
  1725. class LlavaVisionModel(MmprojModel):
  1726. img_break_tok_id = -1
  1727. def __init__(self, *args, **kwargs):
  1728. super().__init__(*args, **kwargs)
  1729. if self.hparams["model_type"] == "pixtral":
  1730. # layer_norm_eps is not in config.json, it is hard-coded in modeling_pixtral.py
  1731. self.hparams["layer_norm_eps"] = self.hparams.get("layer_norm_eps", 1e-5)
  1732. self.img_break_tok_id = self.get_token_id("[IMG_BREAK]")
  1733. logger.info(f"Image break token id: {self.img_break_tok_id}")
  1734. else:
  1735. raise ValueError(f"Unsupported model type: {self.hparams['model_type']}")
  1736. def get_token_id(self, token: str) -> int:
  1737. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1738. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1739. added_tokens_decoder = json.load(f)['added_tokens_decoder']
  1740. for id_, token_data in added_tokens_decoder.items():
  1741. if token_data["content"] == token:
  1742. return int(id_)
  1743. raise ValueError(f"Token '{token}' not found in tokenizer config.")
  1744. def set_gguf_parameters(self):
  1745. super().set_gguf_parameters()
  1746. hparams = self.hparams
  1747. if hparams["model_type"] == "pixtral":
  1748. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  1749. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  1750. # hidden_act
  1751. if hparams["hidden_act"] == "silu":
  1752. self.gguf_writer.add_vision_use_silu(True)
  1753. elif hparams["hidden_act"] == "gelu":
  1754. self.gguf_writer.add_vision_use_gelu(True)
  1755. else:
  1756. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  1757. # spatial_merge_size
  1758. if "spatial_merge_size" in self.global_config:
  1759. self.gguf_writer.add_vision_spatial_merge_size(self.global_config["spatial_merge_size"])
  1760. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1761. del bid # unused
  1762. n_head = self.hparams["num_attention_heads"]
  1763. n_kv_head = n_head
  1764. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower."):
  1765. # process vision tensors
  1766. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1767. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1768. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1769. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1770. return [(self.map_tensor_name(name), data_torch)]
  1771. if self.img_break_tok_id > 0 and "embed_tokens.weight" in name:
  1772. logger.info(f"Extracting [IMG_BREAK] token embedding from {name}")
  1773. # for pixtral model, we need to extract the [IMG_BREAK] token embedding
  1774. img_break_embd = data_torch[self.img_break_tok_id]
  1775. name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK]
  1776. return [(self.map_tensor_name(name), img_break_embd)]
  1777. return [] # skip other tensors
  1778. @ModelBase.register("Idefics3ForConditionalGeneration", "SmolVLMForConditionalGeneration")
  1779. class SmolVLMModel(MmprojModel):
  1780. def __init__(self, *args, **kwargs):
  1781. super().__init__(*args, **kwargs)
  1782. if self.hparams["model_type"] == "smolvlm_vision":
  1783. # fix for SmolVLM2, missing some keys in config.json
  1784. # default values are taken from transformers code
  1785. self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1152)
  1786. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
  1787. self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 3072)
  1788. def set_gguf_parameters(self):
  1789. super().set_gguf_parameters()
  1790. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.IDEFICS3)
  1791. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  1792. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
  1793. self.gguf_writer.add_vision_use_gelu(True)
  1794. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1795. del bid, new_name, n_dims # unused
  1796. if ".embeddings." in name:
  1797. return gguf.GGMLQuantizationType.F32
  1798. return False
  1799. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1800. del bid # unused
  1801. is_vision_tensor = "vision_tower" in name or "vision_model" in name or "model.connector" in name
  1802. if is_vision_tensor:
  1803. return [(self.map_tensor_name(name), data_torch)]
  1804. return [] # skip other tensors
  1805. @ModelBase.register("Llama4ForConditionalGeneration")
  1806. class Llama4Model(LlamaModel):
  1807. model_arch = gguf.MODEL_ARCH.LLAMA4
  1808. undo_permute = False
  1809. def __init__(self, *args, **kwargs):
  1810. super().__init__(*args, **kwargs)
  1811. # IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
  1812. self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
  1813. self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
  1814. def set_vocab(self):
  1815. self._set_vocab_gpt2()
  1816. def set_gguf_parameters(self):
  1817. super().set_gguf_parameters()
  1818. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
  1819. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
  1820. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1821. if name.startswith("language_model."):
  1822. name = name.replace("language_model.", "")
  1823. # split the gate_up into gate and up
  1824. if "gate_up_proj" in name:
  1825. name_up = name.replace("gate_up_proj", "up_proj.weight")
  1826. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  1827. dim_half = data_torch.shape[-1] // 2
  1828. gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
  1829. return [
  1830. (self.map_tensor_name(name_gate), gate_proj_weight),
  1831. (self.map_tensor_name(name_up), up_proj_weight)
  1832. ]
  1833. if name.endswith("down_proj"):
  1834. name += ".weight"
  1835. data_torch = data_torch.transpose(-1, -2)
  1836. if "multi_modal_projector" in name or "vision_model" in name:
  1837. return []
  1838. return super().modify_tensors(data_torch, name, bid)
  1839. @ModelBase.register("Llama4ForConditionalGeneration")
  1840. class Llama4VisionModel(MmprojModel):
  1841. def set_gguf_parameters(self):
  1842. super().set_gguf_parameters()
  1843. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LLAMA4)
  1844. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams["norm_eps"])
  1845. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / self.hparams["pixel_shuffle_ratio"]))
  1846. assert self.hparams["hidden_act"] == "gelu"
  1847. self.gguf_writer.add_vision_use_gelu(True)
  1848. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1849. del bid # unused
  1850. if "multi_modal_projector" in name or "vision_model" in name:
  1851. # process vision tensors
  1852. if "positional_embedding_vlm" in name and ".weight" not in name:
  1853. name += ".weight"
  1854. if "multi_modal_projector.linear_1" in name:
  1855. # despite the name with number postfix, this is a single fully connected layer
  1856. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_MMPROJ_FC] + '.weight', data_torch)]
  1857. return [(self.map_tensor_name(name), data_torch)]
  1858. return []
  1859. @ModelBase.register("Mistral3ForConditionalGeneration")
  1860. class Mistral3Model(LlamaModel):
  1861. model_arch = gguf.MODEL_ARCH.LLAMA
  1862. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1863. name = name.replace("language_model.", "")
  1864. if "multi_modal_projector" in name or "vision_tower" in name:
  1865. return []
  1866. return super().modify_tensors(data_torch, name, bid)
  1867. @ModelBase.register("DeciLMForCausalLM")
  1868. class DeciModel(TextModel):
  1869. model_arch = gguf.MODEL_ARCH.DECI
  1870. @staticmethod
  1871. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  1872. # DeciLM-specific code
  1873. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  1874. return DeciModel._find_multiple(intermediate_size, 256)
  1875. @staticmethod
  1876. def _find_multiple(n: int, k: int) -> int:
  1877. # DeciLM-specific code
  1878. if n % k == 0:
  1879. return n
  1880. return n + k - (n % k)
  1881. def __init__(self, *args, **kwargs):
  1882. super().__init__(*args, **kwargs)
  1883. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1884. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  1885. assert self.block_count == len(_block_configs)
  1886. self._num_kv_heads = list()
  1887. self._num_heads = list()
  1888. _ffn_multipliers = list()
  1889. # ***linear attention layer***
  1890. # if n_heads_in_group is None and replace_with_linear is True
  1891. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  1892. # ***attention-free layer***
  1893. # if n_heads_in_group is None and replace_with_linear is False
  1894. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  1895. # ***normal attention-layer***
  1896. # if n_heads_in_group is not None, then
  1897. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  1898. # _num_heads[il] is num_attention_head
  1899. # ***dummy layer*** for nemotron 253B
  1900. # if n_heads_in_group is None and ffn_mult is None
  1901. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0 and _ffn_dims is 0
  1902. for il in range(len(_block_configs)):
  1903. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  1904. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  1905. self._num_kv_heads.append(0)
  1906. self._num_heads.append(self.hparams["num_attention_heads"])
  1907. else:
  1908. self._num_kv_heads.append(0)
  1909. self._num_heads.append(0)
  1910. else:
  1911. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  1912. self._num_heads.append(self.hparams["num_attention_heads"])
  1913. if _block_configs[il]["ffn"]["ffn_mult"] is None: # dummy layer
  1914. _ffn_multipliers.append(0.0)
  1915. else:
  1916. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  1917. assert self.block_count == len(self._num_kv_heads)
  1918. assert self.block_count == len(self._num_heads)
  1919. assert self.block_count == len(_ffn_multipliers)
  1920. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  1921. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  1922. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  1923. self._ffn_dims: list[int] = [
  1924. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  1925. for multiplier in _ffn_multipliers
  1926. ]
  1927. def set_vocab(self):
  1928. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  1929. # eos_token from '|eot_id|' to '|end_of_text|'
  1930. if self.hparams.get("vocab_size", 128256) == 128256:
  1931. tokens, toktypes, tokpre = self.get_vocab_base()
  1932. self.gguf_writer.add_tokenizer_model("gpt2")
  1933. self.gguf_writer.add_tokenizer_pre(tokpre)
  1934. self.gguf_writer.add_token_list(tokens)
  1935. self.gguf_writer.add_token_types(toktypes)
  1936. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1937. special_vocab.add_to_gguf(self.gguf_writer)
  1938. else:
  1939. # DeciLM-7B
  1940. self._set_vocab_llama_hf()
  1941. def set_gguf_parameters(self):
  1942. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1943. assert self.block_count == len(self._num_kv_heads)
  1944. assert self.block_count == len(self._num_heads)
  1945. assert self.block_count == len(self._ffn_dims)
  1946. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  1947. self.gguf_writer.add_rope_freq_base(rope_theta)
  1948. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1949. self.gguf_writer.add_head_count(self._num_heads)
  1950. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  1951. self.gguf_writer.add_block_count(self.block_count)
  1952. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1953. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1954. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1955. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1956. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1957. self.gguf_writer.add_file_type(self.ftype)
  1958. else: # DeciLM-7B
  1959. super().set_gguf_parameters()
  1960. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  1961. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  1962. assert self.block_count == len(self._num_kv_heads)
  1963. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1964. hparams = self.hparams
  1965. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1966. if (rope_dim := hparams.get("head_dim")) is None:
  1967. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1968. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1969. rope_scaling = self.hparams.get("rope_scaling") or {}
  1970. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1971. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1972. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1973. @staticmethod
  1974. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1975. if n_head_kv is not None and n_head != n_head_kv:
  1976. n_head = n_head_kv
  1977. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1978. .swapaxes(1, 2)
  1979. .reshape(weights.shape))
  1980. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1981. n_head = self.hparams["num_attention_heads"]
  1982. if bid is not None:
  1983. if "num_key_value_heads_per_layer" in self.hparams:
  1984. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  1985. elif "block_configs" in self.hparams:
  1986. n_kv_head = self._num_kv_heads[bid]
  1987. n_head = self._num_heads[bid]
  1988. else:
  1989. n_kv_head = self.hparams.get("num_key_value_heads")
  1990. else:
  1991. n_kv_head = self.hparams.get("num_key_value_heads")
  1992. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1993. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  1994. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1995. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  1996. return [(self.map_tensor_name(name), data_torch)]
  1997. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1998. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1999. if rope_scaling.get("rope_type", '').lower() == "llama3":
  2000. base = self.hparams.get("rope_theta", 10000.0)
  2001. if (dim := self.hparams.get("head_dim")) is None:
  2002. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2003. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  2004. factor = rope_scaling.get("factor", 8.0)
  2005. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  2006. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  2007. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2008. low_freq_wavelen = old_context_len / low_freq_factor
  2009. high_freq_wavelen = old_context_len / high_freq_factor
  2010. assert low_freq_wavelen != high_freq_wavelen
  2011. rope_factors = []
  2012. for freq in freqs:
  2013. wavelen = 2 * math.pi / freq
  2014. if wavelen < high_freq_wavelen:
  2015. rope_factors.append(1)
  2016. elif wavelen > low_freq_wavelen:
  2017. rope_factors.append(factor)
  2018. else:
  2019. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2020. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2021. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2022. def prepare_tensors(self):
  2023. super().prepare_tensors()
  2024. @ModelBase.register("BitnetForCausalLM")
  2025. class BitnetModel(TextModel):
  2026. model_arch = gguf.MODEL_ARCH.BITNET
  2027. def set_vocab(self):
  2028. self._set_vocab_sentencepiece()
  2029. def set_gguf_parameters(self):
  2030. super().set_gguf_parameters()
  2031. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2032. self.gguf_writer.add_rope_scaling_factor(1.0)
  2033. def weight_quant(self, weight: Tensor) -> Tensor:
  2034. dtype = weight.dtype
  2035. weight = weight.float()
  2036. scale = weight.abs().mean().clamp(min=1e-5)
  2037. iscale = 1 / scale
  2038. # TODO: multiply by the scale directly instead of inverting it twice
  2039. # (this is also unnecessarily doubly inverted upstream)
  2040. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  2041. result = (weight * iscale).round().clamp(-1, 1) / iscale
  2042. return result.type(dtype)
  2043. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2044. new_name = self.map_tensor_name(name)
  2045. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  2046. gguf.MODEL_TENSOR.ATTN_Q,
  2047. gguf.MODEL_TENSOR.ATTN_K,
  2048. gguf.MODEL_TENSOR.ATTN_V,
  2049. gguf.MODEL_TENSOR.ATTN_OUT,
  2050. gguf.MODEL_TENSOR.FFN_UP,
  2051. gguf.MODEL_TENSOR.FFN_DOWN,
  2052. gguf.MODEL_TENSOR.FFN_GATE,
  2053. ]):
  2054. # transform weight into 1/0/-1 (in fp32)
  2055. data_torch = self.weight_quant(data_torch)
  2056. yield (new_name, data_torch)
  2057. @ModelBase.register("GrokForCausalLM")
  2058. class GrokModel(TextModel):
  2059. model_arch = gguf.MODEL_ARCH.GROK
  2060. def set_vocab(self):
  2061. self._set_vocab_sentencepiece()
  2062. def __init__(self, *args, **kwargs):
  2063. super().__init__(*args, **kwargs)
  2064. def set_gguf_parameters(self):
  2065. super().set_gguf_parameters()
  2066. _experts: list[dict[str, Tensor]] | None = None
  2067. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2068. # process the experts separately
  2069. if name.find(".moe.") != -1:
  2070. n_experts = self.hparams["num_local_experts"]
  2071. assert bid is not None
  2072. if self._experts is None:
  2073. self._experts = [{} for _ in range(self.block_count)]
  2074. self._experts[bid][name] = data_torch
  2075. if len(self._experts[bid]) >= n_experts * 3:
  2076. tensors: list[tuple[str, Tensor]] = []
  2077. # merge the experts into a single 3d tensor
  2078. for wid in ["linear", "linear_1", "linear_v"]:
  2079. datas: list[Tensor] = []
  2080. for xid in range(n_experts):
  2081. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  2082. datas.append(self._experts[bid][ename])
  2083. del self._experts[bid][ename]
  2084. data_torch = torch.stack(datas, dim=0)
  2085. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  2086. new_name = self.map_tensor_name(merged_name)
  2087. tensors.append((new_name, data_torch))
  2088. return tensors
  2089. else:
  2090. return []
  2091. return [(self.map_tensor_name(name), data_torch)]
  2092. @ModelBase.register("DbrxForCausalLM")
  2093. class DbrxModel(TextModel):
  2094. model_arch = gguf.MODEL_ARCH.DBRX
  2095. def set_gguf_parameters(self):
  2096. ffn_config = self.hparams["ffn_config"]
  2097. attn_config = self.hparams["attn_config"]
  2098. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  2099. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  2100. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2101. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  2102. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  2103. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  2104. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  2105. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  2106. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  2107. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  2108. self.gguf_writer.add_layer_norm_eps(1e-5)
  2109. self.gguf_writer.add_file_type(self.ftype)
  2110. logger.info(f"gguf: file type = {self.ftype}")
  2111. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2112. del bid # unused
  2113. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  2114. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  2115. n_embd = self.hparams["d_model"]
  2116. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  2117. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  2118. # But llama.cpp moe graph works differently
  2119. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  2120. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  2121. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2122. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  2123. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2124. experts = False
  2125. for exp_tensor_name in exp_tensor_names.keys():
  2126. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  2127. experts = True
  2128. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  2129. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  2130. data_torch = data_torch.permute(*permute_tensor)
  2131. break
  2132. # map tensor names
  2133. # In MoE models the ffn tensors are typically most of the model weights,
  2134. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  2135. # Every other model has the weight names ending in .weight,
  2136. # let's assume that is the convention which is not the case for dbrx:
  2137. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  2138. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  2139. return [(new_name, data_torch)]
  2140. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  2141. del name, new_name, bid # unused
  2142. return n_dims > 1
  2143. @ModelBase.register("MiniCPMForCausalLM")
  2144. class MiniCPMModel(TextModel):
  2145. model_arch = gguf.MODEL_ARCH.MINICPM
  2146. def set_gguf_parameters(self):
  2147. super().set_gguf_parameters()
  2148. embedding_scale = float(self.hparams["scale_emb"])
  2149. self.gguf_writer.add_embedding_scale(embedding_scale)
  2150. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  2151. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  2152. self.gguf_writer.add_residual_scale(residual_scale)
  2153. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  2154. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  2155. self.gguf_writer.add_logit_scale(logit_scale)
  2156. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  2157. rope_scaling = self.hparams.get("rope_scaling") or {}
  2158. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "longrope":
  2159. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
  2160. logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
  2161. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2162. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2163. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2164. if rope_scaling is not None:
  2165. long_factors = rope_scaling.get('long_factor', None)
  2166. short_factors = rope_scaling.get('short_factor', None)
  2167. if long_factors is None or short_factors is None:
  2168. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2169. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2170. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2171. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2172. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2173. def set_vocab(self):
  2174. self._set_vocab_sentencepiece()
  2175. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2176. del bid # unused
  2177. n_head = self.hparams["num_attention_heads"]
  2178. n_kv_head = self.hparams.get("num_key_value_heads")
  2179. # HF models permute some of the tensors, so we need to undo that
  2180. if name.endswith(("q_proj.weight")):
  2181. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2182. if name.endswith(("k_proj.weight")):
  2183. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2184. return [(self.map_tensor_name(name), data_torch)]
  2185. @ModelBase.register("MiniCPM3ForCausalLM")
  2186. class MiniCPM3Model(TextModel):
  2187. model_arch = gguf.MODEL_ARCH.MINICPM3
  2188. def set_gguf_parameters(self):
  2189. hparams = self.hparams
  2190. self.gguf_writer.add_file_type(self.ftype)
  2191. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2192. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2193. self.gguf_writer.add_block_count(self.block_count)
  2194. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2195. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2196. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  2197. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2198. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2199. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2200. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2201. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2202. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2203. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2204. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2205. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2206. if rope_scaling is not None:
  2207. rope_dims = self.hparams["qk_rope_head_dim"]
  2208. long_factors = rope_scaling.get('long_factor', None)
  2209. short_factors = rope_scaling.get('short_factor', None)
  2210. if long_factors is None or short_factors is None:
  2211. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2212. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2213. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2214. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2215. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2216. def set_vocab(self):
  2217. self._set_vocab_sentencepiece()
  2218. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  2219. if n_kv_head is not None and n_head != n_kv_head:
  2220. n_head //= n_kv_head
  2221. return (
  2222. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2223. .swapaxes(1, 2)
  2224. .reshape(weights.shape)
  2225. )
  2226. @ModelBase.register("QWenLMHeadModel")
  2227. class QwenModel(TextModel):
  2228. model_arch = gguf.MODEL_ARCH.QWEN
  2229. @staticmethod
  2230. def token_bytes_to_string(b):
  2231. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2232. byte_encoder = bytes_to_unicode()
  2233. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2234. @staticmethod
  2235. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2236. parts = [bytes([b]) for b in token]
  2237. while True:
  2238. min_idx = None
  2239. min_rank = None
  2240. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2241. rank = mergeable_ranks.get(pair[0] + pair[1])
  2242. if rank is not None and (min_rank is None or rank < min_rank):
  2243. min_idx = i
  2244. min_rank = rank
  2245. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2246. break
  2247. assert min_idx is not None
  2248. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2249. return parts
  2250. def set_vocab(self):
  2251. self._set_vocab_qwen()
  2252. def set_gguf_parameters(self):
  2253. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2254. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2255. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2256. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2257. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2258. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2259. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2260. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2261. self.gguf_writer.add_file_type(self.ftype)
  2262. @ModelBase.register("Qwen2Model", "Qwen2ForCausalLM", "Qwen2AudioForConditionalGeneration")
  2263. class Qwen2Model(TextModel):
  2264. model_arch = gguf.MODEL_ARCH.QWEN2
  2265. def set_vocab(self):
  2266. try:
  2267. self._set_vocab_sentencepiece()
  2268. except FileNotFoundError:
  2269. self._set_vocab_gpt2()
  2270. def set_gguf_parameters(self):
  2271. super().set_gguf_parameters()
  2272. self._try_set_pooling_type()
  2273. rope_scaling = self.hparams.get("rope_scaling") or {}
  2274. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2275. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2276. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2277. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2278. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2279. if self.hf_arch == "Qwen2Model":
  2280. name = f"model.{name}" # map to Qwen2ForCausalLM tensors
  2281. if "language_model." in name:
  2282. name = name.replace("language_model.", "") # for InternVL
  2283. if name.startswith("mlp") or name.startswith("multi_modal_projector") \
  2284. or name.startswith("vision_model") or name.startswith("audio_tower"):
  2285. # skip vision and audio tensors
  2286. return []
  2287. yield from super().modify_tensors(data_torch, name, bid)
  2288. @ModelBase.register("Ernie4_5_ForCausalLM")
  2289. class Ernie4_5Model(TextModel):
  2290. model_arch = gguf.MODEL_ARCH.ERNIE4_5
  2291. def set_vocab(self):
  2292. self._set_vocab_sentencepiece()
  2293. def set_gguf_parameters(self):
  2294. super().set_gguf_parameters()
  2295. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2296. num_heads = self.hparams["num_attention_heads"]
  2297. num_kv_heads = self.hparams["num_key_value_heads"]
  2298. head_dim = self.hparams["head_dim"]
  2299. if "ernie." in name:
  2300. name = name.replace("ernie.", "model.")
  2301. # split the qkv weights
  2302. # qkv_proj shape: [(num_heads + 2 * num_kv_heads) * head_dim, hidden_size]
  2303. if "qkv_proj" in name:
  2304. name_q = name.replace("qkv_proj.weight", "q_proj.weight")
  2305. name_k = name.replace("qkv_proj.weight", "k_proj.weight")
  2306. name_v = name.replace("qkv_proj.weight", "v_proj.weight")
  2307. total_q_dim = num_heads * head_dim
  2308. total_k_dim = num_kv_heads * head_dim
  2309. total_v_dim = num_kv_heads * head_dim
  2310. q_proj_weight, k_proj_weight, v_proj_weight = data_torch.split([total_q_dim, total_k_dim, total_v_dim], dim=0)
  2311. return [
  2312. (self.map_tensor_name(name_q), q_proj_weight),
  2313. (self.map_tensor_name(name_k), k_proj_weight),
  2314. (self.map_tensor_name(name_v), v_proj_weight)
  2315. ]
  2316. # split the up_gate_proj into gate and up
  2317. # up_gate_proj shape: [2 * intermediate_size, hidden_size]
  2318. if "up_gate_proj" in name:
  2319. name_up = name.replace("up_gate_proj.weight", "up_proj.weight")
  2320. name_gate = name.replace("up_gate_proj.weight", "gate_proj.weight")
  2321. dim_half = data_torch.shape[0] // 2
  2322. gate_proj_weight, up_proj_weight = data_torch.split(dim_half, dim=0)
  2323. return [
  2324. (self.map_tensor_name(name_gate), gate_proj_weight),
  2325. (self.map_tensor_name(name_up), up_proj_weight)
  2326. ]
  2327. return [(self.map_tensor_name(name), data_torch)]
  2328. @ModelBase.register(
  2329. "Qwen2VLModel",
  2330. "Qwen2VLForConditionalGeneration",
  2331. "Qwen2_5_VLForConditionalGeneration",
  2332. "Qwen2_5OmniModel",
  2333. )
  2334. class Qwen2VLModel(TextModel):
  2335. model_arch = gguf.MODEL_ARCH.QWEN2VL
  2336. def set_gguf_parameters(self):
  2337. super().set_gguf_parameters()
  2338. mrope_section = self.hparams["rope_scaling"]["mrope_section"]
  2339. mrope_section += [0] * max(0, 4 - len(mrope_section))
  2340. self.gguf_writer.add_rope_dimension_sections(mrope_section)
  2341. def set_vocab(self):
  2342. try:
  2343. self._set_vocab_sentencepiece()
  2344. except FileNotFoundError:
  2345. self._set_vocab_gpt2()
  2346. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2347. del bid # unused
  2348. if name.startswith("thinker."):
  2349. name = name.replace("thinker.", "")
  2350. if name.startswith("visual") or name.startswith("audio") or \
  2351. name.startswith("talker") or name.startswith("token2wav"):
  2352. # skip multimodal tensors
  2353. return []
  2354. return [(self.map_tensor_name(name), data_torch)]
  2355. @ModelBase.register("Qwen2VLModel", "Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  2356. class Qwen2VLVisionModel(MmprojModel):
  2357. def __init__(self, *args, **kwargs):
  2358. super().__init__(*args, **kwargs)
  2359. assert self.hparams_vision is not None
  2360. self.hparams_vision["image_size"] = self.hparams_vision.get("image_size", 560)
  2361. # rename config.json values
  2362. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  2363. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  2364. if "embed_dim" in self.hparams_vision: # qwen2vl
  2365. self.hparams_vision["intermediate_size"] = self.hparams_vision.get("hidden_size")
  2366. self.hparams_vision["hidden_size"] = self.hparams_vision.get("embed_dim")
  2367. def set_gguf_parameters(self):
  2368. super().set_gguf_parameters()
  2369. assert self.hparams_vision is not None
  2370. hparams = self.hparams_vision
  2371. model_type = self.global_config['model_type']
  2372. if model_type == 'qwen2_vl':
  2373. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2VL)
  2374. elif model_type == 'qwen2_5_vl' or model_type == 'qwen2_5_omni':
  2375. if model_type == 'qwen2_5_omni':
  2376. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25O)
  2377. else:
  2378. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25VL)
  2379. self.gguf_writer.add_vision_use_silu(True)
  2380. # find n_wa_pattern (window attention pattern)
  2381. fullatt_block_indexes = hparams.get("fullatt_block_indexes")
  2382. assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for qwen2_5_vl"
  2383. n_wa_pattern = fullatt_block_indexes[0] + 1
  2384. # validate n_wa_pattern
  2385. for i in range(1, len(fullatt_block_indexes)):
  2386. if fullatt_block_indexes[i] - fullatt_block_indexes[i - 1] != n_wa_pattern:
  2387. raise ValueError(f"Invalid fullatt_block_indexes: {fullatt_block_indexes}")
  2388. self.gguf_writer.add_vision_n_wa_pattern(n_wa_pattern)
  2389. else:
  2390. raise ValueError(f"Unknown QwenVL model type: {self.global_config['model_type']}")
  2391. # default values below are taken from HF tranformers code
  2392. self.gguf_writer.add_vision_attention_layernorm_eps(self.global_config.get("rms_norm_eps", 1e-6))
  2393. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2394. del bid, name, n_dims # unused
  2395. if ".patch_embd." in new_name:
  2396. return gguf.GGMLQuantizationType.F16
  2397. if ".position_embd." in new_name:
  2398. return gguf.GGMLQuantizationType.F32
  2399. return False
  2400. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2401. del bid # unused
  2402. if name.startswith("visual."):
  2403. # process visual tensors
  2404. # split QKV tensors if needed
  2405. if ".qkv." in name:
  2406. if data_torch.ndim == 2: # weight
  2407. c3, _ = data_torch.shape
  2408. else: # bias
  2409. c3 = data_torch.shape[0]
  2410. assert c3 % 3 == 0
  2411. c = c3 // 3
  2412. wq = data_torch[:c]
  2413. wk = data_torch[c: c * 2]
  2414. wv = data_torch[c * 2:]
  2415. return [
  2416. (self.map_tensor_name(name.replace("qkv", "q")), wq),
  2417. (self.map_tensor_name(name.replace("qkv", "k")), wk),
  2418. (self.map_tensor_name(name.replace("qkv", "v")), wv),
  2419. ]
  2420. elif 'patch_embed.proj.weight' in name:
  2421. # split Conv3D into Conv2Ds
  2422. c1, c2, kt, kh, kw = data_torch.shape
  2423. del c1, c2, kh, kw # unused
  2424. assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
  2425. return [
  2426. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight" , data_torch[:, :, 0, ...]),
  2427. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  2428. ]
  2429. else:
  2430. return [(self.map_tensor_name(name), data_torch)]
  2431. return [] # skip other tensors
  2432. @ModelBase.register("Qwen2_5OmniModel")
  2433. class Qwen25OmniModel(Qwen2VLVisionModel):
  2434. has_vision_encoder = True
  2435. has_audio_encoder = True
  2436. def __init__(self, *args, **kwargs):
  2437. super().__init__(*args, **kwargs)
  2438. assert self.hparams_audio is not None
  2439. self.hparams_audio["hidden_size"] = self.hparams_audio["d_model"]
  2440. self.hparams_audio["intermediate_size"] = self.hparams_audio["encoder_ffn_dim"]
  2441. self.hparams_audio["num_attention_heads"] = self.hparams_audio["encoder_attention_heads"]
  2442. def set_gguf_parameters(self):
  2443. super().set_gguf_parameters()
  2444. assert self.hparams_audio is not None
  2445. self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["num_mel_bins"])
  2446. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams_audio.get("layer_norm_eps", 1e-5))
  2447. def get_vision_config(self) -> dict[str, Any] | None:
  2448. return self.global_config["thinker_config"].get("vision_config")
  2449. def get_audio_config(self) -> dict[str, Any] | None:
  2450. return self.global_config["thinker_config"].get("audio_config")
  2451. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2452. # SinusoidsPositionEmbedding
  2453. assert self.hparams_audio is not None
  2454. max_timescale = 10000
  2455. length = 1500
  2456. channels = self.hparams_audio["hidden_size"]
  2457. log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
  2458. inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2).float())
  2459. scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
  2460. pos_embd = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1).to(dtype=torch.float32)
  2461. yield ("audio_tower.embed_positions.weight", pos_embd)
  2462. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2463. del bid, new_name, n_dims # unused
  2464. if ".conv" in name and ".weight" in name:
  2465. return gguf.GGMLQuantizationType.F16
  2466. return False
  2467. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2468. if name.startswith("thinker."):
  2469. name = name.replace("thinker.", "")
  2470. if name.startswith("audio_tower"):
  2471. # process audio tensors
  2472. if "conv1.bias" in name or "conv2.bias" in name:
  2473. # transpose conv1 and conv2 bias
  2474. data_torch = data_torch.unsqueeze(-1)
  2475. if "audio_bos_eos_token" in name:
  2476. # this tensor is left unused in transformers code
  2477. # https://github.com/huggingface/transformers/blob/6e3063422c4b1c014aa60c32b9254fd2902f0f28/src/transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py#L1809
  2478. return []
  2479. return [(self.map_tensor_name(name), data_torch)]
  2480. return super().modify_tensors(data_torch, name, bid)
  2481. @ModelBase.register("InternVisionModel")
  2482. class InternVisionModel(MmprojModel):
  2483. def set_gguf_parameters(self):
  2484. super().set_gguf_parameters()
  2485. hparams = self.hparams
  2486. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.INTERNVL)
  2487. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  2488. # hidden_act
  2489. if hparams["hidden_act"] == "silu":
  2490. self.gguf_writer.add_vision_use_silu(True)
  2491. elif hparams["hidden_act"] == "gelu":
  2492. self.gguf_writer.add_vision_use_gelu(True)
  2493. else:
  2494. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  2495. # downsample_ratio
  2496. downsample_ratio = self.global_config.get("downsample_ratio")
  2497. assert downsample_ratio is not None
  2498. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / downsample_ratio))
  2499. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2500. del bid, name, n_dims # unused
  2501. if ".patch_embd." in new_name:
  2502. return gguf.GGMLQuantizationType.F16
  2503. if ".position_embd." in new_name:
  2504. return gguf.GGMLQuantizationType.F32
  2505. return False
  2506. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2507. del bid # unused
  2508. if name.startswith("vision_model") or name.startswith("mlp"):
  2509. # process visual tensors
  2510. # correct name
  2511. if name.startswith("vision_model"):
  2512. name = "vision_tower." + name
  2513. if (".ls" in name or "position_embedding" in name) and not name.endswith(".weight"):
  2514. name += ".weight"
  2515. # split QKV tensors if needed
  2516. if ".qkv." in name:
  2517. if data_torch.ndim == 2: # weight
  2518. c3, _ = data_torch.shape
  2519. else: # bias
  2520. c3 = data_torch.shape[0]
  2521. assert c3 % 3 == 0
  2522. c = c3 // 3
  2523. wq = data_torch[:c]
  2524. wk = data_torch[c: c * 2]
  2525. wv = data_torch[c * 2:]
  2526. return [
  2527. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.q_proj")), wq),
  2528. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.k_proj")), wk),
  2529. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.v_proj")), wv),
  2530. ]
  2531. return [(self.map_tensor_name(name), data_torch)]
  2532. return [] # skip other tensors
  2533. @ModelBase.register("WavTokenizerDec")
  2534. class WavTokenizerDecModel(TextModel):
  2535. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  2536. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2537. del bid # unused
  2538. if \
  2539. name.endswith("codebook.cluster_size") or \
  2540. name.endswith("codebook.embed_avg") or \
  2541. name.endswith("codebook.inited"):
  2542. logger.debug(f"Skipping {name!r}")
  2543. return []
  2544. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  2545. return [(self.map_tensor_name(name), data_torch)]
  2546. def set_vocab(self):
  2547. self._set_vocab_none()
  2548. def set_gguf_parameters(self):
  2549. super().set_gguf_parameters()
  2550. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  2551. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  2552. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  2553. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  2554. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  2555. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  2556. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  2557. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  2558. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  2559. self.gguf_writer.add_causal_attention(False)
  2560. @ModelBase.register("Qwen2MoeForCausalLM")
  2561. class Qwen2MoeModel(TextModel):
  2562. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  2563. def set_gguf_parameters(self):
  2564. super().set_gguf_parameters()
  2565. if (n_experts := self.hparams.get("num_experts")) is not None:
  2566. self.gguf_writer.add_expert_count(n_experts)
  2567. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2568. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2569. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  2570. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  2571. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  2572. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  2573. # YaRN is not enabled by default
  2574. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  2575. rope_scaling = self.hparams.get("rope_scaling") or {}
  2576. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2577. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2578. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2579. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2580. _experts: list[dict[str, Tensor]] | None = None
  2581. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2582. # process the experts separately
  2583. if name.find("experts") != -1:
  2584. n_experts = self.hparams["num_experts"]
  2585. assert bid is not None
  2586. if self._experts is None:
  2587. self._experts = [{} for _ in range(self.block_count)]
  2588. self._experts[bid][name] = data_torch
  2589. if len(self._experts[bid]) >= n_experts * 3:
  2590. tensors: list[tuple[str, Tensor]] = []
  2591. # merge the experts into a single 3d tensor
  2592. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2593. datas: list[Tensor] = []
  2594. for xid in range(n_experts):
  2595. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2596. datas.append(self._experts[bid][ename])
  2597. del self._experts[bid][ename]
  2598. data_torch = torch.stack(datas, dim=0)
  2599. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2600. new_name = self.map_tensor_name(merged_name)
  2601. tensors.append((new_name, data_torch))
  2602. return tensors
  2603. else:
  2604. return []
  2605. return [(self.map_tensor_name(name), data_torch)]
  2606. def prepare_tensors(self):
  2607. super().prepare_tensors()
  2608. if self._experts is not None:
  2609. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2610. experts = [k for d in self._experts for k in d.keys()]
  2611. if len(experts) > 0:
  2612. raise ValueError(f"Unprocessed experts: {experts}")
  2613. @ModelBase.register("Qwen3ForCausalLM")
  2614. class Qwen3Model(Qwen2Model):
  2615. model_arch = gguf.MODEL_ARCH.QWEN3
  2616. @ModelBase.register("Qwen3MoeForCausalLM")
  2617. class Qwen3MoeModel(Qwen2MoeModel):
  2618. model_arch = gguf.MODEL_ARCH.QWEN3MOE
  2619. @ModelBase.register("GPT2LMHeadModel")
  2620. class GPT2Model(TextModel):
  2621. model_arch = gguf.MODEL_ARCH.GPT2
  2622. def set_gguf_parameters(self):
  2623. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2624. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  2625. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2626. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  2627. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2628. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2629. self.gguf_writer.add_file_type(self.ftype)
  2630. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2631. del bid # unused
  2632. tensors: list[tuple[str, Tensor]] = []
  2633. # we don't need these
  2634. if name.endswith((".attn.bias", ".attn.masked_bias")):
  2635. return tensors
  2636. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  2637. data_torch = data_torch.transpose(1, 0)
  2638. new_name = self.map_tensor_name(name)
  2639. tensors.append((new_name, data_torch))
  2640. return tensors
  2641. @ModelBase.register("PhiForCausalLM")
  2642. class Phi2Model(TextModel):
  2643. model_arch = gguf.MODEL_ARCH.PHI2
  2644. def set_gguf_parameters(self):
  2645. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2646. rot_pct = self.find_hparam(["partial_rotary_factor"])
  2647. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2648. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2649. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  2650. self.gguf_writer.add_embedding_length(n_embd)
  2651. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  2652. self.gguf_writer.add_block_count(block_count)
  2653. self.gguf_writer.add_head_count(n_head)
  2654. self.gguf_writer.add_head_count_kv(n_head)
  2655. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  2656. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  2657. self.gguf_writer.add_file_type(self.ftype)
  2658. self.gguf_writer.add_add_bos_token(False)
  2659. @ModelBase.register("Phi3ForCausalLM")
  2660. class Phi3MiniModel(TextModel):
  2661. model_arch = gguf.MODEL_ARCH.PHI3
  2662. def set_vocab(self):
  2663. # Phi-4 model uses GPT2Tokenizer
  2664. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2665. if tokenizer_config_file.is_file():
  2666. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2667. tokenizer_config_json = json.load(f)
  2668. tokenizer_class = tokenizer_config_json['tokenizer_class']
  2669. if tokenizer_class == 'GPT2Tokenizer':
  2670. return self._set_vocab_gpt2()
  2671. from sentencepiece import SentencePieceProcessor
  2672. tokenizer_path = self.dir_model / 'tokenizer.model'
  2673. if not tokenizer_path.is_file():
  2674. raise ValueError(f'Error: Missing {tokenizer_path}')
  2675. tokenizer = SentencePieceProcessor()
  2676. tokenizer.LoadFromFile(str(tokenizer_path))
  2677. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2678. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2679. scores: list[float] = [-10000.0] * vocab_size
  2680. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2681. for token_id in range(tokenizer.vocab_size()):
  2682. piece = tokenizer.IdToPiece(token_id)
  2683. text = piece.encode("utf-8")
  2684. score = tokenizer.GetScore(token_id)
  2685. toktype = SentencePieceTokenTypes.NORMAL
  2686. if tokenizer.IsUnknown(token_id):
  2687. toktype = SentencePieceTokenTypes.UNKNOWN
  2688. elif tokenizer.IsControl(token_id):
  2689. toktype = SentencePieceTokenTypes.CONTROL
  2690. elif tokenizer.IsUnused(token_id):
  2691. toktype = SentencePieceTokenTypes.UNUSED
  2692. elif tokenizer.IsByte(token_id):
  2693. toktype = SentencePieceTokenTypes.BYTE
  2694. tokens[token_id] = text
  2695. scores[token_id] = score
  2696. toktypes[token_id] = toktype
  2697. added_tokens_file = self.dir_model / 'added_tokens.json'
  2698. if added_tokens_file.is_file():
  2699. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2700. added_tokens_json = json.load(f)
  2701. for key in added_tokens_json:
  2702. token_id = added_tokens_json[key]
  2703. if token_id >= vocab_size:
  2704. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2705. continue
  2706. tokens[token_id] = key.encode("utf-8")
  2707. scores[token_id] = -1000.0
  2708. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2709. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2710. if tokenizer_config_file.is_file():
  2711. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2712. tokenizer_config_json = json.load(f)
  2713. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2714. for token_id, foken_data in added_tokens_decoder.items():
  2715. token_id = int(token_id)
  2716. token = foken_data["content"].encode("utf-8")
  2717. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2718. if tokens[token_id] != token:
  2719. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2720. tokens[token_id] = token
  2721. scores[token_id] = -1000.0
  2722. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2723. if foken_data.get("special"):
  2724. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2725. tokenizer_file = self.dir_model / 'tokenizer.json'
  2726. if tokenizer_file.is_file():
  2727. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2728. tokenizer_json = json.load(f)
  2729. added_tokens = tokenizer_json.get("added_tokens", [])
  2730. for foken_data in added_tokens:
  2731. token_id = int(foken_data["id"])
  2732. token = foken_data["content"].encode("utf-8")
  2733. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2734. if tokens[token_id] != token:
  2735. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2736. tokens[token_id] = token
  2737. scores[token_id] = -1000.0
  2738. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2739. if foken_data.get("special"):
  2740. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2741. self.gguf_writer.add_tokenizer_model("llama")
  2742. self.gguf_writer.add_tokenizer_pre("default")
  2743. self.gguf_writer.add_token_list(tokens)
  2744. self.gguf_writer.add_token_scores(scores)
  2745. self.gguf_writer.add_token_types(toktypes)
  2746. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2747. special_vocab.add_to_gguf(self.gguf_writer)
  2748. def set_gguf_parameters(self):
  2749. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2750. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2751. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2752. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  2753. rms_eps = self.find_hparam(["rms_norm_eps"])
  2754. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2755. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2756. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  2757. rope_dims = int(rot_pct * n_embd) // n_head
  2758. self.gguf_writer.add_context_length(max_pos_embds)
  2759. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  2760. self.gguf_writer.add_embedding_length(n_embd)
  2761. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  2762. self.gguf_writer.add_block_count(block_count)
  2763. self.gguf_writer.add_head_count(n_head)
  2764. self.gguf_writer.add_head_count_kv(n_head_kv)
  2765. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  2766. self.gguf_writer.add_rope_dimension_count(rope_dims)
  2767. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  2768. self.gguf_writer.add_file_type(self.ftype)
  2769. sliding_window = self.hparams.get("sliding_window")
  2770. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  2771. if sliding_window is None:
  2772. sliding_window = 0
  2773. self.gguf_writer.add_sliding_window(sliding_window)
  2774. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2775. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2776. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2777. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2778. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2779. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  2780. rope_dims = int(rot_pct * n_embd) // n_head
  2781. # write rope scaling for long context (128k) model
  2782. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2783. if rope_scaling is None:
  2784. return
  2785. scale = max_pos_embds / orig_max_pos_embds
  2786. rope_scaling_type = rope_scaling.get('rope_type', rope_scaling.get('type', '')).lower()
  2787. if len(rope_scaling_type) == 0:
  2788. raise KeyError('Missing the required key rope_scaling.type')
  2789. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  2790. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  2791. elif rope_scaling_type == 'yarn':
  2792. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  2793. else:
  2794. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  2795. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  2796. long_factors = rope_scaling.get('long_factor', None)
  2797. short_factors = rope_scaling.get('short_factor', None)
  2798. if long_factors is None or short_factors is None:
  2799. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2800. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2801. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  2802. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2803. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2804. @ModelBase.register("PhiMoEForCausalLM")
  2805. class PhiMoeModel(Phi3MiniModel):
  2806. model_arch = gguf.MODEL_ARCH.PHIMOE
  2807. _experts: list[dict[str, Tensor]] | None = None
  2808. def set_gguf_parameters(self):
  2809. super().set_gguf_parameters()
  2810. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  2811. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  2812. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2813. # process the experts separately
  2814. if name.find("block_sparse_moe.experts") != -1:
  2815. n_experts = self.hparams["num_local_experts"]
  2816. assert bid is not None
  2817. if self._experts is None:
  2818. self._experts = [{} for _ in range(self.block_count)]
  2819. self._experts[bid][name] = data_torch
  2820. if len(self._experts[bid]) >= n_experts * 3:
  2821. tensors: list[tuple[str, Tensor]] = []
  2822. # merge the experts into a single 3d tensor
  2823. for w_name in ["w1", "w2", "w3"]:
  2824. datas: list[Tensor] = []
  2825. for xid in range(n_experts):
  2826. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  2827. datas.append(self._experts[bid][ename])
  2828. del self._experts[bid][ename]
  2829. data_torch = torch.stack(datas, dim=0)
  2830. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  2831. new_name = self.map_tensor_name(merged_name)
  2832. tensors.append((new_name, data_torch))
  2833. return tensors
  2834. else:
  2835. return []
  2836. return [(self.map_tensor_name(name), data_torch)]
  2837. def prepare_tensors(self):
  2838. super().prepare_tensors()
  2839. if self._experts is not None:
  2840. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2841. experts = [k for d in self._experts for k in d.keys()]
  2842. if len(experts) > 0:
  2843. raise ValueError(f"Unprocessed experts: {experts}")
  2844. @ModelBase.register("PlamoForCausalLM")
  2845. class PlamoModel(TextModel):
  2846. model_arch = gguf.MODEL_ARCH.PLAMO
  2847. def set_vocab(self):
  2848. self._set_vocab_sentencepiece()
  2849. def set_gguf_parameters(self):
  2850. hparams = self.hparams
  2851. block_count = hparams["num_hidden_layers"]
  2852. self.gguf_writer.add_context_length(4096) # not in config.json
  2853. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2854. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2855. self.gguf_writer.add_block_count(block_count)
  2856. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2857. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  2858. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2859. self.gguf_writer.add_file_type(self.ftype)
  2860. def shuffle_attn_q_weight(self, data_torch):
  2861. assert data_torch.size() == (5120, 5120)
  2862. data_torch = data_torch.reshape(8, 5, 128, 5120)
  2863. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  2864. data_torch = torch.reshape(data_torch, (5120, 5120))
  2865. return data_torch
  2866. def shuffle_attn_output_weight(self, data_torch):
  2867. assert data_torch.size() == (5120, 5120)
  2868. data_torch = data_torch.reshape(5120, 8, 5, 128)
  2869. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  2870. data_torch = torch.reshape(data_torch, (5120, 5120))
  2871. return data_torch
  2872. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2873. del bid # unused
  2874. new_name = self.map_tensor_name(name)
  2875. # shuffle for broadcasting of gqa in ggml_mul_mat
  2876. if new_name.endswith("attn_q.weight"):
  2877. data_torch = self.shuffle_attn_q_weight(data_torch)
  2878. elif new_name.endswith("attn_output.weight"):
  2879. data_torch = self.shuffle_attn_output_weight(data_torch)
  2880. return [(new_name, data_torch)]
  2881. @ModelBase.register("Plamo2ForCausalLM", "PLaMo2ForCausalLM")
  2882. class Plamo2Model(TextModel):
  2883. model_arch = gguf.MODEL_ARCH.PLAMO2
  2884. def set_vocab(self):
  2885. # PLaMo 2 uses a custom tokenizer with a .jsonl file
  2886. # We need to handle this specially
  2887. tokenizer_jsonl_path = self.dir_model / "tokenizer.jsonl"
  2888. tokenizer_config_path = self.dir_model / "tokenizer_config.json"
  2889. if not tokenizer_jsonl_path.is_file():
  2890. raise FileNotFoundError(f"PLaMo 2 tokenizer file not found: {tokenizer_jsonl_path}")
  2891. # Load tokenizer config
  2892. with open(tokenizer_config_path, 'r', encoding='utf-8') as f:
  2893. tokenizer_config = json.load(f)
  2894. # Load tokens from JSONL file (actually a list format)
  2895. tokens = []
  2896. scores = []
  2897. toktypes = []
  2898. with open(tokenizer_jsonl_path, 'r', encoding='utf-8') as f:
  2899. for line_num, line in enumerate(f):
  2900. if line.strip():
  2901. token_data = json.loads(line)
  2902. # Format: [token, score, type, ?, ?, ?, ?]
  2903. token = token_data[0].encode("utf-8")
  2904. score = float(token_data[1])
  2905. token_type_str = token_data[2] if len(token_data) > 2 else "NORMAL"
  2906. tokens.append(token)
  2907. scores.append(score)
  2908. # Map token type strings to GGUF token types
  2909. if token_type_str == "UNKNOWN":
  2910. toktypes.append(gguf.TokenType.UNKNOWN)
  2911. elif token_type_str == "CONTROL":
  2912. toktypes.append(gguf.TokenType.CONTROL)
  2913. elif token_type_str == "BYTE":
  2914. toktypes.append(gguf.TokenType.BYTE)
  2915. else:
  2916. # Check for PLaMo-2 special tokens
  2917. token_str = token_data[0]
  2918. if token_str.startswith("<|plamo:") and token_str.endswith("|>"):
  2919. toktypes.append(gguf.TokenType.CONTROL)
  2920. else:
  2921. toktypes.append(gguf.TokenType.NORMAL)
  2922. vocab_size = self.hparams["vocab_size"]
  2923. if vocab_size > len(tokens):
  2924. pad_count = vocab_size - len(tokens)
  2925. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2926. for i in range(1, pad_count + 1):
  2927. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2928. scores.append(-1000.0)
  2929. toktypes.append(gguf.TokenType.UNUSED)
  2930. # Use "plamo2" tokenizer type for PLaMo-2's custom Aho-Corasick tokenizer
  2931. self.gguf_writer.add_tokenizer_model("plamo2")
  2932. self.gguf_writer.add_tokenizer_pre("default")
  2933. self.gguf_writer.add_token_list(tokens)
  2934. self.gguf_writer.add_token_scores(scores)
  2935. self.gguf_writer.add_token_types(toktypes)
  2936. # Add special tokens from config
  2937. if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] is not None:
  2938. token_id = tokens.index(tokenizer_config["bos_token"].encode("utf-8"))
  2939. self.gguf_writer.add_bos_token_id(token_id)
  2940. if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] is not None:
  2941. token_id = tokens.index(tokenizer_config["eos_token"].encode("utf-8"))
  2942. self.gguf_writer.add_eos_token_id(token_id)
  2943. if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] is not None:
  2944. token_id = tokens.index(tokenizer_config["pad_token"].encode("utf-8"))
  2945. self.gguf_writer.add_pad_token_id(token_id)
  2946. if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] is not None:
  2947. token_id = tokens.index(tokenizer_config["sep_token"].encode("utf-8"))
  2948. self.gguf_writer.add_sep_token_id(token_id)
  2949. if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] is not None:
  2950. token_id = tokens.index(tokenizer_config["unk_token"].encode("utf-8"))
  2951. self.gguf_writer.add_unk_token_id(token_id)
  2952. # Add <|plamo:op|> as EOT to ensure appropriate end of generation
  2953. self.gguf_writer.add_eot_token_id(4)
  2954. self.gguf_writer.add_add_space_prefix(False)
  2955. def set_gguf_parameters(self):
  2956. hparams = self.hparams
  2957. block_count = hparams["num_hidden_layers"]
  2958. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  2959. # Which layers are Mamba layers
  2960. # PLaMo 2 uses mamba_step to indicate the pattern (e.g., 2 means every other layer)
  2961. # This logic matches modeling_plamo.py's is_mamba function
  2962. mamba_step = hparams.get("mamba_step", 2)
  2963. mamba_enabled = hparams.get("mamba_enabled", True)
  2964. mamba_layers = []
  2965. if mamba_enabled:
  2966. for i in range(block_count):
  2967. if block_count <= (mamba_step // 2):
  2968. # use attention in last layer
  2969. is_mamba = (i != block_count - 1)
  2970. else:
  2971. is_mamba = (i % mamba_step) != (mamba_step // 2)
  2972. if is_mamba:
  2973. mamba_layers.append(0)
  2974. else:
  2975. mamba_layers.append(hparams.get("num_key_value_heads", 4))
  2976. if mamba_layers:
  2977. self.gguf_writer.add_head_count_kv(mamba_layers)
  2978. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 2048))
  2979. self.gguf_writer.add_embedding_length(hparams.get("hidden_size", 4096))
  2980. self.gguf_writer.add_block_count(block_count)
  2981. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 32))
  2982. self.gguf_writer.add_layer_norm_rms_eps(hparams.get("rms_norm_eps", 1e-06))
  2983. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1000000.0))
  2984. # Mamba parameters
  2985. self.gguf_writer.add_ssm_state_size(hparams.get("mamba_d_state", 64))
  2986. self.gguf_writer.add_ssm_conv_kernel(hparams.get("mamba_d_conv", 4))
  2987. self.gguf_writer.add_ssm_time_step_rank(hparams.get("mamba_num_heads", 64))
  2988. intermediate_size = hparams.get("mamba_num_heads", 64) * hparams.get("hidden_size_per_head", 128)
  2989. self.gguf_writer.add_ssm_inner_size(intermediate_size)
  2990. self.gguf_writer.add_ssm_group_count(0)
  2991. # MLP feed forward parameters (for attention layers)
  2992. self.gguf_writer.add_feed_forward_length(hparams.get("intermediate_size", 16384))
  2993. self.gguf_writer.add_file_type(self.ftype)
  2994. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2995. del bid # unused
  2996. if name.endswith(".A_log"):
  2997. data_torch = -torch.exp(data_torch)
  2998. elif name.endswith(".dt_bias"):
  2999. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  3000. elif name.endswith(".dt_norm_weight"):
  3001. name = name.rpartition(".dt_norm_weight")[0] + ".dt_norm.weight"
  3002. elif name.endswith(".B_norm_weight"):
  3003. name = name.rpartition(".B_norm_weight")[0] + ".B_norm.weight"
  3004. elif name.endswith(".C_norm_weight"):
  3005. name = name.rpartition(".C_norm_weight")[0] + ".C_norm.weight"
  3006. elif name.endswith(".k_weight"):
  3007. name = name.rpartition(".k_weight")[0] + ".k.weight"
  3008. elif name.endswith(".q_weight"):
  3009. name = name.rpartition(".q_weight")[0] + ".q.weight"
  3010. elif name.endswith(".conv1d.weight"):
  3011. data_torch = torch.squeeze(data_torch) # remove (, 1, )
  3012. assert data_torch.ndim == 2
  3013. elif name.endswith(".pre_mixer_norm.weight"):
  3014. data_torch += 1.0
  3015. elif name.endswith(".post_mixer_norm.weight"):
  3016. data_torch += 1.0 / 5
  3017. elif name.endswith(".pre_mlp_norm.weight"):
  3018. data_torch += 1.0
  3019. elif name.endswith(".post_mlp_norm.weight"):
  3020. data_torch += 1.0 / (5**1.5)
  3021. elif name.endswith(".norm.weight"):
  3022. data_torch += 1.0
  3023. new_name = self.map_tensor_name(name)
  3024. return [(new_name, data_torch)]
  3025. @ModelBase.register("CodeShellForCausalLM")
  3026. class CodeShellModel(TextModel):
  3027. model_arch = gguf.MODEL_ARCH.CODESHELL
  3028. def set_gguf_parameters(self):
  3029. block_count = self.hparams["n_layer"]
  3030. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  3031. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3032. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  3033. self.gguf_writer.add_block_count(block_count)
  3034. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3035. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  3036. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3037. self.gguf_writer.add_file_type(self.ftype)
  3038. self.gguf_writer.add_rope_freq_base(10000.0)
  3039. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3040. self.gguf_writer.add_rope_scaling_factor(1.0)
  3041. _has_tok_embd = False
  3042. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3043. del bid # unused
  3044. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  3045. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  3046. new_name = self.map_tensor_name(name)
  3047. # assuming token_embd.weight is seen before output.weight
  3048. if not self._has_tok_embd and new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  3049. # even though the tensor file(s) does not contain the word embeddings they are still in the weight map
  3050. if self.tensor_names and "transformer.wte.weight" in self.tensor_names:
  3051. logger.debug(f"{tok_embd_name} not found before {output_name}, assuming they are tied")
  3052. self.tensor_names.remove("transformer.wte.weight")
  3053. elif new_name == tok_embd_name:
  3054. self._has_tok_embd = True
  3055. return [(new_name, data_torch)]
  3056. @ModelBase.register("InternLM2ForCausalLM")
  3057. class InternLM2Model(TextModel):
  3058. model_arch = gguf.MODEL_ARCH.INTERNLM2
  3059. def set_vocab(self):
  3060. # (TODO): Is there a better way?
  3061. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  3062. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  3063. # recognized as an empty string in C++.
  3064. from sentencepiece import SentencePieceProcessor
  3065. from sentencepiece import sentencepiece_model_pb2 as model
  3066. tokenizer_path = self.dir_model / 'tokenizer.model'
  3067. tokens: list[bytes] = []
  3068. scores: list[float] = []
  3069. toktypes: list[int] = []
  3070. if not tokenizer_path.is_file():
  3071. logger.error(f'Error: Missing {tokenizer_path}')
  3072. sys.exit(1)
  3073. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3074. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3075. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3076. tokenizer = SentencePieceProcessor()
  3077. tokenizer.LoadFromFile(str(tokenizer_path))
  3078. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3079. for token_id in range(vocab_size):
  3080. piece = tokenizer.IdToPiece(token_id)
  3081. text = piece.encode("utf-8")
  3082. score = tokenizer.GetScore(token_id)
  3083. if text == b"\x00":
  3084. # (TODO): fixme
  3085. # Hack here and replace the \x00 characters.
  3086. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  3087. text = "🐉".encode("utf-8")
  3088. toktype = SentencePieceTokenTypes.NORMAL
  3089. if tokenizer.IsUnknown(token_id):
  3090. toktype = SentencePieceTokenTypes.UNKNOWN
  3091. elif tokenizer.IsControl(token_id):
  3092. toktype = SentencePieceTokenTypes.CONTROL
  3093. elif tokenizer.IsUnused(token_id):
  3094. toktype = SentencePieceTokenTypes.UNUSED
  3095. elif tokenizer.IsByte(token_id):
  3096. toktype = SentencePieceTokenTypes.BYTE
  3097. # take care of ununsed raw token
  3098. if piece.startswith('[UNUSED'):
  3099. toktype = SentencePieceTokenTypes.UNUSED
  3100. tokens.append(text)
  3101. scores.append(score)
  3102. toktypes.append(toktype)
  3103. added_tokens_file = self.dir_model / 'added_tokens.json'
  3104. if added_tokens_file.is_file():
  3105. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3106. added_tokens_json = json.load(f)
  3107. for key in added_tokens_json:
  3108. tokens.append(key.encode("utf-8"))
  3109. scores.append(-1000.0)
  3110. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  3111. chat_eos_token = '<|im_end|>'
  3112. chat_eos_token_id = None
  3113. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3114. if tokenizer_config_file.is_file():
  3115. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3116. tokenizer_config_json = json.load(f)
  3117. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  3118. for token_id, foken_data in added_tokens_decoder.items():
  3119. token_id = int(token_id)
  3120. token = foken_data["content"]
  3121. if token == chat_eos_token:
  3122. chat_eos_token_id = token_id
  3123. token = token.encode("utf-8")
  3124. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3125. if tokens[token_id] != token:
  3126. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3127. tokens[token_id] = token
  3128. scores[token_id] = -1000.0
  3129. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3130. if foken_data.get("special"):
  3131. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3132. tokenizer_file = self.dir_model / 'tokenizer.json'
  3133. if tokenizer_file.is_file():
  3134. with open(tokenizer_file, "r", encoding="utf-8") as f:
  3135. tokenizer_json = json.load(f)
  3136. added_tokens = tokenizer_json.get("added_tokens", [])
  3137. for foken_data in added_tokens:
  3138. token_id = int(foken_data["id"])
  3139. token = foken_data["content"]
  3140. if token == chat_eos_token:
  3141. chat_eos_token_id = token_id
  3142. token = token.encode("utf-8")
  3143. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3144. if tokens[token_id] != token:
  3145. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3146. tokens[token_id] = token
  3147. scores[token_id] = -1000.0
  3148. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3149. if foken_data.get("special"):
  3150. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3151. self.gguf_writer.add_tokenizer_model("llama")
  3152. self.gguf_writer.add_tokenizer_pre("default")
  3153. self.gguf_writer.add_token_list(tokens)
  3154. self.gguf_writer.add_token_scores(scores)
  3155. self.gguf_writer.add_token_types(toktypes)
  3156. self.gguf_writer.add_add_space_prefix(add_prefix)
  3157. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3158. old_eos = special_vocab.special_token_ids["eos"]
  3159. if chat_eos_token_id is not None:
  3160. # For the chat model, we replace the eos with '<|im_end|>'.
  3161. # TODO: this is a hack, should be fixed
  3162. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  3163. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  3164. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  3165. " in chat mode so that the conversation can end normally.")
  3166. special_vocab.add_to_gguf(self.gguf_writer)
  3167. def set_gguf_parameters(self):
  3168. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  3169. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  3170. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  3171. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  3172. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  3173. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  3174. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  3175. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  3176. self.gguf_writer.add_file_type(self.ftype)
  3177. rope_scaling = self.hparams.get("rope_scaling") or {}
  3178. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  3179. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3180. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  3181. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3182. num_heads = self.hparams["num_attention_heads"]
  3183. num_kv_heads = self.hparams["num_key_value_heads"]
  3184. n_embd = self.hparams["hidden_size"]
  3185. q_per_kv = num_heads // num_kv_heads
  3186. head_dim = n_embd // num_heads
  3187. num_groups = num_heads // q_per_kv
  3188. name = name.replace("language_model.", "") # InternVL
  3189. if name.startswith("mlp") or name.startswith("vision_model"):
  3190. # skip visual tensors
  3191. return []
  3192. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  3193. qkv = data_torch
  3194. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  3195. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  3196. # The model weights of q and k equire additional reshape.
  3197. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  3198. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  3199. v = v.reshape((-1, v.shape[-1]))
  3200. return [
  3201. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  3202. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  3203. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  3204. ]
  3205. else:
  3206. return [(self.map_tensor_name(name), data_torch)]
  3207. @ModelBase.register("InternLM3ForCausalLM")
  3208. class InternLM3Model(TextModel):
  3209. model_arch = gguf.MODEL_ARCH.LLAMA
  3210. def set_vocab(self):
  3211. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  3212. self.gguf_writer.add_tokenizer_model("llama")
  3213. self.gguf_writer.add_tokenizer_pre("default")
  3214. self.gguf_writer.add_token_list(tokens)
  3215. self.gguf_writer.add_token_scores(scores)
  3216. self.gguf_writer.add_token_types(toktypes)
  3217. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3218. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3219. if tokenizer_config_file.is_file():
  3220. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3221. tokenizer_config_json = json.load(f)
  3222. if "add_prefix_space" in tokenizer_config_json:
  3223. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  3224. if "added_tokens_decoder" in tokenizer_config_json:
  3225. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  3226. if token_data.get("special"):
  3227. token_id = int(token_id)
  3228. token = token_data["content"]
  3229. special_vocab._set_special_token(token, token_id)
  3230. # update eos token
  3231. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  3232. special_vocab.special_token_ids["eos"] = token_id
  3233. special_vocab.add_to_gguf(self.gguf_writer)
  3234. def set_gguf_parameters(self):
  3235. super().set_gguf_parameters()
  3236. hparams = self.hparams
  3237. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3238. if (rope_dim := hparams.get("head_dim")) is None:
  3239. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  3240. self.gguf_writer.add_rope_dimension_count(rope_dim)
  3241. rope_scaling = self.hparams.get("rope_scaling") or {}
  3242. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  3243. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3244. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  3245. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3246. n_head = self.hparams["num_attention_heads"]
  3247. n_kv_head = self.hparams.get("num_key_value_heads")
  3248. name = name.replace("language_model.", "") # InternVL
  3249. if name.startswith("mlp") or name.startswith("vision_model"):
  3250. # skip visual tensors
  3251. return []
  3252. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3253. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3254. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3255. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3256. return [(self.map_tensor_name(name), data_torch)]
  3257. @ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel", "BertForSequenceClassification")
  3258. class BertModel(TextModel):
  3259. model_arch = gguf.MODEL_ARCH.BERT
  3260. def __init__(self, *args, **kwargs):
  3261. super().__init__(*args, **kwargs)
  3262. self.vocab_size = None
  3263. if cls_out_labels := self.hparams.get("id2label"):
  3264. if len(cls_out_labels) == 2 and cls_out_labels[0] == "LABEL_0":
  3265. # Remove dummy labels added by AutoConfig
  3266. cls_out_labels = None
  3267. self.cls_out_labels = cls_out_labels
  3268. def set_gguf_parameters(self):
  3269. super().set_gguf_parameters()
  3270. self.gguf_writer.add_causal_attention(False)
  3271. self._try_set_pooling_type()
  3272. if self.cls_out_labels:
  3273. self.gguf_writer.add_classifier_output_labels([v for k, v in sorted(self.cls_out_labels.items())])
  3274. def set_vocab(self):
  3275. tokens, toktypes, tokpre = self.get_vocab_base()
  3276. self.vocab_size = len(tokens)
  3277. # we need this to validate the size of the token_type embeddings
  3278. # though currently we are passing all zeros to the token_type embeddings
  3279. # "Sequence A" or "Sequence B"
  3280. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3281. # convert to phantom space vocab
  3282. def phantom(tok):
  3283. if tok.startswith("[") and tok.endswith("]"):
  3284. return tok
  3285. if tok.startswith("##"):
  3286. return tok[2:]
  3287. return "\u2581" + tok
  3288. tokens = list(map(phantom, tokens))
  3289. # add vocab to gguf
  3290. self.gguf_writer.add_tokenizer_model("bert")
  3291. self.gguf_writer.add_tokenizer_pre(tokpre)
  3292. self.gguf_writer.add_token_list(tokens)
  3293. self.gguf_writer.add_token_types(toktypes)
  3294. # handle special tokens
  3295. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3296. special_vocab.add_to_gguf(self.gguf_writer)
  3297. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3298. del bid # unused
  3299. if name.startswith("bert."):
  3300. name = name[5:]
  3301. if name.endswith(".gamma"):
  3302. name = name[:-6] + ".weight"
  3303. if name.endswith(".beta"):
  3304. name = name[:-5] + ".bias"
  3305. # we are only using BERT for embeddings so we don't need the pooling layer
  3306. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  3307. return [] # we don't need these
  3308. if name.startswith("cls.predictions"):
  3309. return []
  3310. if name.startswith("cls.seq_relationship"):
  3311. return []
  3312. if self.cls_out_labels:
  3313. # For BertForSequenceClassification (direct projection layer)
  3314. if name == "classifier.weight":
  3315. name = "classifier.out_proj.weight"
  3316. if name == "classifier.bias":
  3317. name = "classifier.out_proj.bias"
  3318. return [(self.map_tensor_name(name), data_torch)]
  3319. def _xlmroberta_tokenizer_init(self) -> None:
  3320. # we need the pad_token_id to know how to chop down position_embd matrix
  3321. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  3322. self._position_offset = 1 + pad_token_id
  3323. if "max_position_embeddings" in self.hparams:
  3324. self.hparams["max_position_embeddings"] -= self._position_offset
  3325. else:
  3326. self._position_offset = None
  3327. def _xlmroberta_set_vocab(self) -> None:
  3328. # to avoid TypeError: Descriptors cannot be created directly
  3329. # exception when importing sentencepiece_model_pb2
  3330. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3331. from sentencepiece import SentencePieceProcessor
  3332. from sentencepiece import sentencepiece_model_pb2 as model
  3333. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  3334. tokenizer_json = {}
  3335. tokenizer_config_json = {}
  3336. if not tokenizer_path.is_file():
  3337. tokenizer_path = self.dir_model / 'tokenizer.json'
  3338. tokenizer_config_path = self.dir_model / 'tokenizer_config.json'
  3339. if not tokenizer_path.is_file():
  3340. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3341. from base64 import b64decode
  3342. from transformers import AutoTokenizer
  3343. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  3344. with open(tokenizer_path, "r", encoding="utf-8") as fp:
  3345. tokenizer_json = json.load(fp)
  3346. if tokenizer_config_path.is_file():
  3347. with open(tokenizer_config_path, "r", encoding="utf-8") as fp:
  3348. tokenizer_config_json = json.load(fp)
  3349. add_prefix = tokenizer.add_prefix_space
  3350. remove_whitespaces = tokenizer.clean_up_tokenization_spaces
  3351. precompiled_charsmap = b64decode(tokenizer_json["normalizer"]["precompiled_charsmap"])
  3352. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size)
  3353. else:
  3354. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3355. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3356. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3357. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3358. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3359. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3360. tokenizer = SentencePieceProcessor()
  3361. tokenizer.LoadFromFile(str(tokenizer_path))
  3362. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size())
  3363. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3364. scores: list[float] = [-10000.0] * vocab_size
  3365. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3366. if isinstance(tokenizer, SentencePieceProcessor):
  3367. for token_id in range(tokenizer.vocab_size()):
  3368. piece = tokenizer.IdToPiece(token_id)
  3369. text = piece.encode("utf-8")
  3370. score = tokenizer.GetScore(token_id)
  3371. toktype = SentencePieceTokenTypes.NORMAL
  3372. if tokenizer.IsUnknown(token_id):
  3373. toktype = SentencePieceTokenTypes.UNKNOWN
  3374. elif tokenizer.IsControl(token_id):
  3375. toktype = SentencePieceTokenTypes.CONTROL
  3376. elif tokenizer.IsUnused(token_id):
  3377. toktype = SentencePieceTokenTypes.UNUSED
  3378. elif tokenizer.IsByte(token_id):
  3379. toktype = SentencePieceTokenTypes.BYTE
  3380. tokens[token_id] = text
  3381. scores[token_id] = score
  3382. toktypes[token_id] = toktype
  3383. else:
  3384. added_vocab = tokenizer.get_added_vocab()
  3385. unk_token = tokenizer_config_json.get("unk_token")
  3386. unk_token_id = added_vocab.get(unk_token, tokenizer_json["model"].get("unk_id", 3))
  3387. for token_id in range(tokenizer.vocab_size):
  3388. piece = tokenizer._convert_id_to_token(token_id)
  3389. if (piece := tokenizer._convert_id_to_token(token_id)) is not None:
  3390. text = piece.encode("utf-8")
  3391. score = tokenizer_json["model"]["vocab"][token_id][1]
  3392. toktype = SentencePieceTokenTypes.NORMAL
  3393. if token_id == unk_token_id:
  3394. toktype = SentencePieceTokenTypes.UNKNOWN
  3395. elif token_id in tokenizer.all_special_ids:
  3396. toktype = SentencePieceTokenTypes.CONTROL
  3397. elif token_id in added_vocab.values():
  3398. toktype = SentencePieceTokenTypes.USER_DEFINED
  3399. # No reliable way to detect this, but jina doesn't have any
  3400. # elif tokenizer.IsByte(token_id):
  3401. # toktype = SentencePieceTokenTypes.BYTE
  3402. tokens[token_id] = text
  3403. scores[token_id] = score
  3404. toktypes[token_id] = toktype
  3405. if isinstance(tokenizer, SentencePieceProcessor):
  3406. # realign tokens (see HF tokenizer code)
  3407. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  3408. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  3409. toktypes = [
  3410. SentencePieceTokenTypes.CONTROL,
  3411. SentencePieceTokenTypes.CONTROL,
  3412. SentencePieceTokenTypes.CONTROL,
  3413. SentencePieceTokenTypes.UNKNOWN,
  3414. ] + toktypes[3:-1]
  3415. if self.model_arch == gguf.MODEL_ARCH.NOMIC_BERT_MOE:
  3416. # Add mask token missing from sentencepiece.bpe.model
  3417. tokens[250001] = b'<mask>'
  3418. scores[250001] = 0.0
  3419. toktypes[250001] = SentencePieceTokenTypes.CONTROL
  3420. self.gguf_writer.add_tokenizer_model("t5")
  3421. self.gguf_writer.add_tokenizer_pre("default")
  3422. self.gguf_writer.add_token_list(tokens)
  3423. self.gguf_writer.add_token_scores(scores)
  3424. self.gguf_writer.add_token_types(toktypes)
  3425. self.gguf_writer.add_add_space_prefix(add_prefix)
  3426. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3427. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3428. if precompiled_charsmap:
  3429. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3430. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3431. special_vocab.add_to_gguf(self.gguf_writer)
  3432. @ModelBase.register("DistilBertModel", "DistilBertForMaskedLM", "DistilBertForSequenceClassification")
  3433. class DistilBertModel(BertModel):
  3434. model_arch = gguf.MODEL_ARCH.BERT
  3435. def set_gguf_parameters(self):
  3436. self.gguf_writer.add_layer_norm_eps(1e-12)
  3437. logger.info("gguf: layer norm epsilon = 1e-12")
  3438. super().set_gguf_parameters()
  3439. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3440. if name.startswith("distilbert."):
  3441. name = name[11:]
  3442. # These layers act as MLM head, so we don't need them
  3443. if name.startswith("vocab_"):
  3444. return []
  3445. return super().modify_tensors(data_torch, name, bid)
  3446. @ModelBase.register("RobertaModel", "RobertaForSequenceClassification")
  3447. class RobertaModel(BertModel):
  3448. model_arch = gguf.MODEL_ARCH.BERT
  3449. def __init__(self, *args, **kwargs):
  3450. super().__init__(*args, **kwargs)
  3451. # we need the pad_token_id to know how to chop down position_embd matrix
  3452. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  3453. self._position_offset = 1 + pad_token_id
  3454. if "max_position_embeddings" in self.hparams:
  3455. self.hparams["max_position_embeddings"] -= self._position_offset
  3456. else:
  3457. self._position_offset = None
  3458. def set_vocab(self):
  3459. """Support BPE tokenizers for roberta models"""
  3460. bpe_tok_path = self.dir_model / "tokenizer.json"
  3461. if bpe_tok_path.exists():
  3462. self._set_vocab_gpt2()
  3463. # we need this to validate the size of the token_type embeddings
  3464. # though currently we are passing all zeros to the token_type embeddings
  3465. # "Sequence A" or "Sequence B"
  3466. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3467. else:
  3468. return super().set_vocab()
  3469. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3470. # if name starts with "roberta.", remove the prefix
  3471. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  3472. if name.startswith("roberta."):
  3473. name = name[8:]
  3474. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  3475. if name == "embeddings.position_embeddings.weight":
  3476. if self._position_offset is not None:
  3477. data_torch = data_torch[self._position_offset:,:]
  3478. return super().modify_tensors(data_torch, name, bid)
  3479. @ModelBase.register("NomicBertModel")
  3480. class NomicBertModel(BertModel):
  3481. model_arch = gguf.MODEL_ARCH.BERT
  3482. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  3483. hparams = kwargs.pop("hparams", None)
  3484. if hparams is None:
  3485. hparams = ModelBase.load_hparams(dir_model)
  3486. self.is_moe = bool(hparams.get("moe_every_n_layers"))
  3487. self.model_arch = gguf.MODEL_ARCH.NOMIC_BERT_MOE if self.is_moe else gguf.MODEL_ARCH.NOMIC_BERT
  3488. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  3489. self._tokenizer_is_xlmroberta = self._is_tokenizer_xlmroberta()
  3490. if self._tokenizer_is_xlmroberta:
  3491. self._xlmroberta_tokenizer_init()
  3492. npos, mtp = self.hparams["n_positions"], self.hparams.get("max_trained_positions", 2048)
  3493. if npos == 8192 and mtp == 2048:
  3494. self.hparams["n_positions"] = 2048 # nomic-embed-text v1 and v1.5 are trained for 2048 tokens.
  3495. elif npos == 2048 and mtp == 2048:
  3496. self.hparams["n_positions"] = 512 # nomic-embed-text-v2-moe is trained for 512 tokens.
  3497. else:
  3498. raise ValueError(f"unrecognized parameters: n_positions={npos}, max_trained_positions={mtp}")
  3499. assert self.hparams["activation_function"] == "gelu" if self.is_moe else "swiglu"
  3500. # this doesn't do anything in the HF version
  3501. assert self.hparams["causal"] is False
  3502. # no bias tensors unless MoE
  3503. assert self.hparams["qkv_proj_bias"] == self.is_moe
  3504. assert self.hparams["mlp_fc1_bias"] == self.is_moe
  3505. assert self.hparams["mlp_fc2_bias"] == self.is_moe
  3506. # norm at end of layer
  3507. assert self.hparams["prenorm"] is False
  3508. # standard RoPE
  3509. assert self.hparams["rotary_emb_fraction"] == 1.0
  3510. assert self.hparams["rotary_emb_interleaved"] is False
  3511. assert self.hparams["rotary_emb_scale_base"] is None
  3512. def set_vocab(self) -> None:
  3513. if self._tokenizer_is_xlmroberta:
  3514. return self._xlmroberta_set_vocab()
  3515. return super().set_vocab()
  3516. def modify_tensors(self, data_torch: torch.Tensor, name: str, bid: int | None) -> Iterable[tuple[str, torch.Tensor]]:
  3517. # If the tensor is an experts bias tensor, skip it by returning an empty list.
  3518. if "mlp.experts.bias" in name:
  3519. return [] # Explicitly return an empty list.
  3520. if "mlp.experts.mlp.w1" in name:
  3521. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  3522. name += ".weight"
  3523. if "mlp.experts.mlp.w2" in name:
  3524. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  3525. data_torch = data_torch.transpose(1, 2)
  3526. name += ".weight"
  3527. return [(self.map_tensor_name(name), data_torch)]
  3528. def set_gguf_parameters(self):
  3529. super().set_gguf_parameters()
  3530. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  3531. if self.is_moe:
  3532. self.gguf_writer.add_moe_every_n_layers(self.hparams["moe_every_n_layers"])
  3533. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  3534. self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"])
  3535. def _is_tokenizer_xlmroberta(self) -> bool:
  3536. with open(self.dir_model / "tokenizer.json") as f:
  3537. tokenizer_json = json.load(f)
  3538. toktyp = tokenizer_json["model"]["type"]
  3539. if toktyp == "Unigram":
  3540. return True
  3541. if toktyp == "WordPiece":
  3542. return False
  3543. raise ValueError(f"unknown tokenizer: {toktyp}")
  3544. @ModelBase.register("NeoBERT", "NeoBERTLMHead", "NeoBERTForSequenceClassification")
  3545. class NeoBert(BertModel):
  3546. model_arch = gguf.MODEL_ARCH.NEO_BERT
  3547. def set_gguf_parameters(self):
  3548. super().set_gguf_parameters()
  3549. # NeoBERT uses 2/3 of the intermediate size as feed forward length
  3550. self.gguf_writer.add_feed_forward_length(int(2 * self.hparams["intermediate_size"] / 3))
  3551. self.gguf_writer.add_rope_freq_base(10000.0) # default value for NeoBERT
  3552. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3553. f_rms_eps = self.hparams.get("norm_eps", 1e-6) # default value for NeoBERT
  3554. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  3555. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  3556. self.gguf_writer.add_pooling_type(gguf.PoolingType.CLS) # https://huggingface.co/chandar-lab/NeoBERT#how-to-use
  3557. def modify_tensors(self, data_torch, name, bid):
  3558. if name.startswith("decoder."):
  3559. return []
  3560. if name.startswith("model."):
  3561. name = name[6:]
  3562. return super().modify_tensors(data_torch, name, bid)
  3563. @ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  3564. class XLMRobertaModel(BertModel):
  3565. model_arch = gguf.MODEL_ARCH.BERT
  3566. def __init__(self, *args, **kwargs):
  3567. super().__init__(*args, **kwargs)
  3568. self._xlmroberta_tokenizer_init()
  3569. def set_vocab(self):
  3570. self._xlmroberta_set_vocab()
  3571. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3572. # if name starts with "roberta.", remove the prefix
  3573. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  3574. if name.startswith("roberta."):
  3575. name = name[8:]
  3576. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  3577. if name == "embeddings.position_embeddings.weight":
  3578. if self._position_offset is not None:
  3579. data_torch = data_torch[self._position_offset:,:]
  3580. return super().modify_tensors(data_torch, name, bid)
  3581. @ModelBase.register("GemmaForCausalLM")
  3582. class GemmaModel(TextModel):
  3583. model_arch = gguf.MODEL_ARCH.GEMMA
  3584. def set_vocab(self):
  3585. self._set_vocab_sentencepiece()
  3586. # TODO: these special tokens should be exported only for the CodeGemma family
  3587. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  3588. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  3589. special_vocab._set_special_token("prefix", 67)
  3590. special_vocab._set_special_token("suffix", 69)
  3591. special_vocab._set_special_token("middle", 68)
  3592. special_vocab._set_special_token("fsep", 70)
  3593. special_vocab._set_special_token("eot", 107)
  3594. special_vocab.chat_template = None # do not add it twice
  3595. special_vocab.add_to_gguf(self.gguf_writer)
  3596. self.gguf_writer.add_add_space_prefix(False)
  3597. def set_gguf_parameters(self):
  3598. hparams = self.hparams
  3599. block_count = hparams["num_hidden_layers"]
  3600. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  3601. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3602. self.gguf_writer.add_block_count(block_count)
  3603. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3604. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3605. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  3606. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  3607. self.gguf_writer.add_key_length(hparams["head_dim"])
  3608. self.gguf_writer.add_value_length(hparams["head_dim"])
  3609. self.gguf_writer.add_file_type(self.ftype)
  3610. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3611. del bid # unused
  3612. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  3613. # To prevent errors, skip loading lm_head.weight.
  3614. if name == "lm_head.weight":
  3615. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  3616. return []
  3617. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  3618. if name.endswith("norm.weight"):
  3619. data_torch = data_torch + 1
  3620. return [(self.map_tensor_name(name), data_torch)]
  3621. @ModelBase.register("Gemma2ForCausalLM")
  3622. class Gemma2Model(TextModel):
  3623. model_arch = gguf.MODEL_ARCH.GEMMA2
  3624. def set_vocab(self):
  3625. self._set_vocab_sentencepiece()
  3626. self.gguf_writer.add_add_space_prefix(False)
  3627. def set_gguf_parameters(self):
  3628. hparams = self.hparams
  3629. block_count = hparams["num_hidden_layers"]
  3630. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  3631. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3632. self.gguf_writer.add_block_count(block_count)
  3633. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3634. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3635. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  3636. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  3637. self.gguf_writer.add_key_length(hparams["head_dim"])
  3638. self.gguf_writer.add_value_length(hparams["head_dim"])
  3639. self.gguf_writer.add_file_type(self.ftype)
  3640. self.gguf_writer.add_attn_logit_softcapping(
  3641. self.hparams["attn_logit_softcapping"]
  3642. )
  3643. self.gguf_writer.add_final_logit_softcapping(
  3644. self.hparams["final_logit_softcapping"]
  3645. )
  3646. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  3647. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3648. del bid # unused
  3649. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  3650. # To prevent errors, skip loading lm_head.weight.
  3651. if name == "lm_head.weight":
  3652. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  3653. return []
  3654. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  3655. if name.endswith("norm.weight"):
  3656. data_torch = data_torch + 1
  3657. return [(self.map_tensor_name(name), data_torch)]
  3658. @ModelBase.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  3659. class Gemma3Model(TextModel):
  3660. model_arch = gguf.MODEL_ARCH.GEMMA3
  3661. norm_shift = 1.0 # Gemma3RMSNorm adds 1.0 to the norm value
  3662. def set_vocab(self):
  3663. self._set_vocab_sentencepiece()
  3664. self.gguf_writer.add_add_space_prefix(False)
  3665. def set_gguf_parameters(self):
  3666. hparams = self.hparams
  3667. block_count = hparams["num_hidden_layers"]
  3668. # some default values are not specified in the hparams
  3669. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  3670. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3671. self.gguf_writer.add_block_count(block_count)
  3672. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3673. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  3674. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  3675. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  3676. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  3677. self.gguf_writer.add_file_type(self.ftype)
  3678. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1_000_000.0)) # for global layers
  3679. # attn_logit_softcapping is removed in Gemma3
  3680. assert hparams.get("attn_logit_softcapping") is None
  3681. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  3682. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  3683. if hparams.get("rope_scaling") is not None:
  3684. assert hparams["rope_scaling"]["rope_type"] == "linear"
  3685. # important: this rope_scaling is only applied for global layers, and not used by 1B model
  3686. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3687. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  3688. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3689. del bid # unused
  3690. if "language_model." in name:
  3691. name = name.replace("language_model.", "")
  3692. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  3693. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  3694. return [] # skip vision tensors
  3695. # remove OOV (out-of-vocabulary) rows in token_embd
  3696. if "embed_tokens.weight" in name:
  3697. vocab = self._create_vocab_sentencepiece()
  3698. tokens = vocab[0]
  3699. data_torch = data_torch[:len(tokens)]
  3700. # ref code in Gemma3RMSNorm
  3701. # output = output * (1.0 + self.weight.float())
  3702. # note: this is not the case on gemma3n
  3703. if name.endswith("norm.weight"):
  3704. data_torch = data_torch + self.norm_shift
  3705. return [(self.map_tensor_name(name), data_torch)]
  3706. @ModelBase.register("Gemma3ForConditionalGeneration")
  3707. class Gemma3VisionModel(MmprojModel):
  3708. def set_gguf_parameters(self):
  3709. super().set_gguf_parameters()
  3710. hparams = self.hparams
  3711. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GEMMA3)
  3712. # default values below are taken from HF tranformers code
  3713. self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
  3714. self.gguf_writer.add_vision_use_gelu(True)
  3715. # calculate proj_scale_factor (used by tinygemma3 test model)
  3716. image_seq_length = self.preprocessor_config.get("image_seq_length", 256)
  3717. n_per_side = int(image_seq_length ** 0.5)
  3718. image_size = self.hparams["image_size"]
  3719. patch_size = self.hparams["patch_size"]
  3720. proj_scale_factor = (image_size // patch_size) // n_per_side
  3721. if proj_scale_factor > 0 and proj_scale_factor != 4:
  3722. # we only need to write this if it's not the default value
  3723. # in this case, we are converting a test model
  3724. self.gguf_writer.add_vision_projector_scale_factor(proj_scale_factor)
  3725. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3726. del bid, new_name, n_dims # unused
  3727. # related to https://github.com/ggml-org/llama.cpp/issues/13025
  3728. if "input_projection" in name:
  3729. return gguf.GGMLQuantizationType.F16
  3730. if ".embeddings." in name:
  3731. return gguf.GGMLQuantizationType.F32
  3732. return False
  3733. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3734. del bid # unused
  3735. if "vision_model.head." in name:
  3736. return [] # skip redundant tensors for tinygemma3
  3737. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  3738. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  3739. # process vision tensors
  3740. name = name.replace("_weight", ".weight")
  3741. # correct norm value ; only this "soft_emb_norm" need to be corrected as it's part of Gemma projector
  3742. # the other norm values are part of SigLIP model, and they are already correct
  3743. # ref code: Gemma3RMSNorm
  3744. if "soft_emb_norm.weight" in name:
  3745. logger.info(f"Correcting norm value for '{name}'")
  3746. data_torch = data_torch + 1
  3747. return [(self.map_tensor_name(name), data_torch)]
  3748. return [] # skip other tensors
  3749. @ModelBase.register("Gemma3nForConditionalGeneration")
  3750. class Gemma3NModel(Gemma3Model):
  3751. model_arch = gguf.MODEL_ARCH.GEMMA3N
  3752. norm_shift = 0.0 # same value with Gemma3p5RMSNorm scale_shift on python code
  3753. _altup_proj: list[Tensor] = []
  3754. _altup_unembd: list[Tensor] = []
  3755. def __init__(self, *args, **kwargs):
  3756. super().__init__(*args, **kwargs)
  3757. assert self.hparams["altup_num_inputs"] == 4, "Current conversion only supports 4 altup inputs"
  3758. self._altup_proj = [
  3759. torch.Tensor(), # to be replaced
  3760. torch.Tensor(), # to be replaced
  3761. torch.Tensor(), # to be replaced
  3762. ]
  3763. self._altup_unembd = [
  3764. torch.Tensor(), # to be replaced
  3765. torch.Tensor(), # to be replaced
  3766. torch.Tensor(), # to be replaced
  3767. ]
  3768. def set_vocab(self):
  3769. super().set_vocab()
  3770. def set_gguf_parameters(self):
  3771. super().set_gguf_parameters()
  3772. self.gguf_writer.add_altup_active_idx(self.hparams["altup_active_idx"])
  3773. self.gguf_writer.add_altup_num_inputs(self.hparams["altup_num_inputs"])
  3774. self.gguf_writer.add_embedding_length_per_layer_input(self.hparams["hidden_size_per_layer_input"])
  3775. self.gguf_writer.add_shared_kv_layers(self.hparams["num_kv_shared_layers"])
  3776. activation_sparsity_scale = []
  3777. for s in self.hparams["activation_sparsity_pattern"]:
  3778. normal_dist = torch.distributions.normal.Normal(0, 1)
  3779. std_multiplier = normal_dist.icdf(torch.tensor(s, dtype=torch.float32))
  3780. activation_sparsity_scale.append(std_multiplier.item())
  3781. self.gguf_writer.add_activation_sparsity_scale(activation_sparsity_scale)
  3782. sliding_window_pattern = []
  3783. for t in self.hparams["layer_types"]:
  3784. sliding_window_pattern.append(t == "sliding_attention")
  3785. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  3786. def _stack_matrices(self, matrices: list[Tensor]) -> Tensor | None:
  3787. has_all = all(m.numel() > 0 for m in matrices)
  3788. if not has_all:
  3789. return None
  3790. else:
  3791. return torch.stack(matrices, dim=0)
  3792. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3793. if name.endswith("_scale"):
  3794. name = name + ".weight"
  3795. # TODO: implement self.prediction_coefs.weight.clamp_(...)
  3796. if "language_model." not in name:
  3797. return [] # skip non-language model tensors
  3798. if "altup_unembed_projections" in name:
  3799. data_torch = data_torch.to(device="cpu")
  3800. if ".0." in name:
  3801. self._altup_unembd[0] = data_torch
  3802. elif ".1." in name:
  3803. self._altup_unembd[1] = data_torch
  3804. elif ".2." in name:
  3805. self._altup_unembd[2] = data_torch
  3806. else:
  3807. raise ValueError(f"Unknown name: {name}")
  3808. out = self._stack_matrices(self._altup_unembd)
  3809. if out is not None:
  3810. return [(self.map_tensor_name("model.altup_unembed_projections.weight"), out)]
  3811. else:
  3812. return []
  3813. if "altup_projections" in name:
  3814. data_torch = data_torch.to(device="cpu")
  3815. if ".0." in name:
  3816. self._altup_proj[0] = data_torch
  3817. elif ".1." in name:
  3818. self._altup_proj[1] = data_torch
  3819. elif ".2." in name:
  3820. self._altup_proj[2] = data_torch
  3821. else:
  3822. raise ValueError(f"Unknown name: {name}")
  3823. out = self._stack_matrices(self._altup_proj)
  3824. if out is not None:
  3825. return [(self.map_tensor_name("model.altup_projections.weight"), out)]
  3826. else:
  3827. return []
  3828. return super().modify_tensors(data_torch, name, bid)
  3829. @ModelBase.register("Starcoder2ForCausalLM")
  3830. class StarCoder2Model(TextModel):
  3831. model_arch = gguf.MODEL_ARCH.STARCODER2
  3832. @ModelBase.register("Rwkv6ForCausalLM")
  3833. class Rwkv6Model(TextModel):
  3834. model_arch = gguf.MODEL_ARCH.RWKV6
  3835. def set_vocab(self):
  3836. self._set_vocab_rwkv_world()
  3837. def set_gguf_parameters(self):
  3838. block_count = self.hparams["num_hidden_layers"]
  3839. head_size = self.hparams["head_size"]
  3840. hidden_size = self.hparams["hidden_size"]
  3841. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  3842. rescale_every_n_layers = self.hparams["rescale_every"]
  3843. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  3844. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  3845. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  3846. # RWKV isn't context limited
  3847. self.gguf_writer.add_context_length(1048576)
  3848. self.gguf_writer.add_embedding_length(hidden_size)
  3849. self.gguf_writer.add_block_count(block_count)
  3850. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  3851. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  3852. self.gguf_writer.add_wkv_head_size(head_size)
  3853. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  3854. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  3855. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3856. self.gguf_writer.add_file_type(self.ftype)
  3857. # required by llama.cpp, unused
  3858. self.gguf_writer.add_head_count(0)
  3859. lerp_weights: dict[int, dict[str, Tensor]] = {}
  3860. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3861. new_name = self.map_tensor_name(name)
  3862. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  3863. new_name += ".weight"
  3864. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  3865. data_torch = data_torch.transpose(0, 1)
  3866. if new_name.endswith("time_mix_w2.weight"):
  3867. data_torch = data_torch.permute(0, 2, 1)
  3868. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  3869. data_torch = data_torch.squeeze()
  3870. try:
  3871. rescale_every_n_layers = self.hparams["rescale_every"]
  3872. if rescale_every_n_layers > 0:
  3873. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  3874. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  3875. except KeyError:
  3876. pass
  3877. # concat time_mix_lerp weights to reduce some cpu overhead
  3878. # also reduces the number of tensors in the model
  3879. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  3880. try:
  3881. self.lerp_weights[bid][new_name] = data_torch
  3882. except KeyError:
  3883. self.lerp_weights[bid] = {new_name: data_torch}
  3884. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  3885. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  3886. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  3887. yield (new_name, data)
  3888. return
  3889. yield (new_name, data_torch)
  3890. @ModelBase.register("RWKV6Qwen2ForCausalLM")
  3891. class RWKV6Qwen2Model(Rwkv6Model):
  3892. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  3893. def set_vocab(self):
  3894. try:
  3895. self._set_vocab_sentencepiece()
  3896. except FileNotFoundError:
  3897. self._set_vocab_gpt2()
  3898. def set_gguf_parameters(self):
  3899. block_count = self.hparams["num_hidden_layers"]
  3900. num_attention_heads = self.hparams["num_attention_heads"]
  3901. num_key_value_heads = self.hparams["num_key_value_heads"]
  3902. hidden_size = self.hparams["hidden_size"]
  3903. head_size = hidden_size // num_attention_heads
  3904. rms_norm_eps = self.hparams["rms_norm_eps"]
  3905. intermediate_size = self.hparams["intermediate_size"]
  3906. time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
  3907. time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
  3908. # RWKV isn't context limited
  3909. self.gguf_writer.add_context_length(1048576)
  3910. self.gguf_writer.add_embedding_length(hidden_size)
  3911. self.gguf_writer.add_block_count(block_count)
  3912. self.gguf_writer.add_wkv_head_size(head_size)
  3913. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  3914. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  3915. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3916. self.gguf_writer.add_file_type(self.ftype)
  3917. # special parameters for time_mixing in RWKV6QWEN2
  3918. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3919. self.gguf_writer.add_token_shift_count(1)
  3920. # RWKV6QWEN2 use grouped key/value like GQA
  3921. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  3922. # required by llama.cpp, unused
  3923. self.gguf_writer.add_head_count(0)
  3924. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3925. for new_name, data in super().modify_tensors(data_torch, name, bid):
  3926. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  3927. data = data.view(5, -1, data.shape[-1])
  3928. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  3929. # permute them here to avoid code changes
  3930. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  3931. if "w2" in new_name:
  3932. data = data.view(5, -1, data.shape[-1])
  3933. yield (new_name, data)
  3934. continue
  3935. yield (new_name, data)
  3936. @ModelBase.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  3937. class Rwkv7Model(TextModel):
  3938. model_arch = gguf.MODEL_ARCH.RWKV7
  3939. def set_vocab(self):
  3940. self._set_vocab_rwkv_world()
  3941. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  3942. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  3943. def set_gguf_parameters(self):
  3944. block_count = self.hparams["num_hidden_layers"]
  3945. try:
  3946. head_size = self.hparams["head_size"]
  3947. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  3948. except KeyError:
  3949. head_size = self.hparams["head_dim"]
  3950. layer_norm_eps = self.hparams["norm_eps"]
  3951. hidden_size = self.hparams["hidden_size"]
  3952. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  3953. # ICLR: In-Context-Learning-Rate
  3954. try:
  3955. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3956. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3957. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  3958. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  3959. except KeyError:
  3960. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3961. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3962. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  3963. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  3964. # RWKV isn't context limited
  3965. self.gguf_writer.add_context_length(1048576)
  3966. self.gguf_writer.add_embedding_length(hidden_size)
  3967. self.gguf_writer.add_block_count(block_count)
  3968. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  3969. self.gguf_writer.add_wkv_head_size(head_size)
  3970. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  3971. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  3972. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  3973. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  3974. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3975. self.gguf_writer.add_file_type(self.ftype)
  3976. # required by llama.cpp, unused
  3977. self.gguf_writer.add_head_count(0)
  3978. lerp_weights: dict[int, dict[str, Tensor]] = {}
  3979. lora_needs_transpose: bool = True
  3980. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3981. # unify tensor names here to make life easier
  3982. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  3983. name = name.replace("self_attn", "attention").replace("attn", "attention")
  3984. name = name.replace("time_mixer.", "")
  3985. # lora layer names in fla-hub's impl
  3986. if "_lora.lora" in name:
  3987. self.lora_needs_transpose = False
  3988. name = name.replace("_lora.lora.0.weight", "1.weight")
  3989. name = name.replace("_lora.lora.2.weight", "2.weight")
  3990. name = name.replace("_lora.lora.2.bias", "0.weight")
  3991. name = name.replace("feed_forward_norm", "ln2")
  3992. name = name.replace("g_norm", "ln_x")
  3993. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  3994. # some models have dummy v0/v1/v2 on first layer while others don't
  3995. # ignore them all since they are not used
  3996. return
  3997. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  3998. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  3999. if bid is not None and "attention.x_" in name:
  4000. if "attention.x_x" in name:
  4001. # already concatenated
  4002. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  4003. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  4004. yield (new_name, data)
  4005. else:
  4006. try:
  4007. self.lerp_weights[bid][name] = data_torch
  4008. except KeyError:
  4009. self.lerp_weights[bid] = {name: data_torch}
  4010. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  4011. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  4012. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  4013. yield (new_name, data)
  4014. return
  4015. else:
  4016. data_torch = data_torch.squeeze()
  4017. new_name = self.map_tensor_name(name)
  4018. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  4019. new_name += ".weight"
  4020. if self.lora_needs_transpose and any(
  4021. new_name.endswith(t) for t in [
  4022. "time_mix_w1.weight", "time_mix_w2.weight",
  4023. "time_mix_a1.weight", "time_mix_a2.weight",
  4024. "time_mix_v1.weight", "time_mix_v2.weight",
  4025. "time_mix_g1.weight", "time_mix_g2.weight",
  4026. ]
  4027. ):
  4028. data_torch = data_torch.transpose(0, 1)
  4029. if 'r_k' in new_name:
  4030. data_torch = data_torch.flatten()
  4031. if bid == 0 and "time_mix_a" in new_name:
  4032. # dummy v0/v1/v2 on first layer
  4033. # easist way to make llama happy
  4034. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  4035. yield (new_name, data_torch)
  4036. @ModelBase.register("RwkvHybridForCausalLM")
  4037. class ARwkv7Model(Rwkv7Model):
  4038. model_arch = gguf.MODEL_ARCH.ARWKV7
  4039. def set_vocab(self):
  4040. try:
  4041. self._set_vocab_sentencepiece()
  4042. except FileNotFoundError:
  4043. self._set_vocab_gpt2()
  4044. def set_gguf_parameters(self):
  4045. block_count = self.hparams["num_hidden_layers"]
  4046. hidden_size = self.hparams["hidden_size"]
  4047. head_size = self.hparams["head_size"]
  4048. rms_norm_eps = self.hparams["rms_norm_eps"]
  4049. intermediate_size = self.hparams["intermediate_size"]
  4050. wkv_has_gate = self.hparams["wkv_has_gate"]
  4051. assert self.hparams["wkv_version"] == 7
  4052. # ICLR: In-Context-Learning-Rate
  4053. lora_rank_decay = 64
  4054. lora_rank_iclr = 64
  4055. lora_rank_value_residual_mix = 32
  4056. lora_rank_gate = 128 if wkv_has_gate else 0
  4057. # RWKV isn't context limited
  4058. self.gguf_writer.add_context_length(1048576)
  4059. self.gguf_writer.add_embedding_length(hidden_size)
  4060. self.gguf_writer.add_block_count(block_count)
  4061. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4062. self.gguf_writer.add_wkv_head_size(head_size)
  4063. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  4064. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  4065. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  4066. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  4067. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4068. self.gguf_writer.add_file_type(self.ftype)
  4069. self.gguf_writer.add_token_shift_count(1)
  4070. # required by llama.cpp, unused
  4071. self.gguf_writer.add_head_count(0)
  4072. @ModelBase.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  4073. class MambaModel(TextModel):
  4074. model_arch = gguf.MODEL_ARCH.MAMBA
  4075. def __init__(self, dir_model: Path, *args, **kwargs):
  4076. # Avoid using AutoConfig for hparams
  4077. hparams = kwargs.pop("hparams", None)
  4078. if hparams is None:
  4079. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  4080. hparams = json.load(f)
  4081. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  4082. def set_vocab(self):
  4083. vocab_size = self.hparams["vocab_size"]
  4084. # Round vocab size to next multiple of 8
  4085. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  4086. # pad using ceiling division
  4087. # ref: https://stackoverflow.com/a/17511341/22827863
  4088. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  4089. self.hparams["vocab_size"] = vocab_size
  4090. if (self.dir_model / "tokenizer.json").is_file():
  4091. self._set_vocab_gpt2()
  4092. elif (self.dir_model / "tokenizer.model").is_file():
  4093. self._set_vocab_sentencepiece()
  4094. else:
  4095. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  4096. self._set_vocab_builtin("gpt-neox", vocab_size)
  4097. def set_gguf_parameters(self):
  4098. d_model = self.find_hparam(["hidden_size", "d_model"])
  4099. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  4100. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  4101. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  4102. # ceiling division
  4103. # ref: https://stackoverflow.com/a/17511341/22827863
  4104. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  4105. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  4106. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  4107. use_dt_b_c_norm = False
  4108. # For falconmamba we do apply RMS norm on B / DT and C layers
  4109. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  4110. use_dt_b_c_norm = True
  4111. # Fail early for models which don't have a block expansion factor of 2
  4112. assert d_inner == 2 * d_model
  4113. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  4114. self.gguf_writer.add_embedding_length(d_model)
  4115. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  4116. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  4117. self.gguf_writer.add_block_count(self.block_count)
  4118. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  4119. self.gguf_writer.add_ssm_inner_size(d_inner)
  4120. self.gguf_writer.add_ssm_state_size(d_state)
  4121. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  4122. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4123. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  4124. self.gguf_writer.add_file_type(self.ftype)
  4125. _tok_embd = None
  4126. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4127. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  4128. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  4129. new_name = self.map_tensor_name(name)
  4130. if name.endswith(".A_log"):
  4131. logger.debug("A_log --> A ==> " + new_name)
  4132. data_torch = -torch.exp(data_torch)
  4133. # [4 1 8192 1] -> [4 8192 1 1]
  4134. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  4135. data_torch = data_torch.squeeze()
  4136. # assuming token_embd.weight is seen before output.weight
  4137. if self._tok_embd is not None and new_name == output_name:
  4138. if torch.equal(self._tok_embd, data_torch):
  4139. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  4140. return []
  4141. elif new_name == tok_embd_name:
  4142. self._tok_embd = data_torch
  4143. return [(new_name, data_torch)]
  4144. @ModelBase.register("Mamba2ForCausalLM")
  4145. class Mamba2Model(TextModel):
  4146. model_arch = gguf.MODEL_ARCH.MAMBA2
  4147. def __init__(self, dir_model: Path, *args, **kwargs):
  4148. # Avoid using AutoConfig for hparams
  4149. # It wrongly assumes all Mamba2 models are Mamba-Codestral-7B-v0.1
  4150. hparams = kwargs.pop("hparams", None)
  4151. if hparams is None:
  4152. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  4153. hparams = json.load(f)
  4154. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  4155. self.d_model = self.find_hparam(["hidden_size", "d_model", "dim"])
  4156. self.d_inner = self.find_hparam(["mamba_d_ssm", "intermediate_size", "d_inner"], optional=True) or 2 * self.d_model
  4157. self.n_group = self.find_hparam(["n_groups"], optional=True) or 1
  4158. def set_vocab(self):
  4159. vocab_size = self.hparams["vocab_size"]
  4160. # Round vocab size to next multiple of 16
  4161. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 16)
  4162. # pad using ceiling division
  4163. # ref: https://stackoverflow.com/a/17511341/22827863
  4164. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  4165. self.hparams["vocab_size"] = vocab_size
  4166. if (self.dir_model / "tokenizer.model").is_file():
  4167. self._set_vocab_sentencepiece()
  4168. elif (self.dir_model / "tokenizer.model.v3").is_file():
  4169. # mamba-codestral
  4170. raise NotImplementedError(f"Please rename {self.dir_model / 'tokenizer.model.v3'} to {self.dir_model / 'tokenizer.model'}")
  4171. elif (self.dir_model / "tokenizer.json").is_file():
  4172. self._set_vocab_gpt2()
  4173. else:
  4174. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  4175. self._set_vocab_builtin("gpt-neox", vocab_size)
  4176. def set_gguf_parameters(self):
  4177. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  4178. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 128
  4179. head_dim = self.find_hparam(["mamba_d_head", "head_dim"], optional=True) or 64
  4180. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  4181. # Fail early for models which don't have a block expansion factor of 2
  4182. # TODO: does this really matter?
  4183. # skip the assertion for FalconH1 Model
  4184. if self.model_arch != gguf.MODEL_ARCH.FALCON_H1:
  4185. assert self.d_inner == 2 * self.d_model
  4186. assert self.d_inner % head_dim == 0
  4187. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  4188. self.gguf_writer.add_embedding_length(self.d_model)
  4189. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  4190. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  4191. self.gguf_writer.add_block_count(self.block_count)
  4192. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  4193. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  4194. self.gguf_writer.add_ssm_state_size(d_state)
  4195. self.gguf_writer.add_ssm_time_step_rank(self.d_inner // head_dim)
  4196. self.gguf_writer.add_ssm_group_count(self.n_group)
  4197. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4198. self.gguf_writer.add_file_type(self.ftype)
  4199. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4200. if name.startswith("model.backbone") or name.startswith("model.lm_head"):
  4201. # map Mamba-Codestral-7B-v0.1 tensor names to the names used by Mamba-2
  4202. name = name.removeprefix("model.")
  4203. if name.endswith(".dt_bias"):
  4204. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  4205. new_name = self.map_tensor_name(name)
  4206. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  4207. data_torch = data_torch.squeeze()
  4208. elif any(self.match_model_tensor_name(new_name, t, bid, suffix="") for t in [
  4209. gguf.MODEL_TENSOR.SSM_A,
  4210. gguf.MODEL_TENSOR.SSM_D,
  4211. ]):
  4212. # unsqueeze A to use similar shape semantics as Mamba-1
  4213. # (D is also unsqueezed, but for more straightforward broadcast internally)
  4214. data_torch = data_torch.reshape((*data_torch.shape, 1))
  4215. elif self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_NORM, bid):
  4216. data_torch = data_torch.reshape((self.n_group, self.d_inner // self.n_group))
  4217. if name.endswith(".A_log"):
  4218. logger.debug("A_log --> A ==> " + new_name)
  4219. data_torch = -torch.exp(data_torch)
  4220. yield (new_name, data_torch)
  4221. @ModelBase.register("JambaForCausalLM")
  4222. class JambaModel(TextModel):
  4223. model_arch = gguf.MODEL_ARCH.JAMBA
  4224. def get_vocab_base_pre(self, tokenizer) -> str:
  4225. del tokenizer # unused
  4226. return "gpt-2"
  4227. def set_vocab(self):
  4228. if (self.dir_model / "tokenizer.model").is_file():
  4229. # Using Jamba's tokenizer.json causes errors on model load
  4230. # (something about "byte not found in vocab"),
  4231. # but there's a working tokenizer.model
  4232. self._set_vocab_sentencepiece()
  4233. else:
  4234. # Some Jamba models only have a tokenizer.json, which works.
  4235. self._set_vocab_gpt2()
  4236. def set_gguf_parameters(self):
  4237. d_model = self.find_hparam(["hidden_size", "mamba_d_model"])
  4238. d_conv = self.find_hparam(["mamba_d_conv"], optional=True) or 4
  4239. d_inner = self.hparams["mamba_expand"] * d_model
  4240. d_state = self.find_hparam(["mamba_d_state"], optional=True) or 16
  4241. # ceiling division
  4242. # ref: https://stackoverflow.com/a/17511341/22827863
  4243. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  4244. dt_rank = self.find_hparam(["mamba_dt_rank"], optional=True) or -(d_model // -16)
  4245. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-6
  4246. n_kv_head = self.hparams["num_key_value_heads"]
  4247. attn_offset = self.hparams["attn_layer_offset"]
  4248. attn_period = self.hparams["attn_layer_period"]
  4249. n_kv_vec = [0 for _ in range(attn_offset)] + [
  4250. n_kv_head if (i - attn_offset) % attn_period == 0 else 0 for i in range(attn_offset, self.block_count)
  4251. ]
  4252. self.gguf_writer.add_block_count(self.block_count)
  4253. self.gguf_writer.add_context_length(self.find_hparam(["max_position_embeddings", "n_ctx"]))
  4254. self.gguf_writer.add_embedding_length(d_model)
  4255. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  4256. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  4257. self.gguf_writer.add_head_count_kv(n_kv_vec)
  4258. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  4259. self.gguf_writer.add_ssm_inner_size(d_inner)
  4260. self.gguf_writer.add_ssm_state_size(d_state)
  4261. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  4262. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4263. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  4264. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  4265. self.gguf_writer.add_file_type(self.ftype)
  4266. _experts: list[dict[str, Tensor]] | None = None
  4267. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4268. # Mini-Jamba
  4269. name = name.replace(".moe.", ".feed_forward.")
  4270. if bid is not None:
  4271. moe_offset = self.hparams["expert_layer_offset"]
  4272. moe_period = self.hparams["expert_layer_period"]
  4273. if not (bid >= moe_offset and (bid - moe_offset) % moe_period == 0):
  4274. name = name.replace(".experts.0.", ".")
  4275. # process the experts separately
  4276. if ".feed_forward.experts." in name:
  4277. n_experts = self.hparams["num_experts"]
  4278. assert bid is not None
  4279. if self._experts is None:
  4280. self._experts = [{} for _ in range(self.block_count)]
  4281. self._experts[bid][name] = data_torch
  4282. if len(self._experts[bid]) >= n_experts * 3:
  4283. # merge the experts into a single 3d tensor
  4284. for wid in ["down_proj", "gate_proj", "up_proj"]:
  4285. datas: list[Tensor] = []
  4286. for xid in range(n_experts):
  4287. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{wid}.weight"
  4288. datas.append(self._experts[bid][ename])
  4289. del self._experts[bid][ename]
  4290. data_torch = torch.stack(datas, dim=0)
  4291. # using the same merged name as qwen2moe
  4292. merged_name = f"model.layers.{bid}.mlp.experts.{wid}.weight"
  4293. new_name = self.map_tensor_name(merged_name)
  4294. yield new_name, data_torch
  4295. return
  4296. new_name = self.map_tensor_name(name)
  4297. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  4298. data_torch = data_torch.squeeze()
  4299. if name.endswith(".A_log"):
  4300. logger.debug("A_log --> A ==> " + new_name)
  4301. data_torch = -torch.exp(data_torch)
  4302. yield (new_name, data_torch)
  4303. def prepare_tensors(self):
  4304. super().prepare_tensors()
  4305. if self._experts is not None:
  4306. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4307. experts = [k for d in self._experts for k in d.keys()]
  4308. if len(experts) > 0:
  4309. raise ValueError(f"Unprocessed experts: {experts}")
  4310. @ModelBase.register("CohereForCausalLM")
  4311. class CommandR2Model(TextModel):
  4312. model_arch = gguf.MODEL_ARCH.COMMAND_R
  4313. def __init__(self, *args, **kwargs):
  4314. super().__init__(*args, **kwargs)
  4315. # max_position_embeddings = 8192 in config.json but model was actually
  4316. # trained on 128k context length
  4317. # aya-23 models don't have model_max_length specified
  4318. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  4319. def set_gguf_parameters(self):
  4320. super().set_gguf_parameters()
  4321. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  4322. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4323. @ModelBase.register("Cohere2ForCausalLM")
  4324. class Cohere2Model(TextModel):
  4325. model_arch = gguf.MODEL_ARCH.COHERE2
  4326. def set_gguf_parameters(self):
  4327. super().set_gguf_parameters()
  4328. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  4329. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  4330. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  4331. rotary_pct = self.hparams["rotary_pct"]
  4332. hidden_size = self.hparams["hidden_size"]
  4333. num_attention_heads = self.hparams["num_attention_heads"]
  4334. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  4335. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4336. @ModelBase.register("OlmoForCausalLM")
  4337. @ModelBase.register("OLMoForCausalLM")
  4338. class OlmoModel(TextModel):
  4339. model_arch = gguf.MODEL_ARCH.OLMO
  4340. def set_gguf_parameters(self):
  4341. super().set_gguf_parameters()
  4342. self.gguf_writer.add_layer_norm_eps(1e-5)
  4343. clip_qkv = self.hparams.get("clip_qkv")
  4344. if clip_qkv is not None:
  4345. self.gguf_writer.add_clamp_kqv(clip_qkv)
  4346. # Same as super class, but permuting q_proj, k_proj
  4347. # Copied from: LlamaModel
  4348. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4349. del bid # unused
  4350. n_head = self.hparams["num_attention_heads"]
  4351. n_kv_head = self.hparams.get("num_key_value_heads")
  4352. if name.endswith("q_proj.weight"):
  4353. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4354. if name.endswith("k_proj.weight"):
  4355. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4356. return [(self.map_tensor_name(name), data_torch)]
  4357. @ModelBase.register("Olmo2ForCausalLM")
  4358. class Olmo2Model(TextModel):
  4359. model_arch = gguf.MODEL_ARCH.OLMO2
  4360. @ModelBase.register("OlmoeForCausalLM")
  4361. class OlmoeModel(TextModel):
  4362. model_arch = gguf.MODEL_ARCH.OLMOE
  4363. def set_gguf_parameters(self):
  4364. super().set_gguf_parameters()
  4365. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  4366. if (n_experts := self.hparams.get("num_experts")) is not None:
  4367. self.gguf_writer.add_expert_count(n_experts)
  4368. _experts: list[dict[str, Tensor]] | None = None
  4369. # Copied from: Qwen2MoeModel
  4370. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4371. # process the experts separately
  4372. if name.find("experts") != -1:
  4373. n_experts = self.hparams["num_experts"]
  4374. assert bid is not None
  4375. if self._experts is None:
  4376. self._experts = [{} for _ in range(self.block_count)]
  4377. self._experts[bid][name] = data_torch
  4378. if len(self._experts[bid]) >= n_experts * 3:
  4379. tensors: list[tuple[str, Tensor]] = []
  4380. # merge the experts into a single 3d tensor
  4381. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4382. datas: list[Tensor] = []
  4383. for xid in range(n_experts):
  4384. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4385. datas.append(self._experts[bid][ename])
  4386. del self._experts[bid][ename]
  4387. data_torch = torch.stack(datas, dim=0)
  4388. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4389. new_name = self.map_tensor_name(merged_name)
  4390. tensors.append((new_name, data_torch))
  4391. return tensors
  4392. else:
  4393. return []
  4394. return [(self.map_tensor_name(name), data_torch)]
  4395. # Copied from: Qwen2MoeModel
  4396. def prepare_tensors(self):
  4397. super().prepare_tensors()
  4398. if self._experts is not None:
  4399. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4400. experts = [k for d in self._experts for k in d.keys()]
  4401. if len(experts) > 0:
  4402. raise ValueError(f"Unprocessed experts: {experts}")
  4403. @ModelBase.register("JinaBertModel", "JinaBertForMaskedLM")
  4404. class JinaBertV2Model(BertModel):
  4405. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  4406. def set_vocab(self):
  4407. tokenizer_class = 'BertTokenizer'
  4408. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  4409. tokenizer_class = json.load(f)['tokenizer_class']
  4410. if tokenizer_class == 'BertTokenizer':
  4411. super().set_vocab()
  4412. elif tokenizer_class == 'RobertaTokenizer':
  4413. self._set_vocab_gpt2()
  4414. self.gguf_writer.add_token_type_count(2)
  4415. else:
  4416. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  4417. @ModelBase.register("OpenELMForCausalLM")
  4418. class OpenELMModel(TextModel):
  4419. model_arch = gguf.MODEL_ARCH.OPENELM
  4420. @staticmethod
  4421. def _make_divisible(v: float | int, divisor: int) -> int:
  4422. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  4423. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  4424. # Make sure that round down does not go down by more than 10%.
  4425. if new_v < 0.9 * v:
  4426. new_v += divisor
  4427. return new_v
  4428. def __init__(self, *args, **kwargs):
  4429. super().__init__(*args, **kwargs)
  4430. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  4431. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  4432. self._n_embd: int = self.hparams["model_dim"]
  4433. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  4434. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  4435. self._ffn_dims: list[int] = [
  4436. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  4437. for multiplier in ffn_multipliers
  4438. ]
  4439. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  4440. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  4441. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  4442. def set_vocab(self):
  4443. try:
  4444. self._set_vocab_sentencepiece()
  4445. except FileNotFoundError:
  4446. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  4447. def set_gguf_parameters(self):
  4448. n_embd = self._n_embd
  4449. head_dim = self.hparams["head_dim"]
  4450. rot_pct = 1.0
  4451. assert self.block_count == len(self._num_kv_heads)
  4452. assert self.block_count == len(self._num_query_heads)
  4453. assert self.block_count == len(self._ffn_dims)
  4454. self.gguf_writer.add_block_count(self.block_count)
  4455. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  4456. self.gguf_writer.add_embedding_length(n_embd)
  4457. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  4458. self.gguf_writer.add_head_count(self._num_query_heads)
  4459. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  4460. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  4461. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  4462. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  4463. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  4464. self.gguf_writer.add_key_length(head_dim)
  4465. self.gguf_writer.add_value_length(head_dim)
  4466. self.gguf_writer.add_file_type(self.ftype)
  4467. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  4468. if "n_layers" in keys:
  4469. return self.hparams["num_transformer_layers"]
  4470. return super().find_hparam(keys, optional)
  4471. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4472. # split ff
  4473. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  4474. ff_dim = self._ffn_dims[bid]
  4475. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  4476. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  4477. return
  4478. yield (self.map_tensor_name(name), data_torch)
  4479. @ModelBase.register("ArcticForCausalLM")
  4480. class ArcticModel(TextModel):
  4481. model_arch = gguf.MODEL_ARCH.ARCTIC
  4482. def set_vocab(self):
  4483. # The reason for using a custom implementation here is that the
  4484. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  4485. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  4486. from sentencepiece import SentencePieceProcessor
  4487. tokenizer_path = self.dir_model / 'tokenizer.model'
  4488. if not tokenizer_path.is_file():
  4489. logger.error(f'Error: Missing {tokenizer_path}')
  4490. sys.exit(1)
  4491. # Read the whole vocabulary from the tokenizer.model file
  4492. tokenizer = SentencePieceProcessor()
  4493. tokenizer.LoadFromFile(str(tokenizer_path))
  4494. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4495. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4496. scores: list[float] = [-10000.0] * vocab_size
  4497. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4498. for token_id in range(tokenizer.vocab_size()):
  4499. piece = tokenizer.IdToPiece(token_id)
  4500. text = piece.encode("utf-8")
  4501. score = tokenizer.GetScore(token_id)
  4502. toktype = SentencePieceTokenTypes.NORMAL
  4503. if tokenizer.IsUnknown(token_id):
  4504. toktype = SentencePieceTokenTypes.UNKNOWN
  4505. elif tokenizer.IsControl(token_id):
  4506. toktype = SentencePieceTokenTypes.CONTROL
  4507. elif tokenizer.IsUnused(token_id):
  4508. toktype = SentencePieceTokenTypes.UNUSED
  4509. elif tokenizer.IsByte(token_id):
  4510. toktype = SentencePieceTokenTypes.BYTE
  4511. tokens[token_id] = text
  4512. scores[token_id] = score
  4513. toktypes[token_id] = toktype
  4514. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  4515. # of information about added/redefined tokens and modify them accordingly.
  4516. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  4517. if tokenizer_config_file.is_file():
  4518. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  4519. tokenizer_config_json = json.load(f)
  4520. if "added_tokens_decoder" in tokenizer_config_json:
  4521. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  4522. for token_id, token_json in added_tokens_decoder.items():
  4523. token_id = int(token_id)
  4524. if token_id >= vocab_size:
  4525. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  4526. continue
  4527. token_content = token_json["content"]
  4528. token_type = SentencePieceTokenTypes.USER_DEFINED
  4529. token_score = -10000.0
  4530. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  4531. # Set the score to 0.0 as in the original tokenizer.model
  4532. if ("special" in token_json) and token_json["special"]:
  4533. if token_content == tokenizer_config_json["unk_token"]:
  4534. token_type = SentencePieceTokenTypes.UNKNOWN
  4535. else:
  4536. token_type = SentencePieceTokenTypes.CONTROL
  4537. token_score = 0.0
  4538. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  4539. tokens[token_id] = token_content.encode("utf-8")
  4540. toktypes[token_id] = token_type
  4541. scores[token_id] = token_score
  4542. self.gguf_writer.add_tokenizer_model("llama")
  4543. self.gguf_writer.add_tokenizer_pre("default")
  4544. self.gguf_writer.add_token_list(tokens)
  4545. self.gguf_writer.add_token_scores(scores)
  4546. self.gguf_writer.add_token_types(toktypes)
  4547. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4548. special_vocab.add_to_gguf(self.gguf_writer)
  4549. def set_gguf_parameters(self):
  4550. super().set_gguf_parameters()
  4551. hparams = self.hparams
  4552. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4553. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  4554. _experts: list[dict[str, Tensor]] | None = None
  4555. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4556. n_head = self.hparams["num_attention_heads"]
  4557. n_kv_head = self.hparams.get("num_key_value_heads")
  4558. if name.endswith("q_proj.weight"):
  4559. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4560. if name.endswith("k_proj.weight"):
  4561. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4562. # process the experts separately
  4563. if name.find("block_sparse_moe.experts") != -1:
  4564. n_experts = self.hparams["num_local_experts"]
  4565. assert bid is not None
  4566. if self._experts is None:
  4567. self._experts = [{} for _ in range(self.block_count)]
  4568. self._experts[bid][name] = data_torch
  4569. if len(self._experts[bid]) >= n_experts * 3:
  4570. tensors: list[tuple[str, Tensor]] = []
  4571. # merge the experts into a single 3d tensor
  4572. for wid in ["w1", "w2", "w3"]:
  4573. datas: list[Tensor] = []
  4574. for xid in range(n_experts):
  4575. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  4576. datas.append(self._experts[bid][ename])
  4577. del self._experts[bid][ename]
  4578. data_torch = torch.stack(datas, dim=0)
  4579. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  4580. new_name = self.map_tensor_name(merged_name)
  4581. tensors.append((new_name, data_torch))
  4582. return tensors
  4583. else:
  4584. return []
  4585. return [(self.map_tensor_name(name), data_torch)]
  4586. def prepare_tensors(self):
  4587. super().prepare_tensors()
  4588. if self._experts is not None:
  4589. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4590. experts = [k for d in self._experts for k in d.keys()]
  4591. if len(experts) > 0:
  4592. raise ValueError(f"Unprocessed experts: {experts}")
  4593. @ModelBase.register("DeepseekForCausalLM")
  4594. class DeepseekModel(TextModel):
  4595. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  4596. def set_vocab(self):
  4597. try:
  4598. self._set_vocab_sentencepiece()
  4599. except FileNotFoundError:
  4600. self._set_vocab_gpt2()
  4601. def set_gguf_parameters(self):
  4602. super().set_gguf_parameters()
  4603. hparams = self.hparams
  4604. if (rope_dim := hparams.get("head_dim")) is None:
  4605. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  4606. self.gguf_writer.add_rope_dimension_count(rope_dim)
  4607. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4608. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  4609. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4610. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  4611. self.gguf_writer.add_expert_weights_scale(1.0)
  4612. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  4613. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  4614. _experts: list[dict[str, Tensor]] | None = None
  4615. @staticmethod
  4616. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  4617. if n_head_kv is not None and n_head != n_head_kv:
  4618. n_head = n_head_kv
  4619. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  4620. .swapaxes(1, 2)
  4621. .reshape(weights.shape))
  4622. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4623. n_head = self.hparams["num_attention_heads"]
  4624. n_kv_head = self.hparams.get("num_key_value_heads")
  4625. if name.endswith(("q_proj.weight", "q_proj.bias")):
  4626. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  4627. if name.endswith(("k_proj.weight", "k_proj.bias")):
  4628. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  4629. # process the experts separately
  4630. if name.find("mlp.experts") != -1:
  4631. n_experts = self.hparams["n_routed_experts"]
  4632. assert bid is not None
  4633. if self._experts is None:
  4634. self._experts = [{} for _ in range(self.block_count)]
  4635. self._experts[bid][name] = data_torch
  4636. if len(self._experts[bid]) >= n_experts * 3:
  4637. tensors: list[tuple[str, Tensor]] = []
  4638. # merge the experts into a single 3d tensor
  4639. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4640. datas: list[Tensor] = []
  4641. for xid in range(n_experts):
  4642. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4643. datas.append(self._experts[bid][ename])
  4644. del self._experts[bid][ename]
  4645. data_torch = torch.stack(datas, dim=0)
  4646. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4647. new_name = self.map_tensor_name(merged_name)
  4648. tensors.append((new_name, data_torch))
  4649. return tensors
  4650. else:
  4651. return []
  4652. return [(self.map_tensor_name(name), data_torch)]
  4653. def prepare_tensors(self):
  4654. super().prepare_tensors()
  4655. if self._experts is not None:
  4656. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4657. experts = [k for d in self._experts for k in d.keys()]
  4658. if len(experts) > 0:
  4659. raise ValueError(f"Unprocessed experts: {experts}")
  4660. @ModelBase.register("DeepseekV2ForCausalLM")
  4661. @ModelBase.register("DeepseekV3ForCausalLM")
  4662. class DeepseekV2Model(TextModel):
  4663. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  4664. def set_vocab(self):
  4665. try:
  4666. self._set_vocab_gpt2()
  4667. return
  4668. except Exception:
  4669. pass
  4670. from transformers import AutoTokenizer
  4671. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  4672. tokpre = self.get_vocab_base_pre(tokenizer)
  4673. if tokpre == "kimi-k2":
  4674. # Build merges list using the approach similar to HunYuanMoE
  4675. merges = []
  4676. vocab = {}
  4677. mergeable_ranks = tokenizer.model._mergeable_ranks
  4678. for token, rank in mergeable_ranks.items():
  4679. vocab[QwenModel.token_bytes_to_string(token)] = rank
  4680. if len(token) == 1:
  4681. continue
  4682. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  4683. if len(merged) == 2:
  4684. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  4685. # Build token list
  4686. vocab_size = self.hparams["vocab_size"]
  4687. special_tokens = tokenizer.special_tokens
  4688. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  4689. tokens: list[str] = []
  4690. toktypes: list[int] = []
  4691. for i in range(vocab_size):
  4692. if i not in reverse_vocab:
  4693. tokens.append(f"[PAD{i}]")
  4694. toktypes.append(gguf.TokenType.UNUSED)
  4695. else:
  4696. token = reverse_vocab[i]
  4697. tokens.append(token)
  4698. if i in special_tokens.values():
  4699. toktypes.append(gguf.TokenType.CONTROL)
  4700. else:
  4701. toktypes.append(gguf.TokenType.NORMAL)
  4702. self.gguf_writer.add_tokenizer_model("gpt2")
  4703. self.gguf_writer.add_tokenizer_pre(tokpre)
  4704. self.gguf_writer.add_token_list(tokens)
  4705. self.gguf_writer.add_token_types(toktypes)
  4706. self.gguf_writer.add_token_merges(merges)
  4707. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  4708. special_vocab.add_to_gguf(self.gguf_writer)
  4709. else:
  4710. raise NotImplementedError(f"Deepseek pre-tokenizer {tokpre!r} is not supported yet!")
  4711. def set_gguf_parameters(self):
  4712. # note: deepseek2 using MLA converts into MQA (ie: GQA with 1 group)
  4713. self.hparams["num_key_value_heads"] = 1
  4714. super().set_gguf_parameters()
  4715. hparams = self.hparams
  4716. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  4717. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4718. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  4719. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  4720. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  4721. # note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
  4722. self.gguf_writer.add_key_length(hparams["kv_lora_rank"] + hparams["qk_rope_head_dim"])
  4723. self.gguf_writer.add_value_length(hparams["kv_lora_rank"])
  4724. self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  4725. self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
  4726. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  4727. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  4728. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  4729. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  4730. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  4731. if hparams["scoring_func"] == "sigmoid":
  4732. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  4733. elif hparams["scoring_func"] == "softmax":
  4734. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  4735. else:
  4736. raise ValueError(f"Unsupported scoring_func value: {hparams['scoring_func']}")
  4737. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  4738. rope_scaling = self.hparams.get("rope_scaling") or {}
  4739. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  4740. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  4741. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  4742. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  4743. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * rope_scaling["mscale_all_dim"])
  4744. _experts: list[dict[str, Tensor]] | None = None
  4745. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4746. # rename e_score_correction_bias tensors
  4747. if name.endswith("e_score_correction_bias"):
  4748. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  4749. # skip Multi-Token Prediction (MTP) layers
  4750. block_count = self.hparams["num_hidden_layers"]
  4751. match = re.match(r"model.layers.(\d+)", name)
  4752. if match and int(match.group(1)) >= block_count:
  4753. return []
  4754. # process the experts separately
  4755. if name.find("mlp.experts") != -1:
  4756. n_experts = self.hparams["n_routed_experts"]
  4757. assert bid is not None
  4758. if self._experts is None:
  4759. self._experts = [{} for _ in range(self.block_count)]
  4760. self._experts[bid][name] = data_torch
  4761. if len(self._experts[bid]) >= n_experts * 3:
  4762. tensors: list[tuple[str, Tensor]] = []
  4763. # merge the experts into a single 3d tensor
  4764. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4765. datas: list[Tensor] = []
  4766. for xid in range(n_experts):
  4767. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4768. datas.append(self._experts[bid][ename])
  4769. del self._experts[bid][ename]
  4770. data_torch = torch.stack(datas, dim=0)
  4771. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4772. new_name = self.map_tensor_name(merged_name)
  4773. tensors.append((new_name, data_torch))
  4774. return tensors
  4775. else:
  4776. return []
  4777. # note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
  4778. if name.endswith("kv_b_proj.weight"):
  4779. name_kb = name.replace("kv_b_proj", "k_b_proj")
  4780. name_vb = name.replace("kv_b_proj", "v_b_proj")
  4781. n_head_kv = self.hparams["num_key_value_heads"]
  4782. v_head_dim = self.hparams["v_head_dim"]
  4783. qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
  4784. assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
  4785. kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
  4786. k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
  4787. k_b = k_b.transpose(1, 2)
  4788. return [
  4789. (self.map_tensor_name(name_kb), k_b),
  4790. (self.map_tensor_name(name_vb), v_b)
  4791. ]
  4792. return [(self.map_tensor_name(name), data_torch)]
  4793. def prepare_tensors(self):
  4794. super().prepare_tensors()
  4795. if self._experts is not None:
  4796. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4797. experts = [k for d in self._experts for k in d.keys()]
  4798. if len(experts) > 0:
  4799. raise ValueError(f"Unprocessed experts: {experts}")
  4800. @ModelBase.register("Dots1ForCausalLM")
  4801. class Dots1Model(Qwen2MoeModel):
  4802. model_arch = gguf.MODEL_ARCH.DOTS1
  4803. def __init__(self, *args, **kwargs):
  4804. super().__init__(*args, **kwargs)
  4805. self.hparams["num_experts"] = self.hparams["n_routed_experts"]
  4806. def set_gguf_parameters(self):
  4807. super().set_gguf_parameters()
  4808. self.gguf_writer.add_leading_dense_block_count(self.hparams["first_k_dense_replace"])
  4809. self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
  4810. self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
  4811. self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
  4812. if self.hparams["scoring_func"] == "noaux_tc":
  4813. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  4814. else:
  4815. raise ValueError(f"Unsupported scoring_func value: {self.hparams['scoring_func']}")
  4816. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  4817. if name.endswith("e_score_correction_bias"):
  4818. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  4819. if "shared_experts" in name:
  4820. return [(self.map_tensor_name(name), data_torch)]
  4821. return super().modify_tensors(data_torch, name, bid)
  4822. @ModelBase.register("PLMForCausalLM")
  4823. class PLMModel(TextModel):
  4824. model_arch = gguf.MODEL_ARCH.PLM
  4825. def set_vocab(self):
  4826. self._set_vocab_gpt2()
  4827. def set_gguf_parameters(self):
  4828. super().set_gguf_parameters()
  4829. hparams = self.hparams
  4830. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4831. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  4832. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  4833. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  4834. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  4835. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4836. return [(self.map_tensor_name(name), data_torch)]
  4837. def prepare_tensors(self):
  4838. super().prepare_tensors()
  4839. @ModelBase.register("T5WithLMHeadModel")
  4840. @ModelBase.register("T5ForConditionalGeneration")
  4841. @ModelBase.register("MT5ForConditionalGeneration")
  4842. @ModelBase.register("UMT5ForConditionalGeneration")
  4843. class T5Model(TextModel):
  4844. model_arch = gguf.MODEL_ARCH.T5
  4845. def __init__(self, *args, **kwargs):
  4846. super().__init__(*args, **kwargs)
  4847. self.shared_token_embeddings_found = False
  4848. def set_vocab(self):
  4849. # to avoid TypeError: Descriptors cannot be created directly
  4850. # exception when importing sentencepiece_model_pb2
  4851. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  4852. from sentencepiece import SentencePieceProcessor
  4853. from sentencepiece import sentencepiece_model_pb2 as model
  4854. tokenizer_path = self.dir_model / 'tokenizer.model'
  4855. # many older models use spiece.model tokenizer model filename
  4856. if not tokenizer_path.is_file():
  4857. tokenizer_path = self.dir_model / 'spiece.model'
  4858. if not tokenizer_path.is_file():
  4859. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  4860. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4861. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4862. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  4863. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  4864. # assure the tokenizer model file name is correct
  4865. assert tokenizer_path.name == 'tokenizer.model'
  4866. return self._set_vocab_sentencepiece()
  4867. else:
  4868. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  4869. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4870. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  4871. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  4872. tokenizer = SentencePieceProcessor()
  4873. tokenizer.LoadFromFile(str(tokenizer_path))
  4874. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4875. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4876. scores: list[float] = [-10000.0] * vocab_size
  4877. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4878. for token_id in range(tokenizer.vocab_size()):
  4879. piece = tokenizer.IdToPiece(token_id)
  4880. text = piece.encode("utf-8")
  4881. score = tokenizer.GetScore(token_id)
  4882. toktype = SentencePieceTokenTypes.NORMAL
  4883. if tokenizer.IsUnknown(token_id):
  4884. toktype = SentencePieceTokenTypes.UNKNOWN
  4885. elif tokenizer.IsControl(token_id):
  4886. toktype = SentencePieceTokenTypes.CONTROL
  4887. elif tokenizer.IsUnused(token_id):
  4888. toktype = SentencePieceTokenTypes.UNUSED
  4889. elif tokenizer.IsByte(token_id):
  4890. toktype = SentencePieceTokenTypes.BYTE
  4891. tokens[token_id] = text
  4892. scores[token_id] = score
  4893. toktypes[token_id] = toktype
  4894. added_tokens_file = self.dir_model / 'added_tokens.json'
  4895. if added_tokens_file.is_file():
  4896. with open(added_tokens_file, "r", encoding="utf-8") as f:
  4897. added_tokens_json = json.load(f)
  4898. for key in added_tokens_json:
  4899. token_id = added_tokens_json[key]
  4900. if token_id >= vocab_size:
  4901. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  4902. continue
  4903. tokens[token_id] = key.encode("utf-8")
  4904. scores[token_id] = -1000.0
  4905. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4906. if vocab_size > len(tokens):
  4907. pad_count = vocab_size - len(tokens)
  4908. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  4909. for i in range(1, pad_count + 1):
  4910. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  4911. scores.append(-1000.0)
  4912. toktypes.append(SentencePieceTokenTypes.UNUSED)
  4913. self.gguf_writer.add_tokenizer_model("t5")
  4914. self.gguf_writer.add_tokenizer_pre("default")
  4915. self.gguf_writer.add_token_list(tokens)
  4916. self.gguf_writer.add_token_scores(scores)
  4917. self.gguf_writer.add_token_types(toktypes)
  4918. self.gguf_writer.add_add_space_prefix(add_prefix)
  4919. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  4920. if precompiled_charsmap:
  4921. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  4922. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4923. special_vocab.add_to_gguf(self.gguf_writer)
  4924. def set_gguf_parameters(self):
  4925. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  4926. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  4927. n_ctx = 512
  4928. self.gguf_writer.add_context_length(n_ctx)
  4929. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  4930. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  4931. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  4932. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  4933. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  4934. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  4935. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4936. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  4937. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  4938. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  4939. self.gguf_writer.add_file_type(self.ftype)
  4940. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4941. del bid # unused
  4942. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  4943. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  4944. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  4945. # and decoder and ignore the remaining ones.
  4946. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  4947. if not self.shared_token_embeddings_found:
  4948. name = "shared.weight"
  4949. self.shared_token_embeddings_found = True
  4950. else:
  4951. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  4952. return []
  4953. return [(self.map_tensor_name(name), data_torch)]
  4954. @ModelBase.register("T5EncoderModel")
  4955. class T5EncoderModel(TextModel):
  4956. model_arch = gguf.MODEL_ARCH.T5ENCODER
  4957. def __init__(self, *args, **kwargs):
  4958. super().__init__(*args, **kwargs)
  4959. self.shared_token_embeddings_found = False
  4960. def set_vocab(self):
  4961. # to avoid TypeError: Descriptors cannot be created directly
  4962. # exception when importing sentencepiece_model_pb2
  4963. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  4964. from sentencepiece import SentencePieceProcessor
  4965. from sentencepiece import sentencepiece_model_pb2 as model
  4966. tokenizer_path = self.dir_model / 'tokenizer.model'
  4967. # many older models use spiece.model tokenizer model filename
  4968. if not tokenizer_path.is_file():
  4969. tokenizer_path = self.dir_model / 'spiece.model'
  4970. if not tokenizer_path.is_file():
  4971. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  4972. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4973. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4974. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  4975. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  4976. # assure the tokenizer model file name is correct
  4977. assert tokenizer_path.name == 'tokenizer.model'
  4978. return self._set_vocab_sentencepiece()
  4979. else:
  4980. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  4981. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4982. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  4983. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  4984. tokenizer = SentencePieceProcessor()
  4985. tokenizer.LoadFromFile(str(tokenizer_path))
  4986. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4987. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4988. scores: list[float] = [-10000.0] * vocab_size
  4989. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4990. for token_id in range(tokenizer.vocab_size()):
  4991. piece = tokenizer.IdToPiece(token_id)
  4992. text = piece.encode("utf-8")
  4993. score = tokenizer.GetScore(token_id)
  4994. toktype = SentencePieceTokenTypes.NORMAL
  4995. if tokenizer.IsUnknown(token_id):
  4996. toktype = SentencePieceTokenTypes.UNKNOWN
  4997. elif tokenizer.IsControl(token_id):
  4998. toktype = SentencePieceTokenTypes.CONTROL
  4999. elif tokenizer.IsUnused(token_id):
  5000. toktype = SentencePieceTokenTypes.UNUSED
  5001. elif tokenizer.IsByte(token_id):
  5002. toktype = SentencePieceTokenTypes.BYTE
  5003. tokens[token_id] = text
  5004. scores[token_id] = score
  5005. toktypes[token_id] = toktype
  5006. added_tokens_file = self.dir_model / 'added_tokens.json'
  5007. if added_tokens_file.is_file():
  5008. with open(added_tokens_file, "r", encoding="utf-8") as f:
  5009. added_tokens_json = json.load(f)
  5010. for key in added_tokens_json:
  5011. token_id = added_tokens_json[key]
  5012. if token_id >= vocab_size:
  5013. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5014. continue
  5015. tokens[token_id] = key.encode("utf-8")
  5016. scores[token_id] = -1000.0
  5017. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  5018. if vocab_size > len(tokens):
  5019. pad_count = vocab_size - len(tokens)
  5020. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  5021. for i in range(1, pad_count + 1):
  5022. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  5023. scores.append(-1000.0)
  5024. toktypes.append(SentencePieceTokenTypes.UNUSED)
  5025. self.gguf_writer.add_tokenizer_model("t5")
  5026. self.gguf_writer.add_tokenizer_pre("default")
  5027. self.gguf_writer.add_token_list(tokens)
  5028. self.gguf_writer.add_token_scores(scores)
  5029. self.gguf_writer.add_token_types(toktypes)
  5030. self.gguf_writer.add_add_space_prefix(add_prefix)
  5031. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  5032. if precompiled_charsmap:
  5033. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  5034. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5035. special_vocab.add_to_gguf(self.gguf_writer)
  5036. def set_gguf_parameters(self):
  5037. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  5038. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  5039. n_ctx = 512
  5040. self.gguf_writer.add_context_length(n_ctx)
  5041. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  5042. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  5043. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  5044. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  5045. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  5046. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  5047. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  5048. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  5049. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  5050. self.gguf_writer.add_file_type(self.ftype)
  5051. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5052. del bid # unused
  5053. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  5054. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  5055. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  5056. # and decoder and ignore the remaining ones.
  5057. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  5058. if not self.shared_token_embeddings_found:
  5059. name = "shared.weight"
  5060. self.shared_token_embeddings_found = True
  5061. else:
  5062. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  5063. return []
  5064. return [(self.map_tensor_name(name), data_torch)]
  5065. @ModelBase.register("JAISLMHeadModel")
  5066. class JaisModel(TextModel):
  5067. model_arch = gguf.MODEL_ARCH.JAIS
  5068. def __init__(self, *args, **kwargs):
  5069. super().__init__(*args, **kwargs)
  5070. # SwigLU activation
  5071. assert self.hparams["activation_function"] == "swiglu"
  5072. # ALiBi position embedding
  5073. assert self.hparams["position_embedding_type"] == "alibi"
  5074. # Embeddings scale
  5075. self.embeddings_scale = 1.0
  5076. if 'mup_embeddings_scale' in self.hparams:
  5077. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  5078. elif 'embeddings_scale' in self.hparams:
  5079. self.embeddings_scale = self.hparams['embeddings_scale']
  5080. else:
  5081. assert False
  5082. self.width_scale = 1.0
  5083. if 'mup_output_alpha' in self.hparams:
  5084. assert 'mup_width_scale' in self.hparams
  5085. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  5086. elif 'width_scale' in self.hparams:
  5087. self.width_scale = self.hparams['width_scale']
  5088. else:
  5089. assert False
  5090. self.max_alibi_bias = 8.0
  5091. def set_vocab(self):
  5092. self._set_vocab_gpt2()
  5093. def set_gguf_parameters(self):
  5094. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  5095. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  5096. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  5097. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  5098. self.gguf_writer.add_head_count(self.hparams["n_head"])
  5099. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  5100. self.gguf_writer.add_file_type(self.ftype)
  5101. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5102. del bid # unused
  5103. tensors: list[tuple[str, Tensor]] = []
  5104. # we don't need these
  5105. if name.endswith((".attn.bias")):
  5106. return tensors
  5107. if name.endswith(("relative_pe.slopes")):
  5108. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  5109. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  5110. # but Jais's PyTorch model simply precalculates the slope values and places them
  5111. # in relative_pes.slopes
  5112. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  5113. first_val = float(data_torch[0].item())
  5114. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  5115. return tensors
  5116. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  5117. data_torch = data_torch.transpose(1, 0)
  5118. new_name = self.map_tensor_name(name)
  5119. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  5120. tensors.append((new_name, data_torch * self.embeddings_scale))
  5121. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  5122. tensors.append((new_name, data_torch * self.width_scale))
  5123. else:
  5124. tensors.append((new_name, data_torch))
  5125. return tensors
  5126. def prepare_tensors(self):
  5127. super().prepare_tensors()
  5128. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  5129. @ModelBase.register("Glm4ForCausalLM")
  5130. class Glm4Model(TextModel):
  5131. model_arch = gguf.MODEL_ARCH.GLM4
  5132. def set_vocab(self):
  5133. from transformers import AutoTokenizer
  5134. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  5135. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5136. tokens, toktypes, tokpre = self.get_vocab_base()
  5137. self.gguf_writer.add_tokenizer_model("gpt2")
  5138. self.gguf_writer.add_tokenizer_pre(tokpre)
  5139. self.gguf_writer.add_token_list(tokens)
  5140. self.gguf_writer.add_token_types(toktypes)
  5141. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5142. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  5143. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  5144. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  5145. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  5146. special_vocab.add_to_gguf(self.gguf_writer)
  5147. def set_gguf_parameters(self):
  5148. super().set_gguf_parameters()
  5149. rope_dim = self.hparams["head_dim"]
  5150. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  5151. rope_scaling = self.hparams.get("rope_scaling") or {}
  5152. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  5153. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  5154. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5155. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  5156. @ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  5157. class ChatGLMModel(TextModel):
  5158. model_arch = gguf.MODEL_ARCH.CHATGLM
  5159. def set_vocab_chatglm3(self):
  5160. dir_model = self.dir_model
  5161. hparams = self.hparams
  5162. tokens: list[bytes] = []
  5163. toktypes: list[int] = []
  5164. scores: list[float] = []
  5165. from transformers import AutoTokenizer
  5166. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  5167. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  5168. assert max(tokenizer.get_vocab().values()) < vocab_size
  5169. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  5170. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  5171. for token_id in range(vocab_size):
  5172. piece = tokenizer._convert_id_to_token(token_id)
  5173. if token_id == 0:
  5174. piece = "<unk>"
  5175. elif token_id == 1:
  5176. piece = "<bos>"
  5177. elif token_id == 2:
  5178. piece = "<eos>"
  5179. text = piece.encode("utf-8")
  5180. score = 0.0
  5181. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  5182. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  5183. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  5184. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  5185. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  5186. if piece in special_tokens:
  5187. toktype = SentencePieceTokenTypes.CONTROL
  5188. elif len(piece) == 0:
  5189. text = f"[PAD{token_id}]".encode("utf-8")
  5190. toktype = SentencePieceTokenTypes.UNUSED
  5191. else:
  5192. toktype = SentencePieceTokenTypes.USER_DEFINED
  5193. tokens.append(text)
  5194. scores.append(score)
  5195. toktypes.append(toktype)
  5196. continue
  5197. toktype = SentencePieceTokenTypes.NORMAL
  5198. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  5199. toktype = SentencePieceTokenTypes.UNKNOWN
  5200. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  5201. toktype = SentencePieceTokenTypes.CONTROL
  5202. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  5203. toktype = SentencePieceTokenTypes.UNUSED
  5204. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  5205. toktype = SentencePieceTokenTypes.BYTE
  5206. tokens.append(text)
  5207. scores.append(score)
  5208. toktypes.append(toktype)
  5209. self.gguf_writer.add_tokenizer_model("llama")
  5210. # glm3 needs prefix and suffix formatted as:
  5211. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  5212. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  5213. self.gguf_writer.add_token_list(tokens)
  5214. self.gguf_writer.add_token_scores(scores)
  5215. self.gguf_writer.add_token_types(toktypes)
  5216. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5217. special_vocab.add_to_gguf(self.gguf_writer)
  5218. @staticmethod
  5219. def token_bytes_to_string(b):
  5220. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  5221. byte_encoder = bytes_to_unicode()
  5222. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  5223. @staticmethod
  5224. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  5225. parts = [bytes([b]) for b in token]
  5226. while True:
  5227. min_idx = None
  5228. min_rank = None
  5229. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  5230. rank = mergeable_ranks.get(pair[0] + pair[1])
  5231. if rank is not None and (min_rank is None or rank < min_rank):
  5232. min_idx = i
  5233. min_rank = rank
  5234. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  5235. break
  5236. assert min_idx is not None
  5237. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  5238. return parts
  5239. def set_vocab(self):
  5240. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  5241. self.set_vocab_chatglm3()
  5242. return
  5243. dir_model = self.dir_model
  5244. hparams = self.hparams
  5245. tokens: list[str] = []
  5246. toktypes: list[int] = []
  5247. from transformers import AutoTokenizer
  5248. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  5249. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  5250. assert max(tokenizer.get_vocab().values()) < vocab_size
  5251. tokens, toktypes, tokpre = self.get_vocab_base()
  5252. self.gguf_writer.add_tokenizer_model("gpt2")
  5253. self.gguf_writer.add_tokenizer_pre(tokpre)
  5254. self.gguf_writer.add_token_list(tokens)
  5255. self.gguf_writer.add_token_types(toktypes)
  5256. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5257. # only add special tokens when they were not already loaded from config.json
  5258. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  5259. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  5260. # this one is usually not in config.json anyway
  5261. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  5262. special_vocab.add_to_gguf(self.gguf_writer)
  5263. def set_gguf_parameters(self):
  5264. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  5265. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  5266. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  5267. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  5268. self.gguf_writer.add_embedding_length(n_embed)
  5269. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  5270. self.gguf_writer.add_block_count(self.hparams.get("num_layers", self.hparams["num_hidden_layers"]))
  5271. self.gguf_writer.add_head_count(n_head)
  5272. self.gguf_writer.add_head_count_kv(n_head_kv)
  5273. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  5274. self.gguf_writer.add_file_type(self.ftype)
  5275. if "attention_dim" in self.hparams:
  5276. rope_dim = self.hparams["attention_dim"]
  5277. else:
  5278. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5279. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  5280. self.gguf_writer.add_add_bos_token(False)
  5281. rope_freq = 10000
  5282. if "rope_ratio" in self.hparams:
  5283. rope_freq = rope_freq * self.hparams["rope_ratio"]
  5284. self.gguf_writer.add_rope_freq_base(rope_freq)
  5285. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5286. del bid # unused
  5287. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  5288. return []
  5289. name = name.removeprefix("transformer.")
  5290. return [(self.map_tensor_name(name), data_torch)]
  5291. @ModelBase.register("NemotronForCausalLM")
  5292. class NemotronModel(TextModel):
  5293. model_arch = gguf.MODEL_ARCH.NEMOTRON
  5294. def set_vocab(self):
  5295. self._set_vocab_sentencepiece()
  5296. self.gguf_writer.add_pad_token_id(0)
  5297. self.gguf_writer.add_unk_token_id(1)
  5298. def set_gguf_parameters(self):
  5299. super().set_gguf_parameters()
  5300. hparams = self.hparams
  5301. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5302. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  5303. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  5304. # * Partial RoPE
  5305. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  5306. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  5307. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  5308. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  5309. # * RopeScaling for Nemotron
  5310. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  5311. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5312. else:
  5313. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  5314. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  5315. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5316. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  5317. # model.layers.{l}.input_layernorm.weight
  5318. # model.layers.{l}.post_attention_layernorm.weight
  5319. # model.norm.weight
  5320. if name.endswith("norm.weight"):
  5321. data_torch = data_torch + 1
  5322. return [(self.map_tensor_name(name), data_torch)]
  5323. @ModelBase.register("ExaoneForCausalLM")
  5324. class ExaoneModel(TextModel):
  5325. model_arch = gguf.MODEL_ARCH.EXAONE
  5326. def set_gguf_parameters(self):
  5327. hparams = self.hparams
  5328. assert (hparams["activation_function"] == "silu")
  5329. max_position_embeddings = hparams["max_position_embeddings"]
  5330. embed_dim = hparams["hidden_size"]
  5331. num_heads = hparams["num_attention_heads"]
  5332. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  5333. layer_norm_eps = hparams["layer_norm_epsilon"]
  5334. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  5335. num_layers = hparams["num_layers"]
  5336. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  5337. # attention_dropout_rate = hparams["attention_dropout"]
  5338. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  5339. # embed_dropout_rate = hparams["embed_dropout"]
  5340. self.gguf_writer.add_embedding_length(embed_dim)
  5341. self.gguf_writer.add_head_count(num_heads)
  5342. self.gguf_writer.add_head_count_kv(num_kv_heads)
  5343. self.gguf_writer.add_context_length(max_position_embeddings)
  5344. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  5345. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5346. self.gguf_writer.add_block_count(num_layers)
  5347. self.gguf_writer.add_file_type(self.ftype)
  5348. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  5349. self.gguf_writer.add_rope_freq_base(rope_theta)
  5350. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  5351. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  5352. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  5353. rope_scaling = self.hparams.get("rope_scaling") or {}
  5354. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  5355. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  5356. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5357. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  5358. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  5359. if rope_scaling.get("rope_type", '').lower() == "llama3":
  5360. base = self.hparams.get("rope_theta", 10000.0)
  5361. if (dim := self.hparams.get("head_dim")) is None:
  5362. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5363. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  5364. factor = rope_scaling.get("factor", 8.0)
  5365. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  5366. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  5367. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  5368. low_freq_wavelen = old_context_len / low_freq_factor
  5369. high_freq_wavelen = old_context_len / high_freq_factor
  5370. assert low_freq_wavelen != high_freq_wavelen
  5371. rope_factors = []
  5372. for freq in freqs:
  5373. wavelen = 2 * math.pi / freq
  5374. if wavelen < high_freq_wavelen:
  5375. rope_factors.append(1)
  5376. elif wavelen > low_freq_wavelen:
  5377. rope_factors.append(factor)
  5378. else:
  5379. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  5380. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  5381. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  5382. @ModelBase.register("GraniteForCausalLM")
  5383. class GraniteModel(LlamaModel):
  5384. """Conversion for IBM's GraniteForCausalLM"""
  5385. model_arch = gguf.MODEL_ARCH.GRANITE
  5386. def set_gguf_parameters(self):
  5387. """Granite uses standard llama parameters with the following differences:
  5388. - No head_dim support
  5389. - New multiplier params:
  5390. - attention_scale
  5391. - embedding_scale
  5392. - residual_scale
  5393. - logits_scaling
  5394. """
  5395. if head_dim := self.hparams.pop("head_dim", None):
  5396. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  5397. super().set_gguf_parameters()
  5398. # NOTE: Convert _multiplier params to _scale params for naming
  5399. # consistency
  5400. if attention_scale := self.hparams.get("attention_multiplier"):
  5401. self.gguf_writer.add_attention_scale(attention_scale)
  5402. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  5403. if embedding_scale := self.hparams.get("embedding_multiplier"):
  5404. self.gguf_writer.add_embedding_scale(embedding_scale)
  5405. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  5406. if residual_scale := self.hparams.get("residual_multiplier"):
  5407. self.gguf_writer.add_residual_scale(residual_scale)
  5408. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  5409. if logits_scale := self.hparams.get("logits_scaling"):
  5410. self.gguf_writer.add_logit_scale(logits_scale)
  5411. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  5412. @ModelBase.register("GraniteMoeForCausalLM", "GraniteMoeSharedForCausalLM")
  5413. class GraniteMoeModel(GraniteModel):
  5414. """Conversion for IBM's GraniteMoeForCausalLM"""
  5415. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  5416. def set_gguf_parameters(self):
  5417. """GraniteMoeShared uses GraniteMoe parameters plus the following:
  5418. - shared_intermediate_size
  5419. """
  5420. super().set_gguf_parameters()
  5421. if shared_feed_forward_length := self.hparams.get("shared_intermediate_size"):
  5422. self.gguf_writer.add_expert_shared_feed_forward_length(shared_feed_forward_length)
  5423. logger.info("gguf: (granitemoeshared) shared_feed_forward_length = %s", shared_feed_forward_length)
  5424. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5425. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  5426. is used. This essentially merges w1 and w3 into a single tensor with 2x
  5427. the hidden size that is then split during forward. To keep compatibility
  5428. with existing mixtral support, we pull them apart here.
  5429. """
  5430. if name.endswith("block_sparse_moe.input_linear.weight"):
  5431. ffn_dim = self.hparams["intermediate_size"]
  5432. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  5433. gate, up = data_torch.split(ffn_dim, dim=-2)
  5434. return [
  5435. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  5436. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  5437. ]
  5438. has_experts = bool(self.hparams.get('num_local_experts'))
  5439. if name.endswith("shared_mlp.input_linear.weight"):
  5440. ffn_dim = self.hparams["shared_intermediate_size"]
  5441. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * shared_intermediate_size"
  5442. gate, up = data_torch.split(ffn_dim, dim=-2)
  5443. if has_experts:
  5444. return [
  5445. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_SHEXP, bid), gate),
  5446. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_SHEXP, bid), up),
  5447. ]
  5448. return [
  5449. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), gate),
  5450. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), up),
  5451. ]
  5452. if not has_experts and name.endswith("shared_mlp.output_linear.weight"):
  5453. return [
  5454. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, bid), data_torch)
  5455. ]
  5456. return super().modify_tensors(data_torch, name, bid)
  5457. @ModelBase.register("GraniteMoeHybridForCausalLM", "BambaForCausalLM")
  5458. class GraniteHybridModel(Mamba2Model, GraniteMoeModel):
  5459. """GraniteHybrid is a hybrid SSM + Attention model that uses Mamba2 SSM
  5460. layers and optionally uses MoE w/ a shared expert"""
  5461. model_arch = gguf.MODEL_ARCH.GRANITE_HYBRID
  5462. undo_permute = True
  5463. def __init__(self, *args, **kwargs):
  5464. # Hybrid mamba models use a prefix for the mamba-specific params.
  5465. # TODO: Extend this if the prefix(es) need to be configurable
  5466. self.hparam_prefixes = ["mamba"]
  5467. super().__init__(*args, **kwargs)
  5468. # Lists of which layers use ssm vs attention
  5469. self._attn_layers = self.get_attn_layers()
  5470. self._ssm_layers = [
  5471. i for i in range(self.block_count)
  5472. if i not in self._attn_layers
  5473. ]
  5474. # n_group and d_inner are used during reshape_tensors for mamba2
  5475. self.d_model = self.find_hparam(["hidden_size", "d_model"])
  5476. self.n_group = self.find_hparam(["n_groups"])
  5477. self.d_inner = self.find_hparam(["expand"]) * self.d_model
  5478. def get_attn_layers(self):
  5479. # Explicit list of layer type names
  5480. if layer_types := self.hparams.get("layer_types"):
  5481. return [
  5482. i for i, typ in enumerate(layer_types)
  5483. if typ == "attention"
  5484. ]
  5485. # Layer types indicated by index or period
  5486. attn_layers = self.hparams.get("attn_layer_indices", [])
  5487. if not attn_layers:
  5488. attn_period = self.hparams.get("attn_layer_period")
  5489. assert attn_period, "Didn't find attn_layer_indices or attn_layer_period"
  5490. attn_offset = self.hparams.get("attn_layer_offset")
  5491. assert attn_offset is not None, "No attention layer offset set with attn_layer_period"
  5492. attn_layers = [
  5493. i for i in range(self.block_count)
  5494. if i % attn_period == attn_offset
  5495. ]
  5496. return attn_layers
  5497. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  5498. prefixed = []
  5499. for pfx in self.hparam_prefixes:
  5500. prefixed.extend(
  5501. "_".join([pfx, k])
  5502. for k in keys
  5503. )
  5504. keys = list(keys) + prefixed
  5505. return Mamba2Model.find_hparam(self, keys, *args, **kwargs)
  5506. def modify_tensors(
  5507. self, data_torch: Tensor, name: str, bid: int | None
  5508. ) -> Iterable[tuple[str, Tensor]]:
  5509. if (
  5510. name.endswith("block_sparse_moe.input_linear.weight")
  5511. or "shared_mlp" in name
  5512. ):
  5513. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  5514. # Determine whether this is a mamba layer or an attention layer
  5515. if bid in self._ssm_layers:
  5516. return Mamba2Model.modify_tensors(self, data_torch, name, bid)
  5517. elif bid in self._attn_layers:
  5518. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  5519. return [(self.map_tensor_name(name), data_torch)]
  5520. def set_gguf_parameters(self):
  5521. """This method merges params from both parents and some that are
  5522. specific to this model. The result is some duplication of how the params
  5523. get set. The following warnings are expected during conversion:
  5524. WARNING:Duplicated key name 'granitehybrid.attention.head_count_kv'
  5525. WARNING:Duplicated key name 'granitehybrid.context_length'
  5526. """
  5527. GraniteMoeModel.set_gguf_parameters(self)
  5528. ## Mamba mixer params ##
  5529. self.gguf_writer.add_ssm_conv_kernel(self.find_hparam(["conv_kernel", "d_conv"]))
  5530. self.gguf_writer.add_ssm_state_size(self.find_hparam(["state_size", "d_state"]))
  5531. self.gguf_writer.add_ssm_group_count(self.n_group)
  5532. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  5533. # NOTE: The mamba_dt_rank is _not_ the right field for how this is used
  5534. # in llama.cpp
  5535. self.gguf_writer.add_ssm_time_step_rank(self.find_hparam(["n_heads"]))
  5536. ## Attention params ##
  5537. head_count_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  5538. head_count_kv_vec = [
  5539. head_count_kv if i in self._attn_layers else 0 for i in range(self.block_count)
  5540. ]
  5541. if rope_dim := self.hparams.get("attn_rotary_emb"):
  5542. self.gguf_writer.add_rope_dimension_count(rope_dim)
  5543. self.gguf_writer.add_head_count_kv(head_count_kv_vec)
  5544. ## If Bamba, use rope, otherwise don't
  5545. use_rope = "BambaForCausalLM" in self.hparams["architectures"]
  5546. self.gguf_writer.add_rope_scaling_finetuned(use_rope)
  5547. if not use_rope:
  5548. self.gguf_writer.add_context_length(2**20)
  5549. ## Validation ##
  5550. d_head = self.find_hparam(["d_head"], optional=True) or 64
  5551. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  5552. assert self.d_inner % d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {d_head}"
  5553. def set_vocab(self):
  5554. self.hparams["pad_vocab_size_multiple"] = 8
  5555. Mamba2Model.set_vocab(self)
  5556. @ModelBase.register("BailingMoeForCausalLM")
  5557. class BailingMoeModel(TextModel):
  5558. model_arch = gguf.MODEL_ARCH.BAILINGMOE
  5559. def set_vocab(self):
  5560. self._set_vocab_gpt2()
  5561. def set_gguf_parameters(self):
  5562. super().set_gguf_parameters()
  5563. hparams = self.hparams
  5564. if (rope_dim := hparams.get("head_dim")) is None:
  5565. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  5566. self.gguf_writer.add_rope_dimension_count(rope_dim)
  5567. rope_scaling = self.hparams.get("rope_scaling") or {}
  5568. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  5569. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  5570. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5571. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  5572. else:
  5573. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5574. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5575. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5576. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5577. self.gguf_writer.add_expert_weights_scale(1.0)
  5578. self.gguf_writer.add_expert_count(hparams["num_experts"])
  5579. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  5580. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  5581. _experts: list[dict[str, Tensor]] | None = None
  5582. @staticmethod
  5583. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  5584. if n_head_kv is not None and n_head != n_head_kv:
  5585. n_head = n_head_kv
  5586. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  5587. .swapaxes(1, 2)
  5588. .reshape(weights.shape))
  5589. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5590. n_head = self.hparams["num_attention_heads"]
  5591. n_kv_head = self.hparams.get("num_key_value_heads")
  5592. n_embd = self.hparams["hidden_size"]
  5593. if (head_dim := self.hparams.get("head_dim")) is None:
  5594. head_dim = n_embd // n_head
  5595. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  5596. if name.endswith("attention.dense.weight"):
  5597. return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
  5598. elif name.endswith("query_key_value.weight"):
  5599. q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
  5600. return [
  5601. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
  5602. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
  5603. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
  5604. ]
  5605. elif name.find("mlp.experts") != -1:
  5606. n_experts = self.hparams["num_experts"]
  5607. assert bid is not None
  5608. tensors: list[tuple[str, Tensor]] = []
  5609. if self._experts is None:
  5610. self._experts = [{} for _ in range(self.block_count)]
  5611. self._experts[bid][name] = data_torch
  5612. if len(self._experts[bid]) >= n_experts * 3:
  5613. # merge the experts into a single 3d tensor
  5614. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5615. datas: list[Tensor] = []
  5616. for xid in range(n_experts):
  5617. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5618. datas.append(self._experts[bid][ename])
  5619. del self._experts[bid][ename]
  5620. data_torch = torch.stack(datas, dim=0)
  5621. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5622. new_name = self.map_tensor_name(merged_name)
  5623. tensors.append((new_name, data_torch))
  5624. return tensors
  5625. new_name = self.map_tensor_name(name)
  5626. if new_name == output_name and self.hparams.get("norm_head"):
  5627. data_torch = data_torch.float()
  5628. data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
  5629. return [(new_name, data_torch)]
  5630. def prepare_tensors(self):
  5631. super().prepare_tensors()
  5632. if self._experts is not None:
  5633. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5634. experts = [k for d in self._experts for k in d.keys()]
  5635. if len(experts) > 0:
  5636. raise ValueError(f"Unprocessed experts: {experts}")
  5637. @ModelBase.register("ChameleonForConditionalGeneration")
  5638. @ModelBase.register("ChameleonForCausalLM") # obsolete
  5639. class ChameleonModel(TextModel):
  5640. model_arch = gguf.MODEL_ARCH.CHAMELEON
  5641. def set_gguf_parameters(self):
  5642. super().set_gguf_parameters()
  5643. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  5644. def set_vocab(self):
  5645. self._set_vocab_gpt2()
  5646. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5647. # ignore image tokenizer for now
  5648. # TODO: remove this once image support is implemented for Chameleon
  5649. if name.startswith("model.vqmodel"):
  5650. return []
  5651. n_head = self.hparams["num_attention_heads"]
  5652. n_kv_head = self.hparams.get("num_key_value_heads")
  5653. hidden_dim = self.hparams.get("hidden_size")
  5654. if name.endswith(("q_proj.weight", "q_proj.bias")):
  5655. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5656. if name.endswith(("k_proj.weight", "k_proj.bias")):
  5657. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5658. if name.endswith(("q_norm.weight", "q_norm.bias")):
  5659. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  5660. if name.endswith(("k_norm.weight", "k_norm.bias")):
  5661. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  5662. return [(self.map_tensor_name(name), data_torch)]
  5663. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  5664. @staticmethod
  5665. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  5666. head_dim = hidden_dim // n_heads
  5667. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  5668. data_torch = data_torch.repeat_interleave(n_heads, 0)
  5669. return data_torch
  5670. @ModelBase.register("UltravoxModel")
  5671. class UltravoxModel(TextModel):
  5672. model_arch = gguf.MODEL_ARCH.LLAMA # dummy
  5673. def __init__(self, *args, **kwargs):
  5674. super().__init__(*args, **kwargs)
  5675. raise NotImplementedError("Ultravox does not have text decoder. Instead, it uses Llama or other models for text. If you want to get the audio encoder, please use --mmproj argument")
  5676. @ModelBase.register("Qwen2AudioForConditionalGeneration")
  5677. class WhisperEncoderModel(MmprojModel):
  5678. has_vision_encoder = False # no vision encoder
  5679. has_audio_encoder = True
  5680. def __init__(self, *args, **kwargs):
  5681. super().__init__(*args, **kwargs)
  5682. self.hparams["hidden_size"] = self.hparams["d_model"]
  5683. self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
  5684. self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
  5685. def set_gguf_parameters(self):
  5686. super().set_gguf_parameters()
  5687. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2A)
  5688. self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
  5689. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  5690. def tensor_force_quant(self, name, new_name, bid, n_dims):
  5691. del bid, new_name, n_dims # unused
  5692. if ".conv" in name and ".weight" in name:
  5693. return gguf.GGMLQuantizationType.F16
  5694. return False
  5695. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5696. del bid # unused
  5697. if name.startswith("language_model."):
  5698. # skip language model tensors
  5699. return []
  5700. # prevent clash naming with vision tensors
  5701. if name.startswith("multi_modal_projector"):
  5702. name = "audio." + name
  5703. if "conv1.bias" in name or "conv2.bias" in name:
  5704. # transpose conv1 and conv2 bias
  5705. data_torch = data_torch.unsqueeze(-1)
  5706. return [(self.map_tensor_name(name), data_torch)]
  5707. @ModelBase.register("UltravoxModel")
  5708. class UltravoxWhisperEncoderModel(WhisperEncoderModel):
  5709. has_vision_encoder = False # no vision encoder
  5710. has_audio_encoder = True
  5711. def set_gguf_parameters(self):
  5712. super().set_gguf_parameters()
  5713. self.gguf_writer.add_audio_stack_factor(self.global_config["stack_factor"])
  5714. @ModelBase.register("FalconH1ForCausalLM")
  5715. class FalconH1Model(Mamba2Model):
  5716. model_arch = gguf.MODEL_ARCH.FALCON_H1
  5717. def __init__(self, *args, **kwargs):
  5718. # Set the hparam prefixes for Falcon Mamba2
  5719. self.hparam_prefixes = ["mamba"]
  5720. # Initialize the base Mamba2Model
  5721. super().__init__(*args, **kwargs)
  5722. # Use Llama conversion for attention
  5723. self._transformer_model_class = LlamaModel
  5724. # n_group and d_inner are used during reshape_tensors for mamba2
  5725. self.n_group = self.find_hparam(["n_groups"])
  5726. self.d_inner = self.find_hparam(["mamba_d_ssm"])
  5727. self.d_head = self.find_hparam(["d_head"])
  5728. # Initialize any Falcon Mamba2 specific attributes
  5729. self.has_attention = True # Falcon Mamba2 has attention components
  5730. # Load Falcon-H1 multipliers from hyperparameters
  5731. self.attention_in_multiplier = self.find_hparam(["attention_in_multiplier"], optional=True)
  5732. self.attention_out_multiplier = self.find_hparam(["attention_out_multiplier"], optional=True)
  5733. self.ssm_in_multiplier = self.find_hparam(["ssm_in_multiplier"], optional=True)
  5734. self.ssm_out_multiplier = self.find_hparam(["ssm_out_multiplier"], optional=True)
  5735. self.mlp_multipliers = self.find_hparam(["mlp_multipliers"], optional=True)
  5736. self.ssm_multipliers = self.find_hparam(["ssm_multipliers"], optional=True)
  5737. self.intermediate_size = self.find_hparam(["intermediate_size"])
  5738. self.key_multiplier = self.find_hparam(["key_multiplier"], optional=True)
  5739. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  5740. prefixed = []
  5741. for pfx in self.hparam_prefixes:
  5742. prefixed.extend(
  5743. "_".join([pfx, k])
  5744. for k in keys
  5745. )
  5746. keys = list(keys) + prefixed
  5747. return super().find_hparam(keys, *args, **kwargs)
  5748. def set_vocab(self):
  5749. self._set_vocab_gpt2()
  5750. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5751. tensors = list(super().modify_tensors(data_torch, name, bid))
  5752. tensor = tensors[0][1]
  5753. if "down_proj" in name:
  5754. tensor = tensor * self.mlp_multipliers[1]
  5755. elif "gate_proj" in name:
  5756. tensor = tensor * self.mlp_multipliers[0]
  5757. elif "k_proj" in name:
  5758. tensor = tensor * self.key_multiplier * self.attention_in_multiplier
  5759. elif "q_proj" in name:
  5760. tensor = tensor * self.attention_in_multiplier
  5761. elif "v_proj" in name:
  5762. tensor = tensor * self.attention_in_multiplier
  5763. elif "o_proj" in name:
  5764. tensor = tensor * self.attention_out_multiplier
  5765. elif "out_proj" in name:
  5766. tensor = tensor * self.ssm_out_multiplier
  5767. elif "in_proj" in name:
  5768. tensor = tensor * self.ssm_in_multiplier
  5769. zxbcdt_multipliers = self.hparams["ssm_multipliers"]
  5770. intermediate_size = self.hparams["mamba_d_ssm"]
  5771. groups_time_state_size = self.hparams["mamba_n_groups"] * self.hparams["mamba_d_state"]
  5772. tensor[:intermediate_size, :] *= zxbcdt_multipliers[0]
  5773. tensor[intermediate_size:2 * intermediate_size, :] *= zxbcdt_multipliers[1]
  5774. tensor[2 * intermediate_size:2 * intermediate_size + groups_time_state_size, :] *= zxbcdt_multipliers[2]
  5775. tensor[2 * intermediate_size + groups_time_state_size:2 * intermediate_size + 2 * groups_time_state_size, :] *= zxbcdt_multipliers[3]
  5776. tensor[2 * intermediate_size + 2 * groups_time_state_size:, :] *= zxbcdt_multipliers[4]
  5777. elif "lm_head" in name:
  5778. tensor = tensor * self.hparams["lm_head_multiplier"]
  5779. elif "embed_tokens" in name:
  5780. tensor = tensor * self.hparams["embedding_multiplier"]
  5781. elif "mamba.norm" in name:
  5782. tensor = tensor.reshape(self.n_group, self.d_inner // self.n_group)
  5783. tensors = [(tensors[0][0], tensor)]
  5784. return tensors
  5785. def set_gguf_parameters(self):
  5786. super().set_gguf_parameters()
  5787. ## General Params ##
  5788. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  5789. # Override some Mamba2 defaults
  5790. self.gguf_writer.add_block_count(self.block_count)
  5791. self.gguf_writer.add_context_length(self.hparams.get("max_position_embeddings", 0))
  5792. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  5793. ## Attention params ##
  5794. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) # Override value 0 from Mamba2
  5795. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  5796. self.gguf_writer.add_key_length(self.hparams["head_dim"])
  5797. self.gguf_writer.add_value_length(self.hparams["head_dim"])
  5798. ## Validation ##
  5799. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  5800. assert self.d_inner % self.d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {self.d_head}"
  5801. # Add any other Falcon Mamba2 specific configuration
  5802. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  5803. @ModelBase.register("HunYuanMoEV1ForCausalLM")
  5804. class HunYuanMoEModel(TextModel):
  5805. model_arch = gguf.MODEL_ARCH.HUNYUAN_MOE
  5806. def __init__(self, *args, **kwargs):
  5807. super().__init__(*args, **kwargs)
  5808. # For handling tied embeddings
  5809. self._tok_embd = None
  5810. def set_vocab(self):
  5811. from transformers import AutoTokenizer
  5812. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  5813. # 1. Get the pre-tokenizer identifier hash
  5814. tokpre = self.get_vocab_base_pre(tokenizer)
  5815. # 2. Reverse-engineer the merges list from mergeable_ranks
  5816. merges = []
  5817. vocab = {}
  5818. mergeable_ranks = tokenizer.mergeable_ranks
  5819. for token, rank in mergeable_ranks.items():
  5820. vocab[QwenModel.token_bytes_to_string(token)] = rank
  5821. if len(token) == 1:
  5822. continue
  5823. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  5824. if len(merged) == 2: # todo this is an assert in Qwen, why?
  5825. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  5826. # 3. Generate the tokens and toktypes lists
  5827. vocab_size = self.hparams["vocab_size"]
  5828. assert tokenizer.vocab_size == vocab_size
  5829. special_tokens = tokenizer.special_tokens
  5830. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  5831. tokens: list[str] = []
  5832. toktypes: list[int] = []
  5833. for i in range(vocab_size):
  5834. if i not in reverse_vocab:
  5835. tokens.append(f"[PAD{i}]")
  5836. toktypes.append(gguf.TokenType.UNUSED)
  5837. else:
  5838. token = reverse_vocab[i]
  5839. tokens.append(token)
  5840. if i in special_tokens.values():
  5841. toktypes.append(gguf.TokenType.CONTROL)
  5842. else:
  5843. toktypes.append(gguf.TokenType.NORMAL)
  5844. # 4. Write all vocab-related fields to the GGUF writer
  5845. self.gguf_writer.add_tokenizer_model("gpt2")
  5846. self.gguf_writer.add_tokenizer_pre(tokpre)
  5847. self.gguf_writer.add_token_list(tokens)
  5848. self.gguf_writer.add_token_types(toktypes)
  5849. self.gguf_writer.add_token_merges(merges)
  5850. # 5. Add special tokens and chat templates
  5851. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  5852. special_vocab.add_to_gguf(self.gguf_writer)
  5853. # FIX for BOS token: Overwrite incorrect id read from config.json
  5854. self.gguf_writer.add_bos_token_id(127959) # <|bos|>
  5855. def set_gguf_parameters(self):
  5856. super().set_gguf_parameters()
  5857. hparams = self.hparams
  5858. self.gguf_writer.add_expert_count(hparams["num_experts"])
  5859. self.gguf_writer.add_expert_shared_feed_forward_length(hparams["intermediate_size"])
  5860. moe_intermediate_size = hparams["moe_intermediate_size"]
  5861. assert all(n == moe_intermediate_size[0] for n in moe_intermediate_size)
  5862. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size[0])
  5863. moe_topk = hparams["moe_topk"]
  5864. assert all(topk == moe_topk[0] for topk in moe_topk)
  5865. self.gguf_writer.add_expert_used_count(moe_topk[0])
  5866. moe_shared_expert = hparams["num_shared_expert"]
  5867. assert all(n == moe_shared_expert[0] for n in moe_shared_expert)
  5868. self.gguf_writer.add_expert_shared_count(moe_shared_expert[0])
  5869. # Rope
  5870. rope_scaling = hparams.get("rope_scaling", {})
  5871. if rope_scaling.get("type") == "dynamic":
  5872. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  5873. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  5874. alpha = rope_scaling.get("alpha", 1000)
  5875. base = hparams.get("rope_theta", 10000.0)
  5876. dim = (hparams["hidden_size"] // hparams["num_attention_heads"]) # 128
  5877. scaled_base = base * (alpha ** (dim / (dim - 2))) # 10000 * (1000 ** (128 / 126)) = 11158839.9251
  5878. self.gguf_writer.add_rope_freq_base(scaled_base)
  5879. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5880. self.gguf_writer.add_rope_scaling_factor(1)
  5881. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  5882. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  5883. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  5884. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  5885. assert alpha == 1000 and base == 10000.0 and dim == 128 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  5886. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  5887. _experts: list[dict[str, Tensor]] | None = None
  5888. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5889. if name == "model.embed_tokens.weight":
  5890. self._tok_embd = data_torch.clone()
  5891. if name == "lm_head.weight":
  5892. if self.hparams.get("tie_word_embeddings", False):
  5893. logger.info("Skipping tied output layer 'lm_head.weight'")
  5894. return []
  5895. if name.find("mlp.experts") != -1:
  5896. n_experts = self.hparams["num_experts"]
  5897. assert bid is not None
  5898. if self._experts is None:
  5899. self._experts = [{} for _ in range(self.block_count)]
  5900. self._experts[bid][name] = data_torch
  5901. if len(self._experts[bid]) >= n_experts * 3:
  5902. # merge the experts into a single 3d tensor
  5903. tensors: list[tuple[str, Tensor]] = []
  5904. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5905. datas: list[Tensor] = []
  5906. for xid in range(n_experts):
  5907. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5908. datas.append(self._experts[bid][ename])
  5909. del self._experts[bid][ename]
  5910. data_torch = torch.stack(datas, dim=0)
  5911. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5912. new_name = self.map_tensor_name(merged_name)
  5913. tensors.append((new_name, data_torch))
  5914. return tensors
  5915. else:
  5916. return []
  5917. return [(self.map_tensor_name(name), data_torch)]
  5918. def prepare_tensors(self):
  5919. super().prepare_tensors()
  5920. if self._experts is not None:
  5921. experts = [k for d in self._experts for k in d.keys()]
  5922. if len(experts) > 0:
  5923. raise ValueError(f"Unprocessed experts: {experts}")
  5924. @ModelBase.register("SmolLM3ForCausalLM")
  5925. class SmolLM3Model(LlamaModel):
  5926. model_arch = gguf.MODEL_ARCH.SMOLLM3
  5927. def set_vocab(self):
  5928. super().set_vocab()
  5929. # remove unsupported array slicing in chat template
  5930. # ref: https://huggingface.co/ggml-org/SmolLM3-3B-GGUF/discussions/1
  5931. from transformers import AutoTokenizer
  5932. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  5933. if tokenizer.chat_template is not None:
  5934. chat_template = tokenizer.chat_template.replace("[:]", "")
  5935. self.gguf_writer.add_chat_template(chat_template)
  5936. @ModelBase.register("Lfm2ForCausalLM")
  5937. @ModelBase.register("LFM2ForCausalLM")
  5938. class LFM2Model(TextModel):
  5939. model_arch = gguf.MODEL_ARCH.LFM2
  5940. def _add_feed_forward_length(self):
  5941. ff_dim = self.hparams["block_ff_dim"]
  5942. auto_adjust_ff_dim = self.hparams["block_auto_adjust_ff_dim"]
  5943. ff_dim = self.hparams["block_ff_dim"]
  5944. ffn_dim_multiplier = self.hparams["block_ffn_dim_multiplier"]
  5945. multiple_of = self.hparams["block_multiple_of"]
  5946. if auto_adjust_ff_dim:
  5947. ff_dim = int(2 * ff_dim / 3)
  5948. # custom dim factor multiplier
  5949. if ffn_dim_multiplier is not None:
  5950. ff_dim = int(ffn_dim_multiplier * ff_dim)
  5951. ff_dim = multiple_of * ((ff_dim + multiple_of - 1) // multiple_of)
  5952. self.gguf_writer.add_feed_forward_length(ff_dim)
  5953. def set_gguf_parameters(self):
  5954. # set num_key_value_heads only for attention layers
  5955. self.hparams["num_key_value_heads"] = [
  5956. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  5957. for layer_type in self.hparams["layer_types"]
  5958. ]
  5959. super().set_gguf_parameters()
  5960. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  5961. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  5962. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["norm_eps"])
  5963. self._add_feed_forward_length()
  5964. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5965. # conv op requires 2d tensor
  5966. if 'conv.conv' in name:
  5967. data_torch = data_torch.squeeze(1)
  5968. return [(self.map_tensor_name(name), data_torch)]
  5969. ###### CONVERSION LOGIC ######
  5970. # tree of lazy tensors
  5971. class LazyTorchTensor(gguf.LazyBase):
  5972. _tensor_type = torch.Tensor
  5973. # to keep the type-checker happy
  5974. dtype: torch.dtype
  5975. shape: torch.Size
  5976. # only used when converting a torch.Tensor to a np.ndarray
  5977. _dtype_map: dict[torch.dtype, type] = {
  5978. torch.float16: np.float16,
  5979. torch.float32: np.float32,
  5980. }
  5981. # used for safetensors slices
  5982. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  5983. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  5984. _dtype_str_map: dict[str, torch.dtype] = {
  5985. "F64": torch.float64,
  5986. "F32": torch.float32,
  5987. "BF16": torch.bfloat16,
  5988. "F16": torch.float16,
  5989. # "U64": torch.uint64,
  5990. "I64": torch.int64,
  5991. # "U32": torch.uint32,
  5992. "I32": torch.int32,
  5993. # "U16": torch.uint16,
  5994. "I16": torch.int16,
  5995. "U8": torch.uint8,
  5996. "I8": torch.int8,
  5997. "BOOL": torch.bool,
  5998. "F8_E4M3": torch.float8_e4m3fn,
  5999. "F8_E5M2": torch.float8_e5m2,
  6000. }
  6001. def numpy(self) -> gguf.LazyNumpyTensor:
  6002. dtype = self._dtype_map[self.dtype]
  6003. return gguf.LazyNumpyTensor(
  6004. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  6005. args=(self,),
  6006. func=(lambda s: s.numpy())
  6007. )
  6008. @classmethod
  6009. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  6010. return torch.empty(size=shape, dtype=dtype, device="meta")
  6011. @classmethod
  6012. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  6013. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  6014. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  6015. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  6016. return cast(torch.Tensor, lazy)
  6017. @classmethod
  6018. def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
  6019. dtype = cls._dtype_str_map[remote_tensor.dtype]
  6020. shape = remote_tensor.shape
  6021. meta = cls.meta_with_dtype_and_shape(dtype, shape)
  6022. lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.frombuffer(r.data(), dtype=dtype).reshape(shape))
  6023. return cast(torch.Tensor, lazy)
  6024. @classmethod
  6025. def __torch_function__(cls, func, types, args=(), kwargs=None):
  6026. del types # unused
  6027. if kwargs is None:
  6028. kwargs = {}
  6029. if func is torch.Tensor.numpy:
  6030. return args[0].numpy()
  6031. return cls._wrap_fn(func)(*args, **kwargs)
  6032. def parse_args() -> argparse.Namespace:
  6033. parser = argparse.ArgumentParser(
  6034. description="Convert a huggingface model to a GGML compatible file")
  6035. parser.add_argument(
  6036. "--vocab-only", action="store_true",
  6037. help="extract only the vocab",
  6038. )
  6039. parser.add_argument(
  6040. "--outfile", type=Path,
  6041. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  6042. )
  6043. parser.add_argument(
  6044. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  6045. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  6046. )
  6047. parser.add_argument(
  6048. "--bigendian", action="store_true",
  6049. help="model is executed on big endian machine",
  6050. )
  6051. parser.add_argument(
  6052. "model", type=str,
  6053. help="directory containing model file or huggingface repository ID (if --remote)",
  6054. nargs="?",
  6055. )
  6056. parser.add_argument(
  6057. "--use-temp-file", action="store_true",
  6058. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  6059. )
  6060. parser.add_argument(
  6061. "--no-lazy", action="store_true",
  6062. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  6063. )
  6064. parser.add_argument(
  6065. "--model-name", type=str, default=None,
  6066. help="name of the model",
  6067. )
  6068. parser.add_argument(
  6069. "--verbose", action="store_true",
  6070. help="increase output verbosity",
  6071. )
  6072. parser.add_argument(
  6073. "--split-max-tensors", type=int, default=0,
  6074. help="max tensors in each split",
  6075. )
  6076. parser.add_argument(
  6077. "--split-max-size", type=str, default="0",
  6078. help="max size per split N(M|G)",
  6079. )
  6080. parser.add_argument(
  6081. "--dry-run", action="store_true",
  6082. help="only print out a split plan and exit, without writing any new files",
  6083. )
  6084. parser.add_argument(
  6085. "--no-tensor-first-split", action="store_true",
  6086. help="do not add tensors to the first split (disabled by default)"
  6087. )
  6088. parser.add_argument(
  6089. "--metadata", type=Path,
  6090. help="Specify the path for an authorship metadata override file"
  6091. )
  6092. parser.add_argument(
  6093. "--print-supported-models", action="store_true",
  6094. help="Print the supported models"
  6095. )
  6096. parser.add_argument(
  6097. "--remote", action="store_true",
  6098. help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
  6099. )
  6100. parser.add_argument(
  6101. "--mmproj", action="store_true",
  6102. help="(Experimental) Export multimodal projector (mmproj) for vision models. This will only work on some vision models. A prefix 'mmproj-' will be added to the output file name.",
  6103. )
  6104. args = parser.parse_args()
  6105. if not args.print_supported_models and args.model is None:
  6106. parser.error("the following arguments are required: model")
  6107. return args
  6108. def split_str_to_n_bytes(split_str: str) -> int:
  6109. if split_str.endswith("K"):
  6110. n = int(split_str[:-1]) * 1000
  6111. elif split_str.endswith("M"):
  6112. n = int(split_str[:-1]) * 1000 * 1000
  6113. elif split_str.endswith("G"):
  6114. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  6115. elif split_str.isnumeric():
  6116. n = int(split_str)
  6117. else:
  6118. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  6119. if n < 0:
  6120. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  6121. return n
  6122. def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> str:
  6123. # TODO @ngxson : this won't work correctly if the model has both audio & vision encoders
  6124. # maybe we should fallback to text model's arch in that case, since not many models have both
  6125. text_config = hparams.get("text_config", {})
  6126. vision_config = hparams.get("vision_config", {})
  6127. arch = None
  6128. if (arches := hparams.get("architectures")) is not None and len(arches) > 0:
  6129. arch = arches[0]
  6130. elif "ssm_cfg" in hparams:
  6131. # For non-hf Mamba and Mamba2 models
  6132. arch = hparams["ssm_cfg"].get("layer", "Mamba") + "ForCausalLM"
  6133. # if "architectures" is found in the sub-config, use that instead
  6134. if model_type == ModelType.TEXT and text_config.get("architectures") is not None:
  6135. arch = text_config["architectures"][0]
  6136. elif model_type == ModelType.MMPROJ and vision_config.get("architectures") is not None:
  6137. arch = vision_config["architectures"][0]
  6138. if arch is None:
  6139. raise ValueError("Failed to detect model architecture")
  6140. return arch
  6141. def main() -> None:
  6142. args = parse_args()
  6143. if args.print_supported_models:
  6144. logger.error("Supported models:")
  6145. ModelBase.print_registered_models()
  6146. sys.exit(0)
  6147. if args.verbose:
  6148. logging.basicConfig(level=logging.DEBUG)
  6149. else:
  6150. logging.basicConfig(level=logging.INFO)
  6151. if args.remote:
  6152. hf_repo_id = args.model
  6153. from huggingface_hub import snapshot_download
  6154. local_dir = snapshot_download(
  6155. repo_id=hf_repo_id,
  6156. allow_patterns=["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"])
  6157. dir_model = Path(local_dir)
  6158. logger.info(f"Downloaded config and tokenizer to {local_dir}")
  6159. else:
  6160. hf_repo_id = None
  6161. dir_model = Path(args.model)
  6162. if not dir_model.is_dir():
  6163. logger.error(f'Error: {dir_model} is not a directory')
  6164. sys.exit(1)
  6165. ftype_map: dict[str, gguf.LlamaFileType] = {
  6166. "f32": gguf.LlamaFileType.ALL_F32,
  6167. "f16": gguf.LlamaFileType.MOSTLY_F16,
  6168. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  6169. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  6170. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  6171. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  6172. "auto": gguf.LlamaFileType.GUESSED,
  6173. }
  6174. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  6175. if args.use_temp_file and is_split:
  6176. logger.error("Error: Cannot use temp file when splitting")
  6177. sys.exit(1)
  6178. if args.outfile is not None:
  6179. fname_out = args.outfile
  6180. elif hf_repo_id:
  6181. # if remote, use the model ID as the output file name
  6182. fname_out = Path("./" + hf_repo_id.replace("/", "-") + "-{ftype}.gguf")
  6183. else:
  6184. fname_out = dir_model
  6185. logger.info(f"Loading model: {dir_model.name}")
  6186. if args.mmproj:
  6187. if "mmproj" not in fname_out.name:
  6188. fname_out = ModelBase.add_prefix_to_filename(fname_out, "mmproj-")
  6189. with torch.inference_mode():
  6190. output_type = ftype_map[args.outtype]
  6191. model_type = ModelType.MMPROJ if args.mmproj else ModelType.TEXT
  6192. hparams = ModelBase.load_hparams(dir_model)
  6193. model_architecture = get_model_architecture(hparams, model_type)
  6194. logger.info(f"Model architecture: {model_architecture}")
  6195. try:
  6196. model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
  6197. except NotImplementedError:
  6198. logger.error(f"Model {model_architecture} is not supported")
  6199. sys.exit(1)
  6200. model_instance = model_class(dir_model, output_type, fname_out,
  6201. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  6202. eager=args.no_lazy,
  6203. metadata_override=args.metadata, model_name=args.model_name,
  6204. split_max_tensors=args.split_max_tensors,
  6205. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  6206. small_first_shard=args.no_tensor_first_split,
  6207. remote_hf_model_id=hf_repo_id)
  6208. if args.vocab_only:
  6209. logger.info("Exporting model vocab...")
  6210. model_instance.write_vocab()
  6211. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  6212. else:
  6213. logger.info("Exporting model...")
  6214. model_instance.write()
  6215. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  6216. logger.info(f"Model successfully exported to {out_path}")
  6217. if __name__ == '__main__':
  6218. main()