1
0

quantize.cpp 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338
  1. #include "common.h"
  2. #include "llama.h"
  3. #include <cstdio>
  4. #include <cstring>
  5. #include <vector>
  6. #include <string>
  7. #include <unordered_map>
  8. #include <fstream>
  9. #include <cmath>
  10. #include <algorithm>
  11. struct quant_option {
  12. std::string name;
  13. llama_ftype ftype;
  14. std::string desc;
  15. };
  16. static const std::vector<struct quant_option> QUANT_OPTIONS = {
  17. { "Q4_0", LLAMA_FTYPE_MOSTLY_Q4_0, " 3.56G, +0.2166 ppl @ LLaMA-v1-7B", },
  18. { "Q4_1", LLAMA_FTYPE_MOSTLY_Q4_1, " 3.90G, +0.1585 ppl @ LLaMA-v1-7B", },
  19. { "Q5_0", LLAMA_FTYPE_MOSTLY_Q5_0, " 4.33G, +0.0683 ppl @ LLaMA-v1-7B", },
  20. { "Q5_1", LLAMA_FTYPE_MOSTLY_Q5_1, " 4.70G, +0.0349 ppl @ LLaMA-v1-7B", },
  21. { "IQ2_XXS",LLAMA_FTYPE_MOSTLY_IQ2_XXS," 2.06 bpw quantization", },
  22. { "IQ2_XS", LLAMA_FTYPE_MOSTLY_IQ2_XS, " 2.31 bpw quantization", },
  23. { "IQ1_S", LLAMA_FTYPE_MOSTLY_IQ1_S, " 1.56 bpw quantization", },
  24. { "Q2_K", LLAMA_FTYPE_MOSTLY_Q2_K, " 2.63G, +0.6717 ppl @ LLaMA-v1-7B", },
  25. { "Q2_K_S", LLAMA_FTYPE_MOSTLY_Q2_K_S, " 2.16G, +9.0634 ppl @ LLaMA-v1-7B", },
  26. { "IQ3_XXS",LLAMA_FTYPE_MOSTLY_IQ3_XXS," 3.06 bpw quantization", },
  27. { "IQ3_S", LLAMA_FTYPE_MOSTLY_IQ3_S, " 3.44 bpw quantization", },
  28. { "IQ3_M", LLAMA_FTYPE_MOSTLY_IQ3_M, " 3.66 bpw quantization mix", },
  29. { "Q3_K", LLAMA_FTYPE_MOSTLY_Q3_K_M, "alias for Q3_K_M" },
  30. { "Q3_K_XS",LLAMA_FTYPE_MOSTLY_Q3_K_XS,"3-bit extra small quantization" , },
  31. { "Q3_K_S", LLAMA_FTYPE_MOSTLY_Q3_K_S, " 2.75G, +0.5551 ppl @ LLaMA-v1-7B", },
  32. { "Q3_K_M", LLAMA_FTYPE_MOSTLY_Q3_K_M, " 3.07G, +0.2496 ppl @ LLaMA-v1-7B", },
  33. { "Q3_K_L", LLAMA_FTYPE_MOSTLY_Q3_K_L, " 3.35G, +0.1764 ppl @ LLaMA-v1-7B", },
  34. { "IQ4_NL", LLAMA_FTYPE_MOSTLY_IQ4_NL, " 4.25 bpw non-linear quantization", },
  35. { "Q4_K", LLAMA_FTYPE_MOSTLY_Q4_K_M, "alias for Q4_K_M", },
  36. { "Q4_K_S", LLAMA_FTYPE_MOSTLY_Q4_K_S, " 3.59G, +0.0992 ppl @ LLaMA-v1-7B", },
  37. { "Q4_K_M", LLAMA_FTYPE_MOSTLY_Q4_K_M, " 3.80G, +0.0532 ppl @ LLaMA-v1-7B", },
  38. { "Q5_K", LLAMA_FTYPE_MOSTLY_Q5_K_M, "alias for Q5_K_M", },
  39. { "Q5_K_S", LLAMA_FTYPE_MOSTLY_Q5_K_S, " 4.33G, +0.0400 ppl @ LLaMA-v1-7B", },
  40. { "Q5_K_M", LLAMA_FTYPE_MOSTLY_Q5_K_M, " 4.45G, +0.0122 ppl @ LLaMA-v1-7B", },
  41. { "Q6_K", LLAMA_FTYPE_MOSTLY_Q6_K, " 5.15G, +0.0008 ppl @ LLaMA-v1-7B", },
  42. { "Q8_0", LLAMA_FTYPE_MOSTLY_Q8_0, " 6.70G, +0.0004 ppl @ LLaMA-v1-7B", },
  43. { "F16", LLAMA_FTYPE_MOSTLY_F16, "13.00G @ 7B", },
  44. { "F32", LLAMA_FTYPE_ALL_F32, "26.00G @ 7B", },
  45. // Note: Ensure COPY comes after F32 to avoid ftype 0 from matching.
  46. { "COPY", LLAMA_FTYPE_ALL_F32, "only copy tensors, no quantizing", },
  47. };
  48. static bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftype, std::string & ftype_str_out) {
  49. std::string ftype_str;
  50. for (auto ch : ftype_str_in) {
  51. ftype_str.push_back(std::toupper(ch));
  52. }
  53. for (auto & it : QUANT_OPTIONS) {
  54. if (it.name == ftype_str) {
  55. ftype = it.ftype;
  56. ftype_str_out = it.name;
  57. return true;
  58. }
  59. }
  60. try {
  61. int ftype_int = std::stoi(ftype_str);
  62. for (auto & it : QUANT_OPTIONS) {
  63. if (it.ftype == ftype_int) {
  64. ftype = it.ftype;
  65. ftype_str_out = it.name;
  66. return true;
  67. }
  68. }
  69. }
  70. catch (...) {
  71. // stoi failed
  72. }
  73. return false;
  74. }
  75. // usage:
  76. // ./quantize [--allow-requantize] [--leave-output-tensor] [--pure] models/llama/ggml-model.gguf [models/llama/ggml-model-quant.gguf] type [nthreads]
  77. //
  78. [[noreturn]]
  79. static void usage(const char * executable) {
  80. printf("usage: %s [--help] [--allow-requantize] [--leave-output-tensor] [--pure] [--imatrix] [--include-weights] [--exclude-weights] model-f32.gguf [model-quant.gguf] type [nthreads]\n\n", executable);
  81. printf(" --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n");
  82. printf(" --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing\n");
  83. printf(" --pure: Disable k-quant mixtures and quantize all tensors to the same type\n");
  84. printf(" --imatrix file_name: use data in file_name as importance matrix for quant optimizations\n");
  85. printf(" --include-weights tensor_name: use importance matrix for this/these tensor(s)\n");
  86. printf(" --exclude-weights tensor_name: use importance matrix for this/these tensor(s)\n");
  87. printf("Note: --include-weights and --exclude-weights cannot be used together\n");
  88. printf("\nAllowed quantization types:\n");
  89. for (auto & it : QUANT_OPTIONS) {
  90. if (it.name != "COPY") {
  91. printf(" %2d or ", it.ftype);
  92. } else {
  93. printf(" ");
  94. }
  95. printf("%-7s : %s\n", it.name.c_str(), it.desc.c_str());
  96. }
  97. exit(1);
  98. }
  99. static void load_imatrix(const std::string& imatrix_file, std::unordered_map<std::string, std::vector<float>>& imatrix_data) {
  100. std::ifstream in(imatrix_file.c_str(), std::ios::binary);
  101. if (!in) {
  102. printf("%s: failed to open %s\n",__func__,imatrix_file.c_str());
  103. return;
  104. }
  105. int n_entries;
  106. in.read((char*)&n_entries, sizeof(n_entries));
  107. if (in.fail() || n_entries < 1) {
  108. printf("%s: no data in file %s\n", __func__, imatrix_file.c_str());
  109. return;
  110. }
  111. for (int i = 0; i < n_entries; ++i) {
  112. int len; in.read((char *)&len, sizeof(len));
  113. std::vector<char> name_as_vec(len+1);
  114. in.read((char *)name_as_vec.data(), len);
  115. if (in.fail()) {
  116. printf("%s: failed reading name for entry %d from %s\n",__func__,i+1,imatrix_file.c_str());
  117. return;
  118. }
  119. name_as_vec[len] = 0;
  120. std::string name{name_as_vec.data()};
  121. auto& e = imatrix_data[std::move(name)];
  122. int ncall;
  123. in.read((char*)&ncall, sizeof(ncall));
  124. int nval;
  125. in.read((char *)&nval, sizeof(nval));
  126. if (in.fail() || nval < 1) {
  127. printf("%s: failed reading number of values for entry %d\n",__func__,i);
  128. imatrix_data = {};
  129. return;
  130. }
  131. e.resize(nval);
  132. in.read((char*)e.data(), nval*sizeof(float));
  133. if (in.fail()) {
  134. printf("%s: failed reading data for entry %d\n",__func__,i);
  135. imatrix_data = {};
  136. return;
  137. }
  138. if (ncall > 0) {
  139. for (auto& v : e) v /= ncall;
  140. }
  141. }
  142. printf("%s: loaded %d importance matrix entries from %s\n",__func__,int(imatrix_data.size()),imatrix_file.c_str());
  143. }
  144. static void prepare_imatrix(const std::string& imatrix_file,
  145. const std::vector<std::string>& included_weights,
  146. const std::vector<std::string>& excluded_weights,
  147. std::unordered_map<std::string, std::vector<float>>& imatrix_data) {
  148. if (!imatrix_file.empty()) {
  149. load_imatrix(imatrix_file, imatrix_data);
  150. }
  151. if (imatrix_data.empty()) {
  152. return;
  153. }
  154. if (!excluded_weights.empty()) {
  155. for (auto& name : excluded_weights) {
  156. for (auto it = imatrix_data.begin(); it != imatrix_data.end(); ) {
  157. auto pos = it->first.find(name);
  158. if (pos != std::string::npos) it = imatrix_data.erase(it);
  159. else ++it;
  160. }
  161. }
  162. }
  163. if (!included_weights.empty()) {
  164. std::unordered_map<std::string, std::vector<float>> tmp;
  165. for (auto& name : included_weights) {
  166. for (auto& e : imatrix_data) {
  167. auto pos = e.first.find(name);
  168. if (pos != std::string::npos) {
  169. tmp.emplace(std::move(e));
  170. }
  171. }
  172. }
  173. imatrix_data = std::move(tmp);
  174. }
  175. if (!imatrix_data.empty()) {
  176. printf("%s: have %d importance matrix entries\n", __func__, int(imatrix_data.size()));
  177. }
  178. }
  179. int main(int argc, char ** argv) {
  180. if (argc < 3) {
  181. usage(argv[0]);
  182. }
  183. llama_model_quantize_params params = llama_model_quantize_default_params();
  184. int arg_idx = 1;
  185. std::string imatrix_file;
  186. std::vector<std::string> included_weights, excluded_weights;
  187. for (; arg_idx < argc && strncmp(argv[arg_idx], "--", 2) == 0; arg_idx++) {
  188. if (strcmp(argv[arg_idx], "--leave-output-tensor") == 0) {
  189. params.quantize_output_tensor = false;
  190. } else if (strcmp(argv[arg_idx], "--allow-requantize") == 0) {
  191. params.allow_requantize = true;
  192. } else if (strcmp(argv[arg_idx], "--pure") == 0) {
  193. params.pure = true;
  194. } else if (strcmp(argv[arg_idx], "--imatrix") == 0) {
  195. if (arg_idx < argc-1) {
  196. imatrix_file = argv[++arg_idx];
  197. } else {
  198. usage(argv[0]);
  199. }
  200. } else if (strcmp(argv[arg_idx], "--include-weights") == 0) {
  201. if (arg_idx < argc-1) {
  202. included_weights.emplace_back(argv[++arg_idx]);
  203. } else {
  204. usage(argv[0]);
  205. }
  206. } else if (strcmp(argv[arg_idx], "--exclude-weights") == 0) {
  207. if (arg_idx < argc-1) {
  208. excluded_weights.emplace_back(argv[++arg_idx]);
  209. } else {
  210. usage(argv[0]);
  211. }
  212. } else {
  213. usage(argv[0]);
  214. }
  215. }
  216. if (argc - arg_idx < 2) {
  217. printf("%s: bad arguments\n", argv[0]);
  218. usage(argv[0]);
  219. }
  220. if (!included_weights.empty() && !excluded_weights.empty()) {
  221. usage(argv[0]);
  222. }
  223. std::unordered_map<std::string, std::vector<float>> imatrix_data;
  224. prepare_imatrix(imatrix_file, included_weights, excluded_weights, imatrix_data);
  225. if (!imatrix_data.empty()) {
  226. params.imatrix = &imatrix_data;
  227. }
  228. llama_backend_init();
  229. // parse command line arguments
  230. const std::string fname_inp = argv[arg_idx];
  231. arg_idx++;
  232. std::string fname_out;
  233. std::string ftype_str;
  234. if (try_parse_ftype(argv[arg_idx], params.ftype, ftype_str)) {
  235. std::string fpath;
  236. const size_t pos = fname_inp.find_last_of("/\\");
  237. if (pos != std::string::npos) {
  238. fpath = fname_inp.substr(0, pos + 1);
  239. }
  240. // export as [inp path]/ggml-model-[ftype].gguf
  241. fname_out = fpath + "ggml-model-" + ftype_str + ".gguf";
  242. arg_idx++;
  243. if (ftype_str == "COPY") {
  244. params.only_copy = true;
  245. }
  246. }
  247. else {
  248. fname_out = argv[arg_idx];
  249. arg_idx++;
  250. if (argc <= arg_idx) {
  251. fprintf(stderr, "%s: missing ftype\n", __func__);
  252. return 1;
  253. }
  254. if (!try_parse_ftype(argv[arg_idx], params.ftype, ftype_str)) {
  255. fprintf(stderr, "%s: invalid ftype '%s'\n", __func__, argv[3]);
  256. return 1;
  257. }
  258. if (ftype_str == "COPY") {
  259. params.only_copy = true;
  260. }
  261. arg_idx++;
  262. }
  263. // parse nthreads
  264. if (argc > arg_idx) {
  265. try {
  266. params.nthread = std::stoi(argv[arg_idx]);
  267. }
  268. catch (const std::exception & e) {
  269. fprintf(stderr, "%s: invalid nthread '%s' (%s)\n", __func__, argv[arg_idx], e.what());
  270. return 1;
  271. }
  272. }
  273. if ((params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS ||
  274. params.ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S || params.ftype == LLAMA_FTYPE_MOSTLY_IQ1_S) && imatrix_data.empty()) {
  275. fprintf(stderr, "\n===============================================================================================\n");
  276. fprintf(stderr, "Please do not use IQ1_S, IQ2_XXS, IQ2_XS or Q2_K_S quantization without an importance matrix\n");
  277. fprintf(stderr, "===============================================================================================\n\n\n");
  278. return 1;
  279. }
  280. print_build_info();
  281. fprintf(stderr, "%s: quantizing '%s' to '%s' as %s", __func__, fname_inp.c_str(), fname_out.c_str(), ftype_str.c_str());
  282. if (params.nthread > 0) {
  283. fprintf(stderr, " using %d threads", params.nthread);
  284. }
  285. fprintf(stderr, "\n");
  286. const int64_t t_main_start_us = llama_time_us();
  287. int64_t t_quantize_us = 0;
  288. // load the model
  289. {
  290. const int64_t t_start_us = llama_time_us();
  291. if (llama_model_quantize(fname_inp.c_str(), fname_out.c_str(), &params)) {
  292. fprintf(stderr, "%s: failed to quantize model from '%s'\n", __func__, fname_inp.c_str());
  293. return 1;
  294. }
  295. t_quantize_us = llama_time_us() - t_start_us;
  296. }
  297. // report timing
  298. {
  299. const int64_t t_main_end_us = llama_time_us();
  300. printf("\n");
  301. printf("%s: quantize time = %8.2f ms\n", __func__, t_quantize_us/1000.0);
  302. printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0);
  303. }
  304. llama_backend_free();
  305. return 0;
  306. }