ggml-quants.c 472 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534
  1. #include "ggml-quants.h"
  2. #include "ggml-impl.h"
  3. #include <math.h>
  4. #include <string.h>
  5. #include <assert.h>
  6. #include <float.h>
  7. #include <stdlib.h> // for qsort
  8. #include <stdio.h> // for GGML_ASSERT
  9. #ifdef __ARM_NEON
  10. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  11. //
  12. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  13. //
  14. #include <arm_neon.h>
  15. #else
  16. #ifdef __wasm_simd128__
  17. #include <wasm_simd128.h>
  18. #else
  19. #if defined(__POWER9_VECTOR__) || defined(__powerpc64__)
  20. #include <altivec.h>
  21. #undef bool
  22. #define bool _Bool
  23. #else
  24. #if defined(_MSC_VER) || defined(__MINGW32__)
  25. #include <intrin.h>
  26. #else
  27. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) || defined(__SSE3__)
  28. #if !defined(__riscv)
  29. #include <immintrin.h>
  30. #endif
  31. #endif
  32. #endif
  33. #endif
  34. #endif
  35. #endif
  36. #ifdef __riscv_v_intrinsic
  37. #include <riscv_vector.h>
  38. #endif
  39. #undef MIN
  40. #undef MAX
  41. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  42. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  43. #define UNUSED GGML_UNUSED
  44. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  45. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  46. // multiply int8_t, add results pairwise twice
  47. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  48. // Get absolute values of x vectors
  49. const __m128i ax = _mm_sign_epi8(x, x);
  50. // Sign the values of the y vectors
  51. const __m128i sy = _mm_sign_epi8(y, x);
  52. // Perform multiplication and create 16-bit values
  53. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  54. const __m128i ones = _mm_set1_epi16(1);
  55. return _mm_madd_epi16(ones, dot);
  56. }
  57. #if __AVX__ || __AVX2__ || __AVX512F__
  58. // horizontally add 8 floats
  59. static inline float hsum_float_8(const __m256 x) {
  60. __m128 res = _mm256_extractf128_ps(x, 1);
  61. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  62. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  63. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  64. return _mm_cvtss_f32(res);
  65. }
  66. // horizontally add 8 int32_t
  67. static inline int hsum_i32_8(const __m256i a) {
  68. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  69. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  70. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  71. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  72. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  73. }
  74. // horizontally add 4 int32_t
  75. static inline int hsum_i32_4(const __m128i a) {
  76. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  77. const __m128i sum64 = _mm_add_epi32(hi64, a);
  78. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  79. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  80. }
  81. #if defined(__AVX2__) || defined(__AVX512F__)
  82. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  83. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  84. uint32_t x32;
  85. memcpy(&x32, x, sizeof(uint32_t));
  86. const __m256i shuf_mask = _mm256_set_epi64x(
  87. 0x0303030303030303, 0x0202020202020202,
  88. 0x0101010101010101, 0x0000000000000000);
  89. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  90. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  91. bytes = _mm256_or_si256(bytes, bit_mask);
  92. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  93. }
  94. // Unpack 32 4-bit fields into 32 bytes
  95. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  96. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  97. {
  98. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  99. const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
  100. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  101. return _mm256_and_si256(lowMask, bytes);
  102. }
  103. // add int16_t pairwise and return as float vector
  104. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  105. const __m256i ones = _mm256_set1_epi16(1);
  106. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  107. return _mm256_cvtepi32_ps(summed_pairs);
  108. }
  109. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  110. #if __AVXVNNI__
  111. const __m256i zero = _mm256_setzero_si256();
  112. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  113. return _mm256_cvtepi32_ps(summed_pairs);
  114. #else
  115. // Perform multiplication and create 16-bit values
  116. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  117. return sum_i16_pairs_float(dot);
  118. #endif
  119. }
  120. // multiply int8_t, add results pairwise twice and return as float vector
  121. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  122. #if __AVXVNNIINT8__
  123. const __m256i zero = _mm256_setzero_si256();
  124. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  125. return _mm256_cvtepi32_ps(summed_pairs);
  126. #else
  127. // Get absolute values of x vectors
  128. const __m256i ax = _mm256_sign_epi8(x, x);
  129. // Sign the values of the y vectors
  130. const __m256i sy = _mm256_sign_epi8(y, x);
  131. return mul_sum_us8_pairs_float(ax, sy);
  132. #endif
  133. }
  134. static inline __m128i packNibbles( __m256i bytes )
  135. {
  136. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  137. #if __AVX512F__
  138. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  139. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  140. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  141. #else
  142. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  143. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  144. __m256i low = _mm256_and_si256( lowByte, bytes );
  145. high = _mm256_srli_epi16( high, 4 );
  146. bytes = _mm256_or_si256( low, high );
  147. // Compress uint16_t lanes into bytes
  148. __m128i r0 = _mm256_castsi256_si128( bytes );
  149. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  150. return _mm_packus_epi16( r0, r1 );
  151. #endif
  152. }
  153. #elif defined(__AVX__)
  154. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  155. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  156. uint32_t x32;
  157. memcpy(&x32, x, sizeof(uint32_t));
  158. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  159. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  160. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  161. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  162. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  163. bytesl = _mm_or_si128(bytesl, bit_mask);
  164. bytesh = _mm_or_si128(bytesh, bit_mask);
  165. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  166. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  167. return MM256_SET_M128I(bytesh, bytesl);
  168. }
  169. // Unpack 32 4-bit fields into 32 bytes
  170. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  171. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  172. {
  173. // Load 16 bytes from memory
  174. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  175. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  176. const __m128i lowMask = _mm_set1_epi8(0xF);
  177. tmpl = _mm_and_si128(lowMask, tmpl);
  178. tmph = _mm_and_si128(lowMask, tmph);
  179. return MM256_SET_M128I(tmph, tmpl);
  180. }
  181. // add int16_t pairwise and return as float vector
  182. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  183. const __m128i ones = _mm_set1_epi16(1);
  184. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  185. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  186. const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
  187. return _mm256_cvtepi32_ps(summed_pairs);
  188. }
  189. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  190. const __m128i axl = _mm256_castsi256_si128(ax);
  191. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  192. const __m128i syl = _mm256_castsi256_si128(sy);
  193. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  194. // Perform multiplication and create 16-bit values
  195. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  196. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  197. return sum_i16_pairs_float(doth, dotl);
  198. }
  199. // multiply int8_t, add results pairwise twice and return as float vector
  200. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  201. const __m128i xl = _mm256_castsi256_si128(x);
  202. const __m128i xh = _mm256_extractf128_si256(x, 1);
  203. const __m128i yl = _mm256_castsi256_si128(y);
  204. const __m128i yh = _mm256_extractf128_si256(y, 1);
  205. // Get absolute values of x vectors
  206. const __m128i axl = _mm_sign_epi8(xl, xl);
  207. const __m128i axh = _mm_sign_epi8(xh, xh);
  208. // Sign the values of the y vectors
  209. const __m128i syl = _mm_sign_epi8(yl, xl);
  210. const __m128i syh = _mm_sign_epi8(yh, xh);
  211. // Perform multiplication and create 16-bit values
  212. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  213. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  214. return sum_i16_pairs_float(doth, dotl);
  215. }
  216. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  217. {
  218. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  219. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  220. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  221. __m128i low = _mm_and_si128( lowByte, bytes1 );
  222. high = _mm_srli_epi16( high, 4 );
  223. bytes1 = _mm_or_si128( low, high );
  224. high = _mm_andnot_si128( lowByte, bytes2 );
  225. low = _mm_and_si128( lowByte, bytes2 );
  226. high = _mm_srli_epi16( high, 4 );
  227. bytes2 = _mm_or_si128( low, high );
  228. return _mm_packus_epi16( bytes1, bytes2);
  229. }
  230. #endif
  231. #elif defined(__SSSE3__)
  232. // horizontally add 4x4 floats
  233. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  234. __m128 res_0 =_mm_hadd_ps(a, b);
  235. __m128 res_1 =_mm_hadd_ps(c, d);
  236. __m128 res =_mm_hadd_ps(res_0, res_1);
  237. res =_mm_hadd_ps(res, res);
  238. res =_mm_hadd_ps(res, res);
  239. return _mm_cvtss_f32(res);
  240. }
  241. #endif // __AVX__ || __AVX2__ || __AVX512F__
  242. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  243. #if defined(__ARM_NEON)
  244. #ifdef _MSC_VER
  245. #define ggml_vld1q_u32(w,x,y,z) { ((w) + ((uint64_t)(x) << 32)), ((y) + ((uint64_t)(z) << 32)) }
  246. #else
  247. #define ggml_vld1q_u32(w,x,y,z) { (w), (x), (y), (z) }
  248. #endif
  249. #if !defined(__aarch64__)
  250. // 64-bit compatibility
  251. // vaddvq_s16
  252. // vpaddq_s16
  253. // vpaddq_s32
  254. // vaddvq_s32
  255. // vaddvq_f32
  256. // vmaxvq_f32
  257. // vcvtnq_s32_f32
  258. // vzip1_u8
  259. // vzip2_u8
  260. inline static int32_t vaddvq_s16(int16x8_t v) {
  261. return
  262. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  263. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  264. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  265. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  266. }
  267. inline static int16x8_t vpaddq_s16(int16x8_t a, int16x8_t b) {
  268. int16x4_t a0 = vpadd_s16(vget_low_s16(a), vget_high_s16(a));
  269. int16x4_t b0 = vpadd_s16(vget_low_s16(b), vget_high_s16(b));
  270. return vcombine_s16(a0, b0);
  271. }
  272. inline static int32x4_t vpaddq_s32(int32x4_t a, int32x4_t b) {
  273. int32x2_t a0 = vpadd_s32(vget_low_s32(a), vget_high_s32(a));
  274. int32x2_t b0 = vpadd_s32(vget_low_s32(b), vget_high_s32(b));
  275. return vcombine_s32(a0, b0);
  276. }
  277. inline static int32_t vaddvq_s32(int32x4_t v) {
  278. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  279. }
  280. inline static float vaddvq_f32(float32x4_t v) {
  281. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  282. }
  283. inline static float vmaxvq_f32(float32x4_t v) {
  284. return
  285. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  286. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  287. }
  288. inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  289. int32x4_t res;
  290. res[0] = roundf(vgetq_lane_f32(v, 0));
  291. res[1] = roundf(vgetq_lane_f32(v, 1));
  292. res[2] = roundf(vgetq_lane_f32(v, 2));
  293. res[3] = roundf(vgetq_lane_f32(v, 3));
  294. return res;
  295. }
  296. inline static uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) {
  297. uint8x8_t res;
  298. res[0] = a[0]; res[1] = b[0];
  299. res[2] = a[1]; res[3] = b[1];
  300. res[4] = a[2]; res[5] = b[2];
  301. res[6] = a[3]; res[7] = b[3];
  302. return res;
  303. }
  304. inline static uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) {
  305. uint8x8_t res;
  306. res[0] = a[4]; res[1] = b[4];
  307. res[2] = a[5]; res[3] = b[5];
  308. res[4] = a[6]; res[5] = b[6];
  309. res[6] = a[7]; res[7] = b[7];
  310. return res;
  311. }
  312. // vld1q_s16_x2
  313. // vld1q_u8_x2
  314. // vld1q_u8_x4
  315. // vld1q_s8_x2
  316. // vld1q_s8_x4
  317. // TODO: double-check these work correctly
  318. typedef struct ggml_int16x8x2_t {
  319. int16x8_t val[2];
  320. } ggml_int16x8x2_t;
  321. inline static ggml_int16x8x2_t ggml_vld1q_s16_x2(const int16_t * ptr) {
  322. ggml_int16x8x2_t res;
  323. res.val[0] = vld1q_s16(ptr + 0);
  324. res.val[1] = vld1q_s16(ptr + 8);
  325. return res;
  326. }
  327. typedef struct ggml_uint8x16x2_t {
  328. uint8x16_t val[2];
  329. } ggml_uint8x16x2_t;
  330. inline static ggml_uint8x16x2_t ggml_vld1q_u8_x2(const uint8_t * ptr) {
  331. ggml_uint8x16x2_t res;
  332. res.val[0] = vld1q_u8(ptr + 0);
  333. res.val[1] = vld1q_u8(ptr + 16);
  334. return res;
  335. }
  336. typedef struct ggml_uint8x16x4_t {
  337. uint8x16_t val[4];
  338. } ggml_uint8x16x4_t;
  339. inline static ggml_uint8x16x4_t ggml_vld1q_u8_x4(const uint8_t * ptr) {
  340. ggml_uint8x16x4_t res;
  341. res.val[0] = vld1q_u8(ptr + 0);
  342. res.val[1] = vld1q_u8(ptr + 16);
  343. res.val[2] = vld1q_u8(ptr + 32);
  344. res.val[3] = vld1q_u8(ptr + 48);
  345. return res;
  346. }
  347. typedef struct ggml_int8x16x2_t {
  348. int8x16_t val[2];
  349. } ggml_int8x16x2_t;
  350. inline static ggml_int8x16x2_t ggml_vld1q_s8_x2(const int8_t * ptr) {
  351. ggml_int8x16x2_t res;
  352. res.val[0] = vld1q_s8(ptr + 0);
  353. res.val[1] = vld1q_s8(ptr + 16);
  354. return res;
  355. }
  356. typedef struct ggml_int8x16x4_t {
  357. int8x16_t val[4];
  358. } ggml_int8x16x4_t;
  359. inline static ggml_int8x16x4_t ggml_vld1q_s8_x4(const int8_t * ptr) {
  360. ggml_int8x16x4_t res;
  361. res.val[0] = vld1q_s8(ptr + 0);
  362. res.val[1] = vld1q_s8(ptr + 16);
  363. res.val[2] = vld1q_s8(ptr + 32);
  364. res.val[3] = vld1q_s8(ptr + 48);
  365. return res;
  366. }
  367. // NOTE: not tested
  368. inline static int8x16_t ggml_vqtbl1q_s8(int8x16_t a, uint8x16_t b) {
  369. int8x16_t res;
  370. res[ 0] = a[b[ 0]];
  371. res[ 1] = a[b[ 1]];
  372. res[ 2] = a[b[ 2]];
  373. res[ 3] = a[b[ 3]];
  374. res[ 4] = a[b[ 4]];
  375. res[ 5] = a[b[ 5]];
  376. res[ 6] = a[b[ 6]];
  377. res[ 7] = a[b[ 7]];
  378. res[ 8] = a[b[ 8]];
  379. res[ 9] = a[b[ 9]];
  380. res[10] = a[b[10]];
  381. res[11] = a[b[11]];
  382. res[12] = a[b[12]];
  383. res[13] = a[b[13]];
  384. res[14] = a[b[14]];
  385. res[15] = a[b[15]];
  386. return res;
  387. }
  388. #else
  389. #define ggml_int16x8x2_t int16x8x2_t
  390. #define ggml_uint8x16x2_t uint8x16x2_t
  391. #define ggml_uint8x16x4_t uint8x16x4_t
  392. #define ggml_int8x16x2_t int8x16x2_t
  393. #define ggml_int8x16x4_t int8x16x4_t
  394. #define ggml_vld1q_s16_x2 vld1q_s16_x2
  395. #define ggml_vld1q_u8_x2 vld1q_u8_x2
  396. #define ggml_vld1q_u8_x4 vld1q_u8_x4
  397. #define ggml_vld1q_s8_x2 vld1q_s8_x2
  398. #define ggml_vld1q_s8_x4 vld1q_s8_x4
  399. #define ggml_vqtbl1q_s8 vqtbl1q_s8
  400. #endif
  401. #if !defined(__ARM_FEATURE_DOTPROD)
  402. inline static int32x4_t ggml_vdotq_s32(int32x4_t acc, int8x16_t a, int8x16_t b) {
  403. const int16x8_t p0 = vmull_s8(vget_low_s8 (a), vget_low_s8 (b));
  404. const int16x8_t p1 = vmull_s8(vget_high_s8(a), vget_high_s8(b));
  405. return vaddq_s32(acc, vaddq_s32(vpaddlq_s16(p0), vpaddlq_s16(p1)));
  406. }
  407. #else
  408. #define ggml_vdotq_s32(a, b, c) vdotq_s32(a, b, c)
  409. #endif
  410. #endif
  411. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  412. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  413. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  414. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  415. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  416. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  417. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  418. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  419. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  420. // precomputed tables for expanding 8bits to 8 bytes:
  421. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  422. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  423. #endif
  424. // reference implementation for deterministic creation of model files
  425. void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  426. static const int qk = QK4_0;
  427. assert(k % qk == 0);
  428. const int nb = k / qk;
  429. for (int i = 0; i < nb; i++) {
  430. float amax = 0.0f; // absolute max
  431. float max = 0.0f;
  432. for (int j = 0; j < qk; j++) {
  433. const float v = x[i*qk + j];
  434. if (amax < fabsf(v)) {
  435. amax = fabsf(v);
  436. max = v;
  437. }
  438. }
  439. const float d = max / -8;
  440. const float id = d ? 1.0f/d : 0.0f;
  441. y[i].d = GGML_FP32_TO_FP16(d);
  442. for (int j = 0; j < qk/2; ++j) {
  443. const float x0 = x[i*qk + 0 + j]*id;
  444. const float x1 = x[i*qk + qk/2 + j]*id;
  445. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  446. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  447. y[i].qs[j] = xi0;
  448. y[i].qs[j] |= xi1 << 4;
  449. }
  450. }
  451. }
  452. void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  453. quantize_row_q4_0_reference(x, y, k);
  454. }
  455. void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  456. const int qk = QK4_1;
  457. assert(k % qk == 0);
  458. const int nb = k / qk;
  459. for (int i = 0; i < nb; i++) {
  460. float min = FLT_MAX;
  461. float max = -FLT_MAX;
  462. for (int j = 0; j < qk; j++) {
  463. const float v = x[i*qk + j];
  464. if (v < min) min = v;
  465. if (v > max) max = v;
  466. }
  467. const float d = (max - min) / ((1 << 4) - 1);
  468. const float id = d ? 1.0f/d : 0.0f;
  469. y[i].d = GGML_FP32_TO_FP16(d);
  470. y[i].m = GGML_FP32_TO_FP16(min);
  471. for (int j = 0; j < qk/2; ++j) {
  472. const float x0 = (x[i*qk + 0 + j] - min)*id;
  473. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  474. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  475. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  476. y[i].qs[j] = xi0;
  477. y[i].qs[j] |= xi1 << 4;
  478. }
  479. }
  480. }
  481. void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  482. quantize_row_q4_1_reference(x, y, k);
  483. }
  484. void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  485. static const int qk = QK5_0;
  486. assert(k % qk == 0);
  487. const int nb = k / qk;
  488. for (int i = 0; i < nb; i++) {
  489. float amax = 0.0f; // absolute max
  490. float max = 0.0f;
  491. for (int j = 0; j < qk; j++) {
  492. const float v = x[i*qk + j];
  493. if (amax < fabsf(v)) {
  494. amax = fabsf(v);
  495. max = v;
  496. }
  497. }
  498. const float d = max / -16;
  499. const float id = d ? 1.0f/d : 0.0f;
  500. y[i].d = GGML_FP32_TO_FP16(d);
  501. uint32_t qh = 0;
  502. for (int j = 0; j < qk/2; ++j) {
  503. const float x0 = x[i*qk + 0 + j]*id;
  504. const float x1 = x[i*qk + qk/2 + j]*id;
  505. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  506. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  507. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  508. // get the 5-th bit and store it in qh at the right position
  509. qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
  510. qh |= ((xi1 & 0x10u) >> 4) << (j + qk/2);
  511. }
  512. memcpy(&y[i].qh, &qh, sizeof(qh));
  513. }
  514. }
  515. void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  516. quantize_row_q5_0_reference(x, y, k);
  517. }
  518. void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  519. const int qk = QK5_1;
  520. assert(k % qk == 0);
  521. const int nb = k / qk;
  522. for (int i = 0; i < nb; i++) {
  523. float min = FLT_MAX;
  524. float max = -FLT_MAX;
  525. for (int j = 0; j < qk; j++) {
  526. const float v = x[i*qk + j];
  527. if (v < min) min = v;
  528. if (v > max) max = v;
  529. }
  530. const float d = (max - min) / ((1 << 5) - 1);
  531. const float id = d ? 1.0f/d : 0.0f;
  532. y[i].d = GGML_FP32_TO_FP16(d);
  533. y[i].m = GGML_FP32_TO_FP16(min);
  534. uint32_t qh = 0;
  535. for (int j = 0; j < qk/2; ++j) {
  536. const float x0 = (x[i*qk + 0 + j] - min)*id;
  537. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  538. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  539. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  540. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  541. // get the 5-th bit and store it in qh at the right position
  542. qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
  543. qh |= ((xi1 & 0x10u) >> 4) << (j + qk/2);
  544. }
  545. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  546. }
  547. }
  548. void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  549. quantize_row_q5_1_reference(x, y, k);
  550. }
  551. // reference implementation for deterministic creation of model files
  552. void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  553. assert(k % QK8_0 == 0);
  554. const int nb = k / QK8_0;
  555. for (int i = 0; i < nb; i++) {
  556. float amax = 0.0f; // absolute max
  557. for (int j = 0; j < QK8_0; j++) {
  558. const float v = x[i*QK8_0 + j];
  559. amax = MAX(amax, fabsf(v));
  560. }
  561. const float d = amax / ((1 << 7) - 1);
  562. const float id = d ? 1.0f/d : 0.0f;
  563. y[i].d = GGML_FP32_TO_FP16(d);
  564. for (int j = 0; j < QK8_0; ++j) {
  565. const float x0 = x[i*QK8_0 + j]*id;
  566. y[i].qs[j] = roundf(x0);
  567. }
  568. }
  569. }
  570. void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  571. assert(QK8_0 == 32);
  572. assert(k % QK8_0 == 0);
  573. const int nb = k / QK8_0;
  574. block_q8_0 * restrict y = vy;
  575. #if defined(__ARM_NEON)
  576. for (int i = 0; i < nb; i++) {
  577. float32x4_t srcv [8];
  578. float32x4_t asrcv[8];
  579. float32x4_t amaxv[8];
  580. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  581. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  582. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  583. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  584. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  585. const float amax = vmaxvq_f32(amaxv[0]);
  586. const float d = amax / ((1 << 7) - 1);
  587. const float id = d ? 1.0f/d : 0.0f;
  588. y[i].d = GGML_FP32_TO_FP16(d);
  589. for (int j = 0; j < 8; j++) {
  590. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  591. const int32x4_t vi = vcvtnq_s32_f32(v);
  592. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  593. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  594. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  595. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  596. }
  597. }
  598. #elif defined(__wasm_simd128__)
  599. for (int i = 0; i < nb; i++) {
  600. v128_t srcv [8];
  601. v128_t asrcv[8];
  602. v128_t amaxv[8];
  603. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  604. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  605. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  606. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  607. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  608. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  609. wasm_f32x4_extract_lane(amaxv[0], 1)),
  610. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  611. wasm_f32x4_extract_lane(amaxv[0], 3)));
  612. const float d = amax / ((1 << 7) - 1);
  613. const float id = d ? 1.0f/d : 0.0f;
  614. y[i].d = GGML_FP32_TO_FP16(d);
  615. for (int j = 0; j < 8; j++) {
  616. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  617. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  618. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  619. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  620. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  621. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  622. }
  623. }
  624. #elif defined(__AVX2__) || defined(__AVX__)
  625. for (int i = 0; i < nb; i++) {
  626. // Load elements into 4 AVX vectors
  627. __m256 v0 = _mm256_loadu_ps( x );
  628. __m256 v1 = _mm256_loadu_ps( x + 8 );
  629. __m256 v2 = _mm256_loadu_ps( x + 16 );
  630. __m256 v3 = _mm256_loadu_ps( x + 24 );
  631. x += 32;
  632. // Compute max(abs(e)) for the block
  633. const __m256 signBit = _mm256_set1_ps( -0.0f );
  634. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  635. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  636. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  637. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  638. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  639. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  640. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  641. const float maxScalar = _mm_cvtss_f32( max4 );
  642. // Quantize these floats
  643. const float d = maxScalar / 127.f;
  644. y[i].d = GGML_FP32_TO_FP16(d);
  645. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  646. const __m256 mul = _mm256_set1_ps( id );
  647. // Apply the multiplier
  648. v0 = _mm256_mul_ps( v0, mul );
  649. v1 = _mm256_mul_ps( v1, mul );
  650. v2 = _mm256_mul_ps( v2, mul );
  651. v3 = _mm256_mul_ps( v3, mul );
  652. // Round to nearest integer
  653. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  654. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  655. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  656. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  657. // Convert floats to integers
  658. __m256i i0 = _mm256_cvtps_epi32( v0 );
  659. __m256i i1 = _mm256_cvtps_epi32( v1 );
  660. __m256i i2 = _mm256_cvtps_epi32( v2 );
  661. __m256i i3 = _mm256_cvtps_epi32( v3 );
  662. #if defined(__AVX2__)
  663. // Convert int32 to int16
  664. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  665. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  666. // Convert int16 to int8
  667. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  668. // We got our precious signed bytes, but the order is now wrong
  669. // These AVX2 pack instructions process 16-byte pieces independently
  670. // The following instruction is fixing the order
  671. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  672. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  673. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  674. #else
  675. // Since we don't have in AVX some necessary functions,
  676. // we split the registers in half and call AVX2 analogs from SSE
  677. __m128i ni0 = _mm256_castsi256_si128( i0 );
  678. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  679. __m128i ni2 = _mm256_castsi256_si128( i1 );
  680. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  681. __m128i ni4 = _mm256_castsi256_si128( i2 );
  682. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  683. __m128i ni6 = _mm256_castsi256_si128( i3 );
  684. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  685. // Convert int32 to int16
  686. ni0 = _mm_packs_epi32( ni0, ni1 );
  687. ni2 = _mm_packs_epi32( ni2, ni3 );
  688. ni4 = _mm_packs_epi32( ni4, ni5 );
  689. ni6 = _mm_packs_epi32( ni6, ni7 );
  690. // Convert int16 to int8
  691. ni0 = _mm_packs_epi16( ni0, ni2 );
  692. ni4 = _mm_packs_epi16( ni4, ni6 );
  693. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  694. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  695. #endif
  696. }
  697. #elif defined(__riscv_v_intrinsic)
  698. size_t vl = __riscv_vsetvl_e32m4(QK8_0);
  699. for (int i = 0; i < nb; i++) {
  700. // load elements
  701. vfloat32m4_t v_x = __riscv_vle32_v_f32m4(x+i*QK8_0, vl);
  702. vfloat32m4_t vfabs = __riscv_vfabs_v_f32m4(v_x, vl);
  703. vfloat32m1_t tmp = __riscv_vfmv_v_f_f32m1(0.0f, vl);
  704. vfloat32m1_t vmax = __riscv_vfredmax_vs_f32m4_f32m1(vfabs, tmp, vl);
  705. float amax = __riscv_vfmv_f_s_f32m1_f32(vmax);
  706. const float d = amax / ((1 << 7) - 1);
  707. const float id = d ? 1.0f/d : 0.0f;
  708. y[i].d = GGML_FP32_TO_FP16(d);
  709. vfloat32m4_t x0 = __riscv_vfmul_vf_f32m4(v_x, id, vl);
  710. // convert to integer
  711. vint16m2_t vi = __riscv_vfncvt_x_f_w_i16m2(x0, vl);
  712. vint8m1_t vs = __riscv_vncvt_x_x_w_i8m1(vi, vl);
  713. // store result
  714. __riscv_vse8_v_i8m1(y[i].qs , vs, vl);
  715. }
  716. #else
  717. GGML_UNUSED(nb);
  718. // scalar
  719. quantize_row_q8_0_reference(x, y, k);
  720. #endif
  721. }
  722. // reference implementation for deterministic creation of model files
  723. void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  724. assert(QK8_1 == 32);
  725. assert(k % QK8_1 == 0);
  726. const int nb = k / QK8_1;
  727. for (int i = 0; i < nb; i++) {
  728. float amax = 0.0f; // absolute max
  729. for (int j = 0; j < QK8_1; j++) {
  730. const float v = x[i*QK8_1 + j];
  731. amax = MAX(amax, fabsf(v));
  732. }
  733. const float d = amax / ((1 << 7) - 1);
  734. const float id = d ? 1.0f/d : 0.0f;
  735. y[i].d = d;
  736. int sum = 0;
  737. for (int j = 0; j < QK8_1/2; ++j) {
  738. const float v0 = x[i*QK8_1 + j]*id;
  739. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  740. y[i].qs[ j] = roundf(v0);
  741. y[i].qs[QK8_1/2 + j] = roundf(v1);
  742. sum += y[i].qs[ j];
  743. sum += y[i].qs[QK8_1/2 + j];
  744. }
  745. y[i].s = sum*d;
  746. }
  747. }
  748. void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  749. assert(k % QK8_1 == 0);
  750. const int nb = k / QK8_1;
  751. block_q8_1 * restrict y = vy;
  752. #if defined(__ARM_NEON)
  753. for (int i = 0; i < nb; i++) {
  754. float32x4_t srcv [8];
  755. float32x4_t asrcv[8];
  756. float32x4_t amaxv[8];
  757. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  758. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  759. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  760. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  761. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  762. const float amax = vmaxvq_f32(amaxv[0]);
  763. const float d = amax / ((1 << 7) - 1);
  764. const float id = d ? 1.0f/d : 0.0f;
  765. y[i].d = d;
  766. int32x4_t accv = vdupq_n_s32(0);
  767. for (int j = 0; j < 8; j++) {
  768. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  769. const int32x4_t vi = vcvtnq_s32_f32(v);
  770. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  771. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  772. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  773. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  774. accv = vaddq_s32(accv, vi);
  775. }
  776. y[i].s = d * vaddvq_s32(accv);
  777. }
  778. #elif defined(__wasm_simd128__)
  779. for (int i = 0; i < nb; i++) {
  780. v128_t srcv [8];
  781. v128_t asrcv[8];
  782. v128_t amaxv[8];
  783. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  784. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  785. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  786. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  787. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  788. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  789. wasm_f32x4_extract_lane(amaxv[0], 1)),
  790. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  791. wasm_f32x4_extract_lane(amaxv[0], 3)));
  792. const float d = amax / ((1 << 7) - 1);
  793. const float id = d ? 1.0f/d : 0.0f;
  794. y[i].d = d;
  795. v128_t accv = wasm_i32x4_splat(0);
  796. for (int j = 0; j < 8; j++) {
  797. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  798. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  799. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  800. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  801. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  802. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  803. accv = wasm_i32x4_add(accv, vi);
  804. }
  805. y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
  806. wasm_i32x4_extract_lane(accv, 1) +
  807. wasm_i32x4_extract_lane(accv, 2) +
  808. wasm_i32x4_extract_lane(accv, 3));
  809. }
  810. #elif defined(__AVX2__) || defined(__AVX__)
  811. for (int i = 0; i < nb; i++) {
  812. // Load elements into 4 AVX vectors
  813. __m256 v0 = _mm256_loadu_ps( x );
  814. __m256 v1 = _mm256_loadu_ps( x + 8 );
  815. __m256 v2 = _mm256_loadu_ps( x + 16 );
  816. __m256 v3 = _mm256_loadu_ps( x + 24 );
  817. x += 32;
  818. // Compute max(abs(e)) for the block
  819. const __m256 signBit = _mm256_set1_ps( -0.0f );
  820. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  821. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  822. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  823. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  824. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  825. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  826. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  827. const float maxScalar = _mm_cvtss_f32( max4 );
  828. // Quantize these floats
  829. const float d = maxScalar / 127.f;
  830. y[i].d = d;
  831. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  832. const __m256 mul = _mm256_set1_ps( id );
  833. // Apply the multiplier
  834. v0 = _mm256_mul_ps( v0, mul );
  835. v1 = _mm256_mul_ps( v1, mul );
  836. v2 = _mm256_mul_ps( v2, mul );
  837. v3 = _mm256_mul_ps( v3, mul );
  838. // Round to nearest integer
  839. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  840. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  841. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  842. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  843. // Convert floats to integers
  844. __m256i i0 = _mm256_cvtps_epi32( v0 );
  845. __m256i i1 = _mm256_cvtps_epi32( v1 );
  846. __m256i i2 = _mm256_cvtps_epi32( v2 );
  847. __m256i i3 = _mm256_cvtps_epi32( v3 );
  848. #if defined(__AVX2__)
  849. // Compute the sum of the quants and set y[i].s
  850. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  851. // Convert int32 to int16
  852. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  853. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  854. // Convert int16 to int8
  855. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  856. // We got our precious signed bytes, but the order is now wrong
  857. // These AVX2 pack instructions process 16-byte pieces independently
  858. // The following instruction is fixing the order
  859. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  860. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  861. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  862. #else
  863. // Since we don't have in AVX some necessary functions,
  864. // we split the registers in half and call AVX2 analogs from SSE
  865. __m128i ni0 = _mm256_castsi256_si128( i0 );
  866. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  867. __m128i ni2 = _mm256_castsi256_si128( i1 );
  868. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  869. __m128i ni4 = _mm256_castsi256_si128( i2 );
  870. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  871. __m128i ni6 = _mm256_castsi256_si128( i3 );
  872. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  873. // Compute the sum of the quants and set y[i].s
  874. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  875. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  876. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  877. // Convert int32 to int16
  878. ni0 = _mm_packs_epi32( ni0, ni1 );
  879. ni2 = _mm_packs_epi32( ni2, ni3 );
  880. ni4 = _mm_packs_epi32( ni4, ni5 );
  881. ni6 = _mm_packs_epi32( ni6, ni7 );
  882. // Convert int16 to int8
  883. ni0 = _mm_packs_epi16( ni0, ni2 );
  884. ni4 = _mm_packs_epi16( ni4, ni6 );
  885. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  886. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  887. #endif
  888. }
  889. #elif defined(__riscv_v_intrinsic)
  890. size_t vl = __riscv_vsetvl_e32m4(QK8_1);
  891. for (int i = 0; i < nb; i++) {
  892. // load elements
  893. vfloat32m4_t v_x = __riscv_vle32_v_f32m4(x+i*QK8_1, vl);
  894. vfloat32m4_t vfabs = __riscv_vfabs_v_f32m4(v_x, vl);
  895. vfloat32m1_t tmp = __riscv_vfmv_v_f_f32m1(0.0, vl);
  896. vfloat32m1_t vmax = __riscv_vfredmax_vs_f32m4_f32m1(vfabs, tmp, vl);
  897. float amax = __riscv_vfmv_f_s_f32m1_f32(vmax);
  898. const float d = amax / ((1 << 7) - 1);
  899. const float id = d ? 1.0f/d : 0.0f;
  900. y[i].d = d;
  901. vfloat32m4_t x0 = __riscv_vfmul_vf_f32m4(v_x, id, vl);
  902. // convert to integer
  903. vint16m2_t vi = __riscv_vfncvt_x_f_w_i16m2(x0, vl);
  904. vint8m1_t vs = __riscv_vncvt_x_x_w_i8m1(vi, vl);
  905. // store result
  906. __riscv_vse8_v_i8m1(y[i].qs , vs, vl);
  907. // compute sum for y[i].s
  908. vint16m1_t tmp2 = __riscv_vmv_v_x_i16m1(0, vl);
  909. vint16m1_t vwrs = __riscv_vwredsum_vs_i8m1_i16m1(vs, tmp2, vl);
  910. // set y[i].s
  911. int sum = __riscv_vmv_x_s_i16m1_i16(vwrs);
  912. y[i].s = sum*d;
  913. }
  914. #else
  915. GGML_UNUSED(nb);
  916. // scalar
  917. quantize_row_q8_1_reference(x, y, k);
  918. #endif
  919. }
  920. void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  921. static const int qk = QK4_0;
  922. assert(k % qk == 0);
  923. const int nb = k / qk;
  924. for (int i = 0; i < nb; i++) {
  925. const float d = GGML_FP16_TO_FP32(x[i].d);
  926. for (int j = 0; j < qk/2; ++j) {
  927. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  928. const int x1 = (x[i].qs[j] >> 4) - 8;
  929. y[i*qk + j + 0 ] = x0*d;
  930. y[i*qk + j + qk/2] = x1*d;
  931. }
  932. }
  933. }
  934. void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  935. static const int qk = QK4_1;
  936. assert(k % qk == 0);
  937. const int nb = k / qk;
  938. for (int i = 0; i < nb; i++) {
  939. const float d = GGML_FP16_TO_FP32(x[i].d);
  940. const float m = GGML_FP16_TO_FP32(x[i].m);
  941. for (int j = 0; j < qk/2; ++j) {
  942. const int x0 = (x[i].qs[j] & 0x0F);
  943. const int x1 = (x[i].qs[j] >> 4);
  944. y[i*qk + j + 0 ] = x0*d + m;
  945. y[i*qk + j + qk/2] = x1*d + m;
  946. }
  947. }
  948. }
  949. void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  950. static const int qk = QK5_0;
  951. assert(k % qk == 0);
  952. const int nb = k / qk;
  953. for (int i = 0; i < nb; i++) {
  954. const float d = GGML_FP16_TO_FP32(x[i].d);
  955. uint32_t qh;
  956. memcpy(&qh, x[i].qh, sizeof(qh));
  957. for (int j = 0; j < qk/2; ++j) {
  958. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  959. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  960. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  961. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  962. y[i*qk + j + 0 ] = x0*d;
  963. y[i*qk + j + qk/2] = x1*d;
  964. }
  965. }
  966. }
  967. void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  968. static const int qk = QK5_1;
  969. assert(k % qk == 0);
  970. const int nb = k / qk;
  971. for (int i = 0; i < nb; i++) {
  972. const float d = GGML_FP16_TO_FP32(x[i].d);
  973. const float m = GGML_FP16_TO_FP32(x[i].m);
  974. uint32_t qh;
  975. memcpy(&qh, x[i].qh, sizeof(qh));
  976. for (int j = 0; j < qk/2; ++j) {
  977. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  978. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  979. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  980. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  981. y[i*qk + j + 0 ] = x0*d + m;
  982. y[i*qk + j + qk/2] = x1*d + m;
  983. }
  984. }
  985. }
  986. void dequantize_row_q8_0(const block_q8_0 * restrict x, float * restrict y, int k) {
  987. static const int qk = QK8_0;
  988. assert(k % qk == 0);
  989. const int nb = k / qk;
  990. for (int i = 0; i < nb; i++) {
  991. const float d = GGML_FP16_TO_FP32(x[i].d);
  992. for (int j = 0; j < qk; ++j) {
  993. y[i*qk + j] = x[i].qs[j]*d;
  994. }
  995. }
  996. }
  997. //
  998. // 2-6 bit quantization in super-blocks
  999. //
  1000. //
  1001. // ===================== Helper functions
  1002. //
  1003. static inline int nearest_int(float fval) {
  1004. assert(fval <= 4194303.f);
  1005. float val = fval + 12582912.f;
  1006. int i; memcpy(&i, &val, sizeof(int));
  1007. return (i & 0x007fffff) - 0x00400000;
  1008. }
  1009. static float make_qx_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, int rmse_type,
  1010. const float * restrict qw) {
  1011. float max = 0;
  1012. float amax = 0;
  1013. for (int i = 0; i < n; ++i) {
  1014. float ax = fabsf(x[i]);
  1015. if (ax > amax) { amax = ax; max = x[i]; }
  1016. }
  1017. if (amax < 1e-30f) { // all zero
  1018. for (int i = 0; i < n; ++i) {
  1019. L[i] = 0;
  1020. }
  1021. return 0.f;
  1022. }
  1023. float iscale = -nmax / max;
  1024. if (rmse_type == 0) {
  1025. for (int i = 0; i < n; ++i) {
  1026. int l = nearest_int(iscale * x[i]);
  1027. L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
  1028. }
  1029. return 1/iscale;
  1030. }
  1031. bool return_early = false;
  1032. if (rmse_type < 0) {
  1033. rmse_type = -rmse_type;
  1034. return_early = true;
  1035. }
  1036. float sumlx = 0;
  1037. float suml2 = 0;
  1038. #ifdef HAVE_BUGGY_APPLE_LINKER
  1039. // use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7
  1040. for (volatile int i = 0; i < n; ++i) {
  1041. #else
  1042. for (int i = 0; i < n; ++i) {
  1043. #endif
  1044. int l = nearest_int(iscale * x[i]);
  1045. l = MAX(-nmax, MIN(nmax-1, l));
  1046. L[i] = l + nmax;
  1047. float w = qw ? qw[i] : rmse_type == 1 ? x[i] * x[i] : rmse_type == 2 ? 1 : rmse_type == 3 ? fabsf(x[i]) : sqrtf(fabsf(x[i]));
  1048. sumlx += w*x[i]*l;
  1049. suml2 += w*l*l;
  1050. }
  1051. float scale = sumlx/suml2;
  1052. if (return_early) return suml2 > 0 ? 0.5f*(scale + 1/iscale) : 1/iscale;
  1053. float best = scale * sumlx;
  1054. for (int is = -9; is <= 9; ++is) {
  1055. if (is == 0) {
  1056. continue;
  1057. }
  1058. iscale = -(nmax + 0.1f*is) / max;
  1059. sumlx = suml2 = 0;
  1060. for (int i = 0; i < n; ++i) {
  1061. int l = nearest_int(iscale * x[i]);
  1062. l = MAX(-nmax, MIN(nmax-1, l));
  1063. float w = qw ? qw[i] : rmse_type == 1 ? x[i] * x[i] : rmse_type == 2 ? 1 : rmse_type == 3 ? fabsf(x[i]) : sqrtf(fabsf(x[i]));
  1064. sumlx += w*x[i]*l;
  1065. suml2 += w*l*l;
  1066. }
  1067. if (suml2 > 0 && sumlx*sumlx > best*suml2) {
  1068. for (int i = 0; i < n; ++i) {
  1069. int l = nearest_int(iscale * x[i]);
  1070. L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
  1071. }
  1072. scale = sumlx/suml2; best = scale*sumlx;
  1073. }
  1074. }
  1075. return scale;
  1076. }
  1077. static float make_q3_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, bool do_rmse) {
  1078. float max = 0;
  1079. float amax = 0;
  1080. for (int i = 0; i < n; ++i) {
  1081. float ax = fabsf(x[i]);
  1082. if (ax > amax) { amax = ax; max = x[i]; }
  1083. }
  1084. if (!amax) { // all zero
  1085. for (int i = 0; i < n; ++i) { L[i] = 0; }
  1086. return 0.f;
  1087. }
  1088. float iscale = -nmax / max;
  1089. if (do_rmse) {
  1090. float sumlx = 0;
  1091. float suml2 = 0;
  1092. for (int i = 0; i < n; ++i) {
  1093. int l = nearest_int(iscale * x[i]);
  1094. l = MAX(-nmax, MIN(nmax-1, l));
  1095. L[i] = l;
  1096. float w = x[i]*x[i];
  1097. sumlx += w*x[i]*l;
  1098. suml2 += w*l*l;
  1099. }
  1100. for (int itry = 0; itry < 5; ++itry) {
  1101. int n_changed = 0;
  1102. for (int i = 0; i < n; ++i) {
  1103. float w = x[i]*x[i];
  1104. float slx = sumlx - w*x[i]*L[i];
  1105. if (slx > 0) {
  1106. float sl2 = suml2 - w*L[i]*L[i];
  1107. int new_l = nearest_int(x[i] * sl2 / slx);
  1108. new_l = MAX(-nmax, MIN(nmax-1, new_l));
  1109. if (new_l != L[i]) {
  1110. slx += w*x[i]*new_l;
  1111. sl2 += w*new_l*new_l;
  1112. if (sl2 > 0 && slx*slx*suml2 > sumlx*sumlx*sl2) {
  1113. L[i] = new_l; sumlx = slx; suml2 = sl2;
  1114. ++n_changed;
  1115. }
  1116. }
  1117. }
  1118. }
  1119. if (!n_changed) {
  1120. break;
  1121. }
  1122. }
  1123. for (int i = 0; i < n; ++i) {
  1124. L[i] += nmax;
  1125. }
  1126. return sumlx / suml2;
  1127. }
  1128. for (int i = 0; i < n; ++i) {
  1129. int l = nearest_int(iscale * x[i]);
  1130. l = MAX(-nmax, MIN(nmax-1, l));
  1131. L[i] = l + nmax;
  1132. }
  1133. return 1/iscale;
  1134. }
  1135. static float make_qkx1_quants(int n, int nmax, const float * restrict x, uint8_t * restrict L, float * restrict the_min,
  1136. int ntry, float alpha) {
  1137. float min = x[0];
  1138. float max = x[0];
  1139. for (int i = 1; i < n; ++i) {
  1140. if (x[i] < min) min = x[i];
  1141. if (x[i] > max) max = x[i];
  1142. }
  1143. if (max == min) {
  1144. for (int i = 0; i < n; ++i) L[i] = 0;
  1145. *the_min = 0;
  1146. return 0.f;
  1147. }
  1148. if (min > 0) min = 0;
  1149. float iscale = nmax/(max - min);
  1150. float scale = 1/iscale;
  1151. for (int itry = 0; itry < ntry; ++itry) {
  1152. float sumlx = 0; int suml2 = 0;
  1153. bool did_change = false;
  1154. for (int i = 0; i < n; ++i) {
  1155. int l = nearest_int(iscale*(x[i] - min));
  1156. l = MAX(0, MIN(nmax, l));
  1157. if (l != L[i]) {
  1158. L[i] = l;
  1159. did_change = true;
  1160. }
  1161. sumlx += (x[i] - min)*l;
  1162. suml2 += l*l;
  1163. }
  1164. scale = sumlx/suml2;
  1165. float sum = 0;
  1166. for (int i = 0; i < n; ++i) {
  1167. sum += x[i] - scale*L[i];
  1168. }
  1169. min = alpha*min + (1 - alpha)*sum/n;
  1170. if (min > 0) min = 0;
  1171. iscale = 1/scale;
  1172. if (!did_change) break;
  1173. }
  1174. *the_min = -min;
  1175. return scale;
  1176. }
  1177. static float make_qkx2_quants(int n, int nmax, const float * restrict x, const float * restrict weights,
  1178. uint8_t * restrict L, float * restrict the_min, uint8_t * restrict Laux,
  1179. float rmin, float rdelta, int nstep, bool use_mad) {
  1180. float min = x[0];
  1181. float max = x[0];
  1182. float sum_w = weights[0];
  1183. float sum_x = sum_w * x[0];
  1184. #ifdef HAVE_BUGGY_APPLE_LINKER
  1185. // use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7
  1186. for (volatile int i = 1; i < n; ++i) {
  1187. #else
  1188. for (int i = 1; i < n; ++i) {
  1189. #endif
  1190. if (x[i] < min) min = x[i];
  1191. if (x[i] > max) max = x[i];
  1192. float w = weights[i];
  1193. sum_w += w;
  1194. sum_x += w * x[i];
  1195. }
  1196. if (min > 0) min = 0;
  1197. if (max == min) {
  1198. for (int i = 0; i < n; ++i) L[i] = 0;
  1199. *the_min = -min;
  1200. return 0.f;
  1201. }
  1202. float iscale = nmax/(max - min);
  1203. float scale = 1/iscale;
  1204. float best_mad = 0;
  1205. for (int i = 0; i < n; ++i) {
  1206. int l = nearest_int(iscale*(x[i] - min));
  1207. L[i] = MAX(0, MIN(nmax, l));
  1208. float diff = scale * L[i] + min - x[i];
  1209. diff = use_mad ? fabsf(diff) : diff * diff;
  1210. float w = weights[i];
  1211. best_mad += w * diff;
  1212. }
  1213. if (nstep < 1) {
  1214. *the_min = -min;
  1215. return scale;
  1216. }
  1217. for (int is = 0; is <= nstep; ++is) {
  1218. iscale = (rmin + rdelta*is + nmax)/(max - min);
  1219. float sum_l = 0, sum_l2 = 0, sum_xl = 0;
  1220. for (int i = 0; i < n; ++i) {
  1221. int l = nearest_int(iscale*(x[i] - min));
  1222. l = MAX(0, MIN(nmax, l));
  1223. Laux[i] = l;
  1224. float w = weights[i];
  1225. sum_l += w*l;
  1226. sum_l2 += w*l*l;
  1227. sum_xl += w*l*x[i];
  1228. }
  1229. float D = sum_w * sum_l2 - sum_l * sum_l;
  1230. if (D > 0) {
  1231. float this_scale = (sum_w * sum_xl - sum_x * sum_l)/D;
  1232. float this_min = (sum_l2 * sum_x - sum_l * sum_xl)/D;
  1233. if (this_min > 0) {
  1234. this_min = 0;
  1235. this_scale = sum_xl / sum_l2;
  1236. }
  1237. float mad = 0;
  1238. for (int i = 0; i < n; ++i) {
  1239. float diff = this_scale * Laux[i] + this_min - x[i];
  1240. diff = use_mad ? fabsf(diff) : diff * diff;
  1241. float w = weights[i];
  1242. mad += w * diff;
  1243. }
  1244. if (mad < best_mad) {
  1245. for (int i = 0; i < n; ++i) {
  1246. L[i] = Laux[i];
  1247. }
  1248. best_mad = mad;
  1249. scale = this_scale;
  1250. min = this_min;
  1251. }
  1252. }
  1253. }
  1254. *the_min = -min;
  1255. return scale;
  1256. }
  1257. #if QK_K == 256
  1258. static inline void get_scale_min_k4(int j, const uint8_t * restrict q, uint8_t * restrict d, uint8_t * restrict m) {
  1259. if (j < 4) {
  1260. *d = q[j] & 63; *m = q[j + 4] & 63;
  1261. } else {
  1262. *d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
  1263. *m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
  1264. }
  1265. }
  1266. #endif
  1267. //========================- 2-bit (de)-quantization
  1268. void quantize_row_q2_K_reference(const float * restrict x, block_q2_K * restrict y, int k) {
  1269. assert(k % QK_K == 0);
  1270. const int nb = k / QK_K;
  1271. uint8_t L[QK_K];
  1272. uint8_t Laux[16];
  1273. float weights[16];
  1274. float mins[QK_K/16];
  1275. float scales[QK_K/16];
  1276. const float q4scale = 15.f;
  1277. for (int i = 0; i < nb; i++) {
  1278. float max_scale = 0; // as we are deducting the min, scales are always positive
  1279. float max_min = 0;
  1280. for (int j = 0; j < QK_K/16; ++j) {
  1281. for (int l = 0; l < 16; ++l) weights[l] = fabsf(x[16*j + l]);
  1282. scales[j] = make_qkx2_quants(16, 3, x + 16*j, weights, L + 16*j, &mins[j], Laux, -0.5f, 0.1f, 15, true);
  1283. float scale = scales[j];
  1284. if (scale > max_scale) {
  1285. max_scale = scale;
  1286. }
  1287. float min = mins[j];
  1288. if (min > max_min) {
  1289. max_min = min;
  1290. }
  1291. }
  1292. if (max_scale > 0) {
  1293. float iscale = q4scale/max_scale;
  1294. for (int j = 0; j < QK_K/16; ++j) {
  1295. int l = nearest_int(iscale*scales[j]);
  1296. y[i].scales[j] = l;
  1297. }
  1298. y[i].d = GGML_FP32_TO_FP16(max_scale/q4scale);
  1299. } else {
  1300. for (int j = 0; j < QK_K/16; ++j) y[i].scales[j] = 0;
  1301. y[i].d = GGML_FP32_TO_FP16(0.f);
  1302. }
  1303. if (max_min > 0) {
  1304. float iscale = q4scale/max_min;
  1305. for (int j = 0; j < QK_K/16; ++j) {
  1306. int l = nearest_int(iscale*mins[j]);
  1307. y[i].scales[j] |= (l << 4);
  1308. }
  1309. y[i].dmin = GGML_FP32_TO_FP16(max_min/q4scale);
  1310. } else {
  1311. y[i].dmin = GGML_FP32_TO_FP16(0.f);
  1312. }
  1313. for (int j = 0; j < QK_K/16; ++j) {
  1314. const float d = GGML_FP16_TO_FP32(y[i].d) * (y[i].scales[j] & 0xF);
  1315. if (!d) continue;
  1316. const float dm = GGML_FP16_TO_FP32(y[i].dmin) * (y[i].scales[j] >> 4);
  1317. for (int ii = 0; ii < 16; ++ii) {
  1318. int l = nearest_int((x[16*j + ii] + dm)/d);
  1319. l = MAX(0, MIN(3, l));
  1320. L[16*j + ii] = l;
  1321. }
  1322. }
  1323. #if QK_K == 256
  1324. for (int j = 0; j < QK_K; j += 128) {
  1325. for (int l = 0; l < 32; ++l) {
  1326. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  1327. }
  1328. }
  1329. #else
  1330. for (int l = 0; l < 16; ++l) {
  1331. y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6);
  1332. }
  1333. #endif
  1334. x += QK_K;
  1335. }
  1336. }
  1337. void dequantize_row_q2_K(const block_q2_K * restrict x, float * restrict y, int k) {
  1338. assert(k % QK_K == 0);
  1339. const int nb = k / QK_K;
  1340. for (int i = 0; i < nb; i++) {
  1341. const float d = GGML_FP16_TO_FP32(x[i].d);
  1342. const float min = GGML_FP16_TO_FP32(x[i].dmin);
  1343. const uint8_t * q = x[i].qs;
  1344. #if QK_K == 256
  1345. int is = 0;
  1346. float dl, ml;
  1347. for (int n = 0; n < QK_K; n += 128) {
  1348. int shift = 0;
  1349. for (int j = 0; j < 4; ++j) {
  1350. uint8_t sc = x[i].scales[is++];
  1351. dl = d * (sc & 0xF); ml = min * (sc >> 4);
  1352. for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l] >> shift) & 3)) - ml;
  1353. sc = x[i].scales[is++];
  1354. dl = d * (sc & 0xF); ml = min * (sc >> 4);
  1355. for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3)) - ml;
  1356. shift += 2;
  1357. }
  1358. q += 32;
  1359. }
  1360. #else
  1361. float dl1 = d * (x[i].scales[0] & 0xF), ml1 = min * (x[i].scales[0] >> 4);
  1362. float dl2 = d * (x[i].scales[1] & 0xF), ml2 = min * (x[i].scales[1] >> 4);
  1363. float dl3 = d * (x[i].scales[2] & 0xF), ml3 = min * (x[i].scales[2] >> 4);
  1364. float dl4 = d * (x[i].scales[3] & 0xF), ml4 = min * (x[i].scales[3] >> 4);
  1365. for (int l = 0; l < 16; ++l) {
  1366. y[l+ 0] = dl1 * ((int8_t)((q[l] >> 0) & 3)) - ml1;
  1367. y[l+16] = dl2 * ((int8_t)((q[l] >> 2) & 3)) - ml2;
  1368. y[l+32] = dl3 * ((int8_t)((q[l] >> 4) & 3)) - ml3;
  1369. y[l+48] = dl4 * ((int8_t)((q[l] >> 6) & 3)) - ml4;
  1370. }
  1371. y += QK_K;
  1372. #endif
  1373. }
  1374. }
  1375. void quantize_row_q2_K(const float * restrict x, void * restrict vy, int k) {
  1376. quantize_row_q2_K_reference(x, vy, k);
  1377. }
  1378. size_t ggml_quantize_q2_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
  1379. (void)hist; // TODO: collect histograms
  1380. for (int j = 0; j < n; j += k) {
  1381. block_q2_K * restrict y = (block_q2_K *)dst + j/QK_K;
  1382. quantize_row_q2_K_reference(src + j, y, k);
  1383. }
  1384. return (n/QK_K*sizeof(block_q2_K));
  1385. }
  1386. static float make_qkx3_quants(int n, int nmax, const float * restrict x, const float * restrict weights,
  1387. uint8_t * restrict L, float * restrict the_min, uint8_t * restrict Laux,
  1388. float rmin, float rdelta, int nstep, bool use_mad) {
  1389. float min = x[0];
  1390. float max = x[0];
  1391. float sum_w = weights ? weights[0] : x[0]*x[0];
  1392. float sum_x = sum_w * x[0];
  1393. #ifdef HAVE_BUGGY_APPLE_LINKER
  1394. // use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7
  1395. for (volatile int i = 1; i < n; ++i) {
  1396. #else
  1397. for (int i = 1; i < n; ++i) {
  1398. #endif
  1399. if (x[i] < min) min = x[i];
  1400. if (x[i] > max) max = x[i];
  1401. float w = weights ? weights[i] : x[i]*x[i];
  1402. sum_w += w;
  1403. sum_x += w * x[i];
  1404. }
  1405. if (min > 0) {
  1406. min = 0;
  1407. }
  1408. if (max <= min) {
  1409. memset(L, 0, n);
  1410. *the_min = -min;
  1411. return 0.f;
  1412. }
  1413. float iscale = nmax/(max - min);
  1414. float scale = 1/iscale;
  1415. float best_mad = 0;
  1416. for (int i = 0; i < n; ++i) {
  1417. int l = nearest_int(iscale*(x[i] - min));
  1418. L[i] = MAX(0, MIN(nmax, l));
  1419. float diff = scale * L[i] + min - x[i];
  1420. diff = use_mad ? fabsf(diff) : diff*diff;
  1421. float w = weights ? weights[i] : x[i]*x[i];
  1422. best_mad += w * diff;
  1423. }
  1424. if (nstep < 1) {
  1425. *the_min = -min;
  1426. return scale;
  1427. }
  1428. for (int is = 0; is <= nstep; ++is) {
  1429. iscale = (rmin + rdelta*is + nmax)/(max - min);
  1430. float sum_l = 0, sum_l2 = 0, sum_xl = 0;
  1431. for (int i = 0; i < n; ++i) {
  1432. int l = nearest_int(iscale*(x[i] - min));
  1433. l = MAX(0, MIN(nmax, l));
  1434. Laux[i] = l;
  1435. float w = weights ? weights[i] : x[i]*x[i];
  1436. sum_l += w*l;
  1437. sum_l2 += w*l*l;
  1438. sum_xl += w*l*x[i];
  1439. }
  1440. float D = sum_w * sum_l2 - sum_l * sum_l;
  1441. if (D > 0) {
  1442. float this_scale = (sum_w * sum_xl - sum_x * sum_l)/D;
  1443. float this_min = (sum_l2 * sum_x - sum_l * sum_xl)/D;
  1444. if (this_min > 0) {
  1445. this_min = 0;
  1446. this_scale = sum_xl / sum_l2;
  1447. }
  1448. float mad = 0;
  1449. for (int i = 0; i < n; ++i) {
  1450. float diff = this_scale * Laux[i] + this_min - x[i];
  1451. diff = use_mad ? fabsf(diff) : diff*diff;
  1452. float w = weights ? weights[i] : x[i]*x[i];
  1453. mad += w * diff;
  1454. }
  1455. if (mad < best_mad) {
  1456. for (int i = 0; i < n; ++i) {
  1457. L[i] = Laux[i];
  1458. }
  1459. best_mad = mad;
  1460. scale = this_scale;
  1461. min = this_min;
  1462. }
  1463. }
  1464. }
  1465. *the_min = -min;
  1466. return scale;
  1467. }
  1468. static float make_qp_quants(int n, int nmax, const float * restrict x, uint8_t * restrict L, const float * quant_weights) {
  1469. float max = 0;
  1470. for (int i = 0; i < n; ++i) {
  1471. max = MAX(max, x[i]);
  1472. }
  1473. if (!max) { // all zero
  1474. for (int i = 0; i < n; ++i) { L[i] = 0; }
  1475. return 0.f;
  1476. }
  1477. float iscale = nmax / max;
  1478. for (int i = 0; i < n; ++i) {
  1479. L[i] = nearest_int(iscale * x[i]);
  1480. }
  1481. float scale = 1/iscale;
  1482. float best_mse = 0;
  1483. for (int i = 0; i < n; ++i) {
  1484. float diff = x[i] - scale*L[i];
  1485. float w = quant_weights[i];
  1486. best_mse += w*diff*diff;
  1487. }
  1488. for (int is = -4; is <= 4; ++is) {
  1489. if (is == 0) continue;
  1490. float iscale_is = (0.1f*is + nmax)/max;
  1491. float scale_is = 1/iscale_is;
  1492. float mse = 0;
  1493. for (int i = 0; i < n; ++i) {
  1494. int l = nearest_int(iscale_is*x[i]);
  1495. l = MIN(nmax, l);
  1496. float diff = x[i] - scale_is*l;
  1497. float w = quant_weights[i];
  1498. mse += w*diff*diff;
  1499. }
  1500. if (mse < best_mse) {
  1501. best_mse = mse;
  1502. iscale = iscale_is;
  1503. }
  1504. }
  1505. float sumlx = 0;
  1506. float suml2 = 0;
  1507. for (int i = 0; i < n; ++i) {
  1508. int l = nearest_int(iscale * x[i]);
  1509. l = MIN(nmax, l);
  1510. L[i] = l;
  1511. float w = quant_weights[i];
  1512. sumlx += w*x[i]*l;
  1513. suml2 += w*l*l;
  1514. }
  1515. for (int itry = 0; itry < 5; ++itry) {
  1516. int n_changed = 0;
  1517. for (int i = 0; i < n; ++i) {
  1518. float w = quant_weights[i];
  1519. float slx = sumlx - w*x[i]*L[i];
  1520. float sl2 = suml2 - w*L[i]*L[i];
  1521. if (slx > 0 && sl2 > 0) {
  1522. int new_l = nearest_int(x[i] * sl2 / slx);
  1523. new_l = MIN(nmax, new_l);
  1524. if (new_l != L[i]) {
  1525. slx += w*x[i]*new_l;
  1526. sl2 += w*new_l*new_l;
  1527. if (slx*slx*suml2 > sumlx*sumlx*sl2) {
  1528. L[i] = new_l; sumlx = slx; suml2 = sl2;
  1529. ++n_changed;
  1530. }
  1531. }
  1532. }
  1533. }
  1534. if (!n_changed) {
  1535. break;
  1536. }
  1537. }
  1538. return sumlx / suml2;
  1539. }
  1540. static void quantize_row_q2_K_impl(const float * restrict x, block_q2_K * restrict y, int k, const float * restrict quant_weights) {
  1541. GGML_ASSERT(quant_weights);
  1542. assert(k % QK_K == 0);
  1543. const int nb = k / QK_K;
  1544. const bool requantize = true;
  1545. uint8_t L[QK_K];
  1546. uint8_t Laux[16];
  1547. float mins[QK_K/16];
  1548. float scales[QK_K/16];
  1549. float sw[QK_K/16];
  1550. float weight[QK_K/16];
  1551. uint8_t Ls[QK_K/16], Lm[QK_K/16];
  1552. for (int i = 0; i < nb; i++) {
  1553. memset(sw, 0, QK_K/16*sizeof(float));
  1554. float sumx2 = 0;
  1555. for (int j = 0; j < QK_K; ++j) sumx2 += x[j]*x[j];
  1556. float sigma2 = sumx2/QK_K;
  1557. for (int j = 0; j < QK_K/16; ++j) {
  1558. const float * restrict qw = quant_weights + QK_K * i + 16*j;
  1559. for (int l = 0; l < QK_K/16; ++l) weight[l] = qw[l] * sqrtf(sigma2 + x[16*j + l]*x[16*j + l]);
  1560. for (int l = 0; l < QK_K/16; ++l) sw[j] += weight[l];
  1561. scales[j] = make_qkx3_quants(QK_K/16, 3, x + 16*j, weight, L + 16*j, &mins[j], Laux, -0.9f, 0.05f, 36, false);
  1562. }
  1563. float dm = make_qp_quants(QK_K/16, 15, scales, Ls, sw);
  1564. float mm = make_qp_quants(QK_K/16, 15, mins, Lm, sw);
  1565. y[i].d = GGML_FP32_TO_FP16(dm);
  1566. y[i].dmin = GGML_FP32_TO_FP16(mm);
  1567. dm = GGML_FP16_TO_FP32(y[i].d);
  1568. mm = GGML_FP16_TO_FP32(y[i].dmin);
  1569. for (int j = 0; j < QK_K/16; ++j) {
  1570. y[i].scales[j] = Ls[j] | (Lm[j] << 4);
  1571. }
  1572. if (requantize) {
  1573. for (int j = 0; j < QK_K/16; ++j) {
  1574. const float d = dm * (y[i].scales[j] & 0xF);
  1575. if (!d) continue;
  1576. const float m = mm * (y[i].scales[j] >> 4);
  1577. for (int ii = 0; ii < 16; ++ii) {
  1578. int l = nearest_int((x[16*j + ii] + m)/d);
  1579. l = MAX(0, MIN(3, l));
  1580. L[16*j + ii] = l;
  1581. }
  1582. }
  1583. }
  1584. #if QK_K == 256
  1585. for (int j = 0; j < QK_K; j += 128) {
  1586. for (int l = 0; l < 32; ++l) {
  1587. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  1588. }
  1589. }
  1590. #else
  1591. for (int l = 0; l < 16; ++l) {
  1592. y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6);
  1593. }
  1594. #endif
  1595. x += QK_K;
  1596. }
  1597. }
  1598. size_t quantize_q2_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
  1599. (void)hist;
  1600. size_t row_size = ggml_row_size(GGML_TYPE_Q2_K, n_per_row);
  1601. if (!quant_weights) {
  1602. quantize_row_q2_K_reference(src, dst, nrow*n_per_row);
  1603. }
  1604. else {
  1605. char * qrow = (char *)dst;
  1606. for (int row = 0; row < nrow; ++row) {
  1607. quantize_row_q2_K_impl(src, (block_q2_K*)qrow, n_per_row, quant_weights);
  1608. src += n_per_row;
  1609. qrow += row_size;
  1610. }
  1611. }
  1612. return nrow * row_size;
  1613. }
  1614. //========================= 3-bit (de)-quantization
  1615. void quantize_row_q3_K_reference(const float * restrict x, block_q3_K * restrict y, int k) {
  1616. assert(k % QK_K == 0);
  1617. const int nb = k / QK_K;
  1618. int8_t L[QK_K];
  1619. float scales[QK_K / 16];
  1620. for (int i = 0; i < nb; i++) {
  1621. float max_scale = 0;
  1622. float amax = 0;
  1623. for (int j = 0; j < QK_K/16; ++j) {
  1624. scales[j] = make_q3_quants(16, 4, x + 16*j, L + 16*j, true);
  1625. float scale = fabsf(scales[j]);
  1626. if (scale > amax) {
  1627. amax = scale; max_scale = scales[j];
  1628. }
  1629. }
  1630. #if QK_K == 256
  1631. memset(y[i].scales, 0, 12);
  1632. if (max_scale) {
  1633. float iscale = -32.f/max_scale;
  1634. for (int j = 0; j < QK_K/16; ++j) {
  1635. int8_t l = nearest_int(iscale*scales[j]);
  1636. l = MAX(-32, MIN(31, l)) + 32;
  1637. if (j < 8) {
  1638. y[i].scales[j] = l & 0xF;
  1639. } else {
  1640. y[i].scales[j-8] |= ((l & 0xF) << 4);
  1641. }
  1642. l >>= 4;
  1643. y[i].scales[j%4 + 8] |= (l << (2*(j/4)));
  1644. }
  1645. y[i].d = GGML_FP32_TO_FP16(1/iscale);
  1646. } else {
  1647. y[i].d = GGML_FP32_TO_FP16(0.f);
  1648. }
  1649. int8_t sc;
  1650. for (int j = 0; j < QK_K/16; ++j) {
  1651. sc = j < 8 ? y[i].scales[j] & 0xF : y[i].scales[j-8] >> 4;
  1652. sc = (sc | (((y[i].scales[8 + j%4] >> (2*(j/4))) & 3) << 4)) - 32;
  1653. float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  1654. if (!d) {
  1655. continue;
  1656. }
  1657. for (int ii = 0; ii < 16; ++ii) {
  1658. int l = nearest_int(x[16*j + ii]/d);
  1659. l = MAX(-4, MIN(3, l));
  1660. L[16*j + ii] = l + 4;
  1661. }
  1662. }
  1663. #else
  1664. if (max_scale) {
  1665. float iscale = -8.f/max_scale;
  1666. for (int j = 0; j < QK_K/16; j+=2) {
  1667. int l1 = nearest_int(iscale*scales[j]);
  1668. l1 = 8 + MAX(-8, MIN(7, l1));
  1669. int l2 = nearest_int(iscale*scales[j+1]);
  1670. l2 = 8 + MAX(-8, MIN(7, l2));
  1671. y[i].scales[j/2] = l1 | (l2 << 4);
  1672. }
  1673. y[i].d = GGML_FP32_TO_FP16(1/iscale);
  1674. } else {
  1675. for (int j = 0; j < QK_K/16; j+=2) {
  1676. y[i].scales[j/2] = 0;
  1677. }
  1678. y[i].d = GGML_FP32_TO_FP16(0.f);
  1679. }
  1680. for (int j = 0; j < QK_K/16; ++j) {
  1681. int s = j%2 == 0 ? y[i].scales[j/2] & 0xF : y[i].scales[j/2] >> 4;
  1682. float d = GGML_FP16_TO_FP32(y[i].d) * (s - 8);
  1683. if (!d) {
  1684. continue;
  1685. }
  1686. for (int ii = 0; ii < 16; ++ii) {
  1687. int l = nearest_int(x[16*j + ii]/d);
  1688. l = MAX(-4, MIN(3, l));
  1689. L[16*j + ii] = l + 4;
  1690. }
  1691. }
  1692. #endif
  1693. memset(y[i].hmask, 0, QK_K/8);
  1694. // We put the high-bit for the 1st 8 quants into bit 0, the next 8 into bit 1, etc.
  1695. int m = 0;
  1696. uint8_t hm = 1;
  1697. for (int j = 0; j < QK_K; ++j) {
  1698. if (L[j] > 3) {
  1699. y[i].hmask[m] |= hm;
  1700. L[j] -= 4;
  1701. }
  1702. if (++m == QK_K/8) {
  1703. m = 0; hm <<= 1;
  1704. }
  1705. }
  1706. #if QK_K == 256
  1707. for (int j = 0; j < QK_K; j += 128) {
  1708. for (int l = 0; l < 32; ++l) {
  1709. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  1710. }
  1711. }
  1712. #else
  1713. for (int l = 0; l < 16; ++l) {
  1714. y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6);
  1715. }
  1716. #endif
  1717. x += QK_K;
  1718. }
  1719. }
  1720. #if QK_K == 256
  1721. void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int k) {
  1722. assert(k % QK_K == 0);
  1723. const int nb = k / QK_K;
  1724. const uint32_t kmask1 = 0x03030303;
  1725. const uint32_t kmask2 = 0x0f0f0f0f;
  1726. uint32_t aux[4];
  1727. const int8_t * scales = (const int8_t*)aux;
  1728. for (int i = 0; i < nb; i++) {
  1729. const float d_all = GGML_FP16_TO_FP32(x[i].d);
  1730. const uint8_t * restrict q = x[i].qs;
  1731. const uint8_t * restrict hm = x[i].hmask;
  1732. uint8_t m = 1;
  1733. memcpy(aux, x[i].scales, 12);
  1734. uint32_t tmp = aux[2];
  1735. aux[2] = ((aux[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
  1736. aux[3] = ((aux[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
  1737. aux[0] = (aux[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
  1738. aux[1] = (aux[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
  1739. int is = 0;
  1740. float dl;
  1741. for (int n = 0; n < QK_K; n += 128) {
  1742. int shift = 0;
  1743. for (int j = 0; j < 4; ++j) {
  1744. dl = d_all * (scales[is++] - 32);
  1745. for (int l = 0; l < 16; ++l) {
  1746. *y++ = dl * ((int8_t)((q[l+ 0] >> shift) & 3) - ((hm[l+ 0] & m) ? 0 : 4));
  1747. }
  1748. dl = d_all * (scales[is++] - 32);
  1749. for (int l = 0; l < 16; ++l) {
  1750. *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3) - ((hm[l+16] & m) ? 0 : 4));
  1751. }
  1752. shift += 2;
  1753. m <<= 1;
  1754. }
  1755. q += 32;
  1756. }
  1757. }
  1758. }
  1759. #else
  1760. void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int k) {
  1761. assert(k % QK_K == 0);
  1762. assert(QK_K == 64);
  1763. const int nb = k / QK_K;
  1764. for (int i = 0; i < nb; i++) {
  1765. const float d_all = GGML_FP16_TO_FP32(x[i].d);
  1766. const uint8_t * restrict q = x[i].qs;
  1767. const uint8_t * restrict hm = x[i].hmask;
  1768. const float d1 = d_all * ((x[i].scales[0] & 0xF) - 8);
  1769. const float d2 = d_all * ((x[i].scales[0] >> 4) - 8);
  1770. const float d3 = d_all * ((x[i].scales[1] & 0xF) - 8);
  1771. const float d4 = d_all * ((x[i].scales[1] >> 4) - 8);
  1772. for (int l=0; l<8; ++l) {
  1773. uint8_t h = hm[l];
  1774. y[l+ 0] = d1 * ((int8_t)((q[l+0] >> 0) & 3) - ((h & 0x01) ? 0 : 4));
  1775. y[l+ 8] = d1 * ((int8_t)((q[l+8] >> 0) & 3) - ((h & 0x02) ? 0 : 4));
  1776. y[l+16] = d2 * ((int8_t)((q[l+0] >> 2) & 3) - ((h & 0x04) ? 0 : 4));
  1777. y[l+24] = d2 * ((int8_t)((q[l+8] >> 2) & 3) - ((h & 0x08) ? 0 : 4));
  1778. y[l+32] = d3 * ((int8_t)((q[l+0] >> 4) & 3) - ((h & 0x10) ? 0 : 4));
  1779. y[l+40] = d3 * ((int8_t)((q[l+8] >> 4) & 3) - ((h & 0x20) ? 0 : 4));
  1780. y[l+48] = d4 * ((int8_t)((q[l+0] >> 6) & 3) - ((h & 0x40) ? 0 : 4));
  1781. y[l+56] = d4 * ((int8_t)((q[l+8] >> 6) & 3) - ((h & 0x80) ? 0 : 4));
  1782. }
  1783. y += QK_K;
  1784. }
  1785. }
  1786. #endif
  1787. void quantize_row_q3_K(const float * restrict x, void * restrict vy, int k) {
  1788. quantize_row_q3_K_reference(x, vy, k);
  1789. }
  1790. size_t ggml_quantize_q3_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
  1791. (void)hist; // TODO: collect histograms
  1792. for (int j = 0; j < n; j += k) {
  1793. block_q3_K * restrict y = (block_q3_K *)dst + j/QK_K;
  1794. quantize_row_q3_K_reference(src + j, y, k);
  1795. }
  1796. return (n/QK_K*sizeof(block_q3_K));
  1797. }
  1798. static void quantize_row_q3_K_impl(const float * restrict x, block_q3_K * restrict y, int n_per_row, const float * restrict quant_weights) {
  1799. #if QK_K != 256
  1800. (void)quant_weights;
  1801. quantize_row_q3_K_reference(x, y, n_per_row);
  1802. #else
  1803. assert(n_per_row % QK_K == 0);
  1804. const int nb = n_per_row / QK_K;
  1805. int8_t L[QK_K];
  1806. float scales[QK_K / 16];
  1807. float weight[16];
  1808. float sw[QK_K / 16];
  1809. int8_t Ls[QK_K / 16];
  1810. for (int i = 0; i < nb; i++) {
  1811. float sumx2 = 0;
  1812. for (int j = 0; j < QK_K; ++j) sumx2 += x[j]*x[j];
  1813. float sigma2 = 2*sumx2/QK_K;
  1814. for (int j = 0; j < QK_K/16; ++j) {
  1815. if (quant_weights) {
  1816. const float * qw = quant_weights ? quant_weights + QK_K * i + 16*j : NULL;
  1817. for (int l = 0; l < 16; ++l) weight[l] = qw[l] * sqrtf(sigma2 + x[16*j+l]*x[16*j+l]);
  1818. } else {
  1819. for (int l = 0; l < 16; ++l) weight[l] = x[16*j+l]*x[16*j+l];
  1820. }
  1821. float sumw = 0;
  1822. for (int l = 0; l < 16; ++l) sumw += weight[l];
  1823. sw[j] = sumw;
  1824. scales[j] = make_qx_quants(16, 4, x + 16*j, L + 16*j, 1, weight);
  1825. }
  1826. memset(y[i].scales, 0, 12);
  1827. float d_block = make_qx_quants(QK_K/16, 32, scales, Ls, 1, sw);
  1828. for (int j = 0; j < QK_K/16; ++j) {
  1829. int l = Ls[j];
  1830. if (j < 8) {
  1831. y[i].scales[j] = l & 0xF;
  1832. } else {
  1833. y[i].scales[j-8] |= ((l & 0xF) << 4);
  1834. }
  1835. l >>= 4;
  1836. y[i].scales[j%4 + 8] |= (l << (2*(j/4)));
  1837. }
  1838. y[i].d = GGML_FP32_TO_FP16(d_block);
  1839. int8_t sc;
  1840. for (int j = 0; j < QK_K/16; ++j) {
  1841. sc = j < 8 ? y[i].scales[j] & 0xF : y[i].scales[j-8] >> 4;
  1842. sc = (sc | (((y[i].scales[8 + j%4] >> (2*(j/4))) & 3) << 4)) - 32;
  1843. float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  1844. if (!d) {
  1845. continue;
  1846. }
  1847. for (int ii = 0; ii < 16; ++ii) {
  1848. int l = nearest_int(x[16*j + ii]/d);
  1849. l = MAX(-4, MIN(3, l));
  1850. L[16*j + ii] = l + 4;
  1851. }
  1852. }
  1853. memset(y[i].hmask, 0, QK_K/8);
  1854. // We put the high-bit for the 1st 8 quants into bit 0, the next 8 into bit 1, etc.
  1855. int m = 0;
  1856. uint8_t hm = 1;
  1857. for (int j = 0; j < QK_K; ++j) {
  1858. if (L[j] > 3) {
  1859. y[i].hmask[m] |= hm;
  1860. L[j] -= 4;
  1861. }
  1862. if (++m == QK_K/8) {
  1863. m = 0; hm <<= 1;
  1864. }
  1865. }
  1866. for (int j = 0; j < QK_K; j += 128) {
  1867. for (int l = 0; l < 32; ++l) {
  1868. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  1869. }
  1870. }
  1871. x += QK_K;
  1872. }
  1873. #endif
  1874. }
  1875. size_t quantize_q3_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
  1876. (void)hist;
  1877. size_t row_size = ggml_row_size(GGML_TYPE_Q3_K, n_per_row);
  1878. if (!quant_weights) {
  1879. quantize_row_q3_K_reference(src, dst, nrow*n_per_row);
  1880. }
  1881. else {
  1882. char * qrow = (char *)dst;
  1883. for (int row = 0; row < nrow; ++row) {
  1884. quantize_row_q3_K_impl(src, (block_q3_K*)qrow, n_per_row, quant_weights);
  1885. src += n_per_row;
  1886. qrow += row_size;
  1887. }
  1888. }
  1889. return nrow * row_size;
  1890. }
  1891. // ====================== 4-bit (de)-quantization
  1892. void quantize_row_q4_K_reference(const float * restrict x, block_q4_K * restrict y, int k) {
  1893. assert(k % QK_K == 0);
  1894. const int nb = k / QK_K;
  1895. uint8_t L[QK_K];
  1896. uint8_t Laux[32];
  1897. float weights[32];
  1898. float mins[QK_K/32];
  1899. float scales[QK_K/32];
  1900. for (int i = 0; i < nb; i++) {
  1901. float max_scale = 0; // as we are deducting the min, scales are always positive
  1902. float max_min = 0;
  1903. for (int j = 0; j < QK_K/32; ++j) {
  1904. //scales[j] = make_qkx1_quants(32, 15, x + 32*j, L + 32*j, &mins[j], 9, 0.5f);
  1905. float sum_x2 = 0;
  1906. for (int l = 0; l < 32; ++l) sum_x2 += x[32*j + l] * x[32*j + l];
  1907. float av_x = sqrtf(sum_x2/32);
  1908. for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
  1909. scales[j] = make_qkx2_quants(32, 15, x + 32*j, weights, L + 32*j, &mins[j], Laux, -1.f, 0.1f, 20, false);
  1910. float scale = scales[j];
  1911. if (scale > max_scale) {
  1912. max_scale = scale;
  1913. }
  1914. float min = mins[j];
  1915. if (min > max_min) {
  1916. max_min = min;
  1917. }
  1918. }
  1919. #if QK_K == 256
  1920. float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f;
  1921. float inv_min = max_min > 0 ? 63.f/max_min : 0.f;
  1922. for (int j = 0; j < QK_K/32; ++j) {
  1923. uint8_t ls = nearest_int(inv_scale*scales[j]);
  1924. uint8_t lm = nearest_int(inv_min*mins[j]);
  1925. ls = MIN(63, ls);
  1926. lm = MIN(63, lm);
  1927. if (j < 4) {
  1928. y[i].scales[j] = ls;
  1929. y[i].scales[j+4] = lm;
  1930. } else {
  1931. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  1932. y[i].scales[j-4] |= ((ls >> 4) << 6);
  1933. y[i].scales[j-0] |= ((lm >> 4) << 6);
  1934. }
  1935. }
  1936. y[i].d = GGML_FP32_TO_FP16(max_scale/63.f);
  1937. y[i].dmin = GGML_FP32_TO_FP16(max_min/63.f);
  1938. uint8_t sc, m;
  1939. for (int j = 0; j < QK_K/32; ++j) {
  1940. get_scale_min_k4(j, y[i].scales, &sc, &m);
  1941. const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  1942. if (!d) continue;
  1943. const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
  1944. for (int ii = 0; ii < 32; ++ii) {
  1945. int l = nearest_int((x[32*j + ii] + dm)/d);
  1946. l = MAX(0, MIN(15, l));
  1947. L[32*j + ii] = l;
  1948. }
  1949. }
  1950. #else
  1951. const float s_factor = 15.f;
  1952. float inv_scale = max_scale > 0 ? s_factor/max_scale : 0.f;
  1953. float inv_min = max_min > 0 ? s_factor/max_min : 0.f;
  1954. int d1 = nearest_int(inv_scale*scales[0]);
  1955. int m1 = nearest_int(inv_min*mins[0]);
  1956. int d2 = nearest_int(inv_scale*scales[1]);
  1957. int m2 = nearest_int(inv_min*mins[1]);
  1958. y[i].scales[0] = d1 | (m1 << 4);
  1959. y[i].scales[1] = d2 | (m2 << 4);
  1960. y[i].d[0] = GGML_FP32_TO_FP16(max_scale/s_factor);
  1961. y[i].d[1] = GGML_FP32_TO_FP16(max_min/s_factor);
  1962. float sumlx = 0;
  1963. int suml2 = 0;
  1964. for (int j = 0; j < QK_K/32; ++j) {
  1965. const uint8_t sd = y[i].scales[j] & 0xF;
  1966. const uint8_t sm = y[i].scales[j] >> 4;
  1967. const float d = GGML_FP16_TO_FP32(y[i].d[0]) * sd;
  1968. if (!d) continue;
  1969. const float m = GGML_FP16_TO_FP32(y[i].d[1]) * sm;
  1970. for (int ii = 0; ii < 32; ++ii) {
  1971. int l = nearest_int((x[32*j + ii] + m)/d);
  1972. l = MAX(0, MIN(15, l));
  1973. L[32*j + ii] = l;
  1974. sumlx += (x[32*j + ii] + m)*l*sd;
  1975. suml2 += l*l*sd*sd;
  1976. }
  1977. }
  1978. if (suml2) {
  1979. y[i].d[0] = GGML_FP32_TO_FP16(sumlx/suml2);
  1980. }
  1981. #endif
  1982. uint8_t * q = y[i].qs;
  1983. for (int j = 0; j < QK_K; j += 64) {
  1984. for (int l = 0; l < 32; ++l) q[l] = L[j + l] | (L[j + l + 32] << 4);
  1985. q += 32;
  1986. }
  1987. x += QK_K;
  1988. }
  1989. }
  1990. void dequantize_row_q4_K(const block_q4_K * restrict x, float * restrict y, int k) {
  1991. assert(k % QK_K == 0);
  1992. const int nb = k / QK_K;
  1993. for (int i = 0; i < nb; i++) {
  1994. const uint8_t * q = x[i].qs;
  1995. #if QK_K == 256
  1996. const float d = GGML_FP16_TO_FP32(x[i].d);
  1997. const float min = GGML_FP16_TO_FP32(x[i].dmin);
  1998. int is = 0;
  1999. uint8_t sc, m;
  2000. for (int j = 0; j < QK_K; j += 64) {
  2001. get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
  2002. const float d1 = d * sc; const float m1 = min * m;
  2003. get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
  2004. const float d2 = d * sc; const float m2 = min * m;
  2005. for (int l = 0; l < 32; ++l) *y++ = d1 * (q[l] & 0xF) - m1;
  2006. for (int l = 0; l < 32; ++l) *y++ = d2 * (q[l] >> 4) - m2;
  2007. q += 32; is += 2;
  2008. }
  2009. #else
  2010. const float dall = GGML_FP16_TO_FP32(x[i].d[0]);
  2011. const float mall = GGML_FP16_TO_FP32(x[i].d[1]);
  2012. const float d1 = dall * (x[i].scales[0] & 0xF), m1 = mall * (x[i].scales[0] >> 4);
  2013. const float d2 = dall * (x[i].scales[1] & 0xF), m2 = mall * (x[i].scales[1] >> 4);
  2014. for (int l = 0; l < 32; ++l) {
  2015. y[l+ 0] = d1 * (q[l] & 0xF) - m1;
  2016. y[l+32] = d2 * (q[l] >> 4) - m2;
  2017. }
  2018. y += QK_K;
  2019. #endif
  2020. }
  2021. }
  2022. void quantize_row_q4_K(const float * restrict x, void * restrict vy, int k) {
  2023. assert(k % QK_K == 0);
  2024. block_q4_K * restrict y = vy;
  2025. quantize_row_q4_K_reference(x, y, k);
  2026. }
  2027. size_t ggml_quantize_q4_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
  2028. assert(k % QK_K == 0);
  2029. (void)hist; // TODO: collect histograms
  2030. for (int j = 0; j < n; j += k) {
  2031. block_q4_K * restrict y = (block_q4_K *)dst + j/QK_K;
  2032. quantize_row_q4_K_reference(src + j, y, k);
  2033. }
  2034. return (n/QK_K*sizeof(block_q4_K));
  2035. }
  2036. static void quantize_row_q4_K_impl(const float * restrict x, block_q4_K * restrict y, int n_per_row, const float * quant_weights) {
  2037. #if QK_K != 256
  2038. (void)quant_weights;
  2039. quantize_row_q4_K_reference(x, y, n_per_row);
  2040. #else
  2041. assert(n_per_row % QK_K == 0);
  2042. const int nb = n_per_row / QK_K;
  2043. uint8_t L[QK_K];
  2044. uint8_t Laux[32];
  2045. uint8_t Ls[QK_K/32];
  2046. uint8_t Lm[QK_K/32];
  2047. float weights[32];
  2048. float sw[QK_K/32];
  2049. float mins[QK_K/32];
  2050. float scales[QK_K/32];
  2051. for (int i = 0; i < nb; i++) {
  2052. float sum_x2 = 0;
  2053. for (int l = 0; l < QK_K; ++l) sum_x2 += x[l] * x[l];
  2054. float sigma2 = 2*sum_x2/QK_K;
  2055. float av_x = sqrtf(sigma2);
  2056. for (int j = 0; j < QK_K/32; ++j) {
  2057. if (quant_weights) {
  2058. const float * qw = quant_weights + QK_K*i + 32*j;
  2059. for (int l = 0; l < 32; ++l) weights[l] = qw[l] * sqrtf(sigma2 + x[32*j + l]*x[32*j + l]);
  2060. } else {
  2061. for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
  2062. }
  2063. float sumw = 0;
  2064. for (int l = 0; l < 32; ++l) sumw += weights[l];
  2065. sw[j] = sumw;
  2066. scales[j] = make_qkx3_quants(32, 15, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.9f, 0.05f, 36, false);
  2067. }
  2068. float d_block = make_qp_quants(QK_K/32, 63, scales, Ls, sw);
  2069. float m_block = make_qp_quants(QK_K/32, 63, mins, Lm, sw);
  2070. for (int j = 0; j < QK_K/32; ++j) {
  2071. uint8_t ls = Ls[j];
  2072. uint8_t lm = Lm[j];
  2073. if (j < 4) {
  2074. y[i].scales[j] = ls;
  2075. y[i].scales[j+4] = lm;
  2076. } else {
  2077. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  2078. y[i].scales[j-4] |= ((ls >> 4) << 6);
  2079. y[i].scales[j-0] |= ((lm >> 4) << 6);
  2080. }
  2081. }
  2082. y[i].d = GGML_FP32_TO_FP16(d_block);
  2083. y[i].dmin = GGML_FP32_TO_FP16(m_block);
  2084. uint8_t sc, m;
  2085. for (int j = 0; j < QK_K/32; ++j) {
  2086. get_scale_min_k4(j, y[i].scales, &sc, &m);
  2087. const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  2088. if (!d) continue;
  2089. const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
  2090. for (int ii = 0; ii < 32; ++ii) {
  2091. int l = nearest_int((x[32*j + ii] + dm)/d);
  2092. l = MAX(0, MIN(15, l));
  2093. L[32*j + ii] = l;
  2094. }
  2095. }
  2096. uint8_t * q = y[i].qs;
  2097. for (int j = 0; j < QK_K; j += 64) {
  2098. for (int l = 0; l < 32; ++l) q[l] = L[j + l] | (L[j + l + 32] << 4);
  2099. q += 32;
  2100. }
  2101. x += QK_K;
  2102. }
  2103. #endif
  2104. }
  2105. size_t quantize_q4_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
  2106. (void)hist;
  2107. size_t row_size = ggml_row_size(GGML_TYPE_Q4_K, n_per_row);
  2108. if (!quant_weights) {
  2109. quantize_row_q4_K_reference(src, dst, nrow*n_per_row);
  2110. }
  2111. else {
  2112. char * qrow = (char *)dst;
  2113. for (int row = 0; row < nrow; ++row) {
  2114. quantize_row_q4_K_impl(src, (block_q4_K*)qrow, n_per_row, quant_weights);
  2115. src += n_per_row;
  2116. qrow += row_size;
  2117. }
  2118. }
  2119. return nrow * row_size;
  2120. }
  2121. // ====================== 5-bit (de)-quantization
  2122. void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict y, int k) {
  2123. assert(k % QK_K == 0);
  2124. const int nb = k / QK_K;
  2125. #if QK_K == 256
  2126. uint8_t L[QK_K];
  2127. float mins[QK_K/32];
  2128. float scales[QK_K/32];
  2129. float weights[32];
  2130. uint8_t Laux[32];
  2131. #else
  2132. int8_t L[QK_K];
  2133. float scales[QK_K/16];
  2134. #endif
  2135. for (int i = 0; i < nb; i++) {
  2136. #if QK_K == 256
  2137. float max_scale = 0; // as we are deducting the min, scales are always positive
  2138. float max_min = 0;
  2139. for (int j = 0; j < QK_K/32; ++j) {
  2140. //scales[j] = make_qkx1_quants(32, 31, x + 32*j, L + 32*j, &mins[j], 9, 0.5f);
  2141. float sum_x2 = 0;
  2142. for (int l = 0; l < 32; ++l) sum_x2 += x[32*j + l] * x[32*j + l];
  2143. float av_x = sqrtf(sum_x2/32);
  2144. for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
  2145. scales[j] = make_qkx2_quants(32, 31, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.5f, 0.1f, 15, false);
  2146. float scale = scales[j];
  2147. if (scale > max_scale) {
  2148. max_scale = scale;
  2149. }
  2150. float min = mins[j];
  2151. if (min > max_min) {
  2152. max_min = min;
  2153. }
  2154. }
  2155. float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f;
  2156. float inv_min = max_min > 0 ? 63.f/max_min : 0.f;
  2157. for (int j = 0; j < QK_K/32; ++j) {
  2158. uint8_t ls = nearest_int(inv_scale*scales[j]);
  2159. uint8_t lm = nearest_int(inv_min*mins[j]);
  2160. ls = MIN(63, ls);
  2161. lm = MIN(63, lm);
  2162. if (j < 4) {
  2163. y[i].scales[j] = ls;
  2164. y[i].scales[j+4] = lm;
  2165. } else {
  2166. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  2167. y[i].scales[j-4] |= ((ls >> 4) << 6);
  2168. y[i].scales[j-0] |= ((lm >> 4) << 6);
  2169. }
  2170. }
  2171. y[i].d = GGML_FP32_TO_FP16(max_scale/63.f);
  2172. y[i].dmin = GGML_FP32_TO_FP16(max_min/63.f);
  2173. uint8_t sc, m;
  2174. for (int j = 0; j < QK_K/32; ++j) {
  2175. get_scale_min_k4(j, y[i].scales, &sc, &m);
  2176. const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  2177. if (!d) continue;
  2178. const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
  2179. for (int ii = 0; ii < 32; ++ii) {
  2180. int l = nearest_int((x[32*j + ii] + dm)/d);
  2181. l = MAX(0, MIN(31, l));
  2182. L[32*j + ii] = l;
  2183. }
  2184. }
  2185. uint8_t * restrict qh = y[i].qh;
  2186. uint8_t * restrict ql = y[i].qs;
  2187. memset(qh, 0, QK_K/8);
  2188. uint8_t m1 = 1, m2 = 2;
  2189. for (int n = 0; n < QK_K; n += 64) {
  2190. for (int j = 0; j < 32; ++j) {
  2191. int l1 = L[n + j];
  2192. if (l1 > 15) {
  2193. l1 -= 16; qh[j] |= m1;
  2194. }
  2195. int l2 = L[n + j + 32];
  2196. if (l2 > 15) {
  2197. l2 -= 16; qh[j] |= m2;
  2198. }
  2199. ql[j] = l1 | (l2 << 4);
  2200. }
  2201. m1 <<= 2; m2 <<= 2;
  2202. ql += 32;
  2203. }
  2204. #else
  2205. float max_scale = 0, amax = 0;
  2206. for (int j = 0; j < QK_K/16; ++j) {
  2207. scales[j] = make_qx_quants(16, 16, x + 16*j, L + 16*j, 1, NULL);
  2208. float abs_scale = fabsf(scales[j]);
  2209. if (abs_scale > amax) {
  2210. amax = abs_scale;
  2211. max_scale = scales[j];
  2212. }
  2213. }
  2214. float iscale = -128.f/max_scale;
  2215. for (int j = 0; j < QK_K/16; ++j) {
  2216. int l = nearest_int(iscale*scales[j]);
  2217. y[i].scales[j] = MAX(-128, MIN(127, l));
  2218. }
  2219. y[i].d = GGML_FP32_TO_FP16(1/iscale);
  2220. for (int j = 0; j < QK_K/16; ++j) {
  2221. const float d = GGML_FP16_TO_FP32(y[i].d) * y[i].scales[j];
  2222. if (!d) continue;
  2223. for (int ii = 0; ii < 16; ++ii) {
  2224. int l = nearest_int(x[16*j + ii]/d);
  2225. l = MAX(-16, MIN(15, l));
  2226. L[16*j + ii] = l + 16;
  2227. }
  2228. }
  2229. uint8_t * restrict qh = y[i].qh;
  2230. uint8_t * restrict ql = y[i].qs;
  2231. memset(qh, 0, QK_K/8);
  2232. for (int j = 0; j < 32; ++j) {
  2233. int jm = j%8;
  2234. int is = j/8;
  2235. int l1 = L[j];
  2236. if (l1 > 15) {
  2237. l1 -= 16; qh[jm] |= (1 << is);
  2238. }
  2239. int l2 = L[j + 32];
  2240. if (l2 > 15) {
  2241. l2 -= 16; qh[jm] |= (1 << (4 + is));
  2242. }
  2243. ql[j] = l1 | (l2 << 4);
  2244. }
  2245. #endif
  2246. x += QK_K;
  2247. }
  2248. }
  2249. void dequantize_row_q5_K(const block_q5_K * restrict x, float * restrict y, int k) {
  2250. assert(k % QK_K == 0);
  2251. const int nb = k / QK_K;
  2252. for (int i = 0; i < nb; i++) {
  2253. const uint8_t * ql = x[i].qs;
  2254. const uint8_t * qh = x[i].qh;
  2255. #if QK_K == 256
  2256. const float d = GGML_FP16_TO_FP32(x[i].d);
  2257. const float min = GGML_FP16_TO_FP32(x[i].dmin);
  2258. int is = 0;
  2259. uint8_t sc, m;
  2260. uint8_t u1 = 1, u2 = 2;
  2261. for (int j = 0; j < QK_K; j += 64) {
  2262. get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
  2263. const float d1 = d * sc; const float m1 = min * m;
  2264. get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
  2265. const float d2 = d * sc; const float m2 = min * m;
  2266. for (int l = 0; l < 32; ++l) *y++ = d1 * ((ql[l] & 0xF) + (qh[l] & u1 ? 16 : 0)) - m1;
  2267. for (int l = 0; l < 32; ++l) *y++ = d2 * ((ql[l] >> 4) + (qh[l] & u2 ? 16 : 0)) - m2;
  2268. ql += 32; is += 2;
  2269. u1 <<= 2; u2 <<= 2;
  2270. }
  2271. #else
  2272. float d = GGML_FP16_TO_FP32(x[i].d);
  2273. const int8_t * restrict s = x[i].scales;
  2274. for (int l = 0; l < 8; ++l) {
  2275. y[l+ 0] = d * s[0] * ((ql[l+ 0] & 0xF) - (qh[l] & 0x01 ? 0 : 16));
  2276. y[l+ 8] = d * s[0] * ((ql[l+ 8] & 0xF) - (qh[l] & 0x02 ? 0 : 16));
  2277. y[l+16] = d * s[1] * ((ql[l+16] & 0xF) - (qh[l] & 0x04 ? 0 : 16));
  2278. y[l+24] = d * s[1] * ((ql[l+24] & 0xF) - (qh[l] & 0x08 ? 0 : 16));
  2279. y[l+32] = d * s[2] * ((ql[l+ 0] >> 4) - (qh[l] & 0x10 ? 0 : 16));
  2280. y[l+40] = d * s[2] * ((ql[l+ 8] >> 4) - (qh[l] & 0x20 ? 0 : 16));
  2281. y[l+48] = d * s[3] * ((ql[l+16] >> 4) - (qh[l] & 0x40 ? 0 : 16));
  2282. y[l+56] = d * s[3] * ((ql[l+24] >> 4) - (qh[l] & 0x80 ? 0 : 16));
  2283. }
  2284. y += QK_K;
  2285. #endif
  2286. }
  2287. }
  2288. void quantize_row_q5_K(const float * restrict x, void * restrict vy, int k) {
  2289. assert(k % QK_K == 0);
  2290. block_q5_K * restrict y = vy;
  2291. quantize_row_q5_K_reference(x, y, k);
  2292. }
  2293. size_t ggml_quantize_q5_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
  2294. assert(k % QK_K == 0);
  2295. (void)hist; // TODO: collect histograms
  2296. for (int j = 0; j < n; j += k) {
  2297. block_q5_K * restrict y = (block_q5_K *)dst + j/QK_K;
  2298. quantize_row_q5_K_reference(src + j, y, k);
  2299. }
  2300. return (n/QK_K*sizeof(block_q5_K));
  2301. }
  2302. static void quantize_row_q5_K_impl(const float * restrict x, block_q5_K * restrict y, int n_per_row, const float * quant_weights) {
  2303. #if QK_K != 256
  2304. (void)quant_weights;
  2305. quantize_row_q5_K_reference(x, y, n_per_row);
  2306. #else
  2307. assert(n_per_row % QK_K == 0);
  2308. const int nb = n_per_row / QK_K;
  2309. uint8_t L[QK_K];
  2310. uint8_t Laux[32];
  2311. uint8_t Ls[QK_K/32];
  2312. uint8_t Lm[QK_K/32];
  2313. float mins[QK_K/32];
  2314. float scales[QK_K/32];
  2315. float sw[QK_K/32];
  2316. float weights[32];
  2317. for (int i = 0; i < nb; i++) {
  2318. float sum_x2 = 0;
  2319. for (int l = 0; l < QK_K; ++l) sum_x2 += x[l] * x[l];
  2320. float sigma2 = 2*sum_x2/QK_K;
  2321. float av_x = sqrtf(sigma2);
  2322. for (int j = 0; j < QK_K/32; ++j) {
  2323. if (quant_weights) {
  2324. const float * qw = quant_weights + QK_K*i + 32*j;
  2325. for (int l = 0; l < 32; ++l) weights[l] = qw[l] * sqrtf(sigma2 + x[32*j + l]*x[32*j + l]);
  2326. } else {
  2327. for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
  2328. }
  2329. float sumw = 0;
  2330. for (int l = 0; l < 32; ++l) sumw += weights[l];
  2331. sw[j] = sumw;
  2332. scales[j] = make_qkx3_quants(32, 31, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.9f, 0.05f, 36, false);
  2333. }
  2334. float d_block = make_qp_quants(QK_K/32, 63, scales, Ls, sw);
  2335. float m_block = make_qp_quants(QK_K/32, 63, mins, Lm, sw);
  2336. for (int j = 0; j < QK_K/32; ++j) {
  2337. uint8_t ls = Ls[j];
  2338. uint8_t lm = Lm[j];
  2339. ls = MIN(63, ls);
  2340. lm = MIN(63, lm);
  2341. if (j < 4) {
  2342. y[i].scales[j] = ls;
  2343. y[i].scales[j+4] = lm;
  2344. } else {
  2345. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  2346. y[i].scales[j-4] |= ((ls >> 4) << 6);
  2347. y[i].scales[j-0] |= ((lm >> 4) << 6);
  2348. }
  2349. }
  2350. y[i].d = GGML_FP32_TO_FP16(d_block);
  2351. y[i].dmin = GGML_FP32_TO_FP16(m_block);
  2352. uint8_t sc, m;
  2353. for (int j = 0; j < QK_K/32; ++j) {
  2354. get_scale_min_k4(j, y[i].scales, &sc, &m);
  2355. const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  2356. if (!d) continue;
  2357. const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
  2358. for (int ii = 0; ii < 32; ++ii) {
  2359. int l = nearest_int((x[32*j + ii] + dm)/d);
  2360. l = MAX(0, MIN(31, l));
  2361. L[32*j + ii] = l;
  2362. }
  2363. }
  2364. uint8_t * restrict qh = y[i].qh;
  2365. uint8_t * restrict ql = y[i].qs;
  2366. memset(qh, 0, QK_K/8);
  2367. uint8_t m1 = 1, m2 = 2;
  2368. for (int n = 0; n < QK_K; n += 64) {
  2369. for (int j = 0; j < 32; ++j) {
  2370. int l1 = L[n + j];
  2371. if (l1 > 15) {
  2372. l1 -= 16; qh[j] |= m1;
  2373. }
  2374. int l2 = L[n + j + 32];
  2375. if (l2 > 15) {
  2376. l2 -= 16; qh[j] |= m2;
  2377. }
  2378. ql[j] = l1 | (l2 << 4);
  2379. }
  2380. m1 <<= 2; m2 <<= 2;
  2381. ql += 32;
  2382. }
  2383. x += QK_K;
  2384. }
  2385. #endif
  2386. }
  2387. size_t quantize_q5_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
  2388. (void)hist;
  2389. size_t row_size = ggml_row_size(GGML_TYPE_Q5_K, n_per_row);
  2390. if (!quant_weights) {
  2391. quantize_row_q5_K_reference(src, dst, nrow*n_per_row);
  2392. }
  2393. else {
  2394. char * qrow = (char *)dst;
  2395. for (int row = 0; row < nrow; ++row) {
  2396. quantize_row_q5_K_impl(src, (block_q5_K*)qrow, n_per_row, quant_weights);
  2397. src += n_per_row;
  2398. qrow += row_size;
  2399. }
  2400. }
  2401. return nrow * row_size;
  2402. }
  2403. // ====================== 6-bit (de)-quantization
  2404. void quantize_row_q6_K_reference(const float * restrict x, block_q6_K * restrict y, int k) {
  2405. assert(k % QK_K == 0);
  2406. const int nb = k / QK_K;
  2407. int8_t L[QK_K];
  2408. float scales[QK_K/16];
  2409. for (int i = 0; i < nb; i++) {
  2410. float max_scale = 0;
  2411. float max_abs_scale = 0;
  2412. for (int ib = 0; ib < QK_K/16; ++ib) {
  2413. const float scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, NULL);
  2414. scales[ib] = scale;
  2415. const float abs_scale = fabsf(scale);
  2416. if (abs_scale > max_abs_scale) {
  2417. max_abs_scale = abs_scale;
  2418. max_scale = scale;
  2419. }
  2420. }
  2421. if (!max_abs_scale) {
  2422. memset(&y[i], 0, sizeof(block_q6_K));
  2423. y[i].d = GGML_FP32_TO_FP16(0.f);
  2424. x += QK_K;
  2425. continue;
  2426. }
  2427. float iscale = -128.f/max_scale;
  2428. y[i].d = GGML_FP32_TO_FP16(1/iscale);
  2429. for (int ib = 0; ib < QK_K/16; ++ib) {
  2430. y[i].scales[ib] = MIN(127, nearest_int(iscale*scales[ib]));
  2431. }
  2432. for (int j = 0; j < QK_K/16; ++j) {
  2433. float d = GGML_FP16_TO_FP32(y[i].d) * y[i].scales[j];
  2434. if (!d) {
  2435. continue;
  2436. }
  2437. for (int ii = 0; ii < 16; ++ii) {
  2438. int l = nearest_int(x[16*j + ii]/d);
  2439. l = MAX(-32, MIN(31, l));
  2440. L[16*j + ii] = l + 32;
  2441. }
  2442. }
  2443. uint8_t * restrict ql = y[i].ql;
  2444. uint8_t * restrict qh = y[i].qh;
  2445. #if QK_K == 256
  2446. for (int j = 0; j < QK_K; j += 128) {
  2447. for (int l = 0; l < 32; ++l) {
  2448. const uint8_t q1 = L[j + l + 0] & 0xF;
  2449. const uint8_t q2 = L[j + l + 32] & 0xF;
  2450. const uint8_t q3 = L[j + l + 64] & 0xF;
  2451. const uint8_t q4 = L[j + l + 96] & 0xF;
  2452. ql[l+ 0] = q1 | (q3 << 4);
  2453. ql[l+32] = q2 | (q4 << 4);
  2454. qh[l] = (L[j + l] >> 4) | ((L[j + l + 32] >> 4) << 2) | ((L[j + l + 64] >> 4) << 4) | ((L[j + l + 96] >> 4) << 6);
  2455. }
  2456. ql += 64;
  2457. qh += 32;
  2458. }
  2459. #else
  2460. for (int l = 0; l < 32; ++l) {
  2461. const uint8_t q1 = L[l + 0] & 0xF;
  2462. const uint8_t q2 = L[l + 32] & 0xF;
  2463. ql[l] = q1 | (q2 << 4);
  2464. }
  2465. for (int l = 0; l < 16; ++l) {
  2466. qh[l] = (L[l] >> 4) | ((L[l + 16] >> 4) << 2) | ((L[l + 32] >> 4) << 4) | ((L[l + 48] >> 4) << 6);
  2467. }
  2468. #endif
  2469. x += QK_K;
  2470. }
  2471. }
  2472. void dequantize_row_q6_K(const block_q6_K * restrict x, float * restrict y, int k) {
  2473. assert(k % QK_K == 0);
  2474. const int nb = k / QK_K;
  2475. for (int i = 0; i < nb; i++) {
  2476. const float d = GGML_FP16_TO_FP32(x[i].d);
  2477. const uint8_t * restrict ql = x[i].ql;
  2478. const uint8_t * restrict qh = x[i].qh;
  2479. const int8_t * restrict sc = x[i].scales;
  2480. #if QK_K == 256
  2481. for (int n = 0; n < QK_K; n += 128) {
  2482. for (int l = 0; l < 32; ++l) {
  2483. int is = l/16;
  2484. const int8_t q1 = (int8_t)((ql[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  2485. const int8_t q2 = (int8_t)((ql[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  2486. const int8_t q3 = (int8_t)((ql[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  2487. const int8_t q4 = (int8_t)((ql[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  2488. y[l + 0] = d * sc[is + 0] * q1;
  2489. y[l + 32] = d * sc[is + 2] * q2;
  2490. y[l + 64] = d * sc[is + 4] * q3;
  2491. y[l + 96] = d * sc[is + 6] * q4;
  2492. }
  2493. y += 128;
  2494. ql += 64;
  2495. qh += 32;
  2496. sc += 8;
  2497. }
  2498. #else
  2499. for (int l = 0; l < 16; ++l) {
  2500. const int8_t q1 = (int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  2501. const int8_t q2 = (int8_t)((ql[l+16] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  2502. const int8_t q3 = (int8_t)((ql[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  2503. const int8_t q4 = (int8_t)((ql[l+16] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  2504. y[l+ 0] = d * sc[0] * q1;
  2505. y[l+16] = d * sc[1] * q2;
  2506. y[l+32] = d * sc[2] * q3;
  2507. y[l+48] = d * sc[3] * q4;
  2508. }
  2509. y += 64;
  2510. #endif
  2511. }
  2512. }
  2513. void quantize_row_q6_K(const float * restrict x, void * restrict vy, int k) {
  2514. assert(k % QK_K == 0);
  2515. block_q6_K * restrict y = vy;
  2516. quantize_row_q6_K_reference(x, y, k);
  2517. }
  2518. size_t ggml_quantize_q6_K(const float * src, void * dst, int n, int k, int64_t * hist) {
  2519. assert(k % QK_K == 0);
  2520. (void)hist; // TODO: collect histograms
  2521. for (int j = 0; j < n; j += k) {
  2522. block_q6_K * restrict y = (block_q6_K *)dst + j/QK_K;
  2523. quantize_row_q6_K_reference(src + j, y, k);
  2524. }
  2525. return (n/QK_K*sizeof(block_q6_K));
  2526. }
  2527. static void quantize_row_q6_K_impl(const float * restrict x, block_q6_K * restrict y, int n_per_row, const float * quant_weights) {
  2528. #if QK_K != 256
  2529. (void)quant_weights;
  2530. quantize_row_q6_K_reference(x, y, n_per_row);
  2531. #else
  2532. assert(n_per_row % QK_K == 0);
  2533. const int nb = n_per_row / QK_K;
  2534. int8_t L[QK_K];
  2535. float scales[QK_K/16];
  2536. //float weights[16];
  2537. for (int i = 0; i < nb; i++) {
  2538. //float sum_x2 = 0;
  2539. //for (int j = 0; j < QK_K; ++j) sum_x2 += x[j]*x[j];
  2540. //float sigma2 = sum_x2/QK_K;
  2541. float max_scale = 0;
  2542. float max_abs_scale = 0;
  2543. for (int ib = 0; ib < QK_K/16; ++ib) {
  2544. float scale;
  2545. if (quant_weights) {
  2546. const float * qw = quant_weights + QK_K*i + 16*ib;
  2547. //for (int j = 0; j < 16; ++j) weights[j] = qw[j] * sqrtf(sigma2 + x[16*ib + j]*x[16*ib + j]);
  2548. //scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, weights);
  2549. scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, qw);
  2550. } else {
  2551. scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, NULL);
  2552. }
  2553. scales[ib] = scale;
  2554. const float abs_scale = fabsf(scale);
  2555. if (abs_scale > max_abs_scale) {
  2556. max_abs_scale = abs_scale;
  2557. max_scale = scale;
  2558. }
  2559. }
  2560. if (!max_abs_scale) {
  2561. memset(&y[i], 0, sizeof(block_q6_K));
  2562. y[i].d = GGML_FP32_TO_FP16(0.f);
  2563. x += QK_K;
  2564. continue;
  2565. }
  2566. float iscale = -128.f/max_scale;
  2567. y[i].d = GGML_FP32_TO_FP16(1/iscale);
  2568. for (int ib = 0; ib < QK_K/16; ++ib) {
  2569. y[i].scales[ib] = MIN(127, nearest_int(iscale*scales[ib]));
  2570. }
  2571. for (int j = 0; j < QK_K/16; ++j) {
  2572. float d = GGML_FP16_TO_FP32(y[i].d) * y[i].scales[j];
  2573. if (!d) {
  2574. continue;
  2575. }
  2576. for (int ii = 0; ii < 16; ++ii) {
  2577. int l = nearest_int(x[16*j + ii]/d);
  2578. l = MAX(-32, MIN(31, l));
  2579. L[16*j + ii] = l + 32;
  2580. }
  2581. }
  2582. uint8_t * restrict ql = y[i].ql;
  2583. uint8_t * restrict qh = y[i].qh;
  2584. for (int j = 0; j < QK_K; j += 128) {
  2585. for (int l = 0; l < 32; ++l) {
  2586. const uint8_t q1 = L[j + l + 0] & 0xF;
  2587. const uint8_t q2 = L[j + l + 32] & 0xF;
  2588. const uint8_t q3 = L[j + l + 64] & 0xF;
  2589. const uint8_t q4 = L[j + l + 96] & 0xF;
  2590. ql[l+ 0] = q1 | (q3 << 4);
  2591. ql[l+32] = q2 | (q4 << 4);
  2592. qh[l] = (L[j + l] >> 4) | ((L[j + l + 32] >> 4) << 2) | ((L[j + l + 64] >> 4) << 4) | ((L[j + l + 96] >> 4) << 6);
  2593. }
  2594. ql += 64;
  2595. qh += 32;
  2596. }
  2597. x += QK_K;
  2598. }
  2599. #endif
  2600. }
  2601. size_t quantize_q6_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
  2602. (void)hist;
  2603. size_t row_size = ggml_row_size(GGML_TYPE_Q6_K, n_per_row);
  2604. if (!quant_weights) {
  2605. quantize_row_q6_K_reference(src, dst, nrow*n_per_row);
  2606. }
  2607. else {
  2608. char * qrow = (char *)dst;
  2609. for (int row = 0; row < nrow; ++row) {
  2610. quantize_row_q6_K_impl(src, (block_q6_K*)qrow, n_per_row, quant_weights);
  2611. src += n_per_row;
  2612. qrow += row_size;
  2613. }
  2614. }
  2615. return nrow * row_size;
  2616. }
  2617. static void quantize_row_q4_0_impl(const float * restrict x, block_q4_0 * restrict y, int n_per_row, const float * quant_weights) {
  2618. static_assert(QK4_0 == 32, "QK4_0 must be 32");
  2619. if (!quant_weights) {
  2620. quantize_row_q4_0_reference(x, y, n_per_row);
  2621. return;
  2622. }
  2623. float weight[QK4_0];
  2624. int8_t L[QK4_0];
  2625. float sum_x2 = 0;
  2626. for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
  2627. float sigma2 = sum_x2/n_per_row;
  2628. const int nb = n_per_row/QK4_0;
  2629. for (int ib = 0; ib < nb; ++ib) {
  2630. const float * xb = x + QK4_0 * ib;
  2631. const float * qw = quant_weights + QK4_0 * ib;
  2632. for (int j = 0; j < QK4_0; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
  2633. float d = make_qx_quants(QK4_0, 8, xb, L, 1, weight);
  2634. y[ib].d = GGML_FP32_TO_FP16(d);
  2635. for (int j = 0; j < 16; ++j) {
  2636. y[ib].qs[j] = L[j] | (L[j+16] << 4);
  2637. }
  2638. }
  2639. }
  2640. size_t quantize_q4_0(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
  2641. if (!quant_weights) {
  2642. return ggml_quantize_q4_0(src, dst, nrow*n_per_row, n_per_row, hist);
  2643. }
  2644. size_t row_size = ggml_row_size(GGML_TYPE_Q4_0, n_per_row);
  2645. char * qrow = (char *)dst;
  2646. for (int row = 0; row < nrow; ++row) {
  2647. quantize_row_q4_0_impl(src, (block_q4_0*)qrow, n_per_row, quant_weights);
  2648. src += n_per_row;
  2649. qrow += row_size;
  2650. }
  2651. return nrow * row_size;
  2652. }
  2653. static void quantize_row_q4_1_impl(const float * restrict x, block_q4_1 * restrict y, int n_per_row, const float * quant_weights) {
  2654. static_assert(QK4_1 == 32, "QK4_1 must be 32");
  2655. if (!quant_weights) {
  2656. quantize_row_q4_1_reference(x, y, n_per_row);
  2657. return;
  2658. }
  2659. float weight[QK4_1];
  2660. uint8_t L[QK4_1], Laux[QK4_1];
  2661. float sum_x2 = 0;
  2662. for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
  2663. float sigma2 = sum_x2/n_per_row;
  2664. const int nb = n_per_row/QK4_1;
  2665. for (int ib = 0; ib < nb; ++ib) {
  2666. const float * xb = x + QK4_1 * ib;
  2667. const float * qw = quant_weights + QK4_1 * ib;
  2668. for (int j = 0; j < QK4_1; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
  2669. float min;
  2670. float d = make_qkx3_quants(QK4_1, 15, xb, weight, L, &min, Laux, -0.9f, 0.05f, 36, false);
  2671. y[ib].d = GGML_FP32_TO_FP16(d);
  2672. y[ib].m = GGML_FP32_TO_FP16(-min);
  2673. for (int j = 0; j < 16; ++j) {
  2674. y[ib].qs[j] = L[j] | (L[j+16] << 4);
  2675. }
  2676. }
  2677. }
  2678. size_t quantize_q4_1(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
  2679. if (!quant_weights) {
  2680. return ggml_quantize_q4_1(src, dst, nrow*n_per_row, n_per_row, hist);
  2681. }
  2682. size_t row_size = ggml_row_size(GGML_TYPE_Q4_1, n_per_row);
  2683. char * qrow = (char *)dst;
  2684. for (int row = 0; row < nrow; ++row) {
  2685. quantize_row_q4_1_impl(src, (block_q4_1*)qrow, n_per_row, quant_weights);
  2686. src += n_per_row;
  2687. qrow += row_size;
  2688. }
  2689. return nrow * row_size;
  2690. }
  2691. static void quantize_row_q5_0_impl(const float * restrict x, block_q5_0 * restrict y, int n_per_row, const float * quant_weights) {
  2692. static_assert(QK5_0 == 32, "QK5_0 must be 32");
  2693. if (!quant_weights) {
  2694. quantize_row_q5_0_reference(x, y, n_per_row);
  2695. return;
  2696. }
  2697. float weight[QK5_0];
  2698. int8_t L[QK5_0];
  2699. float sum_x2 = 0;
  2700. for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
  2701. float sigma2 = sum_x2/n_per_row;
  2702. const int nb = n_per_row/QK5_0;
  2703. for (int ib = 0; ib < nb; ++ib) {
  2704. const float * xb = x + QK5_0 * ib;
  2705. const float * qw = quant_weights + QK5_0 * ib;
  2706. for (int j = 0; j < QK5_0; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
  2707. float d = make_qx_quants(QK5_0, 16, xb, L, 1, weight);
  2708. y[ib].d = GGML_FP32_TO_FP16(d);
  2709. uint32_t qh = 0;
  2710. for (int j = 0; j < 16; ++j) {
  2711. const uint8_t xi0 = L[j];
  2712. const uint8_t xi1 = L[j+16];
  2713. y[ib].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  2714. // get the 5-th bit and store it in qh at the right position
  2715. qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
  2716. qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_0/2);
  2717. }
  2718. memcpy(&y[ib].qh, &qh, sizeof(qh));
  2719. }
  2720. }
  2721. size_t quantize_q5_0(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
  2722. if (!quant_weights) {
  2723. return ggml_quantize_q5_0(src, dst, nrow*n_per_row, n_per_row, hist);
  2724. }
  2725. size_t row_size = ggml_row_size(GGML_TYPE_Q5_0, n_per_row);
  2726. char * qrow = (char *)dst;
  2727. for (int row = 0; row < nrow; ++row) {
  2728. quantize_row_q5_0_impl(src, (block_q5_0*)qrow, n_per_row, quant_weights);
  2729. src += n_per_row;
  2730. qrow += row_size;
  2731. }
  2732. return nrow * row_size;
  2733. }
  2734. static void quantize_row_q5_1_impl(const float * restrict x, block_q5_1 * restrict y, int n_per_row, const float * quant_weights) {
  2735. static_assert(QK5_1 == 32, "QK5_1 must be 32");
  2736. if (!quant_weights) {
  2737. quantize_row_q5_1_reference(x, y, n_per_row);
  2738. return;
  2739. }
  2740. float weight[QK5_1];
  2741. uint8_t L[QK5_1], Laux[QK5_1];
  2742. float sum_x2 = 0;
  2743. for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
  2744. float sigma2 = sum_x2/n_per_row;
  2745. const int nb = n_per_row/QK5_1;
  2746. for (int ib = 0; ib < nb; ++ib) {
  2747. const float * xb = x + QK5_1 * ib;
  2748. const float * qw = quant_weights + QK5_1 * ib;
  2749. for (int j = 0; j < QK5_1; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
  2750. float min;
  2751. float d = make_qkx3_quants(QK5_1, 31, xb, weight, L, &min, Laux, -0.9f, 0.05f, 36, false);
  2752. y[ib].d = GGML_FP32_TO_FP16(d);
  2753. y[ib].m = GGML_FP32_TO_FP16(-min);
  2754. uint32_t qh = 0;
  2755. for (int j = 0; j < 16; ++j) {
  2756. const uint8_t xi0 = L[j];
  2757. const uint8_t xi1 = L[j+16];
  2758. y[ib].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  2759. // get the 5-th bit and store it in qh at the right position
  2760. qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
  2761. qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_0/2);
  2762. }
  2763. memcpy(&y[ib].qh, &qh, sizeof(qh));
  2764. }
  2765. }
  2766. size_t quantize_q5_1(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
  2767. if (!quant_weights) {
  2768. return ggml_quantize_q5_1(src, dst, nrow*n_per_row, n_per_row, hist);
  2769. }
  2770. size_t row_size = ggml_row_size(GGML_TYPE_Q5_1, n_per_row);
  2771. char * qrow = (char *)dst;
  2772. for (int row = 0; row < nrow; ++row) {
  2773. quantize_row_q5_1_impl(src, (block_q5_1*)qrow, n_per_row, quant_weights);
  2774. src += n_per_row;
  2775. qrow += row_size;
  2776. }
  2777. return nrow * row_size;
  2778. }
  2779. // ====================== "True" 2-bit (de)-quantization
  2780. static const uint64_t iq2xxs_grid[256] = {
  2781. 0x0808080808080808, 0x080808080808082b, 0x0808080808081919, 0x0808080808082b08,
  2782. 0x0808080808082b2b, 0x0808080808190819, 0x0808080808191908, 0x08080808082b0808,
  2783. 0x08080808082b082b, 0x08080808082b2b08, 0x08080808082b2b2b, 0x0808080819080819,
  2784. 0x0808080819081908, 0x0808080819190808, 0x0808080819192b08, 0x08080808192b0819,
  2785. 0x08080808192b1908, 0x080808082b080808, 0x080808082b08082b, 0x080808082b082b2b,
  2786. 0x080808082b2b082b, 0x0808081908080819, 0x0808081908081908, 0x0808081908190808,
  2787. 0x0808081908191919, 0x0808081919080808, 0x080808192b081908, 0x080808192b192b08,
  2788. 0x0808082b08080808, 0x0808082b0808082b, 0x0808082b082b082b, 0x0808082b2b08082b,
  2789. 0x0808190808080819, 0x0808190808081908, 0x0808190808190808, 0x08081908082b0819,
  2790. 0x08081908082b1908, 0x0808190819080808, 0x080819081908082b, 0x0808190819082b08,
  2791. 0x08081908192b0808, 0x080819082b080819, 0x080819082b081908, 0x080819082b190808,
  2792. 0x080819082b2b1908, 0x0808191908080808, 0x080819190808082b, 0x0808191908082b08,
  2793. 0x08081919082b0808, 0x080819191908192b, 0x08081919192b2b19, 0x080819192b080808,
  2794. 0x080819192b190819, 0x0808192b08082b19, 0x0808192b08190808, 0x0808192b19080808,
  2795. 0x0808192b2b081908, 0x0808192b2b2b1908, 0x08082b0808080808, 0x08082b0808081919,
  2796. 0x08082b0808082b08, 0x08082b0808191908, 0x08082b08082b2b08, 0x08082b0819080819,
  2797. 0x08082b0819081908, 0x08082b0819190808, 0x08082b081919082b, 0x08082b082b082b08,
  2798. 0x08082b1908081908, 0x08082b1919080808, 0x08082b2b0808082b, 0x08082b2b08191908,
  2799. 0x0819080808080819, 0x0819080808081908, 0x0819080808190808, 0x08190808082b0819,
  2800. 0x0819080819080808, 0x08190808192b0808, 0x081908082b081908, 0x081908082b190808,
  2801. 0x081908082b191919, 0x0819081908080808, 0x0819081908082b08, 0x08190819082b0808,
  2802. 0x0819081919190808, 0x0819081919192b2b, 0x081908192b080808, 0x0819082b082b1908,
  2803. 0x0819082b19081919, 0x0819190808080808, 0x0819190808082b08, 0x08191908082b0808,
  2804. 0x08191908082b1919, 0x0819190819082b19, 0x081919082b080808, 0x0819191908192b08,
  2805. 0x08191919192b082b, 0x0819192b08080808, 0x0819192b0819192b, 0x08192b0808080819,
  2806. 0x08192b0808081908, 0x08192b0808190808, 0x08192b0819080808, 0x08192b082b080819,
  2807. 0x08192b1908080808, 0x08192b1908081919, 0x08192b192b2b0808, 0x08192b2b19190819,
  2808. 0x082b080808080808, 0x082b08080808082b, 0x082b080808082b2b, 0x082b080819081908,
  2809. 0x082b0808192b0819, 0x082b08082b080808, 0x082b08082b08082b, 0x082b0819082b2b19,
  2810. 0x082b081919082b08, 0x082b082b08080808, 0x082b082b0808082b, 0x082b190808080819,
  2811. 0x082b190808081908, 0x082b190808190808, 0x082b190819080808, 0x082b19081919192b,
  2812. 0x082b191908080808, 0x082b191919080819, 0x082b1919192b1908, 0x082b192b2b190808,
  2813. 0x082b2b0808082b08, 0x082b2b08082b0808, 0x082b2b082b191908, 0x082b2b2b19081908,
  2814. 0x1908080808080819, 0x1908080808081908, 0x1908080808190808, 0x1908080808192b08,
  2815. 0x19080808082b0819, 0x19080808082b1908, 0x1908080819080808, 0x1908080819082b08,
  2816. 0x190808081919192b, 0x19080808192b0808, 0x190808082b080819, 0x190808082b081908,
  2817. 0x190808082b190808, 0x1908081908080808, 0x19080819082b0808, 0x19080819192b0819,
  2818. 0x190808192b080808, 0x190808192b081919, 0x1908082b08080819, 0x1908082b08190808,
  2819. 0x1908082b19082b08, 0x1908082b1919192b, 0x1908082b192b2b08, 0x1908190808080808,
  2820. 0x1908190808082b08, 0x19081908082b0808, 0x190819082b080808, 0x190819082b192b19,
  2821. 0x190819190819082b, 0x19081919082b1908, 0x1908192b08080808, 0x19082b0808080819,
  2822. 0x19082b0808081908, 0x19082b0808190808, 0x19082b0819080808, 0x19082b0819081919,
  2823. 0x19082b1908080808, 0x19082b1919192b08, 0x19082b19192b0819, 0x19082b192b08082b,
  2824. 0x19082b2b19081919, 0x19082b2b2b190808, 0x1919080808080808, 0x1919080808082b08,
  2825. 0x1919080808190819, 0x1919080808192b19, 0x19190808082b0808, 0x191908082b080808,
  2826. 0x191908082b082b08, 0x1919081908081908, 0x191908191908082b, 0x191908192b2b1908,
  2827. 0x1919082b2b190819, 0x191919082b190808, 0x191919082b19082b, 0x1919191908082b2b,
  2828. 0x1919192b08080819, 0x1919192b19191908, 0x19192b0808080808, 0x19192b0808190819,
  2829. 0x19192b0808192b19, 0x19192b08192b1908, 0x19192b1919080808, 0x19192b2b08082b08,
  2830. 0x192b080808081908, 0x192b080808190808, 0x192b080819080808, 0x192b0808192b2b08,
  2831. 0x192b081908080808, 0x192b081919191919, 0x192b082b08192b08, 0x192b082b192b0808,
  2832. 0x192b190808080808, 0x192b190808081919, 0x192b191908190808, 0x192b19190819082b,
  2833. 0x192b19192b081908, 0x192b2b081908082b, 0x2b08080808080808, 0x2b0808080808082b,
  2834. 0x2b08080808082b2b, 0x2b08080819080819, 0x2b0808082b08082b, 0x2b08081908081908,
  2835. 0x2b08081908192b08, 0x2b08081919080808, 0x2b08082b08190819, 0x2b08190808080819,
  2836. 0x2b08190808081908, 0x2b08190808190808, 0x2b08190808191919, 0x2b08190819080808,
  2837. 0x2b081908192b0808, 0x2b08191908080808, 0x2b0819191908192b, 0x2b0819192b191908,
  2838. 0x2b08192b08082b19, 0x2b08192b19080808, 0x2b08192b192b0808, 0x2b082b080808082b,
  2839. 0x2b082b1908081908, 0x2b082b2b08190819, 0x2b19080808081908, 0x2b19080808190808,
  2840. 0x2b190808082b1908, 0x2b19080819080808, 0x2b1908082b2b0819, 0x2b1908190819192b,
  2841. 0x2b1908192b080808, 0x2b19082b19081919, 0x2b19190808080808, 0x2b191908082b082b,
  2842. 0x2b19190819081908, 0x2b19191919190819, 0x2b192b082b080819, 0x2b192b19082b0808,
  2843. 0x2b2b08080808082b, 0x2b2b080819190808, 0x2b2b08082b081919, 0x2b2b081908082b19,
  2844. 0x2b2b082b08080808, 0x2b2b190808192b08, 0x2b2b2b0819190808, 0x2b2b2b1908081908,
  2845. };
  2846. static const uint64_t iq2xs_grid[512] = {
  2847. 0x0808080808080808, 0x080808080808082b, 0x0808080808081919, 0x0808080808082b08,
  2848. 0x0808080808082b2b, 0x0808080808190819, 0x0808080808191908, 0x080808080819192b,
  2849. 0x0808080808192b19, 0x08080808082b0808, 0x08080808082b082b, 0x08080808082b1919,
  2850. 0x08080808082b2b08, 0x0808080819080819, 0x0808080819081908, 0x080808081908192b,
  2851. 0x0808080819082b19, 0x0808080819190808, 0x080808081919082b, 0x0808080819191919,
  2852. 0x0808080819192b08, 0x08080808192b0819, 0x08080808192b1908, 0x080808082b080808,
  2853. 0x080808082b08082b, 0x080808082b081919, 0x080808082b082b08, 0x080808082b190819,
  2854. 0x080808082b191908, 0x080808082b192b19, 0x080808082b2b0808, 0x0808081908080819,
  2855. 0x0808081908081908, 0x080808190808192b, 0x0808081908082b19, 0x0808081908190808,
  2856. 0x080808190819082b, 0x0808081908191919, 0x0808081908192b08, 0x0808081908192b2b,
  2857. 0x08080819082b0819, 0x08080819082b1908, 0x0808081919080808, 0x080808191908082b,
  2858. 0x0808081919081919, 0x0808081919082b08, 0x0808081919190819, 0x0808081919191908,
  2859. 0x08080819192b0808, 0x08080819192b2b08, 0x080808192b080819, 0x080808192b081908,
  2860. 0x080808192b190808, 0x0808082b08080808, 0x0808082b0808082b, 0x0808082b08081919,
  2861. 0x0808082b08082b08, 0x0808082b08190819, 0x0808082b08191908, 0x0808082b082b0808,
  2862. 0x0808082b19080819, 0x0808082b19081908, 0x0808082b19190808, 0x0808082b19191919,
  2863. 0x0808082b2b080808, 0x0808082b2b082b2b, 0x0808190808080819, 0x0808190808081908,
  2864. 0x080819080808192b, 0x0808190808082b19, 0x0808190808190808, 0x080819080819082b,
  2865. 0x0808190808191919, 0x0808190808192b08, 0x08081908082b0819, 0x08081908082b1908,
  2866. 0x0808190819080808, 0x080819081908082b, 0x0808190819081919, 0x0808190819082b08,
  2867. 0x0808190819190819, 0x0808190819191908, 0x080819081919192b, 0x08081908192b0808,
  2868. 0x080819082b080819, 0x080819082b081908, 0x080819082b190808, 0x0808191908080808,
  2869. 0x080819190808082b, 0x0808191908081919, 0x0808191908082b08, 0x0808191908190819,
  2870. 0x0808191908191908, 0x08081919082b0808, 0x0808191919080819, 0x0808191919081908,
  2871. 0x0808191919190808, 0x08081919192b0819, 0x080819192b080808, 0x0808192b08080819,
  2872. 0x0808192b08081908, 0x0808192b08190808, 0x0808192b082b192b, 0x0808192b19080808,
  2873. 0x0808192b1908082b, 0x0808192b2b081908, 0x08082b0808080808, 0x08082b080808082b,
  2874. 0x08082b0808081919, 0x08082b0808082b08, 0x08082b0808082b2b, 0x08082b0808190819,
  2875. 0x08082b0808191908, 0x08082b08082b0808, 0x08082b08082b1919, 0x08082b0819080819,
  2876. 0x08082b0819081908, 0x08082b0819190808, 0x08082b0819192b08, 0x08082b082b080808,
  2877. 0x08082b082b2b0808, 0x08082b082b2b2b2b, 0x08082b1908080819, 0x08082b1908081908,
  2878. 0x08082b1908190808, 0x08082b1919080808, 0x08082b192b080819, 0x08082b192b082b19,
  2879. 0x08082b2b08080808, 0x08082b2b082b0808, 0x08082b2b082b2b08, 0x08082b2b2b19192b,
  2880. 0x08082b2b2b2b0808, 0x0819080808080819, 0x0819080808081908, 0x081908080808192b,
  2881. 0x0819080808082b19, 0x0819080808190808, 0x081908080819082b, 0x0819080808191919,
  2882. 0x0819080808192b08, 0x08190808082b0819, 0x08190808082b1908, 0x0819080819080808,
  2883. 0x081908081908082b, 0x0819080819081919, 0x0819080819082b08, 0x0819080819190819,
  2884. 0x0819080819191908, 0x08190808192b0808, 0x08190808192b2b2b, 0x081908082b080819,
  2885. 0x081908082b081908, 0x081908082b190808, 0x0819081908080808, 0x081908190808082b,
  2886. 0x0819081908081919, 0x0819081908082b08, 0x0819081908190819, 0x0819081908191908,
  2887. 0x08190819082b0808, 0x0819081919080819, 0x0819081919081908, 0x0819081919190808,
  2888. 0x081908192b080808, 0x081908192b191908, 0x081908192b19192b, 0x0819082b08080819,
  2889. 0x0819082b08081908, 0x0819082b0808192b, 0x0819082b08190808, 0x0819082b19080808,
  2890. 0x0819082b192b0808, 0x0819190808080808, 0x081919080808082b, 0x0819190808081919,
  2891. 0x0819190808082b08, 0x0819190808190819, 0x0819190808191908, 0x08191908082b0808,
  2892. 0x0819190819080819, 0x0819190819081908, 0x0819190819082b19, 0x0819190819190808,
  2893. 0x08191908192b1908, 0x081919082b080808, 0x0819191908080819, 0x0819191908081908,
  2894. 0x0819191908190808, 0x0819191919080808, 0x0819192b08080808, 0x0819192b08191908,
  2895. 0x0819192b19082b19, 0x08192b0808080819, 0x08192b0808081908, 0x08192b0808190808,
  2896. 0x08192b080819082b, 0x08192b0819080808, 0x08192b0819191908, 0x08192b082b08192b,
  2897. 0x08192b1908080808, 0x08192b1908081919, 0x08192b19192b192b, 0x08192b2b19190819,
  2898. 0x08192b2b2b2b2b19, 0x082b080808080808, 0x082b08080808082b, 0x082b080808081919,
  2899. 0x082b080808082b08, 0x082b080808082b2b, 0x082b080808190819, 0x082b080808191908,
  2900. 0x082b0808082b0808, 0x082b080819080819, 0x082b080819081908, 0x082b080819190808,
  2901. 0x082b08082b080808, 0x082b08082b2b0808, 0x082b081908080819, 0x082b081908081908,
  2902. 0x082b081908190808, 0x082b081919080808, 0x082b081919082b08, 0x082b0819192b1919,
  2903. 0x082b082b08080808, 0x082b082b082b082b, 0x082b082b2b080808, 0x082b082b2b2b2b08,
  2904. 0x082b190808080819, 0x082b190808081908, 0x082b190808190808, 0x082b1908082b2b19,
  2905. 0x082b190819080808, 0x082b191908080808, 0x082b191919080819, 0x082b19191919082b,
  2906. 0x082b19192b192b19, 0x082b192b08080819, 0x082b192b08192b2b, 0x082b192b2b2b192b,
  2907. 0x082b2b0808080808, 0x082b2b0808082b08, 0x082b2b0808082b2b, 0x082b2b08082b0808,
  2908. 0x082b2b0819191919, 0x082b2b082b082b08, 0x082b2b082b2b082b, 0x082b2b19192b2b08,
  2909. 0x082b2b192b190808, 0x082b2b2b08082b08, 0x082b2b2b082b0808, 0x082b2b2b2b08082b,
  2910. 0x082b2b2b2b082b08, 0x082b2b2b2b082b2b, 0x1908080808080819, 0x1908080808081908,
  2911. 0x190808080808192b, 0x1908080808082b19, 0x1908080808190808, 0x190808080819082b,
  2912. 0x1908080808191919, 0x1908080808192b08, 0x19080808082b0819, 0x19080808082b1908,
  2913. 0x1908080819080808, 0x190808081908082b, 0x1908080819081919, 0x1908080819082b08,
  2914. 0x1908080819082b2b, 0x1908080819190819, 0x1908080819191908, 0x19080808192b0808,
  2915. 0x19080808192b1919, 0x190808082b080819, 0x190808082b081908, 0x190808082b190808,
  2916. 0x1908081908080808, 0x190808190808082b, 0x1908081908081919, 0x1908081908082b08,
  2917. 0x1908081908190819, 0x1908081908191908, 0x19080819082b0808, 0x1908081919080819,
  2918. 0x1908081919081908, 0x1908081919190808, 0x190808192b080808, 0x190808192b081919,
  2919. 0x190808192b2b082b, 0x1908082b08080819, 0x1908082b08081908, 0x1908082b08190808,
  2920. 0x1908082b0819082b, 0x1908082b082b2b19, 0x1908082b19080808, 0x1908190808080808,
  2921. 0x190819080808082b, 0x1908190808081919, 0x1908190808082b08, 0x1908190808190819,
  2922. 0x1908190808191908, 0x1908190808192b19, 0x19081908082b0808, 0x1908190819080819,
  2923. 0x1908190819081908, 0x1908190819190808, 0x190819082b080808, 0x190819082b191908,
  2924. 0x1908191908080819, 0x1908191908081908, 0x1908191908190808, 0x19081919082b1908,
  2925. 0x1908191919080808, 0x190819192b192b2b, 0x1908192b08080808, 0x1908192b08082b2b,
  2926. 0x1908192b19081908, 0x1908192b19190808, 0x19082b0808080819, 0x19082b0808081908,
  2927. 0x19082b0808190808, 0x19082b0819080808, 0x19082b0819081919, 0x19082b0819191908,
  2928. 0x19082b08192b082b, 0x19082b1908080808, 0x19082b1908190819, 0x19082b1919081908,
  2929. 0x19082b1919190808, 0x19082b19192b2b19, 0x19082b2b08081908, 0x1919080808080808,
  2930. 0x191908080808082b, 0x1919080808081919, 0x1919080808082b08, 0x1919080808190819,
  2931. 0x1919080808191908, 0x19190808082b0808, 0x19190808082b2b08, 0x1919080819080819,
  2932. 0x1919080819081908, 0x1919080819190808, 0x191908082b080808, 0x1919081908080819,
  2933. 0x1919081908081908, 0x1919081908190808, 0x1919081908191919, 0x1919081919080808,
  2934. 0x191908191908082b, 0x1919082b08080808, 0x1919082b19081908, 0x1919082b2b2b2b2b,
  2935. 0x1919190808080819, 0x1919190808081908, 0x1919190808190808, 0x19191908082b0819,
  2936. 0x1919190819080808, 0x19191908192b0808, 0x191919082b080819, 0x191919082b2b0819,
  2937. 0x1919191908080808, 0x1919191908082b08, 0x191919192b080808, 0x191919192b082b08,
  2938. 0x1919192b082b0819, 0x1919192b192b2b08, 0x1919192b2b2b0819, 0x19192b0808080808,
  2939. 0x19192b0808191908, 0x19192b0819080819, 0x19192b0819190808, 0x19192b082b192b19,
  2940. 0x19192b1908192b2b, 0x19192b1919080808, 0x19192b191908082b, 0x19192b2b2b081919,
  2941. 0x192b080808080819, 0x192b080808081908, 0x192b080808190808, 0x192b080819080808,
  2942. 0x192b080819191908, 0x192b0808192b082b, 0x192b08082b08192b, 0x192b08082b2b2b19,
  2943. 0x192b081908080808, 0x192b082b082b1908, 0x192b082b19082b2b, 0x192b082b2b19082b,
  2944. 0x192b190808080808, 0x192b19080819192b, 0x192b191908190808, 0x192b191919080808,
  2945. 0x192b191919081919, 0x192b19192b2b1908, 0x192b2b0808080819, 0x192b2b08192b2b2b,
  2946. 0x192b2b19082b1919, 0x192b2b2b0808192b, 0x192b2b2b19191908, 0x192b2b2b192b082b,
  2947. 0x2b08080808080808, 0x2b0808080808082b, 0x2b08080808081919, 0x2b08080808082b08,
  2948. 0x2b08080808190819, 0x2b08080808191908, 0x2b080808082b0808, 0x2b080808082b2b2b,
  2949. 0x2b08080819080819, 0x2b08080819081908, 0x2b08080819190808, 0x2b0808082b080808,
  2950. 0x2b0808082b08082b, 0x2b0808082b2b2b08, 0x2b0808082b2b2b2b, 0x2b08081908080819,
  2951. 0x2b08081908081908, 0x2b0808190808192b, 0x2b08081908190808, 0x2b08081919080808,
  2952. 0x2b08081919190819, 0x2b08081919192b19, 0x2b08082b08080808, 0x2b08082b082b0808,
  2953. 0x2b08082b2b080808, 0x2b08082b2b08082b, 0x2b08082b2b2b0808, 0x2b08082b2b2b2b08,
  2954. 0x2b08190808080819, 0x2b08190808081908, 0x2b08190808190808, 0x2b0819080819082b,
  2955. 0x2b08190808191919, 0x2b08190819080808, 0x2b081908192b0808, 0x2b0819082b082b19,
  2956. 0x2b08191908080808, 0x2b08191919081908, 0x2b0819192b2b1919, 0x2b08192b08192b08,
  2957. 0x2b08192b192b2b2b, 0x2b082b0808080808, 0x2b082b0808082b08, 0x2b082b08082b1919,
  2958. 0x2b082b0819192b2b, 0x2b082b082b080808, 0x2b082b082b08082b, 0x2b082b082b2b2b08,
  2959. 0x2b082b190808192b, 0x2b082b2b082b082b, 0x2b082b2b2b080808, 0x2b082b2b2b082b08,
  2960. 0x2b082b2b2b19192b, 0x2b082b2b2b2b2b08, 0x2b19080808080819, 0x2b19080808081908,
  2961. 0x2b19080808190808, 0x2b19080819080808, 0x2b1908081919192b, 0x2b1908082b081908,
  2962. 0x2b19081908080808, 0x2b190819082b082b, 0x2b190819192b1908, 0x2b19082b1919192b,
  2963. 0x2b19082b2b082b19, 0x2b19190808080808, 0x2b19190808081919, 0x2b19190819081908,
  2964. 0x2b19190819190808, 0x2b19190819192b08, 0x2b191919082b2b19, 0x2b1919192b190808,
  2965. 0x2b1919192b19082b, 0x2b19192b19080819, 0x2b192b0819190819, 0x2b192b082b2b192b,
  2966. 0x2b192b1919082b19, 0x2b192b2b08191919, 0x2b192b2b192b0808, 0x2b2b080808080808,
  2967. 0x2b2b08080808082b, 0x2b2b080808082b08, 0x2b2b080808082b2b, 0x2b2b0808082b0808,
  2968. 0x2b2b0808082b2b2b, 0x2b2b08082b2b0808, 0x2b2b081919190819, 0x2b2b081919192b19,
  2969. 0x2b2b08192b2b192b, 0x2b2b082b08080808, 0x2b2b082b0808082b, 0x2b2b082b08082b08,
  2970. 0x2b2b082b082b2b2b, 0x2b2b082b2b080808, 0x2b2b082b2b2b0808, 0x2b2b190819080808,
  2971. 0x2b2b19082b191919, 0x2b2b192b192b1919, 0x2b2b192b2b192b08, 0x2b2b2b0808082b2b,
  2972. 0x2b2b2b08082b0808, 0x2b2b2b08082b082b, 0x2b2b2b08082b2b08, 0x2b2b2b082b2b0808,
  2973. 0x2b2b2b082b2b2b08, 0x2b2b2b1908081908, 0x2b2b2b192b081908, 0x2b2b2b192b08192b,
  2974. 0x2b2b2b2b082b2b08, 0x2b2b2b2b082b2b2b, 0x2b2b2b2b2b190819, 0x2b2b2b2b2b2b2b2b,
  2975. };
  2976. static const uint32_t iq3xxs_grid[256] = {
  2977. 0x04040404, 0x04040414, 0x04040424, 0x04040c0c, 0x04040c1c, 0x04040c3e, 0x04041404, 0x04041414,
  2978. 0x04041c0c, 0x04042414, 0x04043e1c, 0x04043e2c, 0x040c040c, 0x040c041c, 0x040c0c04, 0x040c0c14,
  2979. 0x040c140c, 0x040c142c, 0x040c1c04, 0x040c1c14, 0x040c240c, 0x040c2c24, 0x040c3e04, 0x04140404,
  2980. 0x04140414, 0x04140424, 0x04140c0c, 0x04141404, 0x04141414, 0x04141c0c, 0x04141c1c, 0x04141c3e,
  2981. 0x04142c0c, 0x04142c3e, 0x04143e2c, 0x041c040c, 0x041c043e, 0x041c0c04, 0x041c0c14, 0x041c142c,
  2982. 0x041c3e04, 0x04240c1c, 0x04241c3e, 0x04242424, 0x04242c3e, 0x04243e1c, 0x04243e2c, 0x042c040c,
  2983. 0x042c043e, 0x042c1c14, 0x042c2c14, 0x04341c2c, 0x04343424, 0x043e0c04, 0x043e0c24, 0x043e0c34,
  2984. 0x043e241c, 0x043e340c, 0x0c04040c, 0x0c04041c, 0x0c040c04, 0x0c040c14, 0x0c04140c, 0x0c04141c,
  2985. 0x0c041c04, 0x0c041c14, 0x0c041c24, 0x0c04243e, 0x0c042c04, 0x0c0c0404, 0x0c0c0414, 0x0c0c0c0c,
  2986. 0x0c0c1404, 0x0c0c1414, 0x0c14040c, 0x0c14041c, 0x0c140c04, 0x0c140c14, 0x0c14140c, 0x0c141c04,
  2987. 0x0c143e14, 0x0c1c0404, 0x0c1c0414, 0x0c1c1404, 0x0c1c1c0c, 0x0c1c2434, 0x0c1c3434, 0x0c24040c,
  2988. 0x0c24042c, 0x0c242c04, 0x0c2c1404, 0x0c2c1424, 0x0c2c2434, 0x0c2c3e0c, 0x0c34042c, 0x0c3e1414,
  2989. 0x0c3e2404, 0x14040404, 0x14040414, 0x14040c0c, 0x14040c1c, 0x14041404, 0x14041414, 0x14041434,
  2990. 0x14041c0c, 0x14042414, 0x140c040c, 0x140c041c, 0x140c042c, 0x140c0c04, 0x140c0c14, 0x140c140c,
  2991. 0x140c1c04, 0x140c341c, 0x140c343e, 0x140c3e04, 0x14140404, 0x14140414, 0x14140c0c, 0x14140c3e,
  2992. 0x14141404, 0x14141414, 0x14141c3e, 0x14142404, 0x14142c2c, 0x141c040c, 0x141c0c04, 0x141c0c24,
  2993. 0x141c3e04, 0x141c3e24, 0x14241c2c, 0x14242c1c, 0x142c041c, 0x142c143e, 0x142c240c, 0x142c3e24,
  2994. 0x143e040c, 0x143e041c, 0x143e0c34, 0x143e242c, 0x1c04040c, 0x1c040c04, 0x1c040c14, 0x1c04140c,
  2995. 0x1c04141c, 0x1c042c04, 0x1c04342c, 0x1c043e14, 0x1c0c0404, 0x1c0c0414, 0x1c0c1404, 0x1c0c1c0c,
  2996. 0x1c0c2424, 0x1c0c2434, 0x1c14040c, 0x1c14041c, 0x1c140c04, 0x1c14142c, 0x1c142c14, 0x1c143e14,
  2997. 0x1c1c0c0c, 0x1c1c1c1c, 0x1c241c04, 0x1c24243e, 0x1c243e14, 0x1c2c0404, 0x1c2c0434, 0x1c2c1414,
  2998. 0x1c2c2c2c, 0x1c340c24, 0x1c341c34, 0x1c34341c, 0x1c3e1c1c, 0x1c3e3404, 0x24040424, 0x24040c3e,
  2999. 0x24041c2c, 0x24041c3e, 0x24042c1c, 0x24042c3e, 0x240c3e24, 0x24141404, 0x24141c3e, 0x24142404,
  3000. 0x24143404, 0x24143434, 0x241c043e, 0x241c242c, 0x24240424, 0x24242c0c, 0x24243424, 0x242c142c,
  3001. 0x242c241c, 0x242c3e04, 0x243e042c, 0x243e0c04, 0x243e0c14, 0x243e1c04, 0x2c040c14, 0x2c04240c,
  3002. 0x2c043e04, 0x2c0c0404, 0x2c0c0434, 0x2c0c1434, 0x2c0c2c2c, 0x2c140c24, 0x2c141c14, 0x2c143e14,
  3003. 0x2c1c0414, 0x2c1c2c1c, 0x2c240c04, 0x2c24141c, 0x2c24143e, 0x2c243e14, 0x2c2c0414, 0x2c2c1c0c,
  3004. 0x2c342c04, 0x2c3e1424, 0x2c3e2414, 0x34041424, 0x34042424, 0x34042434, 0x34043424, 0x340c140c,
  3005. 0x340c340c, 0x34140c3e, 0x34143424, 0x341c1c04, 0x341c1c34, 0x34242424, 0x342c042c, 0x342c2c14,
  3006. 0x34341c1c, 0x343e041c, 0x343e140c, 0x3e04041c, 0x3e04042c, 0x3e04043e, 0x3e040c04, 0x3e041c14,
  3007. 0x3e042c14, 0x3e0c1434, 0x3e0c2404, 0x3e140c14, 0x3e14242c, 0x3e142c14, 0x3e1c0404, 0x3e1c0c2c,
  3008. 0x3e1c1c1c, 0x3e1c3404, 0x3e24140c, 0x3e24240c, 0x3e2c0404, 0x3e2c0414, 0x3e2c1424, 0x3e341c04,
  3009. };
  3010. static const uint32_t iq3xs_grid[512] = {
  3011. 0x04040404, 0x0404040c, 0x04040414, 0x0404042c, 0x0404043e, 0x04040c04, 0x04040c0c, 0x04040c14,
  3012. 0x04040c24, 0x04040c34, 0x04041404, 0x0404140c, 0x0404142c, 0x04041c1c, 0x04042404, 0x04042414,
  3013. 0x0404242c, 0x0404243e, 0x04042c0c, 0x04042c1c, 0x04043404, 0x04043414, 0x04043e0c, 0x04043e24,
  3014. 0x04043e3e, 0x040c0404, 0x040c040c, 0x040c0414, 0x040c0424, 0x040c0c04, 0x040c0c0c, 0x040c0c2c,
  3015. 0x040c1404, 0x040c141c, 0x040c143e, 0x040c1c0c, 0x040c1c2c, 0x040c2424, 0x040c340c, 0x040c342c,
  3016. 0x040c3e14, 0x04140404, 0x0414040c, 0x0414042c, 0x0414043e, 0x04140c04, 0x04140c1c, 0x04140c34,
  3017. 0x0414140c, 0x0414142c, 0x04141c04, 0x04141c24, 0x04142414, 0x0414242c, 0x0414243e, 0x04142c0c,
  3018. 0x04142c1c, 0x04143e04, 0x04143e1c, 0x041c041c, 0x041c0c0c, 0x041c0c2c, 0x041c1404, 0x041c1414,
  3019. 0x041c1c0c, 0x041c1c1c, 0x041c1c34, 0x041c2424, 0x041c2c04, 0x041c2c14, 0x041c343e, 0x041c3e0c,
  3020. 0x041c3e2c, 0x04240404, 0x04240c1c, 0x04240c3e, 0x0424140c, 0x04241424, 0x04241c14, 0x04242404,
  3021. 0x0424241c, 0x04242c0c, 0x04243e04, 0x042c0414, 0x042c0424, 0x042c1404, 0x042c1414, 0x042c1434,
  3022. 0x042c1c1c, 0x042c240c, 0x042c242c, 0x042c243e, 0x042c3434, 0x042c3e1c, 0x04340434, 0x04340c0c,
  3023. 0x04340c1c, 0x04341c0c, 0x04342c14, 0x04343e0c, 0x043e0404, 0x043e0414, 0x043e0424, 0x043e1404,
  3024. 0x043e1414, 0x043e1434, 0x043e1c1c, 0x043e2c04, 0x043e2c24, 0x0c040404, 0x0c04040c, 0x0c040414,
  3025. 0x0c040424, 0x0c040c04, 0x0c040c0c, 0x0c040c1c, 0x0c040c2c, 0x0c040c3e, 0x0c041404, 0x0c041414,
  3026. 0x0c041c0c, 0x0c041c24, 0x0c041c34, 0x0c042c24, 0x0c042c34, 0x0c04340c, 0x0c043e14, 0x0c0c0404,
  3027. 0x0c0c040c, 0x0c0c041c, 0x0c0c0434, 0x0c0c0c04, 0x0c0c0c24, 0x0c0c140c, 0x0c0c1c04, 0x0c0c1c1c,
  3028. 0x0c0c240c, 0x0c0c2c04, 0x0c0c2c14, 0x0c0c3e04, 0x0c0c3e34, 0x0c140404, 0x0c140c14, 0x0c140c2c,
  3029. 0x0c140c3e, 0x0c141404, 0x0c141424, 0x0c141c14, 0x0c142404, 0x0c14241c, 0x0c142c2c, 0x0c143404,
  3030. 0x0c143e14, 0x0c1c040c, 0x0c1c0424, 0x0c1c043e, 0x0c1c0c04, 0x0c1c0c1c, 0x0c1c140c, 0x0c1c143e,
  3031. 0x0c1c1c04, 0x0c1c1c24, 0x0c1c240c, 0x0c1c3414, 0x0c1c3e04, 0x0c24041c, 0x0c24042c, 0x0c240c14,
  3032. 0x0c240c24, 0x0c241c0c, 0x0c241c1c, 0x0c242414, 0x0c242434, 0x0c242c04, 0x0c242c24, 0x0c2c040c,
  3033. 0x0c2c0c04, 0x0c2c0c1c, 0x0c2c140c, 0x0c2c1c04, 0x0c2c1c14, 0x0c2c2c0c, 0x0c341404, 0x0c341424,
  3034. 0x0c34143e, 0x0c342424, 0x0c342434, 0x0c3e040c, 0x0c3e041c, 0x0c3e0c04, 0x0c3e0c14, 0x0c3e140c,
  3035. 0x0c3e1c2c, 0x0c3e240c, 0x0c3e3414, 0x0c3e3e04, 0x14040404, 0x1404040c, 0x1404041c, 0x1404042c,
  3036. 0x1404043e, 0x14040c04, 0x14040c14, 0x14040c24, 0x14040c34, 0x1404140c, 0x1404141c, 0x1404143e,
  3037. 0x14041c04, 0x14041c14, 0x1404240c, 0x1404241c, 0x1404242c, 0x14042c04, 0x14042c14, 0x1404343e,
  3038. 0x14043e04, 0x14043e1c, 0x14043e2c, 0x140c0404, 0x140c0414, 0x140c0c04, 0x140c0c1c, 0x140c0c3e,
  3039. 0x140c1414, 0x140c142c, 0x140c1c0c, 0x140c1c24, 0x140c2414, 0x140c2c0c, 0x1414040c, 0x14140424,
  3040. 0x1414043e, 0x1414140c, 0x1414141c, 0x14141c04, 0x14141c3e, 0x1414240c, 0x14142c1c, 0x14142c3e,
  3041. 0x14143e0c, 0x14143e24, 0x141c0404, 0x141c0414, 0x141c042c, 0x141c0c0c, 0x141c1414, 0x141c1424,
  3042. 0x141c1c0c, 0x141c1c1c, 0x141c2414, 0x141c2c04, 0x141c3434, 0x1424040c, 0x1424043e, 0x14241404,
  3043. 0x1424141c, 0x14241c14, 0x14241c2c, 0x1424240c, 0x14243e14, 0x14243e2c, 0x142c0424, 0x142c0c0c,
  3044. 0x142c1414, 0x142c1c3e, 0x142c2404, 0x142c2c1c, 0x142c3e04, 0x14340404, 0x14340414, 0x1434043e,
  3045. 0x1434140c, 0x14342c2c, 0x1434340c, 0x143e042c, 0x143e0c0c, 0x143e1434, 0x143e1c04, 0x143e241c,
  3046. 0x143e2c04, 0x1c040414, 0x1c040c0c, 0x1c040c1c, 0x1c040c2c, 0x1c040c3e, 0x1c041414, 0x1c041c0c,
  3047. 0x1c041c1c, 0x1c041c2c, 0x1c042414, 0x1c042424, 0x1c04243e, 0x1c042c0c, 0x1c04341c, 0x1c043e0c,
  3048. 0x1c0c040c, 0x1c0c041c, 0x1c0c042c, 0x1c0c0c24, 0x1c0c140c, 0x1c0c141c, 0x1c0c2404, 0x1c0c3404,
  3049. 0x1c0c3e14, 0x1c0c3e34, 0x1c140404, 0x1c140c14, 0x1c141404, 0x1c141c14, 0x1c141c24, 0x1c142c04,
  3050. 0x1c1c040c, 0x1c1c0c04, 0x1c1c0c24, 0x1c1c140c, 0x1c1c141c, 0x1c1c143e, 0x1c1c1c04, 0x1c1c240c,
  3051. 0x1c1c241c, 0x1c1c243e, 0x1c1c2c2c, 0x1c1c3e1c, 0x1c24041c, 0x1c240c0c, 0x1c240c34, 0x1c241414,
  3052. 0x1c241c0c, 0x1c242c14, 0x1c243404, 0x1c243424, 0x1c2c040c, 0x1c2c0c04, 0x1c2c0c14, 0x1c2c142c,
  3053. 0x1c2c1c14, 0x1c2c2424, 0x1c2c2c34, 0x1c2c3e1c, 0x1c340c34, 0x1c34240c, 0x1c3e040c, 0x1c3e041c,
  3054. 0x1c3e1404, 0x1c3e1414, 0x1c3e1c2c, 0x24040404, 0x24040424, 0x24040c14, 0x24041404, 0x24041424,
  3055. 0x2404143e, 0x24041c14, 0x2404240c, 0x24042c04, 0x24043e04, 0x240c0414, 0x240c043e, 0x240c0c0c,
  3056. 0x240c0c1c, 0x240c1414, 0x240c1c04, 0x240c1c2c, 0x240c241c, 0x240c2c0c, 0x240c2c2c, 0x2414040c,
  3057. 0x2414041c, 0x24140c04, 0x24140c2c, 0x2414140c, 0x24141c1c, 0x24142404, 0x24142c3e, 0x24143414,
  3058. 0x24143e04, 0x241c0424, 0x241c0c0c, 0x241c0c1c, 0x241c1404, 0x241c1414, 0x241c1c0c, 0x241c1c2c,
  3059. 0x24240404, 0x24240414, 0x24241424, 0x24241c3e, 0x24242404, 0x24243e0c, 0x242c042c, 0x242c043e,
  3060. 0x242c140c, 0x242c3414, 0x24340c1c, 0x24341c24, 0x24343404, 0x243e0c04, 0x243e0c2c, 0x243e1c04,
  3061. 0x243e241c, 0x243e2c0c, 0x2c040414, 0x2c040c04, 0x2c040c24, 0x2c041414, 0x2c042404, 0x2c042424,
  3062. 0x2c04243e, 0x2c042c14, 0x2c043434, 0x2c043e24, 0x2c0c040c, 0x2c0c041c, 0x2c0c042c, 0x2c0c0c14,
  3063. 0x2c0c140c, 0x2c0c1c14, 0x2c0c3e14, 0x2c140404, 0x2c140c0c, 0x2c14141c, 0x2c141c04, 0x2c141c34,
  3064. 0x2c142c1c, 0x2c1c0414, 0x2c1c043e, 0x2c1c0c04, 0x2c1c143e, 0x2c1c2424, 0x2c1c2c0c, 0x2c1c342c,
  3065. 0x2c1c3e1c, 0x2c24040c, 0x2c240424, 0x2c241404, 0x2c241c14, 0x2c242434, 0x2c2c0c14, 0x2c2c1434,
  3066. 0x2c2c2c0c, 0x2c2c2c1c, 0x2c342414, 0x2c3e0414, 0x2c3e0424, 0x2c3e1414, 0x34040c0c, 0x34040c1c,
  3067. 0x34040c2c, 0x34041c0c, 0x34041c1c, 0x34043404, 0x340c0404, 0x340c1404, 0x340c143e, 0x340c3424,
  3068. 0x34140c14, 0x34141c24, 0x34142414, 0x34142c2c, 0x34143414, 0x34143e04, 0x341c0404, 0x341c0c24,
  3069. 0x341c140c, 0x341c2404, 0x3424142c, 0x3424241c, 0x34243414, 0x342c0404, 0x342c041c, 0x342c1c24,
  3070. 0x342c3404, 0x3434042c, 0x34342404, 0x343e0c0c, 0x343e0c1c, 0x3e040404, 0x3e040424, 0x3e04043e,
  3071. 0x3e041404, 0x3e041414, 0x3e041c34, 0x3e042404, 0x3e042c24, 0x3e043414, 0x3e0c0414, 0x3e0c0c0c,
  3072. 0x3e0c1424, 0x3e0c241c, 0x3e0c242c, 0x3e14040c, 0x3e140424, 0x3e140c04, 0x3e140c34, 0x3e14140c,
  3073. 0x3e141c04, 0x3e142c0c, 0x3e1c0414, 0x3e1c1c14, 0x3e1c1c2c, 0x3e1c2c1c, 0x3e24040c, 0x3e24042c,
  3074. 0x3e240c1c, 0x3e241404, 0x3e242c04, 0x3e2c1414, 0x3e2c2414, 0x3e340414, 0x3e341c0c, 0x3e3e0404,
  3075. };
  3076. #define NGRID_IQ2XXS 512
  3077. static const uint64_t iq1s_grid[NGRID_IQ2XXS] = {
  3078. 0xffffffffffff0101, 0xffffffffff01ff00, 0xffffffffff010100, 0xffffffff00000000,
  3079. 0xffffffff01ff00ff, 0xffffffff01ff0001, 0xffffffff0101ffff, 0xffffffff0101ff01,
  3080. 0xffffff00ff000000, 0xffffff000000ff00, 0xffffff00000000ff, 0xffffff0000000100,
  3081. 0xffffff0000010000, 0xffffff0001000000, 0xffffff01ffff00ff, 0xffffff01ff01ff00,
  3082. 0xffffff01ff010100, 0xffffff0100000001, 0xffffff0101ffff00, 0xffffff0101ff0101,
  3083. 0xffffff0101010100, 0xffff00ffff00ff01, 0xffff00ffff0000ff, 0xffff00ff00ff0100,
  3084. 0xffff00ff0100ff00, 0xffff00ff010001ff, 0xffff0000ff0101ff, 0xffff000000ffff00,
  3085. 0xffff000000000000, 0xffff00000001ff01, 0xffff000001000101, 0xffff0000010100ff,
  3086. 0xffff0001ffff0100, 0xffff00010000ff00, 0xffff000100010101, 0xffff000101000000,
  3087. 0xffff01ffffff0000, 0xffff01ffff01ffff, 0xffff01ffff010100, 0xffff01ff00000000,
  3088. 0xffff01ff01ffffff, 0xffff01ff01ff0001, 0xffff01ff0101ffff, 0xffff01ff01010001,
  3089. 0xffff0100ffffff01, 0xffff01000000ffff, 0xffff010000000100, 0xffff010001ff01ff,
  3090. 0xffff010001000000, 0xffff0101ff000000, 0xffff0101000101ff, 0xffff010101ffff01,
  3091. 0xffff01010101ff00, 0xff00ffffff000000, 0xff00ffff00ffff00, 0xff00ffff00000001,
  3092. 0xff00ffff000001ff, 0xff00ffff01010000, 0xff00ff00ffff0000, 0xff00ff00ff00ff00,
  3093. 0xff00ff00ff0000ff, 0xff00ff00ff000100, 0xff00ff00ff010001, 0xff00ff0000ff0001,
  3094. 0xff00ff000000ffff, 0xff00ff0000000000, 0xff00ff000001ff00, 0xff00ff0000010100,
  3095. 0xff00ff0001ff0000, 0xff00ff000100ff00, 0xff00ff0001000100, 0xff00ff01ff000000,
  3096. 0xff00ff0100ff0000, 0xff00ff01000001ff, 0xff00ff0101010001, 0xff0000ff00000000,
  3097. 0xff0000ff0001ff00, 0xff0000ff00010100, 0xff000000ffff0101, 0xff000000ff000000,
  3098. 0xff000000ff01ff00, 0xff00000000ff0000, 0xff0000000000ff00, 0xff000000000000ff,
  3099. 0xff00000000000000, 0xff00000000000001, 0xff00000000000100, 0xff0000000001ffff,
  3100. 0xff00000000010000, 0xff00000001000000, 0xff00000001010100, 0xff000001ff00ff01,
  3101. 0xff000001ff0100ff, 0xff00000100000000, 0xff0000010001ff00, 0xff00000101ff0100,
  3102. 0xff0000010100ff00, 0xff0001ff00ff00ff, 0xff0001ff00000101, 0xff0001ff000100ff,
  3103. 0xff0001ff01000000, 0xff000100ff0001ff, 0xff0001000000ff01, 0xff00010000000000,
  3104. 0xff00010000010001, 0xff00010000010100, 0xff00010001ffff00, 0xff00010001ff0101,
  3105. 0xff00010001010000, 0xff000101ffffffff, 0xff000101ff000101, 0xff00010101ff00ff,
  3106. 0xff00010101000001, 0xff000101010100ff, 0xff01ffffff000101, 0xff01ffffff01ffff,
  3107. 0xff01ffffff01ff01, 0xff01ffffff0101ff, 0xff01ffff00000000, 0xff01ffff01ff0001,
  3108. 0xff01ffff0101ff01, 0xff01ff00ff000000, 0xff01ff0000ff0100, 0xff01ff000000ff01,
  3109. 0xff01ff0000010000, 0xff01ff00010000ff, 0xff01ff01ff01ff00, 0xff01ff0100000101,
  3110. 0xff0100ffffff0000, 0xff0100ffff010000, 0xff0100ff01ff00ff, 0xff0100ff01000100,
  3111. 0xff0100ff010100ff, 0xff010000ffffff01, 0xff01000000000000, 0xff0100000101ff00,
  3112. 0xff010001ffff00ff, 0xff010001ff000100, 0xff01000100ffff00, 0xff01000100010001,
  3113. 0xff01000101ff0001, 0xff010001010001ff, 0xff0101ffffffffff, 0xff0101ffff01ffff,
  3114. 0xff0101ffff010101, 0xff0101ff0000ff00, 0xff0101ff01010001, 0xff010100ff000000,
  3115. 0xff010100ff01ff01, 0xff01010000ff0001, 0xff01010000000100, 0xff01010001000000,
  3116. 0xff0101010100ffff, 0x00ffffff0000ff01, 0x00ffffff000000ff, 0x00ffffff00000100,
  3117. 0x00ffffff00010000, 0x00ffff00ffff0001, 0x00ffff00ff0000ff, 0x00ffff00ff000100,
  3118. 0x00ffff0000000000, 0x00ffff0001000100, 0x00ffff0001010001, 0x00ffff01ff00ff01,
  3119. 0x00ffff0100ff0100, 0x00ffff010000ff00, 0x00ffff01000100ff, 0x00ffff0101ff00ff,
  3120. 0x00ffff010101ff00, 0x00ff00ffffffffff, 0x00ff00ffffff01ff, 0x00ff00ffff000101,
  3121. 0x00ff00ff00000000, 0x00ff00ff000101ff, 0x00ff00ff01010101, 0x00ff0000ff000000,
  3122. 0x00ff0000ff01ffff, 0x00ff000000ff0000, 0x00ff00000000ff00, 0x00ff0000000000ff,
  3123. 0x00ff000000000000, 0x00ff000000000001, 0x00ff000000000100, 0x00ff000000010000,
  3124. 0x00ff000001ffff01, 0x00ff000001000000, 0x00ff0001ff000101, 0x00ff000100ffffff,
  3125. 0x00ff000100000000, 0x00ff0001010001ff, 0x00ff01ffff000000, 0x00ff01ff0001ff00,
  3126. 0x00ff01ff01ff0100, 0x00ff0100ff01ff01, 0x00ff010000ff00ff, 0x00ff010000ff0101,
  3127. 0x00ff010000000000, 0x00ff010000010101, 0x00ff01000100ff00, 0x00ff010001010000,
  3128. 0x00ff0101ffffff00, 0x00ff01010000ff01, 0x00ff010100000100, 0x00ff010101ff0000,
  3129. 0x0000ffffffff0100, 0x0000ffffff00ff00, 0x0000ffffff0000ff, 0x0000ffffff010000,
  3130. 0x0000ffff00000000, 0x0000ffff00010101, 0x0000ffff01ffff01, 0x0000ffff01000100,
  3131. 0x0000ff00ff000000, 0x0000ff00ff01ff00, 0x0000ff00ff0101ff, 0x0000ff0000ff0000,
  3132. 0x0000ff000000ff00, 0x0000ff00000000ff, 0x0000ff0000000000, 0x0000ff0000000001,
  3133. 0x0000ff0000000100, 0x0000ff0000010000, 0x0000ff0001ffffff, 0x0000ff0001ff01ff,
  3134. 0x0000ff0001000000, 0x0000ff000101ffff, 0x0000ff01ffff0101, 0x0000ff01ff010000,
  3135. 0x0000ff0100000000, 0x0000ff0101000101, 0x000000ffffff0001, 0x000000ffff000000,
  3136. 0x000000ff00ff0000, 0x000000ff0000ff00, 0x000000ff000000ff, 0x000000ff00000000,
  3137. 0x000000ff00000001, 0x000000ff00000100, 0x000000ff00010000, 0x000000ff01000000,
  3138. 0x000000ff0101ff00, 0x00000000ffff0000, 0x00000000ff00ff00, 0x00000000ff0000ff,
  3139. 0x00000000ff000000, 0x00000000ff000001, 0x00000000ff000100, 0x00000000ff010000,
  3140. 0x0000000000ffff00, 0x0000000000ff00ff, 0x0000000000ff0000, 0x0000000000ff0001,
  3141. 0x0000000000ff0100, 0x000000000000ffff, 0x000000000000ff00, 0x000000000000ff01,
  3142. 0x00000000000000ff, 0x0000000000000001, 0x00000000000001ff, 0x0000000000000100,
  3143. 0x0000000000000101, 0x000000000001ff00, 0x00000000000100ff, 0x0000000000010000,
  3144. 0x0000000000010001, 0x0000000000010100, 0x0000000001ff0000, 0x000000000100ff00,
  3145. 0x00000000010000ff, 0x0000000001000000, 0x0000000001000001, 0x0000000001000100,
  3146. 0x0000000001010000, 0x00000001ffff01ff, 0x00000001ff000000, 0x0000000100ff0000,
  3147. 0x000000010000ff00, 0x00000001000000ff, 0x0000000100000000, 0x0000000100000001,
  3148. 0x0000000100000100, 0x0000000100010000, 0x0000000101000000, 0x000001ffff00ff00,
  3149. 0x000001ffff010001, 0x000001ffff0101ff, 0x000001ff00ffff01, 0x000001ff0000ffff,
  3150. 0x000001ff00000000, 0x000001ff010000ff, 0x000001ff01010100, 0x00000100ffff0100,
  3151. 0x00000100ff000000, 0x0000010000ff0000, 0x000001000000ff00, 0x00000100000000ff,
  3152. 0x0000010000000000, 0x0000010000000001, 0x0000010000000100, 0x0000010000010000,
  3153. 0x0000010001000000, 0x000001000101ff01, 0x00000101ffff0001, 0x00000101ff01ffff,
  3154. 0x0000010100000000, 0x0000010101010100, 0x0001ffffff000000, 0x0001ffff00ffffff,
  3155. 0x0001ffff00000100, 0x0001ffff0001ff00, 0x0001ffff01000000, 0x0001ff00ffffff00,
  3156. 0x0001ff00ffff01ff, 0x0001ff00ff010000, 0x0001ff0000000000, 0x0001ff0000010001,
  3157. 0x0001ff0001ff0000, 0x0001ff0001010100, 0x0001ff01ff0000ff, 0x0001ff01ff000001,
  3158. 0x0001ff0100ffffff, 0x0001ff010001ffff, 0x0001ff01000101ff, 0x0001ff010100ff01,
  3159. 0x000100ffff00ffff, 0x000100ffff00ff01, 0x000100ffff000100, 0x000100ff00000000,
  3160. 0x000100ff000101ff, 0x000100ff01ff0101, 0x000100ff0100ffff, 0x000100ff01010101,
  3161. 0x00010000ff000000, 0x00010000ff010100, 0x0001000000ff0000, 0x000100000000ff00,
  3162. 0x00010000000000ff, 0x0001000000000000, 0x0001000000000001, 0x0001000000000100,
  3163. 0x0001000000010000, 0x0001000001ffff01, 0x0001000001000000, 0x0001000100ff0101,
  3164. 0x0001000100000000, 0x00010001010100ff, 0x000101ffffff01ff, 0x000101ffffff0101,
  3165. 0x000101ff00010000, 0x000101ff01ff0000, 0x000101ff0100ff01, 0x00010100ffff0000,
  3166. 0x0001010000000000, 0x000101000001ffff, 0x0001010000010101, 0x00010100010001ff,
  3167. 0x00010101ff00ff00, 0x00010101ff010001, 0x0001010100ffffff, 0x0001010100ff01ff,
  3168. 0x00010101000101ff, 0x0001010101ff0000, 0x000101010100ff01, 0x0001010101000101,
  3169. 0x01ffffffffff0101, 0x01ffffffff01ffff, 0x01ffffffff01ff01, 0x01ffffffff0101ff,
  3170. 0x01ffffffff010101, 0x01ffffff00000000, 0x01ffffff01ff01ff, 0x01ffffff01000101,
  3171. 0x01ffffff0101ff01, 0x01ffffff010100ff, 0x01ffff000000ff00, 0x01ffff0000000001,
  3172. 0x01ffff00000001ff, 0x01ffff0000010000, 0x01ffff0001ff0000, 0x01ffff01ffffffff,
  3173. 0x01ffff01ffff01ff, 0x01ffff01ff000000, 0x01ffff01ff01ffff, 0x01ffff01ff0101ff,
  3174. 0x01ffff010100ffff, 0x01ff00ffffff0000, 0x01ff00ffff010000, 0x01ff00ff00ffff01,
  3175. 0x01ff0000ff0000ff, 0x01ff000000000000, 0x01ff00000001ff01, 0x01ff000001ffffff,
  3176. 0x01ff000001010100, 0x01ff0001ffffff01, 0x01ff0001ff010001, 0x01ff000101ff0100,
  3177. 0x01ff000101000001, 0x01ff0001010100ff, 0x01ff01ffff00ffff, 0x01ff01ff00010001,
  3178. 0x01ff01ff01000000, 0x01ff01ff010101ff, 0x01ff0100ff000001, 0x01ff010000ffff00,
  3179. 0x01ff010000000100, 0x01ff010001ff01ff, 0x01ff01000101ffff, 0x01ff0101ffff00ff,
  3180. 0x01ff0101ffff0101, 0x01ff0101ff0101ff, 0x01ff010100010000, 0x0100ffff00ff00ff,
  3181. 0x0100ffff00ff0001, 0x0100ffff00000100, 0x0100ffff0100ff00, 0x0100ff00ffff0000,
  3182. 0x0100ff00ff00ffff, 0x0100ff00ff00ff01, 0x0100ff00ff000100, 0x0100ff00ff010000,
  3183. 0x0100ff0000000000, 0x0100ff00000100ff, 0x0100ff0001ff0101, 0x0100ff0001010101,
  3184. 0x0100ff0100ff00ff, 0x0100ff0100ff0001, 0x0100ff0100000100, 0x0100ff0100010001,
  3185. 0x0100ff0101000000, 0x010000ffff00ff00, 0x010000ff0000ffff, 0x010000ff00000000,
  3186. 0x010000ff010001ff, 0x010000ff01010001, 0x01000000ffffff00, 0x01000000ffff0101,
  3187. 0x01000000ff000000, 0x01000000ff0100ff, 0x01000000ff010101, 0x0100000000ff0000,
  3188. 0x010000000000ff00, 0x01000000000000ff, 0x0100000000000000, 0x0100000000000001,
  3189. 0x0100000000000100, 0x0100000000010000, 0x0100000001000000, 0x0100000100000000,
  3190. 0x01000001000101ff, 0x0100000101ffff01, 0x010001ffff000101, 0x010001ff00ff0100,
  3191. 0x010001ff0000ff00, 0x010001ff000100ff, 0x010001ff01ffffff, 0x01000100ffff0000,
  3192. 0x01000100ff0001ff, 0x0100010000000000, 0x010001000001ff00, 0x0100010001ff0000,
  3193. 0x01000100010000ff, 0x0100010001000101, 0x01000101ff00ff01, 0x0100010100ff0100,
  3194. 0x010001010000ffff, 0x0100010101010001, 0x0101ffffffff0101, 0x0101ffffff0001ff,
  3195. 0x0101ffffff01ffff, 0x0101ffffff010101, 0x0101ffff00000000, 0x0101ffff0101ffff,
  3196. 0x0101ffff010101ff, 0x0101ff00ff000000, 0x0101ff0000ff0100, 0x0101ff000000ff00,
  3197. 0x0101ff0000010000, 0x0101ff00010000ff, 0x0101ff0001000001, 0x0101ff01ff010101,
  3198. 0x0101ff0100000000, 0x0101ff010101ff00, 0x010100ffffff0000, 0x010100ffff010000,
  3199. 0x010100ff00ff01ff, 0x010100ff000000ff, 0x010100ff00000101, 0x010100ff01ffff00,
  3200. 0x01010000ffffff01, 0x01010000ff000100, 0x01010000ff01ff01, 0x0101000000000000,
  3201. 0x01010000000100ff, 0x010100000101ff01, 0x01010001ffff0000, 0x01010001ff00ffff,
  3202. 0x01010001ff010000, 0x0101000101ffffff, 0x0101000101ff01ff, 0x0101000101010101,
  3203. 0x010101ffff01ffff, 0x010101ff00000000, 0x010101ff0001ff01, 0x010101ff0101ffff,
  3204. 0x010101ff010101ff, 0x01010100ffffffff, 0x01010100ff000001, 0x010101000000ff00,
  3205. 0x0101010001010000, 0x0101010100ff0001, 0x010101010001ff01, 0x010101010101ffff,
  3206. };
  3207. static const uint8_t ksigns_iq2xs[128] = {
  3208. 0, 129, 130, 3, 132, 5, 6, 135, 136, 9, 10, 139, 12, 141, 142, 15,
  3209. 144, 17, 18, 147, 20, 149, 150, 23, 24, 153, 154, 27, 156, 29, 30, 159,
  3210. 160, 33, 34, 163, 36, 165, 166, 39, 40, 169, 170, 43, 172, 45, 46, 175,
  3211. 48, 177, 178, 51, 180, 53, 54, 183, 184, 57, 58, 187, 60, 189, 190, 63,
  3212. 192, 65, 66, 195, 68, 197, 198, 71, 72, 201, 202, 75, 204, 77, 78, 207,
  3213. 80, 209, 210, 83, 212, 85, 86, 215, 216, 89, 90, 219, 92, 221, 222, 95,
  3214. 96, 225, 226, 99, 228, 101, 102, 231, 232, 105, 106, 235, 108, 237, 238, 111,
  3215. 240, 113, 114, 243, 116, 245, 246, 119, 120, 249, 250, 123, 252, 125, 126, 255,
  3216. };
  3217. static const uint8_t kmask_iq2xs[8] = {1, 2, 4, 8, 16, 32, 64, 128};
  3218. void dequantize_row_iq2_xxs(const block_iq2_xxs * restrict x, float * restrict y, int k) {
  3219. assert(k % QK_K == 0);
  3220. const int nb = k / QK_K;
  3221. uint32_t aux32[2];
  3222. const uint8_t * aux8 = (const uint8_t *)aux32;
  3223. for (int i = 0; i < nb; i++) {
  3224. const float d = GGML_FP16_TO_FP32(x[i].d);
  3225. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  3226. memcpy(aux32, x[i].qs + 4*ib32, 2*sizeof(uint32_t));
  3227. const float db = d * (0.5f + (aux32[1] >> 28)) * 0.25f;
  3228. for (int l = 0; l < 4; ++l) {
  3229. const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[l]);
  3230. const uint8_t signs = ksigns_iq2xs[(aux32[1] >> 7*l) & 127];
  3231. for (int j = 0; j < 8; ++j) {
  3232. y[j] = db * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
  3233. }
  3234. y += 8;
  3235. }
  3236. }
  3237. }
  3238. }
  3239. // ====================== 2.3125 bpw (de)-quantization
  3240. void dequantize_row_iq2_xs(const block_iq2_xs * restrict x, float * restrict y, int k) {
  3241. assert(k % QK_K == 0);
  3242. const int nb = k / QK_K;
  3243. float db[2];
  3244. for (int i = 0; i < nb; i++) {
  3245. const float d = GGML_FP16_TO_FP32(x[i].d);
  3246. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  3247. db[0] = d * (0.5f + (x[i].scales[ib32] & 0xf)) * 0.25f;
  3248. db[1] = d * (0.5f + (x[i].scales[ib32] >> 4)) * 0.25f;
  3249. for (int l = 0; l < 4; ++l) {
  3250. const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (x[i].qs[4*ib32 + l] & 511));
  3251. const uint8_t signs = ksigns_iq2xs[x[i].qs[4*ib32 + l] >> 9];
  3252. for (int j = 0; j < 8; ++j) {
  3253. y[j] = db[l/2] * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
  3254. }
  3255. y += 8;
  3256. }
  3257. }
  3258. }
  3259. }
  3260. // ====================== 3.0625 bpw (de)-quantization
  3261. void dequantize_row_iq3_xxs(const block_iq3_xxs * restrict x, float * restrict y, int k) {
  3262. assert(k % QK_K == 0);
  3263. const int nb = k / QK_K;
  3264. uint32_t aux32;
  3265. for (int i = 0; i < nb; i++) {
  3266. const float d = GGML_FP16_TO_FP32(x[i].d);
  3267. const uint8_t * qs = x[i].qs;
  3268. const uint8_t * scales_and_signs = qs + QK_K/4;
  3269. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  3270. memcpy(&aux32, scales_and_signs + 4*ib32, sizeof(uint32_t));
  3271. const float db = d * (0.5f + (aux32 >> 28)) * 0.5f;
  3272. for (int l = 0; l < 4; ++l) {
  3273. const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*l) & 127];
  3274. const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + qs[2*l+0]);
  3275. const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + qs[2*l+1]);
  3276. for (int j = 0; j < 4; ++j) {
  3277. y[j+0] = db * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
  3278. y[j+4] = db * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
  3279. }
  3280. y += 8;
  3281. }
  3282. qs += 8;
  3283. }
  3284. }
  3285. }
  3286. // ====================== 3.3125 bpw (de)-quantization
  3287. void dequantize_row_iq3_s(const block_iq3_s * restrict x, float * restrict y, int k) {
  3288. assert(k % QK_K == 0);
  3289. const int nb = k / QK_K;
  3290. for (int i = 0; i < nb; i++) {
  3291. const float d = GGML_FP16_TO_FP32(x[i].d);
  3292. const uint8_t * qs = x[i].qs;
  3293. const uint8_t * qh = x[i].qh;
  3294. const uint8_t * signs = x[i].signs;
  3295. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  3296. const float db1 = d * (0.5f + (x[i].scales[ib32/2] & 0xf)) * 0.5f;
  3297. const float db2 = d * (0.5f + (x[i].scales[ib32/2] >> 4)) * 0.5f;
  3298. for (int l = 0; l < 4; ++l) {
  3299. const uint8_t * grid1 = (const uint8_t *)(iq3xs_grid + (qs[2*l+0] | ((qh[0] << (8-2*l)) & 256)));
  3300. const uint8_t * grid2 = (const uint8_t *)(iq3xs_grid + (qs[2*l+1] | ((qh[0] << (7-2*l)) & 256)));
  3301. for (int j = 0; j < 4; ++j) {
  3302. y[j+0] = db1 * grid1[j] * (signs[l] & kmask_iq2xs[j+0] ? -1.f : 1.f);
  3303. y[j+4] = db1 * grid2[j] * (signs[l] & kmask_iq2xs[j+4] ? -1.f : 1.f);
  3304. }
  3305. y += 8;
  3306. }
  3307. qs += 8;
  3308. signs += 4;
  3309. for (int l = 0; l < 4; ++l) {
  3310. const uint8_t * grid1 = (const uint8_t *)(iq3xs_grid + (qs[2*l+0] | ((qh[1] << (8-2*l)) & 256)));
  3311. const uint8_t * grid2 = (const uint8_t *)(iq3xs_grid + (qs[2*l+1] | ((qh[1] << (7-2*l)) & 256)));
  3312. for (int j = 0; j < 4; ++j) {
  3313. y[j+0] = db2 * grid1[j] * (signs[l] & kmask_iq2xs[j+0] ? -1.f : 1.f);
  3314. y[j+4] = db2 * grid2[j] * (signs[l] & kmask_iq2xs[j+4] ? -1.f : 1.f);
  3315. }
  3316. y += 8;
  3317. }
  3318. qh += 2;
  3319. qs += 8;
  3320. signs += 4;
  3321. }
  3322. }
  3323. }
  3324. // ====================== 1.5625 bpw (de)-quantization
  3325. void dequantize_row_iq1_s(const block_iq1_s * restrict x, float * restrict y, int k) {
  3326. assert(k % QK_K == 0);
  3327. const int nb = k / QK_K;
  3328. float db[4];
  3329. uint16_t idx[4];
  3330. //const int8_t * grid[4];
  3331. for (int i = 0; i < nb; i++) {
  3332. const float d = GGML_FP16_TO_FP32(x[i].d);
  3333. const uint8_t * sc = x[i].scales;
  3334. const uint8_t * qs = x[i].qs;
  3335. for (int i8 = 0; i8 < QK_K/8; i8 += 4) {
  3336. idx[0] = qs[0] | ((sc[0] & 0x08) << 5);
  3337. idx[1] = qs[1] | ((sc[0] & 0x80) << 1);
  3338. idx[2] = qs[2] | ((sc[1] & 0x08) << 5);
  3339. idx[3] = qs[3] | ((sc[1] & 0x80) << 1);
  3340. //grid[0] = (const int8_t *)(iq1s_grid + (qs[0] | ((sc[0] & 0x08) << 5)));
  3341. //grid[1] = (const int8_t *)(iq1s_grid + (qs[1] | ((sc[0] & 0x80) << 1)));
  3342. //grid[2] = (const int8_t *)(iq1s_grid + (qs[2] | ((sc[1] & 0x08) << 5)));
  3343. //grid[3] = (const int8_t *)(iq1s_grid + (qs[3] | ((sc[1] & 0x80) << 1)));
  3344. db[0] = d * (2*(sc[0] & 7) + 1);
  3345. db[1] = d * (2*((sc[0] >> 4) & 7) + 1);
  3346. db[2] = d * (2*(sc[1] & 7) + 1);
  3347. db[3] = d * (2*((sc[1] >> 4) & 7) + 1);
  3348. for (int l = 0; l < 4; ++l) {
  3349. const int8_t * grid = (const int8_t *)(iq1s_grid + idx[l]);
  3350. for (int j = 0; j < 8; ++j) {
  3351. //y[j] = db[l] * grid[l][j];
  3352. y[j] = db[l] * grid[j];
  3353. }
  3354. y += 8;
  3355. }
  3356. qs += 4;
  3357. sc += 2;
  3358. }
  3359. }
  3360. }
  3361. static const int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
  3362. void dequantize_row_iq4_nl(const block_iq4_nl * restrict x, float * restrict y, int k) {
  3363. assert(k % QK4_NL == 0);
  3364. const int nb = k / QK4_NL;
  3365. for (int i = 0; i < nb; i++) {
  3366. const uint8_t * qs = x[i].qs;
  3367. const float d = GGML_FP16_TO_FP32(x[i].d);
  3368. for (int j = 0; j < QK4_NL/2; ++j) {
  3369. y[j+ 0] = d * kvalues_iq4nl[qs[j] & 0xf];
  3370. y[j+QK4_NL/2] = d * kvalues_iq4nl[qs[j] >> 4];
  3371. }
  3372. y += QK4_NL;
  3373. qs += QK4_NL/2;
  3374. }
  3375. }
  3376. //===================================== Q8_K ==============================================
  3377. void quantize_row_q8_K_reference(const float * restrict x, block_q8_K * restrict y, int k) {
  3378. assert(k % QK_K == 0);
  3379. const int nb = k / QK_K;
  3380. for (int i = 0; i < nb; i++) {
  3381. float max = 0;
  3382. float amax = 0;
  3383. for (int j = 0; j < QK_K; ++j) {
  3384. float ax = fabsf(x[j]);
  3385. if (ax > amax) {
  3386. amax = ax; max = x[j];
  3387. }
  3388. }
  3389. if (!amax) {
  3390. y[i].d = 0;
  3391. memset(y[i].qs, 0, QK_K);
  3392. x += QK_K;
  3393. continue;
  3394. }
  3395. //const float iscale = -128.f/max;
  3396. // We need this change for IQ2_XXS, else the AVX implementation becomes very awkward
  3397. const float iscale = -127.f/max;
  3398. for (int j = 0; j < QK_K; ++j) {
  3399. int v = nearest_int(iscale*x[j]);
  3400. y[i].qs[j] = MIN(127, v);
  3401. }
  3402. for (int j = 0; j < QK_K/16; ++j) {
  3403. int sum = 0;
  3404. for (int ii = 0; ii < 16; ++ii) {
  3405. sum += y[i].qs[j*16 + ii];
  3406. }
  3407. y[i].bsums[j] = sum;
  3408. }
  3409. y[i].d = 1/iscale;
  3410. x += QK_K;
  3411. }
  3412. }
  3413. void dequantize_row_q8_K(const block_q8_K * restrict x, float * restrict y, int k) {
  3414. assert(k % QK_K == 0);
  3415. const int nb = k / QK_K;
  3416. for (int i = 0; i < nb; i++) {
  3417. for (int j = 0; j < QK_K; ++j) {
  3418. *y++ = x[i].d * x[i].qs[j];
  3419. }
  3420. }
  3421. }
  3422. void quantize_row_q8_K(const float * restrict x, void * restrict y, int k) {
  3423. quantize_row_q8_K_reference(x, y, k);
  3424. }
  3425. //===================================== Dot ptoducts =================================
  3426. //
  3427. // Helper functions
  3428. //
  3429. #if __AVX__ || __AVX2__ || __AVX512F__
  3430. // shuffles to pick the required scales in dot products
  3431. static inline __m256i get_scale_shuffle_q3k(int i) {
  3432. static const uint8_t k_shuffle[128] = {
  3433. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  3434. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  3435. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  3436. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13, 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,
  3437. };
  3438. return _mm256_loadu_si256((const __m256i*)k_shuffle + i);
  3439. }
  3440. static inline __m256i get_scale_shuffle_k4(int i) {
  3441. static const uint8_t k_shuffle[256] = {
  3442. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
  3443. 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  3444. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5,
  3445. 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  3446. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9,
  3447. 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  3448. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,
  3449. 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15
  3450. };
  3451. return _mm256_loadu_si256((const __m256i*)k_shuffle + i);
  3452. }
  3453. static inline __m128i get_scale_shuffle(int i) {
  3454. static const uint8_t k_shuffle[128] = {
  3455. 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
  3456. 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
  3457. 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5,
  3458. 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7,
  3459. 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,
  3460. 10,10,10,10,10,10,10,10, 11,11,11,11,11,11,11,11,
  3461. 12,12,12,12,12,12,12,12, 13,13,13,13,13,13,13,13,
  3462. 14,14,14,14,14,14,14,14, 15,15,15,15,15,15,15,15
  3463. };
  3464. return _mm_loadu_si128((const __m128i*)k_shuffle + i);
  3465. }
  3466. #endif
  3467. void ggml_vec_dot_q4_0_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  3468. const int qk = QK8_0;
  3469. const int nb = n / qk;
  3470. assert(n % qk == 0);
  3471. #if defined(__ARM_FEATURE_MATMUL_INT8)
  3472. assert((nrc == 2) || (nrc == 1));
  3473. #else
  3474. assert(nrc == 1);
  3475. #endif
  3476. UNUSED(nrc);
  3477. UNUSED(bx);
  3478. UNUSED(by);
  3479. UNUSED(bs);
  3480. const block_q4_0 * restrict x = vx;
  3481. const block_q8_0 * restrict y = vy;
  3482. #if defined(__ARM_FEATURE_MATMUL_INT8)
  3483. if (nrc == 2) {
  3484. const block_q4_0 * restrict vx0 = vx;
  3485. const block_q4_0 * restrict vx1 = vx + bx;
  3486. const block_q8_0 * restrict vy0 = vy;
  3487. const block_q8_0 * restrict vy1 = vy + by;
  3488. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  3489. for (int i = 0; i < nb; i++) {
  3490. const block_q4_0 * restrict b_x0 = &vx0[i];
  3491. const block_q4_0 * restrict b_x1 = &vx1[i];
  3492. const block_q8_0 * restrict b_y0 = &vy0[i];
  3493. const block_q8_0 * restrict b_y1 = &vy1[i];
  3494. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  3495. const int8x16_t s8b = vdupq_n_s8(0x8);
  3496. const uint8x16_t v0_0 = vld1q_u8(b_x0->qs);
  3497. const uint8x16_t v0_1 = vld1q_u8(b_x1->qs);
  3498. // 4-bit -> 8-bit
  3499. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  3500. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  3501. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  3502. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  3503. // sub 8
  3504. const int8x16_t x0_l = vsubq_s8(v0_0l, s8b);
  3505. const int8x16_t x0_h = vsubq_s8(v0_0h, s8b);
  3506. const int8x16_t x1_l = vsubq_s8(v0_1l, s8b);
  3507. const int8x16_t x1_h = vsubq_s8(v0_1h, s8b);
  3508. // load y
  3509. const int8x16_t y0_l = vld1q_s8(b_y0->qs);
  3510. const int8x16_t y0_h = vld1q_s8(b_y0->qs + 16);
  3511. const int8x16_t y1_l = vld1q_s8(b_y1->qs);
  3512. const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);
  3513. float32x4_t scale = {GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d),
  3514. GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d),
  3515. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d),
  3516. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)};
  3517. int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  3518. int8x16_t l1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  3519. int8x16_t l2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  3520. int8x16_t l3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  3521. int8x16_t r0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  3522. int8x16_t r1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  3523. int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  3524. int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  3525. sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)),
  3526. l1, r1)), l2, r2)), l3, r3))), scale);
  3527. }
  3528. float32x4_t sumv1 = vextq_f32(sumv0, sumv0, 2);
  3529. float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1);
  3530. vst1_f32(s, vget_low_f32(sumv2));
  3531. vst1_f32(s + bs, vget_high_f32(sumv2));
  3532. return;
  3533. }
  3534. #endif
  3535. #if defined(__ARM_NEON)
  3536. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  3537. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  3538. assert(nb % 2 == 0); // TODO: handle odd nb
  3539. for (int i = 0; i < nb; i += 2) {
  3540. const block_q4_0 * restrict x0 = &x[i + 0];
  3541. const block_q4_0 * restrict x1 = &x[i + 1];
  3542. const block_q8_0 * restrict y0 = &y[i + 0];
  3543. const block_q8_0 * restrict y1 = &y[i + 1];
  3544. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  3545. const int8x16_t s8b = vdupq_n_s8(0x8);
  3546. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  3547. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  3548. // 4-bit -> 8-bit
  3549. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  3550. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  3551. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  3552. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  3553. // sub 8
  3554. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  3555. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  3556. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  3557. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  3558. // load y
  3559. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  3560. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  3561. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  3562. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  3563. // dot product into int32x4_t
  3564. const int32x4_t p_0 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  3565. const int32x4_t p_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  3566. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  3567. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  3568. }
  3569. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  3570. #elif defined(__AVX2__)
  3571. // Initialize accumulator with zeros
  3572. __m256 acc = _mm256_setzero_ps();
  3573. // Main loop
  3574. for (int i = 0; i < nb; ++i) {
  3575. /* Compute combined scale for the block */
  3576. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  3577. __m256i qx = bytes_from_nibbles_32(x[i].qs);
  3578. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  3579. const __m256i off = _mm256_set1_epi8( 8 );
  3580. qx = _mm256_sub_epi8( qx, off );
  3581. __m256i qy = _mm256_loadu_si256((const __m256i *)y[i].qs);
  3582. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  3583. /* Multiply q with scale and accumulate */
  3584. acc = _mm256_fmadd_ps( d, q, acc );
  3585. }
  3586. *s = hsum_float_8(acc);
  3587. #elif defined(__AVX__)
  3588. // Initialize accumulator with zeros
  3589. __m256 acc = _mm256_setzero_ps();
  3590. // Main loop
  3591. for (int i = 0; i < nb; ++i) {
  3592. // Compute combined scale for the block
  3593. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  3594. const __m128i lowMask = _mm_set1_epi8(0xF);
  3595. const __m128i off = _mm_set1_epi8(8);
  3596. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  3597. __m128i bx_0 = _mm_and_si128(lowMask, tmp);
  3598. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  3599. bx_0 = _mm_sub_epi8(bx_0, off);
  3600. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  3601. bx_0 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  3602. by_0 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  3603. bx_0 = _mm_sub_epi8(bx_0, off);
  3604. const __m128i i32_1 = mul_sum_i8_pairs(bx_0, by_0);
  3605. // Convert int32_t to float
  3606. __m256 p = _mm256_cvtepi32_ps(MM256_SET_M128I(i32_0, i32_1));
  3607. // Apply the scale, and accumulate
  3608. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  3609. }
  3610. *s = hsum_float_8(acc);
  3611. #elif defined(__SSSE3__)
  3612. // set constants
  3613. const __m128i lowMask = _mm_set1_epi8(0xF);
  3614. const __m128i off = _mm_set1_epi8(8);
  3615. // Initialize accumulator with zeros
  3616. __m128 acc_0 = _mm_setzero_ps();
  3617. __m128 acc_1 = _mm_setzero_ps();
  3618. __m128 acc_2 = _mm_setzero_ps();
  3619. __m128 acc_3 = _mm_setzero_ps();
  3620. // First round without accumulation
  3621. {
  3622. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  3623. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  3624. // Compute combined scale for the block 0 and 1
  3625. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  3626. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  3627. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  3628. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  3629. bx_0 = _mm_sub_epi8(bx_0, off);
  3630. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  3631. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  3632. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  3633. bx_1 = _mm_sub_epi8(bx_1, off);
  3634. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  3635. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  3636. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  3637. // Compute combined scale for the block 2 and 3
  3638. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  3639. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  3640. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  3641. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  3642. bx_2 = _mm_sub_epi8(bx_2, off);
  3643. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  3644. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  3645. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  3646. bx_3 = _mm_sub_epi8(bx_3, off);
  3647. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  3648. // Convert int32_t to float
  3649. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  3650. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  3651. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  3652. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  3653. // Apply the scale
  3654. acc_0 = _mm_mul_ps( d_0_1, p0 );
  3655. acc_1 = _mm_mul_ps( d_0_1, p1 );
  3656. acc_2 = _mm_mul_ps( d_2_3, p2 );
  3657. acc_3 = _mm_mul_ps( d_2_3, p3 );
  3658. }
  3659. assert(nb % 2 == 0); // TODO: handle odd nb
  3660. // Main loop
  3661. for (int i = 2; i < nb; i+=2) {
  3662. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  3663. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  3664. // Compute combined scale for the block 0 and 1
  3665. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  3666. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  3667. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  3668. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  3669. bx_0 = _mm_sub_epi8(bx_0, off);
  3670. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  3671. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  3672. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  3673. bx_1 = _mm_sub_epi8(bx_1, off);
  3674. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  3675. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  3676. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  3677. // Compute combined scale for the block 2 and 3
  3678. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  3679. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  3680. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  3681. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  3682. bx_2 = _mm_sub_epi8(bx_2, off);
  3683. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  3684. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  3685. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  3686. bx_3 = _mm_sub_epi8(bx_3, off);
  3687. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  3688. // Convert int32_t to float
  3689. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  3690. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  3691. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  3692. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  3693. // Apply the scale
  3694. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  3695. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  3696. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  3697. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  3698. // Acummulate
  3699. acc_0 = _mm_add_ps(p0_d, acc_0);
  3700. acc_1 = _mm_add_ps(p1_d, acc_1);
  3701. acc_2 = _mm_add_ps(p2_d, acc_2);
  3702. acc_3 = _mm_add_ps(p3_d, acc_3);
  3703. }
  3704. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  3705. #elif defined(__riscv_v_intrinsic)
  3706. float sumf = 0.0;
  3707. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  3708. for (int i = 0; i < nb; i++) {
  3709. // load elements
  3710. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl);
  3711. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl);
  3712. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl);
  3713. // mask and store lower part of x, and then upper part
  3714. vuint8mf2_t x_a = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  3715. vuint8mf2_t x_l = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  3716. vint8mf2_t x_ai = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  3717. vint8mf2_t x_li = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  3718. // subtract offset
  3719. vint8mf2_t v0 = __riscv_vsub_vx_i8mf2(x_ai, 8, vl);
  3720. vint8mf2_t v1 = __riscv_vsub_vx_i8mf2(x_li, 8, vl);
  3721. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  3722. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  3723. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  3724. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  3725. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  3726. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  3727. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  3728. }
  3729. *s = sumf;
  3730. #else
  3731. // scalar
  3732. float sumf = 0.0;
  3733. for (int i = 0; i < nb; i++) {
  3734. int sumi = 0;
  3735. for (int j = 0; j < qk/2; ++j) {
  3736. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  3737. const int v1 = (x[i].qs[j] >> 4) - 8;
  3738. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  3739. }
  3740. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  3741. }
  3742. *s = sumf;
  3743. #endif
  3744. }
  3745. void ggml_vec_dot_q4_1_q8_1(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  3746. const int qk = QK8_1;
  3747. const int nb = n / qk;
  3748. assert(n % qk == 0);
  3749. #if defined(__ARM_FEATURE_MATMUL_INT8)
  3750. assert((nrc == 2) || (nrc == 1));
  3751. #else
  3752. assert(nrc == 1);
  3753. #endif
  3754. UNUSED(nrc);
  3755. UNUSED(bx);
  3756. UNUSED(by);
  3757. UNUSED(bs);
  3758. const block_q4_1 * restrict x = vx;
  3759. const block_q8_1 * restrict y = vy;
  3760. #if defined(__ARM_FEATURE_MATMUL_INT8)
  3761. if (nrc == 2) {
  3762. const block_q4_1 * restrict vx0 = vx;
  3763. const block_q4_1 * restrict vx1 = vx + bx;
  3764. const block_q8_1 * restrict vy0 = vy;
  3765. const block_q8_1 * restrict vy1 = vy + by;
  3766. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  3767. float32x4_t summs0 = vdupq_n_f32(0.0f);
  3768. for (int i = 0; i < nb; i++) {
  3769. const block_q4_1 * restrict b_x0 = &vx0[i];
  3770. const block_q4_1 * restrict b_x1 = &vx1[i];
  3771. const block_q8_1 * restrict b_y0 = &vy0[i];
  3772. const block_q8_1 * restrict b_y1 = &vy1[i];
  3773. float32x4_t summs_t = {GGML_FP16_TO_FP32(b_x0->m) * b_y0->s,
  3774. GGML_FP16_TO_FP32(b_x1->m) * b_y0->s,
  3775. GGML_FP16_TO_FP32(b_x0->m) * b_y1->s,
  3776. GGML_FP16_TO_FP32(b_x1->m) * b_y1->s};
  3777. summs0 += summs_t;
  3778. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  3779. const uint8x16_t v0_0 = vld1q_u8(b_x0->qs);
  3780. const uint8x16_t v0_1 = vld1q_u8(b_x1->qs);
  3781. // 4-bit -> 8-bit
  3782. const int8x16_t x0_l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  3783. const int8x16_t x0_h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  3784. const int8x16_t x1_l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  3785. const int8x16_t x1_h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  3786. // load y
  3787. const int8x16_t y0_l = vld1q_s8(b_y0->qs);
  3788. const int8x16_t y0_h = vld1q_s8(b_y0->qs + 16);
  3789. const int8x16_t y1_l = vld1q_s8(b_y1->qs);
  3790. const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);
  3791. // mmla into int32x4_t
  3792. float32x4_t scale = {GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d),
  3793. GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d),
  3794. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d),
  3795. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)};
  3796. int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  3797. int8x16_t l1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  3798. int8x16_t l2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  3799. int8x16_t l3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  3800. int8x16_t r0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  3801. int8x16_t r1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  3802. int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  3803. int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  3804. sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)),
  3805. l1, r1)), l2, r2)), l3, r3))), scale);
  3806. }
  3807. float32x4_t sumv1 = vextq_f32(sumv0, sumv0, 2);
  3808. float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1);
  3809. sumv2 = sumv2 + summs0;
  3810. vst1_f32(s, vget_low_f32(sumv2));
  3811. vst1_f32(s + bs, vget_high_f32(sumv2));
  3812. return;
  3813. }
  3814. #endif
  3815. // TODO: add WASM SIMD
  3816. #if defined(__ARM_NEON)
  3817. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  3818. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  3819. float summs = 0;
  3820. assert(nb % 2 == 0); // TODO: handle odd nb
  3821. for (int i = 0; i < nb; i += 2) {
  3822. const block_q4_1 * restrict x0 = &x[i + 0];
  3823. const block_q4_1 * restrict x1 = &x[i + 1];
  3824. const block_q8_1 * restrict y0 = &y[i + 0];
  3825. const block_q8_1 * restrict y1 = &y[i + 1];
  3826. summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
  3827. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  3828. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  3829. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  3830. // 4-bit -> 8-bit
  3831. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  3832. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  3833. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  3834. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  3835. // load y
  3836. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  3837. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  3838. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  3839. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  3840. // dot product into int32x4_t
  3841. const int32x4_t p_0 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  3842. const int32x4_t p_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  3843. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
  3844. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
  3845. }
  3846. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  3847. #elif defined(__AVX2__) || defined(__AVX__)
  3848. // Initialize accumulator with zeros
  3849. __m256 acc = _mm256_setzero_ps();
  3850. float summs = 0;
  3851. // Main loop
  3852. for (int i = 0; i < nb; ++i) {
  3853. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  3854. const float d1 = y[i].d;
  3855. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  3856. const __m256 d0v = _mm256_set1_ps( d0 );
  3857. const __m256 d1v = _mm256_set1_ps( d1 );
  3858. // Compute combined scales
  3859. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  3860. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  3861. const __m256i qx = bytes_from_nibbles_32(x[i].qs);
  3862. const __m256i qy = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  3863. const __m256 xy = mul_sum_us8_pairs_float(qx, qy);
  3864. // Accumulate d0*d1*x*y
  3865. #if defined(__AVX2__)
  3866. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  3867. #else
  3868. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  3869. #endif
  3870. }
  3871. *s = hsum_float_8(acc) + summs;
  3872. #elif defined(__riscv_v_intrinsic)
  3873. float sumf = 0.0;
  3874. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  3875. for (int i = 0; i < nb; i++) {
  3876. // load elements
  3877. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl);
  3878. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl);
  3879. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl);
  3880. // mask and store lower part of x, and then upper part
  3881. vuint8mf2_t x_a = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  3882. vuint8mf2_t x_l = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  3883. vint8mf2_t v0 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  3884. vint8mf2_t v1 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  3885. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  3886. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  3887. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  3888. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  3889. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  3890. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  3891. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  3892. }
  3893. *s = sumf;
  3894. #else
  3895. // scalar
  3896. float sumf = 0.0;
  3897. for (int i = 0; i < nb; i++) {
  3898. int sumi = 0;
  3899. for (int j = 0; j < qk/2; ++j) {
  3900. const int v0 = (x[i].qs[j] & 0x0F);
  3901. const int v1 = (x[i].qs[j] >> 4);
  3902. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  3903. }
  3904. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  3905. }
  3906. *s = sumf;
  3907. #endif
  3908. }
  3909. void ggml_vec_dot_q5_0_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  3910. const int qk = QK8_0;
  3911. const int nb = n / qk;
  3912. assert(n % qk == 0);
  3913. assert(qk == QK5_0);
  3914. assert(nrc == 1);
  3915. UNUSED(nrc);
  3916. UNUSED(bx);
  3917. UNUSED(by);
  3918. UNUSED(bs);
  3919. const block_q5_0 * restrict x = vx;
  3920. const block_q8_0 * restrict y = vy;
  3921. #if defined(__ARM_NEON)
  3922. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  3923. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  3924. uint32_t qh0;
  3925. uint32_t qh1;
  3926. uint64_t tmp0[4];
  3927. uint64_t tmp1[4];
  3928. assert(nb % 2 == 0); // TODO: handle odd nb
  3929. for (int i = 0; i < nb; i += 2) {
  3930. const block_q5_0 * restrict x0 = &x[i];
  3931. const block_q5_0 * restrict x1 = &x[i + 1];
  3932. const block_q8_0 * restrict y0 = &y[i];
  3933. const block_q8_0 * restrict y1 = &y[i + 1];
  3934. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  3935. // extract the 5th bit via lookup table ((!b) << 4)
  3936. memcpy(&qh0, x0->qh, sizeof(qh0));
  3937. memcpy(&qh1, x1->qh, sizeof(qh1));
  3938. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  3939. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  3940. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  3941. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  3942. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  3943. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  3944. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  3945. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  3946. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  3947. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  3948. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  3949. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  3950. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  3951. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  3952. // 4-bit -> 8-bit
  3953. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  3954. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  3955. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  3956. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  3957. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  3958. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  3959. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  3960. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  3961. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  3962. // load y
  3963. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  3964. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  3965. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  3966. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  3967. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  3968. ggml_vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  3969. ggml_vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  3970. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  3971. ggml_vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  3972. ggml_vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  3973. }
  3974. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  3975. #elif defined(__wasm_simd128__)
  3976. v128_t sumv = wasm_f32x4_splat(0.0f);
  3977. uint32_t qh;
  3978. uint64_t tmp[4];
  3979. // TODO: check if unrolling this is better
  3980. for (int i = 0; i < nb; ++i) {
  3981. const block_q5_0 * restrict x0 = &x[i];
  3982. const block_q8_0 * restrict y0 = &y[i];
  3983. const v128_t m4b = wasm_i8x16_splat(0x0F);
  3984. // extract the 5th bit
  3985. memcpy(&qh, x0->qh, sizeof(qh));
  3986. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  3987. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  3988. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  3989. tmp[3] = table_b2b_1[(qh >> 24) ];
  3990. const v128_t qhl = wasm_v128_load(tmp + 0);
  3991. const v128_t qhh = wasm_v128_load(tmp + 2);
  3992. const v128_t v0 = wasm_v128_load(x0->qs);
  3993. // 4-bit -> 8-bit
  3994. const v128_t v0l = wasm_v128_and (v0, m4b);
  3995. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  3996. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  3997. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  3998. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  3999. // load y
  4000. const v128_t v1l = wasm_v128_load(y0->qs);
  4001. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  4002. // int8x16 -> int16x8
  4003. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  4004. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  4005. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  4006. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  4007. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  4008. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  4009. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  4010. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  4011. // dot product
  4012. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  4013. wasm_i32x4_add(
  4014. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  4015. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  4016. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  4017. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  4018. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  4019. }
  4020. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  4021. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  4022. #elif defined(__AVX2__)
  4023. // Initialize accumulator with zeros
  4024. __m256 acc = _mm256_setzero_ps();
  4025. // Main loop
  4026. for (int i = 0; i < nb; i++) {
  4027. /* Compute combined scale for the block */
  4028. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  4029. __m256i qx = bytes_from_nibbles_32(x[i].qs);
  4030. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  4031. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  4032. qx = _mm256_or_si256(qx, bxhi);
  4033. __m256i qy = _mm256_loadu_si256((const __m256i *)y[i].qs);
  4034. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  4035. /* Multiply q with scale and accumulate */
  4036. acc = _mm256_fmadd_ps(d, q, acc);
  4037. }
  4038. *s = hsum_float_8(acc);
  4039. #elif defined(__AVX__)
  4040. // Initialize accumulator with zeros
  4041. __m256 acc = _mm256_setzero_ps();
  4042. __m128i mask = _mm_set1_epi8((char)0xF0);
  4043. // Main loop
  4044. for (int i = 0; i < nb; i++) {
  4045. /* Compute combined scale for the block */
  4046. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  4047. __m256i bx_0 = bytes_from_nibbles_32(x[i].qs);
  4048. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  4049. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  4050. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  4051. bxhil = _mm_andnot_si128(bxhil, mask);
  4052. bxhih = _mm_andnot_si128(bxhih, mask);
  4053. __m128i bxl = _mm256_castsi256_si128(bx_0);
  4054. __m128i bxh = _mm256_extractf128_si256(bx_0, 1);
  4055. bxl = _mm_or_si128(bxl, bxhil);
  4056. bxh = _mm_or_si128(bxh, bxhih);
  4057. bx_0 = MM256_SET_M128I(bxh, bxl);
  4058. const __m256i by_0 = _mm256_loadu_si256((const __m256i *)y[i].qs);
  4059. const __m256 q = mul_sum_i8_pairs_float(bx_0, by_0);
  4060. /* Multiply q with scale and accumulate */
  4061. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  4062. }
  4063. *s = hsum_float_8(acc);
  4064. #elif defined(__riscv_v_intrinsic)
  4065. float sumf = 0.0;
  4066. uint32_t qh;
  4067. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  4068. // These temporary registers are for masking and shift operations
  4069. vuint32m2_t vt_1 = __riscv_vid_v_u32m2(vl);
  4070. vuint32m2_t vt_2 = __riscv_vsll_vv_u32m2(__riscv_vmv_v_x_u32m2(1, vl), vt_1, vl);
  4071. vuint32m2_t vt_3 = __riscv_vsll_vx_u32m2(vt_2, 16, vl);
  4072. vuint32m2_t vt_4 = __riscv_vadd_vx_u32m2(vt_1, 12, vl);
  4073. for (int i = 0; i < nb; i++) {
  4074. memcpy(&qh, x[i].qh, sizeof(uint32_t));
  4075. // ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  4076. vuint32m2_t xha_0 = __riscv_vand_vx_u32m2(vt_2, qh, vl);
  4077. vuint32m2_t xhr_0 = __riscv_vsrl_vv_u32m2(xha_0, vt_1, vl);
  4078. vuint32m2_t xhl_0 = __riscv_vsll_vx_u32m2(xhr_0, 4, vl);
  4079. // ((qh & (1u << (j + 16))) >> (j + 12));
  4080. vuint32m2_t xha_1 = __riscv_vand_vx_u32m2(vt_3, qh, vl);
  4081. vuint32m2_t xhl_1 = __riscv_vsrl_vv_u32m2(xha_1, vt_4, vl);
  4082. // narrowing
  4083. vuint16m1_t xhc_0 = __riscv_vncvt_x_x_w_u16m1(xhl_0, vl);
  4084. vuint8mf2_t xh_0 = __riscv_vncvt_x_x_w_u8mf2(xhc_0, vl);
  4085. vuint16m1_t xhc_1 = __riscv_vncvt_x_x_w_u16m1(xhl_1, vl);
  4086. vuint8mf2_t xh_1 = __riscv_vncvt_x_x_w_u8mf2(xhc_1, vl);
  4087. // load
  4088. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl);
  4089. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl);
  4090. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl);
  4091. vuint8mf2_t x_at = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  4092. vuint8mf2_t x_lt = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  4093. vuint8mf2_t x_a = __riscv_vor_vv_u8mf2(x_at, xh_0, vl);
  4094. vuint8mf2_t x_l = __riscv_vor_vv_u8mf2(x_lt, xh_1, vl);
  4095. vint8mf2_t x_ai = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  4096. vint8mf2_t x_li = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  4097. vint8mf2_t v0 = __riscv_vsub_vx_i8mf2(x_ai, 16, vl);
  4098. vint8mf2_t v1 = __riscv_vsub_vx_i8mf2(x_li, 16, vl);
  4099. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  4100. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  4101. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  4102. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  4103. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  4104. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  4105. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  4106. }
  4107. *s = sumf;
  4108. #else
  4109. // scalar
  4110. float sumf = 0.0;
  4111. for (int i = 0; i < nb; i++) {
  4112. uint32_t qh;
  4113. memcpy(&qh, x[i].qh, sizeof(qh));
  4114. int sumi = 0;
  4115. for (int j = 0; j < qk/2; ++j) {
  4116. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  4117. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  4118. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  4119. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  4120. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  4121. }
  4122. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  4123. }
  4124. *s = sumf;
  4125. #endif
  4126. }
  4127. void ggml_vec_dot_q5_1_q8_1(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  4128. const int qk = QK8_1;
  4129. const int nb = n / qk;
  4130. assert(n % qk == 0);
  4131. assert(qk == QK5_1);
  4132. assert(nrc == 1);
  4133. UNUSED(nrc);
  4134. UNUSED(bx);
  4135. UNUSED(by);
  4136. UNUSED(bs);
  4137. const block_q5_1 * restrict x = vx;
  4138. const block_q8_1 * restrict y = vy;
  4139. #if defined(__ARM_NEON)
  4140. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  4141. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  4142. float summs0 = 0.0f;
  4143. float summs1 = 0.0f;
  4144. uint32_t qh0;
  4145. uint32_t qh1;
  4146. uint64_t tmp0[4];
  4147. uint64_t tmp1[4];
  4148. assert(nb % 2 == 0); // TODO: handle odd nb
  4149. for (int i = 0; i < nb; i += 2) {
  4150. const block_q5_1 * restrict x0 = &x[i];
  4151. const block_q5_1 * restrict x1 = &x[i + 1];
  4152. const block_q8_1 * restrict y0 = &y[i];
  4153. const block_q8_1 * restrict y1 = &y[i + 1];
  4154. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  4155. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  4156. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  4157. // extract the 5th bit via lookup table ((b) << 4)
  4158. memcpy(&qh0, x0->qh, sizeof(qh0));
  4159. memcpy(&qh1, x1->qh, sizeof(qh1));
  4160. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  4161. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  4162. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  4163. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  4164. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  4165. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  4166. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  4167. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  4168. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  4169. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  4170. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  4171. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  4172. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  4173. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  4174. // 4-bit -> 8-bit
  4175. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  4176. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  4177. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  4178. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  4179. // add high bit
  4180. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  4181. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  4182. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  4183. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  4184. // load y
  4185. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  4186. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  4187. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  4188. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  4189. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  4190. ggml_vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  4191. ggml_vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
  4192. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  4193. ggml_vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  4194. ggml_vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
  4195. }
  4196. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  4197. #elif defined(__wasm_simd128__)
  4198. v128_t sumv = wasm_f32x4_splat(0.0f);
  4199. float summs = 0.0f;
  4200. uint32_t qh;
  4201. uint64_t tmp[4];
  4202. // TODO: check if unrolling this is better
  4203. for (int i = 0; i < nb; ++i) {
  4204. const block_q5_1 * restrict x0 = &x[i];
  4205. const block_q8_1 * restrict y0 = &y[i];
  4206. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  4207. const v128_t m4b = wasm_i8x16_splat(0x0F);
  4208. // extract the 5th bit
  4209. memcpy(&qh, x0->qh, sizeof(qh));
  4210. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  4211. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  4212. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  4213. tmp[3] = table_b2b_0[(qh >> 24) ];
  4214. const v128_t qhl = wasm_v128_load(tmp + 0);
  4215. const v128_t qhh = wasm_v128_load(tmp + 2);
  4216. const v128_t v0 = wasm_v128_load(x0->qs);
  4217. // 4-bit -> 8-bit
  4218. const v128_t v0l = wasm_v128_and (v0, m4b);
  4219. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  4220. // add high bit
  4221. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  4222. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  4223. // load y
  4224. const v128_t v1l = wasm_v128_load(y0->qs);
  4225. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  4226. // int8x16 -> int16x8
  4227. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  4228. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  4229. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  4230. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  4231. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  4232. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  4233. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  4234. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  4235. // dot product
  4236. sumv = wasm_f32x4_add(sumv,
  4237. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  4238. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  4239. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  4240. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  4241. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  4242. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
  4243. }
  4244. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  4245. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  4246. #elif defined(__AVX2__)
  4247. // Initialize accumulator with zeros
  4248. __m256 acc = _mm256_setzero_ps();
  4249. float summs = 0.0f;
  4250. // Main loop
  4251. for (int i = 0; i < nb; i++) {
  4252. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  4253. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  4254. __m256i qx = bytes_from_nibbles_32(x[i].qs);
  4255. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  4256. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  4257. qx = _mm256_or_si256(qx, bxhi);
  4258. const __m256 dy = _mm256_set1_ps(y[i].d);
  4259. const __m256i qy = _mm256_loadu_si256((const __m256i *)y[i].qs);
  4260. const __m256 q = mul_sum_us8_pairs_float(qx, qy);
  4261. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  4262. }
  4263. *s = hsum_float_8(acc) + summs;
  4264. #elif defined(__AVX__)
  4265. // Initialize accumulator with zeros
  4266. __m256 acc = _mm256_setzero_ps();
  4267. __m128i mask = _mm_set1_epi8(0x10);
  4268. float summs = 0.0f;
  4269. // Main loop
  4270. for (int i = 0; i < nb; i++) {
  4271. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  4272. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  4273. __m256i bx_0 = bytes_from_nibbles_32(x[i].qs);
  4274. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  4275. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  4276. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  4277. bxhil = _mm_and_si128(bxhil, mask);
  4278. bxhih = _mm_and_si128(bxhih, mask);
  4279. __m128i bxl = _mm256_castsi256_si128(bx_0);
  4280. __m128i bxh = _mm256_extractf128_si256(bx_0, 1);
  4281. bxl = _mm_or_si128(bxl, bxhil);
  4282. bxh = _mm_or_si128(bxh, bxhih);
  4283. bx_0 = MM256_SET_M128I(bxh, bxl);
  4284. const __m256 dy = _mm256_set1_ps(y[i].d);
  4285. const __m256i by_0 = _mm256_loadu_si256((const __m256i *)y[i].qs);
  4286. const __m256 q = mul_sum_us8_pairs_float(bx_0, by_0);
  4287. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  4288. }
  4289. *s = hsum_float_8(acc) + summs;
  4290. #elif defined(__riscv_v_intrinsic)
  4291. float sumf = 0.0;
  4292. uint32_t qh;
  4293. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  4294. // temporary registers for shift operations
  4295. vuint32m2_t vt_1 = __riscv_vid_v_u32m2(vl);
  4296. vuint32m2_t vt_2 = __riscv_vadd_vx_u32m2(vt_1, 12, vl);
  4297. for (int i = 0; i < nb; i++) {
  4298. memcpy(&qh, x[i].qh, sizeof(uint32_t));
  4299. // load qh
  4300. vuint32m2_t vqh = __riscv_vmv_v_x_u32m2(qh, vl);
  4301. // ((qh >> (j + 0)) << 4) & 0x10;
  4302. vuint32m2_t xhr_0 = __riscv_vsrl_vv_u32m2(vqh, vt_1, vl);
  4303. vuint32m2_t xhl_0 = __riscv_vsll_vx_u32m2(xhr_0, 4, vl);
  4304. vuint32m2_t xha_0 = __riscv_vand_vx_u32m2(xhl_0, 0x10, vl);
  4305. // ((qh >> (j + 12)) ) & 0x10;
  4306. vuint32m2_t xhr_1 = __riscv_vsrl_vv_u32m2(vqh, vt_2, vl);
  4307. vuint32m2_t xha_1 = __riscv_vand_vx_u32m2(xhr_1, 0x10, vl);
  4308. // narrowing
  4309. vuint16m1_t xhc_0 = __riscv_vncvt_x_x_w_u16m1(xha_0, vl);
  4310. vuint8mf2_t xh_0 = __riscv_vncvt_x_x_w_u8mf2(xhc_0, vl);
  4311. vuint16m1_t xhc_1 = __riscv_vncvt_x_x_w_u16m1(xha_1, vl);
  4312. vuint8mf2_t xh_1 = __riscv_vncvt_x_x_w_u8mf2(xhc_1, vl);
  4313. // load
  4314. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl);
  4315. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl);
  4316. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl);
  4317. vuint8mf2_t x_at = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  4318. vuint8mf2_t x_lt = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  4319. vuint8mf2_t x_a = __riscv_vor_vv_u8mf2(x_at, xh_0, vl);
  4320. vuint8mf2_t x_l = __riscv_vor_vv_u8mf2(x_lt, xh_1, vl);
  4321. vint8mf2_t v0 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  4322. vint8mf2_t v1 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  4323. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  4324. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  4325. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  4326. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  4327. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  4328. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  4329. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  4330. }
  4331. *s = sumf;
  4332. #else
  4333. // scalar
  4334. float sumf = 0.0;
  4335. for (int i = 0; i < nb; i++) {
  4336. uint32_t qh;
  4337. memcpy(&qh, x[i].qh, sizeof(qh));
  4338. int sumi = 0;
  4339. for (int j = 0; j < qk/2; ++j) {
  4340. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  4341. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  4342. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  4343. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  4344. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  4345. }
  4346. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  4347. }
  4348. *s = sumf;
  4349. #endif
  4350. }
  4351. void ggml_vec_dot_q8_0_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  4352. const int qk = QK8_0;
  4353. const int nb = n / qk;
  4354. assert(n % qk == 0);
  4355. #if defined(__ARM_FEATURE_MATMUL_INT8)
  4356. assert((nrc == 2) || (nrc == 1));
  4357. #else
  4358. assert(nrc == 1);
  4359. #endif
  4360. UNUSED(nrc);
  4361. UNUSED(bx);
  4362. UNUSED(by);
  4363. UNUSED(bs);
  4364. const block_q8_0 * restrict x = vx;
  4365. const block_q8_0 * restrict y = vy;
  4366. #if defined(__ARM_FEATURE_MATMUL_INT8)
  4367. if (nrc == 2) {
  4368. const block_q8_0 * restrict vx0 = vx;
  4369. const block_q8_0 * restrict vx1 = vx + bx;
  4370. const block_q8_0 * restrict vy0 = vy;
  4371. const block_q8_0 * restrict vy1 = vy + by;
  4372. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  4373. for (int i = 0; i < nb; i++) {
  4374. const block_q8_0 * restrict b_x0 = &vx0[i];
  4375. const block_q8_0 * restrict b_y0 = &vy0[i];
  4376. const block_q8_0 * restrict b_x1 = &vx1[i];
  4377. const block_q8_0 * restrict b_y1 = &vy1[i];
  4378. const int8x16_t x0_l = vld1q_s8(b_x0->qs);
  4379. const int8x16_t x0_h = vld1q_s8(b_x0->qs + 16);
  4380. const int8x16_t x1_l = vld1q_s8(b_x1->qs);
  4381. const int8x16_t x1_h = vld1q_s8(b_x1->qs + 16);
  4382. // load y
  4383. const int8x16_t y0_l = vld1q_s8(b_y0->qs);
  4384. const int8x16_t y0_h = vld1q_s8(b_y0->qs + 16);
  4385. const int8x16_t y1_l = vld1q_s8(b_y1->qs);
  4386. const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);
  4387. float32x4_t scale = {GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d),
  4388. GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d),
  4389. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d),
  4390. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)};
  4391. int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  4392. int8x16_t l1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  4393. int8x16_t l2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  4394. int8x16_t l3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  4395. int8x16_t r0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  4396. int8x16_t r1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  4397. int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  4398. int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  4399. sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)),
  4400. l1, r1)), l2, r2)), l3, r3))), scale);
  4401. }
  4402. float32x4_t sumv1 = vextq_f32(sumv0, sumv0, 2);
  4403. float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1);
  4404. vst1_f32(s, vget_low_f32(sumv2));
  4405. vst1_f32(s + bs, vget_high_f32(sumv2));
  4406. return;
  4407. }
  4408. #endif
  4409. #if defined(__ARM_NEON)
  4410. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  4411. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  4412. assert(nb % 2 == 0); // TODO: handle odd nb
  4413. for (int i = 0; i < nb; i += 2) {
  4414. const block_q8_0 * restrict x0 = &x[i + 0];
  4415. const block_q8_0 * restrict x1 = &x[i + 1];
  4416. const block_q8_0 * restrict y0 = &y[i + 0];
  4417. const block_q8_0 * restrict y1 = &y[i + 1];
  4418. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  4419. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  4420. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  4421. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  4422. // load y
  4423. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  4424. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  4425. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  4426. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  4427. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  4428. ggml_vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  4429. ggml_vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  4430. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  4431. ggml_vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  4432. ggml_vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  4433. }
  4434. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  4435. #elif defined(__AVX2__) || defined(__AVX__)
  4436. // Initialize accumulator with zeros
  4437. __m256 acc = _mm256_setzero_ps();
  4438. // Main loop
  4439. for (int i = 0; i < nb; ++i) {
  4440. // Compute combined scale for the block
  4441. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  4442. __m256i qx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  4443. __m256i qy = _mm256_loadu_si256((const __m256i *)y[i].qs);
  4444. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  4445. // Multiply q with scale and accumulate
  4446. #if defined(__AVX2__)
  4447. acc = _mm256_fmadd_ps( d, q, acc );
  4448. #else
  4449. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  4450. #endif
  4451. }
  4452. *s = hsum_float_8(acc);
  4453. #elif defined(__riscv_v_intrinsic)
  4454. float sumf = 0.0;
  4455. size_t vl = __riscv_vsetvl_e8m1(qk);
  4456. for (int i = 0; i < nb; i++) {
  4457. // load elements
  4458. vint8m1_t bx_0 = __riscv_vle8_v_i8m1(x[i].qs, vl);
  4459. vint8m1_t by_0 = __riscv_vle8_v_i8m1(y[i].qs, vl);
  4460. vint16m2_t vw_mul = __riscv_vwmul_vv_i16m2(bx_0, by_0, vl);
  4461. vint32m1_t v_zero = __riscv_vmv_v_x_i32m1(0, vl);
  4462. vint32m1_t v_sum = __riscv_vwredsum_vs_i16m2_i32m1(vw_mul, v_zero, vl);
  4463. int sumi = __riscv_vmv_x_s_i32m1_i32(v_sum);
  4464. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  4465. }
  4466. *s = sumf;
  4467. #else
  4468. // scalar
  4469. float sumf = 0.0;
  4470. for (int i = 0; i < nb; i++) {
  4471. int sumi = 0;
  4472. for (int j = 0; j < qk; j++) {
  4473. sumi += x[i].qs[j]*y[i].qs[j];
  4474. }
  4475. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  4476. }
  4477. *s = sumf;
  4478. #endif
  4479. }
  4480. #if QK_K == 256
  4481. void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  4482. assert(nrc == 1);
  4483. UNUSED(nrc);
  4484. UNUSED(bx);
  4485. UNUSED(by);
  4486. UNUSED(bs);
  4487. const block_q2_K * restrict x = vx;
  4488. const block_q8_K * restrict y = vy;
  4489. const int nb = n / QK_K;
  4490. #ifdef __ARM_NEON
  4491. const uint8x16_t m3 = vdupq_n_u8(0x3);
  4492. const uint8x16_t m4 = vdupq_n_u8(0xF);
  4493. const int32x4_t vzero = vdupq_n_s32(0);
  4494. ggml_int8x16x2_t q2bytes;
  4495. uint8_t aux[16];
  4496. float sum = 0;
  4497. for (int i = 0; i < nb; ++i) {
  4498. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4499. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4500. const uint8_t * restrict q2 = x[i].qs;
  4501. const int8_t * restrict q8 = y[i].qs;
  4502. const uint8_t * restrict sc = x[i].scales;
  4503. const uint8x16_t mins_and_scales = vld1q_u8(sc);
  4504. const uint8x16_t scales = vandq_u8(mins_and_scales, m4);
  4505. vst1q_u8(aux, scales);
  4506. const uint8x16_t mins = vshrq_n_u8(mins_and_scales, 4);
  4507. const ggml_int16x8x2_t q8sums = ggml_vld1q_s16_x2(y[i].bsums);
  4508. const ggml_int16x8x2_t mins16 = {{vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(mins))), vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(mins)))}};
  4509. const int32x4_t s0 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[0]), vget_low_s16 (q8sums.val[0])),
  4510. vmull_s16(vget_high_s16(mins16.val[0]), vget_high_s16(q8sums.val[0])));
  4511. const int32x4_t s1 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[1]), vget_low_s16 (q8sums.val[1])),
  4512. vmull_s16(vget_high_s16(mins16.val[1]), vget_high_s16(q8sums.val[1])));
  4513. sum += dmin * vaddvq_s32(vaddq_s32(s0, s1));
  4514. int isum = 0;
  4515. int is = 0;
  4516. // We use this macro instead of a function call because for some reason
  4517. // the code runs 2-3% slower, even if the function is declared inline
  4518. #define MULTIPLY_ACCUM_WITH_SCALE(index)\
  4519. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * aux[is+(index)];\
  4520. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * aux[is+1+(index)];
  4521. #define SHIFT_MULTIPLY_ACCUM_WITH_SCALE(shift, index)\
  4522. q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;\
  4523. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[0], (shift)), m3));\
  4524. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[1], (shift)), m3));\
  4525. MULTIPLY_ACCUM_WITH_SCALE((index));
  4526. for (int j = 0; j < QK_K/128; ++j) {
  4527. const ggml_uint8x16x2_t q2bits = ggml_vld1q_u8_x2(q2); q2 += 32;
  4528. ggml_int8x16x2_t q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
  4529. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[0], m3));
  4530. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[1], m3));
  4531. MULTIPLY_ACCUM_WITH_SCALE(0);
  4532. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(2, 2);
  4533. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(4, 4);
  4534. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(6, 6);
  4535. is += 8;
  4536. }
  4537. sum += d * isum;
  4538. }
  4539. *s = sum;
  4540. #elif defined __AVX2__
  4541. const __m256i m3 = _mm256_set1_epi8(3);
  4542. const __m128i m4 = _mm_set1_epi8(0xF);
  4543. __m256 acc = _mm256_setzero_ps();
  4544. for (int i = 0; i < nb; ++i) {
  4545. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4546. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4547. const uint8_t * restrict q2 = x[i].qs;
  4548. const int8_t * restrict q8 = y[i].qs;
  4549. const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  4550. const __m128i scales8 = _mm_and_si128(mins_and_scales, m4);
  4551. const __m128i mins8 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4);
  4552. const __m256i mins = _mm256_cvtepi8_epi16(mins8);
  4553. const __m256i prod = _mm256_madd_epi16(mins, _mm256_loadu_si256((const __m256i*)y[i].bsums));
  4554. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(prod), acc);
  4555. const __m256i all_scales = _mm256_cvtepi8_epi16(scales8);
  4556. const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
  4557. const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
  4558. const __m256i scales[2] = {MM256_SET_M128I(l_scales, l_scales), MM256_SET_M128I(h_scales, h_scales)};
  4559. __m256i sumi = _mm256_setzero_si256();
  4560. for (int j = 0; j < QK_K/128; ++j) {
  4561. const __m256i q2bits = _mm256_loadu_si256((const __m256i*)q2); q2 += 32;
  4562. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  4563. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  4564. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  4565. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  4566. const __m256i q2_0 = _mm256_and_si256(q2bits, m3);
  4567. const __m256i q2_1 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 2), m3);
  4568. const __m256i q2_2 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 4), m3);
  4569. const __m256i q2_3 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 6), m3);
  4570. __m256i p0 = _mm256_maddubs_epi16(q2_0, q8_0);
  4571. __m256i p1 = _mm256_maddubs_epi16(q2_1, q8_1);
  4572. __m256i p2 = _mm256_maddubs_epi16(q2_2, q8_2);
  4573. __m256i p3 = _mm256_maddubs_epi16(q2_3, q8_3);
  4574. p0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(0)), p0);
  4575. p1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(1)), p1);
  4576. p2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(2)), p2);
  4577. p3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(3)), p3);
  4578. p0 = _mm256_add_epi32(p0, p1);
  4579. p2 = _mm256_add_epi32(p2, p3);
  4580. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p0, p2));
  4581. }
  4582. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  4583. }
  4584. *s = hsum_float_8(acc);
  4585. #elif defined __AVX__
  4586. const __m128i m3 = _mm_set1_epi8(0x3);
  4587. const __m128i m4 = _mm_set1_epi8(0xF);
  4588. const __m128i m2 = _mm_set1_epi8(0x2);
  4589. __m256 acc = _mm256_setzero_ps();
  4590. for (int i = 0; i < nb; ++i) {
  4591. const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4592. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4593. const uint8_t * restrict q2 = x[i].qs;
  4594. const int8_t * restrict q8 = y[i].qs;
  4595. // load mins and scales from block_q2_K.scales[QK_K/16]
  4596. const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  4597. const __m128i scales16 = _mm_and_si128(mins_and_scales, m4);
  4598. const __m128i mins16 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4);
  4599. const __m128i mins_0 = _mm_cvtepi8_epi16(mins16);
  4600. const __m128i mins_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(mins16, mins16));
  4601. // summs = y[i].bsums * (x[i].scales >> 4) in 16bits*8*2 to 32bits*4*2
  4602. const __m128i summs_0 = _mm_madd_epi16(mins_0, _mm_loadu_si128((const __m128i*)&y[i].bsums[0]));
  4603. const __m128i summs_1 = _mm_madd_epi16(mins_1, _mm_loadu_si128((const __m128i*)&y[i].bsums[8]));
  4604. // sumf += -dmin * summs in 32bits*8
  4605. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(MM256_SET_M128I(summs_1, summs_0))), acc);
  4606. const __m128i scales_0 = _mm_cvtepi8_epi16(scales16);
  4607. const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales16, scales16));
  4608. const __m128i scales[2] = { scales_0, scales_1 };
  4609. __m128i sumi_0 = _mm_setzero_si128();
  4610. __m128i sumi_1 = _mm_setzero_si128();
  4611. for (int j = 0; j < QK_K/128; ++j) {
  4612. // load Q8 quants int8*16*8 from block_q8_K.qs[QK_K]
  4613. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4614. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4615. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4616. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4617. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4618. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4619. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4620. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4621. // load 2bits*16*8 from block_q2_K.qs[QK_K/4]
  4622. __m128i q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16;
  4623. const __m128i q2_0 = _mm_and_si128(q2bits, m3);
  4624. const __m128i q2_2 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
  4625. const __m128i q2_4 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
  4626. const __m128i q2_6 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
  4627. q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16;
  4628. const __m128i q2_1 = _mm_and_si128(q2bits, m3);
  4629. const __m128i q2_3 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
  4630. const __m128i q2_5 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
  4631. const __m128i q2_7 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
  4632. // isuml = q8[l] * ((q2[l] >> shift) & 3) in 8bits*16*8 to 16bits*8*8
  4633. __m128i p0 = _mm_maddubs_epi16(q2_0, q8_0);
  4634. __m128i p1 = _mm_maddubs_epi16(q2_1, q8_1);
  4635. __m128i p2 = _mm_maddubs_epi16(q2_2, q8_2);
  4636. __m128i p3 = _mm_maddubs_epi16(q2_3, q8_3);
  4637. __m128i p4 = _mm_maddubs_epi16(q2_4, q8_4);
  4638. __m128i p5 = _mm_maddubs_epi16(q2_5, q8_5);
  4639. __m128i p6 = _mm_maddubs_epi16(q2_6, q8_6);
  4640. __m128i p7 = _mm_maddubs_epi16(q2_7, q8_7);
  4641. // isum += (x[i].scales[is++] & 0xF) * isuml in 16bits*8*8 to 32bits*4*8
  4642. __m128i shuffle = _mm_set1_epi16(0x0100);
  4643. p0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p0);
  4644. shuffle = _mm_add_epi16(shuffle, m2);
  4645. p1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p1);
  4646. shuffle = _mm_add_epi16(shuffle, m2);
  4647. p2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p2);
  4648. shuffle = _mm_add_epi16(shuffle, m2);
  4649. p3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p3);
  4650. shuffle = _mm_add_epi16(shuffle, m2);
  4651. p4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p4);
  4652. shuffle = _mm_add_epi16(shuffle, m2);
  4653. p5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p5);
  4654. shuffle = _mm_add_epi16(shuffle, m2);
  4655. p6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p6);
  4656. shuffle = _mm_add_epi16(shuffle, m2);
  4657. p7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p7);
  4658. p0 = _mm_add_epi32(p0, p1);
  4659. p2 = _mm_add_epi32(p2, p3);
  4660. p4 = _mm_add_epi32(p4, p5);
  4661. p6 = _mm_add_epi32(p6, p7);
  4662. // isum in 32bits*4*2
  4663. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p0, p2));
  4664. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p4, p6));
  4665. }
  4666. // sumf += dall * isum - dmin * summs in 32bits
  4667. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  4668. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dall), _mm256_cvtepi32_ps(sumi)), acc);
  4669. }
  4670. *s = hsum_float_8(acc);
  4671. #elif defined __riscv_v_intrinsic
  4672. float sumf = 0;
  4673. uint8_t temp_01[32] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4674. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
  4675. for (int i = 0; i < nb; ++i) {
  4676. const uint8_t * q2 = x[i].qs;
  4677. const int8_t * q8 = y[i].qs;
  4678. const uint8_t * sc = x[i].scales;
  4679. const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4680. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4681. size_t vl = 16;
  4682. vuint8m1_t scales = __riscv_vle8_v_u8m1(sc, vl);
  4683. vuint8m1_t aux = __riscv_vand_vx_u8m1(scales, 0x0F, vl);
  4684. vint16m1_t q8sums = __riscv_vle16_v_i16m1(y[i].bsums, vl);
  4685. vuint8mf2_t scales_2 = __riscv_vle8_v_u8mf2(sc, vl);
  4686. vuint8mf2_t mins8 = __riscv_vsrl_vx_u8mf2(scales_2, 0x4, vl);
  4687. vint16m1_t mins = __riscv_vreinterpret_v_u16m1_i16m1(__riscv_vzext_vf2_u16m1(mins8, vl));
  4688. vint32m2_t prod = __riscv_vwmul_vv_i32m2(q8sums, mins, vl);
  4689. vint32m1_t vsums = __riscv_vredsum_vs_i32m2_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl);
  4690. sumf += dmin * __riscv_vmv_x_s_i32m1_i32(vsums);
  4691. vl = 32;
  4692. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  4693. vuint8m1_t v_b = __riscv_vle8_v_u8m1(temp_01, vl);
  4694. uint8_t is=0;
  4695. int isum=0;
  4696. for (int j = 0; j < QK_K/128; ++j) {
  4697. // load Q2
  4698. vuint8m1_t q2_x = __riscv_vle8_v_u8m1(q2, vl);
  4699. vuint8m1_t q2_0 = __riscv_vand_vx_u8m1(q2_x, 0x03, vl);
  4700. vuint8m1_t q2_1 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x2, vl), 0x03 , vl);
  4701. vuint8m1_t q2_2 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x4, vl), 0x03 , vl);
  4702. vuint8m1_t q2_3 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x6, vl), 0x03 , vl);
  4703. // duplicate scale elements for product
  4704. vuint8m1_t sc0 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 0+is, vl), vl);
  4705. vuint8m1_t sc1 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 2+is, vl), vl);
  4706. vuint8m1_t sc2 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 4+is, vl), vl);
  4707. vuint8m1_t sc3 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 6+is, vl), vl);
  4708. vint16m2_t p0 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_0, sc0, vl));
  4709. vint16m2_t p1 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_1, sc1, vl));
  4710. vint16m2_t p2 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_2, sc2, vl));
  4711. vint16m2_t p3 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_3, sc3, vl));
  4712. // load Q8
  4713. vint8m1_t q8_0 = __riscv_vle8_v_i8m1(q8, vl);
  4714. vint8m1_t q8_1 = __riscv_vle8_v_i8m1(q8+32, vl);
  4715. vint8m1_t q8_2 = __riscv_vle8_v_i8m1(q8+64, vl);
  4716. vint8m1_t q8_3 = __riscv_vle8_v_i8m1(q8+96, vl);
  4717. vint32m4_t s0 = __riscv_vwmul_vv_i32m4(p0, __riscv_vwcvt_x_x_v_i16m2(q8_0, vl), vl);
  4718. vint32m4_t s1 = __riscv_vwmul_vv_i32m4(p1, __riscv_vwcvt_x_x_v_i16m2(q8_1, vl), vl);
  4719. vint32m4_t s2 = __riscv_vwmul_vv_i32m4(p2, __riscv_vwcvt_x_x_v_i16m2(q8_2, vl), vl);
  4720. vint32m4_t s3 = __riscv_vwmul_vv_i32m4(p3, __riscv_vwcvt_x_x_v_i16m2(q8_3, vl), vl);
  4721. vint32m1_t isum0 = __riscv_vredsum_vs_i32m4_i32m1(__riscv_vadd_vv_i32m4(s0, s1, vl), vzero, vl);
  4722. vint32m1_t isum1 = __riscv_vredsum_vs_i32m4_i32m1(__riscv_vadd_vv_i32m4(s2, s3, vl), isum0, vl);
  4723. isum += __riscv_vmv_x_s_i32m1_i32(isum1);
  4724. q2+=32; q8+=128; is=8;
  4725. }
  4726. sumf += dall * isum;
  4727. }
  4728. *s = sumf;
  4729. #else
  4730. float sumf = 0;
  4731. for (int i = 0; i < nb; ++i) {
  4732. const uint8_t * q2 = x[i].qs;
  4733. const int8_t * q8 = y[i].qs;
  4734. const uint8_t * sc = x[i].scales;
  4735. int summs = 0;
  4736. for (int j = 0; j < 16; ++j) {
  4737. summs += y[i].bsums[j] * (sc[j] >> 4);
  4738. }
  4739. const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4740. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4741. int isum = 0;
  4742. int is = 0;
  4743. int d;
  4744. for (int k = 0; k < QK_K/128; ++k) {
  4745. int shift = 0;
  4746. for (int j = 0; j < 4; ++j) {
  4747. d = sc[is++] & 0xF;
  4748. int isuml = 0;
  4749. for (int l = 0; l < 16; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
  4750. isum += d * isuml;
  4751. d = sc[is++] & 0xF;
  4752. isuml = 0;
  4753. for (int l = 16; l < 32; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
  4754. isum += d * isuml;
  4755. shift += 2;
  4756. q8 += 32;
  4757. }
  4758. q2 += 32;
  4759. }
  4760. sumf += dall * isum - dmin * summs;
  4761. }
  4762. *s = sumf;
  4763. #endif
  4764. }
  4765. #else
  4766. void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  4767. assert(nrc == 1);
  4768. UNUSED(nrc);
  4769. UNUSED(bx);
  4770. UNUSED(by);
  4771. UNUSED(bs);
  4772. const block_q2_K * restrict x = vx;
  4773. const block_q8_K * restrict y = vy;
  4774. const int nb = n / QK_K;
  4775. #ifdef __ARM_NEON
  4776. const uint8x16_t m3 = vdupq_n_u8(0x3);
  4777. const int32x4_t vzero = vdupq_n_s32(0);
  4778. ggml_int8x16x4_t q2bytes;
  4779. uint32_t aux32[2];
  4780. const uint8_t * scales = (const uint8_t *)aux32;
  4781. float sum = 0;
  4782. for (int i = 0; i < nb; ++i) {
  4783. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4784. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4785. const uint8_t * restrict q2 = x[i].qs;
  4786. const int8_t * restrict q8 = y[i].qs;
  4787. const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
  4788. aux32[0] = sc[0] & 0x0f0f0f0f;
  4789. aux32[1] = (sc[0] >> 4) & 0x0f0f0f0f;
  4790. sum += dmin * (scales[4] * y[i].bsums[0] + scales[5] * y[i].bsums[1] + scales[6] * y[i].bsums[2] + scales[7] * y[i].bsums[3]);
  4791. int isum1 = 0, isum2 = 0;
  4792. const uint8x16_t q2bits = vld1q_u8(q2);
  4793. const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8);
  4794. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits, m3));
  4795. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 2), m3));
  4796. q2bytes.val[2] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 4), m3));
  4797. q2bytes.val[3] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 6), m3));
  4798. isum1 += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * scales[0];
  4799. isum2 += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * scales[1];
  4800. isum1 += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[2], q8bytes.val[2])) * scales[2];
  4801. isum2 += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[3], q8bytes.val[3])) * scales[3];
  4802. sum += d * (isum1 + isum2);
  4803. }
  4804. *s = sum;
  4805. #elif defined __AVX2__
  4806. const __m256i m3 = _mm256_set1_epi8(3);
  4807. __m256 acc = _mm256_setzero_ps();
  4808. uint32_t ud, um;
  4809. const uint8_t * restrict db = (const uint8_t *)&ud;
  4810. const uint8_t * restrict mb = (const uint8_t *)&um;
  4811. float summs = 0;
  4812. // TODO: optimize this
  4813. for (int i = 0; i < nb; ++i) {
  4814. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4815. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4816. const uint8_t * restrict q2 = x[i].qs;
  4817. const int8_t * restrict q8 = y[i].qs;
  4818. const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
  4819. ud = (sc[0] >> 0) & 0x0f0f0f0f;
  4820. um = (sc[0] >> 4) & 0x0f0f0f0f;
  4821. int32_t smin = mb[0] * y[i].bsums[0] + mb[1] * y[i].bsums[1] + mb[2] * y[i].bsums[2] + mb[3] * y[i].bsums[3];
  4822. summs += dmin * smin;
  4823. const __m128i q2bits = _mm_loadu_si128((const __m128i*)q2);
  4824. const __m256i q2_0 = _mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q2bits, 2), q2bits), m3);
  4825. const __m256i q2_1 = _mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q2bits, 6), _mm_srli_epi16(q2bits, 4)), m3);
  4826. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  4827. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  4828. const __m256i p0 = _mm256_maddubs_epi16(q2_0, q8_0);
  4829. const __m256i p1 = _mm256_maddubs_epi16(q2_1, q8_1);
  4830. const __m256i p_0 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p0, 0));
  4831. const __m256i p_1 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p0, 1));
  4832. const __m256i p_2 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p1, 0));
  4833. const __m256i p_3 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p1, 1));
  4834. acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[0]), _mm256_cvtepi32_ps(p_0), acc);
  4835. acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[1]), _mm256_cvtepi32_ps(p_1), acc);
  4836. acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[2]), _mm256_cvtepi32_ps(p_2), acc);
  4837. acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[3]), _mm256_cvtepi32_ps(p_3), acc);
  4838. }
  4839. *s = hsum_float_8(acc) + summs;
  4840. #elif defined __AVX__
  4841. const __m128i m3 = _mm_set1_epi8(3);
  4842. __m256 acc = _mm256_setzero_ps();
  4843. uint32_t ud, um;
  4844. const uint8_t * restrict db = (const uint8_t *)&ud;
  4845. const uint8_t * restrict mb = (const uint8_t *)&um;
  4846. float summs = 0;
  4847. // TODO: optimize this
  4848. for (int i = 0; i < nb; ++i) {
  4849. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4850. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4851. const uint8_t * restrict q2 = x[i].qs;
  4852. const int8_t * restrict q8 = y[i].qs;
  4853. const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
  4854. ud = (sc[0] >> 0) & 0x0f0f0f0f;
  4855. um = (sc[0] >> 4) & 0x0f0f0f0f;
  4856. int32_t smin = mb[0] * y[i].bsums[0] + mb[1] * y[i].bsums[1] + mb[2] * y[i].bsums[2] + mb[3] * y[i].bsums[3];
  4857. summs += dmin * smin;
  4858. const __m128i q2bits = _mm_loadu_si128((const __m128i*)q2);
  4859. const __m128i q2_0 = _mm_and_si128(q2bits, m3);
  4860. const __m128i q2_1 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
  4861. const __m128i q2_2 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
  4862. const __m128i q2_3 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
  4863. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  4864. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  4865. const __m128i p0 = _mm_maddubs_epi16(q2_0, _mm256_extractf128_si256(q8_0, 0));
  4866. const __m128i p1 = _mm_maddubs_epi16(q2_1, _mm256_extractf128_si256(q8_0, 1));
  4867. const __m128i p2 = _mm_maddubs_epi16(q2_2, _mm256_extractf128_si256(q8_1, 0));
  4868. const __m128i p3 = _mm_maddubs_epi16(q2_3, _mm256_extractf128_si256(q8_1, 1));
  4869. const __m256i p_0 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p0, p0)), _mm_cvtepi16_epi32(p0));
  4870. const __m256i p_1 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p1, p1)), _mm_cvtepi16_epi32(p1));
  4871. const __m256i p_2 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p2, p2)), _mm_cvtepi16_epi32(p2));
  4872. const __m256i p_3 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p3, p3)), _mm_cvtepi16_epi32(p3));
  4873. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[0]), _mm256_cvtepi32_ps(p_0)), acc);
  4874. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[1]), _mm256_cvtepi32_ps(p_1)), acc);
  4875. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[2]), _mm256_cvtepi32_ps(p_2)), acc);
  4876. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[3]), _mm256_cvtepi32_ps(p_3)), acc);
  4877. }
  4878. *s = hsum_float_8(acc) + summs;
  4879. #elif defined __riscv_v_intrinsic
  4880. uint32_t aux32[2];
  4881. const uint8_t * scales = (const uint8_t *)aux32;
  4882. float sumf = 0;
  4883. for (int i = 0; i < nb; ++i) {
  4884. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4885. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4886. const uint8_t * restrict q2 = x[i].qs;
  4887. const int8_t * restrict q8 = y[i].qs;
  4888. const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
  4889. aux32[0] = sc[0] & 0x0f0f0f0f;
  4890. aux32[1] = (sc[0] >> 4) & 0x0f0f0f0f;
  4891. sumf += dmin * (scales[4] * y[i].bsums[0] + scales[5] * y[i].bsums[1] + scales[6] * y[i].bsums[2] + scales[7] * y[i].bsums[3]);
  4892. int isum1 = 0;
  4893. int isum2 = 0;
  4894. size_t vl = 16;
  4895. vint16m1_t vzero = __riscv_vmv_v_x_i16m1(0, 1);
  4896. // load Q2
  4897. vuint8mf2_t q2_x = __riscv_vle8_v_u8mf2(q2, vl);
  4898. vint8mf2_t q2_0 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(q2_x, 0x03, vl));
  4899. vint8mf2_t q2_1 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q2_x, 0x2, vl), 0x03 , vl));
  4900. vint8mf2_t q2_2 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q2_x, 0x4, vl), 0x03 , vl));
  4901. vint8mf2_t q2_3 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q2_x, 0x6, vl), 0x03 , vl));
  4902. // load Q8, and take product with Q2
  4903. vint16m1_t p0 = __riscv_vwmul_vv_i16m1(q2_0, __riscv_vle8_v_i8mf2(q8, vl), vl);
  4904. vint16m1_t p1 = __riscv_vwmul_vv_i16m1(q2_1, __riscv_vle8_v_i8mf2(q8+16, vl), vl);
  4905. vint16m1_t p2 = __riscv_vwmul_vv_i16m1(q2_2, __riscv_vle8_v_i8mf2(q8+32, vl), vl);
  4906. vint16m1_t p3 = __riscv_vwmul_vv_i16m1(q2_3, __riscv_vle8_v_i8mf2(q8+48, vl), vl);
  4907. vint16m1_t vs_0 = __riscv_vredsum_vs_i16m1_i16m1(p0, vzero, vl);
  4908. vint16m1_t vs_1 = __riscv_vredsum_vs_i16m1_i16m1(p1, vzero, vl);
  4909. vint16m1_t vs_2 = __riscv_vredsum_vs_i16m1_i16m1(p2, vzero, vl);
  4910. vint16m1_t vs_3 = __riscv_vredsum_vs_i16m1_i16m1(p3, vzero, vl);
  4911. isum1 += __riscv_vmv_x_s_i16m1_i16(vs_0) * scales[0];
  4912. isum2 += __riscv_vmv_x_s_i16m1_i16(vs_1) * scales[1];
  4913. isum1 += __riscv_vmv_x_s_i16m1_i16(vs_2) * scales[2];
  4914. isum2 += __riscv_vmv_x_s_i16m1_i16(vs_3) * scales[3];
  4915. sumf += d * (isum1 + isum2);
  4916. }
  4917. *s = sumf;
  4918. #else
  4919. float sumf = 0;
  4920. int isum[4];
  4921. for (int i = 0; i < nb; ++i) {
  4922. const uint8_t * q2 = x[i].qs;
  4923. const int8_t * q8 = y[i].qs;
  4924. const uint8_t * sc = x[i].scales;
  4925. int summs = 0;
  4926. for (int j = 0; j < QK_K/16; ++j) {
  4927. summs += y[i].bsums[j] * (sc[j] >> 4);
  4928. }
  4929. const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4930. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4931. isum[0] = isum[1] = isum[2] = isum[3] = 0;
  4932. for (int l = 0; l < 16; ++l) {
  4933. isum[0] += q8[l+ 0] * ((q2[l] >> 0) & 3);
  4934. isum[1] += q8[l+16] * ((q2[l] >> 2) & 3);
  4935. isum[2] += q8[l+32] * ((q2[l] >> 4) & 3);
  4936. isum[3] += q8[l+48] * ((q2[l] >> 6) & 3);
  4937. }
  4938. for (int l = 0; l < 4; ++l) {
  4939. isum[l] *= (sc[l] & 0xF);
  4940. }
  4941. sumf += dall * (isum[0] + isum[1] + isum[2] + isum[3]) - dmin * summs;
  4942. }
  4943. *s = sumf;
  4944. #endif
  4945. }
  4946. #endif
  4947. #if QK_K == 256
  4948. void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  4949. assert(n % QK_K == 0);
  4950. assert(nrc == 1);
  4951. UNUSED(nrc);
  4952. UNUSED(bx);
  4953. UNUSED(by);
  4954. UNUSED(bs);
  4955. const uint32_t kmask1 = 0x03030303;
  4956. const uint32_t kmask2 = 0x0f0f0f0f;
  4957. const block_q3_K * restrict x = vx;
  4958. const block_q8_K * restrict y = vy;
  4959. const int nb = n / QK_K;
  4960. #ifdef __ARM_NEON
  4961. uint32_t aux[3];
  4962. uint32_t utmp[4];
  4963. const uint8x16_t m3b = vdupq_n_u8(0x3);
  4964. const int32x4_t vzero = vdupq_n_s32(0);
  4965. const uint8x16_t m0 = vdupq_n_u8(1);
  4966. const uint8x16_t m1 = vshlq_n_u8(m0, 1);
  4967. const uint8x16_t m2 = vshlq_n_u8(m0, 2);
  4968. const uint8x16_t m3 = vshlq_n_u8(m0, 3);
  4969. const int8_t m32 = 32;
  4970. ggml_int8x16x4_t q3bytes;
  4971. float sum = 0;
  4972. for (int i = 0; i < nb; ++i) {
  4973. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4974. const uint8_t * restrict q3 = x[i].qs;
  4975. const uint8_t * restrict qh = x[i].hmask;
  4976. const int8_t * restrict q8 = y[i].qs;
  4977. ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh);
  4978. ggml_uint8x16x4_t q3h;
  4979. int32_t isum = 0;
  4980. // Set up scales
  4981. memcpy(aux, x[i].scales, 12);
  4982. utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
  4983. utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
  4984. utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
  4985. utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
  4986. int8_t * scale = (int8_t *)utmp;
  4987. for (int j = 0; j < 16; ++j) scale[j] -= m32;
  4988. for (int j = 0; j < QK_K/128; ++j) {
  4989. const ggml_uint8x16x2_t q3bits = ggml_vld1q_u8_x2(q3); q3 += 32;
  4990. const ggml_int8x16x4_t q8bytes_1 = ggml_vld1q_s8_x4(q8); q8 += 64;
  4991. const ggml_int8x16x4_t q8bytes_2 = ggml_vld1q_s8_x4(q8); q8 += 64;
  4992. q3h.val[0] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[0]), 2);
  4993. q3h.val[1] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[1]), 2);
  4994. q3h.val[2] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[0]), 1);
  4995. q3h.val[3] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[1]), 1);
  4996. q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[0], m3b)), vreinterpretq_s8_u8(q3h.val[0]));
  4997. q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[1], m3b)), vreinterpretq_s8_u8(q3h.val[1]));
  4998. q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 2), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
  4999. q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 2), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
  5000. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[0], q8bytes_1.val[0])) * scale[0];
  5001. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[1], q8bytes_1.val[1])) * scale[1];
  5002. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[2], q8bytes_1.val[2])) * scale[2];
  5003. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[3], q8bytes_1.val[3])) * scale[3];
  5004. scale += 4;
  5005. q3h.val[0] = vbicq_u8(m2, qhbits.val[0]);
  5006. q3h.val[1] = vbicq_u8(m2, qhbits.val[1]);
  5007. q3h.val[2] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[0]), 1);
  5008. q3h.val[3] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[1]), 1);
  5009. q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 4), m3b)), vreinterpretq_s8_u8(q3h.val[0]));
  5010. q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 4), m3b)), vreinterpretq_s8_u8(q3h.val[1]));
  5011. q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 6), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
  5012. q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 6), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
  5013. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[0], q8bytes_2.val[0])) * scale[0];
  5014. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[1], q8bytes_2.val[1])) * scale[1];
  5015. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[2], q8bytes_2.val[2])) * scale[2];
  5016. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[3], q8bytes_2.val[3])) * scale[3];
  5017. scale += 4;
  5018. if (j == 0) {
  5019. qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 4);
  5020. qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 4);
  5021. }
  5022. }
  5023. sum += d * isum;
  5024. }
  5025. *s = sum;
  5026. #elif defined __AVX2__
  5027. const __m256i m3 = _mm256_set1_epi8(3);
  5028. const __m256i mone = _mm256_set1_epi8(1);
  5029. const __m128i m32 = _mm_set1_epi8(32);
  5030. __m256 acc = _mm256_setzero_ps();
  5031. uint32_t aux[3];
  5032. for (int i = 0; i < nb; ++i) {
  5033. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5034. const uint8_t * restrict q3 = x[i].qs;
  5035. const int8_t * restrict q8 = y[i].qs;
  5036. // Set up scales
  5037. memcpy(aux, x[i].scales, 12);
  5038. __m128i scales128 = _mm_set_epi32(
  5039. ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
  5040. ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
  5041. (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
  5042. (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
  5043. scales128 = _mm_sub_epi8(scales128, m32);
  5044. const __m256i all_scales = _mm256_cvtepi8_epi16(scales128);
  5045. const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
  5046. const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
  5047. const __m256i scales[2] = {MM256_SET_M128I(l_scales, l_scales), MM256_SET_M128I(h_scales, h_scales)};
  5048. // high bit
  5049. const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].hmask);
  5050. // integer accumulator
  5051. __m256i sumi = _mm256_setzero_si256();
  5052. int bit = 0;
  5053. int is = 0;
  5054. for (int j = 0; j < QK_K/128; ++j) {
  5055. // load low 2 bits
  5056. const __m256i q3bits = _mm256_loadu_si256((const __m256i*)q3); q3 += 32;
  5057. // prepare low and high bits
  5058. const __m256i q3l_0 = _mm256_and_si256(q3bits, m3);
  5059. const __m256i q3h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  5060. ++bit;
  5061. const __m256i q3l_1 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 2), m3);
  5062. const __m256i q3h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  5063. ++bit;
  5064. const __m256i q3l_2 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 4), m3);
  5065. const __m256i q3h_2 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  5066. ++bit;
  5067. const __m256i q3l_3 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 6), m3);
  5068. const __m256i q3h_3 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  5069. ++bit;
  5070. // load Q8 quants
  5071. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5072. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5073. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5074. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5075. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
  5076. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  5077. // and 2 if the high bit was set)
  5078. __m256i q8s_0 = _mm256_maddubs_epi16(q3h_0, q8_0);
  5079. __m256i q8s_1 = _mm256_maddubs_epi16(q3h_1, q8_1);
  5080. __m256i q8s_2 = _mm256_maddubs_epi16(q3h_2, q8_2);
  5081. __m256i q8s_3 = _mm256_maddubs_epi16(q3h_3, q8_3);
  5082. __m256i p16_0 = _mm256_maddubs_epi16(q3l_0, q8_0);
  5083. __m256i p16_1 = _mm256_maddubs_epi16(q3l_1, q8_1);
  5084. __m256i p16_2 = _mm256_maddubs_epi16(q3l_2, q8_2);
  5085. __m256i p16_3 = _mm256_maddubs_epi16(q3l_3, q8_3);
  5086. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  5087. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  5088. p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
  5089. p16_3 = _mm256_sub_epi16(p16_3, q8s_3);
  5090. // multiply with scales
  5091. p16_0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 0)), p16_0);
  5092. p16_1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 1)), p16_1);
  5093. p16_2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 2)), p16_2);
  5094. p16_3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 3)), p16_3);
  5095. // accumulate
  5096. p16_0 = _mm256_add_epi32(p16_0, p16_1);
  5097. p16_2 = _mm256_add_epi32(p16_2, p16_3);
  5098. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_2));
  5099. }
  5100. // multiply with block scale and accumulate
  5101. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  5102. }
  5103. *s = hsum_float_8(acc);
  5104. #elif defined __AVX__
  5105. const __m128i m3 = _mm_set1_epi8(3);
  5106. const __m128i mone = _mm_set1_epi8(1);
  5107. const __m128i m32 = _mm_set1_epi8(32);
  5108. const __m128i m2 = _mm_set1_epi8(2);
  5109. __m256 acc = _mm256_setzero_ps();
  5110. const uint32_t *aux;
  5111. for (int i = 0; i < nb; ++i) {
  5112. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5113. const uint8_t * restrict q3 = x[i].qs;
  5114. const int8_t * restrict q8 = y[i].qs;
  5115. // Set up scales
  5116. aux = (const uint32_t *)x[i].scales;
  5117. __m128i scales128 = _mm_set_epi32(
  5118. ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
  5119. ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
  5120. (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
  5121. (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
  5122. scales128 = _mm_sub_epi8(scales128, m32);
  5123. const __m128i scales_0 = _mm_cvtepi8_epi16(scales128);
  5124. const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales128, scales128));
  5125. const __m128i scales[2] = { scales_0, scales_1 };
  5126. // high bit *128*2 from block_q3_K.hmask[QK_K/8]
  5127. const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].hmask[0]);
  5128. const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].hmask[16]);
  5129. // integer accumulator
  5130. __m128i sumi_0 = _mm_setzero_si128();
  5131. __m128i sumi_1 = _mm_setzero_si128();
  5132. for (int j = 0; j < QK_K/128; ++j) {
  5133. // load low 2 bits *64*2 from block_q3_K.qs[QK_K/4]
  5134. const __m128i q3bits_0 = _mm_loadu_si128((const __m128i*)q3); q3 += 16;
  5135. const __m128i q3bits_1 = _mm_loadu_si128((const __m128i*)q3); q3 += 16;
  5136. // prepare low and high bits
  5137. const int bit = j << 2;
  5138. const __m128i q3l_0 = _mm_and_si128(q3bits_0, m3);
  5139. const __m128i q3l_1 = _mm_and_si128(q3bits_1, m3);
  5140. const __m128i q3h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit)), bit), 2);
  5141. const __m128i q3h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit)), bit), 2);
  5142. const __m128i q3l_2 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 2), m3);
  5143. const __m128i q3l_3 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 2), m3);
  5144. const __m128i q3h_2 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+1)), bit+1), 2);
  5145. const __m128i q3h_3 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+1)), bit+1), 2);
  5146. const __m128i q3l_4 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 4), m3);
  5147. const __m128i q3l_5 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 4), m3);
  5148. const __m128i q3h_4 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+2)), bit+2), 2);
  5149. const __m128i q3h_5 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+2)), bit+2), 2);
  5150. const __m128i q3l_6 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 6), m3);
  5151. const __m128i q3l_7 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 6), m3);
  5152. const __m128i q3h_6 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+3)), bit+3), 2);
  5153. const __m128i q3h_7 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+3)), bit+3), 2);
  5154. // load Q8 quants from block_q8_K.qs[QK_K]
  5155. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5156. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5157. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5158. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5159. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5160. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5161. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5162. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5163. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
  5164. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  5165. // and 2 if the high bit was set)
  5166. __m128i q8s_0 = _mm_maddubs_epi16(q3h_0, q8_0);
  5167. __m128i q8s_1 = _mm_maddubs_epi16(q3h_1, q8_1);
  5168. __m128i q8s_2 = _mm_maddubs_epi16(q3h_2, q8_2);
  5169. __m128i q8s_3 = _mm_maddubs_epi16(q3h_3, q8_3);
  5170. __m128i q8s_4 = _mm_maddubs_epi16(q3h_4, q8_4);
  5171. __m128i q8s_5 = _mm_maddubs_epi16(q3h_5, q8_5);
  5172. __m128i q8s_6 = _mm_maddubs_epi16(q3h_6, q8_6);
  5173. __m128i q8s_7 = _mm_maddubs_epi16(q3h_7, q8_7);
  5174. __m128i p16_0 = _mm_maddubs_epi16(q3l_0, q8_0);
  5175. __m128i p16_1 = _mm_maddubs_epi16(q3l_1, q8_1);
  5176. __m128i p16_2 = _mm_maddubs_epi16(q3l_2, q8_2);
  5177. __m128i p16_3 = _mm_maddubs_epi16(q3l_3, q8_3);
  5178. __m128i p16_4 = _mm_maddubs_epi16(q3l_4, q8_4);
  5179. __m128i p16_5 = _mm_maddubs_epi16(q3l_5, q8_5);
  5180. __m128i p16_6 = _mm_maddubs_epi16(q3l_6, q8_6);
  5181. __m128i p16_7 = _mm_maddubs_epi16(q3l_7, q8_7);
  5182. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  5183. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  5184. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  5185. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  5186. p16_4 = _mm_sub_epi16(p16_4, q8s_4);
  5187. p16_5 = _mm_sub_epi16(p16_5, q8s_5);
  5188. p16_6 = _mm_sub_epi16(p16_6, q8s_6);
  5189. p16_7 = _mm_sub_epi16(p16_7, q8s_7);
  5190. // multiply with scales
  5191. __m128i shuffle = _mm_set1_epi16(0x0100);
  5192. p16_0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_0);
  5193. shuffle = _mm_add_epi16(shuffle, m2);
  5194. p16_1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_1);
  5195. shuffle = _mm_add_epi16(shuffle, m2);
  5196. p16_2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_2);
  5197. shuffle = _mm_add_epi16(shuffle, m2);
  5198. p16_3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_3);
  5199. shuffle = _mm_add_epi16(shuffle, m2);
  5200. p16_4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_4);
  5201. shuffle = _mm_add_epi16(shuffle, m2);
  5202. p16_5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_5);
  5203. shuffle = _mm_add_epi16(shuffle, m2);
  5204. p16_6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_6);
  5205. shuffle = _mm_add_epi16(shuffle, m2);
  5206. p16_7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_7);
  5207. // accumulate
  5208. p16_0 = _mm_add_epi32(p16_0, p16_1);
  5209. p16_2 = _mm_add_epi32(p16_2, p16_3);
  5210. p16_4 = _mm_add_epi32(p16_4, p16_5);
  5211. p16_6 = _mm_add_epi32(p16_6, p16_7);
  5212. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  5213. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_4, p16_6));
  5214. }
  5215. // multiply with block scale and accumulate
  5216. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  5217. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc);
  5218. }
  5219. *s = hsum_float_8(acc);
  5220. #elif defined __riscv_v_intrinsic
  5221. uint32_t aux[3];
  5222. uint32_t utmp[4];
  5223. float sumf = 0;
  5224. for (int i = 0; i < nb; ++i) {
  5225. const uint8_t * restrict q3 = x[i].qs;
  5226. const uint8_t * restrict qh = x[i].hmask;
  5227. const int8_t * restrict q8 = y[i].qs;
  5228. memcpy(aux, x[i].scales, 12);
  5229. utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
  5230. utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
  5231. utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
  5232. utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
  5233. int8_t * scale = (int8_t *)utmp;
  5234. for (int j = 0; j < 16; ++j) scale[j] -= 32;
  5235. size_t vl = 32;
  5236. uint8_t m = 1;
  5237. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  5238. vuint8m1_t vqh = __riscv_vle8_v_u8m1(qh, vl);
  5239. int sum_t = 0;
  5240. for (int j = 0; j < QK_K; j += 128) {
  5241. vl = 32;
  5242. // load Q3
  5243. vuint8m1_t q3_x = __riscv_vle8_v_u8m1(q3, vl);
  5244. vint8m1_t q3_0 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q3_x, 0x03, vl));
  5245. vint8m1_t q3_1 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x2, vl), 0x03 , vl));
  5246. vint8m1_t q3_2 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x4, vl), 0x03 , vl));
  5247. vint8m1_t q3_3 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x6, vl), 0x03 , vl));
  5248. // compute mask for subtraction
  5249. vuint8m1_t qh_m0 = __riscv_vand_vx_u8m1(vqh, m, vl);
  5250. vbool8_t vmask_0 = __riscv_vmseq_vx_u8m1_b8(qh_m0, 0, vl);
  5251. vint8m1_t q3_m0 = __riscv_vsub_vx_i8m1_m(vmask_0, q3_0, 0x4, vl);
  5252. m <<= 1;
  5253. vuint8m1_t qh_m1 = __riscv_vand_vx_u8m1(vqh, m, vl);
  5254. vbool8_t vmask_1 = __riscv_vmseq_vx_u8m1_b8(qh_m1, 0, vl);
  5255. vint8m1_t q3_m1 = __riscv_vsub_vx_i8m1_m(vmask_1, q3_1, 0x4, vl);
  5256. m <<= 1;
  5257. vuint8m1_t qh_m2 = __riscv_vand_vx_u8m1(vqh, m, vl);
  5258. vbool8_t vmask_2 = __riscv_vmseq_vx_u8m1_b8(qh_m2, 0, vl);
  5259. vint8m1_t q3_m2 = __riscv_vsub_vx_i8m1_m(vmask_2, q3_2, 0x4, vl);
  5260. m <<= 1;
  5261. vuint8m1_t qh_m3 = __riscv_vand_vx_u8m1(vqh, m, vl);
  5262. vbool8_t vmask_3 = __riscv_vmseq_vx_u8m1_b8(qh_m3, 0, vl);
  5263. vint8m1_t q3_m3 = __riscv_vsub_vx_i8m1_m(vmask_3, q3_3, 0x4, vl);
  5264. m <<= 1;
  5265. // load Q8 and take product with Q3
  5266. vint16m2_t a0 = __riscv_vwmul_vv_i16m2(q3_m0, __riscv_vle8_v_i8m1(q8, vl), vl);
  5267. vint16m2_t a1 = __riscv_vwmul_vv_i16m2(q3_m1, __riscv_vle8_v_i8m1(q8+32, vl), vl);
  5268. vint16m2_t a2 = __riscv_vwmul_vv_i16m2(q3_m2, __riscv_vle8_v_i8m1(q8+64, vl), vl);
  5269. vint16m2_t a3 = __riscv_vwmul_vv_i16m2(q3_m3, __riscv_vle8_v_i8m1(q8+96, vl), vl);
  5270. vl = 16;
  5271. // retrieve lane to multiply with scale
  5272. vint32m2_t aux0_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a0, 0), (scale[0]), vl);
  5273. vint32m2_t aux0_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a0, 1), (scale[1]), vl);
  5274. vint32m2_t aux1_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a1, 0), (scale[2]), vl);
  5275. vint32m2_t aux1_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a1, 1), (scale[3]), vl);
  5276. vint32m2_t aux2_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a2, 0), (scale[4]), vl);
  5277. vint32m2_t aux2_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a2, 1), (scale[5]), vl);
  5278. vint32m2_t aux3_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a3, 0), (scale[6]), vl);
  5279. vint32m2_t aux3_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a3, 1), (scale[7]), vl);
  5280. vint32m1_t isum0 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux0_0, aux0_1, vl), vzero, vl);
  5281. vint32m1_t isum1 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux1_0, aux1_1, vl), isum0, vl);
  5282. vint32m1_t isum2 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux2_0, aux2_1, vl), isum1, vl);
  5283. vint32m1_t isum3 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux3_0, aux3_1, vl), isum2, vl);
  5284. sum_t += __riscv_vmv_x_s_i32m1_i32(isum3);
  5285. q3 += 32; q8 += 128; scale += 8;
  5286. }
  5287. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  5288. sumf += d*sum_t;
  5289. }
  5290. *s = sumf;
  5291. #else
  5292. // scalar version
  5293. // This function is written like this so the compiler can manage to vectorize most of it
  5294. // Using -Ofast, GCC and clang manage to produce code that is within a factor of 2 or so from the
  5295. // manually vectorized version above. Every other version I tried would run at least 4 times slower.
  5296. // The ideal situation would be if we could just write the code once, and the compiler would
  5297. // automatically produce the best possible set of machine instructions, instead of us having to manually
  5298. // write vectorized versions for AVX, ARM_NEON, etc.
  5299. int8_t aux8[QK_K];
  5300. int16_t aux16[8];
  5301. float sums [8];
  5302. int32_t aux32[8];
  5303. memset(sums, 0, 8*sizeof(float));
  5304. uint32_t auxs[4];
  5305. const int8_t * scales = (const int8_t*)auxs;
  5306. float sumf = 0;
  5307. for (int i = 0; i < nb; ++i) {
  5308. const uint8_t * restrict q3 = x[i].qs;
  5309. const uint8_t * restrict hm = x[i].hmask;
  5310. const int8_t * restrict q8 = y[i].qs;
  5311. memset(aux32, 0, 8*sizeof(int32_t));
  5312. int8_t * restrict a = aux8;
  5313. uint8_t m = 1;
  5314. for (int j = 0; j < QK_K; j += 128) {
  5315. for (int l = 0; l < 32; ++l) a[l] = q3[l] & 3;
  5316. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  5317. a += 32; m <<= 1;
  5318. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 2) & 3;
  5319. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  5320. a += 32; m <<= 1;
  5321. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 4) & 3;
  5322. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  5323. a += 32; m <<= 1;
  5324. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 6) & 3;
  5325. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  5326. a += 32; m <<= 1;
  5327. q3 += 32;
  5328. }
  5329. a = aux8;
  5330. memcpy(auxs, x[i].scales, 12);
  5331. uint32_t tmp = auxs[2];
  5332. auxs[2] = ((auxs[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
  5333. auxs[3] = ((auxs[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
  5334. auxs[0] = (auxs[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
  5335. auxs[1] = (auxs[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
  5336. for (int j = 0; j < QK_K/16; ++j) {
  5337. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5338. for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
  5339. q8 += 8; a += 8;
  5340. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5341. for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
  5342. q8 += 8; a += 8;
  5343. }
  5344. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  5345. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  5346. }
  5347. for (int l = 0; l < 8; ++l) sumf += sums[l];
  5348. *s = sumf;
  5349. #endif
  5350. }
  5351. #else
  5352. void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  5353. assert(n % QK_K == 0);
  5354. assert(nrc == 1);
  5355. UNUSED(nrc);
  5356. UNUSED(bx);
  5357. UNUSED(by);
  5358. UNUSED(bs);
  5359. const block_q3_K * restrict x = vx;
  5360. const block_q8_K * restrict y = vy;
  5361. const int nb = n / QK_K;
  5362. #ifdef __ARM_NEON
  5363. const int32x4_t vzero = vdupq_n_s32(0);
  5364. const uint8x16_t m3b = vdupq_n_u8(0x3);
  5365. const uint8x16_t mh = vdupq_n_u8(4);
  5366. ggml_int8x16x4_t q3bytes;
  5367. uint16_t aux16[2];
  5368. int8_t * scales = (int8_t *)aux16;
  5369. float sum = 0;
  5370. for (int i = 0; i < nb; ++i) {
  5371. ggml_uint8x16x4_t q3h;
  5372. const uint8x8_t hbits = vld1_u8(x[i].hmask);
  5373. const uint8x16_t q3bits = vld1q_u8(x[i].qs);
  5374. const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(y[i].qs);
  5375. const uint16_t a = *(const uint16_t *)x[i].scales;
  5376. aux16[0] = a & 0x0f0f;
  5377. aux16[1] = (a >> 4) & 0x0f0f;
  5378. for (int j = 0; j < 4; ++j) scales[j] -= 8;
  5379. int32_t isum = -4*(scales[0] * y[i].bsums[0] + scales[2] * y[i].bsums[1] + scales[1] * y[i].bsums[2] + scales[3] * y[i].bsums[3]);
  5380. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5381. const uint8x16_t htmp = vcombine_u8(hbits, vshr_n_u8(hbits, 1));
  5382. q3h.val[0] = vandq_u8(mh, vshlq_n_u8(htmp, 2));
  5383. q3h.val[1] = vandq_u8(mh, htmp);
  5384. q3h.val[2] = vandq_u8(mh, vshrq_n_u8(htmp, 2));
  5385. q3h.val[3] = vandq_u8(mh, vshrq_n_u8(htmp, 4));
  5386. q3bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q3bits, m3b), q3h.val[0]));
  5387. q3bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(vshrq_n_u8(q3bits, 2), m3b), q3h.val[1]));
  5388. q3bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(vshrq_n_u8(q3bits, 4), m3b), q3h.val[2]));
  5389. q3bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q3bits, 6), q3h.val[3]));
  5390. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[0], q8bytes.val[0])) * scales[0];
  5391. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[1], q8bytes.val[1])) * scales[2];
  5392. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[2], q8bytes.val[2])) * scales[1];
  5393. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[3], q8bytes.val[3])) * scales[3];
  5394. sum += d * isum;
  5395. }
  5396. *s = sum;
  5397. #elif defined __AVX2__
  5398. const __m256i m3 = _mm256_set1_epi8(3);
  5399. const __m256i m1 = _mm256_set1_epi8(1);
  5400. __m256 acc = _mm256_setzero_ps();
  5401. uint64_t aux64;
  5402. uint16_t aux16[2];
  5403. const int8_t * aux8 = (const int8_t *)aux16;
  5404. for (int i = 0; i < nb; ++i) {
  5405. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5406. const uint8_t * restrict q3 = x[i].qs;
  5407. const int8_t * restrict q8 = y[i].qs;
  5408. const uint16_t a = *(const uint16_t *)x[i].scales;
  5409. aux16[0] = a & 0x0f0f;
  5410. aux16[1] = (a >> 4) & 0x0f0f;
  5411. const __m256i scale_0 = MM256_SET_M128I(_mm_set1_epi16(aux8[2] - 8), _mm_set1_epi16(aux8[0] - 8));
  5412. const __m256i scale_1 = MM256_SET_M128I(_mm_set1_epi16(aux8[3] - 8), _mm_set1_epi16(aux8[1] - 8));
  5413. memcpy(&aux64, x[i].hmask, 8);
  5414. const __m128i haux = _mm_set_epi64x(aux64 >> 1, aux64 >> 0);
  5415. __m256i q3h_0 = MM256_SET_M128I(_mm_srli_epi16(haux, 2), haux);
  5416. __m256i q3h_1 = _mm256_srli_epi16(q3h_0, 4);
  5417. q3h_0 = _mm256_slli_epi16(_mm256_andnot_si256(q3h_0, m1), 2);
  5418. q3h_1 = _mm256_slli_epi16(_mm256_andnot_si256(q3h_1, m1), 2);
  5419. // load low 2 bits
  5420. const __m128i q3bits = _mm_loadu_si128((const __m128i*)q3);
  5421. // prepare low and high bits
  5422. const __m256i q3aux = MM256_SET_M128I(_mm_srli_epi16(q3bits, 2), q3bits);
  5423. const __m256i q3l_0 = _mm256_and_si256(q3aux, m3);
  5424. const __m256i q3l_1 = _mm256_and_si256(_mm256_srli_epi16(q3aux, 4), m3);
  5425. // load Q8 quants
  5426. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  5427. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  5428. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
  5429. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  5430. // and 2 if the high bit was set)
  5431. const __m256i q8s_0 = _mm256_maddubs_epi16(q3h_0, q8_0);
  5432. const __m256i q8s_1 = _mm256_maddubs_epi16(q3h_1, q8_1);
  5433. __m256i p16_0 = _mm256_maddubs_epi16(q3l_0, q8_0);
  5434. __m256i p16_1 = _mm256_maddubs_epi16(q3l_1, q8_1);
  5435. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  5436. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  5437. // multiply with scales
  5438. p16_0 = _mm256_madd_epi16(scale_0, p16_0);
  5439. p16_1 = _mm256_madd_epi16(scale_1, p16_1);
  5440. p16_0 = _mm256_add_epi32(p16_0, p16_1);
  5441. // multiply with block scale and accumulate
  5442. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(p16_0), acc);
  5443. }
  5444. *s = hsum_float_8(acc);
  5445. #elif defined __AVX__
  5446. const __m128i m3 = _mm_set1_epi8(3);
  5447. const __m128i m1 = _mm_set1_epi8(1);
  5448. __m256 acc = _mm256_setzero_ps();
  5449. uint64_t aux64;
  5450. uint16_t aux16[2];
  5451. const int8_t * aux8 = (const int8_t *)aux16;
  5452. for (int i = 0; i < nb; ++i) {
  5453. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5454. const uint8_t * restrict q3 = x[i].qs;
  5455. const int8_t * restrict q8 = y[i].qs;
  5456. const uint16_t a = *(const uint16_t *)x[i].scales;
  5457. aux16[0] = a & 0x0f0f;
  5458. aux16[1] = (a >> 4) & 0x0f0f;
  5459. const __m128i scale_0 = _mm_set1_epi16(aux8[0] - 8);
  5460. const __m128i scale_1 = _mm_set1_epi16(aux8[2] - 8);
  5461. const __m128i scale_2 = _mm_set1_epi16(aux8[1] - 8);
  5462. const __m128i scale_3 = _mm_set1_epi16(aux8[3] - 8);
  5463. memcpy(&aux64, x[i].hmask, 8);
  5464. __m128i q3h_0 = _mm_set_epi64x(aux64 >> 1, aux64 >> 0);
  5465. __m128i q3h_1 = _mm_srli_epi16(q3h_0, 2);
  5466. __m128i q3h_2 = _mm_srli_epi16(q3h_0, 4);
  5467. __m128i q3h_3 = _mm_srli_epi16(q3h_0, 6);
  5468. q3h_0 = _mm_slli_epi16(_mm_andnot_si128(q3h_0, m1), 2);
  5469. q3h_1 = _mm_slli_epi16(_mm_andnot_si128(q3h_1, m1), 2);
  5470. q3h_2 = _mm_slli_epi16(_mm_andnot_si128(q3h_2, m1), 2);
  5471. q3h_3 = _mm_slli_epi16(_mm_andnot_si128(q3h_3, m1), 2);
  5472. // load low 2 bits
  5473. const __m128i q3bits = _mm_loadu_si128((const __m128i*)q3);
  5474. // prepare low and high bits
  5475. const __m128i q3l_0 = _mm_and_si128(q3bits, m3);
  5476. const __m128i q3l_1 = _mm_and_si128(_mm_srli_epi16(q3bits, 2), m3);
  5477. const __m128i q3l_2 = _mm_and_si128(_mm_srli_epi16(q3bits, 4), m3);
  5478. const __m128i q3l_3 = _mm_and_si128(_mm_srli_epi16(q3bits, 6), m3);
  5479. // load Q8 quants
  5480. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  5481. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  5482. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm_maddubs_epi16,
  5483. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  5484. // and 2 if the high bit was set)
  5485. const __m128i q8s_0 = _mm_maddubs_epi16(q3h_0, _mm256_extractf128_si256(q8_0, 0));
  5486. const __m128i q8s_1 = _mm_maddubs_epi16(q3h_1, _mm256_extractf128_si256(q8_0, 1));
  5487. const __m128i q8s_2 = _mm_maddubs_epi16(q3h_2, _mm256_extractf128_si256(q8_1, 0));
  5488. const __m128i q8s_3 = _mm_maddubs_epi16(q3h_3, _mm256_extractf128_si256(q8_1, 1));
  5489. __m128i p16_0 = _mm_maddubs_epi16(q3l_0, _mm256_extractf128_si256(q8_0, 0));
  5490. __m128i p16_1 = _mm_maddubs_epi16(q3l_1, _mm256_extractf128_si256(q8_0, 1));
  5491. __m128i p16_2 = _mm_maddubs_epi16(q3l_2, _mm256_extractf128_si256(q8_1, 0));
  5492. __m128i p16_3 = _mm_maddubs_epi16(q3l_3, _mm256_extractf128_si256(q8_1, 1));
  5493. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  5494. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  5495. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  5496. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  5497. // multiply with scales
  5498. p16_0 = _mm_madd_epi16(scale_0, p16_0);
  5499. p16_1 = _mm_madd_epi16(scale_1, p16_1);
  5500. p16_2 = _mm_madd_epi16(scale_2, p16_2);
  5501. p16_3 = _mm_madd_epi16(scale_3, p16_3);
  5502. p16_0 = _mm_add_epi32(p16_0, p16_2);
  5503. p16_1 = _mm_add_epi32(p16_1, p16_3);
  5504. __m256i p16 = MM256_SET_M128I(p16_1, p16_0);
  5505. // multiply with block scale and accumulate
  5506. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(p16)), acc);
  5507. }
  5508. *s = hsum_float_8(acc);
  5509. #elif defined __riscv_v_intrinsic
  5510. uint16_t aux16[2];
  5511. int8_t * scales = (int8_t *)aux16;
  5512. float sumf = 0;
  5513. for (int i = 0; i < nb; ++i) {
  5514. const uint8_t * restrict q3 = x[i].qs;
  5515. const int8_t * restrict q8 = y[i].qs;
  5516. const uint16_t a = *(const uint16_t *)x[i].scales;
  5517. aux16[0] = a & 0x0f0f;
  5518. aux16[1] = (a >> 4) & 0x0f0f;
  5519. for (int j = 0; j < 4; ++j) scales[j] -= 8;
  5520. int32_t isum = -4*(scales[0] * y[i].bsums[0] + scales[2] * y[i].bsums[1] + scales[1] * y[i].bsums[2] + scales[3] * y[i].bsums[3]);
  5521. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5522. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  5523. // load qh
  5524. vuint8mf4_t qh_x1 = __riscv_vle8_v_u8mf4(x[i].hmask, 8);
  5525. vuint8mf2_t qh_x2 = __riscv_vlmul_ext_v_u8mf4_u8mf2(__riscv_vsrl_vx_u8mf4(qh_x1, 1, 8));
  5526. size_t vl = 16;
  5527. // extend and combine both qh_x1 and qh_x2
  5528. vuint8mf2_t qh_x = __riscv_vslideup_vx_u8mf2(__riscv_vlmul_ext_v_u8mf4_u8mf2(qh_x1), qh_x2, vl/2, vl);
  5529. vuint8mf2_t qh_0 = __riscv_vand_vx_u8mf2(__riscv_vsll_vx_u8mf2(qh_x, 0x2, vl), 0x4, vl);
  5530. vuint8mf2_t qh_1 = __riscv_vand_vx_u8mf2(qh_x, 0x4, vl);
  5531. vuint8mf2_t qh_2 = __riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(qh_x, 0x2, vl), 0x4, vl);
  5532. vuint8mf2_t qh_3 = __riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(qh_x, 0x4, vl), 0x4, vl);
  5533. // load Q3
  5534. vuint8mf2_t q3_x = __riscv_vle8_v_u8mf2(q3, vl);
  5535. vuint8mf2_t q3h_0 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(q3_x, 0x3, vl), qh_0, vl);
  5536. vuint8mf2_t q3h_1 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q3_x, 2, vl), 0x3, vl), qh_1, vl);
  5537. vuint8mf2_t q3h_2 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q3_x, 4, vl), 0x3, vl), qh_2, vl);
  5538. vuint8mf2_t q3h_3 = __riscv_vor_vv_u8mf2(__riscv_vsrl_vx_u8mf2(q3_x, 0x6, vl), qh_3, vl);
  5539. vint8mf2_t q3_0 = __riscv_vreinterpret_v_u8mf2_i8mf2(q3h_0);
  5540. vint8mf2_t q3_1 = __riscv_vreinterpret_v_u8mf2_i8mf2(q3h_1);
  5541. vint8mf2_t q3_2 = __riscv_vreinterpret_v_u8mf2_i8mf2(q3h_2);
  5542. vint8mf2_t q3_3 = __riscv_vreinterpret_v_u8mf2_i8mf2(q3h_3);
  5543. // load Q8 and take product with Q3
  5544. vint16m1_t p0 = __riscv_vwmul_vv_i16m1(q3_0, __riscv_vle8_v_i8mf2(q8, vl), vl);
  5545. vint16m1_t p1 = __riscv_vwmul_vv_i16m1(q3_1, __riscv_vle8_v_i8mf2(q8+16, vl), vl);
  5546. vint16m1_t p2 = __riscv_vwmul_vv_i16m1(q3_2, __riscv_vle8_v_i8mf2(q8+32, vl), vl);
  5547. vint16m1_t p3 = __riscv_vwmul_vv_i16m1(q3_3, __riscv_vle8_v_i8mf2(q8+48, vl), vl);
  5548. vint32m1_t vs_0 = __riscv_vwredsum_vs_i16m1_i32m1(p0, vzero, vl);
  5549. vint32m1_t vs_1 = __riscv_vwredsum_vs_i16m1_i32m1(p1, vzero, vl);
  5550. vint32m1_t vs_2 = __riscv_vwredsum_vs_i16m1_i32m1(p2, vzero, vl);
  5551. vint32m1_t vs_3 = __riscv_vwredsum_vs_i16m1_i32m1(p3, vzero, vl);
  5552. isum += __riscv_vmv_x_s_i32m1_i32(vs_0) * scales[0];
  5553. isum += __riscv_vmv_x_s_i32m1_i32(vs_1) * scales[2];
  5554. isum += __riscv_vmv_x_s_i32m1_i32(vs_2) * scales[1];
  5555. isum += __riscv_vmv_x_s_i32m1_i32(vs_3) * scales[3];
  5556. sumf += d * isum;
  5557. }
  5558. *s = sumf;
  5559. #else
  5560. int8_t aux8[QK_K];
  5561. int16_t aux16[8];
  5562. float sums [8];
  5563. int32_t aux32[8];
  5564. int32_t scales[4];
  5565. memset(sums, 0, 8*sizeof(float));
  5566. float sumf = 0;
  5567. for (int i = 0; i < nb; ++i) {
  5568. const uint8_t * restrict q3 = x[i].qs;
  5569. const uint8_t * restrict hm = x[i].hmask;
  5570. const int8_t * restrict q8 = y[i].qs;
  5571. int8_t * restrict a = aux8;
  5572. for (int l = 0; l < 8; ++l) {
  5573. a[l+ 0] = (int8_t)((q3[l+0] >> 0) & 3) - (hm[l] & 0x01 ? 0 : 4);
  5574. a[l+ 8] = (int8_t)((q3[l+8] >> 0) & 3) - (hm[l] & 0x02 ? 0 : 4);
  5575. a[l+16] = (int8_t)((q3[l+0] >> 2) & 3) - (hm[l] & 0x04 ? 0 : 4);
  5576. a[l+24] = (int8_t)((q3[l+8] >> 2) & 3) - (hm[l] & 0x08 ? 0 : 4);
  5577. a[l+32] = (int8_t)((q3[l+0] >> 4) & 3) - (hm[l] & 0x10 ? 0 : 4);
  5578. a[l+40] = (int8_t)((q3[l+8] >> 4) & 3) - (hm[l] & 0x20 ? 0 : 4);
  5579. a[l+48] = (int8_t)((q3[l+0] >> 6) & 3) - (hm[l] & 0x40 ? 0 : 4);
  5580. a[l+56] = (int8_t)((q3[l+8] >> 6) & 3) - (hm[l] & 0x80 ? 0 : 4);
  5581. }
  5582. scales[0] = (x[i].scales[0] & 0xF) - 8;
  5583. scales[1] = (x[i].scales[0] >> 4) - 8;
  5584. scales[2] = (x[i].scales[1] & 0xF) - 8;
  5585. scales[3] = (x[i].scales[1] >> 4) - 8;
  5586. memset(aux32, 0, 8*sizeof(int32_t));
  5587. for (int j = 0; j < QK_K/16; ++j) {
  5588. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5589. q8 += 8; a += 8;
  5590. for (int l = 0; l < 8; ++l) aux16[l] += q8[l] * a[l];
  5591. q8 += 8; a += 8;
  5592. for (int l = 0; l < 8; ++l) aux32[l] += scales[j] * aux16[l];
  5593. }
  5594. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  5595. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  5596. }
  5597. for (int l = 0; l < 8; ++l) sumf += sums[l];
  5598. *s = sumf;
  5599. #endif
  5600. }
  5601. #endif
  5602. #if QK_K == 256
  5603. void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  5604. assert(n % QK_K == 0);
  5605. assert(nrc == 1);
  5606. UNUSED(nrc);
  5607. UNUSED(bx);
  5608. UNUSED(by);
  5609. UNUSED(bs);
  5610. const block_q4_K * restrict x = vx;
  5611. const block_q8_K * restrict y = vy;
  5612. const int nb = n / QK_K;
  5613. static const uint32_t kmask1 = 0x3f3f3f3f;
  5614. static const uint32_t kmask2 = 0x0f0f0f0f;
  5615. static const uint32_t kmask3 = 0x03030303;
  5616. uint32_t utmp[4];
  5617. #ifdef __ARM_NEON
  5618. const uint8x16_t m4b = vdupq_n_u8(0xf);
  5619. const int32x4_t mzero = vdupq_n_s32(0);
  5620. ggml_int8x16x2_t q4bytes;
  5621. ggml_int8x16x2_t q8bytes;
  5622. float sumf = 0;
  5623. for (int i = 0; i < nb; ++i) {
  5624. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5625. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5626. const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));
  5627. memcpy(utmp, x[i].scales, 12);
  5628. uint32x2_t mins8 = { 0 };
  5629. mins8 = vset_lane_u32(utmp[1] & kmask1, mins8, 0);
  5630. mins8 = vset_lane_u32(((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4), mins8, 1);
  5631. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5632. utmp[0] &= kmask1;
  5633. const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(vreinterpret_u8_u32(mins8)));
  5634. const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)),
  5635. vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)));
  5636. sumf -= dmin * vaddvq_s32(prod);
  5637. const uint8_t * scales = (const uint8_t *)utmp;
  5638. const uint8_t * restrict q4 = x[i].qs;
  5639. const int8_t * restrict q8 = y[i].qs;
  5640. int32_t sumi1 = 0;
  5641. int32_t sumi2 = 0;
  5642. for (int j = 0; j < QK_K/64; ++j) {
  5643. const ggml_uint8x16x2_t q4bits = ggml_vld1q_u8_x2(q4); q4 += 32;
  5644. q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
  5645. q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
  5646. q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
  5647. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  5648. sumi1 += vaddvq_s32(p1) * scales[2*j+0];
  5649. q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
  5650. q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
  5651. q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
  5652. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  5653. sumi2 += vaddvq_s32(p2) * scales[2*j+1];
  5654. }
  5655. sumf += d * (sumi1 + sumi2);
  5656. }
  5657. *s = sumf;
  5658. #elif defined __AVX2__
  5659. const __m256i m4 = _mm256_set1_epi8(0xF);
  5660. __m256 acc = _mm256_setzero_ps();
  5661. __m128 acc_m = _mm_setzero_ps();
  5662. for (int i = 0; i < nb; ++i) {
  5663. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5664. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5665. memcpy(utmp, x[i].scales, 12);
  5666. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  5667. const uint32_t uaux = utmp[1] & kmask1;
  5668. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5669. utmp[2] = uaux;
  5670. utmp[0] &= kmask1;
  5671. const uint8_t * restrict q4 = x[i].qs;
  5672. const int8_t * restrict q8 = y[i].qs;
  5673. const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]));
  5674. const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums);
  5675. const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
  5676. const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
  5677. acc_m = _mm_fmadd_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod), acc_m);
  5678. const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0);
  5679. const __m256i scales = MM256_SET_M128I(sc128, sc128);
  5680. __m256i sumi = _mm256_setzero_si256();
  5681. for (int j = 0; j < QK_K/64; ++j) {
  5682. const __m256i scale_l = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0));
  5683. const __m256i scale_h = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1));
  5684. const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  5685. const __m256i q4l = _mm256_and_si256(q4bits, m4);
  5686. const __m256i q4h = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), m4);
  5687. const __m256i q8l = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5688. __m256i p16l = _mm256_maddubs_epi16(q4l, q8l);
  5689. p16l = _mm256_madd_epi16(scale_l, p16l);
  5690. const __m256i q8h = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5691. __m256i p16h = _mm256_maddubs_epi16(q4h, q8h);
  5692. p16h = _mm256_madd_epi16(scale_h, p16h);
  5693. const __m256i sumj = _mm256_add_epi32(p16l, p16h);
  5694. sumi = _mm256_add_epi32(sumi, sumj);
  5695. }
  5696. __m256 vd = _mm256_set1_ps(d);
  5697. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);
  5698. }
  5699. acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m));
  5700. acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m));
  5701. *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);
  5702. #elif defined __AVX__
  5703. const __m128i m4 = _mm_set1_epi8(0xF);
  5704. const __m128i m2 = _mm_set1_epi8(0x2);
  5705. __m256 acc = _mm256_setzero_ps();
  5706. __m128 acc_m = _mm_setzero_ps();
  5707. for (int i = 0; i < nb; ++i) {
  5708. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5709. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5710. const uint8_t * restrict q4 = x[i].qs;
  5711. const int8_t * restrict q8 = y[i].qs;
  5712. memcpy(utmp, x[i].scales, 12);
  5713. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  5714. const uint32_t uaux = utmp[1] & kmask1;
  5715. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5716. utmp[2] = uaux;
  5717. utmp[0] &= kmask1;
  5718. const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]);
  5719. const __m128i scales = _mm_cvtepu8_epi16(utmps);
  5720. const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps));
  5721. const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]);
  5722. const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]);
  5723. const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1);
  5724. const __m128i prod = _mm_madd_epi16(mins, q8s);
  5725. acc_m = _mm_add_ps(_mm_mul_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod)), acc_m);
  5726. __m128i sumi_0 = _mm_setzero_si128();
  5727. __m128i sumi_1 = _mm_setzero_si128();
  5728. __m128i shuffle = _mm_set1_epi16(0x0100);
  5729. for (int j = 0; j < QK_K/64; ++j) {
  5730. const __m128i scale_l = _mm_shuffle_epi8(scales, shuffle);
  5731. shuffle = _mm_add_epi16(shuffle, m2);
  5732. const __m128i scale_h = _mm_shuffle_epi8(scales, shuffle);
  5733. shuffle = _mm_add_epi16(shuffle, m2);
  5734. __m128i q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  5735. const __m128i q4l_0 = _mm_and_si128(q4bits, m4);
  5736. const __m128i q4h_0 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4);
  5737. q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  5738. const __m128i q4l_1 = _mm_and_si128(q4bits, m4);
  5739. const __m128i q4h_1 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4);
  5740. const __m128i q8l_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5741. __m128i p16l = _mm_maddubs_epi16(q4l_0, q8l_0);
  5742. p16l = _mm_madd_epi16(scale_l, p16l);
  5743. sumi_0 = _mm_add_epi32(sumi_0, p16l);
  5744. const __m128i q8l_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5745. p16l = _mm_maddubs_epi16(q4l_1, q8l_1);
  5746. p16l = _mm_madd_epi16(scale_l, p16l);
  5747. sumi_1 = _mm_add_epi32(sumi_1, p16l);
  5748. const __m128i q8h_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5749. __m128i p16h = _mm_maddubs_epi16(q4h_0, q8h_0);
  5750. p16h = _mm_madd_epi16(scale_h, p16h);
  5751. sumi_0 = _mm_add_epi32(sumi_0, p16h);
  5752. const __m128i q8h_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5753. p16h = _mm_maddubs_epi16(q4h_1, q8h_1);
  5754. p16h = _mm_madd_epi16(scale_h, p16h);
  5755. sumi_1 = _mm_add_epi32(sumi_1, p16h);
  5756. }
  5757. __m256 vd = _mm256_set1_ps(d);
  5758. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  5759. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc);
  5760. }
  5761. acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m));
  5762. acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m));
  5763. *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);
  5764. #elif defined __riscv_v_intrinsic
  5765. const uint8_t * scales = (const uint8_t*)&utmp[0];
  5766. const uint8_t * mins = (const uint8_t*)&utmp[2];
  5767. float sumf = 0;
  5768. for (int i = 0; i < nb; ++i) {
  5769. size_t vl = 8;
  5770. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5771. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5772. vint16mf2_t q8sums_0 = __riscv_vlse16_v_i16mf2(y[i].bsums, 4, vl);
  5773. vint16mf2_t q8sums_1 = __riscv_vlse16_v_i16mf2(y[i].bsums+1, 4, vl);
  5774. vint16mf2_t q8sums = __riscv_vadd_vv_i16mf2(q8sums_0, q8sums_1, vl);
  5775. memcpy(utmp, x[i].scales, 12);
  5776. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  5777. const uint32_t uaux = utmp[1] & kmask1;
  5778. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5779. utmp[2] = uaux;
  5780. utmp[0] &= kmask1;
  5781. vuint8mf4_t mins8 = __riscv_vle8_v_u8mf4(mins, vl);
  5782. vint16mf2_t v_mins = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vzext_vf2_u16mf2(mins8, vl));
  5783. vint32m1_t prod = __riscv_vwmul_vv_i32m1(q8sums, v_mins, vl);
  5784. vint32m1_t sumi = __riscv_vredsum_vs_i32m1_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl);
  5785. sumf -= dmin * __riscv_vmv_x_s_i32m1_i32(sumi);
  5786. const uint8_t * restrict q4 = x[i].qs;
  5787. const int8_t * restrict q8 = y[i].qs;
  5788. vl = 32;
  5789. int32_t sum_1 = 0;
  5790. int32_t sum_2 = 0;
  5791. vint16m1_t vzero = __riscv_vmv_v_x_i16m1(0, 1);
  5792. for (int j = 0; j < QK_K/64; ++j) {
  5793. // load Q4
  5794. vuint8m1_t q4_x = __riscv_vle8_v_u8m1(q4, vl);
  5795. // load Q8 and multiply it with lower Q4 nibble
  5796. vint8m1_t q8_0 = __riscv_vle8_v_i8m1(q8, vl);
  5797. vint8m1_t q4_0 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q4_x, 0x0F, vl));
  5798. vint16m2_t qv_0 = __riscv_vwmul_vv_i16m2(q4_0, q8_0, vl);
  5799. vint16m1_t vs_0 = __riscv_vredsum_vs_i16m2_i16m1(qv_0, vzero, vl);
  5800. sum_1 += __riscv_vmv_x_s_i16m1_i16(vs_0) * scales[2*j+0];
  5801. // load Q8 and multiply it with upper Q4 nibble
  5802. vint8m1_t q8_1 = __riscv_vle8_v_i8m1(q8+32, vl);
  5803. vint8m1_t q4_1 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vsrl_vx_u8m1(q4_x, 0x04, vl));
  5804. vint16m2_t qv_1 = __riscv_vwmul_vv_i16m2(q4_1, q8_1, vl);
  5805. vint16m1_t vs_1 = __riscv_vredsum_vs_i16m2_i16m1(qv_1, vzero, vl);
  5806. sum_2 += __riscv_vmv_x_s_i16m1_i16(vs_1) * scales[2*j+1];
  5807. q4 += 32; q8 += 64;
  5808. }
  5809. sumf += d*(sum_1 + sum_2);
  5810. }
  5811. *s = sumf;
  5812. #else
  5813. const uint8_t * scales = (const uint8_t*)&utmp[0];
  5814. const uint8_t * mins = (const uint8_t*)&utmp[2];
  5815. int8_t aux8[QK_K];
  5816. int16_t aux16[8];
  5817. float sums [8];
  5818. int32_t aux32[8];
  5819. memset(sums, 0, 8*sizeof(float));
  5820. float sumf = 0;
  5821. for (int i = 0; i < nb; ++i) {
  5822. const uint8_t * restrict q4 = x[i].qs;
  5823. const int8_t * restrict q8 = y[i].qs;
  5824. memset(aux32, 0, 8*sizeof(int32_t));
  5825. int8_t * restrict a = aux8;
  5826. for (int j = 0; j < QK_K/64; ++j) {
  5827. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
  5828. a += 32;
  5829. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
  5830. a += 32; q4 += 32;
  5831. }
  5832. memcpy(utmp, x[i].scales, 12);
  5833. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  5834. const uint32_t uaux = utmp[1] & kmask1;
  5835. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5836. utmp[2] = uaux;
  5837. utmp[0] &= kmask1;
  5838. int sumi = 0;
  5839. for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
  5840. a = aux8;
  5841. int is = 0;
  5842. for (int j = 0; j < QK_K/32; ++j) {
  5843. int32_t scale = scales[is++];
  5844. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5845. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  5846. q8 += 8; a += 8;
  5847. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5848. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  5849. q8 += 8; a += 8;
  5850. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5851. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  5852. q8 += 8; a += 8;
  5853. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5854. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  5855. q8 += 8; a += 8;
  5856. }
  5857. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  5858. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  5859. const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
  5860. sumf -= dmin * sumi;
  5861. }
  5862. for (int l = 0; l < 8; ++l) sumf += sums[l];
  5863. *s = sumf;
  5864. #endif
  5865. }
  5866. #else
  5867. void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  5868. assert(n % QK_K == 0);
  5869. assert(nrc == 1);
  5870. UNUSED(nrc);
  5871. UNUSED(bx);
  5872. UNUSED(by);
  5873. UNUSED(bs);
  5874. const block_q4_K * restrict x = vx;
  5875. const block_q8_K * restrict y = vy;
  5876. const int nb = n / QK_K;
  5877. #ifdef __ARM_NEON
  5878. const uint8x16_t m4b = vdupq_n_u8(0xf);
  5879. const int32x4_t mzero = vdupq_n_s32(0);
  5880. float sumf = 0;
  5881. ggml_int8x16x2_t q4bytes;
  5882. ggml_int8x16x4_t q8bytes;
  5883. float sum_mins = 0.f;
  5884. uint16_t aux16[2];
  5885. const uint8_t * restrict scales = (const uint8_t *)aux16;
  5886. for (int i = 0; i < nb; ++i) {
  5887. const uint8_t * restrict q4 = x[i].qs;
  5888. const int8_t * restrict q8 = y[i].qs;
  5889. const uint16_t * restrict a = (const uint16_t *)x[i].scales;
  5890. aux16[0] = a[0] & 0x0f0f;
  5891. aux16[1] = (a[0] >> 4) & 0x0f0f;
  5892. const int32_t summi = scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]);
  5893. sum_mins += y[i].d * GGML_FP16_TO_FP32(x[i].d[1]) * summi;
  5894. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d[0]);
  5895. const ggml_uint8x16x2_t q4bits = ggml_vld1q_u8_x2(q4);
  5896. q8bytes = ggml_vld1q_s8_x4(q8);
  5897. q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
  5898. q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
  5899. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  5900. const int32_t sumi1 = vaddvq_s32(p1) * scales[0];
  5901. q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
  5902. q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
  5903. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[2]), q4bytes.val[1], q8bytes.val[3]);
  5904. const int32_t sumi2 = vaddvq_s32(p2) * scales[1];
  5905. sumf += d * (sumi1 + sumi2);
  5906. }
  5907. *s = sumf - sum_mins;
  5908. #elif defined __AVX2__
  5909. const __m256i m4 = _mm256_set1_epi8(0xF);
  5910. __m256 acc = _mm256_setzero_ps();
  5911. float summs = 0;
  5912. uint16_t aux16[2];
  5913. const uint8_t * scales = (const uint8_t *)aux16;
  5914. for (int i = 0; i < nb; ++i) {
  5915. const float d = GGML_FP16_TO_FP32(x[i].d[0]) * y[i].d;
  5916. const float m = GGML_FP16_TO_FP32(x[i].d[1]) * y[i].d;
  5917. const __m256 vd = _mm256_set1_ps(d);
  5918. const uint16_t * a = (const uint16_t *)x[i].scales;
  5919. aux16[0] = a[0] & 0x0f0f;
  5920. aux16[1] = (a[0] >> 4) & 0x0f0f;
  5921. summs += m * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
  5922. const uint8_t * restrict q4 = x[i].qs;
  5923. const int8_t * restrict q8 = y[i].qs;
  5924. const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4);
  5925. const __m256i q4l = _mm256_and_si256(q4bits, m4);
  5926. const __m256i q4h = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), m4);
  5927. const __m256i q8l = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  5928. const __m256i q8h = _mm256_loadu_si256((const __m256i*)(q8+32));
  5929. const __m256i p16l = _mm256_maddubs_epi16(q4l, q8l);
  5930. const __m256i p16h = _mm256_maddubs_epi16(q4h, q8h);
  5931. const __m256i p32l = _mm256_madd_epi16(_mm256_set1_epi16(scales[0]), p16l);
  5932. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(p32l), acc);
  5933. const __m256i p32h = _mm256_madd_epi16(_mm256_set1_epi16(scales[1]), p16h);
  5934. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(p32h), acc);
  5935. }
  5936. *s = hsum_float_8(acc) - summs;
  5937. #elif defined __AVX__
  5938. const __m128i m4 = _mm_set1_epi8(0xF);
  5939. __m256 acc = _mm256_setzero_ps();
  5940. float summs = 0;
  5941. uint16_t aux16[2];
  5942. const uint8_t * scales = (const uint8_t *)aux16;
  5943. for (int i = 0; i < nb; ++i) {
  5944. const float d = GGML_FP16_TO_FP32(x[i].d[0]) * y[i].d;
  5945. const float m = GGML_FP16_TO_FP32(x[i].d[1]) * y[i].d;
  5946. const __m256 vd = _mm256_set1_ps(d);
  5947. const uint16_t * a = (const uint16_t *)x[i].scales;
  5948. aux16[0] = a[0] & 0x0f0f;
  5949. aux16[1] = (a[0] >> 4) & 0x0f0f;
  5950. summs += m * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
  5951. const uint8_t * restrict q4 = x[i].qs;
  5952. const int8_t * restrict q8 = y[i].qs;
  5953. const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4);
  5954. const __m128i q4bits_0 = _mm256_extractf128_si256(q4bits, 0);
  5955. const __m128i q4bits_1 = _mm256_extractf128_si256(q4bits, 1);
  5956. const __m128i q4_0 = _mm_and_si128(q4bits_0, m4);
  5957. const __m128i q4_1 = _mm_and_si128(q4bits_1, m4);
  5958. const __m128i q4_2 = _mm_and_si128(_mm_srli_epi16(q4bits_0, 4), m4);
  5959. const __m128i q4_3 = _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4);
  5960. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  5961. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  5962. const __m128i p16_0 = _mm_maddubs_epi16(q4_0, _mm256_extractf128_si256(q8_0, 0));
  5963. const __m128i p16_1 = _mm_maddubs_epi16(q4_1, _mm256_extractf128_si256(q8_0, 1));
  5964. const __m128i p16_2 = _mm_maddubs_epi16(q4_2, _mm256_extractf128_si256(q8_1, 0));
  5965. const __m128i p16_3 = _mm_maddubs_epi16(q4_3, _mm256_extractf128_si256(q8_1, 1));
  5966. const __m128i p32_0 = _mm_madd_epi16(_mm_set1_epi16(scales[0]), p16_0);
  5967. const __m128i p32_1 = _mm_madd_epi16(_mm_set1_epi16(scales[0]), p16_1);
  5968. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(MM256_SET_M128I(p32_1, p32_0))), acc);
  5969. const __m128i p32_2 = _mm_madd_epi16(_mm_set1_epi16(scales[1]), p16_2);
  5970. const __m128i p32_3 = _mm_madd_epi16(_mm_set1_epi16(scales[1]), p16_3);
  5971. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(MM256_SET_M128I(p32_3, p32_2))), acc);
  5972. }
  5973. *s = hsum_float_8(acc) - summs;
  5974. #elif defined __riscv_v_intrinsic
  5975. uint16_t s16[2];
  5976. const uint8_t * restrict scales = (const uint8_t *)s16;
  5977. float sumf = 0;
  5978. for (int i = 0; i < nb; ++i) {
  5979. const uint8_t * restrict q4 = x[i].qs;
  5980. const int8_t * restrict q8 = y[i].qs;
  5981. const uint16_t * restrict b = (const uint16_t *)x[i].scales;
  5982. s16[0] = b[0] & 0x0f0f;
  5983. s16[1] = (b[0] >> 4) & 0x0f0f;
  5984. sumf -= y[i].d * GGML_FP16_TO_FP32(x[i].d[1]) * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
  5985. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d[0]);
  5986. size_t vl = 32;
  5987. vint16m1_t vzero = __riscv_vmv_v_x_i16m1(0, 1);
  5988. // load Q4
  5989. vuint8m1_t q4_x = __riscv_vle8_v_u8m1(q4, vl);
  5990. // load Q8 and multiply it with lower Q4 nibble
  5991. vint8m1_t q4_a = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q4_x, 0x0F, vl));
  5992. vint16m2_t va_0 = __riscv_vwmul_vv_i16m2(q4_a, __riscv_vle8_v_i8m1(q8, vl), vl);
  5993. vint16m1_t aux1 = __riscv_vredsum_vs_i16m2_i16m1(va_0, vzero, vl);
  5994. sumf += d*scales[0]*__riscv_vmv_x_s_i16m1_i16(aux1);
  5995. // load Q8 and multiply it with upper Q4 nibble
  5996. vint8m1_t q4_s = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vsrl_vx_u8m1(q4_x, 0x04, vl));
  5997. vint16m2_t va_1 = __riscv_vwmul_vv_i16m2(q4_s, __riscv_vle8_v_i8m1(q8+32, vl), vl);
  5998. vint16m1_t aux2 = __riscv_vredsum_vs_i16m2_i16m1(va_1, vzero, vl);
  5999. sumf += d*scales[1]*__riscv_vmv_x_s_i16m1_i16(aux2);
  6000. }
  6001. *s = sumf;
  6002. #else
  6003. uint8_t aux8[QK_K];
  6004. int16_t aux16[16];
  6005. float sums [8];
  6006. memset(sums, 0, 8*sizeof(float));
  6007. uint16_t s16[2];
  6008. const uint8_t * restrict scales = (const uint8_t *)s16;
  6009. float sumf = 0;
  6010. for (int i = 0; i < nb; ++i) {
  6011. const uint8_t * restrict q4 = x[i].qs;
  6012. const int8_t * restrict q8 = y[i].qs;
  6013. uint8_t * restrict a = aux8;
  6014. for (int l = 0; l < 32; ++l) a[l+ 0] = q4[l] & 0xF;
  6015. for (int l = 0; l < 32; ++l) a[l+32] = q4[l] >> 4;
  6016. const uint16_t * restrict b = (const uint16_t *)x[i].scales;
  6017. s16[0] = b[0] & 0x0f0f;
  6018. s16[1] = (b[0] >> 4) & 0x0f0f;
  6019. sumf -= y[i].d * GGML_FP16_TO_FP32(x[i].d[1]) * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
  6020. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d[0]);
  6021. for (int j = 0; j < QK_K/32; ++j) {
  6022. for (int l = 0; l < 16; ++l) aux16[l] = q8[l] * a[l];
  6023. q8 += 16; a += 16;
  6024. for (int l = 0; l < 16; ++l) aux16[l] += q8[l] * a[l];
  6025. q8 += 16; a += 16;
  6026. const float dl = d * scales[j];
  6027. for (int l = 0; l < 8; ++l) sums[l] += dl * (aux16[l] + aux16[l+8]);
  6028. }
  6029. }
  6030. for (int l = 0; l < 8; ++l) sumf += sums[l];
  6031. *s = sumf;
  6032. #endif
  6033. }
  6034. #endif
  6035. #if QK_K == 256
  6036. void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  6037. assert(n % QK_K == 0);
  6038. assert(nrc == 1);
  6039. UNUSED(nrc);
  6040. UNUSED(bx);
  6041. UNUSED(by);
  6042. UNUSED(bs);
  6043. const block_q5_K * restrict x = vx;
  6044. const block_q8_K * restrict y = vy;
  6045. const int nb = n / QK_K;
  6046. static const uint32_t kmask1 = 0x3f3f3f3f;
  6047. static const uint32_t kmask2 = 0x0f0f0f0f;
  6048. static const uint32_t kmask3 = 0x03030303;
  6049. uint32_t utmp[4];
  6050. #ifdef __ARM_NEON
  6051. const uint8x16_t m4b = vdupq_n_u8(0xf);
  6052. const uint8x16_t mone = vdupq_n_u8(1);
  6053. const uint8x16_t mtwo = vdupq_n_u8(2);
  6054. const int32x4_t mzero = vdupq_n_s32(0);
  6055. ggml_int8x16x4_t q5bytes;
  6056. float sumf = 0;
  6057. for (int i = 0; i < nb; ++i) {
  6058. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6059. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  6060. const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));
  6061. memcpy(utmp, x[i].scales, 12);
  6062. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6063. const uint32_t uaux = utmp[1] & kmask1;
  6064. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6065. utmp[2] = uaux;
  6066. utmp[0] &= kmask1;
  6067. const uint8x8_t mins8 = vld1_u8((const uint8_t*)utmp + 8);
  6068. const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(mins8));
  6069. const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)),
  6070. vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)));
  6071. int32_t sumi_mins = vaddvq_s32(prod);
  6072. const uint8_t * scales = (const uint8_t *)utmp;
  6073. const uint8_t * restrict q5 = x[i].qs;
  6074. const uint8_t * restrict qh = x[i].qh;
  6075. const int8_t * restrict q8 = y[i].qs;
  6076. ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh);
  6077. ggml_uint8x16x4_t q5h;
  6078. int32_t sumi = 0;
  6079. for (int j = 0; j < QK_K/64; ++j) {
  6080. const ggml_uint8x16x2_t q5bits = ggml_vld1q_u8_x2(q5); q5 += 32;
  6081. const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
  6082. q5h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
  6083. q5h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
  6084. q5h.val[2] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[0]), 3);
  6085. q5h.val[3] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[1]), 3);
  6086. qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 2);
  6087. qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 2);
  6088. q5bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[0], m4b), q5h.val[0]));
  6089. q5bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[1], m4b), q5h.val[1]));
  6090. q5bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[0], 4), q5h.val[2]));
  6091. q5bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[1], 4), q5h.val[3]));
  6092. sumi += vaddvq_s32(ggml_vdotq_s32(ggml_vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]), q5bytes.val[1], q8bytes.val[1])) * *scales++;
  6093. sumi += vaddvq_s32(ggml_vdotq_s32(ggml_vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]), q5bytes.val[3], q8bytes.val[3])) * *scales++;
  6094. }
  6095. sumf += d * sumi - dmin * sumi_mins;
  6096. }
  6097. *s = sumf;
  6098. #elif defined __AVX2__
  6099. const __m256i m4 = _mm256_set1_epi8(0xF);
  6100. const __m128i mzero = _mm_setzero_si128();
  6101. const __m256i mone = _mm256_set1_epi8(1);
  6102. __m256 acc = _mm256_setzero_ps();
  6103. float summs = 0.f;
  6104. for (int i = 0; i < nb; ++i) {
  6105. const uint8_t * restrict q5 = x[i].qs;
  6106. const int8_t * restrict q8 = y[i].qs;
  6107. #if QK_K == 256
  6108. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6109. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  6110. memcpy(utmp, x[i].scales, 12);
  6111. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6112. const uint32_t uaux = utmp[1] & kmask1;
  6113. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6114. utmp[2] = uaux;
  6115. utmp[0] &= kmask1;
  6116. #else
  6117. // TODO
  6118. const float d = 0, dmin = 0;
  6119. #endif
  6120. const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]));
  6121. const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums);
  6122. const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
  6123. const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
  6124. const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero);
  6125. summs += dmin * _mm_extract_epi32(hsum, 0);
  6126. const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0);
  6127. const __m256i scales = MM256_SET_M128I(sc128, sc128);
  6128. const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].qh);
  6129. __m256i hmask = mone;
  6130. __m256i sumi = _mm256_setzero_si256();
  6131. int bit = 0;
  6132. for (int j = 0; j < QK_K/64; ++j) {
  6133. const __m256i scale_0 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0));
  6134. const __m256i scale_1 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1));
  6135. const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5); q5 += 32;
  6136. const __m256i q5l_0 = _mm256_and_si256(q5bits, m4);
  6137. const __m256i q5h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4);
  6138. const __m256i q5_0 = _mm256_add_epi8(q5l_0, q5h_0);
  6139. hmask = _mm256_slli_epi16(hmask, 1);
  6140. const __m256i q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), m4);
  6141. const __m256i q5h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4);
  6142. const __m256i q5_1 = _mm256_add_epi8(q5l_1, q5h_1);
  6143. hmask = _mm256_slli_epi16(hmask, 1);
  6144. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  6145. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  6146. __m256i p16_0 = _mm256_maddubs_epi16(q5_0, q8_0);
  6147. __m256i p16_1 = _mm256_maddubs_epi16(q5_1, q8_1);
  6148. p16_0 = _mm256_madd_epi16(scale_0, p16_0);
  6149. p16_1 = _mm256_madd_epi16(scale_1, p16_1);
  6150. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  6151. }
  6152. __m256 vd = _mm256_set1_ps(d);
  6153. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);
  6154. }
  6155. *s = hsum_float_8(acc) + summs;
  6156. #elif defined __AVX__
  6157. const __m128i m4 = _mm_set1_epi8(0xF);
  6158. const __m128i mzero = _mm_setzero_si128();
  6159. const __m128i mone = _mm_set1_epi8(1);
  6160. const __m128i m2 = _mm_set1_epi8(2);
  6161. __m256 acc = _mm256_setzero_ps();
  6162. float summs = 0.f;
  6163. for (int i = 0; i < nb; ++i) {
  6164. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6165. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  6166. const uint8_t * restrict q5 = x[i].qs;
  6167. const int8_t * restrict q8 = y[i].qs;
  6168. memcpy(utmp, x[i].scales, 12);
  6169. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6170. const uint32_t uaux = utmp[1] & kmask1;
  6171. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6172. utmp[2] = uaux;
  6173. utmp[0] &= kmask1;
  6174. const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]);
  6175. const __m128i scales = _mm_cvtepu8_epi16(utmps);
  6176. const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps));
  6177. const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]);
  6178. const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]);
  6179. const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1);
  6180. const __m128i prod = _mm_madd_epi16(mins, q8s);
  6181. const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero);
  6182. summs += dmin * _mm_extract_epi32(hsum, 0);
  6183. const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].qh[0]);
  6184. const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].qh[16]);
  6185. __m128i hmask = mone;
  6186. __m128i sumi_0 = _mm_setzero_si128();
  6187. __m128i sumi_1 = _mm_setzero_si128();
  6188. int bit = 0;
  6189. __m128i shuffle = _mm_set1_epi16(0x0100);
  6190. for (int j = 0; j < QK_K/64; ++j) {
  6191. const __m128i scale_0 = _mm_shuffle_epi8(scales, shuffle);
  6192. shuffle = _mm_add_epi16(shuffle, m2);
  6193. const __m128i scale_1 = _mm_shuffle_epi8(scales, shuffle);
  6194. shuffle = _mm_add_epi16(shuffle, m2);
  6195. const __m128i q5bits_0 = _mm_loadu_si128((const __m128i*)q5); q5 += 16;
  6196. const __m128i q5bits_1 = _mm_loadu_si128((const __m128i*)q5); q5 += 16;
  6197. __m128i q5l_0 = _mm_and_si128(q5bits_0, m4);
  6198. __m128i q5l_1 = _mm_and_si128(q5bits_1, m4);
  6199. __m128i q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4);
  6200. __m128i q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4);
  6201. __m128i q5_0 = _mm_add_epi8(q5l_0, q5h_0);
  6202. __m128i q5_1 = _mm_add_epi8(q5l_1, q5h_1);
  6203. hmask = _mm_slli_epi16(hmask, 1);
  6204. __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6205. __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6206. __m128i p16_0 = _mm_maddubs_epi16(q5_0, q8_0);
  6207. __m128i p16_1 = _mm_maddubs_epi16(q5_1, q8_1);
  6208. p16_0 = _mm_madd_epi16(scale_0, p16_0);
  6209. p16_1 = _mm_madd_epi16(scale_0, p16_1);
  6210. q5l_0 = _mm_and_si128(_mm_srli_epi16(q5bits_0, 4), m4);
  6211. q5l_1 = _mm_and_si128(_mm_srli_epi16(q5bits_1, 4), m4);
  6212. q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4);
  6213. q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4);
  6214. q5_0 = _mm_add_epi8(q5l_0, q5h_0);
  6215. q5_1 = _mm_add_epi8(q5l_1, q5h_1);
  6216. hmask = _mm_slli_epi16(hmask, 1);
  6217. q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6218. q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6219. __m128i p16_2 = _mm_maddubs_epi16(q5_0, q8_0);
  6220. __m128i p16_3 = _mm_maddubs_epi16(q5_1, q8_1);
  6221. p16_2 = _mm_madd_epi16(scale_1, p16_2);
  6222. p16_3 = _mm_madd_epi16(scale_1, p16_3);
  6223. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  6224. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
  6225. }
  6226. __m256 vd = _mm256_set1_ps(d);
  6227. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  6228. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc);
  6229. }
  6230. *s = hsum_float_8(acc) + summs;
  6231. #elif defined __riscv_v_intrinsic
  6232. const uint8_t * scales = (const uint8_t*)&utmp[0];
  6233. const uint8_t * mins = (const uint8_t*)&utmp[2];
  6234. float sumf = 0;
  6235. float sums = 0.0;
  6236. size_t vl;
  6237. for (int i = 0; i < nb; ++i) {
  6238. vl = 8;
  6239. const uint8_t * restrict q5 = x[i].qs;
  6240. const uint8_t * restrict hm = x[i].qh;
  6241. const int8_t * restrict q8 = y[i].qs;
  6242. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6243. const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
  6244. vint16mf2_t q8sums_0 = __riscv_vlse16_v_i16mf2(y[i].bsums, 4, vl);
  6245. vint16mf2_t q8sums_1 = __riscv_vlse16_v_i16mf2(y[i].bsums+1, 4, vl);
  6246. vint16mf2_t q8sums = __riscv_vadd_vv_i16mf2(q8sums_0, q8sums_1, vl);
  6247. memcpy(utmp, x[i].scales, 12);
  6248. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6249. const uint32_t uaux = utmp[1] & kmask1;
  6250. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6251. utmp[2] = uaux;
  6252. utmp[0] &= kmask1;
  6253. vuint8mf4_t mins8 = __riscv_vle8_v_u8mf4(mins, vl);
  6254. vint16mf2_t v_mins = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vzext_vf2_u16mf2(mins8, vl));
  6255. vint32m1_t prod = __riscv_vwmul_vv_i32m1(q8sums, v_mins, vl);
  6256. vint32m1_t sumi = __riscv_vredsum_vs_i32m1_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl);
  6257. sumf -= dmin * __riscv_vmv_x_s_i32m1_i32(sumi);
  6258. vl = 32;
  6259. int32_t aux32 = 0;
  6260. int is = 0;
  6261. uint8_t m = 1;
  6262. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  6263. vuint8m1_t vqh = __riscv_vle8_v_u8m1(hm, vl);
  6264. for (int j = 0; j < QK_K/64; ++j) {
  6265. // load Q5 and Q8
  6266. vuint8m1_t q5_x = __riscv_vle8_v_u8m1(q5, vl);
  6267. vint8m1_t q8_y1 = __riscv_vle8_v_i8m1(q8, vl);
  6268. vint8m1_t q8_y2 = __riscv_vle8_v_i8m1(q8+32, vl);
  6269. // compute mask for addition
  6270. vint8m1_t q5_a = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q5_x, 0x0F, vl));
  6271. vuint8m1_t qh_m1 = __riscv_vand_vx_u8m1(vqh, m, vl);
  6272. vbool8_t vmask_1 = __riscv_vmsne_vx_u8m1_b8(qh_m1, 0, vl);
  6273. vint8m1_t q5_m1 = __riscv_vadd_vx_i8m1_m(vmask_1, q5_a, 16, vl);
  6274. m <<= 1;
  6275. vint8m1_t q5_l = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vsrl_vx_u8m1(q5_x, 0x04, vl));
  6276. vuint8m1_t qh_m2 = __riscv_vand_vx_u8m1(vqh, m, vl);
  6277. vbool8_t vmask_2 = __riscv_vmsne_vx_u8m1_b8(qh_m2, 0, vl);
  6278. vint8m1_t q5_m2 = __riscv_vadd_vx_i8m1_m(vmask_2, q5_l, 16, vl);
  6279. m <<= 1;
  6280. vint16m2_t v0 = __riscv_vwmul_vv_i16m2(q5_m1, q8_y1, vl);
  6281. vint16m2_t v1 = __riscv_vwmul_vv_i16m2(q5_m2, q8_y2, vl);
  6282. vint32m4_t vs1 = __riscv_vwmul_vx_i32m4(v0, scales[is++], vl);
  6283. vint32m4_t vs2 = __riscv_vwmul_vx_i32m4(v1, scales[is++], vl);
  6284. vint32m1_t vacc1 = __riscv_vredsum_vs_i32m4_i32m1(vs1, vzero, vl);
  6285. vint32m1_t vacc2 = __riscv_vredsum_vs_i32m4_i32m1(vs2, vzero, vl);
  6286. aux32 += __riscv_vmv_x_s_i32m1_i32(vacc1) + __riscv_vmv_x_s_i32m1_i32(vacc2);
  6287. q5 += 32; q8 += 64;
  6288. }
  6289. vfloat32m1_t vaux = __riscv_vfmul_vf_f32m1(__riscv_vfmv_v_f_f32m1(aux32, 1), d, 1);
  6290. sums += __riscv_vfmv_f_s_f32m1_f32(vaux);
  6291. }
  6292. *s = sumf+sums;
  6293. #else
  6294. const uint8_t * scales = (const uint8_t*)&utmp[0];
  6295. const uint8_t * mins = (const uint8_t*)&utmp[2];
  6296. int8_t aux8[QK_K];
  6297. int16_t aux16[8];
  6298. float sums [8];
  6299. int32_t aux32[8];
  6300. memset(sums, 0, 8*sizeof(float));
  6301. float sumf = 0;
  6302. for (int i = 0; i < nb; ++i) {
  6303. const uint8_t * restrict q4 = x[i].qs;
  6304. const uint8_t * restrict hm = x[i].qh;
  6305. const int8_t * restrict q8 = y[i].qs;
  6306. memset(aux32, 0, 8*sizeof(int32_t));
  6307. int8_t * restrict a = aux8;
  6308. uint8_t m = 1;
  6309. for (int j = 0; j < QK_K/64; ++j) {
  6310. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
  6311. for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
  6312. a += 32; m <<= 1;
  6313. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
  6314. for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
  6315. a += 32; m <<= 1;
  6316. q4 += 32;
  6317. }
  6318. memcpy(utmp, x[i].scales, 12);
  6319. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6320. const uint32_t uaux = utmp[1] & kmask1;
  6321. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6322. utmp[2] = uaux;
  6323. utmp[0] &= kmask1;
  6324. int sumi = 0;
  6325. for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
  6326. a = aux8;
  6327. int is = 0;
  6328. for (int j = 0; j < QK_K/32; ++j) {
  6329. int32_t scale = scales[is++];
  6330. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6331. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6332. q8 += 8; a += 8;
  6333. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6334. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6335. q8 += 8; a += 8;
  6336. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6337. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6338. q8 += 8; a += 8;
  6339. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6340. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6341. q8 += 8; a += 8;
  6342. }
  6343. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6344. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  6345. const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
  6346. sumf -= dmin * sumi;
  6347. }
  6348. for (int l = 0; l < 8; ++l) sumf += sums[l];
  6349. *s = sumf;
  6350. #endif
  6351. }
  6352. #else
  6353. void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  6354. assert(n % QK_K == 0);
  6355. assert(nrc == 1);
  6356. UNUSED(nrc);
  6357. UNUSED(bx);
  6358. UNUSED(by);
  6359. UNUSED(bs);
  6360. const block_q5_K * restrict x = vx;
  6361. const block_q8_K * restrict y = vy;
  6362. const int nb = n / QK_K;
  6363. #ifdef __ARM_NEON
  6364. const uint8x16_t m4b = vdupq_n_u8(0xf);
  6365. const uint8x16_t mh = vdupq_n_u8(16);
  6366. const int32x4_t mzero = vdupq_n_s32(0);
  6367. ggml_int8x16x4_t q5bytes;
  6368. ggml_uint8x16x4_t q5h;
  6369. float sumf = 0;
  6370. for (int i = 0; i < nb; ++i) {
  6371. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6372. const int8_t * sc = x[i].scales;
  6373. const uint8_t * restrict q5 = x[i].qs;
  6374. const uint8_t * restrict qh = x[i].qh;
  6375. const int8_t * restrict q8 = y[i].qs;
  6376. const uint8x8_t qhbits = vld1_u8(qh);
  6377. const ggml_uint8x16x2_t q5bits = ggml_vld1q_u8_x2(q5);
  6378. const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8);
  6379. const uint8x16_t htmp = vcombine_u8(qhbits, vshr_n_u8(qhbits, 1));
  6380. q5h.val[0] = vbicq_u8(mh, vshlq_n_u8(htmp, 4));
  6381. q5h.val[1] = vbicq_u8(mh, vshlq_n_u8(htmp, 2));
  6382. q5h.val[2] = vbicq_u8(mh, htmp);
  6383. q5h.val[3] = vbicq_u8(mh, vshrq_n_u8(htmp, 2));
  6384. q5bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q5bits.val[0], m4b)), vreinterpretq_s8_u8(q5h.val[0]));
  6385. q5bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q5bits.val[1], m4b)), vreinterpretq_s8_u8(q5h.val[1]));
  6386. q5bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(q5bits.val[0], 4)), vreinterpretq_s8_u8(q5h.val[2]));
  6387. q5bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(q5bits.val[1], 4)), vreinterpretq_s8_u8(q5h.val[3]));
  6388. int32_t sumi1 = sc[0] * vaddvq_s32(ggml_vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]));
  6389. int32_t sumi2 = sc[1] * vaddvq_s32(ggml_vdotq_s32(mzero, q5bytes.val[1], q8bytes.val[1]));
  6390. int32_t sumi3 = sc[2] * vaddvq_s32(ggml_vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]));
  6391. int32_t sumi4 = sc[3] * vaddvq_s32(ggml_vdotq_s32(mzero, q5bytes.val[3], q8bytes.val[3]));
  6392. sumf += d * (sumi1 + sumi2 + sumi3 + sumi4);
  6393. }
  6394. *s = sumf;
  6395. #elif defined __AVX2__
  6396. const __m256i m4 = _mm256_set1_epi8(0xF);
  6397. const __m256i mone = _mm256_set1_epi8(1);
  6398. __m256 acc = _mm256_setzero_ps();
  6399. for (int i = 0; i < nb; ++i) {
  6400. const uint8_t * restrict q5 = x[i].qs;
  6401. const int8_t * restrict q8 = y[i].qs;
  6402. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6403. const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5);
  6404. const __m256i scale_l = MM256_SET_M128I(_mm_set1_epi16(x[i].scales[1]), _mm_set1_epi16(x[i].scales[0]));
  6405. const __m256i scale_h = MM256_SET_M128I(_mm_set1_epi16(x[i].scales[3]), _mm_set1_epi16(x[i].scales[2]));
  6406. int64_t aux64;
  6407. memcpy(&aux64, x[i].qh, 8);
  6408. const __m128i haux128 = _mm_set_epi64x(aux64 >> 1, aux64);
  6409. const __m256i haux256 = MM256_SET_M128I(_mm_srli_epi16(haux128, 2), haux128);
  6410. const __m256i q5h_0 = _mm256_slli_epi16(_mm256_andnot_si256(haux256, mone), 4);
  6411. const __m256i q5h_1 = _mm256_slli_epi16(_mm256_andnot_si256(_mm256_srli_epi16(haux256, 4), mone), 4);
  6412. const __m256i q5l_0 = _mm256_and_si256(q5bits, m4);
  6413. const __m256i q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), m4);
  6414. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  6415. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  6416. const __m256i p16_0 = _mm256_madd_epi16(scale_l, _mm256_maddubs_epi16(q5l_0, q8_0));
  6417. const __m256i p16_1 = _mm256_madd_epi16(scale_h, _mm256_maddubs_epi16(q5l_1, q8_1));
  6418. const __m256i s16_0 = _mm256_madd_epi16(scale_l, _mm256_maddubs_epi16(q5h_0, q8_0));
  6419. const __m256i s16_1 = _mm256_madd_epi16(scale_h, _mm256_maddubs_epi16(q5h_1, q8_1));
  6420. const __m256i dot = _mm256_sub_epi32(_mm256_add_epi32(p16_0, p16_1), _mm256_add_epi32(s16_0, s16_1));
  6421. acc = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(dot), acc);
  6422. }
  6423. *s = hsum_float_8(acc);
  6424. #elif defined __AVX__
  6425. const __m128i m4 = _mm_set1_epi8(0xF);
  6426. const __m128i mone = _mm_set1_epi8(1);
  6427. __m256 acc = _mm256_setzero_ps();
  6428. for (int i = 0; i < nb; ++i) {
  6429. const uint8_t * restrict q5 = x[i].qs;
  6430. const int8_t * restrict q8 = y[i].qs;
  6431. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6432. const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5);
  6433. const __m128i scale_0 = _mm_set1_epi16(x[i].scales[0]);
  6434. const __m128i scale_1 = _mm_set1_epi16(x[i].scales[1]);
  6435. const __m128i scale_2 = _mm_set1_epi16(x[i].scales[2]);
  6436. const __m128i scale_3 = _mm_set1_epi16(x[i].scales[3]);
  6437. int64_t aux64;
  6438. memcpy(&aux64, x[i].qh, 8);
  6439. const __m128i haux128_0 = _mm_set_epi64x(aux64 >> 1, aux64);
  6440. const __m128i haux128_1 = _mm_srli_epi16(haux128_0, 2);
  6441. const __m128i q5h_0 = _mm_slli_epi16(_mm_andnot_si128(haux128_0, mone), 4);
  6442. const __m128i q5h_1 = _mm_slli_epi16(_mm_andnot_si128(haux128_1, mone), 4);
  6443. const __m128i q5h_2 = _mm_slli_epi16(_mm_andnot_si128(_mm_srli_epi16(haux128_0, 4), mone), 4);
  6444. const __m128i q5h_3 = _mm_slli_epi16(_mm_andnot_si128(_mm_srli_epi16(haux128_1, 4), mone), 4);
  6445. const __m128i q5l_0 = _mm_and_si128(_mm256_extractf128_si256(q5bits, 0), m4);
  6446. const __m128i q5l_1 = _mm_and_si128(_mm256_extractf128_si256(q5bits, 1), m4);
  6447. const __m128i q5l_2 = _mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q5bits, 0), 4), m4);
  6448. const __m128i q5l_3 = _mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q5bits, 1), 4), m4);
  6449. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  6450. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  6451. const __m128i p16_0 = _mm_madd_epi16(scale_0, _mm_maddubs_epi16(q5l_0, _mm256_extractf128_si256(q8_0, 0)));
  6452. const __m128i p16_1 = _mm_madd_epi16(scale_1, _mm_maddubs_epi16(q5l_1, _mm256_extractf128_si256(q8_0, 1)));
  6453. const __m128i p16_2 = _mm_madd_epi16(scale_2, _mm_maddubs_epi16(q5l_2, _mm256_extractf128_si256(q8_1, 0)));
  6454. const __m128i p16_3 = _mm_madd_epi16(scale_3, _mm_maddubs_epi16(q5l_3, _mm256_extractf128_si256(q8_1, 1)));
  6455. const __m128i s16_0 = _mm_madd_epi16(scale_0, _mm_maddubs_epi16(q5h_0, _mm256_extractf128_si256(q8_0, 0)));
  6456. const __m128i s16_1 = _mm_madd_epi16(scale_1, _mm_maddubs_epi16(q5h_1, _mm256_extractf128_si256(q8_0, 1)));
  6457. const __m128i s16_2 = _mm_madd_epi16(scale_2, _mm_maddubs_epi16(q5h_2, _mm256_extractf128_si256(q8_1, 0)));
  6458. const __m128i s16_3 = _mm_madd_epi16(scale_3, _mm_maddubs_epi16(q5h_3, _mm256_extractf128_si256(q8_1, 1)));
  6459. const __m128i dot_0 = _mm_sub_epi32(_mm_add_epi32(p16_0, p16_2), _mm_add_epi32(s16_0, s16_2));
  6460. const __m128i dot_1 = _mm_sub_epi32(_mm_add_epi32(p16_1, p16_3), _mm_add_epi32(s16_1, s16_3));
  6461. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(dot_1, dot_0))), acc);
  6462. }
  6463. *s = hsum_float_8(acc);
  6464. #elif defined __riscv_v_intrinsic
  6465. float sumf = 0;
  6466. for (int i = 0; i < nb; ++i) {
  6467. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6468. const int8_t * sc = x[i].scales;
  6469. const uint8_t * restrict q5 = x[i].qs;
  6470. const uint8_t * restrict qh = x[i].qh;
  6471. const int8_t * restrict q8 = y[i].qs;
  6472. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  6473. // load qh
  6474. vuint8mf4_t qh_x1 = __riscv_vle8_v_u8mf4(qh, 8);
  6475. vuint8mf2_t qh_x2 = __riscv_vlmul_ext_v_u8mf4_u8mf2(__riscv_vsrl_vx_u8mf4(qh_x1, 1, 8));
  6476. size_t vl = 16;
  6477. // combine both qh_1 and qh_2
  6478. vuint8mf2_t qh_x = __riscv_vslideup_vx_u8mf2(__riscv_vlmul_ext_v_u8mf4_u8mf2(qh_x1), qh_x2, vl/2, vl);
  6479. vuint8mf2_t qh_h0 = __riscv_vand_vx_u8mf2(__riscv_vnot_v_u8mf2(__riscv_vsll_vx_u8mf2(qh_x, 0x4, vl), vl), 16, vl);
  6480. vuint8mf2_t qh_h1 = __riscv_vand_vx_u8mf2(__riscv_vnot_v_u8mf2(__riscv_vsll_vx_u8mf2(qh_x, 0x2, vl), vl), 16, vl);
  6481. vuint8mf2_t qh_h2 = __riscv_vand_vx_u8mf2(__riscv_vnot_v_u8mf2(qh_x, vl), 16, vl);
  6482. vuint8mf2_t qh_h3 = __riscv_vand_vx_u8mf2(__riscv_vnot_v_u8mf2(__riscv_vsrl_vx_u8mf2(qh_x, 0x4, vl), vl), 16, vl);
  6483. vint8mf2_t qh_0 = __riscv_vreinterpret_v_u8mf2_i8mf2(qh_h0);
  6484. vint8mf2_t qh_1 = __riscv_vreinterpret_v_u8mf2_i8mf2(qh_h1);
  6485. vint8mf2_t qh_2 = __riscv_vreinterpret_v_u8mf2_i8mf2(qh_h2);
  6486. vint8mf2_t qh_3 = __riscv_vreinterpret_v_u8mf2_i8mf2(qh_h3);
  6487. // load q5
  6488. vuint8mf2_t q5_x1 = __riscv_vle8_v_u8mf2(q5, vl);
  6489. vuint8mf2_t q5_x2 = __riscv_vle8_v_u8mf2(q5+16, vl);
  6490. vint8mf2_t q5s_0 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(q5_x1, 0xF, vl));
  6491. vint8mf2_t q5s_1 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(q5_x2, 0xF, vl));
  6492. vint8mf2_t q5s_2 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vsrl_vx_u8mf2(q5_x1, 0x4, vl));
  6493. vint8mf2_t q5s_3 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vsrl_vx_u8mf2(q5_x2, 0x4, vl));
  6494. vint8mf2_t q5_0 = __riscv_vsub_vv_i8mf2(q5s_0, qh_0, vl);
  6495. vint8mf2_t q5_1 = __riscv_vsub_vv_i8mf2(q5s_1, qh_1, vl);
  6496. vint8mf2_t q5_2 = __riscv_vsub_vv_i8mf2(q5s_2, qh_2, vl);
  6497. vint8mf2_t q5_3 = __riscv_vsub_vv_i8mf2(q5s_3, qh_3, vl);
  6498. // load Q8 and multiply it with Q5
  6499. vint16m1_t p0 = __riscv_vwmul_vv_i16m1(q5_0, __riscv_vle8_v_i8mf2(q8, vl), vl);
  6500. vint16m1_t p1 = __riscv_vwmul_vv_i16m1(q5_1, __riscv_vle8_v_i8mf2(q8+16, vl), vl);
  6501. vint16m1_t p2 = __riscv_vwmul_vv_i16m1(q5_2, __riscv_vle8_v_i8mf2(q8+32, vl), vl);
  6502. vint16m1_t p3 = __riscv_vwmul_vv_i16m1(q5_3, __riscv_vle8_v_i8mf2(q8+48, vl), vl);
  6503. vint32m1_t vs_0 = __riscv_vwredsum_vs_i16m1_i32m1(p0, vzero, vl);
  6504. vint32m1_t vs_1 = __riscv_vwredsum_vs_i16m1_i32m1(p1, vzero, vl);
  6505. vint32m1_t vs_2 = __riscv_vwredsum_vs_i16m1_i32m1(p2, vzero, vl);
  6506. vint32m1_t vs_3 = __riscv_vwredsum_vs_i16m1_i32m1(p3, vzero, vl);
  6507. int32_t sumi1 = sc[0] * __riscv_vmv_x_s_i32m1_i32(vs_0);
  6508. int32_t sumi2 = sc[1] * __riscv_vmv_x_s_i32m1_i32(vs_1);
  6509. int32_t sumi3 = sc[2] * __riscv_vmv_x_s_i32m1_i32(vs_2);
  6510. int32_t sumi4 = sc[3] * __riscv_vmv_x_s_i32m1_i32(vs_3);
  6511. sumf += d * (sumi1 + sumi2 + sumi3 + sumi4);
  6512. }
  6513. *s = sumf;
  6514. #else
  6515. int8_t aux8[QK_K];
  6516. int16_t aux16[16];
  6517. float sums [8];
  6518. memset(sums, 0, 8*sizeof(float));
  6519. float sumf = 0;
  6520. for (int i = 0; i < nb; ++i) {
  6521. const uint8_t * restrict q4 = x[i].qs;
  6522. const uint8_t * restrict hm = x[i].qh;
  6523. const int8_t * restrict q8 = y[i].qs;
  6524. int8_t * restrict a = aux8;
  6525. for (int l = 0; l < 32; ++l) {
  6526. a[l+ 0] = q4[l] & 0xF;
  6527. a[l+32] = q4[l] >> 4;
  6528. }
  6529. for (int is = 0; is < 8; ++is) {
  6530. uint8_t m = 1 << is;
  6531. for (int l = 0; l < 8; ++l) a[8*is + l] -= (hm[l] & m ? 0 : 16);
  6532. }
  6533. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6534. const int8_t * restrict sc = x[i].scales;
  6535. for (int j = 0; j < QK_K/16; ++j) {
  6536. const float dl = d * sc[j];
  6537. for (int l = 0; l < 16; ++l) aux16[l] = q8[l] * a[l];
  6538. for (int l = 0; l < 8; ++l) sums[l] += dl * (aux16[l] + aux16[8+l]);
  6539. q8 += 16; a += 16;
  6540. }
  6541. }
  6542. for (int l = 0; l < 8; ++l) sumf += sums[l];
  6543. *s = sumf;
  6544. #endif
  6545. }
  6546. #endif
  6547. #if QK_K == 256
  6548. void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  6549. assert(n % QK_K == 0);
  6550. assert(nrc == 1);
  6551. UNUSED(nrc);
  6552. UNUSED(bx);
  6553. UNUSED(by);
  6554. UNUSED(bs);
  6555. const block_q6_K * restrict x = vx;
  6556. const block_q8_K * restrict y = vy;
  6557. const int nb = n / QK_K;
  6558. #ifdef __ARM_NEON
  6559. float sum = 0;
  6560. const uint8x16_t m4b = vdupq_n_u8(0xF);
  6561. const int32x4_t vzero = vdupq_n_s32(0);
  6562. //const int8x16_t m32s = vdupq_n_s8(32);
  6563. const uint8x16_t mone = vdupq_n_u8(3);
  6564. ggml_int8x16x4_t q6bytes;
  6565. ggml_uint8x16x4_t q6h;
  6566. for (int i = 0; i < nb; ++i) {
  6567. const float d_all = GGML_FP16_TO_FP32(x[i].d);
  6568. const uint8_t * restrict q6 = x[i].ql;
  6569. const uint8_t * restrict qh = x[i].qh;
  6570. const int8_t * restrict q8 = y[i].qs;
  6571. const int8_t * restrict scale = x[i].scales;
  6572. const ggml_int16x8x2_t q8sums = ggml_vld1q_s16_x2(y[i].bsums);
  6573. const int8x16_t scales = vld1q_s8(scale);
  6574. const ggml_int16x8x2_t q6scales = {{vmovl_s8(vget_low_s8(scales)), vmovl_s8(vget_high_s8(scales))}};
  6575. const int32x4_t prod = vaddq_s32(vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[0]), vget_low_s16 (q6scales.val[0])),
  6576. vmull_s16(vget_high_s16(q8sums.val[0]), vget_high_s16(q6scales.val[0]))),
  6577. vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[1]), vget_low_s16 (q6scales.val[1])),
  6578. vmull_s16(vget_high_s16(q8sums.val[1]), vget_high_s16(q6scales.val[1]))));
  6579. int32_t isum_mins = vaddvq_s32(prod);
  6580. int32_t isum = 0;
  6581. for (int j = 0; j < QK_K/128; ++j) {
  6582. ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh); qh += 32;
  6583. ggml_uint8x16x4_t q6bits = ggml_vld1q_u8_x4(q6); q6 += 64;
  6584. ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
  6585. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
  6586. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
  6587. uint8x16_t shifted = vshrq_n_u8(qhbits.val[0], 2);
  6588. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6589. shifted = vshrq_n_u8(qhbits.val[1], 2);
  6590. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6591. //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0])), m32s);
  6592. //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1])), m32s);
  6593. //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2])), m32s);
  6594. //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3])), m32s);
  6595. q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0]));
  6596. q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1]));
  6597. q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2]));
  6598. q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3]));
  6599. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  6600. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  6601. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  6602. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  6603. scale += 4;
  6604. q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
  6605. shifted = vshrq_n_u8(qhbits.val[0], 4);
  6606. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6607. shifted = vshrq_n_u8(qhbits.val[1], 4);
  6608. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6609. shifted = vshrq_n_u8(qhbits.val[0], 6);
  6610. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6611. shifted = vshrq_n_u8(qhbits.val[1], 6);
  6612. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6613. //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0])), m32s);
  6614. //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1])), m32s);
  6615. //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2])), m32s);
  6616. //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3])), m32s);
  6617. q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0]));
  6618. q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1]));
  6619. q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2]));
  6620. q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3]));
  6621. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  6622. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  6623. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  6624. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  6625. scale += 4;
  6626. }
  6627. //sum += isum * d_all * y[i].d;
  6628. sum += d_all * y[i].d * (isum - 32 * isum_mins);
  6629. }
  6630. *s = sum;
  6631. #elif defined __AVX2__
  6632. const __m256i m4 = _mm256_set1_epi8(0xF);
  6633. const __m256i m2 = _mm256_set1_epi8(3);
  6634. const __m256i m32s = _mm256_set1_epi8(32);
  6635. __m256 acc = _mm256_setzero_ps();
  6636. for (int i = 0; i < nb; ++i) {
  6637. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6638. const uint8_t * restrict q4 = x[i].ql;
  6639. const uint8_t * restrict qh = x[i].qh;
  6640. const int8_t * restrict q8 = y[i].qs;
  6641. const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  6642. __m256i sumi = _mm256_setzero_si256();
  6643. int is = 0;
  6644. for (int j = 0; j < QK_K/128; ++j) {
  6645. const __m128i scale_0 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 0));
  6646. const __m128i scale_1 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 1));
  6647. const __m128i scale_2 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 2));
  6648. const __m128i scale_3 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 3));
  6649. is += 4;
  6650. const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  6651. const __m256i q4bits2 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  6652. const __m256i q4bitsH = _mm256_loadu_si256((const __m256i*)qh); qh += 32;
  6653. const __m256i q4h_0 = _mm256_slli_epi16(_mm256_and_si256(q4bitsH, m2), 4);
  6654. const __m256i q4h_1 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 2), m2), 4);
  6655. const __m256i q4h_2 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 4), m2), 4);
  6656. const __m256i q4h_3 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 6), m2), 4);
  6657. const __m256i q4_0 = _mm256_or_si256(_mm256_and_si256(q4bits1, m4), q4h_0);
  6658. const __m256i q4_1 = _mm256_or_si256(_mm256_and_si256(q4bits2, m4), q4h_1);
  6659. const __m256i q4_2 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits1, 4), m4), q4h_2);
  6660. const __m256i q4_3 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits2, 4), m4), q4h_3);
  6661. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  6662. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  6663. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  6664. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  6665. __m256i q8s_0 = _mm256_maddubs_epi16(m32s, q8_0);
  6666. __m256i q8s_1 = _mm256_maddubs_epi16(m32s, q8_1);
  6667. __m256i q8s_2 = _mm256_maddubs_epi16(m32s, q8_2);
  6668. __m256i q8s_3 = _mm256_maddubs_epi16(m32s, q8_3);
  6669. __m256i p16_0 = _mm256_maddubs_epi16(q4_0, q8_0);
  6670. __m256i p16_1 = _mm256_maddubs_epi16(q4_1, q8_1);
  6671. __m256i p16_2 = _mm256_maddubs_epi16(q4_2, q8_2);
  6672. __m256i p16_3 = _mm256_maddubs_epi16(q4_3, q8_3);
  6673. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  6674. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  6675. p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
  6676. p16_3 = _mm256_sub_epi16(p16_3, q8s_3);
  6677. p16_0 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_0), p16_0);
  6678. p16_1 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_1), p16_1);
  6679. p16_2 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_2), p16_2);
  6680. p16_3 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_3), p16_3);
  6681. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  6682. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_2, p16_3));
  6683. }
  6684. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  6685. }
  6686. *s = hsum_float_8(acc);
  6687. #elif defined __AVX__
  6688. const __m128i m4 = _mm_set1_epi8(0xF);
  6689. const __m128i m3 = _mm_set1_epi8(3);
  6690. const __m128i m32s = _mm_set1_epi8(32);
  6691. const __m128i m2 = _mm_set1_epi8(2);
  6692. __m256 acc = _mm256_setzero_ps();
  6693. for (int i = 0; i < nb; ++i) {
  6694. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6695. const uint8_t * restrict q4 = x[i].ql;
  6696. const uint8_t * restrict qh = x[i].qh;
  6697. const int8_t * restrict q8 = y[i].qs;
  6698. const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  6699. __m128i sumi_0 = _mm_setzero_si128();
  6700. __m128i sumi_1 = _mm_setzero_si128();
  6701. __m128i shuffle = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  6702. for (int j = 0; j < QK_K/128; ++j) {
  6703. const __m128i q4bitsH_0 = _mm_loadu_si128((const __m128i*)qh); qh += 16;
  6704. const __m128i q4bitsH_1 = _mm_loadu_si128((const __m128i*)qh); qh += 16;
  6705. const __m128i q4h_0 = _mm_slli_epi16(_mm_and_si128(q4bitsH_0, m3), 4);
  6706. const __m128i q4h_1 = _mm_slli_epi16(_mm_and_si128(q4bitsH_1, m3), 4);
  6707. const __m128i q4h_2 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 2), m3), 4);
  6708. const __m128i q4h_3 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 2), m3), 4);
  6709. const __m128i q4h_4 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 4), m3), 4);
  6710. const __m128i q4h_5 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 4), m3), 4);
  6711. const __m128i q4h_6 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 6), m3), 4);
  6712. const __m128i q4h_7 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 6), m3), 4);
  6713. const __m128i q4bits1_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  6714. const __m128i q4bits1_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  6715. const __m128i q4bits2_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  6716. const __m128i q4bits2_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  6717. const __m128i q4_0 = _mm_or_si128(_mm_and_si128(q4bits1_0, m4), q4h_0);
  6718. const __m128i q4_1 = _mm_or_si128(_mm_and_si128(q4bits1_1, m4), q4h_1);
  6719. const __m128i q4_2 = _mm_or_si128(_mm_and_si128(q4bits2_0, m4), q4h_2);
  6720. const __m128i q4_3 = _mm_or_si128(_mm_and_si128(q4bits2_1, m4), q4h_3);
  6721. const __m128i q4_4 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_0, 4), m4), q4h_4);
  6722. const __m128i q4_5 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_1, 4), m4), q4h_5);
  6723. const __m128i q4_6 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_0, 4), m4), q4h_6);
  6724. const __m128i q4_7 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_1, 4), m4), q4h_7);
  6725. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6726. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6727. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6728. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6729. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6730. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6731. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6732. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6733. __m128i q8s_0 = _mm_maddubs_epi16(m32s, q8_0);
  6734. __m128i q8s_1 = _mm_maddubs_epi16(m32s, q8_1);
  6735. __m128i q8s_2 = _mm_maddubs_epi16(m32s, q8_2);
  6736. __m128i q8s_3 = _mm_maddubs_epi16(m32s, q8_3);
  6737. __m128i q8s_4 = _mm_maddubs_epi16(m32s, q8_4);
  6738. __m128i q8s_5 = _mm_maddubs_epi16(m32s, q8_5);
  6739. __m128i q8s_6 = _mm_maddubs_epi16(m32s, q8_6);
  6740. __m128i q8s_7 = _mm_maddubs_epi16(m32s, q8_7);
  6741. __m128i p16_0 = _mm_maddubs_epi16(q4_0, q8_0);
  6742. __m128i p16_1 = _mm_maddubs_epi16(q4_1, q8_1);
  6743. __m128i p16_2 = _mm_maddubs_epi16(q4_2, q8_2);
  6744. __m128i p16_3 = _mm_maddubs_epi16(q4_3, q8_3);
  6745. __m128i p16_4 = _mm_maddubs_epi16(q4_4, q8_4);
  6746. __m128i p16_5 = _mm_maddubs_epi16(q4_5, q8_5);
  6747. __m128i p16_6 = _mm_maddubs_epi16(q4_6, q8_6);
  6748. __m128i p16_7 = _mm_maddubs_epi16(q4_7, q8_7);
  6749. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  6750. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  6751. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  6752. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  6753. p16_4 = _mm_sub_epi16(p16_4, q8s_4);
  6754. p16_5 = _mm_sub_epi16(p16_5, q8s_5);
  6755. p16_6 = _mm_sub_epi16(p16_6, q8s_6);
  6756. p16_7 = _mm_sub_epi16(p16_7, q8s_7);
  6757. const __m128i scale_0 = _mm_shuffle_epi8(scales, shuffle);
  6758. shuffle = _mm_add_epi8(shuffle, m2);
  6759. const __m128i scale_1 = _mm_shuffle_epi8(scales, shuffle);
  6760. shuffle = _mm_add_epi8(shuffle, m2);
  6761. const __m128i scale_2 = _mm_shuffle_epi8(scales, shuffle);
  6762. shuffle = _mm_add_epi8(shuffle, m2);
  6763. const __m128i scale_3 = _mm_shuffle_epi8(scales, shuffle);
  6764. shuffle = _mm_add_epi8(shuffle, m2);
  6765. p16_0 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_0), p16_0);
  6766. p16_1 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_0, scale_0)), p16_1);
  6767. p16_2 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_1), p16_2);
  6768. p16_3 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_1, scale_1)), p16_3);
  6769. p16_4 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_2), p16_4);
  6770. p16_5 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_2, scale_2)), p16_5);
  6771. p16_6 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_3), p16_6);
  6772. p16_7 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_3, scale_3)), p16_7);
  6773. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  6774. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
  6775. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_4, p16_6));
  6776. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_5, p16_7));
  6777. }
  6778. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  6779. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc);
  6780. }
  6781. *s = hsum_float_8(acc);
  6782. #elif defined __riscv_v_intrinsic
  6783. float sumf = 0;
  6784. for (int i = 0; i < nb; ++i) {
  6785. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6786. const uint8_t * restrict q6 = x[i].ql;
  6787. const uint8_t * restrict qh = x[i].qh;
  6788. const int8_t * restrict q8 = y[i].qs;
  6789. const int8_t * restrict scale = x[i].scales;
  6790. size_t vl;
  6791. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  6792. int sum_t = 0;
  6793. int is = 0;
  6794. for (int j = 0; j < QK_K/128; ++j) {
  6795. vl = 32;
  6796. // load qh
  6797. vuint8m1_t qh_x = __riscv_vle8_v_u8m1(qh, vl);
  6798. // load Q6
  6799. vuint8m1_t q6_0 = __riscv_vle8_v_u8m1(q6, vl);
  6800. vuint8m1_t q6_1 = __riscv_vle8_v_u8m1(q6+32, vl);
  6801. vuint8m1_t q6a_0 = __riscv_vand_vx_u8m1(q6_0, 0x0F, vl);
  6802. vuint8m1_t q6a_1 = __riscv_vand_vx_u8m1(q6_1, 0x0F, vl);
  6803. vuint8m1_t q6s_0 = __riscv_vsrl_vx_u8m1(q6_0, 0x04, vl);
  6804. vuint8m1_t q6s_1 = __riscv_vsrl_vx_u8m1(q6_1, 0x04, vl);
  6805. vuint8m1_t qh_0 = __riscv_vand_vx_u8m1(qh_x, 0x03, vl);
  6806. vuint8m1_t qh_1 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x2, vl), 0x03 , vl);
  6807. vuint8m1_t qh_2 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x4, vl), 0x03 , vl);
  6808. vuint8m1_t qh_3 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x6, vl), 0x03 , vl);
  6809. vuint8m1_t qhi_0 = __riscv_vor_vv_u8m1(q6a_0, __riscv_vsll_vx_u8m1(qh_0, 0x04, vl), vl);
  6810. vuint8m1_t qhi_1 = __riscv_vor_vv_u8m1(q6a_1, __riscv_vsll_vx_u8m1(qh_1, 0x04, vl), vl);
  6811. vuint8m1_t qhi_2 = __riscv_vor_vv_u8m1(q6s_0, __riscv_vsll_vx_u8m1(qh_2, 0x04, vl), vl);
  6812. vuint8m1_t qhi_3 = __riscv_vor_vv_u8m1(q6s_1, __riscv_vsll_vx_u8m1(qh_3, 0x04, vl), vl);
  6813. vint8m1_t a_0 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_0), 32, vl);
  6814. vint8m1_t a_1 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_1), 32, vl);
  6815. vint8m1_t a_2 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_2), 32, vl);
  6816. vint8m1_t a_3 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_3), 32, vl);
  6817. // load Q8 and take product
  6818. vint16m2_t va_q_0 = __riscv_vwmul_vv_i16m2(a_0, __riscv_vle8_v_i8m1(q8, vl), vl);
  6819. vint16m2_t va_q_1 = __riscv_vwmul_vv_i16m2(a_1, __riscv_vle8_v_i8m1(q8+32, vl), vl);
  6820. vint16m2_t va_q_2 = __riscv_vwmul_vv_i16m2(a_2, __riscv_vle8_v_i8m1(q8+64, vl), vl);
  6821. vint16m2_t va_q_3 = __riscv_vwmul_vv_i16m2(a_3, __riscv_vle8_v_i8m1(q8+96, vl), vl);
  6822. vl = 16;
  6823. vint32m2_t vaux_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_0, 0), scale[is+0], vl);
  6824. vint32m2_t vaux_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_0, 1), scale[is+1], vl);
  6825. vint32m2_t vaux_2 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_1, 0), scale[is+2], vl);
  6826. vint32m2_t vaux_3 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_1, 1), scale[is+3], vl);
  6827. vint32m2_t vaux_4 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_2, 0), scale[is+4], vl);
  6828. vint32m2_t vaux_5 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_2, 1), scale[is+5], vl);
  6829. vint32m2_t vaux_6 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_3, 0), scale[is+6], vl);
  6830. vint32m2_t vaux_7 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_3, 1), scale[is+7], vl);
  6831. vint32m1_t isum0 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_0, vaux_1, vl), vzero, vl);
  6832. vint32m1_t isum1 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_2, vaux_3, vl), isum0, vl);
  6833. vint32m1_t isum2 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_4, vaux_5, vl), isum1, vl);
  6834. vint32m1_t isum3 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_6, vaux_7, vl), isum2, vl);
  6835. sum_t += __riscv_vmv_x_s_i32m1_i32(isum3);
  6836. q6 += 64; qh += 32; q8 += 128; is=8;
  6837. }
  6838. sumf += d * sum_t;
  6839. }
  6840. *s = sumf;
  6841. #else
  6842. int8_t aux8[QK_K];
  6843. int16_t aux16[8];
  6844. float sums [8];
  6845. int32_t aux32[8];
  6846. memset(sums, 0, 8*sizeof(float));
  6847. float sumf = 0;
  6848. for (int i = 0; i < nb; ++i) {
  6849. const uint8_t * restrict q4 = x[i].ql;
  6850. const uint8_t * restrict qh = x[i].qh;
  6851. const int8_t * restrict q8 = y[i].qs;
  6852. memset(aux32, 0, 8*sizeof(int32_t));
  6853. int8_t * restrict a = aux8;
  6854. for (int j = 0; j < QK_K; j += 128) {
  6855. for (int l = 0; l < 32; ++l) {
  6856. a[l + 0] = (int8_t)((q4[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  6857. a[l + 32] = (int8_t)((q4[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  6858. a[l + 64] = (int8_t)((q4[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  6859. a[l + 96] = (int8_t)((q4[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  6860. }
  6861. a += 128;
  6862. q4 += 64;
  6863. qh += 32;
  6864. }
  6865. a = aux8;
  6866. int is = 0;
  6867. for (int j = 0; j < QK_K/16; ++j) {
  6868. int scale = x[i].scales[is++];
  6869. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6870. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6871. q8 += 8; a += 8;
  6872. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6873. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6874. q8 += 8; a += 8;
  6875. }
  6876. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6877. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  6878. }
  6879. for (int l = 0; l < 8; ++l) sumf += sums[l];
  6880. *s = sumf;
  6881. #endif
  6882. }
  6883. #else
  6884. void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  6885. assert(n % QK_K == 0);
  6886. assert(nrc == 1);
  6887. UNUSED(nrc);
  6888. UNUSED(bx);
  6889. UNUSED(by);
  6890. UNUSED(bs);
  6891. const block_q6_K * restrict x = vx;
  6892. const block_q8_K * restrict y = vy;
  6893. const int nb = n / QK_K;
  6894. #ifdef __ARM_NEON
  6895. float sum = 0;
  6896. const uint8x16_t m4b = vdupq_n_u8(0xF);
  6897. const int8x16_t m32s = vdupq_n_s8(32);
  6898. const int32x4_t vzero = vdupq_n_s32(0);
  6899. const uint8x16_t mone = vdupq_n_u8(3);
  6900. ggml_int8x16x4_t q6bytes;
  6901. ggml_uint8x16x4_t q6h;
  6902. for (int i = 0; i < nb; ++i) {
  6903. const float d_all = GGML_FP16_TO_FP32(x[i].d);
  6904. const uint8_t * restrict q6 = x[i].ql;
  6905. const uint8_t * restrict qh = x[i].qh;
  6906. const int8_t * restrict q8 = y[i].qs;
  6907. const int8_t * restrict scale = x[i].scales;
  6908. int32_t isum = 0;
  6909. uint8x16_t qhbits = vld1q_u8(qh);
  6910. ggml_uint8x16x2_t q6bits = ggml_vld1q_u8_x2(q6);
  6911. ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8);
  6912. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits), 4);
  6913. uint8x16_t shifted = vshrq_n_u8(qhbits, 2);
  6914. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6915. shifted = vshrq_n_u8(qhbits, 4);
  6916. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6917. shifted = vshrq_n_u8(qhbits, 6);
  6918. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6919. q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0])), m32s);
  6920. q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1])), m32s);
  6921. q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[2])), m32s);
  6922. q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[3])), m32s);
  6923. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  6924. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  6925. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  6926. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  6927. sum += isum * d_all * y[i].d;
  6928. }
  6929. *s = sum;
  6930. #elif defined __AVX2__
  6931. const __m256i m4 = _mm256_set1_epi8(0xF);
  6932. const __m256i m2 = _mm256_set1_epi8(3);
  6933. const __m256i m32s = _mm256_set1_epi8(32);
  6934. __m256 acc = _mm256_setzero_ps();
  6935. for (int i = 0; i < nb; ++i) {
  6936. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6937. const uint8_t * restrict q4 = x[i].ql;
  6938. const uint8_t * restrict qh = x[i].qh;
  6939. const int8_t * restrict q8 = y[i].qs;
  6940. const __m64 scales_1 = _mm_set1_pi8(x[i].scales[0]);
  6941. const __m64 scales_2 = _mm_set1_pi8(x[i].scales[1]);
  6942. const __m64 scales_3 = _mm_set1_pi8(x[i].scales[2]);
  6943. const __m64 scales_4 = _mm_set1_pi8(x[i].scales[3]);
  6944. __m256i sumi = _mm256_setzero_si256();
  6945. const __m128i scale_0 = _mm_set_epi64(scales_2, scales_1);
  6946. const __m128i scale_1 = _mm_set_epi64(scales_4, scales_3);
  6947. const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4);
  6948. const __m128i q4bitsH = _mm_loadu_si128((const __m128i*)qh);
  6949. const __m256i q4h_0 = _mm256_slli_epi16(_mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q4bitsH, 2), q4bitsH), m2), 4);
  6950. const __m256i q4h_1 = _mm256_slli_epi16(_mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q4bitsH, 6), _mm_srli_epi16(q4bitsH, 4)), m2), 4);
  6951. const __m256i q4_0 = _mm256_or_si256(_mm256_and_si256(q4bits1, m4), q4h_0);
  6952. const __m256i q4_1 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits1, 4), m4), q4h_1);
  6953. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  6954. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  6955. __m256i q8s_0 = _mm256_maddubs_epi16(m32s, q8_0);
  6956. __m256i q8s_1 = _mm256_maddubs_epi16(m32s, q8_1);
  6957. __m256i p16_0 = _mm256_maddubs_epi16(q4_0, q8_0);
  6958. __m256i p16_1 = _mm256_maddubs_epi16(q4_1, q8_1);
  6959. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  6960. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  6961. p16_0 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_0), p16_0);
  6962. p16_1 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_1), p16_1);
  6963. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  6964. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  6965. }
  6966. *s = hsum_float_8(acc);
  6967. #elif defined __AVX__
  6968. const __m128i m4 = _mm_set1_epi8(0xF);
  6969. const __m128i m2 = _mm_set1_epi8(3);
  6970. const __m128i m32s = _mm_set1_epi8(32);
  6971. __m256 acc = _mm256_setzero_ps();
  6972. for (int i = 0; i < nb; ++i) {
  6973. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6974. const uint8_t * restrict q4 = x[i].ql;
  6975. const uint8_t * restrict qh = x[i].qh;
  6976. const int8_t * restrict q8 = y[i].qs;
  6977. const __m64 scales_1 = _mm_set1_pi8(x[i].scales[0]);
  6978. const __m64 scales_2 = _mm_set1_pi8(x[i].scales[1]);
  6979. const __m64 scales_3 = _mm_set1_pi8(x[i].scales[2]);
  6980. const __m64 scales_4 = _mm_set1_pi8(x[i].scales[3]);
  6981. __m128i sumi_0 = _mm_setzero_si128();
  6982. __m128i sumi_1 = _mm_setzero_si128();
  6983. const __m128i scale_0 = _mm_set_epi64(scales_2, scales_1);
  6984. const __m128i scale_1 = _mm_set_epi64(scales_4, scales_3);
  6985. const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4);
  6986. const __m128i q4bitsH = _mm_loadu_si128((const __m128i*)qh);
  6987. const __m128i q4h_0 = _mm_slli_epi16(_mm_and_si128(q4bitsH, m2), 4);
  6988. const __m128i q4h_1 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 2), m2), 4);
  6989. const __m128i q4h_2 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 4), m2), 4);
  6990. const __m128i q4h_3 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 6), m2), 4);
  6991. const __m128i q4_0 = _mm_or_si128(_mm_and_si128(_mm256_extractf128_si256(q4bits1, 0), m4), q4h_0);
  6992. const __m128i q4_1 = _mm_or_si128(_mm_and_si128(_mm256_extractf128_si256(q4bits1, 1), m4), q4h_1);
  6993. const __m128i q4_2 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q4bits1, 0), 4), m4), q4h_2);
  6994. const __m128i q4_3 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q4bits1, 1), 4), m4), q4h_3);
  6995. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  6996. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  6997. __m128i q8s_0 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_0, 0));
  6998. __m128i q8s_1 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_0, 1));
  6999. __m128i q8s_2 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_1, 0));
  7000. __m128i q8s_3 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_1, 1));
  7001. __m128i p16_0 = _mm_maddubs_epi16(q4_0, _mm256_extractf128_si256(q8_0, 0));
  7002. __m128i p16_1 = _mm_maddubs_epi16(q4_1, _mm256_extractf128_si256(q8_0, 1));
  7003. __m128i p16_2 = _mm_maddubs_epi16(q4_2, _mm256_extractf128_si256(q8_1, 0));
  7004. __m128i p16_3 = _mm_maddubs_epi16(q4_3, _mm256_extractf128_si256(q8_1, 1));
  7005. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  7006. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  7007. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  7008. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  7009. p16_0 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_0), p16_0);
  7010. p16_1 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_0, scale_0)), p16_1);
  7011. p16_2 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_1), p16_2);
  7012. p16_3 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_1, scale_1)), p16_3);
  7013. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  7014. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
  7015. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(MM256_SET_M128I(sumi_1, sumi_0))), acc);
  7016. }
  7017. *s = hsum_float_8(acc);
  7018. #elif defined __riscv_v_intrinsic
  7019. float sumf = 0;
  7020. for (int i = 0; i < nb; ++i) {
  7021. const float d_all = GGML_FP16_TO_FP32(x[i].d);
  7022. const uint8_t * restrict q6 = x[i].ql;
  7023. const uint8_t * restrict qh = x[i].qh;
  7024. const int8_t * restrict q8 = y[i].qs;
  7025. const int8_t * restrict scale = x[i].scales;
  7026. int32_t isum = 0;
  7027. size_t vl = 16;
  7028. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  7029. // load Q6
  7030. vuint8mf2_t q6_0 = __riscv_vle8_v_u8mf2(q6, vl);
  7031. vuint8mf2_t q6_1 = __riscv_vle8_v_u8mf2(q6+16, vl);
  7032. // load qh
  7033. vuint8mf2_t qh_x = __riscv_vle8_v_u8mf2(qh, vl);
  7034. vuint8mf2_t qh0 = __riscv_vsll_vx_u8mf2(__riscv_vand_vx_u8mf2(qh_x, 0x3, vl), 0x4, vl);
  7035. qh_x = __riscv_vsrl_vx_u8mf2(qh_x, 0x2, vl);
  7036. vuint8mf2_t qh1 = __riscv_vsll_vx_u8mf2(__riscv_vand_vx_u8mf2(qh_x, 0x3, vl), 0x4, vl);
  7037. qh_x = __riscv_vsrl_vx_u8mf2(qh_x, 0x2, vl);
  7038. vuint8mf2_t qh2 = __riscv_vsll_vx_u8mf2(__riscv_vand_vx_u8mf2(qh_x, 0x3, vl), 0x4, vl);
  7039. qh_x = __riscv_vsrl_vx_u8mf2(qh_x, 0x2, vl);
  7040. vuint8mf2_t qh3 = __riscv_vsll_vx_u8mf2(__riscv_vand_vx_u8mf2(qh_x, 0x3, vl), 0x4, vl);
  7041. vuint8mf2_t q6h_0 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(q6_0, 0xF, vl), qh0, vl);
  7042. vuint8mf2_t q6h_1 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(q6_1, 0xF, vl), qh1, vl);
  7043. vuint8mf2_t q6h_2 = __riscv_vor_vv_u8mf2(__riscv_vsrl_vx_u8mf2(q6_0, 0x4, vl), qh2, vl);
  7044. vuint8mf2_t q6h_3 = __riscv_vor_vv_u8mf2(__riscv_vsrl_vx_u8mf2(q6_1, 0x4, vl), qh3, vl);
  7045. vint8mf2_t q6v_0 = __riscv_vsub_vx_i8mf2(__riscv_vreinterpret_v_u8mf2_i8mf2(q6h_0), 32, vl);
  7046. vint8mf2_t q6v_1 = __riscv_vsub_vx_i8mf2(__riscv_vreinterpret_v_u8mf2_i8mf2(q6h_1), 32, vl);
  7047. vint8mf2_t q6v_2 = __riscv_vsub_vx_i8mf2(__riscv_vreinterpret_v_u8mf2_i8mf2(q6h_2), 32, vl);
  7048. vint8mf2_t q6v_3 = __riscv_vsub_vx_i8mf2(__riscv_vreinterpret_v_u8mf2_i8mf2(q6h_3), 32, vl);
  7049. // load Q8 and take product
  7050. vint16m1_t p0 = __riscv_vwmul_vv_i16m1(q6v_0, __riscv_vle8_v_i8mf2(q8, vl), vl);
  7051. vint16m1_t p1 = __riscv_vwmul_vv_i16m1(q6v_1, __riscv_vle8_v_i8mf2(q8+16, vl), vl);
  7052. vint16m1_t p2 = __riscv_vwmul_vv_i16m1(q6v_2, __riscv_vle8_v_i8mf2(q8+32, vl), vl);
  7053. vint16m1_t p3 = __riscv_vwmul_vv_i16m1(q6v_3, __riscv_vle8_v_i8mf2(q8+48, vl), vl);
  7054. vint32m1_t vs_0 = __riscv_vwredsum_vs_i16m1_i32m1(p0, vzero, vl);
  7055. vint32m1_t vs_1 = __riscv_vwredsum_vs_i16m1_i32m1(p1, vzero, vl);
  7056. vint32m1_t vs_2 = __riscv_vwredsum_vs_i16m1_i32m1(p2, vzero, vl);
  7057. vint32m1_t vs_3 = __riscv_vwredsum_vs_i16m1_i32m1(p3, vzero, vl);
  7058. isum += __riscv_vmv_x_s_i32m1_i32(vs_0) * scale[0];
  7059. isum += __riscv_vmv_x_s_i32m1_i32(vs_1) * scale[1];
  7060. isum += __riscv_vmv_x_s_i32m1_i32(vs_2) * scale[2];
  7061. isum += __riscv_vmv_x_s_i32m1_i32(vs_3) * scale[3];
  7062. sumf += isum * d_all * y[i].d;
  7063. }
  7064. *s = sumf;
  7065. #else
  7066. int8_t aux8[QK_K];
  7067. int16_t aux16[8];
  7068. float sums [8];
  7069. int32_t aux32[8];
  7070. memset(sums, 0, 8*sizeof(float));
  7071. float sumf = 0;
  7072. for (int i = 0; i < nb; ++i) {
  7073. const uint8_t * restrict q4 = x[i].ql;
  7074. const uint8_t * restrict qh = x[i].qh;
  7075. const int8_t * restrict q8 = y[i].qs;
  7076. memset(aux32, 0, 8*sizeof(int32_t));
  7077. int8_t * restrict a = aux8;
  7078. for (int l = 0; l < 16; ++l) {
  7079. a[l+ 0] = (int8_t)((q4[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  7080. a[l+16] = (int8_t)((q4[l+16] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  7081. a[l+32] = (int8_t)((q4[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  7082. a[l+48] = (int8_t)((q4[l+16] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  7083. }
  7084. int is = 0;
  7085. for (int j = 0; j < QK_K/16; ++j) {
  7086. int scale = x[i].scales[is++];
  7087. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  7088. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  7089. q8 += 8; a += 8;
  7090. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  7091. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  7092. q8 += 8; a += 8;
  7093. }
  7094. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7095. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  7096. }
  7097. for (int l = 0; l < 8; ++l) sumf += sums[l];
  7098. *s = sumf;
  7099. #endif
  7100. }
  7101. #endif
  7102. #if defined (__AVX2__) || defined (__ARM_NEON)
  7103. static const int8_t keven_signs_q2xs[1024] = {
  7104. 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1,
  7105. 1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1,
  7106. 1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1,
  7107. 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1,
  7108. 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, -1,
  7109. 1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1,
  7110. 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, 1,
  7111. 1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, -1,
  7112. 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1,
  7113. 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1,
  7114. 1, 1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1,
  7115. 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1,
  7116. 1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1,
  7117. 1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, -1,
  7118. 1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, -1,
  7119. 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1,
  7120. 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1,
  7121. 1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1,
  7122. 1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1,
  7123. 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, -1,
  7124. 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1,
  7125. 1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, -1,
  7126. 1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, -1,
  7127. 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1,
  7128. 1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1,
  7129. 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, -1,
  7130. 1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, -1,
  7131. 1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, 1,
  7132. 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1,
  7133. 1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, 1,
  7134. 1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1,
  7135. 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1,
  7136. };
  7137. #endif
  7138. void ggml_vec_dot_iq2_xxs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  7139. assert(n % QK_K == 0);
  7140. assert(nrc == 1);
  7141. UNUSED(nrc);
  7142. UNUSED(bx);
  7143. UNUSED(by);
  7144. UNUSED(bs);
  7145. const block_iq2_xxs * restrict x = vx;
  7146. const block_q8_K * restrict y = vy;
  7147. const int nb = n / QK_K;
  7148. #if defined(__ARM_NEON)
  7149. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7150. uint32_t aux32[4];
  7151. const uint8_t * aux8 = (const uint8_t *)aux32;
  7152. ggml_int8x16x4_t q2u;
  7153. ggml_int8x16x4_t q2s;
  7154. ggml_int8x16x4_t q8b;
  7155. float sumf = 0;
  7156. for (int i = 0; i < nb; ++i) {
  7157. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7158. const uint16_t * restrict q2 = x[i].qs;
  7159. const int8_t * restrict q8 = y[i].qs;
  7160. float sumf1 = 0, sumf2 = 0;
  7161. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7162. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  7163. memcpy(aux32, q2, 4*sizeof(uint32_t)); q2 += 8;
  7164. q2u.val[0] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[ 0])), vld1_s8((const void *)(iq2xxs_grid + aux8[ 1])));
  7165. q2u.val[1] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[ 2])), vld1_s8((const void *)(iq2xxs_grid + aux8[ 3])));
  7166. q2u.val[2] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[ 8])), vld1_s8((const void *)(iq2xxs_grid + aux8[ 9])));
  7167. q2u.val[3] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[10])), vld1_s8((const void *)(iq2xxs_grid + aux8[11])));
  7168. q2s.val[0] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 7) & 127))));
  7169. q2s.val[1] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 21) & 127))));
  7170. q2s.val[2] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[3] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[3] >> 7) & 127))));
  7171. q2s.val[3] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[3] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[3] >> 21) & 127))));
  7172. q2u.val[0] = vmulq_s8(q2u.val[0], q2s.val[0]);
  7173. q2u.val[1] = vmulq_s8(q2u.val[1], q2s.val[1]);
  7174. q2u.val[2] = vmulq_s8(q2u.val[2], q2s.val[2]);
  7175. q2u.val[3] = vmulq_s8(q2u.val[3], q2s.val[3]);
  7176. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[0], q8b.val[0]), q2u.val[1], q8b.val[1]);
  7177. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[2], q8b.val[2]), q2u.val[3], q8b.val[3]);
  7178. sumf1 += vaddvq_s32(p1) * (0.5f + (aux32[1] >> 28));
  7179. sumf2 += vaddvq_s32(p2) * (0.5f + (aux32[3] >> 28));
  7180. }
  7181. sumf += d*(sumf1 + sumf2);
  7182. }
  7183. *s = 0.25f * sumf;
  7184. #elif defined(__AVX2__)
  7185. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7186. uint32_t aux32[4];
  7187. const uint8_t * aux8 = (const uint8_t *)aux32;
  7188. __m256 accumf = _mm256_setzero_ps();
  7189. for (int i = 0; i < nb; ++i) {
  7190. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7191. const uint16_t * restrict q2 = x[i].qs;
  7192. const int8_t * restrict q8 = y[i].qs;
  7193. __m256i sumi1 = _mm256_setzero_si256();
  7194. __m256i sumi2 = _mm256_setzero_si256();
  7195. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7196. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7197. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7198. memcpy(aux32, q2, 4*sizeof(uint32_t)); q2 += 8;
  7199. const __m256i q2_1 = _mm256_set_epi64x(iq2xxs_grid[aux8[ 3]], iq2xxs_grid[aux8[ 2]], iq2xxs_grid[aux8[1]], iq2xxs_grid[aux8[0]]);
  7200. const __m256i q2_2 = _mm256_set_epi64x(iq2xxs_grid[aux8[11]], iq2xxs_grid[aux8[10]], iq2xxs_grid[aux8[9]], iq2xxs_grid[aux8[8]]);
  7201. const __m256i s2_1 = _mm256_set_epi64x(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127],
  7202. signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  7203. const __m256i s2_2 = _mm256_set_epi64x(signs64[(aux32[3] >> 21) & 127], signs64[(aux32[3] >> 14) & 127],
  7204. signs64[(aux32[3] >> 7) & 127], signs64[(aux32[3] >> 0) & 127]);
  7205. const __m256i q8s_1 = _mm256_sign_epi8(q8_1, s2_1);
  7206. const __m256i q8s_2 = _mm256_sign_epi8(q8_2, s2_2);
  7207. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  7208. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  7209. const uint16_t ls1 = aux32[1] >> 28;
  7210. const uint16_t ls2 = aux32[3] >> 28;
  7211. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(2*ls1+1));
  7212. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(2*ls2+1));
  7213. sumi1 = _mm256_add_epi32(sumi1, p1);
  7214. sumi2 = _mm256_add_epi32(sumi2, p2);
  7215. }
  7216. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  7217. }
  7218. *s = 0.125f * hsum_float_8(accumf);
  7219. #else
  7220. uint32_t aux32[2];
  7221. const uint8_t * aux8 = (const uint8_t *)aux32;
  7222. float sumf = 0.f;
  7223. for (int i = 0; i < nb; ++i) {
  7224. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7225. const uint16_t * restrict q2 = x[i].qs;
  7226. const int8_t * restrict q8 = y[i].qs;
  7227. int32_t bsum = 0;
  7228. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  7229. memcpy(aux32, q2, 2*sizeof(uint32_t));
  7230. q2 += 4;
  7231. const uint32_t ls = 2*(aux32[1] >> 28) + 1;
  7232. int32_t sumi = 0;
  7233. for (int l = 0; l < 4; ++l) {
  7234. const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[l]);
  7235. const uint8_t signs = ksigns_iq2xs[(aux32[1] >> 7*l) & 127];
  7236. for (int j = 0; j < 8; ++j) {
  7237. sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
  7238. }
  7239. q8 += 8;
  7240. }
  7241. bsum += sumi * ls;
  7242. }
  7243. sumf += d * bsum;
  7244. }
  7245. *s = 0.125f * sumf;
  7246. #endif
  7247. }
  7248. void ggml_vec_dot_iq2_xs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  7249. assert(n % QK_K == 0);
  7250. assert(nrc == 1);
  7251. UNUSED(nrc);
  7252. UNUSED(bx);
  7253. UNUSED(by);
  7254. UNUSED(bs);
  7255. const block_iq2_xs * restrict x = vx;
  7256. const block_q8_K * restrict y = vy;
  7257. const int nb = n / QK_K;
  7258. #if defined(__ARM_NEON)
  7259. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7260. ggml_int8x16x4_t q2u;
  7261. ggml_int8x16x4_t q2s;
  7262. ggml_int8x16x4_t q8b;
  7263. int32x4x4_t scales32;
  7264. float sumf = 0;
  7265. for (int i = 0; i < nb; ++i) {
  7266. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7267. const uint16_t * restrict q2 = x[i].qs;
  7268. const int8_t * restrict q8 = y[i].qs;
  7269. const uint8x8_t scales8 = vld1_u8(x[i].scales);
  7270. const uint8x8_t scales_l = vand_u8(scales8, vdup_n_u8(0xf));
  7271. const uint8x8_t scales_h = vshr_n_u8(scales8, 4);
  7272. uint8x16_t scales = vcombine_u8(vzip1_u8(scales_l, scales_h), vzip2_u8(scales_l, scales_h));
  7273. scales = vaddq_u8(vshlq_n_u8(scales, 1), vdupq_n_u8(1));
  7274. const uint16x8_t scales1 = vmovl_u8(vget_low_u8(scales));
  7275. const uint16x8_t scales2 = vmovl_u8(vget_high_u8(scales));
  7276. scales32.val[0] = vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(scales1)));
  7277. scales32.val[1] = vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(scales1)));
  7278. scales32.val[2] = vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(scales2)));
  7279. scales32.val[3] = vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(scales2)));
  7280. int32x4_t sumi = vdupq_n_s32(0);
  7281. for (int ib64 = 0; ib64 < QK_K/64; ++ib64) {
  7282. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  7283. q2u.val[0] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[0] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[1] & 511))));
  7284. q2u.val[1] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[2] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[3] & 511))));
  7285. q2u.val[2] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[4] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[5] & 511))));
  7286. q2u.val[3] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[6] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[7] & 511))));
  7287. q2s.val[0] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[0] >> 9))), vld1_s8((const void *)(signs64 + (q2[1] >> 9))));
  7288. q2s.val[1] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[2] >> 9))), vld1_s8((const void *)(signs64 + (q2[3] >> 9))));
  7289. q2s.val[2] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[4] >> 9))), vld1_s8((const void *)(signs64 + (q2[5] >> 9))));
  7290. q2s.val[3] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[6] >> 9))), vld1_s8((const void *)(signs64 + (q2[7] >> 9))));
  7291. q2u.val[0] = vmulq_s8(q2u.val[0], q2s.val[0]);
  7292. q2u.val[1] = vmulq_s8(q2u.val[1], q2s.val[1]);
  7293. q2u.val[2] = vmulq_s8(q2u.val[2], q2s.val[2]);
  7294. q2u.val[3] = vmulq_s8(q2u.val[3], q2s.val[3]);
  7295. const int32x4_t p1 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[0], q8b.val[0]);
  7296. const int32x4_t p2 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[1], q8b.val[1]);
  7297. const int32x4_t p3 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[2], q8b.val[2]);
  7298. const int32x4_t p4 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[3], q8b.val[3]);
  7299. const int32x4_t p = vpaddq_s32(vpaddq_s32(p1, p2), vpaddq_s32(p3, p4));
  7300. sumi = vmlaq_s32(sumi, p, scales32.val[ib64]);
  7301. q2 += 8;
  7302. }
  7303. sumf += d*vaddvq_s32(sumi);
  7304. }
  7305. *s = 0.125f * sumf;
  7306. #elif defined(__AVX2__)
  7307. const __m128i m4 = _mm_set1_epi8(0xf);
  7308. const __m128i m1 = _mm_set1_epi8(1);
  7309. const __m256i m511 = _mm256_set1_epi16(511);
  7310. const __m256i mone = _mm256_set1_epi8(1);
  7311. static const uint8_t k_bit_helper[32] = {
  7312. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  7313. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  7314. };
  7315. static const char block_sign_shuffle_mask_1[32] = {
  7316. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,
  7317. 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06,
  7318. };
  7319. static const char block_sign_shuffle_mask_2[32] = {
  7320. 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a,
  7321. 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e,
  7322. };
  7323. static const uint8_t bit_selector_mask_bytes[32] = {
  7324. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7325. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7326. };
  7327. const __m256i bit_helper = _mm256_loadu_si256((const __m256i*)k_bit_helper);
  7328. const __m256i bit_selector_mask = _mm256_loadu_si256((const __m256i*)bit_selector_mask_bytes);
  7329. const __m256i block_sign_shuffle_1 = _mm256_loadu_si256((const __m256i*)block_sign_shuffle_mask_1);
  7330. const __m256i block_sign_shuffle_2 = _mm256_loadu_si256((const __m256i*)block_sign_shuffle_mask_2);
  7331. uint64_t aux64;
  7332. // somewhat hacky, but gives a significant boost in performance
  7333. __m256i aux_gindex;
  7334. const uint16_t * gindex = (const uint16_t *)&aux_gindex;
  7335. __m256 accumf = _mm256_setzero_ps();
  7336. for (int i = 0; i < nb; ++i) {
  7337. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7338. const uint16_t * restrict q2 = x[i].qs;
  7339. const int8_t * restrict q8 = y[i].qs;
  7340. memcpy(&aux64, x[i].scales, 8);
  7341. __m128i stmp = _mm_set1_epi64x(aux64);
  7342. stmp = _mm_unpacklo_epi8(_mm_and_si128(stmp, m4), _mm_and_si128(_mm_srli_epi16(stmp, 4), m4));
  7343. const __m128i scales = _mm_add_epi8(_mm_slli_epi16(stmp, 1), m1);
  7344. __m256i sumi1 = _mm256_setzero_si256();
  7345. __m256i sumi2 = _mm256_setzero_si256();
  7346. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 4) {
  7347. const __m256i q2_data = _mm256_loadu_si256((const __m256i*)q2); q2 += 16;
  7348. aux_gindex = _mm256_and_si256(q2_data, m511);
  7349. const __m256i partial_sign_bits = _mm256_srli_epi16(q2_data, 9);
  7350. const __m256i partial_sign_bits_upper = _mm256_srli_epi16(q2_data, 13);
  7351. const __m256i partial_sign_bits_for_counting = _mm256_xor_si256(partial_sign_bits, partial_sign_bits_upper);
  7352. const __m256i odd_bits = _mm256_shuffle_epi8(bit_helper, partial_sign_bits_for_counting);
  7353. const __m256i full_sign_bits = _mm256_or_si256(partial_sign_bits, odd_bits);
  7354. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7355. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7356. const __m256i q8_3 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7357. const __m256i q8_4 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7358. const __m256i q2_1 = _mm256_set_epi64x(iq2xs_grid[gindex[ 3]], iq2xs_grid[gindex[ 2]],
  7359. iq2xs_grid[gindex[ 1]], iq2xs_grid[gindex[ 0]]);
  7360. const __m256i q2_2 = _mm256_set_epi64x(iq2xs_grid[gindex[ 7]], iq2xs_grid[gindex[ 6]],
  7361. iq2xs_grid[gindex[ 5]], iq2xs_grid[gindex[ 4]]);
  7362. const __m256i q2_3 = _mm256_set_epi64x(iq2xs_grid[gindex[11]], iq2xs_grid[gindex[10]],
  7363. iq2xs_grid[gindex[ 9]], iq2xs_grid[gindex[ 8]]);
  7364. const __m256i q2_4 = _mm256_set_epi64x(iq2xs_grid[gindex[15]], iq2xs_grid[gindex[14]],
  7365. iq2xs_grid[gindex[13]], iq2xs_grid[gindex[12]]);
  7366. const __m128i full_signs_l = _mm256_castsi256_si128(full_sign_bits);
  7367. const __m128i full_signs_h = _mm256_extractf128_si256(full_sign_bits, 1);
  7368. const __m256i full_signs_1 = _mm256_set_m128i(full_signs_l, full_signs_l);
  7369. const __m256i full_signs_2 = _mm256_set_m128i(full_signs_h, full_signs_h);
  7370. __m256i signs;
  7371. signs = _mm256_shuffle_epi8(full_signs_1, block_sign_shuffle_1);
  7372. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  7373. const __m256i q8s_1 = _mm256_sign_epi8(q8_1, _mm256_or_si256(signs, mone));
  7374. signs = _mm256_shuffle_epi8(full_signs_1, block_sign_shuffle_2);
  7375. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  7376. const __m256i q8s_2 = _mm256_sign_epi8(q8_2, _mm256_or_si256(signs, mone));
  7377. signs = _mm256_shuffle_epi8(full_signs_2, block_sign_shuffle_1);
  7378. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  7379. const __m256i q8s_3 = _mm256_sign_epi8(q8_3, _mm256_or_si256(signs, mone));
  7380. signs = _mm256_shuffle_epi8(full_signs_2, block_sign_shuffle_2);
  7381. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  7382. const __m256i q8s_4 = _mm256_sign_epi8(q8_4, _mm256_or_si256(signs, mone));
  7383. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  7384. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  7385. const __m256i dot3 = _mm256_maddubs_epi16(q2_3, q8s_3);
  7386. const __m256i dot4 = _mm256_maddubs_epi16(q2_4, q8s_4);
  7387. const __m256i sc1 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+0)));
  7388. const __m256i sc2 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+1)));
  7389. const __m256i sc3 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+2)));
  7390. const __m256i sc4 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+3)));
  7391. sumi1 = _mm256_add_epi32(sumi1, _mm256_madd_epi16(dot1, sc1));
  7392. sumi2 = _mm256_add_epi32(sumi2, _mm256_madd_epi16(dot2, sc2));
  7393. sumi1 = _mm256_add_epi32(sumi1, _mm256_madd_epi16(dot3, sc3));
  7394. sumi2 = _mm256_add_epi32(sumi2, _mm256_madd_epi16(dot4, sc4));
  7395. }
  7396. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  7397. }
  7398. *s = 0.125f * hsum_float_8(accumf);
  7399. #else
  7400. float sumf = 0.f;
  7401. for (int i = 0; i < nb; ++i) {
  7402. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7403. const uint16_t * restrict q2 = x[i].qs;
  7404. const uint8_t * restrict sc = x[i].scales;
  7405. const int8_t * restrict q8 = y[i].qs;
  7406. int32_t bsum = 0;
  7407. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  7408. const uint16_t ls1 = 2*(sc[ib32] & 0xf) + 1;
  7409. const uint16_t ls2 = 2*(sc[ib32] >> 4) + 1;
  7410. int32_t sumi = 0;
  7411. for (int l = 0; l < 2; ++l) {
  7412. const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511));
  7413. const uint8_t signs = ksigns_iq2xs[q2[l] >> 9];
  7414. for (int j = 0; j < 8; ++j) {
  7415. sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
  7416. }
  7417. q8 += 8;
  7418. }
  7419. bsum += sumi * ls1;
  7420. sumi = 0;
  7421. for (int l = 2; l < 4; ++l) {
  7422. const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511));
  7423. const uint8_t signs = ksigns_iq2xs[q2[l] >> 9];
  7424. for (int j = 0; j < 8; ++j) {
  7425. sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
  7426. }
  7427. q8 += 8;
  7428. }
  7429. bsum += sumi * ls2;
  7430. q2 += 4;
  7431. }
  7432. sumf += d * bsum;
  7433. }
  7434. *s = 0.125f * sumf;
  7435. #endif
  7436. }
  7437. void ggml_vec_dot_iq3_xxs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  7438. assert(n % QK_K == 0);
  7439. assert(nrc == 1);
  7440. UNUSED(nrc);
  7441. UNUSED(bx);
  7442. UNUSED(by);
  7443. UNUSED(bs);
  7444. const block_iq3_xxs * restrict x = vx;
  7445. const block_q8_K * restrict y = vy;
  7446. const int nb = n / QK_K;
  7447. #if defined(__ARM_NEON)
  7448. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7449. uint32_t aux32[2];
  7450. ggml_int8x16x4_t q3s;
  7451. ggml_int8x16x4_t q8b;
  7452. float sumf = 0;
  7453. for (int i = 0; i < nb; ++i) {
  7454. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7455. const uint8_t * restrict q3 = x[i].qs;
  7456. const uint8_t * restrict gas = x[i].qs + QK_K/4;
  7457. const int8_t * restrict q8 = y[i].qs;
  7458. float sumf1 = 0, sumf2 = 0;
  7459. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7460. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  7461. memcpy(aux32, gas, 2*sizeof(uint32_t)); gas += 2*sizeof(uint32_t);
  7462. const uint32x4_t aux32x4_0 = ggml_vld1q_u32(iq3xxs_grid[q3[ 0]], iq3xxs_grid[q3[ 1]], iq3xxs_grid[q3[ 2]], iq3xxs_grid[q3[ 3]]);
  7463. const uint32x4_t aux32x4_1 = ggml_vld1q_u32(iq3xxs_grid[q3[ 4]], iq3xxs_grid[q3[ 5]], iq3xxs_grid[q3[ 6]], iq3xxs_grid[q3[ 7]]);
  7464. const uint32x4_t aux32x4_2 = ggml_vld1q_u32(iq3xxs_grid[q3[ 8]], iq3xxs_grid[q3[ 9]], iq3xxs_grid[q3[10]], iq3xxs_grid[q3[11]]);
  7465. const uint32x4_t aux32x4_3 = ggml_vld1q_u32(iq3xxs_grid[q3[12]], iq3xxs_grid[q3[13]], iq3xxs_grid[q3[14]], iq3xxs_grid[q3[15]]);
  7466. q3 += 16;
  7467. q3s.val[0] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[0] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[0] >> 7) & 127))));
  7468. q3s.val[1] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[0] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[0] >> 21) & 127))));
  7469. q3s.val[2] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 7) & 127))));
  7470. q3s.val[3] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 21) & 127))));
  7471. q3s.val[0] = vmulq_s8(q3s.val[0], vreinterpretq_s8_u32(aux32x4_0));
  7472. q3s.val[1] = vmulq_s8(q3s.val[1], vreinterpretq_s8_u32(aux32x4_1));
  7473. q3s.val[2] = vmulq_s8(q3s.val[2], vreinterpretq_s8_u32(aux32x4_2));
  7474. q3s.val[3] = vmulq_s8(q3s.val[3], vreinterpretq_s8_u32(aux32x4_3));
  7475. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[0], q8b.val[0]), q3s.val[1], q8b.val[1]);
  7476. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[2], q8b.val[2]), q3s.val[3], q8b.val[3]);
  7477. sumf1 += vaddvq_s32(p1) * (0.5f + (aux32[0] >> 28));
  7478. sumf2 += vaddvq_s32(p2) * (0.5f + (aux32[1] >> 28));
  7479. }
  7480. sumf += d*(sumf1 + sumf2);
  7481. }
  7482. *s = 0.5f * sumf;
  7483. #elif defined(__AVX2__)
  7484. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7485. uint32_t aux32[2];
  7486. __m256 accumf = _mm256_setzero_ps();
  7487. for (int i = 0; i < nb; ++i) {
  7488. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7489. const uint8_t * restrict q3 = x[i].qs;
  7490. const uint8_t * restrict gas = x[i].qs + QK_K/4;
  7491. const int8_t * restrict q8 = y[i].qs;
  7492. __m256i sumi1 = _mm256_setzero_si256();
  7493. __m256i sumi2 = _mm256_setzero_si256();
  7494. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7495. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7496. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7497. const __m256i q2_1 = _mm256_set_epi32(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]],
  7498. iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  7499. q3 += 8;
  7500. const __m256i q2_2 = _mm256_set_epi32(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]],
  7501. iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  7502. q3 += 8;
  7503. memcpy(aux32, gas, 8); gas += 8;
  7504. const __m256i s2_1 = _mm256_set_epi64x(signs64[(aux32[0] >> 21) & 127], signs64[(aux32[0] >> 14) & 127],
  7505. signs64[(aux32[0] >> 7) & 127], signs64[(aux32[0] >> 0) & 127]);
  7506. const __m256i s2_2 = _mm256_set_epi64x(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127],
  7507. signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  7508. const __m256i q8s_1 = _mm256_sign_epi8(q8_1, s2_1);
  7509. const __m256i q8s_2 = _mm256_sign_epi8(q8_2, s2_2);
  7510. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  7511. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  7512. const uint16_t ls1 = aux32[0] >> 28;
  7513. const uint16_t ls2 = aux32[1] >> 28;
  7514. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(2*ls1+1));
  7515. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(2*ls2+1));
  7516. sumi1 = _mm256_add_epi32(sumi1, p1);
  7517. sumi2 = _mm256_add_epi32(sumi2, p2);
  7518. }
  7519. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  7520. }
  7521. *s = 0.25f * hsum_float_8(accumf);
  7522. #else
  7523. uint32_t aux32;
  7524. float sumf = 0.f;
  7525. for (int i = 0; i < nb; ++i) {
  7526. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7527. const uint8_t * restrict q3 = x[i].qs;
  7528. const uint8_t * restrict gas = x[i].qs + QK_K/4;
  7529. const int8_t * restrict q8 = y[i].qs;
  7530. int32_t bsum = 0;
  7531. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  7532. memcpy(&aux32, gas, sizeof(uint32_t)); gas += sizeof(uint32_t);
  7533. const uint32_t ls = 2*(aux32 >> 28) + 1;
  7534. int32_t sumi = 0;
  7535. for (int l = 0; l < 4; ++l) {
  7536. const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + q3[2*l+0]);
  7537. const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + q3[2*l+1]);
  7538. const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*l) & 127];
  7539. for (int j = 0; j < 4; ++j) {
  7540. sumi += grid1[j] * q8[j+0] * (signs & kmask_iq2xs[j+0] ? -1 : 1);
  7541. sumi += grid2[j] * q8[j+4] * (signs & kmask_iq2xs[j+4] ? -1 : 1);
  7542. }
  7543. q8 += 8;
  7544. }
  7545. q3 += 8;
  7546. bsum += sumi * ls;
  7547. }
  7548. sumf += d * bsum;
  7549. }
  7550. *s = 0.25f * sumf;
  7551. #endif
  7552. }
  7553. void ggml_vec_dot_iq3_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
  7554. assert(n % QK_K == 0);
  7555. assert(nrc == 1);
  7556. UNUSED(nrc);
  7557. UNUSED(bx);
  7558. UNUSED(by);
  7559. UNUSED(bs);
  7560. const block_iq3_s * restrict x = vx;
  7561. const block_q8_K * restrict y = vy;
  7562. const int nb = n / QK_K;
  7563. #if defined(__ARM_NEON)
  7564. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  7565. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  7566. };
  7567. static const uint8_t k_mask2[16] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,};
  7568. const uint8x16x2_t mask1 = vld1q_u8_x2(k_mask1);
  7569. const uint8x16_t mask2 = vld1q_u8(k_mask2);
  7570. uint8x16x2_t vs;
  7571. ggml_int8x16x4_t q3s;
  7572. ggml_int8x16x4_t q8b;
  7573. float sumf = 0;
  7574. for (int i = 0; i < nb; ++i) {
  7575. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7576. const uint8_t * restrict qs = x[i].qs;
  7577. const uint8_t * restrict qh = x[i].qh;
  7578. const uint16_t * restrict signs = (const uint16_t *)x[i].signs;
  7579. const int8_t * restrict q8 = y[i].qs;
  7580. int sumi1 = 0, sumi2 = 0;
  7581. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7582. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  7583. const uint32x4_t aux32x4_0 = {iq3xs_grid[qs[ 0] | ((qh[ib32+0] << 8) & 256)], iq3xs_grid[qs[ 1] | ((qh[ib32+0] << 7) & 256)],
  7584. iq3xs_grid[qs[ 2] | ((qh[ib32+0] << 6) & 256)], iq3xs_grid[qs[ 3] | ((qh[ib32+0] << 5) & 256)]};
  7585. const uint32x4_t aux32x4_1 = {iq3xs_grid[qs[ 4] | ((qh[ib32+0] << 4) & 256)], iq3xs_grid[qs[ 5] | ((qh[ib32+0] << 3) & 256)],
  7586. iq3xs_grid[qs[ 6] | ((qh[ib32+0] << 2) & 256)], iq3xs_grid[qs[ 7] | ((qh[ib32+0] << 1) & 256)]};
  7587. const uint32x4_t aux32x4_2 = {iq3xs_grid[qs[ 8] | ((qh[ib32+1] << 8) & 256)], iq3xs_grid[qs[ 9] | ((qh[ib32+1] << 7) & 256)],
  7588. iq3xs_grid[qs[10] | ((qh[ib32+1] << 6) & 256)], iq3xs_grid[qs[11] | ((qh[ib32+1] << 5) & 256)]};
  7589. const uint32x4_t aux32x4_3 = {iq3xs_grid[qs[12] | ((qh[ib32+1] << 4) & 256)], iq3xs_grid[qs[13] | ((qh[ib32+1] << 3) & 256)],
  7590. iq3xs_grid[qs[14] | ((qh[ib32+1] << 2) & 256)], iq3xs_grid[qs[15] | ((qh[ib32+1] << 1) & 256)]};
  7591. qs += 16;
  7592. vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[0] | (signs[1] << 16)));
  7593. vs.val[1] = vandq_u8(vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
  7594. vs.val[0] = vandq_u8(vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
  7595. vs.val[0] = vceqq_u8(vs.val[0], mask2);
  7596. vs.val[1] = vceqq_u8(vs.val[1], mask2);
  7597. q3s.val[0] = vsubq_s8(vreinterpretq_s8_u8(veorq_u8(vs.val[0], vreinterpretq_u8_u32(aux32x4_0))), vreinterpretq_s8_u8(vs.val[0]));
  7598. q3s.val[1] = vsubq_s8(vreinterpretq_s8_u8(veorq_u8(vs.val[1], vreinterpretq_u8_u32(aux32x4_1))), vreinterpretq_s8_u8(vs.val[1]));
  7599. vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[2] | (signs[3] << 16)));
  7600. vs.val[1] = vandq_u8(vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
  7601. vs.val[0] = vandq_u8(vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
  7602. vs.val[0] = vceqq_u8(vs.val[0], mask2);
  7603. vs.val[1] = vceqq_u8(vs.val[1], mask2);
  7604. signs += 4;
  7605. q3s.val[2] = vsubq_s8(vreinterpretq_s8_u8(veorq_u8(vs.val[0], vreinterpretq_u8_u32(aux32x4_2))), vreinterpretq_s8_u8(vs.val[0]));
  7606. q3s.val[3] = vsubq_s8(vreinterpretq_s8_u8(veorq_u8(vs.val[1], vreinterpretq_u8_u32(aux32x4_3))), vreinterpretq_s8_u8(vs.val[1]));
  7607. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[0], q8b.val[0]), q3s.val[1], q8b.val[1]);
  7608. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[2], q8b.val[2]), q3s.val[3], q8b.val[3]);
  7609. sumi1 += vaddvq_s32(p1) * (1 + 2*(x[i].scales[ib32/2] & 0xf));
  7610. sumi2 += vaddvq_s32(p2) * (1 + 2*(x[i].scales[ib32/2] >> 4));
  7611. }
  7612. sumf += d*(sumi1 + sumi2);
  7613. }
  7614. *s = 0.25f * sumf;
  7615. #elif defined(__AVX2__)
  7616. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  7617. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  7618. };
  7619. static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7620. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7621. };
  7622. const __m256i mask1 = _mm256_loadu_si256((const __m256i*)k_mask1);
  7623. const __m256i mask2 = _mm256_loadu_si256((const __m256i*)k_mask2);
  7624. __m256 accumf = _mm256_setzero_ps();
  7625. for (int i = 0; i < nb; ++i) {
  7626. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7627. const uint8_t * restrict qs = x[i].qs;
  7628. const uint8_t * restrict qh = x[i].qh;
  7629. const uint16_t * restrict signs = (const uint16_t *)x[i].signs;
  7630. const int8_t * restrict q8 = y[i].qs;
  7631. __m256i sumi1 = _mm256_setzero_si256();
  7632. __m256i sumi2 = _mm256_setzero_si256();
  7633. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7634. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7635. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7636. const __m256i q2_1 = _mm256_set_epi32(iq3xs_grid[qs[7] | ((qh[ib32+0] << 1) & 256)],
  7637. iq3xs_grid[qs[6] | ((qh[ib32+0] << 2) & 256)],
  7638. iq3xs_grid[qs[5] | ((qh[ib32+0] << 3) & 256)],
  7639. iq3xs_grid[qs[4] | ((qh[ib32+0] << 4) & 256)],
  7640. iq3xs_grid[qs[3] | ((qh[ib32+0] << 5) & 256)],
  7641. iq3xs_grid[qs[2] | ((qh[ib32+0] << 6) & 256)],
  7642. iq3xs_grid[qs[1] | ((qh[ib32+0] << 7) & 256)],
  7643. iq3xs_grid[qs[0] | ((qh[ib32+0] << 8) & 256)]);
  7644. qs += 8;
  7645. const __m256i q2_2 = _mm256_set_epi32(iq3xs_grid[qs[7] | ((qh[ib32+1] << 1) & 256)],
  7646. iq3xs_grid[qs[6] | ((qh[ib32+1] << 2) & 256)],
  7647. iq3xs_grid[qs[5] | ((qh[ib32+1] << 3) & 256)],
  7648. iq3xs_grid[qs[4] | ((qh[ib32+1] << 4) & 256)],
  7649. iq3xs_grid[qs[3] | ((qh[ib32+1] << 5) & 256)],
  7650. iq3xs_grid[qs[2] | ((qh[ib32+1] << 6) & 256)],
  7651. iq3xs_grid[qs[1] | ((qh[ib32+1] << 7) & 256)],
  7652. iq3xs_grid[qs[0] | ((qh[ib32+1] << 8) & 256)]);
  7653. qs += 8;
  7654. __m256i aux256 = _mm256_set1_epi32(signs[0] | (signs[1] << 16));
  7655. aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2);
  7656. const __m256i s2_1 = _mm256_cmpeq_epi8(aux256, mask2);
  7657. const __m256i q8s_1 = _mm256_sub_epi8(_mm256_xor_si256(s2_1, q8_1), s2_1);
  7658. aux256 = _mm256_set1_epi32(signs[2] | (signs[3] << 16));
  7659. aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2);
  7660. const __m256i s2_2 = _mm256_cmpeq_epi8(aux256, mask2);
  7661. const __m256i q8s_2 = _mm256_sub_epi8(_mm256_xor_si256(s2_2, q8_2), s2_2);
  7662. signs += 4;
  7663. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  7664. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  7665. const uint16_t ls1 = x[i].scales[ib32/2] & 0xf;
  7666. const uint16_t ls2 = x[i].scales[ib32/2] >> 4;
  7667. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(2*ls1+1));
  7668. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(2*ls2+1));
  7669. sumi1 = _mm256_add_epi32(sumi1, p1);
  7670. sumi2 = _mm256_add_epi32(sumi2, p2);
  7671. }
  7672. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  7673. }
  7674. *s = 0.25f * hsum_float_8(accumf);
  7675. #else
  7676. float sumf = 0.f;
  7677. for (int i = 0; i < nb; ++i) {
  7678. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7679. const uint8_t * restrict qs = x[i].qs;
  7680. const uint8_t * restrict qh = x[i].qh;
  7681. const uint8_t * restrict signs = x[i].signs;
  7682. const int8_t * restrict q8 = y[i].qs;
  7683. int32_t bsum = 0;
  7684. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7685. const uint32_t ls1 = 2*(x[i].scales[ib32/2] & 0xf) + 1;
  7686. const uint32_t ls2 = 2*(x[i].scales[ib32/2] >> 4) + 1;
  7687. int32_t sumi = 0;
  7688. for (int l = 0; l < 4; ++l) {
  7689. const uint8_t * grid1 = (const uint8_t *)(iq3xs_grid + (qs[2*l+0] | ((qh[ib32+0] << (8-2*l)) & 256)));
  7690. const uint8_t * grid2 = (const uint8_t *)(iq3xs_grid + (qs[2*l+1] | ((qh[ib32+0] << (7-2*l)) & 256)));
  7691. for (int j = 0; j < 4; ++j) {
  7692. sumi += grid1[j] * q8[j+0] * (signs[l] & kmask_iq2xs[j+0] ? -1 : 1);
  7693. sumi += grid2[j] * q8[j+4] * (signs[l] & kmask_iq2xs[j+4] ? -1 : 1);
  7694. }
  7695. q8 += 8;
  7696. }
  7697. qs += 8;
  7698. signs += 4;
  7699. bsum += sumi * ls1;
  7700. sumi = 0;
  7701. for (int l = 0; l < 4; ++l) {
  7702. const uint8_t * grid1 = (const uint8_t *)(iq3xs_grid + (qs[2*l+0] | ((qh[ib32+1] << (8-2*l)) & 256)));
  7703. const uint8_t * grid2 = (const uint8_t *)(iq3xs_grid + (qs[2*l+1] | ((qh[ib32+1] << (7-2*l)) & 256)));
  7704. for (int j = 0; j < 4; ++j) {
  7705. sumi += grid1[j] * q8[j+0] * (signs[l] & kmask_iq2xs[j+0] ? -1 : 1);
  7706. sumi += grid2[j] * q8[j+4] * (signs[l] & kmask_iq2xs[j+4] ? -1 : 1);
  7707. }
  7708. q8 += 8;
  7709. }
  7710. qs += 8;
  7711. signs += 4;
  7712. bsum += sumi * ls2;
  7713. }
  7714. sumf += d * bsum;
  7715. }
  7716. *s = 0.25f * sumf;
  7717. #endif
  7718. }
  7719. #ifdef __AVX2__
  7720. static inline __m256i mul_add_epi8(const __m256i x, const __m256i y) {
  7721. const __m256i ax = _mm256_sign_epi8(x, x);
  7722. const __m256i sy = _mm256_sign_epi8(y, x);
  7723. return _mm256_maddubs_epi16(ax, sy);
  7724. }
  7725. #endif
  7726. void ggml_vec_dot_iq1_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
  7727. assert(n % QK_K == 0);
  7728. assert(nrc == 1);
  7729. UNUSED(nrc);
  7730. UNUSED(bx);
  7731. UNUSED(by);
  7732. UNUSED(bs);
  7733. const block_iq1_s * restrict x = vx;
  7734. const block_q8_K * restrict y = vy;
  7735. const int nb = n / QK_K;
  7736. #if defined __ARM_NEON
  7737. const uint8x16_t m8 = vdupq_n_u8(0x08);
  7738. const uint8x16_t m7 = vdupq_n_u8(0x07);
  7739. const uint8x16_t m1 = vdupq_n_u8(0x01);
  7740. const int32x4_t vzero = vdupq_n_s32(0);
  7741. uint16_t gindex[8];
  7742. uint16x8x2_t vindex;
  7743. int8x16x4_t q1b;
  7744. ggml_int8x16x4_t q8b;
  7745. uint16x8x4_t scales;
  7746. int32x4x2_t sumi;
  7747. int32x4x2_t dotq;
  7748. float sumf = 0;
  7749. for (int i = 0; i < nb; ++i) {
  7750. const int8_t * q8 = y[i].qs;
  7751. const uint8_t * qs = x[i].qs;
  7752. const uint8_t * sc = x[i].scales;
  7753. sumi.val[0] = sumi.val[1] = vzero;
  7754. for (int i128 = 0; i128 < QK_K/128; ++i128) {
  7755. const uint8x16_t ql = vld1q_u8(qs); qs += 16;
  7756. const uint8x8_t tm1 = vld1_u8 (sc); sc += 8;
  7757. const uint8x8_t tm2 = vshr_n_u8(tm1, 4);
  7758. const uint8x16_t qh = vcombine_u8(vzip1_u8(tm1, tm2), vzip2_u8(tm1, tm2));
  7759. const uint8x16_t hbit = vandq_u8(qh, m8);
  7760. vindex.val[0] = vorrq_u16(vmovl_u8(vget_low_u8 (ql)), vshlq_n_u16(vmovl_u8(vget_low_u8 (hbit)), 5));
  7761. vindex.val[1] = vorrq_u16(vmovl_u8(vget_high_u8(ql)), vshlq_n_u16(vmovl_u8(vget_high_u8(hbit)), 5));
  7762. const uint8x16_t scales8 = vorrq_u8(vshlq_n_u8(vandq_u8(qh, m7), 1), m1);
  7763. scales.val[0] = vmovl_u8(vget_low_u8 (scales8));
  7764. scales.val[1] = vmovl_u8(vget_high_u8 (scales8));
  7765. for (int l = 0; l < 2; ++l) {
  7766. vst1q_u16(gindex+0, vindex.val[l]);
  7767. q1b.val[0] = vcombine_s8(vld1_s8((const void *)(iq1s_grid+gindex[0])), vld1_s8((const void *)(iq1s_grid+gindex[1])));
  7768. q1b.val[1] = vcombine_s8(vld1_s8((const void *)(iq1s_grid+gindex[2])), vld1_s8((const void *)(iq1s_grid+gindex[3])));
  7769. q1b.val[2] = vcombine_s8(vld1_s8((const void *)(iq1s_grid+gindex[4])), vld1_s8((const void *)(iq1s_grid+gindex[5])));
  7770. q1b.val[3] = vcombine_s8(vld1_s8((const void *)(iq1s_grid+gindex[6])), vld1_s8((const void *)(iq1s_grid+gindex[7])));
  7771. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  7772. dotq.val[0] = vpaddq_s32(ggml_vdotq_s32(vzero, q1b.val[0], q8b.val[0]), ggml_vdotq_s32(vzero, q1b.val[1], q8b.val[1]));
  7773. dotq.val[1] = vpaddq_s32(ggml_vdotq_s32(vzero, q1b.val[2], q8b.val[2]), ggml_vdotq_s32(vzero, q1b.val[3], q8b.val[3]));
  7774. sumi.val[0] = vmlaq_s32(sumi.val[0], dotq.val[0], vreinterpretq_s32_u32(vmovl_u16(vget_low_u16 (scales.val[l]))));
  7775. sumi.val[1] = vmlaq_s32(sumi.val[1], dotq.val[1], vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(scales.val[l]))));
  7776. }
  7777. }
  7778. sumf += y[i].d * GGML_FP16_TO_FP32(x[i].d) * vaddvq_s32(vaddq_s32(sumi.val[0], sumi.val[1]));
  7779. }
  7780. *s = sumf;
  7781. #elif defined __AVX2__
  7782. const __m128i m8 = _mm_set1_epi8(0x08);
  7783. const __m128i m7 = _mm_set1_epi8(0x07);
  7784. const __m128i m1 = _mm_set1_epi8(0x01);
  7785. const __m128i shuffle_h = _mm_set_epi8(15, 7, 14, 6, 13, 5, 12, 4, 11, 3, 10, 2, 9, 1, 8, 0);
  7786. const __m128i shuffle_s[4] = {
  7787. _mm_set_epi32(0x03030303, 0x02020202, 0x01010101, 0x00000000),
  7788. _mm_set_epi32(0x07070707, 0x06060606, 0x05050505, 0x04040404),
  7789. _mm_set_epi32(0x0b0b0b0b, 0x0a0a0a0a, 0x09090909, 0x08080808),
  7790. _mm_set_epi32(0x0f0f0f0f, 0x0e0e0e0e, 0x0d0d0d0d, 0x0c0c0c0c)
  7791. };
  7792. uint64_t aux64;
  7793. __m256i v_gindex;
  7794. const uint16_t * gindex = (const uint16_t *)&v_gindex;
  7795. __m256 accum = _mm256_setzero_ps();
  7796. for (int i = 0; i < nb; ++i) {
  7797. const int8_t * q8 = y[i].qs;
  7798. const uint8_t * qs = x[i].qs;
  7799. const uint8_t * sc = x[i].scales;
  7800. __m256i sumi = _mm256_setzero_si256();
  7801. for (int i128 = 0; i128 < QK_K/128; ++i128) {
  7802. const __m128i ql = _mm_loadu_si128((const __m128i*)qs); qs += 16;
  7803. memcpy(&aux64, sc, 8); sc += 8;
  7804. const __m128i qh = _mm_shuffle_epi8(_mm_set_epi64x(aux64 >> 4, aux64), shuffle_h);
  7805. const __m256i hbit = _mm256_cvtepu8_epi16(_mm_and_si128(qh, m8));
  7806. v_gindex = _mm256_or_si256(_mm256_cvtepu8_epi16(ql), _mm256_slli_epi16(hbit, 5));
  7807. const __m128i scales = _mm_or_si128(_mm_slli_epi16(_mm_and_si128(qh, m7), 1), m1);
  7808. for (int i32 = 0; i32 < 4; ++i32) {
  7809. const __m256i q8b = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  7810. const __m256i q1b = _mm256_set_epi64x(iq1s_grid[gindex[4*i32+3]], iq1s_grid[gindex[4*i32+2]],
  7811. iq1s_grid[gindex[4*i32+1]], iq1s_grid[gindex[4*i32+0]]);
  7812. const __m256i dot = mul_add_epi8(q1b, q8b);
  7813. const __m256i s16 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, shuffle_s[i32]));
  7814. const __m256i p = _mm256_madd_epi16(s16, dot);
  7815. sumi = _mm256_add_epi32(sumi, p);
  7816. }
  7817. }
  7818. accum = _mm256_fmadd_ps(_mm256_set1_ps(y[i].d * GGML_FP16_TO_FP32(x[i].d)), _mm256_cvtepi32_ps(sumi), accum);
  7819. }
  7820. *s = hsum_float_8(accum);
  7821. #else
  7822. int db[4];
  7823. uint16_t idx[4];
  7824. float sumf = 0;
  7825. for (int i = 0; i < nb; ++i) {
  7826. const int8_t * q8 = y[i].qs;
  7827. const uint8_t * qs = x[i].qs;
  7828. const uint8_t * sc = x[i].scales;
  7829. int sumi = 0;
  7830. for (int i32 = 0; i32 < QK_K/32; ++i32) {
  7831. idx[0] = qs[0] | ((sc[0] & 0x08) << 5);
  7832. idx[1] = qs[1] | ((sc[0] & 0x80) << 1);
  7833. idx[2] = qs[2] | ((sc[1] & 0x08) << 5);
  7834. idx[3] = qs[3] | ((sc[1] & 0x80) << 1);
  7835. db[0] = (2*(sc[0] & 7) + 1);
  7836. db[1] = (2*((sc[0] >> 4) & 7) + 1);
  7837. db[2] = (2*(sc[1] & 7) + 1);
  7838. db[3] = (2*((sc[1] >> 4) & 7) + 1);
  7839. for (int l = 0; l < 4; ++l) {
  7840. const int8_t * grid = (const int8_t *)(iq1s_grid + idx[l]);
  7841. int suml = 0;
  7842. for (int j = 0; j < 8; ++j) suml += q8[j] * grid[j];
  7843. sumi += db[l] * suml;
  7844. q8 += 8;
  7845. }
  7846. qs += 4;
  7847. sc += 2;
  7848. }
  7849. sumf += GGML_FP16_TO_FP32(x[i].d) * y[i].d * sumi;
  7850. }
  7851. *s = sumf;
  7852. #endif
  7853. }
  7854. void ggml_vec_dot_iq4_nl_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  7855. assert(nrc == 1);
  7856. UNUSED(nrc);
  7857. UNUSED(bx);
  7858. UNUSED(by);
  7859. UNUSED(bs);
  7860. assert(n % QK4_NL == 0);
  7861. static_assert(QK4_NL == QK8_0, "QK4_NL and QK8_0 must be the same");
  7862. const block_iq4_nl * restrict x = vx;
  7863. const block_q8_0 * restrict y = vy;
  7864. const int nb = n / QK4_NL;
  7865. #if defined __ARM_NEON
  7866. const int8x16_t values = vld1q_s8(kvalues_iq4nl);
  7867. const uint8x16_t m4b = vdupq_n_u8(0x0f);
  7868. uint8x16x2_t q4bits;
  7869. int8x16x4_t q4b;
  7870. int8x16x4_t q8b;
  7871. int32x4_t prod_1, prod_2;
  7872. float sumf = 0;
  7873. for (int ib = 0; ib < nb; ib += 2) {
  7874. q4bits.val[0] = vld1q_u8(x[ib+0].qs);
  7875. q4bits.val[1] = vld1q_u8(x[ib+1].qs);
  7876. q8b.val[0] = vld1q_s8(y[ib+0].qs);
  7877. q8b.val[1] = vld1q_s8(y[ib+0].qs + 16);
  7878. q8b.val[2] = vld1q_s8(y[ib+1].qs);
  7879. q8b.val[3] = vld1q_s8(y[ib+1].qs + 16);
  7880. q4b.val[0] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[0], m4b));
  7881. q4b.val[1] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[0], 4));
  7882. q4b.val[2] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[1], m4b));
  7883. q4b.val[3] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[1], 4));
  7884. prod_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[0], q8b.val[0]), q4b.val[1], q8b.val[1]);
  7885. prod_2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[2], q8b.val[2]), q4b.val[3], q8b.val[3]);
  7886. sumf +=
  7887. GGML_FP16_TO_FP32(x[ib+0].d) * GGML_FP16_TO_FP32(y[ib+0].d) * vaddvq_s32(prod_1) +
  7888. GGML_FP16_TO_FP32(x[ib+1].d) * GGML_FP16_TO_FP32(y[ib+1].d) * vaddvq_s32(prod_2);
  7889. }
  7890. *s = sumf;
  7891. #elif defined __AVX2__
  7892. const __m128i values128 = _mm_loadu_si128((const __m128i*)kvalues_iq4nl);
  7893. const __m128i m4b = _mm_set1_epi8(0x0f);
  7894. const __m256i mone = _mm256_set1_epi16(1);
  7895. __m256 accum1 = _mm256_setzero_ps();
  7896. __m256 accum2 = _mm256_setzero_ps();
  7897. for (int ib = 0; ib < nb; ib += 2) {
  7898. const __m128i q4bits_1 = _mm_loadu_si128((const __m128i*)x[0].qs);
  7899. const __m128i q4bits_2 = _mm_loadu_si128((const __m128i*)x[1].qs);
  7900. const __m256i q8b_1 = _mm256_loadu_si256((const __m256i *)y[0].qs);
  7901. const __m256i q8b_2 = _mm256_loadu_si256((const __m256i *)y[1].qs);
  7902. const __m256i q4b_1 = _mm256_set_m128i(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b)),
  7903. _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b)));
  7904. const __m256i q4b_2 = _mm256_set_m128i(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b)),
  7905. _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b)));
  7906. const __m256i p16_1 = mul_add_epi8(q4b_1, q8b_1);
  7907. const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2);
  7908. const __m256i p_1 = _mm256_madd_epi16(p16_1, mone);
  7909. const __m256i p_2 = _mm256_madd_epi16(p16_2, mone);
  7910. accum1 = _mm256_fmadd_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[0].d)*GGML_FP16_TO_FP32(x[0].d)),
  7911. _mm256_cvtepi32_ps(p_1), accum1);
  7912. accum2 = _mm256_fmadd_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[1].d)*GGML_FP16_TO_FP32(x[1].d)),
  7913. _mm256_cvtepi32_ps(p_2), accum2);
  7914. y += 2;
  7915. x += 2;
  7916. }
  7917. *s = hsum_float_8(_mm256_add_ps(accum1, accum2));
  7918. #else
  7919. float sumf = 0;
  7920. for (int ib = 0; ib < nb; ++ib) {
  7921. const float d = GGML_FP16_TO_FP32(y[ib].d)*GGML_FP16_TO_FP32(x[ib].d);
  7922. int sumi1 = 0, sumi2 = 0;
  7923. for (int j = 0; j < QK4_NL/2; ++j) {
  7924. sumi1 += y[ib].qs[j+ 0] * kvalues_iq4nl[x[ib].qs[j] & 0xf];
  7925. sumi2 += y[ib].qs[j+QK4_NL/2] * kvalues_iq4nl[x[ib].qs[j] >> 4];
  7926. }
  7927. sumf += d * (sumi1 + sumi2);
  7928. }
  7929. *s = sumf;
  7930. #endif
  7931. }
  7932. // ================================ IQ2 quantization =============================================
  7933. typedef struct {
  7934. uint64_t * grid;
  7935. int * map;
  7936. uint16_t * neighbours;
  7937. } iq2_entry_t;
  7938. static iq2_entry_t iq2_data[3] = {
  7939. {NULL, NULL, NULL},
  7940. {NULL, NULL, NULL},
  7941. {NULL, NULL, NULL},
  7942. };
  7943. static inline int iq2_data_index(enum ggml_type type) {
  7944. GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S);
  7945. return type == GGML_TYPE_IQ2_XXS ? 0 :
  7946. type == GGML_TYPE_IQ2_XS ? 1 : 2;
  7947. }
  7948. static inline int iq2_grid_size(enum ggml_type type) {
  7949. GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S);
  7950. return type == GGML_TYPE_IQ2_XXS ? 256 :
  7951. type == GGML_TYPE_IQ2_XS ? 512 : 512;
  7952. }
  7953. static int iq2_compare_func(const void * left, const void * right) {
  7954. const int * l = (const int *)left;
  7955. const int * r = (const int *)right;
  7956. return l[0] < r[0] ? -1 : l[0] > r[0] ? 1 : l[1] < r[1] ? -1 : l[1] > r[1] ? 1 : 0;
  7957. }
  7958. void iq2xs_init_impl(enum ggml_type type) {
  7959. const int gindex = iq2_data_index(type);
  7960. const int grid_size = iq2_grid_size(type);
  7961. if (iq2_data[gindex].grid) {
  7962. return;
  7963. }
  7964. static const uint16_t kgrid_2bit_256[256] = {
  7965. 0, 2, 5, 8, 10, 17, 20, 32, 34, 40, 42, 65, 68, 80, 88, 97,
  7966. 100, 128, 130, 138, 162, 257, 260, 272, 277, 320, 388, 408, 512, 514, 546, 642,
  7967. 1025, 1028, 1040, 1057, 1060, 1088, 1090, 1096, 1120, 1153, 1156, 1168, 1188, 1280, 1282, 1288,
  7968. 1312, 1350, 1385, 1408, 1425, 1545, 1552, 1600, 1668, 1700, 2048, 2053, 2056, 2068, 2088, 2113,
  7969. 2116, 2128, 2130, 2184, 2308, 2368, 2562, 2580, 4097, 4100, 4112, 4129, 4160, 4192, 4228, 4240,
  7970. 4245, 4352, 4360, 4384, 4432, 4442, 4480, 4644, 4677, 5120, 5128, 5152, 5157, 5193, 5248, 5400,
  7971. 5474, 5632, 5654, 6145, 6148, 6160, 6208, 6273, 6400, 6405, 6560, 6737, 8192, 8194, 8202, 8260,
  7972. 8289, 8320, 8322, 8489, 8520, 8704, 8706, 9217, 9220, 9232, 9280, 9302, 9472, 9537, 9572, 9872,
  7973. 10248, 10272, 10388, 10820, 16385, 16388, 16400, 16408, 16417, 16420, 16448, 16456, 16470, 16480, 16513, 16516,
  7974. 16528, 16640, 16672, 16737, 16768, 16773, 16897, 16912, 16968, 16982, 17000, 17408, 17416, 17440, 17536, 17561,
  7975. 17682, 17700, 17920, 18433, 18436, 18448, 18496, 18501, 18688, 18776, 18785, 18818, 19013, 19088, 20480, 20488,
  7976. 20497, 20505, 20512, 20608, 20616, 20740, 20802, 20900, 21137, 21648, 21650, 21770, 22017, 22100, 22528, 22545,
  7977. 22553, 22628, 22848, 23048, 24580, 24592, 24640, 24680, 24832, 24917, 25112, 25184, 25600, 25605, 25872, 25874,
  7978. 25988, 26690, 32768, 32770, 32778, 32833, 32898, 33028, 33048, 33088, 33297, 33793, 33796, 33808, 33813, 33856,
  7979. 33888, 34048, 34118, 34196, 34313, 34368, 34400, 34818, 35076, 35345, 36868, 36880, 36900, 36928, 37025, 37142,
  7980. 37248, 37445, 37888, 37922, 37956, 38225, 39041, 39200, 40962, 41040, 41093, 41225, 41472, 42008, 43088, 43268,
  7981. };
  7982. static const uint16_t kgrid_2bit_512[512] = {
  7983. 0, 2, 5, 8, 10, 17, 20, 22, 25, 32, 34, 37, 40, 65, 68, 70,
  7984. 73, 80, 82, 85, 88, 97, 100, 128, 130, 133, 136, 145, 148, 153, 160, 257,
  7985. 260, 262, 265, 272, 274, 277, 280, 282, 289, 292, 320, 322, 325, 328, 337, 340,
  7986. 352, 360, 385, 388, 400, 512, 514, 517, 520, 529, 532, 544, 577, 580, 592, 597,
  7987. 640, 650, 1025, 1028, 1030, 1033, 1040, 1042, 1045, 1048, 1057, 1060, 1088, 1090, 1093, 1096,
  7988. 1105, 1108, 1110, 1120, 1153, 1156, 1168, 1280, 1282, 1285, 1288, 1297, 1300, 1312, 1345, 1348,
  7989. 1360, 1377, 1408, 1537, 1540, 1552, 1574, 1600, 1602, 1668, 2048, 2050, 2053, 2056, 2058, 2065,
  7990. 2068, 2080, 2085, 2113, 2116, 2128, 2136, 2176, 2208, 2218, 2305, 2308, 2320, 2368, 2433, 2441,
  7991. 2560, 2592, 2600, 2710, 2720, 4097, 4100, 4102, 4105, 4112, 4114, 4117, 4120, 4129, 4132, 4160,
  7992. 4162, 4165, 4168, 4177, 4180, 4192, 4202, 4225, 4228, 4240, 4352, 4354, 4357, 4360, 4369, 4372,
  7993. 4384, 4417, 4420, 4432, 4480, 4500, 4502, 4609, 4612, 4614, 4624, 4672, 4704, 5120, 5122, 5125,
  7994. 5128, 5137, 5140, 5152, 5185, 5188, 5193, 5200, 5220, 5248, 5377, 5380, 5392, 5440, 5632, 5652,
  7995. 5705, 6145, 6148, 6160, 6162, 6208, 6228, 6278, 6400, 6405, 6502, 6737, 6825, 8192, 8194, 8197,
  7996. 8200, 8202, 8209, 8212, 8224, 8257, 8260, 8272, 8320, 8352, 8449, 8452, 8464, 8512, 8520, 8549,
  7997. 8704, 8738, 8832, 8872, 9217, 9220, 9232, 9257, 9280, 9472, 9537, 9554, 9625, 9729, 9754, 9894,
  7998. 10240, 10248, 10250, 10272, 10325, 10376, 10402, 10600, 10640, 10760, 10784, 10882, 10888, 10890, 16385, 16388,
  7999. 16390, 16393, 16400, 16402, 16405, 16408, 16417, 16420, 16448, 16450, 16453, 16456, 16458, 16465, 16468, 16480,
  8000. 16485, 16513, 16516, 16528, 16640, 16642, 16645, 16648, 16657, 16660, 16672, 16705, 16708, 16720, 16768, 16773,
  8001. 16802, 16897, 16900, 16912, 16914, 16937, 16960, 17408, 17410, 17413, 17416, 17425, 17428, 17433, 17440, 17473,
  8002. 17476, 17488, 17536, 17556, 17665, 17668, 17680, 17700, 17728, 17818, 17920, 17930, 17988, 18000, 18433, 18436,
  8003. 18448, 18496, 18501, 18516, 18530, 18688, 18705, 18756, 18768, 18793, 18948, 20480, 20482, 20485, 20488, 20497,
  8004. 20500, 20512, 20520, 20545, 20548, 20560, 20608, 20737, 20740, 20752, 20757, 20800, 20802, 20992, 21060, 21162,
  8005. 21505, 21508, 21520, 21537, 21568, 21600, 21633, 21665, 21760, 21768, 21888, 21896, 22049, 22120, 22177, 22528,
  8006. 22548, 22593, 22608, 22681, 22810, 22848, 22850, 23173, 24577, 24580, 24592, 24640, 24660, 24674, 24710, 24745,
  8007. 24832, 25124, 25162, 25234, 25600, 25622, 25872, 25920, 25925, 26020, 26625, 26730, 26917, 27142, 27220, 27234,
  8008. 32768, 32770, 32773, 32776, 32785, 32788, 32800, 32810, 32833, 32836, 32848, 32896, 32898, 32936, 32938, 33025,
  8009. 33028, 33030, 33040, 33088, 33105, 33113, 33280, 33312, 33408, 33410, 33440, 33448, 33793, 33796, 33808, 33810,
  8010. 33813, 33856, 33888, 33929, 34048, 34116, 34213, 34328, 34410, 34816, 34824, 34853, 34906, 34944, 34946, 34984,
  8011. 35078, 35362, 35456, 35464, 35478, 35496, 36865, 36868, 36880, 36928, 36950, 36996, 37120, 37154, 37220, 37462,
  8012. 37513, 37888, 37893, 37956, 37968, 37976, 38185, 38288, 38290, 38465, 38993, 39078, 39241, 39445, 39520, 40960,
  8013. 40962, 40968, 40970, 40992, 41002, 41120, 41297, 41305, 41382, 41472, 41474, 41480, 41514, 41600, 41632, 42048,
  8014. 42133, 42597, 42648, 43018, 43040, 43042, 43048, 43168, 43176, 43268, 43396, 43398, 43560, 43562, 43665, 43690,
  8015. };
  8016. static const uint16_t kgrid_1bit_512[512] = {
  8017. 10, 33, 41, 85, 132, 134, 160, 162, 277, 337, 340, 345, 357, 405, 516, 545,
  8018. 553, 598, 641, 650, 681, 1042, 1044, 1097, 1169, 1176, 1320, 1345, 1365, 1378, 1434, 1444,
  8019. 1545, 1617, 1642, 1685, 2053, 2080, 2089, 2133, 2176, 2182, 2208, 2214, 2306, 2384, 2393, 2440,
  8020. 2453, 2581, 2664, 2690, 2721, 4117, 4161, 4182, 4184, 4261, 4357, 4369, 4372, 4377, 4390, 4422,
  8021. 4432, 4437, 4449, 4457, 4485, 4497, 4505, 4629, 4677, 4696, 4774, 5205, 5217, 5225, 5386, 5397,
  8022. 5409, 5445, 5457, 5460, 5461, 5462, 5465, 5472, 5477, 5525, 5545, 5650, 5668, 5717, 5729, 5769,
  8023. 5777, 6212, 6234, 6244, 6293, 6424, 6482, 6485, 6502, 6505, 6529, 6538, 6565, 6656, 6682, 6788,
  8024. 6806, 6820, 8218, 8224, 8226, 8232, 8277, 8326, 8354, 8469, 8521, 8530, 8549, 8596, 8737, 8794,
  8025. 9221, 9253, 9348, 9369, 9380, 9474, 9557, 9633, 9732, 9753, 9793, 9830, 9862, 9880, 10240, 10272,
  8026. 10282, 10321, 10406, 10517, 10530, 10566, 10585, 10645, 10896, 16466, 16468, 16473, 16485, 16646, 16660, 16665,
  8027. 16725, 16793, 16806, 16914, 16969, 16977, 16996, 17028, 17057, 17408, 17416, 17434, 17493, 17512, 17578, 17685,
  8028. 17696, 17733, 17745, 17748, 17749, 17750, 17753, 17765, 17794, 17813, 17946, 17984, 18005, 18072, 18453, 18529,
  8029. 18569, 18722, 18756, 18762, 18773, 18794, 18833, 18853, 18945, 19026, 19033, 19077, 20489, 20497, 20500, 20517,
  8030. 20565, 20586, 20610, 20633, 20757, 20769, 20776, 20805, 20817, 20820, 20821, 20822, 20825, 20837, 20864, 20872,
  8031. 20885, 20896, 21002, 21029, 21077, 21146, 21510, 21525, 21573, 21585, 21588, 21589, 21590, 21593, 21605, 21653,
  8032. 21665, 21765, 21777, 21780, 21781, 21782, 21785, 21797, 21825, 21828, 21829, 21830, 21833, 21840, 21841, 21842,
  8033. 21844, 21846, 21848, 21849, 21850, 21857, 21860, 21861, 21862, 21865, 21893, 21905, 21908, 21909, 21910, 21913,
  8034. 21925, 22024, 22037, 22085, 22097, 22100, 22101, 22102, 22105, 22117, 22165, 22545, 22566, 22568, 22594, 22608,
  8035. 22613, 22676, 22697, 22793, 22805, 22853, 22865, 22868, 22869, 22870, 22873, 22885, 22933, 22946, 23046, 23072,
  8036. 23125, 23209, 24597, 24640, 24665, 24673, 24725, 24833, 24840, 24869, 24917, 24934, 24965, 25001, 25108, 25110,
  8037. 25152, 25184, 25192, 25234, 25616, 25618, 25625, 25685, 25704, 25738, 25744, 25770, 25877, 25897, 25925, 25937,
  8038. 25940, 25941, 25942, 25945, 25957, 25986, 26005, 26186, 26197, 26276, 26632, 26634, 26725, 26757, 26770, 26885,
  8039. 26965, 26976, 26986, 27032, 27153, 27174, 27200, 27208, 27240, 27269, 27282, 27290, 32778, 32800, 32802, 32808,
  8040. 32810, 32853, 32904, 32922, 32930, 32932, 33105, 33110, 33112, 33125, 33157, 33280, 33288, 33301, 33312, 33320,
  8041. 33424, 33797, 33829, 33858, 34068, 34133, 34146, 34176, 34217, 34306, 34342, 34441, 34454, 34468, 34832, 34918,
  8042. 34965, 34984, 35094, 35137, 35161, 35208, 35232, 35332, 35338, 35368, 35429, 36932, 36934, 36953, 37009, 37125,
  8043. 37136, 37138, 37145, 37157, 37205, 37220, 37258, 37290, 37444, 37446, 37465, 37478, 37525, 37905, 37968, 37973,
  8044. 38040, 38054, 38145, 38154, 38165, 38180, 38186, 38213, 38225, 38228, 38229, 38230, 38233, 38245, 38293, 38485,
  8045. 38504, 38530, 38938, 38985, 38993, 39012, 39040, 39173, 39192, 39253, 39265, 39301, 39316, 39322, 39442, 39497,
  8046. 39504, 39590, 40970, 40984, 40992, 41002, 41045, 41120, 41128, 41237, 41289, 41297, 41317, 41364, 41366, 41514,
  8047. 41557, 41633, 41989, 42021, 42056, 42068, 42074, 42113, 42242, 42265, 42274, 42325, 42340, 42402, 42501, 42512,
  8048. 42533, 42624, 42632, 42666, 43040, 43093, 43106, 43168, 43176, 43264, 43286, 43345, 43429, 43590, 43618, 43680,
  8049. };
  8050. const int kmap_size = 43692;
  8051. const int nwant = type == GGML_TYPE_IQ1_S ? 3 : 2;
  8052. const uint16_t * kgrid = type == GGML_TYPE_IQ2_XXS ? kgrid_2bit_256 :
  8053. type == GGML_TYPE_IQ2_XS ? kgrid_2bit_512 : kgrid_1bit_512;
  8054. uint64_t * kgrid_q2xs;
  8055. int * kmap_q2xs;
  8056. uint16_t * kneighbors_q2xs;
  8057. printf("================================================================= %s(grid_size = %d)\n", __func__, grid_size);
  8058. uint64_t * the_grid = (uint64_t *)malloc(grid_size*sizeof(uint64_t));
  8059. for (int k = 0; k < grid_size; ++k) {
  8060. int8_t * pos = (int8_t *)(the_grid + k);
  8061. for (int i = 0; i < 8; ++i) {
  8062. int l = (kgrid[k] >> 2*i) & 0x3;
  8063. pos[i] = 2*l + 1;
  8064. }
  8065. }
  8066. kgrid_q2xs = the_grid;
  8067. iq2_data[gindex].grid = the_grid;
  8068. kmap_q2xs = (int *)malloc(kmap_size*sizeof(int));
  8069. iq2_data[gindex].map = kmap_q2xs;
  8070. for (int i = 0; i < kmap_size; ++i) kmap_q2xs[i] = -1;
  8071. uint64_t aux64;
  8072. uint8_t * aux8 = (uint8_t *)&aux64;
  8073. for (int i = 0; i < grid_size; ++i) {
  8074. aux64 = kgrid_q2xs[i];
  8075. uint16_t index = 0;
  8076. for (int k=0; k<8; ++k) {
  8077. uint16_t q = (aux8[k] - 1)/2;
  8078. index |= (q << 2*k);
  8079. }
  8080. kmap_q2xs[index] = i;
  8081. }
  8082. int8_t pos[8];
  8083. int * dist2 = (int *)malloc(2*grid_size*sizeof(int));
  8084. int num_neighbors = 0, num_not_in_map = 0;
  8085. for (int i = 0; i < kmap_size; ++i) {
  8086. if (kmap_q2xs[i] >= 0) continue;
  8087. ++num_not_in_map;
  8088. for (int k = 0; k < 8; ++k) {
  8089. int l = (i >> 2*k) & 0x3;
  8090. pos[k] = 2*l + 1;
  8091. }
  8092. for (int j = 0; j < grid_size; ++j) {
  8093. const int8_t * pg = (const int8_t *)(kgrid_q2xs + j);
  8094. int d2 = 0;
  8095. for (int k = 0; k < 8; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
  8096. dist2[2*j+0] = d2;
  8097. dist2[2*j+1] = j;
  8098. }
  8099. qsort(dist2, grid_size, 2*sizeof(int), iq2_compare_func);
  8100. int n = 0; int d2 = dist2[0];
  8101. int nhave = 1;
  8102. for (int j = 0; j < grid_size; ++j) {
  8103. if (dist2[2*j] > d2) {
  8104. if (nhave == nwant) break;
  8105. d2 = dist2[2*j];
  8106. ++nhave;
  8107. }
  8108. ++n;
  8109. }
  8110. num_neighbors += n;
  8111. }
  8112. printf("%s: %d neighbours in total\n", __func__, num_neighbors);
  8113. kneighbors_q2xs = (uint16_t *)malloc((num_neighbors + num_not_in_map)*sizeof(uint16_t));
  8114. iq2_data[gindex].neighbours = kneighbors_q2xs;
  8115. int counter = 0;
  8116. for (int i = 0; i < kmap_size; ++i) {
  8117. if (kmap_q2xs[i] >= 0) continue;
  8118. for (int k = 0; k < 8; ++k) {
  8119. int l = (i >> 2*k) & 0x3;
  8120. pos[k] = 2*l + 1;
  8121. }
  8122. for (int j = 0; j < grid_size; ++j) {
  8123. const int8_t * pg = (const int8_t *)(kgrid_q2xs + j);
  8124. int d2 = 0;
  8125. for (int k = 0; k < 8; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
  8126. dist2[2*j+0] = d2;
  8127. dist2[2*j+1] = j;
  8128. }
  8129. qsort(dist2, grid_size, 2*sizeof(int), iq2_compare_func);
  8130. kmap_q2xs[i] = -(counter + 1);
  8131. int d2 = dist2[0];
  8132. uint16_t * start = &kneighbors_q2xs[counter++];
  8133. int n = 0, nhave = 1;
  8134. for (int j = 0; j < grid_size; ++j) {
  8135. if (dist2[2*j] > d2) {
  8136. if (nhave == nwant) break;
  8137. d2 = dist2[2*j];
  8138. ++nhave;
  8139. }
  8140. kneighbors_q2xs[counter++] = dist2[2*j+1];
  8141. ++n;
  8142. }
  8143. *start = n;
  8144. }
  8145. free(dist2);
  8146. }
  8147. void iq2xs_free_impl(enum ggml_type type) {
  8148. GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S);
  8149. const int gindex = iq2_data_index(type);
  8150. if (iq2_data[gindex].grid) {
  8151. free(iq2_data[gindex].grid); iq2_data[gindex].grid = NULL;
  8152. free(iq2_data[gindex].map); iq2_data[gindex].map = NULL;
  8153. free(iq2_data[gindex].neighbours); iq2_data[gindex].neighbours = NULL;
  8154. }
  8155. }
  8156. static int iq2_find_best_neighbour(const uint16_t * restrict neighbours, const uint64_t * restrict grid,
  8157. const float * restrict xval, const float * restrict weight, float scale, int8_t * restrict L) {
  8158. int num_neighbors = neighbours[0];
  8159. GGML_ASSERT(num_neighbors > 0);
  8160. float best_d2 = FLT_MAX;
  8161. int grid_index = -1;
  8162. for (int j = 1; j <= num_neighbors; ++j) {
  8163. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  8164. float d2 = 0;
  8165. for (int i = 0; i < 8; ++i) {
  8166. float q = pg[i];
  8167. float diff = scale*q - xval[i];
  8168. d2 += weight[i]*diff*diff;
  8169. }
  8170. if (d2 < best_d2) {
  8171. best_d2 = d2; grid_index = neighbours[j];
  8172. }
  8173. }
  8174. GGML_ASSERT(grid_index >= 0);
  8175. const int8_t * pg = (const int8_t *)(grid + grid_index);
  8176. for (int i = 0; i < 8; ++i) L[i] = (pg[i] - 1)/2;
  8177. return grid_index;
  8178. }
  8179. static void quantize_row_iq2_xxs_impl(const float * restrict x, void * restrict vy, int n, const float * restrict quant_weights) {
  8180. const int gindex = iq2_data_index(GGML_TYPE_IQ2_XXS);
  8181. const uint64_t * kgrid_q2xs = iq2_data[gindex].grid;
  8182. const int * kmap_q2xs = iq2_data[gindex].map;
  8183. const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
  8184. GGML_ASSERT(quant_weights && "missing quantization weights");
  8185. GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
  8186. GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
  8187. GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
  8188. GGML_ASSERT(n%QK_K == 0);
  8189. const int kMaxQ = 3;
  8190. const int nbl = n/256;
  8191. block_iq2_xxs * y = vy;
  8192. float scales[QK_K/32];
  8193. float weight[32];
  8194. float xval[32];
  8195. int8_t L[32];
  8196. int8_t Laux[32];
  8197. float waux[32];
  8198. uint8_t block_signs[4];
  8199. uint32_t q2[2*(QK_K/32)];
  8200. for (int ibl = 0; ibl < nbl; ++ibl) {
  8201. y[ibl].d = GGML_FP32_TO_FP16(0.f);
  8202. memset(q2, 0, QK_K/4);
  8203. float max_scale = 0;
  8204. const float * xbl = x + QK_K*ibl;
  8205. float sumx2 = 0;
  8206. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  8207. float sigma2 = sumx2/QK_K;
  8208. for (int ib = 0; ib < QK_K/32; ++ib) {
  8209. const float * xb = xbl + 32*ib;
  8210. const float * qw = quant_weights + QK_K*ibl + 32*ib;
  8211. for (int i = 0; i < 32; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  8212. for (int i = 0; i < 32; ++i) waux[i] = sqrtf(weight[i]);
  8213. for (int k = 0; k < 4; ++k) {
  8214. int nflip = 0;
  8215. uint8_t s = 0;
  8216. for (int i = 0; i < 8; ++i) {
  8217. if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
  8218. else {
  8219. xval[8*k + i] = -xb[8*k + i]; ++nflip; s |= (1 << i);
  8220. }
  8221. }
  8222. if (nflip%2) {
  8223. int imin = 0; float min = weight[8*k+imin]*xb[8*k+imin]*xb[8*k+imin];
  8224. for (int i = 1; i < 8; ++i) {
  8225. float ax = weight[8*k+i]*xb[8*k+i]*xb[8*k+i];
  8226. if (ax < min) {
  8227. min = ax; imin = i;
  8228. }
  8229. }
  8230. xval[8*k+imin] = -xval[8*k+imin];
  8231. s ^= (1 << imin);
  8232. }
  8233. block_signs[k] = s & 127;
  8234. }
  8235. float max = xval[0];
  8236. for (int i = 1; i < 32; ++i) max = MAX(max, xval[i]);
  8237. if (!max) {
  8238. scales[ib] = 0;
  8239. memset(L, 0, 32);
  8240. continue;
  8241. }
  8242. float scale = make_qp_quants(32, kMaxQ+1, xval, (uint8_t*)L, weight);
  8243. float eff_max = scale*kMaxQ;
  8244. float best = 0;
  8245. for (int is = -6; is <= 6; ++is) {
  8246. float id = (2*kMaxQ-1+is*0.1f)/eff_max;
  8247. float this_scale = 1/id;
  8248. for (int k = 0; k < 4; ++k) {
  8249. for (int i = 0; i < 8; ++i) {
  8250. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  8251. Laux[8*k+i] = MAX(0, MIN(kMaxQ-1, l));
  8252. }
  8253. uint16_t u = 0;
  8254. for (int i = 0; i < 8; ++i) u |= (Laux[8*k+i] << 2*i);
  8255. int grid_index = kmap_q2xs[u];
  8256. if (grid_index < 0) {
  8257. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  8258. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, this_scale, Laux + 8*k);
  8259. }
  8260. }
  8261. float sumqx = 0, sumq2 = 0;
  8262. for (int i = 0; i < 32; ++i) {
  8263. float w = weight[i];
  8264. float q = 2*Laux[i] + 1;
  8265. sumqx += w*xval[i]*q;
  8266. sumq2 += w*q*q;
  8267. }
  8268. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  8269. scale = sumqx/sumq2; best = scale*sumqx;
  8270. memcpy(L, Laux, 32);
  8271. }
  8272. }
  8273. if (scale > 0) {
  8274. float id = 1/scale;
  8275. for (int k = 0; k < 4; ++k) {
  8276. uint16_t u = 0;
  8277. for (int i = 0; i < 8; ++i) {
  8278. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  8279. l = MAX(0, MIN(kMaxQ-1, l));
  8280. u |= (l << 2*i);
  8281. }
  8282. int grid_index = kmap_q2xs[u];
  8283. if (grid_index < 0) {
  8284. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  8285. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, scale, L + 8*k);
  8286. }
  8287. const int8_t * pg = (const int8_t *)(kgrid_q2xs + grid_index);
  8288. for (int i = 0; i < 8; ++i) L[8*k+i] = (pg[i] - 1)/2;
  8289. }
  8290. float sumqx = 0, sumq2 = 0;
  8291. for (int i = 0; i < 32; ++i) {
  8292. float w = weight[i];
  8293. float q = 2*L[i] + 1;
  8294. sumqx += w*xval[i]*q;
  8295. sumq2 += w*q*q;
  8296. }
  8297. if (sumq2 > 0) scale = sumqx/sumq2;
  8298. }
  8299. if (scale < 0) {
  8300. // This should never happen, but just in case, flip scale so that it is positive (we use uint's to encode the scale)
  8301. // and correspondingly flip quant signs.
  8302. scale = -scale;
  8303. for (int k = 0; k < 4; ++k) block_signs[k] = (~block_signs[k]) & 127;
  8304. }
  8305. for (int k = 0; k < 4; ++k) {
  8306. uint16_t u = 0;
  8307. for (int i = 0; i < 8; ++i) u |= (L[8*k+i] << 2*i);
  8308. int grid_index = kmap_q2xs[u];
  8309. if (grid_index < 0) {
  8310. printf("Oops: found point %u not on grid:", u);
  8311. for (int i = 0; i < 8; ++i) printf(" %d", L[8*k+i]);
  8312. printf("\n");
  8313. GGML_ASSERT(false);
  8314. }
  8315. q2[2*ib+0] |= (grid_index << 8*k);
  8316. q2[2*ib+1] |= (block_signs[k] << 7*k);
  8317. }
  8318. GGML_ASSERT(scale >= 0);
  8319. scales[ib] = scale;
  8320. max_scale = MAX(max_scale, scale);
  8321. }
  8322. if (!max_scale) {
  8323. memset(y[ibl].qs, 0, QK_K/4);
  8324. continue;
  8325. }
  8326. float d = max_scale/31;
  8327. y[ibl].d = GGML_FP32_TO_FP16(d);
  8328. float id = 1/d;
  8329. for (int ib = 0; ib < QK_K/32; ++ib) {
  8330. int l = nearest_int(0.5f*(id*scales[ib]-1));
  8331. l = MAX(0, MIN(15, l));
  8332. q2[2*ib+1] |= ((uint32_t)l << 28);
  8333. }
  8334. memcpy(y[ibl].qs, q2, QK_K/4);
  8335. }
  8336. }
  8337. static void quantize_row_iq2_xs_impl(const float * restrict x, void * restrict vy, int n, const float * restrict quant_weights) {
  8338. const int gindex = iq2_data_index(GGML_TYPE_IQ2_XS);
  8339. const uint64_t * kgrid_q2xs = iq2_data[gindex].grid;
  8340. const int * kmap_q2xs = iq2_data[gindex].map;
  8341. const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
  8342. GGML_ASSERT(quant_weights && "missing quantization weights");
  8343. GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
  8344. GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
  8345. GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
  8346. GGML_ASSERT(n%QK_K == 0);
  8347. const int kMaxQ = 3;
  8348. const int nbl = n/256;
  8349. block_iq2_xs * y = vy;
  8350. float scales[QK_K/16];
  8351. float weight[16];
  8352. float xval[16];
  8353. int8_t L[16];
  8354. int8_t Laux[16];
  8355. float waux[16];
  8356. bool is_on_grid[2];
  8357. bool is_on_grid_aux[2];
  8358. uint8_t block_signs[2];
  8359. uint16_t q2[2*(QK_K/16)];
  8360. for (int ibl = 0; ibl < nbl; ++ibl) {
  8361. y[ibl].d = GGML_FP32_TO_FP16(0.f);
  8362. memset(q2, 0, QK_K/4);
  8363. memset(y[ibl].scales, 0, QK_K/32);
  8364. float max_scale = 0;
  8365. const float * xbl = x + QK_K*ibl;
  8366. float sumx2 = 0;
  8367. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  8368. float sigma2 = sumx2/QK_K;
  8369. for (int ib = 0; ib < QK_K/16; ++ib) {
  8370. const float * xb = xbl + 16*ib;
  8371. const float * qw = quant_weights + QK_K*ibl + 16*ib;
  8372. for (int i = 0; i < 16; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  8373. for (int i = 0; i < 16; ++i) waux[i] = sqrtf(weight[i]);
  8374. for (int k = 0; k < 2; ++k) {
  8375. int nflip = 0;
  8376. uint8_t s = 0;
  8377. for (int i = 0; i < 8; ++i) {
  8378. if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
  8379. else {
  8380. xval[8*k + i] = -xb[8*k + i]; ++nflip; s |= (1 << i);
  8381. }
  8382. }
  8383. if (nflip%2) {
  8384. int imin = 0; float min = weight[8*k+imin]*xb[8*k+imin]*xb[8*k+imin];
  8385. for (int i = 1; i < 8; ++i) {
  8386. float ax = weight[8*k+i]*xb[8*k+i]*xb[8*k+i];
  8387. if (ax < min) {
  8388. min = ax; imin = i;
  8389. }
  8390. }
  8391. xval[8*k+imin] = -xval[8*k+imin];
  8392. s ^= (1 << imin);
  8393. }
  8394. block_signs[k] = s & 127;
  8395. }
  8396. float max = xval[0];
  8397. for (int i = 1; i < 16; ++i) max = MAX(max, xval[i]);
  8398. if (!max) {
  8399. scales[ib] = 0;
  8400. memset(L, 0, 16);
  8401. continue;
  8402. }
  8403. float best = 0;
  8404. float scale = max/(2*kMaxQ-1);
  8405. is_on_grid[0] = is_on_grid[1] = true;
  8406. for (int is = -9; is <= 9; ++is) {
  8407. float id = (2*kMaxQ-1+is*0.1f)/max;
  8408. float this_scale = 1/id;
  8409. for (int k = 0; k < 2; ++k) {
  8410. for (int i = 0; i < 8; ++i) {
  8411. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  8412. Laux[8*k+i] = MAX(0, MIN(kMaxQ-1, l));
  8413. }
  8414. uint16_t u = 0;
  8415. for (int i = 0; i < 8; ++i) u |= (Laux[8*k+i] << 2*i);
  8416. int grid_index = kmap_q2xs[u];
  8417. is_on_grid_aux[k] = true;
  8418. if (grid_index < 0) {
  8419. is_on_grid_aux[k] = false;
  8420. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  8421. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, this_scale, Laux + 8*k);
  8422. }
  8423. }
  8424. float sumqx = 0, sumq2 = 0;
  8425. for (int i = 0; i < 16; ++i) {
  8426. float w = weight[i];
  8427. float q = 2*Laux[i] + 1;
  8428. sumqx += w*xval[i]*q;
  8429. sumq2 += w*q*q;
  8430. }
  8431. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  8432. scale = sumqx/sumq2; best = scale*sumqx;
  8433. for (int i = 0; i < 16; ++i) L[i] = Laux[i];
  8434. for (int k = 0; k < 2; ++k) is_on_grid[k] = is_on_grid_aux[k];
  8435. }
  8436. }
  8437. int n_not_ongrid = 0;
  8438. for (int k = 0; k < 2; ++k) if (!is_on_grid[k]) ++n_not_ongrid;
  8439. if (n_not_ongrid > 0 && scale > 0) {
  8440. float id = 1/scale;
  8441. for (int k = 0; k < 2; ++k) {
  8442. if (is_on_grid[k]) continue;
  8443. uint16_t u = 0;
  8444. for (int i = 0; i < 8; ++i) {
  8445. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  8446. l = MAX(0, MIN(kMaxQ-1, l));
  8447. u |= (l << 2*i);
  8448. L[8*k + i] = l;
  8449. }
  8450. int grid_index = kmap_q2xs[u];
  8451. if (grid_index < 0) {
  8452. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  8453. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, scale, L + 8*k);
  8454. }
  8455. }
  8456. float sumqx = 0, sumq2 = 0;
  8457. for (int i = 0; i < 16; ++i) {
  8458. float w = weight[i];
  8459. float q = 2*L[i] + 1;
  8460. sumqx += w*xval[i]*q;
  8461. sumq2 += w*q*q;
  8462. }
  8463. if (sumq2 > 0) scale = sumqx/sumq2;
  8464. }
  8465. if (scale < 0) {
  8466. scale = -scale;
  8467. for (int k = 0; k < 2; ++k) block_signs[k] = (~block_signs[k]) & 127;
  8468. }
  8469. for (int k = 0; k < 2; ++k) {
  8470. uint16_t u = 0;
  8471. for (int i = 0; i < 8; ++i) u |= (L[8*k+i] << 2*i);
  8472. int grid_index = kmap_q2xs[u];
  8473. if (grid_index < 0) {
  8474. printf("Oops: found point %u not on grid:", u);
  8475. for (int i = 0; i < 8; ++i) printf(" %d", L[8*k+i]);
  8476. printf("\n");
  8477. GGML_ASSERT(false);
  8478. }
  8479. q2[2*ib+k] = grid_index | (block_signs[k] << 9);
  8480. }
  8481. GGML_ASSERT(scale >= 0);
  8482. scales[ib] = scale;
  8483. max_scale = MAX(max_scale, scale);
  8484. }
  8485. if (!max_scale) {
  8486. memset(y[ibl].qs, 0, QK_K/4);
  8487. continue;
  8488. }
  8489. float d = max_scale/31;
  8490. y[ibl].d = GGML_FP32_TO_FP16(d);
  8491. float id = 1/d;
  8492. for (int ib = 0; ib < QK_K/16; ++ib) {
  8493. int l = nearest_int(0.5f*(id*scales[ib]-1));
  8494. l = MAX(0, MIN(15, l));
  8495. if (ib%2 == 0) y[ibl].scales[ib/2] = l;
  8496. else y[ibl].scales[ib/2] |= (l << 4);
  8497. }
  8498. memcpy(y[ibl].qs, q2, QK_K/4);
  8499. }
  8500. }
  8501. size_t quantize_iq2_xxs(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
  8502. (void)hist;
  8503. GGML_ASSERT(n_per_row%QK_K == 0);
  8504. int nblock = n_per_row/QK_K;
  8505. char * qrow = (char *)dst;
  8506. for (int row = 0; row < nrow; ++row) {
  8507. quantize_row_iq2_xxs_impl(src, qrow, n_per_row, quant_weights);
  8508. src += n_per_row;
  8509. qrow += nblock*sizeof(block_iq2_xxs);
  8510. }
  8511. return nrow * nblock * sizeof(block_iq2_xxs);
  8512. }
  8513. size_t quantize_iq2_xs(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
  8514. (void)hist;
  8515. GGML_ASSERT(n_per_row%QK_K == 0);
  8516. int nblock = n_per_row/QK_K;
  8517. char * qrow = (char *)dst;
  8518. for (int row = 0; row < nrow; ++row) {
  8519. quantize_row_iq2_xs_impl(src, qrow, n_per_row, quant_weights);
  8520. src += n_per_row;
  8521. qrow += nblock*sizeof(block_iq2_xs);
  8522. }
  8523. return nrow * nblock * sizeof(block_iq2_xs);
  8524. }
  8525. //
  8526. // ============================================= 3-bit using D4 lattice
  8527. //
  8528. typedef struct {
  8529. uint32_t * grid;
  8530. int * map;
  8531. uint16_t * neighbours;
  8532. } iq3_entry_t;
  8533. static iq3_entry_t iq3_data[2] = {
  8534. {NULL, NULL, NULL},
  8535. {NULL, NULL, NULL},
  8536. };
  8537. static inline int iq3_data_index(int grid_size) {
  8538. (void)grid_size;
  8539. GGML_ASSERT(grid_size == 256 || grid_size == 512);
  8540. return grid_size == 256 ? 0 : 1;
  8541. }
  8542. static int iq3_compare_func(const void * left, const void * right) {
  8543. const int * l = (const int *)left;
  8544. const int * r = (const int *)right;
  8545. return l[0] < r[0] ? -1 : l[0] > r[0] ? 1 : l[1] < r[1] ? -1 : l[1] > r[1] ? 1 : 0;
  8546. }
  8547. void iq3xs_init_impl(int grid_size) {
  8548. const int gindex = iq3_data_index(grid_size);
  8549. if (iq3_data[gindex].grid) {
  8550. return;
  8551. }
  8552. static const uint16_t kgrid_256[256] = {
  8553. 0, 2, 4, 9, 11, 15, 16, 18, 25, 34, 59, 61, 65, 67, 72, 74,
  8554. 81, 85, 88, 90, 97, 108, 120, 128, 130, 132, 137, 144, 146, 153, 155, 159,
  8555. 169, 175, 189, 193, 199, 200, 202, 213, 248, 267, 287, 292, 303, 315, 317, 321,
  8556. 327, 346, 362, 413, 436, 456, 460, 462, 483, 497, 513, 515, 520, 522, 529, 531,
  8557. 536, 538, 540, 551, 552, 576, 578, 585, 592, 594, 641, 643, 648, 650, 657, 664,
  8558. 698, 704, 706, 720, 729, 742, 758, 769, 773, 808, 848, 852, 870, 889, 901, 978,
  8559. 992, 1024, 1026, 1033, 1035, 1040, 1042, 1046, 1049, 1058, 1089, 1091, 1093, 1096, 1098, 1105,
  8560. 1112, 1139, 1143, 1144, 1152, 1154, 1161, 1167, 1168, 1170, 1183, 1184, 1197, 1217, 1224, 1228,
  8561. 1272, 1276, 1309, 1323, 1347, 1367, 1377, 1404, 1473, 1475, 1486, 1509, 1537, 1544, 1546, 1553,
  8562. 1555, 1576, 1589, 1594, 1600, 1602, 1616, 1625, 1636, 1638, 1665, 1667, 1672, 1685, 1706, 1722,
  8563. 1737, 1755, 1816, 1831, 1850, 1856, 1862, 1874, 1901, 1932, 1950, 1971, 2011, 2032, 2052, 2063,
  8564. 2077, 2079, 2091, 2095, 2172, 2192, 2207, 2208, 2224, 2230, 2247, 2277, 2308, 2345, 2356, 2389,
  8565. 2403, 2424, 2501, 2504, 2506, 2520, 2570, 2593, 2616, 2624, 2630, 2646, 2669, 2700, 2714, 2746,
  8566. 2754, 2795, 2824, 2835, 2839, 2874, 2882, 2905, 2984, 3028, 3042, 3092, 3108, 3110, 3124, 3153,
  8567. 3185, 3215, 3252, 3288, 3294, 3364, 3397, 3434, 3483, 3523, 3537, 3587, 3589, 3591, 3592, 3610,
  8568. 3626, 3670, 3680, 3722, 3749, 3754, 3776, 3789, 3803, 3824, 3857, 3873, 3904, 3906, 3924, 3992,
  8569. };
  8570. static const uint16_t kgrid_512[512] = {
  8571. 0, 1, 2, 5, 7, 8, 9, 10, 12, 14, 16, 17, 21, 27, 32, 34,
  8572. 37, 39, 41, 43, 48, 50, 57, 60, 63, 64, 65, 66, 68, 72, 73, 77,
  8573. 80, 83, 87, 89, 93, 100, 113, 117, 122, 128, 129, 133, 135, 136, 139, 142,
  8574. 145, 149, 152, 156, 162, 165, 167, 169, 171, 184, 187, 195, 201, 205, 208, 210,
  8575. 217, 219, 222, 228, 232, 234, 247, 249, 253, 256, 267, 271, 273, 276, 282, 288,
  8576. 291, 297, 312, 322, 324, 336, 338, 342, 347, 353, 357, 359, 374, 379, 390, 393,
  8577. 395, 409, 426, 441, 448, 450, 452, 464, 466, 470, 475, 488, 492, 512, 513, 514,
  8578. 516, 520, 521, 523, 525, 527, 528, 530, 537, 540, 542, 556, 558, 561, 570, 576,
  8579. 577, 579, 582, 584, 588, 593, 600, 603, 609, 616, 618, 632, 638, 640, 650, 653,
  8580. 655, 656, 660, 666, 672, 675, 685, 688, 698, 705, 708, 711, 712, 715, 721, 727,
  8581. 728, 732, 737, 754, 760, 771, 773, 778, 780, 793, 795, 802, 806, 808, 812, 833,
  8582. 840, 843, 849, 856, 858, 873, 912, 916, 919, 932, 934, 961, 963, 968, 970, 977,
  8583. 989, 993, 1010, 1016, 1024, 1025, 1027, 1029, 1031, 1032, 1034, 1036, 1038, 1041, 1043, 1047,
  8584. 1048, 1050, 1057, 1059, 1061, 1064, 1066, 1079, 1080, 1083, 1085, 1088, 1090, 1096, 1099, 1103,
  8585. 1106, 1109, 1113, 1116, 1122, 1129, 1153, 1156, 1159, 1169, 1171, 1176, 1183, 1185, 1195, 1199,
  8586. 1209, 1212, 1216, 1218, 1221, 1225, 1234, 1236, 1241, 1243, 1250, 1256, 1270, 1281, 1287, 1296,
  8587. 1299, 1306, 1309, 1313, 1338, 1341, 1348, 1353, 1362, 1375, 1376, 1387, 1400, 1408, 1410, 1415,
  8588. 1425, 1453, 1457, 1477, 1481, 1494, 1496, 1507, 1512, 1538, 1545, 1547, 1549, 1551, 1554, 1561,
  8589. 1563, 1565, 1570, 1572, 1575, 1577, 1587, 1593, 1601, 1603, 1605, 1612, 1617, 1619, 1632, 1648,
  8590. 1658, 1662, 1664, 1674, 1680, 1690, 1692, 1704, 1729, 1736, 1740, 1745, 1747, 1751, 1752, 1761,
  8591. 1763, 1767, 1773, 1787, 1795, 1801, 1806, 1810, 1817, 1834, 1840, 1844, 1857, 1864, 1866, 1877,
  8592. 1882, 1892, 1902, 1915, 1934, 1953, 1985, 1987, 2000, 2002, 2013, 2048, 2052, 2058, 2064, 2068,
  8593. 2071, 2074, 2081, 2088, 2104, 2114, 2119, 2121, 2123, 2130, 2136, 2141, 2147, 2153, 2157, 2177,
  8594. 2179, 2184, 2189, 2193, 2203, 2208, 2223, 2226, 2232, 2244, 2249, 2251, 2256, 2258, 2265, 2269,
  8595. 2304, 2306, 2324, 2335, 2336, 2361, 2373, 2375, 2385, 2418, 2443, 2460, 2480, 2504, 2509, 2520,
  8596. 2531, 2537, 2562, 2568, 2572, 2578, 2592, 2596, 2599, 2602, 2614, 2620, 2625, 2627, 2629, 2634,
  8597. 2641, 2650, 2682, 2688, 2697, 2707, 2712, 2718, 2731, 2754, 2759, 2760, 2775, 2788, 2793, 2805,
  8598. 2811, 2817, 2820, 2832, 2842, 2854, 2890, 2902, 2921, 2923, 2978, 3010, 3012, 3026, 3081, 3083,
  8599. 3085, 3097, 3099, 3120, 3136, 3152, 3159, 3188, 3210, 3228, 3234, 3245, 3250, 3256, 3264, 3276,
  8600. 3281, 3296, 3349, 3363, 3378, 3392, 3395, 3420, 3440, 3461, 3488, 3529, 3531, 3584, 3588, 3591,
  8601. 3600, 3602, 3614, 3616, 3628, 3634, 3650, 3657, 3668, 3683, 3685, 3713, 3716, 3720, 3726, 3729,
  8602. 3736, 3753, 3778, 3802, 3805, 3819, 3841, 3845, 3851, 3856, 3880, 3922, 3938, 3970, 3993, 4032,
  8603. };
  8604. const int kmap_size = 4096;
  8605. const int nwant = grid_size == 256 ? 2 : 3;
  8606. const uint16_t * kgrid = grid_size == 256 ? kgrid_256 : kgrid_512;
  8607. uint32_t * kgrid_q3xs;
  8608. int * kmap_q3xs;
  8609. uint16_t * kneighbors_q3xs;
  8610. printf("================================================================= %s(grid_size = %d)\n", __func__, grid_size);
  8611. uint32_t * the_grid = (uint32_t *)malloc(grid_size*sizeof(uint32_t));
  8612. for (int k = 0; k < grid_size; ++k) {
  8613. int8_t * pos = (int8_t *)(the_grid + k);
  8614. for (int i = 0; i < 4; ++i) {
  8615. int l = (kgrid[k] >> 3*i) & 0x7;
  8616. pos[i] = 2*l + 1;
  8617. }
  8618. }
  8619. kgrid_q3xs = the_grid;
  8620. iq3_data[gindex].grid = the_grid;
  8621. kmap_q3xs = (int *)malloc(kmap_size*sizeof(int));
  8622. iq3_data[gindex].map = kmap_q3xs;
  8623. for (int i = 0; i < kmap_size; ++i) kmap_q3xs[i] = -1;
  8624. uint32_t aux32;
  8625. uint8_t * aux8 = (uint8_t *)&aux32;
  8626. for (int i = 0; i < grid_size; ++i) {
  8627. aux32 = kgrid_q3xs[i];
  8628. uint16_t index = 0;
  8629. for (int k=0; k<4; ++k) {
  8630. uint16_t q = (aux8[k] - 1)/2;
  8631. index |= (q << 3*k);
  8632. }
  8633. kmap_q3xs[index] = i;
  8634. }
  8635. int8_t pos[4];
  8636. int * dist2 = (int *)malloc(2*grid_size*sizeof(int));
  8637. int num_neighbors = 0, num_not_in_map = 0;
  8638. for (int i = 0; i < kmap_size; ++i) {
  8639. if (kmap_q3xs[i] >= 0) continue;
  8640. ++num_not_in_map;
  8641. for (int k = 0; k < 4; ++k) {
  8642. int l = (i >> 3*k) & 0x7;
  8643. pos[k] = 2*l + 1;
  8644. }
  8645. for (int j = 0; j < grid_size; ++j) {
  8646. const int8_t * pg = (const int8_t *)(kgrid_q3xs + j);
  8647. int d2 = 0;
  8648. for (int k = 0; k < 4; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
  8649. dist2[2*j+0] = d2;
  8650. dist2[2*j+1] = j;
  8651. }
  8652. qsort(dist2, grid_size, 2*sizeof(int), iq3_compare_func);
  8653. int n = 0; int d2 = dist2[0];
  8654. int nhave = 1;
  8655. for (int j = 0; j < grid_size; ++j) {
  8656. if (dist2[2*j] > d2) {
  8657. if (nhave == nwant) break;
  8658. d2 = dist2[2*j];
  8659. ++nhave;
  8660. }
  8661. ++n;
  8662. }
  8663. num_neighbors += n;
  8664. }
  8665. printf("%s: %d neighbours in total\n", __func__, num_neighbors);
  8666. kneighbors_q3xs = (uint16_t *)malloc((num_neighbors + num_not_in_map)*sizeof(uint16_t));
  8667. iq3_data[gindex].neighbours = kneighbors_q3xs;
  8668. int counter = 0;
  8669. for (int i = 0; i < kmap_size; ++i) {
  8670. if (kmap_q3xs[i] >= 0) continue;
  8671. for (int k = 0; k < 4; ++k) {
  8672. int l = (i >> 3*k) & 0x7;
  8673. pos[k] = 2*l + 1;
  8674. }
  8675. for (int j = 0; j < grid_size; ++j) {
  8676. const int8_t * pg = (const int8_t *)(kgrid_q3xs + j);
  8677. int d2 = 0;
  8678. for (int k = 0; k < 4; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
  8679. dist2[2*j+0] = d2;
  8680. dist2[2*j+1] = j;
  8681. }
  8682. qsort(dist2, grid_size, 2*sizeof(int), iq3_compare_func);
  8683. kmap_q3xs[i] = -(counter + 1);
  8684. int d2 = dist2[0];
  8685. uint16_t * start = &kneighbors_q3xs[counter++];
  8686. int n = 0, nhave = 1;
  8687. for (int j = 0; j < grid_size; ++j) {
  8688. if (dist2[2*j] > d2) {
  8689. if (nhave == nwant) break;
  8690. d2 = dist2[2*j];
  8691. ++nhave;
  8692. }
  8693. kneighbors_q3xs[counter++] = dist2[2*j+1];
  8694. ++n;
  8695. }
  8696. *start = n;
  8697. }
  8698. free(dist2);
  8699. }
  8700. void iq3xs_free_impl(int grid_size) {
  8701. GGML_ASSERT(grid_size == 256 || grid_size == 512);
  8702. const int gindex = iq3_data_index(grid_size);
  8703. if (iq3_data[gindex].grid) {
  8704. free(iq3_data[gindex].grid); iq3_data[gindex].grid = NULL;
  8705. free(iq3_data[gindex].map); iq3_data[gindex].map = NULL;
  8706. free(iq3_data[gindex].neighbours); iq3_data[gindex].neighbours = NULL;
  8707. }
  8708. }
  8709. static int iq3_find_best_neighbour(const uint16_t * restrict neighbours, const uint32_t * restrict grid,
  8710. const float * restrict xval, const float * restrict weight, float scale, int8_t * restrict L) {
  8711. int num_neighbors = neighbours[0];
  8712. GGML_ASSERT(num_neighbors > 0);
  8713. float best_d2 = FLT_MAX;
  8714. int grid_index = -1;
  8715. for (int j = 1; j <= num_neighbors; ++j) {
  8716. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  8717. float d2 = 0;
  8718. for (int i = 0; i < 4; ++i) {
  8719. float q = pg[i];
  8720. float diff = scale*q - xval[i];
  8721. d2 += weight[i]*diff*diff;
  8722. }
  8723. if (d2 < best_d2) {
  8724. best_d2 = d2; grid_index = neighbours[j];
  8725. }
  8726. }
  8727. GGML_ASSERT(grid_index >= 0);
  8728. const int8_t * pg = (const int8_t *)(grid + grid_index);
  8729. for (int i = 0; i < 4; ++i) L[i] = (pg[i] - 1)/2;
  8730. return grid_index;
  8731. }
  8732. static void quantize_row_iq3_xxs_impl(int grid_size, const float * restrict x, void * restrict vy, int n,
  8733. const float * restrict quant_weights) {
  8734. const int gindex = iq3_data_index(grid_size);
  8735. const uint32_t * kgrid_q3xs = iq3_data[gindex].grid;
  8736. const int * kmap_q3xs = iq3_data[gindex].map;
  8737. const uint16_t * kneighbors_q3xs = iq3_data[gindex].neighbours;
  8738. //GGML_ASSERT(quant_weights && "missing quantization weights");
  8739. GGML_ASSERT(kgrid_q3xs && "forgot to call ggml_quantize_init()?");
  8740. GGML_ASSERT(kmap_q3xs && "forgot to call ggml_quantize_init()?");
  8741. GGML_ASSERT(kneighbors_q3xs && "forgot to call ggml_quantize_init()?");
  8742. GGML_ASSERT(n%QK_K == 0);
  8743. const int kMaxQ = 8;
  8744. const int nbl = n/QK_K;
  8745. ggml_fp16_t * dh;
  8746. uint8_t * qs;
  8747. int block_size;
  8748. if (grid_size == 256) {
  8749. block_iq3_xxs * y = vy;
  8750. dh = &y->d;
  8751. qs = y->qs;
  8752. block_size = sizeof(block_iq3_xxs);
  8753. } else {
  8754. block_iq3_s * y = vy;
  8755. dh = &y->d;
  8756. qs = y->qs;
  8757. block_size = sizeof(block_iq3_s);
  8758. }
  8759. int quant_size = block_size - sizeof(ggml_fp16_t);
  8760. float scales[QK_K/32];
  8761. float weight[32];
  8762. float xval[32];
  8763. int8_t L[32];
  8764. int8_t Laux[32];
  8765. float waux[32];
  8766. bool is_on_grid[8];
  8767. bool is_on_grid_aux[8];
  8768. uint8_t block_signs[8];
  8769. uint8_t q3[3*(QK_K/8)+QK_K/32];
  8770. uint32_t * scales_and_signs = (uint32_t *)(q3 + QK_K/4);
  8771. uint8_t * qh = q3 + 3*(QK_K/8);
  8772. for (int ibl = 0; ibl < nbl; ++ibl) {
  8773. dh[0] = GGML_FP32_TO_FP16(0.f);
  8774. memset(q3, 0, 3*QK_K/8+QK_K/32);
  8775. float max_scale = 0;
  8776. const float * xbl = x + QK_K*ibl;
  8777. float sumx2 = 0;
  8778. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  8779. float sigma2 = 2*sumx2/QK_K;
  8780. for (int ib = 0; ib < QK_K/32; ++ib) {
  8781. const float * xb = xbl + 32*ib;
  8782. if (quant_weights) {
  8783. const float * qw = quant_weights + QK_K*ibl + 32*ib;
  8784. for (int i = 0; i < 32; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  8785. } else {
  8786. for (int i = 0; i < 32; ++i) weight[i] = xb[i]*xb[i];
  8787. }
  8788. for (int i = 0; i < 32; ++i) waux[i] = sqrtf(weight[i]);
  8789. for (int k = 0; k < 4; ++k) {
  8790. int nflip = 0;
  8791. uint8_t s = 0;
  8792. for (int i = 0; i < 8; ++i) {
  8793. if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
  8794. else {
  8795. xval[8*k + i] = -xb[8*k + i]; ++nflip; s |= (1 << i);
  8796. }
  8797. }
  8798. if (nflip%2) {
  8799. int imin = 0; float min = weight[8*k+imin]*xb[8*k+imin]*xb[8*k+imin];
  8800. for (int i = 1; i < 8; ++i) {
  8801. float ax = weight[8*k+i]*xb[8*k+i]*xb[8*k+i];
  8802. if (ax < min) {
  8803. min = ax; imin = i;
  8804. }
  8805. }
  8806. xval[8*k+imin] = -xval[8*k+imin];
  8807. s ^= (1 << imin);
  8808. }
  8809. block_signs[k] = s & 127;
  8810. }
  8811. float max = xval[0];
  8812. for (int i = 1; i < 32; ++i) max = MAX(max, xval[i]);
  8813. if (!max) {
  8814. scales[ib] = 0;
  8815. memset(L, 0, 32);
  8816. continue;
  8817. }
  8818. float best = 0;
  8819. float scale = max/(2*kMaxQ-1);
  8820. for (int is = -15; is <= 15; ++is) {
  8821. float id = (2*kMaxQ-1+is*0.2f)/max;
  8822. float this_scale = 1/id;
  8823. for (int k = 0; k < 8; ++k) {
  8824. for (int i = 0; i < 4; ++i) {
  8825. int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
  8826. Laux[4*k+i] = MAX(0, MIN(kMaxQ-1, l));
  8827. }
  8828. uint16_t u = 0;
  8829. for (int i = 0; i < 4; ++i) u |= (Laux[4*k+i] << 3*i);
  8830. int grid_index = kmap_q3xs[u];
  8831. is_on_grid_aux[k] = true;
  8832. if (grid_index < 0) {
  8833. is_on_grid_aux[k] = false;
  8834. const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
  8835. grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, this_scale, Laux + 4*k);
  8836. }
  8837. }
  8838. float sumqx = 0, sumq2 = 0;
  8839. for (int i = 0; i < 32; ++i) {
  8840. float w = weight[i];
  8841. float q = 2*Laux[i] + 1;
  8842. sumqx += w*xval[i]*q;
  8843. sumq2 += w*q*q;
  8844. }
  8845. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  8846. scale = sumqx/sumq2; best = scale*sumqx;
  8847. for (int i = 0; i < 32; ++i) L[i] = Laux[i];
  8848. for (int k = 0; k < 8; ++k) is_on_grid[k] = is_on_grid_aux[k];
  8849. }
  8850. }
  8851. int n_not_ongrid = 0;
  8852. for (int k = 0; k < 8; ++k) if (!is_on_grid[k]) ++n_not_ongrid;
  8853. if (n_not_ongrid > 0 && scale > 0) {
  8854. float id = 1/scale;
  8855. for (int k = 0; k < 8; ++k) {
  8856. if (is_on_grid[k]) continue;
  8857. uint16_t u = 0;
  8858. for (int i = 0; i < 4; ++i) {
  8859. int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
  8860. l = MAX(0, MIN(kMaxQ-1, l));
  8861. u |= (l << 3*i);
  8862. }
  8863. int grid_index = kmap_q3xs[u];
  8864. if (grid_index < 0) {
  8865. const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
  8866. grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, scale, L + 4*k);
  8867. }
  8868. const int8_t * pg = (const int8_t *)(kgrid_q3xs + grid_index);
  8869. for (int i = 0; i < 4; ++i) L[4*k+i] = (pg[i] - 1)/2;
  8870. }
  8871. float sumqx = 0, sumq2 = 0;
  8872. for (int i = 0; i < 32; ++i) {
  8873. float w = weight[i];
  8874. float q = 2*L[i] + 1;
  8875. sumqx += w*xval[i]*q;
  8876. sumq2 += w*q*q;
  8877. }
  8878. if (sumq2 > 0) scale = sumqx/sumq2;
  8879. }
  8880. if (scale < 0) {
  8881. // This should never happen, but just in case, flip scale so that it is positive (we use uint's to encode the scale)
  8882. // and correspondingly flip quant signs.
  8883. scale = -scale;
  8884. for (int k = 0; k < 4; ++k) block_signs[k] = (~block_signs[k]) & 127;
  8885. }
  8886. for (int k = 0; k < 8; ++k) {
  8887. uint16_t u = 0;
  8888. for (int i = 0; i < 4; ++i) u |= (L[4*k+i] << 3*i);
  8889. int grid_index = kmap_q3xs[u];
  8890. if (grid_index < 0) {
  8891. printf("Oops: found point %u not on grid:", u);
  8892. for (int i = 0; i < 4; ++i) printf(" %d", L[4*k+i]);
  8893. printf("\n");
  8894. GGML_ASSERT(false);
  8895. }
  8896. if (grid_size == 256) {
  8897. q3[8*ib+k] = grid_index;
  8898. } else {
  8899. q3[8*ib+k] = grid_index & 255;
  8900. qh[ib] |= ((grid_index >> 8) << k);
  8901. }
  8902. }
  8903. scales_and_signs[ib] = block_signs[0] | (block_signs[1] << 7) | (block_signs[2] << 14) | (block_signs[3] << 21);
  8904. GGML_ASSERT(scale >= 0);
  8905. scales[ib] = scale;
  8906. max_scale = MAX(max_scale, scale);
  8907. }
  8908. if (!max_scale) {
  8909. memset(qs, 0, quant_size);
  8910. dh += block_size/sizeof(ggml_fp16_t);
  8911. qs += block_size;
  8912. continue;
  8913. }
  8914. float d = max_scale/31;
  8915. dh[0] = GGML_FP32_TO_FP16(d * 1.0125f); // small improvement via this fudge factor
  8916. float id = 1/d;
  8917. for (int ib = 0; ib < QK_K/32; ++ib) {
  8918. int l = nearest_int(0.5f*(id*scales[ib]-1));
  8919. l = MAX(0, MIN(15, l));
  8920. scales_and_signs[ib] |= ((uint32_t)l << 28);
  8921. }
  8922. memcpy(qs, q3, quant_size);
  8923. dh += block_size/sizeof(ggml_fp16_t);
  8924. qs += block_size;
  8925. }
  8926. }
  8927. size_t quantize_iq3_xxs(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
  8928. (void)hist;
  8929. GGML_ASSERT(n_per_row%QK_K == 0);
  8930. int nblock = n_per_row/QK_K;
  8931. char * qrow = (char *)dst;
  8932. for (int row = 0; row < nrow; ++row) {
  8933. quantize_row_iq3_xxs_impl(256, src, qrow, n_per_row, quant_weights);
  8934. src += n_per_row;
  8935. qrow += nblock*sizeof(block_iq3_xxs);
  8936. }
  8937. return nrow * nblock * sizeof(block_iq3_xxs);
  8938. }
  8939. void quantize_row_iq3_xxs(const float * restrict x, void * restrict vy, int k) {
  8940. assert(k % QK_K == 0);
  8941. block_iq3_xxs * restrict y = vy;
  8942. quantize_row_iq3_xxs_reference(x, y, k);
  8943. }
  8944. void quantize_row_iq3_xxs_reference(const float * restrict x, block_iq3_xxs * restrict y, int k) {
  8945. assert(k % QK_K == 0);
  8946. quantize_row_iq3_xxs_impl(256, x, y, k, NULL);
  8947. }
  8948. static void quantize_row_iq3_s_impl(int block_size, const float * restrict x, void * restrict vy, int n,
  8949. const float * restrict quant_weights,
  8950. float * scales,
  8951. float * weight,
  8952. float * xval,
  8953. int8_t * L,
  8954. int8_t * Laux,
  8955. float * waux,
  8956. bool * is_on_grid,
  8957. bool * is_on_grid_aux,
  8958. uint8_t * block_signs) {
  8959. const int gindex = iq3_data_index(512);
  8960. const uint32_t * kgrid_q3xs = iq3_data[gindex].grid;
  8961. const int * kmap_q3xs = iq3_data[gindex].map;
  8962. const uint16_t * kneighbors_q3xs = iq3_data[gindex].neighbours;
  8963. //GGML_ASSERT(quant_weights && "missing quantization weights");
  8964. GGML_ASSERT(kgrid_q3xs && "forgot to call ggml_quantize_init()?");
  8965. GGML_ASSERT(kmap_q3xs && "forgot to call ggml_quantize_init()?");
  8966. GGML_ASSERT(kneighbors_q3xs && "forgot to call ggml_quantize_init()?");
  8967. GGML_ASSERT(n%QK_K == 0);
  8968. const int kMaxQ = 8;
  8969. const int nbl = n/QK_K;
  8970. block_iq3_s * y = vy;
  8971. const int bs4 = block_size/4;
  8972. const int bs8 = block_size/8;
  8973. for (int ibl = 0; ibl < nbl; ++ibl) {
  8974. memset(&y[ibl], 0, sizeof(block_iq3_s));
  8975. y[ibl].d = GGML_FP32_TO_FP16(0.f);
  8976. uint8_t * qs = y[ibl].qs;
  8977. uint8_t * qh = y[ibl].qh;
  8978. uint8_t * signs = y[ibl].signs;
  8979. float max_scale = 0;
  8980. const float * xbl = x + QK_K*ibl;
  8981. float sumx2 = 0;
  8982. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  8983. float sigma2 = 2*sumx2/QK_K;
  8984. for (int ib = 0; ib < QK_K/block_size; ++ib) {
  8985. const float * xb = xbl + block_size*ib;
  8986. if (quant_weights) {
  8987. const float * qw = quant_weights + QK_K*ibl + block_size*ib;
  8988. for (int i = 0; i < block_size; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  8989. } else {
  8990. for (int i = 0; i < block_size; ++i) weight[i] = xb[i]*xb[i];
  8991. }
  8992. for (int i = 0; i < block_size; ++i) waux[i] = sqrtf(weight[i]);
  8993. for (int k = 0; k < bs8; ++k) {
  8994. uint8_t s = 0;
  8995. for (int i = 0; i < 8; ++i) {
  8996. if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
  8997. else {
  8998. xval[8*k + i] = -xb[8*k + i]; s |= (1 << i);
  8999. }
  9000. }
  9001. block_signs[k] = s;
  9002. }
  9003. float max = xval[0];
  9004. for (int i = 1; i < block_size; ++i) max = MAX(max, xval[i]);
  9005. if (!max) {
  9006. scales[ib] = 0;
  9007. continue;
  9008. }
  9009. float best = 0;
  9010. float scale = max/(2*kMaxQ-1);
  9011. for (int is = -15; is <= 15; ++is) {
  9012. float id = (2*kMaxQ-1+is*0.2f)/max;
  9013. float this_scale = 1/id;
  9014. for (int k = 0; k < bs4; ++k) {
  9015. for (int i = 0; i < 4; ++i) {
  9016. int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
  9017. Laux[4*k+i] = MAX(0, MIN(kMaxQ-1, l));
  9018. }
  9019. uint16_t u = 0;
  9020. for (int i = 0; i < 4; ++i) u |= (Laux[4*k+i] << 3*i);
  9021. int grid_index = kmap_q3xs[u];
  9022. is_on_grid_aux[k] = true;
  9023. if (grid_index < 0) {
  9024. is_on_grid_aux[k] = false;
  9025. const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
  9026. grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, this_scale, Laux + 4*k);
  9027. }
  9028. }
  9029. float sumqx = 0, sumq2 = 0;
  9030. for (int i = 0; i < block_size; ++i) {
  9031. float w = weight[i];
  9032. float q = 2*Laux[i] + 1;
  9033. sumqx += w*xval[i]*q;
  9034. sumq2 += w*q*q;
  9035. }
  9036. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  9037. scale = sumqx/sumq2; best = scale*sumqx;
  9038. for (int i = 0; i < block_size; ++i) L[i] = Laux[i];
  9039. for (int k = 0; k < bs4; ++k) is_on_grid[k] = is_on_grid_aux[k];
  9040. }
  9041. }
  9042. int n_not_ongrid = 0;
  9043. for (int k = 0; k < bs4; ++k) if (!is_on_grid[k]) ++n_not_ongrid;
  9044. if (n_not_ongrid > 0 && scale > 0) {
  9045. float id = 1/scale;
  9046. for (int k = 0; k < bs4; ++k) {
  9047. if (is_on_grid[k]) continue;
  9048. uint16_t u = 0;
  9049. for (int i = 0; i < 4; ++i) {
  9050. int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
  9051. l = MAX(0, MIN(kMaxQ-1, l));
  9052. u |= (l << 3*i);
  9053. }
  9054. int grid_index = kmap_q3xs[u];
  9055. if (grid_index < 0) {
  9056. const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
  9057. grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, scale, L + 4*k);
  9058. }
  9059. const int8_t * pg = (const int8_t *)(kgrid_q3xs + grid_index);
  9060. for (int i = 0; i < 4; ++i) L[4*k+i] = (pg[i] - 1)/2;
  9061. }
  9062. float sumqx = 0, sumq2 = 0;
  9063. for (int i = 0; i < block_size; ++i) {
  9064. float w = weight[i];
  9065. float q = 2*L[i] + 1;
  9066. sumqx += w*xval[i]*q;
  9067. sumq2 += w*q*q;
  9068. }
  9069. if (sumq2 > 0) scale = sumqx/sumq2;
  9070. }
  9071. if (scale < 0) {
  9072. // This should never happen, but just in case, flip scale so that it is positive (we use uint's to encode the scale)
  9073. // and correspondingly flip quant signs.
  9074. scale = -scale;
  9075. for (int k = 0; k < bs8; ++k) block_signs[k] = ~block_signs[k];
  9076. }
  9077. for (int k = 0; k < bs4; ++k) {
  9078. uint16_t u = 0;
  9079. for (int i = 0; i < 4; ++i) u |= (L[4*k+i] << 3*i);
  9080. int grid_index = kmap_q3xs[u];
  9081. if (grid_index < 0) {
  9082. printf("Oops: found point %u not on grid:", u);
  9083. for (int i = 0; i < 4; ++i) printf(" %d", L[4*k+i]);
  9084. printf("\n");
  9085. GGML_ASSERT(false);
  9086. }
  9087. qs[k] = grid_index & 255;
  9088. qh[(ib*bs4+k)/8] |= ((grid_index >> 8) << ((ib*bs4+k)%8));
  9089. }
  9090. qs += bs4;
  9091. for (int k = 0; k < bs8; ++k) signs[k] = block_signs[k];
  9092. signs += bs8;
  9093. GGML_ASSERT(scale >= 0);
  9094. scales[ib] = scale;
  9095. max_scale = MAX(max_scale, scale);
  9096. }
  9097. if (!max_scale) {
  9098. continue;
  9099. }
  9100. float d = max_scale/31;
  9101. y[ibl].d = GGML_FP32_TO_FP16(d);
  9102. float id = 1/d;
  9103. for (int ib = 0; ib < QK_K/block_size; ib += 2) {
  9104. int l1 = nearest_int(0.5f*(id*scales[ib+0]-1));
  9105. l1 = MAX(0, MIN(15, l1));
  9106. int l2 = nearest_int(0.5f*(id*scales[ib+1]-1));
  9107. l2 = MAX(0, MIN(15, l2));
  9108. y[ibl].scales[ib/2] = l1 | (l2 << 4);
  9109. }
  9110. }
  9111. }
  9112. #define IQ3S_BLOCK_SIZE 32
  9113. size_t quantize_iq3_s(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
  9114. (void)hist;
  9115. GGML_ASSERT(n_per_row%QK_K == 0);
  9116. int nblock = n_per_row/QK_K;
  9117. float scales[QK_K/IQ3S_BLOCK_SIZE];
  9118. float weight[IQ3S_BLOCK_SIZE];
  9119. float xval[IQ3S_BLOCK_SIZE];
  9120. int8_t L[IQ3S_BLOCK_SIZE];
  9121. int8_t Laux[IQ3S_BLOCK_SIZE];
  9122. float waux[IQ3S_BLOCK_SIZE];
  9123. bool is_on_grid[IQ3S_BLOCK_SIZE/4];
  9124. bool is_on_grid_aux[IQ3S_BLOCK_SIZE/4];
  9125. uint8_t block_signs[IQ3S_BLOCK_SIZE/8];
  9126. char * qrow = (char *)dst;
  9127. for (int row = 0; row < nrow; ++row) {
  9128. quantize_row_iq3_s_impl(IQ3S_BLOCK_SIZE, src, qrow, n_per_row, quant_weights,
  9129. scales, weight, xval, L, Laux, waux, is_on_grid, is_on_grid_aux, block_signs);
  9130. src += n_per_row;
  9131. qrow += nblock*sizeof(block_iq3_s);
  9132. }
  9133. return nrow * nblock * sizeof(block_iq3_s);
  9134. }
  9135. void quantize_row_iq3_s(const float * restrict x, void * restrict vy, int k) {
  9136. assert(k % QK_K == 0);
  9137. block_iq3_s * restrict y = vy;
  9138. quantize_row_iq3_s_reference(x, y, k);
  9139. }
  9140. void quantize_row_iq3_s_reference(const float * restrict x, block_iq3_s * restrict y, int k) {
  9141. assert(k % QK_K == 0);
  9142. quantize_iq3_s(x, y, 1, k, NULL, NULL);
  9143. }
  9144. // =================================== 1.5 bpw ===================================================
  9145. static int iq1_find_best_neighbour(const uint16_t * restrict neighbours, const uint64_t * restrict grid,
  9146. const float * restrict xval, const float * restrict weight, float * scale, int8_t * restrict L, int ngrid) {
  9147. int num_neighbors = neighbours[0];
  9148. GGML_ASSERT(num_neighbors > 0);
  9149. float best_score = 0;
  9150. int grid_index = -1;
  9151. for (int j = 1; j <= num_neighbors; ++j) {
  9152. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  9153. float sumqx = 0, sumq2 = 0;
  9154. for (int i = 0; i < 8; ++i) {
  9155. float q = (pg[i] - 3)/2;
  9156. float w = weight[i];
  9157. sumqx += w*q*xval[i];
  9158. sumq2 += w*q*q;
  9159. }
  9160. if (sumqx > 0 && sumq2 > 0 && sumqx*sumqx > best_score*sumq2) {
  9161. *scale = sumqx/sumq2; best_score = *scale * sumqx;
  9162. grid_index = neighbours[j];
  9163. }
  9164. }
  9165. if (grid_index < 0) {
  9166. for (int i = 0; i < ngrid; ++i) {
  9167. const int8_t * grid_i = (const int8_t *)(grid + i);
  9168. float sumqx = 0, sumq2 = 0;
  9169. for (int j = 0; j < 8; ++j) {
  9170. float w = weight[j];
  9171. float q = (grid_i[j] - 3)/2;
  9172. sumqx += w*q*xval[j];
  9173. sumq2 += w*q*q;
  9174. }
  9175. if (sumqx > 0 && sumq2 > 0 && sumqx*sumqx > best_score*sumq2) {
  9176. *scale = sumqx/sumq2; best_score = *scale*sumqx;
  9177. grid_index = i;
  9178. }
  9179. }
  9180. }
  9181. if (grid_index < 0) {
  9182. printf("Oops, did not find grid point\n");
  9183. printf("Have %d neighbours\n", num_neighbors);
  9184. for (int j = 1; j <= num_neighbors; ++j) {
  9185. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  9186. float sumqx = 0, sumq2 = 0;
  9187. for (int i = 0; i < 8; ++i) {
  9188. float q = (pg[i] - 3)/2;
  9189. float w = weight[i];
  9190. sumqx += w*q*xval[i];
  9191. sumq2 += w*q*q;
  9192. }
  9193. printf(" neighbour %d: sumqx = %g sumq2 = %g\n", j, (double)sumqx, (double)sumq2);
  9194. }
  9195. }
  9196. GGML_ASSERT(grid_index >= 0);
  9197. //!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
  9198. *scale *= 1.05f; // This is a fudge factor. Don't ask me why it improves the result.
  9199. //!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
  9200. const int8_t * pg = (const int8_t *)(grid + grid_index);
  9201. for (int i = 0; i < 8; ++i) L[i] = (pg[i] - 1)/2;
  9202. return grid_index;
  9203. }
  9204. static int iq1_sort_helper(const void * left, const void * right) {
  9205. const float * l = left;
  9206. const float * r = right;
  9207. return *l < *r ? -1 : *l > *r ? 1 : 0;
  9208. }
  9209. static void quantize_row_iq1_s_impl(const float * restrict x, void * restrict vy, int n, const float * restrict quant_weights) {
  9210. const int gindex = iq2_data_index(GGML_TYPE_IQ1_S);
  9211. const uint64_t * kgrid_q2xs = iq2_data[gindex].grid;
  9212. const int * kmap_q2xs = iq2_data[gindex].map;
  9213. const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
  9214. GGML_ASSERT(quant_weights && "missing quantization weights");
  9215. GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
  9216. GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
  9217. GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
  9218. GGML_ASSERT(n%QK_K == 0);
  9219. const int nbl = n/256;
  9220. block_iq1_s * y = vy;
  9221. float scales[QK_K/8];
  9222. float weight[8];
  9223. int8_t L[8];
  9224. float sumx[9];
  9225. float sumw[9];
  9226. float pairs[16];
  9227. int * idx = (int *)(pairs + 1);
  9228. uint8_t hbit[QK_K/8];
  9229. for (int ibl = 0; ibl < nbl; ++ibl) {
  9230. y[ibl].d = GGML_FP32_TO_FP16(0.f);
  9231. memset(y[ibl].qs, 0, QK_K/8);
  9232. memset(y[ibl].scales, 0, QK_K/16);
  9233. float max_scale = 0;
  9234. const float * xbl = x + QK_K*ibl;
  9235. float sumx2 = 0;
  9236. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  9237. float sigma2 = sumx2/QK_K;
  9238. for (int ib = 0; ib < QK_K/8; ++ib) {
  9239. const float * xb = xbl + 8*ib;
  9240. const float * qw = quant_weights + QK_K*ibl + 8*ib;
  9241. for (int i = 0; i < 8; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  9242. float max = fabsf(xb[0]);
  9243. for (int i = 1; i < 8; ++i) max = MAX(max, fabsf(xb[i]));
  9244. if (!max) {
  9245. scales[ib] = 0;
  9246. memset(L, 1, 8);
  9247. continue;
  9248. }
  9249. // Here we solve exactly the sum of squared difference (SSD) weighted minimization problem.
  9250. // With just 3 allowed quant values (-1, 0, 1), we can search exhaustively for the two
  9251. // boundaries that split the weights xb[i] into 3 groups. To do so, we sort the weights
  9252. // in ascending order, compute Si = sum[weight[j] xb[j], j = 0...i] and
  9253. // Wi = sum[weight[j], j = 0...i], and use these to quckly get get the optimum scale
  9254. // for each possible and score for each split.
  9255. for (int j = 0; j < 8; ++j) {
  9256. pairs[2*j] = xb[j];
  9257. idx[2*j] = j;
  9258. }
  9259. qsort(pairs, 8, 2*sizeof(float), iq1_sort_helper);
  9260. {
  9261. sumx[0] = sumw[0] = 0;
  9262. for (int j = 0; j < 8; ++j) {
  9263. int i = idx[2*j];
  9264. sumx[j+1] = sumx[j] + weight[i]*xb[i];
  9265. sumw[j+1] = sumw[j] + weight[i];
  9266. }
  9267. }
  9268. float best_score = 0, scale = max;
  9269. int besti1 = 0, besti2 = 0;
  9270. for (int i1 = 0; i1 <= 8; ++i1) {
  9271. for (int i2 = i1; i2 <= 8; ++i2) {
  9272. float sumqx = -(sumx[i1] - sumx[0]) + (sumx[8] - sumx[i2]);
  9273. float sumq2 = (sumw[i1] - sumw[0]) + (sumw[8] - sumw[i2]);
  9274. if (sumq2 > 0 && sumqx*sumqx > best_score*sumq2) {
  9275. scale = sumqx/sumq2; best_score = scale*sumqx;
  9276. besti1 = i1; besti2 = i2;
  9277. }
  9278. }
  9279. }
  9280. for (int j = 0; j < besti1; ++j) L[idx[2*j]] = 0;
  9281. for (int j = besti1; j < besti2; ++j) L[idx[2*j]] = 1;
  9282. for (int j = besti2; j < 8; ++j) L[idx[2*j]] = 2;
  9283. if (scale < 0) {
  9284. for (int j = 0; j < 8; ++j) L[j] = 2 - L[j];
  9285. scale = -scale;
  9286. }
  9287. // Now we check if the solution found above corresponds to a grid point and, if not, use a neighbouring
  9288. // grid point that minimizes SSD.
  9289. uint16_t u = 0;
  9290. for (int j = 0; j < 8; ++j) u |= (L[j] << 2*j);
  9291. int grid_index = kmap_q2xs[u];
  9292. if (grid_index < 0) {
  9293. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  9294. grid_index = iq1_find_best_neighbour(neighbours, kgrid_q2xs, xb, weight, &scale, L, NGRID_IQ2XXS);
  9295. GGML_ASSERT(grid_index >= 0);
  9296. }
  9297. y[ibl].qs[ib] = grid_index & 255;
  9298. hbit[ib] = grid_index >> 8;
  9299. GGML_ASSERT(scale >= 0);
  9300. scales[ib] = scale;
  9301. max_scale = MAX(max_scale, scale);
  9302. }
  9303. if (!max_scale) {
  9304. memset(y[ibl].qs, 0, QK_K/8);
  9305. continue;
  9306. }
  9307. float d = max_scale/15;
  9308. y[ibl].d = GGML_FP32_TO_FP16(d*1.085f); // 1.085f is another fudge factor. Don't ask me why it is needed.
  9309. float id = 1/d;
  9310. for (int ib = 0; ib < QK_K/8; ++ib) {
  9311. int l = nearest_int(0.5f*(id*scales[ib]-1));
  9312. l = MAX(0, MIN(7, l));
  9313. if (hbit[ib]) l |= 8;
  9314. y[ibl].scales[ib/2] |= (l << 4*(ib%2));
  9315. }
  9316. }
  9317. }
  9318. size_t quantize_iq1_s(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
  9319. (void)hist;
  9320. GGML_ASSERT(n_per_row%QK_K == 0);
  9321. int nblock = n_per_row/QK_K;
  9322. char * qrow = (char *)dst;
  9323. for (int row = 0; row < nrow; ++row) {
  9324. quantize_row_iq1_s_impl(src, qrow, n_per_row, quant_weights);
  9325. src += n_per_row;
  9326. qrow += nblock*sizeof(block_iq1_s);
  9327. }
  9328. return nrow * nblock * sizeof(block_iq1_s);
  9329. }
  9330. // ============================ 4-bit non-linear quants
  9331. static inline int best_index_int8(int n, const int8_t * val, float x) {
  9332. if (x <= val[0]) return 0;
  9333. if (x >= val[n-1]) return n-1;
  9334. int ml = 0, mu = n-1;
  9335. while (mu-ml > 1) {
  9336. int mav = (ml+mu)/2;
  9337. if (x < val[mav]) mu = mav; else ml = mav;
  9338. }
  9339. return x - val[mu-1] < val[mu] - x ? mu-1 : mu;
  9340. }
  9341. static void quantize_row_iq4_nl_impl(const int block_size, const float * GGML_RESTRICT x,
  9342. ggml_fp16_t * dh, uint8_t * q4,
  9343. float * weight, uint8_t * L,
  9344. const int8_t * values,
  9345. const float * quant_weights) {
  9346. const int ntry = 7;
  9347. float sigma2 = 0;
  9348. for (int j = 0; j < QK4_NL; ++j) sigma2 += x[j]*x[j];
  9349. sigma2 *= 2.f/QK4_NL;
  9350. const int nb = QK4_NL/block_size;
  9351. memset(q4, 0, QK4_NL/2);
  9352. for (int ib = 0; ib < nb; ++ib) {
  9353. dh[ib] = GGML_FP32_TO_FP16(0.f);
  9354. const float * xb = x + ib*block_size;
  9355. if (quant_weights) {
  9356. const float * qw = quant_weights + ib*block_size;
  9357. for (int j = 0; j < block_size; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
  9358. } else {
  9359. for (int j = 0; j < block_size; ++j) weight[j] = xb[j]*xb[j];
  9360. }
  9361. float amax = 0, max = 0;
  9362. for (int j = 0; j < block_size; ++j) {
  9363. float ax = fabsf(xb[j]);
  9364. if (ax > amax) {
  9365. amax = ax; max = xb[j];
  9366. }
  9367. }
  9368. if (!amax) {
  9369. continue;
  9370. }
  9371. float d = -max/values[0];
  9372. float id = 1/d;
  9373. float sumqx = 0, sumq2 = 0;
  9374. for (int j = 0; j < block_size; ++j) {
  9375. float al = id*xb[j];
  9376. int l = best_index_int8(16, values, al);
  9377. float q = values[l];
  9378. float w = weight[j];
  9379. sumqx += w*q*xb[j];
  9380. sumq2 += w*q*q;
  9381. }
  9382. float best_id = id;
  9383. d = sumqx/sumq2;
  9384. float best = d*sumqx;
  9385. for (int itry = -ntry; itry <= ntry; ++itry) {
  9386. id = (itry + values[0])/max;
  9387. sumqx = sumq2 = 0;
  9388. for (int j = 0; j < block_size; ++j) {
  9389. float al = id*xb[j];
  9390. int l = best_index_int8(16, values, al);
  9391. float q = values[l];
  9392. float w = weight[j];
  9393. sumqx += w*q*xb[j];
  9394. sumq2 += w*q*q;
  9395. }
  9396. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  9397. d = sumqx/sumq2; best = d * sumqx;
  9398. best_id = id;
  9399. }
  9400. }
  9401. dh[ib] = GGML_FP32_TO_FP16(d);
  9402. for (int j = 0; j < block_size; ++j) {
  9403. L[ib*block_size + j] = best_index_int8(16, values, best_id*xb[j]);
  9404. }
  9405. }
  9406. for (int i = 0; i < QK4_NL/32; ++i) {
  9407. for (int j = 0; j < 16; ++j) {
  9408. q4[16*i + j] = L[32*i + j] | (L[32*i + 16 + j] << 4);
  9409. }
  9410. }
  9411. }
  9412. size_t quantize_iq4_nl(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
  9413. (void)hist;
  9414. GGML_ASSERT(n_per_row%QK4_NL == 0);
  9415. int nblock = n_per_row/QK4_NL;
  9416. char * qrow = (char *)dst;
  9417. uint8_t L[QK4_NL];
  9418. float weight[32];
  9419. for (int row = 0; row < nrow; ++row) {
  9420. block_iq4_nl * iq4 = (block_iq4_nl *)qrow;
  9421. for (int ibl = 0; ibl < nblock; ++ibl) {
  9422. const float * qw = quant_weights ? quant_weights + QK4_NL*ibl : NULL;
  9423. quantize_row_iq4_nl_impl(32, src + QK4_NL*ibl, &iq4[ibl].d, iq4[ibl].qs, weight, L, kvalues_iq4nl, qw);
  9424. }
  9425. src += n_per_row;
  9426. qrow += nblock*sizeof(block_iq4_nl);
  9427. }
  9428. return nrow * nblock * sizeof(block_iq4_nl);
  9429. }
  9430. void quantize_row_iq4_nl(const float * restrict x, void * restrict vy, int k) {
  9431. assert(k % QK4_NL == 0);
  9432. block_iq4_nl * restrict y = vy;
  9433. quantize_row_iq4_nl_reference(x, y, k);
  9434. }
  9435. void quantize_row_iq4_nl_reference(const float * restrict x, block_iq4_nl * restrict y, int k) {
  9436. assert(k % QK4_NL == 0);
  9437. quantize_iq4_nl(x, y, 1, k, NULL, NULL);
  9438. }