ggml.c 673 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885168861688716888168891689016891168921689316894168951689616897168981689916900169011690216903169041690516906169071690816909169101691116912169131691416915169161691716918169191692016921169221692316924169251692616927169281692916930169311693216933169341693516936169371693816939169401694116942169431694416945169461694716948169491695016951169521695316954169551695616957169581695916960169611696216963169641696516966169671696816969169701697116972169731697416975169761697716978169791698016981169821698316984169851698616987169881698916990169911699216993169941699516996169971699816999170001700117002170031700417005170061700717008170091701017011170121701317014170151701617017170181701917020170211702217023170241702517026170271702817029170301703117032170331703417035170361703717038170391704017041170421704317044170451704617047170481704917050170511705217053170541705517056170571705817059170601706117062170631706417065170661706717068170691707017071170721707317074170751707617077170781707917080170811708217083170841708517086170871708817089170901709117092170931709417095170961709717098170991710017101171021710317104171051710617107171081710917110171111711217113171141711517116171171711817119171201712117122171231712417125171261712717128171291713017131171321713317134171351713617137171381713917140171411714217143171441714517146171471714817149171501715117152171531715417155171561715717158171591716017161171621716317164171651716617167171681716917170171711717217173171741717517176171771717817179171801718117182171831718417185171861718717188171891719017191171921719317194171951719617197171981719917200172011720217203172041720517206172071720817209172101721117212172131721417215172161721717218172191722017221172221722317224172251722617227172281722917230172311723217233172341723517236172371723817239172401724117242172431724417245172461724717248172491725017251172521725317254172551725617257172581725917260172611726217263172641726517266172671726817269172701727117272172731727417275172761727717278172791728017281172821728317284172851728617287172881728917290172911729217293172941729517296172971729817299173001730117302173031730417305173061730717308173091731017311173121731317314173151731617317173181731917320173211732217323173241732517326173271732817329173301733117332173331733417335173361733717338173391734017341173421734317344173451734617347173481734917350173511735217353173541735517356173571735817359173601736117362173631736417365173661736717368173691737017371173721737317374173751737617377173781737917380173811738217383173841738517386173871738817389173901739117392173931739417395173961739717398173991740017401174021740317404174051740617407174081740917410174111741217413174141741517416174171741817419174201742117422174231742417425174261742717428174291743017431174321743317434174351743617437174381743917440174411744217443174441744517446174471744817449174501745117452174531745417455174561745717458174591746017461174621746317464174651746617467174681746917470174711747217473174741747517476174771747817479174801748117482174831748417485174861748717488174891749017491174921749317494174951749617497174981749917500175011750217503175041750517506175071750817509175101751117512175131751417515175161751717518175191752017521175221752317524175251752617527175281752917530175311753217533175341753517536175371753817539175401754117542175431754417545175461754717548175491755017551175521755317554175551755617557175581755917560175611756217563175641756517566175671756817569175701757117572175731757417575175761757717578175791758017581175821758317584175851758617587175881758917590175911759217593175941759517596175971759817599176001760117602176031760417605176061760717608176091761017611176121761317614176151761617617176181761917620176211762217623176241762517626176271762817629176301763117632176331763417635176361763717638176391764017641176421764317644176451764617647176481764917650176511765217653176541765517656176571765817659176601766117662176631766417665176661766717668176691767017671176721767317674176751767617677176781767917680176811768217683176841768517686176871768817689176901769117692176931769417695176961769717698176991770017701177021770317704177051770617707177081770917710177111771217713177141771517716177171771817719177201772117722177231772417725177261772717728177291773017731177321773317734177351773617737177381773917740177411774217743177441774517746177471774817749177501775117752177531775417755177561775717758177591776017761177621776317764177651776617767177681776917770177711777217773177741777517776177771777817779177801778117782177831778417785177861778717788177891779017791177921779317794177951779617797177981779917800178011780217803178041780517806178071780817809178101781117812178131781417815178161781717818178191782017821178221782317824178251782617827178281782917830178311783217833178341783517836178371783817839178401784117842178431784417845178461784717848178491785017851178521785317854178551785617857178581785917860178611786217863178641786517866178671786817869178701787117872178731787417875178761787717878178791788017881178821788317884178851788617887178881788917890178911789217893178941789517896178971789817899179001790117902179031790417905179061790717908179091791017911179121791317914179151791617917179181791917920179211792217923179241792517926179271792817929179301793117932179331793417935179361793717938179391794017941179421794317944179451794617947179481794917950179511795217953179541795517956179571795817959179601796117962179631796417965179661796717968179691797017971179721797317974179751797617977179781797917980179811798217983179841798517986179871798817989179901799117992179931799417995179961799717998179991800018001180021800318004180051800618007180081800918010180111801218013180141801518016180171801818019180201802118022180231802418025180261802718028180291803018031180321803318034180351803618037180381803918040180411804218043180441804518046180471804818049180501805118052180531805418055180561805718058180591806018061180621806318064180651806618067180681806918070180711807218073180741807518076180771807818079180801808118082180831808418085180861808718088180891809018091180921809318094180951809618097180981809918100181011810218103181041810518106181071810818109181101811118112181131811418115181161811718118181191812018121181221812318124181251812618127181281812918130181311813218133181341813518136181371813818139181401814118142181431814418145181461814718148181491815018151181521815318154181551815618157181581815918160181611816218163181641816518166181671816818169181701817118172181731817418175181761817718178181791818018181181821818318184181851818618187181881818918190181911819218193181941819518196181971819818199182001820118202182031820418205182061820718208182091821018211182121821318214182151821618217182181821918220182211822218223182241822518226182271822818229182301823118232182331823418235182361823718238182391824018241182421824318244182451824618247182481824918250182511825218253182541825518256182571825818259182601826118262182631826418265182661826718268182691827018271182721827318274182751827618277182781827918280182811828218283182841828518286182871828818289182901829118292182931829418295182961829718298182991830018301183021830318304183051830618307183081830918310183111831218313183141831518316183171831818319183201832118322183231832418325183261832718328183291833018331183321833318334183351833618337183381833918340183411834218343183441834518346183471834818349183501835118352183531835418355183561835718358183591836018361183621836318364183651836618367183681836918370183711837218373183741837518376183771837818379183801838118382183831838418385183861838718388183891839018391183921839318394183951839618397183981839918400184011840218403184041840518406184071840818409184101841118412184131841418415184161841718418184191842018421184221842318424184251842618427184281842918430184311843218433184341843518436184371843818439184401844118442184431844418445184461844718448184491845018451184521845318454184551845618457184581845918460184611846218463184641846518466184671846818469184701847118472184731847418475184761847718478184791848018481184821848318484184851848618487184881848918490184911849218493184941849518496184971849818499185001850118502185031850418505185061850718508185091851018511185121851318514185151851618517185181851918520185211852218523185241852518526185271852818529185301853118532185331853418535185361853718538185391854018541185421854318544185451854618547185481854918550185511855218553185541855518556185571855818559185601856118562185631856418565185661856718568185691857018571185721857318574185751857618577185781857918580185811858218583185841858518586185871858818589185901859118592185931859418595185961859718598185991860018601186021860318604186051860618607186081860918610186111861218613186141861518616186171861818619186201862118622186231862418625186261862718628186291863018631186321863318634186351863618637186381863918640186411864218643186441864518646186471864818649186501865118652186531865418655186561865718658186591866018661186621866318664186651866618667186681866918670186711867218673186741867518676186771867818679186801868118682186831868418685186861868718688186891869018691186921869318694186951869618697186981869918700187011870218703187041870518706187071870818709187101871118712187131871418715187161871718718187191872018721187221872318724187251872618727187281872918730187311873218733187341873518736187371873818739187401874118742187431874418745187461874718748187491875018751187521875318754187551875618757187581875918760187611876218763187641876518766187671876818769187701877118772187731877418775187761877718778187791878018781187821878318784187851878618787187881878918790187911879218793187941879518796187971879818799188001880118802188031880418805188061880718808188091881018811188121881318814188151881618817188181881918820188211882218823188241882518826188271882818829188301883118832188331883418835188361883718838188391884018841188421884318844188451884618847188481884918850188511885218853188541885518856188571885818859188601886118862188631886418865188661886718868188691887018871188721887318874188751887618877188781887918880188811888218883188841888518886188871888818889188901889118892188931889418895188961889718898188991890018901189021890318904189051890618907189081890918910189111891218913189141891518916189171891818919189201892118922189231892418925189261892718928189291893018931189321893318934189351893618937189381893918940189411894218943189441894518946189471894818949189501895118952189531895418955189561895718958189591896018961189621896318964189651896618967189681896918970189711897218973189741897518976189771897818979189801898118982189831898418985189861898718988189891899018991189921899318994189951899618997189981899919000190011900219003190041900519006190071900819009190101901119012190131901419015190161901719018190191902019021190221902319024190251902619027190281902919030190311903219033190341903519036190371903819039190401904119042190431904419045190461904719048190491905019051190521905319054190551905619057190581905919060190611906219063190641906519066190671906819069190701907119072190731907419075190761907719078190791908019081190821908319084190851908619087190881908919090190911909219093190941909519096190971909819099191001910119102191031910419105191061910719108191091911019111191121911319114191151911619117191181911919120191211912219123191241912519126191271912819129191301913119132191331913419135191361913719138191391914019141191421914319144191451914619147191481914919150191511915219153191541915519156191571915819159191601916119162191631916419165191661916719168191691917019171191721917319174191751917619177191781917919180191811918219183191841918519186191871918819189191901919119192191931919419195191961919719198191991920019201192021920319204192051920619207192081920919210192111921219213192141921519216192171921819219192201922119222192231922419225192261922719228192291923019231192321923319234192351923619237192381923919240192411924219243192441924519246192471924819249192501925119252192531925419255192561925719258192591926019261192621926319264192651926619267192681926919270192711927219273192741927519276192771927819279192801928119282192831928419285192861928719288192891929019291192921929319294192951929619297192981929919300193011930219303193041930519306193071930819309193101931119312193131931419315193161931719318193191932019321193221932319324193251932619327193281932919330193311933219333193341933519336193371933819339193401934119342193431934419345193461934719348193491935019351193521935319354193551935619357193581935919360193611936219363193641936519366193671936819369193701937119372193731937419375193761937719378193791938019381193821938319384193851938619387193881938919390193911939219393193941939519396193971939819399194001940119402194031940419405194061940719408194091941019411194121941319414194151941619417194181941919420194211942219423194241942519426194271942819429194301943119432194331943419435194361943719438194391944019441194421944319444194451944619447194481944919450194511945219453194541945519456194571945819459194601946119462194631946419465194661946719468194691947019471194721947319474194751947619477194781947919480194811948219483194841948519486194871948819489194901949119492194931949419495194961949719498194991950019501195021950319504195051950619507195081950919510195111951219513195141951519516195171951819519195201952119522195231952419525195261952719528195291953019531195321953319534195351953619537195381953919540195411954219543195441954519546195471954819549195501955119552195531955419555195561955719558195591956019561195621956319564195651956619567195681956919570195711957219573195741957519576195771957819579195801958119582195831958419585195861958719588195891959019591195921959319594195951959619597195981959919600196011960219603196041960519606196071960819609196101961119612196131961419615196161961719618196191962019621196221962319624196251962619627196281962919630196311963219633196341963519636196371963819639196401964119642196431964419645196461964719648196491965019651196521965319654196551965619657196581965919660196611966219663196641966519666196671966819669196701967119672196731967419675196761967719678196791968019681196821968319684196851968619687196881968919690196911969219693196941969519696196971969819699197001970119702197031970419705197061970719708197091971019711197121971319714197151971619717197181971919720197211972219723197241972519726197271972819729197301973119732197331973419735197361973719738197391974019741197421974319744197451974619747197481974919750197511975219753197541975519756197571975819759197601976119762197631976419765197661976719768197691977019771197721977319774197751977619777197781977919780197811978219783197841978519786197871978819789197901979119792197931979419795197961979719798197991980019801198021980319804198051980619807198081980919810198111981219813198141981519816198171981819819198201982119822198231982419825198261982719828198291983019831198321983319834198351983619837198381983919840198411984219843198441984519846198471984819849198501985119852198531985419855198561985719858198591986019861198621986319864198651986619867198681986919870198711987219873198741987519876198771987819879198801988119882198831988419885198861988719888198891989019891198921989319894198951989619897198981989919900199011990219903199041990519906199071990819909199101991119912199131991419915199161991719918199191992019921199221992319924199251992619927199281992919930199311993219933199341993519936199371993819939199401994119942199431994419945199461994719948199491995019951199521995319954199551995619957199581995919960199611996219963199641996519966199671996819969199701997119972199731997419975199761997719978199791998019981199821998319984199851998619987199881998919990199911999219993199941999519996199971999819999200002000120002200032000420005200062000720008200092001020011200122001320014200152001620017200182001920020200212002220023200242002520026200272002820029200302003120032200332003420035200362003720038200392004020041200422004320044200452004620047200482004920050200512005220053200542005520056200572005820059200602006120062200632006420065200662006720068200692007020071200722007320074200752007620077200782007920080200812008220083200842008520086200872008820089200902009120092200932009420095200962009720098200992010020101201022010320104201052010620107201082010920110201112011220113201142011520116201172011820119201202012120122201232012420125201262012720128201292013020131201322013320134201352013620137201382013920140201412014220143201442014520146201472014820149201502015120152201532015420155201562015720158201592016020161201622016320164201652016620167201682016920170201712017220173201742017520176201772017820179201802018120182201832018420185201862018720188201892019020191201922019320194201952019620197201982019920200202012020220203202042020520206202072020820209202102021120212202132021420215202162021720218202192022020221202222022320224202252022620227202282022920230202312023220233202342023520236202372023820239202402024120242202432024420245202462024720248202492025020251202522025320254202552025620257202582025920260202612026220263202642026520266202672026820269202702027120272202732027420275202762027720278202792028020281202822028320284202852028620287202882028920290202912029220293202942029520296202972029820299203002030120302203032030420305203062030720308203092031020311203122031320314203152031620317203182031920320203212032220323203242032520326203272032820329203302033120332203332033420335203362033720338203392034020341203422034320344203452034620347203482034920350203512035220353203542035520356203572035820359203602036120362203632036420365203662036720368203692037020371203722037320374203752037620377203782037920380203812038220383203842038520386203872038820389203902039120392203932039420395203962039720398203992040020401204022040320404204052040620407204082040920410204112041220413204142041520416204172041820419204202042120422204232042420425204262042720428204292043020431204322043320434204352043620437204382043920440204412044220443204442044520446204472044820449204502045120452204532045420455204562045720458204592046020461204622046320464204652046620467204682046920470204712047220473204742047520476204772047820479204802048120482204832048420485204862048720488204892049020491204922049320494204952049620497204982049920500205012050220503205042050520506205072050820509205102051120512205132051420515205162051720518205192052020521205222052320524205252052620527205282052920530205312053220533205342053520536205372053820539205402054120542205432054420545205462054720548205492055020551205522055320554205552055620557205582055920560205612056220563205642056520566205672056820569205702057120572205732057420575205762057720578205792058020581205822058320584205852058620587205882058920590205912059220593205942059520596205972059820599206002060120602206032060420605206062060720608206092061020611206122061320614206152061620617206182061920620206212062220623206242062520626206272062820629206302063120632206332063420635206362063720638206392064020641206422064320644206452064620647206482064920650206512065220653206542065520656206572065820659206602066120662206632066420665206662066720668206692067020671206722067320674206752067620677206782067920680206812068220683206842068520686206872068820689206902069120692206932069420695206962069720698206992070020701207022070320704207052070620707207082070920710207112071220713207142071520716207172071820719207202072120722207232072420725207262072720728207292073020731207322073320734207352073620737207382073920740207412074220743207442074520746207472074820749207502075120752207532075420755207562075720758207592076020761207622076320764207652076620767207682076920770207712077220773207742077520776207772077820779207802078120782207832078420785207862078720788207892079020791207922079320794207952079620797207982079920800208012080220803208042080520806208072080820809208102081120812208132081420815208162081720818208192082020821208222082320824208252082620827208282082920830208312083220833208342083520836208372083820839208402084120842208432084420845208462084720848208492085020851208522085320854208552085620857208582085920860208612086220863208642086520866208672086820869208702087120872208732087420875208762087720878208792088020881208822088320884208852088620887208882088920890208912089220893208942089520896208972089820899209002090120902209032090420905209062090720908209092091020911209122091320914209152091620917209182091920920209212092220923209242092520926209272092820929209302093120932209332093420935209362093720938209392094020941209422094320944209452094620947209482094920950209512095220953209542095520956209572095820959209602096120962209632096420965209662096720968209692097020971209722097320974209752097620977209782097920980209812098220983209842098520986209872098820989209902099120992209932099420995209962099720998209992100021001210022100321004210052100621007210082100921010210112101221013210142101521016210172101821019210202102121022210232102421025210262102721028210292103021031210322103321034210352103621037210382103921040210412104221043210442104521046210472104821049210502105121052210532105421055210562105721058210592106021061210622106321064210652106621067210682106921070210712107221073210742107521076210772107821079210802108121082210832108421085210862108721088210892109021091210922109321094210952109621097210982109921100211012110221103211042110521106211072110821109211102111121112211132111421115211162111721118211192112021121211222112321124211252112621127211282112921130211312113221133211342113521136211372113821139211402114121142211432114421145211462114721148211492115021151211522115321154211552115621157211582115921160211612116221163
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #if defined(_MSC_VER) || defined(__MINGW32__)
  6. #include <malloc.h> // using malloc.h with MSC/MINGW
  7. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  8. #include <alloca.h>
  9. #endif
  10. #include <assert.h>
  11. #include <errno.h>
  12. #include <time.h>
  13. #include <math.h>
  14. #include <stdlib.h>
  15. #include <string.h>
  16. #include <stdint.h>
  17. #include <inttypes.h>
  18. #include <stdio.h>
  19. #include <float.h>
  20. #include <limits.h>
  21. #include <stdarg.h>
  22. #include <signal.h>
  23. #if defined(__gnu_linux__)
  24. #include <syscall.h>
  25. #endif
  26. #ifdef GGML_USE_METAL
  27. #include <unistd.h>
  28. #endif
  29. #if defined(_MSC_VER)
  30. // disable "possible loss of data" to avoid hundreds of casts
  31. // we should just be careful :)
  32. #pragma warning(disable: 4244 4267)
  33. // disable POSIX deprecation warnings
  34. // these functions are never going away, anyway
  35. #pragma warning(disable: 4996)
  36. #endif
  37. #if defined(_WIN32)
  38. #include <windows.h>
  39. typedef volatile LONG atomic_int;
  40. typedef atomic_int atomic_bool;
  41. static void atomic_store(atomic_int * ptr, LONG val) {
  42. InterlockedExchange(ptr, val);
  43. }
  44. static LONG atomic_load(atomic_int * ptr) {
  45. return InterlockedCompareExchange(ptr, 0, 0);
  46. }
  47. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  48. return InterlockedExchangeAdd(ptr, inc);
  49. }
  50. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  51. return atomic_fetch_add(ptr, -(dec));
  52. }
  53. typedef HANDLE pthread_t;
  54. typedef DWORD thread_ret_t;
  55. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  56. (void) unused;
  57. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  58. if (handle == NULL)
  59. {
  60. return EAGAIN;
  61. }
  62. *out = handle;
  63. return 0;
  64. }
  65. static int pthread_join(pthread_t thread, void * unused) {
  66. (void) unused;
  67. int ret = (int) WaitForSingleObject(thread, INFINITE);
  68. CloseHandle(thread);
  69. return ret;
  70. }
  71. static int sched_yield (void) {
  72. Sleep (0);
  73. return 0;
  74. }
  75. #else
  76. #include <pthread.h>
  77. #include <stdatomic.h>
  78. typedef void * thread_ret_t;
  79. #include <sys/types.h>
  80. #include <sys/stat.h>
  81. #include <unistd.h>
  82. #endif
  83. #ifdef GGML_USE_CPU_HBM
  84. #include <hbwmalloc.h>
  85. #endif
  86. #if defined(__APPLE__)
  87. #include <TargetConditionals.h>
  88. #endif
  89. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  90. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  91. #include <sys/wait.h>
  92. void ggml_print_backtrace(void) {
  93. /*
  94. #include <execinfo.h>
  95. #include <dlfcn.h>
  96. void * trace[100];
  97. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  98. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  99. */
  100. // backtrack_symbols does not show line numbers, use gdb instead
  101. char attach[32];
  102. snprintf(attach, sizeof(attach), "attach %d", getpid());
  103. int pid = fork();
  104. if (pid == 0) {
  105. execlp("gdb", "gdb", "--batch",
  106. "-ex", "set style enabled on",
  107. "-ex", attach,
  108. "-ex", "bt -frame-info source-and-location",
  109. "-ex", "detach",
  110. "-ex", "quit",
  111. (char *) NULL);
  112. } else {
  113. waitpid(pid, NULL, 0);
  114. }
  115. }
  116. #else
  117. void ggml_print_backtrace(void) {
  118. // platform not supported
  119. }
  120. #endif
  121. /*#define GGML_PERF*/
  122. #define GGML_DEBUG 0
  123. #define GGML_GELU_FP16
  124. #define GGML_GELU_QUICK_FP16
  125. #define GGML_SILU_FP16
  126. // #define GGML_CROSS_ENTROPY_EXP_FP16
  127. // #define GGML_FLASH_ATTN_EXP_FP16
  128. #define GGML_SOFT_MAX_UNROLL 4
  129. #define GGML_VEC_DOT_UNROLL 2
  130. #define GGML_VEC_MAD_UNROLL 32
  131. //
  132. // logging
  133. //
  134. #if (GGML_DEBUG >= 1)
  135. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  136. #else
  137. #define GGML_PRINT_DEBUG(...)
  138. #endif
  139. #if (GGML_DEBUG >= 5)
  140. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  141. #else
  142. #define GGML_PRINT_DEBUG_5(...)
  143. #endif
  144. #if (GGML_DEBUG >= 10)
  145. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  146. #else
  147. #define GGML_PRINT_DEBUG_10(...)
  148. #endif
  149. #define GGML_PRINT(...) printf(__VA_ARGS__)
  150. //
  151. // end of logging block
  152. //
  153. #ifdef GGML_USE_ACCELERATE
  154. // uncomment to use vDSP for soft max computation
  155. // note: not sure if it is actually faster
  156. //#define GGML_SOFT_MAX_ACCELERATE
  157. #endif
  158. #if defined(_MSC_VER) || defined(__MINGW32__)
  159. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  160. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  161. #else
  162. inline static void * ggml_aligned_malloc(size_t size) {
  163. if (size == 0) {
  164. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  165. return NULL;
  166. }
  167. void * aligned_memory = NULL;
  168. #ifdef GGML_USE_CPU_HBM
  169. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  170. #elif GGML_USE_METAL
  171. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  172. #else
  173. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  174. #endif
  175. if (result != 0) {
  176. // Handle allocation failure
  177. const char *error_desc = "unknown allocation error";
  178. switch (result) {
  179. case EINVAL:
  180. error_desc = "invalid alignment value";
  181. break;
  182. case ENOMEM:
  183. error_desc = "insufficient memory";
  184. break;
  185. }
  186. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  187. GGML_ASSERT(false);
  188. return NULL;
  189. }
  190. return aligned_memory;
  191. }
  192. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  193. #ifdef GGML_USE_CPU_HBM
  194. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  195. #else
  196. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  197. #endif
  198. #endif
  199. inline static void * ggml_malloc(size_t size) {
  200. if (size == 0) {
  201. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  202. return NULL;
  203. }
  204. void * result = malloc(size);
  205. if (result == NULL) {
  206. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  207. GGML_ASSERT(false);
  208. }
  209. return result;
  210. }
  211. // calloc
  212. inline static void * ggml_calloc(size_t num, size_t size) {
  213. if (num == 0 || size == 0) {
  214. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  215. return NULL;
  216. }
  217. void * result = calloc(num, size);
  218. if (result == NULL) {
  219. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  220. GGML_ASSERT(false);
  221. }
  222. return result;
  223. }
  224. #define GGML_MALLOC(size) ggml_malloc(size)
  225. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  226. #define GGML_FREE(ptr) free(ptr)
  227. #define UNUSED GGML_UNUSED
  228. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  229. #if defined(GGML_USE_ACCELERATE)
  230. #include <Accelerate/Accelerate.h>
  231. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  232. #include "ggml-opencl.h"
  233. #elif defined(GGML_USE_VULKAN)
  234. #include "ggml-vulkan.h"
  235. #endif
  236. #elif defined(GGML_USE_OPENBLAS)
  237. #if defined(GGML_BLAS_USE_MKL)
  238. #include <mkl.h>
  239. #else
  240. #include <cblas.h>
  241. #endif
  242. #elif defined(GGML_USE_CUBLAS)
  243. #include "ggml-cuda.h"
  244. #elif defined(GGML_USE_CLBLAST)
  245. #include "ggml-opencl.h"
  246. #elif defined(GGML_USE_VULKAN)
  247. #include "ggml-vulkan.h"
  248. #elif defined(GGML_USE_SYCL)
  249. #include "ggml-sycl.h"
  250. #endif
  251. // floating point type used to accumulate sums
  252. typedef double ggml_float;
  253. #undef MIN
  254. #undef MAX
  255. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  256. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  257. //
  258. // global data
  259. //
  260. // precomputed gelu table for f16 (128 KB)
  261. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  262. // precomputed quick gelu table for f16 (128 KB)
  263. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  264. // precomputed silu table for f16 (128 KB)
  265. static ggml_fp16_t ggml_table_silu_f16[1 << 16];
  266. // precomputed exp table for f16 (128 KB)
  267. static ggml_fp16_t ggml_table_exp_f16[1 << 16];
  268. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  269. float ggml_table_f32_f16[1 << 16];
  270. // note: do not use these inside ggml.c
  271. // these are meant to be used via the ggml.h API
  272. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  273. return GGML_FP16_TO_FP32(x);
  274. }
  275. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  276. return GGML_FP32_TO_FP16(x);
  277. }
  278. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  279. for (int i = 0; i < n; i++) {
  280. y[i] = GGML_FP16_TO_FP32(x[i]);
  281. }
  282. }
  283. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  284. int i = 0;
  285. #if defined(__F16C__)
  286. for (; i + 7 < n; i += 8) {
  287. __m256 x_vec = _mm256_loadu_ps(x + i);
  288. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  289. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  290. }
  291. for(; i + 3 < n; i += 4) {
  292. __m128 x_vec = _mm_loadu_ps(x + i);
  293. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  294. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  295. }
  296. #endif
  297. for (; i < n; i++) {
  298. y[i] = GGML_FP32_TO_FP16(x[i]);
  299. }
  300. }
  301. //
  302. // timing
  303. //
  304. #if defined(_MSC_VER) || defined(__MINGW32__)
  305. static int64_t timer_freq, timer_start;
  306. void ggml_time_init(void) {
  307. LARGE_INTEGER t;
  308. QueryPerformanceFrequency(&t);
  309. timer_freq = t.QuadPart;
  310. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  311. // and the uptime is high enough.
  312. // We subtract the program start time to reduce the likelihood of that happening.
  313. QueryPerformanceCounter(&t);
  314. timer_start = t.QuadPart;
  315. }
  316. int64_t ggml_time_ms(void) {
  317. LARGE_INTEGER t;
  318. QueryPerformanceCounter(&t);
  319. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  320. }
  321. int64_t ggml_time_us(void) {
  322. LARGE_INTEGER t;
  323. QueryPerformanceCounter(&t);
  324. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  325. }
  326. #else
  327. void ggml_time_init(void) {}
  328. int64_t ggml_time_ms(void) {
  329. struct timespec ts;
  330. clock_gettime(CLOCK_MONOTONIC, &ts);
  331. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  332. }
  333. int64_t ggml_time_us(void) {
  334. struct timespec ts;
  335. clock_gettime(CLOCK_MONOTONIC, &ts);
  336. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  337. }
  338. #endif
  339. int64_t ggml_cycles(void) {
  340. return clock();
  341. }
  342. int64_t ggml_cycles_per_ms(void) {
  343. return CLOCKS_PER_SEC/1000;
  344. }
  345. #ifdef GGML_PERF
  346. #define ggml_perf_time_ms() ggml_time_ms()
  347. #define ggml_perf_time_us() ggml_time_us()
  348. #define ggml_perf_cycles() ggml_cycles()
  349. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  350. #else
  351. #define ggml_perf_time_ms() 0
  352. #define ggml_perf_time_us() 0
  353. #define ggml_perf_cycles() 0
  354. #define ggml_perf_cycles_per_ms() 0
  355. #endif
  356. //
  357. // cache line
  358. //
  359. #if defined(__cpp_lib_hardware_interference_size)
  360. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  361. #else
  362. #if defined(__POWER9_VECTOR__)
  363. #define CACHE_LINE_SIZE 128
  364. #else
  365. #define CACHE_LINE_SIZE 64
  366. #endif
  367. #endif
  368. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  369. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  370. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  371. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  372. [GGML_TYPE_I8] = {
  373. .type_name = "i8",
  374. .blck_size = 1,
  375. .type_size = sizeof(int8_t),
  376. .is_quantized = false,
  377. },
  378. [GGML_TYPE_I16] = {
  379. .type_name = "i16",
  380. .blck_size = 1,
  381. .type_size = sizeof(int16_t),
  382. .is_quantized = false,
  383. },
  384. [GGML_TYPE_I32] = {
  385. .type_name = "i32",
  386. .blck_size = 1,
  387. .type_size = sizeof(int32_t),
  388. .is_quantized = false,
  389. },
  390. [GGML_TYPE_F32] = {
  391. .type_name = "f32",
  392. .blck_size = 1,
  393. .type_size = sizeof(float),
  394. .is_quantized = false,
  395. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  396. .vec_dot_type = GGML_TYPE_F32,
  397. .nrows = 1,
  398. },
  399. [GGML_TYPE_F16] = {
  400. .type_name = "f16",
  401. .blck_size = 1,
  402. .type_size = sizeof(ggml_fp16_t),
  403. .is_quantized = false,
  404. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  405. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  406. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  407. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  408. .vec_dot_type = GGML_TYPE_F16,
  409. .nrows = 1,
  410. },
  411. [GGML_TYPE_Q4_0] = {
  412. .type_name = "q4_0",
  413. .blck_size = QK4_0,
  414. .type_size = sizeof(block_q4_0),
  415. .is_quantized = true,
  416. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  417. .from_float = quantize_row_q4_0,
  418. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  419. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  420. .vec_dot_type = GGML_TYPE_Q8_0,
  421. #if defined (__ARM_FEATURE_MATMUL_INT8)
  422. .nrows = 2,
  423. #else
  424. .nrows = 1,
  425. #endif
  426. },
  427. [GGML_TYPE_Q4_1] = {
  428. .type_name = "q4_1",
  429. .blck_size = QK4_1,
  430. .type_size = sizeof(block_q4_1),
  431. .is_quantized = true,
  432. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  433. .from_float = quantize_row_q4_1,
  434. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  435. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  436. .vec_dot_type = GGML_TYPE_Q8_1,
  437. #if defined (__ARM_FEATURE_MATMUL_INT8)
  438. .nrows = 2,
  439. #else
  440. .nrows = 1,
  441. #endif
  442. },
  443. [4] = { // GGML_TYPE_Q4_2
  444. .type_name = "DEPRECATED",
  445. .blck_size = 0,
  446. .type_size = 0,
  447. .is_quantized = false,
  448. .to_float = NULL,
  449. .from_float = NULL,
  450. .from_float_reference = NULL,
  451. .vec_dot = NULL,
  452. .vec_dot_type = GGML_TYPE_COUNT,
  453. .nrows = 1,
  454. },
  455. [5] = { // GGML_TYPE_Q4_3
  456. .type_name = "DEPRECATED",
  457. .blck_size = 0,
  458. .type_size = 0,
  459. .is_quantized = false,
  460. .to_float = NULL,
  461. .from_float = NULL,
  462. .from_float_reference = NULL,
  463. .vec_dot = NULL,
  464. .vec_dot_type = GGML_TYPE_COUNT,
  465. .nrows = 1,
  466. },
  467. [GGML_TYPE_Q5_0] = {
  468. .type_name = "q5_0",
  469. .blck_size = QK5_0,
  470. .type_size = sizeof(block_q5_0),
  471. .is_quantized = true,
  472. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  473. .from_float = quantize_row_q5_0,
  474. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  475. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  476. .vec_dot_type = GGML_TYPE_Q8_0,
  477. .nrows = 1,
  478. },
  479. [GGML_TYPE_Q5_1] = {
  480. .type_name = "q5_1",
  481. .blck_size = QK5_1,
  482. .type_size = sizeof(block_q5_1),
  483. .is_quantized = true,
  484. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  485. .from_float = quantize_row_q5_1,
  486. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  487. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  488. .vec_dot_type = GGML_TYPE_Q8_1,
  489. .nrows = 1,
  490. },
  491. [GGML_TYPE_Q8_0] = {
  492. .type_name = "q8_0",
  493. .blck_size = QK8_0,
  494. .type_size = sizeof(block_q8_0),
  495. .is_quantized = true,
  496. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  497. .from_float = quantize_row_q8_0,
  498. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  499. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  500. .vec_dot_type = GGML_TYPE_Q8_0,
  501. #if defined (__ARM_FEATURE_MATMUL_INT8)
  502. .nrows = 2,
  503. #else
  504. .nrows = 1,
  505. #endif
  506. },
  507. [GGML_TYPE_Q8_1] = {
  508. .type_name = "q8_1",
  509. .blck_size = QK8_1,
  510. .type_size = sizeof(block_q8_1),
  511. .is_quantized = true,
  512. .from_float = quantize_row_q8_1,
  513. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  514. .vec_dot_type = GGML_TYPE_Q8_1,
  515. .nrows = 1,
  516. },
  517. [GGML_TYPE_Q2_K] = {
  518. .type_name = "q2_K",
  519. .blck_size = QK_K,
  520. .type_size = sizeof(block_q2_K),
  521. .is_quantized = true,
  522. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  523. .from_float = quantize_row_q2_K,
  524. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  525. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  526. .vec_dot_type = GGML_TYPE_Q8_K,
  527. .nrows = 1,
  528. },
  529. [GGML_TYPE_Q3_K] = {
  530. .type_name = "q3_K",
  531. .blck_size = QK_K,
  532. .type_size = sizeof(block_q3_K),
  533. .is_quantized = true,
  534. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  535. .from_float = quantize_row_q3_K,
  536. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  537. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  538. .vec_dot_type = GGML_TYPE_Q8_K,
  539. .nrows = 1,
  540. },
  541. [GGML_TYPE_Q4_K] = {
  542. .type_name = "q4_K",
  543. .blck_size = QK_K,
  544. .type_size = sizeof(block_q4_K),
  545. .is_quantized = true,
  546. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  547. .from_float = quantize_row_q4_K,
  548. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  549. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  550. .vec_dot_type = GGML_TYPE_Q8_K,
  551. .nrows = 1,
  552. },
  553. [GGML_TYPE_Q5_K] = {
  554. .type_name = "q5_K",
  555. .blck_size = QK_K,
  556. .type_size = sizeof(block_q5_K),
  557. .is_quantized = true,
  558. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  559. .from_float = quantize_row_q5_K,
  560. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  561. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  562. .vec_dot_type = GGML_TYPE_Q8_K,
  563. .nrows = 1,
  564. },
  565. [GGML_TYPE_Q6_K] = {
  566. .type_name = "q6_K",
  567. .blck_size = QK_K,
  568. .type_size = sizeof(block_q6_K),
  569. .is_quantized = true,
  570. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  571. .from_float = quantize_row_q6_K,
  572. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  573. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  574. .vec_dot_type = GGML_TYPE_Q8_K,
  575. .nrows = 1,
  576. },
  577. [GGML_TYPE_IQ2_XXS] = {
  578. .type_name = "iq2_xxs",
  579. .blck_size = QK_K,
  580. .type_size = sizeof(block_iq2_xxs),
  581. .is_quantized = true,
  582. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  583. .from_float = NULL,
  584. .from_float_reference = NULL,
  585. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  586. .vec_dot_type = GGML_TYPE_Q8_K,
  587. .nrows = 1,
  588. },
  589. [GGML_TYPE_IQ2_XS] = {
  590. .type_name = "iq2_xs",
  591. .blck_size = QK_K,
  592. .type_size = sizeof(block_iq2_xs),
  593. .is_quantized = true,
  594. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  595. .from_float = NULL,
  596. .from_float_reference = NULL,
  597. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  598. .vec_dot_type = GGML_TYPE_Q8_K,
  599. .nrows = 1,
  600. },
  601. [GGML_TYPE_IQ3_XXS] = {
  602. .type_name = "iq3_xxs",
  603. .blck_size = QK_K,
  604. .type_size = sizeof(block_iq3_xxs),
  605. .is_quantized = true,
  606. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  607. .from_float = quantize_row_iq3_xxs,
  608. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_xxs_reference,
  609. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  610. .vec_dot_type = GGML_TYPE_Q8_K,
  611. .nrows = 1,
  612. },
  613. [GGML_TYPE_IQ3_S] = {
  614. .type_name = "iq3_s",
  615. .blck_size = QK_K,
  616. .type_size = sizeof(block_iq3_s),
  617. .is_quantized = true,
  618. .to_float = (ggml_to_float_t) dequantize_row_iq3_s,
  619. .from_float = quantize_row_iq3_s,
  620. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_s_reference,
  621. .vec_dot = ggml_vec_dot_iq3_s_q8_K,
  622. .vec_dot_type = GGML_TYPE_Q8_K,
  623. .nrows = 1,
  624. },
  625. [GGML_TYPE_IQ1_S] = {
  626. .type_name = "iq1_s",
  627. .blck_size = QK_K,
  628. .type_size = sizeof(block_iq1_s),
  629. .is_quantized = true,
  630. .to_float = (ggml_to_float_t) dequantize_row_iq1_s,
  631. .from_float = NULL,
  632. .from_float_reference = NULL,
  633. .vec_dot = ggml_vec_dot_iq1_s_q8_K,
  634. .vec_dot_type = GGML_TYPE_Q8_K,
  635. .nrows = 1,
  636. },
  637. [GGML_TYPE_IQ4_NL] = {
  638. .type_name = "iq4_nl",
  639. .blck_size = QK4_NL,
  640. .type_size = sizeof(block_iq4_nl),
  641. .is_quantized = true,
  642. .to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
  643. .from_float = quantize_row_iq4_nl,
  644. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_nl_reference,
  645. .vec_dot = ggml_vec_dot_iq4_nl_q8_0,
  646. .vec_dot_type = GGML_TYPE_Q8_0,
  647. .nrows = 1,
  648. },
  649. [GGML_TYPE_Q8_K] = {
  650. .type_name = "q8_K",
  651. .blck_size = QK_K,
  652. .type_size = sizeof(block_q8_K),
  653. .is_quantized = true,
  654. .from_float = quantize_row_q8_K,
  655. }
  656. };
  657. // For internal test use
  658. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  659. GGML_ASSERT(type < GGML_TYPE_COUNT);
  660. return type_traits[type];
  661. }
  662. //
  663. // simd mappings
  664. //
  665. #if defined(__ARM_NEON)
  666. #if !defined(__aarch64__)
  667. // 64-bit compatibility
  668. inline static float vaddvq_f32(float32x4_t v) {
  669. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  670. }
  671. #endif
  672. #endif
  673. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  674. // we then implement the fundamental computation operations below using only these macros
  675. // adding support for new architectures requires to define the corresponding SIMD macros
  676. //
  677. // GGML_F32_STEP / GGML_F16_STEP
  678. // number of elements to process in a single step
  679. //
  680. // GGML_F32_EPR / GGML_F16_EPR
  681. // number of elements to fit in a single register
  682. //
  683. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  684. #define GGML_SIMD
  685. // F32 NEON
  686. #define GGML_F32_STEP 16
  687. #define GGML_F32_EPR 4
  688. #define GGML_F32x4 float32x4_t
  689. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  690. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  691. #define GGML_F32x4_LOAD vld1q_f32
  692. #define GGML_F32x4_STORE vst1q_f32
  693. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  694. #define GGML_F32x4_ADD vaddq_f32
  695. #define GGML_F32x4_MUL vmulq_f32
  696. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  697. #define GGML_F32x4_REDUCE(res, x) \
  698. { \
  699. int offset = GGML_F32_ARR >> 1; \
  700. for (int i = 0; i < offset; ++i) { \
  701. x[i] = vaddq_f32(x[i], x[offset+i]); \
  702. } \
  703. offset >>= 1; \
  704. for (int i = 0; i < offset; ++i) { \
  705. x[i] = vaddq_f32(x[i], x[offset+i]); \
  706. } \
  707. offset >>= 1; \
  708. for (int i = 0; i < offset; ++i) { \
  709. x[i] = vaddq_f32(x[i], x[offset+i]); \
  710. } \
  711. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  712. }
  713. #define GGML_F32_VEC GGML_F32x4
  714. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  715. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  716. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  717. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  718. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  719. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  720. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  721. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  722. // F16 NEON
  723. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  724. #define GGML_F16_STEP 32
  725. #define GGML_F16_EPR 8
  726. #define GGML_F16x8 float16x8_t
  727. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  728. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  729. #define GGML_F16x8_LOAD(x) vld1q_f16((const __fp16 *)(x))
  730. #define GGML_F16x8_STORE vst1q_f16
  731. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  732. #define GGML_F16x8_ADD vaddq_f16
  733. #define GGML_F16x8_MUL vmulq_f16
  734. #define GGML_F16x8_REDUCE(res, x) \
  735. do { \
  736. int offset = GGML_F16_ARR >> 1; \
  737. for (int i = 0; i < offset; ++i) { \
  738. x[i] = vaddq_f16(x[i], x[offset+i]); \
  739. } \
  740. offset >>= 1; \
  741. for (int i = 0; i < offset; ++i) { \
  742. x[i] = vaddq_f16(x[i], x[offset+i]); \
  743. } \
  744. offset >>= 1; \
  745. for (int i = 0; i < offset; ++i) { \
  746. x[i] = vaddq_f16(x[i], x[offset+i]); \
  747. } \
  748. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  749. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  750. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  751. } while (0)
  752. #define GGML_F16_VEC GGML_F16x8
  753. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  754. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  755. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  756. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  757. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  758. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  759. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  760. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  761. #else
  762. // if FP16 vector arithmetic is not supported, we use FP32 instead
  763. // and take advantage of the vcvt_ functions to convert to/from FP16
  764. #define GGML_F16_STEP 16
  765. #define GGML_F16_EPR 4
  766. #define GGML_F32Cx4 float32x4_t
  767. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  768. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  769. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const __fp16 *)(x)))
  770. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  771. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  772. #define GGML_F32Cx4_ADD vaddq_f32
  773. #define GGML_F32Cx4_MUL vmulq_f32
  774. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  775. #define GGML_F16_VEC GGML_F32Cx4
  776. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  777. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  778. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  779. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  780. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  781. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  782. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  783. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  784. #endif
  785. #elif defined(__AVX__)
  786. #define GGML_SIMD
  787. // F32 AVX
  788. #define GGML_F32_STEP 32
  789. #define GGML_F32_EPR 8
  790. #define GGML_F32x8 __m256
  791. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  792. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  793. #define GGML_F32x8_LOAD _mm256_loadu_ps
  794. #define GGML_F32x8_STORE _mm256_storeu_ps
  795. #if defined(__FMA__)
  796. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  797. #else
  798. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  799. #endif
  800. #define GGML_F32x8_ADD _mm256_add_ps
  801. #define GGML_F32x8_MUL _mm256_mul_ps
  802. #define GGML_F32x8_REDUCE(res, x) \
  803. do { \
  804. int offset = GGML_F32_ARR >> 1; \
  805. for (int i = 0; i < offset; ++i) { \
  806. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  807. } \
  808. offset >>= 1; \
  809. for (int i = 0; i < offset; ++i) { \
  810. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  811. } \
  812. offset >>= 1; \
  813. for (int i = 0; i < offset; ++i) { \
  814. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  815. } \
  816. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  817. _mm256_extractf128_ps(x[0], 1)); \
  818. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  819. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  820. } while (0)
  821. // TODO: is this optimal ?
  822. #define GGML_F32_VEC GGML_F32x8
  823. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  824. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  825. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  826. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  827. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  828. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  829. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  830. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  831. // F16 AVX
  832. #define GGML_F16_STEP 32
  833. #define GGML_F16_EPR 8
  834. // F16 arithmetic is not supported by AVX, so we use F32 instead
  835. #define GGML_F32Cx8 __m256
  836. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  837. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  838. #if defined(__F16C__)
  839. // the _mm256_cvt intrinsics require F16C
  840. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  841. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  842. #else
  843. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  844. float tmp[8];
  845. for (int i = 0; i < 8; i++) {
  846. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  847. }
  848. return _mm256_loadu_ps(tmp);
  849. }
  850. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  851. float arr[8];
  852. _mm256_storeu_ps(arr, y);
  853. for (int i = 0; i < 8; i++)
  854. x[i] = GGML_FP32_TO_FP16(arr[i]);
  855. }
  856. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  857. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  858. #endif
  859. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  860. #define GGML_F32Cx8_ADD _mm256_add_ps
  861. #define GGML_F32Cx8_MUL _mm256_mul_ps
  862. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  863. #define GGML_F16_VEC GGML_F32Cx8
  864. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  865. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  866. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  867. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  868. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  869. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  870. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  871. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  872. #elif defined(__POWER9_VECTOR__)
  873. #define GGML_SIMD
  874. // F32 POWER9
  875. #define GGML_F32_STEP 32
  876. #define GGML_F32_EPR 4
  877. #define GGML_F32x4 vector float
  878. #define GGML_F32x4_ZERO 0.0f
  879. #define GGML_F32x4_SET1 vec_splats
  880. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  881. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  882. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  883. #define GGML_F32x4_ADD vec_add
  884. #define GGML_F32x4_MUL vec_mul
  885. #define GGML_F32x4_REDUCE(res, x) \
  886. { \
  887. int offset = GGML_F32_ARR >> 1; \
  888. for (int i = 0; i < offset; ++i) { \
  889. x[i] = vec_add(x[i], x[offset+i]); \
  890. } \
  891. offset >>= 1; \
  892. for (int i = 0; i < offset; ++i) { \
  893. x[i] = vec_add(x[i], x[offset+i]); \
  894. } \
  895. offset >>= 1; \
  896. for (int i = 0; i < offset; ++i) { \
  897. x[i] = vec_add(x[i], x[offset+i]); \
  898. } \
  899. res = vec_extract(x[0], 0) + \
  900. vec_extract(x[0], 1) + \
  901. vec_extract(x[0], 2) + \
  902. vec_extract(x[0], 3); \
  903. }
  904. #define GGML_F32_VEC GGML_F32x4
  905. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  906. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  907. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  908. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  909. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  910. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  911. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  912. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  913. // F16 POWER9
  914. #define GGML_F16_STEP GGML_F32_STEP
  915. #define GGML_F16_EPR GGML_F32_EPR
  916. #define GGML_F16_VEC GGML_F32x4
  917. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  918. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  919. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  920. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  921. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  922. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  923. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  924. vec_extract_fp32_from_shortl(vec_xl(0, p))
  925. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  926. #define GGML_F16_VEC_STORE(p, r, i) \
  927. if (i & 0x1) \
  928. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  929. r[i - GGML_ENDIAN_BYTE(0)]), \
  930. 0, p - GGML_F16_EPR)
  931. #elif defined(__wasm_simd128__)
  932. #define GGML_SIMD
  933. // F32 WASM
  934. #define GGML_F32_STEP 16
  935. #define GGML_F32_EPR 4
  936. #define GGML_F32x4 v128_t
  937. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  938. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  939. #define GGML_F32x4_LOAD wasm_v128_load
  940. #define GGML_F32x4_STORE wasm_v128_store
  941. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  942. #define GGML_F32x4_ADD wasm_f32x4_add
  943. #define GGML_F32x4_MUL wasm_f32x4_mul
  944. #define GGML_F32x4_REDUCE(res, x) \
  945. { \
  946. int offset = GGML_F32_ARR >> 1; \
  947. for (int i = 0; i < offset; ++i) { \
  948. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  949. } \
  950. offset >>= 1; \
  951. for (int i = 0; i < offset; ++i) { \
  952. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  953. } \
  954. offset >>= 1; \
  955. for (int i = 0; i < offset; ++i) { \
  956. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  957. } \
  958. res = wasm_f32x4_extract_lane(x[0], 0) + \
  959. wasm_f32x4_extract_lane(x[0], 1) + \
  960. wasm_f32x4_extract_lane(x[0], 2) + \
  961. wasm_f32x4_extract_lane(x[0], 3); \
  962. }
  963. #define GGML_F32_VEC GGML_F32x4
  964. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  965. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  966. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  967. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  968. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  969. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  970. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  971. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  972. // F16 WASM
  973. #define GGML_F16_STEP 16
  974. #define GGML_F16_EPR 4
  975. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  976. float tmp[4];
  977. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  978. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  979. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  980. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  981. return wasm_v128_load(tmp);
  982. }
  983. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  984. float tmp[4];
  985. wasm_v128_store(tmp, x);
  986. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  987. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  988. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  989. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  990. }
  991. #define GGML_F16x4 v128_t
  992. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  993. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  994. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  995. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  996. #define GGML_F16x4_FMA GGML_F32x4_FMA
  997. #define GGML_F16x4_ADD wasm_f32x4_add
  998. #define GGML_F16x4_MUL wasm_f32x4_mul
  999. #define GGML_F16x4_REDUCE(res, x) \
  1000. { \
  1001. int offset = GGML_F16_ARR >> 1; \
  1002. for (int i = 0; i < offset; ++i) { \
  1003. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1004. } \
  1005. offset >>= 1; \
  1006. for (int i = 0; i < offset; ++i) { \
  1007. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1008. } \
  1009. offset >>= 1; \
  1010. for (int i = 0; i < offset; ++i) { \
  1011. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1012. } \
  1013. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1014. wasm_f32x4_extract_lane(x[0], 1) + \
  1015. wasm_f32x4_extract_lane(x[0], 2) + \
  1016. wasm_f32x4_extract_lane(x[0], 3); \
  1017. }
  1018. #define GGML_F16_VEC GGML_F16x4
  1019. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1020. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1021. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1022. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1023. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1024. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1025. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1026. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1027. #elif defined(__SSE3__)
  1028. #define GGML_SIMD
  1029. // F32 SSE
  1030. #define GGML_F32_STEP 32
  1031. #define GGML_F32_EPR 4
  1032. #define GGML_F32x4 __m128
  1033. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1034. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1035. #define GGML_F32x4_LOAD _mm_loadu_ps
  1036. #define GGML_F32x4_STORE _mm_storeu_ps
  1037. #if defined(__FMA__)
  1038. // TODO: Does this work?
  1039. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1040. #else
  1041. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1042. #endif
  1043. #define GGML_F32x4_ADD _mm_add_ps
  1044. #define GGML_F32x4_MUL _mm_mul_ps
  1045. #define GGML_F32x4_REDUCE(res, x) \
  1046. { \
  1047. int offset = GGML_F32_ARR >> 1; \
  1048. for (int i = 0; i < offset; ++i) { \
  1049. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1050. } \
  1051. offset >>= 1; \
  1052. for (int i = 0; i < offset; ++i) { \
  1053. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1054. } \
  1055. offset >>= 1; \
  1056. for (int i = 0; i < offset; ++i) { \
  1057. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1058. } \
  1059. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1060. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1061. }
  1062. // TODO: is this optimal ?
  1063. #define GGML_F32_VEC GGML_F32x4
  1064. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1065. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1066. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1067. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1068. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1069. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1070. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1071. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1072. // F16 SSE
  1073. #define GGML_F16_STEP 32
  1074. #define GGML_F16_EPR 4
  1075. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1076. float tmp[4];
  1077. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1078. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1079. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1080. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1081. return _mm_loadu_ps(tmp);
  1082. }
  1083. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1084. float arr[4];
  1085. _mm_storeu_ps(arr, y);
  1086. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1087. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1088. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1089. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1090. }
  1091. #define GGML_F32Cx4 __m128
  1092. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1093. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1094. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1095. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1096. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1097. #define GGML_F32Cx4_ADD _mm_add_ps
  1098. #define GGML_F32Cx4_MUL _mm_mul_ps
  1099. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1100. #define GGML_F16_VEC GGML_F32Cx4
  1101. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1102. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1103. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1104. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1105. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1106. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1107. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1108. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1109. #endif
  1110. // GGML_F32_ARR / GGML_F16_ARR
  1111. // number of registers to use per step
  1112. #ifdef GGML_SIMD
  1113. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1114. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1115. #endif
  1116. //
  1117. // fundamental operations
  1118. //
  1119. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1120. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1121. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1122. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1123. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1124. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1125. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1126. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1127. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1128. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1129. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1130. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1131. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1132. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1133. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1134. assert(nrc == 1);
  1135. UNUSED(nrc);
  1136. UNUSED(bx);
  1137. UNUSED(by);
  1138. UNUSED(bs);
  1139. #ifdef GGML_SIMD
  1140. float sumf = 0.0f;
  1141. const int np = (n & ~(GGML_F32_STEP - 1));
  1142. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1143. GGML_F32_VEC ax[GGML_F32_ARR];
  1144. GGML_F32_VEC ay[GGML_F32_ARR];
  1145. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1146. for (int j = 0; j < GGML_F32_ARR; j++) {
  1147. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1148. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1149. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1150. }
  1151. }
  1152. // reduce sum0..sum3 to sum0
  1153. GGML_F32_VEC_REDUCE(sumf, sum);
  1154. // leftovers
  1155. for (int i = np; i < n; ++i) {
  1156. sumf += x[i]*y[i];
  1157. }
  1158. #else
  1159. // scalar
  1160. ggml_float sumf = 0.0;
  1161. for (int i = 0; i < n; ++i) {
  1162. sumf += (ggml_float)(x[i]*y[i]);
  1163. }
  1164. #endif
  1165. *s = sumf;
  1166. }
  1167. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1168. assert(nrc == 1);
  1169. UNUSED(nrc);
  1170. UNUSED(bx);
  1171. UNUSED(by);
  1172. UNUSED(bs);
  1173. ggml_float sumf = 0.0;
  1174. #if defined(GGML_SIMD)
  1175. const int np = (n & ~(GGML_F16_STEP - 1));
  1176. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1177. GGML_F16_VEC ax[GGML_F16_ARR];
  1178. GGML_F16_VEC ay[GGML_F16_ARR];
  1179. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1180. for (int j = 0; j < GGML_F16_ARR; j++) {
  1181. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1182. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1183. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1184. }
  1185. }
  1186. // reduce sum0..sum3 to sum0
  1187. GGML_F16_VEC_REDUCE(sumf, sum);
  1188. // leftovers
  1189. for (int i = np; i < n; ++i) {
  1190. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1191. }
  1192. #else
  1193. for (int i = 0; i < n; ++i) {
  1194. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1195. }
  1196. #endif
  1197. *s = sumf;
  1198. }
  1199. // compute GGML_VEC_DOT_UNROLL dot products at once
  1200. // xs - x row stride in bytes
  1201. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1202. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1203. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1204. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1205. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1206. }
  1207. #if defined(GGML_SIMD)
  1208. const int np = (n & ~(GGML_F16_STEP - 1));
  1209. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1210. GGML_F16_VEC ax[GGML_F16_ARR];
  1211. GGML_F16_VEC ay[GGML_F16_ARR];
  1212. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1213. for (int j = 0; j < GGML_F16_ARR; j++) {
  1214. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1215. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1216. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1217. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1218. }
  1219. }
  1220. }
  1221. // reduce sum0..sum3 to sum0
  1222. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1223. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1224. }
  1225. // leftovers
  1226. for (int i = np; i < n; ++i) {
  1227. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1228. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1229. }
  1230. }
  1231. #else
  1232. for (int i = 0; i < n; ++i) {
  1233. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1234. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1235. }
  1236. }
  1237. #endif
  1238. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1239. s[i] = sumf[i];
  1240. }
  1241. }
  1242. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1243. #if defined(GGML_SIMD)
  1244. const int np = (n & ~(GGML_F32_STEP - 1));
  1245. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1246. GGML_F32_VEC ax[GGML_F32_ARR];
  1247. GGML_F32_VEC ay[GGML_F32_ARR];
  1248. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1249. for (int j = 0; j < GGML_F32_ARR; j++) {
  1250. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1251. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1252. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1253. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1254. }
  1255. }
  1256. // leftovers
  1257. for (int i = np; i < n; ++i) {
  1258. y[i] += x[i]*v;
  1259. }
  1260. #else
  1261. // scalar
  1262. for (int i = 0; i < n; ++i) {
  1263. y[i] += x[i]*v;
  1264. }
  1265. #endif
  1266. }
  1267. // xs and vs are byte strides of x and v
  1268. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1269. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1270. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1271. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1272. x[i] = (const float *) ((const char *) xv + i*xs);
  1273. v[i] = (const float *) ((const char *) vv + i*vs);
  1274. }
  1275. #if defined(GGML_SIMD)
  1276. const int np = (n & ~(GGML_F32_STEP - 1));
  1277. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1278. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1279. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1280. }
  1281. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1282. GGML_F32_VEC ay[GGML_F32_ARR];
  1283. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1284. for (int j = 0; j < GGML_F32_ARR; j++) {
  1285. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1286. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1287. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1288. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1289. }
  1290. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1291. }
  1292. }
  1293. // leftovers
  1294. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1295. for (int i = np; i < n; ++i) {
  1296. y[i] += x[k][i]*v[k][0];
  1297. }
  1298. }
  1299. #else
  1300. // scalar
  1301. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1302. for (int i = 0; i < n; ++i) {
  1303. y[i] += x[k][i]*v[k][0];
  1304. }
  1305. }
  1306. #endif
  1307. }
  1308. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1309. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1310. #if defined(GGML_USE_ACCELERATE)
  1311. vDSP_vsmul(y, 1, &v, y, 1, n);
  1312. #elif defined(GGML_SIMD)
  1313. const int np = (n & ~(GGML_F32_STEP - 1));
  1314. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1315. GGML_F32_VEC ay[GGML_F32_ARR];
  1316. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1317. for (int j = 0; j < GGML_F32_ARR; j++) {
  1318. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1319. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1320. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1321. }
  1322. }
  1323. // leftovers
  1324. for (int i = np; i < n; ++i) {
  1325. y[i] *= v;
  1326. }
  1327. #else
  1328. // scalar
  1329. for (int i = 0; i < n; ++i) {
  1330. y[i] *= v;
  1331. }
  1332. #endif
  1333. }
  1334. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  1335. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1336. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1337. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1338. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1339. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1340. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1341. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1342. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1343. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1344. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1345. // TODO: optimize performance
  1346. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1347. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1348. static const float GELU_COEF_A = 0.044715f;
  1349. static const float GELU_QUICK_COEF = -1.702f;
  1350. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1351. inline static float ggml_gelu_f32(float x) {
  1352. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1353. }
  1354. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1355. const uint16_t * i16 = (const uint16_t *) x;
  1356. for (int i = 0; i < n; ++i) {
  1357. y[i] = ggml_table_gelu_f16[i16[i]];
  1358. }
  1359. }
  1360. #ifdef GGML_GELU_FP16
  1361. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1362. uint16_t t;
  1363. for (int i = 0; i < n; ++i) {
  1364. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1365. memcpy(&t, &fp16, sizeof(uint16_t));
  1366. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1367. }
  1368. }
  1369. #else
  1370. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1371. for (int i = 0; i < n; ++i) {
  1372. y[i] = ggml_gelu_f32(x[i]);
  1373. }
  1374. }
  1375. #endif
  1376. inline static float ggml_gelu_quick_f32(float x) {
  1377. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1378. }
  1379. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1380. // const uint16_t * i16 = (const uint16_t *) x;
  1381. // for (int i = 0; i < n; ++i) {
  1382. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1383. // }
  1384. //}
  1385. #ifdef GGML_GELU_QUICK_FP16
  1386. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1387. uint16_t t;
  1388. for (int i = 0; i < n; ++i) {
  1389. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1390. memcpy(&t, &fp16, sizeof(uint16_t));
  1391. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1392. }
  1393. }
  1394. #else
  1395. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1396. for (int i = 0; i < n; ++i) {
  1397. y[i] = ggml_gelu_quick_f32(x[i]);
  1398. }
  1399. }
  1400. #endif
  1401. // Sigmoid Linear Unit (SiLU) function
  1402. inline static float ggml_silu_f32(float x) {
  1403. return x/(1.0f + expf(-x));
  1404. }
  1405. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1406. // const uint16_t * i16 = (const uint16_t *) x;
  1407. // for (int i = 0; i < n; ++i) {
  1408. // y[i] = ggml_table_silu_f16[i16[i]];
  1409. // }
  1410. //}
  1411. #ifdef GGML_SILU_FP16
  1412. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1413. uint16_t t;
  1414. for (int i = 0; i < n; ++i) {
  1415. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1416. memcpy(&t, &fp16, sizeof(uint16_t));
  1417. y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
  1418. }
  1419. }
  1420. #else
  1421. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1422. for (int i = 0; i < n; ++i) {
  1423. y[i] = ggml_silu_f32(x[i]);
  1424. }
  1425. }
  1426. #endif
  1427. inline static float ggml_silu_backward_f32(float x, float dy) {
  1428. const float s = 1.0f/(1.0f + expf(-x));
  1429. return dy*s*(1.0f + x*(1.0f - s));
  1430. }
  1431. #ifdef GGML_SILU_FP16
  1432. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1433. for (int i = 0; i < n; ++i) {
  1434. // we did not use x[i] to compute forward silu but its f16 equivalent
  1435. // take derivative at f16 of x[i]:
  1436. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1437. float usedx = GGML_FP16_TO_FP32(fp16);
  1438. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  1439. }
  1440. }
  1441. #else
  1442. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1443. for (int i = 0; i < n; ++i) {
  1444. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1445. }
  1446. }
  1447. #endif
  1448. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1449. #ifndef GGML_USE_ACCELERATE
  1450. ggml_float sum = 0.0;
  1451. for (int i = 0; i < n; ++i) {
  1452. sum += (ggml_float)x[i];
  1453. }
  1454. *s = sum;
  1455. #else
  1456. vDSP_sve(x, 1, s, n);
  1457. #endif
  1458. }
  1459. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1460. ggml_float sum = 0.0;
  1461. for (int i = 0; i < n; ++i) {
  1462. sum += (ggml_float)x[i];
  1463. }
  1464. *s = sum;
  1465. }
  1466. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1467. float sum = 0.0f;
  1468. for (int i = 0; i < n; ++i) {
  1469. sum += GGML_FP16_TO_FP32(x[i]);
  1470. }
  1471. *s = sum;
  1472. }
  1473. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1474. #ifndef GGML_USE_ACCELERATE
  1475. float max = -INFINITY;
  1476. for (int i = 0; i < n; ++i) {
  1477. max = MAX(max, x[i]);
  1478. }
  1479. *s = max;
  1480. #else
  1481. vDSP_maxv(x, 1, s, n);
  1482. #endif
  1483. }
  1484. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1485. ggml_vec_norm_f32(n, s, x);
  1486. *s = 1.f/(*s);
  1487. }
  1488. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1489. float max = -INFINITY;
  1490. int idx = 0;
  1491. for (int i = 0; i < n; ++i) {
  1492. max = MAX(max, x[i]);
  1493. if (max == x[i]) { idx = i; }
  1494. }
  1495. *s = idx;
  1496. }
  1497. //
  1498. // data types
  1499. //
  1500. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  1501. "NONE",
  1502. "DUP",
  1503. "ADD",
  1504. "ADD1",
  1505. "ACC",
  1506. "SUB",
  1507. "MUL",
  1508. "DIV",
  1509. "SQR",
  1510. "SQRT",
  1511. "LOG",
  1512. "SUM",
  1513. "SUM_ROWS",
  1514. "MEAN",
  1515. "ARGMAX",
  1516. "REPEAT",
  1517. "REPEAT_BACK",
  1518. "CONCAT",
  1519. "SILU_BACK",
  1520. "NORM",
  1521. "RMS_NORM",
  1522. "RMS_NORM_BACK",
  1523. "GROUP_NORM",
  1524. "MUL_MAT",
  1525. "MUL_MAT_ID",
  1526. "OUT_PROD",
  1527. "SCALE",
  1528. "SET",
  1529. "CPY",
  1530. "CONT",
  1531. "RESHAPE",
  1532. "VIEW",
  1533. "PERMUTE",
  1534. "TRANSPOSE",
  1535. "GET_ROWS",
  1536. "GET_ROWS_BACK",
  1537. "DIAG",
  1538. "DIAG_MASK_INF",
  1539. "DIAG_MASK_ZERO",
  1540. "SOFT_MAX",
  1541. "SOFT_MAX_BACK",
  1542. "ROPE",
  1543. "ROPE_BACK",
  1544. "ALIBI",
  1545. "CLAMP",
  1546. "CONV_TRANSPOSE_1D",
  1547. "IM2COL",
  1548. "CONV_TRANSPOSE_2D",
  1549. "POOL_1D",
  1550. "POOL_2D",
  1551. "UPSCALE",
  1552. "PAD",
  1553. "ARGSORT",
  1554. "LEAKY_RELU",
  1555. "FLASH_ATTN",
  1556. "FLASH_FF",
  1557. "FLASH_ATTN_BACK",
  1558. "WIN_PART",
  1559. "WIN_UNPART",
  1560. "GET_REL_POS",
  1561. "ADD_REL_POS",
  1562. "UNARY",
  1563. "MAP_UNARY",
  1564. "MAP_BINARY",
  1565. "MAP_CUSTOM1_F32",
  1566. "MAP_CUSTOM2_F32",
  1567. "MAP_CUSTOM3_F32",
  1568. "MAP_CUSTOM1",
  1569. "MAP_CUSTOM2",
  1570. "MAP_CUSTOM3",
  1571. "CROSS_ENTROPY_LOSS",
  1572. "CROSS_ENTROPY_LOSS_BACK",
  1573. };
  1574. static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72");
  1575. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1576. "none",
  1577. "x",
  1578. "x+y",
  1579. "x+y",
  1580. "view(x,nb,offset)+=y->x",
  1581. "x-y",
  1582. "x*y",
  1583. "x/y",
  1584. "x^2",
  1585. "√x",
  1586. "log(x)",
  1587. "Σx",
  1588. "Σx_k",
  1589. "Σx/n",
  1590. "argmax(x)",
  1591. "repeat(x)",
  1592. "repeat_back(x)",
  1593. "concat(x, y)",
  1594. "silu_back(x)",
  1595. "norm(x)",
  1596. "rms_norm(x)",
  1597. "rms_norm_back(x)",
  1598. "group_norm(x)",
  1599. "X*Y",
  1600. "X[i]*Y",
  1601. "X*Y",
  1602. "x*v",
  1603. "y-\\>view(x)",
  1604. "x-\\>y",
  1605. "cont(x)",
  1606. "reshape(x)",
  1607. "view(x)",
  1608. "permute(x)",
  1609. "transpose(x)",
  1610. "get_rows(x)",
  1611. "get_rows_back(x)",
  1612. "diag(x)",
  1613. "diag_mask_inf(x)",
  1614. "diag_mask_zero(x)",
  1615. "soft_max(x)",
  1616. "soft_max_back(x)",
  1617. "rope(x)",
  1618. "rope_back(x)",
  1619. "alibi(x)",
  1620. "clamp(x)",
  1621. "conv_transpose_1d(x)",
  1622. "im2col(x)",
  1623. "conv_transpose_2d(x)",
  1624. "pool_1d(x)",
  1625. "pool_2d(x)",
  1626. "upscale(x)",
  1627. "pad(x)",
  1628. "argsort(x)",
  1629. "leaky_relu(x)",
  1630. "flash_attn(x)",
  1631. "flash_ff(x)",
  1632. "flash_attn_back(x)",
  1633. "win_part(x)",
  1634. "win_unpart(x)",
  1635. "get_rel_pos(x)",
  1636. "add_rel_pos(x)",
  1637. "unary(x)",
  1638. "f(x)",
  1639. "f(x,y)",
  1640. "custom_f32(x)",
  1641. "custom_f32(x,y)",
  1642. "custom_f32(x,y,z)",
  1643. "custom(x)",
  1644. "custom(x,y)",
  1645. "custom(x,y,z)",
  1646. "cross_entropy_loss(x,y)",
  1647. "cross_entropy_loss_back(x,y)",
  1648. };
  1649. static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72");
  1650. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  1651. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  1652. "ABS",
  1653. "SGN",
  1654. "NEG",
  1655. "STEP",
  1656. "TANH",
  1657. "ELU",
  1658. "RELU",
  1659. "GELU",
  1660. "GELU_QUICK",
  1661. "SILU",
  1662. "HARDSWISH",
  1663. "HARDSIGMOID",
  1664. };
  1665. static_assert(GGML_UNARY_OP_COUNT == 12, "GGML_UNARY_OP_COUNT != 12");
  1666. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1667. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1668. // WARN:
  1669. // Mis-configuration can lead to problem that's hard to reason about:
  1670. // * At best it crash or talks nosense.
  1671. // * At worst it talks slightly difference but hard to perceive.
  1672. //
  1673. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  1674. // Take care about compile options (e.g., GGML_USE_xxx).
  1675. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  1676. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  1677. static void ggml_setup_op_has_task_pass(void) {
  1678. { // INIT
  1679. bool * p = GGML_OP_HAS_INIT;
  1680. p[GGML_OP_ACC ] = true;
  1681. p[GGML_OP_MUL_MAT ] = true;
  1682. p[GGML_OP_MUL_MAT_ID ] = true;
  1683. p[GGML_OP_OUT_PROD ] = true;
  1684. p[GGML_OP_SET ] = true;
  1685. p[GGML_OP_GET_ROWS_BACK ] = true;
  1686. p[GGML_OP_DIAG_MASK_INF ] = true;
  1687. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  1688. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  1689. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  1690. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  1691. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1692. p[GGML_OP_ADD_REL_POS ] = true;
  1693. }
  1694. { // FINALIZE
  1695. bool * p = GGML_OP_HAS_FINALIZE;
  1696. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1697. }
  1698. }
  1699. //
  1700. // ggml context
  1701. //
  1702. struct ggml_context {
  1703. size_t mem_size;
  1704. void * mem_buffer;
  1705. bool mem_buffer_owned;
  1706. bool no_alloc;
  1707. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1708. int n_objects;
  1709. struct ggml_object * objects_begin;
  1710. struct ggml_object * objects_end;
  1711. struct ggml_scratch scratch;
  1712. struct ggml_scratch scratch_save;
  1713. };
  1714. struct ggml_context_container {
  1715. bool used;
  1716. struct ggml_context context;
  1717. };
  1718. //
  1719. // NUMA support
  1720. //
  1721. #define GGML_NUMA_MAX_NODES 8
  1722. #define GGML_NUMA_MAX_CPUS 512
  1723. struct ggml_numa_node {
  1724. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  1725. uint32_t n_cpus;
  1726. };
  1727. struct ggml_numa_nodes {
  1728. enum ggml_numa_strategy numa_strategy;
  1729. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  1730. uint32_t n_nodes;
  1731. uint32_t total_cpus; // hardware threads on system
  1732. uint32_t current_node; // node on which main process is execting
  1733. #if defined(__gnu_linux__)
  1734. cpu_set_t cpuset; // cpuset from numactl
  1735. #else
  1736. uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
  1737. #endif
  1738. };
  1739. //
  1740. // ggml state
  1741. //
  1742. struct ggml_state {
  1743. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1744. struct ggml_numa_nodes numa;
  1745. };
  1746. // global state
  1747. static struct ggml_state g_state;
  1748. static atomic_int g_state_barrier = 0;
  1749. // barrier via spin lock
  1750. inline static void ggml_critical_section_start(void) {
  1751. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1752. while (processing > 0) {
  1753. // wait for other threads to finish
  1754. atomic_fetch_sub(&g_state_barrier, 1);
  1755. sched_yield(); // TODO: reconsider this
  1756. processing = atomic_fetch_add(&g_state_barrier, 1);
  1757. }
  1758. }
  1759. // TODO: make this somehow automatically executed
  1760. // some sort of "sentry" mechanism
  1761. inline static void ggml_critical_section_end(void) {
  1762. atomic_fetch_sub(&g_state_barrier, 1);
  1763. }
  1764. #if defined(__gnu_linux__)
  1765. static cpu_set_t ggml_get_numa_affinity(void) {
  1766. cpu_set_t cpuset;
  1767. pthread_t thread;
  1768. thread = pthread_self();
  1769. CPU_ZERO(&cpuset);
  1770. pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
  1771. return cpuset;
  1772. }
  1773. #else
  1774. static uint32_t ggml_get_numa_affinity(void) {
  1775. return 0; // no NUMA support
  1776. }
  1777. #endif
  1778. void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
  1779. if (g_state.numa.n_nodes > 0) {
  1780. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  1781. return;
  1782. }
  1783. #if defined(__gnu_linux__)
  1784. struct stat st;
  1785. char path[256];
  1786. int rv;
  1787. // set numa scheme
  1788. g_state.numa.numa_strategy = numa_flag;
  1789. GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
  1790. g_state.numa.cpuset = ggml_get_numa_affinity();
  1791. // enumerate nodes
  1792. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  1793. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  1794. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1795. if (stat(path, &st) != 0) { break; }
  1796. ++g_state.numa.n_nodes;
  1797. }
  1798. // enumerate CPUs
  1799. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  1800. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  1801. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1802. if (stat(path, &st) != 0) { break; }
  1803. ++g_state.numa.total_cpus;
  1804. }
  1805. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  1806. // figure out which node we're on
  1807. uint current_cpu;
  1808. int getcpu_ret = 0;
  1809. #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28)
  1810. getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
  1811. #else
  1812. // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
  1813. getcpu_ret = syscall(SYS_getcpu,&current_cpu,&g_state.numa.current_node);
  1814. #endif
  1815. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
  1816. g_state.numa.n_nodes = 0;
  1817. return;
  1818. }
  1819. GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
  1820. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  1821. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  1822. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  1823. node->n_cpus = 0;
  1824. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  1825. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  1826. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1827. if (stat(path, &st) == 0) {
  1828. node->cpus[node->n_cpus++] = c;
  1829. GGML_PRINT_DEBUG(" %u", c);
  1830. }
  1831. }
  1832. GGML_PRINT_DEBUG("\n");
  1833. }
  1834. if (ggml_is_numa()) {
  1835. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  1836. if (fptr != NULL) {
  1837. char buf[42];
  1838. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  1839. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  1840. }
  1841. fclose(fptr);
  1842. }
  1843. }
  1844. #else
  1845. GGML_UNUSED(numa_flag);
  1846. // TODO
  1847. #endif
  1848. }
  1849. bool ggml_is_numa(void) {
  1850. return g_state.numa.n_nodes > 1;
  1851. }
  1852. ////////////////////////////////////////////////////////////////////////////////
  1853. void ggml_print_object(const struct ggml_object * obj) {
  1854. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  1855. obj->type, obj->offs, obj->size, (const void *) obj->next);
  1856. }
  1857. void ggml_print_objects(const struct ggml_context * ctx) {
  1858. struct ggml_object * obj = ctx->objects_begin;
  1859. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  1860. while (obj != NULL) {
  1861. ggml_print_object(obj);
  1862. obj = obj->next;
  1863. }
  1864. GGML_PRINT("%s: --- end ---\n", __func__);
  1865. }
  1866. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  1867. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1868. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1869. }
  1870. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  1871. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1872. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1873. }
  1874. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  1875. size_t nbytes;
  1876. size_t blck_size = ggml_blck_size(tensor->type);
  1877. if (blck_size == 1) {
  1878. nbytes = ggml_type_size(tensor->type);
  1879. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  1880. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1881. }
  1882. }
  1883. else {
  1884. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  1885. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  1886. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1887. }
  1888. }
  1889. return nbytes;
  1890. }
  1891. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  1892. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  1893. }
  1894. GGML_CALL int ggml_blck_size(enum ggml_type type) {
  1895. return type_traits[type].blck_size;
  1896. }
  1897. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  1898. return type_traits[type].type_size;
  1899. }
  1900. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  1901. assert(ne % ggml_blck_size(type) == 0);
  1902. return ggml_type_size(type)*ne/ggml_blck_size(type);
  1903. }
  1904. double ggml_type_sizef(enum ggml_type type) {
  1905. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  1906. }
  1907. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  1908. return type_traits[type].type_name;
  1909. }
  1910. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  1911. return type_traits[type].is_quantized;
  1912. }
  1913. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  1914. return GGML_OP_NAME[op];
  1915. }
  1916. const char * ggml_op_symbol(enum ggml_op op) {
  1917. return GGML_OP_SYMBOL[op];
  1918. }
  1919. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  1920. return GGML_UNARY_OP_NAME[op];
  1921. }
  1922. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  1923. if (t->op == GGML_OP_UNARY) {
  1924. enum ggml_unary_op uop = ggml_get_unary_op(t);
  1925. return ggml_unary_op_name(uop);
  1926. }
  1927. else {
  1928. return ggml_op_name(t->op);
  1929. }
  1930. }
  1931. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  1932. return ggml_type_size(tensor->type);
  1933. }
  1934. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  1935. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1936. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1937. }
  1938. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  1939. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1940. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1941. }
  1942. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  1943. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1944. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1945. }
  1946. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  1947. return tensor->ne[3] == 1;
  1948. }
  1949. int ggml_n_dims(const struct ggml_tensor * tensor) {
  1950. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  1951. if (tensor->ne[i] > 1) {
  1952. return i + 1;
  1953. }
  1954. }
  1955. return 1;
  1956. }
  1957. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1958. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1959. return (t0->ne[0] == t1->ne[0]) &&
  1960. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1961. (t1->ne[3]%t0->ne[3] == 0);
  1962. }
  1963. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1964. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1965. return (t0->ne[1] == t1->ne[1]) &&
  1966. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1967. (t1->ne[3]%t0->ne[3] == 0);
  1968. }
  1969. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  1970. enum ggml_type wtype = GGML_TYPE_COUNT;
  1971. switch (ftype) {
  1972. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  1973. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  1974. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  1975. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  1976. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  1977. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  1978. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  1979. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  1980. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  1981. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  1982. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  1983. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  1984. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  1985. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  1986. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  1987. case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
  1988. case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
  1989. case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
  1990. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  1991. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  1992. }
  1993. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  1994. return wtype;
  1995. }
  1996. size_t ggml_tensor_overhead(void) {
  1997. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  1998. }
  1999. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2000. return tensor->nb[0] > tensor->nb[1];
  2001. }
  2002. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2003. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2004. return
  2005. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2006. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  2007. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2008. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2009. }
  2010. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  2011. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2012. return
  2013. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2014. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2015. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2016. }
  2017. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  2018. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2019. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  2020. }
  2021. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2022. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2023. return
  2024. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2025. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2026. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2027. }
  2028. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2029. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2030. return
  2031. (t0->ne[0] == t1->ne[0] ) &&
  2032. (t0->ne[1] == t1->ne[1] ) &&
  2033. (t0->ne[2] == t1->ne[2] ) &&
  2034. (t0->ne[3] == t1->ne[3] );
  2035. }
  2036. // check if t1 can be represented as a repeatition of t0
  2037. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2038. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2039. return
  2040. (t1->ne[0]%t0->ne[0] == 0) &&
  2041. (t1->ne[1]%t0->ne[1] == 0) &&
  2042. (t1->ne[2]%t0->ne[2] == 0) &&
  2043. (t1->ne[3]%t0->ne[3] == 0);
  2044. }
  2045. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2046. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2047. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  2048. }
  2049. static inline int ggml_up32(int n) {
  2050. return (n + 31) & ~31;
  2051. }
  2052. //static inline int ggml_up64(int n) {
  2053. // return (n + 63) & ~63;
  2054. //}
  2055. static inline int ggml_up(int n, int m) {
  2056. // assert m is a power of 2
  2057. GGML_ASSERT((m & (m - 1)) == 0);
  2058. return (n + m - 1) & ~(m - 1);
  2059. }
  2060. // assert that pointer is aligned to GGML_MEM_ALIGN
  2061. #define ggml_assert_aligned(ptr) \
  2062. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2063. ////////////////////////////////////////////////////////////////////////////////
  2064. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2065. // make this function thread safe
  2066. ggml_critical_section_start();
  2067. static bool is_first_call = true;
  2068. if (is_first_call) {
  2069. // initialize time system (required on Windows)
  2070. ggml_time_init();
  2071. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  2072. {
  2073. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2074. ggml_fp16_t ii;
  2075. for (int i = 0; i < (1 << 16); ++i) {
  2076. uint16_t ui = i;
  2077. memcpy(&ii, &ui, sizeof(ii));
  2078. const float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2079. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2080. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  2081. ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2082. ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2083. }
  2084. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2085. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2086. }
  2087. // initialize g_state
  2088. {
  2089. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2090. g_state = (struct ggml_state) {
  2091. /*.contexts =*/ { { 0 } },
  2092. /*.numa =*/ {
  2093. .n_nodes = 0,
  2094. .total_cpus = 0,
  2095. },
  2096. };
  2097. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2098. g_state.contexts[i].used = false;
  2099. }
  2100. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2101. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2102. }
  2103. #if defined(GGML_USE_CUBLAS)
  2104. ggml_init_cublas();
  2105. #elif defined(GGML_USE_CLBLAST)
  2106. ggml_cl_init();
  2107. #elif defined(GGML_USE_VULKAN)
  2108. ggml_vk_init_cpu_assist();
  2109. #elif defined(GGML_USE_SYCL)
  2110. ggml_init_sycl();
  2111. #endif
  2112. ggml_setup_op_has_task_pass();
  2113. is_first_call = false;
  2114. }
  2115. // find non-used context in g_state
  2116. struct ggml_context * ctx = NULL;
  2117. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2118. if (!g_state.contexts[i].used) {
  2119. g_state.contexts[i].used = true;
  2120. ctx = &g_state.contexts[i].context;
  2121. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2122. break;
  2123. }
  2124. }
  2125. if (ctx == NULL) {
  2126. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2127. ggml_critical_section_end();
  2128. return NULL;
  2129. }
  2130. // allow to call ggml_init with 0 size
  2131. if (params.mem_size == 0) {
  2132. params.mem_size = GGML_MEM_ALIGN;
  2133. }
  2134. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  2135. *ctx = (struct ggml_context) {
  2136. /*.mem_size =*/ mem_size,
  2137. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2138. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2139. /*.no_alloc =*/ params.no_alloc,
  2140. /*.no_alloc_save =*/ params.no_alloc,
  2141. /*.n_objects =*/ 0,
  2142. /*.objects_begin =*/ NULL,
  2143. /*.objects_end =*/ NULL,
  2144. /*.scratch =*/ { 0, 0, NULL, },
  2145. /*.scratch_save =*/ { 0, 0, NULL, },
  2146. };
  2147. GGML_ASSERT(ctx->mem_buffer != NULL);
  2148. ggml_assert_aligned(ctx->mem_buffer);
  2149. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2150. ggml_critical_section_end();
  2151. return ctx;
  2152. }
  2153. void ggml_free(struct ggml_context * ctx) {
  2154. if (ctx == NULL) {
  2155. return;
  2156. }
  2157. // make this function thread safe
  2158. ggml_critical_section_start();
  2159. bool found = false;
  2160. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2161. if (&g_state.contexts[i].context == ctx) {
  2162. g_state.contexts[i].used = false;
  2163. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  2164. __func__, i, ggml_used_mem(ctx));
  2165. if (ctx->mem_buffer_owned) {
  2166. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2167. }
  2168. found = true;
  2169. break;
  2170. }
  2171. }
  2172. if (!found) {
  2173. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2174. }
  2175. ggml_critical_section_end();
  2176. }
  2177. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2178. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2179. }
  2180. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2181. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2182. ctx->scratch = scratch;
  2183. return result;
  2184. }
  2185. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2186. return ctx->no_alloc;
  2187. }
  2188. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2189. ctx->no_alloc = no_alloc;
  2190. }
  2191. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2192. return ctx->mem_buffer;
  2193. }
  2194. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2195. return ctx->mem_size;
  2196. }
  2197. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2198. size_t max_size = 0;
  2199. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2200. size_t bytes = ggml_nbytes(tensor);
  2201. max_size = MAX(max_size, bytes);
  2202. }
  2203. return max_size;
  2204. }
  2205. // IMPORTANT:
  2206. // when creating "opt" tensors, always save and load the scratch buffer
  2207. // this is an error prone process, but it is necessary to support inplace
  2208. // operators when using scratch buffers
  2209. // TODO: implement a better way
  2210. static void ggml_scratch_save(struct ggml_context * ctx) {
  2211. // this is needed to allow opt tensors to store their data
  2212. // TODO: again, need to find a better way
  2213. ctx->no_alloc_save = ctx->no_alloc;
  2214. ctx->no_alloc = false;
  2215. ctx->scratch_save = ctx->scratch;
  2216. ctx->scratch.data = NULL;
  2217. }
  2218. static void ggml_scratch_load(struct ggml_context * ctx) {
  2219. ctx->no_alloc = ctx->no_alloc_save;
  2220. ctx->scratch = ctx->scratch_save;
  2221. }
  2222. ////////////////////////////////////////////////////////////////////////////////
  2223. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  2224. // always insert objects at the end of the context's memory pool
  2225. struct ggml_object * obj_cur = ctx->objects_end;
  2226. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2227. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2228. const size_t cur_end = cur_offs + cur_size;
  2229. // align to GGML_MEM_ALIGN
  2230. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  2231. char * const mem_buffer = ctx->mem_buffer;
  2232. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2233. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2234. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2235. __func__, cur_end + size_needed, ctx->mem_size);
  2236. assert(false);
  2237. return NULL;
  2238. }
  2239. *obj_new = (struct ggml_object) {
  2240. .offs = cur_end + GGML_OBJECT_SIZE,
  2241. .size = size_needed,
  2242. .next = NULL,
  2243. .type = type,
  2244. };
  2245. ggml_assert_aligned(mem_buffer + obj_new->offs);
  2246. if (obj_cur != NULL) {
  2247. obj_cur->next = obj_new;
  2248. } else {
  2249. // this is the first object in this context
  2250. ctx->objects_begin = obj_new;
  2251. }
  2252. ctx->objects_end = obj_new;
  2253. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2254. return obj_new;
  2255. }
  2256. static struct ggml_tensor * ggml_new_tensor_impl(
  2257. struct ggml_context * ctx,
  2258. enum ggml_type type,
  2259. int n_dims,
  2260. const int64_t * ne,
  2261. struct ggml_tensor * view_src,
  2262. size_t view_offs) {
  2263. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2264. // find the base tensor and absolute offset
  2265. if (view_src != NULL && view_src->view_src != NULL) {
  2266. view_offs += view_src->view_offs;
  2267. view_src = view_src->view_src;
  2268. }
  2269. size_t data_size = ggml_row_size(type, ne[0]);
  2270. for (int i = 1; i < n_dims; i++) {
  2271. data_size *= ne[i];
  2272. }
  2273. GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
  2274. void * data = view_src != NULL ? view_src->data : NULL;
  2275. if (data != NULL) {
  2276. data = (char *) data + view_offs;
  2277. }
  2278. size_t obj_alloc_size = 0;
  2279. if (view_src == NULL && !ctx->no_alloc) {
  2280. if (ctx->scratch.data != NULL) {
  2281. // allocate tensor data in the scratch buffer
  2282. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2283. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2284. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2285. assert(false);
  2286. return NULL;
  2287. }
  2288. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2289. ctx->scratch.offs += data_size;
  2290. } else {
  2291. // allocate tensor data in the context's memory pool
  2292. obj_alloc_size = data_size;
  2293. }
  2294. }
  2295. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2296. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2297. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2298. *result = (struct ggml_tensor) {
  2299. /*.type =*/ type,
  2300. /*.backend =*/ GGML_BACKEND_CPU,
  2301. /*.buffer =*/ NULL,
  2302. /*.ne =*/ { 1, 1, 1, 1 },
  2303. /*.nb =*/ { 0, 0, 0, 0 },
  2304. /*.op =*/ GGML_OP_NONE,
  2305. /*.op_params =*/ { 0 },
  2306. /*.flags =*/ 0,
  2307. /*.grad =*/ NULL,
  2308. /*.src =*/ { NULL },
  2309. /*.perf_runs =*/ 0,
  2310. /*.perf_cycles =*/ 0,
  2311. /*.perf_time_us =*/ 0,
  2312. /*.view_src =*/ view_src,
  2313. /*.view_offs =*/ view_offs,
  2314. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2315. /*.name =*/ { 0 },
  2316. /*.extra =*/ NULL,
  2317. /*.padding =*/ { 0 },
  2318. };
  2319. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2320. //ggml_assert_aligned(result->data);
  2321. for (int i = 0; i < n_dims; i++) {
  2322. result->ne[i] = ne[i];
  2323. }
  2324. result->nb[0] = ggml_type_size(type);
  2325. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2326. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2327. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2328. }
  2329. ctx->n_objects++;
  2330. return result;
  2331. }
  2332. struct ggml_tensor * ggml_new_tensor(
  2333. struct ggml_context * ctx,
  2334. enum ggml_type type,
  2335. int n_dims,
  2336. const int64_t * ne) {
  2337. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2338. }
  2339. struct ggml_tensor * ggml_new_tensor_1d(
  2340. struct ggml_context * ctx,
  2341. enum ggml_type type,
  2342. int64_t ne0) {
  2343. return ggml_new_tensor(ctx, type, 1, &ne0);
  2344. }
  2345. struct ggml_tensor * ggml_new_tensor_2d(
  2346. struct ggml_context * ctx,
  2347. enum ggml_type type,
  2348. int64_t ne0,
  2349. int64_t ne1) {
  2350. const int64_t ne[2] = { ne0, ne1 };
  2351. return ggml_new_tensor(ctx, type, 2, ne);
  2352. }
  2353. struct ggml_tensor * ggml_new_tensor_3d(
  2354. struct ggml_context * ctx,
  2355. enum ggml_type type,
  2356. int64_t ne0,
  2357. int64_t ne1,
  2358. int64_t ne2) {
  2359. const int64_t ne[3] = { ne0, ne1, ne2 };
  2360. return ggml_new_tensor(ctx, type, 3, ne);
  2361. }
  2362. struct ggml_tensor * ggml_new_tensor_4d(
  2363. struct ggml_context * ctx,
  2364. enum ggml_type type,
  2365. int64_t ne0,
  2366. int64_t ne1,
  2367. int64_t ne2,
  2368. int64_t ne3) {
  2369. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2370. return ggml_new_tensor(ctx, type, 4, ne);
  2371. }
  2372. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2373. ggml_scratch_save(ctx);
  2374. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2375. ggml_scratch_load(ctx);
  2376. ggml_set_i32(result, value);
  2377. return result;
  2378. }
  2379. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2380. ggml_scratch_save(ctx);
  2381. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2382. ggml_scratch_load(ctx);
  2383. ggml_set_f32(result, value);
  2384. return result;
  2385. }
  2386. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2387. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  2388. }
  2389. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  2390. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  2391. assert(params_size <= GGML_MAX_OP_PARAMS);
  2392. memcpy(tensor->op_params, params, params_size);
  2393. }
  2394. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  2395. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2396. return ((const int32_t *)(tensor->op_params))[i];
  2397. }
  2398. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  2399. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2400. ((int32_t *)(tensor->op_params))[i] = value;
  2401. }
  2402. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2403. memset(tensor->data, 0, ggml_nbytes(tensor));
  2404. return tensor;
  2405. }
  2406. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2407. const int n = ggml_nrows(tensor);
  2408. const int nc = tensor->ne[0];
  2409. const size_t n1 = tensor->nb[1];
  2410. char * const data = tensor->data;
  2411. switch (tensor->type) {
  2412. case GGML_TYPE_I8:
  2413. {
  2414. assert(tensor->nb[0] == sizeof(int8_t));
  2415. for (int i = 0; i < n; i++) {
  2416. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2417. }
  2418. } break;
  2419. case GGML_TYPE_I16:
  2420. {
  2421. assert(tensor->nb[0] == sizeof(int16_t));
  2422. for (int i = 0; i < n; i++) {
  2423. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2424. }
  2425. } break;
  2426. case GGML_TYPE_I32:
  2427. {
  2428. assert(tensor->nb[0] == sizeof(int32_t));
  2429. for (int i = 0; i < n; i++) {
  2430. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2431. }
  2432. } break;
  2433. case GGML_TYPE_F16:
  2434. {
  2435. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2436. for (int i = 0; i < n; i++) {
  2437. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2438. }
  2439. } break;
  2440. case GGML_TYPE_F32:
  2441. {
  2442. assert(tensor->nb[0] == sizeof(float));
  2443. for (int i = 0; i < n; i++) {
  2444. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2445. }
  2446. } break;
  2447. default:
  2448. {
  2449. GGML_ASSERT(false);
  2450. } break;
  2451. }
  2452. return tensor;
  2453. }
  2454. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2455. const int n = ggml_nrows(tensor);
  2456. const int nc = tensor->ne[0];
  2457. const size_t n1 = tensor->nb[1];
  2458. char * const data = tensor->data;
  2459. switch (tensor->type) {
  2460. case GGML_TYPE_I8:
  2461. {
  2462. assert(tensor->nb[0] == sizeof(int8_t));
  2463. for (int i = 0; i < n; i++) {
  2464. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2465. }
  2466. } break;
  2467. case GGML_TYPE_I16:
  2468. {
  2469. assert(tensor->nb[0] == sizeof(int16_t));
  2470. for (int i = 0; i < n; i++) {
  2471. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2472. }
  2473. } break;
  2474. case GGML_TYPE_I32:
  2475. {
  2476. assert(tensor->nb[0] == sizeof(int32_t));
  2477. for (int i = 0; i < n; i++) {
  2478. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2479. }
  2480. } break;
  2481. case GGML_TYPE_F16:
  2482. {
  2483. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2484. for (int i = 0; i < n; i++) {
  2485. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2486. }
  2487. } break;
  2488. case GGML_TYPE_F32:
  2489. {
  2490. assert(tensor->nb[0] == sizeof(float));
  2491. for (int i = 0; i < n; i++) {
  2492. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2493. }
  2494. } break;
  2495. default:
  2496. {
  2497. GGML_ASSERT(false);
  2498. } break;
  2499. }
  2500. return tensor;
  2501. }
  2502. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  2503. const int64_t ne2 = tensor->ne[2];
  2504. const int64_t ne1 = tensor->ne[1];
  2505. const int64_t ne0 = tensor->ne[0];
  2506. const int64_t i3_ = (i/(ne2*ne1*ne0));
  2507. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  2508. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  2509. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  2510. if (i0) {
  2511. * i0 = i0_;
  2512. }
  2513. if (i1) {
  2514. * i1 = i1_;
  2515. }
  2516. if (i2) {
  2517. * i2 = i2_;
  2518. }
  2519. if (i3) {
  2520. * i3 = i3_;
  2521. }
  2522. }
  2523. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2524. if (!ggml_is_contiguous(tensor)) {
  2525. int64_t id[4] = { 0, 0, 0, 0 };
  2526. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2527. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2528. }
  2529. switch (tensor->type) {
  2530. case GGML_TYPE_I8:
  2531. {
  2532. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2533. return ((int8_t *)(tensor->data))[i];
  2534. }
  2535. case GGML_TYPE_I16:
  2536. {
  2537. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2538. return ((int16_t *)(tensor->data))[i];
  2539. }
  2540. case GGML_TYPE_I32:
  2541. {
  2542. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2543. return ((int32_t *)(tensor->data))[i];
  2544. }
  2545. case GGML_TYPE_F16:
  2546. {
  2547. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2548. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2549. }
  2550. case GGML_TYPE_F32:
  2551. {
  2552. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2553. return ((float *)(tensor->data))[i];
  2554. }
  2555. default:
  2556. {
  2557. GGML_ASSERT(false);
  2558. }
  2559. }
  2560. return 0.0f;
  2561. }
  2562. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2563. if (!ggml_is_contiguous(tensor)) {
  2564. int64_t id[4] = { 0, 0, 0, 0 };
  2565. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2566. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2567. return;
  2568. }
  2569. switch (tensor->type) {
  2570. case GGML_TYPE_I8:
  2571. {
  2572. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2573. ((int8_t *)(tensor->data))[i] = value;
  2574. } break;
  2575. case GGML_TYPE_I16:
  2576. {
  2577. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2578. ((int16_t *)(tensor->data))[i] = value;
  2579. } break;
  2580. case GGML_TYPE_I32:
  2581. {
  2582. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2583. ((int32_t *)(tensor->data))[i] = value;
  2584. } break;
  2585. case GGML_TYPE_F16:
  2586. {
  2587. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2588. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2589. } break;
  2590. case GGML_TYPE_F32:
  2591. {
  2592. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2593. ((float *)(tensor->data))[i] = value;
  2594. } break;
  2595. default:
  2596. {
  2597. GGML_ASSERT(false);
  2598. } break;
  2599. }
  2600. }
  2601. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2602. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2603. switch (tensor->type) {
  2604. case GGML_TYPE_I8:
  2605. return ((int8_t *) data)[0];
  2606. case GGML_TYPE_I16:
  2607. return ((int16_t *) data)[0];
  2608. case GGML_TYPE_I32:
  2609. return ((int32_t *) data)[0];
  2610. case GGML_TYPE_F16:
  2611. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2612. case GGML_TYPE_F32:
  2613. return ((float *) data)[0];
  2614. default:
  2615. GGML_ASSERT(false);
  2616. }
  2617. return 0.0f;
  2618. }
  2619. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  2620. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2621. switch (tensor->type) {
  2622. case GGML_TYPE_I8:
  2623. {
  2624. ((int8_t *)(data))[0] = value;
  2625. } break;
  2626. case GGML_TYPE_I16:
  2627. {
  2628. ((int16_t *)(data))[0] = value;
  2629. } break;
  2630. case GGML_TYPE_I32:
  2631. {
  2632. ((int32_t *)(data))[0] = value;
  2633. } break;
  2634. case GGML_TYPE_F16:
  2635. {
  2636. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2637. } break;
  2638. case GGML_TYPE_F32:
  2639. {
  2640. ((float *)(data))[0] = value;
  2641. } break;
  2642. default:
  2643. {
  2644. GGML_ASSERT(false);
  2645. } break;
  2646. }
  2647. }
  2648. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2649. if (!ggml_is_contiguous(tensor)) {
  2650. int64_t id[4] = { 0, 0, 0, 0 };
  2651. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2652. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  2653. }
  2654. switch (tensor->type) {
  2655. case GGML_TYPE_I8:
  2656. {
  2657. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2658. return ((int8_t *)(tensor->data))[i];
  2659. }
  2660. case GGML_TYPE_I16:
  2661. {
  2662. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2663. return ((int16_t *)(tensor->data))[i];
  2664. }
  2665. case GGML_TYPE_I32:
  2666. {
  2667. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2668. return ((int32_t *)(tensor->data))[i];
  2669. }
  2670. case GGML_TYPE_F16:
  2671. {
  2672. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2673. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2674. }
  2675. case GGML_TYPE_F32:
  2676. {
  2677. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2678. return ((float *)(tensor->data))[i];
  2679. }
  2680. default:
  2681. {
  2682. GGML_ASSERT(false);
  2683. }
  2684. }
  2685. return 0.0f;
  2686. }
  2687. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2688. if (!ggml_is_contiguous(tensor)) {
  2689. int64_t id[4] = { 0, 0, 0, 0 };
  2690. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2691. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2692. return;
  2693. }
  2694. switch (tensor->type) {
  2695. case GGML_TYPE_I8:
  2696. {
  2697. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2698. ((int8_t *)(tensor->data))[i] = value;
  2699. } break;
  2700. case GGML_TYPE_I16:
  2701. {
  2702. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2703. ((int16_t *)(tensor->data))[i] = value;
  2704. } break;
  2705. case GGML_TYPE_I32:
  2706. {
  2707. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2708. ((int32_t *)(tensor->data))[i] = value;
  2709. } break;
  2710. case GGML_TYPE_F16:
  2711. {
  2712. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2713. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2714. } break;
  2715. case GGML_TYPE_F32:
  2716. {
  2717. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2718. ((float *)(tensor->data))[i] = value;
  2719. } break;
  2720. default:
  2721. {
  2722. GGML_ASSERT(false);
  2723. } break;
  2724. }
  2725. }
  2726. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2727. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2728. switch (tensor->type) {
  2729. case GGML_TYPE_I8:
  2730. return ((int8_t *) data)[0];
  2731. case GGML_TYPE_I16:
  2732. return ((int16_t *) data)[0];
  2733. case GGML_TYPE_I32:
  2734. return ((int32_t *) data)[0];
  2735. case GGML_TYPE_F16:
  2736. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2737. case GGML_TYPE_F32:
  2738. return ((float *) data)[0];
  2739. default:
  2740. GGML_ASSERT(false);
  2741. }
  2742. return 0.0f;
  2743. }
  2744. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  2745. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2746. switch (tensor->type) {
  2747. case GGML_TYPE_I8:
  2748. {
  2749. ((int8_t *)(data))[0] = value;
  2750. } break;
  2751. case GGML_TYPE_I16:
  2752. {
  2753. ((int16_t *)(data))[0] = value;
  2754. } break;
  2755. case GGML_TYPE_I32:
  2756. {
  2757. ((int32_t *)(data))[0] = value;
  2758. } break;
  2759. case GGML_TYPE_F16:
  2760. {
  2761. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2762. } break;
  2763. case GGML_TYPE_F32:
  2764. {
  2765. ((float *)(data))[0] = value;
  2766. } break;
  2767. default:
  2768. {
  2769. GGML_ASSERT(false);
  2770. } break;
  2771. }
  2772. }
  2773. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2774. return tensor->data;
  2775. }
  2776. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2777. assert(tensor->type == GGML_TYPE_F32);
  2778. return (float *)(tensor->data);
  2779. }
  2780. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  2781. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  2782. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  2783. }
  2784. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  2785. return tensor->name;
  2786. }
  2787. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  2788. strncpy(tensor->name, name, sizeof(tensor->name) - 1);
  2789. tensor->name[sizeof(tensor->name) - 1] = '\0';
  2790. return tensor;
  2791. }
  2792. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  2793. va_list args;
  2794. va_start(args, fmt);
  2795. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  2796. va_end(args);
  2797. return tensor;
  2798. }
  2799. struct ggml_tensor * ggml_view_tensor(
  2800. struct ggml_context * ctx,
  2801. struct ggml_tensor * src) {
  2802. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  2803. ggml_format_name(result, "%s (view)", src->name);
  2804. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  2805. result->nb[i] = src->nb[i];
  2806. }
  2807. return result;
  2808. }
  2809. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  2810. struct ggml_object * obj = ctx->objects_begin;
  2811. char * const mem_buffer = ctx->mem_buffer;
  2812. while (obj != NULL) {
  2813. if (obj->type == GGML_OBJECT_TENSOR) {
  2814. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2815. }
  2816. obj = obj->next;
  2817. }
  2818. return NULL;
  2819. }
  2820. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  2821. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  2822. obj = obj->next;
  2823. char * const mem_buffer = ctx->mem_buffer;
  2824. while (obj != NULL) {
  2825. if (obj->type == GGML_OBJECT_TENSOR) {
  2826. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2827. }
  2828. obj = obj->next;
  2829. }
  2830. return NULL;
  2831. }
  2832. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  2833. struct ggml_object * obj = ctx->objects_begin;
  2834. char * const mem_buffer = ctx->mem_buffer;
  2835. while (obj != NULL) {
  2836. if (obj->type == GGML_OBJECT_TENSOR) {
  2837. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  2838. if (strcmp(cur->name, name) == 0) {
  2839. return cur;
  2840. }
  2841. }
  2842. obj = obj->next;
  2843. }
  2844. return NULL;
  2845. }
  2846. ////////////////////////////////////////////////////////////////////////////////
  2847. // ggml_dup
  2848. static struct ggml_tensor * ggml_dup_impl(
  2849. struct ggml_context * ctx,
  2850. struct ggml_tensor * a,
  2851. bool inplace) {
  2852. bool is_node = false;
  2853. if (!inplace && (a->grad)) {
  2854. is_node = true;
  2855. }
  2856. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2857. result->op = GGML_OP_DUP;
  2858. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2859. result->src[0] = a;
  2860. return result;
  2861. }
  2862. struct ggml_tensor * ggml_dup(
  2863. struct ggml_context * ctx,
  2864. struct ggml_tensor * a) {
  2865. return ggml_dup_impl(ctx, a, false);
  2866. }
  2867. struct ggml_tensor * ggml_dup_inplace(
  2868. struct ggml_context * ctx,
  2869. struct ggml_tensor * a) {
  2870. return ggml_dup_impl(ctx, a, true);
  2871. }
  2872. // ggml_add
  2873. static struct ggml_tensor * ggml_add_impl(
  2874. struct ggml_context * ctx,
  2875. struct ggml_tensor * a,
  2876. struct ggml_tensor * b,
  2877. bool inplace) {
  2878. GGML_ASSERT(ggml_can_repeat(b, a));
  2879. bool is_node = false;
  2880. if (!inplace && (a->grad || b->grad)) {
  2881. // TODO: support backward pass for broadcasting
  2882. GGML_ASSERT(ggml_are_same_shape(a, b));
  2883. is_node = true;
  2884. }
  2885. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2886. result->op = GGML_OP_ADD;
  2887. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2888. result->src[0] = a;
  2889. result->src[1] = b;
  2890. return result;
  2891. }
  2892. struct ggml_tensor * ggml_add(
  2893. struct ggml_context * ctx,
  2894. struct ggml_tensor * a,
  2895. struct ggml_tensor * b) {
  2896. return ggml_add_impl(ctx, a, b, false);
  2897. }
  2898. struct ggml_tensor * ggml_add_inplace(
  2899. struct ggml_context * ctx,
  2900. struct ggml_tensor * a,
  2901. struct ggml_tensor * b) {
  2902. return ggml_add_impl(ctx, a, b, true);
  2903. }
  2904. // ggml_add_cast
  2905. static struct ggml_tensor * ggml_add_cast_impl(
  2906. struct ggml_context * ctx,
  2907. struct ggml_tensor * a,
  2908. struct ggml_tensor * b,
  2909. enum ggml_type type) {
  2910. // TODO: support less-strict constraint
  2911. // GGML_ASSERT(ggml_can_repeat(b, a));
  2912. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  2913. GGML_ASSERT(ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16); // currently only supported for quantized input and f16
  2914. bool is_node = false;
  2915. if (a->grad || b->grad) {
  2916. // TODO: support backward pass for broadcasting
  2917. GGML_ASSERT(ggml_are_same_shape(a, b));
  2918. is_node = true;
  2919. }
  2920. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  2921. result->op = GGML_OP_ADD;
  2922. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  2923. result->src[0] = a;
  2924. result->src[1] = b;
  2925. return result;
  2926. }
  2927. struct ggml_tensor * ggml_add_cast(
  2928. struct ggml_context * ctx,
  2929. struct ggml_tensor * a,
  2930. struct ggml_tensor * b,
  2931. enum ggml_type type) {
  2932. return ggml_add_cast_impl(ctx, a, b, type);
  2933. }
  2934. // ggml_add1
  2935. static struct ggml_tensor * ggml_add1_impl(
  2936. struct ggml_context * ctx,
  2937. struct ggml_tensor * a,
  2938. struct ggml_tensor * b,
  2939. bool inplace) {
  2940. GGML_ASSERT(ggml_is_scalar(b));
  2941. GGML_ASSERT(ggml_is_padded_1d(a));
  2942. bool is_node = false;
  2943. if (a->grad || b->grad) {
  2944. is_node = true;
  2945. }
  2946. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2947. result->op = GGML_OP_ADD1;
  2948. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2949. result->src[0] = a;
  2950. result->src[1] = b;
  2951. return result;
  2952. }
  2953. struct ggml_tensor * ggml_add1(
  2954. struct ggml_context * ctx,
  2955. struct ggml_tensor * a,
  2956. struct ggml_tensor * b) {
  2957. return ggml_add1_impl(ctx, a, b, false);
  2958. }
  2959. struct ggml_tensor * ggml_add1_inplace(
  2960. struct ggml_context * ctx,
  2961. struct ggml_tensor * a,
  2962. struct ggml_tensor * b) {
  2963. return ggml_add1_impl(ctx, a, b, true);
  2964. }
  2965. // ggml_acc
  2966. static struct ggml_tensor * ggml_acc_impl(
  2967. struct ggml_context * ctx,
  2968. struct ggml_tensor * a,
  2969. struct ggml_tensor * b,
  2970. size_t nb1,
  2971. size_t nb2,
  2972. size_t nb3,
  2973. size_t offset,
  2974. bool inplace) {
  2975. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  2976. GGML_ASSERT(ggml_is_contiguous(a));
  2977. GGML_ASSERT(a->type == GGML_TYPE_F32);
  2978. GGML_ASSERT(b->type == GGML_TYPE_F32);
  2979. bool is_node = false;
  2980. if (!inplace && (a->grad || b->grad)) {
  2981. is_node = true;
  2982. }
  2983. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2984. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  2985. ggml_set_op_params(result, params, sizeof(params));
  2986. result->op = GGML_OP_ACC;
  2987. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2988. result->src[0] = a;
  2989. result->src[1] = b;
  2990. return result;
  2991. }
  2992. struct ggml_tensor * ggml_acc(
  2993. struct ggml_context * ctx,
  2994. struct ggml_tensor * a,
  2995. struct ggml_tensor * b,
  2996. size_t nb1,
  2997. size_t nb2,
  2998. size_t nb3,
  2999. size_t offset) {
  3000. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3001. }
  3002. struct ggml_tensor * ggml_acc_inplace(
  3003. struct ggml_context * ctx,
  3004. struct ggml_tensor * a,
  3005. struct ggml_tensor * b,
  3006. size_t nb1,
  3007. size_t nb2,
  3008. size_t nb3,
  3009. size_t offset) {
  3010. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3011. }
  3012. // ggml_sub
  3013. static struct ggml_tensor * ggml_sub_impl(
  3014. struct ggml_context * ctx,
  3015. struct ggml_tensor * a,
  3016. struct ggml_tensor * b,
  3017. bool inplace) {
  3018. GGML_ASSERT(ggml_are_same_shape(a, b));
  3019. bool is_node = false;
  3020. if (!inplace && (a->grad || b->grad)) {
  3021. is_node = true;
  3022. }
  3023. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3024. result->op = GGML_OP_SUB;
  3025. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3026. result->src[0] = a;
  3027. result->src[1] = b;
  3028. return result;
  3029. }
  3030. struct ggml_tensor * ggml_sub(
  3031. struct ggml_context * ctx,
  3032. struct ggml_tensor * a,
  3033. struct ggml_tensor * b) {
  3034. return ggml_sub_impl(ctx, a, b, false);
  3035. }
  3036. struct ggml_tensor * ggml_sub_inplace(
  3037. struct ggml_context * ctx,
  3038. struct ggml_tensor * a,
  3039. struct ggml_tensor * b) {
  3040. return ggml_sub_impl(ctx, a, b, true);
  3041. }
  3042. // ggml_mul
  3043. static struct ggml_tensor * ggml_mul_impl(
  3044. struct ggml_context * ctx,
  3045. struct ggml_tensor * a,
  3046. struct ggml_tensor * b,
  3047. bool inplace) {
  3048. GGML_ASSERT(ggml_can_repeat(b, a));
  3049. bool is_node = false;
  3050. if (!inplace && (a->grad || b->grad)) {
  3051. // TODO: support backward pass for broadcasting
  3052. GGML_ASSERT(ggml_are_same_shape(a, b));
  3053. is_node = true;
  3054. }
  3055. if (inplace) {
  3056. GGML_ASSERT(!is_node);
  3057. }
  3058. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3059. result->op = GGML_OP_MUL;
  3060. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3061. result->src[0] = a;
  3062. result->src[1] = b;
  3063. return result;
  3064. }
  3065. struct ggml_tensor * ggml_mul(
  3066. struct ggml_context * ctx,
  3067. struct ggml_tensor * a,
  3068. struct ggml_tensor * b) {
  3069. return ggml_mul_impl(ctx, a, b, false);
  3070. }
  3071. struct ggml_tensor * ggml_mul_inplace(
  3072. struct ggml_context * ctx,
  3073. struct ggml_tensor * a,
  3074. struct ggml_tensor * b) {
  3075. return ggml_mul_impl(ctx, a, b, true);
  3076. }
  3077. // ggml_div
  3078. static struct ggml_tensor * ggml_div_impl(
  3079. struct ggml_context * ctx,
  3080. struct ggml_tensor * a,
  3081. struct ggml_tensor * b,
  3082. bool inplace) {
  3083. GGML_ASSERT(ggml_can_repeat(b, a));
  3084. bool is_node = false;
  3085. if (!inplace && (a->grad || b->grad)) {
  3086. is_node = true;
  3087. }
  3088. if (inplace) {
  3089. GGML_ASSERT(!is_node);
  3090. }
  3091. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3092. result->op = GGML_OP_DIV;
  3093. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3094. result->src[0] = a;
  3095. result->src[1] = b;
  3096. return result;
  3097. }
  3098. struct ggml_tensor * ggml_div(
  3099. struct ggml_context * ctx,
  3100. struct ggml_tensor * a,
  3101. struct ggml_tensor * b) {
  3102. return ggml_div_impl(ctx, a, b, false);
  3103. }
  3104. struct ggml_tensor * ggml_div_inplace(
  3105. struct ggml_context * ctx,
  3106. struct ggml_tensor * a,
  3107. struct ggml_tensor * b) {
  3108. return ggml_div_impl(ctx, a, b, true);
  3109. }
  3110. // ggml_sqr
  3111. static struct ggml_tensor * ggml_sqr_impl(
  3112. struct ggml_context * ctx,
  3113. struct ggml_tensor * a,
  3114. bool inplace) {
  3115. bool is_node = false;
  3116. if (!inplace && (a->grad)) {
  3117. is_node = true;
  3118. }
  3119. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3120. result->op = GGML_OP_SQR;
  3121. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3122. result->src[0] = a;
  3123. return result;
  3124. }
  3125. struct ggml_tensor * ggml_sqr(
  3126. struct ggml_context * ctx,
  3127. struct ggml_tensor * a) {
  3128. return ggml_sqr_impl(ctx, a, false);
  3129. }
  3130. struct ggml_tensor * ggml_sqr_inplace(
  3131. struct ggml_context * ctx,
  3132. struct ggml_tensor * a) {
  3133. return ggml_sqr_impl(ctx, a, true);
  3134. }
  3135. // ggml_sqrt
  3136. static struct ggml_tensor * ggml_sqrt_impl(
  3137. struct ggml_context * ctx,
  3138. struct ggml_tensor * a,
  3139. bool inplace) {
  3140. bool is_node = false;
  3141. if (!inplace && (a->grad)) {
  3142. is_node = true;
  3143. }
  3144. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3145. result->op = GGML_OP_SQRT;
  3146. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3147. result->src[0] = a;
  3148. return result;
  3149. }
  3150. struct ggml_tensor * ggml_sqrt(
  3151. struct ggml_context * ctx,
  3152. struct ggml_tensor * a) {
  3153. return ggml_sqrt_impl(ctx, a, false);
  3154. }
  3155. struct ggml_tensor * ggml_sqrt_inplace(
  3156. struct ggml_context * ctx,
  3157. struct ggml_tensor * a) {
  3158. return ggml_sqrt_impl(ctx, a, true);
  3159. }
  3160. // ggml_log
  3161. static struct ggml_tensor * ggml_log_impl(
  3162. struct ggml_context * ctx,
  3163. struct ggml_tensor * a,
  3164. bool inplace) {
  3165. bool is_node = false;
  3166. if (!inplace && (a->grad)) {
  3167. is_node = true;
  3168. }
  3169. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3170. result->op = GGML_OP_LOG;
  3171. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3172. result->src[0] = a;
  3173. return result;
  3174. }
  3175. struct ggml_tensor * ggml_log(
  3176. struct ggml_context * ctx,
  3177. struct ggml_tensor * a) {
  3178. return ggml_log_impl(ctx, a, false);
  3179. }
  3180. struct ggml_tensor * ggml_log_inplace(
  3181. struct ggml_context * ctx,
  3182. struct ggml_tensor * a) {
  3183. return ggml_log_impl(ctx, a, true);
  3184. }
  3185. // ggml_sum
  3186. struct ggml_tensor * ggml_sum(
  3187. struct ggml_context * ctx,
  3188. struct ggml_tensor * a) {
  3189. bool is_node = false;
  3190. if (a->grad) {
  3191. is_node = true;
  3192. }
  3193. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3194. result->op = GGML_OP_SUM;
  3195. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3196. result->src[0] = a;
  3197. return result;
  3198. }
  3199. // ggml_sum_rows
  3200. struct ggml_tensor * ggml_sum_rows(
  3201. struct ggml_context * ctx,
  3202. struct ggml_tensor * a) {
  3203. bool is_node = false;
  3204. if (a->grad) {
  3205. is_node = true;
  3206. }
  3207. int64_t ne[GGML_MAX_DIMS] = { 1 };
  3208. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3209. ne[i] = a->ne[i];
  3210. }
  3211. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  3212. result->op = GGML_OP_SUM_ROWS;
  3213. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3214. result->src[0] = a;
  3215. return result;
  3216. }
  3217. // ggml_mean
  3218. struct ggml_tensor * ggml_mean(
  3219. struct ggml_context * ctx,
  3220. struct ggml_tensor * a) {
  3221. bool is_node = false;
  3222. if (a->grad) {
  3223. GGML_ASSERT(false); // TODO: implement
  3224. is_node = true;
  3225. }
  3226. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3227. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3228. result->op = GGML_OP_MEAN;
  3229. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3230. result->src[0] = a;
  3231. return result;
  3232. }
  3233. // ggml_argmax
  3234. struct ggml_tensor * ggml_argmax(
  3235. struct ggml_context * ctx,
  3236. struct ggml_tensor * a) {
  3237. GGML_ASSERT(ggml_is_matrix(a));
  3238. bool is_node = false;
  3239. if (a->grad) {
  3240. GGML_ASSERT(false);
  3241. is_node = true;
  3242. }
  3243. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  3244. result->op = GGML_OP_ARGMAX;
  3245. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3246. result->src[0] = a;
  3247. return result;
  3248. }
  3249. // ggml_repeat
  3250. struct ggml_tensor * ggml_repeat(
  3251. struct ggml_context * ctx,
  3252. struct ggml_tensor * a,
  3253. struct ggml_tensor * b) {
  3254. GGML_ASSERT(ggml_can_repeat(a, b));
  3255. bool is_node = false;
  3256. if (a->grad) {
  3257. is_node = true;
  3258. }
  3259. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3260. result->op = GGML_OP_REPEAT;
  3261. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3262. result->src[0] = a;
  3263. return result;
  3264. }
  3265. // ggml_repeat_back
  3266. struct ggml_tensor * ggml_repeat_back(
  3267. struct ggml_context * ctx,
  3268. struct ggml_tensor * a,
  3269. struct ggml_tensor * b) {
  3270. GGML_ASSERT(ggml_can_repeat(b, a));
  3271. bool is_node = false;
  3272. if (a->grad) {
  3273. is_node = true;
  3274. }
  3275. if (ggml_are_same_shape(a, b) && !is_node) {
  3276. return a;
  3277. }
  3278. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3279. result->op = GGML_OP_REPEAT_BACK;
  3280. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3281. result->src[0] = a;
  3282. return result;
  3283. }
  3284. // ggml_concat
  3285. struct ggml_tensor * ggml_concat(
  3286. struct ggml_context* ctx,
  3287. struct ggml_tensor* a,
  3288. struct ggml_tensor* b) {
  3289. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3290. bool is_node = false;
  3291. if (a->grad || b->grad) {
  3292. is_node = true;
  3293. }
  3294. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3295. result->op = GGML_OP_CONCAT;
  3296. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3297. result->src[0] = a;
  3298. result->src[1] = b;
  3299. return result;
  3300. }
  3301. // ggml_abs
  3302. struct ggml_tensor * ggml_abs(
  3303. struct ggml_context * ctx,
  3304. struct ggml_tensor * a) {
  3305. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  3306. }
  3307. struct ggml_tensor * ggml_abs_inplace(
  3308. struct ggml_context * ctx,
  3309. struct ggml_tensor * a) {
  3310. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  3311. }
  3312. // ggml_sgn
  3313. struct ggml_tensor * ggml_sgn(
  3314. struct ggml_context * ctx,
  3315. struct ggml_tensor * a) {
  3316. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  3317. }
  3318. struct ggml_tensor * ggml_sgn_inplace(
  3319. struct ggml_context * ctx,
  3320. struct ggml_tensor * a) {
  3321. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  3322. }
  3323. // ggml_neg
  3324. struct ggml_tensor * ggml_neg(
  3325. struct ggml_context * ctx,
  3326. struct ggml_tensor * a) {
  3327. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  3328. }
  3329. struct ggml_tensor * ggml_neg_inplace(
  3330. struct ggml_context * ctx,
  3331. struct ggml_tensor * a) {
  3332. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  3333. }
  3334. // ggml_step
  3335. struct ggml_tensor * ggml_step(
  3336. struct ggml_context * ctx,
  3337. struct ggml_tensor * a) {
  3338. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  3339. }
  3340. struct ggml_tensor * ggml_step_inplace(
  3341. struct ggml_context * ctx,
  3342. struct ggml_tensor * a) {
  3343. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  3344. }
  3345. // ggml_tanh
  3346. struct ggml_tensor * ggml_tanh(
  3347. struct ggml_context * ctx,
  3348. struct ggml_tensor * a) {
  3349. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  3350. }
  3351. struct ggml_tensor * ggml_tanh_inplace(
  3352. struct ggml_context * ctx,
  3353. struct ggml_tensor * a) {
  3354. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  3355. }
  3356. // ggml_elu
  3357. struct ggml_tensor * ggml_elu(
  3358. struct ggml_context * ctx,
  3359. struct ggml_tensor * a) {
  3360. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  3361. }
  3362. struct ggml_tensor * ggml_elu_inplace(
  3363. struct ggml_context * ctx,
  3364. struct ggml_tensor * a) {
  3365. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  3366. }
  3367. // ggml_relu
  3368. struct ggml_tensor * ggml_relu(
  3369. struct ggml_context * ctx,
  3370. struct ggml_tensor * a) {
  3371. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  3372. }
  3373. struct ggml_tensor * ggml_relu_inplace(
  3374. struct ggml_context * ctx,
  3375. struct ggml_tensor * a) {
  3376. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  3377. }
  3378. // ggml_leaky_relu
  3379. struct ggml_tensor * ggml_leaky_relu(
  3380. struct ggml_context * ctx,
  3381. struct ggml_tensor * a, float negative_slope, bool inplace) {
  3382. bool is_node = false;
  3383. if (!inplace && (a->grad)) {
  3384. is_node = true;
  3385. }
  3386. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3387. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  3388. result->op = GGML_OP_LEAKY_RELU;
  3389. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3390. result->src[0] = a;
  3391. return result;
  3392. }
  3393. // ggml_gelu
  3394. struct ggml_tensor * ggml_gelu(
  3395. struct ggml_context * ctx,
  3396. struct ggml_tensor * a) {
  3397. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  3398. }
  3399. struct ggml_tensor * ggml_gelu_inplace(
  3400. struct ggml_context * ctx,
  3401. struct ggml_tensor * a) {
  3402. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  3403. }
  3404. // ggml_gelu_quick
  3405. struct ggml_tensor * ggml_gelu_quick(
  3406. struct ggml_context * ctx,
  3407. struct ggml_tensor * a) {
  3408. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3409. }
  3410. struct ggml_tensor * ggml_gelu_quick_inplace(
  3411. struct ggml_context * ctx,
  3412. struct ggml_tensor * a) {
  3413. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3414. }
  3415. // ggml_silu
  3416. struct ggml_tensor * ggml_silu(
  3417. struct ggml_context * ctx,
  3418. struct ggml_tensor * a) {
  3419. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  3420. }
  3421. struct ggml_tensor * ggml_silu_inplace(
  3422. struct ggml_context * ctx,
  3423. struct ggml_tensor * a) {
  3424. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  3425. }
  3426. // ggml_silu_back
  3427. struct ggml_tensor * ggml_silu_back(
  3428. struct ggml_context * ctx,
  3429. struct ggml_tensor * a,
  3430. struct ggml_tensor * b) {
  3431. bool is_node = false;
  3432. if (a->grad || b->grad) {
  3433. // TODO: implement backward
  3434. is_node = true;
  3435. }
  3436. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3437. result->op = GGML_OP_SILU_BACK;
  3438. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3439. result->src[0] = a;
  3440. result->src[1] = b;
  3441. return result;
  3442. }
  3443. // ggml hardswish
  3444. struct ggml_tensor * ggml_hardswish(
  3445. struct ggml_context * ctx,
  3446. struct ggml_tensor * a) {
  3447. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  3448. }
  3449. // ggml hardsigmoid
  3450. struct ggml_tensor * ggml_hardsigmoid(
  3451. struct ggml_context * ctx,
  3452. struct ggml_tensor * a) {
  3453. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  3454. }
  3455. // ggml_norm
  3456. static struct ggml_tensor * ggml_norm_impl(
  3457. struct ggml_context * ctx,
  3458. struct ggml_tensor * a,
  3459. float eps,
  3460. bool inplace) {
  3461. bool is_node = false;
  3462. if (!inplace && (a->grad)) {
  3463. GGML_ASSERT(false); // TODO: implement backward
  3464. is_node = true;
  3465. }
  3466. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3467. ggml_set_op_params(result, &eps, sizeof(eps));
  3468. result->op = GGML_OP_NORM;
  3469. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3470. result->src[0] = a;
  3471. return result;
  3472. }
  3473. struct ggml_tensor * ggml_norm(
  3474. struct ggml_context * ctx,
  3475. struct ggml_tensor * a,
  3476. float eps) {
  3477. return ggml_norm_impl(ctx, a, eps, false);
  3478. }
  3479. struct ggml_tensor * ggml_norm_inplace(
  3480. struct ggml_context * ctx,
  3481. struct ggml_tensor * a,
  3482. float eps) {
  3483. return ggml_norm_impl(ctx, a, eps, true);
  3484. }
  3485. // ggml_rms_norm
  3486. static struct ggml_tensor * ggml_rms_norm_impl(
  3487. struct ggml_context * ctx,
  3488. struct ggml_tensor * a,
  3489. float eps,
  3490. bool inplace) {
  3491. bool is_node = false;
  3492. if (!inplace && (a->grad)) {
  3493. is_node = true;
  3494. }
  3495. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3496. ggml_set_op_params(result, &eps, sizeof(eps));
  3497. result->op = GGML_OP_RMS_NORM;
  3498. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3499. result->src[0] = a;
  3500. return result;
  3501. }
  3502. struct ggml_tensor * ggml_rms_norm(
  3503. struct ggml_context * ctx,
  3504. struct ggml_tensor * a,
  3505. float eps) {
  3506. return ggml_rms_norm_impl(ctx, a, eps, false);
  3507. }
  3508. struct ggml_tensor * ggml_rms_norm_inplace(
  3509. struct ggml_context * ctx,
  3510. struct ggml_tensor * a,
  3511. float eps) {
  3512. return ggml_rms_norm_impl(ctx, a, eps, true);
  3513. }
  3514. // ggml_rms_norm_back
  3515. struct ggml_tensor * ggml_rms_norm_back(
  3516. struct ggml_context * ctx,
  3517. struct ggml_tensor * a,
  3518. struct ggml_tensor * b,
  3519. float eps) {
  3520. bool is_node = false;
  3521. if (a->grad) {
  3522. // TODO: implement backward
  3523. is_node = true;
  3524. }
  3525. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3526. ggml_set_op_params(result, &eps, sizeof(eps));
  3527. result->op = GGML_OP_RMS_NORM_BACK;
  3528. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3529. result->src[0] = a;
  3530. result->src[1] = b;
  3531. return result;
  3532. }
  3533. // ggml_group_norm
  3534. static struct ggml_tensor * ggml_group_norm_impl(
  3535. struct ggml_context * ctx,
  3536. struct ggml_tensor * a,
  3537. int n_groups,
  3538. bool inplace) {
  3539. bool is_node = false;
  3540. if (!inplace && (a->grad)) {
  3541. GGML_ASSERT(false); // TODO: implement backward
  3542. is_node = true;
  3543. }
  3544. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3545. result->op_params[0] = n_groups;
  3546. result->op = GGML_OP_GROUP_NORM;
  3547. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3548. result->src[0] = a;
  3549. return result;
  3550. }
  3551. struct ggml_tensor * ggml_group_norm(
  3552. struct ggml_context * ctx,
  3553. struct ggml_tensor * a,
  3554. int n_groups) {
  3555. return ggml_group_norm_impl(ctx, a, n_groups, false);
  3556. }
  3557. struct ggml_tensor * ggml_group_norm_inplace(
  3558. struct ggml_context * ctx,
  3559. struct ggml_tensor * a,
  3560. int n_groups) {
  3561. return ggml_group_norm_impl(ctx, a, n_groups, true);
  3562. }
  3563. // ggml_mul_mat
  3564. struct ggml_tensor * ggml_mul_mat(
  3565. struct ggml_context * ctx,
  3566. struct ggml_tensor * a,
  3567. struct ggml_tensor * b) {
  3568. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3569. GGML_ASSERT(!ggml_is_transposed(a));
  3570. bool is_node = false;
  3571. if (a->grad || b->grad) {
  3572. is_node = true;
  3573. }
  3574. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3575. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3576. result->op = GGML_OP_MUL_MAT;
  3577. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3578. result->src[0] = a;
  3579. result->src[1] = b;
  3580. return result;
  3581. }
  3582. void ggml_mul_mat_set_prec(
  3583. struct ggml_tensor * a,
  3584. enum ggml_prec prec) {
  3585. const int32_t prec_i32 = (int32_t) prec;
  3586. ggml_set_op_params_i32(a, 0, prec_i32);
  3587. }
  3588. // ggml_mul_mat_id
  3589. struct ggml_tensor * ggml_mul_mat_id(
  3590. struct ggml_context * ctx,
  3591. struct ggml_tensor * const as[],
  3592. int n_as,
  3593. struct ggml_tensor * ids,
  3594. int id,
  3595. struct ggml_tensor * b) {
  3596. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  3597. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1);
  3598. GGML_ASSERT(ids->ne[1] == b->ne[1]);
  3599. GGML_ASSERT(ids->ne[2] == b->ne[2] && ids->ne[3] == b->ne[3]);
  3600. GGML_ASSERT(n_as > 0 && n_as <= GGML_MAX_SRC - 2);
  3601. GGML_ASSERT(id >= 0 && id < ids->ne[0]);
  3602. bool is_node = false;
  3603. if (as[0]->grad || b->grad) {
  3604. is_node = true;
  3605. }
  3606. const int64_t ne[4] = { as[0]->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3607. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3608. ggml_set_op_params_i32(result, 0, id);
  3609. ggml_set_op_params_i32(result, 1, n_as);
  3610. result->op = GGML_OP_MUL_MAT_ID;
  3611. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3612. result->src[0] = ids;
  3613. result->src[1] = b;
  3614. for (int i = 0; i < n_as; i++) {
  3615. struct ggml_tensor * a = as[i];
  3616. GGML_ASSERT(ggml_are_same_shape(as[0], a));
  3617. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3618. GGML_ASSERT(!ggml_is_transposed(a));
  3619. result->src[i + 2] = a;
  3620. }
  3621. return result;
  3622. }
  3623. // ggml_out_prod
  3624. struct ggml_tensor * ggml_out_prod(
  3625. struct ggml_context * ctx,
  3626. struct ggml_tensor * a,
  3627. struct ggml_tensor * b) {
  3628. GGML_ASSERT(ggml_can_out_prod(a, b));
  3629. GGML_ASSERT(!ggml_is_transposed(a));
  3630. bool is_node = false;
  3631. if (a->grad || b->grad) {
  3632. is_node = true;
  3633. }
  3634. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  3635. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  3636. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3637. result->op = GGML_OP_OUT_PROD;
  3638. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3639. result->src[0] = a;
  3640. result->src[1] = b;
  3641. return result;
  3642. }
  3643. // ggml_scale
  3644. static struct ggml_tensor * ggml_scale_impl(
  3645. struct ggml_context * ctx,
  3646. struct ggml_tensor * a,
  3647. float s,
  3648. bool inplace) {
  3649. GGML_ASSERT(ggml_is_padded_1d(a));
  3650. bool is_node = false;
  3651. if (a->grad) {
  3652. is_node = true;
  3653. }
  3654. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3655. ggml_set_op_params(result, &s, sizeof(s));
  3656. result->op = GGML_OP_SCALE;
  3657. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3658. result->src[0] = a;
  3659. return result;
  3660. }
  3661. struct ggml_tensor * ggml_scale(
  3662. struct ggml_context * ctx,
  3663. struct ggml_tensor * a,
  3664. float s) {
  3665. return ggml_scale_impl(ctx, a, s, false);
  3666. }
  3667. struct ggml_tensor * ggml_scale_inplace(
  3668. struct ggml_context * ctx,
  3669. struct ggml_tensor * a,
  3670. float s) {
  3671. return ggml_scale_impl(ctx, a, s, true);
  3672. }
  3673. // ggml_set
  3674. static struct ggml_tensor * ggml_set_impl(
  3675. struct ggml_context * ctx,
  3676. struct ggml_tensor * a,
  3677. struct ggml_tensor * b,
  3678. size_t nb1,
  3679. size_t nb2,
  3680. size_t nb3,
  3681. size_t offset,
  3682. bool inplace) {
  3683. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  3684. bool is_node = false;
  3685. if (a->grad || b->grad) {
  3686. is_node = true;
  3687. }
  3688. // make a view of the destination
  3689. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3690. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3691. ggml_set_op_params(result, params, sizeof(params));
  3692. result->op = GGML_OP_SET;
  3693. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3694. result->src[0] = a;
  3695. result->src[1] = b;
  3696. return result;
  3697. }
  3698. struct ggml_tensor * ggml_set(
  3699. struct ggml_context * ctx,
  3700. struct ggml_tensor * a,
  3701. struct ggml_tensor * b,
  3702. size_t nb1,
  3703. size_t nb2,
  3704. size_t nb3,
  3705. size_t offset) {
  3706. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3707. }
  3708. struct ggml_tensor * ggml_set_inplace(
  3709. struct ggml_context * ctx,
  3710. struct ggml_tensor * a,
  3711. struct ggml_tensor * b,
  3712. size_t nb1,
  3713. size_t nb2,
  3714. size_t nb3,
  3715. size_t offset) {
  3716. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3717. }
  3718. struct ggml_tensor * ggml_set_1d(
  3719. struct ggml_context * ctx,
  3720. struct ggml_tensor * a,
  3721. struct ggml_tensor * b,
  3722. size_t offset) {
  3723. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  3724. }
  3725. struct ggml_tensor * ggml_set_1d_inplace(
  3726. struct ggml_context * ctx,
  3727. struct ggml_tensor * a,
  3728. struct ggml_tensor * b,
  3729. size_t offset) {
  3730. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  3731. }
  3732. struct ggml_tensor * ggml_set_2d(
  3733. struct ggml_context * ctx,
  3734. struct ggml_tensor * a,
  3735. struct ggml_tensor * b,
  3736. size_t nb1,
  3737. size_t offset) {
  3738. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3739. }
  3740. struct ggml_tensor * ggml_set_2d_inplace(
  3741. struct ggml_context * ctx,
  3742. struct ggml_tensor * a,
  3743. struct ggml_tensor * b,
  3744. size_t nb1,
  3745. size_t offset) {
  3746. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  3747. }
  3748. // ggml_cpy
  3749. static struct ggml_tensor * ggml_cpy_impl(
  3750. struct ggml_context * ctx,
  3751. struct ggml_tensor * a,
  3752. struct ggml_tensor * b) {
  3753. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3754. bool is_node = false;
  3755. if (a->grad || b->grad) {
  3756. // inplace is false and either one have a grad
  3757. is_node = true;
  3758. }
  3759. // make a view of the destination
  3760. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3761. if (strlen(b->name) > 0) {
  3762. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  3763. } else {
  3764. ggml_format_name(result, "%s (copy)", a->name);
  3765. }
  3766. result->op = GGML_OP_CPY;
  3767. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3768. result->src[0] = a;
  3769. result->src[1] = b;
  3770. return result;
  3771. }
  3772. struct ggml_tensor * ggml_cpy(
  3773. struct ggml_context * ctx,
  3774. struct ggml_tensor * a,
  3775. struct ggml_tensor * b) {
  3776. return ggml_cpy_impl(ctx, a, b);
  3777. }
  3778. struct ggml_tensor * ggml_cast(
  3779. struct ggml_context * ctx,
  3780. struct ggml_tensor * a,
  3781. enum ggml_type type) {
  3782. bool is_node = false;
  3783. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3784. ggml_format_name(result, "%s (copy)", a->name);
  3785. result->op = GGML_OP_CPY;
  3786. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3787. result->src[0] = a;
  3788. result->src[1] = result;
  3789. return result;
  3790. }
  3791. // ggml_cont
  3792. static struct ggml_tensor * ggml_cont_impl(
  3793. struct ggml_context * ctx,
  3794. struct ggml_tensor * a) {
  3795. bool is_node = false;
  3796. if (a->grad) {
  3797. is_node = true;
  3798. }
  3799. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3800. ggml_format_name(result, "%s (cont)", a->name);
  3801. result->op = GGML_OP_CONT;
  3802. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3803. result->src[0] = a;
  3804. return result;
  3805. }
  3806. struct ggml_tensor * ggml_cont(
  3807. struct ggml_context * ctx,
  3808. struct ggml_tensor * a) {
  3809. return ggml_cont_impl(ctx, a);
  3810. }
  3811. // make contiguous, with new shape
  3812. GGML_API struct ggml_tensor * ggml_cont_1d(
  3813. struct ggml_context * ctx,
  3814. struct ggml_tensor * a,
  3815. int64_t ne0) {
  3816. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  3817. }
  3818. GGML_API struct ggml_tensor * ggml_cont_2d(
  3819. struct ggml_context * ctx,
  3820. struct ggml_tensor * a,
  3821. int64_t ne0,
  3822. int64_t ne1) {
  3823. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  3824. }
  3825. GGML_API struct ggml_tensor * ggml_cont_3d(
  3826. struct ggml_context * ctx,
  3827. struct ggml_tensor * a,
  3828. int64_t ne0,
  3829. int64_t ne1,
  3830. int64_t ne2) {
  3831. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  3832. }
  3833. struct ggml_tensor * ggml_cont_4d(
  3834. struct ggml_context * ctx,
  3835. struct ggml_tensor * a,
  3836. int64_t ne0,
  3837. int64_t ne1,
  3838. int64_t ne2,
  3839. int64_t ne3) {
  3840. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  3841. bool is_node = false;
  3842. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  3843. ggml_format_name(result, "%s (cont)", a->name);
  3844. result->op = GGML_OP_CONT;
  3845. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3846. result->src[0] = a;
  3847. return result;
  3848. }
  3849. // ggml_reshape
  3850. struct ggml_tensor * ggml_reshape(
  3851. struct ggml_context * ctx,
  3852. struct ggml_tensor * a,
  3853. struct ggml_tensor * b) {
  3854. GGML_ASSERT(ggml_is_contiguous(a));
  3855. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  3856. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3857. bool is_node = false;
  3858. if (a->grad) {
  3859. is_node = true;
  3860. }
  3861. if (b->grad) {
  3862. // gradient propagation is not supported
  3863. //GGML_ASSERT(false);
  3864. }
  3865. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  3866. ggml_format_name(result, "%s (reshaped)", a->name);
  3867. result->op = GGML_OP_RESHAPE;
  3868. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3869. result->src[0] = a;
  3870. return result;
  3871. }
  3872. struct ggml_tensor * ggml_reshape_1d(
  3873. struct ggml_context * ctx,
  3874. struct ggml_tensor * a,
  3875. int64_t ne0) {
  3876. GGML_ASSERT(ggml_is_contiguous(a));
  3877. GGML_ASSERT(ggml_nelements(a) == ne0);
  3878. bool is_node = false;
  3879. if (a->grad) {
  3880. is_node = true;
  3881. }
  3882. const int64_t ne[1] = { ne0 };
  3883. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  3884. ggml_format_name(result, "%s (reshaped)", a->name);
  3885. result->op = GGML_OP_RESHAPE;
  3886. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3887. result->src[0] = a;
  3888. return result;
  3889. }
  3890. struct ggml_tensor * ggml_reshape_2d(
  3891. struct ggml_context * ctx,
  3892. struct ggml_tensor * a,
  3893. int64_t ne0,
  3894. int64_t ne1) {
  3895. GGML_ASSERT(ggml_is_contiguous(a));
  3896. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3897. bool is_node = false;
  3898. if (a->grad) {
  3899. is_node = true;
  3900. }
  3901. const int64_t ne[2] = { ne0, ne1 };
  3902. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  3903. ggml_format_name(result, "%s (reshaped)", a->name);
  3904. result->op = GGML_OP_RESHAPE;
  3905. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3906. result->src[0] = a;
  3907. return result;
  3908. }
  3909. struct ggml_tensor * ggml_reshape_3d(
  3910. struct ggml_context * ctx,
  3911. struct ggml_tensor * a,
  3912. int64_t ne0,
  3913. int64_t ne1,
  3914. int64_t ne2) {
  3915. GGML_ASSERT(ggml_is_contiguous(a));
  3916. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3917. bool is_node = false;
  3918. if (a->grad) {
  3919. is_node = true;
  3920. }
  3921. const int64_t ne[3] = { ne0, ne1, ne2 };
  3922. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  3923. ggml_format_name(result, "%s (reshaped)", a->name);
  3924. result->op = GGML_OP_RESHAPE;
  3925. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3926. result->src[0] = a;
  3927. return result;
  3928. }
  3929. struct ggml_tensor * ggml_reshape_4d(
  3930. struct ggml_context * ctx,
  3931. struct ggml_tensor * a,
  3932. int64_t ne0,
  3933. int64_t ne1,
  3934. int64_t ne2,
  3935. int64_t ne3) {
  3936. GGML_ASSERT(ggml_is_contiguous(a));
  3937. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  3938. bool is_node = false;
  3939. if (a->grad) {
  3940. is_node = true;
  3941. }
  3942. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3943. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  3944. ggml_format_name(result, "%s (reshaped)", a->name);
  3945. result->op = GGML_OP_RESHAPE;
  3946. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3947. result->src[0] = a;
  3948. return result;
  3949. }
  3950. static struct ggml_tensor * ggml_view_impl(
  3951. struct ggml_context * ctx,
  3952. struct ggml_tensor * a,
  3953. int n_dims,
  3954. const int64_t * ne,
  3955. size_t offset) {
  3956. bool is_node = false;
  3957. if (a->grad) {
  3958. is_node = true;
  3959. }
  3960. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  3961. ggml_format_name(result, "%s (view)", a->name);
  3962. ggml_set_op_params(result, &offset, sizeof(offset));
  3963. result->op = GGML_OP_VIEW;
  3964. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3965. result->src[0] = a;
  3966. return result;
  3967. }
  3968. // ggml_view_1d
  3969. struct ggml_tensor * ggml_view_1d(
  3970. struct ggml_context * ctx,
  3971. struct ggml_tensor * a,
  3972. int64_t ne0,
  3973. size_t offset) {
  3974. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  3975. return result;
  3976. }
  3977. // ggml_view_2d
  3978. struct ggml_tensor * ggml_view_2d(
  3979. struct ggml_context * ctx,
  3980. struct ggml_tensor * a,
  3981. int64_t ne0,
  3982. int64_t ne1,
  3983. size_t nb1,
  3984. size_t offset) {
  3985. const int64_t ne[2] = { ne0, ne1 };
  3986. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  3987. result->nb[1] = nb1;
  3988. result->nb[2] = result->nb[1]*ne1;
  3989. result->nb[3] = result->nb[2];
  3990. return result;
  3991. }
  3992. // ggml_view_3d
  3993. struct ggml_tensor * ggml_view_3d(
  3994. struct ggml_context * ctx,
  3995. struct ggml_tensor * a,
  3996. int64_t ne0,
  3997. int64_t ne1,
  3998. int64_t ne2,
  3999. size_t nb1,
  4000. size_t nb2,
  4001. size_t offset) {
  4002. const int64_t ne[3] = { ne0, ne1, ne2 };
  4003. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  4004. result->nb[1] = nb1;
  4005. result->nb[2] = nb2;
  4006. result->nb[3] = result->nb[2]*ne2;
  4007. return result;
  4008. }
  4009. // ggml_view_4d
  4010. struct ggml_tensor * ggml_view_4d(
  4011. struct ggml_context * ctx,
  4012. struct ggml_tensor * a,
  4013. int64_t ne0,
  4014. int64_t ne1,
  4015. int64_t ne2,
  4016. int64_t ne3,
  4017. size_t nb1,
  4018. size_t nb2,
  4019. size_t nb3,
  4020. size_t offset) {
  4021. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4022. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  4023. result->nb[1] = nb1;
  4024. result->nb[2] = nb2;
  4025. result->nb[3] = nb3;
  4026. return result;
  4027. }
  4028. // ggml_permute
  4029. struct ggml_tensor * ggml_permute(
  4030. struct ggml_context * ctx,
  4031. struct ggml_tensor * a,
  4032. int axis0,
  4033. int axis1,
  4034. int axis2,
  4035. int axis3) {
  4036. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4037. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4038. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4039. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4040. GGML_ASSERT(axis0 != axis1);
  4041. GGML_ASSERT(axis0 != axis2);
  4042. GGML_ASSERT(axis0 != axis3);
  4043. GGML_ASSERT(axis1 != axis2);
  4044. GGML_ASSERT(axis1 != axis3);
  4045. GGML_ASSERT(axis2 != axis3);
  4046. bool is_node = false;
  4047. if (a->grad) {
  4048. is_node = true;
  4049. }
  4050. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4051. ggml_format_name(result, "%s (permuted)", a->name);
  4052. int ne[GGML_MAX_DIMS];
  4053. int nb[GGML_MAX_DIMS];
  4054. ne[axis0] = a->ne[0];
  4055. ne[axis1] = a->ne[1];
  4056. ne[axis2] = a->ne[2];
  4057. ne[axis3] = a->ne[3];
  4058. nb[axis0] = a->nb[0];
  4059. nb[axis1] = a->nb[1];
  4060. nb[axis2] = a->nb[2];
  4061. nb[axis3] = a->nb[3];
  4062. result->ne[0] = ne[0];
  4063. result->ne[1] = ne[1];
  4064. result->ne[2] = ne[2];
  4065. result->ne[3] = ne[3];
  4066. result->nb[0] = nb[0];
  4067. result->nb[1] = nb[1];
  4068. result->nb[2] = nb[2];
  4069. result->nb[3] = nb[3];
  4070. result->op = GGML_OP_PERMUTE;
  4071. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4072. result->src[0] = a;
  4073. int32_t params[] = { axis0, axis1, axis2, axis3 };
  4074. ggml_set_op_params(result, params, sizeof(params));
  4075. return result;
  4076. }
  4077. // ggml_transpose
  4078. struct ggml_tensor * ggml_transpose(
  4079. struct ggml_context * ctx,
  4080. struct ggml_tensor * a) {
  4081. bool is_node = false;
  4082. if (a->grad) {
  4083. is_node = true;
  4084. }
  4085. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4086. ggml_format_name(result, "%s (transposed)", a->name);
  4087. result->ne[0] = a->ne[1];
  4088. result->ne[1] = a->ne[0];
  4089. result->nb[0] = a->nb[1];
  4090. result->nb[1] = a->nb[0];
  4091. result->op = GGML_OP_TRANSPOSE;
  4092. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4093. result->src[0] = a;
  4094. return result;
  4095. }
  4096. // ggml_get_rows
  4097. struct ggml_tensor * ggml_get_rows(
  4098. struct ggml_context * ctx,
  4099. struct ggml_tensor * a,
  4100. struct ggml_tensor * b) {
  4101. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4102. GGML_ASSERT(b->ne[3] == 1);
  4103. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4104. bool is_node = false;
  4105. if (a->grad || b->grad) {
  4106. is_node = true;
  4107. }
  4108. // TODO: implement non F32 return
  4109. enum ggml_type type = GGML_TYPE_F32;
  4110. if (a->type == GGML_TYPE_I32) {
  4111. type = a->type;
  4112. }
  4113. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  4114. result->op = GGML_OP_GET_ROWS;
  4115. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4116. result->src[0] = a;
  4117. result->src[1] = b;
  4118. return result;
  4119. }
  4120. // ggml_get_rows_back
  4121. struct ggml_tensor * ggml_get_rows_back(
  4122. struct ggml_context * ctx,
  4123. struct ggml_tensor * a,
  4124. struct ggml_tensor * b,
  4125. struct ggml_tensor * c) {
  4126. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4127. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4128. bool is_node = false;
  4129. if (a->grad || b->grad) {
  4130. is_node = true;
  4131. }
  4132. // TODO: implement non F32 return
  4133. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4134. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  4135. result->op = GGML_OP_GET_ROWS_BACK;
  4136. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4137. result->src[0] = a;
  4138. result->src[1] = b;
  4139. return result;
  4140. }
  4141. // ggml_diag
  4142. struct ggml_tensor * ggml_diag(
  4143. struct ggml_context * ctx,
  4144. struct ggml_tensor * a) {
  4145. GGML_ASSERT(a->ne[1] == 1);
  4146. bool is_node = false;
  4147. if (a->grad) {
  4148. is_node = true;
  4149. }
  4150. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  4151. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  4152. result->op = GGML_OP_DIAG;
  4153. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4154. result->src[0] = a;
  4155. return result;
  4156. }
  4157. // ggml_diag_mask_inf
  4158. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  4159. struct ggml_context * ctx,
  4160. struct ggml_tensor * a,
  4161. int n_past,
  4162. bool inplace) {
  4163. bool is_node = false;
  4164. if (a->grad) {
  4165. is_node = true;
  4166. }
  4167. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4168. int32_t params[] = { n_past };
  4169. ggml_set_op_params(result, params, sizeof(params));
  4170. result->op = GGML_OP_DIAG_MASK_INF;
  4171. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4172. result->src[0] = a;
  4173. return result;
  4174. }
  4175. struct ggml_tensor * ggml_diag_mask_inf(
  4176. struct ggml_context * ctx,
  4177. struct ggml_tensor * a,
  4178. int n_past) {
  4179. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  4180. }
  4181. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  4182. struct ggml_context * ctx,
  4183. struct ggml_tensor * a,
  4184. int n_past) {
  4185. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  4186. }
  4187. // ggml_diag_mask_zero
  4188. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  4189. struct ggml_context * ctx,
  4190. struct ggml_tensor * a,
  4191. int n_past,
  4192. bool inplace) {
  4193. bool is_node = false;
  4194. if (a->grad) {
  4195. is_node = true;
  4196. }
  4197. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4198. int32_t params[] = { n_past };
  4199. ggml_set_op_params(result, params, sizeof(params));
  4200. result->op = GGML_OP_DIAG_MASK_ZERO;
  4201. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4202. result->src[0] = a;
  4203. return result;
  4204. }
  4205. struct ggml_tensor * ggml_diag_mask_zero(
  4206. struct ggml_context * ctx,
  4207. struct ggml_tensor * a,
  4208. int n_past) {
  4209. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4210. }
  4211. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4212. struct ggml_context * ctx,
  4213. struct ggml_tensor * a,
  4214. int n_past) {
  4215. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4216. }
  4217. // ggml_soft_max
  4218. static struct ggml_tensor * ggml_soft_max_impl(
  4219. struct ggml_context * ctx,
  4220. struct ggml_tensor * a,
  4221. struct ggml_tensor * mask,
  4222. struct ggml_tensor * pos,
  4223. float scale,
  4224. float max_bias,
  4225. bool inplace) {
  4226. GGML_ASSERT(ggml_is_contiguous(a));
  4227. if (mask) {
  4228. GGML_ASSERT(ggml_is_contiguous(mask));
  4229. GGML_ASSERT(ggml_is_matrix(mask));
  4230. GGML_ASSERT(ggml_can_repeat_rows(mask, a));
  4231. }
  4232. if (pos) {
  4233. GGML_ASSERT(ggml_is_vector(pos));
  4234. GGML_ASSERT(pos->type == GGML_TYPE_F32);
  4235. GGML_ASSERT(pos->ne[0] == a->ne[0]);
  4236. }
  4237. if (max_bias > 0.0f) {
  4238. GGML_ASSERT(pos);
  4239. }
  4240. bool is_node = false;
  4241. if (a->grad) {
  4242. is_node = true;
  4243. }
  4244. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4245. float params[] = { scale, max_bias };
  4246. ggml_set_op_params(result, params, sizeof(params));
  4247. result->op = GGML_OP_SOFT_MAX;
  4248. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4249. result->src[0] = a;
  4250. result->src[1] = mask;
  4251. result->src[2] = pos;
  4252. return result;
  4253. }
  4254. struct ggml_tensor * ggml_soft_max(
  4255. struct ggml_context * ctx,
  4256. struct ggml_tensor * a) {
  4257. return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, false);
  4258. }
  4259. struct ggml_tensor * ggml_soft_max_inplace(
  4260. struct ggml_context * ctx,
  4261. struct ggml_tensor * a) {
  4262. return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, true);
  4263. }
  4264. struct ggml_tensor * ggml_soft_max_ext(
  4265. struct ggml_context * ctx,
  4266. struct ggml_tensor * a,
  4267. struct ggml_tensor * mask,
  4268. struct ggml_tensor * pos,
  4269. float scale,
  4270. float max_bias) {
  4271. return ggml_soft_max_impl(ctx, a, mask, pos, scale, max_bias, false);
  4272. }
  4273. // ggml_soft_max_back
  4274. static struct ggml_tensor * ggml_soft_max_back_impl(
  4275. struct ggml_context * ctx,
  4276. struct ggml_tensor * a,
  4277. struct ggml_tensor * b,
  4278. bool inplace) {
  4279. bool is_node = false;
  4280. if (a->grad || b->grad) {
  4281. is_node = true; // TODO : implement backward pass
  4282. }
  4283. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4284. result->op = GGML_OP_SOFT_MAX_BACK;
  4285. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4286. result->src[0] = a;
  4287. result->src[1] = b;
  4288. return result;
  4289. }
  4290. struct ggml_tensor * ggml_soft_max_back(
  4291. struct ggml_context * ctx,
  4292. struct ggml_tensor * a,
  4293. struct ggml_tensor * b) {
  4294. return ggml_soft_max_back_impl(ctx, a, b, false);
  4295. }
  4296. struct ggml_tensor * ggml_soft_max_back_inplace(
  4297. struct ggml_context * ctx,
  4298. struct ggml_tensor * a,
  4299. struct ggml_tensor * b) {
  4300. return ggml_soft_max_back_impl(ctx, a, b, true);
  4301. }
  4302. // ggml_rope
  4303. static struct ggml_tensor * ggml_rope_impl(
  4304. struct ggml_context * ctx,
  4305. struct ggml_tensor * a,
  4306. struct ggml_tensor * b,
  4307. int n_dims,
  4308. int mode,
  4309. int n_ctx,
  4310. int n_orig_ctx,
  4311. float freq_base,
  4312. float freq_scale,
  4313. float ext_factor,
  4314. float attn_factor,
  4315. float beta_fast,
  4316. float beta_slow,
  4317. float xpos_base,
  4318. bool xpos_down,
  4319. bool inplace) {
  4320. GGML_ASSERT(ggml_is_vector(b));
  4321. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4322. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4323. bool is_node = false;
  4324. if (a->grad) {
  4325. is_node = true;
  4326. }
  4327. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4328. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4329. memcpy(params + 5, &freq_base, sizeof(float));
  4330. memcpy(params + 6, &freq_scale, sizeof(float));
  4331. memcpy(params + 7, &ext_factor, sizeof(float));
  4332. memcpy(params + 8, &attn_factor, sizeof(float));
  4333. memcpy(params + 9, &beta_fast, sizeof(float));
  4334. memcpy(params + 10, &beta_slow, sizeof(float));
  4335. memcpy(params + 11, &xpos_base, sizeof(float));
  4336. memcpy(params + 12, &xpos_down, sizeof(bool));
  4337. ggml_set_op_params(result, params, sizeof(params));
  4338. result->op = GGML_OP_ROPE;
  4339. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4340. result->src[0] = a;
  4341. result->src[1] = b;
  4342. return result;
  4343. }
  4344. struct ggml_tensor * ggml_rope(
  4345. struct ggml_context * ctx,
  4346. struct ggml_tensor * a,
  4347. struct ggml_tensor * b,
  4348. int n_dims,
  4349. int mode,
  4350. int n_ctx) {
  4351. return ggml_rope_impl(
  4352. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  4353. );
  4354. }
  4355. struct ggml_tensor * ggml_rope_inplace(
  4356. struct ggml_context * ctx,
  4357. struct ggml_tensor * a,
  4358. struct ggml_tensor * b,
  4359. int n_dims,
  4360. int mode,
  4361. int n_ctx) {
  4362. return ggml_rope_impl(
  4363. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  4364. );
  4365. }
  4366. struct ggml_tensor * ggml_rope_custom(
  4367. struct ggml_context * ctx,
  4368. struct ggml_tensor * a,
  4369. struct ggml_tensor * b,
  4370. int n_dims,
  4371. int mode,
  4372. int n_ctx,
  4373. int n_orig_ctx,
  4374. float freq_base,
  4375. float freq_scale,
  4376. float ext_factor,
  4377. float attn_factor,
  4378. float beta_fast,
  4379. float beta_slow) {
  4380. return ggml_rope_impl(
  4381. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4382. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  4383. );
  4384. }
  4385. struct ggml_tensor * ggml_rope_custom_inplace(
  4386. struct ggml_context * ctx,
  4387. struct ggml_tensor * a,
  4388. struct ggml_tensor * b,
  4389. int n_dims,
  4390. int mode,
  4391. int n_ctx,
  4392. int n_orig_ctx,
  4393. float freq_base,
  4394. float freq_scale,
  4395. float ext_factor,
  4396. float attn_factor,
  4397. float beta_fast,
  4398. float beta_slow) {
  4399. return ggml_rope_impl(
  4400. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4401. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  4402. );
  4403. }
  4404. struct ggml_tensor * ggml_rope_xpos_inplace(
  4405. struct ggml_context * ctx,
  4406. struct ggml_tensor * a,
  4407. struct ggml_tensor * b,
  4408. int n_dims,
  4409. float base,
  4410. bool down) {
  4411. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  4412. }
  4413. // ggml_rope_back
  4414. struct ggml_tensor * ggml_rope_back(
  4415. struct ggml_context * ctx,
  4416. struct ggml_tensor * a,
  4417. struct ggml_tensor * b,
  4418. int n_dims,
  4419. int mode,
  4420. int n_ctx,
  4421. int n_orig_ctx,
  4422. float freq_base,
  4423. float freq_scale,
  4424. float ext_factor,
  4425. float attn_factor,
  4426. float beta_fast,
  4427. float beta_slow,
  4428. float xpos_base,
  4429. bool xpos_down) {
  4430. GGML_ASSERT(ggml_is_vector(b));
  4431. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4432. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4433. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  4434. bool is_node = false;
  4435. if (a->grad) {
  4436. is_node = false; // TODO: implement backward
  4437. }
  4438. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4439. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4440. memcpy(params + 5, &freq_base, sizeof(float));
  4441. memcpy(params + 6, &freq_scale, sizeof(float));
  4442. memcpy(params + 7, &ext_factor, sizeof(float));
  4443. memcpy(params + 8, &attn_factor, sizeof(float));
  4444. memcpy(params + 9, &beta_fast, sizeof(float));
  4445. memcpy(params + 10, &beta_slow, sizeof(float));
  4446. memcpy(params + 11, &xpos_base, sizeof(float));
  4447. memcpy(params + 12, &xpos_down, sizeof(bool));
  4448. ggml_set_op_params(result, params, sizeof(params));
  4449. result->op = GGML_OP_ROPE_BACK;
  4450. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4451. result->src[0] = a;
  4452. result->src[1] = b;
  4453. return result;
  4454. }
  4455. // ggml_alibi
  4456. struct ggml_tensor * ggml_alibi(
  4457. struct ggml_context * ctx,
  4458. struct ggml_tensor * a,
  4459. int n_past,
  4460. int n_head,
  4461. float bias_max) {
  4462. GGML_ASSERT(n_past >= 0);
  4463. bool is_node = false;
  4464. if (a->grad) {
  4465. GGML_ASSERT(false); // TODO: implement backward
  4466. is_node = true;
  4467. }
  4468. // TODO: when implement backward, fix this:
  4469. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4470. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4471. int32_t op_params[3] = { n_past, n_head };
  4472. memcpy(op_params + 2, &bias_max, sizeof(float));
  4473. ggml_set_op_params(result, op_params, sizeof(op_params));
  4474. result->op = GGML_OP_ALIBI;
  4475. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4476. result->src[0] = a;
  4477. return result;
  4478. }
  4479. // ggml_clamp
  4480. struct ggml_tensor * ggml_clamp(
  4481. struct ggml_context * ctx,
  4482. struct ggml_tensor * a,
  4483. float min,
  4484. float max) {
  4485. bool is_node = false;
  4486. if (a->grad) {
  4487. GGML_ASSERT(false); // TODO: implement backward
  4488. is_node = true;
  4489. }
  4490. // TODO: when implement backward, fix this:
  4491. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4492. float params[] = { min, max };
  4493. ggml_set_op_params(result, params, sizeof(params));
  4494. result->op = GGML_OP_CLAMP;
  4495. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4496. result->src[0] = a;
  4497. return result;
  4498. }
  4499. // ggml_conv_1d
  4500. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4501. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4502. }
  4503. GGML_API struct ggml_tensor * ggml_conv_1d(
  4504. struct ggml_context * ctx,
  4505. struct ggml_tensor * a,
  4506. struct ggml_tensor * b,
  4507. int s0,
  4508. int p0,
  4509. int d0) {
  4510. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
  4511. struct ggml_tensor * result =
  4512. ggml_mul_mat(ctx,
  4513. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  4514. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  4515. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  4516. return result;
  4517. }
  4518. // ggml_conv_1d_ph
  4519. struct ggml_tensor* ggml_conv_1d_ph(
  4520. struct ggml_context * ctx,
  4521. struct ggml_tensor * a,
  4522. struct ggml_tensor * b,
  4523. int s,
  4524. int d) {
  4525. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  4526. }
  4527. // ggml_conv_transpose_1d
  4528. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4529. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  4530. }
  4531. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  4532. struct ggml_context * ctx,
  4533. struct ggml_tensor * a,
  4534. struct ggml_tensor * b,
  4535. int s0,
  4536. int p0,
  4537. int d0) {
  4538. GGML_ASSERT(ggml_is_matrix(b));
  4539. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4540. GGML_ASSERT(a->ne[3] == 1);
  4541. GGML_ASSERT(p0 == 0);
  4542. GGML_ASSERT(d0 == 1);
  4543. bool is_node = false;
  4544. if (a->grad || b->grad) {
  4545. GGML_ASSERT(false); // TODO: implement backward
  4546. is_node = true;
  4547. }
  4548. const int64_t ne[4] = {
  4549. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  4550. a->ne[1], b->ne[2], 1,
  4551. };
  4552. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4553. int32_t params[] = { s0, p0, d0 };
  4554. ggml_set_op_params(result, params, sizeof(params));
  4555. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  4556. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4557. result->src[0] = a;
  4558. result->src[1] = b;
  4559. return result;
  4560. }
  4561. // ggml_conv_depthwise
  4562. struct ggml_tensor * ggml_conv_depthwise_2d(
  4563. struct ggml_context * ctx,
  4564. struct ggml_tensor * a,
  4565. struct ggml_tensor * b,
  4566. int s0,
  4567. int s1,
  4568. int p0,
  4569. int p1,
  4570. int d0,
  4571. int d1) {
  4572. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  4573. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  4574. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  4575. s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
  4576. struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  4577. new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  4578. struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
  4579. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  4580. return result;
  4581. }
  4582. // ggml_conv_2d
  4583. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  4584. // a: [OC,IC, KH, KW]
  4585. // b: [N, IC, IH, IW]
  4586. // result: [N, OH, OW, IC*KH*KW]
  4587. struct ggml_tensor * ggml_im2col(
  4588. struct ggml_context * ctx,
  4589. struct ggml_tensor * a,
  4590. struct ggml_tensor * b,
  4591. int s0,
  4592. int s1,
  4593. int p0,
  4594. int p1,
  4595. int d0,
  4596. int d1,
  4597. bool is_2D,
  4598. enum ggml_type dst_type) {
  4599. if(is_2D) {
  4600. GGML_ASSERT(a->ne[2] == b->ne[2]);
  4601. } else {
  4602. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4603. }
  4604. bool is_node = false;
  4605. if (a->grad || b->grad) {
  4606. GGML_ASSERT(false); // TODO: implement backward
  4607. is_node = true;
  4608. }
  4609. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  4610. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  4611. const int64_t ne[4] = {
  4612. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  4613. OW,
  4614. is_2D ? OH : b->ne[2],
  4615. is_2D ? b->ne[3] : 1,
  4616. };
  4617. struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
  4618. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  4619. ggml_set_op_params(result, params, sizeof(params));
  4620. result->op = GGML_OP_IM2COL;
  4621. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4622. result->src[0] = a;
  4623. result->src[1] = b;
  4624. return result;
  4625. }
  4626. // a: [OC,IC, KH, KW]
  4627. // b: [N, IC, IH, IW]
  4628. // result: [N, OC, OH, OW]
  4629. struct ggml_tensor * ggml_conv_2d(
  4630. struct ggml_context * ctx,
  4631. struct ggml_tensor * a,
  4632. struct ggml_tensor * b,
  4633. int s0,
  4634. int s1,
  4635. int p0,
  4636. int p1,
  4637. int d0,
  4638. int d1) {
  4639. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
  4640. struct ggml_tensor * result =
  4641. ggml_mul_mat(ctx,
  4642. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  4643. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  4644. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
  4645. result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
  4646. return result;
  4647. }
  4648. // ggml_conv_2d_sk_p0
  4649. struct ggml_tensor * ggml_conv_2d_sk_p0(
  4650. struct ggml_context * ctx,
  4651. struct ggml_tensor * a,
  4652. struct ggml_tensor * b) {
  4653. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  4654. }
  4655. // ggml_conv_2d_s1_ph
  4656. struct ggml_tensor * ggml_conv_2d_s1_ph(
  4657. struct ggml_context * ctx,
  4658. struct ggml_tensor * a,
  4659. struct ggml_tensor * b) {
  4660. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  4661. }
  4662. // ggml_conv_transpose_2d_p0
  4663. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  4664. return (ins - 1) * s - 2 * p + ks;
  4665. }
  4666. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  4667. struct ggml_context * ctx,
  4668. struct ggml_tensor * a,
  4669. struct ggml_tensor * b,
  4670. int stride) {
  4671. GGML_ASSERT(a->ne[3] == b->ne[2]);
  4672. bool is_node = false;
  4673. if (a->grad || b->grad) {
  4674. GGML_ASSERT(false); // TODO: implement backward
  4675. is_node = true;
  4676. }
  4677. const int64_t ne[4] = {
  4678. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  4679. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  4680. a->ne[2], b->ne[3],
  4681. };
  4682. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4683. ggml_set_op_params_i32(result, 0, stride);
  4684. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  4685. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4686. result->src[0] = a;
  4687. result->src[1] = b;
  4688. return result;
  4689. }
  4690. // ggml_pool_*
  4691. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  4692. return (ins + 2 * p - ks) / s + 1;
  4693. }
  4694. // ggml_pool_1d
  4695. struct ggml_tensor * ggml_pool_1d(
  4696. struct ggml_context * ctx,
  4697. struct ggml_tensor * a,
  4698. enum ggml_op_pool op,
  4699. int k0,
  4700. int s0,
  4701. int p0) {
  4702. bool is_node = false;
  4703. if (a->grad) {
  4704. GGML_ASSERT(false); // TODO: implement backward
  4705. is_node = true;
  4706. }
  4707. const int64_t ne[2] = {
  4708. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4709. a->ne[1],
  4710. };
  4711. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4712. int32_t params[] = { op, k0, s0, p0 };
  4713. ggml_set_op_params(result, params, sizeof(params));
  4714. result->op = GGML_OP_POOL_1D;
  4715. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4716. result->src[0] = a;
  4717. return result;
  4718. }
  4719. // ggml_pool_2d
  4720. struct ggml_tensor * ggml_pool_2d(
  4721. struct ggml_context * ctx,
  4722. struct ggml_tensor * a,
  4723. enum ggml_op_pool op,
  4724. int k0,
  4725. int k1,
  4726. int s0,
  4727. int s1,
  4728. float p0,
  4729. float p1) {
  4730. bool is_node = false;
  4731. if (a->grad) {
  4732. GGML_ASSERT(false); // TODO: implement backward
  4733. is_node = true;
  4734. }
  4735. struct ggml_tensor * result;
  4736. const int64_t ne[3] = {
  4737. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4738. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  4739. a->ne[2],
  4740. };
  4741. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4742. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  4743. ggml_set_op_params(result, params, sizeof(params));
  4744. result->op = GGML_OP_POOL_2D;
  4745. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4746. result->src[0] = a;
  4747. return result;
  4748. }
  4749. // ggml_upscale
  4750. static struct ggml_tensor * ggml_upscale_impl(
  4751. struct ggml_context * ctx,
  4752. struct ggml_tensor * a,
  4753. int scale_factor) {
  4754. bool is_node = false;
  4755. if (a->grad) {
  4756. GGML_ASSERT(false); // TODO: implement backward
  4757. is_node = true;
  4758. }
  4759. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4760. a->ne[0] * scale_factor,
  4761. a->ne[1] * scale_factor,
  4762. a->ne[2], a->ne[3]);
  4763. result->op = GGML_OP_UPSCALE;
  4764. result->op_params[0] = scale_factor;
  4765. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4766. result->src[0] = a;
  4767. return result;
  4768. }
  4769. struct ggml_tensor * ggml_pad(
  4770. struct ggml_context * ctx,
  4771. struct ggml_tensor * a,
  4772. int p0, int p1, int p2, int p3) {
  4773. bool is_node = false;
  4774. if (a->grad) {
  4775. GGML_ASSERT(false); // TODO: implement backward
  4776. is_node = true;
  4777. }
  4778. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4779. a->ne[0] + p0,
  4780. a->ne[1] + p1,
  4781. a->ne[2] + p2,
  4782. a->ne[3] + p3);
  4783. result->op = GGML_OP_PAD;
  4784. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4785. result->src[0] = a;
  4786. return result;
  4787. }
  4788. struct ggml_tensor * ggml_upscale(
  4789. struct ggml_context * ctx,
  4790. struct ggml_tensor * a,
  4791. int scale_factor) {
  4792. return ggml_upscale_impl(ctx, a, scale_factor);
  4793. }
  4794. // ggml_argsort
  4795. struct ggml_tensor * ggml_argsort(
  4796. struct ggml_context * ctx,
  4797. struct ggml_tensor * a,
  4798. enum ggml_sort_order order) {
  4799. bool is_node = false;
  4800. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  4801. ggml_set_op_params_i32(result, 0, (int32_t) order);
  4802. result->op = GGML_OP_ARGSORT;
  4803. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4804. result->src[0] = a;
  4805. return result;
  4806. }
  4807. // ggml_top_k
  4808. struct ggml_tensor * ggml_top_k(
  4809. struct ggml_context * ctx,
  4810. struct ggml_tensor * a,
  4811. int k) {
  4812. GGML_ASSERT(a->ne[0] >= k);
  4813. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_DESC);
  4814. result = ggml_view_4d(ctx, result,
  4815. k, result->ne[1], result->ne[2], result->ne[3],
  4816. result->nb[1], result->nb[2], result->nb[3],
  4817. 0);
  4818. return result;
  4819. }
  4820. // ggml_flash_attn
  4821. struct ggml_tensor * ggml_flash_attn(
  4822. struct ggml_context * ctx,
  4823. struct ggml_tensor * q,
  4824. struct ggml_tensor * k,
  4825. struct ggml_tensor * v,
  4826. bool masked) {
  4827. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4828. // TODO: check if vT can be multiplied by (k*qT)
  4829. bool is_node = false;
  4830. if (q->grad || k->grad || v->grad) {
  4831. is_node = true;
  4832. }
  4833. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4834. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne);
  4835. int32_t t = masked ? 1 : 0;
  4836. ggml_set_op_params(result, &t, sizeof(t));
  4837. result->op = GGML_OP_FLASH_ATTN;
  4838. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4839. result->src[0] = q;
  4840. result->src[1] = k;
  4841. result->src[2] = v;
  4842. return result;
  4843. }
  4844. // ggml_flash_ff
  4845. struct ggml_tensor * ggml_flash_ff(
  4846. struct ggml_context * ctx,
  4847. struct ggml_tensor * a,
  4848. struct ggml_tensor * b0,
  4849. struct ggml_tensor * b1,
  4850. struct ggml_tensor * c0,
  4851. struct ggml_tensor * c1) {
  4852. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4853. // TODO: more checks
  4854. bool is_node = false;
  4855. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4856. is_node = true;
  4857. }
  4858. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4859. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne);
  4860. result->op = GGML_OP_FLASH_FF;
  4861. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4862. result->src[0] = a;
  4863. result->src[1] = b0;
  4864. result->src[2] = b1;
  4865. result->src[3] = c0;
  4866. result->src[4] = c1;
  4867. return result;
  4868. }
  4869. // ggml_flash_attn_back
  4870. struct ggml_tensor * ggml_flash_attn_back(
  4871. struct ggml_context * ctx,
  4872. struct ggml_tensor * q,
  4873. struct ggml_tensor * k,
  4874. struct ggml_tensor * v,
  4875. struct ggml_tensor * d,
  4876. bool masked) {
  4877. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4878. // TODO: check if vT can be multiplied by (k*qT)
  4879. // d shape [D,N,ne2,ne3]
  4880. // q shape [D,N,ne2,ne3]
  4881. // k shape [D,M,kvne2,ne3]
  4882. // v shape [M,D,kvne2,ne3]
  4883. const int64_t D = q->ne[0];
  4884. const int64_t N = q->ne[1];
  4885. const int64_t M = k->ne[1];
  4886. const int64_t ne2 = q->ne[2];
  4887. const int64_t ne3 = q->ne[3];
  4888. const int64_t kvne2 = k->ne[2];
  4889. GGML_ASSERT(k->ne[0] == D);
  4890. GGML_ASSERT(v->ne[0] == M);
  4891. GGML_ASSERT(v->ne[1] == D);
  4892. GGML_ASSERT(d->ne[0] == D);
  4893. GGML_ASSERT(d->ne[1] == N);
  4894. GGML_ASSERT(k->ne[2] == kvne2);
  4895. GGML_ASSERT(k->ne[3] == ne3);
  4896. GGML_ASSERT(v->ne[2] == kvne2);
  4897. GGML_ASSERT(v->ne[3] == ne3);
  4898. GGML_ASSERT(d->ne[2] == ne2);
  4899. GGML_ASSERT(d->ne[3] == ne3);
  4900. GGML_ASSERT(ne2 % kvne2 == 0);
  4901. bool is_node = false;
  4902. if (q->grad || k->grad || v->grad) {
  4903. // when using this operation (in backwards pass) these grads are set.
  4904. // we don't want to create (big) grad of our result, so is_node is false.
  4905. is_node = false;
  4906. }
  4907. // store gradients of q, k and v as continuous tensors concatenated in result.
  4908. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  4909. const int64_t elem_q = ggml_nelements(q);
  4910. const int64_t elem_k = ggml_nelements(k);
  4911. const int64_t elem_v = ggml_nelements(v);
  4912. enum ggml_type result_type = GGML_TYPE_F32;
  4913. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  4914. const size_t tsize = ggml_type_size(result_type);
  4915. const size_t offs_q = 0;
  4916. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  4917. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  4918. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  4919. const size_t nelements = (end + tsize - 1)/tsize;
  4920. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  4921. int32_t masked_i = masked ? 1 : 0;
  4922. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  4923. result->op = GGML_OP_FLASH_ATTN_BACK;
  4924. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4925. result->src[0] = q;
  4926. result->src[1] = k;
  4927. result->src[2] = v;
  4928. result->src[3] = d;
  4929. return result;
  4930. }
  4931. // ggml_win_part
  4932. struct ggml_tensor * ggml_win_part(
  4933. struct ggml_context * ctx,
  4934. struct ggml_tensor * a,
  4935. int w) {
  4936. GGML_ASSERT(a->ne[3] == 1);
  4937. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4938. bool is_node = false;
  4939. if (a->grad) {
  4940. GGML_ASSERT(false); // TODO: implement backward
  4941. is_node = true;
  4942. }
  4943. // padding
  4944. const int px = (w - a->ne[1]%w)%w;
  4945. const int py = (w - a->ne[2]%w)%w;
  4946. const int npx = (px + a->ne[1])/w;
  4947. const int npy = (py + a->ne[2])/w;
  4948. const int np = npx*npy;
  4949. const int64_t ne[4] = { a->ne[0], w, w, np, };
  4950. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4951. int32_t params[] = { npx, npy, w };
  4952. ggml_set_op_params(result, params, sizeof(params));
  4953. result->op = GGML_OP_WIN_PART;
  4954. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4955. result->src[0] = a;
  4956. return result;
  4957. }
  4958. // ggml_win_unpart
  4959. struct ggml_tensor * ggml_win_unpart(
  4960. struct ggml_context * ctx,
  4961. struct ggml_tensor * a,
  4962. int w0,
  4963. int h0,
  4964. int w) {
  4965. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4966. bool is_node = false;
  4967. if (a->grad) {
  4968. GGML_ASSERT(false); // TODO: implement backward
  4969. is_node = true;
  4970. }
  4971. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  4972. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4973. int32_t params[] = { w };
  4974. ggml_set_op_params(result, params, sizeof(params));
  4975. result->op = GGML_OP_WIN_UNPART;
  4976. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4977. result->src[0] = a;
  4978. return result;
  4979. }
  4980. // ggml_get_rel_pos
  4981. struct ggml_tensor * ggml_get_rel_pos(
  4982. struct ggml_context * ctx,
  4983. struct ggml_tensor * a,
  4984. int qh,
  4985. int kh) {
  4986. GGML_ASSERT(qh == kh);
  4987. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  4988. bool is_node = false;
  4989. if (a->grad) {
  4990. GGML_ASSERT(false); // TODO: implement backward
  4991. is_node = true;
  4992. }
  4993. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  4994. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  4995. result->op = GGML_OP_GET_REL_POS;
  4996. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4997. result->src[0] = a;
  4998. return result;
  4999. }
  5000. // ggml_add_rel_pos
  5001. static struct ggml_tensor * ggml_add_rel_pos_impl(
  5002. struct ggml_context * ctx,
  5003. struct ggml_tensor * a,
  5004. struct ggml_tensor * pw,
  5005. struct ggml_tensor * ph,
  5006. bool inplace) {
  5007. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  5008. GGML_ASSERT(ggml_is_contiguous(a));
  5009. GGML_ASSERT(ggml_is_contiguous(pw));
  5010. GGML_ASSERT(ggml_is_contiguous(ph));
  5011. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  5012. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  5013. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  5014. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  5015. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  5016. bool is_node = false;
  5017. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  5018. is_node = true;
  5019. }
  5020. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5021. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  5022. result->op = GGML_OP_ADD_REL_POS;
  5023. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5024. result->src[0] = a;
  5025. result->src[1] = pw;
  5026. result->src[2] = ph;
  5027. return result;
  5028. }
  5029. struct ggml_tensor * ggml_add_rel_pos(
  5030. struct ggml_context * ctx,
  5031. struct ggml_tensor * a,
  5032. struct ggml_tensor * pw,
  5033. struct ggml_tensor * ph) {
  5034. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  5035. }
  5036. struct ggml_tensor * ggml_add_rel_pos_inplace(
  5037. struct ggml_context * ctx,
  5038. struct ggml_tensor * a,
  5039. struct ggml_tensor * pw,
  5040. struct ggml_tensor * ph) {
  5041. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  5042. }
  5043. // gmml_unary
  5044. static struct ggml_tensor * ggml_unary_impl(
  5045. struct ggml_context * ctx,
  5046. struct ggml_tensor * a,
  5047. enum ggml_unary_op op,
  5048. bool inplace) {
  5049. bool is_node = false;
  5050. if (!inplace && (a->grad)) {
  5051. is_node = true;
  5052. }
  5053. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5054. ggml_set_op_params_i32(result, 0, (int32_t) op);
  5055. result->op = GGML_OP_UNARY;
  5056. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5057. result->src[0] = a;
  5058. return result;
  5059. }
  5060. struct ggml_tensor * ggml_unary(
  5061. struct ggml_context * ctx,
  5062. struct ggml_tensor * a,
  5063. enum ggml_unary_op op) {
  5064. return ggml_unary_impl(ctx, a, op, false);
  5065. }
  5066. struct ggml_tensor * ggml_unary_inplace(
  5067. struct ggml_context * ctx,
  5068. struct ggml_tensor * a,
  5069. enum ggml_unary_op op) {
  5070. return ggml_unary_impl(ctx, a, op, true);
  5071. }
  5072. // ggml_map_unary
  5073. static struct ggml_tensor * ggml_map_unary_impl_f32(
  5074. struct ggml_context * ctx,
  5075. struct ggml_tensor * a,
  5076. const ggml_unary_op_f32_t fun,
  5077. bool inplace) {
  5078. bool is_node = false;
  5079. if (!inplace && a->grad) {
  5080. is_node = true;
  5081. }
  5082. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5083. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5084. result->op = GGML_OP_MAP_UNARY;
  5085. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5086. result->src[0] = a;
  5087. return result;
  5088. }
  5089. struct ggml_tensor * ggml_map_unary_f32(
  5090. struct ggml_context * ctx,
  5091. struct ggml_tensor * a,
  5092. const ggml_unary_op_f32_t fun) {
  5093. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5094. }
  5095. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5096. struct ggml_context * ctx,
  5097. struct ggml_tensor * a,
  5098. const ggml_unary_op_f32_t fun) {
  5099. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5100. }
  5101. // ggml_map_binary
  5102. static struct ggml_tensor * ggml_map_binary_impl_f32(
  5103. struct ggml_context * ctx,
  5104. struct ggml_tensor * a,
  5105. struct ggml_tensor * b,
  5106. const ggml_binary_op_f32_t fun,
  5107. bool inplace) {
  5108. GGML_ASSERT(ggml_are_same_shape(a, b));
  5109. bool is_node = false;
  5110. if (!inplace && (a->grad || b->grad)) {
  5111. is_node = true;
  5112. }
  5113. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5114. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5115. result->op = GGML_OP_MAP_BINARY;
  5116. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5117. result->src[0] = a;
  5118. result->src[1] = b;
  5119. return result;
  5120. }
  5121. struct ggml_tensor * ggml_map_binary_f32(
  5122. struct ggml_context * ctx,
  5123. struct ggml_tensor * a,
  5124. struct ggml_tensor * b,
  5125. const ggml_binary_op_f32_t fun) {
  5126. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5127. }
  5128. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5129. struct ggml_context * ctx,
  5130. struct ggml_tensor * a,
  5131. struct ggml_tensor * b,
  5132. const ggml_binary_op_f32_t fun) {
  5133. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5134. }
  5135. // ggml_map_custom1_f32
  5136. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  5137. struct ggml_context * ctx,
  5138. struct ggml_tensor * a,
  5139. const ggml_custom1_op_f32_t fun,
  5140. bool inplace) {
  5141. bool is_node = false;
  5142. if (!inplace && a->grad) {
  5143. is_node = true;
  5144. }
  5145. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5146. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5147. result->op = GGML_OP_MAP_CUSTOM1_F32;
  5148. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5149. result->src[0] = a;
  5150. return result;
  5151. }
  5152. struct ggml_tensor * ggml_map_custom1_f32(
  5153. struct ggml_context * ctx,
  5154. struct ggml_tensor * a,
  5155. const ggml_custom1_op_f32_t fun) {
  5156. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  5157. }
  5158. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  5159. struct ggml_context * ctx,
  5160. struct ggml_tensor * a,
  5161. const ggml_custom1_op_f32_t fun) {
  5162. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  5163. }
  5164. // ggml_map_custom2_f32
  5165. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  5166. struct ggml_context * ctx,
  5167. struct ggml_tensor * a,
  5168. struct ggml_tensor * b,
  5169. const ggml_custom2_op_f32_t fun,
  5170. bool inplace) {
  5171. bool is_node = false;
  5172. if (!inplace && (a->grad || b->grad)) {
  5173. is_node = true;
  5174. }
  5175. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5176. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5177. result->op = GGML_OP_MAP_CUSTOM2_F32;
  5178. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5179. result->src[0] = a;
  5180. result->src[1] = b;
  5181. return result;
  5182. }
  5183. struct ggml_tensor * ggml_map_custom2_f32(
  5184. struct ggml_context * ctx,
  5185. struct ggml_tensor * a,
  5186. struct ggml_tensor * b,
  5187. const ggml_custom2_op_f32_t fun) {
  5188. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  5189. }
  5190. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  5191. struct ggml_context * ctx,
  5192. struct ggml_tensor * a,
  5193. struct ggml_tensor * b,
  5194. const ggml_custom2_op_f32_t fun) {
  5195. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  5196. }
  5197. // ggml_map_custom3_f32
  5198. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  5199. struct ggml_context * ctx,
  5200. struct ggml_tensor * a,
  5201. struct ggml_tensor * b,
  5202. struct ggml_tensor * c,
  5203. const ggml_custom3_op_f32_t fun,
  5204. bool inplace) {
  5205. bool is_node = false;
  5206. if (!inplace && (a->grad || b->grad || c->grad)) {
  5207. is_node = true;
  5208. }
  5209. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5210. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5211. result->op = GGML_OP_MAP_CUSTOM3_F32;
  5212. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5213. result->src[0] = a;
  5214. result->src[1] = b;
  5215. result->src[2] = c;
  5216. return result;
  5217. }
  5218. struct ggml_tensor * ggml_map_custom3_f32(
  5219. struct ggml_context * ctx,
  5220. struct ggml_tensor * a,
  5221. struct ggml_tensor * b,
  5222. struct ggml_tensor * c,
  5223. const ggml_custom3_op_f32_t fun) {
  5224. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  5225. }
  5226. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  5227. struct ggml_context * ctx,
  5228. struct ggml_tensor * a,
  5229. struct ggml_tensor * b,
  5230. struct ggml_tensor * c,
  5231. const ggml_custom3_op_f32_t fun) {
  5232. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  5233. }
  5234. // ggml_map_custom1
  5235. struct ggml_map_custom1_op_params {
  5236. ggml_custom1_op_t fun;
  5237. int n_tasks;
  5238. void * userdata;
  5239. };
  5240. static struct ggml_tensor * ggml_map_custom1_impl(
  5241. struct ggml_context * ctx,
  5242. struct ggml_tensor * a,
  5243. const ggml_custom1_op_t fun,
  5244. int n_tasks,
  5245. void * userdata,
  5246. bool inplace) {
  5247. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5248. bool is_node = false;
  5249. if (!inplace && a->grad) {
  5250. is_node = true;
  5251. }
  5252. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5253. struct ggml_map_custom1_op_params params = {
  5254. /*.fun =*/ fun,
  5255. /*.n_tasks =*/ n_tasks,
  5256. /*.userdata =*/ userdata
  5257. };
  5258. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5259. result->op = GGML_OP_MAP_CUSTOM1;
  5260. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5261. result->src[0] = a;
  5262. return result;
  5263. }
  5264. struct ggml_tensor * ggml_map_custom1(
  5265. struct ggml_context * ctx,
  5266. struct ggml_tensor * a,
  5267. const ggml_custom1_op_t fun,
  5268. int n_tasks,
  5269. void * userdata) {
  5270. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  5271. }
  5272. struct ggml_tensor * ggml_map_custom1_inplace(
  5273. struct ggml_context * ctx,
  5274. struct ggml_tensor * a,
  5275. const ggml_custom1_op_t fun,
  5276. int n_tasks,
  5277. void * userdata) {
  5278. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  5279. }
  5280. // ggml_map_custom2
  5281. struct ggml_map_custom2_op_params {
  5282. ggml_custom2_op_t fun;
  5283. int n_tasks;
  5284. void * userdata;
  5285. };
  5286. static struct ggml_tensor * ggml_map_custom2_impl(
  5287. struct ggml_context * ctx,
  5288. struct ggml_tensor * a,
  5289. struct ggml_tensor * b,
  5290. const ggml_custom2_op_t fun,
  5291. int n_tasks,
  5292. void * userdata,
  5293. bool inplace) {
  5294. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5295. bool is_node = false;
  5296. if (!inplace && (a->grad || b->grad)) {
  5297. is_node = true;
  5298. }
  5299. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5300. struct ggml_map_custom2_op_params params = {
  5301. /*.fun =*/ fun,
  5302. /*.n_tasks =*/ n_tasks,
  5303. /*.userdata =*/ userdata
  5304. };
  5305. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5306. result->op = GGML_OP_MAP_CUSTOM2;
  5307. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5308. result->src[0] = a;
  5309. result->src[1] = b;
  5310. return result;
  5311. }
  5312. struct ggml_tensor * ggml_map_custom2(
  5313. struct ggml_context * ctx,
  5314. struct ggml_tensor * a,
  5315. struct ggml_tensor * b,
  5316. const ggml_custom2_op_t fun,
  5317. int n_tasks,
  5318. void * userdata) {
  5319. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  5320. }
  5321. struct ggml_tensor * ggml_map_custom2_inplace(
  5322. struct ggml_context * ctx,
  5323. struct ggml_tensor * a,
  5324. struct ggml_tensor * b,
  5325. const ggml_custom2_op_t fun,
  5326. int n_tasks,
  5327. void * userdata) {
  5328. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  5329. }
  5330. // ggml_map_custom3
  5331. struct ggml_map_custom3_op_params {
  5332. ggml_custom3_op_t fun;
  5333. int n_tasks;
  5334. void * userdata;
  5335. };
  5336. static struct ggml_tensor * ggml_map_custom3_impl(
  5337. struct ggml_context * ctx,
  5338. struct ggml_tensor * a,
  5339. struct ggml_tensor * b,
  5340. struct ggml_tensor * c,
  5341. const ggml_custom3_op_t fun,
  5342. int n_tasks,
  5343. void * userdata,
  5344. bool inplace) {
  5345. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5346. bool is_node = false;
  5347. if (!inplace && (a->grad || b->grad || c->grad)) {
  5348. is_node = true;
  5349. }
  5350. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5351. struct ggml_map_custom3_op_params params = {
  5352. /*.fun =*/ fun,
  5353. /*.n_tasks =*/ n_tasks,
  5354. /*.userdata =*/ userdata
  5355. };
  5356. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5357. result->op = GGML_OP_MAP_CUSTOM3;
  5358. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5359. result->src[0] = a;
  5360. result->src[1] = b;
  5361. result->src[2] = c;
  5362. return result;
  5363. }
  5364. struct ggml_tensor * ggml_map_custom3(
  5365. struct ggml_context * ctx,
  5366. struct ggml_tensor * a,
  5367. struct ggml_tensor * b,
  5368. struct ggml_tensor * c,
  5369. const ggml_custom3_op_t fun,
  5370. int n_tasks,
  5371. void * userdata) {
  5372. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  5373. }
  5374. struct ggml_tensor * ggml_map_custom3_inplace(
  5375. struct ggml_context * ctx,
  5376. struct ggml_tensor * a,
  5377. struct ggml_tensor * b,
  5378. struct ggml_tensor * c,
  5379. const ggml_custom3_op_t fun,
  5380. int n_tasks,
  5381. void * userdata) {
  5382. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  5383. }
  5384. // ggml_cross_entropy_loss
  5385. struct ggml_tensor * ggml_cross_entropy_loss(
  5386. struct ggml_context * ctx,
  5387. struct ggml_tensor * a,
  5388. struct ggml_tensor * b) {
  5389. GGML_ASSERT(ggml_are_same_shape(a, b));
  5390. bool is_node = false;
  5391. if (a->grad || b->grad) {
  5392. is_node = true;
  5393. }
  5394. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5395. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5396. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5397. result->src[0] = a;
  5398. result->src[1] = b;
  5399. return result;
  5400. }
  5401. // ggml_cross_entropy_loss_back
  5402. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5403. struct ggml_context * ctx,
  5404. struct ggml_tensor * a,
  5405. struct ggml_tensor * b,
  5406. struct ggml_tensor * c) {
  5407. GGML_ASSERT(ggml_are_same_shape(a, b));
  5408. GGML_ASSERT(ggml_is_scalar(c));
  5409. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5410. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5411. result->grad = NULL;
  5412. result->src[0] = a;
  5413. result->src[1] = b;
  5414. result->src[2] = c;
  5415. return result;
  5416. }
  5417. ////////////////////////////////////////////////////////////////////////////////
  5418. void ggml_set_param(
  5419. struct ggml_context * ctx,
  5420. struct ggml_tensor * tensor) {
  5421. tensor->flags |= GGML_TENSOR_FLAG_PARAM;
  5422. GGML_ASSERT(tensor->grad == NULL);
  5423. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5424. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  5425. }
  5426. // ggml_compute_forward_dup
  5427. static void ggml_compute_forward_dup_same_cont(
  5428. const struct ggml_compute_params * params,
  5429. struct ggml_tensor * dst) {
  5430. const struct ggml_tensor * src0 = dst->src[0];
  5431. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5432. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5433. GGML_ASSERT(src0->type == dst->type);
  5434. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5435. return;
  5436. }
  5437. const size_t nb00 = src0->nb[0];
  5438. const size_t nb0 = dst->nb[0];
  5439. const int ith = params->ith; // thread index
  5440. const int nth = params->nth; // number of threads
  5441. // parallelize by elements
  5442. const int ne = ggml_nelements(dst);
  5443. const int dr = (ne + nth - 1) / nth;
  5444. const int ie0 = dr * ith;
  5445. const int ie1 = MIN(ie0 + dr, ne);
  5446. if (ie0 < ie1) {
  5447. memcpy(
  5448. ((char *) dst->data + ie0*nb0),
  5449. ((char *) src0->data + ie0*nb00),
  5450. (ie1 - ie0) * ggml_type_size(src0->type));
  5451. }
  5452. }
  5453. static void ggml_compute_forward_dup_f16(
  5454. const struct ggml_compute_params * params,
  5455. struct ggml_tensor * dst) {
  5456. const struct ggml_tensor * src0 = dst->src[0];
  5457. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5458. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5459. return;
  5460. }
  5461. GGML_TENSOR_UNARY_OP_LOCALS
  5462. const int ith = params->ith; // thread index
  5463. const int nth = params->nth; // number of threads
  5464. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5465. ggml_compute_forward_dup_same_cont(params, dst);
  5466. return;
  5467. }
  5468. // parallelize by rows
  5469. const int nr = ne01;
  5470. // number of rows per thread
  5471. const int dr = (nr + nth - 1) / nth;
  5472. // row range for this thread
  5473. const int ir0 = dr * ith;
  5474. const int ir1 = MIN(ir0 + dr, nr);
  5475. if (src0->type == dst->type &&
  5476. ne00 == ne0 &&
  5477. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5478. // copy by rows
  5479. const size_t rs = ne00*nb00;
  5480. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5481. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5482. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5483. memcpy(
  5484. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5485. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5486. rs);
  5487. }
  5488. }
  5489. }
  5490. return;
  5491. }
  5492. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5493. if (ggml_is_contiguous(dst)) {
  5494. if (nb00 == sizeof(ggml_fp16_t)) {
  5495. if (dst->type == GGML_TYPE_F16) {
  5496. size_t id = 0;
  5497. const size_t rs = ne00 * nb00;
  5498. char * dst_ptr = (char *) dst->data;
  5499. for (int i03 = 0; i03 < ne03; i03++) {
  5500. for (int i02 = 0; i02 < ne02; i02++) {
  5501. id += rs * ir0;
  5502. for (int i01 = ir0; i01 < ir1; i01++) {
  5503. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5504. memcpy(dst_ptr + id, src0_ptr, rs);
  5505. id += rs;
  5506. }
  5507. id += rs * (ne01 - ir1);
  5508. }
  5509. }
  5510. } else if (dst->type == GGML_TYPE_F32) {
  5511. size_t id = 0;
  5512. float * dst_ptr = (float *) dst->data;
  5513. for (int i03 = 0; i03 < ne03; i03++) {
  5514. for (int i02 = 0; i02 < ne02; i02++) {
  5515. id += ne00 * ir0;
  5516. for (int i01 = ir0; i01 < ir1; i01++) {
  5517. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5518. for (int i00 = 0; i00 < ne00; i00++) {
  5519. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5520. id++;
  5521. }
  5522. }
  5523. id += ne00 * (ne01 - ir1);
  5524. }
  5525. }
  5526. } else if (type_traits[dst->type].from_float) {
  5527. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5528. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5529. size_t id = 0;
  5530. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5531. char * dst_ptr = (char *) dst->data;
  5532. for (int i03 = 0; i03 < ne03; i03++) {
  5533. for (int i02 = 0; i02 < ne02; i02++) {
  5534. id += rs * ir0;
  5535. for (int i01 = ir0; i01 < ir1; i01++) {
  5536. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5537. for (int i00 = 0; i00 < ne00; i00++) {
  5538. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5539. }
  5540. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5541. id += rs;
  5542. }
  5543. id += rs * (ne01 - ir1);
  5544. }
  5545. }
  5546. } else {
  5547. GGML_ASSERT(false); // TODO: implement
  5548. }
  5549. } else {
  5550. //printf("%s: this is not optimal - fix me\n", __func__);
  5551. if (dst->type == GGML_TYPE_F32) {
  5552. size_t id = 0;
  5553. float * dst_ptr = (float *) dst->data;
  5554. for (int i03 = 0; i03 < ne03; i03++) {
  5555. for (int i02 = 0; i02 < ne02; i02++) {
  5556. id += ne00 * ir0;
  5557. for (int i01 = ir0; i01 < ir1; i01++) {
  5558. for (int i00 = 0; i00 < ne00; i00++) {
  5559. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5560. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5561. id++;
  5562. }
  5563. }
  5564. id += ne00 * (ne01 - ir1);
  5565. }
  5566. }
  5567. } else if (dst->type == GGML_TYPE_F16) {
  5568. size_t id = 0;
  5569. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5570. for (int i03 = 0; i03 < ne03; i03++) {
  5571. for (int i02 = 0; i02 < ne02; i02++) {
  5572. id += ne00 * ir0;
  5573. for (int i01 = ir0; i01 < ir1; i01++) {
  5574. for (int i00 = 0; i00 < ne00; i00++) {
  5575. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5576. dst_ptr[id] = *src0_ptr;
  5577. id++;
  5578. }
  5579. }
  5580. id += ne00 * (ne01 - ir1);
  5581. }
  5582. }
  5583. } else {
  5584. GGML_ASSERT(false); // TODO: implement
  5585. }
  5586. }
  5587. return;
  5588. }
  5589. // dst counters
  5590. int64_t i10 = 0;
  5591. int64_t i11 = 0;
  5592. int64_t i12 = 0;
  5593. int64_t i13 = 0;
  5594. if (dst->type == GGML_TYPE_F16) {
  5595. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5596. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5597. i10 += ne00 * ir0;
  5598. while (i10 >= ne0) {
  5599. i10 -= ne0;
  5600. if (++i11 == ne1) {
  5601. i11 = 0;
  5602. if (++i12 == ne2) {
  5603. i12 = 0;
  5604. if (++i13 == ne3) {
  5605. i13 = 0;
  5606. }
  5607. }
  5608. }
  5609. }
  5610. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5611. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5612. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5613. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5614. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5615. if (++i10 == ne00) {
  5616. i10 = 0;
  5617. if (++i11 == ne01) {
  5618. i11 = 0;
  5619. if (++i12 == ne02) {
  5620. i12 = 0;
  5621. if (++i13 == ne03) {
  5622. i13 = 0;
  5623. }
  5624. }
  5625. }
  5626. }
  5627. }
  5628. }
  5629. i10 += ne00 * (ne01 - ir1);
  5630. while (i10 >= ne0) {
  5631. i10 -= ne0;
  5632. if (++i11 == ne1) {
  5633. i11 = 0;
  5634. if (++i12 == ne2) {
  5635. i12 = 0;
  5636. if (++i13 == ne3) {
  5637. i13 = 0;
  5638. }
  5639. }
  5640. }
  5641. }
  5642. }
  5643. }
  5644. } else if (dst->type == GGML_TYPE_F32) {
  5645. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5646. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5647. i10 += ne00 * ir0;
  5648. while (i10 >= ne0) {
  5649. i10 -= ne0;
  5650. if (++i11 == ne1) {
  5651. i11 = 0;
  5652. if (++i12 == ne2) {
  5653. i12 = 0;
  5654. if (++i13 == ne3) {
  5655. i13 = 0;
  5656. }
  5657. }
  5658. }
  5659. }
  5660. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5661. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5662. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5663. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5664. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5665. if (++i10 == ne0) {
  5666. i10 = 0;
  5667. if (++i11 == ne1) {
  5668. i11 = 0;
  5669. if (++i12 == ne2) {
  5670. i12 = 0;
  5671. if (++i13 == ne3) {
  5672. i13 = 0;
  5673. }
  5674. }
  5675. }
  5676. }
  5677. }
  5678. }
  5679. i10 += ne00 * (ne01 - ir1);
  5680. while (i10 >= ne0) {
  5681. i10 -= ne0;
  5682. if (++i11 == ne1) {
  5683. i11 = 0;
  5684. if (++i12 == ne2) {
  5685. i12 = 0;
  5686. if (++i13 == ne3) {
  5687. i13 = 0;
  5688. }
  5689. }
  5690. }
  5691. }
  5692. }
  5693. }
  5694. } else {
  5695. GGML_ASSERT(false); // TODO: implement
  5696. }
  5697. }
  5698. static void ggml_compute_forward_dup_f32(
  5699. const struct ggml_compute_params * params,
  5700. struct ggml_tensor * dst) {
  5701. const struct ggml_tensor * src0 = dst->src[0];
  5702. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5703. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5704. return;
  5705. }
  5706. GGML_TENSOR_UNARY_OP_LOCALS
  5707. const int ith = params->ith; // thread index
  5708. const int nth = params->nth; // number of threads
  5709. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5710. ggml_compute_forward_dup_same_cont(params, dst);
  5711. return;
  5712. }
  5713. // parallelize by rows
  5714. const int nr = ne01;
  5715. // number of rows per thread
  5716. const int dr = (nr + nth - 1) / nth;
  5717. // row range for this thread
  5718. const int ir0 = dr * ith;
  5719. const int ir1 = MIN(ir0 + dr, nr);
  5720. if (src0->type == dst->type &&
  5721. ne00 == ne0 &&
  5722. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5723. // copy by rows
  5724. const size_t rs = ne00*nb00;
  5725. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5726. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5727. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5728. memcpy(
  5729. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5730. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5731. rs);
  5732. }
  5733. }
  5734. }
  5735. return;
  5736. }
  5737. if (ggml_is_contiguous(dst)) {
  5738. // TODO: simplify
  5739. if (nb00 == sizeof(float)) {
  5740. if (dst->type == GGML_TYPE_F32) {
  5741. size_t id = 0;
  5742. const size_t rs = ne00 * nb00;
  5743. char * dst_ptr = (char *) dst->data;
  5744. for (int i03 = 0; i03 < ne03; i03++) {
  5745. for (int i02 = 0; i02 < ne02; i02++) {
  5746. id += rs * ir0;
  5747. for (int i01 = ir0; i01 < ir1; i01++) {
  5748. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5749. memcpy(dst_ptr + id, src0_ptr, rs);
  5750. id += rs;
  5751. }
  5752. id += rs * (ne01 - ir1);
  5753. }
  5754. }
  5755. } else if (type_traits[dst->type].from_float) {
  5756. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5757. size_t id = 0;
  5758. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5759. char * dst_ptr = (char *) dst->data;
  5760. for (int i03 = 0; i03 < ne03; i03++) {
  5761. for (int i02 = 0; i02 < ne02; i02++) {
  5762. id += rs * ir0;
  5763. for (int i01 = ir0; i01 < ir1; i01++) {
  5764. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5765. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5766. id += rs;
  5767. }
  5768. id += rs * (ne01 - ir1);
  5769. }
  5770. }
  5771. } else {
  5772. GGML_ASSERT(false); // TODO: implement
  5773. }
  5774. } else {
  5775. //printf("%s: this is not optimal - fix me\n", __func__);
  5776. if (dst->type == GGML_TYPE_F32) {
  5777. size_t id = 0;
  5778. float * dst_ptr = (float *) dst->data;
  5779. for (int i03 = 0; i03 < ne03; i03++) {
  5780. for (int i02 = 0; i02 < ne02; i02++) {
  5781. id += ne00 * ir0;
  5782. for (int i01 = ir0; i01 < ir1; i01++) {
  5783. for (int i00 = 0; i00 < ne00; i00++) {
  5784. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5785. dst_ptr[id] = *src0_ptr;
  5786. id++;
  5787. }
  5788. }
  5789. id += ne00 * (ne01 - ir1);
  5790. }
  5791. }
  5792. } else if (dst->type == GGML_TYPE_F16) {
  5793. size_t id = 0;
  5794. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5795. for (int i03 = 0; i03 < ne03; i03++) {
  5796. for (int i02 = 0; i02 < ne02; i02++) {
  5797. id += ne00 * ir0;
  5798. for (int i01 = ir0; i01 < ir1; i01++) {
  5799. for (int i00 = 0; i00 < ne00; i00++) {
  5800. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5801. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5802. id++;
  5803. }
  5804. }
  5805. id += ne00 * (ne01 - ir1);
  5806. }
  5807. }
  5808. } else {
  5809. GGML_ASSERT(false); // TODO: implement
  5810. }
  5811. }
  5812. return;
  5813. }
  5814. // dst counters
  5815. int64_t i10 = 0;
  5816. int64_t i11 = 0;
  5817. int64_t i12 = 0;
  5818. int64_t i13 = 0;
  5819. if (dst->type == GGML_TYPE_F32) {
  5820. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5821. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5822. i10 += ne00 * ir0;
  5823. while (i10 >= ne0) {
  5824. i10 -= ne0;
  5825. if (++i11 == ne1) {
  5826. i11 = 0;
  5827. if (++i12 == ne2) {
  5828. i12 = 0;
  5829. if (++i13 == ne3) {
  5830. i13 = 0;
  5831. }
  5832. }
  5833. }
  5834. }
  5835. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5836. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5837. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5838. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5839. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5840. if (++i10 == ne0) {
  5841. i10 = 0;
  5842. if (++i11 == ne1) {
  5843. i11 = 0;
  5844. if (++i12 == ne2) {
  5845. i12 = 0;
  5846. if (++i13 == ne3) {
  5847. i13 = 0;
  5848. }
  5849. }
  5850. }
  5851. }
  5852. }
  5853. }
  5854. i10 += ne00 * (ne01 - ir1);
  5855. while (i10 >= ne0) {
  5856. i10 -= ne0;
  5857. if (++i11 == ne1) {
  5858. i11 = 0;
  5859. if (++i12 == ne2) {
  5860. i12 = 0;
  5861. if (++i13 == ne3) {
  5862. i13 = 0;
  5863. }
  5864. }
  5865. }
  5866. }
  5867. }
  5868. }
  5869. } else if (dst->type == GGML_TYPE_F16) {
  5870. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5871. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5872. i10 += ne00 * ir0;
  5873. while (i10 >= ne0) {
  5874. i10 -= ne0;
  5875. if (++i11 == ne1) {
  5876. i11 = 0;
  5877. if (++i12 == ne2) {
  5878. i12 = 0;
  5879. if (++i13 == ne3) {
  5880. i13 = 0;
  5881. }
  5882. }
  5883. }
  5884. }
  5885. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5886. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5887. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5888. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5889. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5890. if (++i10 == ne0) {
  5891. i10 = 0;
  5892. if (++i11 == ne1) {
  5893. i11 = 0;
  5894. if (++i12 == ne2) {
  5895. i12 = 0;
  5896. if (++i13 == ne3) {
  5897. i13 = 0;
  5898. }
  5899. }
  5900. }
  5901. }
  5902. }
  5903. }
  5904. i10 += ne00 * (ne01 - ir1);
  5905. while (i10 >= ne0) {
  5906. i10 -= ne0;
  5907. if (++i11 == ne1) {
  5908. i11 = 0;
  5909. if (++i12 == ne2) {
  5910. i12 = 0;
  5911. if (++i13 == ne3) {
  5912. i13 = 0;
  5913. }
  5914. }
  5915. }
  5916. }
  5917. }
  5918. }
  5919. } else {
  5920. GGML_ASSERT(false); // TODO: implement
  5921. }
  5922. }
  5923. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  5924. static void ggml_compute_forward_dup_bytes(
  5925. const struct ggml_compute_params * params,
  5926. struct ggml_tensor * dst) {
  5927. const struct ggml_tensor * src0 = dst->src[0];
  5928. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5929. GGML_ASSERT(src0->type == dst->type);
  5930. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5931. return;
  5932. }
  5933. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  5934. ggml_compute_forward_dup_same_cont(params, dst);
  5935. return;
  5936. }
  5937. GGML_TENSOR_UNARY_OP_LOCALS;
  5938. const size_t type_size = ggml_type_size(src0->type);
  5939. const int ith = params->ith; // thread index
  5940. const int nth = params->nth; // number of threads
  5941. // parallelize by rows
  5942. const int nr = ne01;
  5943. // number of rows per thread
  5944. const int dr = (nr + nth - 1) / nth;
  5945. // row range for this thread
  5946. const int ir0 = dr * ith;
  5947. const int ir1 = MIN(ir0 + dr, nr);
  5948. if (src0->type == dst->type &&
  5949. ne00 == ne0 &&
  5950. nb00 == type_size && nb0 == type_size) {
  5951. // copy by rows
  5952. const size_t rs = ne00 * type_size;
  5953. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5954. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5955. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5956. memcpy(
  5957. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5958. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5959. rs);
  5960. }
  5961. }
  5962. }
  5963. return;
  5964. }
  5965. if (ggml_is_contiguous(dst)) {
  5966. size_t id = 0;
  5967. char * dst_ptr = (char *) dst->data;
  5968. const size_t rs = ne00 * type_size;
  5969. if (nb00 == type_size) {
  5970. // src0 is contigous on first dimension, copy by rows
  5971. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5972. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5973. id += rs * ir0;
  5974. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5975. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5976. memcpy(dst_ptr + id, src0_ptr, rs);
  5977. id += rs;
  5978. }
  5979. id += rs * (ne01 - ir1);
  5980. }
  5981. }
  5982. } else {
  5983. //printf("%s: this is not optimal - fix me\n", __func__);
  5984. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5985. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5986. id += rs * ir0;
  5987. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5988. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5989. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  5990. memcpy(dst_ptr + id, src0_ptr, type_size);
  5991. id += type_size;
  5992. }
  5993. }
  5994. id += rs * (ne01 - ir1);
  5995. }
  5996. }
  5997. }
  5998. return;
  5999. }
  6000. // dst counters
  6001. int64_t i10 = 0;
  6002. int64_t i11 = 0;
  6003. int64_t i12 = 0;
  6004. int64_t i13 = 0;
  6005. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6006. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6007. i10 += ne00 * ir0;
  6008. while (i10 >= ne0) {
  6009. i10 -= ne0;
  6010. if (++i11 == ne1) {
  6011. i11 = 0;
  6012. if (++i12 == ne2) {
  6013. i12 = 0;
  6014. if (++i13 == ne3) {
  6015. i13 = 0;
  6016. }
  6017. }
  6018. }
  6019. }
  6020. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6021. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6022. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6023. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6024. memcpy(dst_ptr, src0_ptr, type_size);
  6025. if (++i10 == ne0) {
  6026. i10 = 0;
  6027. if (++i11 == ne1) {
  6028. i11 = 0;
  6029. if (++i12 == ne2) {
  6030. i12 = 0;
  6031. if (++i13 == ne3) {
  6032. i13 = 0;
  6033. }
  6034. }
  6035. }
  6036. }
  6037. }
  6038. }
  6039. i10 += ne00 * (ne01 - ir1);
  6040. while (i10 >= ne0) {
  6041. i10 -= ne0;
  6042. if (++i11 == ne1) {
  6043. i11 = 0;
  6044. if (++i12 == ne2) {
  6045. i12 = 0;
  6046. if (++i13 == ne3) {
  6047. i13 = 0;
  6048. }
  6049. }
  6050. }
  6051. }
  6052. }
  6053. }
  6054. }
  6055. static void ggml_compute_forward_dup(
  6056. const struct ggml_compute_params * params,
  6057. struct ggml_tensor * dst) {
  6058. const struct ggml_tensor * src0 = dst->src[0];
  6059. if (src0->type == dst->type) {
  6060. ggml_compute_forward_dup_bytes(params, dst);
  6061. return;
  6062. }
  6063. switch (src0->type) {
  6064. case GGML_TYPE_F16:
  6065. {
  6066. ggml_compute_forward_dup_f16(params, dst);
  6067. } break;
  6068. case GGML_TYPE_F32:
  6069. {
  6070. ggml_compute_forward_dup_f32(params, dst);
  6071. } break;
  6072. default:
  6073. {
  6074. GGML_ASSERT(false);
  6075. } break;
  6076. }
  6077. }
  6078. // ggml_compute_forward_add
  6079. static void ggml_compute_forward_add_f32(
  6080. const struct ggml_compute_params * params,
  6081. struct ggml_tensor * dst) {
  6082. const struct ggml_tensor * src0 = dst->src[0];
  6083. const struct ggml_tensor * src1 = dst->src[1];
  6084. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6085. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6086. return;
  6087. }
  6088. const int ith = params->ith;
  6089. const int nth = params->nth;
  6090. #ifdef GGML_USE_CLBLAST
  6091. if (src1->backend == GGML_BACKEND_GPU) {
  6092. // TODO: OpenCL kernel support full broadcast
  6093. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  6094. if (ith == 0) {
  6095. ggml_cl_add(src0, src1, dst);
  6096. }
  6097. return;
  6098. }
  6099. #endif
  6100. const int nr = ggml_nrows(src0);
  6101. GGML_TENSOR_BINARY_OP_LOCALS
  6102. GGML_ASSERT( nb0 == sizeof(float));
  6103. GGML_ASSERT(nb00 == sizeof(float));
  6104. // rows per thread
  6105. const int dr = (nr + nth - 1)/nth;
  6106. // row range for this thread
  6107. const int ir0 = dr*ith;
  6108. const int ir1 = MIN(ir0 + dr, nr);
  6109. if (nb10 == sizeof(float)) {
  6110. for (int ir = ir0; ir < ir1; ++ir) {
  6111. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6112. const int64_t i03 = ir/(ne02*ne01);
  6113. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6114. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6115. const int64_t i13 = i03 % ne13;
  6116. const int64_t i12 = i02 % ne12;
  6117. const int64_t i11 = i01 % ne11;
  6118. const int64_t nr0 = ne00 / ne10;
  6119. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6120. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6121. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6122. for (int64_t r = 0; r < nr0; ++r) {
  6123. #ifdef GGML_USE_ACCELERATE
  6124. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  6125. #else
  6126. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6127. #endif
  6128. }
  6129. }
  6130. } else {
  6131. // src1 is not contiguous
  6132. for (int ir = ir0; ir < ir1; ++ir) {
  6133. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6134. const int64_t i03 = ir/(ne02*ne01);
  6135. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6136. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6137. const int64_t i13 = i03 % ne13;
  6138. const int64_t i12 = i02 % ne12;
  6139. const int64_t i11 = i01 % ne11;
  6140. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6141. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6142. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  6143. const int64_t i10 = i0 % ne10;
  6144. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6145. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6146. }
  6147. }
  6148. }
  6149. }
  6150. static void ggml_compute_forward_add_f16_f32(
  6151. const struct ggml_compute_params * params,
  6152. struct ggml_tensor * dst) {
  6153. const struct ggml_tensor * src0 = dst->src[0];
  6154. const struct ggml_tensor * src1 = dst->src[1];
  6155. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6156. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6157. return;
  6158. }
  6159. const int ith = params->ith;
  6160. const int nth = params->nth;
  6161. const int nr = ggml_nrows(src0);
  6162. GGML_TENSOR_BINARY_OP_LOCALS
  6163. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6164. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6165. if (dst->type == GGML_TYPE_F32) {
  6166. GGML_ASSERT( nb0 == sizeof(float));
  6167. }
  6168. else {
  6169. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6170. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6171. }
  6172. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6173. // rows per thread
  6174. const int dr = (nr + nth - 1)/nth;
  6175. // row range for this thread
  6176. const int ir0 = dr*ith;
  6177. const int ir1 = MIN(ir0 + dr, nr);
  6178. if (nb10 == sizeof(float)) {
  6179. if (dst->type == GGML_TYPE_F16) {
  6180. for (int ir = ir0; ir < ir1; ++ir) {
  6181. // src0, src1 and dst are same shape => same indices
  6182. const int i3 = ir/(ne2*ne1);
  6183. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6184. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6185. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6186. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6187. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6188. for (int i = 0; i < ne0; i++) {
  6189. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6190. }
  6191. }
  6192. } else {
  6193. for (int ir = ir0; ir < ir1; ++ir) {
  6194. // src0, src1 and dst are same shape => same indices
  6195. const int i3 = ir/(ne2*ne1);
  6196. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6197. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6198. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6199. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6200. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6201. for (int i = 0; i < ne0; i++) {
  6202. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  6203. }
  6204. }
  6205. }
  6206. }
  6207. else {
  6208. // src1 is not contiguous
  6209. GGML_ASSERT(false);
  6210. }
  6211. }
  6212. static void ggml_compute_forward_add_f16_f16(
  6213. const struct ggml_compute_params * params,
  6214. struct ggml_tensor * dst) {
  6215. const struct ggml_tensor * src0 = dst->src[0];
  6216. const struct ggml_tensor * src1 = dst->src[1];
  6217. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6218. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6219. return;
  6220. }
  6221. const int ith = params->ith;
  6222. const int nth = params->nth;
  6223. const int nr = ggml_nrows(src0);
  6224. GGML_TENSOR_BINARY_OP_LOCALS
  6225. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6226. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6227. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6228. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6229. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6230. // rows per thread
  6231. const int dr = (nr + nth - 1)/nth;
  6232. // row range for this thread
  6233. const int ir0 = dr*ith;
  6234. const int ir1 = MIN(ir0 + dr, nr);
  6235. if (nb10 == sizeof(ggml_fp16_t)) {
  6236. for (int ir = ir0; ir < ir1; ++ir) {
  6237. // src0, src1 and dst are same shape => same indices
  6238. const int i3 = ir/(ne2*ne1);
  6239. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6240. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6241. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6242. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6243. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6244. for (int i = 0; i < ne0; i++) {
  6245. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6246. }
  6247. }
  6248. }
  6249. else {
  6250. // src1 is not contiguous
  6251. GGML_ASSERT(false);
  6252. }
  6253. }
  6254. static void ggml_compute_forward_add_q_f32(
  6255. const struct ggml_compute_params * params,
  6256. struct ggml_tensor * dst) {
  6257. const struct ggml_tensor * src0 = dst->src[0];
  6258. const struct ggml_tensor * src1 = dst->src[1];
  6259. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6260. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6261. return;
  6262. }
  6263. const int nr = ggml_nrows(src0);
  6264. GGML_TENSOR_BINARY_OP_LOCALS
  6265. const int ith = params->ith;
  6266. const int nth = params->nth;
  6267. const enum ggml_type type = src0->type;
  6268. const enum ggml_type dtype = dst->type;
  6269. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6270. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  6271. // we don't support permuted src0 or src1
  6272. GGML_ASSERT(nb00 == ggml_type_size(type));
  6273. GGML_ASSERT(nb10 == sizeof(float));
  6274. // dst cannot be transposed or permuted
  6275. GGML_ASSERT(nb0 <= nb1);
  6276. GGML_ASSERT(nb1 <= nb2);
  6277. GGML_ASSERT(nb2 <= nb3);
  6278. GGML_ASSERT(ggml_is_quantized(src0->type));
  6279. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6280. // rows per thread
  6281. const int dr = (nr + nth - 1)/nth;
  6282. // row range for this thread
  6283. const int ir0 = dr*ith;
  6284. const int ir1 = MIN(ir0 + dr, nr);
  6285. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6286. for (int ir = ir0; ir < ir1; ++ir) {
  6287. // src0 indices
  6288. const int i03 = ir/(ne02*ne01);
  6289. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6290. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6291. // src1 and dst are same shape as src0 => same indices
  6292. const int i13 = i03;
  6293. const int i12 = i02;
  6294. const int i11 = i01;
  6295. const int i3 = i03;
  6296. const int i2 = i02;
  6297. const int i1 = i01;
  6298. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6299. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6300. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6301. assert(ne00 % 32 == 0);
  6302. // unquantize row from src0 to temp buffer
  6303. dequantize_row_q(src0_row, wdata, ne00);
  6304. // add src1
  6305. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6306. // quantize row to dst
  6307. if (quantize_row_q != NULL) {
  6308. quantize_row_q(wdata, dst_row, ne00);
  6309. } else {
  6310. memcpy(dst_row, wdata, ne0*nb0);
  6311. }
  6312. }
  6313. }
  6314. static void ggml_compute_forward_add(
  6315. const struct ggml_compute_params * params,
  6316. struct ggml_tensor * dst) {
  6317. const struct ggml_tensor * src0 = dst->src[0];
  6318. const struct ggml_tensor * src1 = dst->src[1];
  6319. switch (src0->type) {
  6320. case GGML_TYPE_F32:
  6321. {
  6322. if (src1->type == GGML_TYPE_F32) {
  6323. ggml_compute_forward_add_f32(params, dst);
  6324. }
  6325. else {
  6326. GGML_ASSERT(false);
  6327. }
  6328. } break;
  6329. case GGML_TYPE_F16:
  6330. {
  6331. if (src1->type == GGML_TYPE_F16) {
  6332. ggml_compute_forward_add_f16_f16(params, dst);
  6333. }
  6334. else if (src1->type == GGML_TYPE_F32) {
  6335. ggml_compute_forward_add_f16_f32(params, dst);
  6336. }
  6337. else {
  6338. GGML_ASSERT(false);
  6339. }
  6340. } break;
  6341. case GGML_TYPE_Q4_0:
  6342. case GGML_TYPE_Q4_1:
  6343. case GGML_TYPE_Q5_0:
  6344. case GGML_TYPE_Q5_1:
  6345. case GGML_TYPE_Q8_0:
  6346. case GGML_TYPE_Q2_K:
  6347. case GGML_TYPE_Q3_K:
  6348. case GGML_TYPE_Q4_K:
  6349. case GGML_TYPE_Q5_K:
  6350. case GGML_TYPE_Q6_K:
  6351. case GGML_TYPE_IQ2_XXS:
  6352. case GGML_TYPE_IQ2_XS:
  6353. case GGML_TYPE_IQ3_XXS:
  6354. case GGML_TYPE_IQ1_S:
  6355. case GGML_TYPE_IQ4_NL:
  6356. case GGML_TYPE_IQ3_S:
  6357. {
  6358. ggml_compute_forward_add_q_f32(params, dst);
  6359. } break;
  6360. default:
  6361. {
  6362. GGML_ASSERT(false);
  6363. } break;
  6364. }
  6365. }
  6366. // ggml_compute_forward_add1
  6367. static void ggml_compute_forward_add1_f32(
  6368. const struct ggml_compute_params * params,
  6369. struct ggml_tensor * dst) {
  6370. const struct ggml_tensor * src0 = dst->src[0];
  6371. const struct ggml_tensor * src1 = dst->src[1];
  6372. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6373. GGML_ASSERT(ggml_is_scalar(src1));
  6374. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6375. return;
  6376. }
  6377. const int ith = params->ith;
  6378. const int nth = params->nth;
  6379. const int nr = ggml_nrows(src0);
  6380. GGML_TENSOR_UNARY_OP_LOCALS
  6381. GGML_ASSERT( nb0 == sizeof(float));
  6382. GGML_ASSERT(nb00 == sizeof(float));
  6383. // rows per thread
  6384. const int dr = (nr + nth - 1)/nth;
  6385. // row range for this thread
  6386. const int ir0 = dr*ith;
  6387. const int ir1 = MIN(ir0 + dr, nr);
  6388. for (int ir = ir0; ir < ir1; ++ir) {
  6389. // src0 and dst are same shape => same indices
  6390. const int i3 = ir/(ne2*ne1);
  6391. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6392. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6393. #ifdef GGML_USE_ACCELERATE
  6394. UNUSED(ggml_vec_add1_f32);
  6395. vDSP_vadd(
  6396. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6397. (float *) ((char *) src1->data), 0,
  6398. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6399. ne0);
  6400. #else
  6401. ggml_vec_add1_f32(ne0,
  6402. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6403. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6404. *(float *) src1->data);
  6405. #endif
  6406. }
  6407. }
  6408. static void ggml_compute_forward_add1_f16_f32(
  6409. const struct ggml_compute_params * params,
  6410. struct ggml_tensor * dst) {
  6411. const struct ggml_tensor * src0 = dst->src[0];
  6412. const struct ggml_tensor * src1 = dst->src[1];
  6413. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6414. GGML_ASSERT(ggml_is_scalar(src1));
  6415. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6416. return;
  6417. }
  6418. // scalar to add
  6419. const float v = *(float *) src1->data;
  6420. const int ith = params->ith;
  6421. const int nth = params->nth;
  6422. const int nr = ggml_nrows(src0);
  6423. GGML_TENSOR_UNARY_OP_LOCALS
  6424. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6425. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6426. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6427. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6428. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6429. // rows per thread
  6430. const int dr = (nr + nth - 1)/nth;
  6431. // row range for this thread
  6432. const int ir0 = dr*ith;
  6433. const int ir1 = MIN(ir0 + dr, nr);
  6434. for (int ir = ir0; ir < ir1; ++ir) {
  6435. // src0 and dst are same shape => same indices
  6436. const int i3 = ir/(ne2*ne1);
  6437. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6438. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6439. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6440. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6441. for (int i = 0; i < ne0; i++) {
  6442. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6443. }
  6444. }
  6445. }
  6446. static void ggml_compute_forward_add1_f16_f16(
  6447. const struct ggml_compute_params * params,
  6448. struct ggml_tensor * dst) {
  6449. const struct ggml_tensor * src0 = dst->src[0];
  6450. const struct ggml_tensor * src1 = dst->src[1];
  6451. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6452. GGML_ASSERT(ggml_is_scalar(src1));
  6453. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6454. return;
  6455. }
  6456. // scalar to add
  6457. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6458. const int ith = params->ith;
  6459. const int nth = params->nth;
  6460. const int nr = ggml_nrows(src0);
  6461. GGML_TENSOR_UNARY_OP_LOCALS
  6462. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6463. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6464. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6465. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6466. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6467. // rows per thread
  6468. const int dr = (nr + nth - 1)/nth;
  6469. // row range for this thread
  6470. const int ir0 = dr*ith;
  6471. const int ir1 = MIN(ir0 + dr, nr);
  6472. for (int ir = ir0; ir < ir1; ++ir) {
  6473. // src0 and dst are same shape => same indices
  6474. const int i3 = ir/(ne2*ne1);
  6475. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6476. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6477. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6478. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6479. for (int i = 0; i < ne0; i++) {
  6480. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6481. }
  6482. }
  6483. }
  6484. static void ggml_compute_forward_add1_q_f32(
  6485. const struct ggml_compute_params * params,
  6486. struct ggml_tensor * dst) {
  6487. const struct ggml_tensor * src0 = dst->src[0];
  6488. const struct ggml_tensor * src1 = dst->src[1];
  6489. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6490. GGML_ASSERT(ggml_is_scalar(src1));
  6491. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6492. return;
  6493. }
  6494. // scalar to add
  6495. const float v = *(float *) src1->data;
  6496. const int ith = params->ith;
  6497. const int nth = params->nth;
  6498. const int nr = ggml_nrows(src0);
  6499. GGML_TENSOR_UNARY_OP_LOCALS
  6500. const enum ggml_type type = src0->type;
  6501. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6502. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6503. // we don't support permuted src0
  6504. GGML_ASSERT(nb00 == ggml_type_size(type));
  6505. // dst cannot be transposed or permuted
  6506. GGML_ASSERT(nb0 <= nb1);
  6507. GGML_ASSERT(nb1 <= nb2);
  6508. GGML_ASSERT(nb2 <= nb3);
  6509. GGML_ASSERT(ggml_is_quantized(src0->type));
  6510. GGML_ASSERT(dst->type == src0->type);
  6511. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6512. // rows per thread
  6513. const int dr = (nr + nth - 1)/nth;
  6514. // row range for this thread
  6515. const int ir0 = dr*ith;
  6516. const int ir1 = MIN(ir0 + dr, nr);
  6517. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6518. for (int ir = ir0; ir < ir1; ++ir) {
  6519. // src0 and dst are same shape => same indices
  6520. const int i3 = ir/(ne2*ne1);
  6521. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6522. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6523. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6524. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6525. assert(ne0 % 32 == 0);
  6526. // unquantize row from src0 to temp buffer
  6527. dequantize_row_q(src0_row, wdata, ne0);
  6528. // add src1
  6529. ggml_vec_acc1_f32(ne0, wdata, v);
  6530. // quantize row to dst
  6531. quantize_row_q(wdata, dst_row, ne0);
  6532. }
  6533. }
  6534. static void ggml_compute_forward_add1(
  6535. const struct ggml_compute_params * params,
  6536. struct ggml_tensor * dst) {
  6537. const struct ggml_tensor * src0 = dst->src[0];
  6538. const struct ggml_tensor * src1 = dst->src[1];
  6539. switch (src0->type) {
  6540. case GGML_TYPE_F32:
  6541. {
  6542. ggml_compute_forward_add1_f32(params, dst);
  6543. } break;
  6544. case GGML_TYPE_F16:
  6545. {
  6546. if (src1->type == GGML_TYPE_F16) {
  6547. ggml_compute_forward_add1_f16_f16(params, dst);
  6548. }
  6549. else if (src1->type == GGML_TYPE_F32) {
  6550. ggml_compute_forward_add1_f16_f32(params, dst);
  6551. }
  6552. else {
  6553. GGML_ASSERT(false);
  6554. }
  6555. } break;
  6556. case GGML_TYPE_Q4_0:
  6557. case GGML_TYPE_Q4_1:
  6558. case GGML_TYPE_Q5_0:
  6559. case GGML_TYPE_Q5_1:
  6560. case GGML_TYPE_Q8_0:
  6561. case GGML_TYPE_Q8_1:
  6562. case GGML_TYPE_Q2_K:
  6563. case GGML_TYPE_Q3_K:
  6564. case GGML_TYPE_Q4_K:
  6565. case GGML_TYPE_Q5_K:
  6566. case GGML_TYPE_Q6_K:
  6567. case GGML_TYPE_IQ2_XXS:
  6568. case GGML_TYPE_IQ2_XS:
  6569. case GGML_TYPE_IQ3_XXS:
  6570. case GGML_TYPE_IQ1_S:
  6571. case GGML_TYPE_IQ4_NL:
  6572. case GGML_TYPE_IQ3_S:
  6573. {
  6574. ggml_compute_forward_add1_q_f32(params, dst);
  6575. } break;
  6576. default:
  6577. {
  6578. GGML_ASSERT(false);
  6579. } break;
  6580. }
  6581. }
  6582. // ggml_compute_forward_acc
  6583. static void ggml_compute_forward_acc_f32(
  6584. const struct ggml_compute_params * params,
  6585. struct ggml_tensor * dst) {
  6586. const struct ggml_tensor * src0 = dst->src[0];
  6587. const struct ggml_tensor * src1 = dst->src[1];
  6588. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6589. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6590. // view src0 and dst with these strides and data offset inbytes during acc
  6591. // nb0 is implicitly element_size because src0 and dst are contiguous
  6592. size_t nb1 = ((int32_t *) dst->op_params)[0];
  6593. size_t nb2 = ((int32_t *) dst->op_params)[1];
  6594. size_t nb3 = ((int32_t *) dst->op_params)[2];
  6595. size_t offset = ((int32_t *) dst->op_params)[3];
  6596. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  6597. if (!inplace && (params->type == GGML_TASK_INIT)) {
  6598. if (params->ith != 0) {
  6599. return;
  6600. }
  6601. // memcpy needs to be synchronized across threads to avoid race conditions.
  6602. // => do it in INIT phase
  6603. memcpy(
  6604. ((char *) dst->data),
  6605. ((char *) src0->data),
  6606. ggml_nbytes(dst));
  6607. }
  6608. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6609. return;
  6610. }
  6611. const int ith = params->ith;
  6612. const int nth = params->nth;
  6613. const int nr = ggml_nrows(src1);
  6614. const int nc = src1->ne[0];
  6615. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  6616. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  6617. // src0 and dst as viewed during acc
  6618. const size_t nb0 = ggml_element_size(src0);
  6619. const size_t nb00 = nb0;
  6620. const size_t nb01 = nb1;
  6621. const size_t nb02 = nb2;
  6622. const size_t nb03 = nb3;
  6623. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6624. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6625. GGML_ASSERT(nb10 == sizeof(float));
  6626. // rows per thread
  6627. const int dr = (nr + nth - 1)/nth;
  6628. // row range for this thread
  6629. const int ir0 = dr*ith;
  6630. const int ir1 = MIN(ir0 + dr, nr);
  6631. for (int ir = ir0; ir < ir1; ++ir) {
  6632. // src0 and dst are viewed with shape of src1 and offset
  6633. // => same indices
  6634. const int i3 = ir/(ne12*ne11);
  6635. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6636. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6637. #ifdef GGML_USE_ACCELERATE
  6638. vDSP_vadd(
  6639. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6640. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6641. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6642. #else
  6643. ggml_vec_add_f32(nc,
  6644. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6645. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6646. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6647. #endif
  6648. }
  6649. }
  6650. static void ggml_compute_forward_acc(
  6651. const struct ggml_compute_params * params,
  6652. struct ggml_tensor * dst) {
  6653. const struct ggml_tensor * src0 = dst->src[0];
  6654. switch (src0->type) {
  6655. case GGML_TYPE_F32:
  6656. {
  6657. ggml_compute_forward_acc_f32(params, dst);
  6658. } break;
  6659. case GGML_TYPE_F16:
  6660. case GGML_TYPE_Q4_0:
  6661. case GGML_TYPE_Q4_1:
  6662. case GGML_TYPE_Q5_0:
  6663. case GGML_TYPE_Q5_1:
  6664. case GGML_TYPE_Q8_0:
  6665. case GGML_TYPE_Q8_1:
  6666. case GGML_TYPE_Q2_K:
  6667. case GGML_TYPE_Q3_K:
  6668. case GGML_TYPE_Q4_K:
  6669. case GGML_TYPE_Q5_K:
  6670. case GGML_TYPE_Q6_K:
  6671. case GGML_TYPE_IQ2_XXS:
  6672. case GGML_TYPE_IQ2_XS:
  6673. case GGML_TYPE_IQ3_XXS:
  6674. case GGML_TYPE_IQ1_S:
  6675. case GGML_TYPE_IQ4_NL:
  6676. case GGML_TYPE_IQ3_S:
  6677. default:
  6678. {
  6679. GGML_ASSERT(false);
  6680. } break;
  6681. }
  6682. }
  6683. // ggml_compute_forward_sub
  6684. static void ggml_compute_forward_sub_f32(
  6685. const struct ggml_compute_params * params,
  6686. struct ggml_tensor * dst) {
  6687. const struct ggml_tensor * src0 = dst->src[0];
  6688. const struct ggml_tensor * src1 = dst->src[1];
  6689. assert(params->ith == 0);
  6690. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6691. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6692. return;
  6693. }
  6694. const int nr = ggml_nrows(src0);
  6695. GGML_TENSOR_BINARY_OP_LOCALS
  6696. GGML_ASSERT( nb0 == sizeof(float));
  6697. GGML_ASSERT(nb00 == sizeof(float));
  6698. if (nb10 == sizeof(float)) {
  6699. for (int ir = 0; ir < nr; ++ir) {
  6700. // src0, src1 and dst are same shape => same indices
  6701. const int i3 = ir/(ne2*ne1);
  6702. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6703. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6704. #ifdef GGML_USE_ACCELERATE
  6705. vDSP_vsub(
  6706. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6707. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6708. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6709. ne0);
  6710. #else
  6711. ggml_vec_sub_f32(ne0,
  6712. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6713. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6714. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6715. #endif
  6716. // }
  6717. // }
  6718. }
  6719. } else {
  6720. // src1 is not contiguous
  6721. for (int ir = 0; ir < nr; ++ir) {
  6722. // src0, src1 and dst are same shape => same indices
  6723. const int i3 = ir/(ne2*ne1);
  6724. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6725. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6726. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6727. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6728. for (int i0 = 0; i0 < ne0; i0++) {
  6729. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6730. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6731. }
  6732. }
  6733. }
  6734. }
  6735. static void ggml_compute_forward_sub(
  6736. const struct ggml_compute_params * params,
  6737. struct ggml_tensor * dst) {
  6738. const struct ggml_tensor * src0 = dst->src[0];
  6739. switch (src0->type) {
  6740. case GGML_TYPE_F32:
  6741. {
  6742. ggml_compute_forward_sub_f32(params, dst);
  6743. } break;
  6744. default:
  6745. {
  6746. GGML_ASSERT(false);
  6747. } break;
  6748. }
  6749. }
  6750. // ggml_compute_forward_mul
  6751. static void ggml_compute_forward_mul_f32(
  6752. const struct ggml_compute_params * params,
  6753. struct ggml_tensor * dst) {
  6754. const struct ggml_tensor * src0 = dst->src[0];
  6755. const struct ggml_tensor * src1 = dst->src[1];
  6756. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6757. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6758. return;
  6759. }
  6760. const int ith = params->ith;
  6761. const int nth = params->nth;
  6762. #if defined(GGML_USE_CLBLAST)
  6763. if (src1->backend == GGML_BACKEND_GPU) {
  6764. // TODO: OpenCL kernel support full broadcast
  6765. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  6766. if (ith == 0) {
  6767. ggml_cl_mul(src0, src1, dst);
  6768. }
  6769. return;
  6770. }
  6771. #endif
  6772. const int64_t nr = ggml_nrows(src0);
  6773. GGML_TENSOR_BINARY_OP_LOCALS
  6774. GGML_ASSERT( nb0 == sizeof(float));
  6775. GGML_ASSERT(nb00 == sizeof(float));
  6776. if (nb10 == sizeof(float)) {
  6777. for (int64_t ir = ith; ir < nr; ir += nth) {
  6778. // src0 and dst are same shape => same indices
  6779. const int64_t i03 = ir/(ne02*ne01);
  6780. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6781. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6782. const int64_t i13 = i03 % ne13;
  6783. const int64_t i12 = i02 % ne12;
  6784. const int64_t i11 = i01 % ne11;
  6785. const int64_t nr0 = ne00 / ne10;
  6786. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6787. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6788. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6789. for (int64_t r = 0 ; r < nr0; ++r) {
  6790. #ifdef GGML_USE_ACCELERATE
  6791. UNUSED(ggml_vec_mul_f32);
  6792. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  6793. #else
  6794. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6795. #endif
  6796. }
  6797. }
  6798. } else {
  6799. // src1 is not contiguous
  6800. for (int64_t ir = ith; ir < nr; ir += nth) {
  6801. // src0 and dst are same shape => same indices
  6802. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6803. const int64_t i03 = ir/(ne02*ne01);
  6804. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6805. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6806. const int64_t i13 = i03 % ne13;
  6807. const int64_t i12 = i02 % ne12;
  6808. const int64_t i11 = i01 % ne11;
  6809. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6810. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6811. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6812. const int64_t i10 = i0 % ne10;
  6813. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6814. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  6815. }
  6816. }
  6817. }
  6818. }
  6819. static void ggml_compute_forward_mul(
  6820. const struct ggml_compute_params * params,
  6821. struct ggml_tensor * dst) {
  6822. const struct ggml_tensor * src0 = dst->src[0];
  6823. const struct ggml_tensor * src1 = dst->src[1];
  6824. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  6825. switch (src0->type) {
  6826. case GGML_TYPE_F32:
  6827. {
  6828. ggml_compute_forward_mul_f32(params, dst);
  6829. } break;
  6830. default:
  6831. {
  6832. GGML_ASSERT(false);
  6833. } break;
  6834. }
  6835. }
  6836. // ggml_compute_forward_div
  6837. static void ggml_compute_forward_div_f32(
  6838. const struct ggml_compute_params * params,
  6839. struct ggml_tensor * dst) {
  6840. const struct ggml_tensor * src0 = dst->src[0];
  6841. const struct ggml_tensor * src1 = dst->src[1];
  6842. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6843. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6844. return;
  6845. }
  6846. const int ith = params->ith;
  6847. const int nth = params->nth;
  6848. const int64_t nr = ggml_nrows(src0);
  6849. GGML_TENSOR_BINARY_OP_LOCALS
  6850. GGML_ASSERT( nb0 == sizeof(float));
  6851. GGML_ASSERT(nb00 == sizeof(float));
  6852. if (nb10 == sizeof(float)) {
  6853. for (int64_t ir = ith; ir < nr; ir += nth) {
  6854. // src0 and dst are same shape => same indices
  6855. const int64_t i03 = ir/(ne02*ne01);
  6856. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6857. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6858. const int64_t i13 = i03 % ne13;
  6859. const int64_t i12 = i02 % ne12;
  6860. const int64_t i11 = i01 % ne11;
  6861. const int64_t nr0 = ne00 / ne10;
  6862. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6863. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6864. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6865. for (int64_t r = 0; r < nr0; ++r) {
  6866. #ifdef GGML_USE_ACCELERATE
  6867. UNUSED(ggml_vec_div_f32);
  6868. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  6869. #else
  6870. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6871. #endif
  6872. }
  6873. }
  6874. } else {
  6875. // src1 is not contiguous
  6876. for (int64_t ir = ith; ir < nr; ir += nth) {
  6877. // src0 and dst are same shape => same indices
  6878. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6879. const int64_t i03 = ir/(ne02*ne01);
  6880. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6881. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6882. const int64_t i13 = i03 % ne13;
  6883. const int64_t i12 = i02 % ne12;
  6884. const int64_t i11 = i01 % ne11;
  6885. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6886. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6887. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6888. const int64_t i10 = i0 % ne10;
  6889. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6890. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  6891. }
  6892. }
  6893. }
  6894. }
  6895. static void ggml_compute_forward_div(
  6896. const struct ggml_compute_params * params,
  6897. struct ggml_tensor * dst) {
  6898. const struct ggml_tensor * src0 = dst->src[0];
  6899. switch (src0->type) {
  6900. case GGML_TYPE_F32:
  6901. {
  6902. ggml_compute_forward_div_f32(params, dst);
  6903. } break;
  6904. default:
  6905. {
  6906. GGML_ASSERT(false);
  6907. } break;
  6908. }
  6909. }
  6910. // ggml_compute_forward_sqr
  6911. static void ggml_compute_forward_sqr_f32(
  6912. const struct ggml_compute_params * params,
  6913. struct ggml_tensor * dst) {
  6914. const struct ggml_tensor * src0 = dst->src[0];
  6915. assert(params->ith == 0);
  6916. assert(ggml_are_same_shape(src0, dst));
  6917. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6918. return;
  6919. }
  6920. const int n = ggml_nrows(src0);
  6921. const int nc = src0->ne[0];
  6922. assert( dst->nb[0] == sizeof(float));
  6923. assert(src0->nb[0] == sizeof(float));
  6924. for (int i = 0; i < n; i++) {
  6925. ggml_vec_sqr_f32(nc,
  6926. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6927. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6928. }
  6929. }
  6930. static void ggml_compute_forward_sqr(
  6931. const struct ggml_compute_params * params,
  6932. struct ggml_tensor * dst) {
  6933. const struct ggml_tensor * src0 = dst->src[0];
  6934. switch (src0->type) {
  6935. case GGML_TYPE_F32:
  6936. {
  6937. ggml_compute_forward_sqr_f32(params, dst);
  6938. } break;
  6939. default:
  6940. {
  6941. GGML_ASSERT(false);
  6942. } break;
  6943. }
  6944. }
  6945. // ggml_compute_forward_sqrt
  6946. static void ggml_compute_forward_sqrt_f32(
  6947. const struct ggml_compute_params * params,
  6948. struct ggml_tensor * dst) {
  6949. const struct ggml_tensor * src0 = dst->src[0];
  6950. assert(params->ith == 0);
  6951. assert(ggml_are_same_shape(src0, dst));
  6952. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6953. return;
  6954. }
  6955. const int n = ggml_nrows(src0);
  6956. const int nc = src0->ne[0];
  6957. assert( dst->nb[0] == sizeof(float));
  6958. assert(src0->nb[0] == sizeof(float));
  6959. for (int i = 0; i < n; i++) {
  6960. ggml_vec_sqrt_f32(nc,
  6961. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6962. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6963. }
  6964. }
  6965. static void ggml_compute_forward_sqrt(
  6966. const struct ggml_compute_params * params,
  6967. struct ggml_tensor * dst) {
  6968. const struct ggml_tensor * src0 = dst->src[0];
  6969. switch (src0->type) {
  6970. case GGML_TYPE_F32:
  6971. {
  6972. ggml_compute_forward_sqrt_f32(params, dst);
  6973. } break;
  6974. default:
  6975. {
  6976. GGML_ASSERT(false);
  6977. } break;
  6978. }
  6979. }
  6980. // ggml_compute_forward_log
  6981. static void ggml_compute_forward_log_f32(
  6982. const struct ggml_compute_params * params,
  6983. struct ggml_tensor * dst) {
  6984. const struct ggml_tensor * src0 = dst->src[0];
  6985. GGML_ASSERT(params->ith == 0);
  6986. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6987. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6988. return;
  6989. }
  6990. const int n = ggml_nrows(src0);
  6991. const int nc = src0->ne[0];
  6992. GGML_ASSERT( dst->nb[0] == sizeof(float));
  6993. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6994. for (int i = 0; i < n; i++) {
  6995. ggml_vec_log_f32(nc,
  6996. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6997. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6998. }
  6999. }
  7000. static void ggml_compute_forward_log(
  7001. const struct ggml_compute_params * params,
  7002. struct ggml_tensor * dst) {
  7003. const struct ggml_tensor * src0 = dst->src[0];
  7004. switch (src0->type) {
  7005. case GGML_TYPE_F32:
  7006. {
  7007. ggml_compute_forward_log_f32(params, dst);
  7008. } break;
  7009. default:
  7010. {
  7011. GGML_ASSERT(false);
  7012. } break;
  7013. }
  7014. }
  7015. // ggml_compute_forward_sum
  7016. static void ggml_compute_forward_sum_f32(
  7017. const struct ggml_compute_params * params,
  7018. struct ggml_tensor * dst) {
  7019. const struct ggml_tensor * src0 = dst->src[0];
  7020. assert(params->ith == 0);
  7021. assert(ggml_is_scalar(dst));
  7022. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7023. return;
  7024. }
  7025. assert(ggml_is_scalar(dst));
  7026. assert(src0->nb[0] == sizeof(float));
  7027. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  7028. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  7029. ggml_float sum = 0;
  7030. ggml_float row_sum = 0;
  7031. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7032. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7033. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7034. ggml_vec_sum_f32_ggf(ne00,
  7035. &row_sum,
  7036. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7037. sum += row_sum;
  7038. }
  7039. }
  7040. }
  7041. ((float *) dst->data)[0] = sum;
  7042. }
  7043. static void ggml_compute_forward_sum_f16(
  7044. const struct ggml_compute_params * params,
  7045. struct ggml_tensor * dst) {
  7046. const struct ggml_tensor * src0 = dst->src[0];
  7047. assert(params->ith == 0);
  7048. assert(ggml_is_scalar(dst));
  7049. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7050. return;
  7051. }
  7052. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  7053. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  7054. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  7055. float sum = 0;
  7056. float row_sum = 0;
  7057. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7058. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7059. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7060. ggml_vec_sum_f16_ggf(ne00,
  7061. &row_sum,
  7062. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  7063. sum += row_sum;
  7064. }
  7065. }
  7066. }
  7067. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  7068. }
  7069. static void ggml_compute_forward_sum(
  7070. const struct ggml_compute_params * params,
  7071. struct ggml_tensor * dst) {
  7072. const struct ggml_tensor * src0 = dst->src[0];
  7073. switch (src0->type) {
  7074. case GGML_TYPE_F32:
  7075. {
  7076. ggml_compute_forward_sum_f32(params, dst);
  7077. } break;
  7078. case GGML_TYPE_F16:
  7079. {
  7080. ggml_compute_forward_sum_f16(params, dst);
  7081. } break;
  7082. default:
  7083. {
  7084. GGML_ASSERT(false);
  7085. } break;
  7086. }
  7087. }
  7088. // ggml_compute_forward_sum_rows
  7089. static void ggml_compute_forward_sum_rows_f32(
  7090. const struct ggml_compute_params * params,
  7091. struct ggml_tensor * dst) {
  7092. const struct ggml_tensor * src0 = dst->src[0];
  7093. GGML_ASSERT(params->ith == 0);
  7094. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7095. return;
  7096. }
  7097. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7098. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7099. GGML_TENSOR_UNARY_OP_LOCALS
  7100. GGML_ASSERT(ne0 == 1);
  7101. GGML_ASSERT(ne1 == ne01);
  7102. GGML_ASSERT(ne2 == ne02);
  7103. GGML_ASSERT(ne3 == ne03);
  7104. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7105. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7106. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7107. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7108. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7109. float row_sum = 0;
  7110. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7111. dst_row[0] = row_sum;
  7112. }
  7113. }
  7114. }
  7115. }
  7116. static void ggml_compute_forward_sum_rows(
  7117. const struct ggml_compute_params * params,
  7118. struct ggml_tensor * dst) {
  7119. const struct ggml_tensor * src0 = dst->src[0];
  7120. switch (src0->type) {
  7121. case GGML_TYPE_F32:
  7122. {
  7123. ggml_compute_forward_sum_rows_f32(params, dst);
  7124. } break;
  7125. default:
  7126. {
  7127. GGML_ASSERT(false);
  7128. } break;
  7129. }
  7130. }
  7131. // ggml_compute_forward_mean
  7132. static void ggml_compute_forward_mean_f32(
  7133. const struct ggml_compute_params * params,
  7134. struct ggml_tensor * dst) {
  7135. const struct ggml_tensor * src0 = dst->src[0];
  7136. assert(params->ith == 0);
  7137. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7138. return;
  7139. }
  7140. assert(src0->nb[0] == sizeof(float));
  7141. GGML_TENSOR_UNARY_OP_LOCALS
  7142. assert(ne0 == 1);
  7143. assert(ne1 == ne01);
  7144. assert(ne2 == ne02);
  7145. assert(ne3 == ne03);
  7146. UNUSED(ne0);
  7147. UNUSED(ne1);
  7148. UNUSED(ne2);
  7149. UNUSED(ne3);
  7150. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7151. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7152. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7153. ggml_vec_sum_f32(ne00,
  7154. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7155. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7156. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7157. }
  7158. }
  7159. }
  7160. }
  7161. static void ggml_compute_forward_mean(
  7162. const struct ggml_compute_params * params,
  7163. struct ggml_tensor * dst) {
  7164. const struct ggml_tensor * src0 = dst->src[0];
  7165. switch (src0->type) {
  7166. case GGML_TYPE_F32:
  7167. {
  7168. ggml_compute_forward_mean_f32(params, dst);
  7169. } break;
  7170. default:
  7171. {
  7172. GGML_ASSERT(false);
  7173. } break;
  7174. }
  7175. }
  7176. // ggml_compute_forward_argmax
  7177. static void ggml_compute_forward_argmax_f32(
  7178. const struct ggml_compute_params * params,
  7179. struct ggml_tensor * dst) {
  7180. const struct ggml_tensor * src0 = dst->src[0];
  7181. assert(params->ith == 0);
  7182. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7183. return;
  7184. }
  7185. assert(src0->nb[0] == sizeof(float));
  7186. assert(dst->nb[0] == sizeof(float));
  7187. const int64_t ne00 = src0->ne[0];
  7188. const int64_t ne01 = src0->ne[1];
  7189. const size_t nb01 = src0->nb[1];
  7190. const size_t nb0 = dst->nb[0];
  7191. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7192. float * src = (float *) ((char *) src0->data + i1*nb01);
  7193. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  7194. int v = 0;
  7195. ggml_vec_argmax_f32(ne00, &v, src);
  7196. dst_[0] = v;
  7197. }
  7198. }
  7199. static void ggml_compute_forward_argmax(
  7200. const struct ggml_compute_params * params,
  7201. struct ggml_tensor * dst) {
  7202. const struct ggml_tensor * src0 = dst->src[0];
  7203. switch (src0->type) {
  7204. case GGML_TYPE_F32:
  7205. {
  7206. ggml_compute_forward_argmax_f32(params, dst);
  7207. } break;
  7208. default:
  7209. {
  7210. GGML_ASSERT(false);
  7211. } break;
  7212. }
  7213. }
  7214. // ggml_compute_forward_repeat
  7215. static void ggml_compute_forward_repeat_f32(
  7216. const struct ggml_compute_params * params,
  7217. struct ggml_tensor * dst) {
  7218. const struct ggml_tensor * src0 = dst->src[0];
  7219. GGML_ASSERT(params->ith == 0);
  7220. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7221. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7222. return;
  7223. }
  7224. GGML_TENSOR_UNARY_OP_LOCALS
  7225. // guaranteed to be an integer due to the check in ggml_can_repeat
  7226. const int nr0 = (int)(ne0/ne00);
  7227. const int nr1 = (int)(ne1/ne01);
  7228. const int nr2 = (int)(ne2/ne02);
  7229. const int nr3 = (int)(ne3/ne03);
  7230. // TODO: support for transposed / permuted tensors
  7231. GGML_ASSERT(nb0 == sizeof(float));
  7232. GGML_ASSERT(nb00 == sizeof(float));
  7233. // TODO: maybe this is not optimal?
  7234. for (int i3 = 0; i3 < nr3; i3++) {
  7235. for (int k3 = 0; k3 < ne03; k3++) {
  7236. for (int i2 = 0; i2 < nr2; i2++) {
  7237. for (int k2 = 0; k2 < ne02; k2++) {
  7238. for (int i1 = 0; i1 < nr1; i1++) {
  7239. for (int k1 = 0; k1 < ne01; k1++) {
  7240. for (int i0 = 0; i0 < nr0; i0++) {
  7241. ggml_vec_cpy_f32(ne00,
  7242. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7243. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7244. }
  7245. }
  7246. }
  7247. }
  7248. }
  7249. }
  7250. }
  7251. }
  7252. static void ggml_compute_forward_repeat_f16(
  7253. const struct ggml_compute_params * params,
  7254. struct ggml_tensor * dst) {
  7255. const struct ggml_tensor * src0 = dst->src[0];
  7256. GGML_ASSERT(params->ith == 0);
  7257. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7258. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7259. return;
  7260. }
  7261. GGML_TENSOR_UNARY_OP_LOCALS
  7262. // guaranteed to be an integer due to the check in ggml_can_repeat
  7263. const int nr0 = (int)(ne0/ne00);
  7264. const int nr1 = (int)(ne1/ne01);
  7265. const int nr2 = (int)(ne2/ne02);
  7266. const int nr3 = (int)(ne3/ne03);
  7267. // TODO: support for transposed / permuted tensors
  7268. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  7269. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7270. // TODO: maybe this is not optimal?
  7271. for (int i3 = 0; i3 < nr3; i3++) {
  7272. for (int k3 = 0; k3 < ne03; k3++) {
  7273. for (int i2 = 0; i2 < nr2; i2++) {
  7274. for (int k2 = 0; k2 < ne02; k2++) {
  7275. for (int i1 = 0; i1 < nr1; i1++) {
  7276. for (int k1 = 0; k1 < ne01; k1++) {
  7277. for (int i0 = 0; i0 < nr0; i0++) {
  7278. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  7279. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  7280. // ggml_vec_cpy_f16(ne00, y, x)
  7281. for (int i = 0; i < ne00; ++i) {
  7282. y[i] = x[i];
  7283. }
  7284. }
  7285. }
  7286. }
  7287. }
  7288. }
  7289. }
  7290. }
  7291. }
  7292. static void ggml_compute_forward_repeat(
  7293. const struct ggml_compute_params * params,
  7294. struct ggml_tensor * dst) {
  7295. const struct ggml_tensor * src0 = dst->src[0];
  7296. switch (src0->type) {
  7297. case GGML_TYPE_F16:
  7298. case GGML_TYPE_I16:
  7299. {
  7300. ggml_compute_forward_repeat_f16(params, dst);
  7301. } break;
  7302. case GGML_TYPE_F32:
  7303. case GGML_TYPE_I32:
  7304. {
  7305. ggml_compute_forward_repeat_f32(params, dst);
  7306. } break;
  7307. default:
  7308. {
  7309. GGML_ASSERT(false);
  7310. } break;
  7311. }
  7312. }
  7313. // ggml_compute_forward_repeat_back
  7314. static void ggml_compute_forward_repeat_back_f32(
  7315. const struct ggml_compute_params * params,
  7316. struct ggml_tensor * dst) {
  7317. const struct ggml_tensor * src0 = dst->src[0];
  7318. GGML_ASSERT(params->ith == 0);
  7319. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7320. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7321. return;
  7322. }
  7323. GGML_TENSOR_UNARY_OP_LOCALS
  7324. // guaranteed to be an integer due to the check in ggml_can_repeat
  7325. const int nr0 = (int)(ne00/ne0);
  7326. const int nr1 = (int)(ne01/ne1);
  7327. const int nr2 = (int)(ne02/ne2);
  7328. const int nr3 = (int)(ne03/ne3);
  7329. // TODO: support for transposed / permuted tensors
  7330. GGML_ASSERT(nb0 == sizeof(float));
  7331. GGML_ASSERT(nb00 == sizeof(float));
  7332. if (ggml_is_contiguous(dst)) {
  7333. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7334. } else {
  7335. for (int k3 = 0; k3 < ne3; k3++) {
  7336. for (int k2 = 0; k2 < ne2; k2++) {
  7337. for (int k1 = 0; k1 < ne1; k1++) {
  7338. ggml_vec_set_f32(ne0,
  7339. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7340. 0);
  7341. }
  7342. }
  7343. }
  7344. }
  7345. // TODO: maybe this is not optimal?
  7346. for (int i3 = 0; i3 < nr3; i3++) {
  7347. for (int k3 = 0; k3 < ne3; k3++) {
  7348. for (int i2 = 0; i2 < nr2; i2++) {
  7349. for (int k2 = 0; k2 < ne2; k2++) {
  7350. for (int i1 = 0; i1 < nr1; i1++) {
  7351. for (int k1 = 0; k1 < ne1; k1++) {
  7352. for (int i0 = 0; i0 < nr0; i0++) {
  7353. ggml_vec_acc_f32(ne0,
  7354. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7355. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7356. }
  7357. }
  7358. }
  7359. }
  7360. }
  7361. }
  7362. }
  7363. }
  7364. static void ggml_compute_forward_repeat_back(
  7365. const struct ggml_compute_params * params,
  7366. struct ggml_tensor * dst) {
  7367. const struct ggml_tensor * src0 = dst->src[0];
  7368. switch (src0->type) {
  7369. case GGML_TYPE_F32:
  7370. {
  7371. ggml_compute_forward_repeat_back_f32(params, dst);
  7372. } break;
  7373. default:
  7374. {
  7375. GGML_ASSERT(false);
  7376. } break;
  7377. }
  7378. }
  7379. // ggml_compute_forward_concat
  7380. static void ggml_compute_forward_concat_f32(
  7381. const struct ggml_compute_params * params,
  7382. struct ggml_tensor * dst) {
  7383. const struct ggml_tensor * src0 = dst->src[0];
  7384. const struct ggml_tensor * src1 = dst->src[1];
  7385. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7386. return;
  7387. }
  7388. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7389. const int ith = params->ith;
  7390. const int nth = params->nth;
  7391. GGML_TENSOR_BINARY_OP_LOCALS
  7392. // TODO: support for transposed / permuted tensors
  7393. GGML_ASSERT(nb0 == sizeof(float));
  7394. GGML_ASSERT(nb00 == sizeof(float));
  7395. GGML_ASSERT(nb10 == sizeof(float));
  7396. for (int i3 = 0; i3 < ne3; i3++) {
  7397. for (int i2 = ith; i2 < ne2; i2 += nth) {
  7398. if (i2 < ne02) { // src0
  7399. for (int i1 = 0; i1 < ne1; i1++) {
  7400. for (int i0 = 0; i0 < ne0; i0++) {
  7401. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  7402. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7403. *y = *x;
  7404. }
  7405. }
  7406. } // src1
  7407. else {
  7408. for (int i1 = 0; i1 < ne1; i1++) {
  7409. for (int i0 = 0; i0 < ne0; i0++) {
  7410. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  7411. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7412. *y = *x;
  7413. }
  7414. }
  7415. }
  7416. }
  7417. }
  7418. }
  7419. static void ggml_compute_forward_concat(
  7420. const struct ggml_compute_params* params,
  7421. struct ggml_tensor* dst) {
  7422. const struct ggml_tensor * src0 = dst->src[0];
  7423. switch (src0->type) {
  7424. case GGML_TYPE_F32:
  7425. case GGML_TYPE_I32:
  7426. {
  7427. ggml_compute_forward_concat_f32(params, dst);
  7428. } break;
  7429. default:
  7430. {
  7431. GGML_ASSERT(false);
  7432. } break;
  7433. }
  7434. }
  7435. // ggml_compute_forward_abs
  7436. static void ggml_compute_forward_abs_f32(
  7437. const struct ggml_compute_params * params,
  7438. struct ggml_tensor * dst) {
  7439. const struct ggml_tensor * src0 = dst->src[0];
  7440. assert(params->ith == 0);
  7441. assert(ggml_are_same_shape(src0, dst));
  7442. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7443. return;
  7444. }
  7445. const int n = ggml_nrows(src0);
  7446. const int nc = src0->ne[0];
  7447. assert(dst->nb[0] == sizeof(float));
  7448. assert(src0->nb[0] == sizeof(float));
  7449. for (int i = 0; i < n; i++) {
  7450. ggml_vec_abs_f32(nc,
  7451. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7452. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7453. }
  7454. }
  7455. static void ggml_compute_forward_abs(
  7456. const struct ggml_compute_params * params,
  7457. struct ggml_tensor * dst) {
  7458. const struct ggml_tensor * src0 = dst->src[0];
  7459. switch (src0->type) {
  7460. case GGML_TYPE_F32:
  7461. {
  7462. ggml_compute_forward_abs_f32(params, dst);
  7463. } break;
  7464. default:
  7465. {
  7466. GGML_ASSERT(false);
  7467. } break;
  7468. }
  7469. }
  7470. // ggml_compute_forward_sgn
  7471. static void ggml_compute_forward_sgn_f32(
  7472. const struct ggml_compute_params * params,
  7473. struct ggml_tensor * dst) {
  7474. const struct ggml_tensor * src0 = dst->src[0];
  7475. assert(params->ith == 0);
  7476. assert(ggml_are_same_shape(src0, dst));
  7477. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7478. return;
  7479. }
  7480. const int n = ggml_nrows(src0);
  7481. const int nc = src0->ne[0];
  7482. assert(dst->nb[0] == sizeof(float));
  7483. assert(src0->nb[0] == sizeof(float));
  7484. for (int i = 0; i < n; i++) {
  7485. ggml_vec_sgn_f32(nc,
  7486. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7487. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7488. }
  7489. }
  7490. static void ggml_compute_forward_sgn(
  7491. const struct ggml_compute_params * params,
  7492. struct ggml_tensor * dst) {
  7493. const struct ggml_tensor * src0 = dst->src[0];
  7494. switch (src0->type) {
  7495. case GGML_TYPE_F32:
  7496. {
  7497. ggml_compute_forward_sgn_f32(params, dst);
  7498. } break;
  7499. default:
  7500. {
  7501. GGML_ASSERT(false);
  7502. } break;
  7503. }
  7504. }
  7505. // ggml_compute_forward_neg
  7506. static void ggml_compute_forward_neg_f32(
  7507. const struct ggml_compute_params * params,
  7508. struct ggml_tensor * dst) {
  7509. const struct ggml_tensor * src0 = dst->src[0];
  7510. assert(params->ith == 0);
  7511. assert(ggml_are_same_shape(src0, dst));
  7512. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7513. return;
  7514. }
  7515. const int n = ggml_nrows(src0);
  7516. const int nc = src0->ne[0];
  7517. assert(dst->nb[0] == sizeof(float));
  7518. assert(src0->nb[0] == sizeof(float));
  7519. for (int i = 0; i < n; i++) {
  7520. ggml_vec_neg_f32(nc,
  7521. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7522. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7523. }
  7524. }
  7525. static void ggml_compute_forward_neg(
  7526. const struct ggml_compute_params * params,
  7527. struct ggml_tensor * dst) {
  7528. const struct ggml_tensor * src0 = dst->src[0];
  7529. switch (src0->type) {
  7530. case GGML_TYPE_F32:
  7531. {
  7532. ggml_compute_forward_neg_f32(params, dst);
  7533. } break;
  7534. default:
  7535. {
  7536. GGML_ASSERT(false);
  7537. } break;
  7538. }
  7539. }
  7540. // ggml_compute_forward_step
  7541. static void ggml_compute_forward_step_f32(
  7542. const struct ggml_compute_params * params,
  7543. struct ggml_tensor * dst) {
  7544. const struct ggml_tensor * src0 = dst->src[0];
  7545. assert(params->ith == 0);
  7546. assert(ggml_are_same_shape(src0, dst));
  7547. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7548. return;
  7549. }
  7550. const int n = ggml_nrows(src0);
  7551. const int nc = src0->ne[0];
  7552. assert(dst->nb[0] == sizeof(float));
  7553. assert(src0->nb[0] == sizeof(float));
  7554. for (int i = 0; i < n; i++) {
  7555. ggml_vec_step_f32(nc,
  7556. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7557. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7558. }
  7559. }
  7560. static void ggml_compute_forward_step(
  7561. const struct ggml_compute_params * params,
  7562. struct ggml_tensor * dst) {
  7563. const struct ggml_tensor * src0 = dst->src[0];
  7564. switch (src0->type) {
  7565. case GGML_TYPE_F32:
  7566. {
  7567. ggml_compute_forward_step_f32(params, dst);
  7568. } break;
  7569. default:
  7570. {
  7571. GGML_ASSERT(false);
  7572. } break;
  7573. }
  7574. }
  7575. // ggml_compute_forward_tanh
  7576. static void ggml_compute_forward_tanh_f32(
  7577. const struct ggml_compute_params * params,
  7578. struct ggml_tensor * dst) {
  7579. const struct ggml_tensor * src0 = dst->src[0];
  7580. assert(params->ith == 0);
  7581. assert(ggml_are_same_shape(src0, dst));
  7582. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7583. return;
  7584. }
  7585. const int n = ggml_nrows(src0);
  7586. const int nc = src0->ne[0];
  7587. assert(dst->nb[0] == sizeof(float));
  7588. assert(src0->nb[0] == sizeof(float));
  7589. for (int i = 0; i < n; i++) {
  7590. ggml_vec_tanh_f32(nc,
  7591. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7592. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7593. }
  7594. }
  7595. static void ggml_compute_forward_tanh(
  7596. const struct ggml_compute_params * params,
  7597. struct ggml_tensor * dst) {
  7598. const struct ggml_tensor * src0 = dst->src[0];
  7599. switch (src0->type) {
  7600. case GGML_TYPE_F32:
  7601. {
  7602. ggml_compute_forward_tanh_f32(params, dst);
  7603. } break;
  7604. default:
  7605. {
  7606. GGML_ASSERT(false);
  7607. } break;
  7608. }
  7609. }
  7610. // ggml_compute_forward_elu
  7611. static void ggml_compute_forward_elu_f32(
  7612. const struct ggml_compute_params * params,
  7613. struct ggml_tensor * dst) {
  7614. const struct ggml_tensor * src0 = dst->src[0];
  7615. assert(params->ith == 0);
  7616. assert(ggml_are_same_shape(src0, dst));
  7617. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7618. return;
  7619. }
  7620. const int n = ggml_nrows(src0);
  7621. const int nc = src0->ne[0];
  7622. assert(dst->nb[0] == sizeof(float));
  7623. assert(src0->nb[0] == sizeof(float));
  7624. for (int i = 0; i < n; i++) {
  7625. ggml_vec_elu_f32(nc,
  7626. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7627. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7628. }
  7629. }
  7630. static void ggml_compute_forward_elu(
  7631. const struct ggml_compute_params * params,
  7632. struct ggml_tensor * dst) {
  7633. const struct ggml_tensor * src0 = dst->src[0];
  7634. switch (src0->type) {
  7635. case GGML_TYPE_F32:
  7636. {
  7637. ggml_compute_forward_elu_f32(params, dst);
  7638. } break;
  7639. default:
  7640. {
  7641. GGML_ASSERT(false);
  7642. } break;
  7643. }
  7644. }
  7645. // ggml_compute_forward_relu
  7646. static void ggml_compute_forward_relu_f32(
  7647. const struct ggml_compute_params * params,
  7648. struct ggml_tensor * dst) {
  7649. const struct ggml_tensor * src0 = dst->src[0];
  7650. assert(params->ith == 0);
  7651. assert(ggml_are_same_shape(src0, dst));
  7652. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7653. return;
  7654. }
  7655. const int n = ggml_nrows(src0);
  7656. const int nc = src0->ne[0];
  7657. assert(dst->nb[0] == sizeof(float));
  7658. assert(src0->nb[0] == sizeof(float));
  7659. for (int i = 0; i < n; i++) {
  7660. ggml_vec_relu_f32(nc,
  7661. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7662. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7663. }
  7664. }
  7665. static void ggml_compute_forward_relu(
  7666. const struct ggml_compute_params * params,
  7667. struct ggml_tensor * dst) {
  7668. const struct ggml_tensor * src0 = dst->src[0];
  7669. switch (src0->type) {
  7670. case GGML_TYPE_F32:
  7671. {
  7672. ggml_compute_forward_relu_f32(params, dst);
  7673. } break;
  7674. default:
  7675. {
  7676. GGML_ASSERT(false);
  7677. } break;
  7678. }
  7679. }
  7680. // ggml_compute_forward_gelu
  7681. static void ggml_compute_forward_gelu_f32(
  7682. const struct ggml_compute_params * params,
  7683. struct ggml_tensor * dst) {
  7684. const struct ggml_tensor * src0 = dst->src[0];
  7685. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7686. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7687. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7688. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7689. return;
  7690. }
  7691. const int ith = params->ith;
  7692. const int nth = params->nth;
  7693. const int nc = src0->ne[0];
  7694. const int nr = ggml_nrows(src0);
  7695. // rows per thread
  7696. const int dr = (nr + nth - 1)/nth;
  7697. // row range for this thread
  7698. const int ir0 = dr*ith;
  7699. const int ir1 = MIN(ir0 + dr, nr);
  7700. for (int i1 = ir0; i1 < ir1; i1++) {
  7701. ggml_vec_gelu_f32(nc,
  7702. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7703. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7704. #ifndef NDEBUG
  7705. for (int k = 0; k < nc; k++) {
  7706. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7707. UNUSED(x);
  7708. assert(!isnan(x));
  7709. assert(!isinf(x));
  7710. }
  7711. #endif
  7712. }
  7713. }
  7714. static void ggml_compute_forward_gelu(
  7715. const struct ggml_compute_params * params,
  7716. struct ggml_tensor * dst) {
  7717. const struct ggml_tensor * src0 = dst->src[0];
  7718. switch (src0->type) {
  7719. case GGML_TYPE_F32:
  7720. {
  7721. ggml_compute_forward_gelu_f32(params, dst);
  7722. } break;
  7723. default:
  7724. {
  7725. GGML_ASSERT(false);
  7726. } break;
  7727. }
  7728. }
  7729. // ggml_compute_forward_gelu_quick
  7730. static void ggml_compute_forward_gelu_quick_f32(
  7731. const struct ggml_compute_params * params,
  7732. struct ggml_tensor * dst) {
  7733. const struct ggml_tensor * src0 = dst->src[0];
  7734. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7735. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7736. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7737. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7738. return;
  7739. }
  7740. const int ith = params->ith;
  7741. const int nth = params->nth;
  7742. const int nc = src0->ne[0];
  7743. const int nr = ggml_nrows(src0);
  7744. // rows per thread
  7745. const int dr = (nr + nth - 1)/nth;
  7746. // row range for this thread
  7747. const int ir0 = dr*ith;
  7748. const int ir1 = MIN(ir0 + dr, nr);
  7749. for (int i1 = ir0; i1 < ir1; i1++) {
  7750. ggml_vec_gelu_quick_f32(nc,
  7751. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7752. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7753. #ifndef NDEBUG
  7754. for (int k = 0; k < nc; k++) {
  7755. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7756. UNUSED(x);
  7757. assert(!isnan(x));
  7758. assert(!isinf(x));
  7759. }
  7760. #endif
  7761. }
  7762. }
  7763. static void ggml_compute_forward_gelu_quick(
  7764. const struct ggml_compute_params * params,
  7765. struct ggml_tensor * dst) {
  7766. const struct ggml_tensor * src0 = dst->src[0];
  7767. switch (src0->type) {
  7768. case GGML_TYPE_F32:
  7769. {
  7770. ggml_compute_forward_gelu_quick_f32(params, dst);
  7771. } break;
  7772. default:
  7773. {
  7774. GGML_ASSERT(false);
  7775. } break;
  7776. }
  7777. }
  7778. // ggml_compute_forward_silu
  7779. static void ggml_compute_forward_silu_f32(
  7780. const struct ggml_compute_params * params,
  7781. struct ggml_tensor * dst) {
  7782. const struct ggml_tensor * src0 = dst->src[0];
  7783. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7784. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7785. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7786. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7787. return;
  7788. }
  7789. const int ith = params->ith;
  7790. const int nth = params->nth;
  7791. const int nc = src0->ne[0];
  7792. const int nr = ggml_nrows(src0);
  7793. // rows per thread
  7794. const int dr = (nr + nth - 1)/nth;
  7795. // row range for this thread
  7796. const int ir0 = dr*ith;
  7797. const int ir1 = MIN(ir0 + dr, nr);
  7798. for (int i1 = ir0; i1 < ir1; i1++) {
  7799. ggml_vec_silu_f32(nc,
  7800. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7801. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7802. #ifndef NDEBUG
  7803. for (int k = 0; k < nc; k++) {
  7804. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  7805. UNUSED(x);
  7806. assert(!isnan(x));
  7807. assert(!isinf(x));
  7808. }
  7809. #endif
  7810. }
  7811. }
  7812. static void ggml_compute_forward_silu(
  7813. const struct ggml_compute_params * params,
  7814. struct ggml_tensor * dst) {
  7815. const struct ggml_tensor * src0 = dst->src[0];
  7816. switch (src0->type) {
  7817. case GGML_TYPE_F32:
  7818. {
  7819. ggml_compute_forward_silu_f32(params, dst);
  7820. } break;
  7821. default:
  7822. {
  7823. GGML_ASSERT(false);
  7824. } break;
  7825. }
  7826. }
  7827. // ggml_compute_forward_leaky_relu
  7828. static void ggml_compute_forward_leaky_relu_f32(
  7829. const struct ggml_compute_params * params,
  7830. struct ggml_tensor * dst) {
  7831. const struct ggml_tensor * src0 = dst->src[0];
  7832. assert(params->ith == 0);
  7833. assert(ggml_are_same_shape(src0, dst));
  7834. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7835. return;
  7836. }
  7837. const int n = ggml_nrows(src0);
  7838. const int nc = src0->ne[0];
  7839. float negative_slope;
  7840. memcpy(&negative_slope, dst->op_params, sizeof(float));
  7841. assert(dst->nb[0] == sizeof(float));
  7842. assert(src0->nb[0] == sizeof(float));
  7843. for (int i = 0; i < n; i++) {
  7844. ggml_vec_leaky_relu_f32(nc,
  7845. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7846. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  7847. }
  7848. }
  7849. static void ggml_compute_forward_leaky_relu(
  7850. const struct ggml_compute_params * params,
  7851. struct ggml_tensor * dst) {
  7852. const struct ggml_tensor * src0 = dst->src[0];
  7853. switch (src0->type) {
  7854. case GGML_TYPE_F32:
  7855. {
  7856. ggml_compute_forward_leaky_relu_f32(params, dst);
  7857. } break;
  7858. default:
  7859. {
  7860. GGML_ASSERT(false);
  7861. } break;
  7862. }
  7863. }
  7864. // ggml_compute_forward_silu_back
  7865. static void ggml_compute_forward_silu_back_f32(
  7866. const struct ggml_compute_params * params,
  7867. struct ggml_tensor * dst) {
  7868. const struct ggml_tensor * src0 = dst->src[0];
  7869. const struct ggml_tensor * grad = dst->src[1];
  7870. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  7871. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7872. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7873. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7874. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7875. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7876. return;
  7877. }
  7878. const int ith = params->ith;
  7879. const int nth = params->nth;
  7880. const int nc = src0->ne[0];
  7881. const int nr = ggml_nrows(src0);
  7882. // rows per thread
  7883. const int dr = (nr + nth - 1)/nth;
  7884. // row range for this thread
  7885. const int ir0 = dr*ith;
  7886. const int ir1 = MIN(ir0 + dr, nr);
  7887. for (int i1 = ir0; i1 < ir1; i1++) {
  7888. ggml_vec_silu_backward_f32(nc,
  7889. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7890. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7891. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7892. #ifndef NDEBUG
  7893. for (int k = 0; k < nc; k++) {
  7894. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7895. UNUSED(x);
  7896. assert(!isnan(x));
  7897. assert(!isinf(x));
  7898. }
  7899. #endif
  7900. }
  7901. }
  7902. static void ggml_compute_forward_silu_back(
  7903. const struct ggml_compute_params * params,
  7904. struct ggml_tensor * dst) {
  7905. const struct ggml_tensor * src0 = dst->src[0];
  7906. switch (src0->type) {
  7907. case GGML_TYPE_F32:
  7908. {
  7909. ggml_compute_forward_silu_back_f32(params, dst);
  7910. } break;
  7911. default:
  7912. {
  7913. GGML_ASSERT(false);
  7914. } break;
  7915. }
  7916. }
  7917. static void ggml_compute_forward_hardswish_f32(
  7918. const struct ggml_compute_params * params,
  7919. struct ggml_tensor * dst) {
  7920. const struct ggml_tensor * src0 = dst->src[0];
  7921. assert(params->ith == 0);
  7922. assert(ggml_are_same_shape(src0, dst));
  7923. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7924. return;
  7925. }
  7926. const int n = ggml_nrows(src0);
  7927. const int nc = src0->ne[0];
  7928. assert(dst->nb[0] == sizeof(float));
  7929. assert(src0->nb[0] == sizeof(float));
  7930. for (int i = 0; i < n; i++) {
  7931. ggml_vec_hardswish_f32(nc,
  7932. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7933. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7934. }
  7935. }
  7936. static void ggml_compute_forward_hardswish(
  7937. const struct ggml_compute_params * params,
  7938. struct ggml_tensor * dst) {
  7939. const struct ggml_tensor * src0 = dst->src[0];
  7940. switch (src0->type) {
  7941. case GGML_TYPE_F32:
  7942. {
  7943. ggml_compute_forward_hardswish_f32(params, dst);
  7944. } break;
  7945. default:
  7946. {
  7947. GGML_ASSERT(false);
  7948. } break;
  7949. }
  7950. }
  7951. static void ggml_compute_forward_hardsigmoid_f32(
  7952. const struct ggml_compute_params * params,
  7953. struct ggml_tensor * dst) {
  7954. const struct ggml_tensor * src0 = dst->src[0];
  7955. assert(params->ith == 0);
  7956. assert(ggml_are_same_shape(src0, dst));
  7957. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7958. return;
  7959. }
  7960. const int n = ggml_nrows(src0);
  7961. const int nc = src0->ne[0];
  7962. assert(dst->nb[0] == sizeof(float));
  7963. assert(src0->nb[0] == sizeof(float));
  7964. for (int i = 0; i < n; i++) {
  7965. ggml_vec_hardsigmoid_f32(nc,
  7966. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7967. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7968. }
  7969. }
  7970. static void ggml_compute_forward_hardsigmoid(
  7971. const struct ggml_compute_params * params,
  7972. struct ggml_tensor * dst) {
  7973. const struct ggml_tensor * src0 = dst->src[0];
  7974. switch (src0->type) {
  7975. case GGML_TYPE_F32:
  7976. {
  7977. ggml_compute_forward_hardsigmoid_f32(params, dst);
  7978. } break;
  7979. default:
  7980. {
  7981. GGML_ASSERT(false);
  7982. } break;
  7983. }
  7984. }
  7985. // ggml_compute_forward_norm
  7986. static void ggml_compute_forward_norm_f32(
  7987. const struct ggml_compute_params * params,
  7988. struct ggml_tensor * dst) {
  7989. const struct ggml_tensor * src0 = dst->src[0];
  7990. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7991. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7992. return;
  7993. }
  7994. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7995. const int ith = params->ith;
  7996. const int nth = params->nth;
  7997. GGML_TENSOR_UNARY_OP_LOCALS
  7998. float eps;
  7999. memcpy(&eps, dst->op_params, sizeof(float));
  8000. GGML_ASSERT(eps > 0.0f);
  8001. // TODO: optimize
  8002. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8003. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8004. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8005. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8006. ggml_float sum = 0.0;
  8007. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8008. sum += (ggml_float)x[i00];
  8009. }
  8010. float mean = sum/ne00;
  8011. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8012. ggml_float sum2 = 0.0;
  8013. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8014. float v = x[i00] - mean;
  8015. y[i00] = v;
  8016. sum2 += (ggml_float)(v*v);
  8017. }
  8018. float variance = sum2/ne00;
  8019. const float scale = 1.0f/sqrtf(variance + eps);
  8020. ggml_vec_scale_f32(ne00, y, scale);
  8021. }
  8022. }
  8023. }
  8024. }
  8025. static void ggml_compute_forward_norm(
  8026. const struct ggml_compute_params * params,
  8027. struct ggml_tensor * dst) {
  8028. const struct ggml_tensor * src0 = dst->src[0];
  8029. switch (src0->type) {
  8030. case GGML_TYPE_F32:
  8031. {
  8032. ggml_compute_forward_norm_f32(params, dst);
  8033. } break;
  8034. default:
  8035. {
  8036. GGML_ASSERT(false);
  8037. } break;
  8038. }
  8039. }
  8040. // ggml_compute_forward_group_rms_norm
  8041. static void ggml_compute_forward_rms_norm_f32(
  8042. const struct ggml_compute_params * params,
  8043. struct ggml_tensor * dst) {
  8044. const struct ggml_tensor * src0 = dst->src[0];
  8045. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8046. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8047. return;
  8048. }
  8049. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8050. const int ith = params->ith;
  8051. const int nth = params->nth;
  8052. GGML_TENSOR_UNARY_OP_LOCALS
  8053. float eps;
  8054. memcpy(&eps, dst->op_params, sizeof(float));
  8055. GGML_ASSERT(eps > 0.0f);
  8056. // TODO: optimize
  8057. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8058. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8059. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8060. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8061. ggml_float sum = 0.0;
  8062. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8063. sum += (ggml_float)(x[i00] * x[i00]);
  8064. }
  8065. const float mean = sum/ne00;
  8066. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8067. memcpy(y, x, ne00 * sizeof(float));
  8068. // for (int i00 = 0; i00 < ne00; i00++) {
  8069. // y[i00] = x[i00];
  8070. // }
  8071. const float scale = 1.0f/sqrtf(mean + eps);
  8072. ggml_vec_scale_f32(ne00, y, scale);
  8073. }
  8074. }
  8075. }
  8076. }
  8077. static void ggml_compute_forward_rms_norm(
  8078. const struct ggml_compute_params * params,
  8079. struct ggml_tensor * dst) {
  8080. const struct ggml_tensor * src0 = dst->src[0];
  8081. switch (src0->type) {
  8082. case GGML_TYPE_F32:
  8083. {
  8084. ggml_compute_forward_rms_norm_f32(params, dst);
  8085. } break;
  8086. default:
  8087. {
  8088. GGML_ASSERT(false);
  8089. } break;
  8090. }
  8091. }
  8092. static void ggml_compute_forward_rms_norm_back_f32(
  8093. const struct ggml_compute_params * params,
  8094. struct ggml_tensor * dst) {
  8095. const struct ggml_tensor * src0 = dst->src[0];
  8096. const struct ggml_tensor * src1 = dst->src[1];
  8097. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  8098. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8099. return;
  8100. }
  8101. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8102. const int ith = params->ith;
  8103. const int nth = params->nth;
  8104. GGML_TENSOR_BINARY_OP_LOCALS
  8105. float eps;
  8106. memcpy(&eps, dst->op_params, sizeof(float));
  8107. // TODO: optimize
  8108. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8109. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8110. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8111. // src1 is same shape as src0 => same indices
  8112. const int64_t i11 = i01;
  8113. const int64_t i12 = i02;
  8114. const int64_t i13 = i03;
  8115. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8116. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  8117. ggml_float sum_xx = 0.0;
  8118. ggml_float sum_xdz = 0.0;
  8119. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8120. sum_xx += (ggml_float)(x[i00] * x[i00]);
  8121. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  8122. }
  8123. //const float mean = (float)(sum_xx)/ne00;
  8124. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  8125. const float sum_eps = (float)(sum_xx) + eps*ne00;
  8126. //const float mean_xdz = (float)(sum_xdz)/ne00;
  8127. // we could cache rms from forward pass to improve performance.
  8128. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  8129. //const float rms = sqrtf(mean_eps);
  8130. const float rrms = 1.0f / sqrtf(mean_eps);
  8131. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  8132. {
  8133. // z = rms_norm(x)
  8134. //
  8135. // rms_norm(src0) =
  8136. // scale(
  8137. // src0,
  8138. // div(
  8139. // 1,
  8140. // sqrt(
  8141. // add(
  8142. // scale(
  8143. // sum(
  8144. // sqr(
  8145. // src0)),
  8146. // (1.0/N)),
  8147. // eps))));
  8148. // postorder:
  8149. // ## op args grad
  8150. // 00 param src0 grad[#00]
  8151. // 01 const 1
  8152. // 02 sqr (#00) grad[#02]
  8153. // 03 sum (#02) grad[#03]
  8154. // 04 const 1/N
  8155. // 05 scale (#03, #04) grad[#05]
  8156. // 06 const eps
  8157. // 07 add (#05, #06) grad[#07]
  8158. // 08 sqrt (#07) grad[#08]
  8159. // 09 div (#01,#08) grad[#09]
  8160. // 10 scale (#00,#09) grad[#10]
  8161. //
  8162. // backward pass, given grad[#10]
  8163. // #10: scale
  8164. // grad[#00] += scale(grad[#10],#09)
  8165. // grad[#09] += sum(mul(grad[#10],#00))
  8166. // #09: div
  8167. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8168. // #08: sqrt
  8169. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8170. // #07: add
  8171. // grad[#05] += grad[#07]
  8172. // #05: scale
  8173. // grad[#03] += scale(grad[#05],#04)
  8174. // #03: sum
  8175. // grad[#02] += repeat(grad[#03], #02)
  8176. // #02:
  8177. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8178. //
  8179. // substitute and simplify:
  8180. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8181. // grad[#02] = repeat(grad[#03], #02)
  8182. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8183. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8184. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8185. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8186. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8187. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8188. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8189. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8190. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8191. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8192. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8193. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8194. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8195. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8196. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8197. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8198. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8199. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8200. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8201. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8202. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8203. // a = b*c + d*e
  8204. // a = b*c*f/f + d*e*f/f
  8205. // a = (b*c*f + d*e*f)*(1/f)
  8206. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8207. // a = (b + d*e/c)*c
  8208. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8209. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8210. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8211. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8212. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8213. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8214. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8215. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8216. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8217. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8218. }
  8219. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8220. // post-order:
  8221. // dx := x
  8222. // dx := scale(dx,-mean_xdz/mean_eps)
  8223. // dx := add(dx, dz)
  8224. // dx := scale(dx, rrms)
  8225. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8226. ggml_vec_cpy_f32 (ne00, dx, x);
  8227. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8228. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8229. ggml_vec_acc_f32 (ne00, dx, dz);
  8230. ggml_vec_scale_f32(ne00, dx, rrms);
  8231. }
  8232. }
  8233. }
  8234. }
  8235. static void ggml_compute_forward_rms_norm_back(
  8236. const struct ggml_compute_params * params,
  8237. struct ggml_tensor * dst) {
  8238. const struct ggml_tensor * src0 = dst->src[0];
  8239. switch (src0->type) {
  8240. case GGML_TYPE_F32:
  8241. {
  8242. ggml_compute_forward_rms_norm_back_f32(params, dst);
  8243. } break;
  8244. default:
  8245. {
  8246. GGML_ASSERT(false);
  8247. } break;
  8248. }
  8249. }
  8250. // ggml_compute_forward_group_norm
  8251. static void ggml_compute_forward_group_norm_f32(
  8252. const struct ggml_compute_params * params,
  8253. struct ggml_tensor * dst) {
  8254. const struct ggml_tensor * src0 = dst->src[0];
  8255. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8256. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8257. return;
  8258. }
  8259. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8260. const int ith = params->ith;
  8261. const int nth = params->nth;
  8262. GGML_TENSOR_UNARY_OP_LOCALS
  8263. const float eps = 1e-6f; // TODO: make this a parameter
  8264. // TODO: optimize
  8265. int n_channels = src0->ne[2];
  8266. int n_groups = dst->op_params[0];
  8267. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  8268. for (int i = ith; i < n_groups; i+=nth) {
  8269. int start = i * n_channels_per_group;
  8270. int end = start + n_channels_per_group;
  8271. if (end > n_channels) {
  8272. end = n_channels;
  8273. }
  8274. int step = end - start;
  8275. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8276. ggml_float sum = 0.0;
  8277. for (int64_t i02 = start; i02 < end; i02++) {
  8278. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8279. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8280. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8281. sum += (ggml_float)x[i00];
  8282. }
  8283. }
  8284. }
  8285. float mean = sum / (ne00 * ne01 * step);
  8286. ggml_float sum2 = 0.0;
  8287. for (int64_t i02 = start; i02 < end; i02++) {
  8288. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8289. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8290. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8291. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8292. float v = x[i00] - mean;
  8293. y[i00] = v;
  8294. sum2 += (ggml_float)(v * v);
  8295. }
  8296. }
  8297. }
  8298. float variance = sum2 / (ne00 * ne01 * step);
  8299. const float scale = 1.0f / sqrtf(variance + eps);
  8300. for (int64_t i02 = start; i02 < end; i02++) {
  8301. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8302. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8303. ggml_vec_scale_f32(ne00, y, scale);
  8304. }
  8305. }
  8306. }
  8307. }
  8308. }
  8309. static void ggml_compute_forward_group_norm(
  8310. const struct ggml_compute_params * params,
  8311. struct ggml_tensor * dst) {
  8312. const struct ggml_tensor * src0 = dst->src[0];
  8313. switch (src0->type) {
  8314. case GGML_TYPE_F32:
  8315. {
  8316. ggml_compute_forward_group_norm_f32(params, dst);
  8317. } break;
  8318. default:
  8319. {
  8320. GGML_ASSERT(false);
  8321. } break;
  8322. }
  8323. }
  8324. // ggml_compute_forward_mul_mat
  8325. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8326. // helper function to determine if it is better to use BLAS or not
  8327. // for large matrices, BLAS is faster
  8328. static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
  8329. const struct ggml_tensor * src0 = dst->src[0];
  8330. const struct ggml_tensor * src1 = dst->src[1];
  8331. //const int64_t ne00 = src0->ne[0];
  8332. //const int64_t ne01 = src0->ne[1];
  8333. const int64_t ne10 = src1->ne[0];
  8334. const int64_t ne0 = dst->ne[0];
  8335. const int64_t ne1 = dst->ne[1];
  8336. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  8337. // all the experts for each batch element and the processing would become incredibly slow
  8338. // TODO: find the optimal values for these
  8339. if (dst->op != GGML_OP_MUL_MAT_ID &&
  8340. ggml_is_contiguous(src0) &&
  8341. ggml_is_contiguous(src1) &&
  8342. //src0->type == GGML_TYPE_F32 &&
  8343. src1->type == GGML_TYPE_F32 &&
  8344. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8345. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8346. return true;
  8347. }
  8348. return false;
  8349. }
  8350. #endif
  8351. static void ggml_compute_forward_mul_mat(
  8352. const struct ggml_compute_params * params,
  8353. struct ggml_tensor * dst) {
  8354. const struct ggml_tensor * src0 = dst->src[0];
  8355. const struct ggml_tensor * src1 = dst->src[1];
  8356. int64_t t0 = ggml_perf_time_us();
  8357. UNUSED(t0);
  8358. GGML_TENSOR_BINARY_OP_LOCALS
  8359. const int ith = params->ith;
  8360. const int nth = params->nth;
  8361. const enum ggml_type type = src0->type;
  8362. const bool src1_cont = ggml_is_contiguous(src1);
  8363. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8364. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8365. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8366. int64_t const vec_dot_num_rows = type_traits[type].nrows;
  8367. GGML_ASSERT(ne0 == ne01);
  8368. GGML_ASSERT(ne1 == ne11);
  8369. GGML_ASSERT(ne2 == ne12);
  8370. GGML_ASSERT(ne3 == ne13);
  8371. // we don't support permuted src0 or src1
  8372. GGML_ASSERT(nb00 == ggml_type_size(type));
  8373. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8374. // dst cannot be transposed or permuted
  8375. GGML_ASSERT(nb0 == sizeof(float));
  8376. GGML_ASSERT(nb0 <= nb1);
  8377. GGML_ASSERT(nb1 <= nb2);
  8378. GGML_ASSERT(nb2 <= nb3);
  8379. // broadcast factors
  8380. const int64_t r2 = ne12/ne02;
  8381. const int64_t r3 = ne13/ne03;
  8382. // nb01 >= nb00 - src0 is not transposed
  8383. // compute by src0 rows
  8384. #if defined(GGML_USE_CLBLAST)
  8385. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8386. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8387. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8388. }
  8389. return;
  8390. }
  8391. #endif
  8392. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8393. if (ggml_compute_forward_mul_mat_use_blas(dst)) {
  8394. const int64_t ne_plane = ne01*ne00;
  8395. const size_t desired_wsize = ne13*ne12*ne_plane*sizeof(float);
  8396. UNUSED(desired_wsize);
  8397. if (params->type == GGML_TASK_INIT) {
  8398. if (type != GGML_TYPE_F32) {
  8399. assert(params->wsize >= desired_wsize);
  8400. // parallelize by src0 rows
  8401. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8402. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8403. // broadcast src0 into src1 across 2nd,3rd dimension
  8404. const int64_t i03 = i13/r3;
  8405. const int64_t i02 = i12/r2;
  8406. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8407. float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8408. ggml_to_float_t const to_float = type_traits[type].to_float;
  8409. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8410. to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00);
  8411. }
  8412. }
  8413. }
  8414. }
  8415. return;
  8416. }
  8417. if (params->type == GGML_TASK_FINALIZE) {
  8418. return;
  8419. }
  8420. // perform sgemm, parallelization controlled by blas lib
  8421. if (ith != 0) {
  8422. return;
  8423. }
  8424. //const int64_t tgemm0 = ggml_perf_time_us();
  8425. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8426. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8427. const int64_t i03 = i13/r3;
  8428. const int64_t i02 = i12/r2;
  8429. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8430. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  8431. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  8432. if (type != GGML_TYPE_F32) {
  8433. x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8434. }
  8435. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8436. ne1, ne01, ne10,
  8437. 1.0f, y, ne10,
  8438. x, ne00,
  8439. 0.0f, d, ne01);
  8440. }
  8441. }
  8442. //printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2);
  8443. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8444. return;
  8445. }
  8446. #endif
  8447. if (params->type == GGML_TASK_INIT) {
  8448. if (ith != 0) {
  8449. return;
  8450. }
  8451. if (src1->type != vec_dot_type) {
  8452. char * wdata = params->wdata;
  8453. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8454. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8455. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8456. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8457. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8458. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8459. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8460. wdata += row_size;
  8461. }
  8462. }
  8463. }
  8464. }
  8465. return;
  8466. }
  8467. if (params->type == GGML_TASK_FINALIZE) {
  8468. return;
  8469. }
  8470. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8471. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8472. const int64_t nr0 = ne01; // src0 rows
  8473. const int64_t nr1 = ne1*ne12*ne13; // src1 rows
  8474. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8475. // distribute the thread work across the inner or outer loop based on which one is larger
  8476. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8477. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8478. const int64_t ith0 = ith % nth0;
  8479. const int64_t ith1 = ith / nth0;
  8480. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8481. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8482. const int64_t ir010 = dr0*ith0;
  8483. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8484. const int64_t ir110 = dr1*ith1;
  8485. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8486. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8487. // threads with no work simply yield (not sure if it helps)
  8488. if (ir010 >= ir011 || ir110 >= ir111) {
  8489. sched_yield();
  8490. return;
  8491. }
  8492. assert(ne12 % ne02 == 0);
  8493. assert(ne13 % ne03 == 0);
  8494. // block-tiling attempt
  8495. const int64_t blck_0 = 16;
  8496. const int64_t blck_1 = 16;
  8497. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  8498. int64_t nrc = vec_dot_num_rows;
  8499. // TODO: currently the mmla kernels support only even numbered rows/cols.
  8500. // this check can be removed once they are extended to support odd numbered rows/cols too
  8501. if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
  8502. nrc = 1;
  8503. }
  8504. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  8505. // attempt to reduce false-sharing (does not seem to make a difference)
  8506. // 16 * 2, accounting for mmla kernels
  8507. float tmp[32];
  8508. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8509. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8510. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ir1 += nrc) {
  8511. const int64_t i13 = (ir1/(ne12*ne1));
  8512. const int64_t i12 = (ir1 - i13*ne12*ne1)/ne1;
  8513. const int64_t i11 = (ir1 - i13*ne12*ne1 - i12*ne1);
  8514. // broadcast src0 into src1
  8515. const int64_t i03 = i13/r3;
  8516. const int64_t i02 = i12/r2;
  8517. const int64_t i1 = i11;
  8518. const int64_t i2 = i12;
  8519. const int64_t i3 = i13;
  8520. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  8521. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8522. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8523. // the original src1 data pointer, so we should index using the indices directly
  8524. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8525. const char * src1_col = (const char *) wdata +
  8526. (src1_cont || src1->type != vec_dot_type
  8527. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8528. : (i11*nb11 + i12*nb12 + i13*nb13));
  8529. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8530. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8531. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8532. //}
  8533. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ir0 += nrc) {
  8534. vec_dot(ne00, &tmp[ir0 - iir0], (nrc>1 ? 16 : 0), src0_row + ir0*nb01, (nrc>1 ? nb01 : 0), src1_col, (nrc>1 ? src1_col_stride : 0), nrc);
  8535. }
  8536. for (int cn = 0; cn < nrc; ++cn) {
  8537. memcpy(&dst_col[iir0 + cn*nb1/nb0], tmp + (cn*16), (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8538. }
  8539. }
  8540. }
  8541. }
  8542. }
  8543. // ggml_compute_forward_mul_mat_id
  8544. static void ggml_compute_forward_mul_mat_id(
  8545. const struct ggml_compute_params * params,
  8546. struct ggml_tensor * dst) {
  8547. const struct ggml_tensor * ids = dst->src[0];
  8548. const struct ggml_tensor * src1 = dst->src[1];
  8549. const struct ggml_tensor * src0 = dst->src[2]; // only for GGML_TENSOR_BINARY_OP_LOCALS
  8550. GGML_TENSOR_BINARY_OP_LOCALS
  8551. const int ith = params->ith;
  8552. const int nth = params->nth;
  8553. const enum ggml_type type = src0->type;
  8554. const bool src1_cont = ggml_is_contiguous(src1);
  8555. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8556. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8557. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8558. GGML_ASSERT(ne0 == ne01);
  8559. GGML_ASSERT(ne1 == ne11);
  8560. GGML_ASSERT(ne2 == ne12);
  8561. GGML_ASSERT(ne3 == ne13);
  8562. // we don't support permuted src0 or src1
  8563. GGML_ASSERT(nb00 == ggml_type_size(type));
  8564. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8565. // dst cannot be transposed or permuted
  8566. GGML_ASSERT(nb0 == sizeof(float));
  8567. GGML_ASSERT(nb0 <= nb1);
  8568. GGML_ASSERT(nb1 <= nb2);
  8569. GGML_ASSERT(nb2 <= nb3);
  8570. // broadcast factors
  8571. const int64_t r2 = ne12/ne02;
  8572. const int64_t r3 = ne13/ne03;
  8573. // row groups
  8574. const int id = ggml_get_op_params_i32(dst, 0);
  8575. const int n_as = ggml_get_op_params_i32(dst, 1);
  8576. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  8577. (char *) params->wdata :
  8578. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  8579. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  8580. int64_t * matrix_rows = matrix_row_counts + n_as; // [n_as][ne11]
  8581. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne11 + (i1)]
  8582. if (params->type == GGML_TASK_INIT) {
  8583. if (ith != 0) {
  8584. return;
  8585. }
  8586. char * wdata = params->wdata;
  8587. if (src1->type != vec_dot_type) {
  8588. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8589. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8590. assert(src1->type == GGML_TYPE_F32);
  8591. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8592. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8593. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8594. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8595. wdata += row_size;
  8596. }
  8597. }
  8598. }
  8599. }
  8600. // initialize matrix_row_counts
  8601. GGML_ASSERT(wdata == wdata_src1_end);
  8602. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  8603. // group rows by src0 matrix
  8604. for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
  8605. const int32_t row_id = *(const int32_t *) ((const char *) ids->data + i01*ids->nb[1] + id*ids->nb[0]);
  8606. GGML_ASSERT(row_id >= 0 && row_id < n_as);
  8607. MMID_MATRIX_ROW(row_id, matrix_row_counts[row_id]) = i01;
  8608. matrix_row_counts[row_id] += 1;
  8609. }
  8610. return;
  8611. }
  8612. if (params->type == GGML_TASK_FINALIZE) {
  8613. return;
  8614. }
  8615. // compute each matrix multiplication in sequence
  8616. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  8617. const int64_t cne1 = matrix_row_counts[cur_a];
  8618. if (cne1 == 0) {
  8619. continue;
  8620. }
  8621. const struct ggml_tensor * src0_cur = dst->src[cur_a + 2];
  8622. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8623. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8624. const int64_t nr0 = ne01; // src0 rows
  8625. const int64_t nr1 = cne1*ne12*ne13; // src1 rows
  8626. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8627. // distribute the thread work across the inner or outer loop based on which one is larger
  8628. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8629. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8630. const int64_t ith0 = ith % nth0;
  8631. const int64_t ith1 = ith / nth0;
  8632. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8633. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8634. const int64_t ir010 = dr0*ith0;
  8635. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8636. const int64_t ir110 = dr1*ith1;
  8637. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8638. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8639. // threads with no work simply yield (not sure if it helps)
  8640. if (ir010 >= ir011 || ir110 >= ir111) {
  8641. sched_yield();
  8642. continue;
  8643. }
  8644. assert(ne12 % ne02 == 0);
  8645. assert(ne13 % ne03 == 0);
  8646. // block-tiling attempt
  8647. const int64_t blck_0 = 16;
  8648. const int64_t blck_1 = 16;
  8649. // attempt to reduce false-sharing (does not seem to make a difference)
  8650. float tmp[16];
  8651. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8652. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8653. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  8654. const int64_t i13 = (ir1/(ne12*cne1)); // Note: currently, src1 is always a matrix
  8655. const int64_t i12 = (ir1 - i13*ne12*cne1)/cne1;
  8656. const int64_t _i11 = (ir1 - i13*ne12*cne1 - i12*cne1);
  8657. const int64_t i11 = MMID_MATRIX_ROW(cur_a, _i11);
  8658. // broadcast src0 into src1
  8659. const int64_t i03 = i13/r3;
  8660. const int64_t i02 = i12/r2;
  8661. const int64_t i1 = i11;
  8662. const int64_t i2 = i12;
  8663. const int64_t i3 = i13;
  8664. const char * src0_row = (const char *) src0_cur->data + (0 + i02*nb02 + i03*nb03);
  8665. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8666. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8667. // the original src1 data pointer, so we should index using the indices directly
  8668. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8669. const char * src1_col = (const char *) wdata +
  8670. (src1_cont || src1->type != vec_dot_type
  8671. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8672. : (i11*nb11 + i12*nb12 + i13*nb13));
  8673. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8674. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8675. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8676. //}
  8677. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8678. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_row + ir0*nb01, 0, src1_col, 0, 1);
  8679. }
  8680. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8681. }
  8682. }
  8683. }
  8684. }
  8685. #undef MMID_MATRIX_ROW
  8686. }
  8687. // ggml_compute_forward_out_prod
  8688. static void ggml_compute_forward_out_prod_f32(
  8689. const struct ggml_compute_params * params,
  8690. struct ggml_tensor * dst) {
  8691. const struct ggml_tensor * src0 = dst->src[0];
  8692. const struct ggml_tensor * src1 = dst->src[1];
  8693. // int64_t t0 = ggml_perf_time_us();
  8694. // UNUSED(t0);
  8695. GGML_TENSOR_BINARY_OP_LOCALS
  8696. const int ith = params->ith;
  8697. const int nth = params->nth;
  8698. GGML_ASSERT(ne0 == ne00);
  8699. GGML_ASSERT(ne1 == ne10);
  8700. GGML_ASSERT(ne2 == ne02);
  8701. GGML_ASSERT(ne02 == ne12);
  8702. GGML_ASSERT(ne3 == ne13);
  8703. GGML_ASSERT(ne03 == ne13);
  8704. // we don't support permuted src0 or src1
  8705. GGML_ASSERT(nb00 == sizeof(float));
  8706. // dst cannot be transposed or permuted
  8707. GGML_ASSERT(nb0 == sizeof(float));
  8708. // GGML_ASSERT(nb0 <= nb1);
  8709. // GGML_ASSERT(nb1 <= nb2);
  8710. // GGML_ASSERT(nb2 <= nb3);
  8711. // nb01 >= nb00 - src0 is not transposed
  8712. // compute by src0 rows
  8713. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8714. // TODO: #if defined(GGML_USE_CLBLAST)
  8715. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8716. bool use_blas = ggml_is_matrix(src0) &&
  8717. ggml_is_matrix(src1) &&
  8718. ggml_is_contiguous(src0) &&
  8719. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  8720. #endif
  8721. if (params->type == GGML_TASK_INIT) {
  8722. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  8723. if (use_blas) {
  8724. return;
  8725. }
  8726. #endif
  8727. if (ith != 0) {
  8728. return;
  8729. }
  8730. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8731. return;
  8732. }
  8733. if (params->type == GGML_TASK_FINALIZE) {
  8734. return;
  8735. }
  8736. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8737. if (use_blas) {
  8738. if (params->ith != 0) { // All threads other than the first do no work.
  8739. return;
  8740. }
  8741. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  8742. // src0: (k,n)
  8743. // src1: (k,m)
  8744. // dst: (m,n)
  8745. //
  8746. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  8747. // Also expressed as (major,minor)
  8748. // a: (m,k): so src1 transposed
  8749. // b: (k,n): so src0
  8750. // c: (m,n)
  8751. //
  8752. // However, if ggml_is_transposed(src1) is true, then
  8753. // src1->data already contains a transposed version, so sgemm mustn't
  8754. // transpose it further.
  8755. int n = src0->ne[0];
  8756. int k = src0->ne[1];
  8757. int m = src1->ne[0];
  8758. int transposeA, lda;
  8759. if (!ggml_is_transposed(src1)) {
  8760. transposeA = CblasTrans;
  8761. lda = m;
  8762. } else {
  8763. transposeA = CblasNoTrans;
  8764. lda = k;
  8765. }
  8766. float * a = (float *) ((char *) src1->data);
  8767. float * b = (float *) ((char *) src0->data);
  8768. float * c = (float *) ((char *) dst->data);
  8769. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  8770. return;
  8771. }
  8772. #endif
  8773. // dst[:,:,:,:] = 0
  8774. // for i2,i3:
  8775. // for i1:
  8776. // for i01:
  8777. // for i0:
  8778. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8779. // parallelize by last three dimensions
  8780. // total rows in dst
  8781. const int64_t nr = ne1*ne2*ne3;
  8782. // rows per thread
  8783. const int64_t dr = (nr + nth - 1)/nth;
  8784. // row range for this thread
  8785. const int64_t ir0 = dr*ith;
  8786. const int64_t ir1 = MIN(ir0 + dr, nr);
  8787. // block-tiling attempt
  8788. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  8789. const int64_t blck_1 = 16;
  8790. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  8791. const int64_t bir1 = MIN(bir + blck_1, ir1);
  8792. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  8793. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  8794. for (int64_t ir = bir; ir < bir1; ++ir) {
  8795. // dst indices
  8796. const int64_t i3 = ir/(ne2*ne1);
  8797. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8798. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8799. const int64_t i02 = i2;
  8800. const int64_t i03 = i3;
  8801. //const int64_t i10 = i1;
  8802. const int64_t i12 = i2;
  8803. const int64_t i13 = i3;
  8804. #if GGML_VEC_MAD_UNROLL > 2
  8805. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  8806. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  8807. const int64_t i11 = i01;
  8808. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8809. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8810. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8811. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  8812. }
  8813. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  8814. const int64_t i11 = i01;
  8815. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8816. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8817. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8818. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8819. }
  8820. #else
  8821. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  8822. const int64_t i11 = i01;
  8823. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8824. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8825. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8826. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8827. }
  8828. #endif
  8829. }
  8830. }
  8831. }
  8832. //int64_t t1 = ggml_perf_time_us();
  8833. //static int64_t acc = 0;
  8834. //acc += t1 - t0;
  8835. //if (t1 - t0 > 10) {
  8836. // printf("\n");
  8837. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8838. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8839. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8840. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8841. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8842. //}
  8843. }
  8844. static void ggml_compute_forward_out_prod_q_f32(
  8845. const struct ggml_compute_params * params,
  8846. struct ggml_tensor * dst) {
  8847. const struct ggml_tensor * src0 = dst->src[0];
  8848. const struct ggml_tensor * src1 = dst->src[1];
  8849. // int64_t t0 = ggml_perf_time_us();
  8850. // UNUSED(t0);
  8851. GGML_TENSOR_BINARY_OP_LOCALS;
  8852. const int ith = params->ith;
  8853. const int nth = params->nth;
  8854. const enum ggml_type type = src0->type;
  8855. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8856. GGML_ASSERT(ne02 == ne12);
  8857. GGML_ASSERT(ne03 == ne13);
  8858. GGML_ASSERT(ne2 == ne12);
  8859. GGML_ASSERT(ne3 == ne13);
  8860. // we don't support permuted src0 dim0
  8861. GGML_ASSERT(nb00 == ggml_type_size(type));
  8862. // dst dim0 cannot be transposed or permuted
  8863. GGML_ASSERT(nb0 == sizeof(float));
  8864. // GGML_ASSERT(nb0 <= nb1);
  8865. // GGML_ASSERT(nb1 <= nb2);
  8866. // GGML_ASSERT(nb2 <= nb3);
  8867. GGML_ASSERT(ne0 == ne00);
  8868. GGML_ASSERT(ne1 == ne10);
  8869. GGML_ASSERT(ne2 == ne02);
  8870. GGML_ASSERT(ne3 == ne03);
  8871. // nb01 >= nb00 - src0 is not transposed
  8872. // compute by src0 rows
  8873. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8874. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8875. if (params->type == GGML_TASK_INIT) {
  8876. if (ith != 0) {
  8877. return;
  8878. }
  8879. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8880. return;
  8881. }
  8882. if (params->type == GGML_TASK_FINALIZE) {
  8883. return;
  8884. }
  8885. // parallelize by last three dimensions
  8886. // total rows in dst
  8887. const int64_t nr = ne1*ne2*ne3;
  8888. // rows per thread
  8889. const int64_t dr = (nr + nth - 1)/nth;
  8890. // row range for this thread
  8891. const int64_t ir0 = dr*ith;
  8892. const int64_t ir1 = MIN(ir0 + dr, nr);
  8893. // dst[:,:,:,:] = 0
  8894. // for i2,i3:
  8895. // for i1:
  8896. // for i01:
  8897. // for i0:
  8898. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8899. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  8900. for (int64_t ir = ir0; ir < ir1; ++ir) {
  8901. // dst indices
  8902. const int64_t i3 = ir/(ne2*ne1);
  8903. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8904. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8905. const int64_t i02 = i2;
  8906. const int64_t i03 = i3;
  8907. //const int64_t i10 = i1;
  8908. const int64_t i12 = i2;
  8909. const int64_t i13 = i3;
  8910. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8911. const int64_t i11 = i01;
  8912. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8913. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8914. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8915. dequantize_row_q(s0, wdata, ne0);
  8916. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  8917. }
  8918. }
  8919. //int64_t t1 = ggml_perf_time_us();
  8920. //static int64_t acc = 0;
  8921. //acc += t1 - t0;
  8922. //if (t1 - t0 > 10) {
  8923. // printf("\n");
  8924. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8925. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8926. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8927. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8928. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8929. //}
  8930. }
  8931. static void ggml_compute_forward_out_prod(
  8932. const struct ggml_compute_params * params,
  8933. struct ggml_tensor * dst) {
  8934. const struct ggml_tensor * src0 = dst->src[0];
  8935. switch (src0->type) {
  8936. case GGML_TYPE_Q4_0:
  8937. case GGML_TYPE_Q4_1:
  8938. case GGML_TYPE_Q5_0:
  8939. case GGML_TYPE_Q5_1:
  8940. case GGML_TYPE_Q8_0:
  8941. case GGML_TYPE_Q2_K:
  8942. case GGML_TYPE_Q3_K:
  8943. case GGML_TYPE_Q4_K:
  8944. case GGML_TYPE_Q5_K:
  8945. case GGML_TYPE_Q6_K:
  8946. case GGML_TYPE_IQ2_XXS:
  8947. case GGML_TYPE_IQ2_XS:
  8948. case GGML_TYPE_IQ3_XXS:
  8949. case GGML_TYPE_IQ1_S:
  8950. case GGML_TYPE_IQ4_NL:
  8951. case GGML_TYPE_IQ3_S:
  8952. {
  8953. ggml_compute_forward_out_prod_q_f32(params, dst);
  8954. } break;
  8955. case GGML_TYPE_F16:
  8956. {
  8957. GGML_ASSERT(false); // todo
  8958. // ggml_compute_forward_out_prod_f16_f32(params, dst);
  8959. } break;
  8960. case GGML_TYPE_F32:
  8961. {
  8962. ggml_compute_forward_out_prod_f32(params, dst);
  8963. } break;
  8964. default:
  8965. {
  8966. GGML_ASSERT(false);
  8967. } break;
  8968. }
  8969. }
  8970. // ggml_compute_forward_scale
  8971. static void ggml_compute_forward_scale_f32(
  8972. const struct ggml_compute_params * params,
  8973. struct ggml_tensor * dst) {
  8974. const struct ggml_tensor * src0 = dst->src[0];
  8975. GGML_ASSERT(ggml_is_contiguous(src0));
  8976. GGML_ASSERT(ggml_is_contiguous(dst));
  8977. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8978. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8979. return;
  8980. }
  8981. // scale factor
  8982. float v;
  8983. memcpy(&v, dst->op_params, sizeof(float));
  8984. const int ith = params->ith;
  8985. const int nth = params->nth;
  8986. const int nc = src0->ne[0];
  8987. const int nr = ggml_nrows(src0);
  8988. // rows per thread
  8989. const int dr = (nr + nth - 1)/nth;
  8990. // row range for this thread
  8991. const int ir0 = dr*ith;
  8992. const int ir1 = MIN(ir0 + dr, nr);
  8993. const size_t nb01 = src0->nb[1];
  8994. const size_t nb1 = dst->nb[1];
  8995. for (int i1 = ir0; i1 < ir1; i1++) {
  8996. if (dst->data != src0->data) {
  8997. // src0 is same shape as dst => same indices
  8998. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8999. }
  9000. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  9001. }
  9002. }
  9003. static void ggml_compute_forward_scale(
  9004. const struct ggml_compute_params * params,
  9005. struct ggml_tensor * dst) {
  9006. const struct ggml_tensor * src0 = dst->src[0];
  9007. switch (src0->type) {
  9008. case GGML_TYPE_F32:
  9009. {
  9010. ggml_compute_forward_scale_f32(params, dst);
  9011. } break;
  9012. default:
  9013. {
  9014. GGML_ASSERT(false);
  9015. } break;
  9016. }
  9017. }
  9018. // ggml_compute_forward_set
  9019. static void ggml_compute_forward_set_f32(
  9020. const struct ggml_compute_params * params,
  9021. struct ggml_tensor * dst) {
  9022. const struct ggml_tensor * src0 = dst->src[0];
  9023. const struct ggml_tensor * src1 = dst->src[1];
  9024. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9025. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9026. // view src0 and dst with these strides and data offset inbytes during set
  9027. // nb0 is implicitly element_size because src0 and dst are contiguous
  9028. size_t nb1 = ((int32_t *) dst->op_params)[0];
  9029. size_t nb2 = ((int32_t *) dst->op_params)[1];
  9030. size_t nb3 = ((int32_t *) dst->op_params)[2];
  9031. size_t offset = ((int32_t *) dst->op_params)[3];
  9032. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  9033. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9034. if (params->ith != 0) {
  9035. return;
  9036. }
  9037. // memcpy needs to be synchronized across threads to avoid race conditions.
  9038. // => do it in INIT phase
  9039. memcpy(
  9040. ((char *) dst->data),
  9041. ((char *) src0->data),
  9042. ggml_nbytes(dst));
  9043. }
  9044. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9045. return;
  9046. }
  9047. const int ith = params->ith;
  9048. const int nth = params->nth;
  9049. const int nr = ggml_nrows(src1);
  9050. const int nc = src1->ne[0];
  9051. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  9052. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  9053. // src0 and dst as viewed during set
  9054. const size_t nb0 = ggml_element_size(src0);
  9055. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  9056. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  9057. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  9058. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  9059. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  9060. GGML_ASSERT(nb10 == sizeof(float));
  9061. // rows per thread
  9062. const int dr = (nr + nth - 1)/nth;
  9063. // row range for this thread
  9064. const int ir0 = dr*ith;
  9065. const int ir1 = MIN(ir0 + dr, nr);
  9066. for (int ir = ir0; ir < ir1; ++ir) {
  9067. // src0 and dst are viewed with shape of src1 and offset
  9068. // => same indices
  9069. const int i3 = ir/(ne12*ne11);
  9070. const int i2 = (ir - i3*ne12*ne11)/ne11;
  9071. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  9072. ggml_vec_cpy_f32(nc,
  9073. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  9074. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  9075. }
  9076. }
  9077. static void ggml_compute_forward_set(
  9078. const struct ggml_compute_params * params,
  9079. struct ggml_tensor * dst) {
  9080. const struct ggml_tensor * src0 = dst->src[0];
  9081. switch (src0->type) {
  9082. case GGML_TYPE_F32:
  9083. {
  9084. ggml_compute_forward_set_f32(params, dst);
  9085. } break;
  9086. case GGML_TYPE_F16:
  9087. case GGML_TYPE_Q4_0:
  9088. case GGML_TYPE_Q4_1:
  9089. case GGML_TYPE_Q5_0:
  9090. case GGML_TYPE_Q5_1:
  9091. case GGML_TYPE_Q8_0:
  9092. case GGML_TYPE_Q8_1:
  9093. case GGML_TYPE_Q2_K:
  9094. case GGML_TYPE_Q3_K:
  9095. case GGML_TYPE_Q4_K:
  9096. case GGML_TYPE_Q5_K:
  9097. case GGML_TYPE_Q6_K:
  9098. case GGML_TYPE_IQ2_XXS:
  9099. case GGML_TYPE_IQ2_XS:
  9100. case GGML_TYPE_IQ3_XXS:
  9101. case GGML_TYPE_IQ1_S:
  9102. case GGML_TYPE_IQ4_NL:
  9103. case GGML_TYPE_IQ3_S:
  9104. default:
  9105. {
  9106. GGML_ASSERT(false);
  9107. } break;
  9108. }
  9109. }
  9110. // ggml_compute_forward_cpy
  9111. static void ggml_compute_forward_cpy(
  9112. const struct ggml_compute_params * params,
  9113. struct ggml_tensor * dst) {
  9114. ggml_compute_forward_dup(params, dst);
  9115. }
  9116. // ggml_compute_forward_cont
  9117. static void ggml_compute_forward_cont(
  9118. const struct ggml_compute_params * params,
  9119. struct ggml_tensor * dst) {
  9120. ggml_compute_forward_dup(params, dst);
  9121. }
  9122. // ggml_compute_forward_reshape
  9123. static void ggml_compute_forward_reshape(
  9124. const struct ggml_compute_params * params,
  9125. struct ggml_tensor * dst) {
  9126. // NOP
  9127. UNUSED(params);
  9128. UNUSED(dst);
  9129. }
  9130. // ggml_compute_forward_view
  9131. static void ggml_compute_forward_view(
  9132. const struct ggml_compute_params * params,
  9133. const struct ggml_tensor * dst) {
  9134. // NOP
  9135. UNUSED(params);
  9136. UNUSED(dst);
  9137. }
  9138. // ggml_compute_forward_permute
  9139. static void ggml_compute_forward_permute(
  9140. const struct ggml_compute_params * params,
  9141. const struct ggml_tensor * dst) {
  9142. // NOP
  9143. UNUSED(params);
  9144. UNUSED(dst);
  9145. }
  9146. // ggml_compute_forward_transpose
  9147. static void ggml_compute_forward_transpose(
  9148. const struct ggml_compute_params * params,
  9149. const struct ggml_tensor * dst) {
  9150. // NOP
  9151. UNUSED(params);
  9152. UNUSED(dst);
  9153. }
  9154. // ggml_compute_forward_get_rows
  9155. static void ggml_compute_forward_get_rows_q(
  9156. const struct ggml_compute_params * params,
  9157. struct ggml_tensor * dst) {
  9158. const struct ggml_tensor * src0 = dst->src[0];
  9159. const struct ggml_tensor * src1 = dst->src[1];
  9160. assert(params->ith == 0);
  9161. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9162. return;
  9163. }
  9164. GGML_TENSOR_BINARY_OP_LOCALS
  9165. const int64_t nc = ne00;
  9166. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  9167. const enum ggml_type type = src0->type;
  9168. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9169. assert(ne0 == nc);
  9170. assert(ne02 == ne11);
  9171. assert(nb00 == ggml_type_size(type));
  9172. assert(ggml_nrows(dst) == nr);
  9173. // TODO: multi-thread
  9174. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9175. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9176. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  9177. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9178. dequantize_row_q(
  9179. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9180. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9181. }
  9182. }
  9183. }
  9184. }
  9185. static void ggml_compute_forward_get_rows_f16(
  9186. const struct ggml_compute_params * params,
  9187. struct ggml_tensor * dst) {
  9188. const struct ggml_tensor * src0 = dst->src[0];
  9189. const struct ggml_tensor * src1 = dst->src[1];
  9190. assert(params->ith == 0);
  9191. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9192. return;
  9193. }
  9194. GGML_TENSOR_BINARY_OP_LOCALS
  9195. const int64_t nc = ne00;
  9196. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  9197. assert(ne0 == nc);
  9198. assert(ne02 == ne11);
  9199. assert(nb00 == sizeof(ggml_fp16_t));
  9200. assert(ggml_nrows(dst) == nr);
  9201. // TODO: multi-thread
  9202. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9203. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9204. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  9205. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9206. ggml_fp16_to_fp32_row(
  9207. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9208. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9209. }
  9210. }
  9211. }
  9212. }
  9213. static void ggml_compute_forward_get_rows_f32(
  9214. const struct ggml_compute_params * params,
  9215. struct ggml_tensor * dst) {
  9216. const struct ggml_tensor * src0 = dst->src[0];
  9217. const struct ggml_tensor * src1 = dst->src[1];
  9218. assert(params->ith == 0);
  9219. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9220. return;
  9221. }
  9222. GGML_TENSOR_BINARY_OP_LOCALS
  9223. const int64_t nc = ne00;
  9224. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  9225. assert(ne0 == nc);
  9226. assert(ne02 == ne11);
  9227. assert(nb00 == sizeof(float));
  9228. assert(ggml_nrows(dst) == nr);
  9229. // TODO: multi-thread
  9230. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9231. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9232. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  9233. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9234. ggml_vec_cpy_f32(nc,
  9235. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  9236. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  9237. }
  9238. }
  9239. }
  9240. }
  9241. static void ggml_compute_forward_get_rows(
  9242. const struct ggml_compute_params * params,
  9243. struct ggml_tensor * dst) {
  9244. const struct ggml_tensor * src0 = dst->src[0];
  9245. switch (src0->type) {
  9246. case GGML_TYPE_Q4_0:
  9247. case GGML_TYPE_Q4_1:
  9248. case GGML_TYPE_Q5_0:
  9249. case GGML_TYPE_Q5_1:
  9250. case GGML_TYPE_Q8_0:
  9251. case GGML_TYPE_Q8_1:
  9252. case GGML_TYPE_Q2_K:
  9253. case GGML_TYPE_Q3_K:
  9254. case GGML_TYPE_Q4_K:
  9255. case GGML_TYPE_Q5_K:
  9256. case GGML_TYPE_Q6_K:
  9257. case GGML_TYPE_IQ2_XXS:
  9258. case GGML_TYPE_IQ2_XS:
  9259. case GGML_TYPE_IQ3_XXS:
  9260. case GGML_TYPE_IQ1_S:
  9261. case GGML_TYPE_IQ4_NL:
  9262. case GGML_TYPE_IQ3_S:
  9263. {
  9264. ggml_compute_forward_get_rows_q(params, dst);
  9265. } break;
  9266. case GGML_TYPE_F16:
  9267. {
  9268. ggml_compute_forward_get_rows_f16(params, dst);
  9269. } break;
  9270. case GGML_TYPE_F32:
  9271. case GGML_TYPE_I32:
  9272. {
  9273. ggml_compute_forward_get_rows_f32(params, dst);
  9274. } break;
  9275. default:
  9276. {
  9277. GGML_ASSERT(false);
  9278. } break;
  9279. }
  9280. //static bool first = true;
  9281. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9282. //if (first) {
  9283. // first = false;
  9284. //} else {
  9285. // for (int k = 0; k < dst->ne[1]; ++k) {
  9286. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9287. // for (int i = 0; i < 16; ++i) {
  9288. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9289. // }
  9290. // printf("\n");
  9291. // }
  9292. // printf("\n");
  9293. // }
  9294. // printf("\n");
  9295. // exit(0);
  9296. //}
  9297. }
  9298. // ggml_compute_forward_get_rows_back
  9299. static void ggml_compute_forward_get_rows_back_f32_f16(
  9300. const struct ggml_compute_params * params,
  9301. struct ggml_tensor * dst) {
  9302. const struct ggml_tensor * src0 = dst->src[0];
  9303. const struct ggml_tensor * src1 = dst->src[1];
  9304. GGML_ASSERT(params->ith == 0);
  9305. GGML_ASSERT(ggml_is_contiguous(dst));
  9306. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9307. if (params->type == GGML_TASK_INIT) {
  9308. if (params->ith != 0) {
  9309. return;
  9310. }
  9311. memset(dst->data, 0, ggml_nbytes(dst));
  9312. }
  9313. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9314. return;
  9315. }
  9316. const int nc = src0->ne[0];
  9317. const int nr = ggml_nelements(src1);
  9318. GGML_ASSERT( dst->ne[0] == nc);
  9319. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9320. for (int i = 0; i < nr; ++i) {
  9321. const int r = ((int32_t *) src1->data)[i];
  9322. for (int j = 0; j < nc; ++j) {
  9323. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9324. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9325. }
  9326. }
  9327. }
  9328. static void ggml_compute_forward_get_rows_back_f32(
  9329. const struct ggml_compute_params * params,
  9330. struct ggml_tensor * dst) {
  9331. const struct ggml_tensor * src0 = dst->src[0];
  9332. const struct ggml_tensor * src1 = dst->src[1];
  9333. GGML_ASSERT(params->ith == 0);
  9334. GGML_ASSERT(ggml_is_contiguous(dst));
  9335. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9336. if (params->type == GGML_TASK_INIT) {
  9337. if (params->ith != 0) {
  9338. return;
  9339. }
  9340. memset(dst->data, 0, ggml_nbytes(dst));
  9341. }
  9342. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9343. return;
  9344. }
  9345. const int nc = src0->ne[0];
  9346. const int nr = ggml_nelements(src1);
  9347. GGML_ASSERT( dst->ne[0] == nc);
  9348. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9349. for (int i = 0; i < nr; ++i) {
  9350. const int r = ((int32_t *) src1->data)[i];
  9351. ggml_vec_add_f32(nc,
  9352. (float *) ((char *) dst->data + r*dst->nb[1]),
  9353. (float *) ((char *) dst->data + r*dst->nb[1]),
  9354. (float *) ((char *) src0->data + i*src0->nb[1]));
  9355. }
  9356. }
  9357. static void ggml_compute_forward_get_rows_back(
  9358. const struct ggml_compute_params * params,
  9359. struct ggml_tensor * dst) {
  9360. const struct ggml_tensor * src0 = dst->src[0];
  9361. switch (src0->type) {
  9362. case GGML_TYPE_F16:
  9363. {
  9364. ggml_compute_forward_get_rows_back_f32_f16(params, dst);
  9365. } break;
  9366. case GGML_TYPE_F32:
  9367. {
  9368. ggml_compute_forward_get_rows_back_f32(params, dst);
  9369. } break;
  9370. default:
  9371. {
  9372. GGML_ASSERT(false);
  9373. } break;
  9374. }
  9375. //static bool first = true;
  9376. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9377. //if (first) {
  9378. // first = false;
  9379. //} else {
  9380. // for (int k = 0; k < dst->ne[1]; ++k) {
  9381. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9382. // for (int i = 0; i < 16; ++i) {
  9383. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9384. // }
  9385. // printf("\n");
  9386. // }
  9387. // printf("\n");
  9388. // }
  9389. // printf("\n");
  9390. // exit(0);
  9391. //}
  9392. }
  9393. // ggml_compute_forward_diag
  9394. static void ggml_compute_forward_diag_f32(
  9395. const struct ggml_compute_params * params,
  9396. struct ggml_tensor * dst) {
  9397. const struct ggml_tensor * src0 = dst->src[0];
  9398. GGML_ASSERT(params->ith == 0);
  9399. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9400. return;
  9401. }
  9402. // TODO: handle transposed/permuted matrices
  9403. GGML_TENSOR_UNARY_OP_LOCALS
  9404. GGML_ASSERT(ne00 == ne0);
  9405. GGML_ASSERT(ne00 == ne1);
  9406. GGML_ASSERT(ne01 == 1);
  9407. GGML_ASSERT(ne02 == ne2);
  9408. GGML_ASSERT(ne03 == ne3);
  9409. GGML_ASSERT(nb00 == sizeof(float));
  9410. GGML_ASSERT(nb0 == sizeof(float));
  9411. for (int i3 = 0; i3 < ne3; i3++) {
  9412. for (int i2 = 0; i2 < ne2; i2++) {
  9413. for (int i1 = 0; i1 < ne1; i1++) {
  9414. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9415. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9416. for (int i0 = 0; i0 < i1; i0++) {
  9417. d[i0] = 0;
  9418. }
  9419. d[i1] = s[i1];
  9420. for (int i0 = i1+1; i0 < ne0; i0++) {
  9421. d[i0] = 0;
  9422. }
  9423. }
  9424. }
  9425. }
  9426. }
  9427. static void ggml_compute_forward_diag(
  9428. const struct ggml_compute_params * params,
  9429. struct ggml_tensor * dst) {
  9430. const struct ggml_tensor * src0 = dst->src[0];
  9431. switch (src0->type) {
  9432. case GGML_TYPE_F32:
  9433. {
  9434. ggml_compute_forward_diag_f32(params, dst);
  9435. } break;
  9436. default:
  9437. {
  9438. GGML_ASSERT(false);
  9439. } break;
  9440. }
  9441. }
  9442. // ggml_compute_forward_diag_mask_inf
  9443. static void ggml_compute_forward_diag_mask_f32(
  9444. const struct ggml_compute_params * params,
  9445. struct ggml_tensor * dst,
  9446. const float value) {
  9447. const struct ggml_tensor * src0 = dst->src[0];
  9448. const int ith = params->ith;
  9449. const int nth = params->nth;
  9450. const int n_past = ((int32_t *) dst->op_params)[0];
  9451. const bool inplace = src0->data == dst->data;
  9452. GGML_ASSERT(n_past >= 0);
  9453. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9454. if (ith != 0) {
  9455. return;
  9456. }
  9457. // memcpy needs to be synchronized across threads to avoid race conditions.
  9458. // => do it in INIT phase
  9459. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9460. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9461. memcpy(
  9462. ((char *) dst->data),
  9463. ((char *) src0->data),
  9464. ggml_nbytes(dst));
  9465. }
  9466. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9467. return;
  9468. }
  9469. // TODO: handle transposed/permuted matrices
  9470. const int n = ggml_nrows(src0);
  9471. const int nc = src0->ne[0];
  9472. const int nr = src0->ne[1];
  9473. const int nz = n/nr;
  9474. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9475. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9476. for (int k = 0; k < nz; k++) {
  9477. for (int j = ith; j < nr; j += nth) {
  9478. for (int i = n_past; i < nc; i++) {
  9479. if (i > n_past + j) {
  9480. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9481. }
  9482. }
  9483. }
  9484. }
  9485. }
  9486. static void ggml_compute_forward_diag_mask_inf(
  9487. const struct ggml_compute_params * params,
  9488. struct ggml_tensor * dst) {
  9489. const struct ggml_tensor * src0 = dst->src[0];
  9490. switch (src0->type) {
  9491. case GGML_TYPE_F32:
  9492. {
  9493. ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
  9494. } break;
  9495. default:
  9496. {
  9497. GGML_ASSERT(false);
  9498. } break;
  9499. }
  9500. }
  9501. static void ggml_compute_forward_diag_mask_zero(
  9502. const struct ggml_compute_params * params,
  9503. struct ggml_tensor * dst) {
  9504. const struct ggml_tensor * src0 = dst->src[0];
  9505. switch (src0->type) {
  9506. case GGML_TYPE_F32:
  9507. {
  9508. ggml_compute_forward_diag_mask_f32(params, dst, 0);
  9509. } break;
  9510. default:
  9511. {
  9512. GGML_ASSERT(false);
  9513. } break;
  9514. }
  9515. }
  9516. // ggml_compute_forward_soft_max
  9517. static void ggml_compute_forward_soft_max_f32(
  9518. const struct ggml_compute_params * params,
  9519. struct ggml_tensor * dst) {
  9520. const struct ggml_tensor * src0 = dst->src[0];
  9521. const struct ggml_tensor * src1 = dst->src[1];
  9522. const struct ggml_tensor * src2 = dst->src[2];
  9523. assert(ggml_is_contiguous(dst));
  9524. assert(ggml_are_same_shape(src0, dst));
  9525. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9526. return;
  9527. }
  9528. float scale = 1.0f;
  9529. float max_bias = 0.0f;
  9530. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  9531. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  9532. // TODO: handle transposed/permuted matrices
  9533. const int ith = params->ith;
  9534. const int nth = params->nth;
  9535. GGML_TENSOR_UNARY_OP_LOCALS
  9536. const int64_t ne11 = src1 ? src1->ne[1] : 1;
  9537. // TODO: is this supposed to be ceil instead of floor?
  9538. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  9539. const uint32_t n_head_kv = ne02;
  9540. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head_kv));
  9541. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  9542. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  9543. const int nc = src0->ne[0];
  9544. const int nr = ggml_nrows(src0);
  9545. // rows per thread
  9546. const int dr = (nr + nth - 1)/nth;
  9547. // row range for this thread
  9548. const int ir0 = dr*ith;
  9549. const int ir1 = MIN(ir0 + dr, nr);
  9550. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  9551. // when max_bias <= 0.0f, src2 is not used and we default it to src0 to avoid branching
  9552. float * pos = src2 ? (float *) src2->data : src0->data;
  9553. for (int i1 = ir0; i1 < ir1; i1++) {
  9554. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9555. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9556. // broadcast the mask across rows
  9557. float * mp = src1 ? (float *)((char *) src1->data + (i1%ne11)*src1->nb[1]) : NULL;
  9558. ggml_vec_cpy_f32 (nc, wp, sp);
  9559. ggml_vec_scale_f32(nc, wp, scale);
  9560. if (mp) {
  9561. ggml_vec_acc_f32(nc, wp, mp);
  9562. }
  9563. // ALiBi bias
  9564. if (max_bias > 0.0f) {
  9565. const uint32_t h = (i1/ne01)%ne02; // head
  9566. const float slope = h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1);
  9567. for (int i = 0; i < nc; i++) {
  9568. wp[i] = wp[i] + slope*pos[i];
  9569. }
  9570. }
  9571. #ifndef NDEBUG
  9572. for (int i = 0; i < nc; ++i) {
  9573. //printf("p[%d] = %f\n", i, p[i]);
  9574. assert(!isnan(wp[i]));
  9575. }
  9576. #endif
  9577. float max = -INFINITY;
  9578. ggml_vec_max_f32(nc, &max, wp);
  9579. ggml_float sum = 0.0;
  9580. uint16_t scvt;
  9581. for (int i = 0; i < nc; i++) {
  9582. if (wp[i] == -INFINITY) {
  9583. dp[i] = 0.0f;
  9584. } else {
  9585. // const float val = (wp[i] == -INFINITY) ? 0.0 : exp(wp[i] - max);
  9586. ggml_fp16_t s = GGML_FP32_TO_FP16(wp[i] - max);
  9587. memcpy(&scvt, &s, sizeof(scvt));
  9588. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  9589. sum += (ggml_float)val;
  9590. dp[i] = val;
  9591. }
  9592. }
  9593. assert(sum > 0.0);
  9594. sum = 1.0/sum;
  9595. ggml_vec_scale_f32(nc, dp, sum);
  9596. #ifndef NDEBUG
  9597. for (int i = 0; i < nc; ++i) {
  9598. assert(!isnan(dp[i]));
  9599. assert(!isinf(dp[i]));
  9600. }
  9601. #endif
  9602. }
  9603. }
  9604. static void ggml_compute_forward_soft_max(
  9605. const struct ggml_compute_params * params,
  9606. struct ggml_tensor * dst) {
  9607. const struct ggml_tensor * src0 = dst->src[0];
  9608. switch (src0->type) {
  9609. case GGML_TYPE_F32:
  9610. {
  9611. ggml_compute_forward_soft_max_f32(params, dst);
  9612. } break;
  9613. default:
  9614. {
  9615. GGML_ASSERT(false);
  9616. } break;
  9617. }
  9618. }
  9619. // ggml_compute_forward_soft_max_back
  9620. static void ggml_compute_forward_soft_max_back_f32(
  9621. const struct ggml_compute_params * params,
  9622. struct ggml_tensor * dst) {
  9623. const struct ggml_tensor * src0 = dst->src[0];
  9624. const struct ggml_tensor * src1 = dst->src[1];
  9625. GGML_ASSERT(ggml_is_contiguous(src0));
  9626. GGML_ASSERT(ggml_is_contiguous(src1));
  9627. GGML_ASSERT(ggml_is_contiguous(dst));
  9628. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9629. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9630. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9631. return;
  9632. }
  9633. // TODO: handle transposed/permuted matrices
  9634. const int ith = params->ith;
  9635. const int nth = params->nth;
  9636. const int nc = src0->ne[0];
  9637. const int nr = ggml_nrows(src0);
  9638. // rows per thread
  9639. const int dr = (nr + nth - 1)/nth;
  9640. // row range for this thread
  9641. const int ir0 = dr*ith;
  9642. const int ir1 = MIN(ir0 + dr, nr);
  9643. for (int i1 = ir0; i1 < ir1; i1++) {
  9644. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9645. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9646. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9647. #ifndef NDEBUG
  9648. for (int i = 0; i < nc; ++i) {
  9649. //printf("p[%d] = %f\n", i, p[i]);
  9650. assert(!isnan(dy[i]));
  9651. assert(!isnan(y[i]));
  9652. }
  9653. #endif
  9654. // Jii = yi - yi*yi
  9655. // Jij = -yi*yj
  9656. // J = diag(y)-y.T*y
  9657. // dx = J * dy
  9658. // dxk = sum_i(Jki * dyi)
  9659. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9660. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  9661. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9662. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9663. // dxk = -yk * dot(y, dy) + yk*dyk
  9664. // dxk = yk * (- dot(y, dy) + dyk)
  9665. // dxk = yk * (dyk - dot(y, dy))
  9666. //
  9667. // post-order:
  9668. // dot_y_dy := dot(y, dy)
  9669. // dx := dy
  9670. // dx := dx - dot_y_dy
  9671. // dx := dx * y
  9672. // linear runtime, no additional memory
  9673. float dot_y_dy = 0;
  9674. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  9675. ggml_vec_cpy_f32 (nc, dx, dy);
  9676. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9677. ggml_vec_mul_f32 (nc, dx, dx, y);
  9678. #ifndef NDEBUG
  9679. for (int i = 0; i < nc; ++i) {
  9680. assert(!isnan(dx[i]));
  9681. assert(!isinf(dx[i]));
  9682. }
  9683. #endif
  9684. }
  9685. }
  9686. static void ggml_compute_forward_soft_max_back(
  9687. const struct ggml_compute_params * params,
  9688. struct ggml_tensor * dst) {
  9689. const struct ggml_tensor * src0 = dst->src[0];
  9690. switch (src0->type) {
  9691. case GGML_TYPE_F32:
  9692. {
  9693. ggml_compute_forward_soft_max_back_f32(params, dst);
  9694. } break;
  9695. default:
  9696. {
  9697. GGML_ASSERT(false);
  9698. } break;
  9699. }
  9700. }
  9701. // ggml_compute_forward_alibi
  9702. static void ggml_compute_forward_alibi_f32(
  9703. const struct ggml_compute_params * params,
  9704. struct ggml_tensor * dst) {
  9705. const struct ggml_tensor * src0 = dst->src[0];
  9706. assert(params->ith == 0);
  9707. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9708. return;
  9709. }
  9710. //const int n_past = ((int32_t *) dst->op_params)[0];
  9711. const int n_head = ((int32_t *) dst->op_params)[1];
  9712. float max_bias;
  9713. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9714. const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9715. const int64_t ne1 = src0->ne[1]; // seq_len_without_past
  9716. const int64_t ne2 = src0->ne[2]; // n_head -> this is k
  9717. //const int64_t ne3 = src0->ne[3]; // 1 -> bsz
  9718. const int64_t n = ggml_nrows(src0);
  9719. const int64_t ne2_ne3 = n/ne1; // ne2*ne3
  9720. const size_t nb0 = src0->nb[0];
  9721. const size_t nb1 = src0->nb[1];
  9722. const size_t nb2 = src0->nb[2];
  9723. //const int nb3 = src0->nb[3];
  9724. GGML_ASSERT(nb0 == sizeof(float));
  9725. GGML_ASSERT(n_head == ne2);
  9726. // add alibi to src0 (KQ_scaled)
  9727. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9728. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9729. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9730. for (int64_t k = 0; k < ne2_ne3; k++) {
  9731. // TODO: k*nb2 or k*nb3
  9732. float m_k;
  9733. if (k < n_heads_log2_floor) {
  9734. m_k = powf(m0, k + 1);
  9735. } else {
  9736. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9737. }
  9738. for (int64_t i = 0; i < ne0; i++) {
  9739. for (int64_t j = 0; j < ne1; j++) {
  9740. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9741. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9742. pdst[0] = i * m_k + src[0];
  9743. }
  9744. }
  9745. }
  9746. }
  9747. static void ggml_compute_forward_alibi_f16(
  9748. const struct ggml_compute_params * params,
  9749. struct ggml_tensor * dst) {
  9750. const struct ggml_tensor * src0 = dst->src[0];
  9751. assert(params->ith == 0);
  9752. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9753. return;
  9754. }
  9755. //const int n_past = ((int32_t *) dst->op_params)[0];
  9756. const int n_head = ((int32_t *) dst->op_params)[1];
  9757. float max_bias;
  9758. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9759. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9760. const int ne1 = src0->ne[1]; // seq_len_without_past
  9761. const int ne2 = src0->ne[2]; // n_head -> this is k
  9762. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9763. const int n = ggml_nrows(src0);
  9764. const int ne2_ne3 = n/ne1; // ne2*ne3
  9765. const int nb0 = src0->nb[0];
  9766. const int nb1 = src0->nb[1];
  9767. const int nb2 = src0->nb[2];
  9768. //const int nb3 = src0->nb[3];
  9769. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9770. //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  9771. GGML_ASSERT(n_head == ne2);
  9772. // add alibi to src0 (KQ_scaled)
  9773. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9774. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9775. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9776. for (int k = 0; k < ne2_ne3; k++) {
  9777. // TODO: k*nb2 or k*nb3
  9778. float m_k;
  9779. if (k < n_heads_log2_floor) {
  9780. m_k = powf(m0, k + 1);
  9781. } else {
  9782. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9783. }
  9784. for (int i = 0; i < ne0; i++) {
  9785. for (int j = 0; j < ne1; j++) {
  9786. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9787. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9788. // we return F32
  9789. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  9790. }
  9791. }
  9792. }
  9793. }
  9794. static void ggml_compute_forward_alibi(
  9795. const struct ggml_compute_params * params,
  9796. struct ggml_tensor * dst) {
  9797. const struct ggml_tensor * src0 = dst->src[0];
  9798. switch (src0->type) {
  9799. case GGML_TYPE_F16:
  9800. {
  9801. ggml_compute_forward_alibi_f16(params, dst);
  9802. } break;
  9803. case GGML_TYPE_F32:
  9804. {
  9805. ggml_compute_forward_alibi_f32(params, dst);
  9806. } break;
  9807. case GGML_TYPE_Q4_0:
  9808. case GGML_TYPE_Q4_1:
  9809. case GGML_TYPE_Q5_0:
  9810. case GGML_TYPE_Q5_1:
  9811. case GGML_TYPE_Q8_0:
  9812. case GGML_TYPE_Q8_1:
  9813. case GGML_TYPE_Q2_K:
  9814. case GGML_TYPE_Q3_K:
  9815. case GGML_TYPE_Q4_K:
  9816. case GGML_TYPE_Q5_K:
  9817. case GGML_TYPE_Q6_K:
  9818. case GGML_TYPE_IQ2_XXS:
  9819. case GGML_TYPE_IQ2_XS:
  9820. case GGML_TYPE_IQ3_XXS:
  9821. case GGML_TYPE_IQ1_S:
  9822. case GGML_TYPE_IQ4_NL:
  9823. case GGML_TYPE_IQ3_S:
  9824. case GGML_TYPE_Q8_K:
  9825. case GGML_TYPE_I8:
  9826. case GGML_TYPE_I16:
  9827. case GGML_TYPE_I32:
  9828. case GGML_TYPE_COUNT:
  9829. {
  9830. GGML_ASSERT(false);
  9831. } break;
  9832. }
  9833. }
  9834. // ggml_compute_forward_clamp
  9835. static void ggml_compute_forward_clamp_f32(
  9836. const struct ggml_compute_params * params,
  9837. struct ggml_tensor * dst) {
  9838. const struct ggml_tensor * src0 = dst->src[0];
  9839. assert(params->ith == 0);
  9840. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9841. return;
  9842. }
  9843. float min;
  9844. float max;
  9845. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  9846. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  9847. const int ith = params->ith;
  9848. const int nth = params->nth;
  9849. const int n = ggml_nrows(src0);
  9850. const int nc = src0->ne[0];
  9851. const size_t nb00 = src0->nb[0];
  9852. const size_t nb01 = src0->nb[1];
  9853. const size_t nb0 = dst->nb[0];
  9854. const size_t nb1 = dst->nb[1];
  9855. GGML_ASSERT( nb0 == sizeof(float));
  9856. GGML_ASSERT(nb00 == sizeof(float));
  9857. for (int j = ith; j < n; j += nth) {
  9858. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9859. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9860. for (int i = 0; i < nc; i++) {
  9861. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9862. }
  9863. }
  9864. }
  9865. static void ggml_compute_forward_clamp(
  9866. const struct ggml_compute_params * params,
  9867. struct ggml_tensor * dst) {
  9868. const struct ggml_tensor * src0 = dst->src[0];
  9869. switch (src0->type) {
  9870. case GGML_TYPE_F32:
  9871. {
  9872. ggml_compute_forward_clamp_f32(params, dst);
  9873. } break;
  9874. case GGML_TYPE_F16:
  9875. case GGML_TYPE_Q4_0:
  9876. case GGML_TYPE_Q4_1:
  9877. case GGML_TYPE_Q5_0:
  9878. case GGML_TYPE_Q5_1:
  9879. case GGML_TYPE_Q8_0:
  9880. case GGML_TYPE_Q8_1:
  9881. case GGML_TYPE_Q2_K:
  9882. case GGML_TYPE_Q3_K:
  9883. case GGML_TYPE_Q4_K:
  9884. case GGML_TYPE_Q5_K:
  9885. case GGML_TYPE_Q6_K:
  9886. case GGML_TYPE_IQ2_XXS:
  9887. case GGML_TYPE_IQ2_XS:
  9888. case GGML_TYPE_IQ3_XXS:
  9889. case GGML_TYPE_IQ1_S:
  9890. case GGML_TYPE_IQ4_NL:
  9891. case GGML_TYPE_IQ3_S:
  9892. case GGML_TYPE_Q8_K:
  9893. case GGML_TYPE_I8:
  9894. case GGML_TYPE_I16:
  9895. case GGML_TYPE_I32:
  9896. case GGML_TYPE_COUNT:
  9897. {
  9898. GGML_ASSERT(false);
  9899. } break;
  9900. }
  9901. }
  9902. // ggml_compute_forward_rope
  9903. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  9904. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  9905. return 1 - MIN(1, MAX(0, y));
  9906. }
  9907. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  9908. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  9909. static void rope_yarn(
  9910. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  9911. float * cos_theta, float * sin_theta
  9912. ) {
  9913. // Get n-d rotational scaling corrected for extrapolation
  9914. float theta_interp = freq_scale * theta_extrap;
  9915. float theta = theta_interp;
  9916. if (ext_factor != 0.0f) {
  9917. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  9918. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  9919. // Get n-d magnitude scaling corrected for interpolation
  9920. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  9921. }
  9922. *cos_theta = cosf(theta) * mscale;
  9923. *sin_theta = sinf(theta) * mscale;
  9924. }
  9925. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  9926. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  9927. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  9928. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  9929. }
  9930. static void ggml_rope_cache_init(
  9931. float theta_base, float freq_scale, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  9932. float * cache, float sin_sign, float theta_scale
  9933. ) {
  9934. float theta = theta_base;
  9935. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9936. rope_yarn(
  9937. theta, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  9938. );
  9939. cache[i0 + 1] *= sin_sign;
  9940. theta *= theta_scale;
  9941. }
  9942. }
  9943. GGML_CALL void ggml_rope_yarn_corr_dims(
  9944. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  9945. ) {
  9946. // start and end correction dims
  9947. float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base));
  9948. float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base));
  9949. dims[0] = MAX(0, start);
  9950. dims[1] = MIN(n_dims - 1, end);
  9951. }
  9952. static void ggml_compute_forward_rope_f32(
  9953. const struct ggml_compute_params * params,
  9954. struct ggml_tensor * dst,
  9955. const bool forward) {
  9956. const struct ggml_tensor * src0 = dst->src[0];
  9957. const struct ggml_tensor * src1 = dst->src[1];
  9958. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9959. return;
  9960. }
  9961. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  9962. // these two only relevant for xPos RoPE:
  9963. float xpos_base;
  9964. bool xpos_down;
  9965. //const int n_past = ((int32_t *) dst->op_params)[0];
  9966. const int n_dims = ((int32_t *) dst->op_params)[1];
  9967. const int mode = ((int32_t *) dst->op_params)[2];
  9968. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9969. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  9970. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  9971. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  9972. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  9973. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  9974. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  9975. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  9976. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  9977. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  9978. GGML_TENSOR_UNARY_OP_LOCALS
  9979. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9980. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9981. GGML_ASSERT(nb00 == sizeof(float));
  9982. const int ith = params->ith;
  9983. const int nth = params->nth;
  9984. const int nr = ggml_nrows(dst);
  9985. GGML_ASSERT(n_dims <= ne0);
  9986. GGML_ASSERT(n_dims % 2 == 0);
  9987. // rows per thread
  9988. const int dr = (nr + nth - 1)/nth;
  9989. // row range for this thread
  9990. const int ir0 = dr*ith;
  9991. const int ir1 = MIN(ir0 + dr, nr);
  9992. // row index used to determine which thread to use
  9993. int ir = 0;
  9994. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9995. const float inv_ndims = -1.f/n_dims;
  9996. float corr_dims[2];
  9997. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  9998. const bool is_neox = mode & 2;
  9999. const bool is_glm = mode & 4;
  10000. // backward process uses inverse rotation by cos and sin.
  10001. // cos and sin build a rotation matrix, where the inverse is the transpose.
  10002. // this essentially just switches the sign of sin.
  10003. const float sin_sign = forward ? 1.0f : -1.0f;
  10004. const int32_t * pos = (const int32_t *) src1->data;
  10005. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10006. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10007. const int64_t p = pos[i2];
  10008. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  10009. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  10010. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  10011. }
  10012. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10013. if (ir++ < ir0) continue;
  10014. if (ir > ir1) break;
  10015. float theta_base = (float)p;
  10016. if (is_glm) {
  10017. theta_base = MIN(p, n_ctx - 2);
  10018. float block_theta = MAX(p - (n_ctx - 2), 0);
  10019. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10020. const float cos_theta = cosf(theta_base);
  10021. const float sin_theta = sinf(theta_base) * sin_sign;
  10022. const float cos_block_theta = cosf(block_theta);
  10023. const float sin_block_theta = sinf(block_theta) * sin_sign;
  10024. theta_base *= theta_scale;
  10025. block_theta *= theta_scale;
  10026. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10027. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10028. const float x0 = src[0];
  10029. const float x1 = src[n_dims/2];
  10030. const float x2 = src[n_dims];
  10031. const float x3 = src[n_dims/2*3];
  10032. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10033. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10034. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  10035. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  10036. }
  10037. } else if (!is_neox) {
  10038. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10039. const float cos_theta = cache[i0 + 0];
  10040. const float sin_theta = cache[i0 + 1];
  10041. // zeta scaling for xPos only:
  10042. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  10043. if (xpos_down) zeta = 1.0f / zeta;
  10044. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10045. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10046. const float x0 = src[0];
  10047. const float x1 = src[1];
  10048. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  10049. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  10050. }
  10051. } else {
  10052. // TODO: this might be wrong for ne0 != n_dims - need double check
  10053. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  10054. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  10055. theta_base *= freq_scale;
  10056. for (int64_t ic = 0; ic < ne0; ic += 2) {
  10057. if (ic < n_dims) {
  10058. const int64_t ib = 0;
  10059. // simplified from `(ib * n_dims + ic) * inv_ndims`
  10060. float cur_rot = inv_ndims * ic - ib;
  10061. float cos_theta, sin_theta;
  10062. rope_yarn(
  10063. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  10064. &cos_theta, &sin_theta
  10065. );
  10066. sin_theta *= sin_sign;
  10067. theta_base *= theta_scale;
  10068. const int64_t i0 = ib*n_dims + ic/2;
  10069. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10070. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10071. const float x0 = src[0];
  10072. const float x1 = src[n_dims/2];
  10073. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10074. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10075. } else {
  10076. const int64_t i0 = ic;
  10077. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10078. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10079. dst_data[0] = src[0];
  10080. dst_data[1] = src[1];
  10081. }
  10082. }
  10083. }
  10084. }
  10085. }
  10086. }
  10087. }
  10088. static void ggml_compute_forward_rope_f16(
  10089. const struct ggml_compute_params * params,
  10090. struct ggml_tensor * dst,
  10091. const bool forward) {
  10092. const struct ggml_tensor * src0 = dst->src[0];
  10093. const struct ggml_tensor * src1 = dst->src[1];
  10094. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10095. return;
  10096. }
  10097. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  10098. //const int n_past = ((int32_t *) dst->op_params)[0];
  10099. const int n_dims = ((int32_t *) dst->op_params)[1];
  10100. const int mode = ((int32_t *) dst->op_params)[2];
  10101. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10102. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  10103. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  10104. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  10105. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  10106. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  10107. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  10108. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  10109. GGML_TENSOR_UNARY_OP_LOCALS
  10110. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10111. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10112. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10113. const int ith = params->ith;
  10114. const int nth = params->nth;
  10115. const int nr = ggml_nrows(dst);
  10116. GGML_ASSERT(n_dims <= ne0);
  10117. GGML_ASSERT(n_dims % 2 == 0);
  10118. // rows per thread
  10119. const int dr = (nr + nth - 1)/nth;
  10120. // row range for this thread
  10121. const int ir0 = dr*ith;
  10122. const int ir1 = MIN(ir0 + dr, nr);
  10123. // row index used to determine which thread to use
  10124. int ir = 0;
  10125. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10126. const float inv_ndims = -1.f/n_dims;
  10127. float corr_dims[2];
  10128. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  10129. const bool is_neox = mode & 2;
  10130. const bool is_glm = mode & 4;
  10131. // backward process uses inverse rotation by cos and sin.
  10132. // cos and sin build a rotation matrix, where the inverse is the transpose.
  10133. // this essentially just switches the sign of sin.
  10134. const float sin_sign = forward ? 1.0f : -1.0f;
  10135. const int32_t * pos = (const int32_t *) src1->data;
  10136. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10137. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10138. const int64_t p = pos[i2];
  10139. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  10140. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  10141. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  10142. }
  10143. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10144. if (ir++ < ir0) continue;
  10145. if (ir > ir1) break;
  10146. float theta_base = (float)p;
  10147. if (is_glm) {
  10148. theta_base = MIN(p, n_ctx - 2);
  10149. float block_theta = MAX(p - (n_ctx - 2), 0);
  10150. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10151. const float cos_theta = cosf(theta_base);
  10152. const float sin_theta = sinf(theta_base) * sin_sign;
  10153. const float cos_block_theta = cosf(block_theta);
  10154. const float sin_block_theta = sinf(block_theta) * sin_sign;
  10155. theta_base *= theta_scale;
  10156. block_theta *= theta_scale;
  10157. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10158. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10159. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10160. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10161. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  10162. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  10163. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10164. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10165. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  10166. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  10167. }
  10168. } else if (!is_neox) {
  10169. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10170. const float cos_theta = cache[i0 + 0];
  10171. const float sin_theta = cache[i0 + 1];
  10172. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10173. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10174. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10175. const float x1 = GGML_FP16_TO_FP32(src[1]);
  10176. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10177. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10178. }
  10179. } else {
  10180. // TODO: this might be wrong for ne0 != n_dims - need double check
  10181. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  10182. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  10183. theta_base *= freq_scale;
  10184. for (int64_t ic = 0; ic < ne0; ic += 2) {
  10185. if (ic < n_dims) {
  10186. const int64_t ib = 0;
  10187. // simplified from `(ib * n_dims + ic) * inv_ndims`
  10188. float cur_rot = inv_ndims * ic - ib;
  10189. float cos_theta, sin_theta;
  10190. rope_yarn(
  10191. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  10192. &cos_theta, &sin_theta
  10193. );
  10194. sin_theta *= sin_sign;
  10195. theta_base *= theta_scale;
  10196. const int64_t i0 = ib*n_dims + ic/2;
  10197. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10198. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10199. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10200. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10201. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10202. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10203. } else {
  10204. const int64_t i0 = ic;
  10205. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10206. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10207. dst_data[0] = src[0];
  10208. dst_data[1] = src[1];
  10209. }
  10210. }
  10211. }
  10212. }
  10213. }
  10214. }
  10215. }
  10216. static void ggml_compute_forward_rope(
  10217. const struct ggml_compute_params * params,
  10218. struct ggml_tensor * dst) {
  10219. const struct ggml_tensor * src0 = dst->src[0];
  10220. switch (src0->type) {
  10221. case GGML_TYPE_F16:
  10222. {
  10223. ggml_compute_forward_rope_f16(params, dst, true);
  10224. } break;
  10225. case GGML_TYPE_F32:
  10226. {
  10227. ggml_compute_forward_rope_f32(params, dst, true);
  10228. } break;
  10229. default:
  10230. {
  10231. GGML_ASSERT(false);
  10232. } break;
  10233. }
  10234. }
  10235. // ggml_compute_forward_rope_back
  10236. static void ggml_compute_forward_rope_back(
  10237. const struct ggml_compute_params * params,
  10238. struct ggml_tensor * dst) {
  10239. const struct ggml_tensor * src0 = dst->src[0];
  10240. switch (src0->type) {
  10241. case GGML_TYPE_F16:
  10242. {
  10243. ggml_compute_forward_rope_f16(params, dst, false);
  10244. } break;
  10245. case GGML_TYPE_F32:
  10246. {
  10247. ggml_compute_forward_rope_f32(params, dst, false);
  10248. } break;
  10249. default:
  10250. {
  10251. GGML_ASSERT(false);
  10252. } break;
  10253. }
  10254. }
  10255. // ggml_compute_forward_conv_transpose_1d
  10256. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  10257. const struct ggml_compute_params * params,
  10258. struct ggml_tensor * dst) {
  10259. const struct ggml_tensor * src0 = dst->src[0];
  10260. const struct ggml_tensor * src1 = dst->src[1];
  10261. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10262. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10263. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10264. int64_t t0 = ggml_perf_time_us();
  10265. UNUSED(t0);
  10266. GGML_TENSOR_BINARY_OP_LOCALS
  10267. const int ith = params->ith;
  10268. const int nth = params->nth;
  10269. const int nk = ne00*ne01*ne02;
  10270. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10271. GGML_ASSERT(nb10 == sizeof(float));
  10272. if (params->type == GGML_TASK_INIT) {
  10273. if (ith != 0) {
  10274. return;
  10275. }
  10276. memset(params->wdata, 0, params->wsize);
  10277. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10278. {
  10279. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10280. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10281. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10282. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10283. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  10284. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10285. dst_data[i00*ne02 + i02] = src[i00];
  10286. }
  10287. }
  10288. }
  10289. }
  10290. // permute source data (src1) from (L x Cin) to (Cin x L)
  10291. {
  10292. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10293. ggml_fp16_t * dst_data = wdata;
  10294. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10295. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10296. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10297. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10298. }
  10299. }
  10300. }
  10301. // need to zero dst since we are accumulating into it
  10302. memset(dst->data, 0, ggml_nbytes(dst));
  10303. return;
  10304. }
  10305. if (params->type == GGML_TASK_FINALIZE) {
  10306. return;
  10307. }
  10308. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10309. // total rows in dst
  10310. const int nr = ne1;
  10311. // rows per thread
  10312. const int dr = (nr + nth - 1)/nth;
  10313. // row range for this thread
  10314. const int ir0 = dr*ith;
  10315. const int ir1 = MIN(ir0 + dr, nr);
  10316. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10317. ggml_fp16_t * const wdata_src = wdata + nk;
  10318. for (int i1 = ir0; i1 < ir1; i1++) {
  10319. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10320. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  10321. for (int i10 = 0; i10 < ne10; i10++) {
  10322. const int i1n = i10*ne11;
  10323. for (int i00 = 0; i00 < ne00; i00++) {
  10324. float v = 0;
  10325. ggml_vec_dot_f16(ne02, &v, 0,
  10326. (ggml_fp16_t *) wdata_src + i1n, 0,
  10327. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  10328. dst_data[i10*s0 + i00] += v;
  10329. }
  10330. }
  10331. }
  10332. }
  10333. static void ggml_compute_forward_conv_transpose_1d_f32(
  10334. const struct ggml_compute_params * params,
  10335. struct ggml_tensor * dst) {
  10336. const struct ggml_tensor * src0 = dst->src[0];
  10337. const struct ggml_tensor * src1 = dst->src[1];
  10338. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10339. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10340. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10341. int64_t t0 = ggml_perf_time_us();
  10342. UNUSED(t0);
  10343. GGML_TENSOR_BINARY_OP_LOCALS
  10344. const int ith = params->ith;
  10345. const int nth = params->nth;
  10346. const int nk = ne00*ne01*ne02;
  10347. GGML_ASSERT(nb00 == sizeof(float));
  10348. GGML_ASSERT(nb10 == sizeof(float));
  10349. if (params->type == GGML_TASK_INIT) {
  10350. if (ith != 0) {
  10351. return;
  10352. }
  10353. memset(params->wdata, 0, params->wsize);
  10354. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10355. {
  10356. float * const wdata = (float *) params->wdata + 0;
  10357. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10358. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10359. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10360. float * dst_data = wdata + i01*ne00*ne02;
  10361. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10362. dst_data[i00*ne02 + i02] = src[i00];
  10363. }
  10364. }
  10365. }
  10366. }
  10367. // prepare source data (src1)
  10368. {
  10369. float * const wdata = (float *) params->wdata + nk;
  10370. float * dst_data = wdata;
  10371. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10372. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10373. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10374. dst_data[i10*ne11 + i11] = src[i10];
  10375. }
  10376. }
  10377. }
  10378. // need to zero dst since we are accumulating into it
  10379. memset(dst->data, 0, ggml_nbytes(dst));
  10380. return;
  10381. }
  10382. if (params->type == GGML_TASK_FINALIZE) {
  10383. return;
  10384. }
  10385. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10386. // total rows in dst
  10387. const int nr = ne1;
  10388. // rows per thread
  10389. const int dr = (nr + nth - 1)/nth;
  10390. // row range for this thread
  10391. const int ir0 = dr*ith;
  10392. const int ir1 = MIN(ir0 + dr, nr);
  10393. float * const wdata = (float *) params->wdata + 0;
  10394. float * const wdata_src = wdata + nk;
  10395. for (int i1 = ir0; i1 < ir1; i1++) {
  10396. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10397. float * wdata_kernel = wdata + i1*ne02*ne00;
  10398. for (int i10 = 0; i10 < ne10; i10++) {
  10399. const int i1n = i10*ne11;
  10400. for (int i00 = 0; i00 < ne00; i00++) {
  10401. float v = 0;
  10402. ggml_vec_dot_f32(ne02, &v, 0,
  10403. wdata_src + i1n, 0,
  10404. wdata_kernel + i00*ne02, 0, 1);
  10405. dst_data[i10*s0 + i00] += v;
  10406. }
  10407. }
  10408. }
  10409. }
  10410. static void ggml_compute_forward_conv_transpose_1d(
  10411. const struct ggml_compute_params * params,
  10412. struct ggml_tensor * dst) {
  10413. const struct ggml_tensor * src0 = dst->src[0];
  10414. switch (src0->type) {
  10415. case GGML_TYPE_F16:
  10416. {
  10417. ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
  10418. } break;
  10419. case GGML_TYPE_F32:
  10420. {
  10421. ggml_compute_forward_conv_transpose_1d_f32(params, dst);
  10422. } break;
  10423. default:
  10424. {
  10425. GGML_ASSERT(false);
  10426. } break;
  10427. }
  10428. }
  10429. // src0: kernel [OC, IC, KH, KW]
  10430. // src1: image [N, IC, IH, IW]
  10431. // dst: result [N, OH, OW, IC*KH*KW]
  10432. static void ggml_compute_forward_im2col_f32(
  10433. const struct ggml_compute_params * params,
  10434. struct ggml_tensor * dst) {
  10435. const struct ggml_tensor * src0 = dst->src[0];
  10436. const struct ggml_tensor * src1 = dst->src[1];
  10437. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10438. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10439. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10440. int64_t t0 = ggml_perf_time_us();
  10441. UNUSED(t0);
  10442. GGML_TENSOR_BINARY_OP_LOCALS;
  10443. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10444. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10445. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10446. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10447. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10448. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10449. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10450. const int ith = params->ith;
  10451. const int nth = params->nth;
  10452. const int64_t N = is_2D ? ne13 : ne12;
  10453. const int64_t IC = is_2D ? ne12 : ne11;
  10454. const int64_t IH = is_2D ? ne11 : 1;
  10455. const int64_t IW = ne10;
  10456. const int64_t KH = is_2D ? ne01 : 1;
  10457. const int64_t KW = ne00;
  10458. const int64_t OH = is_2D ? ne2 : 1;
  10459. const int64_t OW = ne1;
  10460. int ofs0 = is_2D ? nb13 : nb12;
  10461. int ofs1 = is_2D ? nb12 : nb11;
  10462. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10463. GGML_ASSERT(nb10 == sizeof(float));
  10464. if (params->type == GGML_TASK_INIT) {
  10465. return;
  10466. }
  10467. if (params->type == GGML_TASK_FINALIZE) {
  10468. return;
  10469. }
  10470. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10471. {
  10472. float * const wdata = (float *) dst->data;
  10473. for (int64_t in = 0; in < N; in++) {
  10474. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10475. for (int64_t iow = 0; iow < OW; iow++) {
  10476. for (int64_t iic = ith; iic < IC; iic += nth) {
  10477. // micro kernel
  10478. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10479. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10480. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10481. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10482. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10483. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10484. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10485. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10486. } else {
  10487. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  10488. }
  10489. }
  10490. }
  10491. }
  10492. }
  10493. }
  10494. }
  10495. }
  10496. }
  10497. // src0: kernel [OC, IC, KH, KW]
  10498. // src1: image [N, IC, IH, IW]
  10499. // dst: result [N, OH, OW, IC*KH*KW]
  10500. static void ggml_compute_forward_im2col_f16(
  10501. const struct ggml_compute_params * params,
  10502. struct ggml_tensor * dst) {
  10503. const struct ggml_tensor * src0 = dst->src[0];
  10504. const struct ggml_tensor * src1 = dst->src[1];
  10505. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10506. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10507. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  10508. int64_t t0 = ggml_perf_time_us();
  10509. UNUSED(t0);
  10510. GGML_TENSOR_BINARY_OP_LOCALS;
  10511. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10512. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10513. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10514. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10515. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10516. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10517. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10518. const int ith = params->ith;
  10519. const int nth = params->nth;
  10520. const int64_t N = is_2D ? ne13 : ne12;
  10521. const int64_t IC = is_2D ? ne12 : ne11;
  10522. const int64_t IH = is_2D ? ne11 : 1;
  10523. const int64_t IW = ne10;
  10524. const int64_t KH = is_2D ? ne01 : 1;
  10525. const int64_t KW = ne00;
  10526. const int64_t OH = is_2D ? ne2 : 1;
  10527. const int64_t OW = ne1;
  10528. int ofs0 = is_2D ? nb13 : nb12;
  10529. int ofs1 = is_2D ? nb12 : nb11;
  10530. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10531. GGML_ASSERT(nb10 == sizeof(float));
  10532. if (params->type == GGML_TASK_INIT) {
  10533. return;
  10534. }
  10535. if (params->type == GGML_TASK_FINALIZE) {
  10536. return;
  10537. }
  10538. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10539. {
  10540. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  10541. for (int64_t in = 0; in < N; in++) {
  10542. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10543. for (int64_t iow = 0; iow < OW; iow++) {
  10544. for (int64_t iic = ith; iic < IC; iic += nth) {
  10545. // micro kernel
  10546. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10547. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10548. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10549. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10550. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10551. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10552. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10553. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10554. } else {
  10555. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  10556. }
  10557. }
  10558. }
  10559. }
  10560. }
  10561. }
  10562. }
  10563. }
  10564. }
  10565. static void ggml_compute_forward_im2col(
  10566. const struct ggml_compute_params * params,
  10567. struct ggml_tensor * dst) {
  10568. switch (dst->type) {
  10569. case GGML_TYPE_F16:
  10570. {
  10571. ggml_compute_forward_im2col_f16(params, dst);
  10572. } break;
  10573. case GGML_TYPE_F32:
  10574. {
  10575. ggml_compute_forward_im2col_f32(params, dst);
  10576. } break;
  10577. default:
  10578. {
  10579. GGML_ASSERT(false);
  10580. } break;
  10581. }
  10582. }
  10583. // ggml_compute_forward_conv_transpose_2d
  10584. static void ggml_compute_forward_conv_transpose_2d(
  10585. const struct ggml_compute_params * params,
  10586. struct ggml_tensor * dst) {
  10587. const struct ggml_tensor * src0 = dst->src[0];
  10588. const struct ggml_tensor * src1 = dst->src[1];
  10589. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10590. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10591. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10592. int64_t t0 = ggml_perf_time_us();
  10593. UNUSED(t0);
  10594. GGML_TENSOR_BINARY_OP_LOCALS
  10595. const int ith = params->ith;
  10596. const int nth = params->nth;
  10597. const int nk = ne00*ne01*ne02*ne03;
  10598. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10599. GGML_ASSERT(nb10 == sizeof(float));
  10600. if (params->type == GGML_TASK_INIT) {
  10601. if (ith != 0) {
  10602. return;
  10603. }
  10604. memset(params->wdata, 0, params->wsize);
  10605. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  10606. {
  10607. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10608. for (int64_t i03 = 0; i03 < ne03; i03++) {
  10609. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10610. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  10611. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  10612. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10613. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10614. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  10615. }
  10616. }
  10617. }
  10618. }
  10619. }
  10620. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  10621. {
  10622. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10623. for (int i12 = 0; i12 < ne12; i12++) {
  10624. for (int i11 = 0; i11 < ne11; i11++) {
  10625. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  10626. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  10627. for (int i10 = 0; i10 < ne10; i10++) {
  10628. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  10629. }
  10630. }
  10631. }
  10632. }
  10633. memset(dst->data, 0, ggml_nbytes(dst));
  10634. return;
  10635. }
  10636. if (params->type == GGML_TASK_FINALIZE) {
  10637. return;
  10638. }
  10639. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  10640. // total patches in dst
  10641. const int np = ne2;
  10642. // patches per thread
  10643. const int dp = (np + nth - 1)/nth;
  10644. // patch range for this thread
  10645. const int ip0 = dp*ith;
  10646. const int ip1 = MIN(ip0 + dp, np);
  10647. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10648. ggml_fp16_t * const wdata_src = wdata + nk;
  10649. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  10650. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  10651. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  10652. for (int i11 = 0; i11 < ne11; i11++) {
  10653. for (int i10 = 0; i10 < ne10; i10++) {
  10654. const int i1n = i11*ne10*ne12 + i10*ne12;
  10655. for (int i01 = 0; i01 < ne01; i01++) {
  10656. for (int i00 = 0; i00 < ne00; i00++) {
  10657. float v = 0;
  10658. ggml_vec_dot_f16(ne03, &v, 0,
  10659. wdata_src + i1n, 0,
  10660. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  10661. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  10662. }
  10663. }
  10664. }
  10665. }
  10666. }
  10667. }
  10668. // ggml_compute_forward_pool_1d_sk_p0
  10669. static void ggml_compute_forward_pool_1d_sk_p0(
  10670. const struct ggml_compute_params * params,
  10671. const enum ggml_op_pool op,
  10672. const int k,
  10673. struct ggml_tensor * dst) {
  10674. const struct ggml_tensor * src = dst->src[0];
  10675. assert(src->type == GGML_TYPE_F32);
  10676. assert(params->ith == 0);
  10677. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10678. return;
  10679. }
  10680. const char * cdata = (const char *)src->data;
  10681. const char * const data_end = cdata + ggml_nbytes(src);
  10682. float * drow = (float *)dst->data;
  10683. const int64_t rs = dst->ne[0];
  10684. while (cdata < data_end) {
  10685. const float * const srow = (const float *)cdata;
  10686. int j = 0;
  10687. for (int64_t i = 0; i < rs; ++i) {
  10688. switch (op) {
  10689. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  10690. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  10691. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10692. }
  10693. for (int ki = 0; ki < k; ++ki) {
  10694. switch (op) {
  10695. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  10696. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  10697. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10698. }
  10699. ++j;
  10700. }
  10701. switch (op) {
  10702. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  10703. case GGML_OP_POOL_MAX: break;
  10704. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10705. }
  10706. }
  10707. cdata += src->nb[1];
  10708. drow += rs;
  10709. }
  10710. }
  10711. // ggml_compute_forward_pool_1d
  10712. static void ggml_compute_forward_pool_1d(
  10713. const struct ggml_compute_params * params,
  10714. struct ggml_tensor * dst) {
  10715. const int32_t * opts = (const int32_t *)dst->op_params;
  10716. enum ggml_op_pool op = opts[0];
  10717. const int k0 = opts[1];
  10718. const int s0 = opts[2];
  10719. const int p0 = opts[3];
  10720. GGML_ASSERT(p0 == 0); // padding not supported
  10721. GGML_ASSERT(k0 == s0); // only s = k supported
  10722. ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
  10723. }
  10724. // ggml_compute_forward_pool_2d
  10725. static void ggml_compute_forward_pool_2d(
  10726. const struct ggml_compute_params * params,
  10727. struct ggml_tensor * dst) {
  10728. const struct ggml_tensor * src = dst->src[0];
  10729. GGML_ASSERT(src->type == GGML_TYPE_F32);
  10730. GGML_ASSERT(params->ith == 0);
  10731. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10732. return;
  10733. }
  10734. const int32_t * opts = (const int32_t *)dst->op_params;
  10735. enum ggml_op_pool op = opts[0];
  10736. const int k0 = opts[1];
  10737. const int k1 = opts[2];
  10738. const int s0 = opts[3];
  10739. const int s1 = opts[4];
  10740. const int p0 = opts[5];
  10741. const int p1 = opts[6];
  10742. const char * cdata = (const char*)src->data;
  10743. const char * const data_end = cdata + ggml_nbytes(src);
  10744. const int64_t px = dst->ne[0];
  10745. const int64_t py = dst->ne[1];
  10746. const int64_t pa = px * py;
  10747. float * dplane = (float *)dst->data;
  10748. const int ka = k0 * k1;
  10749. const int offset0 = -p0;
  10750. const int offset1 = -p1;
  10751. while (cdata < data_end) {
  10752. for (int oy = 0; oy < py; ++oy) {
  10753. float * const drow = dplane + oy * px;
  10754. for (int ox = 0; ox < px; ++ox) {
  10755. float * const out = drow + ox;
  10756. switch (op) {
  10757. case GGML_OP_POOL_AVG: *out = 0; break;
  10758. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  10759. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10760. }
  10761. const int ix = offset0 + ox * s0;
  10762. const int iy = offset1 + oy * s1;
  10763. for (int ky = 0; ky < k1; ++ky) {
  10764. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  10765. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  10766. for (int kx = 0; kx < k0; ++kx) {
  10767. int j = ix + kx;
  10768. if (j < 0 || j >= src->ne[0]) continue;
  10769. switch (op) {
  10770. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  10771. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  10772. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10773. }
  10774. }
  10775. }
  10776. switch (op) {
  10777. case GGML_OP_POOL_AVG: *out /= ka; break;
  10778. case GGML_OP_POOL_MAX: break;
  10779. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10780. }
  10781. }
  10782. }
  10783. cdata += src->nb[2];
  10784. dplane += pa;
  10785. }
  10786. }
  10787. // ggml_compute_forward_upscale
  10788. static void ggml_compute_forward_upscale_f32(
  10789. const struct ggml_compute_params * params,
  10790. struct ggml_tensor * dst) {
  10791. const struct ggml_tensor * src0 = dst->src[0];
  10792. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10793. return;
  10794. }
  10795. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10796. const int ith = params->ith;
  10797. const int nth = params->nth;
  10798. GGML_TENSOR_UNARY_OP_LOCALS
  10799. const int scale_factor = dst->op_params[0];
  10800. // TODO: optimize
  10801. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10802. const int64_t i03 = i3;
  10803. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  10804. const int64_t i02 = i2;
  10805. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10806. const int64_t i01 = i1 / scale_factor;
  10807. for (int64_t i0 = 0; i0 < ne0; i0++) {
  10808. const int64_t i00 = i0 / scale_factor;
  10809. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  10810. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  10811. *y = *x;
  10812. }
  10813. }
  10814. }
  10815. }
  10816. }
  10817. static void ggml_compute_forward_upscale(
  10818. const struct ggml_compute_params * params,
  10819. struct ggml_tensor * dst) {
  10820. const struct ggml_tensor * src0 = dst->src[0];
  10821. switch (src0->type) {
  10822. case GGML_TYPE_F32:
  10823. {
  10824. ggml_compute_forward_upscale_f32(params, dst);
  10825. } break;
  10826. default:
  10827. {
  10828. GGML_ASSERT(false);
  10829. } break;
  10830. }
  10831. }
  10832. // ggml_compute_forward_pad
  10833. static void ggml_compute_forward_pad_f32(
  10834. const struct ggml_compute_params * params,
  10835. struct ggml_tensor * dst) {
  10836. const struct ggml_tensor * src0 = dst->src[0];
  10837. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10838. return;
  10839. }
  10840. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10841. GGML_ASSERT( dst->nb[0] == sizeof(float));
  10842. const int ith = params->ith;
  10843. const int nth = params->nth;
  10844. GGML_TENSOR_UNARY_OP_LOCALS
  10845. float * dst_ptr = (float *) dst->data;
  10846. // TODO: optimize
  10847. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  10848. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  10849. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  10850. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  10851. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  10852. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10853. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  10854. dst_ptr[dst_idx] = *src_ptr;
  10855. } else {
  10856. dst_ptr[dst_idx] = 0;
  10857. }
  10858. }
  10859. }
  10860. }
  10861. }
  10862. }
  10863. static void ggml_compute_forward_pad(
  10864. const struct ggml_compute_params * params,
  10865. struct ggml_tensor * dst) {
  10866. const struct ggml_tensor * src0 = dst->src[0];
  10867. switch (src0->type) {
  10868. case GGML_TYPE_F32:
  10869. {
  10870. ggml_compute_forward_pad_f32(params, dst);
  10871. } break;
  10872. default:
  10873. {
  10874. GGML_ASSERT(false);
  10875. } break;
  10876. }
  10877. }
  10878. // ggml_compute_forward_argsort
  10879. static void ggml_compute_forward_argsort_f32(
  10880. const struct ggml_compute_params * params,
  10881. struct ggml_tensor * dst) {
  10882. const struct ggml_tensor * src0 = dst->src[0];
  10883. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10884. return;
  10885. }
  10886. GGML_TENSOR_UNARY_OP_LOCALS
  10887. GGML_ASSERT(nb0 == sizeof(float));
  10888. const int ith = params->ith;
  10889. const int nth = params->nth;
  10890. const int64_t nr = ggml_nrows(src0);
  10891. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  10892. for (int64_t i = ith; i < nr; i += nth) {
  10893. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  10894. const float * src_data = (float *)((char *) src0->data + i*nb01);
  10895. for (int64_t j = 0; j < ne0; j++) {
  10896. dst_data[j] = j;
  10897. }
  10898. // C doesn't have a functional sort, so we do a bubble sort instead
  10899. for (int64_t j = 0; j < ne0; j++) {
  10900. for (int64_t k = j + 1; k < ne0; k++) {
  10901. if ((order == GGML_SORT_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  10902. (order == GGML_SORT_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  10903. int32_t tmp = dst_data[j];
  10904. dst_data[j] = dst_data[k];
  10905. dst_data[k] = tmp;
  10906. }
  10907. }
  10908. }
  10909. }
  10910. }
  10911. static void ggml_compute_forward_argsort(
  10912. const struct ggml_compute_params * params,
  10913. struct ggml_tensor * dst) {
  10914. const struct ggml_tensor * src0 = dst->src[0];
  10915. switch (src0->type) {
  10916. case GGML_TYPE_F32:
  10917. {
  10918. ggml_compute_forward_argsort_f32(params, dst);
  10919. } break;
  10920. default:
  10921. {
  10922. GGML_ASSERT(false);
  10923. } break;
  10924. }
  10925. }
  10926. // ggml_compute_forward_flash_attn
  10927. static void ggml_compute_forward_flash_attn_f32(
  10928. const struct ggml_compute_params * params,
  10929. const bool masked,
  10930. struct ggml_tensor * dst) {
  10931. const struct ggml_tensor * q = dst->src[0];
  10932. const struct ggml_tensor * k = dst->src[1];
  10933. const struct ggml_tensor * v = dst->src[2];
  10934. int64_t t0 = ggml_perf_time_us();
  10935. UNUSED(t0);
  10936. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10937. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10938. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10939. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10940. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10941. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10942. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10943. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10944. const int ith = params->ith;
  10945. const int nth = params->nth;
  10946. const int64_t D = neq0;
  10947. const int64_t N = neq1;
  10948. const int64_t P = nek1 - N;
  10949. const int64_t M = P + N;
  10950. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10951. GGML_ASSERT(ne0 == D);
  10952. GGML_ASSERT(ne1 == N);
  10953. GGML_ASSERT(P >= 0);
  10954. GGML_ASSERT(nbq0 == sizeof(float));
  10955. GGML_ASSERT(nbk0 == sizeof(float));
  10956. GGML_ASSERT(nbv0 == sizeof(float));
  10957. GGML_ASSERT(neq0 == D);
  10958. GGML_ASSERT(nek0 == D);
  10959. GGML_ASSERT(nev1 == D);
  10960. GGML_ASSERT(neq1 == N);
  10961. GGML_ASSERT(nek1 == N + P);
  10962. GGML_ASSERT(nev1 == D);
  10963. // dst cannot be transposed or permuted
  10964. GGML_ASSERT(nb0 == sizeof(float));
  10965. GGML_ASSERT(nb0 <= nb1);
  10966. GGML_ASSERT(nb1 <= nb2);
  10967. GGML_ASSERT(nb2 <= nb3);
  10968. if (params->type == GGML_TASK_INIT) {
  10969. return;
  10970. }
  10971. if (params->type == GGML_TASK_FINALIZE) {
  10972. return;
  10973. }
  10974. // parallelize by q rows using ggml_vec_dot_f32
  10975. // total rows in q
  10976. const int nr = neq1*neq2*neq3;
  10977. // rows per thread
  10978. const int dr = (nr + nth - 1)/nth;
  10979. // row range for this thread
  10980. const int ir0 = dr*ith;
  10981. const int ir1 = MIN(ir0 + dr, nr);
  10982. const float scale = 1.0f/sqrtf(D);
  10983. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10984. for (int ir = ir0; ir < ir1; ++ir) {
  10985. // q indices
  10986. const int iq3 = ir/(neq2*neq1);
  10987. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10988. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10989. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  10990. for (int i = M; i < Mup; ++i) {
  10991. S[i] = -INFINITY;
  10992. }
  10993. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  10994. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  10995. // k indices
  10996. const int ik3 = iq3;
  10997. const int ik2 = iq2 % nek2;
  10998. const int ik1 = ic;
  10999. // S indices
  11000. const int i1 = ik1;
  11001. ggml_vec_dot_f32(neq0,
  11002. S + i1, 0,
  11003. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11004. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11005. }
  11006. // scale
  11007. ggml_vec_scale_f32(masked_begin, S, scale);
  11008. for (int64_t i = masked_begin; i < M; i++) {
  11009. S[i] = -INFINITY;
  11010. }
  11011. // softmax
  11012. // exclude known -INF S[..] values from max and loop
  11013. // dont forget to set their SW values to zero
  11014. {
  11015. float max = -INFINITY;
  11016. ggml_vec_max_f32(masked_begin, &max, S);
  11017. ggml_float sum = 0.0;
  11018. {
  11019. #ifdef GGML_SOFT_MAX_ACCELERATE
  11020. max = -max;
  11021. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11022. vvexpf(S, S, &Mup);
  11023. ggml_vec_sum_f32(Mup, &sum, S);
  11024. #else
  11025. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11026. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11027. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11028. if (i >= masked_begin) {
  11029. break;
  11030. }
  11031. float * SS = S + i;
  11032. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11033. if (i + j >= masked_begin) {
  11034. break;
  11035. } else if (SS[j] == -INFINITY) {
  11036. SS[j] = 0.0f;
  11037. } else {
  11038. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11039. const float val = expf(SS[j] - max);
  11040. #else
  11041. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11042. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11043. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11044. #endif
  11045. sump[j] += (ggml_float)val;
  11046. SS[j] = val;
  11047. }
  11048. }
  11049. }
  11050. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11051. sum += sump[i];
  11052. }
  11053. #endif
  11054. }
  11055. assert(sum > 0.0);
  11056. sum = 1.0/sum;
  11057. ggml_vec_scale_f32(masked_begin, S, sum);
  11058. #ifndef NDEBUG
  11059. for (int i = 0; i < masked_begin; ++i) {
  11060. assert(!isnan(S[i]));
  11061. assert(!isinf(S[i]));
  11062. }
  11063. #endif
  11064. }
  11065. for (int64_t ic = 0; ic < nev1; ++ic) {
  11066. // dst indices
  11067. const int i1 = iq1;
  11068. const int i2 = iq2;
  11069. const int i3 = iq3;
  11070. // v indices
  11071. const int iv2 = iq2 % nev2;
  11072. const int iv3 = iq3;
  11073. ggml_vec_dot_f32(masked_begin,
  11074. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11075. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  11076. S, 0, 1);
  11077. }
  11078. }
  11079. }
  11080. static void ggml_compute_forward_flash_attn_f16(
  11081. const struct ggml_compute_params * params,
  11082. const bool masked,
  11083. struct ggml_tensor * dst) {
  11084. const struct ggml_tensor * q = dst->src[0];
  11085. const struct ggml_tensor * k = dst->src[1];
  11086. const struct ggml_tensor * v = dst->src[2];
  11087. int64_t t0 = ggml_perf_time_us();
  11088. UNUSED(t0);
  11089. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11090. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11091. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11092. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11093. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11094. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11095. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11096. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11097. const int ith = params->ith;
  11098. const int nth = params->nth;
  11099. const int64_t D = neq0;
  11100. const int64_t N = neq1;
  11101. const int64_t P = nek1 - N;
  11102. const int64_t M = P + N;
  11103. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11104. GGML_ASSERT(ne0 == D);
  11105. GGML_ASSERT(ne1 == N);
  11106. GGML_ASSERT(P >= 0);
  11107. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  11108. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  11109. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  11110. GGML_ASSERT(neq0 == D);
  11111. GGML_ASSERT(nek0 == D);
  11112. GGML_ASSERT(nev1 == D);
  11113. GGML_ASSERT(neq1 == N);
  11114. GGML_ASSERT(nek1 == N + P);
  11115. GGML_ASSERT(nev1 == D);
  11116. // dst cannot be transposed or permuted
  11117. GGML_ASSERT(nb0 == sizeof(float));
  11118. GGML_ASSERT(nb0 <= nb1);
  11119. GGML_ASSERT(nb1 <= nb2);
  11120. GGML_ASSERT(nb2 <= nb3);
  11121. if (params->type == GGML_TASK_INIT) {
  11122. return;
  11123. }
  11124. if (params->type == GGML_TASK_FINALIZE) {
  11125. return;
  11126. }
  11127. // parallelize by q rows using ggml_vec_dot_f32
  11128. // total rows in q
  11129. const int nr = neq1*neq2*neq3;
  11130. // rows per thread
  11131. const int dr = (nr + nth - 1)/nth;
  11132. // row range for this thread
  11133. const int ir0 = dr*ith;
  11134. const int ir1 = MIN(ir0 + dr, nr);
  11135. const float scale = 1.0f/sqrtf(D);
  11136. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11137. for (int ir = ir0; ir < ir1; ++ir) {
  11138. // q indices
  11139. const int iq3 = ir/(neq2*neq1);
  11140. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11141. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11142. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  11143. for (int i = M; i < Mup; ++i) {
  11144. S[i] = -INFINITY;
  11145. }
  11146. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  11147. for (int64_t ic = 0; ic < nek1; ++ic) {
  11148. // k indices
  11149. const int ik3 = iq3;
  11150. const int ik2 = iq2 % nek2;
  11151. const int ik1 = ic;
  11152. // S indices
  11153. const int i1 = ik1;
  11154. ggml_vec_dot_f16(neq0,
  11155. S + i1, 0,
  11156. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11157. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11158. }
  11159. } else {
  11160. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  11161. // k indices
  11162. const int ik3 = iq3;
  11163. const int ik2 = iq2 % nek2;
  11164. const int ik1 = ic;
  11165. // S indices
  11166. const int i1 = ik1;
  11167. ggml_vec_dot_f16_unroll(neq0, nbk1,
  11168. S + i1,
  11169. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11170. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11171. }
  11172. }
  11173. // scale
  11174. ggml_vec_scale_f32(nek1, S, scale);
  11175. if (masked) {
  11176. for (int64_t i = P; i < M; i++) {
  11177. if (i > P + iq1) {
  11178. S[i] = -INFINITY;
  11179. }
  11180. }
  11181. }
  11182. // softmax
  11183. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  11184. // dont forget to set their S values to zero
  11185. {
  11186. float max = -INFINITY;
  11187. ggml_vec_max_f32(M, &max, S);
  11188. ggml_float sum = 0.0;
  11189. {
  11190. #ifdef GGML_SOFT_MAX_ACCELERATE
  11191. max = -max;
  11192. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11193. vvexpf(S, S, &Mup);
  11194. ggml_vec_sum_f32(Mup, &sum, S);
  11195. #else
  11196. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11197. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11198. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11199. float * SS = S + i;
  11200. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11201. if (SS[j] == -INFINITY) {
  11202. SS[j] = 0.0f;
  11203. } else {
  11204. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11205. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11206. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11207. sump[j] += (ggml_float)val;
  11208. SS[j] = val;
  11209. }
  11210. }
  11211. }
  11212. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11213. sum += sump[i];
  11214. }
  11215. #endif
  11216. }
  11217. assert(sum > 0.0);
  11218. sum = 1.0/sum;
  11219. ggml_vec_scale_f32(M, S, sum);
  11220. #ifndef NDEBUG
  11221. for (int i = 0; i < M; ++i) {
  11222. assert(!isnan(S[i]));
  11223. assert(!isinf(S[i]));
  11224. }
  11225. #endif
  11226. }
  11227. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  11228. for (int64_t i = 0; i < M; i++) {
  11229. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11230. }
  11231. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  11232. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  11233. for (int64_t ic = 0; ic < nev1; ++ic) {
  11234. // dst indices
  11235. const int i1 = iq1;
  11236. const int i2 = iq2;
  11237. const int i3 = iq3;
  11238. // v indices
  11239. const int iv2 = iq2 % nev2;
  11240. const int iv3 = iq3;
  11241. ggml_vec_dot_f16(nev0,
  11242. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11243. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  11244. S16, 0, 1);
  11245. }
  11246. } else {
  11247. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  11248. // dst indices
  11249. const int i1 = iq1;
  11250. const int i2 = iq2;
  11251. const int i3 = iq3;
  11252. // v indices
  11253. const int iv2 = iq2 % nev2;
  11254. const int iv3 = iq3;
  11255. ggml_vec_dot_f16_unroll(nev0, nbv1,
  11256. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11257. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11258. S16);
  11259. }
  11260. }
  11261. }
  11262. }
  11263. static void ggml_compute_forward_flash_attn(
  11264. const struct ggml_compute_params * params,
  11265. const bool masked,
  11266. struct ggml_tensor * dst) {
  11267. const struct ggml_tensor * q = dst->src[0];
  11268. switch (q->type) {
  11269. case GGML_TYPE_F16:
  11270. {
  11271. ggml_compute_forward_flash_attn_f16(params, masked, dst);
  11272. } break;
  11273. case GGML_TYPE_F32:
  11274. {
  11275. ggml_compute_forward_flash_attn_f32(params, masked, dst);
  11276. } break;
  11277. default:
  11278. {
  11279. GGML_ASSERT(false);
  11280. } break;
  11281. }
  11282. }
  11283. // ggml_compute_forward_flash_ff
  11284. static void ggml_compute_forward_flash_ff_f16(
  11285. const struct ggml_compute_params * params,
  11286. struct ggml_tensor * dst) {
  11287. const struct ggml_tensor * a = dst->src[0]; // F16
  11288. const struct ggml_tensor * b0 = dst->src[1]; // F16 fc_w
  11289. const struct ggml_tensor * b1 = dst->src[2]; // F32 fc_b
  11290. const struct ggml_tensor * c0 = dst->src[3]; // F16 proj_w
  11291. const struct ggml_tensor * c1 = dst->src[4]; // F32 proj_b
  11292. int64_t t0 = ggml_perf_time_us();
  11293. UNUSED(t0);
  11294. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  11295. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  11296. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  11297. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  11298. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  11299. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  11300. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  11301. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  11302. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  11303. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  11304. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11305. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11306. const int ith = params->ith;
  11307. const int nth = params->nth;
  11308. const int64_t D = nea0;
  11309. //const int64_t N = nea1;
  11310. const int64_t M = neb01;
  11311. GGML_ASSERT(ne0 == nea0);
  11312. GGML_ASSERT(ne1 == nea1);
  11313. GGML_ASSERT(ne2 == nea2);
  11314. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  11315. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  11316. GGML_ASSERT(nbb10 == sizeof(float));
  11317. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  11318. GGML_ASSERT(nbc10 == sizeof(float));
  11319. GGML_ASSERT(neb00 == D);
  11320. GGML_ASSERT(neb01 == M);
  11321. GGML_ASSERT(neb10 == M);
  11322. GGML_ASSERT(neb11 == 1);
  11323. GGML_ASSERT(nec00 == M);
  11324. GGML_ASSERT(nec01 == D);
  11325. GGML_ASSERT(nec10 == D);
  11326. GGML_ASSERT(nec11 == 1);
  11327. // dst cannot be transposed or permuted
  11328. GGML_ASSERT(nb0 == sizeof(float));
  11329. GGML_ASSERT(nb0 <= nb1);
  11330. GGML_ASSERT(nb1 <= nb2);
  11331. GGML_ASSERT(nb2 <= nb3);
  11332. if (params->type == GGML_TASK_INIT) {
  11333. return;
  11334. }
  11335. if (params->type == GGML_TASK_FINALIZE) {
  11336. return;
  11337. }
  11338. // parallelize by a rows using ggml_vec_dot_f32
  11339. // total rows in a
  11340. const int nr = nea1*nea2*nea3;
  11341. // rows per thread
  11342. const int dr = (nr + nth - 1)/nth;
  11343. // row range for this thread
  11344. const int ir0 = dr*ith;
  11345. const int ir1 = MIN(ir0 + dr, nr);
  11346. for (int ir = ir0; ir < ir1; ++ir) {
  11347. // a indices
  11348. const int ia3 = ir/(nea2*nea1);
  11349. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  11350. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  11351. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  11352. for (int64_t ic = 0; ic < neb01; ++ic) {
  11353. // b0 indices
  11354. const int ib03 = ia3;
  11355. const int ib02 = ia2;
  11356. const int ib01 = ic;
  11357. // S indices
  11358. const int i1 = ib01;
  11359. ggml_vec_dot_f16(nea0,
  11360. S + i1, 0,
  11361. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)), 0,
  11362. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)), 0, 1);
  11363. }
  11364. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  11365. //ggml_vec_gelu_f32(neb01, S, S);
  11366. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  11367. for (int64_t i = 0; i < M; i++) {
  11368. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11369. }
  11370. ggml_vec_gelu_f16(neb01, S16, S16);
  11371. {
  11372. // dst indices
  11373. const int i1 = ia1;
  11374. const int i2 = ia2;
  11375. const int i3 = ia3;
  11376. for (int64_t ic = 0; ic < nec01; ++ic) {
  11377. ggml_vec_dot_f16(neb01,
  11378. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11379. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)), 0,
  11380. S16, 0, 1);
  11381. }
  11382. ggml_vec_add_f32(nec01,
  11383. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11384. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11385. (float *) c1->data);
  11386. }
  11387. }
  11388. }
  11389. static void ggml_compute_forward_flash_ff(
  11390. const struct ggml_compute_params * params,
  11391. struct ggml_tensor * dst) {
  11392. const struct ggml_tensor * b0 = dst->src[1];
  11393. switch (b0->type) {
  11394. case GGML_TYPE_F16:
  11395. {
  11396. ggml_compute_forward_flash_ff_f16(params, dst);
  11397. } break;
  11398. case GGML_TYPE_F32:
  11399. {
  11400. GGML_ASSERT(false); // TODO
  11401. } break;
  11402. default:
  11403. {
  11404. GGML_ASSERT(false);
  11405. } break;
  11406. }
  11407. }
  11408. // ggml_compute_forward_flash_attn_back
  11409. static void ggml_compute_forward_flash_attn_back_f32(
  11410. const struct ggml_compute_params * params,
  11411. const bool masked,
  11412. struct ggml_tensor * dst) {
  11413. const struct ggml_tensor * q = dst->src[0];
  11414. const struct ggml_tensor * k = dst->src[1];
  11415. const struct ggml_tensor * v = dst->src[2];
  11416. const struct ggml_tensor * d = dst->src[3];
  11417. int64_t t0 = ggml_perf_time_us();
  11418. UNUSED(t0);
  11419. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11420. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11421. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11422. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11423. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11424. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11425. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  11426. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  11427. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11428. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11429. const int ith = params->ith;
  11430. const int nth = params->nth;
  11431. const int64_t D = neq0;
  11432. const int64_t N = neq1;
  11433. const int64_t P = nek1 - N;
  11434. const int64_t M = P + N;
  11435. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11436. const int mxDM = MAX(D, Mup);
  11437. // GGML_ASSERT(ne0 == D);
  11438. // GGML_ASSERT(ne1 == N);
  11439. GGML_ASSERT(P >= 0);
  11440. GGML_ASSERT(nbq0 == sizeof(float));
  11441. GGML_ASSERT(nbk0 == sizeof(float));
  11442. GGML_ASSERT(nbv0 == sizeof(float));
  11443. GGML_ASSERT(neq0 == D);
  11444. GGML_ASSERT(nek0 == D);
  11445. GGML_ASSERT(nev1 == D);
  11446. GGML_ASSERT(ned0 == D);
  11447. GGML_ASSERT(neq1 == N);
  11448. GGML_ASSERT(nek1 == N + P);
  11449. GGML_ASSERT(nev1 == D);
  11450. GGML_ASSERT(ned1 == N);
  11451. // dst cannot be transposed or permuted
  11452. GGML_ASSERT(nb0 == sizeof(float));
  11453. GGML_ASSERT(nb0 <= nb1);
  11454. GGML_ASSERT(nb1 <= nb2);
  11455. GGML_ASSERT(nb2 <= nb3);
  11456. if (params->type == GGML_TASK_INIT) {
  11457. if (ith == 0) {
  11458. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11459. }
  11460. return;
  11461. }
  11462. if (params->type == GGML_TASK_FINALIZE) {
  11463. return;
  11464. }
  11465. const int64_t elem_q = ggml_nelements(q);
  11466. const int64_t elem_k = ggml_nelements(k);
  11467. enum ggml_type result_type = dst->type;
  11468. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  11469. const size_t tsize = ggml_type_size(result_type);
  11470. const size_t offs_q = 0;
  11471. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  11472. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  11473. void * grad_q = (char *) dst->data;
  11474. void * grad_k = (char *) dst->data + offs_k;
  11475. void * grad_v = (char *) dst->data + offs_v;
  11476. const size_t nbgq1 = nb0*neq0;
  11477. const size_t nbgq2 = nb0*neq0*neq1;
  11478. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11479. const size_t nbgk1 = nb0*nek0;
  11480. const size_t nbgk2 = nb0*nek0*nek1;
  11481. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11482. const size_t nbgv1 = nb0*nev0;
  11483. const size_t nbgv2 = nb0*nev0*nev1;
  11484. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11485. // parallelize by k rows using ggml_vec_dot_f32
  11486. // total rows in k
  11487. const int nr = nek2*nek3;
  11488. // rows per thread
  11489. const int dr = (nr + nth - 1)/nth;
  11490. // row range for this thread
  11491. const int ir0 = dr*ith;
  11492. const int ir1 = MIN(ir0 + dr, nr);
  11493. const float scale = 1.0f/sqrtf(D);
  11494. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11495. // how often k2 (and v2) is repeated in q2
  11496. int nrep = neq2/nek2;
  11497. for (int ir = ir0; ir < ir1; ++ir) {
  11498. // q indices
  11499. const int ik3 = ir/(nek2);
  11500. const int ik2 = ir - ik3*nek2;
  11501. const int iq3 = ik3;
  11502. const int id3 = ik3;
  11503. const int iv3 = ik3;
  11504. const int iv2 = ik2;
  11505. for (int irep = 0; irep < nrep; ++irep) {
  11506. const int iq2 = ik2 + irep*nek2;
  11507. const int id2 = iq2;
  11508. // (ik2 + irep*nek2) % nek2 == ik2
  11509. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  11510. const int id1 = iq1;
  11511. // not sure about CACHE_LINE_SIZE_F32..
  11512. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11513. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11514. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11515. for (int i = M; i < Mup; ++i) {
  11516. S[i] = -INFINITY;
  11517. }
  11518. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11519. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11520. // k indices
  11521. const int ik1 = ic;
  11522. // S indices
  11523. const int i1 = ik1;
  11524. ggml_vec_dot_f32(neq0,
  11525. S + i1, 0,
  11526. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11527. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11528. }
  11529. // scale
  11530. ggml_vec_scale_f32(masked_begin, S, scale);
  11531. for (int64_t i = masked_begin; i < M; i++) {
  11532. S[i] = -INFINITY;
  11533. }
  11534. // softmax
  11535. // exclude known -INF S[..] values from max and loop
  11536. // dont forget to set their SM values to zero
  11537. {
  11538. float max = -INFINITY;
  11539. ggml_vec_max_f32(masked_begin, &max, S);
  11540. ggml_float sum = 0.0;
  11541. {
  11542. #ifdef GGML_SOFT_MAX_ACCELERATE
  11543. max = -max;
  11544. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11545. vvexpf(SM, SM, &Mup);
  11546. ggml_vec_sum_f32(Mup, &sum, SM);
  11547. #else
  11548. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11549. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11550. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11551. if (i >= masked_begin) {
  11552. break;
  11553. }
  11554. float * SR = S + i;
  11555. float * SW = SM + i;
  11556. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11557. if (i + j >= masked_begin) {
  11558. break;
  11559. } else if (SR[j] == -INFINITY) {
  11560. SW[j] = 0.0f;
  11561. } else {
  11562. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11563. const float val = expf(SR[j] - max);
  11564. #else
  11565. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11566. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11567. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11568. #endif
  11569. sump[j] += (ggml_float)val;
  11570. SW[j] = val;
  11571. }
  11572. }
  11573. }
  11574. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11575. sum += sump[i];
  11576. }
  11577. #endif
  11578. }
  11579. assert(sum > 0.0);
  11580. sum = 1.0/sum;
  11581. ggml_vec_scale_f32(masked_begin, SM, sum);
  11582. }
  11583. // step-by-step explanation
  11584. {
  11585. // forward-process shape grads from backward process
  11586. // parallel_for ik2,ik3:
  11587. // for irep:
  11588. // iq2 = ik2 + irep*nek2
  11589. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  11590. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11591. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  11592. // for iq1:
  11593. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11594. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11595. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11596. // S0 = -Inf [D,1,1,1]
  11597. // ~S1[i] = dot(kcur[:D,i], qcur)
  11598. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11599. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11600. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11601. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11602. // ~S5[i] = dot(vcur[:,i], S4)
  11603. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  11604. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11605. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  11606. // dst backward-/ grad[dst] = d
  11607. //
  11608. // output gradients with their dependencies:
  11609. //
  11610. // grad[kcur] = grad[S1].T @ qcur
  11611. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11612. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11613. // grad[S4] = grad[S5] @ vcur
  11614. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11615. // grad[qcur] = grad[S1] @ kcur
  11616. // grad[vcur] = grad[S5].T @ S4
  11617. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11618. //
  11619. // in post-order:
  11620. //
  11621. // S1 = qcur @ kcur.T
  11622. // S2 = S1 * scale
  11623. // S3 = diag_mask_inf(S2, P)
  11624. // S4 = softmax(S3)
  11625. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11626. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11627. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11628. // grad[qcur] = grad[S1] @ kcur
  11629. // grad[kcur] = grad[S1].T @ qcur
  11630. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11631. //
  11632. // using less variables (SM=S4):
  11633. //
  11634. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11635. // SM = softmax(S)
  11636. // S = d[:D,iq1,iq2,iq3] @ vcur
  11637. // dot_SM_gradSM = dot(SM, S)
  11638. // S = SM * (S - dot(SM, S))
  11639. // S = diag_mask_zero(S, P) * scale
  11640. //
  11641. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11642. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  11643. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11644. }
  11645. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11646. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11647. // for ic:
  11648. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  11649. // exclude known future zero S[..] values from operation
  11650. ggml_vec_set_f32(masked_begin, S, 0);
  11651. for (int64_t ic = 0; ic < D; ++ic) {
  11652. ggml_vec_mad_f32(masked_begin,
  11653. S,
  11654. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11655. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11656. }
  11657. // S = SM * (S - dot(SM, S))
  11658. float dot_SM_gradSM = 0;
  11659. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  11660. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11661. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  11662. // S = diag_mask_zero(S, P) * scale
  11663. // already done by above ggml_vec_set_f32
  11664. // exclude known zero S[..] values from operation
  11665. ggml_vec_scale_f32(masked_begin, S, scale);
  11666. // S shape [M,1]
  11667. // SM shape [M,1]
  11668. // kcur shape [D,M]
  11669. // qcur shape [D,1]
  11670. // vcur shape [M,D]
  11671. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11672. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11673. // for ic:
  11674. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  11675. // exclude known zero S[..] values from loop
  11676. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11677. ggml_vec_mad_f32(D,
  11678. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  11679. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11680. S[ic]);
  11681. }
  11682. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11683. // for ic:
  11684. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11685. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11686. // exclude known zero S[..] values from loop
  11687. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11688. ggml_vec_mad_f32(D,
  11689. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  11690. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  11691. S[ic]);
  11692. }
  11693. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11694. // for ic:
  11695. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  11696. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  11697. // exclude known zero SM[..] values from mad
  11698. for (int64_t ic = 0; ic < D; ++ic) {
  11699. ggml_vec_mad_f32(masked_begin,
  11700. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  11701. SM,
  11702. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11703. }
  11704. }
  11705. }
  11706. }
  11707. }
  11708. static void ggml_compute_forward_flash_attn_back(
  11709. const struct ggml_compute_params * params,
  11710. const bool masked,
  11711. struct ggml_tensor * dst) {
  11712. const struct ggml_tensor * q = dst->src[0];
  11713. switch (q->type) {
  11714. case GGML_TYPE_F32:
  11715. {
  11716. ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
  11717. } break;
  11718. default:
  11719. {
  11720. GGML_ASSERT(false);
  11721. } break;
  11722. }
  11723. }
  11724. // ggml_compute_forward_win_part
  11725. static void ggml_compute_forward_win_part_f32(
  11726. const struct ggml_compute_params * params,
  11727. struct ggml_tensor * dst) {
  11728. const struct ggml_tensor * src0 = dst->src[0];
  11729. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11730. return;
  11731. }
  11732. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11733. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11734. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  11735. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  11736. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  11737. assert(ne00 == ne0);
  11738. assert(ne3 == nep0*nep1);
  11739. // TODO: optimize / multi-thread
  11740. for (int py = 0; py < nep1; ++py) {
  11741. for (int px = 0; px < nep0; ++px) {
  11742. const int64_t i3 = py*nep0 + px;
  11743. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11744. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11745. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11746. const int64_t i02 = py*w + i2;
  11747. const int64_t i01 = px*w + i1;
  11748. const int64_t i00 = i0;
  11749. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  11750. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  11751. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  11752. ((float *) dst->data)[i] = 0.0f;
  11753. } else {
  11754. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  11755. }
  11756. }
  11757. }
  11758. }
  11759. }
  11760. }
  11761. }
  11762. static void ggml_compute_forward_win_part(
  11763. const struct ggml_compute_params * params,
  11764. struct ggml_tensor * dst) {
  11765. const struct ggml_tensor * src0 = dst->src[0];
  11766. switch (src0->type) {
  11767. case GGML_TYPE_F32:
  11768. {
  11769. ggml_compute_forward_win_part_f32(params, dst);
  11770. } break;
  11771. default:
  11772. {
  11773. GGML_ASSERT(false);
  11774. } break;
  11775. }
  11776. }
  11777. // ggml_compute_forward_win_unpart
  11778. static void ggml_compute_forward_win_unpart_f32(
  11779. const struct ggml_compute_params * params,
  11780. struct ggml_tensor * dst) {
  11781. const struct ggml_tensor * src0 = dst->src[0];
  11782. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11783. return;
  11784. }
  11785. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11786. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11787. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  11788. // padding
  11789. const int px = (w - ne1%w)%w;
  11790. //const int py = (w - ne2%w)%w;
  11791. const int npx = (px + ne1)/w;
  11792. //const int npy = (py + ne2)/w;
  11793. assert(ne0 == ne00);
  11794. // TODO: optimize / multi-thread
  11795. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11796. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11797. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11798. const int ip2 = i2/w;
  11799. const int ip1 = i1/w;
  11800. const int64_t i02 = i2%w;
  11801. const int64_t i01 = i1%w;
  11802. const int64_t i00 = i0;
  11803. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  11804. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  11805. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  11806. }
  11807. }
  11808. }
  11809. }
  11810. static void ggml_compute_forward_win_unpart(
  11811. const struct ggml_compute_params * params,
  11812. struct ggml_tensor * dst) {
  11813. const struct ggml_tensor * src0 = dst->src[0];
  11814. switch (src0->type) {
  11815. case GGML_TYPE_F32:
  11816. {
  11817. ggml_compute_forward_win_unpart_f32(params, dst);
  11818. } break;
  11819. default:
  11820. {
  11821. GGML_ASSERT(false);
  11822. } break;
  11823. }
  11824. }
  11825. //gmml_compute_forward_unary
  11826. static void ggml_compute_forward_unary(
  11827. const struct ggml_compute_params * params,
  11828. struct ggml_tensor * dst) {
  11829. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  11830. switch (op) {
  11831. case GGML_UNARY_OP_ABS:
  11832. {
  11833. ggml_compute_forward_abs(params, dst);
  11834. } break;
  11835. case GGML_UNARY_OP_SGN:
  11836. {
  11837. ggml_compute_forward_sgn(params, dst);
  11838. } break;
  11839. case GGML_UNARY_OP_NEG:
  11840. {
  11841. ggml_compute_forward_neg(params, dst);
  11842. } break;
  11843. case GGML_UNARY_OP_STEP:
  11844. {
  11845. ggml_compute_forward_step(params, dst);
  11846. } break;
  11847. case GGML_UNARY_OP_TANH:
  11848. {
  11849. ggml_compute_forward_tanh(params, dst);
  11850. } break;
  11851. case GGML_UNARY_OP_ELU:
  11852. {
  11853. ggml_compute_forward_elu(params, dst);
  11854. } break;
  11855. case GGML_UNARY_OP_RELU:
  11856. {
  11857. ggml_compute_forward_relu(params, dst);
  11858. } break;
  11859. case GGML_UNARY_OP_GELU:
  11860. {
  11861. ggml_compute_forward_gelu(params, dst);
  11862. } break;
  11863. case GGML_UNARY_OP_GELU_QUICK:
  11864. {
  11865. ggml_compute_forward_gelu_quick(params, dst);
  11866. } break;
  11867. case GGML_UNARY_OP_SILU:
  11868. {
  11869. ggml_compute_forward_silu(params, dst);
  11870. } break;
  11871. case GGML_UNARY_OP_HARDSWISH:
  11872. {
  11873. ggml_compute_forward_hardswish(params, dst);
  11874. } break;
  11875. case GGML_UNARY_OP_HARDSIGMOID:
  11876. {
  11877. ggml_compute_forward_hardsigmoid(params, dst);
  11878. } break;
  11879. default:
  11880. {
  11881. GGML_ASSERT(false);
  11882. } break;
  11883. }
  11884. }
  11885. // ggml_compute_forward_get_rel_pos
  11886. static void ggml_compute_forward_get_rel_pos_f16(
  11887. const struct ggml_compute_params * params,
  11888. struct ggml_tensor * dst) {
  11889. const struct ggml_tensor * src0 = dst->src[0];
  11890. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11891. return;
  11892. }
  11893. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  11894. GGML_TENSOR_UNARY_OP_LOCALS
  11895. const int64_t w = ne1;
  11896. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  11897. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  11898. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11899. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11900. const int64_t pos = (w - i1 - 1) + i2;
  11901. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11902. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  11903. }
  11904. }
  11905. }
  11906. }
  11907. static void ggml_compute_forward_get_rel_pos(
  11908. const struct ggml_compute_params * params,
  11909. struct ggml_tensor * dst) {
  11910. const struct ggml_tensor * src0 = dst->src[0];
  11911. switch (src0->type) {
  11912. case GGML_TYPE_F16:
  11913. {
  11914. ggml_compute_forward_get_rel_pos_f16(params, dst);
  11915. } break;
  11916. default:
  11917. {
  11918. GGML_ASSERT(false);
  11919. } break;
  11920. }
  11921. }
  11922. // ggml_compute_forward_add_rel_pos
  11923. static void ggml_compute_forward_add_rel_pos_f32(
  11924. const struct ggml_compute_params * params,
  11925. struct ggml_tensor * dst) {
  11926. const struct ggml_tensor * src0 = dst->src[0];
  11927. const struct ggml_tensor * src1 = dst->src[1];
  11928. const struct ggml_tensor * src2 = dst->src[2];
  11929. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  11930. if (!inplace && params->type == GGML_TASK_INIT) {
  11931. if (params->ith != 0) {
  11932. return;
  11933. }
  11934. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  11935. return;
  11936. }
  11937. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11938. return;
  11939. }
  11940. int64_t t0 = ggml_perf_time_us();
  11941. UNUSED(t0);
  11942. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  11943. float * src1_data = (float *) src1->data;
  11944. float * src2_data = (float *) src2->data;
  11945. float * dst_data = (float *) dst->data;
  11946. const int64_t ne10 = src1->ne[0];
  11947. const int64_t ne11 = src1->ne[1];
  11948. const int64_t ne12 = src1->ne[2];
  11949. const int64_t ne13 = src1->ne[3];
  11950. const int ith = params->ith;
  11951. const int nth = params->nth;
  11952. // total patches in dst
  11953. const int np = ne13;
  11954. // patches per thread
  11955. const int dp = (np + nth - 1)/nth;
  11956. // patch range for this thread
  11957. const int ip0 = dp*ith;
  11958. const int ip1 = MIN(ip0 + dp, np);
  11959. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  11960. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  11961. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  11962. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  11963. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  11964. const int64_t jp0 = jp1 + i10;
  11965. const float src1_e = src1_data[jp0];
  11966. const float src2_e = src2_data[jp0];
  11967. const int64_t jdh = jp0 * ne10;
  11968. const int64_t jdw = jdh - (ne10 - 1) * i10;
  11969. for (int64_t j = 0; j < ne10; ++j) {
  11970. dst_data[jdh + j ] += src2_e;
  11971. dst_data[jdw + j*ne10] += src1_e;
  11972. }
  11973. }
  11974. }
  11975. }
  11976. }
  11977. }
  11978. static void ggml_compute_forward_add_rel_pos(
  11979. const struct ggml_compute_params * params,
  11980. struct ggml_tensor * dst) {
  11981. const struct ggml_tensor * src0 = dst->src[0];
  11982. switch (src0->type) {
  11983. case GGML_TYPE_F32:
  11984. {
  11985. ggml_compute_forward_add_rel_pos_f32(params, dst);
  11986. } break;
  11987. default:
  11988. {
  11989. GGML_ASSERT(false);
  11990. } break;
  11991. }
  11992. }
  11993. // ggml_compute_forward_map_unary
  11994. static void ggml_compute_forward_map_unary_f32(
  11995. const struct ggml_compute_params * params,
  11996. struct ggml_tensor * dst,
  11997. const ggml_unary_op_f32_t fun) {
  11998. const struct ggml_tensor * src0 = dst->src[0];
  11999. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  12000. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12001. return;
  12002. }
  12003. const int n = ggml_nrows(src0);
  12004. const int nc = src0->ne[0];
  12005. assert( dst->nb[0] == sizeof(float));
  12006. assert(src0->nb[0] == sizeof(float));
  12007. for (int i = 0; i < n; i++) {
  12008. fun(nc,
  12009. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12010. (float *) ((char *) src0->data + i*(src0->nb[1])));
  12011. }
  12012. }
  12013. static void ggml_compute_forward_map_unary(
  12014. const struct ggml_compute_params * params,
  12015. struct ggml_tensor * dst,
  12016. const ggml_unary_op_f32_t fun) {
  12017. const struct ggml_tensor * src0 = dst->src[0];
  12018. switch (src0->type) {
  12019. case GGML_TYPE_F32:
  12020. {
  12021. ggml_compute_forward_map_unary_f32(params, dst, fun);
  12022. } break;
  12023. default:
  12024. {
  12025. GGML_ASSERT(false);
  12026. } break;
  12027. }
  12028. }
  12029. // ggml_compute_forward_map_binary
  12030. static void ggml_compute_forward_map_binary_f32(
  12031. const struct ggml_compute_params * params,
  12032. struct ggml_tensor * dst,
  12033. const ggml_binary_op_f32_t fun) {
  12034. const struct ggml_tensor * src0 = dst->src[0];
  12035. const struct ggml_tensor * src1 = dst->src[1];
  12036. assert(params->ith == 0);
  12037. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12038. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12039. return;
  12040. }
  12041. const int n = ggml_nrows(src0);
  12042. const int nc = src0->ne[0];
  12043. assert( dst->nb[0] == sizeof(float));
  12044. assert(src0->nb[0] == sizeof(float));
  12045. assert(src1->nb[0] == sizeof(float));
  12046. for (int i = 0; i < n; i++) {
  12047. fun(nc,
  12048. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12049. (float *) ((char *) src0->data + i*(src0->nb[1])),
  12050. (float *) ((char *) src1->data + i*(src1->nb[1])));
  12051. }
  12052. }
  12053. static void ggml_compute_forward_map_binary(
  12054. const struct ggml_compute_params * params,
  12055. struct ggml_tensor * dst,
  12056. const ggml_binary_op_f32_t fun) {
  12057. const struct ggml_tensor * src0 = dst->src[0];
  12058. switch (src0->type) {
  12059. case GGML_TYPE_F32:
  12060. {
  12061. ggml_compute_forward_map_binary_f32(params, dst, fun);
  12062. } break;
  12063. default:
  12064. {
  12065. GGML_ASSERT(false);
  12066. } break;
  12067. }
  12068. }
  12069. // ggml_compute_forward_map_custom1
  12070. static void ggml_compute_forward_map_custom1_f32(
  12071. const struct ggml_compute_params * params,
  12072. struct ggml_tensor * dst,
  12073. const ggml_custom1_op_f32_t fun) {
  12074. const struct ggml_tensor * a = dst->src[0];
  12075. assert(params->ith == 0);
  12076. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12077. return;
  12078. }
  12079. fun(dst, a);
  12080. }
  12081. // ggml_compute_forward_map_custom2
  12082. static void ggml_compute_forward_map_custom2_f32(
  12083. const struct ggml_compute_params * params,
  12084. struct ggml_tensor * dst,
  12085. const ggml_custom2_op_f32_t fun) {
  12086. const struct ggml_tensor * a = dst->src[0];
  12087. const struct ggml_tensor * b = dst->src[1];
  12088. assert(params->ith == 0);
  12089. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12090. return;
  12091. }
  12092. fun(dst, a, b);
  12093. }
  12094. // ggml_compute_forward_map_custom3
  12095. static void ggml_compute_forward_map_custom3_f32(
  12096. const struct ggml_compute_params * params,
  12097. struct ggml_tensor * dst,
  12098. const ggml_custom3_op_f32_t fun) {
  12099. const struct ggml_tensor * a = dst->src[0];
  12100. const struct ggml_tensor * b = dst->src[1];
  12101. const struct ggml_tensor * c = dst->src[1];
  12102. assert(params->ith == 0);
  12103. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12104. return;
  12105. }
  12106. fun(dst, a, b, c);
  12107. }
  12108. // ggml_compute_forward_map_custom1
  12109. static void ggml_compute_forward_map_custom1(
  12110. const struct ggml_compute_params * params,
  12111. struct ggml_tensor * dst) {
  12112. const struct ggml_tensor * a = dst->src[0];
  12113. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12114. return;
  12115. }
  12116. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
  12117. p->fun(dst, a, params->ith, params->nth, p->userdata);
  12118. }
  12119. // ggml_compute_forward_map_custom2
  12120. static void ggml_compute_forward_map_custom2(
  12121. const struct ggml_compute_params * params,
  12122. struct ggml_tensor * dst) {
  12123. const struct ggml_tensor * a = dst->src[0];
  12124. const struct ggml_tensor * b = dst->src[1];
  12125. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12126. return;
  12127. }
  12128. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
  12129. p->fun(dst, a, b, params->ith, params->nth, p->userdata);
  12130. }
  12131. // ggml_compute_forward_map_custom3
  12132. static void ggml_compute_forward_map_custom3(
  12133. const struct ggml_compute_params * params,
  12134. struct ggml_tensor * dst) {
  12135. const struct ggml_tensor * a = dst->src[0];
  12136. const struct ggml_tensor * b = dst->src[1];
  12137. const struct ggml_tensor * c = dst->src[2];
  12138. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12139. return;
  12140. }
  12141. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
  12142. p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
  12143. }
  12144. // ggml_compute_forward_cross_entropy_loss
  12145. static void ggml_compute_forward_cross_entropy_loss_f32(
  12146. const struct ggml_compute_params * params,
  12147. struct ggml_tensor * dst) {
  12148. const struct ggml_tensor * src0 = dst->src[0];
  12149. const struct ggml_tensor * src1 = dst->src[1];
  12150. GGML_ASSERT(ggml_is_contiguous(src0));
  12151. GGML_ASSERT(ggml_is_contiguous(src1));
  12152. GGML_ASSERT(ggml_is_scalar(dst));
  12153. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  12154. const int ith = params->ith;
  12155. const int nth = params->nth;
  12156. float * sums = (float *) params->wdata;
  12157. // TODO: handle transposed/permuted matrices
  12158. const int nc = src0->ne[0];
  12159. const int nr = ggml_nrows(src0);
  12160. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  12161. if (params->type == GGML_TASK_INIT) {
  12162. if (ith == 0) {
  12163. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  12164. }
  12165. return;
  12166. }
  12167. if (params->type == GGML_TASK_FINALIZE) {
  12168. if (ith == 0) {
  12169. float * dp = (float *) dst->data;
  12170. ggml_vec_sum_f32(nth, dp, sums);
  12171. dp[0] *= -1.0f / (float) nr;
  12172. }
  12173. return;
  12174. }
  12175. const double eps = 1e-9;
  12176. // rows per thread
  12177. const int dr = (nr + nth - 1)/nth;
  12178. // row range for this thread
  12179. const int ir0 = dr*ith;
  12180. const int ir1 = MIN(ir0 + dr, nr);
  12181. for (int i1 = ir0; i1 < ir1; i1++) {
  12182. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12183. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12184. float * st = ((float *) params->wdata) + nth + ith*nc;
  12185. #ifndef NDEBUG
  12186. for (int i = 0; i < nc; ++i) {
  12187. //printf("p[%d] = %f\n", i, p[i]);
  12188. assert(!isnan(s0[i]));
  12189. assert(!isnan(s1[i]));
  12190. }
  12191. #endif
  12192. // soft_max
  12193. ggml_float sum = 0.0;
  12194. {
  12195. float max = -INFINITY;
  12196. ggml_vec_max_f32(nc, &max, s0);
  12197. uint16_t scvt; UNUSED(scvt);
  12198. for (int i = 0; i < nc; i++) {
  12199. if (s0[i] == -INFINITY) {
  12200. st[i] = 0.0f;
  12201. } else {
  12202. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12203. const float s = s0[i] - max;
  12204. const float val = expf(s);
  12205. #else
  12206. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12207. memcpy(&scvt, &s, sizeof(scvt));
  12208. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  12209. #endif
  12210. sum += (ggml_float)val;
  12211. st[i] = val;
  12212. }
  12213. }
  12214. assert(sum > 0.0);
  12215. // sum = 1.0/sum;
  12216. }
  12217. // avoid log(0) by rescaling from [0..1] to [eps..1]
  12218. sum = (1.0 - eps) / sum;
  12219. ggml_vec_scale_f32(nc, st, sum);
  12220. ggml_vec_add1_f32(nc, st, st, eps);
  12221. ggml_vec_log_f32(nc, st, st);
  12222. ggml_vec_mul_f32(nc, st, st, s1);
  12223. float st_sum = 0;
  12224. ggml_vec_sum_f32(nc, &st_sum, st);
  12225. sums[ith] += st_sum;
  12226. #ifndef NDEBUG
  12227. for (int i = 0; i < nc; ++i) {
  12228. assert(!isnan(st[i]));
  12229. assert(!isinf(st[i]));
  12230. }
  12231. #endif
  12232. }
  12233. }
  12234. static void ggml_compute_forward_cross_entropy_loss(
  12235. const struct ggml_compute_params * params,
  12236. struct ggml_tensor * dst) {
  12237. const struct ggml_tensor * src0 = dst->src[0];
  12238. switch (src0->type) {
  12239. case GGML_TYPE_F32:
  12240. {
  12241. ggml_compute_forward_cross_entropy_loss_f32(params, dst);
  12242. } break;
  12243. default:
  12244. {
  12245. GGML_ASSERT(false);
  12246. } break;
  12247. }
  12248. }
  12249. // ggml_compute_forward_cross_entropy_loss_back
  12250. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  12251. const struct ggml_compute_params * params,
  12252. struct ggml_tensor * dst) {
  12253. const struct ggml_tensor * src0 = dst->src[0];
  12254. const struct ggml_tensor * src1 = dst->src[1];
  12255. const struct ggml_tensor * opt0 = dst->src[2];
  12256. GGML_ASSERT(ggml_is_contiguous(dst));
  12257. GGML_ASSERT(ggml_is_contiguous(src0));
  12258. GGML_ASSERT(ggml_is_contiguous(src1));
  12259. GGML_ASSERT(ggml_is_contiguous(opt0));
  12260. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12261. const int64_t ith = params->ith;
  12262. const int64_t nth = params->nth;
  12263. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12264. return;
  12265. }
  12266. const double eps = 1e-9;
  12267. // TODO: handle transposed/permuted matrices
  12268. const int64_t nc = src0->ne[0];
  12269. const int64_t nr = ggml_nrows(src0);
  12270. // rows per thread
  12271. const int64_t dr = (nr + nth - 1)/nth;
  12272. // row range for this thread
  12273. const int64_t ir0 = dr*ith;
  12274. const int64_t ir1 = MIN(ir0 + dr, nr);
  12275. float * d = (float *) opt0->data;
  12276. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  12277. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  12278. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12279. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12280. #ifndef NDEBUG
  12281. for (int i = 0; i < nc; ++i) {
  12282. //printf("p[%d] = %f\n", i, p[i]);
  12283. assert(!isnan(s0[i]));
  12284. assert(!isnan(s1[i]));
  12285. }
  12286. #endif
  12287. // soft_max
  12288. ggml_float sum = 0.0;
  12289. {
  12290. float max = -INFINITY;
  12291. ggml_vec_max_f32(nc, &max, s0);
  12292. uint16_t scvt; UNUSED(scvt);
  12293. for (int i = 0; i < nc; i++) {
  12294. if (s0[i] == -INFINITY) {
  12295. ds0[i] = 0.0f;
  12296. } else {
  12297. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12298. const float s = s0[i] - max;
  12299. const float val = expf(s);
  12300. #else
  12301. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12302. memcpy(&scvt, &s, sizeof(scvt));
  12303. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  12304. #endif
  12305. sum += (ggml_float)val;
  12306. ds0[i] = val;
  12307. }
  12308. }
  12309. assert(sum > 0.0);
  12310. sum = (1.0 - eps)/sum;
  12311. }
  12312. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  12313. ggml_vec_scale_f32(nc, ds0, sum);
  12314. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  12315. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  12316. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  12317. #ifndef NDEBUG
  12318. for (int i = 0; i < nc; ++i) {
  12319. assert(!isnan(ds0[i]));
  12320. assert(!isinf(ds0[i]));
  12321. }
  12322. #endif
  12323. }
  12324. }
  12325. static void ggml_compute_forward_cross_entropy_loss_back(
  12326. const struct ggml_compute_params * params,
  12327. struct ggml_tensor * dst) {
  12328. const struct ggml_tensor * src0 = dst->src[0];
  12329. switch (src0->type) {
  12330. case GGML_TYPE_F32:
  12331. {
  12332. ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
  12333. } break;
  12334. default:
  12335. {
  12336. GGML_ASSERT(false);
  12337. } break;
  12338. }
  12339. }
  12340. /////////////////////////////////
  12341. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  12342. GGML_ASSERT(params);
  12343. if (tensor->op == GGML_OP_NONE) {
  12344. return;
  12345. }
  12346. #ifdef GGML_USE_CUBLAS
  12347. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  12348. if (skip_cpu) {
  12349. return;
  12350. }
  12351. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  12352. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  12353. #elif defined(GGML_USE_VULKAN)
  12354. const bool skip_cpu = ggml_vk_compute_forward_cpu_assist(params, tensor);
  12355. #ifdef GGML_VULKAN_CHECK_RESULTS
  12356. if (skip_cpu) {
  12357. ggml_vk_check_results_1_cpu_assist(params, tensor);
  12358. }
  12359. #endif
  12360. if (skip_cpu) {
  12361. return;
  12362. }
  12363. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  12364. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  12365. #endif // GGML_USE_CUBLAS
  12366. #ifdef GGML_USE_SYCL
  12367. bool skip_cpu = ggml_sycl_compute_forward(params, tensor);
  12368. if (skip_cpu) {
  12369. return;
  12370. }
  12371. #endif // GGML_USE_SYCL
  12372. switch (tensor->op) {
  12373. case GGML_OP_DUP:
  12374. {
  12375. ggml_compute_forward_dup(params, tensor);
  12376. } break;
  12377. case GGML_OP_ADD:
  12378. {
  12379. ggml_compute_forward_add(params, tensor);
  12380. } break;
  12381. case GGML_OP_ADD1:
  12382. {
  12383. ggml_compute_forward_add1(params, tensor);
  12384. } break;
  12385. case GGML_OP_ACC:
  12386. {
  12387. ggml_compute_forward_acc(params, tensor);
  12388. } break;
  12389. case GGML_OP_SUB:
  12390. {
  12391. ggml_compute_forward_sub(params, tensor);
  12392. } break;
  12393. case GGML_OP_MUL:
  12394. {
  12395. ggml_compute_forward_mul(params, tensor);
  12396. } break;
  12397. case GGML_OP_DIV:
  12398. {
  12399. ggml_compute_forward_div(params, tensor);
  12400. } break;
  12401. case GGML_OP_SQR:
  12402. {
  12403. ggml_compute_forward_sqr(params, tensor);
  12404. } break;
  12405. case GGML_OP_SQRT:
  12406. {
  12407. ggml_compute_forward_sqrt(params, tensor);
  12408. } break;
  12409. case GGML_OP_LOG:
  12410. {
  12411. ggml_compute_forward_log(params, tensor);
  12412. } break;
  12413. case GGML_OP_SUM:
  12414. {
  12415. ggml_compute_forward_sum(params, tensor);
  12416. } break;
  12417. case GGML_OP_SUM_ROWS:
  12418. {
  12419. ggml_compute_forward_sum_rows(params, tensor);
  12420. } break;
  12421. case GGML_OP_MEAN:
  12422. {
  12423. ggml_compute_forward_mean(params, tensor);
  12424. } break;
  12425. case GGML_OP_ARGMAX:
  12426. {
  12427. ggml_compute_forward_argmax(params, tensor);
  12428. } break;
  12429. case GGML_OP_REPEAT:
  12430. {
  12431. ggml_compute_forward_repeat(params, tensor);
  12432. } break;
  12433. case GGML_OP_REPEAT_BACK:
  12434. {
  12435. ggml_compute_forward_repeat_back(params, tensor);
  12436. } break;
  12437. case GGML_OP_CONCAT:
  12438. {
  12439. ggml_compute_forward_concat(params, tensor);
  12440. } break;
  12441. case GGML_OP_SILU_BACK:
  12442. {
  12443. ggml_compute_forward_silu_back(params, tensor);
  12444. } break;
  12445. case GGML_OP_NORM:
  12446. {
  12447. ggml_compute_forward_norm(params, tensor);
  12448. } break;
  12449. case GGML_OP_RMS_NORM:
  12450. {
  12451. ggml_compute_forward_rms_norm(params, tensor);
  12452. } break;
  12453. case GGML_OP_RMS_NORM_BACK:
  12454. {
  12455. ggml_compute_forward_rms_norm_back(params, tensor);
  12456. } break;
  12457. case GGML_OP_GROUP_NORM:
  12458. {
  12459. ggml_compute_forward_group_norm(params, tensor);
  12460. } break;
  12461. case GGML_OP_MUL_MAT:
  12462. {
  12463. ggml_compute_forward_mul_mat(params, tensor);
  12464. } break;
  12465. case GGML_OP_MUL_MAT_ID:
  12466. {
  12467. ggml_compute_forward_mul_mat_id(params, tensor);
  12468. } break;
  12469. case GGML_OP_OUT_PROD:
  12470. {
  12471. ggml_compute_forward_out_prod(params, tensor);
  12472. } break;
  12473. case GGML_OP_SCALE:
  12474. {
  12475. ggml_compute_forward_scale(params, tensor);
  12476. } break;
  12477. case GGML_OP_SET:
  12478. {
  12479. ggml_compute_forward_set(params, tensor);
  12480. } break;
  12481. case GGML_OP_CPY:
  12482. {
  12483. ggml_compute_forward_cpy(params, tensor);
  12484. } break;
  12485. case GGML_OP_CONT:
  12486. {
  12487. ggml_compute_forward_cont(params, tensor);
  12488. } break;
  12489. case GGML_OP_RESHAPE:
  12490. {
  12491. ggml_compute_forward_reshape(params, tensor);
  12492. } break;
  12493. case GGML_OP_VIEW:
  12494. {
  12495. ggml_compute_forward_view(params, tensor);
  12496. } break;
  12497. case GGML_OP_PERMUTE:
  12498. {
  12499. ggml_compute_forward_permute(params, tensor);
  12500. } break;
  12501. case GGML_OP_TRANSPOSE:
  12502. {
  12503. ggml_compute_forward_transpose(params, tensor);
  12504. } break;
  12505. case GGML_OP_GET_ROWS:
  12506. {
  12507. ggml_compute_forward_get_rows(params, tensor);
  12508. } break;
  12509. case GGML_OP_GET_ROWS_BACK:
  12510. {
  12511. ggml_compute_forward_get_rows_back(params, tensor);
  12512. } break;
  12513. case GGML_OP_DIAG:
  12514. {
  12515. ggml_compute_forward_diag(params, tensor);
  12516. } break;
  12517. case GGML_OP_DIAG_MASK_INF:
  12518. {
  12519. ggml_compute_forward_diag_mask_inf(params, tensor);
  12520. } break;
  12521. case GGML_OP_DIAG_MASK_ZERO:
  12522. {
  12523. ggml_compute_forward_diag_mask_zero(params, tensor);
  12524. } break;
  12525. case GGML_OP_SOFT_MAX:
  12526. {
  12527. ggml_compute_forward_soft_max(params, tensor);
  12528. } break;
  12529. case GGML_OP_SOFT_MAX_BACK:
  12530. {
  12531. ggml_compute_forward_soft_max_back(params, tensor);
  12532. } break;
  12533. case GGML_OP_ROPE:
  12534. {
  12535. ggml_compute_forward_rope(params, tensor);
  12536. } break;
  12537. case GGML_OP_ROPE_BACK:
  12538. {
  12539. ggml_compute_forward_rope_back(params, tensor);
  12540. } break;
  12541. case GGML_OP_ALIBI:
  12542. {
  12543. ggml_compute_forward_alibi(params, tensor);
  12544. } break;
  12545. case GGML_OP_CLAMP:
  12546. {
  12547. ggml_compute_forward_clamp(params, tensor);
  12548. } break;
  12549. case GGML_OP_CONV_TRANSPOSE_1D:
  12550. {
  12551. ggml_compute_forward_conv_transpose_1d(params, tensor);
  12552. } break;
  12553. case GGML_OP_IM2COL:
  12554. {
  12555. ggml_compute_forward_im2col(params, tensor);
  12556. } break;
  12557. case GGML_OP_CONV_TRANSPOSE_2D:
  12558. {
  12559. ggml_compute_forward_conv_transpose_2d(params, tensor);
  12560. } break;
  12561. case GGML_OP_POOL_1D:
  12562. {
  12563. ggml_compute_forward_pool_1d(params, tensor);
  12564. } break;
  12565. case GGML_OP_POOL_2D:
  12566. {
  12567. ggml_compute_forward_pool_2d(params, tensor);
  12568. } break;
  12569. case GGML_OP_UPSCALE:
  12570. {
  12571. ggml_compute_forward_upscale(params, tensor);
  12572. } break;
  12573. case GGML_OP_PAD:
  12574. {
  12575. ggml_compute_forward_pad(params, tensor);
  12576. } break;
  12577. case GGML_OP_ARGSORT:
  12578. {
  12579. ggml_compute_forward_argsort(params, tensor);
  12580. } break;
  12581. case GGML_OP_LEAKY_RELU:
  12582. {
  12583. ggml_compute_forward_leaky_relu(params, tensor);
  12584. } break;
  12585. case GGML_OP_FLASH_ATTN:
  12586. {
  12587. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  12588. GGML_ASSERT(t == 0 || t == 1);
  12589. const bool masked = t != 0;
  12590. ggml_compute_forward_flash_attn(params, masked, tensor);
  12591. } break;
  12592. case GGML_OP_FLASH_FF:
  12593. {
  12594. ggml_compute_forward_flash_ff(params, tensor);
  12595. } break;
  12596. case GGML_OP_FLASH_ATTN_BACK:
  12597. {
  12598. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12599. GGML_ASSERT(t == 0 || t == 1);
  12600. bool masked = t != 0;
  12601. ggml_compute_forward_flash_attn_back(params, masked, tensor);
  12602. } break;
  12603. case GGML_OP_WIN_PART:
  12604. {
  12605. ggml_compute_forward_win_part(params, tensor);
  12606. } break;
  12607. case GGML_OP_WIN_UNPART:
  12608. {
  12609. ggml_compute_forward_win_unpart(params, tensor);
  12610. } break;
  12611. case GGML_OP_UNARY:
  12612. {
  12613. ggml_compute_forward_unary(params, tensor);
  12614. } break;
  12615. case GGML_OP_GET_REL_POS:
  12616. {
  12617. ggml_compute_forward_get_rel_pos(params, tensor);
  12618. } break;
  12619. case GGML_OP_ADD_REL_POS:
  12620. {
  12621. ggml_compute_forward_add_rel_pos(params, tensor);
  12622. } break;
  12623. case GGML_OP_MAP_UNARY:
  12624. {
  12625. ggml_unary_op_f32_t fun;
  12626. memcpy(&fun, tensor->op_params, sizeof(fun));
  12627. ggml_compute_forward_map_unary(params, tensor, fun);
  12628. }
  12629. break;
  12630. case GGML_OP_MAP_BINARY:
  12631. {
  12632. ggml_binary_op_f32_t fun;
  12633. memcpy(&fun, tensor->op_params, sizeof(fun));
  12634. ggml_compute_forward_map_binary(params, tensor, fun);
  12635. }
  12636. break;
  12637. case GGML_OP_MAP_CUSTOM1_F32:
  12638. {
  12639. ggml_custom1_op_f32_t fun;
  12640. memcpy(&fun, tensor->op_params, sizeof(fun));
  12641. ggml_compute_forward_map_custom1_f32(params, tensor, fun);
  12642. }
  12643. break;
  12644. case GGML_OP_MAP_CUSTOM2_F32:
  12645. {
  12646. ggml_custom2_op_f32_t fun;
  12647. memcpy(&fun, tensor->op_params, sizeof(fun));
  12648. ggml_compute_forward_map_custom2_f32(params, tensor, fun);
  12649. }
  12650. break;
  12651. case GGML_OP_MAP_CUSTOM3_F32:
  12652. {
  12653. ggml_custom3_op_f32_t fun;
  12654. memcpy(&fun, tensor->op_params, sizeof(fun));
  12655. ggml_compute_forward_map_custom3_f32(params, tensor, fun);
  12656. }
  12657. break;
  12658. case GGML_OP_MAP_CUSTOM1:
  12659. {
  12660. ggml_compute_forward_map_custom1(params, tensor);
  12661. }
  12662. break;
  12663. case GGML_OP_MAP_CUSTOM2:
  12664. {
  12665. ggml_compute_forward_map_custom2(params, tensor);
  12666. }
  12667. break;
  12668. case GGML_OP_MAP_CUSTOM3:
  12669. {
  12670. ggml_compute_forward_map_custom3(params, tensor);
  12671. }
  12672. break;
  12673. case GGML_OP_CROSS_ENTROPY_LOSS:
  12674. {
  12675. ggml_compute_forward_cross_entropy_loss(params, tensor);
  12676. }
  12677. break;
  12678. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12679. {
  12680. ggml_compute_forward_cross_entropy_loss_back(params, tensor);
  12681. }
  12682. break;
  12683. case GGML_OP_NONE:
  12684. {
  12685. // nop
  12686. } break;
  12687. case GGML_OP_COUNT:
  12688. {
  12689. GGML_ASSERT(false);
  12690. } break;
  12691. }
  12692. }
  12693. ////////////////////////////////////////////////////////////////////////////////
  12694. static size_t ggml_hash_size(size_t min_sz) {
  12695. // next primes after powers of two
  12696. static const size_t primes[] = {
  12697. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  12698. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  12699. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  12700. 16777259, 33554467, 67108879, 134217757, 268435459,
  12701. 536870923, 1073741827, 2147483659
  12702. };
  12703. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  12704. // find the smallest prime that is larger or equal to min_sz
  12705. size_t l = 0;
  12706. size_t r = n_primes;
  12707. while (l < r) {
  12708. size_t m = (l + r)/2;
  12709. if (primes[m] < min_sz) {
  12710. l = m + 1;
  12711. } else {
  12712. r = m;
  12713. }
  12714. }
  12715. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  12716. return sz;
  12717. }
  12718. static size_t ggml_hash(const void * p) {
  12719. return (size_t)p;
  12720. }
  12721. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12722. size_t h = ggml_hash(key) % hash_set.size;
  12723. // linear probing
  12724. size_t i = h;
  12725. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  12726. i = (i + 1) % hash_set.size;
  12727. if (i == h) {
  12728. // visited all hash table entries -> not found
  12729. return GGML_HASHTABLE_FULL;
  12730. }
  12731. }
  12732. return i;
  12733. }
  12734. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12735. size_t i = ggml_hash_find(hash_set, key);
  12736. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  12737. }
  12738. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12739. size_t i = ggml_hash_find(hash_set, key);
  12740. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  12741. if (hash_set.keys[i] == key) {
  12742. return GGML_HASHTABLE_ALREADY_EXISTS;
  12743. }
  12744. // insert
  12745. GGML_ASSERT(hash_set.keys[i] == NULL);
  12746. hash_set.keys[i] = key;
  12747. return i;
  12748. }
  12749. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12750. size_t i = ggml_hash_find(hash_set, key);
  12751. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  12752. hash_set.keys[i] = key;
  12753. return i;
  12754. }
  12755. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  12756. size = ggml_hash_size(size);
  12757. struct ggml_hash_set result;
  12758. result.size = size;
  12759. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  12760. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  12761. return result;
  12762. }
  12763. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  12764. GGML_FREE(hash_set.keys);
  12765. }
  12766. struct hash_map {
  12767. struct ggml_hash_set set;
  12768. struct ggml_tensor ** vals;
  12769. };
  12770. static struct hash_map * ggml_new_hash_map(size_t size) {
  12771. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  12772. result->set = ggml_hash_set_new(size);
  12773. result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size);
  12774. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  12775. return result;
  12776. }
  12777. static void ggml_hash_map_free(struct hash_map * map) {
  12778. ggml_hash_set_free(map->set);
  12779. GGML_FREE(map->vals);
  12780. GGML_FREE(map);
  12781. }
  12782. // gradient checkpointing
  12783. static struct ggml_tensor * ggml_recompute_graph_node(
  12784. struct ggml_context * ctx,
  12785. struct ggml_cgraph * graph,
  12786. struct hash_map * replacements,
  12787. struct ggml_tensor * node) {
  12788. if (node == NULL) {
  12789. return NULL;
  12790. }
  12791. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  12792. return node;
  12793. }
  12794. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  12795. return node;
  12796. }
  12797. int count_children = 0;
  12798. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12799. if (node->src[k]) {
  12800. ++count_children;
  12801. }
  12802. }
  12803. if (count_children == 0) {
  12804. return node;
  12805. }
  12806. size_t i = ggml_hash_find(replacements->set, node);
  12807. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  12808. if (replacements->set.keys[i] == node) {
  12809. return replacements->vals[i];
  12810. }
  12811. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  12812. // insert clone into replacements
  12813. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  12814. replacements->set.keys[i] = node;
  12815. replacements->vals[i] = clone;
  12816. clone->op = node->op;
  12817. clone->grad = node->grad;
  12818. clone->flags = node->flags;
  12819. clone->extra = node->extra;
  12820. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  12821. clone->nb[k] = node->nb[k];
  12822. }
  12823. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12824. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  12825. }
  12826. if (node->view_src != NULL) {
  12827. clone->data = (node->view_src->data == NULL)
  12828. ? NULL // view_src not yet allocated
  12829. : (char *) node->view_src->data // view_src already allocated
  12830. + node->view_offs;
  12831. clone->view_src = node->view_src;
  12832. clone->view_offs = node->view_offs;
  12833. }
  12834. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  12835. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  12836. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  12837. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  12838. return clone;
  12839. }
  12840. void ggml_build_backward_gradient_checkpointing(
  12841. struct ggml_context * ctx,
  12842. struct ggml_cgraph * gf,
  12843. struct ggml_cgraph * gb,
  12844. struct ggml_cgraph * gb_tmp,
  12845. struct ggml_tensor * * checkpoints,
  12846. int n_checkpoints) {
  12847. ggml_graph_cpy(gf, gb_tmp);
  12848. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  12849. if (n_checkpoints <= 0) {
  12850. ggml_graph_cpy(gb_tmp, gb);
  12851. return;
  12852. }
  12853. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  12854. // insert checkpoints in replacements
  12855. for (int i = 0; i < n_checkpoints; ++i) {
  12856. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  12857. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  12858. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  12859. replacements->set.keys[k] = checkpoints[i];
  12860. replacements->vals[k] = checkpoints[i];
  12861. }
  12862. ggml_graph_cpy(gf, gb);
  12863. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  12864. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  12865. // by recomputing them from checkpoints
  12866. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  12867. struct ggml_tensor * node = gb_tmp->nodes[i];
  12868. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12869. // insert new tensors recomputing src, reusing already made replacements,
  12870. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  12871. // recurse for input tensors,
  12872. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  12873. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  12874. }
  12875. // insert rewritten backward node with replacements made into resulting backward graph gb
  12876. ggml_build_forward_expand(gb, node);
  12877. }
  12878. ggml_hash_map_free(replacements);
  12879. }
  12880. // functions to change gradients considering the case that input a might be initial gradient with zero value
  12881. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12882. if (ggml_hash_contains(zero_table, a)) {
  12883. return b;
  12884. } else {
  12885. return ggml_add_impl(ctx, a, b, false);
  12886. }
  12887. }
  12888. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  12889. if (ggml_hash_contains(zero_table, a)) {
  12890. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  12891. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  12892. } else {
  12893. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  12894. }
  12895. }
  12896. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12897. if (ggml_hash_contains(zero_table, a)) {
  12898. return ggml_repeat(ctx, b, a);
  12899. } else {
  12900. return ggml_add1_impl(ctx, a, b, false);
  12901. }
  12902. }
  12903. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12904. if (ggml_hash_contains(zero_table, a)) {
  12905. return ggml_neg(ctx, b);
  12906. } else {
  12907. return ggml_sub_impl(ctx, a, b, false);
  12908. }
  12909. }
  12910. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  12911. struct ggml_tensor * src0 = tensor->src[0];
  12912. struct ggml_tensor * src1 = tensor->src[1];
  12913. switch (tensor->op) {
  12914. case GGML_OP_DUP:
  12915. {
  12916. if (src0->grad) {
  12917. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12918. }
  12919. } break;
  12920. case GGML_OP_ADD:
  12921. {
  12922. if (src0->grad) {
  12923. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12924. }
  12925. if (src1->grad) {
  12926. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12927. }
  12928. } break;
  12929. case GGML_OP_ADD1:
  12930. {
  12931. if (src0->grad) {
  12932. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12933. }
  12934. if (src1->grad) {
  12935. src1->grad = ggml_add_or_set(ctx,
  12936. src1->grad,
  12937. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  12938. zero_table);
  12939. }
  12940. } break;
  12941. case GGML_OP_ACC:
  12942. {
  12943. if (src0->grad) {
  12944. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12945. }
  12946. if (src1->grad) {
  12947. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12948. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12949. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12950. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12951. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  12952. tensor->grad,
  12953. src1->grad->ne[0],
  12954. src1->grad->ne[1],
  12955. src1->grad->ne[2],
  12956. src1->grad->ne[3],
  12957. nb1, nb2, nb3, offset);
  12958. src1->grad =
  12959. ggml_add_or_set(ctx,
  12960. src1->grad,
  12961. ggml_reshape(ctx,
  12962. ggml_cont(ctx, tensor_grad_view),
  12963. src1->grad),
  12964. zero_table);
  12965. }
  12966. } break;
  12967. case GGML_OP_SUB:
  12968. {
  12969. if (src0->grad) {
  12970. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12971. }
  12972. if (src1->grad) {
  12973. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12974. }
  12975. } break;
  12976. case GGML_OP_MUL:
  12977. {
  12978. if (src0->grad) {
  12979. src0->grad =
  12980. ggml_add_or_set(ctx,
  12981. src0->grad,
  12982. ggml_mul(ctx, src1, tensor->grad),
  12983. zero_table);
  12984. }
  12985. if (src1->grad) {
  12986. src1->grad =
  12987. ggml_add_or_set(ctx,
  12988. src1->grad,
  12989. ggml_mul(ctx, src0, tensor->grad),
  12990. zero_table);
  12991. }
  12992. } break;
  12993. case GGML_OP_DIV:
  12994. {
  12995. if (src0->grad) {
  12996. src0->grad =
  12997. ggml_add_or_set(ctx,
  12998. src0->grad,
  12999. ggml_div(ctx, tensor->grad, src1),
  13000. zero_table);
  13001. }
  13002. if (src1->grad) {
  13003. src1->grad =
  13004. ggml_sub_or_set(ctx,
  13005. src1->grad,
  13006. ggml_mul(ctx,
  13007. tensor->grad,
  13008. ggml_div(ctx, tensor, src1)),
  13009. zero_table);
  13010. }
  13011. } break;
  13012. case GGML_OP_SQR:
  13013. {
  13014. if (src0->grad) {
  13015. src0->grad =
  13016. ggml_add_or_set(ctx,
  13017. src0->grad,
  13018. ggml_scale(ctx,
  13019. ggml_mul(ctx, src0, tensor->grad),
  13020. 2.0f),
  13021. zero_table);
  13022. }
  13023. } break;
  13024. case GGML_OP_SQRT:
  13025. {
  13026. if (src0->grad) {
  13027. src0->grad =
  13028. ggml_add_or_set(ctx,
  13029. src0->grad,
  13030. ggml_scale(ctx,
  13031. ggml_div(ctx,
  13032. tensor->grad,
  13033. tensor),
  13034. 0.5f),
  13035. zero_table);
  13036. }
  13037. } break;
  13038. case GGML_OP_LOG:
  13039. {
  13040. if (src0->grad) {
  13041. src0->grad =
  13042. ggml_add_or_set(ctx,
  13043. src0->grad,
  13044. ggml_div(ctx,
  13045. tensor->grad,
  13046. src0),
  13047. zero_table);
  13048. }
  13049. } break;
  13050. case GGML_OP_SUM:
  13051. {
  13052. if (src0->grad) {
  13053. src0->grad =
  13054. ggml_add1_or_set(ctx,
  13055. src0->grad,
  13056. tensor->grad,
  13057. zero_table);
  13058. }
  13059. } break;
  13060. case GGML_OP_SUM_ROWS:
  13061. {
  13062. if (src0->grad) {
  13063. src0->grad =
  13064. ggml_add_or_set(ctx,
  13065. src0->grad,
  13066. ggml_repeat(ctx,
  13067. tensor->grad,
  13068. src0->grad),
  13069. zero_table);
  13070. }
  13071. } break;
  13072. case GGML_OP_MEAN:
  13073. case GGML_OP_ARGMAX:
  13074. {
  13075. GGML_ASSERT(false); // TODO: implement
  13076. } break;
  13077. case GGML_OP_REPEAT:
  13078. {
  13079. // necessary for llama
  13080. if (src0->grad) {
  13081. src0->grad = ggml_add_or_set(ctx,
  13082. src0->grad,
  13083. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  13084. zero_table);
  13085. }
  13086. } break;
  13087. case GGML_OP_REPEAT_BACK:
  13088. {
  13089. if (src0->grad) {
  13090. // TODO: test this
  13091. src0->grad = ggml_add_or_set(ctx,
  13092. src0->grad,
  13093. ggml_repeat(ctx, tensor->grad, src0->grad),
  13094. zero_table);
  13095. }
  13096. } break;
  13097. case GGML_OP_CONCAT:
  13098. {
  13099. GGML_ASSERT(false); // TODO: implement
  13100. } break;
  13101. case GGML_OP_SILU_BACK:
  13102. {
  13103. GGML_ASSERT(false); // TODO: not implemented
  13104. } break;
  13105. case GGML_OP_NORM:
  13106. {
  13107. GGML_ASSERT(false); // TODO: not implemented
  13108. } break;
  13109. case GGML_OP_RMS_NORM:
  13110. {
  13111. // necessary for llama
  13112. if (src0->grad) {
  13113. float eps;
  13114. memcpy(&eps, tensor->op_params, sizeof(float));
  13115. src0->grad = ggml_add_or_set(ctx,
  13116. src0->grad,
  13117. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  13118. zero_table);
  13119. }
  13120. } break;
  13121. case GGML_OP_RMS_NORM_BACK:
  13122. {
  13123. GGML_ASSERT(false); // TODO: not implemented
  13124. } break;
  13125. case GGML_OP_GROUP_NORM:
  13126. {
  13127. GGML_ASSERT(false); // TODO: not implemented
  13128. } break;
  13129. case GGML_OP_MUL_MAT:
  13130. {
  13131. // https://cs231n.github.io/optimization-2/#staged
  13132. // # forward pass
  13133. // s0 = np.random.randn(5, 10)
  13134. // s1 = np.random.randn(10, 3)
  13135. // t = s0.dot(s1)
  13136. // # now suppose we had the gradient on t from above in the circuit
  13137. // dt = np.random.randn(*t.shape) # same shape as t
  13138. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  13139. // ds1 = t.T.dot(dt)
  13140. // tensor.shape [m,p,qq,rr]
  13141. // src0.shape [n,m,q1,r1]
  13142. // src1.shape [n,p,qq,rr]
  13143. // necessary for llama
  13144. if (src0->grad) {
  13145. struct ggml_tensor * s1_tg =
  13146. ggml_out_prod(ctx, // [n,m,qq,rr]
  13147. src1, // [n,p,qq,rr]
  13148. tensor->grad); // [m,p,qq,rr]
  13149. const int64_t qq = s1_tg->ne[2];
  13150. const int64_t rr = s1_tg->ne[3];
  13151. const int64_t q1 = src0->ne[2];
  13152. const int64_t r1 = src0->ne[3];
  13153. const bool ne2_broadcasted = qq > q1;
  13154. const bool ne3_broadcasted = rr > r1;
  13155. if (ne2_broadcasted || ne3_broadcasted) {
  13156. // sum broadcast repetitions of s1_tg into shape of src0
  13157. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  13158. }
  13159. src0->grad =
  13160. ggml_add_or_set(ctx,
  13161. src0->grad, // [n,m,q1,r1]
  13162. s1_tg, // [n,m,q1,r1]
  13163. zero_table);
  13164. }
  13165. if (src1->grad) {
  13166. src1->grad =
  13167. ggml_add_or_set(ctx,
  13168. src1->grad, // [n,p,qq,rr]
  13169. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  13170. // ggml_cont(ctx, // [m,n,q1,r1]
  13171. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  13172. // tensor->grad), // [m,p,qq,rr]
  13173. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  13174. // // avoid transpose of src0, rather transpose smaller tensor->grad
  13175. // // and then use ggml_out_prod
  13176. ggml_out_prod(ctx, // [n,p,qq,rr]
  13177. src0, // [n,m,q1,r1]
  13178. ggml_transpose(ctx, // [p,m,qq,rr]
  13179. tensor->grad)), // [m,p,qq,rr]
  13180. zero_table);
  13181. }
  13182. } break;
  13183. case GGML_OP_MUL_MAT_ID:
  13184. {
  13185. GGML_ASSERT(false); // TODO: not implemented
  13186. } break;
  13187. case GGML_OP_OUT_PROD:
  13188. {
  13189. GGML_ASSERT(false); // TODO: not implemented
  13190. } break;
  13191. case GGML_OP_SCALE:
  13192. {
  13193. // necessary for llama
  13194. if (src0->grad) {
  13195. float s;
  13196. memcpy(&s, tensor->op_params, sizeof(float));
  13197. src0->grad =
  13198. ggml_add_or_set(ctx,
  13199. src0->grad,
  13200. ggml_scale_impl(ctx, tensor->grad, s, false),
  13201. zero_table);
  13202. }
  13203. } break;
  13204. case GGML_OP_SET:
  13205. {
  13206. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13207. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13208. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13209. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13210. struct ggml_tensor * tensor_grad_view = NULL;
  13211. if (src0->grad || src1->grad) {
  13212. GGML_ASSERT(src0->type == tensor->type);
  13213. GGML_ASSERT(tensor->grad->type == tensor->type);
  13214. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  13215. tensor_grad_view = ggml_view_4d(ctx,
  13216. tensor->grad,
  13217. src1->grad->ne[0],
  13218. src1->grad->ne[1],
  13219. src1->grad->ne[2],
  13220. src1->grad->ne[3],
  13221. nb1, nb2, nb3, offset);
  13222. }
  13223. if (src0->grad) {
  13224. src0->grad = ggml_add_or_set(ctx,
  13225. src0->grad,
  13226. ggml_acc_impl(ctx,
  13227. tensor->grad,
  13228. ggml_neg(ctx, tensor_grad_view),
  13229. nb1, nb2, nb3, offset, false),
  13230. zero_table);
  13231. }
  13232. if (src1->grad) {
  13233. src1->grad =
  13234. ggml_add_or_set(ctx,
  13235. src1->grad,
  13236. ggml_reshape(ctx,
  13237. ggml_cont(ctx, tensor_grad_view),
  13238. src1->grad),
  13239. zero_table);
  13240. }
  13241. } break;
  13242. case GGML_OP_CPY:
  13243. {
  13244. // necessary for llama
  13245. // cpy overwrites value of src1 by src0 and returns view(src1)
  13246. // the overwriting is mathematically equivalent to:
  13247. // tensor = src0 * 1 + src1 * 0
  13248. if (src0->grad) {
  13249. // dsrc0 = dtensor * 1
  13250. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13251. }
  13252. if (src1->grad) {
  13253. // dsrc1 = dtensor * 0 -> noop
  13254. }
  13255. } break;
  13256. case GGML_OP_CONT:
  13257. {
  13258. // same as cpy
  13259. if (src0->grad) {
  13260. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  13261. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  13262. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13263. }
  13264. } break;
  13265. case GGML_OP_RESHAPE:
  13266. {
  13267. // necessary for llama
  13268. if (src0->grad) {
  13269. src0->grad =
  13270. ggml_add_or_set(ctx, src0->grad,
  13271. ggml_reshape(ctx,
  13272. ggml_is_contiguous(tensor->grad)
  13273. ? tensor->grad
  13274. : ggml_cont(ctx, tensor->grad),
  13275. src0->grad),
  13276. zero_table);
  13277. }
  13278. } break;
  13279. case GGML_OP_VIEW:
  13280. {
  13281. // necessary for llama
  13282. if (src0->grad) {
  13283. size_t offset;
  13284. memcpy(&offset, tensor->op_params, sizeof(offset));
  13285. size_t nb1 = tensor->nb[1];
  13286. size_t nb2 = tensor->nb[2];
  13287. size_t nb3 = tensor->nb[3];
  13288. if (src0->type != src0->grad->type) {
  13289. // gradient is typically F32, but src0 could be other type
  13290. size_t ng = ggml_element_size(src0->grad);
  13291. size_t n0 = ggml_element_size(src0);
  13292. GGML_ASSERT(offset % n0 == 0);
  13293. GGML_ASSERT(nb1 % n0 == 0);
  13294. GGML_ASSERT(nb2 % n0 == 0);
  13295. GGML_ASSERT(nb3 % n0 == 0);
  13296. offset = (offset / n0) * ng;
  13297. nb1 = (nb1 / n0) * ng;
  13298. nb2 = (nb2 / n0) * ng;
  13299. nb3 = (nb3 / n0) * ng;
  13300. }
  13301. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  13302. }
  13303. } break;
  13304. case GGML_OP_PERMUTE:
  13305. {
  13306. // necessary for llama
  13307. if (src0->grad) {
  13308. int32_t * axes = (int32_t *) tensor->op_params;
  13309. int axis0 = axes[0] & 0x3;
  13310. int axis1 = axes[1] & 0x3;
  13311. int axis2 = axes[2] & 0x3;
  13312. int axis3 = axes[3] & 0x3;
  13313. int axes_backward[4] = {0,0,0,0};
  13314. axes_backward[axis0] = 0;
  13315. axes_backward[axis1] = 1;
  13316. axes_backward[axis2] = 2;
  13317. axes_backward[axis3] = 3;
  13318. src0->grad =
  13319. ggml_add_or_set(ctx, src0->grad,
  13320. ggml_permute(ctx,
  13321. tensor->grad,
  13322. axes_backward[0],
  13323. axes_backward[1],
  13324. axes_backward[2],
  13325. axes_backward[3]),
  13326. zero_table);
  13327. }
  13328. } break;
  13329. case GGML_OP_TRANSPOSE:
  13330. {
  13331. // necessary for llama
  13332. if (src0->grad) {
  13333. src0->grad =
  13334. ggml_add_or_set(ctx, src0->grad,
  13335. ggml_transpose(ctx, tensor->grad),
  13336. zero_table);
  13337. }
  13338. } break;
  13339. case GGML_OP_GET_ROWS:
  13340. {
  13341. // necessary for llama (only for tokenizer)
  13342. if (src0->grad) {
  13343. src0->grad =
  13344. ggml_add_or_set(ctx, src0->grad,
  13345. // last ggml_get_rows_back argument src0->grad is only
  13346. // necessary to setup correct output shape
  13347. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  13348. zero_table);
  13349. }
  13350. if (src1->grad) {
  13351. // noop
  13352. }
  13353. } break;
  13354. case GGML_OP_GET_ROWS_BACK:
  13355. {
  13356. GGML_ASSERT(false); // TODO: not implemented
  13357. } break;
  13358. case GGML_OP_DIAG:
  13359. {
  13360. GGML_ASSERT(false); // TODO: not implemented
  13361. } break;
  13362. case GGML_OP_DIAG_MASK_INF:
  13363. {
  13364. // necessary for llama
  13365. if (src0->grad) {
  13366. const int n_past = ((int32_t *) tensor->op_params)[0];
  13367. src0->grad =
  13368. ggml_add_or_set(ctx, src0->grad,
  13369. /* ggml_diag_mask_inf_impl() shouldn't be here */
  13370. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  13371. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13372. zero_table);
  13373. }
  13374. } break;
  13375. case GGML_OP_DIAG_MASK_ZERO:
  13376. {
  13377. // necessary for llama
  13378. if (src0->grad) {
  13379. const int n_past = ((int32_t *) tensor->op_params)[0];
  13380. src0->grad =
  13381. ggml_add_or_set(ctx, src0->grad,
  13382. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13383. zero_table);
  13384. }
  13385. } break;
  13386. case GGML_OP_SOFT_MAX:
  13387. {
  13388. // necessary for llama
  13389. if (src0->grad) {
  13390. src0->grad =
  13391. ggml_add_or_set(ctx, src0->grad,
  13392. ggml_soft_max_back(ctx, tensor->grad, tensor),
  13393. zero_table);
  13394. }
  13395. } break;
  13396. case GGML_OP_SOFT_MAX_BACK:
  13397. {
  13398. GGML_ASSERT(false); // TODO: not implemented
  13399. } break;
  13400. case GGML_OP_ROPE:
  13401. {
  13402. // necessary for llama
  13403. if (src0->grad) {
  13404. //const int n_past = ((int32_t *) tensor->op_params)[0];
  13405. const int n_dims = ((int32_t *) tensor->op_params)[1];
  13406. const int mode = ((int32_t *) tensor->op_params)[2];
  13407. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  13408. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  13409. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  13410. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  13411. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  13412. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  13413. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  13414. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  13415. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  13416. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  13417. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  13418. src0->grad = ggml_add_or_set(ctx,
  13419. src0->grad,
  13420. ggml_rope_back(ctx,
  13421. tensor->grad,
  13422. src1,
  13423. n_dims,
  13424. mode,
  13425. n_ctx,
  13426. n_orig_ctx,
  13427. freq_base,
  13428. freq_scale,
  13429. ext_factor,
  13430. attn_factor,
  13431. beta_fast,
  13432. beta_slow,
  13433. xpos_base,
  13434. xpos_down),
  13435. zero_table);
  13436. }
  13437. } break;
  13438. case GGML_OP_ROPE_BACK:
  13439. {
  13440. if (src0->grad) {
  13441. //const int n_past = ((int32_t *) tensor->op_params)[0];
  13442. const int n_dims = ((int32_t *) tensor->op_params)[1];
  13443. const int mode = ((int32_t *) tensor->op_params)[2];
  13444. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  13445. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  13446. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  13447. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  13448. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  13449. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  13450. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  13451. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  13452. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  13453. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  13454. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  13455. src0->grad = ggml_add_or_set(ctx,
  13456. src0->grad,
  13457. ggml_rope_impl(ctx,
  13458. tensor->grad,
  13459. src1,
  13460. n_dims,
  13461. mode,
  13462. n_ctx,
  13463. n_orig_ctx,
  13464. freq_base,
  13465. freq_scale,
  13466. ext_factor,
  13467. attn_factor,
  13468. beta_fast,
  13469. beta_slow,
  13470. xpos_base,
  13471. xpos_down,
  13472. false),
  13473. zero_table);
  13474. }
  13475. } break;
  13476. case GGML_OP_ALIBI:
  13477. {
  13478. GGML_ASSERT(false); // TODO: not implemented
  13479. } break;
  13480. case GGML_OP_CLAMP:
  13481. {
  13482. GGML_ASSERT(false); // TODO: not implemented
  13483. } break;
  13484. case GGML_OP_CONV_TRANSPOSE_1D:
  13485. {
  13486. GGML_ASSERT(false); // TODO: not implemented
  13487. } break;
  13488. case GGML_OP_IM2COL:
  13489. {
  13490. GGML_ASSERT(false); // TODO: not implemented
  13491. } break;
  13492. case GGML_OP_CONV_TRANSPOSE_2D:
  13493. {
  13494. GGML_ASSERT(false); // TODO: not implemented
  13495. } break;
  13496. case GGML_OP_POOL_1D:
  13497. {
  13498. GGML_ASSERT(false); // TODO: not implemented
  13499. } break;
  13500. case GGML_OP_POOL_2D:
  13501. {
  13502. GGML_ASSERT(false); // TODO: not implemented
  13503. } break;
  13504. case GGML_OP_UPSCALE:
  13505. {
  13506. GGML_ASSERT(false); // TODO: not implemented
  13507. } break;
  13508. case GGML_OP_PAD:
  13509. {
  13510. GGML_ASSERT(false); // TODO: not implemented
  13511. } break;
  13512. case GGML_OP_ARGSORT:
  13513. {
  13514. GGML_ASSERT(false); // TODO: not implemented
  13515. } break;
  13516. case GGML_OP_LEAKY_RELU:
  13517. {
  13518. GGML_ASSERT(false); // TODO: not implemented
  13519. } break;
  13520. case GGML_OP_FLASH_ATTN:
  13521. {
  13522. struct ggml_tensor * flash_grad = NULL;
  13523. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  13524. int32_t t = ggml_get_op_params_i32(tensor, 0);
  13525. GGML_ASSERT(t == 0 || t == 1);
  13526. bool masked = t != 0;
  13527. flash_grad =
  13528. ggml_flash_attn_back(ctx,
  13529. src0,
  13530. src1,
  13531. tensor->src[2],
  13532. tensor->grad,
  13533. masked);
  13534. }
  13535. struct ggml_tensor * src2 = tensor->src[2];
  13536. const int64_t elem_q = ggml_nelements(src0);
  13537. const int64_t elem_k = ggml_nelements(src1);
  13538. const int64_t elem_v = ggml_nelements(src2);
  13539. enum ggml_type result_type = flash_grad->type;
  13540. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  13541. const size_t tsize = ggml_type_size(result_type);
  13542. const size_t offs_q = 0;
  13543. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  13544. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  13545. if (src0->grad) {
  13546. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  13547. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  13548. src0->grad = ggml_add_or_set(ctx,
  13549. src0->grad,
  13550. grad_q,
  13551. zero_table);
  13552. }
  13553. if (src1->grad) {
  13554. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  13555. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  13556. src1->grad = ggml_add_or_set(ctx,
  13557. src1->grad,
  13558. grad_k,
  13559. zero_table);
  13560. }
  13561. if (src2->grad) {
  13562. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  13563. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  13564. src2->grad = ggml_add_or_set(ctx,
  13565. src2->grad,
  13566. grad_v,
  13567. zero_table);
  13568. }
  13569. } break;
  13570. case GGML_OP_FLASH_FF:
  13571. {
  13572. GGML_ASSERT(false); // not supported
  13573. } break;
  13574. case GGML_OP_FLASH_ATTN_BACK:
  13575. {
  13576. GGML_ASSERT(false); // not supported
  13577. } break;
  13578. case GGML_OP_WIN_PART:
  13579. case GGML_OP_WIN_UNPART:
  13580. case GGML_OP_UNARY:
  13581. {
  13582. switch (ggml_get_unary_op(tensor)) {
  13583. case GGML_UNARY_OP_ABS:
  13584. {
  13585. if (src0->grad) {
  13586. src0->grad =
  13587. ggml_add_or_set(ctx,
  13588. src0->grad,
  13589. ggml_mul(ctx,
  13590. ggml_sgn(ctx, src0),
  13591. tensor->grad),
  13592. zero_table);
  13593. }
  13594. } break;
  13595. case GGML_UNARY_OP_SGN:
  13596. {
  13597. if (src0->grad) {
  13598. // noop
  13599. }
  13600. } break;
  13601. case GGML_UNARY_OP_NEG:
  13602. {
  13603. if (src0->grad) {
  13604. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13605. }
  13606. } break;
  13607. case GGML_UNARY_OP_STEP:
  13608. {
  13609. if (src0->grad) {
  13610. // noop
  13611. }
  13612. } break;
  13613. case GGML_UNARY_OP_TANH:
  13614. {
  13615. GGML_ASSERT(false); // TODO: not implemented
  13616. } break;
  13617. case GGML_UNARY_OP_ELU:
  13618. {
  13619. GGML_ASSERT(false); // TODO: not implemented
  13620. } break;
  13621. case GGML_UNARY_OP_RELU:
  13622. {
  13623. if (src0->grad) {
  13624. src0->grad = ggml_add_or_set(ctx,
  13625. src0->grad,
  13626. ggml_mul(ctx,
  13627. ggml_step(ctx, src0),
  13628. tensor->grad),
  13629. zero_table);
  13630. }
  13631. } break;
  13632. case GGML_UNARY_OP_GELU:
  13633. {
  13634. GGML_ASSERT(false); // TODO: not implemented
  13635. } break;
  13636. case GGML_UNARY_OP_GELU_QUICK:
  13637. {
  13638. GGML_ASSERT(false); // TODO: not implemented
  13639. } break;
  13640. case GGML_UNARY_OP_SILU:
  13641. {
  13642. // necessary for llama
  13643. if (src0->grad) {
  13644. src0->grad = ggml_add_or_set(ctx,
  13645. src0->grad,
  13646. ggml_silu_back(ctx, src0, tensor->grad),
  13647. zero_table);
  13648. }
  13649. } break;
  13650. default:
  13651. GGML_ASSERT(false);
  13652. }
  13653. } break;
  13654. case GGML_OP_GET_REL_POS:
  13655. case GGML_OP_ADD_REL_POS:
  13656. case GGML_OP_MAP_UNARY:
  13657. case GGML_OP_MAP_BINARY:
  13658. case GGML_OP_MAP_CUSTOM1_F32:
  13659. case GGML_OP_MAP_CUSTOM2_F32:
  13660. case GGML_OP_MAP_CUSTOM3_F32:
  13661. case GGML_OP_MAP_CUSTOM1:
  13662. case GGML_OP_MAP_CUSTOM2:
  13663. case GGML_OP_MAP_CUSTOM3:
  13664. {
  13665. GGML_ASSERT(false); // not supported
  13666. } break;
  13667. case GGML_OP_CROSS_ENTROPY_LOSS:
  13668. {
  13669. if (src0->grad) {
  13670. src0->grad = ggml_add_or_set(ctx,
  13671. src0->grad,
  13672. ggml_cross_entropy_loss_back(ctx,
  13673. src0,
  13674. src1,
  13675. tensor->grad),
  13676. zero_table);
  13677. }
  13678. } break;
  13679. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13680. {
  13681. GGML_ASSERT(false); // not supported
  13682. } break;
  13683. case GGML_OP_NONE:
  13684. {
  13685. // nop
  13686. } break;
  13687. case GGML_OP_COUNT:
  13688. {
  13689. GGML_ASSERT(false);
  13690. } break;
  13691. }
  13692. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13693. if (tensor->src[i] && tensor->src[i]->grad) {
  13694. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  13695. }
  13696. }
  13697. }
  13698. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  13699. if (node->grad == NULL) {
  13700. // this usually happens when we generate intermediate nodes from constants in the backward pass
  13701. // it can also happen during forward pass, if the user performs computations with constants
  13702. if (node->op != GGML_OP_NONE) {
  13703. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  13704. }
  13705. }
  13706. // check if already visited
  13707. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  13708. return;
  13709. }
  13710. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13711. const int k =
  13712. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  13713. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  13714. /* unknown order, just fall back to using i*/ i;
  13715. if (node->src[k]) {
  13716. ggml_visit_parents(cgraph, node->src[k]);
  13717. }
  13718. }
  13719. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  13720. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  13721. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  13722. if (strlen(node->name) == 0) {
  13723. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  13724. }
  13725. cgraph->leafs[cgraph->n_leafs] = node;
  13726. cgraph->n_leafs++;
  13727. } else {
  13728. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  13729. if (strlen(node->name) == 0) {
  13730. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  13731. }
  13732. cgraph->nodes[cgraph->n_nodes] = node;
  13733. if (cgraph->grads) {
  13734. cgraph->grads[cgraph->n_nodes] = node->grad;
  13735. }
  13736. cgraph->n_nodes++;
  13737. }
  13738. }
  13739. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  13740. if (!expand) {
  13741. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  13742. ggml_graph_clear(cgraph);
  13743. }
  13744. const int n0 = cgraph->n_nodes;
  13745. UNUSED(n0);
  13746. ggml_visit_parents(cgraph, tensor);
  13747. const int n_new = cgraph->n_nodes - n0;
  13748. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  13749. if (n_new > 0) {
  13750. // the last added node should always be starting point
  13751. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  13752. }
  13753. }
  13754. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  13755. ggml_build_forward_impl(cgraph, tensor, true);
  13756. }
  13757. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  13758. GGML_ASSERT(gf->n_nodes > 0);
  13759. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  13760. if (keep) {
  13761. for (int i = 0; i < gf->n_nodes; i++) {
  13762. struct ggml_tensor * node = gf->nodes[i];
  13763. if (node->grad) {
  13764. node->grad = ggml_dup_tensor(ctx, node);
  13765. gf->grads[i] = node->grad;
  13766. }
  13767. }
  13768. }
  13769. // remember original gradients which start with zero values
  13770. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  13771. for (int i = 0; i < gf->n_nodes; i++) {
  13772. if (gf->grads[i]) {
  13773. ggml_hash_insert(zero_table, gf->grads[i]);
  13774. }
  13775. }
  13776. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13777. struct ggml_tensor * node = gf->nodes[i];
  13778. // inplace operations to add gradients are not created by ggml_compute_backward
  13779. // use allocator to automatically make inplace operations
  13780. if (node->grad) {
  13781. ggml_compute_backward(ctx, node, zero_table);
  13782. }
  13783. }
  13784. for (int i = 0; i < gf->n_nodes; i++) {
  13785. struct ggml_tensor * node = gf->nodes[i];
  13786. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  13787. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13788. ggml_build_forward_expand(gb, node->grad);
  13789. }
  13790. }
  13791. ggml_hash_set_free(zero_table);
  13792. }
  13793. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  13794. size_t nbytes = sizeof(struct ggml_cgraph);
  13795. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  13796. if (grads) {
  13797. nbytes += size * sizeof(struct ggml_tensor *); // grads
  13798. }
  13799. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  13800. return nbytes;
  13801. }
  13802. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  13803. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  13804. }
  13805. size_t ggml_graph_overhead(void) {
  13806. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  13807. }
  13808. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  13809. const size_t obj_size = ggml_graph_nbytes(size, grads);
  13810. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, obj_size);
  13811. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  13812. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  13813. size_t hash_size = ggml_hash_size(size * 2);
  13814. struct ggml_tensor ** nodes_ptr = data_start;
  13815. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  13816. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  13817. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  13818. // check that we allocated the correct amount of memory
  13819. assert(obj_size == (size_t) (
  13820. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  13821. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  13822. *cgraph = (struct ggml_cgraph) {
  13823. /*.size =*/ size,
  13824. /*.n_nodes =*/ 0,
  13825. /*.n_leafs =*/ 0,
  13826. /*.nodes =*/ nodes_ptr,
  13827. /*.grads =*/ grads_ptr,
  13828. /*.leafs =*/ leafs_ptr,
  13829. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  13830. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  13831. /*.perf_runs =*/ 0,
  13832. /*.perf_cycles =*/ 0,
  13833. /*.perf_time_us =*/ 0,
  13834. };
  13835. return cgraph;
  13836. }
  13837. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  13838. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  13839. }
  13840. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  13841. struct ggml_cgraph cgraph = {
  13842. /*.size =*/ 0,
  13843. /*.n_nodes =*/ i1 - i0,
  13844. /*.n_leafs =*/ 0,
  13845. /*.nodes =*/ cgraph0->nodes + i0,
  13846. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  13847. /*.leafs =*/ NULL,
  13848. /*.hash_table =*/ { 0, NULL },
  13849. /*.order =*/ cgraph0->order,
  13850. /*.perf_runs =*/ 0,
  13851. /*.perf_cycles =*/ 0,
  13852. /*.perf_time_us =*/ 0,
  13853. };
  13854. return cgraph;
  13855. }
  13856. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  13857. GGML_ASSERT(dst->size >= src->n_leafs);
  13858. GGML_ASSERT(dst->size >= src->n_nodes);
  13859. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  13860. dst->n_leafs = src->n_leafs;
  13861. dst->n_nodes = src->n_nodes;
  13862. dst->order = src->order;
  13863. for (int i = 0; i < src->n_leafs; ++i) {
  13864. dst->leafs[i] = src->leafs[i];
  13865. }
  13866. for (int i = 0; i < src->n_nodes; ++i) {
  13867. dst->nodes[i] = src->nodes[i];
  13868. }
  13869. if (src->grads) {
  13870. GGML_ASSERT(dst->grads != NULL);
  13871. for (int i = 0; i < src->n_nodes; ++i) {
  13872. dst->grads[i] = src->grads[i];
  13873. }
  13874. }
  13875. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  13876. if (src->visited_hash_table.keys[i]) {
  13877. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  13878. }
  13879. }
  13880. }
  13881. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  13882. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  13883. ggml_graph_cpy(cgraph, result);
  13884. return result;
  13885. }
  13886. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  13887. GGML_ASSERT(cgraph->grads != NULL);
  13888. for (int i = 0; i < cgraph->n_nodes; i++) {
  13889. struct ggml_tensor * grad = cgraph->grads[i];
  13890. if (grad) {
  13891. ggml_set_zero(grad);
  13892. }
  13893. }
  13894. }
  13895. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  13896. cgraph->n_leafs = 0;
  13897. cgraph->n_nodes = 0;
  13898. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  13899. }
  13900. //
  13901. // thread data
  13902. //
  13903. // synchronization is done via busy loops
  13904. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  13905. //
  13906. #ifdef __APPLE__
  13907. //#include <os/lock.h>
  13908. //
  13909. //typedef os_unfair_lock ggml_lock_t;
  13910. //
  13911. //#define ggml_lock_init(x) UNUSED(x)
  13912. //#define ggml_lock_destroy(x) UNUSED(x)
  13913. //#define ggml_lock_lock os_unfair_lock_lock
  13914. //#define ggml_lock_unlock os_unfair_lock_unlock
  13915. //
  13916. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  13917. typedef int ggml_lock_t;
  13918. #define ggml_lock_init(x) UNUSED(x)
  13919. #define ggml_lock_destroy(x) UNUSED(x)
  13920. #define ggml_lock_lock(x) UNUSED(x)
  13921. #define ggml_lock_unlock(x) UNUSED(x)
  13922. #define GGML_LOCK_INITIALIZER 0
  13923. typedef pthread_t ggml_thread_t;
  13924. #define ggml_thread_create pthread_create
  13925. #define ggml_thread_join pthread_join
  13926. #else
  13927. //typedef pthread_spinlock_t ggml_lock_t;
  13928. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  13929. //#define ggml_lock_destroy pthread_spin_destroy
  13930. //#define ggml_lock_lock pthread_spin_lock
  13931. //#define ggml_lock_unlock pthread_spin_unlock
  13932. typedef int ggml_lock_t;
  13933. #define ggml_lock_init(x) UNUSED(x)
  13934. #define ggml_lock_destroy(x) UNUSED(x)
  13935. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  13936. #define ggml_lock_lock(x) _mm_pause()
  13937. #else
  13938. #define ggml_lock_lock(x) UNUSED(x)
  13939. #endif
  13940. #define ggml_lock_unlock(x) UNUSED(x)
  13941. #define GGML_LOCK_INITIALIZER 0
  13942. typedef pthread_t ggml_thread_t;
  13943. #define ggml_thread_create pthread_create
  13944. #define ggml_thread_join pthread_join
  13945. #endif
  13946. // Android's libc implementation "bionic" does not support setting affinity
  13947. #if defined(__gnu_linux__)
  13948. static void set_numa_thread_affinity(int thread_n) {
  13949. if (!ggml_is_numa()) {
  13950. return;
  13951. }
  13952. int node_num;
  13953. int rv;
  13954. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13955. switch(g_state.numa.numa_strategy) {
  13956. case GGML_NUMA_STRATEGY_DISTRIBUTE:
  13957. // run thread on node_num thread_n / (threads per node)
  13958. node_num = thread_n % g_state.numa.n_nodes;
  13959. break;
  13960. case GGML_NUMA_STRATEGY_ISOLATE:
  13961. // run thread on current_node
  13962. node_num = g_state.numa.current_node;
  13963. break;
  13964. case GGML_NUMA_STRATEGY_NUMACTL:
  13965. // use the cpuset that numactl gave us
  13966. rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
  13967. if (rv) {
  13968. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
  13969. }
  13970. return;
  13971. default:
  13972. return;
  13973. }
  13974. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  13975. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13976. CPU_ZERO_S(setsize, cpus);
  13977. for (size_t i = 0; i < node->n_cpus; ++i) {
  13978. CPU_SET_S(node->cpus[i], setsize, cpus);
  13979. }
  13980. rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13981. if (rv) {
  13982. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  13983. }
  13984. CPU_FREE(cpus);
  13985. }
  13986. static void clear_numa_thread_affinity(void) {
  13987. if (!ggml_is_numa()) {
  13988. return;
  13989. }
  13990. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13991. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13992. CPU_ZERO_S(setsize, cpus);
  13993. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  13994. CPU_SET_S(i, setsize, cpus);
  13995. }
  13996. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13997. if (rv) {
  13998. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  13999. }
  14000. CPU_FREE(cpus);
  14001. }
  14002. #else
  14003. // TODO: Windows etc.
  14004. // (the linux implementation may also work on BSD, someone should test)
  14005. static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
  14006. static void clear_numa_thread_affinity(void) {}
  14007. #endif
  14008. struct ggml_compute_state_shared {
  14009. const struct ggml_cgraph * cgraph;
  14010. const struct ggml_cplan * cplan;
  14011. int64_t perf_node_start_cycles;
  14012. int64_t perf_node_start_time_us;
  14013. const int n_threads;
  14014. // synchronization primitives
  14015. atomic_int n_active; // num active threads
  14016. atomic_int node_n; // active graph node
  14017. atomic_int node_task; // active graph node task phase
  14018. ggml_abort_callback abort_callback; // abort ggml_graph_compute when true
  14019. void * abort_callback_data;
  14020. };
  14021. struct ggml_compute_state {
  14022. ggml_thread_t thrd;
  14023. int ith;
  14024. struct ggml_compute_state_shared * shared;
  14025. };
  14026. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  14027. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  14028. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  14029. node->perf_runs++;
  14030. node->perf_cycles += cycles_cur;
  14031. node->perf_time_us += time_us_cur;
  14032. }
  14033. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
  14034. int n_tasks = 0;
  14035. switch (node->op) {
  14036. case GGML_OP_CPY:
  14037. case GGML_OP_DUP:
  14038. case GGML_OP_ADD:
  14039. case GGML_OP_ADD1:
  14040. case GGML_OP_ACC:
  14041. {
  14042. n_tasks = n_threads;
  14043. } break;
  14044. case GGML_OP_SUB:
  14045. case GGML_OP_SQR:
  14046. case GGML_OP_SQRT:
  14047. case GGML_OP_LOG:
  14048. case GGML_OP_SUM:
  14049. case GGML_OP_SUM_ROWS:
  14050. case GGML_OP_MEAN:
  14051. case GGML_OP_ARGMAX:
  14052. case GGML_OP_REPEAT:
  14053. case GGML_OP_REPEAT_BACK:
  14054. case GGML_OP_LEAKY_RELU:
  14055. {
  14056. n_tasks = 1;
  14057. } break;
  14058. case GGML_OP_UNARY:
  14059. switch (ggml_get_unary_op(node)) {
  14060. case GGML_UNARY_OP_ABS:
  14061. case GGML_UNARY_OP_SGN:
  14062. case GGML_UNARY_OP_NEG:
  14063. case GGML_UNARY_OP_STEP:
  14064. case GGML_UNARY_OP_TANH:
  14065. case GGML_UNARY_OP_ELU:
  14066. case GGML_UNARY_OP_RELU:
  14067. case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
  14068. case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
  14069. {
  14070. n_tasks = 1;
  14071. } break;
  14072. case GGML_UNARY_OP_GELU:
  14073. case GGML_UNARY_OP_GELU_QUICK:
  14074. case GGML_UNARY_OP_SILU:
  14075. {
  14076. n_tasks = n_threads;
  14077. } break;
  14078. default:
  14079. GGML_ASSERT(false);
  14080. }
  14081. break;
  14082. case GGML_OP_SILU_BACK:
  14083. case GGML_OP_MUL:
  14084. case GGML_OP_DIV:
  14085. case GGML_OP_NORM:
  14086. case GGML_OP_RMS_NORM:
  14087. case GGML_OP_RMS_NORM_BACK:
  14088. case GGML_OP_GROUP_NORM:
  14089. case GGML_OP_CONCAT:
  14090. {
  14091. n_tasks = n_threads;
  14092. } break;
  14093. case GGML_OP_MUL_MAT:
  14094. {
  14095. n_tasks = n_threads;
  14096. // TODO: use different scheduling for different matrix sizes
  14097. //const int nr0 = ggml_nrows(node->src[0]);
  14098. //const int nr1 = ggml_nrows(node->src[1]);
  14099. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  14100. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  14101. } break;
  14102. case GGML_OP_MUL_MAT_ID:
  14103. {
  14104. n_tasks = n_threads;
  14105. } break;
  14106. case GGML_OP_OUT_PROD:
  14107. {
  14108. n_tasks = n_threads;
  14109. } break;
  14110. case GGML_OP_SCALE:
  14111. case GGML_OP_SET:
  14112. case GGML_OP_CONT:
  14113. case GGML_OP_RESHAPE:
  14114. case GGML_OP_VIEW:
  14115. case GGML_OP_PERMUTE:
  14116. case GGML_OP_TRANSPOSE:
  14117. case GGML_OP_GET_ROWS:
  14118. case GGML_OP_GET_ROWS_BACK:
  14119. case GGML_OP_DIAG:
  14120. {
  14121. n_tasks = 1;
  14122. } break;
  14123. case GGML_OP_DIAG_MASK_ZERO:
  14124. case GGML_OP_DIAG_MASK_INF:
  14125. case GGML_OP_SOFT_MAX_BACK:
  14126. case GGML_OP_ROPE:
  14127. case GGML_OP_ROPE_BACK:
  14128. case GGML_OP_ADD_REL_POS:
  14129. {
  14130. n_tasks = n_threads;
  14131. } break;
  14132. case GGML_OP_ALIBI:
  14133. {
  14134. n_tasks = 1; //TODO
  14135. } break;
  14136. case GGML_OP_CLAMP:
  14137. {
  14138. n_tasks = 1; //TODO
  14139. } break;
  14140. case GGML_OP_SOFT_MAX:
  14141. {
  14142. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  14143. } break;
  14144. case GGML_OP_CONV_TRANSPOSE_1D:
  14145. {
  14146. n_tasks = n_threads;
  14147. } break;
  14148. case GGML_OP_IM2COL:
  14149. {
  14150. n_tasks = n_threads;
  14151. } break;
  14152. case GGML_OP_CONV_TRANSPOSE_2D:
  14153. {
  14154. n_tasks = n_threads;
  14155. } break;
  14156. case GGML_OP_POOL_1D:
  14157. case GGML_OP_POOL_2D:
  14158. {
  14159. n_tasks = 1;
  14160. } break;
  14161. case GGML_OP_UPSCALE:
  14162. {
  14163. n_tasks = n_threads;
  14164. } break;
  14165. case GGML_OP_PAD:
  14166. {
  14167. n_tasks = n_threads;
  14168. } break;
  14169. case GGML_OP_ARGSORT:
  14170. {
  14171. n_tasks = n_threads;
  14172. } break;
  14173. case GGML_OP_FLASH_ATTN:
  14174. {
  14175. n_tasks = n_threads;
  14176. } break;
  14177. case GGML_OP_FLASH_FF:
  14178. {
  14179. n_tasks = n_threads;
  14180. } break;
  14181. case GGML_OP_FLASH_ATTN_BACK:
  14182. {
  14183. n_tasks = n_threads;
  14184. } break;
  14185. case GGML_OP_WIN_PART:
  14186. case GGML_OP_WIN_UNPART:
  14187. case GGML_OP_GET_REL_POS:
  14188. case GGML_OP_MAP_UNARY:
  14189. case GGML_OP_MAP_BINARY:
  14190. case GGML_OP_MAP_CUSTOM1_F32:
  14191. case GGML_OP_MAP_CUSTOM2_F32:
  14192. case GGML_OP_MAP_CUSTOM3_F32:
  14193. {
  14194. n_tasks = 1;
  14195. } break;
  14196. case GGML_OP_MAP_CUSTOM1:
  14197. {
  14198. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
  14199. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14200. n_tasks = n_threads;
  14201. } else {
  14202. n_tasks = MIN(p->n_tasks, n_threads);
  14203. }
  14204. } break;
  14205. case GGML_OP_MAP_CUSTOM2:
  14206. {
  14207. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
  14208. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14209. n_tasks = n_threads;
  14210. } else {
  14211. n_tasks = MIN(p->n_tasks, n_threads);
  14212. }
  14213. } break;
  14214. case GGML_OP_MAP_CUSTOM3:
  14215. {
  14216. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
  14217. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14218. n_tasks = n_threads;
  14219. } else {
  14220. n_tasks = MIN(p->n_tasks, n_threads);
  14221. }
  14222. } break;
  14223. case GGML_OP_CROSS_ENTROPY_LOSS:
  14224. {
  14225. n_tasks = n_threads;
  14226. } break;
  14227. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14228. {
  14229. n_tasks = n_threads;
  14230. } break;
  14231. case GGML_OP_NONE:
  14232. {
  14233. n_tasks = 1;
  14234. } break;
  14235. case GGML_OP_COUNT:
  14236. {
  14237. GGML_ASSERT(false);
  14238. } break;
  14239. default:
  14240. {
  14241. fprintf(stderr, "%s: op not implemented: ", __func__);
  14242. if (node->op < GGML_OP_COUNT) {
  14243. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  14244. } else {
  14245. fprintf(stderr, "%d\n", node->op);
  14246. }
  14247. GGML_ASSERT(false);
  14248. } break;
  14249. }
  14250. assert(n_tasks > 0);
  14251. return n_tasks;
  14252. }
  14253. static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
  14254. // wait for other threads to finish
  14255. const int last_node_n = * node_n;
  14256. while (true) {
  14257. if (do_yield) {
  14258. sched_yield();
  14259. }
  14260. * node_n = atomic_load(&state->shared->node_n);
  14261. if (* node_n != last_node_n) break;
  14262. }
  14263. }
  14264. static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
  14265. // wait for other threads to finish
  14266. const int last_task_phase = * task_phase;
  14267. while (true) {
  14268. if (do_yield) {
  14269. sched_yield();
  14270. }
  14271. * task_phase = atomic_load(&state->shared->node_task);
  14272. if (* task_phase != last_task_phase) break;
  14273. }
  14274. }
  14275. static thread_ret_t ggml_graph_compute_thread(void * data) {
  14276. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  14277. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  14278. const struct ggml_cplan * cplan = state->shared->cplan;
  14279. const int n_threads = state->shared->n_threads;
  14280. set_numa_thread_affinity(state->ith);
  14281. int node_n = -1;
  14282. int task_phase = GGML_TASK_FINALIZE;
  14283. while (true) {
  14284. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14285. state->shared->node_n += 1;
  14286. return (thread_ret_t) GGML_EXIT_ABORTED;
  14287. }
  14288. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14289. // all other threads are finished and spinning
  14290. // do finalize and init here so we don't have synchronize again
  14291. struct ggml_compute_params params = {
  14292. /*.type =*/ GGML_TASK_FINALIZE,
  14293. /*.ith =*/ 0,
  14294. /*.nth =*/ 0,
  14295. /*.wsize =*/ cplan->work_size,
  14296. /*.wdata =*/ cplan->work_data,
  14297. };
  14298. if (node_n != -1) {
  14299. /* FINALIZE */
  14300. struct ggml_tensor * node = cgraph->nodes[node_n];
  14301. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14302. params.nth = ggml_get_n_tasks(node, n_threads);
  14303. ggml_compute_forward(&params, node);
  14304. }
  14305. ggml_graph_compute_perf_stats_node(node, state->shared);
  14306. }
  14307. // distribute new work or execute it direct if 1T
  14308. while (++node_n < cgraph->n_nodes) {
  14309. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  14310. struct ggml_tensor * node = cgraph->nodes[node_n];
  14311. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  14312. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  14313. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  14314. params.nth = n_tasks;
  14315. if (n_tasks == 1) {
  14316. /* INIT */
  14317. if (GGML_OP_HAS_INIT[node->op]) {
  14318. params.type = GGML_TASK_INIT;
  14319. ggml_compute_forward(&params, node);
  14320. }
  14321. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  14322. // they do something more efficient than spinning (?)
  14323. params.type = GGML_TASK_COMPUTE;
  14324. ggml_compute_forward(&params, node);
  14325. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14326. params.type = GGML_TASK_FINALIZE;
  14327. ggml_compute_forward(&params, node);
  14328. }
  14329. ggml_graph_compute_perf_stats_node(node, state->shared);
  14330. } else {
  14331. break;
  14332. }
  14333. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14334. break;
  14335. }
  14336. }
  14337. task_phase = GGML_TASK_INIT;
  14338. atomic_store(&state->shared->n_active, n_threads);
  14339. atomic_store(&state->shared->node_n, node_n);
  14340. atomic_store(&state->shared->node_task, task_phase);
  14341. } else {
  14342. ggml_graph_compute_thread_sync_node(&node_n, state, false);
  14343. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  14344. }
  14345. // check if we should stop
  14346. if (node_n >= cgraph->n_nodes) break;
  14347. /* INIT & COMPUTE */
  14348. struct ggml_tensor * node = cgraph->nodes[node_n];
  14349. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  14350. struct ggml_compute_params params = {
  14351. /*.type =*/ GGML_TASK_INIT,
  14352. /*.ith =*/ state->ith,
  14353. /*.nth =*/ n_tasks,
  14354. /*.wsize =*/ cplan->work_size,
  14355. /*.wdata =*/ cplan->work_data,
  14356. };
  14357. if (state->ith < n_tasks) {
  14358. if (GGML_OP_HAS_INIT[node->op]) {
  14359. ggml_compute_forward(&params, node);
  14360. }
  14361. }
  14362. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14363. task_phase = GGML_TASK_COMPUTE;
  14364. atomic_store(&state->shared->n_active, n_threads);
  14365. atomic_store(&state->shared->node_task, task_phase);
  14366. }
  14367. else {
  14368. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  14369. // depending on the workload and the operating system.
  14370. // since it is not clear what is the best approach, it should potentially become user-configurable
  14371. // ref: https://github.com/ggerganov/ggml/issues/291
  14372. // UPD: adding the do_yield flag seems to resolve the issue universally
  14373. const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT;
  14374. ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield);
  14375. }
  14376. if (state->ith < n_tasks) {
  14377. params.type = GGML_TASK_COMPUTE;
  14378. ggml_compute_forward(&params, node);
  14379. }
  14380. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14381. task_phase = GGML_TASK_FINALIZE;
  14382. atomic_store(&state->shared->n_active, n_threads);
  14383. atomic_store(&state->shared->node_task, task_phase);
  14384. }
  14385. else {
  14386. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  14387. }
  14388. }
  14389. return GGML_EXIT_SUCCESS;
  14390. }
  14391. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  14392. if (n_threads <= 0) {
  14393. n_threads = GGML_DEFAULT_N_THREADS;
  14394. }
  14395. size_t work_size = 0;
  14396. struct ggml_cplan cplan;
  14397. memset(&cplan, 0, sizeof(struct ggml_cplan));
  14398. int max_tasks = 1;
  14399. // thread scheduling for the different operations + work buffer size estimation
  14400. for (int i = 0; i < cgraph->n_nodes; i++) {
  14401. struct ggml_tensor * node = cgraph->nodes[i];
  14402. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  14403. max_tasks = MAX(max_tasks, n_tasks);
  14404. size_t cur = 0;
  14405. switch (node->op) {
  14406. case GGML_OP_CPY:
  14407. case GGML_OP_DUP:
  14408. {
  14409. if (ggml_is_quantized(node->type)) {
  14410. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  14411. }
  14412. } break;
  14413. case GGML_OP_ADD:
  14414. case GGML_OP_ADD1:
  14415. {
  14416. if (ggml_is_quantized(node->src[0]->type)) {
  14417. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  14418. }
  14419. } break;
  14420. case GGML_OP_ACC:
  14421. {
  14422. if (ggml_is_quantized(node->src[0]->type)) {
  14423. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  14424. }
  14425. } break;
  14426. case GGML_OP_MUL_MAT:
  14427. {
  14428. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  14429. #if defined(GGML_USE_CLBLAST)
  14430. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  14431. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  14432. } else
  14433. #endif
  14434. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  14435. if (ggml_compute_forward_mul_mat_use_blas(node)) {
  14436. if (node->src[0]->type != GGML_TYPE_F32) {
  14437. // here we need memory for fully dequantized matrix from src0
  14438. // take into account that src0 can be broadcasted into src1[2,3]
  14439. cur = ggml_type_size(GGML_TYPE_F32)
  14440. * node->src[0]->ne[0]*node->src[0]->ne[1]
  14441. * node->src[1]->ne[2]*node->src[1]->ne[3];
  14442. }
  14443. } else
  14444. #endif
  14445. if (node->src[1]->type != vec_dot_type) {
  14446. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  14447. }
  14448. } break;
  14449. case GGML_OP_MUL_MAT_ID:
  14450. {
  14451. cur = 0;
  14452. const struct ggml_tensor * src0 = node->src[2];
  14453. const struct ggml_tensor * src1 = node->src[1];
  14454. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  14455. if (src1->type != vec_dot_type) {
  14456. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  14457. }
  14458. const int n_as = ggml_get_op_params_i32(node, 1);
  14459. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  14460. cur += n_as * sizeof(int64_t); // matrix_row_counts
  14461. cur += n_as * src1->ne[1] * sizeof(int64_t); // matrix_rows
  14462. } break;
  14463. case GGML_OP_OUT_PROD:
  14464. {
  14465. if (ggml_is_quantized(node->src[0]->type)) {
  14466. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  14467. }
  14468. } break;
  14469. case GGML_OP_SOFT_MAX:
  14470. case GGML_OP_ROPE:
  14471. {
  14472. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  14473. } break;
  14474. case GGML_OP_CONV_TRANSPOSE_1D:
  14475. {
  14476. GGML_ASSERT(node->src[0]->ne[3] == 1);
  14477. GGML_ASSERT(node->src[1]->ne[2] == 1);
  14478. GGML_ASSERT(node->src[1]->ne[3] == 1);
  14479. const int64_t ne00 = node->src[0]->ne[0]; // K
  14480. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  14481. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  14482. const int64_t ne10 = node->src[1]->ne[0]; // L
  14483. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  14484. if (node->src[0]->type == GGML_TYPE_F16 &&
  14485. node->src[1]->type == GGML_TYPE_F32) {
  14486. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  14487. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  14488. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  14489. node->src[1]->type == GGML_TYPE_F32) {
  14490. cur += sizeof(float)*ne00*ne01*ne02;
  14491. cur += sizeof(float)*ne10*ne11;
  14492. } else {
  14493. GGML_ASSERT(false);
  14494. }
  14495. } break;
  14496. case GGML_OP_CONV_TRANSPOSE_2D:
  14497. {
  14498. const int64_t ne00 = node->src[0]->ne[0]; // W
  14499. const int64_t ne01 = node->src[0]->ne[1]; // H
  14500. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  14501. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  14502. const int64_t ne10 = node->src[1]->ne[0]; // W
  14503. const int64_t ne11 = node->src[1]->ne[1]; // H
  14504. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  14505. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  14506. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  14507. } break;
  14508. case GGML_OP_FLASH_ATTN:
  14509. {
  14510. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  14511. if (node->src[1]->type == GGML_TYPE_F32) {
  14512. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  14513. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  14514. } else if (node->src[1]->type == GGML_TYPE_F16) {
  14515. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  14516. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  14517. }
  14518. } break;
  14519. case GGML_OP_FLASH_FF:
  14520. {
  14521. if (node->src[1]->type == GGML_TYPE_F32) {
  14522. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  14523. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  14524. } else if (node->src[1]->type == GGML_TYPE_F16) {
  14525. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  14526. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  14527. }
  14528. } break;
  14529. case GGML_OP_FLASH_ATTN_BACK:
  14530. {
  14531. const int64_t D = node->src[0]->ne[0];
  14532. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  14533. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  14534. if (node->src[1]->type == GGML_TYPE_F32) {
  14535. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  14536. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  14537. } else if (node->src[1]->type == GGML_TYPE_F16) {
  14538. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  14539. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  14540. }
  14541. } break;
  14542. case GGML_OP_CROSS_ENTROPY_LOSS:
  14543. {
  14544. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  14545. } break;
  14546. case GGML_OP_COUNT:
  14547. {
  14548. GGML_ASSERT(false);
  14549. } break;
  14550. default:
  14551. break;
  14552. }
  14553. work_size = MAX(work_size, cur);
  14554. }
  14555. if (work_size > 0) {
  14556. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  14557. }
  14558. cplan.n_threads = MIN(max_tasks, n_threads);
  14559. cplan.work_size = work_size;
  14560. cplan.work_data = NULL;
  14561. return cplan;
  14562. }
  14563. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  14564. {
  14565. GGML_ASSERT(cplan);
  14566. GGML_ASSERT(cplan->n_threads > 0);
  14567. if (cplan->work_size > 0) {
  14568. GGML_ASSERT(cplan->work_data);
  14569. }
  14570. }
  14571. #ifdef GGML_USE_VULKAN
  14572. for (int i = 0; i < cgraph->n_nodes; i++) {
  14573. ggml_vk_preallocate_buffers_graph_cpu_assist(cgraph->nodes[i]);
  14574. }
  14575. ggml_vk_preallocate_buffers_cpu_assist();
  14576. for (int i = 0; i < cgraph->n_nodes; i++) {
  14577. ggml_vk_build_graph_cpu_assist(cgraph->nodes[i], i == cgraph->n_nodes - 1);
  14578. }
  14579. #endif
  14580. const int n_threads = cplan->n_threads;
  14581. struct ggml_compute_state_shared state_shared = {
  14582. /*.cgraph =*/ cgraph,
  14583. /*.cgraph_plan =*/ cplan,
  14584. /*.perf_node_start_cycles =*/ 0,
  14585. /*.perf_node_start_time_us =*/ 0,
  14586. /*.n_threads =*/ n_threads,
  14587. /*.n_active =*/ n_threads,
  14588. /*.node_n =*/ -1,
  14589. /*.node_task =*/ GGML_TASK_FINALIZE,
  14590. /*.abort_callback =*/ NULL,
  14591. /*.abort_callback_data =*/ NULL,
  14592. };
  14593. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  14594. // create thread pool
  14595. if (n_threads > 1) {
  14596. for (int j = 1; j < n_threads; ++j) {
  14597. workers[j] = (struct ggml_compute_state) {
  14598. .thrd = 0,
  14599. .ith = j,
  14600. .shared = &state_shared,
  14601. };
  14602. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  14603. GGML_ASSERT(rc == 0);
  14604. UNUSED(rc);
  14605. }
  14606. }
  14607. workers[0].ith = 0;
  14608. workers[0].shared = &state_shared;
  14609. const int64_t perf_start_cycles = ggml_perf_cycles();
  14610. const int64_t perf_start_time_us = ggml_perf_time_us();
  14611. // this is a work thread too
  14612. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  14613. // don't leave affinity set on the main thread
  14614. clear_numa_thread_affinity();
  14615. // join or kill thread pool
  14616. if (n_threads > 1) {
  14617. for (int j = 1; j < n_threads; j++) {
  14618. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  14619. GGML_ASSERT(rc == 0);
  14620. }
  14621. }
  14622. #ifdef GGML_USE_VULKAN
  14623. ggml_vk_graph_cleanup_cpu_assist();
  14624. #endif
  14625. // performance stats (graph)
  14626. {
  14627. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  14628. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  14629. cgraph->perf_runs++;
  14630. cgraph->perf_cycles += perf_cycles_cur;
  14631. cgraph->perf_time_us += perf_time_us_cur;
  14632. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  14633. __func__, cgraph->perf_runs,
  14634. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  14635. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  14636. (double) perf_time_us_cur / 1000.0,
  14637. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  14638. }
  14639. return compute_status;
  14640. }
  14641. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  14642. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  14643. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14644. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14645. ggml_graph_compute(cgraph, &cplan);
  14646. }
  14647. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  14648. for (int i = 0; i < cgraph->n_leafs; i++) {
  14649. struct ggml_tensor * leaf = cgraph->leafs[i];
  14650. if (strcmp(leaf->name, name) == 0) {
  14651. return leaf;
  14652. }
  14653. }
  14654. for (int i = 0; i < cgraph->n_nodes; i++) {
  14655. struct ggml_tensor * node = cgraph->nodes[i];
  14656. if (strcmp(node->name, name) == 0) {
  14657. return node;
  14658. }
  14659. }
  14660. return NULL;
  14661. }
  14662. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  14663. const int64_t * ne = tensor->ne;
  14664. const size_t * nb = tensor->nb;
  14665. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14666. ggml_type_name(tensor->type),
  14667. ggml_op_name (tensor->op),
  14668. ggml_n_dims(tensor),
  14669. ne[0], ne[1], ne[2], ne[3],
  14670. nb[0], nb[1], nb[2], nb[3],
  14671. tensor->data,
  14672. tensor->name);
  14673. }
  14674. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  14675. const int64_t * ne = tensor->ne;
  14676. const size_t * nb = tensor->nb;
  14677. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14678. arg,
  14679. ggml_type_name(tensor->type),
  14680. ggml_op_name (tensor->op),
  14681. ggml_n_dims(tensor),
  14682. ne[0], ne[1], ne[2], ne[3],
  14683. nb[0], nb[1], nb[2], nb[3],
  14684. tensor->data,
  14685. tensor->name);
  14686. }
  14687. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  14688. uint64_t size_eval = 0;
  14689. // compute size of intermediate results
  14690. // TODO: does not take into account scratch buffers !!!!
  14691. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14692. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  14693. }
  14694. // print
  14695. {
  14696. FILE * fout = stdout;
  14697. fprintf(fout, "\n");
  14698. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  14699. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  14700. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  14701. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  14702. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  14703. // header
  14704. fprintf(fout, "\n");
  14705. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  14706. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  14707. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14708. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  14709. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  14710. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  14711. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  14712. }
  14713. // header
  14714. fprintf(fout, "\n");
  14715. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  14716. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  14717. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14718. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  14719. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14720. if (cgraph->nodes[i]->src[j]) {
  14721. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  14722. }
  14723. }
  14724. fprintf(fout, "\n");
  14725. }
  14726. fprintf(fout, "\n");
  14727. }
  14728. // write binary data
  14729. {
  14730. FILE * fout = fopen(fname, "wb");
  14731. if (!fout) {
  14732. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14733. return;
  14734. }
  14735. // header
  14736. {
  14737. const uint32_t magic = GGML_FILE_MAGIC;
  14738. const uint32_t version = GGML_FILE_VERSION;
  14739. const uint32_t n_leafs = cgraph->n_leafs;
  14740. const uint32_t n_nodes = cgraph->n_nodes;
  14741. fwrite(&magic, sizeof(uint32_t), 1, fout);
  14742. fwrite(&version, sizeof(uint32_t), 1, fout);
  14743. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  14744. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  14745. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  14746. }
  14747. // leafs
  14748. {
  14749. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14750. const struct ggml_tensor * tensor = cgraph->leafs[i];
  14751. const uint32_t type = tensor->type;
  14752. const uint32_t op = tensor->op;
  14753. fwrite(&type, sizeof(uint32_t), 1, fout);
  14754. fwrite(&op, sizeof(uint32_t), 1, fout);
  14755. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14756. const uint64_t ne = tensor->ne[j];
  14757. const uint64_t nb = tensor->nb[j];
  14758. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14759. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14760. }
  14761. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14762. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14763. // dump the data
  14764. // TODO: pad this to 32 byte boundary
  14765. {
  14766. const size_t size = ggml_nbytes(tensor);
  14767. fwrite(tensor->data, sizeof(char), size, fout);
  14768. }
  14769. }
  14770. }
  14771. // nodes
  14772. {
  14773. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14774. const struct ggml_tensor * tensor = cgraph->nodes[i];
  14775. const uint32_t type = tensor->type;
  14776. const uint32_t op = tensor->op;
  14777. fwrite(&type, sizeof(uint32_t), 1, fout);
  14778. fwrite(&op, sizeof(uint32_t), 1, fout);
  14779. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14780. const uint64_t ne = tensor->ne[j];
  14781. const uint64_t nb = tensor->nb[j];
  14782. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14783. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14784. }
  14785. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14786. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14787. // output the op arguments
  14788. {
  14789. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14790. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14791. args[j] = tensor->src[j];
  14792. }
  14793. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14794. if (args[j]) {
  14795. int32_t idx = -1;
  14796. // check if leaf
  14797. {
  14798. for (int k = 0; k < cgraph->n_leafs; ++k) {
  14799. if (args[j] == cgraph->leafs[k]) {
  14800. idx = k;
  14801. break;
  14802. }
  14803. }
  14804. }
  14805. // check if node
  14806. if (idx == -1) {
  14807. for (int k = 0; k < cgraph->n_nodes; ++k) {
  14808. if (args[j] == cgraph->nodes[k]) {
  14809. idx = cgraph->n_leafs + k;
  14810. break;
  14811. }
  14812. }
  14813. }
  14814. if (idx == -1) {
  14815. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  14816. fclose(fout);
  14817. return;
  14818. }
  14819. fwrite(&idx, sizeof(int32_t), 1, fout);
  14820. } else {
  14821. const int32_t nul = -1;
  14822. fwrite(&nul, sizeof(int32_t), 1, fout);
  14823. }
  14824. }
  14825. }
  14826. }
  14827. }
  14828. fclose(fout);
  14829. }
  14830. }
  14831. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  14832. assert(*ctx_data == NULL);
  14833. assert(*ctx_eval == NULL);
  14834. struct ggml_cgraph * result = NULL;
  14835. struct ggml_tensor * data = NULL;
  14836. // read file into data
  14837. {
  14838. FILE * fin = fopen(fname, "rb");
  14839. if (!fin) {
  14840. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14841. return result;
  14842. }
  14843. size_t fsize = 0;
  14844. fseek(fin, 0, SEEK_END);
  14845. fsize = ftell(fin);
  14846. fseek(fin, 0, SEEK_SET);
  14847. // create the data context
  14848. {
  14849. const size_t overhead = 1*ggml_tensor_overhead();
  14850. struct ggml_init_params params = {
  14851. .mem_size = fsize + overhead,
  14852. .mem_buffer = NULL,
  14853. .no_alloc = false,
  14854. };
  14855. *ctx_data = ggml_init(params);
  14856. if (!*ctx_data) {
  14857. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14858. fclose(fin);
  14859. return result;
  14860. }
  14861. }
  14862. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  14863. {
  14864. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  14865. if (ret != fsize) {
  14866. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  14867. fclose(fin);
  14868. return result;
  14869. }
  14870. }
  14871. fclose(fin);
  14872. }
  14873. // populate result
  14874. {
  14875. char * ptr = (char *) data->data;
  14876. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  14877. if (magic != GGML_FILE_MAGIC) {
  14878. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  14879. return result;
  14880. }
  14881. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  14882. if (version != GGML_FILE_VERSION) {
  14883. fprintf(stderr, "%s: invalid version number\n", __func__);
  14884. return result;
  14885. }
  14886. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  14887. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  14888. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  14889. const int graph_size = MAX(n_leafs, n_nodes);
  14890. // create the data context
  14891. {
  14892. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  14893. struct ggml_init_params params = {
  14894. .mem_size = size_eval + overhead,
  14895. .mem_buffer = NULL,
  14896. .no_alloc = true,
  14897. };
  14898. *ctx_eval = ggml_init(params);
  14899. if (!*ctx_eval) {
  14900. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14901. return result;
  14902. }
  14903. }
  14904. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  14905. result->n_leafs = n_leafs;
  14906. result->n_nodes = n_nodes;
  14907. // leafs
  14908. {
  14909. uint32_t type;
  14910. uint32_t op;
  14911. for (uint32_t i = 0; i < n_leafs; ++i) {
  14912. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14913. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14914. int64_t ne[GGML_MAX_DIMS];
  14915. size_t nb[GGML_MAX_DIMS];
  14916. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14917. uint64_t ne_cur;
  14918. uint64_t nb_cur;
  14919. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14920. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14921. ne[j] = ne_cur;
  14922. nb[j] = nb_cur;
  14923. }
  14924. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  14925. tensor->op = (enum ggml_op) op;
  14926. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  14927. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  14928. tensor->data = (void *) ptr;
  14929. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14930. tensor->nb[j] = nb[j];
  14931. }
  14932. result->leafs[i] = tensor;
  14933. ptr += ggml_nbytes(tensor);
  14934. fprintf(stderr, "%s: loaded leaf %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  14935. }
  14936. }
  14937. ggml_set_no_alloc(*ctx_eval, false);
  14938. // nodes
  14939. {
  14940. uint32_t type;
  14941. uint32_t op;
  14942. for (uint32_t i = 0; i < n_nodes; ++i) {
  14943. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14944. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14945. enum ggml_op eop = (enum ggml_op) op;
  14946. int64_t ne[GGML_MAX_DIMS];
  14947. size_t nb[GGML_MAX_DIMS];
  14948. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14949. uint64_t ne_cur;
  14950. uint64_t nb_cur;
  14951. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14952. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14953. ne[j] = ne_cur;
  14954. nb[j] = nb_cur;
  14955. }
  14956. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  14957. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  14958. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  14959. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14960. // parse args
  14961. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14962. const int32_t arg_idx = ptr_arg_idx[j];
  14963. if (arg_idx == -1) {
  14964. continue;
  14965. }
  14966. if (arg_idx < result->n_leafs) {
  14967. args[j] = result->leafs[arg_idx];
  14968. } else {
  14969. args[j] = result->nodes[arg_idx - result->n_leafs];
  14970. }
  14971. }
  14972. // create the tensor
  14973. // "view" operations are handled differently
  14974. // TODO: handle inplace ops - currently a copy is always made
  14975. struct ggml_tensor * tensor = NULL;
  14976. switch (eop) {
  14977. // TODO: implement other view ops
  14978. case GGML_OP_RESHAPE:
  14979. {
  14980. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  14981. } break;
  14982. case GGML_OP_VIEW:
  14983. {
  14984. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14985. size_t offs;
  14986. memcpy(&offs, ptr_op_params, sizeof(offs));
  14987. tensor->data = ((char *) tensor->data) + offs;
  14988. } break;
  14989. case GGML_OP_TRANSPOSE:
  14990. {
  14991. tensor = ggml_transpose(*ctx_eval, args[0]);
  14992. } break;
  14993. case GGML_OP_PERMUTE:
  14994. {
  14995. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14996. } break;
  14997. default:
  14998. {
  14999. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  15000. tensor->op = eop;
  15001. } break;
  15002. }
  15003. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  15004. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  15005. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15006. tensor->nb[j] = nb[j];
  15007. }
  15008. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15009. tensor->src[j] = args[j];
  15010. }
  15011. result->nodes[i] = tensor;
  15012. fprintf(stderr, "%s: loaded node %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  15013. }
  15014. }
  15015. }
  15016. return result;
  15017. }
  15018. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  15019. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  15020. GGML_PRINT("=== GRAPH ===\n");
  15021. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  15022. for (int i = 0; i < cgraph->n_nodes; i++) {
  15023. struct ggml_tensor * node = cgraph->nodes[i];
  15024. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  15025. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  15026. i,
  15027. node->ne[0], node->ne[1], node->ne[2],
  15028. ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ", node->perf_runs,
  15029. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  15030. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  15031. (double) node->perf_time_us / 1000.0,
  15032. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  15033. }
  15034. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  15035. for (int i = 0; i < cgraph->n_leafs; i++) {
  15036. struct ggml_tensor * node = cgraph->leafs[i];
  15037. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  15038. i,
  15039. node->ne[0], node->ne[1],
  15040. ggml_op_name(node->op),
  15041. ggml_get_name(node));
  15042. }
  15043. for (int i = 0; i < GGML_OP_COUNT; i++) {
  15044. if (perf_total_per_op_us[i] == 0) {
  15045. continue;
  15046. }
  15047. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  15048. }
  15049. GGML_PRINT("========================================\n");
  15050. }
  15051. // check if node is part of the graph
  15052. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15053. if (cgraph == NULL) {
  15054. return true;
  15055. }
  15056. for (int i = 0; i < cgraph->n_nodes; i++) {
  15057. if (cgraph->nodes[i] == node) {
  15058. return true;
  15059. }
  15060. }
  15061. return false;
  15062. }
  15063. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15064. for (int i = 0; i < cgraph->n_nodes; i++) {
  15065. struct ggml_tensor * parent = cgraph->nodes[i];
  15066. if (parent->grad == node) {
  15067. return parent;
  15068. }
  15069. }
  15070. return NULL;
  15071. }
  15072. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15073. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  15074. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  15075. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  15076. gparent0 ? (void *) gparent0 : (void *) parent,
  15077. gparent0 ? "g" : "x",
  15078. gparent ? (void *) gparent : (void *) node,
  15079. gparent ? "g" : "x",
  15080. gparent ? "empty" : "vee",
  15081. gparent ? "dashed" : "solid",
  15082. label);
  15083. }
  15084. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15085. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  15086. (void *) parent, "x",
  15087. (void *) node, "x",
  15088. label);
  15089. }
  15090. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  15091. char color[16];
  15092. FILE * fp = fopen(filename, "w");
  15093. GGML_ASSERT(fp);
  15094. fprintf(fp, "digraph G {\n");
  15095. fprintf(fp, " newrank = true;\n");
  15096. fprintf(fp, " rankdir = LR;\n");
  15097. for (int i = 0; i < gb->n_nodes; i++) {
  15098. struct ggml_tensor * node = gb->nodes[i];
  15099. if (ggml_graph_get_parent(gb, node) != NULL) {
  15100. continue;
  15101. }
  15102. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  15103. snprintf(color, sizeof(color), "yellow");
  15104. } else if (node->grad) {
  15105. if (ggml_graph_find(gf, node)) {
  15106. snprintf(color, sizeof(color), "green");
  15107. } else {
  15108. snprintf(color, sizeof(color), "lightblue");
  15109. }
  15110. } else {
  15111. snprintf(color, sizeof(color), "white");
  15112. }
  15113. fprintf(fp, " \"%p\" [ "
  15114. "style = filled; fillcolor = %s; shape = record; "
  15115. "label=\"",
  15116. (void *) node, color);
  15117. if (strlen(node->name) > 0) {
  15118. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15119. } else {
  15120. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15121. }
  15122. if (ggml_is_matrix(node)) {
  15123. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  15124. } else {
  15125. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  15126. }
  15127. if (node->grad) {
  15128. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  15129. } else {
  15130. fprintf(fp, "\"; ]\n");
  15131. }
  15132. }
  15133. for (int i = 0; i < gb->n_leafs; i++) {
  15134. struct ggml_tensor * node = gb->leafs[i];
  15135. snprintf(color, sizeof(color), "pink");
  15136. fprintf(fp, " \"%p\" [ "
  15137. "style = filled; fillcolor = %s; shape = record; "
  15138. "label=\"<x>",
  15139. (void *) node, color);
  15140. if (strlen(node->name) > 0) {
  15141. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15142. } else {
  15143. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15144. }
  15145. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  15146. if (ggml_nelements(node) < 5) {
  15147. fprintf(fp, " | (");
  15148. for (int j = 0; j < ggml_nelements(node); j++) {
  15149. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  15150. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  15151. }
  15152. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  15153. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  15154. }
  15155. else {
  15156. fprintf(fp, "#");
  15157. }
  15158. if (j < ggml_nelements(node) - 1) {
  15159. fprintf(fp, ", ");
  15160. }
  15161. }
  15162. fprintf(fp, ")");
  15163. }
  15164. fprintf(fp, "\"; ]\n");
  15165. }
  15166. for (int i = 0; i < gb->n_nodes; i++) {
  15167. struct ggml_tensor * node = gb->nodes[i];
  15168. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15169. if (node->src[j]) {
  15170. char label[16];
  15171. snprintf(label, sizeof(label), "src %d", j);
  15172. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  15173. }
  15174. }
  15175. }
  15176. for (int i = 0; i < gb->n_leafs; i++) {
  15177. struct ggml_tensor * node = gb->leafs[i];
  15178. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15179. if (node->src[j]) {
  15180. char label[16];
  15181. snprintf(label, sizeof(label), "src %d", j);
  15182. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  15183. }
  15184. }
  15185. }
  15186. fprintf(fp, "}\n");
  15187. fclose(fp);
  15188. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  15189. }
  15190. ////////////////////////////////////////////////////////////////////////////////
  15191. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  15192. int i = 0;
  15193. for (int p = 0; p < np; ++p) {
  15194. const int64_t ne = ggml_nelements(ps[p]) ;
  15195. // TODO: add function to set tensor from array
  15196. for (int64_t j = 0; j < ne; ++j) {
  15197. ggml_set_f32_1d(ps[p], j, x[i++]);
  15198. }
  15199. }
  15200. }
  15201. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  15202. int i = 0;
  15203. for (int p = 0; p < np; ++p) {
  15204. const int64_t ne = ggml_nelements(ps[p]) ;
  15205. // TODO: add function to get all elements at once
  15206. for (int64_t j = 0; j < ne; ++j) {
  15207. x[i++] = ggml_get_f32_1d(ps[p], j);
  15208. }
  15209. }
  15210. }
  15211. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  15212. int64_t i = 0;
  15213. for (int p = 0; p < np; ++p) {
  15214. const int64_t ne = ggml_nelements(ps[p]) ;
  15215. // TODO: add function to get all elements at once
  15216. for (int64_t j = 0; j < ne; ++j) {
  15217. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  15218. }
  15219. }
  15220. }
  15221. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  15222. int64_t i = 0;
  15223. for (int p = 0; p < np; ++p) {
  15224. const int64_t ne = ggml_nelements(ps[p]) ;
  15225. // TODO: add function to get all elements at once
  15226. for (int64_t j = 0; j < ne; ++j) {
  15227. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  15228. }
  15229. }
  15230. }
  15231. //
  15232. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  15233. //
  15234. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  15235. //
  15236. static enum ggml_opt_result ggml_opt_adam(
  15237. struct ggml_context * ctx,
  15238. struct ggml_opt_context * opt,
  15239. struct ggml_opt_params params,
  15240. struct ggml_tensor * f,
  15241. struct ggml_cgraph * gf,
  15242. struct ggml_cgraph * gb,
  15243. ggml_opt_callback callback,
  15244. void * callback_data) {
  15245. GGML_ASSERT(ggml_is_scalar(f));
  15246. // these will store the parameters we want to optimize
  15247. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15248. int np = 0;
  15249. int64_t nx = 0;
  15250. for (int i = 0; i < gf->n_nodes; ++i) {
  15251. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  15252. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15253. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15254. ps[np++] = gf->nodes[i];
  15255. nx += ggml_nelements(gf->nodes[i]);
  15256. }
  15257. }
  15258. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  15259. int iter = opt->iter;
  15260. ggml_opt_init(opt->ctx, opt, params, nx);
  15261. opt->iter = iter;
  15262. }
  15263. // constants
  15264. float sched = params.adam.sched;
  15265. const float alpha = params.adam.alpha;
  15266. const float decay = params.adam.decay * alpha;
  15267. const float beta1 = params.adam.beta1;
  15268. const float beta2 = params.adam.beta2;
  15269. const float eps = params.adam.eps;
  15270. const float gclip = params.adam.gclip;
  15271. const int decay_min_ndim = params.adam.decay_min_ndim;
  15272. const int n_accum = MAX(1, params.n_gradient_accumulation);
  15273. const float accum_norm = 1.0f / (float) n_accum;
  15274. float * g = opt->adam.g->data; // gradients
  15275. float * m = opt->adam.m->data; // first moment
  15276. float * v = opt->adam.v->data; // second moment
  15277. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  15278. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15279. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  15280. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15281. bool cancel = false;
  15282. // compute the function value
  15283. float fx = 0;
  15284. ggml_set_zero(opt->adam.g);
  15285. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15286. if (callback) {
  15287. callback(callback_data, accum_step, &sched, &cancel);
  15288. if (cancel) {
  15289. return GGML_OPT_CANCEL;
  15290. }
  15291. }
  15292. // ggml_graph_reset (gf);
  15293. ggml_set_f32 (f->grad, 1.0f);
  15294. ggml_graph_compute(gb, &cplan);
  15295. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15296. fx += ggml_get_f32_1d(f, 0);
  15297. }
  15298. fx *= accum_norm;
  15299. opt->adam.fx_prev = fx;
  15300. opt->adam.fx_best = opt->adam.fx_prev;
  15301. if (pf) {
  15302. pf[opt->iter % params.past] = opt->adam.fx_prev;
  15303. }
  15304. opt->loss_before = opt->adam.fx_prev;
  15305. opt->loss_after = opt->adam.fx_prev;
  15306. // initialize
  15307. if (opt->just_initialized) {
  15308. opt->adam.n_no_improvement = 0;
  15309. opt->just_initialized = false;
  15310. }
  15311. float * fx_best = &opt->adam.fx_best;
  15312. float * fx_prev = &opt->adam.fx_prev;
  15313. int * n_no_improvement = &opt->adam.n_no_improvement;
  15314. int iter0 = opt->iter;
  15315. // run the optimizer
  15316. for (int t = 0; t < params.adam.n_iter; ++t) {
  15317. opt->iter = iter0 + t + 1;
  15318. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  15319. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15320. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  15321. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  15322. for (int i = 0; i < np; ++i) {
  15323. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  15324. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  15325. }
  15326. const int64_t t_start_wall = ggml_time_us();
  15327. const int64_t t_start_cpu = ggml_cycles();
  15328. UNUSED(t_start_wall);
  15329. UNUSED(t_start_cpu);
  15330. {
  15331. float gnorm = 1.0f;
  15332. if (gclip > 0.0f) {
  15333. // gradient clipping
  15334. ggml_float sum = 0.0;
  15335. for (int64_t i = 0; i < nx; ++i) {
  15336. sum += (ggml_float)(g[i]*g[i]);
  15337. }
  15338. ggml_float norm = sqrt(sum);
  15339. if (norm > (ggml_float) gclip) {
  15340. gnorm = (float) ((ggml_float) gclip / norm);
  15341. }
  15342. }
  15343. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  15344. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  15345. int64_t i = 0;
  15346. for (int p = 0; p < np; ++p) {
  15347. const int64_t ne = ggml_nelements(ps[p]);
  15348. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  15349. for (int64_t j = 0; j < ne; ++j) {
  15350. float x = ggml_get_f32_1d(ps[p], j);
  15351. float g_ = g[i]*gnorm;
  15352. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  15353. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  15354. float mh = m[i]*beta1h;
  15355. float vh = v[i]*beta2h;
  15356. vh = sqrtf(vh) + eps;
  15357. x = x*(1.0f - p_decay) - mh/vh;
  15358. ggml_set_f32_1d(ps[p], j, x);
  15359. ++i;
  15360. }
  15361. }
  15362. }
  15363. fx = 0;
  15364. ggml_set_zero(opt->adam.g);
  15365. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15366. if (callback) {
  15367. callback(callback_data, accum_step, &sched, &cancel);
  15368. if (cancel) {
  15369. return GGML_OPT_CANCEL;;
  15370. }
  15371. }
  15372. // ggml_graph_reset (gf);
  15373. ggml_set_f32 (f->grad, 1.0f);
  15374. ggml_graph_compute(gb, &cplan);
  15375. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15376. fx += ggml_get_f32_1d(f, 0);
  15377. }
  15378. fx *= accum_norm;
  15379. opt->loss_after = fx;
  15380. // check convergence
  15381. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  15382. GGML_PRINT_DEBUG("converged\n");
  15383. return GGML_OPT_OK;
  15384. }
  15385. // delta-based convergence test
  15386. if (pf != NULL) {
  15387. // need at least params.past iterations to start checking for convergence
  15388. if (params.past <= iter0 + t) {
  15389. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  15390. if (fabsf(rate) < params.delta) {
  15391. return GGML_OPT_OK;
  15392. }
  15393. }
  15394. pf[(iter0 + t)%params.past] = fx;
  15395. }
  15396. // check for improvement
  15397. if (params.max_no_improvement > 0) {
  15398. if (fx_best[0] > fx) {
  15399. fx_best[0] = fx;
  15400. n_no_improvement[0] = 0;
  15401. } else {
  15402. ++n_no_improvement[0];
  15403. if (n_no_improvement[0] >= params.max_no_improvement) {
  15404. return GGML_OPT_OK;
  15405. }
  15406. }
  15407. }
  15408. fx_prev[0] = fx;
  15409. {
  15410. const int64_t t_end_cpu = ggml_cycles();
  15411. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  15412. UNUSED(t_end_cpu);
  15413. const int64_t t_end_wall = ggml_time_us();
  15414. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  15415. UNUSED(t_end_wall);
  15416. }
  15417. }
  15418. return GGML_OPT_DID_NOT_CONVERGE;
  15419. }
  15420. //
  15421. // L-BFGS
  15422. //
  15423. // the L-BFGS implementation below is based on the following implementation:
  15424. //
  15425. // https://github.com/chokkan/liblbfgs
  15426. //
  15427. struct ggml_lbfgs_iteration_data {
  15428. float alpha;
  15429. float ys;
  15430. float * s;
  15431. float * y;
  15432. };
  15433. static enum ggml_opt_result linesearch_backtracking(
  15434. const struct ggml_opt_params * params,
  15435. int nx,
  15436. float * x,
  15437. float * fx,
  15438. float * g,
  15439. float * d,
  15440. float * step,
  15441. const float * xp,
  15442. struct ggml_tensor * f,
  15443. struct ggml_cgraph * gb,
  15444. struct ggml_cplan * cplan,
  15445. const int np,
  15446. struct ggml_tensor * ps[],
  15447. bool * cancel,
  15448. ggml_opt_callback callback,
  15449. void * callback_data) {
  15450. int count = 0;
  15451. float width = 0.0f;
  15452. float dg = 0.0f;
  15453. float finit = 0.0f;
  15454. float dginit = 0.0f;
  15455. float dgtest = 0.0f;
  15456. const float dec = 0.5f;
  15457. const float inc = 2.1f;
  15458. const int n_accum = MAX(1, params->n_gradient_accumulation);
  15459. const float accum_norm = 1.0f / (float) n_accum;
  15460. if (*step <= 0.f) {
  15461. return GGML_LINESEARCH_INVALID_PARAMETERS;
  15462. }
  15463. // compute the initial gradient in the search direction
  15464. ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
  15465. // make sure that d points to a descent direction
  15466. if (0 < dginit) {
  15467. return GGML_LINESEARCH_FAIL;
  15468. }
  15469. // initialize local variables
  15470. finit = *fx;
  15471. dgtest = params->lbfgs.ftol*dginit;
  15472. while (true) {
  15473. ggml_vec_cpy_f32(nx, x, xp);
  15474. ggml_vec_mad_f32(nx, x, d, *step);
  15475. // evaluate the function and gradient values
  15476. {
  15477. ggml_opt_set_params(np, ps, x);
  15478. *fx = 0;
  15479. memset(g, 0, sizeof(float)*nx);
  15480. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15481. if (callback) {
  15482. // LBFG-S does not support learning rate -> ignore learning schedule
  15483. float sched = 0;
  15484. callback(callback_data, accum_step, &sched, cancel);
  15485. if (*cancel) {
  15486. return GGML_OPT_CANCEL;
  15487. }
  15488. }
  15489. // ggml_graph_reset (gf);
  15490. ggml_set_f32 (f->grad, 1.0f);
  15491. ggml_graph_compute(gb, cplan);
  15492. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15493. *fx += ggml_get_f32_1d(f, 0);
  15494. }
  15495. *fx *= accum_norm;
  15496. }
  15497. ++count;
  15498. if (*fx > finit + (*step)*dgtest) {
  15499. width = dec;
  15500. } else {
  15501. // Armijo condition is satisfied
  15502. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  15503. return count;
  15504. }
  15505. ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
  15506. // check the Wolfe condition
  15507. if (dg < params->lbfgs.wolfe * dginit) {
  15508. width = inc;
  15509. } else {
  15510. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  15511. // regular Wolfe conditions
  15512. return count;
  15513. }
  15514. if(dg > -params->lbfgs.wolfe*dginit) {
  15515. width = dec;
  15516. } else {
  15517. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  15518. return count;
  15519. }
  15520. }
  15521. }
  15522. if (*step < params->lbfgs.min_step) {
  15523. return GGML_LINESEARCH_MINIMUM_STEP;
  15524. }
  15525. if (*step > params->lbfgs.max_step) {
  15526. return GGML_LINESEARCH_MAXIMUM_STEP;
  15527. }
  15528. if (params->lbfgs.max_linesearch <= count) {
  15529. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  15530. }
  15531. (*step) *= width;
  15532. }
  15533. GGML_ASSERT(false && "line search failed");
  15534. return GGML_LINESEARCH_FAIL;
  15535. }
  15536. static enum ggml_opt_result ggml_opt_lbfgs(
  15537. struct ggml_context * ctx,
  15538. struct ggml_opt_context * opt,
  15539. struct ggml_opt_params params,
  15540. struct ggml_tensor * f,
  15541. struct ggml_cgraph * gf,
  15542. struct ggml_cgraph * gb,
  15543. ggml_opt_callback callback,
  15544. void * callback_data) {
  15545. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  15546. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  15547. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  15548. return GGML_OPT_INVALID_WOLFE;
  15549. }
  15550. }
  15551. const int m = params.lbfgs.m;
  15552. // these will store the parameters we want to optimize
  15553. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15554. int np = 0;
  15555. int nx = 0;
  15556. for (int i = 0; i < gf->n_nodes; ++i) {
  15557. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  15558. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15559. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15560. ps[np++] = gf->nodes[i];
  15561. nx += ggml_nelements(gf->nodes[i]);
  15562. }
  15563. }
  15564. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  15565. int iter = opt->iter;
  15566. ggml_opt_init(ctx, opt, params, nx);
  15567. opt->iter = iter;
  15568. }
  15569. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15570. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  15571. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15572. float * x = opt->lbfgs.x->data; // current parameters
  15573. float * xp = opt->lbfgs.xp->data; // previous parameters
  15574. float * g = opt->lbfgs.g->data; // current gradient
  15575. float * gp = opt->lbfgs.gp->data; // previous gradient
  15576. float * d = opt->lbfgs.d->data; // search direction
  15577. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  15578. const int n_accum = MAX(1, params.n_gradient_accumulation);
  15579. const float accum_norm = 1.0f / (float) n_accum;
  15580. float fx = 0.0f; // cost function value
  15581. float xnorm = 0.0f; // ||x||
  15582. float gnorm = 0.0f; // ||g||
  15583. // initialize x from the graph nodes
  15584. ggml_opt_get_params(np, ps, x);
  15585. // the L-BFGS memory
  15586. float * lm_alpha = opt->lbfgs.lmal->data;
  15587. float * lm_ys = opt->lbfgs.lmys->data;
  15588. float * lm_s = opt->lbfgs.lms->data;
  15589. float * lm_y = opt->lbfgs.lmy->data;
  15590. bool cancel = false;
  15591. // evaluate the function value and its gradient
  15592. {
  15593. ggml_opt_set_params(np, ps, x);
  15594. fx = 0;
  15595. memset(g, 0, sizeof(float)*nx);
  15596. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15597. if (callback) {
  15598. // LBFG-S does not support learning rate -> ignore learning schedule
  15599. float sched = 0;
  15600. callback(callback_data, accum_step, &sched, &cancel);
  15601. if (cancel) {
  15602. return GGML_OPT_CANCEL;
  15603. }
  15604. }
  15605. // ggml_graph_reset (gf);
  15606. ggml_set_f32 (f->grad, 1.0f);
  15607. ggml_graph_compute(gb, &cplan);
  15608. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15609. fx += ggml_get_f32_1d(f, 0);
  15610. }
  15611. fx *= accum_norm;
  15612. opt->loss_before = fx;
  15613. opt->loss_after = fx;
  15614. }
  15615. // search direction = -gradient
  15616. ggml_vec_neg_f32(nx, d, g);
  15617. // ||x||, ||g||
  15618. ggml_vec_norm_f32(nx, &xnorm, x);
  15619. ggml_vec_norm_f32(nx, &gnorm, g);
  15620. if (xnorm < 1.0f) {
  15621. xnorm = 1.0f;
  15622. }
  15623. // already optimized
  15624. if (gnorm/xnorm <= params.lbfgs.eps) {
  15625. return GGML_OPT_OK;
  15626. }
  15627. if (opt->just_initialized) {
  15628. if (pf) {
  15629. pf[0] = fx;
  15630. }
  15631. opt->lbfgs.fx_best = fx;
  15632. // initial step
  15633. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  15634. opt->lbfgs.j = 0;
  15635. opt->lbfgs.k = 1;
  15636. opt->lbfgs.end = 0;
  15637. opt->lbfgs.n_no_improvement = 0;
  15638. opt->just_initialized = false;
  15639. }
  15640. float * fx_best = &opt->lbfgs.fx_best;
  15641. float * step = &opt->lbfgs.step;
  15642. int * j = &opt->lbfgs.j;
  15643. int * k = &opt->lbfgs.k;
  15644. int * end = &opt->lbfgs.end;
  15645. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  15646. int ls = 0;
  15647. int bound = 0;
  15648. float ys = 0.0f;
  15649. float yy = 0.0f;
  15650. float beta = 0.0f;
  15651. int it = 0;
  15652. while (true) {
  15653. // store the current position and gradient vectors
  15654. ggml_vec_cpy_f32(nx, xp, x);
  15655. ggml_vec_cpy_f32(nx, gp, g);
  15656. // TODO: instead of passing &cancel here, use the return code of the linesearch
  15657. // to determine if the optimization should be cancelled
  15658. // this is a simple change, but not doing this atm, since I don't have a nice
  15659. // way to test and don't want to break something with so many changes lined up
  15660. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  15661. if (cancel) {
  15662. return GGML_OPT_CANCEL;
  15663. }
  15664. if (ls < 0) {
  15665. // linesearch failed - go back to the previous point and return
  15666. ggml_vec_cpy_f32(nx, x, xp);
  15667. ggml_vec_cpy_f32(nx, g, gp);
  15668. return ls;
  15669. }
  15670. opt->loss_after = fx;
  15671. ggml_vec_norm_f32(nx, &xnorm, x);
  15672. ggml_vec_norm_f32(nx, &gnorm, g);
  15673. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15674. if (xnorm < 1.0f) {
  15675. xnorm = 1.0f;
  15676. }
  15677. if (gnorm/xnorm <= params.lbfgs.eps) {
  15678. // converged
  15679. return GGML_OPT_OK;
  15680. }
  15681. // delta-based convergence test
  15682. if (pf != NULL) {
  15683. // need at least params.past iterations to start checking for convergence
  15684. if (params.past <= k[0]) {
  15685. const float rate = (pf[k[0]%params.past] - fx)/fx;
  15686. if (fabsf(rate) < params.delta) {
  15687. return GGML_OPT_OK;
  15688. }
  15689. }
  15690. pf[k[0]%params.past] = fx;
  15691. }
  15692. // check for improvement
  15693. if (params.max_no_improvement > 0) {
  15694. if (fx < fx_best[0]) {
  15695. fx_best[0] = fx;
  15696. n_no_improvement[0] = 0;
  15697. } else {
  15698. n_no_improvement[0]++;
  15699. if (n_no_improvement[0] >= params.max_no_improvement) {
  15700. return GGML_OPT_OK;
  15701. }
  15702. }
  15703. }
  15704. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  15705. // reached the maximum number of iterations
  15706. return GGML_OPT_DID_NOT_CONVERGE;
  15707. }
  15708. // update vectors s and y:
  15709. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  15710. // y_{k+1} = g_{k+1} - g_{k}.
  15711. //
  15712. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  15713. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  15714. // compute scalars ys and yy:
  15715. // ys = y^t \cdot s -> 1 / \rho.
  15716. // yy = y^t \cdot y.
  15717. //
  15718. ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
  15719. ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
  15720. lm_ys[end[0]] = ys;
  15721. // find new search direction
  15722. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  15723. bound = (m <= k[0]) ? m : k[0];
  15724. k[0]++;
  15725. it++;
  15726. end[0] = (end[0] + 1)%m;
  15727. // initialize search direction with -g
  15728. ggml_vec_neg_f32(nx, d, g);
  15729. j[0] = end[0];
  15730. for (int i = 0; i < bound; ++i) {
  15731. j[0] = (j[0] + m - 1) % m;
  15732. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  15733. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
  15734. lm_alpha[j[0]] /= lm_ys[j[0]];
  15735. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  15736. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  15737. }
  15738. ggml_vec_scale_f32(nx, d, ys/yy);
  15739. for (int i = 0; i < bound; ++i) {
  15740. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  15741. ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
  15742. beta /= lm_ys[j[0]];
  15743. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  15744. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  15745. j[0] = (j[0] + 1)%m;
  15746. }
  15747. step[0] = 1.0;
  15748. }
  15749. GGML_ASSERT(false && "lbfgs failed");
  15750. return GGML_OPT_DID_NOT_CONVERGE;
  15751. }
  15752. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  15753. struct ggml_opt_params result;
  15754. switch (type) {
  15755. case GGML_OPT_ADAM:
  15756. {
  15757. result = (struct ggml_opt_params) {
  15758. .type = GGML_OPT_ADAM,
  15759. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  15760. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  15761. .past = 0,
  15762. .delta = 1e-5f,
  15763. .max_no_improvement = 100,
  15764. .print_forward_graph = true,
  15765. .print_backward_graph = true,
  15766. .n_gradient_accumulation = 1,
  15767. .adam = {
  15768. .n_iter = 10000,
  15769. .sched = 1.000f,
  15770. .decay = 0.0f,
  15771. .decay_min_ndim = 2,
  15772. .alpha = 0.001f,
  15773. .beta1 = 0.9f,
  15774. .beta2 = 0.999f,
  15775. .eps = 1e-8f,
  15776. .eps_f = 1e-5f,
  15777. .eps_g = 1e-3f,
  15778. .gclip = 0.0f,
  15779. },
  15780. };
  15781. } break;
  15782. case GGML_OPT_LBFGS:
  15783. {
  15784. result = (struct ggml_opt_params) {
  15785. .type = GGML_OPT_LBFGS,
  15786. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  15787. .n_threads = 1,
  15788. .past = 0,
  15789. .delta = 1e-5f,
  15790. .max_no_improvement = 0,
  15791. .print_forward_graph = true,
  15792. .print_backward_graph = true,
  15793. .n_gradient_accumulation = 1,
  15794. .lbfgs = {
  15795. .m = 6,
  15796. .n_iter = 100,
  15797. .max_linesearch = 20,
  15798. .eps = 1e-5f,
  15799. .ftol = 1e-4f,
  15800. .wolfe = 0.9f,
  15801. .min_step = 1e-20f,
  15802. .max_step = 1e+20f,
  15803. .linesearch = GGML_LINESEARCH_DEFAULT,
  15804. },
  15805. };
  15806. } break;
  15807. }
  15808. return result;
  15809. }
  15810. GGML_API void ggml_opt_init(
  15811. struct ggml_context * ctx,
  15812. struct ggml_opt_context * opt,
  15813. struct ggml_opt_params params,
  15814. int64_t nx) {
  15815. opt->ctx = ctx;
  15816. opt->params = params;
  15817. opt->iter = 0;
  15818. opt->nx = nx;
  15819. opt->just_initialized = true;
  15820. if (opt->ctx == NULL) {
  15821. struct ggml_init_params ctx_opt_params;
  15822. if (opt->params.type == GGML_OPT_ADAM) {
  15823. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  15824. if (opt->params.past > 0) {
  15825. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15826. }
  15827. } else if (opt->params.type == GGML_OPT_LBFGS) {
  15828. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  15829. if (opt->params.past > 0) {
  15830. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15831. }
  15832. }
  15833. ctx_opt_params.mem_buffer = NULL;
  15834. ctx_opt_params.no_alloc = false;
  15835. opt->ctx = ggml_init(ctx_opt_params);
  15836. }
  15837. switch (opt->params.type) {
  15838. case GGML_OPT_ADAM:
  15839. {
  15840. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15841. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15842. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15843. opt->adam.pf = params.past > 0
  15844. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15845. : NULL;
  15846. ggml_set_zero(opt->adam.m);
  15847. ggml_set_zero(opt->adam.v);
  15848. if (opt->adam.pf) {
  15849. ggml_set_zero(opt->adam.pf);
  15850. }
  15851. } break;
  15852. case GGML_OPT_LBFGS:
  15853. {
  15854. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15855. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15856. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15857. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15858. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15859. opt->lbfgs.pf = params.past > 0
  15860. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15861. : NULL;
  15862. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15863. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15864. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15865. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15866. ggml_set_zero(opt->lbfgs.x);
  15867. ggml_set_zero(opt->lbfgs.xp);
  15868. ggml_set_zero(opt->lbfgs.g);
  15869. ggml_set_zero(opt->lbfgs.gp);
  15870. ggml_set_zero(opt->lbfgs.d);
  15871. if (opt->lbfgs.pf) {
  15872. ggml_set_zero(opt->lbfgs.pf);
  15873. }
  15874. ggml_set_zero(opt->lbfgs.lmal);
  15875. ggml_set_zero(opt->lbfgs.lmys);
  15876. ggml_set_zero(opt->lbfgs.lms);
  15877. ggml_set_zero(opt->lbfgs.lmy);
  15878. } break;
  15879. }
  15880. }
  15881. enum ggml_opt_result ggml_opt(
  15882. struct ggml_context * ctx,
  15883. struct ggml_opt_params params,
  15884. struct ggml_tensor * f) {
  15885. bool free_ctx = false;
  15886. if (ctx == NULL) {
  15887. struct ggml_init_params params_ctx = {
  15888. .mem_size = 16*1024*1024,
  15889. .mem_buffer = NULL,
  15890. .no_alloc = false,
  15891. };
  15892. ctx = ggml_init(params_ctx);
  15893. if (ctx == NULL) {
  15894. return GGML_OPT_NO_CONTEXT;
  15895. }
  15896. free_ctx = true;
  15897. }
  15898. enum ggml_opt_result result = GGML_OPT_OK;
  15899. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  15900. ggml_opt_init(ctx, opt, params, 0);
  15901. result = ggml_opt_resume(ctx, opt, f);
  15902. if (free_ctx) {
  15903. ggml_free(ctx);
  15904. }
  15905. return result;
  15906. }
  15907. enum ggml_opt_result ggml_opt_resume(
  15908. struct ggml_context * ctx,
  15909. struct ggml_opt_context * opt,
  15910. struct ggml_tensor * f) {
  15911. // build forward + backward compute graphs
  15912. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  15913. ggml_build_forward_expand(gf, f);
  15914. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  15915. ggml_build_backward_expand(ctx, gf, gb, true);
  15916. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  15917. }
  15918. enum ggml_opt_result ggml_opt_resume_g(
  15919. struct ggml_context * ctx,
  15920. struct ggml_opt_context * opt,
  15921. struct ggml_tensor * f,
  15922. struct ggml_cgraph * gf,
  15923. struct ggml_cgraph * gb,
  15924. ggml_opt_callback callback,
  15925. void * callback_data) {
  15926. // build forward + backward compute graphs
  15927. enum ggml_opt_result result = GGML_OPT_OK;
  15928. switch (opt->params.type) {
  15929. case GGML_OPT_ADAM:
  15930. {
  15931. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15932. } break;
  15933. case GGML_OPT_LBFGS:
  15934. {
  15935. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15936. } break;
  15937. }
  15938. if (opt->params.print_forward_graph) {
  15939. ggml_graph_print (gf);
  15940. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  15941. }
  15942. if (opt->params.print_backward_graph) {
  15943. ggml_graph_print (gb);
  15944. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  15945. }
  15946. return result;
  15947. }
  15948. ////////////////////////////////////////////////////////////////////////////////
  15949. void ggml_set_input(struct ggml_tensor * tensor) {
  15950. tensor->flags |= GGML_TENSOR_FLAG_INPUT;
  15951. }
  15952. void ggml_set_output(struct ggml_tensor * tensor) {
  15953. tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
  15954. }
  15955. ////////////////////////////////////////////////////////////////////////////////
  15956. void ggml_quantize_init(enum ggml_type type) {
  15957. ggml_critical_section_start();
  15958. switch (type) {
  15959. case GGML_TYPE_IQ2_XXS:
  15960. case GGML_TYPE_IQ2_XS:
  15961. case GGML_TYPE_IQ1_S: iq2xs_init_impl(type); break;
  15962. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  15963. case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
  15964. default: // nothing
  15965. break;
  15966. }
  15967. ggml_critical_section_end();
  15968. }
  15969. void ggml_quantize_free(void) {
  15970. ggml_critical_section_start();
  15971. iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
  15972. iq2xs_free_impl(GGML_TYPE_IQ2_XS);
  15973. iq2xs_free_impl(GGML_TYPE_IQ1_S);
  15974. iq3xs_free_impl(256);
  15975. ggml_critical_section_end();
  15976. }
  15977. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15978. assert(k % QK4_0 == 0);
  15979. const int nb = k / QK4_0;
  15980. for (int b = 0; b < n; b += k) {
  15981. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  15982. quantize_row_q4_0_reference(src + b, y, k);
  15983. for (int i = 0; i < nb; i++) {
  15984. for (int j = 0; j < QK4_0; j += 2) {
  15985. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15986. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15987. hist[vi0]++;
  15988. hist[vi1]++;
  15989. }
  15990. }
  15991. }
  15992. return (n/QK4_0*sizeof(block_q4_0));
  15993. }
  15994. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15995. assert(k % QK4_1 == 0);
  15996. const int nb = k / QK4_1;
  15997. for (int b = 0; b < n; b += k) {
  15998. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  15999. quantize_row_q4_1_reference(src + b, y, k);
  16000. for (int i = 0; i < nb; i++) {
  16001. for (int j = 0; j < QK4_1; j += 2) {
  16002. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  16003. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  16004. hist[vi0]++;
  16005. hist[vi1]++;
  16006. }
  16007. }
  16008. }
  16009. return (n/QK4_1*sizeof(block_q4_1));
  16010. }
  16011. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  16012. assert(k % QK5_0 == 0);
  16013. const int nb = k / QK5_0;
  16014. for (int b = 0; b < n; b += k) {
  16015. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  16016. quantize_row_q5_0_reference(src + b, y, k);
  16017. for (int i = 0; i < nb; i++) {
  16018. uint32_t qh;
  16019. memcpy(&qh, &y[i].qh, sizeof(qh));
  16020. for (int j = 0; j < QK5_0; j += 2) {
  16021. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  16022. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  16023. // cast to 16 bins
  16024. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  16025. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  16026. hist[vi0]++;
  16027. hist[vi1]++;
  16028. }
  16029. }
  16030. }
  16031. return (n/QK5_0*sizeof(block_q5_0));
  16032. }
  16033. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  16034. assert(k % QK5_1 == 0);
  16035. const int nb = k / QK5_1;
  16036. for (int b = 0; b < n; b += k) {
  16037. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  16038. quantize_row_q5_1_reference(src + b, y, k);
  16039. for (int i = 0; i < nb; i++) {
  16040. uint32_t qh;
  16041. memcpy(&qh, &y[i].qh, sizeof(qh));
  16042. for (int j = 0; j < QK5_1; j += 2) {
  16043. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  16044. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  16045. // cast to 16 bins
  16046. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  16047. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  16048. hist[vi0]++;
  16049. hist[vi1]++;
  16050. }
  16051. }
  16052. }
  16053. return (n/QK5_1*sizeof(block_q5_1));
  16054. }
  16055. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  16056. assert(k % QK8_0 == 0);
  16057. const int nb = k / QK8_0;
  16058. for (int b = 0; b < n; b += k) {
  16059. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  16060. quantize_row_q8_0_reference(src + b, y, k);
  16061. for (int i = 0; i < nb; i++) {
  16062. for (int j = 0; j < QK8_0; ++j) {
  16063. const int8_t vi = y[i].qs[j];
  16064. hist[vi/16 + 8]++;
  16065. }
  16066. }
  16067. }
  16068. return (n/QK8_0*sizeof(block_q8_0));
  16069. }
  16070. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  16071. return
  16072. type == GGML_TYPE_IQ2_XXS ||
  16073. type == GGML_TYPE_IQ2_XS ||
  16074. type == GGML_TYPE_IQ1_S;
  16075. }
  16076. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start,
  16077. int nrows, int n_per_row, int64_t * hist, const float * imatrix) {
  16078. ggml_quantize_init(type); // this is noop if already initialized
  16079. size_t result = 0;
  16080. int n = nrows * n_per_row;
  16081. switch (type) {
  16082. case GGML_TYPE_Q4_0:
  16083. {
  16084. GGML_ASSERT(start % QK4_0 == 0);
  16085. GGML_ASSERT(start % n_per_row == 0);
  16086. size_t start_row = start / n_per_row;
  16087. size_t row_size = ggml_row_size(type, n_per_row);
  16088. result = quantize_q4_0(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16089. GGML_ASSERT(result == row_size * nrows);
  16090. } break;
  16091. case GGML_TYPE_Q4_1:
  16092. {
  16093. GGML_ASSERT(start % QK4_1 == 0);
  16094. GGML_ASSERT(start % n_per_row == 0);
  16095. size_t start_row = start / n_per_row;
  16096. size_t row_size = ggml_row_size(type, n_per_row);
  16097. result = quantize_q4_1(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16098. GGML_ASSERT(result == row_size * nrows);
  16099. } break;
  16100. case GGML_TYPE_Q5_0:
  16101. {
  16102. GGML_ASSERT(start % QK5_0 == 0);
  16103. GGML_ASSERT(start % n_per_row == 0);
  16104. size_t start_row = start / n_per_row;
  16105. size_t row_size = ggml_row_size(type, n_per_row);
  16106. result = quantize_q5_0(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16107. GGML_ASSERT(result == row_size * nrows);
  16108. } break;
  16109. case GGML_TYPE_Q5_1:
  16110. {
  16111. GGML_ASSERT(start % QK5_1 == 0);
  16112. GGML_ASSERT(start % n_per_row == 0);
  16113. size_t start_row = start / n_per_row;
  16114. size_t row_size = ggml_row_size(type, n_per_row);
  16115. result = quantize_q5_1(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16116. GGML_ASSERT(result == row_size * nrows);
  16117. } break;
  16118. case GGML_TYPE_Q8_0:
  16119. {
  16120. GGML_ASSERT(start % QK8_0 == 0);
  16121. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  16122. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  16123. } break;
  16124. case GGML_TYPE_Q2_K:
  16125. {
  16126. GGML_ASSERT(start % QK_K == 0);
  16127. GGML_ASSERT(start % n_per_row == 0);
  16128. size_t start_row = start / n_per_row;
  16129. size_t row_size = ggml_row_size(type, n_per_row);
  16130. result = quantize_q2_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16131. GGML_ASSERT(result == row_size * nrows);
  16132. } break;
  16133. case GGML_TYPE_Q3_K:
  16134. {
  16135. GGML_ASSERT(start % QK_K == 0);
  16136. GGML_ASSERT(start % n_per_row == 0);
  16137. size_t start_row = start / n_per_row;
  16138. size_t row_size = ggml_row_size(type, n_per_row);
  16139. result = quantize_q3_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16140. GGML_ASSERT(result == row_size * nrows);
  16141. } break;
  16142. case GGML_TYPE_Q4_K:
  16143. {
  16144. GGML_ASSERT(start % QK_K == 0);
  16145. GGML_ASSERT(start % n_per_row == 0);
  16146. size_t start_row = start / n_per_row;
  16147. size_t row_size = ggml_row_size(type, n_per_row);
  16148. result = quantize_q4_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16149. GGML_ASSERT(result == row_size * nrows);
  16150. } break;
  16151. case GGML_TYPE_Q5_K:
  16152. {
  16153. GGML_ASSERT(start % QK_K == 0);
  16154. GGML_ASSERT(start % n_per_row == 0);
  16155. size_t start_row = start / n_per_row;
  16156. size_t row_size = ggml_row_size(type, n_per_row);
  16157. result = quantize_q5_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16158. GGML_ASSERT(result == row_size * nrows);
  16159. } break;
  16160. case GGML_TYPE_Q6_K:
  16161. {
  16162. GGML_ASSERT(start % QK_K == 0);
  16163. GGML_ASSERT(start % n_per_row == 0);
  16164. size_t start_row = start / n_per_row;
  16165. size_t row_size = ggml_row_size(type, n_per_row);
  16166. result = quantize_q6_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16167. GGML_ASSERT(result == row_size * nrows);
  16168. } break;
  16169. case GGML_TYPE_IQ2_XXS:
  16170. {
  16171. GGML_ASSERT(start % QK_K == 0);
  16172. GGML_ASSERT(start % n_per_row == 0);
  16173. GGML_ASSERT(imatrix);
  16174. size_t start_row = start / n_per_row;
  16175. size_t row_size = ggml_row_size(type, n_per_row);
  16176. result = quantize_iq2_xxs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16177. GGML_ASSERT(result == row_size * nrows);
  16178. } break;
  16179. case GGML_TYPE_IQ2_XS:
  16180. {
  16181. GGML_ASSERT(start % QK_K == 0);
  16182. GGML_ASSERT(start % n_per_row == 0);
  16183. GGML_ASSERT(imatrix);
  16184. size_t start_row = start / n_per_row;
  16185. size_t row_size = ggml_row_size(type, n_per_row);
  16186. result = quantize_iq2_xs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16187. GGML_ASSERT(result == row_size * nrows);
  16188. } break;
  16189. case GGML_TYPE_IQ3_XXS:
  16190. {
  16191. GGML_ASSERT(start % QK_K == 0);
  16192. GGML_ASSERT(start % n_per_row == 0);
  16193. size_t start_row = start / n_per_row;
  16194. size_t row_size = ggml_row_size(type, n_per_row);
  16195. result = quantize_iq3_xxs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16196. GGML_ASSERT(result == row_size * nrows);
  16197. } break;
  16198. case GGML_TYPE_IQ3_S:
  16199. {
  16200. GGML_ASSERT(start % QK_K == 0);
  16201. GGML_ASSERT(start % n_per_row == 0);
  16202. size_t start_row = start / n_per_row;
  16203. size_t row_size = ggml_row_size(type, n_per_row);
  16204. result = quantize_iq3_s(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16205. GGML_ASSERT(result == row_size * nrows);
  16206. } break;
  16207. case GGML_TYPE_IQ1_S:
  16208. {
  16209. GGML_ASSERT(start % QK_K == 0);
  16210. GGML_ASSERT(start % n_per_row == 0);
  16211. size_t start_row = start / n_per_row;
  16212. size_t row_size = ggml_row_size(type, n_per_row);
  16213. result = quantize_iq1_s(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16214. GGML_ASSERT(result == row_size * nrows);
  16215. } break;
  16216. case GGML_TYPE_IQ4_NL:
  16217. {
  16218. GGML_ASSERT(start % QK4_NL == 0);
  16219. GGML_ASSERT(start % n_per_row == 0);
  16220. size_t start_row = start / n_per_row;
  16221. size_t row_size = ggml_row_size(type, n_per_row);
  16222. result = quantize_iq4_nl(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16223. GGML_ASSERT(result == row_size * nrows);
  16224. } break;
  16225. case GGML_TYPE_F16:
  16226. {
  16227. size_t elemsize = sizeof(ggml_fp16_t);
  16228. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  16229. result = n * elemsize;
  16230. } break;
  16231. case GGML_TYPE_F32:
  16232. {
  16233. size_t elemsize = sizeof(float);
  16234. result = n * elemsize;
  16235. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  16236. } break;
  16237. default:
  16238. assert(false);
  16239. }
  16240. return result;
  16241. }
  16242. ////////////////////////////////////////////////////////////////////////////////
  16243. struct gguf_str {
  16244. uint64_t n; // GGUFv2
  16245. char * data;
  16246. };
  16247. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  16248. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  16249. [GGUF_TYPE_INT8] = sizeof(int8_t),
  16250. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  16251. [GGUF_TYPE_INT16] = sizeof(int16_t),
  16252. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  16253. [GGUF_TYPE_INT32] = sizeof(int32_t),
  16254. [GGUF_TYPE_FLOAT32] = sizeof(float),
  16255. [GGUF_TYPE_BOOL] = sizeof(bool),
  16256. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  16257. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  16258. [GGUF_TYPE_INT64] = sizeof(int64_t),
  16259. [GGUF_TYPE_FLOAT64] = sizeof(double),
  16260. [GGUF_TYPE_ARRAY] = 0, // undefined
  16261. };
  16262. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16263. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  16264. [GGUF_TYPE_UINT8] = "u8",
  16265. [GGUF_TYPE_INT8] = "i8",
  16266. [GGUF_TYPE_UINT16] = "u16",
  16267. [GGUF_TYPE_INT16] = "i16",
  16268. [GGUF_TYPE_UINT32] = "u32",
  16269. [GGUF_TYPE_INT32] = "i32",
  16270. [GGUF_TYPE_FLOAT32] = "f32",
  16271. [GGUF_TYPE_BOOL] = "bool",
  16272. [GGUF_TYPE_STRING] = "str",
  16273. [GGUF_TYPE_ARRAY] = "arr",
  16274. [GGUF_TYPE_UINT64] = "u64",
  16275. [GGUF_TYPE_INT64] = "i64",
  16276. [GGUF_TYPE_FLOAT64] = "f64",
  16277. };
  16278. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16279. union gguf_value {
  16280. uint8_t uint8;
  16281. int8_t int8;
  16282. uint16_t uint16;
  16283. int16_t int16;
  16284. uint32_t uint32;
  16285. int32_t int32;
  16286. float float32;
  16287. uint64_t uint64;
  16288. int64_t int64;
  16289. double float64;
  16290. bool bool_;
  16291. struct gguf_str str;
  16292. struct {
  16293. enum gguf_type type;
  16294. uint64_t n; // GGUFv2
  16295. void * data;
  16296. } arr;
  16297. };
  16298. struct gguf_kv {
  16299. struct gguf_str key;
  16300. enum gguf_type type;
  16301. union gguf_value value;
  16302. };
  16303. struct gguf_header {
  16304. char magic[4];
  16305. uint32_t version;
  16306. uint64_t n_tensors; // GGUFv2
  16307. uint64_t n_kv; // GGUFv2
  16308. };
  16309. struct gguf_tensor_info {
  16310. struct gguf_str name;
  16311. uint32_t n_dims;
  16312. uint64_t ne[GGML_MAX_DIMS];
  16313. enum ggml_type type;
  16314. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  16315. // for writing API
  16316. const void * data;
  16317. size_t size;
  16318. };
  16319. struct gguf_context {
  16320. struct gguf_header header;
  16321. struct gguf_kv * kv;
  16322. struct gguf_tensor_info * infos;
  16323. size_t alignment;
  16324. size_t offset; // offset of `data` from beginning of file
  16325. size_t size; // size of `data` in bytes
  16326. //uint8_t * padding;
  16327. void * data;
  16328. };
  16329. static size_t gguf_type_size(enum gguf_type type) {
  16330. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  16331. return GGUF_TYPE_SIZE[type];
  16332. }
  16333. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  16334. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  16335. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  16336. for (uint32_t i = 0; i < info->n_dims; ++i) {
  16337. GGML_ASSERT(info->ne[i] > 0);
  16338. }
  16339. // prevent overflow for total number of elements
  16340. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  16341. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  16342. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  16343. }
  16344. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  16345. const size_t n = fread(dst, 1, size, file);
  16346. *offset += n;
  16347. return n == size;
  16348. }
  16349. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  16350. p->n = 0;
  16351. p->data = NULL;
  16352. bool ok = true;
  16353. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  16354. // early exit if string length is invalid, prevents from integer overflow
  16355. if (p->n == SIZE_MAX) {
  16356. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  16357. return false;
  16358. }
  16359. p->data = GGML_CALLOC(p->n + 1, 1);
  16360. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  16361. return ok;
  16362. }
  16363. struct gguf_context * gguf_init_empty(void) {
  16364. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16365. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  16366. ctx->header.version = GGUF_VERSION;
  16367. ctx->header.n_tensors = 0;
  16368. ctx->header.n_kv = 0;
  16369. ctx->kv = NULL;
  16370. ctx->infos = NULL;
  16371. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16372. ctx->offset = 0;
  16373. ctx->size = 0;
  16374. ctx->data = NULL;
  16375. return ctx;
  16376. }
  16377. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  16378. FILE * file = fopen(fname, "rb");
  16379. if (!file) {
  16380. return NULL;
  16381. }
  16382. // offset from start of file
  16383. size_t offset = 0;
  16384. char magic[4];
  16385. // check the magic before making allocations
  16386. {
  16387. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  16388. for (uint32_t i = 0; i < sizeof(magic); i++) {
  16389. if (magic[i] != GGUF_MAGIC[i]) {
  16390. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  16391. fclose(file);
  16392. return NULL;
  16393. }
  16394. }
  16395. }
  16396. bool ok = true;
  16397. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16398. // read the header
  16399. {
  16400. strncpy(ctx->header.magic, magic, 4);
  16401. ctx->kv = NULL;
  16402. ctx->infos = NULL;
  16403. ctx->data = NULL;
  16404. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  16405. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  16406. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  16407. if (ctx->header.version == 1) {
  16408. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  16409. fclose(file);
  16410. gguf_free(ctx);
  16411. return NULL;
  16412. }
  16413. // sanity-checks to prevent from integer/buffer overflows
  16414. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  16415. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  16416. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  16417. if (!ok) {
  16418. fprintf(stderr, "%s: failed to read header\n", __func__);
  16419. fclose(file);
  16420. gguf_free(ctx);
  16421. return NULL;
  16422. }
  16423. }
  16424. // read the kv pairs
  16425. {
  16426. ctx->kv = GGML_MALLOC(ctx->header.n_kv * sizeof(struct gguf_kv));
  16427. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  16428. struct gguf_kv * kv = &ctx->kv[i];
  16429. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  16430. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  16431. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  16432. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  16433. switch (kv->type) {
  16434. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  16435. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  16436. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  16437. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  16438. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  16439. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  16440. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  16441. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  16442. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  16443. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  16444. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  16445. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  16446. case GGUF_TYPE_ARRAY:
  16447. {
  16448. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  16449. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  16450. switch (kv->value.arr.type) {
  16451. case GGUF_TYPE_UINT8:
  16452. case GGUF_TYPE_INT8:
  16453. case GGUF_TYPE_UINT16:
  16454. case GGUF_TYPE_INT16:
  16455. case GGUF_TYPE_UINT32:
  16456. case GGUF_TYPE_INT32:
  16457. case GGUF_TYPE_FLOAT32:
  16458. case GGUF_TYPE_UINT64:
  16459. case GGUF_TYPE_INT64:
  16460. case GGUF_TYPE_FLOAT64:
  16461. case GGUF_TYPE_BOOL:
  16462. {
  16463. // prevent from integer overflow in the malloc below
  16464. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  16465. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  16466. fclose(file);
  16467. gguf_free(ctx);
  16468. return NULL;
  16469. }
  16470. kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  16471. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  16472. } break;
  16473. case GGUF_TYPE_STRING:
  16474. {
  16475. // prevent from integer overflow in the malloc below
  16476. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  16477. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  16478. fclose(file);
  16479. gguf_free(ctx);
  16480. return NULL;
  16481. }
  16482. kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * sizeof(struct gguf_str));
  16483. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  16484. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  16485. }
  16486. } break;
  16487. case GGUF_TYPE_ARRAY:
  16488. default: GGML_ASSERT(false && "invalid type"); break;
  16489. }
  16490. } break;
  16491. default: GGML_ASSERT(false && "invalid type");
  16492. }
  16493. if (!ok) {
  16494. break;
  16495. }
  16496. }
  16497. if (!ok) {
  16498. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  16499. fclose(file);
  16500. gguf_free(ctx);
  16501. return NULL;
  16502. }
  16503. }
  16504. // read the tensor infos
  16505. {
  16506. ctx->infos = GGML_MALLOC(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  16507. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16508. struct gguf_tensor_info * info = &ctx->infos[i];
  16509. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16510. info->ne[j] = 1;
  16511. }
  16512. ok = ok && gguf_fread_str(file, &info->name, &offset);
  16513. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  16514. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  16515. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16516. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  16517. }
  16518. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  16519. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  16520. gguf_tensor_info_sanitize(info);
  16521. if (!ok) {
  16522. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  16523. fclose(file);
  16524. gguf_free(ctx);
  16525. return NULL;
  16526. }
  16527. }
  16528. }
  16529. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16530. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  16531. if (alignment_idx != -1) {
  16532. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  16533. }
  16534. // we require the data section to be aligned, so take into account any padding
  16535. {
  16536. const size_t offset_pad = offset % ctx->alignment;
  16537. if (offset_pad != 0) {
  16538. offset += ctx->alignment - offset_pad;
  16539. fseek(file, offset, SEEK_SET);
  16540. }
  16541. }
  16542. // store the current file offset - this is where the data section starts
  16543. ctx->offset = offset;
  16544. // compute the total size of the data section, taking into account the alignment
  16545. {
  16546. ctx->size = 0;
  16547. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16548. struct gguf_tensor_info * info = &ctx->infos[i];
  16549. const int64_t ne =
  16550. (int64_t) info->ne[0] *
  16551. (int64_t) info->ne[1] *
  16552. (int64_t) info->ne[2] *
  16553. (int64_t) info->ne[3];
  16554. if (ne % ggml_blck_size(info->type) != 0) {
  16555. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  16556. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  16557. fclose(file);
  16558. gguf_free(ctx);
  16559. return NULL;
  16560. }
  16561. const size_t size_cur = ggml_row_size(info->type, ne);
  16562. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  16563. }
  16564. }
  16565. // load the tensor data only if requested
  16566. if (params.ctx != NULL) {
  16567. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  16568. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  16569. // the ggml_tensor structs to the appropriate locations in the binary blob
  16570. // compute the exact size needed for the new ggml_context
  16571. const size_t mem_size =
  16572. params.no_alloc ?
  16573. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  16574. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  16575. struct ggml_init_params pdata = {
  16576. .mem_size = mem_size,
  16577. .mem_buffer = NULL,
  16578. .no_alloc = params.no_alloc,
  16579. };
  16580. *params.ctx = ggml_init(pdata);
  16581. struct ggml_context * ctx_data = *params.ctx;
  16582. struct ggml_tensor * data = NULL;
  16583. if (!params.no_alloc) {
  16584. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  16585. ok = ok && data != NULL;
  16586. // read the binary blob with the tensor data
  16587. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  16588. if (!ok) {
  16589. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  16590. fclose(file);
  16591. ggml_free(ctx_data);
  16592. gguf_free(ctx);
  16593. return NULL;
  16594. }
  16595. ctx->data = data->data;
  16596. }
  16597. ggml_set_no_alloc(ctx_data, true);
  16598. // create the tensors
  16599. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16600. const int64_t ne[GGML_MAX_DIMS] = {
  16601. ctx->infos[i].ne[0],
  16602. ctx->infos[i].ne[1],
  16603. ctx->infos[i].ne[2],
  16604. ctx->infos[i].ne[3],
  16605. };
  16606. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  16607. ok = ok && cur != NULL;
  16608. ggml_set_name(cur, ctx->infos[i].name.data);
  16609. if (!ok) {
  16610. break;
  16611. }
  16612. // point the data member to the appropriate location in the binary blob using the tensor infos
  16613. if (!params.no_alloc) {
  16614. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  16615. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  16616. }
  16617. }
  16618. if (!ok) {
  16619. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  16620. fclose(file);
  16621. ggml_free(ctx_data);
  16622. gguf_free(ctx);
  16623. return NULL;
  16624. }
  16625. ggml_set_no_alloc(ctx_data, params.no_alloc);
  16626. }
  16627. fclose(file);
  16628. return ctx;
  16629. }
  16630. void gguf_free(struct gguf_context * ctx) {
  16631. if (ctx == NULL) {
  16632. return;
  16633. }
  16634. if (ctx->kv) {
  16635. // free string memory - not great..
  16636. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  16637. struct gguf_kv * kv = &ctx->kv[i];
  16638. if (kv->key.data) {
  16639. GGML_FREE(kv->key.data);
  16640. }
  16641. if (kv->type == GGUF_TYPE_STRING) {
  16642. if (kv->value.str.data) {
  16643. GGML_FREE(kv->value.str.data);
  16644. }
  16645. }
  16646. if (kv->type == GGUF_TYPE_ARRAY) {
  16647. if (kv->value.arr.data) {
  16648. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  16649. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  16650. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  16651. if (str->data) {
  16652. GGML_FREE(str->data);
  16653. }
  16654. }
  16655. }
  16656. GGML_FREE(kv->value.arr.data);
  16657. }
  16658. }
  16659. }
  16660. GGML_FREE(ctx->kv);
  16661. }
  16662. if (ctx->infos) {
  16663. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16664. struct gguf_tensor_info * info = &ctx->infos[i];
  16665. if (info->name.data) {
  16666. GGML_FREE(info->name.data);
  16667. }
  16668. }
  16669. GGML_FREE(ctx->infos);
  16670. }
  16671. GGML_ALIGNED_FREE(ctx);
  16672. }
  16673. const char * gguf_type_name(enum gguf_type type) {
  16674. return GGUF_TYPE_NAME[type];
  16675. }
  16676. int gguf_get_version(const struct gguf_context * ctx) {
  16677. return ctx->header.version;
  16678. }
  16679. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  16680. return ctx->alignment;
  16681. }
  16682. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  16683. return ctx->offset;
  16684. }
  16685. void * gguf_get_data(const struct gguf_context * ctx) {
  16686. return ctx->data;
  16687. }
  16688. int gguf_get_n_kv(const struct gguf_context * ctx) {
  16689. return ctx->header.n_kv;
  16690. }
  16691. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  16692. // return -1 if key not found
  16693. int keyfound = -1;
  16694. const int n_kv = gguf_get_n_kv(ctx);
  16695. for (int i = 0; i < n_kv; ++i) {
  16696. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  16697. keyfound = i;
  16698. break;
  16699. }
  16700. }
  16701. return keyfound;
  16702. }
  16703. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  16704. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16705. return ctx->kv[key_id].key.data;
  16706. }
  16707. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  16708. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16709. return ctx->kv[key_id].type;
  16710. }
  16711. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  16712. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16713. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16714. return ctx->kv[key_id].value.arr.type;
  16715. }
  16716. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  16717. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16718. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16719. return ctx->kv[key_id].value.arr.data;
  16720. }
  16721. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  16722. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16723. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16724. struct gguf_kv * kv = &ctx->kv[key_id];
  16725. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  16726. return str->data;
  16727. }
  16728. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  16729. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16730. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16731. return ctx->kv[key_id].value.arr.n;
  16732. }
  16733. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  16734. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16735. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  16736. return ctx->kv[key_id].value.uint8;
  16737. }
  16738. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  16739. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16740. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  16741. return ctx->kv[key_id].value.int8;
  16742. }
  16743. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  16744. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16745. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  16746. return ctx->kv[key_id].value.uint16;
  16747. }
  16748. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  16749. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16750. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  16751. return ctx->kv[key_id].value.int16;
  16752. }
  16753. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  16754. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16755. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  16756. return ctx->kv[key_id].value.uint32;
  16757. }
  16758. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  16759. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16760. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  16761. return ctx->kv[key_id].value.int32;
  16762. }
  16763. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  16764. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16765. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  16766. return ctx->kv[key_id].value.float32;
  16767. }
  16768. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  16769. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16770. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  16771. return ctx->kv[key_id].value.uint64;
  16772. }
  16773. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  16774. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16775. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  16776. return ctx->kv[key_id].value.int64;
  16777. }
  16778. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  16779. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16780. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  16781. return ctx->kv[key_id].value.float64;
  16782. }
  16783. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  16784. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16785. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  16786. return ctx->kv[key_id].value.bool_;
  16787. }
  16788. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  16789. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16790. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  16791. return ctx->kv[key_id].value.str.data;
  16792. }
  16793. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  16794. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16795. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  16796. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  16797. return &ctx->kv[key_id].value;
  16798. }
  16799. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  16800. return ctx->header.n_tensors;
  16801. }
  16802. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  16803. // return -1 if tensor not found
  16804. int tensorfound = -1;
  16805. const int n_tensors = gguf_get_n_tensors(ctx);
  16806. for (int i = 0; i < n_tensors; ++i) {
  16807. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  16808. tensorfound = i;
  16809. break;
  16810. }
  16811. }
  16812. return tensorfound;
  16813. }
  16814. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  16815. return ctx->infos[i].offset;
  16816. }
  16817. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  16818. return ctx->infos[i].name.data;
  16819. }
  16820. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  16821. return ctx->infos[i].type;
  16822. }
  16823. // returns the index
  16824. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  16825. const int idx = gguf_find_key(ctx, key);
  16826. if (idx >= 0) {
  16827. return idx;
  16828. }
  16829. const int n_kv = gguf_get_n_kv(ctx);
  16830. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  16831. ctx->kv[n_kv].key.n = strlen(key);
  16832. ctx->kv[n_kv].key.data = strdup(key);
  16833. ctx->header.n_kv++;
  16834. return n_kv;
  16835. }
  16836. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  16837. const int idx = gguf_get_or_add_key(ctx, key);
  16838. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  16839. ctx->kv[idx].value.uint8 = val;
  16840. }
  16841. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  16842. const int idx = gguf_get_or_add_key(ctx, key);
  16843. ctx->kv[idx].type = GGUF_TYPE_INT8;
  16844. ctx->kv[idx].value.int8 = val;
  16845. }
  16846. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  16847. const int idx = gguf_get_or_add_key(ctx, key);
  16848. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  16849. ctx->kv[idx].value.uint16 = val;
  16850. }
  16851. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  16852. const int idx = gguf_get_or_add_key(ctx, key);
  16853. ctx->kv[idx].type = GGUF_TYPE_INT16;
  16854. ctx->kv[idx].value.int16 = val;
  16855. }
  16856. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  16857. const int idx = gguf_get_or_add_key(ctx, key);
  16858. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  16859. ctx->kv[idx].value.uint32 = val;
  16860. }
  16861. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  16862. const int idx = gguf_get_or_add_key(ctx, key);
  16863. ctx->kv[idx].type = GGUF_TYPE_INT32;
  16864. ctx->kv[idx].value.int32 = val;
  16865. }
  16866. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  16867. const int idx = gguf_get_or_add_key(ctx, key);
  16868. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  16869. ctx->kv[idx].value.float32 = val;
  16870. }
  16871. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  16872. const int idx = gguf_get_or_add_key(ctx, key);
  16873. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  16874. ctx->kv[idx].value.uint64 = val;
  16875. }
  16876. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  16877. const int idx = gguf_get_or_add_key(ctx, key);
  16878. ctx->kv[idx].type = GGUF_TYPE_INT64;
  16879. ctx->kv[idx].value.int64 = val;
  16880. }
  16881. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  16882. const int idx = gguf_get_or_add_key(ctx, key);
  16883. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  16884. ctx->kv[idx].value.float64 = val;
  16885. }
  16886. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  16887. const int idx = gguf_get_or_add_key(ctx, key);
  16888. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  16889. ctx->kv[idx].value.bool_ = val;
  16890. }
  16891. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  16892. const int idx = gguf_get_or_add_key(ctx, key);
  16893. ctx->kv[idx].type = GGUF_TYPE_STRING;
  16894. ctx->kv[idx].value.str.n = strlen(val);
  16895. ctx->kv[idx].value.str.data = strdup(val);
  16896. }
  16897. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  16898. const int idx = gguf_get_or_add_key(ctx, key);
  16899. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16900. ctx->kv[idx].value.arr.type = type;
  16901. ctx->kv[idx].value.arr.n = n;
  16902. ctx->kv[idx].value.arr.data = GGML_MALLOC(n*gguf_type_size(type));
  16903. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  16904. }
  16905. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  16906. const int idx = gguf_get_or_add_key(ctx, key);
  16907. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16908. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  16909. ctx->kv[idx].value.arr.n = n;
  16910. ctx->kv[idx].value.arr.data = GGML_MALLOC(n*sizeof(struct gguf_str));
  16911. for (int i = 0; i < n; i++) {
  16912. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  16913. str->n = strlen(data[i]);
  16914. str->data = strdup(data[i]);
  16915. }
  16916. }
  16917. // set or add KV pairs from another context
  16918. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  16919. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  16920. switch (src->kv[i].type) {
  16921. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  16922. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  16923. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  16924. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  16925. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  16926. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  16927. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  16928. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  16929. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  16930. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  16931. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  16932. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  16933. case GGUF_TYPE_ARRAY:
  16934. {
  16935. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  16936. const char ** data = GGML_MALLOC(src->kv[i].value.arr.n*sizeof(char *));
  16937. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  16938. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  16939. }
  16940. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  16941. GGML_FREE((void *)data);
  16942. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  16943. GGML_ASSERT(false && "nested arrays not supported");
  16944. } else {
  16945. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  16946. }
  16947. } break;
  16948. default: GGML_ASSERT(false && "invalid type"); break;
  16949. }
  16950. }
  16951. }
  16952. void gguf_add_tensor(
  16953. struct gguf_context * ctx,
  16954. const struct ggml_tensor * tensor) {
  16955. const int idx = ctx->header.n_tensors;
  16956. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  16957. ctx->infos[idx].name.n = strlen(tensor->name);
  16958. ctx->infos[idx].name.data = strdup(tensor->name);
  16959. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  16960. ctx->infos[idx].ne[i] = 1;
  16961. }
  16962. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  16963. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  16964. ctx->infos[idx].ne[i] = tensor->ne[i];
  16965. }
  16966. ctx->infos[idx].type = tensor->type;
  16967. ctx->infos[idx].offset = 0;
  16968. ctx->infos[idx].data = tensor->data;
  16969. ctx->infos[idx].size = ggml_nbytes(tensor);
  16970. if (ctx->header.n_tensors > 0) {
  16971. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  16972. }
  16973. ctx->header.n_tensors++;
  16974. }
  16975. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  16976. const int idx = gguf_find_tensor(ctx, name);
  16977. if (idx < 0) {
  16978. GGML_ASSERT(false && "tensor not found");
  16979. }
  16980. ctx->infos[idx].type = type;
  16981. }
  16982. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  16983. const int idx = gguf_find_tensor(ctx, name);
  16984. if (idx < 0) {
  16985. GGML_ASSERT(false && "tensor not found");
  16986. }
  16987. ctx->infos[idx].data = data;
  16988. ctx->infos[idx].size = size;
  16989. // update offsets
  16990. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  16991. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  16992. }
  16993. }
  16994. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  16995. // fwrite(&val->n, sizeof(val->n), 1, file);
  16996. // fwrite(val->data, sizeof(char), val->n, file);
  16997. //}
  16998. //
  16999. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  17000. // fwrite(val, sizeof(char), size, file);
  17001. //}
  17002. struct gguf_buf {
  17003. void * data;
  17004. size_t size;
  17005. size_t offset;
  17006. };
  17007. static struct gguf_buf gguf_buf_init(size_t size) {
  17008. struct gguf_buf buf = {
  17009. /*buf.data =*/ size == 0 ? NULL : GGML_MALLOC(size),
  17010. /*buf.size =*/ size,
  17011. /*buf.offset =*/ 0,
  17012. };
  17013. return buf;
  17014. }
  17015. static void gguf_buf_free(struct gguf_buf buf) {
  17016. if (buf.data) {
  17017. GGML_FREE(buf.data);
  17018. }
  17019. }
  17020. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  17021. if (buf->offset + size > buf->size) {
  17022. buf->size = 1.5*(buf->offset + size);
  17023. if (buf->data) {
  17024. buf->data = realloc(buf->data, buf->size);
  17025. }
  17026. }
  17027. }
  17028. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  17029. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  17030. if (buf->data) {
  17031. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  17032. }
  17033. buf->offset += sizeof(val->n);
  17034. if (buf->data) {
  17035. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  17036. }
  17037. buf->offset += val->n;
  17038. }
  17039. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  17040. gguf_buf_grow(buf, el_size);
  17041. if (buf->data) {
  17042. memcpy((char *) buf->data + buf->offset, val, el_size);
  17043. }
  17044. buf->offset += el_size;
  17045. }
  17046. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  17047. // write header
  17048. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  17049. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  17050. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  17051. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  17052. // write key-value pairs
  17053. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  17054. struct gguf_kv * kv = &ctx->kv[i];
  17055. gguf_bwrite_str(buf, &kv->key);
  17056. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  17057. switch (kv->type) {
  17058. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  17059. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  17060. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  17061. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  17062. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  17063. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  17064. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  17065. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  17066. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  17067. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  17068. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  17069. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  17070. case GGUF_TYPE_ARRAY:
  17071. {
  17072. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  17073. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  17074. switch (kv->value.arr.type) {
  17075. case GGUF_TYPE_UINT8:
  17076. case GGUF_TYPE_INT8:
  17077. case GGUF_TYPE_UINT16:
  17078. case GGUF_TYPE_INT16:
  17079. case GGUF_TYPE_UINT32:
  17080. case GGUF_TYPE_INT32:
  17081. case GGUF_TYPE_FLOAT32:
  17082. case GGUF_TYPE_UINT64:
  17083. case GGUF_TYPE_INT64:
  17084. case GGUF_TYPE_FLOAT64:
  17085. case GGUF_TYPE_BOOL:
  17086. {
  17087. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  17088. } break;
  17089. case GGUF_TYPE_STRING:
  17090. {
  17091. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  17092. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  17093. }
  17094. } break;
  17095. case GGUF_TYPE_ARRAY:
  17096. default: GGML_ASSERT(false && "invalid type"); break;
  17097. }
  17098. } break;
  17099. default: GGML_ASSERT(false && "invalid type");
  17100. }
  17101. }
  17102. // write tensor infos
  17103. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17104. struct gguf_tensor_info * info = &ctx->infos[i];
  17105. gguf_bwrite_str(buf, &info->name);
  17106. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  17107. for (uint32_t j = 0; j < info->n_dims; ++j) {
  17108. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  17109. }
  17110. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  17111. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  17112. }
  17113. // we require the data section to be aligned, so take into account any padding
  17114. {
  17115. const size_t offset = buf->offset;
  17116. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  17117. if (offset_pad != offset) {
  17118. uint8_t pad = 0;
  17119. for (size_t i = 0; i < offset_pad - offset; ++i) {
  17120. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17121. }
  17122. }
  17123. }
  17124. if (only_meta) {
  17125. return;
  17126. }
  17127. size_t offset = 0;
  17128. // write tensor data
  17129. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17130. struct gguf_tensor_info * info = &ctx->infos[i];
  17131. const size_t size = info->size;
  17132. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  17133. gguf_bwrite_el(buf, info->data, size);
  17134. if (size_pad != size) {
  17135. uint8_t pad = 0;
  17136. for (size_t j = 0; j < size_pad - size; ++j) {
  17137. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17138. }
  17139. }
  17140. GGML_ASSERT(offset == info->offset);
  17141. offset += size_pad;
  17142. }
  17143. }
  17144. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  17145. FILE * file = fopen(fname, "wb");
  17146. if (!file) {
  17147. GGML_ASSERT(false && "failed to open file for writing");
  17148. }
  17149. struct gguf_buf buf = gguf_buf_init(16*1024);
  17150. gguf_write_to_buf(ctx, &buf, only_meta);
  17151. fwrite(buf.data, 1, buf.offset, file);
  17152. gguf_buf_free(buf);
  17153. fclose(file);
  17154. }
  17155. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  17156. // no allocs - only compute size
  17157. struct gguf_buf buf = gguf_buf_init(0);
  17158. gguf_write_to_buf(ctx, &buf, true);
  17159. return buf.offset;
  17160. }
  17161. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  17162. struct gguf_buf buf = gguf_buf_init(16*1024);
  17163. gguf_write_to_buf(ctx, &buf, true);
  17164. memcpy(data, buf.data, buf.offset);
  17165. gguf_buf_free(buf);
  17166. }
  17167. ////////////////////////////////////////////////////////////////////////////////
  17168. int ggml_cpu_has_avx(void) {
  17169. #if defined(__AVX__)
  17170. return 1;
  17171. #else
  17172. return 0;
  17173. #endif
  17174. }
  17175. int ggml_cpu_has_avx_vnni(void) {
  17176. #if defined(__AVXVNNI__)
  17177. return 1;
  17178. #else
  17179. return 0;
  17180. #endif
  17181. }
  17182. int ggml_cpu_has_avx2(void) {
  17183. #if defined(__AVX2__)
  17184. return 1;
  17185. #else
  17186. return 0;
  17187. #endif
  17188. }
  17189. int ggml_cpu_has_avx512(void) {
  17190. #if defined(__AVX512F__)
  17191. return 1;
  17192. #else
  17193. return 0;
  17194. #endif
  17195. }
  17196. int ggml_cpu_has_avx512_vbmi(void) {
  17197. #if defined(__AVX512VBMI__)
  17198. return 1;
  17199. #else
  17200. return 0;
  17201. #endif
  17202. }
  17203. int ggml_cpu_has_avx512_vnni(void) {
  17204. #if defined(__AVX512VNNI__)
  17205. return 1;
  17206. #else
  17207. return 0;
  17208. #endif
  17209. }
  17210. int ggml_cpu_has_fma(void) {
  17211. #if defined(__FMA__)
  17212. return 1;
  17213. #else
  17214. return 0;
  17215. #endif
  17216. }
  17217. int ggml_cpu_has_neon(void) {
  17218. #if defined(__ARM_NEON)
  17219. return 1;
  17220. #else
  17221. return 0;
  17222. #endif
  17223. }
  17224. int ggml_cpu_has_arm_fma(void) {
  17225. #if defined(__ARM_FEATURE_FMA)
  17226. return 1;
  17227. #else
  17228. return 0;
  17229. #endif
  17230. }
  17231. int ggml_cpu_has_metal(void) {
  17232. #if defined(GGML_USE_METAL)
  17233. return 1;
  17234. #else
  17235. return 0;
  17236. #endif
  17237. }
  17238. int ggml_cpu_has_f16c(void) {
  17239. #if defined(__F16C__)
  17240. return 1;
  17241. #else
  17242. return 0;
  17243. #endif
  17244. }
  17245. int ggml_cpu_has_fp16_va(void) {
  17246. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  17247. return 1;
  17248. #else
  17249. return 0;
  17250. #endif
  17251. }
  17252. int ggml_cpu_has_wasm_simd(void) {
  17253. #if defined(__wasm_simd128__)
  17254. return 1;
  17255. #else
  17256. return 0;
  17257. #endif
  17258. }
  17259. int ggml_cpu_has_blas(void) {
  17260. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL)
  17261. return 1;
  17262. #else
  17263. return 0;
  17264. #endif
  17265. }
  17266. int ggml_cpu_has_cublas(void) {
  17267. #if defined(GGML_USE_CUBLAS)
  17268. return 1;
  17269. #else
  17270. return 0;
  17271. #endif
  17272. }
  17273. int ggml_cpu_has_clblast(void) {
  17274. #if defined(GGML_USE_CLBLAST)
  17275. return 1;
  17276. #else
  17277. return 0;
  17278. #endif
  17279. }
  17280. int ggml_cpu_has_vulkan(void) {
  17281. #if defined(GGML_USE_VULKAN)
  17282. return 1;
  17283. #else
  17284. return 0;
  17285. #endif
  17286. }
  17287. int ggml_cpu_has_kompute(void) {
  17288. #if defined(GGML_USE_KOMPUTE)
  17289. return 1;
  17290. #else
  17291. return 0;
  17292. #endif
  17293. }
  17294. int ggml_cpu_has_sycl(void) {
  17295. #if defined(GGML_USE_SYCL)
  17296. return 1;
  17297. #else
  17298. return 0;
  17299. #endif
  17300. }
  17301. int ggml_cpu_has_gpublas(void) {
  17302. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() ||
  17303. ggml_cpu_has_sycl();
  17304. }
  17305. int ggml_cpu_has_sse3(void) {
  17306. #if defined(__SSE3__)
  17307. return 1;
  17308. #else
  17309. return 0;
  17310. #endif
  17311. }
  17312. int ggml_cpu_has_ssse3(void) {
  17313. #if defined(__SSSE3__)
  17314. return 1;
  17315. #else
  17316. return 0;
  17317. #endif
  17318. }
  17319. int ggml_cpu_has_vsx(void) {
  17320. #if defined(__POWER9_VECTOR__)
  17321. return 1;
  17322. #else
  17323. return 0;
  17324. #endif
  17325. }
  17326. int ggml_cpu_has_matmul_int8(void) {
  17327. #if defined(__ARM_FEATURE_MATMUL_INT8)
  17328. return 1;
  17329. #else
  17330. return 0;
  17331. #endif
  17332. }
  17333. ////////////////////////////////////////////////////////////////////////////////