ggml.c 373 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. // if C99 - static_assert is noop
  20. // ref: https://stackoverflow.com/a/53923785/4039976
  21. #ifndef static_assert
  22. #define static_assert(cond, msg) struct global_scope_noop_trick
  23. #endif
  24. #if defined(_WIN32)
  25. #include <windows.h>
  26. typedef volatile LONG atomic_int;
  27. typedef atomic_int atomic_bool;
  28. static void atomic_store(atomic_int* ptr, LONG val) {
  29. InterlockedExchange(ptr, val);
  30. }
  31. static LONG atomic_load(atomic_int* ptr) {
  32. return InterlockedCompareExchange(ptr, 0, 0);
  33. }
  34. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  35. return InterlockedExchangeAdd(ptr, inc);
  36. }
  37. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  38. return atomic_fetch_add(ptr, -(dec));
  39. }
  40. typedef HANDLE pthread_t;
  41. typedef DWORD thread_ret_t;
  42. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  43. (void) unused;
  44. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  45. if (handle == NULL)
  46. {
  47. return EAGAIN;
  48. }
  49. *out = handle;
  50. return 0;
  51. }
  52. static int pthread_join(pthread_t thread, void* unused) {
  53. (void) unused;
  54. return (int) WaitForSingleObject(thread, INFINITE);
  55. }
  56. static int sched_yield (void) {
  57. Sleep (0);
  58. return 0;
  59. }
  60. #else
  61. #include <pthread.h>
  62. #include <stdatomic.h>
  63. typedef void* thread_ret_t;
  64. #endif
  65. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  66. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  67. #ifndef __FMA__
  68. #define __FMA__
  69. #endif
  70. #ifndef __F16C__
  71. #define __F16C__
  72. #endif
  73. #ifndef __SSE3__
  74. #define __SSE3__
  75. #endif
  76. #endif
  77. #ifdef __HAIKU__
  78. #define static_assert(cond, msg) _Static_assert(cond, msg)
  79. #endif
  80. /*#define GGML_PERF*/
  81. #define GGML_DEBUG 0
  82. #define GGML_GELU_FP16
  83. #define GGML_SILU_FP16
  84. #define GGML_SOFT_MAX_UNROLL 4
  85. #define GGML_VEC_DOT_UNROLL 2
  86. #ifdef GGML_USE_ACCELERATE
  87. // uncomment to use vDSP for soft max computation
  88. // note: not sure if it is actually faster
  89. //#define GGML_SOFT_MAX_ACCELERATE
  90. #endif
  91. #if UINTPTR_MAX == 0xFFFFFFFF
  92. #define GGML_MEM_ALIGN 4
  93. #else
  94. #define GGML_MEM_ALIGN 16
  95. #endif
  96. #if defined(_MSC_VER) || defined(__MINGW32__)
  97. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  98. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  99. #else
  100. inline static void* ggml_aligned_malloc(size_t size) {
  101. void* aligned_memory = NULL;
  102. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  103. if (result != 0) {
  104. // Handle allocation failure
  105. return NULL;
  106. }
  107. return aligned_memory;
  108. }
  109. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  110. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  111. #endif
  112. #define UNUSED(x) (void)(x)
  113. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  114. #define GGML_ASSERT(x) \
  115. do { \
  116. if (!(x)) { \
  117. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  118. abort(); \
  119. } \
  120. } while (0)
  121. #ifdef GGML_USE_ACCELERATE
  122. #include <Accelerate/Accelerate.h>
  123. #elif GGML_USE_OPENBLAS
  124. #include <cblas.h>
  125. #endif
  126. #undef MIN
  127. #undef MAX
  128. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  129. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  130. // floating point type used to accumulate sums
  131. typedef double ggml_float;
  132. // 16-bit float
  133. // on Arm, we use __fp16
  134. // on x86, we use uint16_t
  135. #ifdef __ARM_NEON
  136. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  137. //
  138. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  139. //
  140. #include <arm_neon.h>
  141. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  142. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  143. #define GGML_FP16_TO_FP32(x) ((float) (x))
  144. #define GGML_FP32_TO_FP16(x) (x)
  145. #else
  146. #ifdef __wasm_simd128__
  147. #include <wasm_simd128.h>
  148. #else
  149. #ifdef __POWER9_VECTOR__
  150. #include <altivec.h>
  151. #undef bool
  152. #define bool _Bool
  153. #else
  154. #include <immintrin.h>
  155. #endif
  156. #endif
  157. #ifdef __F16C__
  158. #ifdef _MSC_VER
  159. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  160. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  161. #else
  162. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  163. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  164. #endif
  165. #elif defined(__POWER9_VECTOR__)
  166. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  167. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  168. /* the inline asm below is about 12% faster than the lookup method */
  169. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  170. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  171. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  172. register float f;
  173. register double d;
  174. __asm__(
  175. "mtfprd %0,%2\n"
  176. "xscvhpdp %0,%0\n"
  177. "frsp %1,%0\n" :
  178. /* temp */ "=d"(d),
  179. /* out */ "=f"(f):
  180. /* in */ "r"(h));
  181. return f;
  182. }
  183. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  184. register double d;
  185. register ggml_fp16_t r;
  186. __asm__( /* xscvdphp can work on double or single precision */
  187. "xscvdphp %0,%2\n"
  188. "mffprd %1,%0\n" :
  189. /* temp */ "=d"(d),
  190. /* out */ "=r"(r):
  191. /* in */ "f"(f));
  192. return r;
  193. }
  194. #else
  195. // FP16 <-> FP32
  196. // ref: https://github.com/Maratyszcza/FP16
  197. static inline float fp32_from_bits(uint32_t w) {
  198. union {
  199. uint32_t as_bits;
  200. float as_value;
  201. } fp32;
  202. fp32.as_bits = w;
  203. return fp32.as_value;
  204. }
  205. static inline uint32_t fp32_to_bits(float f) {
  206. union {
  207. float as_value;
  208. uint32_t as_bits;
  209. } fp32;
  210. fp32.as_value = f;
  211. return fp32.as_bits;
  212. }
  213. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  214. const uint32_t w = (uint32_t) h << 16;
  215. const uint32_t sign = w & UINT32_C(0x80000000);
  216. const uint32_t two_w = w + w;
  217. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  218. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  219. const float exp_scale = 0x1.0p-112f;
  220. #else
  221. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  222. #endif
  223. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  224. const uint32_t magic_mask = UINT32_C(126) << 23;
  225. const float magic_bias = 0.5f;
  226. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  227. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  228. const uint32_t result = sign |
  229. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  230. return fp32_from_bits(result);
  231. }
  232. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  233. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  234. const float scale_to_inf = 0x1.0p+112f;
  235. const float scale_to_zero = 0x1.0p-110f;
  236. #else
  237. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  238. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  239. #endif
  240. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  241. const uint32_t w = fp32_to_bits(f);
  242. const uint32_t shl1_w = w + w;
  243. const uint32_t sign = w & UINT32_C(0x80000000);
  244. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  245. if (bias < UINT32_C(0x71000000)) {
  246. bias = UINT32_C(0x71000000);
  247. }
  248. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  249. const uint32_t bits = fp32_to_bits(base);
  250. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  251. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  252. const uint32_t nonsign = exp_bits + mantissa_bits;
  253. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  254. }
  255. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  256. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  257. #endif // __F16C__
  258. #endif // __ARM_NEON
  259. //
  260. // global data
  261. //
  262. // precomputed gelu table for f16 (128 KB)
  263. static ggml_fp16_t table_gelu_f16[1 << 16];
  264. // precomputed silu table for f16 (128 KB)
  265. static ggml_fp16_t table_silu_f16[1 << 16];
  266. // precomputed exp table for f16 (128 KB)
  267. static ggml_fp16_t table_exp_f16[1 << 16];
  268. // precomputed f32 table for f16 (256 KB)
  269. static float table_f32_f16[1 << 16];
  270. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  271. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  272. // This is also true for POWER9.
  273. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  274. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  275. uint16_t s;
  276. memcpy(&s, &f, sizeof(uint16_t));
  277. return table_f32_f16[s];
  278. }
  279. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  280. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  281. #endif
  282. // note: do not use these inside ggml.c
  283. // these are meant to be used via the ggml.h API
  284. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  285. return (float) GGML_FP16_TO_FP32(x);
  286. }
  287. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  288. return GGML_FP32_TO_FP16(x);
  289. }
  290. //
  291. // timing
  292. //
  293. #if defined(_MSC_VER) || defined(__MINGW32__)
  294. static int64_t timer_freq;
  295. void ggml_time_init(void) {
  296. LARGE_INTEGER frequency;
  297. QueryPerformanceFrequency(&frequency);
  298. timer_freq = frequency.QuadPart;
  299. }
  300. int64_t ggml_time_ms(void) {
  301. LARGE_INTEGER t;
  302. QueryPerformanceCounter(&t);
  303. return (t.QuadPart * 1000) / timer_freq;
  304. }
  305. int64_t ggml_time_us(void) {
  306. LARGE_INTEGER t;
  307. QueryPerformanceCounter(&t);
  308. return (t.QuadPart * 1000000) / timer_freq;
  309. }
  310. #else
  311. void ggml_time_init(void) {}
  312. int64_t ggml_time_ms(void) {
  313. struct timespec ts;
  314. clock_gettime(CLOCK_MONOTONIC, &ts);
  315. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  316. }
  317. int64_t ggml_time_us(void) {
  318. struct timespec ts;
  319. clock_gettime(CLOCK_MONOTONIC, &ts);
  320. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  321. }
  322. #endif
  323. int64_t ggml_cycles(void) {
  324. return clock();
  325. }
  326. int64_t ggml_cycles_per_ms(void) {
  327. return CLOCKS_PER_SEC/1000;
  328. }
  329. #ifdef GGML_PERF
  330. #define ggml_perf_time_ms() ggml_time_ms()
  331. #define ggml_perf_time_us() ggml_time_us()
  332. #define ggml_perf_cycles() ggml_cycles()
  333. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  334. #else
  335. #define ggml_perf_time_ms() 0
  336. #define ggml_perf_time_us() 0
  337. #define ggml_perf_cycles() 0
  338. #define ggml_perf_cycles_per_ms() 0
  339. #endif
  340. //
  341. // cache line
  342. //
  343. #if defined(__cpp_lib_hardware_interference_size)
  344. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  345. #else
  346. #if defined(__POWER9_VECTOR__)
  347. #define CACHE_LINE_SIZE 128
  348. #else
  349. #define CACHE_LINE_SIZE 64
  350. #endif
  351. #endif
  352. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  353. //
  354. // quantization
  355. //
  356. // AVX routines provided by GH user Const-me
  357. // ref: https://github.com/ggerganov/ggml/pull/27#issuecomment-1464934600
  358. #if __AVX2__ || __AVX512F__
  359. // Unpack 32 4-bit fields into 32 bytes
  360. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  361. static inline __m256i bytesFromNibbles( const uint8_t* rsi )
  362. {
  363. // Load 16 bytes from memory
  364. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  365. // Expand bytes into uint16_t values
  366. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  367. // Unpack values into individual bytes
  368. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  369. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  370. __m256i low = _mm256_and_si256( lowMask, bytes );
  371. high = _mm256_slli_epi16( high, 4 );
  372. bytes = _mm256_or_si256( low, high );
  373. return bytes;
  374. }
  375. static inline __m128i packNibbles( __m256i bytes )
  376. {
  377. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  378. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  379. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  380. __m256i low = _mm256_and_si256( lowByte, bytes );
  381. high = _mm256_srli_epi16( high, 4 );
  382. bytes = _mm256_or_si256( low, high );
  383. // Compress uint16_t lanes into bytes
  384. __m128i r0 = _mm256_castsi256_si128( bytes );
  385. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  386. return _mm_packus_epi16( r0, r1 );
  387. }
  388. #elif __AVX__
  389. static inline __m128i bytesFromNibbles( const uint8_t* rsi )
  390. {
  391. // Load 8 bytes from memory
  392. __m128i tmp = _mm_loadu_si64( ( const __m128i* )rsi );
  393. // Expand bytes into uint16_t values
  394. __m128i bytes = _mm_cvtepu8_epi16( tmp );
  395. // Unpack values into individual bytes
  396. const __m128i lowMask = _mm_set1_epi8( 0xF );
  397. __m128i high = _mm_andnot_si128( lowMask, bytes );
  398. __m128i low = _mm_and_si128( lowMask, bytes );
  399. high = _mm_slli_epi16( high, 4 );
  400. bytes = _mm_or_si128( low, high );
  401. return bytes;
  402. }
  403. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  404. {
  405. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  406. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  407. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  408. __m128i low = _mm_and_si128( lowByte, bytes1 );
  409. high = _mm_srli_epi16( high, 4 );
  410. bytes1 = _mm_or_si128( low, high );
  411. high = _mm_andnot_si128( lowByte, bytes2 );
  412. low = _mm_and_si128( lowByte, bytes2 );
  413. high = _mm_srli_epi16( high, 4 );
  414. bytes2 = _mm_or_si128( low, high );
  415. return _mm_packus_epi16( bytes1, bytes2);
  416. }
  417. #endif
  418. #if __ARM_NEON
  419. #if !defined(__aarch64__)
  420. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  421. return
  422. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  423. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  424. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  425. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  426. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  427. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  428. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  429. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  430. }
  431. inline static int32_t vaddvq_s16(int16x8_t v) {
  432. return
  433. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  434. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  435. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  436. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  437. }
  438. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  439. return
  440. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  441. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  442. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  443. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  444. }
  445. inline static int32_t vaddvq_s32(int32x4_t v) {
  446. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  447. }
  448. inline static float vaddvq_f32(float32x4_t v) {
  449. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  450. }
  451. float vminvq_f32(float32x4_t v) {
  452. return
  453. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  454. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  455. }
  456. float vmaxvq_f32(float32x4_t v) {
  457. return
  458. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  459. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  460. }
  461. int8x8_t vzip1_s8(int8x8_t a, int8x8_t b) {
  462. return vget_low_s8(vcombine_s8(a, b));
  463. }
  464. int8x8_t vzip2_s8(int8x8_t a, int8x8_t b) {
  465. return vget_high_s8(vcombine_s8(a, b));
  466. }
  467. uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) {
  468. return vget_low_u8(vcombine_u8(a, b));
  469. }
  470. uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) {
  471. return vget_high_u8(vcombine_u8(a, b));
  472. }
  473. #endif
  474. #endif
  475. #define QK4_0 32
  476. typedef struct {
  477. float d; // delta
  478. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  479. } block_q4_0;
  480. static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding");
  481. #define QK4_1 32
  482. typedef struct {
  483. float d; // delta
  484. float m; // min
  485. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  486. } block_q4_1;
  487. static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK4_1 / 2, "wrong q4_1 block size/padding");
  488. #define QK8_0 32
  489. typedef struct {
  490. float d; // delta
  491. int8_t qs[QK8_0]; // quants
  492. } block_q8_0;
  493. static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding");
  494. // reference implementation for deterministic creation of model files
  495. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  496. assert(k % QK4_0 == 0);
  497. const int nb = k / QK4_0;
  498. uint8_t pp[QK4_0/2];
  499. for (int i = 0; i < nb; i++) {
  500. float amax = 0.0f; // absolute max
  501. for (int l = 0; l < QK4_0; l++) {
  502. const float v = x[i*QK4_0 + l];
  503. amax = MAX(amax, fabsf(v));
  504. }
  505. const float d = amax / ((1 << 3) - 1);
  506. const float id = d ? 1.0f/d : 0.0f;
  507. y[i].d = d;
  508. for (int l = 0; l < QK4_0; l += 2) {
  509. const float v0 = x[i*QK4_0 + l + 0]*id;
  510. const float v1 = x[i*QK4_0 + l + 1]*id;
  511. const uint8_t vi0 = (int8_t)roundf(v0) + 8;
  512. const uint8_t vi1 = (int8_t)roundf(v1) + 8;
  513. assert(vi0 < 16);
  514. assert(vi1 < 16);
  515. pp[l/2] = vi0 | (vi1 << 4);
  516. }
  517. memcpy(y[i].qs, pp, sizeof(pp));
  518. }
  519. }
  520. static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int k) {
  521. assert(k % QK4_0 == 0);
  522. const int nb = k / QK4_0;
  523. block_q4_0 * restrict y = vy;
  524. #if defined(__POWER9_VECTOR__)
  525. const vector float v85 = vec_splats(8.5f);
  526. for (int i = 0; i < nb; i++) {
  527. float amax = 0.0f; // absolute max
  528. vector float srcv [8];
  529. vector float asrcv[8];
  530. vector float amaxv[8];
  531. for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
  532. for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
  533. for (int l = 0; l < 4; l++) amaxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
  534. //for (int l = 0; l < 2; l++) amaxv[4*l] = vec_max(amaxv[4*l], amaxv[4*l+2]);
  535. amaxv[0] = vec_max(amaxv[0], amaxv[2]);
  536. amaxv[4] = vec_max(amaxv[4], amaxv[6]);
  537. //for (int l = 0; l < 1; l++) amaxv[8*l] = vec_max(amaxv[8*l], amaxv[8*l+4]);
  538. amaxv[0] = vec_max(amaxv[0], amaxv[4]);
  539. amax = MAX(
  540. MAX(vec_extract(amaxv[0], 0), vec_extract(amaxv[0], 1)),
  541. MAX(vec_extract(amaxv[0], 2), vec_extract(amaxv[0], 3)));
  542. const float d = amax / ((1 << 3) - 1);
  543. const float id = d ? 1.0/d : 0.0;
  544. y[i].d = d;
  545. const vector float vid = vec_splats(id);
  546. uint8_t * restrict pb = y[i].qs;
  547. for (int l = 0; l < 8; l++) {
  548. const vector float vf = vec_madd(srcv[l], vid, v85);
  549. const vector signed int vi = vec_signed(vf);
  550. pb[2*l + 0] = vec_extract(vi, 0) | (vec_extract(vi, 1) << 4);
  551. pb[2*l + 1] = vec_extract(vi, 2) | (vec_extract(vi, 3) << 4);
  552. }
  553. }
  554. #elif __ARM_NEON
  555. for (int i = 0; i < nb; i++) {
  556. float32x4_t srcv [8];
  557. float32x4_t asrcv[8];
  558. float32x4_t amaxv[8];
  559. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  560. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  561. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  562. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  563. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  564. const float amax = vmaxvq_f32(amaxv[0]);
  565. const float d = amax / ((1 << 3) - 1);
  566. const float id = d ? 1.0f/d : 0.0f;
  567. y[i].d = d;
  568. for (int l = 0; l < 8; l++) {
  569. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  570. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  571. const int32x4_t vi = vcvtq_s32_f32(vf);
  572. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  573. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  574. }
  575. }
  576. #elif defined(__AVX2__)
  577. for (int i = 0; i < nb; i++) {
  578. // Load elements into 4 AVX vectors
  579. __m256 v0 = _mm256_loadu_ps( x );
  580. __m256 v1 = _mm256_loadu_ps( x + 8 );
  581. __m256 v2 = _mm256_loadu_ps( x + 16 );
  582. __m256 v3 = _mm256_loadu_ps( x + 24 );
  583. x += 32;
  584. // Compute max(abs(e)) for the block
  585. const __m256 signBit = _mm256_set1_ps( -0.0f );
  586. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  587. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  588. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  589. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  590. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  591. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  592. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  593. const float maxScalar = _mm_cvtss_f32( max4 );
  594. // Quantize these floats
  595. const float d = maxScalar / 7.0f;
  596. y[i].d = d;
  597. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  598. const __m256 mul = _mm256_set1_ps( id );
  599. // Apply the multiplier
  600. v0 = _mm256_mul_ps( v0, mul );
  601. v1 = _mm256_mul_ps( v1, mul );
  602. v2 = _mm256_mul_ps( v2, mul );
  603. v3 = _mm256_mul_ps( v3, mul );
  604. // Round to nearest integer
  605. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  606. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  607. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  608. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  609. // Convert floats to integers
  610. __m256i i0 = _mm256_cvtps_epi32( v0 );
  611. __m256i i1 = _mm256_cvtps_epi32( v1 );
  612. __m256i i2 = _mm256_cvtps_epi32( v2 );
  613. __m256i i3 = _mm256_cvtps_epi32( v3 );
  614. // Convert int32 to int16
  615. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  616. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  617. // Convert int16 to int8
  618. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  619. // We got our precious signed bytes, but the order is now wrong
  620. // These AVX2 pack instructions process 16-byte pieces independently
  621. // The following instruction is fixing the order
  622. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  623. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  624. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  625. const __m256i off = _mm256_set1_epi8( 8 );
  626. i0 = _mm256_add_epi8( i0, off );
  627. // Compress the vector into 4 bit/value, and store
  628. __m128i res = packNibbles( i0 );
  629. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  630. }
  631. #elif defined(__AVX__)
  632. for (int i = 0; i < nb; i++) {
  633. // Load elements into 4 AVX vectors
  634. __m256 v0 = _mm256_loadu_ps( x );
  635. __m256 v1 = _mm256_loadu_ps( x + 8 );
  636. __m256 v2 = _mm256_loadu_ps( x + 16 );
  637. __m256 v3 = _mm256_loadu_ps( x + 24 );
  638. x += 32;
  639. // Compute max(abs(e)) for the block
  640. const __m256 signBit = _mm256_set1_ps( -0.0f );
  641. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  642. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  643. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  644. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  645. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  646. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  647. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  648. const float maxScalar = _mm_cvtss_f32( max4 );
  649. // Quantize these floats
  650. const float d = maxScalar / 7.0f;
  651. y[i].d = d;
  652. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  653. const __m256 mul = _mm256_set1_ps( id );
  654. // Apply the multiplier
  655. v0 = _mm256_mul_ps( v0, mul );
  656. v1 = _mm256_mul_ps( v1, mul );
  657. v2 = _mm256_mul_ps( v2, mul );
  658. v3 = _mm256_mul_ps( v3, mul );
  659. // Round to nearest integer
  660. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  661. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  662. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  663. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  664. // Convert floats to integers
  665. __m256i i0 = _mm256_cvtps_epi32( v0 );
  666. __m256i i1 = _mm256_cvtps_epi32( v1 );
  667. __m256i i2 = _mm256_cvtps_epi32( v2 );
  668. __m256i i3 = _mm256_cvtps_epi32( v3 );
  669. // Since we don't have in AVX some necessary functions,
  670. // we split the registers in half and call AVX2 analogs from SSE
  671. __m128i ni0 = _mm256_castsi256_si128( i0 );
  672. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  673. __m128i ni2 = _mm256_castsi256_si128( i1 );
  674. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  675. __m128i ni4 = _mm256_castsi256_si128( i2 );
  676. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  677. __m128i ni6 = _mm256_castsi256_si128( i3 );
  678. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  679. // Convert int32 to int16
  680. ni0 = _mm_packs_epi32( ni0, ni1 );
  681. ni2 = _mm_packs_epi32( ni2, ni3 );
  682. ni4 = _mm_packs_epi32( ni4, ni5 );
  683. ni6 = _mm_packs_epi32( ni6, ni7 );
  684. // Convert int16 to int8
  685. ni0 = _mm_packs_epi16( ni0, ni2 );
  686. ni4 = _mm_packs_epi16( ni4, ni6 );
  687. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  688. const __m128i off = _mm_set1_epi8( 8);
  689. ni0 = _mm_add_epi8( ni0, off );
  690. ni4 = _mm_add_epi8( ni4, off );
  691. // Compress the vector into 4 bit/value, and store
  692. __m128i res = packNibbles( ni0, ni4 );
  693. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  694. }
  695. #elif defined(__wasm_simd128__)
  696. for (int i = 0; i < nb; i++) {
  697. float amax = 0.0f; // absolute max
  698. v128_t srcv [8];
  699. v128_t asrcv[8];
  700. v128_t amaxv[8];
  701. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  702. for (int l = 0; l < 8; l++) asrcv[l] = wasm_f32x4_abs(srcv[l]);
  703. for (int l = 0; l < 4; l++) amaxv[2*l] = wasm_f32x4_max(asrcv[2*l], asrcv[2*l+1]);
  704. for (int l = 0; l < 2; l++) amaxv[4*l] = wasm_f32x4_max(amaxv[4*l], amaxv[4*l+2]);
  705. for (int l = 0; l < 1; l++) amaxv[8*l] = wasm_f32x4_max(amaxv[8*l], amaxv[8*l+4]);
  706. amax = MAX(
  707. MAX(wasm_f32x4_extract_lane(amaxv[0], 0), wasm_f32x4_extract_lane(amaxv[0], 1)),
  708. MAX(wasm_f32x4_extract_lane(amaxv[0], 2), wasm_f32x4_extract_lane(amaxv[0], 3)));
  709. const float d = amax / ((1 << 3) - 1);
  710. const float id = d ? 1.0/d : 0.0;
  711. y[i].d = d;
  712. for (int l = 0; l < 8; l++) {
  713. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  714. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  715. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  716. y[i].qs[2*l + 0] = wasm_i32x4_extract_lane(vi, 0) | (wasm_i32x4_extract_lane(vi, 1) << 4);
  717. y[i].qs[2*l + 1] = wasm_i32x4_extract_lane(vi, 2) | (wasm_i32x4_extract_lane(vi, 3) << 4);
  718. }
  719. }
  720. #else
  721. // scalar
  722. quantize_row_q4_0_reference(x, y, k);
  723. #endif
  724. }
  725. static void quantize_row_q4_1_reference(const float * restrict x, void * restrict vy, int k) {
  726. assert(k % QK4_1 == 0);
  727. const int nb = k / QK4_1;
  728. block_q4_1 * restrict y = vy;
  729. uint8_t pp[QK4_1/2];
  730. for (int i = 0; i < nb; i++) {
  731. float min = FLT_MAX;
  732. float max = -FLT_MAX;
  733. for (int l = 0; l < QK4_1; l++) {
  734. const float v = x[i*QK4_1 + l];
  735. if (v < min) min = v;
  736. if (v > max) max = v;
  737. }
  738. const float d = (max - min) / ((1 << 4) - 1);
  739. const float id = d ? 1.0f/d : 0.0f;
  740. y[i].d = d;
  741. y[i].m = min;
  742. for (int l = 0; l < QK4_1; l += 2) {
  743. const float v0 = (x[i*QK4_1 + l + 0] - min)*id;
  744. const float v1 = (x[i*QK4_1 + l + 1] - min)*id;
  745. const uint8_t vi0 = roundf(v0);
  746. const uint8_t vi1 = roundf(v1);
  747. assert(vi0 < 16);
  748. assert(vi1 < 16);
  749. pp[l/2] = vi0 | (vi1 << 4);
  750. }
  751. memcpy(y[i].qs, pp, sizeof(pp));
  752. }
  753. }
  754. static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int k) {
  755. assert(k % QK4_1 == 0);
  756. const int nb = k / QK4_1;
  757. block_q4_1 * restrict y = vy;
  758. #if defined(__AVX2__)
  759. for (int i = 0; i < nb; i++) {
  760. // Load elements into 4 AVX vectors
  761. __m256 v0 = _mm256_loadu_ps( x );
  762. __m256 v1 = _mm256_loadu_ps( x + 8 );
  763. __m256 v2 = _mm256_loadu_ps( x + 16 );
  764. __m256 v3 = _mm256_loadu_ps( x + 24 );
  765. x += 32;
  766. // Compute max for the block
  767. __m256 vmax;
  768. vmax = _mm256_max_ps( v0, v1 );
  769. vmax = _mm256_max_ps( vmax, v2 );
  770. vmax = _mm256_max_ps( vmax, v3 );
  771. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( vmax, 1 ), _mm256_castps256_ps128( vmax ) );
  772. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  773. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  774. const float maxScalar = _mm_cvtss_f32( max4 );
  775. // Compute min for the block
  776. __m256 vmin;
  777. vmin = _mm256_min_ps( v0, v1 );
  778. vmin = _mm256_min_ps( vmin, v2 );
  779. vmin = _mm256_min_ps( vmin, v3 );
  780. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( vmin, 1 ), _mm256_castps256_ps128( vmin ) );
  781. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  782. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  783. const float minScalar = _mm_cvtss_f32( min4 );
  784. // Quantize these floats
  785. const float d = (maxScalar - minScalar) / ((1 << 4) - 1);
  786. const float id = d ? 1.0f/d : 0.0f;
  787. y[i].m = minScalar;
  788. y[i].d = d;
  789. // x = (x-min)*id
  790. const __m256 mul = _mm256_set1_ps( id );
  791. const __m256 off = _mm256_set1_ps( minScalar );
  792. v0 = _mm256_mul_ps( _mm256_sub_ps( v0, off ), mul );
  793. v1 = _mm256_mul_ps( _mm256_sub_ps( v1, off ), mul );
  794. v2 = _mm256_mul_ps( _mm256_sub_ps( v2, off ), mul );
  795. v3 = _mm256_mul_ps( _mm256_sub_ps( v3, off ), mul );
  796. // Round to nearest integer
  797. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  798. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  799. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  800. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  801. // Convert floats to integers
  802. __m256i i0 = _mm256_cvtps_epi32( v0 );
  803. __m256i i1 = _mm256_cvtps_epi32( v1 );
  804. __m256i i2 = _mm256_cvtps_epi32( v2 );
  805. __m256i i3 = _mm256_cvtps_epi32( v3 );
  806. // Convert int32 to int16
  807. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  808. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  809. // Convert int16 to int8
  810. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  811. // We got our precious signed bytes, but the order is now wrong
  812. // These AVX2 pack instructions process 16-byte pieces independently
  813. // The following instruction is fixing the order
  814. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  815. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  816. // Compress the vector into 4 bit/value, and store
  817. __m128i res = packNibbles( i0 );
  818. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  819. }
  820. #elif __ARM_NEON
  821. for (int i = 0; i < nb; i++) {
  822. float32x4_t srcv[8];
  823. float32x4_t minv[8];
  824. float32x4_t maxv[8];
  825. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*QK4_1 + 4*l);
  826. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l + 1]);
  827. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l + 2]);
  828. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l + 4]);
  829. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l + 1]);
  830. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l + 2]);
  831. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l + 4]);
  832. const float min = vminvq_f32(minv[0]);
  833. const float max = vmaxvq_f32(maxv[0]);
  834. const float d = (max - min) / ((1 << 4) - 1);
  835. const float id = d ? 1.0f/d : 0.0f;
  836. y[i].d = d;
  837. y[i].m = min;
  838. const float32x4_t minv0 = vdupq_n_f32(min);
  839. for (int l = 0; l < 8; l++) {
  840. const float32x4_t v = vmulq_n_f32(vsubq_f32(srcv[l], minv0), id);
  841. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(0.5f)); // needed to round to nearest
  842. const int32x4_t vi = vcvtq_s32_f32(vf);
  843. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  844. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  845. }
  846. }
  847. #else
  848. // scalar
  849. quantize_row_q4_1_reference(x, vy, k);
  850. #endif
  851. }
  852. // reference implementation for deterministic creation of model files
  853. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  854. assert(k % QK8_0 == 0);
  855. const int nb = k / QK8_0;
  856. for (int i = 0; i < nb; i++) {
  857. float amax = 0.0f; // absolute max
  858. for (int l = 0; l < QK8_0; l++) {
  859. const float v = x[i*QK8_0 + l];
  860. amax = MAX(amax, fabsf(v));
  861. }
  862. const float d = amax / ((1 << 7) - 1);
  863. const float id = d ? 1.0f/d : 0.0f;
  864. y[i].d = d;
  865. for (int l = 0; l < QK8_0; ++l) {
  866. const float v = x[i*QK8_0 + l]*id;
  867. y[i].qs[l] = roundf(v);
  868. }
  869. }
  870. }
  871. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  872. assert(k % QK8_0 == 0);
  873. const int nb = k / QK8_0;
  874. block_q8_0 * restrict y = vy;
  875. #if defined(__ARM_NEON)
  876. for (int i = 0; i < nb; i++) {
  877. float32x4_t srcv [8];
  878. float32x4_t asrcv[8];
  879. float32x4_t amaxv[8];
  880. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  881. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  882. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  883. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  884. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  885. const float amax = vmaxvq_f32(amaxv[0]);
  886. const float d = amax / ((1 << 7) - 1);
  887. const float id = d ? 1.0f/d : 0.0f;
  888. y[i].d = d;
  889. for (int l = 0; l < 8; l++) {
  890. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  891. const int32x4_t vi = vcvtnq_s32_f32(v);
  892. y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0);
  893. y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1);
  894. y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2);
  895. y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3);
  896. }
  897. }
  898. #elif defined(__AVX2__) || defined(__AVX__)
  899. for (int i = 0; i < nb; i++) {
  900. // Load elements into 4 AVX vectors
  901. __m256 v0 = _mm256_loadu_ps( x );
  902. __m256 v1 = _mm256_loadu_ps( x + 8 );
  903. __m256 v2 = _mm256_loadu_ps( x + 16 );
  904. __m256 v3 = _mm256_loadu_ps( x + 24 );
  905. x += 32;
  906. // Compute max(abs(e)) for the block
  907. const __m256 signBit = _mm256_set1_ps( -0.0f );
  908. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  909. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  910. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  911. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  912. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  913. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  914. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  915. const float maxScalar = _mm_cvtss_f32( max4 );
  916. // Quantize these floats
  917. const float d = maxScalar / 127.f;
  918. y[i].d = d;
  919. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  920. const __m256 mul = _mm256_set1_ps( id );
  921. // Apply the multiplier
  922. v0 = _mm256_mul_ps( v0, mul );
  923. v1 = _mm256_mul_ps( v1, mul );
  924. v2 = _mm256_mul_ps( v2, mul );
  925. v3 = _mm256_mul_ps( v3, mul );
  926. // Round to nearest integer
  927. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  928. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  929. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  930. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  931. // Convert floats to integers
  932. __m256i i0 = _mm256_cvtps_epi32( v0 );
  933. __m256i i1 = _mm256_cvtps_epi32( v1 );
  934. __m256i i2 = _mm256_cvtps_epi32( v2 );
  935. __m256i i3 = _mm256_cvtps_epi32( v3 );
  936. #if defined(__AVX2__)
  937. // Convert int32 to int16
  938. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  939. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  940. // Convert int16 to int8
  941. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  942. // We got our precious signed bytes, but the order is now wrong
  943. // These AVX2 pack instructions process 16-byte pieces independently
  944. // The following instruction is fixing the order
  945. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  946. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  947. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  948. #else
  949. // Since we don't have in AVX some necessary functions,
  950. // we split the registers in half and call AVX2 analogs from SSE
  951. __m128i ni0 = _mm256_castsi256_si128( i0 );
  952. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  953. __m128i ni2 = _mm256_castsi256_si128( i1 );
  954. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  955. __m128i ni4 = _mm256_castsi256_si128( i2 );
  956. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  957. __m128i ni6 = _mm256_castsi256_si128( i3 );
  958. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  959. // Convert int32 to int16
  960. ni0 = _mm_packs_epi32( ni0, ni1 );
  961. ni2 = _mm_packs_epi32( ni2, ni3 );
  962. ni4 = _mm_packs_epi32( ni4, ni5 );
  963. ni6 = _mm_packs_epi32( ni6, ni7 );
  964. // Convert int16 to int8
  965. ni0 = _mm_packs_epi16( ni0, ni2 );
  966. ni4 = _mm_packs_epi16( ni4, ni6 );
  967. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  968. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  969. #endif
  970. }
  971. #else
  972. // scalar
  973. quantize_row_q8_0_reference(x, y, k);
  974. #endif
  975. }
  976. static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, int k) {
  977. assert(k % QK4_0 == 0);
  978. const int nb = k / QK4_0;
  979. const block_q4_0 * restrict x = vx;
  980. #if defined(__AVX2__)
  981. for (int i = 0; i < nb; i++) {
  982. // scale factor
  983. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  984. const uint8_t * restrict pp = x[i].qs;
  985. for (int l = 0; l < QK4_0; l += 32) {
  986. // Load 32x4-bit integers into 32x8-bit integers
  987. __m256i vx8 = bytesFromNibbles(pp+l/2);
  988. // Subtract 8 from the integers
  989. vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8));
  990. // Convert to 16-bit int
  991. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  992. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  993. // Convert to 32-bit int -> float 32
  994. const __m256 vf[4] = {
  995. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  996. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  997. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  998. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  999. };
  1000. // Scale and store
  1001. for (int j = 0; j < 4; j++) {
  1002. const __m256 result = _mm256_mul_ps(vf[j], d_v);
  1003. _mm256_storeu_ps(y + i * QK4_0 + l + j*8, result);
  1004. }
  1005. }
  1006. }
  1007. #elif defined(__ARM_NEON)
  1008. for (int i = 0; i < nb; i++) {
  1009. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1010. const uint8_t * restrict pp = x[i].qs;
  1011. for (int l = 0; l < QK4_0; l += 16) {
  1012. // Load 16x4-bit integers into 8x8-bit integers
  1013. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1014. // Expand 4-bit qs to 8-bit bytes
  1015. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  1016. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1017. // Convert to signed 8-bit integers
  1018. const int8x8_t vs_0 = vreinterpret_s8_u8(v0);
  1019. const int8x8_t vs_1 = vreinterpret_s8_u8(v1);
  1020. // Subtract 8 from each byte
  1021. const int8x8_t vb_0 = vsub_s8(vs_0, vdup_n_s8(8));
  1022. const int8x8_t vb_1 = vsub_s8(vs_1, vdup_n_s8(8));
  1023. // Interleave and combine
  1024. const int8x8_t vx_0 = vzip1_s8(vb_0, vb_1);
  1025. const int8x8_t vx_1 = vzip2_s8(vb_0, vb_1);
  1026. const int8x16_t vq = vcombine_s8(vx_0, vx_1);
  1027. // convert to 2x int16x8_t
  1028. const int16x8_t vi_0 = vmovl_s8(vget_low_s8 (vq));
  1029. const int16x8_t vi_1 = vmovl_s8(vget_high_s8(vq));
  1030. // convert to 4x float32x4_t
  1031. const float32x4_t vf_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_0)));
  1032. const float32x4_t vf_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_0)));
  1033. const float32x4_t vf_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_1)));
  1034. const float32x4_t vf_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_1)));
  1035. // Multiply by d
  1036. const float32x4_t r0 = vmulq_f32(vf_0, vd);
  1037. const float32x4_t r1 = vmulq_f32(vf_1, vd);
  1038. const float32x4_t r2 = vmulq_f32(vf_2, vd);
  1039. const float32x4_t r3 = vmulq_f32(vf_3, vd);
  1040. // Store
  1041. vst1q_f32(y + i*QK4_0 + l + 0, r0);
  1042. vst1q_f32(y + i*QK4_0 + l + 4, r1);
  1043. vst1q_f32(y + i*QK4_0 + l + 8, r2);
  1044. vst1q_f32(y + i*QK4_0 + l + 12, r3);
  1045. }
  1046. }
  1047. #else
  1048. // scalar
  1049. for (int i = 0; i < nb; i++) {
  1050. const float d = x[i].d;
  1051. const uint8_t * restrict pp = x[i].qs;
  1052. for (int l = 0; l < QK4_0; l += 2) {
  1053. const uint8_t vi = pp[l/2];
  1054. const int8_t vi0 = vi & 0xf;
  1055. const int8_t vi1 = vi >> 4;
  1056. const float v0 = (vi0 - 8)*d;
  1057. const float v1 = (vi1 - 8)*d;
  1058. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  1059. y[i*QK4_0 + l + 0] = v0;
  1060. y[i*QK4_0 + l + 1] = v1;
  1061. assert(!isnan(y[i*QK4_0 + l + 0]));
  1062. assert(!isnan(y[i*QK4_0 + l + 1]));
  1063. }
  1064. }
  1065. #endif
  1066. }
  1067. static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, int k) {
  1068. assert(k % QK4_1 == 0);
  1069. const int nb = k / QK4_1;
  1070. const block_q4_1 * restrict x = vx;
  1071. #if defined(__AVX2__)
  1072. for (int i = 0; i < nb; i++) {
  1073. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1074. const __m256 d_m = _mm256_broadcast_ss(&x[i].m);
  1075. const uint8_t * restrict pp = x[i].qs;
  1076. for (int l = 0; l < QK4_1; l += 32) {
  1077. // Load 32x4-bit integers into 32x8-bit integers
  1078. __m256i vx8 = bytesFromNibbles(pp+l/2);
  1079. // Convert to 16-bit int
  1080. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1081. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1082. // Convert to 32-bit int -> float 32
  1083. const __m256 vf[4] = {
  1084. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1085. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1086. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1087. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1088. };
  1089. // Scale, add m and store
  1090. for (int j = 0; j < 4; j++) {
  1091. const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m);
  1092. _mm256_storeu_ps(y + i * QK4_1 + l + j*8, result);
  1093. }
  1094. }
  1095. }
  1096. #elif defined(__ARM_NEON)
  1097. for (int i = 0; i < nb; i++) {
  1098. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1099. const float32x4_t vm = vdupq_n_f32(x[i].m);
  1100. const uint8_t * restrict pp = x[i].qs;
  1101. for (int l = 0; l < QK4_1; l += 16) {
  1102. // Load 16x4-bit integers into 8x8-bit integers
  1103. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1104. // Expand 4-bit qs to 8-bit bytes
  1105. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  1106. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1107. // Interleave and combine
  1108. const uint8x8_t vx_0 = vzip1_u8(v0, v1);
  1109. const uint8x8_t vx_1 = vzip2_u8(v0, v1);
  1110. const uint8x16_t vq = vcombine_u8(vx_0, vx_1);
  1111. // convert to 2x uint16x8_t
  1112. const uint16x8_t vi_0 = vmovl_u8(vget_low_u8 (vq));
  1113. const uint16x8_t vi_1 = vmovl_u8(vget_high_u8(vq));
  1114. // convert to 4x float32x4_t
  1115. const float32x4_t vf_0 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_0)));
  1116. const float32x4_t vf_1 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_0)));
  1117. const float32x4_t vf_2 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_1)));
  1118. const float32x4_t vf_3 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_1)));
  1119. // multiply by d and add m
  1120. const float32x4_t r0 = vmlaq_f32(vm, vf_0, vd);
  1121. const float32x4_t r1 = vmlaq_f32(vm, vf_1, vd);
  1122. const float32x4_t r2 = vmlaq_f32(vm, vf_2, vd);
  1123. const float32x4_t r3 = vmlaq_f32(vm, vf_3, vd);
  1124. // Store
  1125. vst1q_f32(y + i*QK4_1 + l + 0, r0);
  1126. vst1q_f32(y + i*QK4_1 + l + 4, r1);
  1127. vst1q_f32(y + i*QK4_1 + l + 8, r2);
  1128. vst1q_f32(y + i*QK4_1 + l + 12, r3);
  1129. }
  1130. }
  1131. #else
  1132. for (int i = 0; i < nb; i++) {
  1133. const float d = x[i].d;
  1134. const float m = x[i].m;
  1135. const uint8_t * restrict pp = x[i].qs;
  1136. for (int l = 0; l < QK4_1; l += 2) {
  1137. const uint8_t vi = pp[l/2];
  1138. const int8_t vi0 = vi & 0xf;
  1139. const int8_t vi1 = vi >> 4;
  1140. const float v0 = vi0*d + m;
  1141. const float v1 = vi1*d + m;
  1142. y[i*QK4_1 + l + 0] = v0;
  1143. y[i*QK4_1 + l + 1] = v1;
  1144. assert(!isnan(y[i*QK4_1 + l + 0]));
  1145. assert(!isnan(y[i*QK4_1 + l + 1]));
  1146. }
  1147. }
  1148. #endif
  1149. }
  1150. static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1151. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1152. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  1153. [GGML_TYPE_Q4_0] = {
  1154. .dequantize_row_q = dequantize_row_q4_0,
  1155. .quantize_row_q = quantize_row_q4_0,
  1156. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  1157. .quantize_row_q_dot = quantize_row_q8_0,
  1158. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  1159. },
  1160. [GGML_TYPE_Q4_1] = {
  1161. .dequantize_row_q = dequantize_row_q4_1,
  1162. .quantize_row_q = quantize_row_q4_1,
  1163. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  1164. .quantize_row_q_dot = quantize_row_q4_1,
  1165. .vec_dot_q = ggml_vec_dot_q4_1,
  1166. },
  1167. // TODO: GGML_TYPE_Q8_0
  1168. };
  1169. // For internal test use
  1170. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  1171. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1172. return quantize_fns[i];
  1173. }
  1174. //
  1175. // simd mappings
  1176. //
  1177. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1178. // we then implement the fundamental computation operations below using only these macros
  1179. // adding support for new architectures requires to define the corresponding SIMD macros
  1180. //
  1181. // GGML_F32_STEP / GGML_F16_STEP
  1182. // number of elements to process in a single step
  1183. //
  1184. // GGML_F32_EPR / GGML_F16_EPR
  1185. // number of elements to fit in a single register
  1186. //
  1187. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1188. #define GGML_SIMD
  1189. // F32 NEON
  1190. #define GGML_F32_STEP 16
  1191. #define GGML_F32_EPR 4
  1192. #define GGML_F32x4 float32x4_t
  1193. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1194. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1195. #define GGML_F32x4_LOAD vld1q_f32
  1196. #define GGML_F32x4_STORE vst1q_f32
  1197. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1198. #define GGML_F32x4_ADD vaddq_f32
  1199. #define GGML_F32x4_MUL vmulq_f32
  1200. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1201. #define GGML_F32x4_REDUCE(res, x) \
  1202. { \
  1203. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1204. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1205. } \
  1206. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1207. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1208. } \
  1209. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1210. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1211. } \
  1212. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1213. }
  1214. #define GGML_F32_VEC GGML_F32x4
  1215. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1216. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1217. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1218. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1219. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1220. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1221. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1222. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1223. // F16 NEON
  1224. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1225. #define GGML_F16_STEP 32
  1226. #define GGML_F16_EPR 8
  1227. #define GGML_F16x8 float16x8_t
  1228. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1229. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1230. #define GGML_F16x8_LOAD vld1q_f16
  1231. #define GGML_F16x8_STORE vst1q_f16
  1232. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1233. #define GGML_F16x8_ADD vaddq_f16
  1234. #define GGML_F16x8_MUL vmulq_f16
  1235. #define GGML_F16x8_REDUCE(res, x) \
  1236. { \
  1237. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1238. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1239. } \
  1240. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1241. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1242. } \
  1243. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1244. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1245. } \
  1246. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1247. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1248. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1249. }
  1250. #define GGML_F16_VEC GGML_F16x8
  1251. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1252. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1253. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1254. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1255. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1256. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1257. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1258. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1259. #else
  1260. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1261. // and take advantage of the vcvt_ functions to convert to/from FP16
  1262. #define GGML_F16_STEP 16
  1263. #define GGML_F16_EPR 4
  1264. #define GGML_F32Cx4 float32x4_t
  1265. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1266. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1267. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1268. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1269. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1270. #define GGML_F32Cx4_ADD vaddq_f32
  1271. #define GGML_F32Cx4_MUL vmulq_f32
  1272. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1273. #define GGML_F16_VEC GGML_F32Cx4
  1274. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1275. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1276. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1277. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1278. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1279. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1280. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1281. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1282. #endif
  1283. #elif defined(__AVX__)
  1284. #define GGML_SIMD
  1285. // F32 AVX
  1286. #define GGML_F32_STEP 32
  1287. #define GGML_F32_EPR 8
  1288. #define GGML_F32x8 __m256
  1289. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1290. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1291. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1292. #define GGML_F32x8_STORE _mm256_storeu_ps
  1293. #if defined(__FMA__)
  1294. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1295. #else
  1296. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1297. #endif
  1298. #define GGML_F32x8_ADD _mm256_add_ps
  1299. #define GGML_F32x8_MUL _mm256_mul_ps
  1300. #define GGML_F32x8_REDUCE(res, x) \
  1301. { \
  1302. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1303. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1304. } \
  1305. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1306. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1307. } \
  1308. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1309. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1310. } \
  1311. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1312. _mm256_extractf128_ps(x[0], 1)); \
  1313. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1314. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1315. }
  1316. // TODO: is this optimal ?
  1317. #define GGML_F32_VEC GGML_F32x8
  1318. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1319. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1320. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1321. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1322. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1323. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1324. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1325. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1326. // F16 AVX
  1327. #define GGML_F16_STEP 32
  1328. #define GGML_F16_EPR 8
  1329. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1330. #define GGML_F32Cx8 __m256
  1331. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1332. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1333. #if defined(__F16C__)
  1334. // the _mm256_cvt intrinsics require F16C
  1335. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1336. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1337. #else
  1338. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1339. float tmp[8];
  1340. for (int i = 0; i < 8; i++)
  1341. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1342. return _mm256_loadu_ps(tmp);
  1343. }
  1344. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1345. float arr[8];
  1346. _mm256_storeu_ps(arr, y);
  1347. for (int i = 0; i < 8; i++)
  1348. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1349. }
  1350. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1351. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1352. #endif
  1353. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1354. #define GGML_F32Cx8_ADD _mm256_add_ps
  1355. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1356. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1357. #define GGML_F16_VEC GGML_F32Cx8
  1358. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1359. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1360. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1361. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1362. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1363. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1364. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1365. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1366. #elif defined(__POWER9_VECTOR__)
  1367. #define GGML_SIMD
  1368. // F32 POWER9
  1369. #define GGML_F32_STEP 32
  1370. #define GGML_F32_EPR 4
  1371. #define GGML_F32x4 vector float
  1372. #define GGML_F32x4_ZERO 0.0f
  1373. #define GGML_F32x4_SET1 vec_splats
  1374. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1375. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1376. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1377. #define GGML_F32x4_ADD vec_add
  1378. #define GGML_F32x4_MUL vec_mul
  1379. #define GGML_F32x4_REDUCE(res, x) \
  1380. { \
  1381. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1382. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1383. } \
  1384. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1385. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1386. } \
  1387. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1388. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1389. } \
  1390. res = vec_extract(x[0], 0) + \
  1391. vec_extract(x[0], 1) + \
  1392. vec_extract(x[0], 2) + \
  1393. vec_extract(x[0], 3); \
  1394. }
  1395. #define GGML_F32_VEC GGML_F32x4
  1396. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1397. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1398. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1399. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1400. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1401. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1402. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1403. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1404. // F16 POWER9
  1405. #define GGML_F16_STEP GGML_F32_STEP
  1406. #define GGML_F16_EPR GGML_F32_EPR
  1407. #define GGML_F16_VEC GGML_F32x4
  1408. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1409. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1410. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1411. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1412. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1413. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1414. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1415. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1416. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1417. #define GGML_F16_VEC_STORE(p, r, i) \
  1418. if (i & 0x1) \
  1419. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1420. r[i - GGML_ENDIAN_BYTE(0)]), \
  1421. 0, p - GGML_F16_EPR)
  1422. #elif defined(__wasm_simd128__)
  1423. #define GGML_SIMD
  1424. // F32 WASM
  1425. #define GGML_F32_STEP 16
  1426. #define GGML_F32_EPR 4
  1427. #define GGML_F32x4 v128_t
  1428. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1429. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1430. #define GGML_F32x4_LOAD wasm_v128_load
  1431. #define GGML_F32x4_STORE wasm_v128_store
  1432. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1433. #define GGML_F32x4_ADD wasm_f32x4_add
  1434. #define GGML_F32x4_MUL wasm_f32x4_mul
  1435. #define GGML_F32x4_REDUCE(res, x) \
  1436. { \
  1437. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1438. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1439. } \
  1440. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1441. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1442. } \
  1443. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1444. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1445. } \
  1446. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1447. wasm_f32x4_extract_lane(x[0], 1) + \
  1448. wasm_f32x4_extract_lane(x[0], 2) + \
  1449. wasm_f32x4_extract_lane(x[0], 3); \
  1450. }
  1451. #define GGML_F32_VEC GGML_F32x4
  1452. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1453. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1454. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1455. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1456. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1457. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1458. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1459. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1460. // F16 WASM
  1461. #define GGML_F16_STEP 16
  1462. #define GGML_F16_EPR 4
  1463. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1464. float tmp[4];
  1465. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1466. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1467. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1468. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1469. return wasm_v128_load(tmp);
  1470. }
  1471. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1472. float tmp[4];
  1473. wasm_v128_store(tmp, x);
  1474. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1475. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1476. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1477. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1478. }
  1479. #define GGML_F16x4 v128_t
  1480. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1481. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1482. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1483. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1484. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1485. #define GGML_F16x4_ADD wasm_f32x4_add
  1486. #define GGML_F16x4_MUL wasm_f32x4_mul
  1487. #define GGML_F16x4_REDUCE(res, x) \
  1488. { \
  1489. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1490. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1491. } \
  1492. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1493. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1494. } \
  1495. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1496. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1497. } \
  1498. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1499. wasm_f32x4_extract_lane(x[0], 1) + \
  1500. wasm_f32x4_extract_lane(x[0], 2) + \
  1501. wasm_f32x4_extract_lane(x[0], 3); \
  1502. }
  1503. #define GGML_F16_VEC GGML_F16x4
  1504. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1505. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1506. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1507. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1508. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1509. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1510. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1511. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1512. #elif defined(__SSE3__)
  1513. #define GGML_SIMD
  1514. // F32 SSE
  1515. #define GGML_F32_STEP 32
  1516. #define GGML_F32_EPR 4
  1517. #define GGML_F32x4 __m128
  1518. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1519. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1520. #define GGML_F32x4_LOAD _mm_loadu_ps
  1521. #define GGML_F32x4_STORE _mm_storeu_ps
  1522. #if defined(__FMA__)
  1523. // TODO: Does this work?
  1524. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1525. #else
  1526. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1527. #endif
  1528. #define GGML_F32x4_ADD _mm_add_ps
  1529. #define GGML_F32x4_MUL _mm_mul_ps
  1530. #define GGML_F32x4_REDUCE(res, x) \
  1531. { \
  1532. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1533. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1534. } \
  1535. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1536. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1537. } \
  1538. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1539. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1540. } \
  1541. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1542. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1543. }
  1544. // TODO: is this optimal ?
  1545. #define GGML_F32_VEC GGML_F32x4
  1546. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1547. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1548. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1549. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1550. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1551. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1552. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1553. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1554. // F16 SSE
  1555. #define GGML_F16_STEP 32
  1556. #define GGML_F16_EPR 4
  1557. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1558. float tmp[4];
  1559. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1560. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1561. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1562. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1563. return _mm_loadu_ps(tmp);
  1564. }
  1565. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1566. float arr[4];
  1567. _mm_storeu_ps(arr, y);
  1568. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1569. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1570. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1571. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1572. }
  1573. #define GGML_F32Cx4 __m128
  1574. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1575. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1576. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1577. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1578. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1579. #define GGML_F32Cx4_ADD _mm_add_ps
  1580. #define GGML_F32Cx4_MUL _mm_mul_ps
  1581. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1582. #define GGML_F16_VEC GGML_F32Cx4
  1583. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1584. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1585. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1586. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1587. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1588. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1589. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1590. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1591. #endif
  1592. // GGML_F32_ARR / GGML_F16_ARR
  1593. // number of registers to use per step
  1594. #ifdef GGML_SIMD
  1595. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1596. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1597. #endif
  1598. //
  1599. // fundamental operations
  1600. //
  1601. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1602. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1603. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1604. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1605. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1606. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1607. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1608. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1609. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1610. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1611. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1612. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1613. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1614. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1615. #ifdef GGML_SIMD
  1616. float sumf = 0.0f;
  1617. const int np = (n & ~(GGML_F32_STEP - 1));
  1618. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1619. GGML_F32_VEC ax[GGML_F32_ARR];
  1620. GGML_F32_VEC ay[GGML_F32_ARR];
  1621. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1622. for (int j = 0; j < GGML_F32_ARR; j++) {
  1623. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1624. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1625. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1626. }
  1627. }
  1628. // reduce sum0..sum3 to sum0
  1629. GGML_F32_VEC_REDUCE(sumf, sum);
  1630. // leftovers
  1631. for (int i = np; i < n; ++i) {
  1632. sumf += x[i]*y[i];
  1633. }
  1634. #else
  1635. // scalar
  1636. ggml_float sumf = 0.0;
  1637. for (int i = 0; i < n; ++i) {
  1638. sumf += (ggml_float)(x[i]*y[i]);
  1639. }
  1640. #endif
  1641. *s = sumf;
  1642. }
  1643. #if __AVX512F__ && QK4_0 == 32
  1644. static inline __m512i bytes_from_q4_0_twoblocks_avx512( const __m512i blocks ) {
  1645. // The 64 bytes of `blocks` contain two consecutive Q4_0 blocks loaded from memory:
  1646. // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
  1647. // |63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32|
  1648. // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
  1649. // | :. =_ () [] <> () Zz Yy|
  1650. // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
  1651. // |31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00|
  1652. // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
  1653. // |Xx Ww Vv Uu Tt Ss Rr Qq Pp Oo Nn Mm Ll Kk Jj Ii Hh Gg Ff Ee Dd Cc Bb Aa |
  1654. // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
  1655. //
  1656. // Bytes 04..19 (block #0) and 24..39 (block #1) both contain 32 nibbles (4-bit unsigned integers).
  1657. // We have exactly 64 nibbles, so we want to place each nibble into a separate byte.
  1658. // Bytes 00..03 and 20..23 contain scales, which are irrelevant to this function.
  1659. // Bytes 40..63 are masked when loading the data, so they are zeroed out.
  1660. #ifdef __AVX512VBMI__
  1661. const __m512i byte_perm = _mm512_set_epi8(
  1662. 39, 38, 39, 38, 37, 36, 37, 36, 35, 34, 35, 34, 33, 32, 33, 32,
  1663. 31, 30, 31, 30, 29, 28, 29, 28, 27, 26, 27, 26, 25, 24, 25, 24,
  1664. 19, 18, 19, 18, 17, 16, 17, 16, 15, 14, 15, 14, 13, 12, 13, 12,
  1665. 11, 10, 11, 10, 9, 8, 9, 8, 7, 6, 7, 6, 5, 4, 5, 4
  1666. );
  1667. const __m512i permuted = _mm512_permutexvar_epi8( byte_perm, blocks );
  1668. // After applying VPERMB, `permuted` looks like this:
  1669. // +-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
  1670. // |63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32|
  1671. // +-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
  1672. // |:. =_ :. =_ () [] () [] <> () <> () Zz Yy Zz Yy Xx Ww Xx Ww Vv Uu Vv Uu Tt Ss Tt Ss Rr Qq Rr Qq|
  1673. // +-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
  1674. // |31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00|
  1675. // +-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
  1676. // |Pp Oo Pp Oo Nn Mm Nn Mm Ll Kk Ll Kk Jj Ii Jj Ii Hh Gg Hh Gg Ff Ee Ff Ee Dd Cc Dd Cc Bb Aa Bb Aa|
  1677. // +-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
  1678. #else
  1679. const __m512i word_perm = _mm512_set_epi16(
  1680. 19, 19, 18, 18, 17, 17, 16, 16, 15, 15, 14, 14, 13, 13, 12, 12,
  1681. 9, 9, 8, 8, 7, 7, 6, 6, 5, 5, 4, 4, 3, 3, 2, 2
  1682. );
  1683. const __m512i permuted = _mm512_permutexvar_epi16( word_perm, blocks );
  1684. // This is the fallback path for CPUs that don't support VPERMB. Since we permute 16-bit groups only,
  1685. // VPERMB can be replaced with VPERMW. We could always use VPERMW, but at least on Tiger Lake and
  1686. // Ice Lake VPERMW followed by a right shift is quite noticeably slower than VPERMB.
  1687. #endif
  1688. // Shift every odd-numbered 16-bit group to the right by 4 bits.
  1689. const __mmask32 shift_mask = 0xaaaaaaaa;
  1690. const __m512i shifted = _mm512_mask_srai_epi16( permuted, shift_mask, permuted, 4 );
  1691. // After applying VPSRAW, `shifted` looks like this (the "empty" nibbles are filled with zeroes):
  1692. // +-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
  1693. // |63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
  1694. // +-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
  1695. // | : .= :. =_ ( )[ () [] < >( <> () Z zY Zz Yy X xW Xx Ww V vU Vv Uu T tS Tt Ss R rQ Rr Qq
  1696. // +-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
  1697. // |31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00|
  1698. // +-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
  1699. // | P pO Pp Oo N nM Nn Mm L lK Ll Kk J jI Jj Ii H hG Hh Gg F fE Ff Ee D dC Dd Cc B bA Bb Aa|
  1700. // +-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
  1701. // Now we just need to zero out the higher nibble in each byte, and we're done.
  1702. const __m512i low_nibble_mask = _mm512_set1_epi8( 0xf );
  1703. return _mm512_and_si512( low_nibble_mask, shifted );
  1704. // The final result looks like this:
  1705. // +-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
  1706. // |63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32|
  1707. // +-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
  1708. // | : = . _ ( [ ) ] < ( > ) Z Y z y X W x w V U v u T S t s R Q r q|
  1709. // +-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
  1710. // |31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00|
  1711. // +-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
  1712. // | P O p o N M n m L K l k J I j i H G h g F E f e D C d c B A b a|
  1713. // +-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
  1714. }
  1715. static inline __m512 dot_q4_0_twoblocks_avx512(
  1716. __m512 acc,
  1717. const block_q4_0 * restrict x,
  1718. const block_q4_0 * restrict y,
  1719. int i
  1720. ) {
  1721. // A pair of Q4_0 blocks spans 40 bytes, while an AVX-512 register has 64. The remaining 24 bytes
  1722. // can potentially be unaddressable, so we make sure to mask them out before the load, even though
  1723. // we don't use them at all. This might hurt the performance slightly, since the compiler is forced
  1724. // to use e.g. `VMOVDQU64 REG, MASK, [ADDR] + VPERMB ..., REG` instead of just `VPERMB ..., [ADDR]`.
  1725. const __mmask8 load_mask = 0x1f;
  1726. const __m512i blocks_0 = _mm512_maskz_loadu_epi64( load_mask, &x[i] );
  1727. const __m512i blocks_1 = _mm512_maskz_loadu_epi64( load_mask, &y[i] );
  1728. // We want to multiply the scales, so we interpret both registers as 16 32-bit floats:
  1729. // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
  1730. // | 15 | 14 | 13 | 12 | 11 | 10 | 09 | 08 | 07 | 06 | 05 | 04 | 03 | 02 | 01 | 00 |
  1731. // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
  1732. // blocks_0_float
  1733. // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
  1734. // | | | | | | | xx | xx | xx | xx | B | xx | xx | xx | xx | A |
  1735. // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
  1736. // blocks_1_float
  1737. // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
  1738. // | | | | | | | xx | xx | xx | xx | D | xx | xx | xx | xx | C |
  1739. // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
  1740. const __m512 blocks_0_float = _mm512_castsi512_ps( blocks_0 );
  1741. const __m512 blocks_1_float = _mm512_castsi512_ps( blocks_1 );
  1742. // We absolutely shouldn't touch the floats marked with `xx`: they contain some
  1743. // random data, which might very well underflow. At least on Intel, this leads
  1744. // to a huge penalty that can't be ignored (easily 100x or more) unless you
  1745. // compile your code with something like `-ffast-math` to enable FTZ/DAZ flags.
  1746. // (and ggml can't assume that you do)...
  1747. const __mmask16 scale_mul_mask = 0x21;
  1748. #ifdef __clang__
  1749. // ...however, clang decides to optimize the multiplication mask away:
  1750. // https://godbolt.org/z/P8PqdsfvW
  1751. // gcc and MSVC do the sane thing. This horrible workaround forces clang to emit the mask.
  1752. __m512i scales;
  1753. __asm__(
  1754. "vmulps %1, %2, %0%{%3%}"
  1755. : "=v" ( scales )
  1756. : "vm" ( blocks_0_float ), "v" ( blocks_1_float ), "Yk" ( scale_mul_mask )
  1757. );
  1758. #else
  1759. const __m512 scales = _mm512_maskz_mul_ps( scale_mul_mask, blocks_0_float, blocks_1_float );
  1760. #endif
  1761. const __m512i scale_perm = _mm512_set_epi32(
  1762. 5, 5, 5, 5, 5, 5, 5, 5,
  1763. 0, 0, 0, 0, 0, 0, 0, 0
  1764. );
  1765. const __m512 permuted_scales = _mm512_permutexvar_ps( scale_perm, scales );
  1766. // After VMULPS and VPERMPS, `permuted_scales` looks like this:
  1767. // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
  1768. // | 15 | 14 | 13 | 12 | 11 | 10 | 09 | 08 | 07 | 06 | 05 | 04 | 03 | 02 | 01 | 00 |
  1769. // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
  1770. // | B*D| B*D| B*D| B*D| B*D| B*D| B*D| B*D| A*C| A*C| A*C| A*C| A*C| A*C| A*C| A*C|
  1771. // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
  1772. const __m512i bytes_0 = bytes_from_q4_0_twoblocks_avx512( blocks_0 );
  1773. const __m512i bytes_1 = bytes_from_q4_0_twoblocks_avx512( blocks_1 );
  1774. // Now we want to compute dot products of 4-element byte vectors and store them in
  1775. // 32-bit integers. That is (only one 4-element vector is shown for clarity):
  1776. // +----+----+----+----+
  1777. // ... | 03 | 02 | 01 | 00 |
  1778. // +----+----+----+----+
  1779. // bytes_0
  1780. // +----+----+----+----+
  1781. // ... | D | C | B | A |
  1782. // +----+----+----+----+
  1783. // bytes_1
  1784. // +----+----+----+----+
  1785. // ... | H | G | F | E |
  1786. // +----+----+----+----+
  1787. // final_res_int
  1788. // +----+----+----+----+
  1789. // ... | A*E+B*F+C*G+D*H |
  1790. // +----+----+----+----+
  1791. const __m512i plus_8 = _mm512_set1_epi8( 8 );
  1792. const __m512i bytes_1_minus_8 = _mm512_sub_epi8( bytes_1, plus_8 );
  1793. #ifdef __AVX512VNNI__
  1794. // We have VPDPBUSDS in AVX512-VNNI, which does exactly what we want, but with a catch:
  1795. // the *left* operand is supposed to be unsigned, while Q4_0 quantization subtracts 8
  1796. // from each nibble, so they can be negative. So, instead of `(bytes_0 - 8) * (bytes_1 - 8)`,
  1797. // we compute `bytes_0 * (bytes_1 - 8) + bytes_1 * (-8) + 64`. VPDPBUSDS uses an accumulator,
  1798. // which means we only need 2 instructions.
  1799. const __m512i dot_init = _mm512_set1_epi32( 4 * 64 );
  1800. const __m512i minus_8 = _mm512_set1_epi8( -8 );
  1801. const __m512i prod_0 = _mm512_dpbusds_epi32( dot_init, bytes_1, minus_8 );
  1802. const __m512i final_res_int = _mm512_dpbusds_epi32( prod_0, bytes_0, bytes_1_minus_8 );
  1803. #else
  1804. // As a fallback, we have VPMADDUBSW in AVX512-BW, which uses 16-bit products instead of 32-bit ones.
  1805. // It has the same catch as VPDPBUSDS: the left operand should be unsigned.
  1806. // This is essentially the AVX-512 version of the AVX-2 trick used by GH user Const-me
  1807. // ref: https://gist.github.com/Const-me/4d30e1fc767ab314596e16e90f53b6f4#file-matmultest-cpp-L119
  1808. const __m512i one = _mm512_set1_epi16( 1 );
  1809. const __m512i prod_0 = _mm512_maddubs_epi16( bytes_0, bytes_1_minus_8 );
  1810. const __m512i prod_1 = _mm512_maddubs_epi16( plus_8, bytes_1_minus_8 );
  1811. const __m512i diff = _mm512_sub_epi16( prod_0, prod_1 );
  1812. const __m512i final_res_int = _mm512_madd_epi16( diff, one );
  1813. #endif
  1814. // Finally, we multiply the permuted scales and the 32-bit dot products, then accumulate.
  1815. const __m512 final_res_float = _mm512_cvtepi32_ps( final_res_int );
  1816. return _mm512_fmadd_ps( permuted_scales, final_res_float, acc );
  1817. }
  1818. #endif
  1819. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1820. ggml_float sumf = 0.0;
  1821. #if defined(GGML_SIMD)
  1822. const int np = (n & ~(GGML_F16_STEP - 1));
  1823. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1824. GGML_F16_VEC ax[GGML_F16_ARR];
  1825. GGML_F16_VEC ay[GGML_F16_ARR];
  1826. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1827. for (int j = 0; j < GGML_F16_ARR; j++) {
  1828. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1829. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1830. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1831. }
  1832. }
  1833. // reduce sum0..sum3 to sum0
  1834. GGML_F16_VEC_REDUCE(sumf, sum);
  1835. // leftovers
  1836. for (int i = np; i < n; ++i) {
  1837. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1838. }
  1839. #else
  1840. for (int i = 0; i < n; ++i) {
  1841. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1842. }
  1843. #endif
  1844. *s = sumf;
  1845. }
  1846. static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1847. const int nb = n / QK4_0;
  1848. assert(n % QK4_0 == 0);
  1849. assert(nb % 2 == 0);
  1850. const block_q4_0 * restrict x = vx;
  1851. const block_q4_0 * restrict y = vy;
  1852. float sumf = 0.0;
  1853. #if defined(__ARM_NEON)
  1854. float sum0 = 0.0f;
  1855. float sum1 = 0.0f;
  1856. for (int i = 0; i < nb; i += 2) {
  1857. const block_q4_0 * restrict x0 = &x[i + 0];
  1858. const block_q4_0 * restrict y0 = &y[i + 0];
  1859. const block_q4_0 * restrict x1 = &x[i + 1];
  1860. const block_q4_0 * restrict y1 = &y[i + 1];
  1861. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1862. const int8x16_t s8b = vdupq_n_s8(0x8);
  1863. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1864. const uint8x16_t v1_0 = vld1q_u8(y0->qs);
  1865. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1866. const uint8x16_t v1_1 = vld1q_u8(y1->qs);
  1867. // 4-bit -> 8-bit
  1868. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8(v0_0, m4b));
  1869. const int8x16_t v1_0l = vreinterpretq_s8_u8(vandq_u8(v1_0, m4b));
  1870. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1871. const int8x16_t v1_0h = vreinterpretq_s8_u8(vshrq_n_u8(v1_0, 4));
  1872. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8(v0_1, m4b));
  1873. const int8x16_t v1_1l = vreinterpretq_s8_u8(vandq_u8(v1_1, m4b));
  1874. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1875. const int8x16_t v1_1h = vreinterpretq_s8_u8(vshrq_n_u8(v1_1, 4));
  1876. // sub 8
  1877. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1878. const int8x16_t v1_0ls = vsubq_s8(v1_0l, s8b);
  1879. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1880. const int8x16_t v1_0hs = vsubq_s8(v1_0h, s8b);
  1881. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1882. const int8x16_t v1_1ls = vsubq_s8(v1_1l, s8b);
  1883. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1884. const int8x16_t v1_1hs = vsubq_s8(v1_1h, s8b);
  1885. #if defined(__ARM_FEATURE_DOTPROD)
  1886. // dot product into int32x4_t
  1887. int32x4_t p_0 = vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls);
  1888. int32x4_t p_1 = vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls);
  1889. p_0 = vdotq_s32(p_0, v0_0hs, v1_0hs);
  1890. p_1 = vdotq_s32(p_1, v0_1hs, v1_1hs);
  1891. sum0 += x0->d*y0->d*vaddvq_s32(p_0);
  1892. sum1 += x1->d*y1->d*vaddvq_s32(p_1);
  1893. #else
  1894. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls));
  1895. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls));
  1896. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs));
  1897. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs));
  1898. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls));
  1899. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls));
  1900. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs));
  1901. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs));
  1902. const int16x8_t pl_0 = vaddq_s16(pl0l, pl0h);
  1903. const int16x8_t ph_0 = vaddq_s16(ph0l, ph0h);
  1904. const int16x8_t pl_1 = vaddq_s16(pl1l, pl1h);
  1905. const int16x8_t ph_1 = vaddq_s16(ph1l, ph1h);
  1906. const int16x8_t p_0 = vaddq_s16(pl_0, ph_0);
  1907. const int16x8_t p_1 = vaddq_s16(pl_1, ph_1);
  1908. sum0 += x0->d*y0->d*vaddvq_s16(p_0);
  1909. sum1 += x1->d*y1->d*vaddvq_s16(p_1);
  1910. #endif
  1911. }
  1912. sumf = sum0 + sum1;
  1913. #elif defined(__AVX512F__)
  1914. // Initialize accumulator with zeros
  1915. __m512 acc0 = _mm512_setzero_ps();
  1916. __m512 acc1 = _mm512_setzero_ps();
  1917. const int superblock_size = 16;
  1918. const int superblock_count = nb / superblock_size;
  1919. for (int superblock_ix = 0; superblock_ix < superblock_count; superblock_ix += 1) {
  1920. int i = superblock_ix * superblock_size;
  1921. acc0 = dot_q4_0_twoblocks_avx512( acc0, x, y, i+0 );
  1922. acc1 = dot_q4_0_twoblocks_avx512( acc1, x, y, i+2 );
  1923. acc0 = dot_q4_0_twoblocks_avx512( acc0, x, y, i+4 );
  1924. acc1 = dot_q4_0_twoblocks_avx512( acc1, x, y, i+6 );
  1925. acc0 = dot_q4_0_twoblocks_avx512( acc0, x, y, i+8 );
  1926. acc1 = dot_q4_0_twoblocks_avx512( acc1, x, y, i+10 );
  1927. acc0 = dot_q4_0_twoblocks_avx512( acc0, x, y, i+12 );
  1928. acc1 = dot_q4_0_twoblocks_avx512( acc1, x, y, i+14 );
  1929. }
  1930. // Remainders
  1931. for (int i = superblock_count * superblock_size; i < nb; i += 2) {
  1932. acc0 = dot_q4_0_twoblocks_avx512( acc0, x, y, i );
  1933. }
  1934. // Horizontal sum of all lanes of the accumulator
  1935. sumf = _mm512_reduce_add_ps( acc0 ) + _mm512_reduce_add_ps( acc1 );
  1936. #elif defined(__AVX2__)
  1937. // Initialize accumulator with zeros
  1938. __m256 acc = _mm256_setzero_ps();
  1939. /* Prepare the constants we will need during execution */
  1940. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  1941. const __m256i offset_8 = _mm256_set1_epi16( 8 );
  1942. #define UNROLL_COUNT 8
  1943. // make sure we only unroll multiples of the block count
  1944. assert(nb % UNROLL_COUNT == 0);
  1945. // Main loop
  1946. for (int i = 0; i < nb; i+=UNROLL_COUNT) {
  1947. // This loop will be unrolled by the compiler
  1948. for (int u=0;u<UNROLL_COUNT;u++) {
  1949. /* Compute combined scale for the block */
  1950. const __m256 scale = _mm256_mul_ps(
  1951. _mm256_broadcast_ss( &x[i+u].d ),
  1952. _mm256_broadcast_ss( &y[i+u].d ) );
  1953. /* get input from x
  1954. Input: 32 Nibbles (16 bytes) at *x[i+u]
  1955. Output: 2 vectors with 16 values of type int16_t (x_high_q, x_low_q) */
  1956. /* Load 16 bytes from memory */
  1957. const __m128i tmp_x = _mm_loadu_si128( ( const __m128i* ) x[i+u].qs);
  1958. /* Expand bytes into uint16_t values */
  1959. const __m256i bytes_x = _mm256_cvtepu8_epi16(tmp_x);
  1960. /* Unpack values into individual bytes */
  1961. __m256i x_low_q = _mm256_and_si256( lowMask, bytes_x );
  1962. const __m256i pre_shift_x_high_q = _mm256_andnot_si256( lowMask, bytes_x );
  1963. __m256i x_high_q = _mm256_srli_epi16( pre_shift_x_high_q, 4 );
  1964. /* Now we have two vectors with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval. */
  1965. x_high_q = _mm256_sub_epi16( x_high_q, offset_8 );
  1966. x_low_q = _mm256_sub_epi16( x_low_q, offset_8 );
  1967. /* get input from y
  1968. Input: 32 Nibbles (16 bytes) at *y[i+u]
  1969. Output: 2 vectors with 16 values of type int16_t (y_high_q, y_low_q) */
  1970. /* Load 16 bytes from memory */
  1971. const __m128i tmp_y = _mm_loadu_si128( (const __m128i* ) y[i+u].qs);
  1972. /* Expand bytes into uint16_t values */
  1973. const __m256i bytes_y = _mm256_cvtepu8_epi16(tmp_y);
  1974. /* Unpack values into individual bytes */
  1975. const __m256i pre_shift_y_high_q = _mm256_andnot_si256( lowMask, bytes_y );
  1976. __m256i y_high_q = _mm256_srli_epi16( pre_shift_y_high_q, 4 );
  1977. __m256i y_low_q = _mm256_and_si256( lowMask, bytes_y );
  1978. /* Now we have two vectors with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval. */
  1979. y_high_q = _mm256_sub_epi16( y_high_q, offset_8 );
  1980. y_low_q = _mm256_sub_epi16( y_low_q, offset_8 );
  1981. /* Compute products of int16_t integers, add pairwise, store as int32_t */
  1982. __m256i xy_high_q = _mm256_madd_epi16( x_high_q, y_high_q );
  1983. __m256i xy_low_q = _mm256_madd_epi16( x_low_q, y_low_q );
  1984. /* Accumulate the products of int32_t integers -> we now have a vector of 8 int_32t */
  1985. __m256i xy_q = _mm256_add_epi32( xy_high_q, xy_low_q );
  1986. /* Convert to vectore of 8 int32_t to 8 floats */
  1987. __m256 q = _mm256_cvtepi32_ps( xy_q );
  1988. /* Multiply q with scale and accumulate */
  1989. acc = _mm256_fmadd_ps( scale, q, acc );
  1990. }
  1991. }
  1992. // Return horizontal sum of the acc vector
  1993. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1994. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1995. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1996. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1997. sumf = _mm_cvtss_f32( res );
  1998. #elif defined(__AVX__)
  1999. // Initialize accumulator with zeros
  2000. __m256 acc = _mm256_setzero_ps();
  2001. // Main loop
  2002. for (int i = 0; i < nb; ++i) {
  2003. // Compute combined scale for the block
  2004. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2005. __m128i i32[2];
  2006. for (int j = 0; j < 2; ++j) {
  2007. // Load 8 bytes, and unpack 4 bit fields into bytes, making 16 bytes
  2008. __m128i bx = bytesFromNibbles( x[i].qs + 8*j );
  2009. __m128i by = bytesFromNibbles( y[i].qs + 8*j );
  2010. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2011. const __m128i off = _mm_set1_epi8( 8 );
  2012. bx = _mm_sub_epi8( bx, off );
  2013. by = _mm_sub_epi8( by, off );
  2014. // Get absolute values of x vectors
  2015. const __m128i ax = _mm_sign_epi8(bx, bx);
  2016. // Sign the values of the y vectors
  2017. const __m128i sy = _mm_sign_epi8(by, bx);
  2018. // Perform multiplication and create 16-bit values
  2019. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  2020. const __m128i ones = _mm_set1_epi16(1);
  2021. i32[j] = _mm_madd_epi16(ones, dot);
  2022. }
  2023. // Convert int32_t to float
  2024. __m256 p = _mm256_cvtepi32_ps( _mm256_set_m128i( i32[0], i32[1] ));
  2025. // Apply the scale, and accumulate
  2026. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2027. }
  2028. // Return horizontal sum of the acc vector
  2029. __m128 res = _mm256_extractf128_ps( acc, 1 );
  2030. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  2031. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  2032. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  2033. sumf = _mm_cvtss_f32( res );
  2034. #elif defined(__wasm_simd128__)
  2035. // wasm simd
  2036. float sum0 = 0.0f;
  2037. float sum1 = 0.0f;
  2038. for (int i = 0; i < nb; i += 2) {
  2039. const block_q4_0 * restrict x0 = &x[i + 0];
  2040. const block_q4_0 * restrict y0 = &y[i + 0];
  2041. const block_q4_0 * restrict x1 = &x[i + 1];
  2042. const block_q4_0 * restrict y1 = &y[i + 1];
  2043. const v128_t m4b = wasm_u8x16_splat(0xf);
  2044. const v128_t s8b = wasm_i8x16_splat(0x8);
  2045. const v128_t v0_0 = wasm_v128_load(x0->qs);
  2046. const v128_t v0_1 = wasm_v128_load(y0->qs);
  2047. const v128_t v1_0 = wasm_v128_load(x1->qs);
  2048. const v128_t v1_1 = wasm_v128_load(y1->qs);
  2049. // 4-bit -> 8-bit
  2050. const v128_t v0_0l = wasm_v128_and(v0_0, m4b);
  2051. const v128_t v1_0l = wasm_v128_and(v1_0, m4b);
  2052. const v128_t v0_0h = wasm_u8x16_shr(v0_0, 4);
  2053. const v128_t v1_0h = wasm_u8x16_shr(v1_0, 4);
  2054. const v128_t v0_1l = wasm_v128_and(v0_1, m4b);
  2055. const v128_t v1_1l = wasm_v128_and(v1_1, m4b);
  2056. const v128_t v0_1h = wasm_u8x16_shr(v0_1, 4);
  2057. const v128_t v1_1h = wasm_u8x16_shr(v1_1, 4);
  2058. // sub 8
  2059. const v128_t v0_0ls = wasm_i8x16_sub(v0_0l, s8b);
  2060. const v128_t v1_0ls = wasm_i8x16_sub(v1_0l, s8b);
  2061. const v128_t v0_0hs = wasm_i8x16_sub(v0_0h, s8b);
  2062. const v128_t v1_0hs = wasm_i8x16_sub(v1_0h, s8b);
  2063. const v128_t v0_1ls = wasm_i8x16_sub(v0_1l, s8b);
  2064. const v128_t v1_1ls = wasm_i8x16_sub(v1_1l, s8b);
  2065. const v128_t v0_1hs = wasm_i8x16_sub(v0_1h, s8b);
  2066. const v128_t v1_1hs = wasm_i8x16_sub(v1_1h, s8b);
  2067. // dot product into int16x8_t
  2068. const v128_t pl0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0ls), wasm_i16x8_extend_low_i8x16(v1_0ls));
  2069. const v128_t pl0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0ls), wasm_i16x8_extend_high_i8x16(v1_0ls));
  2070. const v128_t ph0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0hs), wasm_i16x8_extend_low_i8x16(v1_0hs));
  2071. const v128_t ph0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0hs), wasm_i16x8_extend_high_i8x16(v1_0hs));
  2072. const v128_t pl1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1ls), wasm_i16x8_extend_low_i8x16(v1_1ls));
  2073. const v128_t pl1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1ls), wasm_i16x8_extend_high_i8x16(v1_1ls));
  2074. const v128_t ph1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1hs), wasm_i16x8_extend_low_i8x16(v1_1hs));
  2075. const v128_t ph1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1hs), wasm_i16x8_extend_high_i8x16(v1_1hs));
  2076. const v128_t pl_0 = wasm_i16x8_add(pl0l, pl0h);
  2077. const v128_t ph_0 = wasm_i16x8_add(ph0l, ph0h);
  2078. const v128_t pl_1 = wasm_i16x8_add(pl1l, pl1h);
  2079. const v128_t ph_1 = wasm_i16x8_add(ph1l, ph1h);
  2080. const v128_t p_0 = wasm_i16x8_add(pl_0, ph_0);
  2081. const v128_t p_1 = wasm_i16x8_add(pl_1, ph_1);
  2082. sum0 += x0->d * y0->d * (
  2083. wasm_i16x8_extract_lane(p_0, 0) + wasm_i16x8_extract_lane(p_0, 1) +
  2084. wasm_i16x8_extract_lane(p_0, 2) + wasm_i16x8_extract_lane(p_0, 3) +
  2085. wasm_i16x8_extract_lane(p_0, 4) + wasm_i16x8_extract_lane(p_0, 5) +
  2086. wasm_i16x8_extract_lane(p_0, 6) + wasm_i16x8_extract_lane(p_0, 7));
  2087. sum1 += x1->d * y1->d * (
  2088. wasm_i16x8_extract_lane(p_1, 0) + wasm_i16x8_extract_lane(p_1, 1) +
  2089. wasm_i16x8_extract_lane(p_1, 2) + wasm_i16x8_extract_lane(p_1, 3) +
  2090. wasm_i16x8_extract_lane(p_1, 4) + wasm_i16x8_extract_lane(p_1, 5) +
  2091. wasm_i16x8_extract_lane(p_1, 6) + wasm_i16x8_extract_lane(p_1, 7));
  2092. }
  2093. sumf = sum0 + sum1;
  2094. #else
  2095. // scalar
  2096. for (int i = 0; i < nb; i++) {
  2097. const float d0 = x[i].d;
  2098. const float d1 = y[i].d;
  2099. const uint8_t * restrict p0 = x[i].qs;
  2100. const uint8_t * restrict p1 = y[i].qs;
  2101. int sumi = 0;
  2102. for (int j = 0; j < QK4_0/2; j++) {
  2103. const uint8_t v0 = p0[j];
  2104. const uint8_t v1 = p1[j];
  2105. const int i0 = (v0 & 0xf) - 8;
  2106. const int i1 = (v0 >> 4) - 8;
  2107. const int i2 = (v1 & 0xf) - 8;
  2108. const int i3 = (v1 >> 4) - 8;
  2109. sumi += i0*i2 + i1*i3;
  2110. }
  2111. sumf += d0 * d1 * sumi;
  2112. }
  2113. #endif
  2114. *s = sumf;
  2115. }
  2116. static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2117. const int nb = n / QK4_1;
  2118. const block_q4_1 * restrict x = vx;
  2119. const block_q4_1 * restrict y = vy;
  2120. float sumf = 0.0;
  2121. #if defined(__AVX2__)
  2122. // Initialize accumulator with zeros
  2123. __m256 acc = _mm256_setzero_ps();
  2124. // Accumulator for constant offsets
  2125. float acc_offset = 0.0f;
  2126. // Main loop
  2127. for (int i = 0; i < nb; ++i) {
  2128. const float * d0 = &x[i].d;
  2129. const float * d1 = &y[i].d;
  2130. const float * m0 = &x[i].m;
  2131. const float * m1 = &y[i].m;
  2132. const __m256 d0v = _mm256_broadcast_ss( d0 );
  2133. const __m256 d1v = _mm256_broadcast_ss( d1 );
  2134. const __m256 m0v = _mm256_broadcast_ss( m0 );
  2135. const __m256 m1v = _mm256_broadcast_ss( m1 );
  2136. // Compute combined scale for the block
  2137. const __m256 scale_01 = _mm256_mul_ps( d0v, d1v );
  2138. // Compute cross scales for the block
  2139. const __m256 scale_0 = _mm256_mul_ps( d0v, m1v );
  2140. const __m256 scale_1 = _mm256_mul_ps( m0v, d1v );
  2141. const __m256 cross_scales = _mm256_blend_ps( scale_0, scale_1, 0xAA /* 0b10101010 */ );
  2142. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2143. __m256i bx = bytesFromNibbles( x[i].qs );
  2144. __m256i by = bytesFromNibbles( y[i].qs );
  2145. // Now we have a vector with bytes in [ 0 .. 15 ] interval.
  2146. // Sign-extend first 16 signed bytes into int16_t
  2147. __m256i x16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( bx ) );
  2148. __m256i y16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  2149. // Compute products of int16_t integers, add pairwise
  2150. __m256i i32 = _mm256_madd_epi16( x16, y16 );
  2151. // Sign-extend last 16 signed bytes into int16_t vectors
  2152. __m256i x16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( bx, 1 ) );
  2153. __m256i y16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  2154. // Accumulate products of int16_t integers
  2155. i32 = _mm256_add_epi32( i32, _mm256_madd_epi16( x16_h, y16_h ) );
  2156. // compute sums of unsigned bytes in bx, by in blocks of 8.
  2157. // This results in a layout like X100 0000 X200 0000 X300 0000 X400 0000,
  2158. // which we then interleave as X100 Y100 X200 Y200 X300 Y300 X400 Y400.
  2159. // so if we then cast to 8 singles, we get 8 floats like [ x0_7, y0_7, x8_15, y8_15, x16_23, y16_23, x24_31, y24_31 ]
  2160. __m256i xsumi = _mm256_sad_epu8( bx, _mm256_setzero_si256() );
  2161. __m256i ysumi = _mm256_sad_epu8( by, _mm256_setzero_si256() );
  2162. __m256i sumsi = _mm256_or_si256( xsumi, _mm256_slli_si256( ysumi, 4 ) );
  2163. __m256 sums = _mm256_cvtepi32_ps( sumsi );
  2164. // Convert int32_t to float
  2165. __m256 p = _mm256_cvtepi32_ps( i32 );
  2166. // Apply the scale, and accumulate
  2167. // acc += d0*d1*x*y + d0*m1*x + d1*m0*y
  2168. acc = _mm256_fmadd_ps( scale_01, p, acc );
  2169. acc = _mm256_fmadd_ps( cross_scales, sums, acc );
  2170. // acc_offset += m0*m1 (for each entry in the block)
  2171. acc_offset += (*m0)*(*m1);
  2172. }
  2173. // Return horizontal sum of the acc vector
  2174. __m128 res = _mm256_extractf128_ps( acc, 1 );
  2175. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  2176. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  2177. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  2178. sumf = _mm_cvtss_f32( res ) + acc_offset * QK4_1;
  2179. #elif defined(__ARM_NEON)
  2180. float sum00 = 0.0f;
  2181. float sum01 = 0.0f;
  2182. float sum10 = 0.0f;
  2183. float sum11 = 0.0f;
  2184. for (int i = 0; i < nb; i += 2) {
  2185. const block_q4_1 * restrict x0 = &x[i + 0];
  2186. const block_q4_1 * restrict y0 = &y[i + 0];
  2187. const block_q4_1 * restrict x1 = &x[i + 1];
  2188. const block_q4_1 * restrict y1 = &y[i + 1];
  2189. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2190. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2191. const uint8x16_t v1_0 = vld1q_u8(y0->qs);
  2192. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2193. const uint8x16_t v1_1 = vld1q_u8(y1->qs);
  2194. // 4-bit -> 8-bit
  2195. const uint8x16_t v0_0l = vandq_u8(v0_0, m4b);
  2196. const uint8x16_t v1_0l = vandq_u8(v1_0, m4b);
  2197. const uint8x16_t v0_0h = vshrq_n_u8(v0_0, 4);
  2198. const uint8x16_t v1_0h = vshrq_n_u8(v1_0, 4);
  2199. const uint8x16_t v0_1l = vandq_u8(v0_1, m4b);
  2200. const uint8x16_t v1_1l = vandq_u8(v1_1, m4b);
  2201. const uint8x16_t v0_1h = vshrq_n_u8(v0_1, 4);
  2202. const uint8x16_t v1_1h = vshrq_n_u8(v1_1, 4);
  2203. sum00 += x0->m*y0->m;
  2204. sum01 += y0->m*x0->d*((uint16_t)vaddvq_u8(v0_0l) + (uint16_t)vaddvq_u8(v0_0h));
  2205. sum10 += x0->m*y0->d*((uint16_t)vaddvq_u8(v1_0l) + (uint16_t)vaddvq_u8(v1_0h));
  2206. sum00 += x1->m*y1->m;
  2207. sum01 += y1->m*x1->d*((uint16_t)vaddvq_u8(v0_1l) + (uint16_t)vaddvq_u8(v0_1h));
  2208. sum10 += x1->m*y1->d*((uint16_t)vaddvq_u8(v1_1l) + (uint16_t)vaddvq_u8(v1_1h));
  2209. #if defined(__ARM_FEATURE_DOTPROD)
  2210. // dot product into int32x4_t
  2211. uint32x4_t p_0 = vdotq_u32(vdupq_n_u32(0), v0_0l, v1_0l);
  2212. uint32x4_t p_1 = vdotq_u32(vdupq_n_u32(0), v0_1l, v1_1l);
  2213. p_0 = vdotq_u32(p_0, v0_0h, v1_0h);
  2214. p_1 = vdotq_u32(p_1, v0_1h, v1_1h);
  2215. sum11 += x0->d*y0->d*vaddvq_u32(p_0);
  2216. sum11 += x1->d*y1->d*vaddvq_u32(p_1);
  2217. #else
  2218. const uint16x8_t pl0l = vmull_u8(vget_low_u8 (v0_0l), vget_low_u8 (v1_0l));
  2219. const uint16x8_t pl0h = vmull_u8(vget_high_u8(v0_0l), vget_high_u8(v1_0l));
  2220. const uint16x8_t ph0l = vmull_u8(vget_low_u8 (v0_0h), vget_low_u8 (v1_0h));
  2221. const uint16x8_t ph0h = vmull_u8(vget_high_u8(v0_0h), vget_high_u8(v1_0h));
  2222. const uint16x8_t pl1l = vmull_u8(vget_low_u8 (v0_1l), vget_low_u8 (v1_1l));
  2223. const uint16x8_t pl1h = vmull_u8(vget_high_u8(v0_1l), vget_high_u8(v1_1l));
  2224. const uint16x8_t ph1l = vmull_u8(vget_low_u8 (v0_1h), vget_low_u8 (v1_1h));
  2225. const uint16x8_t ph1h = vmull_u8(vget_high_u8(v0_1h), vget_high_u8(v1_1h));
  2226. const uint16x8_t pl_0 = vaddq_u16(pl0l, pl0h);
  2227. const uint16x8_t ph_0 = vaddq_u16(ph0l, ph0h);
  2228. const uint16x8_t pl_1 = vaddq_u16(pl1l, pl1h);
  2229. const uint16x8_t ph_1 = vaddq_u16(ph1l, ph1h);
  2230. const uint16x8_t p_0 = vaddq_u16(pl_0, ph_0);
  2231. const uint16x8_t p_1 = vaddq_u16(pl_1, ph_1);
  2232. sum11 += x0->d*y0->d*vaddvq_u16(p_0);
  2233. sum11 += x1->d*y1->d*vaddvq_u16(p_1);
  2234. #endif
  2235. }
  2236. sumf = QK4_1*sum00 + sum01 + sum10 + sum11;
  2237. #else
  2238. // scalar
  2239. for (int i = 0; i < nb; i++) {
  2240. const float d0 = x[i].d;
  2241. const float d1 = y[i].d;
  2242. const float m0 = x[i].m;
  2243. const float m1 = y[i].m;
  2244. const uint8_t * restrict p0 = x[i].qs;
  2245. const uint8_t * restrict p1 = y[i].qs;
  2246. for (int j = 0; j < QK4_1/2; j++) {
  2247. const uint8_t v0 = p0[j];
  2248. const uint8_t v1 = p1[j];
  2249. const float f0 = d0*(v0 & 0xf) + m0;
  2250. const float f1 = d0*(v0 >> 4) + m0;
  2251. const float f2 = d1*(v1 & 0xf) + m1;
  2252. const float f3 = d1*(v1 >> 4) + m1;
  2253. sumf += f0*f2 + f1*f3;
  2254. }
  2255. }
  2256. #endif
  2257. *s = sumf;
  2258. }
  2259. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2260. const int nb = n / QK8_0;
  2261. assert(n % QK8_0 == 0);
  2262. assert(nb % 2 == 0);
  2263. const block_q4_0 * restrict x = vx;
  2264. const block_q8_0 * restrict y = vy;
  2265. float sumf = 0.0;
  2266. #if defined(__ARM_NEON)
  2267. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2268. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2269. for (int i = 0; i < nb; i += 2) {
  2270. const block_q4_0 * restrict x0 = &x[i + 0];
  2271. const block_q4_0 * restrict x1 = &x[i + 1];
  2272. const block_q8_0 * restrict y0 = &y[i + 0];
  2273. const block_q8_0 * restrict y1 = &y[i + 1];
  2274. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2275. const int8x16_t s8b = vdupq_n_s8(0x8);
  2276. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2277. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2278. // 4-bit -> 8-bit
  2279. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2280. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2281. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2282. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2283. // sub 8
  2284. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2285. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2286. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2287. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2288. // load y
  2289. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2290. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2291. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2292. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2293. // interleave
  2294. const int8x16_t v1_0ls = vuzp1q_s8(v1_0l, v1_0h);
  2295. const int8x16_t v1_0hs = vuzp2q_s8(v1_0l, v1_0h);
  2296. const int8x16_t v1_1ls = vuzp1q_s8(v1_1l, v1_1h);
  2297. const int8x16_t v1_1hs = vuzp2q_s8(v1_1l, v1_1h);
  2298. #if defined(__ARM_FEATURE_DOTPROD)
  2299. // dot product into int32x4_t
  2300. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls), v0_0hs, v1_0hs);
  2301. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls), v0_1hs, v1_1hs);
  2302. #if 0
  2303. // note: this is faster for 4-6 threads by slower for more threads
  2304. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  2305. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  2306. #else
  2307. sumv0 = vaddq_f32(sumv0, vmulq_f32(vcvtq_f32_s32(p_0), vdupq_n_f32(x0->d*y0->d)));
  2308. sumv1 = vaddq_f32(sumv1, vmulq_f32(vcvtq_f32_s32(p_1), vdupq_n_f32(x1->d*y1->d)));
  2309. #endif
  2310. #else
  2311. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls));
  2312. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls));
  2313. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs));
  2314. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs));
  2315. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls));
  2316. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls));
  2317. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs));
  2318. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs));
  2319. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2320. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2321. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2322. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2323. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  2324. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  2325. #endif
  2326. }
  2327. sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2328. #elif defined(__AVX2__)
  2329. // Initialize accumulator with zeros
  2330. __m256 acc = _mm256_setzero_ps();
  2331. // Main loop
  2332. for (int i = 0; i < nb; ++i) {
  2333. /* Compute combined scale for the block */
  2334. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2335. __m256i bx = bytesFromNibbles(x[i].qs);
  2336. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2337. const __m256i off = _mm256_set1_epi8( 8 );
  2338. bx = _mm256_sub_epi8( bx, off );
  2339. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2340. // Get absolute values of x vectors
  2341. const __m256i ax = _mm256_sign_epi8(bx, bx);
  2342. // Sign the values of the y vectors
  2343. const __m256i sy = _mm256_sign_epi8(by, bx);
  2344. // Perform multiplication and create 16-bit values
  2345. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  2346. const __m256i ones = _mm256_set1_epi16(1);
  2347. __m256i xy_q = _mm256_madd_epi16(ones, dot);
  2348. /* Convert to vectore of 8 int32_t to 8 floats */
  2349. __m256 q = _mm256_cvtepi32_ps( xy_q );
  2350. /* Multiply q with scale and accumulate */
  2351. acc = _mm256_fmadd_ps( d, q, acc );
  2352. }
  2353. // Return horizontal sum of the acc vector
  2354. __m128 res = _mm256_extractf128_ps( acc, 1 );
  2355. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  2356. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  2357. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  2358. sumf = _mm_cvtss_f32( res );
  2359. #elif defined(__AVX__)
  2360. // Initialize accumulator with zeros
  2361. __m256 acc = _mm256_setzero_ps();
  2362. // Main loop
  2363. for (int i = 0; i < nb; ++i) {
  2364. // Compute combined scale for the block
  2365. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2366. __m128i i32[2];
  2367. for (int j = 0; j < 2; ++j) {
  2368. // Load 8 bytes, and unpack 4 bit fields into bytes, making 16 bytes
  2369. __m128i bx = bytesFromNibbles( x[i].qs + 8*j );
  2370. __m128i by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16*j));
  2371. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2372. const __m128i off = _mm_set1_epi8( 8 );
  2373. bx = _mm_sub_epi8( bx, off );
  2374. // Get absolute values of x vectors
  2375. const __m128i ax = _mm_sign_epi8(bx, bx);
  2376. // Sign the values of the y vectors
  2377. const __m128i sy = _mm_sign_epi8(by, bx);
  2378. // Perform multiplication and create 16-bit values
  2379. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  2380. const __m128i ones = _mm_set1_epi16(1);
  2381. i32[j] = _mm_madd_epi16(ones, dot);
  2382. }
  2383. // Convert int32_t to float
  2384. __m256 p = _mm256_cvtepi32_ps( _mm256_set_m128i( i32[0], i32[1] ));
  2385. // Apply the scale, and accumulate
  2386. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2387. }
  2388. // Return horizontal sum of the acc vector
  2389. __m128 res = _mm256_extractf128_ps( acc, 1 );
  2390. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  2391. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  2392. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  2393. sumf = _mm_cvtss_f32( res );
  2394. #else
  2395. // scalar
  2396. for (int i = 0; i < nb; i++) {
  2397. const float d0 = x[i].d;
  2398. const float d1 = y[i].d;
  2399. const uint8_t * restrict p0 = x[i].qs;
  2400. const int8_t * restrict p1 = y[i].qs;
  2401. int sumi = 0;
  2402. for (int j = 0; j < QK8_0/2; j++) {
  2403. const uint8_t v0 = p0[j];
  2404. const int i0 = (int8_t) (v0 & 0xf) - 8;
  2405. const int i1 = (int8_t) (v0 >> 4) - 8;
  2406. const int i2 = p1[2*j + 0];
  2407. const int i3 = p1[2*j + 1];
  2408. sumi += i0*i2 + i1*i3;
  2409. }
  2410. sumf += d0*d1*sumi;
  2411. }
  2412. #endif
  2413. *s = sumf;
  2414. }
  2415. // compute GGML_VEC_DOT_UNROLL dot products at once
  2416. // xs - x row stride in bytes
  2417. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2418. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2419. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2420. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2421. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2422. }
  2423. #if defined(GGML_SIMD)
  2424. const int np = (n & ~(GGML_F16_STEP - 1));
  2425. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2426. GGML_F16_VEC ax[GGML_F16_ARR];
  2427. GGML_F16_VEC ay[GGML_F16_ARR];
  2428. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2429. for (int j = 0; j < GGML_F16_ARR; j++) {
  2430. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2431. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2432. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2433. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2434. }
  2435. }
  2436. }
  2437. // reduce sum0..sum3 to sum0
  2438. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2439. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2440. }
  2441. // leftovers
  2442. for (int i = np; i < n; ++i) {
  2443. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2444. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2445. }
  2446. }
  2447. #else
  2448. for (int i = 0; i < n; ++i) {
  2449. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2450. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2451. }
  2452. }
  2453. #endif
  2454. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2455. s[i] = sumf[i];
  2456. }
  2457. }
  2458. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2459. #if defined(GGML_SIMD)
  2460. const int np = (n & ~(GGML_F32_STEP - 1));
  2461. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2462. GGML_F32_VEC ax[GGML_F32_ARR];
  2463. GGML_F32_VEC ay[GGML_F32_ARR];
  2464. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2465. for (int j = 0; j < GGML_F32_ARR; j++) {
  2466. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2467. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2468. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2469. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2470. }
  2471. }
  2472. // leftovers
  2473. for (int i = np; i < n; ++i) {
  2474. y[i] += x[i]*v;
  2475. }
  2476. #else
  2477. // scalar
  2478. for (int i = 0; i < n; ++i) {
  2479. y[i] += x[i]*v;
  2480. }
  2481. #endif
  2482. }
  2483. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2484. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2485. #if defined(GGML_SIMD)
  2486. const int np = (n & ~(GGML_F32_STEP - 1));
  2487. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2488. GGML_F32_VEC ay[GGML_F32_ARR];
  2489. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2490. for (int j = 0; j < GGML_F32_ARR; j++) {
  2491. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2492. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2493. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2494. }
  2495. }
  2496. // leftovers
  2497. for (int i = np; i < n; ++i) {
  2498. y[i] *= v;
  2499. }
  2500. #else
  2501. // scalar
  2502. for (int i = 0; i < n; ++i) {
  2503. y[i] *= v;
  2504. }
  2505. #endif
  2506. }
  2507. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2508. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2509. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2510. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2511. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2512. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2513. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2514. static const float GELU_COEF_A = 0.044715f;
  2515. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2516. inline static float ggml_gelu_f32(float x) {
  2517. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2518. }
  2519. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2520. const uint16_t * i16 = (const uint16_t *) x;
  2521. for (int i = 0; i < n; ++i) {
  2522. y[i] = table_gelu_f16[i16[i]];
  2523. }
  2524. }
  2525. #ifdef GGML_GELU_FP16
  2526. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2527. uint16_t t;
  2528. for (int i = 0; i < n; ++i) {
  2529. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2530. memcpy(&t, &fp16, sizeof(uint16_t));
  2531. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2532. }
  2533. }
  2534. #else
  2535. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2536. for (int i = 0; i < n; ++i) {
  2537. y[i] = ggml_gelu_f32(x[i]);
  2538. }
  2539. }
  2540. #endif
  2541. // Sigmoid Linear Unit (SiLU) function
  2542. inline static float ggml_silu_f32(float x) {
  2543. return x/(1.0f + expf(-x));
  2544. }
  2545. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2546. const uint16_t * i16 = (const uint16_t *) x;
  2547. for (int i = 0; i < n; ++i) {
  2548. y[i] = table_silu_f16[i16[i]];
  2549. }
  2550. }
  2551. #ifdef GGML_SILU_FP16
  2552. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2553. uint16_t t;
  2554. for (int i = 0; i < n; ++i) {
  2555. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2556. memcpy(&t, &fp16, sizeof(uint16_t));
  2557. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2558. }
  2559. }
  2560. #else
  2561. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2562. for (int i = 0; i < n; ++i) {
  2563. y[i] = ggml_silu_f32(x[i]);
  2564. }
  2565. }
  2566. #endif
  2567. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2568. #ifndef GGML_USE_ACCELERATE
  2569. ggml_float sum = 0.0;
  2570. for (int i = 0; i < n; ++i) {
  2571. sum += (ggml_float)x[i];
  2572. }
  2573. *s = sum;
  2574. #else
  2575. vDSP_sve(x, 1, s, n);
  2576. #endif
  2577. }
  2578. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2579. #ifndef GGML_USE_ACCELERATE
  2580. float max = -INFINITY;
  2581. for (int i = 0; i < n; ++i) {
  2582. max = MAX(max, x[i]);
  2583. }
  2584. *s = max;
  2585. #else
  2586. vDSP_maxv(x, 1, s, n);
  2587. #endif
  2588. }
  2589. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2590. ggml_vec_norm_f32(n, s, x);
  2591. *s = 1.f/(*s);
  2592. }
  2593. //
  2594. // logging
  2595. //
  2596. #if (GGML_DEBUG >= 1)
  2597. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2598. #else
  2599. #define GGML_PRINT_DEBUG(...)
  2600. #endif
  2601. #if (GGML_DEBUG >= 5)
  2602. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2603. #else
  2604. #define GGML_PRINT_DEBUG_5(...)
  2605. #endif
  2606. #if (GGML_DEBUG >= 10)
  2607. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2608. #else
  2609. #define GGML_PRINT_DEBUG_10(...)
  2610. #endif
  2611. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2612. //
  2613. // data types
  2614. //
  2615. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2616. [GGML_TYPE_F32] = 1,
  2617. [GGML_TYPE_F16] = 1,
  2618. [GGML_TYPE_Q4_0] = QK4_0,
  2619. [GGML_TYPE_Q4_1] = QK4_1,
  2620. [GGML_TYPE_Q8_0] = QK8_0,
  2621. [GGML_TYPE_I8] = 1,
  2622. [GGML_TYPE_I16] = 1,
  2623. [GGML_TYPE_I32] = 1,
  2624. };
  2625. static_assert(GGML_TYPE_COUNT == 8, "GGML_BLCK_SIZE is outdated");
  2626. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2627. [GGML_TYPE_F32] = sizeof(float),
  2628. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2629. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2630. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2631. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  2632. [GGML_TYPE_I8] = sizeof(int8_t),
  2633. [GGML_TYPE_I16] = sizeof(int16_t),
  2634. [GGML_TYPE_I32] = sizeof(int32_t),
  2635. };
  2636. static_assert(GGML_TYPE_COUNT == 8, "GGML_TYPE_SIZE is outdated");
  2637. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  2638. [GGML_TYPE_F32] = "f32",
  2639. [GGML_TYPE_F16] = "f16",
  2640. [GGML_TYPE_Q4_0] = "q4_0",
  2641. [GGML_TYPE_Q4_1] = "q4_1",
  2642. [GGML_TYPE_Q8_0] = "q8_0",
  2643. [GGML_TYPE_I8] = "i8",
  2644. [GGML_TYPE_I16] = "i16",
  2645. [GGML_TYPE_I32] = "i32",
  2646. };
  2647. static_assert(GGML_TYPE_COUNT == 8, "GGML_TYPE_NAME is outdated");
  2648. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  2649. "NONE",
  2650. "DUP",
  2651. "ADD",
  2652. "SUB",
  2653. "MUL",
  2654. "DIV",
  2655. "SQR",
  2656. "SQRT",
  2657. "SUM",
  2658. "MEAN",
  2659. "REPEAT",
  2660. "ABS",
  2661. "SGN",
  2662. "NEG",
  2663. "STEP",
  2664. "RELU",
  2665. "GELU",
  2666. "SILU",
  2667. "NORM",
  2668. "RMS_NORM",
  2669. "MUL_MAT",
  2670. "SCALE",
  2671. "CPY",
  2672. "CONT",
  2673. "RESHAPE",
  2674. "VIEW",
  2675. "PERMUTE",
  2676. "TRANSPOSE",
  2677. "GET_ROWS",
  2678. "DIAG_MASK_INF",
  2679. "SOFT_MAX",
  2680. "ROPE",
  2681. "CONV_1D_1S",
  2682. "CONV_1D_2S",
  2683. "FLASH_ATTN",
  2684. "FLASH_FF",
  2685. "MAP_UNARY",
  2686. "MAP_BINARY",
  2687. };
  2688. static_assert(GGML_OP_COUNT == 38, "GGML_OP_COUNT != 38");
  2689. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2690. "none",
  2691. "x",
  2692. "x+y",
  2693. "x-y",
  2694. "x*y",
  2695. "x/y",
  2696. "x^2",
  2697. "√x",
  2698. "Σx",
  2699. "Σx/n",
  2700. "repeat(x)",
  2701. "abs(x)",
  2702. "sgn(x)",
  2703. "-x",
  2704. "step(x)",
  2705. "relu(x)",
  2706. "gelu(x)",
  2707. "silu(x)",
  2708. "norm(x)",
  2709. "rms_norm(x)",
  2710. "X*Y",
  2711. "x*v",
  2712. "x-\\>y",
  2713. "cont(x)",
  2714. "reshape(x)",
  2715. "view(x)",
  2716. "permute(x)",
  2717. "transpose(x)",
  2718. "get_rows(x)",
  2719. "diag_mask_inf(x)",
  2720. "soft_max(x)",
  2721. "rope(x)",
  2722. "conv_1d_1s(x)",
  2723. "conv_1d_2s(x)",
  2724. "flash_attn(x)",
  2725. "flash_ff(x)",
  2726. "f(x)",
  2727. "f(x,y)",
  2728. };
  2729. static_assert(GGML_OP_COUNT == 38, "GGML_OP_COUNT != 38");
  2730. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2731. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2732. //
  2733. // ggml context
  2734. //
  2735. struct ggml_context {
  2736. size_t mem_size;
  2737. void * mem_buffer;
  2738. bool mem_buffer_owned;
  2739. bool no_alloc;
  2740. int n_objects;
  2741. struct ggml_object * objects_begin;
  2742. struct ggml_object * objects_end;
  2743. struct ggml_scratch scratch;
  2744. struct ggml_scratch scratch_save;
  2745. };
  2746. struct ggml_context_container {
  2747. bool used;
  2748. struct ggml_context context;
  2749. };
  2750. //
  2751. // compute types
  2752. //
  2753. enum ggml_task_type {
  2754. GGML_TASK_INIT = 0,
  2755. GGML_TASK_COMPUTE,
  2756. GGML_TASK_FINALIZE,
  2757. };
  2758. struct ggml_compute_params {
  2759. enum ggml_task_type type;
  2760. int ith, nth;
  2761. // work buffer for all threads
  2762. size_t wsize;
  2763. void * wdata;
  2764. };
  2765. //
  2766. // ggml state
  2767. //
  2768. struct ggml_state {
  2769. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2770. };
  2771. // global state
  2772. static struct ggml_state g_state;
  2773. static atomic_int g_state_barrier = 0;
  2774. // barrier via spin lock
  2775. inline static void ggml_critical_section_start(void) {
  2776. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2777. while (processing > 0) {
  2778. // wait for other threads to finish
  2779. atomic_fetch_sub(&g_state_barrier, 1);
  2780. sched_yield(); // TODO: reconsider this
  2781. processing = atomic_fetch_add(&g_state_barrier, 1);
  2782. }
  2783. }
  2784. // TODO: make this somehow automatically executed
  2785. // some sort of "sentry" mechanism
  2786. inline static void ggml_critical_section_end(void) {
  2787. atomic_fetch_sub(&g_state_barrier, 1);
  2788. }
  2789. ////////////////////////////////////////////////////////////////////////////////
  2790. void ggml_print_object(const struct ggml_object * obj) {
  2791. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  2792. obj->offs, obj->size, (const void *) obj->next);
  2793. }
  2794. void ggml_print_objects(const struct ggml_context * ctx) {
  2795. struct ggml_object * obj = ctx->objects_begin;
  2796. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2797. while (obj != NULL) {
  2798. ggml_print_object(obj);
  2799. obj = obj->next;
  2800. }
  2801. GGML_PRINT("%s: --- end ---\n", __func__);
  2802. }
  2803. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2804. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2805. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2806. }
  2807. int ggml_nrows(const struct ggml_tensor * tensor) {
  2808. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2809. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2810. }
  2811. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2812. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2813. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  2814. }
  2815. int ggml_blck_size(enum ggml_type type) {
  2816. return GGML_BLCK_SIZE[type];
  2817. }
  2818. size_t ggml_type_size(enum ggml_type type) {
  2819. return GGML_TYPE_SIZE[type];
  2820. }
  2821. float ggml_type_sizef(enum ggml_type type) {
  2822. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  2823. }
  2824. const char * ggml_type_name(enum ggml_type type) {
  2825. return GGML_TYPE_NAME[type];
  2826. }
  2827. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2828. return GGML_TYPE_SIZE[tensor->type];
  2829. }
  2830. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2831. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2832. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2833. }
  2834. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2835. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2836. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2837. }
  2838. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2839. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2840. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2841. }
  2842. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2843. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2844. return
  2845. (t0->ne[0] == t1->ne[0]) &&
  2846. (t0->ne[2] == t1->ne[2]) &&
  2847. (t0->ne[3] == t1->ne[3]);
  2848. }
  2849. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2850. return tensor->nb[0] > tensor->nb[1];
  2851. }
  2852. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2853. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2854. return
  2855. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2856. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  2857. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2858. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2859. }
  2860. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2861. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2862. return
  2863. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2864. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2865. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2866. }
  2867. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2868. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2869. return
  2870. (t0->ne[0] == t1->ne[0] ) &&
  2871. (t0->ne[1] == t1->ne[1] ) &&
  2872. (t0->ne[2] == t1->ne[2] ) &&
  2873. (t0->ne[3] == t1->ne[3] );
  2874. }
  2875. // check if t1 can be represented as a repeatition of t0
  2876. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2877. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2878. return
  2879. (t1->ne[0]%t0->ne[0] == 0) &&
  2880. (t1->ne[1]%t0->ne[1] == 0) &&
  2881. (t1->ne[2]%t0->ne[2] == 0) &&
  2882. (t1->ne[3]%t0->ne[3] == 0);
  2883. }
  2884. static inline int ggml_up32(int n) {
  2885. return (n + 31) & ~31;
  2886. }
  2887. static inline int ggml_up64(int n) {
  2888. return (n + 63) & ~63;
  2889. }
  2890. static inline int ggml_up(int n, int m) {
  2891. // assert m is a power of 2
  2892. GGML_ASSERT((m & (m - 1)) == 0);
  2893. return (n + m - 1) & ~(m - 1);
  2894. }
  2895. // assert that pointer is aligned to GGML_MEM_ALIGN
  2896. #define ggml_assert_aligned(ptr) \
  2897. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2898. ////////////////////////////////////////////////////////////////////////////////
  2899. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2900. // make this function thread safe
  2901. ggml_critical_section_start();
  2902. static bool is_first_call = true;
  2903. if (is_first_call) {
  2904. // initialize time system (required on Windows)
  2905. ggml_time_init();
  2906. // initialize GELU, SILU and EXP F32 tables
  2907. {
  2908. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2909. ggml_fp16_t ii;
  2910. for (int i = 0; i < (1 << 16); ++i) {
  2911. uint16_t ui = i;
  2912. memcpy(&ii, &ui, sizeof(ii));
  2913. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2914. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2915. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2916. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2917. }
  2918. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2919. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2920. }
  2921. // initialize g_state
  2922. {
  2923. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2924. g_state = (struct ggml_state) {
  2925. /*.contexts =*/ { { 0 } },
  2926. };
  2927. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2928. g_state.contexts[i].used = false;
  2929. }
  2930. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2931. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2932. }
  2933. is_first_call = false;
  2934. }
  2935. // find non-used context in g_state
  2936. struct ggml_context * ctx = NULL;
  2937. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2938. if (!g_state.contexts[i].used) {
  2939. g_state.contexts[i].used = true;
  2940. ctx = &g_state.contexts[i].context;
  2941. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2942. break;
  2943. }
  2944. }
  2945. if (ctx == NULL) {
  2946. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2947. ggml_critical_section_end();
  2948. return NULL;
  2949. }
  2950. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  2951. *ctx = (struct ggml_context) {
  2952. /*.mem_size =*/ mem_size,
  2953. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2954. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2955. /*.no_alloc =*/ params.no_alloc,
  2956. /*.n_objects =*/ 0,
  2957. /*.objects_begin =*/ NULL,
  2958. /*.objects_end =*/ NULL,
  2959. /*.scratch =*/ { 0, 0, NULL, },
  2960. /*.scratch_save =*/ { 0, 0, NULL, },
  2961. };
  2962. GGML_ASSERT(ctx->mem_buffer != NULL);
  2963. ggml_assert_aligned(ctx->mem_buffer);
  2964. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2965. ggml_critical_section_end();
  2966. return ctx;
  2967. }
  2968. void ggml_free(struct ggml_context * ctx) {
  2969. // make this function thread safe
  2970. ggml_critical_section_start();
  2971. bool found = false;
  2972. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2973. if (&g_state.contexts[i].context == ctx) {
  2974. g_state.contexts[i].used = false;
  2975. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  2976. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  2977. if (ctx->mem_buffer_owned) {
  2978. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2979. }
  2980. found = true;
  2981. break;
  2982. }
  2983. }
  2984. if (!found) {
  2985. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2986. }
  2987. ggml_critical_section_end();
  2988. }
  2989. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2990. return ctx->objects_end->offs + ctx->objects_end->size;
  2991. }
  2992. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2993. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2994. ctx->scratch = scratch;
  2995. return result;
  2996. }
  2997. ////////////////////////////////////////////////////////////////////////////////
  2998. struct ggml_tensor * ggml_new_tensor_impl(
  2999. struct ggml_context * ctx,
  3000. enum ggml_type type,
  3001. int n_dims,
  3002. const int64_t* ne,
  3003. void* data) {
  3004. // always insert objects at the end of the context's memory pool
  3005. struct ggml_object * obj_cur = ctx->objects_end;
  3006. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3007. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3008. const size_t cur_end = cur_offs + cur_size;
  3009. size_t size_needed = 0;
  3010. if (data == NULL && !ctx->no_alloc) {
  3011. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3012. for (int i = 1; i < n_dims; i++) {
  3013. size_needed *= ne[i];
  3014. }
  3015. // align to GGML_MEM_ALIGN
  3016. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3017. }
  3018. char * const mem_buffer = ctx->mem_buffer;
  3019. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3020. if (ctx->scratch.data == NULL || data != NULL) {
  3021. size_needed += sizeof(struct ggml_tensor);
  3022. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3023. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3024. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3025. assert(false);
  3026. return NULL;
  3027. }
  3028. *obj_new = (struct ggml_object) {
  3029. .offs = cur_end + GGML_OBJECT_SIZE,
  3030. .size = size_needed,
  3031. .next = NULL,
  3032. };
  3033. } else {
  3034. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3035. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  3036. assert(false);
  3037. return NULL;
  3038. }
  3039. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  3040. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3041. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  3042. assert(false);
  3043. return NULL;
  3044. }
  3045. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3046. *obj_new = (struct ggml_object) {
  3047. .offs = cur_end + GGML_OBJECT_SIZE,
  3048. .size = sizeof(struct ggml_tensor),
  3049. .next = NULL,
  3050. };
  3051. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3052. ctx->scratch.offs += size_needed;
  3053. }
  3054. if (obj_cur != NULL) {
  3055. obj_cur->next = obj_new;
  3056. } else {
  3057. // this is the first object in this context
  3058. ctx->objects_begin = obj_new;
  3059. }
  3060. ctx->objects_end = obj_new;
  3061. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3062. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3063. ggml_assert_aligned(result);
  3064. *result = (struct ggml_tensor) {
  3065. /*.type =*/ type,
  3066. /*.n_dims =*/ n_dims,
  3067. /*.ne =*/ { 1, 1, 1, 1 },
  3068. /*.nb =*/ { 0, 0, 0, 0 },
  3069. /*.op =*/ GGML_OP_NONE,
  3070. /*.is_param =*/ false,
  3071. /*.grad =*/ NULL,
  3072. /*.src0 =*/ NULL,
  3073. /*.src1 =*/ NULL,
  3074. /*.opt =*/ { NULL },
  3075. /*.n_tasks =*/ 0,
  3076. /*.perf_runs =*/ 0,
  3077. /*.perf_cycles =*/ 0,
  3078. /*.perf_time_us =*/ 0,
  3079. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3080. /*.pad =*/ { 0 },
  3081. };
  3082. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3083. //ggml_assert_aligned(result->data);
  3084. for (int i = 0; i < n_dims; i++) {
  3085. result->ne[i] = ne[i];
  3086. }
  3087. result->nb[0] = GGML_TYPE_SIZE[type];
  3088. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3089. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3090. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3091. }
  3092. ctx->n_objects++;
  3093. return result;
  3094. }
  3095. struct ggml_tensor * ggml_new_tensor(
  3096. struct ggml_context * ctx,
  3097. enum ggml_type type,
  3098. int n_dims,
  3099. const int64_t * ne) {
  3100. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3101. }
  3102. struct ggml_tensor * ggml_new_tensor_1d(
  3103. struct ggml_context * ctx,
  3104. enum ggml_type type,
  3105. int64_t ne0) {
  3106. return ggml_new_tensor(ctx, type, 1, &ne0);
  3107. }
  3108. struct ggml_tensor * ggml_new_tensor_2d(
  3109. struct ggml_context * ctx,
  3110. enum ggml_type type,
  3111. int64_t ne0,
  3112. int64_t ne1) {
  3113. const int64_t ne[2] = { ne0, ne1 };
  3114. return ggml_new_tensor(ctx, type, 2, ne);
  3115. }
  3116. struct ggml_tensor * ggml_new_tensor_3d(
  3117. struct ggml_context * ctx,
  3118. enum ggml_type type,
  3119. int64_t ne0,
  3120. int64_t ne1,
  3121. int64_t ne2) {
  3122. const int64_t ne[3] = { ne0, ne1, ne2 };
  3123. return ggml_new_tensor(ctx, type, 3, ne);
  3124. }
  3125. struct ggml_tensor * ggml_new_tensor_4d(
  3126. struct ggml_context * ctx,
  3127. enum ggml_type type,
  3128. int64_t ne0,
  3129. int64_t ne1,
  3130. int64_t ne2,
  3131. int64_t ne3) {
  3132. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3133. return ggml_new_tensor(ctx, type, 4, ne);
  3134. }
  3135. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3136. ctx->scratch_save = ctx->scratch;
  3137. ctx->scratch.data = NULL;
  3138. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3139. ctx->scratch = ctx->scratch_save;
  3140. ggml_set_i32(result, value);
  3141. return result;
  3142. }
  3143. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3144. ctx->scratch_save = ctx->scratch;
  3145. ctx->scratch.data = NULL;
  3146. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3147. ctx->scratch = ctx->scratch_save;
  3148. ggml_set_f32(result, value);
  3149. return result;
  3150. }
  3151. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3152. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3153. }
  3154. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3155. memset(tensor->data, 0, ggml_nbytes(tensor));
  3156. return tensor;
  3157. }
  3158. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3159. const int n = ggml_nrows(tensor);
  3160. const int nc = tensor->ne[0];
  3161. const size_t n1 = tensor->nb[1];
  3162. char * const data = tensor->data;
  3163. switch (tensor->type) {
  3164. case GGML_TYPE_I8:
  3165. {
  3166. assert(tensor->nb[0] == sizeof(int8_t));
  3167. for (int i = 0; i < n; i++) {
  3168. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3169. }
  3170. } break;
  3171. case GGML_TYPE_I16:
  3172. {
  3173. assert(tensor->nb[0] == sizeof(int16_t));
  3174. for (int i = 0; i < n; i++) {
  3175. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3176. }
  3177. } break;
  3178. case GGML_TYPE_I32:
  3179. {
  3180. assert(tensor->nb[0] == sizeof(int32_t));
  3181. for (int i = 0; i < n; i++) {
  3182. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3183. }
  3184. } break;
  3185. case GGML_TYPE_F16:
  3186. {
  3187. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3188. for (int i = 0; i < n; i++) {
  3189. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3190. }
  3191. } break;
  3192. case GGML_TYPE_F32:
  3193. {
  3194. assert(tensor->nb[0] == sizeof(float));
  3195. for (int i = 0; i < n; i++) {
  3196. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3197. }
  3198. } break;
  3199. default:
  3200. {
  3201. GGML_ASSERT(false);
  3202. } break;
  3203. }
  3204. return tensor;
  3205. }
  3206. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3207. const int n = ggml_nrows(tensor);
  3208. const int nc = tensor->ne[0];
  3209. const size_t n1 = tensor->nb[1];
  3210. char * const data = tensor->data;
  3211. switch (tensor->type) {
  3212. case GGML_TYPE_I8:
  3213. {
  3214. assert(tensor->nb[0] == sizeof(int8_t));
  3215. for (int i = 0; i < n; i++) {
  3216. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3217. }
  3218. } break;
  3219. case GGML_TYPE_I16:
  3220. {
  3221. assert(tensor->nb[0] == sizeof(int16_t));
  3222. for (int i = 0; i < n; i++) {
  3223. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3224. }
  3225. } break;
  3226. case GGML_TYPE_I32:
  3227. {
  3228. assert(tensor->nb[0] == sizeof(int32_t));
  3229. for (int i = 0; i < n; i++) {
  3230. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3231. }
  3232. } break;
  3233. case GGML_TYPE_F16:
  3234. {
  3235. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3236. for (int i = 0; i < n; i++) {
  3237. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3238. }
  3239. } break;
  3240. case GGML_TYPE_F32:
  3241. {
  3242. assert(tensor->nb[0] == sizeof(float));
  3243. for (int i = 0; i < n; i++) {
  3244. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3245. }
  3246. } break;
  3247. default:
  3248. {
  3249. GGML_ASSERT(false);
  3250. } break;
  3251. }
  3252. return tensor;
  3253. }
  3254. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3255. switch (tensor->type) {
  3256. case GGML_TYPE_I8:
  3257. {
  3258. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3259. return ((int8_t *)(tensor->data))[i];
  3260. } break;
  3261. case GGML_TYPE_I16:
  3262. {
  3263. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3264. return ((int16_t *)(tensor->data))[i];
  3265. } break;
  3266. case GGML_TYPE_I32:
  3267. {
  3268. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3269. return ((int32_t *)(tensor->data))[i];
  3270. } break;
  3271. case GGML_TYPE_F16:
  3272. {
  3273. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3274. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3275. } break;
  3276. case GGML_TYPE_F32:
  3277. {
  3278. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3279. return ((float *)(tensor->data))[i];
  3280. } break;
  3281. default:
  3282. {
  3283. GGML_ASSERT(false);
  3284. } break;
  3285. }
  3286. return 0.0f;
  3287. }
  3288. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3289. switch (tensor->type) {
  3290. case GGML_TYPE_I8:
  3291. {
  3292. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3293. ((int8_t *)(tensor->data))[i] = value;
  3294. } break;
  3295. case GGML_TYPE_I16:
  3296. {
  3297. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3298. ((int16_t *)(tensor->data))[i] = value;
  3299. } break;
  3300. case GGML_TYPE_I32:
  3301. {
  3302. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3303. ((int32_t *)(tensor->data))[i] = value;
  3304. } break;
  3305. case GGML_TYPE_F16:
  3306. {
  3307. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3308. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3309. } break;
  3310. case GGML_TYPE_F32:
  3311. {
  3312. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3313. ((float *)(tensor->data))[i] = value;
  3314. } break;
  3315. default:
  3316. {
  3317. GGML_ASSERT(false);
  3318. } break;
  3319. }
  3320. }
  3321. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3322. switch (tensor->type) {
  3323. case GGML_TYPE_I8:
  3324. {
  3325. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3326. return ((int8_t *)(tensor->data))[i];
  3327. } break;
  3328. case GGML_TYPE_I16:
  3329. {
  3330. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3331. return ((int16_t *)(tensor->data))[i];
  3332. } break;
  3333. case GGML_TYPE_I32:
  3334. {
  3335. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3336. return ((int32_t *)(tensor->data))[i];
  3337. } break;
  3338. case GGML_TYPE_F16:
  3339. {
  3340. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3341. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3342. } break;
  3343. case GGML_TYPE_F32:
  3344. {
  3345. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3346. return ((float *)(tensor->data))[i];
  3347. } break;
  3348. default:
  3349. {
  3350. GGML_ASSERT(false);
  3351. } break;
  3352. }
  3353. return 0.0f;
  3354. }
  3355. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3356. switch (tensor->type) {
  3357. case GGML_TYPE_I8:
  3358. {
  3359. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3360. ((int8_t *)(tensor->data))[i] = value;
  3361. } break;
  3362. case GGML_TYPE_I16:
  3363. {
  3364. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3365. ((int16_t *)(tensor->data))[i] = value;
  3366. } break;
  3367. case GGML_TYPE_I32:
  3368. {
  3369. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3370. ((int32_t *)(tensor->data))[i] = value;
  3371. } break;
  3372. case GGML_TYPE_F16:
  3373. {
  3374. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3375. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3376. } break;
  3377. case GGML_TYPE_F32:
  3378. {
  3379. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3380. ((float *)(tensor->data))[i] = value;
  3381. } break;
  3382. default:
  3383. {
  3384. GGML_ASSERT(false);
  3385. } break;
  3386. }
  3387. }
  3388. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3389. return tensor->data;
  3390. }
  3391. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3392. assert(tensor->type == GGML_TYPE_F32);
  3393. return (float *)(tensor->data);
  3394. }
  3395. struct ggml_tensor * ggml_view_tensor(
  3396. struct ggml_context * ctx,
  3397. const struct ggml_tensor * src) {
  3398. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  3399. result->nb[0] = src->nb[0];
  3400. result->nb[1] = src->nb[1];
  3401. result->nb[2] = src->nb[2];
  3402. result->nb[3] = src->nb[3];
  3403. return result;
  3404. }
  3405. ////////////////////////////////////////////////////////////////////////////////
  3406. // ggml_dup
  3407. struct ggml_tensor * ggml_dup_impl(
  3408. struct ggml_context * ctx,
  3409. struct ggml_tensor * a,
  3410. bool inplace) {
  3411. bool is_node = false;
  3412. if (!inplace && (a->grad)) {
  3413. is_node = true;
  3414. }
  3415. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3416. result->op = GGML_OP_DUP;
  3417. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3418. result->src0 = a;
  3419. result->src1 = NULL;
  3420. return result;
  3421. }
  3422. struct ggml_tensor * ggml_dup(
  3423. struct ggml_context * ctx,
  3424. struct ggml_tensor * a) {
  3425. return ggml_dup_impl(ctx, a, false);
  3426. }
  3427. struct ggml_tensor * ggml_dup_inplace(
  3428. struct ggml_context * ctx,
  3429. struct ggml_tensor * a) {
  3430. return ggml_dup_impl(ctx, a, true);
  3431. }
  3432. // ggml_add
  3433. struct ggml_tensor * ggml_add_impl(
  3434. struct ggml_context * ctx,
  3435. struct ggml_tensor * a,
  3436. struct ggml_tensor * b,
  3437. bool inplace) {
  3438. GGML_ASSERT(ggml_are_same_shape(a, b));
  3439. bool is_node = false;
  3440. if (!inplace && (a->grad || b->grad)) {
  3441. is_node = true;
  3442. }
  3443. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3444. result->op = GGML_OP_ADD;
  3445. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3446. result->src0 = a;
  3447. result->src1 = b;
  3448. return result;
  3449. }
  3450. struct ggml_tensor * ggml_add(
  3451. struct ggml_context * ctx,
  3452. struct ggml_tensor * a,
  3453. struct ggml_tensor * b) {
  3454. return ggml_add_impl(ctx, a, b, false);
  3455. }
  3456. struct ggml_tensor * ggml_add_inplace(
  3457. struct ggml_context * ctx,
  3458. struct ggml_tensor * a,
  3459. struct ggml_tensor * b) {
  3460. return ggml_add_impl(ctx, a, b, true);
  3461. }
  3462. // ggml_sub
  3463. struct ggml_tensor * ggml_sub_impl(
  3464. struct ggml_context * ctx,
  3465. struct ggml_tensor * a,
  3466. struct ggml_tensor * b,
  3467. bool inplace) {
  3468. GGML_ASSERT(ggml_are_same_shape(a, b));
  3469. bool is_node = false;
  3470. if (!inplace && (a->grad || b->grad)) {
  3471. is_node = true;
  3472. }
  3473. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3474. result->op = GGML_OP_SUB;
  3475. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3476. result->src0 = a;
  3477. result->src1 = b;
  3478. return result;
  3479. }
  3480. struct ggml_tensor * ggml_sub(
  3481. struct ggml_context * ctx,
  3482. struct ggml_tensor * a,
  3483. struct ggml_tensor * b) {
  3484. return ggml_sub_impl(ctx, a, b, false);
  3485. }
  3486. struct ggml_tensor * ggml_sub_inplace(
  3487. struct ggml_context * ctx,
  3488. struct ggml_tensor * a,
  3489. struct ggml_tensor * b) {
  3490. return ggml_sub_impl(ctx, a, b, true);
  3491. }
  3492. // ggml_mul
  3493. struct ggml_tensor * ggml_mul_impl(
  3494. struct ggml_context * ctx,
  3495. struct ggml_tensor * a,
  3496. struct ggml_tensor * b,
  3497. bool inplace) {
  3498. GGML_ASSERT(ggml_are_same_shape(a, b));
  3499. bool is_node = false;
  3500. if (!inplace && (a->grad || b->grad)) {
  3501. is_node = true;
  3502. }
  3503. if (inplace) {
  3504. GGML_ASSERT(is_node == false);
  3505. }
  3506. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3507. result->op = GGML_OP_MUL;
  3508. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3509. result->src0 = a;
  3510. result->src1 = b;
  3511. return result;
  3512. }
  3513. struct ggml_tensor * ggml_mul(
  3514. struct ggml_context * ctx,
  3515. struct ggml_tensor * a,
  3516. struct ggml_tensor * b) {
  3517. return ggml_mul_impl(ctx, a, b, false);
  3518. }
  3519. struct ggml_tensor * ggml_mul_inplace(
  3520. struct ggml_context * ctx,
  3521. struct ggml_tensor * a,
  3522. struct ggml_tensor * b) {
  3523. return ggml_mul_impl(ctx, a, b, true);
  3524. }
  3525. // ggml_div
  3526. struct ggml_tensor * ggml_div_impl(
  3527. struct ggml_context * ctx,
  3528. struct ggml_tensor * a,
  3529. struct ggml_tensor * b,
  3530. bool inplace) {
  3531. GGML_ASSERT(ggml_are_same_shape(a, b));
  3532. bool is_node = false;
  3533. if (!inplace && (a->grad || b->grad)) {
  3534. is_node = true;
  3535. }
  3536. if (inplace) {
  3537. GGML_ASSERT(is_node == false);
  3538. }
  3539. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3540. result->op = GGML_OP_DIV;
  3541. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3542. result->src0 = a;
  3543. result->src1 = b;
  3544. return result;
  3545. }
  3546. struct ggml_tensor * ggml_div(
  3547. struct ggml_context * ctx,
  3548. struct ggml_tensor * a,
  3549. struct ggml_tensor * b) {
  3550. return ggml_div_impl(ctx, a, b, false);
  3551. }
  3552. struct ggml_tensor * ggml_div_inplace(
  3553. struct ggml_context * ctx,
  3554. struct ggml_tensor * a,
  3555. struct ggml_tensor * b) {
  3556. return ggml_div_impl(ctx, a, b, true);
  3557. }
  3558. // ggml_sqr
  3559. struct ggml_tensor * ggml_sqr_impl(
  3560. struct ggml_context * ctx,
  3561. struct ggml_tensor * a,
  3562. bool inplace) {
  3563. bool is_node = false;
  3564. if (!inplace && (a->grad)) {
  3565. is_node = true;
  3566. }
  3567. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3568. result->op = GGML_OP_SQR;
  3569. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3570. result->src0 = a;
  3571. result->src1 = NULL;
  3572. return result;
  3573. }
  3574. struct ggml_tensor * ggml_sqr(
  3575. struct ggml_context * ctx,
  3576. struct ggml_tensor * a) {
  3577. return ggml_sqr_impl(ctx, a, false);
  3578. }
  3579. struct ggml_tensor * ggml_sqr_inplace(
  3580. struct ggml_context * ctx,
  3581. struct ggml_tensor * a) {
  3582. return ggml_sqr_impl(ctx, a, true);
  3583. }
  3584. // ggml_sqrt
  3585. struct ggml_tensor * ggml_sqrt_impl(
  3586. struct ggml_context * ctx,
  3587. struct ggml_tensor * a,
  3588. bool inplace) {
  3589. bool is_node = false;
  3590. if (!inplace && (a->grad)) {
  3591. is_node = true;
  3592. }
  3593. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3594. result->op = GGML_OP_SQRT;
  3595. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3596. result->src0 = a;
  3597. result->src1 = NULL;
  3598. return result;
  3599. }
  3600. struct ggml_tensor * ggml_sqrt(
  3601. struct ggml_context * ctx,
  3602. struct ggml_tensor * a) {
  3603. return ggml_sqrt_impl(ctx, a, false);
  3604. }
  3605. struct ggml_tensor * ggml_sqrt_inplace(
  3606. struct ggml_context * ctx,
  3607. struct ggml_tensor * a) {
  3608. return ggml_sqrt_impl(ctx, a, true);
  3609. }
  3610. // ggml_sum
  3611. struct ggml_tensor * ggml_sum(
  3612. struct ggml_context * ctx,
  3613. struct ggml_tensor * a) {
  3614. bool is_node = false;
  3615. if (a->grad) {
  3616. is_node = true;
  3617. }
  3618. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3619. result->op = GGML_OP_SUM;
  3620. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3621. result->src0 = a;
  3622. result->src1 = NULL;
  3623. return result;
  3624. }
  3625. // ggml_mean
  3626. struct ggml_tensor * ggml_mean(
  3627. struct ggml_context * ctx,
  3628. struct ggml_tensor * a) {
  3629. bool is_node = false;
  3630. if (a->grad) {
  3631. GGML_ASSERT(false); // TODO: implement
  3632. is_node = true;
  3633. }
  3634. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3635. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  3636. result->op = GGML_OP_MEAN;
  3637. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3638. result->src0 = a;
  3639. result->src1 = NULL;
  3640. return result;
  3641. }
  3642. // ggml_repeat
  3643. struct ggml_tensor * ggml_repeat(
  3644. struct ggml_context * ctx,
  3645. struct ggml_tensor * a,
  3646. struct ggml_tensor * b) {
  3647. GGML_ASSERT(ggml_can_repeat(a, b));
  3648. bool is_node = false;
  3649. if (a->grad) {
  3650. is_node = true;
  3651. }
  3652. if (ggml_are_same_shape(a, b) && !is_node) {
  3653. return a;
  3654. }
  3655. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3656. result->op = GGML_OP_REPEAT;
  3657. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3658. result->src0 = a;
  3659. result->src1 = b;
  3660. return result;
  3661. }
  3662. // ggml_abs
  3663. struct ggml_tensor * ggml_abs_impl(
  3664. struct ggml_context * ctx,
  3665. struct ggml_tensor * a,
  3666. bool inplace) {
  3667. bool is_node = false;
  3668. if (!inplace && (a->grad)) {
  3669. is_node = true;
  3670. }
  3671. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3672. result->op = GGML_OP_ABS;
  3673. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3674. result->src0 = a;
  3675. result->src1 = NULL;
  3676. return result;
  3677. }
  3678. struct ggml_tensor * ggml_abs(
  3679. struct ggml_context * ctx,
  3680. struct ggml_tensor * a) {
  3681. return ggml_abs_impl(ctx, a, false);
  3682. }
  3683. struct ggml_tensor * ggml_abs_inplace(
  3684. struct ggml_context * ctx,
  3685. struct ggml_tensor * a) {
  3686. return ggml_abs_impl(ctx, a, true);
  3687. }
  3688. // ggml_sgn
  3689. struct ggml_tensor * ggml_sgn_impl(
  3690. struct ggml_context * ctx,
  3691. struct ggml_tensor * a,
  3692. bool inplace) {
  3693. bool is_node = false;
  3694. if (!inplace && (a->grad)) {
  3695. is_node = true;
  3696. }
  3697. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3698. result->op = GGML_OP_SGN;
  3699. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3700. result->src0 = a;
  3701. result->src1 = NULL;
  3702. return result;
  3703. }
  3704. struct ggml_tensor * ggml_sgn(
  3705. struct ggml_context * ctx,
  3706. struct ggml_tensor * a) {
  3707. return ggml_sgn_impl(ctx, a, false);
  3708. }
  3709. struct ggml_tensor * ggml_sgn_inplace(
  3710. struct ggml_context * ctx,
  3711. struct ggml_tensor * a) {
  3712. return ggml_sgn_impl(ctx, a, true);
  3713. }
  3714. // ggml_neg
  3715. struct ggml_tensor * ggml_neg_impl(
  3716. struct ggml_context * ctx,
  3717. struct ggml_tensor * a,
  3718. bool inplace) {
  3719. bool is_node = false;
  3720. if (!inplace && (a->grad)) {
  3721. is_node = true;
  3722. }
  3723. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3724. result->op = GGML_OP_NEG;
  3725. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3726. result->src0 = a;
  3727. result->src1 = NULL;
  3728. return result;
  3729. }
  3730. struct ggml_tensor * ggml_neg(
  3731. struct ggml_context * ctx,
  3732. struct ggml_tensor * a) {
  3733. return ggml_neg_impl(ctx, a, false);
  3734. }
  3735. struct ggml_tensor * ggml_neg_inplace(
  3736. struct ggml_context * ctx,
  3737. struct ggml_tensor * a) {
  3738. return ggml_neg_impl(ctx, a, true);
  3739. }
  3740. // ggml_step
  3741. struct ggml_tensor * ggml_step_impl(
  3742. struct ggml_context * ctx,
  3743. struct ggml_tensor * a,
  3744. bool inplace) {
  3745. bool is_node = false;
  3746. if (!inplace && (a->grad)) {
  3747. is_node = true;
  3748. }
  3749. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3750. result->op = GGML_OP_STEP;
  3751. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3752. result->src0 = a;
  3753. result->src1 = NULL;
  3754. return result;
  3755. }
  3756. struct ggml_tensor * ggml_step(
  3757. struct ggml_context * ctx,
  3758. struct ggml_tensor * a) {
  3759. return ggml_step_impl(ctx, a, false);
  3760. }
  3761. struct ggml_tensor * ggml_step_inplace(
  3762. struct ggml_context * ctx,
  3763. struct ggml_tensor * a) {
  3764. return ggml_step_impl(ctx, a, true);
  3765. }
  3766. // ggml_relu
  3767. struct ggml_tensor * ggml_relu_impl(
  3768. struct ggml_context * ctx,
  3769. struct ggml_tensor * a,
  3770. bool inplace) {
  3771. bool is_node = false;
  3772. if (!inplace && (a->grad)) {
  3773. is_node = true;
  3774. }
  3775. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3776. result->op = GGML_OP_RELU;
  3777. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3778. result->src0 = a;
  3779. result->src1 = NULL;
  3780. return result;
  3781. }
  3782. struct ggml_tensor * ggml_relu(
  3783. struct ggml_context * ctx,
  3784. struct ggml_tensor * a) {
  3785. return ggml_relu_impl(ctx, a, false);
  3786. }
  3787. struct ggml_tensor * ggml_relu_inplace(
  3788. struct ggml_context * ctx,
  3789. struct ggml_tensor * a) {
  3790. return ggml_relu_impl(ctx, a, true);
  3791. }
  3792. // ggml_gelu
  3793. struct ggml_tensor * ggml_gelu_impl(
  3794. struct ggml_context * ctx,
  3795. struct ggml_tensor * a,
  3796. bool inplace) {
  3797. bool is_node = false;
  3798. if (!inplace && (a->grad)) {
  3799. is_node = true;
  3800. }
  3801. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3802. result->op = GGML_OP_GELU;
  3803. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3804. result->src0 = a;
  3805. result->src1 = NULL;
  3806. return result;
  3807. }
  3808. struct ggml_tensor * ggml_gelu(
  3809. struct ggml_context * ctx,
  3810. struct ggml_tensor * a) {
  3811. return ggml_gelu_impl(ctx, a, false);
  3812. }
  3813. struct ggml_tensor * ggml_gelu_inplace(
  3814. struct ggml_context * ctx,
  3815. struct ggml_tensor * a) {
  3816. return ggml_gelu_impl(ctx, a, true);
  3817. }
  3818. // ggml_silu
  3819. struct ggml_tensor * ggml_silu_impl(
  3820. struct ggml_context * ctx,
  3821. struct ggml_tensor * a,
  3822. bool inplace) {
  3823. bool is_node = false;
  3824. if (!inplace && (a->grad)) {
  3825. is_node = true;
  3826. }
  3827. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3828. result->op = GGML_OP_SILU;
  3829. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3830. result->src0 = a;
  3831. result->src1 = NULL;
  3832. return result;
  3833. }
  3834. struct ggml_tensor * ggml_silu(
  3835. struct ggml_context * ctx,
  3836. struct ggml_tensor * a) {
  3837. return ggml_silu_impl(ctx, a, false);
  3838. }
  3839. struct ggml_tensor * ggml_silu_inplace(
  3840. struct ggml_context * ctx,
  3841. struct ggml_tensor * a) {
  3842. return ggml_silu_impl(ctx, a, true);
  3843. }
  3844. // ggml_norm
  3845. struct ggml_tensor * ggml_norm_impl(
  3846. struct ggml_context * ctx,
  3847. struct ggml_tensor * a,
  3848. bool inplace) {
  3849. bool is_node = false;
  3850. if (!inplace && (a->grad)) {
  3851. GGML_ASSERT(false); // TODO: implement backward
  3852. is_node = true;
  3853. }
  3854. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3855. result->op = GGML_OP_NORM;
  3856. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3857. result->src0 = a;
  3858. result->src1 = NULL; // TODO: maybe store epsilon here?
  3859. return result;
  3860. }
  3861. struct ggml_tensor * ggml_norm(
  3862. struct ggml_context * ctx,
  3863. struct ggml_tensor * a) {
  3864. return ggml_norm_impl(ctx, a, false);
  3865. }
  3866. struct ggml_tensor * ggml_norm_inplace(
  3867. struct ggml_context * ctx,
  3868. struct ggml_tensor * a) {
  3869. return ggml_norm_impl(ctx, a, true);
  3870. }
  3871. struct ggml_tensor * ggml_rms_norm_impl(
  3872. struct ggml_context * ctx,
  3873. struct ggml_tensor * a,
  3874. bool inplace) {
  3875. bool is_node = false;
  3876. if (!inplace && (a->grad)) {
  3877. GGML_ASSERT(false); // TODO: implement backward
  3878. is_node = true;
  3879. }
  3880. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3881. result->op = GGML_OP_RMS_NORM;
  3882. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3883. result->src0 = a;
  3884. result->src1 = NULL; // TODO: maybe store epsilon here?
  3885. return result;
  3886. }
  3887. struct ggml_tensor * ggml_rms_norm(
  3888. struct ggml_context * ctx,
  3889. struct ggml_tensor * a) {
  3890. return ggml_rms_norm_impl(ctx, a, false);
  3891. }
  3892. struct ggml_tensor * ggml_rms_norm_inplace(
  3893. struct ggml_context * ctx,
  3894. struct ggml_tensor * a) {
  3895. return ggml_rms_norm_impl(ctx, a, true);
  3896. }
  3897. // ggml_mul_mat
  3898. struct ggml_tensor * ggml_mul_mat(
  3899. struct ggml_context * ctx,
  3900. struct ggml_tensor * a,
  3901. struct ggml_tensor * b) {
  3902. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3903. GGML_ASSERT(!ggml_is_transposed(a));
  3904. bool is_node = false;
  3905. if (a->grad || b->grad) {
  3906. is_node = true;
  3907. }
  3908. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  3909. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  3910. result->op = GGML_OP_MUL_MAT;
  3911. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3912. result->src0 = a;
  3913. result->src1 = b;
  3914. return result;
  3915. }
  3916. // ggml_scale
  3917. struct ggml_tensor * ggml_scale_impl(
  3918. struct ggml_context * ctx,
  3919. struct ggml_tensor * a,
  3920. struct ggml_tensor * b,
  3921. bool inplace) {
  3922. GGML_ASSERT(ggml_is_scalar(b));
  3923. GGML_ASSERT(ggml_is_padded_1d(a));
  3924. bool is_node = false;
  3925. if (!inplace && (a->grad || b->grad)) {
  3926. GGML_ASSERT(false); // TODO: implement backward
  3927. is_node = true;
  3928. }
  3929. // TODO: when implement backward, fix this:
  3930. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3931. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3932. result->op = GGML_OP_SCALE;
  3933. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3934. result->src0 = a;
  3935. result->src1 = b;
  3936. return result;
  3937. }
  3938. struct ggml_tensor * ggml_scale(
  3939. struct ggml_context * ctx,
  3940. struct ggml_tensor * a,
  3941. struct ggml_tensor * b) {
  3942. return ggml_scale_impl(ctx, a, b, false);
  3943. }
  3944. struct ggml_tensor * ggml_scale_inplace(
  3945. struct ggml_context * ctx,
  3946. struct ggml_tensor * a,
  3947. struct ggml_tensor * b) {
  3948. return ggml_scale_impl(ctx, a, b, true);
  3949. }
  3950. // ggml_cpy
  3951. struct ggml_tensor * ggml_cpy_impl(
  3952. struct ggml_context * ctx,
  3953. struct ggml_tensor * a,
  3954. struct ggml_tensor * b,
  3955. bool inplace) {
  3956. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3957. bool is_node = false;
  3958. if (!inplace && (a->grad || b->grad)) {
  3959. GGML_ASSERT(false); // TODO: implement backward
  3960. is_node = true;
  3961. }
  3962. // make a view of the destination
  3963. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3964. result->op = GGML_OP_CPY;
  3965. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3966. result->src0 = a;
  3967. result->src1 = b;
  3968. return result;
  3969. }
  3970. struct ggml_tensor * ggml_cpy(
  3971. struct ggml_context * ctx,
  3972. struct ggml_tensor * a,
  3973. struct ggml_tensor * b) {
  3974. return ggml_cpy_impl(ctx, a, b, false);
  3975. }
  3976. struct ggml_tensor * ggml_cpy_inplace(
  3977. struct ggml_context * ctx,
  3978. struct ggml_tensor * a,
  3979. struct ggml_tensor * b) {
  3980. return ggml_cpy_impl(ctx, a, b, true);
  3981. }
  3982. // ggml_cont
  3983. struct ggml_tensor * ggml_cont_impl(
  3984. struct ggml_context * ctx,
  3985. struct ggml_tensor * a,
  3986. bool inplace) {
  3987. bool is_node = false;
  3988. if (!inplace && a->grad) {
  3989. GGML_ASSERT(false); // TODO: implement backward
  3990. is_node = true;
  3991. }
  3992. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3993. result->op = GGML_OP_CONT;
  3994. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3995. result->src0 = a;
  3996. result->src1 = NULL;
  3997. return result;
  3998. }
  3999. struct ggml_tensor * ggml_cont(
  4000. struct ggml_context * ctx,
  4001. struct ggml_tensor * a) {
  4002. return ggml_cont_impl(ctx, a, false);
  4003. }
  4004. struct ggml_tensor * ggml_cont_inplace(
  4005. struct ggml_context * ctx,
  4006. struct ggml_tensor * a) {
  4007. return ggml_cont_impl(ctx, a, true);
  4008. }
  4009. // ggml_reshape
  4010. struct ggml_tensor * ggml_reshape(
  4011. struct ggml_context * ctx,
  4012. struct ggml_tensor * a,
  4013. struct ggml_tensor * b) {
  4014. GGML_ASSERT(ggml_is_contiguous(a));
  4015. GGML_ASSERT(ggml_is_contiguous(b));
  4016. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4017. bool is_node = false;
  4018. if (a->grad || b->grad) {
  4019. GGML_ASSERT(false); // TODO: implement backward
  4020. is_node = true;
  4021. }
  4022. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  4023. result->op = GGML_OP_RESHAPE;
  4024. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4025. result->src0 = a;
  4026. result->src1 = NULL;
  4027. return result;
  4028. }
  4029. struct ggml_tensor * ggml_reshape_2d(
  4030. struct ggml_context * ctx,
  4031. struct ggml_tensor * a,
  4032. int64_t ne0,
  4033. int64_t ne1) {
  4034. GGML_ASSERT(ggml_is_contiguous(a));
  4035. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4036. bool is_node = false;
  4037. if (a->grad) {
  4038. GGML_ASSERT(false); // TODO: implement backward
  4039. is_node = true;
  4040. }
  4041. const int64_t ne[2] = { ne0, ne1 };
  4042. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  4043. result->op = GGML_OP_RESHAPE;
  4044. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4045. result->src0 = a;
  4046. result->src1 = NULL;
  4047. return result;
  4048. }
  4049. struct ggml_tensor * ggml_reshape_3d(
  4050. struct ggml_context * ctx,
  4051. struct ggml_tensor * a,
  4052. int64_t ne0,
  4053. int64_t ne1,
  4054. int64_t ne2) {
  4055. GGML_ASSERT(ggml_is_contiguous(a));
  4056. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4057. bool is_node = false;
  4058. if (a->grad) {
  4059. GGML_ASSERT(false); // TODO: implement backward
  4060. is_node = true;
  4061. }
  4062. const int64_t ne[3] = { ne0, ne1, ne2 };
  4063. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  4064. result->op = GGML_OP_RESHAPE;
  4065. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4066. result->src0 = a;
  4067. result->src1 = NULL;
  4068. return result;
  4069. }
  4070. // ggml_view_1d
  4071. struct ggml_tensor * ggml_view_1d(
  4072. struct ggml_context * ctx,
  4073. struct ggml_tensor * a,
  4074. int64_t ne0,
  4075. size_t offset) {
  4076. if (a->grad) {
  4077. GGML_ASSERT(false); // gradient propagation is not supported
  4078. }
  4079. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  4080. result->op = GGML_OP_VIEW;
  4081. result->grad = NULL;
  4082. result->src0 = a;
  4083. result->src1 = NULL; // TODO: maybe store the offset here?
  4084. return result;
  4085. }
  4086. // ggml_view_2d
  4087. struct ggml_tensor * ggml_view_2d(
  4088. struct ggml_context * ctx,
  4089. struct ggml_tensor * a,
  4090. int64_t ne0,
  4091. int64_t ne1,
  4092. size_t nb1,
  4093. size_t offset) {
  4094. if (a->grad) {
  4095. GGML_ASSERT(false); // gradient propagation is not supported
  4096. }
  4097. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  4098. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  4099. result->nb[1] = nb1;
  4100. result->nb[2] = result->nb[1]*ne1;
  4101. result->nb[3] = result->nb[2];
  4102. result->op = GGML_OP_VIEW;
  4103. result->grad = NULL;
  4104. result->src0 = a;
  4105. result->src1 = NULL; // TODO: maybe store the offset here?
  4106. return result;
  4107. }
  4108. // ggml_view_3d
  4109. struct ggml_tensor * ggml_view_3d(
  4110. struct ggml_context * ctx,
  4111. struct ggml_tensor * a,
  4112. int64_t ne0,
  4113. int64_t ne1,
  4114. int64_t ne2,
  4115. size_t nb1,
  4116. size_t nb2,
  4117. size_t offset) {
  4118. if (a->grad) {
  4119. GGML_ASSERT(false); // gradient propagation is not supported
  4120. }
  4121. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  4122. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  4123. result->nb[1] = nb1;
  4124. result->nb[2] = nb2;
  4125. result->nb[3] = result->nb[2]*ne2;
  4126. result->op = GGML_OP_VIEW;
  4127. result->grad = NULL;
  4128. result->src0 = a;
  4129. result->src1 = NULL; // TODO: maybe store the offset here?
  4130. return result;
  4131. }
  4132. // ggml_permute
  4133. struct ggml_tensor * ggml_permute(
  4134. struct ggml_context * ctx,
  4135. struct ggml_tensor * a,
  4136. int axis0,
  4137. int axis1,
  4138. int axis2,
  4139. int axis3) {
  4140. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4141. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4142. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4143. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4144. GGML_ASSERT(axis0 != axis1);
  4145. GGML_ASSERT(axis0 != axis2);
  4146. GGML_ASSERT(axis0 != axis3);
  4147. GGML_ASSERT(axis1 != axis2);
  4148. GGML_ASSERT(axis1 != axis3);
  4149. GGML_ASSERT(axis2 != axis3);
  4150. bool is_node = false;
  4151. if (a->grad) {
  4152. GGML_ASSERT(false); // TODO: implement backward
  4153. is_node = true;
  4154. }
  4155. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4156. int ne[GGML_MAX_DIMS];
  4157. int nb[GGML_MAX_DIMS];
  4158. ne[axis0] = a->ne[0];
  4159. ne[axis1] = a->ne[1];
  4160. ne[axis2] = a->ne[2];
  4161. ne[axis3] = a->ne[3];
  4162. nb[axis0] = a->nb[0];
  4163. nb[axis1] = a->nb[1];
  4164. nb[axis2] = a->nb[2];
  4165. nb[axis3] = a->nb[3];
  4166. result->ne[0] = ne[0];
  4167. result->ne[1] = ne[1];
  4168. result->ne[2] = ne[2];
  4169. result->ne[3] = ne[3];
  4170. result->nb[0] = nb[0];
  4171. result->nb[1] = nb[1];
  4172. result->nb[2] = nb[2];
  4173. result->nb[3] = nb[3];
  4174. result->op = GGML_OP_PERMUTE;
  4175. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4176. result->src0 = a;
  4177. result->src1 = NULL; // TODO: maybe store the permutation here?
  4178. return result;
  4179. }
  4180. // ggml_transpose
  4181. struct ggml_tensor * ggml_transpose(
  4182. struct ggml_context * ctx,
  4183. struct ggml_tensor * a) {
  4184. bool is_node = false;
  4185. if (a->grad) {
  4186. GGML_ASSERT(false); // TODO: implement backward
  4187. is_node = true;
  4188. }
  4189. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4190. result->ne[0] = a->ne[1];
  4191. result->ne[1] = a->ne[0];
  4192. result->nb[0] = a->nb[1];
  4193. result->nb[1] = a->nb[0];
  4194. result->op = GGML_OP_TRANSPOSE;
  4195. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4196. result->src0 = a;
  4197. result->src1 = NULL;
  4198. return result;
  4199. }
  4200. // ggml_get_rows
  4201. struct ggml_tensor * ggml_get_rows(
  4202. struct ggml_context * ctx,
  4203. struct ggml_tensor * a,
  4204. struct ggml_tensor * b) {
  4205. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4206. bool is_node = false;
  4207. if (a->grad || b->grad) {
  4208. GGML_ASSERT(false); // TODO: implement backward
  4209. is_node = true;
  4210. }
  4211. // TODO: implement non F32 return
  4212. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4213. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  4214. result->op = GGML_OP_GET_ROWS;
  4215. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4216. result->src0 = a;
  4217. result->src1 = b;
  4218. return result;
  4219. }
  4220. // ggml_diag_mask_inf
  4221. struct ggml_tensor * ggml_diag_mask_inf(
  4222. struct ggml_context * ctx,
  4223. struct ggml_tensor * a,
  4224. int n_past) {
  4225. bool is_node = false;
  4226. if (a->grad) {
  4227. GGML_ASSERT(false); // TODO: implement backward
  4228. is_node = true;
  4229. }
  4230. // TODO: when implement backward, fix this:
  4231. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4232. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4233. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  4234. result->op = GGML_OP_DIAG_MASK_INF;
  4235. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4236. result->src0 = a;
  4237. result->src1 = b;
  4238. return result;
  4239. }
  4240. // ggml_soft_max
  4241. struct ggml_tensor * ggml_soft_max(
  4242. struct ggml_context * ctx,
  4243. struct ggml_tensor * a) {
  4244. bool is_node = false;
  4245. if (a->grad) {
  4246. GGML_ASSERT(false); // TODO: implement backward
  4247. is_node = true;
  4248. }
  4249. // TODO: when implement backward, fix this:
  4250. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4251. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4252. result->op = GGML_OP_SOFT_MAX;
  4253. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4254. result->src0 = a;
  4255. result->src1 = NULL;
  4256. return result;
  4257. }
  4258. // ggml_rope
  4259. struct ggml_tensor * ggml_rope(
  4260. struct ggml_context * ctx,
  4261. struct ggml_tensor * a,
  4262. int n_past,
  4263. int n_dims,
  4264. int mode) {
  4265. GGML_ASSERT(n_past >= 0);
  4266. bool is_node = false;
  4267. if (a->grad) {
  4268. GGML_ASSERT(false); // TODO: implement backward
  4269. is_node = true;
  4270. }
  4271. // TODO: when implement backward, fix this:
  4272. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4273. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4274. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  4275. ((int32_t *) b->data)[0] = n_past;
  4276. ((int32_t *) b->data)[1] = n_dims;
  4277. ((int32_t *) b->data)[2] = mode;
  4278. result->op = GGML_OP_ROPE;
  4279. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4280. result->src0 = a;
  4281. result->src1 = b;
  4282. return result;
  4283. }
  4284. // ggml_conv_1d_1s
  4285. struct ggml_tensor * ggml_conv_1d_1s(
  4286. struct ggml_context * ctx,
  4287. struct ggml_tensor * a,
  4288. struct ggml_tensor * b) {
  4289. GGML_ASSERT(ggml_is_matrix(b));
  4290. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4291. GGML_ASSERT(a->ne[3] == 1);
  4292. bool is_node = false;
  4293. if (a->grad || b->grad) {
  4294. GGML_ASSERT(false); // TODO: implement backward
  4295. is_node = true;
  4296. }
  4297. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  4298. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4299. result->op = GGML_OP_CONV_1D_1S;
  4300. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4301. result->src0 = a;
  4302. result->src1 = b;
  4303. return result;
  4304. }
  4305. // ggml_conv_1d_2s
  4306. struct ggml_tensor * ggml_conv_1d_2s(
  4307. struct ggml_context * ctx,
  4308. struct ggml_tensor * a,
  4309. struct ggml_tensor * b) {
  4310. GGML_ASSERT(ggml_is_matrix(b));
  4311. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4312. GGML_ASSERT(a->ne[3] == 1);
  4313. bool is_node = false;
  4314. if (a->grad || b->grad) {
  4315. GGML_ASSERT(false); // TODO: implement backward
  4316. is_node = true;
  4317. }
  4318. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  4319. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4320. result->op = GGML_OP_CONV_1D_2S;
  4321. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4322. result->src0 = a;
  4323. result->src1 = b;
  4324. return result;
  4325. }
  4326. // ggml_flash_attn
  4327. struct ggml_tensor * ggml_flash_attn(
  4328. struct ggml_context * ctx,
  4329. struct ggml_tensor * q,
  4330. struct ggml_tensor * k,
  4331. struct ggml_tensor * v,
  4332. bool masked) {
  4333. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4334. // TODO: check if vT can be multiplied by (k*qT)
  4335. bool is_node = false;
  4336. if (q->grad || k->grad || v->grad) {
  4337. GGML_ASSERT(false); // TODO: implement backward
  4338. is_node = true;
  4339. }
  4340. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4341. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  4342. result->op = GGML_OP_FLASH_ATTN;
  4343. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4344. result->src0 = q;
  4345. result->src1 = k;
  4346. result->opt[0] = v;
  4347. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  4348. return result;
  4349. }
  4350. // ggml_flash_ff
  4351. struct ggml_tensor * ggml_flash_ff(
  4352. struct ggml_context * ctx,
  4353. struct ggml_tensor * a,
  4354. struct ggml_tensor * b0,
  4355. struct ggml_tensor * b1,
  4356. struct ggml_tensor * c0,
  4357. struct ggml_tensor * c1) {
  4358. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4359. // TODO: more checks
  4360. bool is_node = false;
  4361. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4362. GGML_ASSERT(false); // TODO: implement backward
  4363. is_node = true;
  4364. }
  4365. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4366. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  4367. result->op = GGML_OP_FLASH_FF;
  4368. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4369. result->src0 = a;
  4370. result->src1 = b0;
  4371. result->opt[0] = b1;
  4372. result->opt[1] = c0;
  4373. result->opt[2] = c1;
  4374. return result;
  4375. }
  4376. // ggml_map_unary
  4377. struct ggml_tensor * ggml_map_unary_impl_f32(
  4378. struct ggml_context * ctx,
  4379. struct ggml_tensor * a,
  4380. const ggml_unary_op_f32_t fun,
  4381. bool inplace) {
  4382. bool is_node = false;
  4383. if (!inplace && a->grad) {
  4384. is_node = true;
  4385. }
  4386. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4387. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4388. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4389. result->op = GGML_OP_MAP_UNARY;
  4390. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4391. result->src0 = a;
  4392. result->opt[0] = addr_tensor;
  4393. return result;
  4394. }
  4395. struct ggml_tensor * ggml_map_unary_f32(
  4396. struct ggml_context * ctx,
  4397. struct ggml_tensor * a,
  4398. const ggml_unary_op_f32_t fun) {
  4399. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4400. }
  4401. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4402. struct ggml_context * ctx,
  4403. struct ggml_tensor * a,
  4404. const ggml_unary_op_f32_t fun) {
  4405. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4406. }
  4407. // ggml_map_binary
  4408. struct ggml_tensor * ggml_map_binary_impl_f32(
  4409. struct ggml_context * ctx,
  4410. struct ggml_tensor * a,
  4411. struct ggml_tensor * b,
  4412. const ggml_binary_op_f32_t fun,
  4413. bool inplace) {
  4414. GGML_ASSERT(ggml_are_same_shape(a, b));
  4415. bool is_node = false;
  4416. if (!inplace && (a->grad || b->grad)) {
  4417. is_node = true;
  4418. }
  4419. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4420. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4421. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4422. result->op = GGML_OP_MAP_BINARY;
  4423. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4424. result->src0 = a;
  4425. result->src1 = b;
  4426. result->opt[0] = addr_tensor;
  4427. return result;
  4428. }
  4429. struct ggml_tensor * ggml_map_binary_f32(
  4430. struct ggml_context * ctx,
  4431. struct ggml_tensor * a,
  4432. struct ggml_tensor * b,
  4433. const ggml_binary_op_f32_t fun) {
  4434. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  4435. }
  4436. struct ggml_tensor * ggml_map_binary_inplace_f32(
  4437. struct ggml_context * ctx,
  4438. struct ggml_tensor * a,
  4439. struct ggml_tensor * b,
  4440. const ggml_binary_op_f32_t fun) {
  4441. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  4442. }
  4443. ////////////////////////////////////////////////////////////////////////////////
  4444. void ggml_set_param(
  4445. struct ggml_context * ctx,
  4446. struct ggml_tensor * tensor) {
  4447. tensor->is_param = true;
  4448. GGML_ASSERT(tensor->grad == NULL);
  4449. tensor->grad = ggml_dup_tensor(ctx, tensor);
  4450. }
  4451. // ggml_compute_forward_dup
  4452. static void ggml_compute_forward_dup_f16(
  4453. const struct ggml_compute_params * params,
  4454. const struct ggml_tensor * src0,
  4455. struct ggml_tensor * dst) {
  4456. GGML_ASSERT(params->ith == 0);
  4457. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  4458. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4459. return;
  4460. }
  4461. const int64_t ne00 = src0->ne[0];
  4462. const int64_t ne01 = src0->ne[1];
  4463. const int64_t ne02 = src0->ne[2];
  4464. const int64_t ne03 = src0->ne[3];
  4465. const size_t nb00 = src0->nb[0];
  4466. const size_t nb01 = src0->nb[1];
  4467. const size_t nb02 = src0->nb[2];
  4468. const size_t nb03 = src0->nb[3];
  4469. const size_t nb0 = dst->nb[0];
  4470. const size_t nb1 = dst->nb[1];
  4471. const size_t nb2 = dst->nb[2];
  4472. const size_t nb3 = dst->nb[3];
  4473. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  4474. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  4475. return;
  4476. }
  4477. if (src0->type == dst->type &&
  4478. src0->ne[0] == dst->ne[0] &&
  4479. src0->nb[0] == GGML_TYPE_SIZE[src0->type] && dst->nb[0] == GGML_TYPE_SIZE[dst->type]) {
  4480. // copy by rows
  4481. const size_t rs = ne00*nb00;
  4482. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4483. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4484. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4485. memcpy(
  4486. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4487. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  4488. rs);
  4489. }
  4490. }
  4491. }
  4492. return;
  4493. }
  4494. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  4495. if (ggml_is_contiguous(dst)) {
  4496. if (src0->nb[0] == sizeof(ggml_fp16_t)) {
  4497. if (dst->type == GGML_TYPE_F16) {
  4498. size_t id = 0;
  4499. const size_t rs = ne00*nb00;
  4500. for (int i03 = 0; i03 < ne03; i03++) {
  4501. for (int i02 = 0; i02 < ne02; i02++) {
  4502. for (int i01 = 0; i01 < ne01; i01++) {
  4503. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  4504. char * dst_ptr = (char *) dst->data + id*rs;
  4505. memcpy(dst_ptr, src0_ptr, rs);
  4506. id++;
  4507. }
  4508. }
  4509. }
  4510. } else if (dst->type == GGML_TYPE_F32) {
  4511. size_t id = 0;
  4512. float * dst_ptr = (float *) dst->data;
  4513. for (int i03 = 0; i03 < ne03; i03++) {
  4514. for (int i02 = 0; i02 < ne02; i02++) {
  4515. for (int i01 = 0; i01 < ne01; i01++) {
  4516. for (int i00 = 0; i00 < ne00; i00++) {
  4517. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4518. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  4519. id++;
  4520. }
  4521. }
  4522. }
  4523. }
  4524. } else if (dst->type == GGML_TYPE_Q4_0 || dst->type == GGML_TYPE_Q4_1) {
  4525. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  4526. size_t id = 0;
  4527. uint8_t * dst_ptr = (uint8_t *) dst->data;
  4528. size_t dst_row_size = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  4529. float * src0_f32 = (float *) params->wdata;
  4530. for (int i03 = 0; i03 < ne03; i03++) {
  4531. for (int i02 = 0; i02 < ne02; i02++) {
  4532. for (int i01 = 0; i01 < ne01; i01++) {
  4533. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4534. // convert to f32 and quantize
  4535. for (int i00 = 0; i00 < ne00; i00++) {
  4536. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  4537. }
  4538. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  4539. id += dst_row_size;
  4540. }
  4541. }
  4542. }
  4543. } else {
  4544. GGML_ASSERT(false); // TODO: implement
  4545. }
  4546. } else {
  4547. //printf("%s: this is not optimal - fix me\n", __func__);
  4548. if (dst->type == GGML_TYPE_F32) {
  4549. size_t id = 0;
  4550. float * dst_ptr = (float *) dst->data;
  4551. for (int i03 = 0; i03 < ne03; i03++) {
  4552. for (int i02 = 0; i02 < ne02; i02++) {
  4553. for (int i01 = 0; i01 < ne01; i01++) {
  4554. for (int i00 = 0; i00 < ne00; i00++) {
  4555. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4556. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  4557. id++;
  4558. }
  4559. }
  4560. }
  4561. }
  4562. } else if (dst->type == GGML_TYPE_F16) {
  4563. size_t id = 0;
  4564. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4565. for (int i03 = 0; i03 < ne03; i03++) {
  4566. for (int i02 = 0; i02 < ne02; i02++) {
  4567. for (int i01 = 0; i01 < ne01; i01++) {
  4568. for (int i00 = 0; i00 < ne00; i00++) {
  4569. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4570. dst_ptr[id] = *src0_ptr;
  4571. id++;
  4572. }
  4573. }
  4574. }
  4575. }
  4576. } else {
  4577. GGML_ASSERT(false); // TODO: implement
  4578. }
  4579. }
  4580. return;
  4581. }
  4582. // dst counters
  4583. int64_t i10 = 0;
  4584. int64_t i11 = 0;
  4585. int64_t i12 = 0;
  4586. int64_t i13 = 0;
  4587. if (dst->type == GGML_TYPE_F16) {
  4588. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4589. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4590. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4591. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4592. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4593. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4594. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  4595. if (++i10 == ne00) {
  4596. i10 = 0;
  4597. if (++i11 == ne01) {
  4598. i11 = 0;
  4599. if (++i12 == ne02) {
  4600. i12 = 0;
  4601. if (++i13 == ne03) {
  4602. i13 = 0;
  4603. }
  4604. }
  4605. }
  4606. }
  4607. }
  4608. }
  4609. }
  4610. }
  4611. } else if (dst->type == GGML_TYPE_F32) {
  4612. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4613. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4614. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4615. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4616. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4617. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4618. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  4619. if (++i10 == ne00) {
  4620. i10 = 0;
  4621. if (++i11 == ne01) {
  4622. i11 = 0;
  4623. if (++i12 == ne02) {
  4624. i12 = 0;
  4625. if (++i13 == ne03) {
  4626. i13 = 0;
  4627. }
  4628. }
  4629. }
  4630. }
  4631. }
  4632. }
  4633. }
  4634. }
  4635. } else {
  4636. GGML_ASSERT(false); // TODO: implement
  4637. }
  4638. }
  4639. static void ggml_compute_forward_dup_f32(
  4640. const struct ggml_compute_params * params,
  4641. const struct ggml_tensor * src0,
  4642. struct ggml_tensor * dst) {
  4643. GGML_ASSERT(params->ith == 0);
  4644. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  4645. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4646. return;
  4647. }
  4648. const int64_t ne00 = src0->ne[0];
  4649. const int64_t ne01 = src0->ne[1];
  4650. const int64_t ne02 = src0->ne[2];
  4651. const int64_t ne03 = src0->ne[3];
  4652. const size_t nb00 = src0->nb[0];
  4653. const size_t nb01 = src0->nb[1];
  4654. const size_t nb02 = src0->nb[2];
  4655. const size_t nb03 = src0->nb[3];
  4656. const size_t nb0 = dst->nb[0];
  4657. const size_t nb1 = dst->nb[1];
  4658. const size_t nb2 = dst->nb[2];
  4659. const size_t nb3 = dst->nb[3];
  4660. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  4661. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  4662. return;
  4663. }
  4664. if (src0->type == dst->type &&
  4665. src0->ne[0] == dst->ne[0] &&
  4666. src0->nb[0] == GGML_TYPE_SIZE[src0->type] && dst->nb[0] == GGML_TYPE_SIZE[dst->type]) {
  4667. // copy by rows
  4668. const size_t rs = ne00*nb00;
  4669. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4670. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4671. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4672. memcpy(
  4673. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4674. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  4675. rs);
  4676. }
  4677. }
  4678. }
  4679. return;
  4680. }
  4681. if (ggml_is_contiguous(dst)) {
  4682. // TODO: simplify
  4683. if (src0->nb[0] == sizeof(float)) {
  4684. if (dst->type == GGML_TYPE_F32) {
  4685. size_t id = 0;
  4686. const size_t rs = ne00*nb00;
  4687. for (int i03 = 0; i03 < ne03; i03++) {
  4688. for (int i02 = 0; i02 < ne02; i02++) {
  4689. for (int i01 = 0; i01 < ne01; i01++) {
  4690. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  4691. char * dst_ptr = (char *) dst->data + id*rs;
  4692. memcpy(dst_ptr, src0_ptr, rs);
  4693. id++;
  4694. }
  4695. }
  4696. }
  4697. } else if (dst->type == GGML_TYPE_F16) {
  4698. size_t id = 0;
  4699. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4700. for (int i03 = 0; i03 < ne03; i03++) {
  4701. for (int i02 = 0; i02 < ne02; i02++) {
  4702. for (int i01 = 0; i01 < ne01; i01++) {
  4703. for (int i00 = 0; i00 < ne00; i00++) {
  4704. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4705. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  4706. id++;
  4707. }
  4708. }
  4709. }
  4710. }
  4711. } else if (dst->type == GGML_TYPE_Q4_0 || dst->type == GGML_TYPE_Q4_1) {
  4712. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  4713. size_t id = 0;
  4714. uint8_t * dst_ptr = (uint8_t *) dst->data;
  4715. size_t dst_row_size = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  4716. for (int i03 = 0; i03 < ne03; i03++) {
  4717. for (int i02 = 0; i02 < ne02; i02++) {
  4718. for (int i01 = 0; i01 < ne01; i01++) {
  4719. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4720. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  4721. id += dst_row_size;
  4722. }
  4723. }
  4724. }
  4725. } else {
  4726. GGML_ASSERT(false); // TODO: implement
  4727. }
  4728. } else {
  4729. //printf("%s: this is not optimal - fix me\n", __func__);
  4730. if (dst->type == GGML_TYPE_F32) {
  4731. size_t id = 0;
  4732. float * dst_ptr = (float *) dst->data;
  4733. for (int i03 = 0; i03 < ne03; i03++) {
  4734. for (int i02 = 0; i02 < ne02; i02++) {
  4735. for (int i01 = 0; i01 < ne01; i01++) {
  4736. for (int i00 = 0; i00 < ne00; i00++) {
  4737. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4738. dst_ptr[id] = *src0_ptr;
  4739. id++;
  4740. }
  4741. }
  4742. }
  4743. }
  4744. } else if (dst->type == GGML_TYPE_F16) {
  4745. size_t id = 0;
  4746. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4747. for (int i03 = 0; i03 < ne03; i03++) {
  4748. for (int i02 = 0; i02 < ne02; i02++) {
  4749. for (int i01 = 0; i01 < ne01; i01++) {
  4750. for (int i00 = 0; i00 < ne00; i00++) {
  4751. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4752. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  4753. id++;
  4754. }
  4755. }
  4756. }
  4757. }
  4758. } else {
  4759. GGML_ASSERT(false); // TODO: implement
  4760. }
  4761. }
  4762. return;
  4763. }
  4764. // dst counters
  4765. int64_t i10 = 0;
  4766. int64_t i11 = 0;
  4767. int64_t i12 = 0;
  4768. int64_t i13 = 0;
  4769. if (dst->type == GGML_TYPE_F32) {
  4770. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4771. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4772. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4773. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4774. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4775. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4776. memcpy(dst_ptr, src0_ptr, sizeof(float));
  4777. if (++i10 == dst->ne[0]) {
  4778. i10 = 0;
  4779. if (++i11 == dst->ne[1]) {
  4780. i11 = 0;
  4781. if (++i12 == dst->ne[2]) {
  4782. i12 = 0;
  4783. if (++i13 == dst->ne[3]) {
  4784. i13 = 0;
  4785. }
  4786. }
  4787. }
  4788. }
  4789. }
  4790. }
  4791. }
  4792. }
  4793. } else if (dst->type == GGML_TYPE_F16) {
  4794. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4795. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4796. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4797. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4798. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4799. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4800. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  4801. if (++i10 == dst->ne[0]) {
  4802. i10 = 0;
  4803. if (++i11 == dst->ne[1]) {
  4804. i11 = 0;
  4805. if (++i12 == dst->ne[2]) {
  4806. i12 = 0;
  4807. if (++i13 == dst->ne[3]) {
  4808. i13 = 0;
  4809. }
  4810. }
  4811. }
  4812. }
  4813. }
  4814. }
  4815. }
  4816. }
  4817. } else {
  4818. GGML_ASSERT(false); // TODO: implement
  4819. }
  4820. }
  4821. static void ggml_compute_forward_dup(
  4822. const struct ggml_compute_params * params,
  4823. const struct ggml_tensor * src0,
  4824. struct ggml_tensor * dst) {
  4825. switch (src0->type) {
  4826. case GGML_TYPE_F16:
  4827. {
  4828. ggml_compute_forward_dup_f16(params, src0, dst);
  4829. } break;
  4830. case GGML_TYPE_F32:
  4831. {
  4832. ggml_compute_forward_dup_f32(params, src0, dst);
  4833. } break;
  4834. default:
  4835. {
  4836. GGML_ASSERT(false);
  4837. } break;
  4838. }
  4839. }
  4840. // ggml_compute_forward_add
  4841. static void ggml_compute_forward_add_f32(
  4842. const struct ggml_compute_params * params,
  4843. const struct ggml_tensor * src0,
  4844. const struct ggml_tensor * src1,
  4845. struct ggml_tensor * dst) {
  4846. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4847. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4848. return;
  4849. }
  4850. const int ith = params->ith;
  4851. const int nth = params->nth;
  4852. const int n = ggml_nrows(src0);
  4853. const int nc = src0->ne[0];
  4854. const size_t nb00 = src0->nb[0];
  4855. const size_t nb01 = src0->nb[1];
  4856. const size_t nb10 = src1->nb[0];
  4857. const size_t nb11 = src1->nb[1];
  4858. const size_t nb0 = dst->nb[0];
  4859. const size_t nb1 = dst->nb[1];
  4860. GGML_ASSERT( nb0 == sizeof(float));
  4861. GGML_ASSERT(nb00 == sizeof(float));
  4862. if (nb10 == sizeof(float)) {
  4863. for (int j = ith; j < n; j += nth) {
  4864. #ifdef GGML_USE_ACCELERATE
  4865. vDSP_vadd(
  4866. (float *) ((char *) src0->data + j*nb01), 1,
  4867. (float *) ((char *) src1->data + j*nb11), 1,
  4868. (float *) ((char *) dst->data + j*nb1), 1, nc);
  4869. #else
  4870. ggml_vec_add_f32(nc,
  4871. (float *) ((char *) dst->data + j*nb1),
  4872. (float *) ((char *) src0->data + j*nb01),
  4873. (float *) ((char *) src1->data + j*nb11));
  4874. #endif
  4875. }
  4876. } else {
  4877. // src1 is not contiguous
  4878. for (int j = ith; j < n; j += nth) {
  4879. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  4880. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  4881. for (int i = 0; i < nc; i++) {
  4882. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  4883. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  4884. }
  4885. }
  4886. }
  4887. }
  4888. static void ggml_compute_forward_add_f16_f32(
  4889. const struct ggml_compute_params * params,
  4890. const struct ggml_tensor * src0,
  4891. const struct ggml_tensor * src1,
  4892. struct ggml_tensor * dst) {
  4893. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4894. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4895. return;
  4896. }
  4897. const int ith = params->ith;
  4898. const int nth = params->nth;
  4899. const int n = ggml_nrows(src0);
  4900. const int nc = src0->ne[0];
  4901. const size_t nb00 = src0->nb[0];
  4902. const size_t nb01 = src0->nb[1];
  4903. const size_t nb10 = src1->nb[0];
  4904. const size_t nb11 = src1->nb[1];
  4905. const size_t nb0 = dst->nb[0];
  4906. const size_t nb1 = dst->nb[1];
  4907. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  4908. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  4909. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  4910. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  4911. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  4912. if (nb10 == sizeof(float)) {
  4913. for (int j = ith; j < n; j += nth) {
  4914. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  4915. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  4916. for (int i = 0; i < nc; i++) {
  4917. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  4918. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + *src1_ptr);
  4919. }
  4920. }
  4921. }
  4922. else {
  4923. // src1 is not contiguous
  4924. GGML_ASSERT(false);
  4925. }
  4926. }
  4927. static void ggml_compute_forward_add_f16_f16(
  4928. const struct ggml_compute_params * params,
  4929. const struct ggml_tensor * src0,
  4930. const struct ggml_tensor * src1,
  4931. struct ggml_tensor * dst) {
  4932. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4933. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4934. return;
  4935. }
  4936. const int ith = params->ith;
  4937. const int nth = params->nth;
  4938. const int n = ggml_nrows(src0);
  4939. const int nc = src0->ne[0];
  4940. const size_t nb00 = src0->nb[0];
  4941. const size_t nb01 = src0->nb[1];
  4942. const size_t nb10 = src1->nb[0];
  4943. const size_t nb11 = src1->nb[1];
  4944. const size_t nb0 = dst->nb[0];
  4945. const size_t nb1 = dst->nb[1];
  4946. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  4947. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  4948. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  4949. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  4950. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  4951. if (nb10 == sizeof(ggml_fp16_t)) {
  4952. for (int j = ith; j < n; j += nth) {
  4953. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  4954. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  4955. for (int i = 0; i < nc; i++) {
  4956. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + j*nb11 + i*nb10);
  4957. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(*src1_ptr));
  4958. }
  4959. }
  4960. }
  4961. else {
  4962. // src1 is not contiguous
  4963. GGML_ASSERT(false);
  4964. }
  4965. }
  4966. static void ggml_compute_forward_add_q_f32(
  4967. const struct ggml_compute_params * params,
  4968. const struct ggml_tensor * src0,
  4969. const struct ggml_tensor * src1,
  4970. struct ggml_tensor * dst) {
  4971. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4972. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4973. return;
  4974. }
  4975. const int64_t ne00 = src0->ne[0];
  4976. const int64_t ne01 = src0->ne[1];
  4977. const int64_t ne02 = src0->ne[2];
  4978. const int64_t ne03 = src0->ne[3];
  4979. //const int64_t ne10 = src1->ne[0];
  4980. //const int64_t ne11 = src1->ne[1];
  4981. const int64_t ne12 = src1->ne[2];
  4982. const int64_t ne13 = src1->ne[3];
  4983. //const int64_t ne0 = dst->ne[0];
  4984. //const int64_t ne1 = dst->ne[1];
  4985. const int64_t ne2 = dst->ne[2];
  4986. const int64_t ne3 = dst->ne[3];
  4987. const int nb00 = src0->nb[0];
  4988. const int nb01 = src0->nb[1];
  4989. const int nb02 = src0->nb[2];
  4990. const int nb03 = src0->nb[3];
  4991. const int nb10 = src1->nb[0];
  4992. const int nb11 = src1->nb[1];
  4993. const int nb12 = src1->nb[2];
  4994. const int nb13 = src1->nb[3];
  4995. const int nb0 = dst->nb[0];
  4996. const int nb1 = dst->nb[1];
  4997. const int nb2 = dst->nb[2];
  4998. const int nb3 = dst->nb[3];
  4999. const int ith = params->ith;
  5000. const int nth = params->nth;
  5001. GGML_ASSERT(ne02 == ne12);
  5002. GGML_ASSERT(ne03 == ne13);
  5003. GGML_ASSERT(ne2 == ne12);
  5004. GGML_ASSERT(ne3 == ne13);
  5005. const enum ggml_type type = src0->type;
  5006. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5007. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  5008. // we don't support permuted src0 or src1
  5009. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  5010. GGML_ASSERT(nb10 == sizeof(float));
  5011. // dst cannot be transposed or permuted
  5012. GGML_ASSERT(nb0 <= nb1);
  5013. GGML_ASSERT(nb1 <= nb2);
  5014. GGML_ASSERT(nb2 <= nb3);
  5015. GGML_ASSERT(src0->type == GGML_TYPE_Q4_0 || src0->type == GGML_TYPE_Q4_1);
  5016. GGML_ASSERT(dst->type == src0->type);
  5017. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5018. // total rows in src0
  5019. const int nr = ne01*ne02*ne03;
  5020. // rows per thread
  5021. const int dr = (nr + nth - 1)/nth;
  5022. // row range for this thread
  5023. const int ir0 = dr*ith;
  5024. const int ir1 = MIN(ir0 + dr, nr);
  5025. float * wdata = (float*) params->wdata + ne00 * ith;
  5026. for (int ir = ir0; ir < ir1; ++ir) {
  5027. // src0 indices
  5028. const int i03 = ir/(ne02*ne01);
  5029. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5030. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5031. // src1 and dst are same shape as src0 => same indices
  5032. const int i13 = i03;
  5033. const int i12 = i02;
  5034. const int i11 = i01;
  5035. const int i3 = i03;
  5036. const int i2 = i02;
  5037. const int i1 = i01;
  5038. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5039. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  5040. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb0));
  5041. assert(ne00 % 32 == 0);
  5042. // unquantize row from src0 to temp buffer
  5043. dequantize_row_q(src0_row, wdata, ne00);
  5044. // add src1
  5045. ggml_vec_acc_f32(ne00, wdata, src1_row);
  5046. // quantize row to dst
  5047. quantize_row_q(wdata, dst_row, ne00);
  5048. }
  5049. }
  5050. static void ggml_compute_forward_add(
  5051. const struct ggml_compute_params * params,
  5052. const struct ggml_tensor * src0,
  5053. const struct ggml_tensor * src1,
  5054. struct ggml_tensor * dst) {
  5055. switch (src0->type) {
  5056. case GGML_TYPE_F32:
  5057. {
  5058. ggml_compute_forward_add_f32(params, src0, src1, dst);
  5059. } break;
  5060. case GGML_TYPE_F16:
  5061. {
  5062. if (src1->type == GGML_TYPE_F16) {
  5063. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  5064. }
  5065. else if (src1->type == GGML_TYPE_F32) {
  5066. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  5067. }
  5068. else {
  5069. GGML_ASSERT(false);
  5070. }
  5071. } break;
  5072. case GGML_TYPE_Q4_0:
  5073. case GGML_TYPE_Q4_1:
  5074. {
  5075. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  5076. } break;
  5077. default:
  5078. {
  5079. GGML_ASSERT(false);
  5080. } break;
  5081. }
  5082. }
  5083. // ggml_compute_forward_sub
  5084. static void ggml_compute_forward_sub_f32(
  5085. const struct ggml_compute_params * params,
  5086. const struct ggml_tensor * src0,
  5087. const struct ggml_tensor * src1,
  5088. struct ggml_tensor * dst) {
  5089. assert(params->ith == 0);
  5090. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5091. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5092. return;
  5093. }
  5094. const int n = ggml_nrows(src0);
  5095. const int nc = src0->ne[0];
  5096. assert( dst->nb[0] == sizeof(float));
  5097. assert(src0->nb[0] == sizeof(float));
  5098. assert(src1->nb[0] == sizeof(float));
  5099. for (int i = 0; i < n; i++) {
  5100. ggml_vec_sub_f32(nc,
  5101. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5102. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5103. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5104. }
  5105. }
  5106. static void ggml_compute_forward_sub(
  5107. const struct ggml_compute_params * params,
  5108. const struct ggml_tensor * src0,
  5109. const struct ggml_tensor * src1,
  5110. struct ggml_tensor * dst) {
  5111. switch (src0->type) {
  5112. case GGML_TYPE_F32:
  5113. {
  5114. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  5115. } break;
  5116. default:
  5117. {
  5118. GGML_ASSERT(false);
  5119. } break;
  5120. }
  5121. }
  5122. // ggml_compute_forward_mul
  5123. static void ggml_compute_forward_mul_f32(
  5124. const struct ggml_compute_params * params,
  5125. const struct ggml_tensor * src0,
  5126. const struct ggml_tensor * src1,
  5127. struct ggml_tensor * dst) {
  5128. assert(params->ith == 0);
  5129. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5130. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5131. return;
  5132. }
  5133. const int n = ggml_nrows(src0);
  5134. const int nc = src0->ne[0];
  5135. assert( dst->nb[0] == sizeof(float));
  5136. assert(src0->nb[0] == sizeof(float));
  5137. assert(src1->nb[0] == sizeof(float));
  5138. for (int i = 0; i < n; i++) {
  5139. ggml_vec_mul_f32(nc,
  5140. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5141. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5142. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5143. }
  5144. }
  5145. static void ggml_compute_forward_mul(
  5146. const struct ggml_compute_params * params,
  5147. const struct ggml_tensor * src0,
  5148. const struct ggml_tensor * src1,
  5149. struct ggml_tensor * dst) {
  5150. switch (src0->type) {
  5151. case GGML_TYPE_F32:
  5152. {
  5153. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  5154. } break;
  5155. default:
  5156. {
  5157. GGML_ASSERT(false);
  5158. } break;
  5159. }
  5160. }
  5161. // ggml_compute_forward_div
  5162. static void ggml_compute_forward_div_f32(
  5163. const struct ggml_compute_params * params,
  5164. const struct ggml_tensor * src0,
  5165. const struct ggml_tensor * src1,
  5166. struct ggml_tensor * dst) {
  5167. assert(params->ith == 0);
  5168. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5169. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5170. return;
  5171. }
  5172. const int n = ggml_nrows(src0);
  5173. const int nc = src0->ne[0];
  5174. assert( dst->nb[0] == sizeof(float));
  5175. assert(src0->nb[0] == sizeof(float));
  5176. assert(src1->nb[0] == sizeof(float));
  5177. for (int i = 0; i < n; i++) {
  5178. ggml_vec_div_f32(nc,
  5179. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5180. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5181. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5182. }
  5183. }
  5184. static void ggml_compute_forward_div(
  5185. const struct ggml_compute_params * params,
  5186. const struct ggml_tensor * src0,
  5187. const struct ggml_tensor * src1,
  5188. struct ggml_tensor * dst) {
  5189. switch (src0->type) {
  5190. case GGML_TYPE_F32:
  5191. {
  5192. ggml_compute_forward_div_f32(params, src0, src1, dst);
  5193. } break;
  5194. default:
  5195. {
  5196. GGML_ASSERT(false);
  5197. } break;
  5198. }
  5199. }
  5200. // ggml_compute_forward_sqr
  5201. static void ggml_compute_forward_sqr_f32(
  5202. const struct ggml_compute_params * params,
  5203. const struct ggml_tensor * src0,
  5204. struct ggml_tensor * dst) {
  5205. assert(params->ith == 0);
  5206. assert(ggml_are_same_shape(src0, dst));
  5207. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5208. return;
  5209. }
  5210. const int n = ggml_nrows(src0);
  5211. const int nc = src0->ne[0];
  5212. assert( dst->nb[0] == sizeof(float));
  5213. assert(src0->nb[0] == sizeof(float));
  5214. for (int i = 0; i < n; i++) {
  5215. ggml_vec_sqr_f32(nc,
  5216. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5217. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5218. }
  5219. }
  5220. static void ggml_compute_forward_sqr(
  5221. const struct ggml_compute_params * params,
  5222. const struct ggml_tensor * src0,
  5223. struct ggml_tensor * dst) {
  5224. switch (src0->type) {
  5225. case GGML_TYPE_F32:
  5226. {
  5227. ggml_compute_forward_sqr_f32(params, src0, dst);
  5228. } break;
  5229. default:
  5230. {
  5231. GGML_ASSERT(false);
  5232. } break;
  5233. }
  5234. }
  5235. // ggml_compute_forward_sqrt
  5236. static void ggml_compute_forward_sqrt_f32(
  5237. const struct ggml_compute_params * params,
  5238. const struct ggml_tensor * src0,
  5239. struct ggml_tensor * dst) {
  5240. assert(params->ith == 0);
  5241. assert(ggml_are_same_shape(src0, dst));
  5242. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5243. return;
  5244. }
  5245. const int n = ggml_nrows(src0);
  5246. const int nc = src0->ne[0];
  5247. assert( dst->nb[0] == sizeof(float));
  5248. assert(src0->nb[0] == sizeof(float));
  5249. for (int i = 0; i < n; i++) {
  5250. ggml_vec_sqrt_f32(nc,
  5251. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5252. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5253. }
  5254. }
  5255. static void ggml_compute_forward_sqrt(
  5256. const struct ggml_compute_params * params,
  5257. const struct ggml_tensor * src0,
  5258. struct ggml_tensor * dst) {
  5259. switch (src0->type) {
  5260. case GGML_TYPE_F32:
  5261. {
  5262. ggml_compute_forward_sqrt_f32(params, src0, dst);
  5263. } break;
  5264. default:
  5265. {
  5266. GGML_ASSERT(false);
  5267. } break;
  5268. }
  5269. }
  5270. // ggml_compute_forward_sum
  5271. static void ggml_compute_forward_sum_f32(
  5272. const struct ggml_compute_params * params,
  5273. const struct ggml_tensor * src0,
  5274. struct ggml_tensor * dst) {
  5275. assert(params->ith == 0);
  5276. assert(ggml_is_scalar(dst));
  5277. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5278. return;
  5279. }
  5280. assert(ggml_is_scalar(dst));
  5281. assert(src0->nb[0] == sizeof(float));
  5282. const int64_t ne00 = src0->ne[0];
  5283. const int64_t ne01 = src0->ne[1];
  5284. const int64_t ne02 = src0->ne[2];
  5285. const int64_t ne03 = src0->ne[3];
  5286. const size_t nb01 = src0->nb[1];
  5287. const size_t nb02 = src0->nb[2];
  5288. const size_t nb03 = src0->nb[3];
  5289. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5290. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5291. for (int64_t i01 = 0; i01 < ne01; i01++) {
  5292. ggml_vec_sum_f32(ne00,
  5293. (float *) (dst->data),
  5294. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  5295. }
  5296. }
  5297. }
  5298. }
  5299. static void ggml_compute_forward_sum(
  5300. const struct ggml_compute_params * params,
  5301. const struct ggml_tensor * src0,
  5302. struct ggml_tensor * dst) {
  5303. switch (src0->type) {
  5304. case GGML_TYPE_F32:
  5305. {
  5306. ggml_compute_forward_sum_f32(params, src0, dst);
  5307. } break;
  5308. default:
  5309. {
  5310. GGML_ASSERT(false);
  5311. } break;
  5312. }
  5313. }
  5314. // ggml_compute_forward_mean
  5315. static void ggml_compute_forward_mean_f32(
  5316. const struct ggml_compute_params * params,
  5317. const struct ggml_tensor * src0,
  5318. struct ggml_tensor * dst) {
  5319. assert(params->ith == 0);
  5320. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5321. return;
  5322. }
  5323. assert(src0->nb[0] == sizeof(float));
  5324. const int64_t ne00 = src0->ne[0];
  5325. const int64_t ne01 = src0->ne[1];
  5326. const int64_t ne02 = src0->ne[2];
  5327. const int64_t ne03 = src0->ne[3];
  5328. const size_t nb01 = src0->nb[1];
  5329. const size_t nb02 = src0->nb[2];
  5330. const size_t nb03 = src0->nb[3];
  5331. const int64_t ne0 = dst->ne[0];
  5332. const int64_t ne1 = dst->ne[1];
  5333. const int64_t ne2 = dst->ne[2];
  5334. const int64_t ne3 = dst->ne[3];
  5335. assert(ne0 == 1);
  5336. assert(ne1 == ne01);
  5337. assert(ne2 == ne02);
  5338. assert(ne3 == ne03);
  5339. UNUSED(ne0);
  5340. UNUSED(ne1);
  5341. UNUSED(ne2);
  5342. UNUSED(ne3);
  5343. const size_t nb1 = dst->nb[1];
  5344. const size_t nb2 = dst->nb[2];
  5345. const size_t nb3 = dst->nb[3];
  5346. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5347. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5348. for (int64_t i01 = 0; i01 < ne01; i01++) {
  5349. ggml_vec_sum_f32(ne00,
  5350. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5351. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  5352. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  5353. }
  5354. }
  5355. }
  5356. }
  5357. static void ggml_compute_forward_mean(
  5358. const struct ggml_compute_params * params,
  5359. const struct ggml_tensor * src0,
  5360. struct ggml_tensor * dst) {
  5361. switch (src0->type) {
  5362. case GGML_TYPE_F32:
  5363. {
  5364. ggml_compute_forward_mean_f32(params, src0, dst);
  5365. } break;
  5366. default:
  5367. {
  5368. GGML_ASSERT(false);
  5369. } break;
  5370. }
  5371. }
  5372. // ggml_compute_forward_repeat
  5373. static void ggml_compute_forward_repeat_f32(
  5374. const struct ggml_compute_params * params,
  5375. const struct ggml_tensor * src0,
  5376. struct ggml_tensor * dst) {
  5377. assert(params->ith == 0);
  5378. assert(ggml_can_repeat(src0, dst));
  5379. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5380. return;
  5381. }
  5382. // TODO: implement support for rank > 2 tensors
  5383. assert(src0->ne[2] == 1);
  5384. assert(src0->ne[3] == 1);
  5385. assert( dst->ne[2] == 1);
  5386. assert( dst->ne[3] == 1);
  5387. const int nc = dst->ne[0];
  5388. const int nr = dst->ne[1];
  5389. const int nc0 = src0->ne[0];
  5390. const int nr0 = src0->ne[1];
  5391. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  5392. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  5393. // TODO: support for transposed / permuted tensors
  5394. assert( dst->nb[0] == sizeof(float));
  5395. assert(src0->nb[0] == sizeof(float));
  5396. // TODO: maybe this is not optimal?
  5397. for (int i = 0; i < nrr; i++) {
  5398. for (int j = 0; j < ncr; j++) {
  5399. for (int k = 0; k < nr0; k++) {
  5400. ggml_vec_cpy_f32(nc0,
  5401. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  5402. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  5403. }
  5404. }
  5405. }
  5406. }
  5407. static void ggml_compute_forward_repeat(
  5408. const struct ggml_compute_params * params,
  5409. const struct ggml_tensor * src0,
  5410. struct ggml_tensor * dst) {
  5411. switch (src0->type) {
  5412. case GGML_TYPE_F32:
  5413. {
  5414. ggml_compute_forward_repeat_f32(params, src0, dst);
  5415. } break;
  5416. default:
  5417. {
  5418. GGML_ASSERT(false);
  5419. } break;
  5420. }
  5421. }
  5422. // ggml_compute_forward_abs
  5423. static void ggml_compute_forward_abs_f32(
  5424. const struct ggml_compute_params * params,
  5425. const struct ggml_tensor * src0,
  5426. struct ggml_tensor * dst) {
  5427. assert(params->ith == 0);
  5428. assert(ggml_are_same_shape(src0, dst));
  5429. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5430. return;
  5431. }
  5432. const int n = ggml_nrows(src0);
  5433. const int nc = src0->ne[0];
  5434. assert(dst->nb[0] == sizeof(float));
  5435. assert(src0->nb[0] == sizeof(float));
  5436. for (int i = 0; i < n; i++) {
  5437. ggml_vec_abs_f32(nc,
  5438. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5439. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5440. }
  5441. }
  5442. static void ggml_compute_forward_abs(
  5443. const struct ggml_compute_params * params,
  5444. const struct ggml_tensor * src0,
  5445. struct ggml_tensor * dst) {
  5446. switch (src0->type) {
  5447. case GGML_TYPE_F32:
  5448. {
  5449. ggml_compute_forward_abs_f32(params, src0, dst);
  5450. } break;
  5451. default:
  5452. {
  5453. GGML_ASSERT(false);
  5454. } break;
  5455. }
  5456. }
  5457. // ggml_compute_forward_sgn
  5458. static void ggml_compute_forward_sgn_f32(
  5459. const struct ggml_compute_params * params,
  5460. const struct ggml_tensor * src0,
  5461. struct ggml_tensor * dst) {
  5462. assert(params->ith == 0);
  5463. assert(ggml_are_same_shape(src0, dst));
  5464. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5465. return;
  5466. }
  5467. const int n = ggml_nrows(src0);
  5468. const int nc = src0->ne[0];
  5469. assert(dst->nb[0] == sizeof(float));
  5470. assert(src0->nb[0] == sizeof(float));
  5471. for (int i = 0; i < n; i++) {
  5472. ggml_vec_sgn_f32(nc,
  5473. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5474. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5475. }
  5476. }
  5477. static void ggml_compute_forward_sgn(
  5478. const struct ggml_compute_params * params,
  5479. const struct ggml_tensor * src0,
  5480. struct ggml_tensor * dst) {
  5481. switch (src0->type) {
  5482. case GGML_TYPE_F32:
  5483. {
  5484. ggml_compute_forward_sgn_f32(params, src0, dst);
  5485. } break;
  5486. default:
  5487. {
  5488. GGML_ASSERT(false);
  5489. } break;
  5490. }
  5491. }
  5492. // ggml_compute_forward_neg
  5493. static void ggml_compute_forward_neg_f32(
  5494. const struct ggml_compute_params * params,
  5495. const struct ggml_tensor * src0,
  5496. struct ggml_tensor * dst) {
  5497. assert(params->ith == 0);
  5498. assert(ggml_are_same_shape(src0, dst));
  5499. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5500. return;
  5501. }
  5502. const int n = ggml_nrows(src0);
  5503. const int nc = src0->ne[0];
  5504. assert(dst->nb[0] == sizeof(float));
  5505. assert(src0->nb[0] == sizeof(float));
  5506. for (int i = 0; i < n; i++) {
  5507. ggml_vec_neg_f32(nc,
  5508. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5509. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5510. }
  5511. }
  5512. static void ggml_compute_forward_neg(
  5513. const struct ggml_compute_params * params,
  5514. const struct ggml_tensor * src0,
  5515. struct ggml_tensor * dst) {
  5516. switch (src0->type) {
  5517. case GGML_TYPE_F32:
  5518. {
  5519. ggml_compute_forward_neg_f32(params, src0, dst);
  5520. } break;
  5521. default:
  5522. {
  5523. GGML_ASSERT(false);
  5524. } break;
  5525. }
  5526. }
  5527. // ggml_compute_forward_step
  5528. static void ggml_compute_forward_step_f32(
  5529. const struct ggml_compute_params * params,
  5530. const struct ggml_tensor * src0,
  5531. struct ggml_tensor * dst) {
  5532. assert(params->ith == 0);
  5533. assert(ggml_are_same_shape(src0, dst));
  5534. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5535. return;
  5536. }
  5537. const int n = ggml_nrows(src0);
  5538. const int nc = src0->ne[0];
  5539. assert(dst->nb[0] == sizeof(float));
  5540. assert(src0->nb[0] == sizeof(float));
  5541. for (int i = 0; i < n; i++) {
  5542. ggml_vec_step_f32(nc,
  5543. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5544. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5545. }
  5546. }
  5547. static void ggml_compute_forward_step(
  5548. const struct ggml_compute_params * params,
  5549. const struct ggml_tensor * src0,
  5550. struct ggml_tensor * dst) {
  5551. switch (src0->type) {
  5552. case GGML_TYPE_F32:
  5553. {
  5554. ggml_compute_forward_step_f32(params, src0, dst);
  5555. } break;
  5556. default:
  5557. {
  5558. GGML_ASSERT(false);
  5559. } break;
  5560. }
  5561. }
  5562. // ggml_compute_forward_relu
  5563. static void ggml_compute_forward_relu_f32(
  5564. const struct ggml_compute_params * params,
  5565. const struct ggml_tensor * src0,
  5566. struct ggml_tensor * dst) {
  5567. assert(params->ith == 0);
  5568. assert(ggml_are_same_shape(src0, dst));
  5569. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5570. return;
  5571. }
  5572. const int n = ggml_nrows(src0);
  5573. const int nc = src0->ne[0];
  5574. assert(dst->nb[0] == sizeof(float));
  5575. assert(src0->nb[0] == sizeof(float));
  5576. for (int i = 0; i < n; i++) {
  5577. ggml_vec_relu_f32(nc,
  5578. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5579. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5580. }
  5581. }
  5582. static void ggml_compute_forward_relu(
  5583. const struct ggml_compute_params * params,
  5584. const struct ggml_tensor * src0,
  5585. struct ggml_tensor * dst) {
  5586. switch (src0->type) {
  5587. case GGML_TYPE_F32:
  5588. {
  5589. ggml_compute_forward_relu_f32(params, src0, dst);
  5590. } break;
  5591. default:
  5592. {
  5593. GGML_ASSERT(false);
  5594. } break;
  5595. }
  5596. }
  5597. // ggml_compute_forward_gelu
  5598. static void ggml_compute_forward_gelu_f32(
  5599. const struct ggml_compute_params * params,
  5600. const struct ggml_tensor * src0,
  5601. struct ggml_tensor * dst) {
  5602. GGML_ASSERT(ggml_is_contiguous(src0));
  5603. GGML_ASSERT(ggml_is_contiguous(dst));
  5604. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5605. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5606. return;
  5607. }
  5608. const int ith = params->ith;
  5609. const int nth = params->nth;
  5610. const int nc = src0->ne[0];
  5611. const int nr = ggml_nrows(src0);
  5612. // rows per thread
  5613. const int dr = (nr + nth - 1)/nth;
  5614. // row range for this thread
  5615. const int ir0 = dr*ith;
  5616. const int ir1 = MIN(ir0 + dr, nr);
  5617. for (int i1 = ir0; i1 < ir1; i1++) {
  5618. ggml_vec_gelu_f32(nc,
  5619. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  5620. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  5621. #ifndef NDEBUG
  5622. for (int k = 0; k < nc; k++) {
  5623. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  5624. UNUSED(x);
  5625. assert(!isnan(x));
  5626. assert(!isinf(x));
  5627. }
  5628. #endif
  5629. }
  5630. }
  5631. static void ggml_compute_forward_gelu(
  5632. const struct ggml_compute_params * params,
  5633. const struct ggml_tensor * src0,
  5634. struct ggml_tensor * dst) {
  5635. switch (src0->type) {
  5636. case GGML_TYPE_F32:
  5637. {
  5638. ggml_compute_forward_gelu_f32(params, src0, dst);
  5639. } break;
  5640. default:
  5641. {
  5642. GGML_ASSERT(false);
  5643. } break;
  5644. }
  5645. //printf("XXXXXXXX gelu\n");
  5646. }
  5647. // ggml_compute_forward_silu
  5648. static void ggml_compute_forward_silu_f32(
  5649. const struct ggml_compute_params * params,
  5650. const struct ggml_tensor * src0,
  5651. struct ggml_tensor * dst) {
  5652. GGML_ASSERT(ggml_is_contiguous(src0));
  5653. GGML_ASSERT(ggml_is_contiguous(dst));
  5654. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5655. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5656. return;
  5657. }
  5658. const int ith = params->ith;
  5659. const int nth = params->nth;
  5660. const int nc = src0->ne[0];
  5661. const int nr = ggml_nrows(src0);
  5662. // rows per thread
  5663. const int dr = (nr + nth - 1)/nth;
  5664. // row range for this thread
  5665. const int ir0 = dr*ith;
  5666. const int ir1 = MIN(ir0 + dr, nr);
  5667. for (int i1 = ir0; i1 < ir1; i1++) {
  5668. ggml_vec_silu_f32(nc,
  5669. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  5670. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  5671. #ifndef NDEBUG
  5672. for (int k = 0; k < nc; k++) {
  5673. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  5674. UNUSED(x);
  5675. assert(!isnan(x));
  5676. assert(!isinf(x));
  5677. }
  5678. #endif
  5679. }
  5680. }
  5681. static void ggml_compute_forward_silu(
  5682. const struct ggml_compute_params * params,
  5683. const struct ggml_tensor * src0,
  5684. struct ggml_tensor * dst) {
  5685. switch (src0->type) {
  5686. case GGML_TYPE_F32:
  5687. {
  5688. ggml_compute_forward_silu_f32(params, src0, dst);
  5689. } break;
  5690. default:
  5691. {
  5692. GGML_ASSERT(false);
  5693. } break;
  5694. }
  5695. }
  5696. // ggml_compute_forward_norm
  5697. static void ggml_compute_forward_norm_f32(
  5698. const struct ggml_compute_params * params,
  5699. const struct ggml_tensor * src0,
  5700. struct ggml_tensor * dst) {
  5701. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5702. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5703. return;
  5704. }
  5705. GGML_ASSERT(src0->nb[0] == sizeof(float));
  5706. const int ith = params->ith;
  5707. const int nth = params->nth;
  5708. const int64_t ne00 = src0->ne[0];
  5709. const int64_t ne01 = src0->ne[1];
  5710. const int64_t ne02 = src0->ne[2];
  5711. const int64_t ne03 = src0->ne[3];
  5712. const size_t nb01 = src0->nb[1];
  5713. const size_t nb02 = src0->nb[2];
  5714. const size_t nb03 = src0->nb[3];
  5715. const size_t nb1 = dst->nb[1];
  5716. const size_t nb2 = dst->nb[2];
  5717. const size_t nb3 = dst->nb[3];
  5718. const float eps = 1e-5f; // TODO: make this a parameter
  5719. // TODO: optimize
  5720. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5721. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5722. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  5723. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5724. ggml_float sum = 0.0;
  5725. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5726. sum += (ggml_float)x[i00];
  5727. }
  5728. float mean = sum/ne00;
  5729. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  5730. ggml_float sum2 = 0.0;
  5731. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5732. float v = x[i00] - mean;
  5733. y[i00] = v;
  5734. sum2 += (ggml_float)(v*v);
  5735. }
  5736. float variance = sum2/ne00;
  5737. const float scale = 1.0f/sqrtf(variance + eps);
  5738. ggml_vec_scale_f32(ne00, y, scale);
  5739. }
  5740. }
  5741. }
  5742. }
  5743. static void ggml_compute_forward_norm(
  5744. const struct ggml_compute_params * params,
  5745. const struct ggml_tensor * src0,
  5746. struct ggml_tensor * dst) {
  5747. switch (src0->type) {
  5748. case GGML_TYPE_F32:
  5749. {
  5750. ggml_compute_forward_norm_f32(params, src0, dst);
  5751. } break;
  5752. default:
  5753. {
  5754. GGML_ASSERT(false);
  5755. } break;
  5756. }
  5757. }
  5758. static void ggml_compute_forward_rms_norm_f32(
  5759. const struct ggml_compute_params * params,
  5760. const struct ggml_tensor * src0,
  5761. struct ggml_tensor * dst) {
  5762. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5763. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5764. return;
  5765. }
  5766. GGML_ASSERT(src0->nb[0] == sizeof(float));
  5767. const int ith = params->ith;
  5768. const int nth = params->nth;
  5769. const int64_t ne00 = src0->ne[0];
  5770. const int64_t ne01 = src0->ne[1];
  5771. const int64_t ne02 = src0->ne[2];
  5772. const int64_t ne03 = src0->ne[3];
  5773. const size_t nb01 = src0->nb[1];
  5774. const size_t nb02 = src0->nb[2];
  5775. const size_t nb03 = src0->nb[3];
  5776. const size_t nb1 = dst->nb[1];
  5777. const size_t nb2 = dst->nb[2];
  5778. const size_t nb3 = dst->nb[3];
  5779. const float eps = 1e-6f; // TODO: make this a parameter
  5780. // TODO: optimize
  5781. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5782. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5783. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  5784. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5785. ggml_float sum = 0.0;
  5786. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5787. sum += (ggml_float)(x[i00] * x[i00]);
  5788. }
  5789. float mean = sum/ne00;
  5790. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  5791. memcpy(y, x, ne00 * sizeof(float));
  5792. // for (int i00 = 0; i00 < ne00; i00++) {
  5793. // y[i00] = x[i00];
  5794. // }
  5795. const float scale = 1.0f/sqrtf(mean + eps);
  5796. ggml_vec_scale_f32(ne00, y, scale);
  5797. }
  5798. }
  5799. }
  5800. }
  5801. static void ggml_compute_forward_rms_norm(
  5802. const struct ggml_compute_params * params,
  5803. const struct ggml_tensor * src0,
  5804. struct ggml_tensor * dst) {
  5805. switch (src0->type) {
  5806. case GGML_TYPE_F32:
  5807. {
  5808. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  5809. } break;
  5810. default:
  5811. {
  5812. GGML_ASSERT(false);
  5813. } break;
  5814. }
  5815. }
  5816. // ggml_compute_forward_mul_mat
  5817. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5818. // helper function to determine if it is better to use BLAS or not
  5819. // for large matrices, BLAS is faster
  5820. static bool ggml_compute_forward_mul_mat_use_blas(
  5821. const struct ggml_tensor * src0,
  5822. const struct ggml_tensor * src1,
  5823. struct ggml_tensor * dst) {
  5824. //const int64_t ne00 = src0->ne[0];
  5825. //const int64_t ne01 = src0->ne[1];
  5826. const int64_t ne10 = src1->ne[0];
  5827. const int64_t ne0 = dst->ne[0];
  5828. const int64_t ne1 = dst->ne[1];
  5829. // TODO: find the optimal values for these
  5830. if (ggml_is_contiguous(src0) &&
  5831. ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
  5832. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  5833. return true;
  5834. }
  5835. return false;
  5836. }
  5837. #endif
  5838. static void ggml_compute_forward_mul_mat_f32(
  5839. const struct ggml_compute_params * params,
  5840. const struct ggml_tensor * src0,
  5841. const struct ggml_tensor * src1,
  5842. struct ggml_tensor * dst) {
  5843. int64_t t0 = ggml_perf_time_us();
  5844. UNUSED(t0);
  5845. const int64_t ne00 = src0->ne[0];
  5846. const int64_t ne01 = src0->ne[1];
  5847. const int64_t ne02 = src0->ne[2];
  5848. const int64_t ne03 = src0->ne[3];
  5849. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5850. const int64_t ne10 = src1->ne[0];
  5851. #endif
  5852. const int64_t ne11 = src1->ne[1];
  5853. #ifndef NDEBUG
  5854. const int64_t ne12 = src1->ne[2];
  5855. const int64_t ne13 = src1->ne[3];
  5856. const int64_t ne0 = dst->ne[0];
  5857. const int64_t ne1 = dst->ne[1];
  5858. const int64_t ne2 = dst->ne[2];
  5859. const int64_t ne3 = dst->ne[3];
  5860. const int nb00 = src0->nb[0];
  5861. #endif
  5862. const int nb01 = src0->nb[1];
  5863. const int nb02 = src0->nb[2];
  5864. const int nb03 = src0->nb[3];
  5865. #ifndef NDEBUG
  5866. const int nb10 = src1->nb[0];
  5867. #endif
  5868. const int nb11 = src1->nb[1];
  5869. const int nb12 = src1->nb[2];
  5870. const int nb13 = src1->nb[3];
  5871. const int nb0 = dst->nb[0];
  5872. const int nb1 = dst->nb[1];
  5873. const int nb2 = dst->nb[2];
  5874. const int nb3 = dst->nb[3];
  5875. const int ith = params->ith;
  5876. const int nth = params->nth;
  5877. assert(ne02 == ne12);
  5878. assert(ne03 == ne13);
  5879. assert(ne2 == ne12);
  5880. assert(ne3 == ne13);
  5881. // we don't support permuted src0 or src1
  5882. assert(nb00 == sizeof(float));
  5883. assert(nb10 == sizeof(float));
  5884. // dst cannot be transposed or permuted
  5885. assert(nb0 == sizeof(float));
  5886. assert(nb0 <= nb1);
  5887. assert(nb1 <= nb2);
  5888. assert(nb2 <= nb3);
  5889. assert(ne0 == ne01);
  5890. assert(ne1 == ne11);
  5891. assert(ne2 == ne02);
  5892. assert(ne3 == ne03);
  5893. // nb01 >= nb00 - src0 is not transposed
  5894. // compute by src0 rows
  5895. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5896. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5897. if (params->ith != 0) {
  5898. return;
  5899. }
  5900. if (params->type == GGML_TASK_INIT) {
  5901. return;
  5902. }
  5903. if (params->type == GGML_TASK_FINALIZE) {
  5904. return;
  5905. }
  5906. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5907. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5908. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  5909. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5910. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5911. // zT = y * xT
  5912. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5913. ne11, ne01, ne10,
  5914. 1.0f, y, ne10,
  5915. x, ne00,
  5916. 0.0f, d, ne01);
  5917. }
  5918. }
  5919. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  5920. return;
  5921. }
  5922. #endif
  5923. if (params->type == GGML_TASK_INIT) {
  5924. return;
  5925. }
  5926. if (params->type == GGML_TASK_FINALIZE) {
  5927. return;
  5928. }
  5929. // parallelize by src0 rows using ggml_vec_dot_f32
  5930. // total rows in src0
  5931. const int nr = ne01*ne02*ne03;
  5932. // rows per thread
  5933. const int dr = (nr + nth - 1)/nth;
  5934. // row range for this thread
  5935. const int ir0 = dr*ith;
  5936. const int ir1 = MIN(ir0 + dr, nr);
  5937. for (int ir = ir0; ir < ir1; ++ir) {
  5938. // src0 indices
  5939. const int i03 = ir/(ne02*ne01);
  5940. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5941. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5942. for (int64_t ic = 0; ic < ne11; ++ic) {
  5943. // src1 indices
  5944. const int i13 = i03;
  5945. const int i12 = i02;
  5946. const int i11 = ic;
  5947. // dst indices
  5948. const int i0 = i01;
  5949. const int i1 = i11;
  5950. const int i2 = i02;
  5951. const int i3 = i03;
  5952. ggml_vec_dot_f32(ne00,
  5953. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  5954. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  5955. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  5956. }
  5957. }
  5958. //int64_t t1 = ggml_perf_time_us();
  5959. //static int64_t acc = 0;
  5960. //acc += t1 - t0;
  5961. //if (t1 - t0 > 10) {
  5962. // printf("\n");
  5963. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5964. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5965. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5966. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  5967. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5968. //}
  5969. }
  5970. static void ggml_compute_forward_mul_mat_f16_f32(
  5971. const struct ggml_compute_params * params,
  5972. const struct ggml_tensor * src0,
  5973. const struct ggml_tensor * src1,
  5974. struct ggml_tensor * dst) {
  5975. int64_t t0 = ggml_perf_time_us();
  5976. UNUSED(t0);
  5977. const int64_t ne00 = src0->ne[0];
  5978. const int64_t ne01 = src0->ne[1];
  5979. const int64_t ne02 = src0->ne[2];
  5980. const int64_t ne03 = src0->ne[3];
  5981. const int64_t ne10 = src1->ne[0];
  5982. const int64_t ne11 = src1->ne[1];
  5983. const int64_t ne12 = src1->ne[2];
  5984. const int64_t ne13 = src1->ne[3];
  5985. const int64_t ne0 = dst->ne[0];
  5986. const int64_t ne1 = dst->ne[1];
  5987. const int64_t ne2 = dst->ne[2];
  5988. const int64_t ne3 = dst->ne[3];
  5989. //const int64_t ne = ne0*ne1*ne2*ne3;
  5990. const int nb00 = src0->nb[0];
  5991. const int nb01 = src0->nb[1];
  5992. const int nb02 = src0->nb[2];
  5993. const int nb03 = src0->nb[3];
  5994. const int nb10 = src1->nb[0];
  5995. const int nb11 = src1->nb[1];
  5996. const int nb12 = src1->nb[2];
  5997. const int nb13 = src1->nb[3];
  5998. const int nb0 = dst->nb[0];
  5999. const int nb1 = dst->nb[1];
  6000. const int nb2 = dst->nb[2];
  6001. const int nb3 = dst->nb[3];
  6002. const int ith = params->ith;
  6003. const int nth = params->nth;
  6004. GGML_ASSERT(ne02 == ne12);
  6005. GGML_ASSERT(ne03 == ne13);
  6006. GGML_ASSERT(ne2 == ne12);
  6007. GGML_ASSERT(ne3 == ne13);
  6008. // TODO: we don't support permuted src0
  6009. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6010. // dst cannot be transposed or permuted
  6011. GGML_ASSERT(nb0 == sizeof(float));
  6012. GGML_ASSERT(nb0 <= nb1);
  6013. GGML_ASSERT(nb1 <= nb2);
  6014. GGML_ASSERT(nb2 <= nb3);
  6015. GGML_ASSERT(ne0 == ne01);
  6016. GGML_ASSERT(ne1 == ne11);
  6017. GGML_ASSERT(ne2 == ne02);
  6018. GGML_ASSERT(ne3 == ne03);
  6019. // nb01 >= nb00 - src0 is not transposed
  6020. // compute by src0 rows
  6021. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  6022. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6023. GGML_ASSERT(nb10 == sizeof(float));
  6024. if (params->ith != 0) {
  6025. return;
  6026. }
  6027. if (params->type == GGML_TASK_INIT) {
  6028. return;
  6029. }
  6030. if (params->type == GGML_TASK_FINALIZE) {
  6031. return;
  6032. }
  6033. float * const wdata = params->wdata;
  6034. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6035. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6036. {
  6037. size_t id = 0;
  6038. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  6039. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  6040. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  6041. }
  6042. }
  6043. }
  6044. const float * x = wdata;
  6045. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6046. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6047. // zT = y * xT
  6048. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6049. ne11, ne01, ne10,
  6050. 1.0f, y, ne10,
  6051. x, ne00,
  6052. 0.0f, d, ne01);
  6053. }
  6054. }
  6055. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  6056. return;
  6057. }
  6058. #endif
  6059. if (params->type == GGML_TASK_INIT) {
  6060. ggml_fp16_t * const wdata = params->wdata;
  6061. size_t id = 0;
  6062. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  6063. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  6064. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  6065. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  6066. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  6067. }
  6068. }
  6069. }
  6070. }
  6071. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  6072. return;
  6073. }
  6074. if (params->type == GGML_TASK_FINALIZE) {
  6075. return;
  6076. }
  6077. // fp16 -> half the size, so divide by 2
  6078. // TODO: do not support transposed src1
  6079. assert(nb10/2 == sizeof(ggml_fp16_t));
  6080. // parallelize by src0 rows using ggml_vec_dot_f16
  6081. // total rows in src0
  6082. const int nr = ne01*ne02*ne03;
  6083. // rows per thread
  6084. const int dr = (nr + nth - 1)/nth;
  6085. // row range for this thread
  6086. const int ir0 = dr*ith;
  6087. const int ir1 = MIN(ir0 + dr, nr);
  6088. ggml_fp16_t * wdata = params->wdata;
  6089. for (int ir = ir0; ir < ir1; ++ir) {
  6090. // src0 indices
  6091. const int i03 = ir/(ne02*ne01);
  6092. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6093. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6094. const int i13 = i03;
  6095. const int i12 = i02;
  6096. const int i0 = i01;
  6097. const int i2 = i02;
  6098. const int i3 = i03;
  6099. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6100. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  6101. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  6102. for (int64_t ic = 0; ic < ne11; ++ic) {
  6103. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  6104. }
  6105. }
  6106. //int64_t t1 = ggml_time_us();
  6107. //static int64_t acc = 0;
  6108. //acc += t1 - t0;
  6109. //if (t1 - t0 > 10) {
  6110. // printf("\n");
  6111. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6112. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6113. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6114. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6115. //}
  6116. }
  6117. static void ggml_compute_forward_mul_mat_q_f32(
  6118. const struct ggml_compute_params * params,
  6119. const struct ggml_tensor * src0,
  6120. const struct ggml_tensor * src1,
  6121. struct ggml_tensor * dst) {
  6122. int64_t t0 = ggml_perf_time_us();
  6123. UNUSED(t0);
  6124. const int64_t ne00 = src0->ne[0];
  6125. const int64_t ne01 = src0->ne[1];
  6126. const int64_t ne02 = src0->ne[2];
  6127. const int64_t ne03 = src0->ne[3];
  6128. const int64_t ne10 = src1->ne[0];
  6129. const int64_t ne11 = src1->ne[1];
  6130. const int64_t ne12 = src1->ne[2];
  6131. const int64_t ne13 = src1->ne[3];
  6132. const int64_t ne0 = dst->ne[0];
  6133. const int64_t ne1 = dst->ne[1];
  6134. const int64_t ne2 = dst->ne[2];
  6135. const int64_t ne3 = dst->ne[3];
  6136. const int nb00 = src0->nb[0];
  6137. const int nb01 = src0->nb[1];
  6138. const int nb02 = src0->nb[2];
  6139. const int nb03 = src0->nb[3];
  6140. const int nb10 = src1->nb[0];
  6141. const int nb11 = src1->nb[1];
  6142. const int nb12 = src1->nb[2];
  6143. const int nb13 = src1->nb[3];
  6144. const int nb0 = dst->nb[0];
  6145. const int nb1 = dst->nb[1];
  6146. const int nb2 = dst->nb[2];
  6147. const int nb3 = dst->nb[3];
  6148. const int ith = params->ith;
  6149. const int nth = params->nth;
  6150. GGML_ASSERT(ne02 == ne12);
  6151. GGML_ASSERT(ne03 == ne13);
  6152. GGML_ASSERT(ne2 == ne12);
  6153. GGML_ASSERT(ne3 == ne13);
  6154. const enum ggml_type type = src0->type;
  6155. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  6156. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  6157. // we don't support permuted src0 or src1
  6158. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  6159. GGML_ASSERT(nb10 == sizeof(float));
  6160. // dst cannot be transposed or permuted
  6161. GGML_ASSERT(nb0 == sizeof(float));
  6162. GGML_ASSERT(nb0 <= nb1);
  6163. GGML_ASSERT(nb1 <= nb2);
  6164. GGML_ASSERT(nb2 <= nb3);
  6165. GGML_ASSERT(ne0 == ne01);
  6166. GGML_ASSERT(ne1 == ne11);
  6167. GGML_ASSERT(ne2 == ne02);
  6168. GGML_ASSERT(ne3 == ne03);
  6169. // nb01 >= nb00 - src0 is not transposed
  6170. // compute by src0 rows
  6171. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  6172. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6173. if (params->ith != 0) {
  6174. return;
  6175. }
  6176. if (params->type == GGML_TASK_INIT) {
  6177. return;
  6178. }
  6179. if (params->type == GGML_TASK_FINALIZE) {
  6180. return;
  6181. }
  6182. float * const wdata = params->wdata;
  6183. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6184. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6185. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6186. {
  6187. size_t id = 0;
  6188. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  6189. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  6190. id += ne00;
  6191. }
  6192. }
  6193. const float * x = wdata;
  6194. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6195. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6196. // zT = y * xT
  6197. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6198. ne11, ne01, ne10,
  6199. 1.0f, y, ne10,
  6200. x, ne00,
  6201. 0.0f, d, ne01);
  6202. }
  6203. }
  6204. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  6205. return;
  6206. }
  6207. #endif
  6208. if (params->type == GGML_TASK_INIT) {
  6209. char * wdata = params->wdata;
  6210. const size_t row_size = ne10*GGML_TYPE_SIZE[GGML_TYPE_Q8_0]/GGML_BLCK_SIZE[GGML_TYPE_Q8_0];
  6211. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  6212. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  6213. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  6214. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  6215. wdata += row_size;
  6216. }
  6217. }
  6218. }
  6219. return;
  6220. }
  6221. if (params->type == GGML_TASK_FINALIZE) {
  6222. return;
  6223. }
  6224. // parallelize by src0 rows using ggml_vec_dot_q
  6225. // total rows in src0
  6226. const int nr = ne01*ne02*ne03;
  6227. // rows per thread
  6228. const int dr = (nr + nth - 1)/nth;
  6229. // row range for this thread
  6230. const int ir0 = dr*ith;
  6231. const int ir1 = MIN(ir0 + dr, nr);
  6232. void * wdata = params->wdata;
  6233. const size_t row_size = ne00*GGML_TYPE_SIZE[GGML_TYPE_Q8_0]/GGML_BLCK_SIZE[GGML_TYPE_Q8_0];
  6234. for (int ir = ir0; ir < ir1; ++ir) {
  6235. // src0 indices
  6236. const int i03 = ir/(ne02*ne01);
  6237. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6238. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6239. const int i13 = i03;
  6240. const int i12 = i02;
  6241. const int i0 = i01;
  6242. const int i2 = i02;
  6243. const int i3 = i03;
  6244. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6245. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  6246. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  6247. assert(ne00 % 32 == 0);
  6248. for (int64_t ic = 0; ic < ne11; ++ic) {
  6249. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  6250. }
  6251. }
  6252. //int64_t t1 = ggml_time_us();
  6253. //static int64_t acc = 0;
  6254. //acc += t1 - t0;
  6255. //if (t1 - t0 > 10) {
  6256. // printf("\n");
  6257. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6258. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6259. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6260. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6261. //}
  6262. }
  6263. static void ggml_compute_forward_mul_mat(
  6264. const struct ggml_compute_params * params,
  6265. const struct ggml_tensor * src0,
  6266. const struct ggml_tensor * src1,
  6267. struct ggml_tensor * dst) {
  6268. switch (src0->type) {
  6269. case GGML_TYPE_Q4_0:
  6270. case GGML_TYPE_Q4_1:
  6271. case GGML_TYPE_Q8_0:
  6272. {
  6273. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  6274. } break;
  6275. case GGML_TYPE_F16:
  6276. {
  6277. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  6278. } break;
  6279. case GGML_TYPE_F32:
  6280. {
  6281. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  6282. } break;
  6283. default:
  6284. {
  6285. GGML_ASSERT(false);
  6286. } break;
  6287. }
  6288. #if 0
  6289. if (src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_Q4_1) {
  6290. static int first = 8;
  6291. printf("src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  6292. printf("src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  6293. printf("dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  6294. if (first) {
  6295. --first;
  6296. } else {
  6297. for (int k = 0; k < dst->ne[1]; ++k) {
  6298. for (int j = 0; j < dst->ne[0]/16; ++j) {
  6299. for (int i = 0; i < 16; ++i) {
  6300. printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  6301. }
  6302. printf("\n");
  6303. }
  6304. printf("\n");
  6305. }
  6306. printf("\n");
  6307. exit(0);
  6308. }
  6309. } else {
  6310. printf("aaaa src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  6311. printf("aaaa src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  6312. printf("aaaa dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  6313. }
  6314. #endif
  6315. }
  6316. // ggml_compute_forward_scale
  6317. static void ggml_compute_forward_scale_f32(
  6318. const struct ggml_compute_params * params,
  6319. const struct ggml_tensor * src0,
  6320. const struct ggml_tensor * src1,
  6321. struct ggml_tensor * dst) {
  6322. GGML_ASSERT(ggml_is_contiguous(src0));
  6323. GGML_ASSERT(ggml_is_contiguous(dst));
  6324. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6325. GGML_ASSERT(ggml_is_scalar(src1));
  6326. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6327. return;
  6328. }
  6329. // scale factor
  6330. const float v = *(float *) src1->data;
  6331. const int ith = params->ith;
  6332. const int nth = params->nth;
  6333. const int nc = src0->ne[0];
  6334. const int nr = ggml_nrows(src0);
  6335. // rows per thread
  6336. const int dr = (nr + nth - 1)/nth;
  6337. // row range for this thread
  6338. const int ir0 = dr*ith;
  6339. const int ir1 = MIN(ir0 + dr, nr);
  6340. for (int i1 = ir0; i1 < ir1; i1++) {
  6341. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  6342. }
  6343. }
  6344. static void ggml_compute_forward_scale(
  6345. const struct ggml_compute_params * params,
  6346. const struct ggml_tensor * src0,
  6347. const struct ggml_tensor * src1,
  6348. struct ggml_tensor * dst) {
  6349. switch (src0->type) {
  6350. case GGML_TYPE_F32:
  6351. {
  6352. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  6353. } break;
  6354. default:
  6355. {
  6356. GGML_ASSERT(false);
  6357. } break;
  6358. }
  6359. }
  6360. // ggml_compute_forward_cpy
  6361. static void ggml_compute_forward_cpy(
  6362. const struct ggml_compute_params * params,
  6363. const struct ggml_tensor * src0,
  6364. struct ggml_tensor * dst) {
  6365. ggml_compute_forward_dup(params, src0, dst);
  6366. }
  6367. // ggml_compute_forward_cont
  6368. static void ggml_compute_forward_cont(
  6369. const struct ggml_compute_params * params,
  6370. const struct ggml_tensor * src0,
  6371. struct ggml_tensor * dst) {
  6372. ggml_compute_forward_dup(params, src0, dst);
  6373. }
  6374. // ggml_compute_forward_reshape
  6375. static void ggml_compute_forward_reshape(
  6376. const struct ggml_compute_params * params,
  6377. const struct ggml_tensor * src0,
  6378. struct ggml_tensor * dst) {
  6379. // NOP
  6380. UNUSED(params);
  6381. UNUSED(src0);
  6382. UNUSED(dst);
  6383. }
  6384. // ggml_compute_forward_view
  6385. static void ggml_compute_forward_view(
  6386. const struct ggml_compute_params * params,
  6387. const struct ggml_tensor * src0) {
  6388. // NOP
  6389. UNUSED(params);
  6390. UNUSED(src0);
  6391. }
  6392. // ggml_compute_forward_permute
  6393. static void ggml_compute_forward_permute(
  6394. const struct ggml_compute_params * params,
  6395. const struct ggml_tensor * src0) {
  6396. // NOP
  6397. UNUSED(params);
  6398. UNUSED(src0);
  6399. }
  6400. // ggml_compute_forward_transpose
  6401. static void ggml_compute_forward_transpose(
  6402. const struct ggml_compute_params * params,
  6403. const struct ggml_tensor * src0) {
  6404. // NOP
  6405. UNUSED(params);
  6406. UNUSED(src0);
  6407. }
  6408. // ggml_compute_forward_get_rows
  6409. static void ggml_compute_forward_get_rows_q(
  6410. const struct ggml_compute_params * params,
  6411. const struct ggml_tensor * src0,
  6412. const struct ggml_tensor * src1,
  6413. struct ggml_tensor * dst) {
  6414. assert(params->ith == 0);
  6415. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6416. return;
  6417. }
  6418. const int nc = src0->ne[0];
  6419. const int nr = ggml_nelements(src1);
  6420. const enum ggml_type type = src0->type;
  6421. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6422. assert( dst->ne[0] == nc);
  6423. assert( dst->ne[1] == nr);
  6424. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  6425. for (int i = 0; i < nr; ++i) {
  6426. const int r = ((int32_t *) src1->data)[i];
  6427. dequantize_row_q(
  6428. (const void *) ((char *) src0->data + r*src0->nb[1]),
  6429. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  6430. }
  6431. }
  6432. static void ggml_compute_forward_get_rows_f16(
  6433. const struct ggml_compute_params * params,
  6434. const struct ggml_tensor * src0,
  6435. const struct ggml_tensor * src1,
  6436. struct ggml_tensor * dst) {
  6437. assert(params->ith == 0);
  6438. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6439. return;
  6440. }
  6441. const int nc = src0->ne[0];
  6442. const int nr = ggml_nelements(src1);
  6443. assert( dst->ne[0] == nc);
  6444. assert( dst->ne[1] == nr);
  6445. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  6446. for (int i = 0; i < nr; ++i) {
  6447. const int r = ((int32_t *) src1->data)[i];
  6448. for (int j = 0; j < nc; ++j) {
  6449. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  6450. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  6451. }
  6452. }
  6453. }
  6454. static void ggml_compute_forward_get_rows_f32(
  6455. const struct ggml_compute_params * params,
  6456. const struct ggml_tensor * src0,
  6457. const struct ggml_tensor * src1,
  6458. struct ggml_tensor * dst) {
  6459. assert(params->ith == 0);
  6460. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6461. return;
  6462. }
  6463. const int nc = src0->ne[0];
  6464. const int nr = ggml_nelements(src1);
  6465. assert( dst->ne[0] == nc);
  6466. assert( dst->ne[1] == nr);
  6467. assert(src0->nb[0] == sizeof(float));
  6468. for (int i = 0; i < nr; ++i) {
  6469. const int r = ((int32_t *) src1->data)[i];
  6470. ggml_vec_cpy_f32(nc,
  6471. (float *) ((char *) dst->data + i*dst->nb[1]),
  6472. (float *) ((char *) src0->data + r*src0->nb[1]));
  6473. }
  6474. }
  6475. static void ggml_compute_forward_get_rows(
  6476. const struct ggml_compute_params * params,
  6477. const struct ggml_tensor * src0,
  6478. const struct ggml_tensor * src1,
  6479. struct ggml_tensor * dst) {
  6480. switch (src0->type) {
  6481. case GGML_TYPE_Q4_0:
  6482. case GGML_TYPE_Q4_1:
  6483. case GGML_TYPE_Q8_0:
  6484. {
  6485. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  6486. } break;
  6487. case GGML_TYPE_F16:
  6488. {
  6489. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  6490. } break;
  6491. case GGML_TYPE_F32:
  6492. {
  6493. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  6494. } break;
  6495. default:
  6496. {
  6497. GGML_ASSERT(false);
  6498. } break;
  6499. }
  6500. //static bool first = true;
  6501. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  6502. //if (first) {
  6503. // first = false;
  6504. //} else {
  6505. // for (int k = 0; k < dst->ne[1]; ++k) {
  6506. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  6507. // for (int i = 0; i < 16; ++i) {
  6508. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  6509. // }
  6510. // printf("\n");
  6511. // }
  6512. // printf("\n");
  6513. // }
  6514. // printf("\n");
  6515. // exit(0);
  6516. //}
  6517. }
  6518. // ggml_compute_forward_diag_mask_inf
  6519. static void ggml_compute_forward_diag_mask_inf_f32(
  6520. const struct ggml_compute_params * params,
  6521. const struct ggml_tensor * src0,
  6522. const struct ggml_tensor * src1,
  6523. struct ggml_tensor * dst) {
  6524. assert(params->ith == 0);
  6525. assert(src1->type == GGML_TYPE_I32);
  6526. assert(ggml_nelements(src1) == 1);
  6527. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6528. return;
  6529. }
  6530. const int n_past = ((int32_t *) src1->data)[0];
  6531. // TODO: handle transposed/permuted matrices
  6532. const int n = ggml_nrows(src0);
  6533. const int nc = src0->ne[0];
  6534. const int nr = src0->ne[1];
  6535. const int nz = n/nr;
  6536. assert( dst->nb[0] == sizeof(float));
  6537. assert(src0->nb[0] == sizeof(float));
  6538. for (int k = 0; k < nz; k++) {
  6539. for (int j = 0; j < nr; j++) {
  6540. for (int i = n_past; i < nc; i++) {
  6541. if (i > n_past + j) {
  6542. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  6543. }
  6544. }
  6545. }
  6546. }
  6547. }
  6548. static void ggml_compute_forward_diag_mask_inf(
  6549. const struct ggml_compute_params * params,
  6550. const struct ggml_tensor * src0,
  6551. const struct ggml_tensor * src1,
  6552. struct ggml_tensor * dst) {
  6553. switch (src0->type) {
  6554. case GGML_TYPE_F32:
  6555. {
  6556. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  6557. } break;
  6558. default:
  6559. {
  6560. GGML_ASSERT(false);
  6561. } break;
  6562. }
  6563. }
  6564. // ggml_compute_forward_soft_max
  6565. static void ggml_compute_forward_soft_max_f32(
  6566. const struct ggml_compute_params * params,
  6567. const struct ggml_tensor * src0,
  6568. struct ggml_tensor * dst) {
  6569. GGML_ASSERT(ggml_is_contiguous(src0));
  6570. GGML_ASSERT(ggml_is_contiguous(dst));
  6571. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6572. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6573. return;
  6574. }
  6575. // TODO: handle transposed/permuted matrices
  6576. const int ith = params->ith;
  6577. const int nth = params->nth;
  6578. const int nc = src0->ne[0];
  6579. const int nr = ggml_nrows(src0);
  6580. // rows per thread
  6581. const int dr = (nr + nth - 1)/nth;
  6582. // row range for this thread
  6583. const int ir0 = dr*ith;
  6584. const int ir1 = MIN(ir0 + dr, nr);
  6585. for (int i1 = ir0; i1 < ir1; i1++) {
  6586. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  6587. #ifndef NDEBUG
  6588. for (int i = 0; i < nc; ++i) {
  6589. //printf("p[%d] = %f\n", i, p[i]);
  6590. assert(!isnan(p[i]));
  6591. }
  6592. #endif
  6593. float max = -INFINITY;
  6594. ggml_vec_max_f32(nc, &max, p);
  6595. ggml_float sum = 0.0;
  6596. uint16_t scvt;
  6597. for (int i = 0; i < nc; i++) {
  6598. if (p[i] == -INFINITY) {
  6599. p[i] = 0.0f;
  6600. } else {
  6601. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  6602. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  6603. memcpy(&scvt, &s, sizeof(scvt));
  6604. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  6605. sum += (ggml_float)val;
  6606. p[i] = val;
  6607. }
  6608. }
  6609. assert(sum > 0.0);
  6610. sum = 1.0/sum;
  6611. ggml_vec_scale_f32(nc, p, sum);
  6612. #ifndef NDEBUG
  6613. for (int i = 0; i < nc; ++i) {
  6614. assert(!isnan(p[i]));
  6615. assert(!isinf(p[i]));
  6616. }
  6617. #endif
  6618. }
  6619. }
  6620. static void ggml_compute_forward_soft_max(
  6621. const struct ggml_compute_params * params,
  6622. const struct ggml_tensor * src0,
  6623. struct ggml_tensor * dst) {
  6624. switch (src0->type) {
  6625. case GGML_TYPE_F32:
  6626. {
  6627. ggml_compute_forward_soft_max_f32(params, src0, dst);
  6628. } break;
  6629. default:
  6630. {
  6631. GGML_ASSERT(false);
  6632. } break;
  6633. }
  6634. }
  6635. // ggml_compute_forward_rope
  6636. static void ggml_compute_forward_rope_f32(
  6637. const struct ggml_compute_params * params,
  6638. const struct ggml_tensor * src0,
  6639. const struct ggml_tensor * src1,
  6640. struct ggml_tensor * dst) {
  6641. assert(src1->type == GGML_TYPE_I32);
  6642. assert(ggml_nelements(src1) == 3);
  6643. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6644. return;
  6645. }
  6646. const int n_past = ((int32_t *) src1->data)[0];
  6647. const int n_dims = ((int32_t *) src1->data)[1];
  6648. const int mode = ((int32_t *) src1->data)[2];
  6649. //const int64_t ne0 = src0->ne[0];
  6650. const int64_t ne1 = src0->ne[1];
  6651. const int64_t ne2 = src0->ne[2];
  6652. const int64_t ne3 = src0->ne[3];
  6653. const int nb0 = src0->nb[0];
  6654. const int nb1 = src0->nb[1];
  6655. const int nb2 = src0->nb[2];
  6656. const int nb3 = src0->nb[3];
  6657. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  6658. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  6659. assert(nb0 == sizeof(float));
  6660. const int ith = params->ith;
  6661. const int nth = params->nth;
  6662. const int nr = ggml_nrows(src0);
  6663. // rows per thread
  6664. const int dr = (nr + nth - 1)/nth;
  6665. // row range for this thread
  6666. const int ir0 = dr*ith;
  6667. const int ir1 = MIN(ir0 + dr, nr);
  6668. // row index used to determine which thread to use
  6669. int ir = 0;
  6670. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  6671. for (int64_t i3 = 0; i3 < ne3; i3++) {
  6672. for (int64_t i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  6673. const int p = (mode == 0 ? n_past + i2 : i2);
  6674. for (int64_t i1 = 0; i1 < ne1; i1++) {
  6675. if (ir++ < ir0) continue;
  6676. if (ir > ir1) break;
  6677. float theta = (float)p;
  6678. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  6679. const float cos_theta = cosf(theta);
  6680. const float sin_theta = sinf(theta);
  6681. theta *= theta_scale;
  6682. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6683. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6684. const float x0 = src[0];
  6685. const float x1 = src[1];
  6686. dst_data[0] = x0*cos_theta - x1*sin_theta;
  6687. dst_data[1] = x0*sin_theta + x1*cos_theta;
  6688. }
  6689. }
  6690. }
  6691. }
  6692. }
  6693. static void ggml_compute_forward_rope_f16(
  6694. const struct ggml_compute_params * params,
  6695. const struct ggml_tensor * src0,
  6696. const struct ggml_tensor * src1,
  6697. struct ggml_tensor * dst) {
  6698. assert(src1->type == GGML_TYPE_I32);
  6699. assert(ggml_nelements(src1) == 3);
  6700. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6701. return;
  6702. }
  6703. const int n_past = ((int32_t *) src1->data)[0];
  6704. const int n_dims = ((int32_t *) src1->data)[1];
  6705. const int mode = ((int32_t *) src1->data)[2];
  6706. //const int64_t ne0 = src0->ne[0];
  6707. const int64_t ne1 = src0->ne[1];
  6708. const int64_t ne2 = src0->ne[2];
  6709. const int64_t ne3 = src0->ne[3];
  6710. const int nb0 = src0->nb[0];
  6711. const int nb1 = src0->nb[1];
  6712. const int nb2 = src0->nb[2];
  6713. const int nb3 = src0->nb[3];
  6714. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  6715. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  6716. assert(nb0 == sizeof(ggml_fp16_t));
  6717. const int ith = params->ith;
  6718. const int nth = params->nth;
  6719. const int nr = ggml_nrows(src0);
  6720. // rows per thread
  6721. const int dr = (nr + nth - 1)/nth;
  6722. // row range for this thread
  6723. const int ir0 = dr*ith;
  6724. const int ir1 = MIN(ir0 + dr, nr);
  6725. // row index used to determine which thread to use
  6726. int ir = 0;
  6727. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  6728. for (int64_t i3 = 0; i3 < ne3; i3++) {
  6729. for (int64_t i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  6730. const int p = (mode == 0 ? n_past + i2 : i2);
  6731. for (int64_t i1 = 0; i1 < ne1; i1++) {
  6732. if (ir++ < ir0) continue;
  6733. if (ir > ir1) break;
  6734. float theta = (float)p;
  6735. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  6736. const float cos_theta = cosf(theta);
  6737. const float sin_theta = sinf(theta);
  6738. theta *= theta_scale;
  6739. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6740. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6741. const float x0 = GGML_FP16_TO_FP32(src[0]);
  6742. const float x1 = GGML_FP16_TO_FP32(src[1]);
  6743. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  6744. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  6745. }
  6746. }
  6747. }
  6748. }
  6749. }
  6750. static void ggml_compute_forward_rope(
  6751. const struct ggml_compute_params * params,
  6752. const struct ggml_tensor * src0,
  6753. const struct ggml_tensor * src1,
  6754. struct ggml_tensor * dst) {
  6755. switch (src0->type) {
  6756. case GGML_TYPE_F16:
  6757. {
  6758. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  6759. } break;
  6760. case GGML_TYPE_F32:
  6761. {
  6762. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  6763. } break;
  6764. default:
  6765. {
  6766. GGML_ASSERT(false);
  6767. } break;
  6768. }
  6769. }
  6770. // ggml_compute_forward_conv_1d_1s
  6771. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  6772. const struct ggml_compute_params * params,
  6773. const struct ggml_tensor * src0,
  6774. const struct ggml_tensor * src1,
  6775. struct ggml_tensor * dst) {
  6776. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6777. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6778. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6779. int64_t t0 = ggml_perf_time_us();
  6780. UNUSED(t0);
  6781. const int64_t ne00 = src0->ne[0];
  6782. const int64_t ne01 = src0->ne[1];
  6783. const int64_t ne02 = src0->ne[2];
  6784. //const int64_t ne03 = src0->ne[3];
  6785. const int64_t ne10 = src1->ne[0];
  6786. const int64_t ne11 = src1->ne[1];
  6787. //const int64_t ne12 = src1->ne[2];
  6788. //const int64_t ne13 = src1->ne[3];
  6789. //const int64_t ne0 = dst->ne[0];
  6790. //const int64_t ne1 = dst->ne[1];
  6791. //const int64_t ne2 = dst->ne[2];
  6792. //const int64_t ne3 = dst->ne[3];
  6793. //const int64_t ne = ne0*ne1*ne2*ne3;
  6794. const int nb00 = src0->nb[0];
  6795. const int nb01 = src0->nb[1];
  6796. const int nb02 = src0->nb[2];
  6797. //const int nb03 = src0->nb[3];
  6798. const int nb10 = src1->nb[0];
  6799. const int nb11 = src1->nb[1];
  6800. //const int nb12 = src1->nb[2];
  6801. //const int nb13 = src1->nb[3];
  6802. //const int nb0 = dst->nb[0];
  6803. const int nb1 = dst->nb[1];
  6804. //const int nb2 = dst->nb[2];
  6805. //const int nb3 = dst->nb[3];
  6806. const int ith = params->ith;
  6807. const int nth = params->nth;
  6808. const int nk = ne00;
  6809. const int nh = nk/2;
  6810. const int ew0 = ggml_up32(ne01);
  6811. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6812. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6813. GGML_ASSERT(nb10 == sizeof(float));
  6814. if (params->type == GGML_TASK_INIT) {
  6815. // TODO: fix this memset (wsize is overestimated)
  6816. memset(params->wdata, 0, params->wsize);
  6817. // prepare kernel data (src0)
  6818. {
  6819. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  6820. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6821. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6822. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  6823. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  6824. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6825. dst_data[i00*ew0 + i01] = src[i00];
  6826. }
  6827. }
  6828. }
  6829. }
  6830. // prepare source data (src1)
  6831. {
  6832. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  6833. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6834. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6835. ggml_fp16_t * dst_data = wdata;
  6836. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6837. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  6838. }
  6839. }
  6840. }
  6841. return;
  6842. }
  6843. if (params->type == GGML_TASK_FINALIZE) {
  6844. return;
  6845. }
  6846. // total rows in dst
  6847. const int nr = ne02;
  6848. // rows per thread
  6849. const int dr = (nr + nth - 1)/nth;
  6850. // row range for this thread
  6851. const int ir0 = dr*ith;
  6852. const int ir1 = MIN(ir0 + dr, nr);
  6853. for (int i1 = ir0; i1 < ir1; i1++) {
  6854. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6855. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  6856. dst_data[i0] = 0;
  6857. for (int k = -nh; k <= nh; k++) {
  6858. float v = 0.0f;
  6859. ggml_vec_dot_f16(ew0, &v,
  6860. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6861. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6862. dst_data[i0] += v;
  6863. }
  6864. }
  6865. }
  6866. }
  6867. static void ggml_compute_forward_conv_1d_1s_f32(
  6868. const struct ggml_compute_params * params,
  6869. const struct ggml_tensor * src0,
  6870. const struct ggml_tensor * src1,
  6871. struct ggml_tensor * dst) {
  6872. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6873. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6874. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6875. int64_t t0 = ggml_perf_time_us();
  6876. UNUSED(t0);
  6877. const int64_t ne00 = src0->ne[0];
  6878. const int64_t ne01 = src0->ne[1];
  6879. const int64_t ne02 = src0->ne[2];
  6880. //const int64_t ne03 = src0->ne[3];
  6881. const int64_t ne10 = src1->ne[0];
  6882. const int64_t ne11 = src1->ne[1];
  6883. //const int64_t ne12 = src1->ne[2];
  6884. //const int64_t ne13 = src1->ne[3];
  6885. //const int64_t ne0 = dst->ne[0];
  6886. //const int64_t ne1 = dst->ne[1];
  6887. //const int64_t ne2 = dst->ne[2];
  6888. //const int64_t ne3 = dst->ne[3];
  6889. //const int64_t ne = ne0*ne1*ne2*ne3;
  6890. const int nb00 = src0->nb[0];
  6891. const int nb01 = src0->nb[1];
  6892. const int nb02 = src0->nb[2];
  6893. //const int nb03 = src0->nb[3];
  6894. const int nb10 = src1->nb[0];
  6895. const int nb11 = src1->nb[1];
  6896. //const int nb12 = src1->nb[2];
  6897. //const int nb13 = src1->nb[3];
  6898. //const int nb0 = dst->nb[0];
  6899. const int nb1 = dst->nb[1];
  6900. //const int nb2 = dst->nb[2];
  6901. //const int nb3 = dst->nb[3];
  6902. const int ith = params->ith;
  6903. const int nth = params->nth;
  6904. const int nk = ne00;
  6905. const int nh = nk/2;
  6906. const int ew0 = ggml_up32(ne01);
  6907. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6908. GGML_ASSERT(nb00 == sizeof(float));
  6909. GGML_ASSERT(nb10 == sizeof(float));
  6910. if (params->type == GGML_TASK_INIT) {
  6911. // TODO: fix this memset (wsize is overestimated)
  6912. memset(params->wdata, 0, params->wsize);
  6913. // prepare kernel data (src0)
  6914. {
  6915. float * const wdata = (float *) params->wdata + 0;
  6916. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6917. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6918. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  6919. float * dst_data = wdata + i02*ew0*ne00;
  6920. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6921. dst_data[i00*ew0 + i01] = src[i00];
  6922. }
  6923. }
  6924. }
  6925. }
  6926. // prepare source data (src1)
  6927. {
  6928. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  6929. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6930. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6931. float * dst_data = wdata;
  6932. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6933. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  6934. }
  6935. }
  6936. }
  6937. return;
  6938. }
  6939. if (params->type == GGML_TASK_FINALIZE) {
  6940. return;
  6941. }
  6942. // total rows in dst
  6943. const int nr = ne02;
  6944. // rows per thread
  6945. const int dr = (nr + nth - 1)/nth;
  6946. // row range for this thread
  6947. const int ir0 = dr*ith;
  6948. const int ir1 = MIN(ir0 + dr, nr);
  6949. for (int i1 = ir0; i1 < ir1; i1++) {
  6950. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6951. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  6952. dst_data[i0] = 0;
  6953. for (int k = -nh; k <= nh; k++) {
  6954. float v = 0.0f;
  6955. ggml_vec_dot_f32(ew0, &v,
  6956. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6957. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6958. dst_data[i0] += v;
  6959. }
  6960. }
  6961. }
  6962. }
  6963. static void ggml_compute_forward_conv_1d_1s(
  6964. const struct ggml_compute_params * params,
  6965. const struct ggml_tensor * src0,
  6966. const struct ggml_tensor * src1,
  6967. struct ggml_tensor * dst) {
  6968. switch (src0->type) {
  6969. case GGML_TYPE_F16:
  6970. {
  6971. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  6972. } break;
  6973. case GGML_TYPE_F32:
  6974. {
  6975. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  6976. } break;
  6977. default:
  6978. {
  6979. GGML_ASSERT(false);
  6980. } break;
  6981. }
  6982. }
  6983. // ggml_compute_forward_conv_1d_2s
  6984. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  6985. const struct ggml_compute_params * params,
  6986. const struct ggml_tensor * src0,
  6987. const struct ggml_tensor * src1,
  6988. struct ggml_tensor * dst) {
  6989. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6990. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6991. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6992. int64_t t0 = ggml_perf_time_us();
  6993. UNUSED(t0);
  6994. const int64_t ne00 = src0->ne[0];
  6995. const int64_t ne01 = src0->ne[1];
  6996. const int64_t ne02 = src0->ne[2];
  6997. //const int64_t ne03 = src0->ne[3];
  6998. const int64_t ne10 = src1->ne[0];
  6999. const int64_t ne11 = src1->ne[1];
  7000. //const int64_t ne12 = src1->ne[2];
  7001. //const int64_t ne13 = src1->ne[3];
  7002. //const int64_t ne0 = dst->ne[0];
  7003. //const int64_t ne1 = dst->ne[1];
  7004. //const int64_t ne2 = dst->ne[2];
  7005. //const int64_t ne3 = dst->ne[3];
  7006. //const int64_t ne = ne0*ne1*ne2*ne3;
  7007. const int nb00 = src0->nb[0];
  7008. const int nb01 = src0->nb[1];
  7009. const int nb02 = src0->nb[2];
  7010. //const int nb03 = src0->nb[3];
  7011. const int nb10 = src1->nb[0];
  7012. const int nb11 = src1->nb[1];
  7013. //const int nb12 = src1->nb[2];
  7014. //const int nb13 = src1->nb[3];
  7015. //const int nb0 = dst->nb[0];
  7016. const int nb1 = dst->nb[1];
  7017. //const int nb2 = dst->nb[2];
  7018. //const int nb3 = dst->nb[3];
  7019. const int ith = params->ith;
  7020. const int nth = params->nth;
  7021. const int nk = ne00;
  7022. const int nh = nk/2;
  7023. const int ew0 = ggml_up32(ne01);
  7024. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7025. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7026. GGML_ASSERT(nb10 == sizeof(float));
  7027. if (params->type == GGML_TASK_INIT) {
  7028. // TODO: fix this memset (wsize is overestimated)
  7029. memset(params->wdata, 0, params->wsize);
  7030. // prepare kernel data (src0)
  7031. {
  7032. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7033. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7034. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7035. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  7036. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  7037. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7038. dst_data[i00*ew0 + i01] = src[i00];
  7039. }
  7040. }
  7041. }
  7042. }
  7043. // prepare source data (src1)
  7044. {
  7045. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  7046. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7047. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7048. ggml_fp16_t * dst_data = wdata;
  7049. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7050. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  7051. }
  7052. }
  7053. }
  7054. return;
  7055. }
  7056. if (params->type == GGML_TASK_FINALIZE) {
  7057. return;
  7058. }
  7059. // total rows in dst
  7060. const int nr = ne02;
  7061. // rows per thread
  7062. const int dr = (nr + nth - 1)/nth;
  7063. // row range for this thread
  7064. const int ir0 = dr*ith;
  7065. const int ir1 = MIN(ir0 + dr, nr);
  7066. for (int i1 = ir0; i1 < ir1; i1++) {
  7067. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7068. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  7069. dst_data[i0/2] = 0;
  7070. for (int k = -nh; k <= nh; k++) {
  7071. float v = 0.0f;
  7072. ggml_vec_dot_f16(ew0, &v,
  7073. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7074. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7075. dst_data[i0/2] += v;
  7076. }
  7077. }
  7078. }
  7079. }
  7080. static void ggml_compute_forward_conv_1d_2s_f32(
  7081. const struct ggml_compute_params * params,
  7082. const struct ggml_tensor * src0,
  7083. const struct ggml_tensor * src1,
  7084. struct ggml_tensor * dst) {
  7085. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7086. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7087. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7088. int64_t t0 = ggml_perf_time_us();
  7089. UNUSED(t0);
  7090. const int64_t ne00 = src0->ne[0];
  7091. const int64_t ne01 = src0->ne[1];
  7092. const int64_t ne02 = src0->ne[2];
  7093. //const int64_t ne03 = src0->ne[3];
  7094. const int64_t ne10 = src1->ne[0];
  7095. const int64_t ne11 = src1->ne[1];
  7096. //const int64_t ne12 = src1->ne[2];
  7097. //const int64_t ne13 = src1->ne[3];
  7098. //const int64_t ne0 = dst->ne[0];
  7099. //const int64_t ne1 = dst->ne[1];
  7100. //const int64_t ne2 = dst->ne[2];
  7101. //const int64_t ne3 = dst->ne[3];
  7102. //const int64_t ne = ne0*ne1*ne2*ne3;
  7103. const int nb00 = src0->nb[0];
  7104. const int nb01 = src0->nb[1];
  7105. const int nb02 = src0->nb[2];
  7106. //const int nb03 = src0->nb[3];
  7107. const int nb10 = src1->nb[0];
  7108. const int nb11 = src1->nb[1];
  7109. //const int nb12 = src1->nb[2];
  7110. //const int nb13 = src1->nb[3];
  7111. //const int nb0 = dst->nb[0];
  7112. const int nb1 = dst->nb[1];
  7113. //const int nb2 = dst->nb[2];
  7114. //const int nb3 = dst->nb[3];
  7115. const int ith = params->ith;
  7116. const int nth = params->nth;
  7117. const int nk = ne00;
  7118. const int nh = nk/2;
  7119. const int ew0 = ggml_up32(ne01);
  7120. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7121. GGML_ASSERT(nb00 == sizeof(float));
  7122. GGML_ASSERT(nb10 == sizeof(float));
  7123. if (params->type == GGML_TASK_INIT) {
  7124. // TODO: fix this memset (wsize is overestimated)
  7125. memset(params->wdata, 0, params->wsize);
  7126. // prepare kernel data (src0)
  7127. {
  7128. float * const wdata = (float *) params->wdata + 0;
  7129. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7130. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7131. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  7132. float * dst_data = wdata + i02*ew0*ne00;
  7133. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7134. dst_data[i00*ew0 + i01] = src[i00];
  7135. }
  7136. }
  7137. }
  7138. }
  7139. // prepare source data (src1)
  7140. {
  7141. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  7142. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7143. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7144. float * dst_data = wdata;
  7145. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7146. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  7147. }
  7148. }
  7149. }
  7150. return;
  7151. }
  7152. if (params->type == GGML_TASK_FINALIZE) {
  7153. return;
  7154. }
  7155. // total rows in dst
  7156. const int nr = ne02;
  7157. // rows per thread
  7158. const int dr = (nr + nth - 1)/nth;
  7159. // row range for this thread
  7160. const int ir0 = dr*ith;
  7161. const int ir1 = MIN(ir0 + dr, nr);
  7162. for (int i1 = ir0; i1 < ir1; i1++) {
  7163. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7164. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  7165. dst_data[i0/2] = 0;
  7166. for (int k = -nh; k <= nh; k++) {
  7167. float v = 0.0f;
  7168. ggml_vec_dot_f32(ew0, &v,
  7169. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7170. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7171. dst_data[i0/2] += v;
  7172. }
  7173. }
  7174. }
  7175. }
  7176. static void ggml_compute_forward_conv_1d_2s(
  7177. const struct ggml_compute_params * params,
  7178. const struct ggml_tensor * src0,
  7179. const struct ggml_tensor * src1,
  7180. struct ggml_tensor * dst) {
  7181. switch (src0->type) {
  7182. case GGML_TYPE_F16:
  7183. {
  7184. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  7185. } break;
  7186. case GGML_TYPE_F32:
  7187. {
  7188. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  7189. } break;
  7190. default:
  7191. {
  7192. GGML_ASSERT(false);
  7193. } break;
  7194. }
  7195. }
  7196. // ggml_compute_forward_flash_attn
  7197. static void ggml_compute_forward_flash_attn_f32(
  7198. const struct ggml_compute_params * params,
  7199. const struct ggml_tensor * q,
  7200. const struct ggml_tensor * k,
  7201. const struct ggml_tensor * v,
  7202. const bool masked,
  7203. struct ggml_tensor * dst) {
  7204. int64_t t0 = ggml_perf_time_us();
  7205. UNUSED(t0);
  7206. const int64_t neq0 = q->ne[0];
  7207. const int64_t neq1 = q->ne[1];
  7208. const int64_t neq2 = q->ne[2];
  7209. const int64_t neq3 = q->ne[3];
  7210. const int64_t nek0 = k->ne[0];
  7211. const int64_t nek1 = k->ne[1];
  7212. //const int64_t nek2 = k->ne[2];
  7213. //const int64_t nek3 = k->ne[3];
  7214. //const int64_t nev0 = v->ne[0];
  7215. const int64_t nev1 = v->ne[1];
  7216. //const int64_t nev2 = v->ne[2];
  7217. //const int64_t nev3 = v->ne[3];
  7218. const int64_t ne0 = dst->ne[0];
  7219. const int64_t ne1 = dst->ne[1];
  7220. //const int64_t ne2 = dst->ne[2];
  7221. //const int64_t ne3 = dst->ne[3];
  7222. const int nbk0 = k->nb[0];
  7223. const int nbk1 = k->nb[1];
  7224. const int nbk2 = k->nb[2];
  7225. const int nbk3 = k->nb[3];
  7226. const int nbq0 = q->nb[0];
  7227. const int nbq1 = q->nb[1];
  7228. const int nbq2 = q->nb[2];
  7229. const int nbq3 = q->nb[3];
  7230. const int nbv0 = v->nb[0];
  7231. const int nbv1 = v->nb[1];
  7232. const int nbv2 = v->nb[2];
  7233. const int nbv3 = v->nb[3];
  7234. const int nb0 = dst->nb[0];
  7235. const int nb1 = dst->nb[1];
  7236. const int nb2 = dst->nb[2];
  7237. const int nb3 = dst->nb[3];
  7238. const int ith = params->ith;
  7239. const int nth = params->nth;
  7240. const int64_t D = neq0;
  7241. const int64_t N = neq1;
  7242. const int64_t P = nek1 - N;
  7243. const int64_t M = P + N;
  7244. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  7245. GGML_ASSERT(ne0 == D);
  7246. GGML_ASSERT(ne1 == N);
  7247. GGML_ASSERT(P >= 0);
  7248. GGML_ASSERT(nbq0 == sizeof(float));
  7249. GGML_ASSERT(nbk0 == sizeof(float));
  7250. GGML_ASSERT(nbv0 == sizeof(float));
  7251. GGML_ASSERT(neq0 == D);
  7252. GGML_ASSERT(nek0 == D);
  7253. GGML_ASSERT(nev1 == D);
  7254. GGML_ASSERT(neq1 == N);
  7255. GGML_ASSERT(nek1 == N + P);
  7256. GGML_ASSERT(nev1 == D);
  7257. // dst cannot be transposed or permuted
  7258. GGML_ASSERT(nb0 == sizeof(float));
  7259. GGML_ASSERT(nb0 <= nb1);
  7260. GGML_ASSERT(nb1 <= nb2);
  7261. GGML_ASSERT(nb2 <= nb3);
  7262. if (params->type == GGML_TASK_INIT) {
  7263. return;
  7264. }
  7265. if (params->type == GGML_TASK_FINALIZE) {
  7266. return;
  7267. }
  7268. // parallelize by q rows using ggml_vec_dot_f32
  7269. // total rows in q
  7270. const int nr = neq1*neq2*neq3;
  7271. // rows per thread
  7272. const int dr = (nr + nth - 1)/nth;
  7273. // row range for this thread
  7274. const int ir0 = dr*ith;
  7275. const int ir1 = MIN(ir0 + dr, nr);
  7276. const float scale = 1.0f/sqrtf(D);
  7277. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  7278. for (int ir = ir0; ir < ir1; ++ir) {
  7279. // q indices
  7280. const int iq3 = ir/(neq2*neq1);
  7281. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  7282. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  7283. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  7284. for (int i = M; i < Mup; ++i) {
  7285. S[i] = -INFINITY;
  7286. }
  7287. for (int64_t ic = 0; ic < nek1; ++ic) {
  7288. // k indices
  7289. const int ik3 = iq3;
  7290. const int ik2 = iq2;
  7291. const int ik1 = ic;
  7292. // S indices
  7293. const int i1 = ik1;
  7294. ggml_vec_dot_f32(neq0,
  7295. S + i1,
  7296. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7297. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7298. }
  7299. // scale
  7300. ggml_vec_scale_f32(nek1, S, scale);
  7301. if (masked) {
  7302. for (int64_t i = P; i < M; i++) {
  7303. if (i > P + iq1) {
  7304. S[i] = -INFINITY;
  7305. }
  7306. }
  7307. }
  7308. // softmax
  7309. {
  7310. float max = -INFINITY;
  7311. ggml_vec_max_f32(M, &max, S);
  7312. ggml_float sum = 0.0;
  7313. {
  7314. #ifdef GGML_SOFT_MAX_ACCELERATE
  7315. max = -max;
  7316. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  7317. vvexpf(S, S, &Mup);
  7318. ggml_vec_sum_f32(Mup, &sum, S);
  7319. #else
  7320. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  7321. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  7322. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  7323. float * SS = S + i;
  7324. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  7325. if (SS[j] == -INFINITY) {
  7326. SS[j] = 0.0f;
  7327. } else {
  7328. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  7329. memcpy(&scvt[j], &s, sizeof(uint16_t));
  7330. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  7331. sump[j] += (ggml_float)val;
  7332. SS[j] = val;
  7333. }
  7334. }
  7335. }
  7336. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  7337. sum += sump[i];
  7338. }
  7339. #endif
  7340. }
  7341. assert(sum > 0.0);
  7342. sum = 1.0/sum;
  7343. ggml_vec_scale_f32(M, S, sum);
  7344. #ifndef NDEBUG
  7345. for (int i = 0; i < M; ++i) {
  7346. assert(!isnan(S[i]));
  7347. assert(!isinf(S[i]));
  7348. }
  7349. #endif
  7350. }
  7351. for (int64_t ic = 0; ic < nev1; ++ic) {
  7352. // dst indices
  7353. const int i1 = iq1;
  7354. const int i2 = iq2;
  7355. const int i3 = iq3;
  7356. ggml_vec_dot_f32(nek1,
  7357. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7358. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  7359. S);
  7360. }
  7361. }
  7362. }
  7363. static void ggml_compute_forward_flash_attn_f16(
  7364. const struct ggml_compute_params * params,
  7365. const struct ggml_tensor * q,
  7366. const struct ggml_tensor * k,
  7367. const struct ggml_tensor * v,
  7368. const bool masked,
  7369. struct ggml_tensor * dst) {
  7370. int64_t t0 = ggml_perf_time_us();
  7371. UNUSED(t0);
  7372. const int64_t neq0 = q->ne[0];
  7373. const int64_t neq1 = q->ne[1];
  7374. const int64_t neq2 = q->ne[2];
  7375. const int64_t neq3 = q->ne[3];
  7376. const int64_t nek0 = k->ne[0];
  7377. const int64_t nek1 = k->ne[1];
  7378. //const int64_t nek2 = k->ne[2];
  7379. //const int64_t nek3 = k->ne[3];
  7380. //const int64_t nev0 = v->ne[0];
  7381. const int64_t nev1 = v->ne[1];
  7382. //const int64_t nev2 = v->ne[2];
  7383. //const int64_t nev3 = v->ne[3];
  7384. const int64_t ne0 = dst->ne[0];
  7385. const int64_t ne1 = dst->ne[1];
  7386. //const int64_t ne2 = dst->ne[2];
  7387. //const int64_t ne3 = dst->ne[3];
  7388. const int nbk0 = k->nb[0];
  7389. const int nbk1 = k->nb[1];
  7390. const int nbk2 = k->nb[2];
  7391. const int nbk3 = k->nb[3];
  7392. const int nbq0 = q->nb[0];
  7393. const int nbq1 = q->nb[1];
  7394. const int nbq2 = q->nb[2];
  7395. const int nbq3 = q->nb[3];
  7396. const int nbv0 = v->nb[0];
  7397. const int nbv1 = v->nb[1];
  7398. const int nbv2 = v->nb[2];
  7399. const int nbv3 = v->nb[3];
  7400. const int nb0 = dst->nb[0];
  7401. const int nb1 = dst->nb[1];
  7402. const int nb2 = dst->nb[2];
  7403. const int nb3 = dst->nb[3];
  7404. const int ith = params->ith;
  7405. const int nth = params->nth;
  7406. const int64_t D = neq0;
  7407. const int64_t N = neq1;
  7408. const int64_t P = nek1 - N;
  7409. const int64_t M = P + N;
  7410. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  7411. GGML_ASSERT(ne0 == D);
  7412. GGML_ASSERT(ne1 == N);
  7413. GGML_ASSERT(P >= 0);
  7414. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  7415. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  7416. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  7417. GGML_ASSERT(neq0 == D);
  7418. GGML_ASSERT(nek0 == D);
  7419. GGML_ASSERT(nev1 == D);
  7420. GGML_ASSERT(neq1 == N);
  7421. GGML_ASSERT(nek1 == N + P);
  7422. GGML_ASSERT(nev1 == D);
  7423. // dst cannot be transposed or permuted
  7424. GGML_ASSERT(nb0 == sizeof(float));
  7425. GGML_ASSERT(nb0 <= nb1);
  7426. GGML_ASSERT(nb1 <= nb2);
  7427. GGML_ASSERT(nb2 <= nb3);
  7428. if (params->type == GGML_TASK_INIT) {
  7429. return;
  7430. }
  7431. if (params->type == GGML_TASK_FINALIZE) {
  7432. return;
  7433. }
  7434. // parallelize by q rows using ggml_vec_dot_f32
  7435. // total rows in q
  7436. const int nr = neq1*neq2*neq3;
  7437. // rows per thread
  7438. const int dr = (nr + nth - 1)/nth;
  7439. // row range for this thread
  7440. const int ir0 = dr*ith;
  7441. const int ir1 = MIN(ir0 + dr, nr);
  7442. const float scale = 1.0f/sqrtf(D);
  7443. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  7444. for (int ir = ir0; ir < ir1; ++ir) {
  7445. // q indices
  7446. const int iq3 = ir/(neq2*neq1);
  7447. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  7448. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  7449. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  7450. for (int i = M; i < Mup; ++i) {
  7451. S[i] = -INFINITY;
  7452. }
  7453. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  7454. for (int64_t ic = 0; ic < nek1; ++ic) {
  7455. // k indices
  7456. const int ik3 = iq3;
  7457. const int ik2 = iq2;
  7458. const int ik1 = ic;
  7459. // S indices
  7460. const int i1 = ik1;
  7461. ggml_vec_dot_f16(neq0,
  7462. S + i1,
  7463. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7464. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7465. }
  7466. } else {
  7467. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  7468. // k indices
  7469. const int ik3 = iq3;
  7470. const int ik2 = iq2;
  7471. const int ik1 = ic;
  7472. // S indices
  7473. const int i1 = ik1;
  7474. ggml_vec_dot_f16_unroll(neq0, nbk1,
  7475. S + i1,
  7476. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7477. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7478. }
  7479. }
  7480. // scale
  7481. ggml_vec_scale_f32(nek1, S, scale);
  7482. if (masked) {
  7483. for (int64_t i = P; i < M; i++) {
  7484. if (i > P + iq1) {
  7485. S[i] = -INFINITY;
  7486. }
  7487. }
  7488. }
  7489. // softmax
  7490. {
  7491. float max = -INFINITY;
  7492. ggml_vec_max_f32(M, &max, S);
  7493. ggml_float sum = 0.0;
  7494. {
  7495. #ifdef GGML_SOFT_MAX_ACCELERATE
  7496. max = -max;
  7497. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  7498. vvexpf(S, S, &Mup);
  7499. ggml_vec_sum_f32(Mup, &sum, S);
  7500. #else
  7501. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  7502. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  7503. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  7504. float * SS = S + i;
  7505. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  7506. if (SS[j] == -INFINITY) {
  7507. SS[j] = 0.0f;
  7508. } else {
  7509. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  7510. memcpy(&scvt[j], &s, sizeof(uint16_t));
  7511. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  7512. sump[j] += (ggml_float)val;
  7513. SS[j] = val;
  7514. }
  7515. }
  7516. }
  7517. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  7518. sum += sump[i];
  7519. }
  7520. #endif
  7521. }
  7522. assert(sum > 0.0);
  7523. sum = 1.0/sum;
  7524. ggml_vec_scale_f32(M, S, sum);
  7525. #ifndef NDEBUG
  7526. for (int i = 0; i < M; ++i) {
  7527. assert(!isnan(S[i]));
  7528. assert(!isinf(S[i]));
  7529. }
  7530. #endif
  7531. }
  7532. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  7533. for (int64_t i = 0; i < M; i++) {
  7534. S16[i] = GGML_FP32_TO_FP16(S[i]);
  7535. }
  7536. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  7537. for (int64_t ic = 0; ic < nev1; ++ic) {
  7538. // dst indices
  7539. const int i1 = iq1;
  7540. const int i2 = iq2;
  7541. const int i3 = iq3;
  7542. ggml_vec_dot_f16(nek1,
  7543. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7544. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  7545. S16);
  7546. }
  7547. } else {
  7548. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  7549. // dst indices
  7550. const int i1 = iq1;
  7551. const int i2 = iq2;
  7552. const int i3 = iq3;
  7553. ggml_vec_dot_f16_unroll(nek1, nbv1,
  7554. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7555. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  7556. S16);
  7557. }
  7558. }
  7559. }
  7560. }
  7561. static void ggml_compute_forward_flash_attn(
  7562. const struct ggml_compute_params * params,
  7563. const struct ggml_tensor * q,
  7564. const struct ggml_tensor * k,
  7565. const struct ggml_tensor * v,
  7566. const bool masked,
  7567. struct ggml_tensor * dst) {
  7568. switch (q->type) {
  7569. case GGML_TYPE_F16:
  7570. {
  7571. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  7572. } break;
  7573. case GGML_TYPE_F32:
  7574. {
  7575. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  7576. } break;
  7577. default:
  7578. {
  7579. GGML_ASSERT(false);
  7580. } break;
  7581. }
  7582. }
  7583. // ggml_compute_forward_flash_ff
  7584. static void ggml_compute_forward_flash_ff_f16(
  7585. const struct ggml_compute_params * params,
  7586. const struct ggml_tensor * a, // F16
  7587. const struct ggml_tensor * b0, // F16 fc_w
  7588. const struct ggml_tensor * b1, // F32 fc_b
  7589. const struct ggml_tensor * c0, // F16 proj_w
  7590. const struct ggml_tensor * c1, // F32 proj_b
  7591. struct ggml_tensor * dst) {
  7592. int64_t t0 = ggml_perf_time_us();
  7593. UNUSED(t0);
  7594. const int64_t nea0 = a->ne[0];
  7595. const int64_t nea1 = a->ne[1];
  7596. const int64_t nea2 = a->ne[2];
  7597. const int64_t nea3 = a->ne[3];
  7598. const int64_t neb00 = b0->ne[0];
  7599. const int64_t neb01 = b0->ne[1];
  7600. //const int64_t neb02 = b0->ne[2];
  7601. //const int64_t neb03 = b0->ne[3];
  7602. const int64_t neb10 = b1->ne[0];
  7603. const int64_t neb11 = b1->ne[1];
  7604. //const int64_t neb12 = b1->ne[2];
  7605. //const int64_t neb13 = b1->ne[3];
  7606. const int64_t nec00 = c0->ne[0];
  7607. const int64_t nec01 = c0->ne[1];
  7608. //const int64_t nec02 = c0->ne[2];
  7609. //const int64_t nec03 = c0->ne[3];
  7610. const int64_t nec10 = c1->ne[0];
  7611. const int64_t nec11 = c1->ne[1];
  7612. //const int64_t nec12 = c1->ne[2];
  7613. //const int64_t nec13 = c1->ne[3];
  7614. const int64_t ne0 = dst->ne[0];
  7615. const int64_t ne1 = dst->ne[1];
  7616. const int64_t ne2 = dst->ne[2];
  7617. //const int64_t ne3 = dst->ne[3];
  7618. const int nba0 = a->nb[0];
  7619. const int nba1 = a->nb[1];
  7620. const int nba2 = a->nb[2];
  7621. const int nba3 = a->nb[3];
  7622. const int nbb00 = b0->nb[0];
  7623. const int nbb01 = b0->nb[1];
  7624. const int nbb02 = b0->nb[2];
  7625. const int nbb03 = b0->nb[3];
  7626. const int nbb10 = b1->nb[0];
  7627. //const int nbb11 = b1->nb[1];
  7628. //const int nbb12 = b1->nb[2];
  7629. //const int nbb13 = b1->nb[3];
  7630. const int nbc00 = c0->nb[0];
  7631. const int nbc01 = c0->nb[1];
  7632. const int nbc02 = c0->nb[2];
  7633. const int nbc03 = c0->nb[3];
  7634. const int nbc10 = c1->nb[0];
  7635. //const int nbc11 = c1->nb[1];
  7636. //const int nbc12 = c1->nb[2];
  7637. //const int nbc13 = c1->nb[3];
  7638. const int nb0 = dst->nb[0];
  7639. const int nb1 = dst->nb[1];
  7640. const int nb2 = dst->nb[2];
  7641. const int nb3 = dst->nb[3];
  7642. const int ith = params->ith;
  7643. const int nth = params->nth;
  7644. const int64_t D = nea0;
  7645. //const int64_t N = nea1;
  7646. const int64_t M = neb01;
  7647. GGML_ASSERT(ne0 == nea0);
  7648. GGML_ASSERT(ne1 == nea1);
  7649. GGML_ASSERT(ne2 == nea2);
  7650. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  7651. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  7652. GGML_ASSERT(nbb10 == sizeof(float));
  7653. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  7654. GGML_ASSERT(nbc10 == sizeof(float));
  7655. GGML_ASSERT(neb00 == D);
  7656. GGML_ASSERT(neb01 == M);
  7657. GGML_ASSERT(neb10 == M);
  7658. GGML_ASSERT(neb11 == 1);
  7659. GGML_ASSERT(nec00 == M);
  7660. GGML_ASSERT(nec01 == D);
  7661. GGML_ASSERT(nec10 == D);
  7662. GGML_ASSERT(nec11 == 1);
  7663. // dst cannot be transposed or permuted
  7664. GGML_ASSERT(nb0 == sizeof(float));
  7665. GGML_ASSERT(nb0 <= nb1);
  7666. GGML_ASSERT(nb1 <= nb2);
  7667. GGML_ASSERT(nb2 <= nb3);
  7668. if (params->type == GGML_TASK_INIT) {
  7669. return;
  7670. }
  7671. if (params->type == GGML_TASK_FINALIZE) {
  7672. return;
  7673. }
  7674. // parallelize by a rows using ggml_vec_dot_f32
  7675. // total rows in a
  7676. const int nr = nea1*nea2*nea3;
  7677. // rows per thread
  7678. const int dr = (nr + nth - 1)/nth;
  7679. // row range for this thread
  7680. const int ir0 = dr*ith;
  7681. const int ir1 = MIN(ir0 + dr, nr);
  7682. for (int ir = ir0; ir < ir1; ++ir) {
  7683. // a indices
  7684. const int ia3 = ir/(nea2*nea1);
  7685. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  7686. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  7687. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  7688. for (int64_t ic = 0; ic < neb01; ++ic) {
  7689. // b0 indices
  7690. const int ib03 = ia3;
  7691. const int ib02 = ia2;
  7692. const int ib01 = ic;
  7693. // S indices
  7694. const int i1 = ib01;
  7695. ggml_vec_dot_f16(nea0,
  7696. S + i1,
  7697. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  7698. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  7699. }
  7700. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  7701. //ggml_vec_gelu_f32(neb01, S, S);
  7702. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  7703. for (int64_t i = 0; i < M; i++) {
  7704. S16[i] = GGML_FP32_TO_FP16(S[i]);
  7705. }
  7706. ggml_vec_gelu_f16(neb01, S16, S16);
  7707. {
  7708. // dst indices
  7709. const int i1 = ia1;
  7710. const int i2 = ia2;
  7711. const int i3 = ia3;
  7712. for (int64_t ic = 0; ic < nec01; ++ic) {
  7713. ggml_vec_dot_f16(neb01,
  7714. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7715. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  7716. S16);
  7717. }
  7718. ggml_vec_add_f32(nec01,
  7719. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  7720. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  7721. (float *) c1->data);
  7722. }
  7723. }
  7724. }
  7725. static void ggml_compute_forward_flash_ff(
  7726. const struct ggml_compute_params * params,
  7727. const struct ggml_tensor * a,
  7728. const struct ggml_tensor * b0,
  7729. const struct ggml_tensor * b1,
  7730. const struct ggml_tensor * c0,
  7731. const struct ggml_tensor * c1,
  7732. struct ggml_tensor * dst) {
  7733. switch (b0->type) {
  7734. case GGML_TYPE_F16:
  7735. {
  7736. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  7737. } break;
  7738. case GGML_TYPE_F32:
  7739. {
  7740. GGML_ASSERT(false); // TODO
  7741. } break;
  7742. default:
  7743. {
  7744. GGML_ASSERT(false);
  7745. } break;
  7746. }
  7747. }
  7748. // ggml_compute_forward_map_unary
  7749. static void ggml_compute_forward_map_unary_f32(
  7750. const struct ggml_compute_params * params,
  7751. const struct ggml_tensor * src0,
  7752. struct ggml_tensor * dst,
  7753. const ggml_unary_op_f32_t fun) {
  7754. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7755. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7756. return;
  7757. }
  7758. const int n = ggml_nrows(src0);
  7759. const int nc = src0->ne[0];
  7760. assert( dst->nb[0] == sizeof(float));
  7761. assert(src0->nb[0] == sizeof(float));
  7762. for (int i = 0; i < n; i++) {
  7763. fun(nc,
  7764. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7765. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7766. }
  7767. }
  7768. static void ggml_compute_forward_map_unary(
  7769. const struct ggml_compute_params * params,
  7770. const struct ggml_tensor * src0,
  7771. struct ggml_tensor * dst,
  7772. const ggml_unary_op_f32_t fun) {
  7773. switch (src0->type) {
  7774. case GGML_TYPE_F32:
  7775. {
  7776. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  7777. } break;
  7778. default:
  7779. {
  7780. GGML_ASSERT(false);
  7781. } break;
  7782. }
  7783. }
  7784. // ggml_compute_forward_map_binary
  7785. static void ggml_compute_forward_map_binary_f32(
  7786. const struct ggml_compute_params * params,
  7787. const struct ggml_tensor * src0,
  7788. const struct ggml_tensor * src1,
  7789. struct ggml_tensor * dst,
  7790. const ggml_binary_op_f32_t fun) {
  7791. assert(params->ith == 0);
  7792. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7793. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7794. return;
  7795. }
  7796. const int n = ggml_nrows(src0);
  7797. const int nc = src0->ne[0];
  7798. assert( dst->nb[0] == sizeof(float));
  7799. assert(src0->nb[0] == sizeof(float));
  7800. assert(src1->nb[0] == sizeof(float));
  7801. for (int i = 0; i < n; i++) {
  7802. fun(nc,
  7803. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7804. (float *) ((char *) src0->data + i*(src0->nb[1])),
  7805. (float *) ((char *) src1->data + i*(src1->nb[1])));
  7806. }
  7807. }
  7808. static void ggml_compute_forward_map_binary(
  7809. const struct ggml_compute_params * params,
  7810. const struct ggml_tensor * src0,
  7811. const struct ggml_tensor * src1,
  7812. struct ggml_tensor * dst,
  7813. const ggml_binary_op_f32_t fun) {
  7814. switch (src0->type) {
  7815. case GGML_TYPE_F32:
  7816. {
  7817. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  7818. } break;
  7819. default:
  7820. {
  7821. GGML_ASSERT(false);
  7822. } break;
  7823. }
  7824. }
  7825. /////////////////////////////////
  7826. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  7827. GGML_ASSERT(params);
  7828. switch (tensor->op) {
  7829. case GGML_OP_DUP:
  7830. {
  7831. ggml_compute_forward_dup(params, tensor->src0, tensor);
  7832. } break;
  7833. case GGML_OP_ADD:
  7834. {
  7835. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  7836. } break;
  7837. case GGML_OP_SUB:
  7838. {
  7839. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  7840. } break;
  7841. case GGML_OP_MUL:
  7842. {
  7843. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  7844. } break;
  7845. case GGML_OP_DIV:
  7846. {
  7847. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  7848. } break;
  7849. case GGML_OP_SQR:
  7850. {
  7851. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  7852. } break;
  7853. case GGML_OP_SQRT:
  7854. {
  7855. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  7856. } break;
  7857. case GGML_OP_SUM:
  7858. {
  7859. ggml_compute_forward_sum(params, tensor->src0, tensor);
  7860. } break;
  7861. case GGML_OP_MEAN:
  7862. {
  7863. ggml_compute_forward_mean(params, tensor->src0, tensor);
  7864. } break;
  7865. case GGML_OP_REPEAT:
  7866. {
  7867. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  7868. } break;
  7869. case GGML_OP_ABS:
  7870. {
  7871. ggml_compute_forward_abs(params, tensor->src0, tensor);
  7872. } break;
  7873. case GGML_OP_SGN:
  7874. {
  7875. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  7876. } break;
  7877. case GGML_OP_NEG:
  7878. {
  7879. ggml_compute_forward_neg(params, tensor->src0, tensor);
  7880. } break;
  7881. case GGML_OP_STEP:
  7882. {
  7883. ggml_compute_forward_step(params, tensor->src0, tensor);
  7884. } break;
  7885. case GGML_OP_RELU:
  7886. {
  7887. ggml_compute_forward_relu(params, tensor->src0, tensor);
  7888. } break;
  7889. case GGML_OP_GELU:
  7890. {
  7891. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  7892. } break;
  7893. case GGML_OP_SILU:
  7894. {
  7895. ggml_compute_forward_silu(params, tensor->src0, tensor);
  7896. } break;
  7897. case GGML_OP_NORM:
  7898. {
  7899. ggml_compute_forward_norm(params, tensor->src0, tensor);
  7900. } break;
  7901. case GGML_OP_RMS_NORM:
  7902. {
  7903. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  7904. } break;
  7905. case GGML_OP_MUL_MAT:
  7906. {
  7907. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  7908. } break;
  7909. case GGML_OP_SCALE:
  7910. {
  7911. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  7912. } break;
  7913. case GGML_OP_CPY:
  7914. {
  7915. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  7916. } break;
  7917. case GGML_OP_CONT:
  7918. {
  7919. ggml_compute_forward_cont(params, tensor->src0, tensor);
  7920. } break;
  7921. case GGML_OP_RESHAPE:
  7922. {
  7923. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  7924. } break;
  7925. case GGML_OP_VIEW:
  7926. {
  7927. ggml_compute_forward_view(params, tensor->src0);
  7928. } break;
  7929. case GGML_OP_PERMUTE:
  7930. {
  7931. ggml_compute_forward_permute(params, tensor->src0);
  7932. } break;
  7933. case GGML_OP_TRANSPOSE:
  7934. {
  7935. ggml_compute_forward_transpose(params, tensor->src0);
  7936. } break;
  7937. case GGML_OP_GET_ROWS:
  7938. {
  7939. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  7940. } break;
  7941. case GGML_OP_DIAG_MASK_INF:
  7942. {
  7943. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  7944. } break;
  7945. case GGML_OP_SOFT_MAX:
  7946. {
  7947. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  7948. } break;
  7949. case GGML_OP_ROPE:
  7950. {
  7951. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  7952. } break;
  7953. case GGML_OP_CONV_1D_1S:
  7954. {
  7955. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  7956. } break;
  7957. case GGML_OP_CONV_1D_2S:
  7958. {
  7959. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  7960. } break;
  7961. case GGML_OP_FLASH_ATTN:
  7962. {
  7963. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  7964. GGML_ASSERT(t == 0 || t == 1);
  7965. bool masked = t != 0;
  7966. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  7967. } break;
  7968. case GGML_OP_FLASH_FF:
  7969. {
  7970. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  7971. } break;
  7972. case GGML_OP_MAP_UNARY:
  7973. {
  7974. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  7975. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  7976. }
  7977. break;
  7978. case GGML_OP_MAP_BINARY:
  7979. {
  7980. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  7981. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  7982. }
  7983. break;
  7984. case GGML_OP_NONE:
  7985. {
  7986. // nop
  7987. } break;
  7988. case GGML_OP_COUNT:
  7989. {
  7990. GGML_ASSERT(false);
  7991. } break;
  7992. }
  7993. }
  7994. ////////////////////////////////////////////////////////////////////////////////
  7995. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  7996. struct ggml_tensor * src0 = tensor->src0;
  7997. struct ggml_tensor * src1 = tensor->src1;
  7998. switch (tensor->op) {
  7999. case GGML_OP_DUP:
  8000. {
  8001. if (src0->grad) {
  8002. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8003. }
  8004. } break;
  8005. case GGML_OP_ADD:
  8006. {
  8007. if (src0->grad) {
  8008. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8009. }
  8010. if (src1->grad) {
  8011. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  8012. }
  8013. } break;
  8014. case GGML_OP_SUB:
  8015. {
  8016. if (src0->grad) {
  8017. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8018. }
  8019. if (src1->grad) {
  8020. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  8021. }
  8022. } break;
  8023. case GGML_OP_MUL:
  8024. {
  8025. if (src0->grad) {
  8026. src0->grad =
  8027. ggml_add_impl(ctx,
  8028. src0->grad,
  8029. ggml_mul(ctx, src1, tensor->grad),
  8030. inplace);
  8031. }
  8032. if (src1->grad) {
  8033. src1->grad =
  8034. ggml_add_impl(ctx,
  8035. src1->grad,
  8036. ggml_mul(ctx, src0, tensor->grad),
  8037. inplace);
  8038. }
  8039. } break;
  8040. case GGML_OP_DIV:
  8041. {
  8042. if (src0->grad) {
  8043. src0->grad =
  8044. ggml_add_impl(ctx,
  8045. src0->grad,
  8046. ggml_div(ctx, tensor->grad, src1),
  8047. inplace);
  8048. }
  8049. if (src1->grad) {
  8050. src1->grad =
  8051. ggml_sub_impl(ctx,
  8052. src1->grad,
  8053. ggml_mul(ctx,
  8054. tensor->grad,
  8055. ggml_div(ctx, tensor, src1)),
  8056. inplace);
  8057. }
  8058. } break;
  8059. case GGML_OP_SQR:
  8060. {
  8061. if (src0->grad) {
  8062. src0->grad =
  8063. ggml_add_impl(ctx,
  8064. src0->grad,
  8065. ggml_mul(ctx,
  8066. ggml_mul(ctx, src0, tensor->grad),
  8067. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  8068. inplace);
  8069. }
  8070. } break;
  8071. case GGML_OP_SQRT:
  8072. {
  8073. if (src0->grad) {
  8074. src0->grad =
  8075. ggml_add_impl(ctx,
  8076. src0->grad,
  8077. ggml_div(ctx,
  8078. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  8079. tensor),
  8080. inplace);
  8081. }
  8082. } break;
  8083. case GGML_OP_SUM:
  8084. {
  8085. if (src0->grad) {
  8086. src0->grad =
  8087. ggml_add_impl(ctx,
  8088. src0->grad,
  8089. ggml_repeat(ctx, tensor->grad, src0->grad),
  8090. inplace);
  8091. }
  8092. } break;
  8093. case GGML_OP_MEAN:
  8094. {
  8095. GGML_ASSERT(false); // TODO: implement
  8096. } break;
  8097. case GGML_OP_REPEAT:
  8098. {
  8099. if (src0->grad) {
  8100. src0->grad =
  8101. ggml_add_impl(ctx,
  8102. src0->grad,
  8103. ggml_sum(ctx, tensor->grad),
  8104. inplace);
  8105. }
  8106. } break;
  8107. case GGML_OP_ABS:
  8108. {
  8109. if (src0->grad) {
  8110. src0->grad =
  8111. ggml_add_impl(ctx,
  8112. src0->grad,
  8113. ggml_mul(ctx,
  8114. ggml_sgn(ctx, src0),
  8115. tensor->grad),
  8116. inplace);
  8117. }
  8118. } break;
  8119. case GGML_OP_SGN:
  8120. {
  8121. if (src0->grad) {
  8122. // noop
  8123. }
  8124. } break;
  8125. case GGML_OP_NEG:
  8126. {
  8127. if (src0->grad) {
  8128. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  8129. }
  8130. } break;
  8131. case GGML_OP_STEP:
  8132. {
  8133. if (src0->grad) {
  8134. // noop
  8135. }
  8136. } break;
  8137. case GGML_OP_RELU:
  8138. {
  8139. if (src0->grad) {
  8140. src0->grad = ggml_sub_impl(ctx,
  8141. src0->grad,
  8142. ggml_mul(ctx,
  8143. ggml_step(ctx, src0),
  8144. tensor->grad),
  8145. inplace);
  8146. }
  8147. } break;
  8148. case GGML_OP_GELU:
  8149. {
  8150. GGML_ASSERT(false); // TODO: not implemented
  8151. } break;
  8152. case GGML_OP_SILU:
  8153. {
  8154. GGML_ASSERT(false); // TODO: not implemented
  8155. } break;
  8156. case GGML_OP_NORM:
  8157. {
  8158. GGML_ASSERT(false); // TODO: not implemented
  8159. } break;
  8160. case GGML_OP_RMS_NORM:
  8161. {
  8162. GGML_ASSERT(false); // TODO: not implemented
  8163. } break;
  8164. case GGML_OP_MUL_MAT:
  8165. {
  8166. if (src0->grad) {
  8167. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  8168. GGML_ASSERT(false);
  8169. }
  8170. if (src1->grad) {
  8171. src1->grad =
  8172. ggml_add_impl(ctx,
  8173. src1->grad,
  8174. ggml_mul_mat(ctx,
  8175. ggml_cont(ctx, ggml_transpose(ctx, src0)),
  8176. tensor->grad),
  8177. inplace);
  8178. }
  8179. } break;
  8180. case GGML_OP_SCALE:
  8181. {
  8182. GGML_ASSERT(false); // TODO: not implemented
  8183. } break;
  8184. case GGML_OP_CPY:
  8185. {
  8186. GGML_ASSERT(false); // TODO: not implemented
  8187. } break;
  8188. case GGML_OP_CONT:
  8189. {
  8190. GGML_ASSERT(false); // TODO: not implemented
  8191. } break;
  8192. case GGML_OP_RESHAPE:
  8193. {
  8194. GGML_ASSERT(false); // TODO: not implemented
  8195. } break;
  8196. case GGML_OP_VIEW:
  8197. {
  8198. GGML_ASSERT(false); // not supported
  8199. } break;
  8200. case GGML_OP_PERMUTE:
  8201. {
  8202. GGML_ASSERT(false); // TODO: not implemented
  8203. } break;
  8204. case GGML_OP_TRANSPOSE:
  8205. {
  8206. GGML_ASSERT(false); // TODO: not implemented
  8207. } break;
  8208. case GGML_OP_GET_ROWS:
  8209. {
  8210. GGML_ASSERT(false); // TODO: not implemented
  8211. } break;
  8212. case GGML_OP_DIAG_MASK_INF:
  8213. {
  8214. GGML_ASSERT(false); // TODO: not implemented
  8215. } break;
  8216. case GGML_OP_SOFT_MAX:
  8217. {
  8218. GGML_ASSERT(false); // TODO: not implemented
  8219. } break;
  8220. case GGML_OP_ROPE:
  8221. {
  8222. GGML_ASSERT(false); // TODO: not implemented
  8223. } break;
  8224. case GGML_OP_CONV_1D_1S:
  8225. {
  8226. GGML_ASSERT(false); // TODO: not implemented
  8227. } break;
  8228. case GGML_OP_CONV_1D_2S:
  8229. {
  8230. GGML_ASSERT(false); // TODO: not implemented
  8231. } break;
  8232. case GGML_OP_FLASH_ATTN:
  8233. {
  8234. GGML_ASSERT(false); // not supported
  8235. } break;
  8236. case GGML_OP_FLASH_FF:
  8237. {
  8238. GGML_ASSERT(false); // not supported
  8239. } break;
  8240. case GGML_OP_MAP_UNARY:
  8241. case GGML_OP_MAP_BINARY:
  8242. {
  8243. GGML_ASSERT(false); // not supported
  8244. } break;
  8245. case GGML_OP_NONE:
  8246. {
  8247. // nop
  8248. } break;
  8249. case GGML_OP_COUNT:
  8250. {
  8251. GGML_ASSERT(false);
  8252. } break;
  8253. }
  8254. }
  8255. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  8256. if (node->grad == NULL) {
  8257. // this usually happens when we generate intermediate nodes from constants in the backward pass
  8258. // it can also happen during forward pass, if the user performs computations with constants
  8259. if (node->op != GGML_OP_NONE) {
  8260. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  8261. }
  8262. }
  8263. // check if already visited
  8264. for (int i = 0; i < cgraph->n_nodes; i++) {
  8265. if (cgraph->nodes[i] == node) {
  8266. return;
  8267. }
  8268. }
  8269. for (int i = 0; i < cgraph->n_leafs; i++) {
  8270. if (cgraph->leafs[i] == node) {
  8271. return;
  8272. }
  8273. }
  8274. if (node->src0) {
  8275. ggml_visit_parents(cgraph, node->src0);
  8276. }
  8277. if (node->src1) {
  8278. ggml_visit_parents(cgraph, node->src1);
  8279. }
  8280. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  8281. if (node->opt[i]) {
  8282. ggml_visit_parents(cgraph, node->opt[i]);
  8283. }
  8284. }
  8285. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  8286. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  8287. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  8288. cgraph->leafs[cgraph->n_leafs] = node;
  8289. cgraph->n_leafs++;
  8290. } else {
  8291. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  8292. cgraph->nodes[cgraph->n_nodes] = node;
  8293. cgraph->grads[cgraph->n_nodes] = node->grad;
  8294. cgraph->n_nodes++;
  8295. }
  8296. }
  8297. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  8298. if (!expand) {
  8299. cgraph->n_nodes = 0;
  8300. cgraph->n_leafs = 0;
  8301. }
  8302. const int n0 = cgraph->n_nodes;
  8303. UNUSED(n0);
  8304. ggml_visit_parents(cgraph, tensor);
  8305. const int n_new = cgraph->n_nodes - n0;
  8306. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  8307. if (n_new > 0) {
  8308. // the last added node should always be starting point
  8309. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  8310. }
  8311. }
  8312. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  8313. ggml_build_forward_impl(cgraph, tensor, true);
  8314. }
  8315. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  8316. struct ggml_cgraph result = {
  8317. /*.n_nodes =*/ 0,
  8318. /*.n_leafs =*/ 0,
  8319. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  8320. /*.work_size =*/ 0,
  8321. /*.work =*/ NULL,
  8322. /*.nodes =*/ { NULL },
  8323. /*.grads =*/ { NULL },
  8324. /*.leafs =*/ { NULL },
  8325. /*.perf_runs =*/ 0,
  8326. /*.perf_cycles =*/ 0,
  8327. /*.perf_time_us =*/ 0,
  8328. };
  8329. ggml_build_forward_impl(&result, tensor, false);
  8330. return result;
  8331. }
  8332. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  8333. struct ggml_cgraph result = *gf;
  8334. GGML_ASSERT(gf->n_nodes > 0);
  8335. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  8336. if (keep) {
  8337. for (int i = 0; i < gf->n_nodes; i++) {
  8338. struct ggml_tensor * node = gf->nodes[i];
  8339. if (node->grad) {
  8340. node->grad = ggml_dup_tensor(ctx, node);
  8341. gf->grads[i] = node->grad;
  8342. }
  8343. }
  8344. }
  8345. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  8346. struct ggml_tensor * node = gf->nodes[i];
  8347. // because we detached the grad nodes from the original graph, we can afford inplace operations
  8348. if (node->grad) {
  8349. ggml_compute_backward(ctx, node, keep);
  8350. }
  8351. }
  8352. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  8353. struct ggml_tensor * node = gf->nodes[i];
  8354. if (node->is_param) {
  8355. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  8356. ggml_build_forward_impl(&result, node->grad, true);
  8357. }
  8358. }
  8359. return result;
  8360. }
  8361. //
  8362. // thread data
  8363. //
  8364. // synchronization is done via busy loops
  8365. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  8366. //
  8367. #ifdef __APPLE__
  8368. //#include <os/lock.h>
  8369. //
  8370. //typedef os_unfair_lock ggml_lock_t;
  8371. //
  8372. //#define ggml_lock_init(x) UNUSED(x)
  8373. //#define ggml_lock_destroy(x) UNUSED(x)
  8374. //#define ggml_lock_lock os_unfair_lock_lock
  8375. //#define ggml_lock_unlock os_unfair_lock_unlock
  8376. //
  8377. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  8378. typedef int ggml_lock_t;
  8379. #define ggml_lock_init(x) UNUSED(x)
  8380. #define ggml_lock_destroy(x) UNUSED(x)
  8381. #define ggml_lock_lock(x) UNUSED(x)
  8382. #define ggml_lock_unlock(x) UNUSED(x)
  8383. #define GGML_LOCK_INITIALIZER 0
  8384. typedef pthread_t ggml_thread_t;
  8385. #define ggml_thread_create pthread_create
  8386. #define ggml_thread_join pthread_join
  8387. #else
  8388. //typedef pthread_spinlock_t ggml_lock_t;
  8389. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  8390. //#define ggml_lock_destroy pthread_spin_destroy
  8391. //#define ggml_lock_lock pthread_spin_lock
  8392. //#define ggml_lock_unlock pthread_spin_unlock
  8393. typedef int ggml_lock_t;
  8394. #define ggml_lock_init(x) UNUSED(x)
  8395. #define ggml_lock_destroy(x) UNUSED(x)
  8396. #define ggml_lock_lock(x) UNUSED(x)
  8397. #define ggml_lock_unlock(x) UNUSED(x)
  8398. #define GGML_LOCK_INITIALIZER 0
  8399. typedef pthread_t ggml_thread_t;
  8400. #define ggml_thread_create pthread_create
  8401. #define ggml_thread_join pthread_join
  8402. #endif
  8403. struct ggml_compute_state_shared {
  8404. ggml_lock_t spin;
  8405. int n_threads;
  8406. // synchronization primitives
  8407. atomic_int n_ready;
  8408. atomic_bool has_work;
  8409. atomic_bool stop; // stop all threads
  8410. };
  8411. struct ggml_compute_state {
  8412. ggml_thread_t thrd;
  8413. struct ggml_compute_params params;
  8414. struct ggml_tensor * node;
  8415. struct ggml_compute_state_shared * shared;
  8416. };
  8417. static thread_ret_t ggml_graph_compute_thread(void * data) {
  8418. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  8419. const int n_threads = state->shared->n_threads;
  8420. while (true) {
  8421. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  8422. atomic_store(&state->shared->has_work, false);
  8423. } else {
  8424. while (atomic_load(&state->shared->has_work)) {
  8425. if (atomic_load(&state->shared->stop)) {
  8426. return 0;
  8427. }
  8428. ggml_lock_lock (&state->shared->spin);
  8429. ggml_lock_unlock(&state->shared->spin);
  8430. }
  8431. }
  8432. atomic_fetch_sub(&state->shared->n_ready, 1);
  8433. // wait for work
  8434. while (!atomic_load(&state->shared->has_work)) {
  8435. if (atomic_load(&state->shared->stop)) {
  8436. return 0;
  8437. }
  8438. ggml_lock_lock (&state->shared->spin);
  8439. ggml_lock_unlock(&state->shared->spin);
  8440. }
  8441. // check if we should stop
  8442. if (atomic_load(&state->shared->stop)) {
  8443. break;
  8444. }
  8445. if (state->node) {
  8446. if (state->params.ith < state->params.nth) {
  8447. ggml_compute_forward(&state->params, state->node);
  8448. }
  8449. state->node = NULL;
  8450. } else {
  8451. break;
  8452. }
  8453. }
  8454. return 0;
  8455. }
  8456. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  8457. const int n_threads = cgraph->n_threads;
  8458. struct ggml_compute_state_shared state_shared = {
  8459. /*.spin =*/ GGML_LOCK_INITIALIZER,
  8460. /*.n_threads =*/ n_threads,
  8461. /*.n_ready =*/ 0,
  8462. /*.has_work =*/ false,
  8463. /*.stop =*/ false,
  8464. };
  8465. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  8466. // create thread pool
  8467. if (n_threads > 1) {
  8468. ggml_lock_init(&state_shared.spin);
  8469. atomic_store(&state_shared.has_work, true);
  8470. for (int j = 0; j < n_threads - 1; j++) {
  8471. workers[j] = (struct ggml_compute_state) {
  8472. .thrd = 0,
  8473. .params = {
  8474. .type = GGML_TASK_COMPUTE,
  8475. .ith = j + 1,
  8476. .nth = n_threads,
  8477. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8478. .wdata = cgraph->work ? cgraph->work->data : NULL,
  8479. },
  8480. .node = NULL,
  8481. .shared = &state_shared,
  8482. };
  8483. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  8484. GGML_ASSERT(rc == 0);
  8485. UNUSED(rc);
  8486. }
  8487. }
  8488. // initialize tasks + work buffer
  8489. {
  8490. size_t work_size = 0;
  8491. // thread scheduling for the different operations
  8492. for (int i = 0; i < cgraph->n_nodes; i++) {
  8493. struct ggml_tensor * node = cgraph->nodes[i];
  8494. switch (node->op) {
  8495. case GGML_OP_CPY:
  8496. case GGML_OP_DUP:
  8497. {
  8498. node->n_tasks = 1;
  8499. size_t cur = 0;
  8500. if (node->type == GGML_TYPE_Q4_0 || node->type == GGML_TYPE_Q4_1) {
  8501. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0];
  8502. }
  8503. work_size = MAX(work_size, cur);
  8504. } break;
  8505. case GGML_OP_ADD:
  8506. {
  8507. node->n_tasks = n_threads;
  8508. size_t cur = 0;
  8509. if (node->src0->type == GGML_TYPE_Q4_0 || node->src0->type == GGML_TYPE_Q4_1) {
  8510. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
  8511. }
  8512. work_size = MAX(work_size, cur);
  8513. } break;
  8514. case GGML_OP_SUB:
  8515. case GGML_OP_MUL:
  8516. case GGML_OP_DIV:
  8517. case GGML_OP_SQR:
  8518. case GGML_OP_SQRT:
  8519. case GGML_OP_SUM:
  8520. case GGML_OP_MEAN:
  8521. case GGML_OP_REPEAT:
  8522. case GGML_OP_ABS:
  8523. case GGML_OP_SGN:
  8524. case GGML_OP_NEG:
  8525. case GGML_OP_STEP:
  8526. case GGML_OP_RELU:
  8527. {
  8528. node->n_tasks = 1;
  8529. } break;
  8530. case GGML_OP_GELU:
  8531. {
  8532. node->n_tasks = n_threads;
  8533. } break;
  8534. case GGML_OP_SILU:
  8535. {
  8536. node->n_tasks = n_threads;
  8537. } break;
  8538. case GGML_OP_NORM:
  8539. case GGML_OP_RMS_NORM:
  8540. {
  8541. node->n_tasks = n_threads;
  8542. } break;
  8543. case GGML_OP_MUL_MAT:
  8544. {
  8545. node->n_tasks = n_threads;
  8546. // TODO: use different scheduling for different matrix sizes
  8547. //const int nr0 = ggml_nrows(node->src0);
  8548. //const int nr1 = ggml_nrows(node->src1);
  8549. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  8550. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  8551. size_t cur = 0;
  8552. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  8553. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8554. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  8555. node->n_tasks = 1; // TODO: this actually is doing nothing
  8556. // the threads are still spinning
  8557. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  8558. //printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
  8559. //printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
  8560. //printf("cur = %zu\n", cur);
  8561. } else {
  8562. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  8563. }
  8564. #else
  8565. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  8566. #endif
  8567. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  8568. cur = 0;
  8569. } else if (quantize_fns[node->src0->type].vec_dot_q && node->src1->type == GGML_TYPE_F32) {
  8570. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8571. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  8572. node->n_tasks = 1;
  8573. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  8574. } else
  8575. #endif
  8576. {
  8577. cur = GGML_TYPE_SIZE[GGML_TYPE_Q8_0]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[GGML_TYPE_Q8_0];
  8578. }
  8579. } else {
  8580. GGML_ASSERT(false);
  8581. }
  8582. work_size = MAX(work_size, cur);
  8583. } break;
  8584. case GGML_OP_SCALE:
  8585. {
  8586. node->n_tasks = n_threads;
  8587. } break;
  8588. case GGML_OP_CONT:
  8589. case GGML_OP_RESHAPE:
  8590. case GGML_OP_VIEW:
  8591. case GGML_OP_PERMUTE:
  8592. case GGML_OP_TRANSPOSE:
  8593. case GGML_OP_GET_ROWS:
  8594. case GGML_OP_DIAG_MASK_INF:
  8595. {
  8596. node->n_tasks = 1;
  8597. } break;
  8598. case GGML_OP_SOFT_MAX:
  8599. {
  8600. node->n_tasks = n_threads;
  8601. } break;
  8602. case GGML_OP_ROPE:
  8603. {
  8604. node->n_tasks = n_threads;
  8605. } break;
  8606. case GGML_OP_CONV_1D_1S:
  8607. case GGML_OP_CONV_1D_2S:
  8608. {
  8609. node->n_tasks = n_threads;
  8610. GGML_ASSERT(node->src0->ne[3] == 1);
  8611. GGML_ASSERT(node->src1->ne[2] == 1);
  8612. GGML_ASSERT(node->src1->ne[3] == 1);
  8613. size_t cur = 0;
  8614. const int nk = node->src0->ne[0];
  8615. if (node->src0->type == GGML_TYPE_F16 &&
  8616. node->src1->type == GGML_TYPE_F32) {
  8617. cur = sizeof(ggml_fp16_t)*(
  8618. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  8619. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  8620. );
  8621. } else if (node->src0->type == GGML_TYPE_F32 &&
  8622. node->src1->type == GGML_TYPE_F32) {
  8623. cur = sizeof(float)*(
  8624. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  8625. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  8626. );
  8627. } else {
  8628. GGML_ASSERT(false);
  8629. }
  8630. work_size = MAX(work_size, cur);
  8631. } break;
  8632. case GGML_OP_FLASH_ATTN:
  8633. {
  8634. node->n_tasks = n_threads;
  8635. size_t cur = 0;
  8636. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  8637. if (node->src1->type == GGML_TYPE_F32) {
  8638. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  8639. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  8640. }
  8641. if (node->src1->type == GGML_TYPE_F16) {
  8642. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  8643. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  8644. }
  8645. work_size = MAX(work_size, cur);
  8646. } break;
  8647. case GGML_OP_FLASH_FF:
  8648. {
  8649. node->n_tasks = n_threads;
  8650. size_t cur = 0;
  8651. if (node->src1->type == GGML_TYPE_F32) {
  8652. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  8653. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  8654. }
  8655. if (node->src1->type == GGML_TYPE_F16) {
  8656. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  8657. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  8658. }
  8659. work_size = MAX(work_size, cur);
  8660. } break;
  8661. case GGML_OP_MAP_UNARY:
  8662. case GGML_OP_MAP_BINARY:
  8663. {
  8664. node->n_tasks = 1;
  8665. } break;
  8666. case GGML_OP_NONE:
  8667. {
  8668. node->n_tasks = 1;
  8669. } break;
  8670. case GGML_OP_COUNT:
  8671. {
  8672. GGML_ASSERT(false);
  8673. } break;
  8674. }
  8675. }
  8676. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  8677. GGML_ASSERT(false); // TODO: better handling
  8678. }
  8679. if (work_size > 0 && cgraph->work == NULL) {
  8680. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  8681. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  8682. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  8683. }
  8684. }
  8685. const int64_t perf_start_cycles = ggml_perf_cycles();
  8686. const int64_t perf_start_time_us = ggml_perf_time_us();
  8687. for (int i = 0; i < cgraph->n_nodes; i++) {
  8688. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  8689. struct ggml_tensor * node = cgraph->nodes[i];
  8690. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  8691. //if (node->grad == NULL && node->perf_runs > 0) {
  8692. // continue;
  8693. //}
  8694. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  8695. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  8696. // INIT
  8697. struct ggml_compute_params params = {
  8698. /*.type =*/ GGML_TASK_INIT,
  8699. /*.ith =*/ 0,
  8700. /*.nth =*/ node->n_tasks,
  8701. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8702. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  8703. };
  8704. ggml_compute_forward(&params, node);
  8705. // COMPUTE
  8706. if (node->n_tasks > 1) {
  8707. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8708. atomic_store(&state_shared.has_work, false);
  8709. }
  8710. while (atomic_load(&state_shared.has_work)) {
  8711. ggml_lock_lock (&state_shared.spin);
  8712. ggml_lock_unlock(&state_shared.spin);
  8713. }
  8714. // launch thread pool
  8715. for (int j = 0; j < n_threads - 1; j++) {
  8716. workers[j].params = (struct ggml_compute_params) {
  8717. .type = GGML_TASK_COMPUTE,
  8718. .ith = j + 1,
  8719. .nth = node->n_tasks,
  8720. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8721. .wdata = cgraph->work ? cgraph->work->data : NULL,
  8722. };
  8723. workers[j].node = node;
  8724. }
  8725. atomic_fetch_sub(&state_shared.n_ready, 1);
  8726. while (atomic_load(&state_shared.n_ready) > 0) {
  8727. ggml_lock_lock (&state_shared.spin);
  8728. ggml_lock_unlock(&state_shared.spin);
  8729. }
  8730. atomic_store(&state_shared.has_work, true);
  8731. }
  8732. params.type = GGML_TASK_COMPUTE;
  8733. ggml_compute_forward(&params, node);
  8734. // wait for thread pool
  8735. if (node->n_tasks > 1) {
  8736. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8737. atomic_store(&state_shared.has_work, false);
  8738. }
  8739. while (atomic_load(&state_shared.has_work)) {
  8740. ggml_lock_lock (&state_shared.spin);
  8741. ggml_lock_unlock(&state_shared.spin);
  8742. }
  8743. atomic_fetch_sub(&state_shared.n_ready, 1);
  8744. while (atomic_load(&state_shared.n_ready) != 0) {
  8745. ggml_lock_lock (&state_shared.spin);
  8746. ggml_lock_unlock(&state_shared.spin);
  8747. }
  8748. }
  8749. // FINALIZE
  8750. if (node->n_tasks > 1) {
  8751. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8752. atomic_store(&state_shared.has_work, false);
  8753. }
  8754. while (atomic_load(&state_shared.has_work)) {
  8755. ggml_lock_lock (&state_shared.spin);
  8756. ggml_lock_unlock(&state_shared.spin);
  8757. }
  8758. // launch thread pool
  8759. for (int j = 0; j < n_threads - 1; j++) {
  8760. workers[j].params = (struct ggml_compute_params) {
  8761. .type = GGML_TASK_FINALIZE,
  8762. .ith = j + 1,
  8763. .nth = node->n_tasks,
  8764. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8765. .wdata = cgraph->work ? cgraph->work->data : NULL,
  8766. };
  8767. workers[j].node = node;
  8768. }
  8769. atomic_fetch_sub(&state_shared.n_ready, 1);
  8770. while (atomic_load(&state_shared.n_ready) > 0) {
  8771. ggml_lock_lock (&state_shared.spin);
  8772. ggml_lock_unlock(&state_shared.spin);
  8773. }
  8774. atomic_store(&state_shared.has_work, true);
  8775. }
  8776. params.type = GGML_TASK_FINALIZE;
  8777. ggml_compute_forward(&params, node);
  8778. // wait for thread pool
  8779. if (node->n_tasks > 1) {
  8780. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8781. atomic_store(&state_shared.has_work, false);
  8782. }
  8783. while (atomic_load(&state_shared.has_work)) {
  8784. ggml_lock_lock (&state_shared.spin);
  8785. ggml_lock_unlock(&state_shared.spin);
  8786. }
  8787. atomic_fetch_sub(&state_shared.n_ready, 1);
  8788. while (atomic_load(&state_shared.n_ready) != 0) {
  8789. ggml_lock_lock (&state_shared.spin);
  8790. ggml_lock_unlock(&state_shared.spin);
  8791. }
  8792. }
  8793. // performance stats (node)
  8794. {
  8795. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  8796. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  8797. node->perf_runs++;
  8798. node->perf_cycles += perf_cycles_cur;
  8799. node->perf_time_us += perf_time_us_cur;
  8800. }
  8801. }
  8802. // join thread pool
  8803. if (n_threads > 1) {
  8804. atomic_store(&state_shared.stop, true);
  8805. atomic_store(&state_shared.has_work, true);
  8806. for (int j = 0; j < n_threads - 1; j++) {
  8807. int rc = ggml_thread_join(workers[j].thrd, NULL);
  8808. GGML_ASSERT(rc == 0);
  8809. UNUSED(rc);
  8810. }
  8811. ggml_lock_destroy(&state_shared.spin);
  8812. }
  8813. // performance stats (graph)
  8814. {
  8815. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  8816. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  8817. cgraph->perf_runs++;
  8818. cgraph->perf_cycles += perf_cycles_cur;
  8819. cgraph->perf_time_us += perf_time_us_cur;
  8820. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  8821. __func__, cgraph->perf_runs,
  8822. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  8823. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  8824. (double) perf_time_us_cur / 1000.0,
  8825. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  8826. }
  8827. }
  8828. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  8829. for (int i = 0; i < cgraph->n_nodes; i++) {
  8830. struct ggml_tensor * grad = cgraph->grads[i];
  8831. if (grad) {
  8832. ggml_set_zero(grad);
  8833. }
  8834. }
  8835. }
  8836. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  8837. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  8838. GGML_PRINT("=== GRAPH ===\n");
  8839. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  8840. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  8841. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  8842. for (int i = 0; i < cgraph->n_nodes; i++) {
  8843. struct ggml_tensor * node = cgraph->nodes[i];
  8844. perf_total_per_op_us[node->op] += node->perf_time_us;
  8845. GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 ", %" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  8846. i,
  8847. node->ne[0], node->ne[1], node->ne[2],
  8848. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  8849. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  8850. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  8851. (double) node->perf_time_us / 1000.0,
  8852. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  8853. }
  8854. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  8855. for (int i = 0; i < cgraph->n_leafs; i++) {
  8856. struct ggml_tensor * node = cgraph->leafs[i];
  8857. GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 "] %8s\n",
  8858. i,
  8859. node->ne[0], node->ne[1],
  8860. GGML_OP_LABEL[node->op]);
  8861. }
  8862. for (int i = 0; i < GGML_OP_COUNT; i++) {
  8863. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  8864. }
  8865. GGML_PRINT("========================================\n");
  8866. }
  8867. // check if node is part of the graph
  8868. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  8869. if (cgraph == NULL) {
  8870. return true;
  8871. }
  8872. for (int i = 0; i < cgraph->n_nodes; i++) {
  8873. if (cgraph->nodes[i] == node) {
  8874. return true;
  8875. }
  8876. }
  8877. return false;
  8878. }
  8879. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  8880. for (int i = 0; i < cgraph->n_nodes; i++) {
  8881. struct ggml_tensor * parent = cgraph->nodes[i];
  8882. if (parent->grad == node) {
  8883. return parent;
  8884. }
  8885. }
  8886. return NULL;
  8887. }
  8888. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  8889. char color[16];
  8890. FILE * fp = fopen(filename, "w");
  8891. GGML_ASSERT(fp);
  8892. fprintf(fp, "digraph G {\n");
  8893. fprintf(fp, " newrank = true;\n");
  8894. fprintf(fp, " rankdir = LR;\n");
  8895. for (int i = 0; i < gb->n_nodes; i++) {
  8896. struct ggml_tensor * node = gb->nodes[i];
  8897. if (ggml_graph_get_parent(gb, node) != NULL) {
  8898. continue;
  8899. }
  8900. if (node->is_param) {
  8901. snprintf(color, sizeof(color), "yellow");
  8902. } else if (node->grad) {
  8903. if (ggml_graph_find(gf, node)) {
  8904. snprintf(color, sizeof(color), "green");
  8905. } else {
  8906. snprintf(color, sizeof(color), "lightblue");
  8907. }
  8908. } else {
  8909. snprintf(color, sizeof(color), "white");
  8910. }
  8911. fprintf(fp, " \"%p\" [ \
  8912. style = filled; fillcolor = %s; shape = record; \
  8913. label=\"%d [%" PRId64 ", %" PRId64 "] | <x>%s",
  8914. (void *) node, color,
  8915. i, node->ne[0], node->ne[1],
  8916. GGML_OP_SYMBOL[node->op]);
  8917. if (node->grad) {
  8918. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  8919. } else {
  8920. fprintf(fp, "\"; ]\n");
  8921. }
  8922. }
  8923. for (int i = 0; i < gb->n_leafs; i++) {
  8924. struct ggml_tensor * node = gb->leafs[i];
  8925. snprintf(color, sizeof(color), "pink");
  8926. if (ggml_nelements(node) == 1) {
  8927. fprintf(fp, " \"%p\" [ \
  8928. style = filled; fillcolor = %s; shape = record; \
  8929. label=\"<x>%.1e\"; ]\n",
  8930. (void *) node, color, (double)ggml_get_f32_1d(node, 0));
  8931. } else {
  8932. fprintf(fp, " \"%p\" [ \
  8933. style = filled; fillcolor = %s; shape = record; \
  8934. label=\"<x>CONST %d [%" PRId64 ", %" PRId64 "]\"; ]\n",
  8935. (void *) node, color,
  8936. i, node->ne[0], node->ne[1]);
  8937. }
  8938. }
  8939. for (int i = 0; i < gb->n_nodes; i++) {
  8940. struct ggml_tensor * node = gb->nodes[i];
  8941. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  8942. if (node->src0) {
  8943. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  8944. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  8945. parent0 ? (void *) parent0 : (void *) node->src0,
  8946. parent0 ? "g" : "x",
  8947. parent ? (void *) parent : (void *) node,
  8948. parent ? "g" : "x",
  8949. parent ? "empty" : "vee",
  8950. parent ? "dashed" : "solid");
  8951. }
  8952. if (node->src1) {
  8953. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  8954. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  8955. parent1 ? (void *) parent1 : (void *) node->src1,
  8956. parent1 ? "g" : "x",
  8957. parent ? (void *) parent : (void *) node,
  8958. parent ? "g" : "x",
  8959. parent ? "empty" : "vee",
  8960. parent ? "dashed" : "solid");
  8961. }
  8962. }
  8963. for (int i = 0; i < gb->n_leafs; i++) {
  8964. struct ggml_tensor * node = gb->leafs[i];
  8965. if (node->src0) {
  8966. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  8967. (void *) node->src0, "x",
  8968. (void *) node, "x");
  8969. }
  8970. if (node->src1) {
  8971. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  8972. (void *) node->src1, "x",
  8973. (void *) node, "x");
  8974. }
  8975. }
  8976. fprintf(fp, "}\n");
  8977. fclose(fp);
  8978. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  8979. }
  8980. ////////////////////////////////////////////////////////////////////////////////
  8981. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  8982. int i = 0;
  8983. for (int p = 0; p < np; ++p) {
  8984. const int64_t ne = ggml_nelements(ps[p]) ;
  8985. // TODO: add function to set tensor from array
  8986. for (int64_t j = 0; j < ne; ++j) {
  8987. ggml_set_f32_1d(ps[p], j, x[i++]);
  8988. }
  8989. }
  8990. }
  8991. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  8992. int i = 0;
  8993. for (int p = 0; p < np; ++p) {
  8994. const int64_t ne = ggml_nelements(ps[p]) ;
  8995. // TODO: add function to get all elements at once
  8996. for (int64_t j = 0; j < ne; ++j) {
  8997. x[i++] = ggml_get_f32_1d(ps[p], j);
  8998. }
  8999. }
  9000. }
  9001. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  9002. int i = 0;
  9003. for (int p = 0; p < np; ++p) {
  9004. const int64_t ne = ggml_nelements(ps[p]) ;
  9005. // TODO: add function to get all elements at once
  9006. for (int64_t j = 0; j < ne; ++j) {
  9007. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  9008. }
  9009. }
  9010. }
  9011. //
  9012. // ADAM
  9013. //
  9014. // ref: https://arxiv.org/pdf/1412.6980.pdf
  9015. //
  9016. static enum ggml_opt_result ggml_opt_adam(
  9017. struct ggml_context * ctx,
  9018. struct ggml_opt_params params,
  9019. struct ggml_tensor * f,
  9020. struct ggml_cgraph * gf,
  9021. struct ggml_cgraph * gb) {
  9022. GGML_ASSERT(ggml_is_scalar(f));
  9023. gf->n_threads = params.n_threads;
  9024. gb->n_threads = params.n_threads;
  9025. // these will store the parameters we want to optimize
  9026. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  9027. int np = 0;
  9028. int nx = 0;
  9029. for (int i = 0; i < gf->n_nodes; ++i) {
  9030. if (gf->nodes[i]->is_param) {
  9031. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  9032. GGML_ASSERT(np < GGML_MAX_PARAMS);
  9033. ps[np++] = gf->nodes[i];
  9034. nx += ggml_nelements(gf->nodes[i]);
  9035. }
  9036. }
  9037. // constants
  9038. const float alpha = params.adam.alpha;
  9039. const float beta1 = params.adam.beta1;
  9040. const float beta2 = params.adam.beta2;
  9041. const float eps = params.adam.eps;
  9042. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  9043. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  9044. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  9045. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  9046. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  9047. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  9048. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  9049. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  9050. // initialize
  9051. ggml_vec_set_f32(nx, m, 0.0f);
  9052. ggml_vec_set_f32(nx, v, 0.0f);
  9053. // update view
  9054. ggml_opt_get_params(np, ps, x);
  9055. // compute the function value
  9056. ggml_graph_reset (gf);
  9057. ggml_set_f32 (f->grad, 1.0f);
  9058. ggml_graph_compute(ctx, gb);
  9059. float fx_prev = ggml_get_f32_1d(f, 0);
  9060. if (pf) {
  9061. pf[0] = fx_prev;
  9062. }
  9063. int n_no_improvement = 0;
  9064. float fx_best = fx_prev;
  9065. // run the optimizer
  9066. for (int t = 0; t < params.adam.n_iter; ++t) {
  9067. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  9068. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  9069. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  9070. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  9071. for (int i = 0; i < np; ++i) {
  9072. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  9073. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  9074. }
  9075. const int64_t t_start_wall = ggml_time_us();
  9076. const int64_t t_start_cpu = ggml_cycles();
  9077. UNUSED(t_start_wall);
  9078. UNUSED(t_start_cpu);
  9079. {
  9080. // update the gradient
  9081. ggml_opt_get_grad(np, ps, g1);
  9082. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  9083. ggml_vec_scale_f32(nx, m, beta1);
  9084. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  9085. // g2 = g1^2
  9086. ggml_vec_sqr_f32 (nx, g2, g1);
  9087. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  9088. ggml_vec_scale_f32(nx, v, beta2);
  9089. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  9090. // m^hat = m_t / (1 - beta1^t)
  9091. // v^hat = v_t / (1 - beta2^t)
  9092. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  9093. ggml_vec_cpy_f32 (nx, mh, m);
  9094. ggml_vec_cpy_f32 (nx, vh, v);
  9095. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  9096. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  9097. ggml_vec_sqrt_f32 (nx, vh, vh);
  9098. ggml_vec_acc1_f32 (nx, vh, eps);
  9099. ggml_vec_div_f32 (nx, mh, mh, vh);
  9100. ggml_vec_sub_f32 (nx, x, x, mh);
  9101. // update the parameters
  9102. ggml_opt_set_params(np, ps, x);
  9103. }
  9104. ggml_graph_reset (gf);
  9105. ggml_set_f32 (f->grad, 1.0f);
  9106. ggml_graph_compute(ctx, gb);
  9107. const float fx = ggml_get_f32_1d(f, 0);
  9108. // check convergence
  9109. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  9110. GGML_PRINT_DEBUG("converged\n");
  9111. return GGML_OPT_OK;
  9112. }
  9113. // delta-based convergence test
  9114. if (pf != NULL) {
  9115. // need at least params.past iterations to start checking for convergence
  9116. if (params.past <= t) {
  9117. const float rate = (pf[t%params.past] - fx)/fx;
  9118. if (fabsf(rate) < params.delta) {
  9119. return GGML_OPT_OK;
  9120. }
  9121. }
  9122. pf[t%params.past] = fx;
  9123. }
  9124. // check for improvement
  9125. if (params.max_no_improvement > 0) {
  9126. if (fx_best > fx) {
  9127. fx_best = fx;
  9128. n_no_improvement = 0;
  9129. } else {
  9130. ++n_no_improvement;
  9131. if (n_no_improvement >= params.max_no_improvement) {
  9132. return GGML_OPT_OK;
  9133. }
  9134. }
  9135. }
  9136. fx_prev = fx;
  9137. {
  9138. const int64_t t_end_cpu = ggml_cycles();
  9139. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  9140. UNUSED(t_end_cpu);
  9141. const int64_t t_end_wall = ggml_time_us();
  9142. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  9143. UNUSED(t_end_wall);
  9144. }
  9145. }
  9146. return GGML_OPT_DID_NOT_CONVERGE;
  9147. }
  9148. //
  9149. // L-BFGS
  9150. //
  9151. // the L-BFGS implementation below is based on the following implementation:
  9152. //
  9153. // https://github.com/chokkan/liblbfgs
  9154. //
  9155. struct ggml_lbfgs_iteration_data {
  9156. float alpha;
  9157. float ys;
  9158. float * s;
  9159. float * y;
  9160. };
  9161. static enum ggml_opt_result linesearch_backtracking(
  9162. struct ggml_context * ctx,
  9163. const struct ggml_opt_params * params,
  9164. int nx,
  9165. float * x,
  9166. float * fx,
  9167. float * g,
  9168. float * d,
  9169. float * step,
  9170. const float * xp,
  9171. struct ggml_tensor * f,
  9172. struct ggml_cgraph * gf,
  9173. struct ggml_cgraph * gb,
  9174. const int np,
  9175. struct ggml_tensor * ps[]) {
  9176. int count = 0;
  9177. float width = 0.0f;
  9178. float dg = 0.0f;
  9179. float finit = 0.0f;
  9180. float dginit = 0.0f;
  9181. float dgtest = 0.0f;
  9182. const float dec = 0.5f;
  9183. const float inc = 2.1f;
  9184. if (*step <= 0.f) {
  9185. return GGML_LINESEARCH_INVALID_PARAMETERS;
  9186. }
  9187. // compute the initial gradient in the search direction
  9188. ggml_vec_dot_f32(nx, &dginit, g, d);
  9189. // make sure that d points to a descent direction
  9190. if (0 < dginit) {
  9191. return GGML_LINESEARCH_FAIL;
  9192. }
  9193. // initialize local variables
  9194. finit = *fx;
  9195. dgtest = params->lbfgs.ftol*dginit;
  9196. while (true) {
  9197. ggml_vec_cpy_f32(nx, x, xp);
  9198. ggml_vec_mad_f32(nx, x, d, *step);
  9199. // evaluate the function and gradient values
  9200. {
  9201. ggml_opt_set_params(np, ps, x);
  9202. ggml_graph_reset (gf);
  9203. ggml_set_f32 (f->grad, 1.0f);
  9204. ggml_graph_compute(ctx, gb);
  9205. ggml_opt_get_grad(np, ps, g);
  9206. *fx = ggml_get_f32_1d(f, 0);
  9207. }
  9208. ++count;
  9209. if (*fx > finit + (*step)*dgtest) {
  9210. width = dec;
  9211. } else {
  9212. // Armijo condition is satisfied
  9213. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  9214. return count;
  9215. }
  9216. ggml_vec_dot_f32(nx, &dg, g, d);
  9217. // check the Wolfe condition
  9218. if (dg < params->lbfgs.wolfe * dginit) {
  9219. width = inc;
  9220. } else {
  9221. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  9222. // regular Wolfe conditions
  9223. return count;
  9224. }
  9225. if(dg > -params->lbfgs.wolfe*dginit) {
  9226. width = dec;
  9227. } else {
  9228. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  9229. return count;
  9230. }
  9231. return count;
  9232. }
  9233. }
  9234. if (*step < params->lbfgs.min_step) {
  9235. return GGML_LINESEARCH_MINIMUM_STEP;
  9236. }
  9237. if (*step > params->lbfgs.max_step) {
  9238. return GGML_LINESEARCH_MAXIMUM_STEP;
  9239. }
  9240. if (params->lbfgs.max_linesearch <= count) {
  9241. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  9242. }
  9243. (*step) *= width;
  9244. }
  9245. return GGML_LINESEARCH_FAIL;
  9246. }
  9247. static enum ggml_opt_result ggml_opt_lbfgs(
  9248. struct ggml_context * ctx,
  9249. struct ggml_opt_params params,
  9250. struct ggml_tensor * f,
  9251. struct ggml_cgraph * gf,
  9252. struct ggml_cgraph * gb) {
  9253. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  9254. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  9255. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  9256. return GGML_OPT_INVALID_WOLFE;
  9257. }
  9258. }
  9259. gf->n_threads = params.n_threads;
  9260. gb->n_threads = params.n_threads;
  9261. const int m = params.lbfgs.m;
  9262. // these will store the parameters we want to optimize
  9263. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  9264. int np = 0;
  9265. int nx = 0;
  9266. for (int i = 0; i < gf->n_nodes; ++i) {
  9267. if (gf->nodes[i]->is_param) {
  9268. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  9269. GGML_ASSERT(np < GGML_MAX_PARAMS);
  9270. ps[np++] = gf->nodes[i];
  9271. nx += ggml_nelements(gf->nodes[i]);
  9272. }
  9273. }
  9274. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  9275. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  9276. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  9277. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  9278. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  9279. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  9280. float fx = 0.0f; // cost function value
  9281. float xnorm = 0.0f; // ||x||
  9282. float gnorm = 0.0f; // ||g||
  9283. float step = 0.0f;
  9284. // initialize x from the graph nodes
  9285. ggml_opt_get_params(np, ps, x);
  9286. // the L-BFGS memory
  9287. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  9288. for (int i = 0; i < m; ++i) {
  9289. lm[i].alpha = 0.0f;
  9290. lm[i].ys = 0.0f;
  9291. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  9292. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  9293. }
  9294. // evaluate the function value and its gradient
  9295. {
  9296. ggml_opt_set_params(np, ps, x);
  9297. ggml_graph_reset (gf);
  9298. ggml_set_f32 (f->grad, 1.0f);
  9299. ggml_graph_compute(ctx, gb);
  9300. ggml_opt_get_grad(np, ps, g);
  9301. fx = ggml_get_f32_1d(f, 0);
  9302. }
  9303. if (pf) {
  9304. pf[0] = fx;
  9305. }
  9306. float fx_best = fx;
  9307. // search direction = -gradient
  9308. ggml_vec_neg_f32(nx, d, g);
  9309. // ||x||, ||g||
  9310. ggml_vec_norm_f32(nx, &xnorm, x);
  9311. ggml_vec_norm_f32(nx, &gnorm, g);
  9312. if (xnorm < 1.0f) {
  9313. xnorm = 1.0f;
  9314. }
  9315. // already optimized
  9316. if (gnorm/xnorm <= params.lbfgs.eps) {
  9317. return GGML_OPT_OK;
  9318. }
  9319. // initial step
  9320. ggml_vec_norm_inv_f32(nx, &step, d);
  9321. int j = 0;
  9322. int k = 1;
  9323. int ls = 0;
  9324. int end = 0;
  9325. int bound = 0;
  9326. int n_no_improvement = 0;
  9327. float ys = 0.0f;
  9328. float yy = 0.0f;
  9329. float beta = 0.0f;
  9330. while (true) {
  9331. // store the current position and gradient vectors
  9332. ggml_vec_cpy_f32(nx, xp, x);
  9333. ggml_vec_cpy_f32(nx, gp, g);
  9334. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  9335. if (ls < 0) {
  9336. // linesearch failed - go back to the previous point and return
  9337. ggml_vec_cpy_f32(nx, x, xp);
  9338. ggml_vec_cpy_f32(nx, g, gp);
  9339. return ls;
  9340. }
  9341. ggml_vec_norm_f32(nx, &xnorm, x);
  9342. ggml_vec_norm_f32(nx, &gnorm, g);
  9343. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  9344. if (xnorm < 1.0f) {
  9345. xnorm = 1.0f;
  9346. }
  9347. if (gnorm/xnorm <= params.lbfgs.eps) {
  9348. // converged
  9349. return GGML_OPT_OK;
  9350. }
  9351. // delta-based convergence test
  9352. if (pf != NULL) {
  9353. // need at least params.past iterations to start checking for convergence
  9354. if (params.past <= k) {
  9355. const float rate = (pf[k%params.past] - fx)/fx;
  9356. if (fabsf(rate) < params.delta) {
  9357. return GGML_OPT_OK;
  9358. }
  9359. }
  9360. pf[k%params.past] = fx;
  9361. }
  9362. // check for improvement
  9363. if (params.max_no_improvement > 0) {
  9364. if (fx < fx_best) {
  9365. fx_best = fx;
  9366. n_no_improvement = 0;
  9367. } else {
  9368. n_no_improvement++;
  9369. if (n_no_improvement >= params.max_no_improvement) {
  9370. return GGML_OPT_OK;
  9371. }
  9372. }
  9373. }
  9374. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  9375. // reached the maximum number of iterations
  9376. return GGML_OPT_DID_NOT_CONVERGE;
  9377. }
  9378. // update vectors s and y:
  9379. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  9380. // y_{k+1} = g_{k+1} - g_{k}.
  9381. //
  9382. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  9383. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  9384. // compute scalars ys and yy:
  9385. // ys = y^t \cdot s -> 1 / \rho.
  9386. // yy = y^t \cdot y.
  9387. //
  9388. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  9389. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  9390. lm[end].ys = ys;
  9391. // find new search direction
  9392. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  9393. bound = (m <= k) ? m : k;
  9394. k++;
  9395. end = (end + 1)%m;
  9396. // initialize search direction with -g
  9397. ggml_vec_neg_f32(nx, d, g);
  9398. j = end;
  9399. for (int i = 0; i < bound; ++i) {
  9400. j = (j + m - 1) % m;
  9401. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  9402. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  9403. lm[j].alpha /= lm[j].ys;
  9404. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  9405. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  9406. }
  9407. ggml_vec_scale_f32(nx, d, ys/yy);
  9408. for (int i = 0; i < bound; ++i) {
  9409. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  9410. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  9411. beta /= lm[j].ys;
  9412. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  9413. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  9414. j = (j + 1)%m;
  9415. }
  9416. step = 1.0;
  9417. }
  9418. return GGML_OPT_DID_NOT_CONVERGE;
  9419. }
  9420. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  9421. struct ggml_opt_params result;
  9422. switch (type) {
  9423. case GGML_OPT_ADAM:
  9424. {
  9425. result = (struct ggml_opt_params) {
  9426. .type = GGML_OPT_ADAM,
  9427. .n_threads = 1,
  9428. .past = 0,
  9429. .delta = 1e-5f,
  9430. .max_no_improvement = 100,
  9431. .print_forward_graph = true,
  9432. .print_backward_graph = true,
  9433. .adam = {
  9434. .n_iter = 10000,
  9435. .alpha = 0.001f,
  9436. .beta1 = 0.9f,
  9437. .beta2 = 0.999f,
  9438. .eps = 1e-8f,
  9439. .eps_f = 1e-5f,
  9440. .eps_g = 1e-3f,
  9441. },
  9442. };
  9443. } break;
  9444. case GGML_OPT_LBFGS:
  9445. {
  9446. result = (struct ggml_opt_params) {
  9447. .type = GGML_OPT_LBFGS,
  9448. .n_threads = 1,
  9449. .past = 0,
  9450. .delta = 1e-5f,
  9451. .max_no_improvement = 0,
  9452. .print_forward_graph = true,
  9453. .print_backward_graph = true,
  9454. .lbfgs = {
  9455. .m = 6,
  9456. .n_iter = 100,
  9457. .max_linesearch = 20,
  9458. .eps = 1e-5f,
  9459. .ftol = 1e-4f,
  9460. .wolfe = 0.9f,
  9461. .min_step = 1e-20f,
  9462. .max_step = 1e+20f,
  9463. .linesearch = GGML_LINESEARCH_DEFAULT,
  9464. },
  9465. };
  9466. } break;
  9467. }
  9468. return result;
  9469. }
  9470. enum ggml_opt_result ggml_opt(
  9471. struct ggml_context * ctx,
  9472. struct ggml_opt_params params,
  9473. struct ggml_tensor * f) {
  9474. bool free_ctx = false;
  9475. if (ctx == NULL) {
  9476. struct ggml_init_params params_ctx = {
  9477. .mem_size = 16*1024*1024,
  9478. .mem_buffer = NULL,
  9479. .no_alloc = false,
  9480. };
  9481. ctx = ggml_init(params_ctx);
  9482. if (ctx == NULL) {
  9483. return GGML_OPT_NO_CONTEXT;
  9484. }
  9485. free_ctx = true;
  9486. }
  9487. enum ggml_opt_result result = GGML_OPT_OK;
  9488. // build forward + backward compute graphs
  9489. struct ggml_cgraph gf = ggml_build_forward (f);
  9490. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  9491. switch (params.type) {
  9492. case GGML_OPT_ADAM:
  9493. {
  9494. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  9495. } break;
  9496. case GGML_OPT_LBFGS:
  9497. {
  9498. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  9499. } break;
  9500. }
  9501. if (params.print_forward_graph) {
  9502. ggml_graph_print (&gf);
  9503. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  9504. }
  9505. if (params.print_backward_graph) {
  9506. ggml_graph_print (&gb);
  9507. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  9508. }
  9509. if (free_ctx) {
  9510. ggml_free(ctx);
  9511. }
  9512. return result;
  9513. }
  9514. ////////////////////////////////////////////////////////////////////////////////
  9515. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  9516. assert(k % QK4_0 == 0);
  9517. const int nb = k / QK4_0;
  9518. for (int j = 0; j < n; j += k) {
  9519. block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK4_0;
  9520. quantize_row_q4_0_reference(src + j, y, k);
  9521. for (int i = 0; i < nb; i++) {
  9522. for (int l = 0; l < QK4_0; l += 2) {
  9523. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  9524. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  9525. hist[vi0]++;
  9526. hist[vi1]++;
  9527. }
  9528. }
  9529. }
  9530. return (n/QK4_0*sizeof(block_q4_0));
  9531. }
  9532. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  9533. assert(k % QK4_1 == 0);
  9534. const int nb = k / QK4_1;
  9535. for (int j = 0; j < n; j += k) {
  9536. block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK4_1;
  9537. quantize_row_q4_1_reference(src + j, y, k);
  9538. for (int i = 0; i < nb; i++) {
  9539. for (int l = 0; l < QK4_1; l += 2) {
  9540. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  9541. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  9542. hist[vi0]++;
  9543. hist[vi1]++;
  9544. }
  9545. }
  9546. }
  9547. return (n/QK4_1*sizeof(block_q4_1));
  9548. }
  9549. ////////////////////////////////////////////////////////////////////////////////
  9550. int ggml_cpu_has_avx(void) {
  9551. #if defined(__AVX__)
  9552. return 1;
  9553. #else
  9554. return 0;
  9555. #endif
  9556. }
  9557. int ggml_cpu_has_avx2(void) {
  9558. #if defined(__AVX2__)
  9559. return 1;
  9560. #else
  9561. return 0;
  9562. #endif
  9563. }
  9564. int ggml_cpu_has_avx512(void) {
  9565. #if defined(__AVX512F__)
  9566. return 1;
  9567. #else
  9568. return 0;
  9569. #endif
  9570. }
  9571. int ggml_cpu_has_avx512_vbmi(void) {
  9572. #if defined(__AVX512VBMI__)
  9573. return 1;
  9574. #else
  9575. return 0;
  9576. #endif
  9577. }
  9578. int ggml_cpu_has_avx512_vnni(void) {
  9579. #if defined(__AVX512VNNI__)
  9580. return 1;
  9581. #else
  9582. return 0;
  9583. #endif
  9584. }
  9585. int ggml_cpu_has_fma(void) {
  9586. #if defined(__FMA__)
  9587. return 1;
  9588. #else
  9589. return 0;
  9590. #endif
  9591. }
  9592. int ggml_cpu_has_neon(void) {
  9593. #if defined(__ARM_NEON)
  9594. return 1;
  9595. #else
  9596. return 0;
  9597. #endif
  9598. }
  9599. int ggml_cpu_has_arm_fma(void) {
  9600. #if defined(__ARM_FEATURE_FMA)
  9601. return 1;
  9602. #else
  9603. return 0;
  9604. #endif
  9605. }
  9606. int ggml_cpu_has_f16c(void) {
  9607. #if defined(__F16C__)
  9608. return 1;
  9609. #else
  9610. return 0;
  9611. #endif
  9612. }
  9613. int ggml_cpu_has_fp16_va(void) {
  9614. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  9615. return 1;
  9616. #else
  9617. return 0;
  9618. #endif
  9619. }
  9620. int ggml_cpu_has_wasm_simd(void) {
  9621. #if defined(__wasm_simd128__)
  9622. return 1;
  9623. #else
  9624. return 0;
  9625. #endif
  9626. }
  9627. int ggml_cpu_has_blas(void) {
  9628. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9629. return 1;
  9630. #else
  9631. return 0;
  9632. #endif
  9633. }
  9634. int ggml_cpu_has_sse3(void) {
  9635. #if defined(__SSE3__)
  9636. return 1;
  9637. #else
  9638. return 0;
  9639. #endif
  9640. }
  9641. int ggml_cpu_has_vsx(void) {
  9642. #if defined(__POWER9_VECTOR__)
  9643. return 1;
  9644. #else
  9645. return 0;
  9646. #endif
  9647. }
  9648. ////////////////////////////////////////////////////////////////////////////////