convert_hf_to_gguf.py 497 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. from transformers import AutoConfig
  18. import math
  19. import numpy as np
  20. import torch
  21. if TYPE_CHECKING:
  22. from torch import Tensor
  23. if 'NO_LOCAL_GGUF' not in os.environ:
  24. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  25. import gguf
  26. from gguf.vocab import MistralTokenizerType, MistralVocab
  27. try:
  28. from mistral_common.tokens.tokenizers.base import TokenizerVersion # pyright: ignore[reportMissingImports]
  29. from mistral_common.tokens.tokenizers.multimodal import DATASET_MEAN as _MISTRAL_COMMON_DATASET_MEAN, DATASET_STD as _MISTRAL_COMMON_DATASET_STD # pyright: ignore[reportMissingImports]
  30. from mistral_common.tokens.tokenizers.tekken import Tekkenizer # pyright: ignore[reportMissingImports]
  31. from mistral_common.tokens.tokenizers.sentencepiece import ( # pyright: ignore[reportMissingImports]
  32. SentencePieceTokenizer,
  33. )
  34. _mistral_common_installed = True
  35. _mistral_import_error_msg = ""
  36. except ImportError:
  37. _MISTRAL_COMMON_DATASET_MEAN = (0.48145466, 0.4578275, 0.40821073)
  38. _MISTRAL_COMMON_DATASET_STD = (0.26862954, 0.26130258, 0.27577711)
  39. _mistral_common_installed = False
  40. TokenizerVersion = None
  41. Tekkenizer = None
  42. SentencePieceTokenizer = None
  43. _mistral_import_error_msg = (
  44. "Mistral format requires `mistral-common` to be installed. Please run "
  45. "`pip install mistral-common[image,audio]` to install it."
  46. )
  47. logger = logging.getLogger("hf-to-gguf")
  48. ###### MODEL DEFINITIONS ######
  49. class SentencePieceTokenTypes(IntEnum):
  50. NORMAL = 1
  51. UNKNOWN = 2
  52. CONTROL = 3
  53. USER_DEFINED = 4
  54. UNUSED = 5
  55. BYTE = 6
  56. class ModelType(IntEnum):
  57. TEXT = 1
  58. MMPROJ = 2
  59. AnyModel = TypeVar("AnyModel", bound="type[ModelBase]")
  60. class ModelBase:
  61. _model_classes: dict[ModelType, dict[str, type[ModelBase]]] = {
  62. ModelType.TEXT: {},
  63. ModelType.MMPROJ: {},
  64. }
  65. dir_model: Path
  66. ftype: gguf.LlamaFileType
  67. fname_out: Path
  68. is_big_endian: bool
  69. endianess: gguf.GGUFEndian
  70. use_temp_file: bool
  71. lazy: bool
  72. dry_run: bool
  73. hparams: dict[str, Any]
  74. model_tensors: dict[str, Callable[[], Tensor]]
  75. gguf_writer: gguf.GGUFWriter
  76. model_name: str | None
  77. metadata_override: Path | None
  78. dir_model_card: Path
  79. remote_hf_model_id: str | None
  80. # subclasses should define this!
  81. model_arch: gguf.MODEL_ARCH
  82. # subclasses should initialize this!
  83. block_count: int
  84. tensor_map: gguf.TensorNameMap
  85. # Mistral format specifics
  86. is_mistral_format: bool = False
  87. disable_mistral_community_chat_template: bool = False
  88. sentence_transformers_dense_modules: bool = False
  89. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, *, is_big_endian: bool = False,
  90. use_temp_file: bool = False, eager: bool = False,
  91. metadata_override: Path | None = None, model_name: str | None = None,
  92. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  93. small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None,
  94. disable_mistral_community_chat_template: bool = False,
  95. sentence_transformers_dense_modules: bool = False):
  96. if type(self) is ModelBase or \
  97. type(self) is TextModel or \
  98. type(self) is MmprojModel:
  99. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  100. if self.is_mistral_format and not _mistral_common_installed:
  101. raise ImportError(_mistral_import_error_msg)
  102. self.dir_model = dir_model
  103. self.ftype = ftype
  104. self.fname_out = fname_out
  105. self.is_big_endian = is_big_endian
  106. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  107. self.use_temp_file = use_temp_file
  108. self.lazy = not eager or (remote_hf_model_id is not None)
  109. self.dry_run = dry_run
  110. self.remote_hf_model_id = remote_hf_model_id
  111. self.sentence_transformers_dense_modules = sentence_transformers_dense_modules
  112. self.hparams = ModelBase.load_hparams(self.dir_model, self.is_mistral_format) if hparams is None else hparams
  113. self.model_tensors = self.index_tensors(remote_hf_model_id=remote_hf_model_id)
  114. self.metadata_override = metadata_override
  115. self.model_name = model_name
  116. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  117. # Apply heuristics to figure out typical tensor encoding based on first tensor's dtype
  118. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  119. if self.ftype == gguf.LlamaFileType.GUESSED:
  120. for _, tensor in self.get_tensors():
  121. if tensor.dim() < 2:
  122. continue
  123. if tensor.dtype == torch.bfloat16:
  124. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  125. logger.info("heuristics detected bfloat16 tensor dtype, setting --outtype bf16")
  126. break
  127. elif tensor.dtype == torch.float16:
  128. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  129. logger.info("heuristics detected float16 tensor dtype, setting --outtype f16")
  130. break
  131. else:
  132. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  133. logger.info("heuristics unable to detect tensor dtype, defaulting to --outtype f16")
  134. self.dequant_model()
  135. # Configure GGUF Writer
  136. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  137. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  138. # Mistral specific
  139. self.disable_mistral_community_chat_template = disable_mistral_community_chat_template
  140. @classmethod
  141. def add_prefix_to_filename(cls, path: Path, prefix: str) -> Path:
  142. stem, suffix = path.stem, path.suffix
  143. new_name = f"{prefix}{stem}{suffix}"
  144. return path.with_name(new_name)
  145. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  146. key = next((k for k in keys if k in self.hparams), None)
  147. if key is not None:
  148. return self.hparams[key]
  149. if optional:
  150. return None
  151. raise KeyError(f"could not find any of: {keys}")
  152. def index_tensors(self, remote_hf_model_id: str | None = None) -> dict[str, Callable[[], Tensor]]:
  153. tensors: dict[str, Callable[[], Tensor]] = {}
  154. if remote_hf_model_id is not None:
  155. is_safetensors = True
  156. logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
  157. remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
  158. for name, remote_tensor in remote_tensors.items():
  159. tensors[name] = lambda r=remote_tensor: LazyTorchTensor.from_remote_tensor(r)
  160. return tensors
  161. prefix = "model" if not self.is_mistral_format else "consolidated"
  162. part_names: list[str] = ModelBase.get_model_part_names(self.dir_model, prefix, ".safetensors")
  163. is_safetensors: bool = len(part_names) > 0
  164. if not is_safetensors:
  165. part_names = ModelBase.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  166. tensor_names_from_index: set[str] = set()
  167. if not self.is_mistral_format:
  168. index_name = "model.safetensors" if is_safetensors else "pytorch_model.bin"
  169. index_name += ".index.json"
  170. index_file = self.dir_model / index_name
  171. if index_file.is_file():
  172. logger.info(f"gguf: loading model weight map from '{index_name}'")
  173. with open(index_file, "r", encoding="utf-8") as f:
  174. index: dict[str, Any] = json.load(f)
  175. weight_map = index.get("weight_map")
  176. if weight_map is None or not isinstance(weight_map, dict):
  177. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  178. tensor_names_from_index.update(weight_map.keys())
  179. part_dict: dict[str, None] = dict.fromkeys(weight_map.values(), None)
  180. part_names = sorted(part_dict.keys())
  181. else:
  182. weight_map = {}
  183. else:
  184. weight_map = {}
  185. for part_name in part_names:
  186. logger.info(f"gguf: indexing model part '{part_name}'")
  187. ctx: ContextManager[Any]
  188. if is_safetensors:
  189. ctx = cast(ContextManager[Any], gguf.utility.SafetensorsLocal(self.dir_model / part_name))
  190. else:
  191. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  192. with ctx as model_part:
  193. assert model_part is not None
  194. for name in model_part.keys():
  195. if is_safetensors:
  196. data: gguf.utility.LocalTensor = model_part[name]
  197. if self.lazy:
  198. data_gen = lambda data=data: LazyTorchTensor.from_local_tensor(data) # noqa: E731
  199. else:
  200. dtype = LazyTorchTensor._dtype_str_map[data.dtype]
  201. data_gen = lambda data=data, dtype=dtype: torch.from_numpy(data.mmap_bytes()).view(dtype).reshape(data.shape) # noqa: E731
  202. else:
  203. data_torch: Tensor = model_part[name]
  204. if self.lazy:
  205. data_gen = lambda data=data_torch: LazyTorchTensor.from_eager(data) # noqa: E731
  206. else:
  207. data_gen = lambda data=data_torch: data # noqa: E731
  208. tensors[name] = data_gen
  209. # verify tensor name presence and identify potentially missing files
  210. if len(tensor_names_from_index) > 0:
  211. tensor_names_from_parts = set(tensors.keys())
  212. if len(tensor_names_from_parts.symmetric_difference(tensor_names_from_index)) > 0:
  213. missing = sorted(tensor_names_from_index.difference(tensor_names_from_parts))
  214. extra = sorted(tensor_names_from_parts.difference(tensor_names_from_index))
  215. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  216. if len(extra) == 0 and len(missing_files) > 0:
  217. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  218. f"Missing tensors: {missing}")
  219. else:
  220. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  221. f"Missing tensors: {missing}\n"
  222. f"Extra tensors: {extra}")
  223. return tensors
  224. def dequant_model(self):
  225. tensors_to_remove: list[str] = []
  226. new_tensors: dict[str, Callable[[], Tensor]] = {}
  227. if (quant_config := self.hparams.get("quantization_config")) and isinstance(quant_config, dict):
  228. quant_method = quant_config.get("quant_method")
  229. def dequant_bitnet(weight: Tensor, scale: Tensor) -> Tensor:
  230. weight = weight.view(torch.uint8)
  231. orig_shape = weight.shape
  232. shift = torch.tensor([0, 2, 4, 6], dtype=torch.uint8).reshape((4, *(1 for _ in range(len(orig_shape)))))
  233. data = weight.unsqueeze(0).expand((4, *orig_shape)) >> shift
  234. data = data & 3
  235. data = (data.float() - 1).reshape((orig_shape[0] * 4, *orig_shape[1:]))
  236. # The scale is inverted
  237. return data / scale.float()
  238. def dequant_simple(weight: Tensor, scale: Tensor, block_size: Sequence[int] | None = None) -> Tensor:
  239. scale = scale.float()
  240. if block_size is not None:
  241. for i, size in enumerate(block_size):
  242. scale = scale.repeat_interleave(size, i)
  243. # unpad the scale (e.g. when the tensor size isn't a multiple of the block size)
  244. scale = scale[tuple(slice(0, size) for size in weight.shape)]
  245. return weight.float() * scale
  246. # ref: https://github.com/ModelCloud/GPTQModel/blob/037c5c0f6c9e33c500d975b038d02e7ca437546d/gptqmodel/nn_modules/qlinear/__init__.py#L437-L476
  247. def dequant_gptq(g_idx: Tensor, qweight: Tensor, qzeros: Tensor, scales: Tensor) -> Tensor:
  248. bits = quant_config["bits"]
  249. assert bits in (2, 3, 4, 8)
  250. assert qweight.dtype == qzeros.dtype
  251. maxq = (2 ** bits) - 1
  252. weight = None
  253. zeros = None
  254. pack_dtype_bits = qweight.dtype.itemsize * 8
  255. if bits in [2, 4, 8]:
  256. pack_factor = pack_dtype_bits // bits
  257. wf = torch.tensor(list(range(0, pack_dtype_bits, bits)), dtype=torch.int32).unsqueeze(0)
  258. if self.lazy:
  259. wf = LazyTorchTensor.from_eager(wf)
  260. zeros = torch.bitwise_right_shift(
  261. qzeros.unsqueeze(2).expand(-1, -1, pack_factor),
  262. wf.unsqueeze(0)
  263. ).to(torch.int16 if bits == 8 else torch.int8)
  264. zeros = torch.bitwise_and(zeros, maxq).reshape(scales.shape)
  265. weight = torch.bitwise_and(
  266. torch.bitwise_right_shift(
  267. qweight.unsqueeze(1).expand(-1, pack_factor, -1),
  268. wf.unsqueeze(-1)
  269. ).to(torch.int16 if bits == 8 else torch.int8),
  270. maxq
  271. )
  272. elif bits == 3:
  273. raise NotImplementedError("3-bit gptq dequantization is not yet implemented")
  274. assert weight is not None
  275. assert zeros is not None
  276. weight = weight.reshape(weight.shape[0] * weight.shape[1], weight.shape[2])
  277. # gptq_v2 doesn't need to offset zeros
  278. if quant_config.get("checkpoint_format", "gptq") == "gptq":
  279. zeros += 1
  280. return (scales[g_idx].float() * (weight - zeros[g_idx]).float()).T
  281. def dequant_packed(w: Tensor, scale: Tensor, shape_tensor: Tensor, zero_point: Tensor | None, num_bits: int, group_size: int):
  282. assert w.dtype == torch.int32
  283. shape = tuple(shape_tensor.tolist())
  284. assert len(shape) == 2
  285. mask = (1 << num_bits) - 1
  286. shifts = torch.arange(0, 32 - (num_bits - 1), num_bits, dtype=torch.int32)
  287. if self.lazy:
  288. shifts = LazyTorchTensor.from_eager(shifts)
  289. if zero_point is None:
  290. offset = 1 << (num_bits - 1)
  291. else:
  292. assert len(zero_point.shape) == 2
  293. offset = (zero_point.unsqueeze(1) >> shifts.reshape(1, -1, 1)) & mask
  294. offset = offset.reshape(-1, zero_point.shape[1])
  295. # trim padding, and prepare for broadcast
  296. # NOTE: the zero-point is packed along dim 0
  297. offset = offset[:shape[0], :].unsqueeze(-1)
  298. # extract values
  299. # NOTE: the weights are packed along dim 1
  300. unpacked = (w.unsqueeze(-1) >> shifts.reshape(1, 1, -1)) & mask
  301. unpacked = unpacked.reshape(shape[0], -1)
  302. # trim padding
  303. unpacked = unpacked[:, :shape[1]]
  304. # prepare for broadcast of the scale
  305. unpacked = unpacked.reshape(shape[0], (unpacked.shape[-1] + group_size - 1) // group_size, group_size)
  306. unpacked = unpacked - offset
  307. return (unpacked * scale.unsqueeze(-1).float()).reshape(shape)
  308. if quant_method == "bitnet":
  309. for name in self.model_tensors.keys():
  310. if name.endswith(".weight_scale"):
  311. weight_name = name.removesuffix("_scale")
  312. w = self.model_tensors[weight_name]
  313. s = self.model_tensors[name]
  314. self.model_tensors[weight_name] = lambda w=w, s=s: dequant_bitnet(w(), s())
  315. tensors_to_remove.append(name)
  316. elif quant_method == "fp8":
  317. block_size = quant_config.get("weight_block_size")
  318. for name in self.model_tensors.keys():
  319. if name.endswith(".weight_scale_inv"):
  320. weight_name = name.removesuffix("_scale_inv")
  321. w = self.model_tensors[weight_name]
  322. s = self.model_tensors[name]
  323. self.model_tensors[weight_name] = lambda w=w, s=s, bs=block_size: dequant_simple(w(), s(), bs)
  324. tensors_to_remove.append(name)
  325. if name.endswith(".activation_scale"): # unused
  326. tensors_to_remove.append(name)
  327. # mistral format
  328. if name.endswith(".qscale_weight"):
  329. weight_name = name.removesuffix("qscale_weight") + "weight"
  330. w = self.model_tensors[weight_name]
  331. s = self.model_tensors[name]
  332. self.model_tensors[weight_name] = lambda w=w, s=s, bs=block_size: dequant_simple(w(), s(), bs)
  333. tensors_to_remove.append(name)
  334. if name.endswith(".qscale_act"):
  335. tensors_to_remove.append(name)
  336. elif quant_method == "gptq":
  337. for name in self.model_tensors.keys():
  338. if name.endswith(".qweight"):
  339. base_name = name.removesuffix(".qweight")
  340. g_idx = self.model_tensors[base_name + ".g_idx"]
  341. qweight = self.model_tensors[base_name + ".qweight"]
  342. qzeros = self.model_tensors[base_name + ".qzeros"]
  343. scales = self.model_tensors[base_name + ".scales"]
  344. new_tensors[base_name + ".weight"] = (
  345. lambda g=g_idx, z=qzeros, w=qweight, s=scales: dequant_gptq(
  346. g(), w(), z(), s()
  347. )
  348. )
  349. tensors_to_remove += [
  350. base_name + n
  351. for n in (
  352. ".g_idx",
  353. ".qzeros",
  354. ".qweight",
  355. ".scales",
  356. )
  357. ]
  358. elif quant_method == "compressed-tensors":
  359. quant_format = quant_config["format"]
  360. groups = quant_config["config_groups"]
  361. if len(groups) > 1:
  362. raise NotImplementedError("Can't handle multiple config groups for compressed-tensors yet")
  363. weight_config = tuple(groups.values())[0]["weights"]
  364. if quant_format == "float-quantized" or quant_format == "int-quantized" or quant_format == "naive-quantized":
  365. block_size = weight_config.get("block_structure", None)
  366. strategy = weight_config.get("strategy")
  367. assert strategy == "channel" or strategy == "block"
  368. assert weight_config.get("group_size") is None # didn't find a model using this yet
  369. for name in self.model_tensors.keys():
  370. if name.endswith(".weight_scale"):
  371. weight_name = name.removesuffix("_scale")
  372. w = self.model_tensors[weight_name]
  373. s = self.model_tensors[name]
  374. self.model_tensors[weight_name] = lambda w=w, s=s: dequant_simple(w(), s(), block_size)
  375. tensors_to_remove.append(name)
  376. elif quant_format == "pack-quantized":
  377. assert weight_config.get("strategy") == "group"
  378. assert weight_config.get("type", "int") == "int"
  379. num_bits = weight_config.get("num_bits")
  380. group_size = weight_config.get("group_size")
  381. assert isinstance(num_bits, int)
  382. assert isinstance(group_size, int)
  383. for name in self.model_tensors.keys():
  384. if name.endswith(".weight_packed"):
  385. base_name = name.removesuffix("_packed")
  386. w = self.model_tensors[name]
  387. scale = self.model_tensors[base_name + "_scale"]
  388. shape = self.model_tensors[base_name + "_shape"]
  389. zero_point = self.model_tensors.get(base_name + "_zero_point", lambda: None)
  390. new_tensors[base_name] = (
  391. lambda w=w, scale=scale, shape=shape, zero_point=zero_point: dequant_packed(
  392. w(), scale(), shape(), zero_point(), num_bits, group_size,
  393. )
  394. )
  395. tensors_to_remove += [base_name + n for n in ("_packed", "_shape", "_scale")]
  396. if (base_name + "_zero_point") in self.model_tensors:
  397. tensors_to_remove.append(base_name + "_zero_point")
  398. else:
  399. raise NotImplementedError(f"Quant format {quant_format!r} for method {quant_method!r} is not yet supported")
  400. else:
  401. raise NotImplementedError(f"Quant method is not yet supported: {quant_method!r}")
  402. for name in tensors_to_remove:
  403. if name in self.model_tensors:
  404. del self.model_tensors[name]
  405. for name, value in new_tensors.items():
  406. self.model_tensors[name] = value
  407. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  408. for name, gen in self.model_tensors.items():
  409. yield name, gen()
  410. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  411. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  412. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  413. name: str = gguf.TENSOR_NAMES[key]
  414. if "{bid}" in name:
  415. assert bid is not None
  416. name = name.format(bid=bid)
  417. return name + suffix
  418. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  419. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  420. return False
  421. key_name: str = gguf.TENSOR_NAMES[key]
  422. if "{bid}" in key_name:
  423. if bid is None:
  424. return False
  425. key_name = key_name.format(bid=bid)
  426. else:
  427. if bid is not None:
  428. return False
  429. return name == (key_name + suffix)
  430. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  431. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  432. if new_name is None:
  433. raise ValueError(f"Can not map tensor {name!r}")
  434. return new_name
  435. def set_gguf_parameters(self):
  436. raise NotImplementedError("set_gguf_parameters() must be implemented in subclasses")
  437. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  438. del bid # unused
  439. return [(self.map_tensor_name(name), data_torch)]
  440. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  441. del name, new_name, bid, n_dims # unused
  442. return False
  443. # some models need extra generated tensors (like rope_freqs)
  444. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  445. return ()
  446. def prepare_tensors(self):
  447. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  448. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  449. # we don't need these
  450. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  451. continue
  452. old_dtype = data_torch.dtype
  453. # convert any unsupported data types to float32
  454. if data_torch.dtype not in (torch.float16, torch.float32):
  455. data_torch = data_torch.to(torch.float32)
  456. # use the first number-like part of the tensor name as the block id
  457. bid = None
  458. for part in name.split("."):
  459. if part.isdecimal():
  460. bid = int(part)
  461. break
  462. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  463. # TODO: why do we squeeze here?
  464. # data = data_torch.squeeze().numpy()
  465. data = data_torch.numpy()
  466. n_dims = len(data.shape)
  467. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  468. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  469. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  470. data_qtype = gguf.GGMLQuantizationType.F32
  471. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  472. # Some tensor types are always in float32
  473. if data_qtype is False and (
  474. any(
  475. self.match_model_tensor_name(new_name, key, bid)
  476. for key in (
  477. gguf.MODEL_TENSOR.FFN_GATE_INP,
  478. gguf.MODEL_TENSOR.POS_EMBD,
  479. gguf.MODEL_TENSOR.TOKEN_TYPES,
  480. gguf.MODEL_TENSOR.SSM_CONV1D,
  481. gguf.MODEL_TENSOR.SHORTCONV_CONV,
  482. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  483. gguf.MODEL_TENSOR.TIME_MIX_W1,
  484. gguf.MODEL_TENSOR.TIME_MIX_W2,
  485. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  486. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  487. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  488. gguf.MODEL_TENSOR.POSNET_NORM1,
  489. gguf.MODEL_TENSOR.POSNET_NORM2,
  490. gguf.MODEL_TENSOR.V_ENC_EMBD_POS,
  491. gguf.MODEL_TENSOR.A_ENC_EMBD_POS,
  492. gguf.MODEL_TENSOR.ALTUP_CORRECT_COEF,
  493. gguf.MODEL_TENSOR.ALTUP_PREDICT_COEF,
  494. )
  495. )
  496. or new_name[-7:] not in (".weight", ".lora_a", ".lora_b")
  497. ):
  498. data_qtype = gguf.GGMLQuantizationType.F32
  499. if data_qtype is False and any(
  500. self.match_model_tensor_name(new_name, key, bid)
  501. for key in (
  502. gguf.MODEL_TENSOR.TOKEN_EMBD,
  503. gguf.MODEL_TENSOR.PER_LAYER_TOKEN_EMBD,
  504. gguf.MODEL_TENSOR.OUTPUT,
  505. gguf.MODEL_TENSOR.ALTUP_ROUTER,
  506. gguf.MODEL_TENSOR.LAUREL_L,
  507. gguf.MODEL_TENSOR.LAUREL_R,
  508. )
  509. ):
  510. if self.ftype in (
  511. gguf.LlamaFileType.MOSTLY_TQ1_0,
  512. gguf.LlamaFileType.MOSTLY_TQ2_0,
  513. ):
  514. # TODO: use Q4_K and Q6_K
  515. data_qtype = gguf.GGMLQuantizationType.F16
  516. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  517. if isinstance(data_qtype, bool):
  518. if self.ftype == gguf.LlamaFileType.ALL_F32:
  519. data_qtype = gguf.GGMLQuantizationType.F32
  520. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  521. data_qtype = gguf.GGMLQuantizationType.F16
  522. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  523. data_qtype = gguf.GGMLQuantizationType.BF16
  524. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  525. data_qtype = gguf.GGMLQuantizationType.Q8_0
  526. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  527. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  528. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  529. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  530. else:
  531. raise ValueError(f"Unknown file type: {self.ftype.name}")
  532. try:
  533. data = gguf.quants.quantize(data, data_qtype)
  534. except gguf.QuantError as e:
  535. logger.warning("%s, %s", e, "falling back to F16")
  536. data_qtype = gguf.GGMLQuantizationType.F16
  537. data = gguf.quants.quantize(data, data_qtype)
  538. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  539. # reverse shape to make it similar to the internal ggml dimension order
  540. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  541. # n_dims is implicit in the shape
  542. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  543. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  544. def set_type(self):
  545. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  546. def prepare_metadata(self, vocab_only: bool):
  547. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  548. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  549. # If we are using HF model id, set the metadata name to the model id
  550. if self.remote_hf_model_id:
  551. self.metadata.name = self.remote_hf_model_id
  552. # Fallback to model directory name if metadata name is still missing
  553. if self.metadata.name is None:
  554. self.metadata.name = self.dir_model.name
  555. # Generate parameter weight class (useful for leader boards) if not yet determined
  556. if self.metadata.size_label is None and total_params > 0:
  557. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  558. self.set_type()
  559. logger.info("Set meta model")
  560. self.metadata.set_gguf_meta_model(self.gguf_writer)
  561. logger.info("Set model parameters")
  562. self.set_gguf_parameters()
  563. logger.info("Set model quantization version")
  564. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  565. def write_vocab(self):
  566. raise NotImplementedError("write_vocab() must be implemented in subclasses")
  567. def write(self):
  568. self.prepare_tensors()
  569. self.prepare_metadata(vocab_only=False)
  570. self.gguf_writer.write_header_to_file(path=self.fname_out)
  571. self.gguf_writer.write_kv_data_to_file()
  572. self.gguf_writer.write_tensors_to_file(progress=True)
  573. self.gguf_writer.close()
  574. @staticmethod
  575. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  576. part_names: list[str] = []
  577. for filename in os.listdir(dir_model):
  578. if filename.startswith(prefix) and filename.endswith(suffix):
  579. part_names.append(filename)
  580. part_names.sort()
  581. return part_names
  582. @staticmethod
  583. def load_hparams(dir_model: Path, is_mistral_format: bool):
  584. if is_mistral_format:
  585. with open(dir_model / "params.json", "r", encoding="utf-8") as f:
  586. config = json.load(f)
  587. return config
  588. try:
  589. # for security reason, we don't allow loading remote code by default
  590. # if a model need remote code, we will fallback to config.json
  591. config = AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
  592. except Exception as e:
  593. logger.warning(f"Failed to load model config from {dir_model}: {e}")
  594. logger.warning("Trying to load config.json instead")
  595. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  596. config = json.load(f)
  597. if "llm_config" in config:
  598. # rename for InternVL
  599. config["text_config"] = config["llm_config"]
  600. if "lm_config" in config:
  601. # rename for GlmASR
  602. config["text_config"] = config["lm_config"]
  603. if "thinker_config" in config:
  604. # rename for Qwen2.5-Omni
  605. config["text_config"] = config["thinker_config"]["text_config"]
  606. if "lfm" in config:
  607. # rename for LFM2-Audio
  608. config["text_config"] = config["lfm"]
  609. return config
  610. @classmethod
  611. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  612. assert names
  613. def func(modelcls: AnyModel) -> AnyModel:
  614. model_type = ModelType.MMPROJ if modelcls.model_arch == gguf.MODEL_ARCH.MMPROJ else ModelType.TEXT
  615. for name in names:
  616. cls._model_classes[model_type][name] = modelcls
  617. return modelcls
  618. return func
  619. @classmethod
  620. def print_registered_models(cls):
  621. for model_type, model_classes in cls._model_classes.items():
  622. logger.error(f"{model_type.name} models:")
  623. for name in sorted(model_classes.keys()):
  624. logger.error(f" - {name}")
  625. @classmethod
  626. def from_model_architecture(cls, arch: str, model_type = ModelType.TEXT) -> type[ModelBase]:
  627. try:
  628. return cls._model_classes[model_type][arch]
  629. except KeyError:
  630. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  631. class TextModel(ModelBase):
  632. model_type = ModelType.TEXT
  633. hf_arch: str
  634. def __init__(self, *args, **kwargs):
  635. super().__init__(*args, **kwargs)
  636. if not self.is_mistral_format:
  637. self.hf_arch = get_model_architecture(self.hparams, self.model_type)
  638. else:
  639. self.hf_arch = ""
  640. if "text_config" in self.hparams:
  641. # move the text_config to the root level
  642. self.hparams = {**self.hparams, **self.hparams["text_config"]}
  643. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  644. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  645. self.rope_parameters = self.hparams.get("rope_parameters", self.hparams.get("rope_scaling")) or {}
  646. # Ensure "rope_theta" and "rope_type" is mirrored in rope_parameters
  647. if "full_attention" not in self.rope_parameters and "sliding_attention" not in self.rope_parameters:
  648. if "rope_theta" not in self.rope_parameters and (rope_theta := self.find_hparam(["rope_theta", "global_rope_theta", "rotary_emb_base"], optional=True)) is not None:
  649. self.rope_parameters["rope_theta"] = rope_theta
  650. if "rope_type" not in self.rope_parameters and (rope_type := self.rope_parameters.get("type")) is not None:
  651. self.rope_parameters["rope_type"] = rope_type
  652. @classmethod
  653. def __init_subclass__(cls):
  654. # can't use an abstract property, because overriding it without type errors
  655. # would require using decorated functions instead of simply defining the property
  656. if "model_arch" not in cls.__dict__:
  657. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  658. def set_vocab(self):
  659. self._set_vocab_gpt2()
  660. def prepare_metadata(self, vocab_only: bool):
  661. super().prepare_metadata(vocab_only=vocab_only)
  662. total_params = self.gguf_writer.get_total_parameter_count()[0]
  663. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  664. output_type: str = self.ftype.name.partition("_")[2]
  665. # Filename Output
  666. if self.fname_out.is_dir():
  667. # Generate default filename based on model specification and available metadata
  668. if not vocab_only:
  669. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  670. else:
  671. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  672. # Use the default filename
  673. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  674. else:
  675. # Output path is a custom defined templated filename
  676. # Note: `not is_dir()` is used because `.is_file()` will not detect
  677. # file template strings as it doesn't actually exist as a file
  678. # Process templated file name with the output ftype, useful with the "auto" ftype
  679. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  680. logger.info("Set model tokenizer")
  681. self.set_vocab()
  682. def set_gguf_parameters(self):
  683. self.gguf_writer.add_block_count(self.block_count)
  684. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions", "max_length", "max_sequence_length", "model_max_length"], optional=True)) is not None:
  685. self.gguf_writer.add_context_length(n_ctx)
  686. logger.info(f"gguf: context length = {n_ctx}")
  687. if (n_embd := self.find_hparam(["hidden_size", "n_embd", "dim"], optional=True)) is not None:
  688. self.gguf_writer.add_embedding_length(n_embd)
  689. logger.info(f"gguf: embedding length = {n_embd}")
  690. if (n_ff := self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"], optional=True)) is not None:
  691. self.gguf_writer.add_feed_forward_length(n_ff)
  692. logger.info(f"gguf: feed forward length = {n_ff}")
  693. if (n_head := self.find_hparam(["num_attention_heads", "n_head", "n_heads"], optional=True)) is not None:
  694. self.gguf_writer.add_head_count(n_head)
  695. logger.info(f"gguf: head count = {n_head}")
  696. if (n_head_kv := self.find_hparam(["num_key_value_heads", "n_kv_heads"], optional=True)) is not None:
  697. self.gguf_writer.add_head_count_kv(n_head_kv)
  698. logger.info(f"gguf: key-value head count = {n_head_kv}")
  699. rope_params = self.rope_parameters.get("full_attention", self.rope_parameters)
  700. if (rope_type := rope_params.get("rope_type")) is not None:
  701. rope_factor = rope_params.get("factor")
  702. rope_gguf_type = gguf.RopeScalingType.NONE
  703. if rope_type == "linear" and rope_factor is not None:
  704. rope_gguf_type = gguf.RopeScalingType.LINEAR
  705. self.gguf_writer.add_rope_scaling_type(rope_gguf_type)
  706. self.gguf_writer.add_rope_scaling_factor(rope_factor)
  707. elif rope_type == "yarn" and rope_factor is not None:
  708. rope_gguf_type = gguf.RopeScalingType.YARN
  709. self.gguf_writer.add_rope_scaling_type(rope_gguf_type)
  710. self.gguf_writer.add_rope_scaling_factor(rope_factor)
  711. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_params["original_max_position_embeddings"])
  712. if (yarn_ext_factor := rope_params.get("extrapolation_factor")) is not None:
  713. self.gguf_writer.add_rope_scaling_yarn_ext_factor(yarn_ext_factor)
  714. if (yarn_attn_factor := rope_params.get("attention_factor", rope_params.get("attn_factor"))) is not None:
  715. self.gguf_writer.add_rope_scaling_yarn_attn_factor(yarn_attn_factor)
  716. if (yarn_beta_fast := rope_params.get("beta_fast")) is not None:
  717. self.gguf_writer.add_rope_scaling_yarn_beta_fast(yarn_beta_fast)
  718. if (yarn_beta_slow := rope_params.get("beta_slow")) is not None:
  719. self.gguf_writer.add_rope_scaling_yarn_beta_slow(yarn_beta_slow)
  720. # self.gguf_writer.add_rope_scaling_yarn_log_mul(rope_params["mscale_all_dim"])
  721. elif rope_type == "su" or rope_type == "longrope":
  722. rope_gguf_type = gguf.RopeScalingType.LONGROPE
  723. self.gguf_writer.add_rope_scaling_type(rope_gguf_type)
  724. elif rope_type == "dynamic":
  725. # HunYuan, handled in model class
  726. pass
  727. elif rope_type.lower() == "llama3":
  728. # Handled in generate_extra_tensors
  729. pass
  730. else:
  731. logger.warning(f"Unknown RoPE type: {rope_type}")
  732. logger.info(f"gguf: rope scaling type = {rope_gguf_type.name}")
  733. if "mrope_section" in self.rope_parameters:
  734. mrope_section = self.rope_parameters["mrope_section"]
  735. # Pad to 4 dimensions [time, height, width, extra]
  736. while len(mrope_section) < 4:
  737. mrope_section.append(0)
  738. self.gguf_writer.add_rope_dimension_sections(mrope_section[:4])
  739. logger.info(f"gguf: mrope sections: {mrope_section[:4]}")
  740. if (rope_theta := rope_params.get("rope_theta")) is not None:
  741. self.gguf_writer.add_rope_freq_base(rope_theta)
  742. logger.info(f"gguf: rope theta = {rope_theta}")
  743. if (f_rms_eps := self.find_hparam(["rms_norm_eps", "norm_eps"], optional=True)) is not None:
  744. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  745. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  746. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  747. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  748. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  749. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  750. self.gguf_writer.add_expert_count(n_experts)
  751. logger.info(f"gguf: expert count = {n_experts}")
  752. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  753. self.gguf_writer.add_expert_used_count(n_experts_used)
  754. logger.info(f"gguf: experts used count = {n_experts_used}")
  755. if (n_expert_groups := self.hparams.get("n_group")) is not None:
  756. self.gguf_writer.add_expert_group_count(n_expert_groups)
  757. logger.info(f"gguf: expert groups count = {n_expert_groups}")
  758. if (n_group_used := self.hparams.get("topk_group")) is not None:
  759. self.gguf_writer.add_expert_group_used_count(n_group_used)
  760. logger.info(f"gguf: expert groups used count = {n_group_used}")
  761. if (score_func := self.find_hparam(["score_function", "scoring_func", "score_func"], optional=True)) is not None:
  762. if score_func == "sigmoid":
  763. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  764. elif score_func == "softmax":
  765. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  766. else:
  767. raise ValueError(f"Unsupported expert score gating function value: {score_func}")
  768. logger.info(f"gguf: expert score gating function = {score_func}")
  769. if (head_dim := self.hparams.get("head_dim")) is not None:
  770. self.gguf_writer.add_key_length(head_dim)
  771. self.gguf_writer.add_value_length(head_dim)
  772. self.gguf_writer.add_file_type(self.ftype)
  773. logger.info(f"gguf: file type = {self.ftype}")
  774. def write_vocab(self):
  775. if len(self.gguf_writer.tensors) != 1:
  776. raise ValueError('Splitting the vocabulary is not supported')
  777. self.prepare_metadata(vocab_only=True)
  778. self.gguf_writer.write_header_to_file(path=self.fname_out)
  779. self.gguf_writer.write_kv_data_to_file()
  780. self.gguf_writer.close()
  781. def does_token_look_special(self, token: str | bytes) -> bool:
  782. if isinstance(token, (bytes, bytearray)):
  783. token_text = token.decode(encoding="utf-8")
  784. elif isinstance(token, memoryview):
  785. token_text = token.tobytes().decode(encoding="utf-8")
  786. else:
  787. token_text = token
  788. # Some models mark some added tokens which ought to be control tokens as not special.
  789. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  790. seems_special = token_text in (
  791. "<pad>", # deepseek-coder
  792. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  793. )
  794. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  795. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  796. # TODO: should these be marked as UNUSED instead? (maybe not)
  797. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  798. return seems_special
  799. # used for GPT-2 BPE and WordPiece vocabs
  800. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  801. tokens: list[str] = []
  802. toktypes: list[int] = []
  803. from transformers import AutoTokenizer
  804. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  805. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  806. assert max(tokenizer.vocab.values()) < vocab_size
  807. tokpre = self.get_vocab_base_pre(tokenizer)
  808. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  809. added_vocab = tokenizer.get_added_vocab()
  810. added_tokens_decoder = tokenizer.added_tokens_decoder
  811. for i in range(vocab_size):
  812. if i not in reverse_vocab:
  813. tokens.append(f"[PAD{i}]")
  814. toktypes.append(gguf.TokenType.UNUSED)
  815. else:
  816. token: str = reverse_vocab[i]
  817. if token in added_vocab:
  818. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  819. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  820. if not added_tokens_decoder[i].normalized:
  821. previous_token = token
  822. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  823. if previous_token != token:
  824. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  825. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  826. toktypes.append(gguf.TokenType.CONTROL)
  827. else:
  828. # NOTE: this was added for Gemma.
  829. # Encoding and decoding the tokens above isn't sufficient for this case.
  830. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  831. toktypes.append(gguf.TokenType.USER_DEFINED)
  832. else:
  833. toktypes.append(gguf.TokenType.NORMAL)
  834. tokens.append(token)
  835. return tokens, toktypes, tokpre
  836. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  837. # do not modify it manually!
  838. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  839. # Marker: Start get_vocab_base_pre
  840. def get_vocab_base_pre(self, tokenizer) -> str:
  841. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  842. # is specific for the BPE pre-tokenizer used by the model
  843. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  844. # use in llama.cpp to implement the same pre-tokenizer
  845. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  846. chktok = tokenizer.encode(chktxt)
  847. chkhsh = sha256(str(chktok).encode()).hexdigest()
  848. logger.debug(f"chktok: {chktok}")
  849. logger.debug(f"chkhsh: {chkhsh}")
  850. res = None
  851. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  852. # or pull the latest version of the model from Huggingface
  853. # don't edit the hashes manually!
  854. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  855. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  856. res = "chatglm-bpe"
  857. if chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  858. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  859. res = "chatglm-bpe"
  860. if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
  861. # ref: https://huggingface.co/THUDM/glm-4-9b-hf
  862. res = "glm4"
  863. if chkhsh == "9ca2dd618e8afaf09731a7cf6e2105b373ba6a1821559f258b272fe83e6eb902":
  864. # ref: https://huggingface.co/zai-org/GLM-4.5-Air
  865. res = "glm4"
  866. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  867. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  868. res = "minerva-7b"
  869. if chkhsh == "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664":
  870. # ref: https://huggingface.co/tencent/Hunyuan-A13B-Instruct
  871. res = "hunyuan"
  872. if chkhsh == "bba3b3366b646dbdded5dbc42d59598b849371afc42f7beafa914afaa5b70aa6":
  873. # ref: https://huggingface.co/tencent/Hunyuan-4B-Instruct
  874. res = "hunyuan-dense"
  875. if chkhsh == "a6b57017d60e6edb4d88ecc2845188e0eb333a70357e45dcc9b53964a73bbae6":
  876. # ref: https://huggingface.co/tiiuae/Falcon-H1-0.5B-Base
  877. res = "falcon-h1"
  878. if chkhsh == "60476e1243776c4fb1b993dbd7a5f15ac22f83c80afdf425fa5ae01c8d44ef86":
  879. # ref: https://huggingface.co/tiiuae/Falcon-H1-1B-Base
  880. res = "falcon-h1"
  881. if chkhsh == "3eda48b4c4dc7de733d1a8b3e3b4a85243dbbf704da2ee9d42c6beced8897896":
  882. # ref: https://huggingface.co/tiiuae/Falcon-H1-7B-Base
  883. res = "falcon-h1"
  884. if chkhsh == "48f8e02c0359c0bbdd82f26909171fac1c18a457bb47573ed1fe3bbb2c1cfd4b":
  885. # ref: https://huggingface.co/tiiuae/Falcon-H1-34B-Base
  886. res = "falcon-h1"
  887. if chkhsh == "81212dc7cdb7e0c1074ca62c5aeab0d43c9f52b8a737be7b12a777c953027890":
  888. # ref: https://huggingface.co/moonshotai/Kimi-K2-Base
  889. res = "kimi-k2"
  890. if chkhsh == "d4540891389ea895b53b399da6ac824becc30f2fba0e9ddbb98f92e55ca0e97c":
  891. # ref: https://huggingface.co/Qwen/Qwen3-Embedding-0.6B
  892. res = "qwen2"
  893. if chkhsh == "66b8d4e19ab16c3bfd89bce5d785fb7e0155e8648708a1f42077cb9fe002c273":
  894. # ref: https://huggingface.co/alvarobartt/grok-2-tokenizer
  895. res = "grok-2"
  896. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  897. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  898. res = "llama-bpe"
  899. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  900. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  901. res = "deepseek-llm"
  902. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  903. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  904. res = "deepseek-coder"
  905. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  906. # ref: https://huggingface.co/tiiuae/falcon-7b
  907. res = "falcon"
  908. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  909. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  910. res = "bert-bge"
  911. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  912. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  913. res = "falcon3"
  914. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  915. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  916. res = "bert-bge-large"
  917. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  918. # ref: https://huggingface.co/mosaicml/mpt-7b
  919. res = "mpt"
  920. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  921. # ref: https://huggingface.co/bigcode/starcoder2-3b
  922. res = "starcoder"
  923. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  924. # ref: https://huggingface.co/openai-community/gpt2
  925. res = "gpt-2"
  926. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  927. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  928. res = "stablelm2"
  929. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  930. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  931. res = "refact"
  932. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  933. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  934. res = "command-r"
  935. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  936. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  937. res = "qwen2"
  938. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  939. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  940. res = "olmo"
  941. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  942. # ref: https://huggingface.co/databricks/dbrx-base
  943. res = "dbrx"
  944. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  945. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  946. res = "jina-v1-en"
  947. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  948. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  949. res = "jina-v2-en"
  950. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  951. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  952. res = "jina-v2-es"
  953. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  954. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  955. res = "jina-v2-de"
  956. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  957. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  958. res = "smaug-bpe"
  959. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  960. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  961. res = "poro-chat"
  962. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  963. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  964. res = "jina-v2-code"
  965. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  966. # ref: https://huggingface.co/LumiOpen/Viking-7B
  967. res = "viking"
  968. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  969. # ref: https://huggingface.co/core42/jais-13b
  970. res = "jais"
  971. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  972. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  973. res = "codeshell"
  974. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  975. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  976. res = "tekken"
  977. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  978. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  979. res = "smollm"
  980. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  981. # ref: https://huggingface.co/bigscience/bloom
  982. res = "bloom"
  983. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  984. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  985. res = "gpt3-finnish"
  986. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  987. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  988. res = "exaone"
  989. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  990. # ref: https://huggingface.co/microsoft/phi-2
  991. res = "phi-2"
  992. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  993. # ref: https://huggingface.co/facebook/chameleon-7b
  994. res = "chameleon"
  995. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  996. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  997. res = "roberta-bpe"
  998. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  999. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  1000. res = "gigachat"
  1001. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  1002. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  1003. res = "megrez"
  1004. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  1005. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  1006. res = "deepseek-v3"
  1007. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  1008. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  1009. res = "deepseek-r1-qwen"
  1010. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  1011. # ref: https://huggingface.co/Xenova/gpt-4o
  1012. res = "gpt-4o"
  1013. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  1014. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  1015. res = "superbpe"
  1016. if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
  1017. # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
  1018. res = "trillion"
  1019. if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
  1020. # ref: https://huggingface.co/inclusionAI/Ling-lite
  1021. res = "bailingmoe"
  1022. if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
  1023. # ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
  1024. res = "llama4"
  1025. if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
  1026. # ref: https://huggingface.co/mistral-community/pixtral-12b
  1027. res = "pixtral"
  1028. if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec":
  1029. # ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base
  1030. res = "seed-coder"
  1031. if chkhsh == "b0a6b1c0bd5998ebd9df08611efde34a4ff03faed45ae09c43e6b31ebd4b94cf":
  1032. # ref: https://huggingface.co/skt/A.X-4.0
  1033. res = "a.x-4.0"
  1034. if chkhsh == "f6791d196f87ce6b56a7d234be618e0d58f8cda3549416635b2bebcd22cd95c4":
  1035. # ref: https://huggingface.co/K-intelligence/Midm-2.0-Base-Instruct
  1036. res = "midm-2.0"
  1037. if chkhsh == "169bf0296a13c4d9b7672313f749eb36501d931022de052aad6e36f2bf34dd51":
  1038. # ref: https://huggingface.co/LiquidAI/LFM2-Tokenizer
  1039. res = "lfm2"
  1040. if chkhsh == "2085e1638f6c377a0aa4ead21b27bb4cb941bf800df86ed391011769c1758dfb":
  1041. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B
  1042. res = "exaone4"
  1043. if chkhsh == "a1e163ecab2e718a4c829d1148b6e86824ec36163bb71941c3dca9cd5ac25756":
  1044. # ref: https://huggingface.co/JetBrains/Mellum-4b-base
  1045. res = "mellum"
  1046. if chkhsh == "a0b64b4385f123663873756336c085744376d015ff328bb1d901598f63c44152":
  1047. # ref: https://huggingface.co/answerdotai/ModernBERT-base
  1048. res = "modern-bert"
  1049. if chkhsh == "49fc0303c9e0d2c2c565c510f64b2d9b271276acdcdadff733249eda9f7d59df":
  1050. # ref: https://huggingface.co/arcee-ai/Trinity-Tokenizer
  1051. res = "afmoe"
  1052. if chkhsh == "9b1be57e70d20d9501b2b3186e792d81181ae36ada3903c26f9fea418cf87206":
  1053. # ref: https://huggingface.co/inclusionAI/Ling-mini-base-2.0
  1054. res = "bailingmoe2"
  1055. if chkhsh == "53e325976a6e142379c19b09afcae354f2f496f147afa8f9e189a33fe4e3024e":
  1056. # ref: https://huggingface.co/ibm-granite/granite-docling-258M
  1057. res = "granite-docling"
  1058. if chkhsh == "f4f37b6c8eb9ea29b3eac6bb8c8487c5ab7885f8d8022e67edc1c68ce8403e95":
  1059. # ref: https://huggingface.co/MiniMaxAI/MiniMax-M2
  1060. res = "minimax-m2"
  1061. if chkhsh == "4a2e2abae11ca2b86d570fc5b44be4d5eb5e72cc8f22dd136a94b37da83ab665":
  1062. # ref: https://huggingface.co/KORMo-Team/KORMo-tokenizer
  1063. res = "kormo"
  1064. if res is None:
  1065. logger.warning("\n")
  1066. logger.warning("**************************************************************************************")
  1067. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  1068. logger.warning("** There are 2 possible reasons for this:")
  1069. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  1070. logger.warning("** - the pre-tokenization config has changed upstream")
  1071. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  1072. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  1073. logger.warning("**")
  1074. logger.warning(f"** chkhsh: {chkhsh}")
  1075. logger.warning("**************************************************************************************")
  1076. logger.warning("\n")
  1077. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  1078. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  1079. logger.debug(f"chkhsh: {chkhsh}")
  1080. return res
  1081. # Marker: End get_vocab_base_pre
  1082. def _set_vocab_none(self) -> None:
  1083. self.gguf_writer.add_tokenizer_model("none")
  1084. def _set_vocab_gpt2(self) -> None:
  1085. tokens, toktypes, tokpre = self.get_vocab_base()
  1086. self.gguf_writer.add_tokenizer_model("gpt2")
  1087. self.gguf_writer.add_tokenizer_pre(tokpre)
  1088. self.gguf_writer.add_token_list(tokens)
  1089. self.gguf_writer.add_token_types(toktypes)
  1090. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1091. special_vocab.add_to_gguf(self.gguf_writer)
  1092. def _set_vocab_qwen(self):
  1093. dir_model = self.dir_model
  1094. hparams = self.hparams
  1095. tokens: list[str] = []
  1096. toktypes: list[int] = []
  1097. from transformers import AutoTokenizer
  1098. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  1099. vocab_size = hparams["vocab_size"]
  1100. assert max(tokenizer.get_vocab().values()) < vocab_size
  1101. tokpre = self.get_vocab_base_pre(tokenizer)
  1102. merges = []
  1103. vocab = {}
  1104. mergeable_ranks = tokenizer.mergeable_ranks
  1105. for token, rank in mergeable_ranks.items():
  1106. vocab[QwenModel.token_bytes_to_string(token)] = rank
  1107. if len(token) == 1:
  1108. continue
  1109. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  1110. assert len(merged) == 2
  1111. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  1112. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  1113. added_vocab = tokenizer.special_tokens
  1114. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  1115. for i in range(vocab_size):
  1116. if i not in reverse_vocab:
  1117. tokens.append(f"[PAD{i}]")
  1118. toktypes.append(gguf.TokenType.UNUSED)
  1119. elif reverse_vocab[i] in added_vocab:
  1120. tokens.append(reverse_vocab[i])
  1121. toktypes.append(gguf.TokenType.CONTROL)
  1122. else:
  1123. tokens.append(reverse_vocab[i])
  1124. toktypes.append(gguf.TokenType.NORMAL)
  1125. self.gguf_writer.add_tokenizer_model("gpt2")
  1126. self.gguf_writer.add_tokenizer_pre(tokpre)
  1127. self.gguf_writer.add_token_list(tokens)
  1128. self.gguf_writer.add_token_types(toktypes)
  1129. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  1130. special_vocab.merges = merges
  1131. # only add special tokens when they were not already loaded from config.json
  1132. if len(special_vocab.special_token_ids) == 0:
  1133. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  1134. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  1135. # this one is usually not in config.json anyway
  1136. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  1137. special_vocab.add_to_gguf(self.gguf_writer)
  1138. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  1139. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  1140. self.gguf_writer.add_tokenizer_model("llama")
  1141. self.gguf_writer.add_tokenizer_pre("default")
  1142. self.gguf_writer.add_token_list(tokens)
  1143. self.gguf_writer.add_token_scores(scores)
  1144. self.gguf_writer.add_token_types(toktypes)
  1145. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1146. special_vocab.add_to_gguf(self.gguf_writer)
  1147. def _create_vocab_sentencepiece(self):
  1148. from sentencepiece import SentencePieceProcessor
  1149. tokenizer_path = self.dir_model / 'tokenizer.model'
  1150. if not tokenizer_path.is_file():
  1151. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  1152. tokenizer = SentencePieceProcessor()
  1153. tokenizer.LoadFromFile(str(tokenizer_path))
  1154. vocab_size = self.find_hparam([
  1155. "vocab_size_per_layer_input", # gemma3n
  1156. "vocab_size",
  1157. ], optional=True) or tokenizer.vocab_size()
  1158. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1159. scores: list[float] = [-10000.0] * vocab_size
  1160. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  1161. for token_id in range(tokenizer.vocab_size()):
  1162. if token_id >= vocab_size:
  1163. logger.warning(f'ignore tokens from {token_id}: id is out of range, max={vocab_size - 1}')
  1164. break
  1165. piece = tokenizer.IdToPiece(token_id)
  1166. text = piece.encode("utf-8")
  1167. score = tokenizer.GetScore(token_id)
  1168. toktype = SentencePieceTokenTypes.NORMAL
  1169. if tokenizer.IsUnknown(token_id):
  1170. toktype = SentencePieceTokenTypes.UNKNOWN
  1171. elif tokenizer.IsControl(token_id):
  1172. toktype = SentencePieceTokenTypes.CONTROL
  1173. elif tokenizer.IsUnused(token_id):
  1174. toktype = SentencePieceTokenTypes.UNUSED
  1175. elif tokenizer.IsByte(token_id):
  1176. toktype = SentencePieceTokenTypes.BYTE
  1177. tokens[token_id] = text
  1178. scores[token_id] = score
  1179. toktypes[token_id] = toktype
  1180. added_tokens_file = self.dir_model / 'added_tokens.json'
  1181. if added_tokens_file.is_file():
  1182. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1183. added_tokens_json = json.load(f)
  1184. for key in added_tokens_json:
  1185. token_id = added_tokens_json[key]
  1186. if token_id >= vocab_size:
  1187. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1188. continue
  1189. tokens[token_id] = key.encode("utf-8")
  1190. scores[token_id] = -1000.0
  1191. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1192. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1193. if tokenizer_config_file.is_file():
  1194. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1195. tokenizer_config_json = json.load(f)
  1196. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1197. for token_id, token_data in added_tokens_decoder.items():
  1198. token_id = int(token_id)
  1199. token: str = token_data["content"]
  1200. if token_id >= vocab_size:
  1201. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1202. continue
  1203. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1204. if tokens[token_id] != token.encode("utf-8"):
  1205. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  1206. if token_data.get("special") or self.does_token_look_special(token):
  1207. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1208. else:
  1209. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  1210. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1211. scores[token_id] = -1000.0
  1212. tokens[token_id] = token.encode("utf-8")
  1213. if vocab_size > len(tokens):
  1214. pad_count = vocab_size - len(tokens)
  1215. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  1216. for i in range(1, pad_count + 1):
  1217. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  1218. scores.append(-1000.0)
  1219. toktypes.append(SentencePieceTokenTypes.UNUSED)
  1220. return tokens, scores, toktypes
  1221. def _set_vocab_llama_hf(self):
  1222. vocab = gguf.LlamaHfVocab(self.dir_model)
  1223. tokens = []
  1224. scores = []
  1225. toktypes = []
  1226. for text, score, toktype in vocab.all_tokens():
  1227. tokens.append(text)
  1228. scores.append(score)
  1229. toktypes.append(toktype)
  1230. assert len(tokens) == vocab.vocab_size
  1231. self.gguf_writer.add_tokenizer_model("llama")
  1232. self.gguf_writer.add_tokenizer_pre("default")
  1233. self.gguf_writer.add_token_list(tokens)
  1234. self.gguf_writer.add_token_scores(scores)
  1235. self.gguf_writer.add_token_types(toktypes)
  1236. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1237. special_vocab.add_to_gguf(self.gguf_writer)
  1238. def _set_vocab_rwkv_world(self):
  1239. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  1240. vocab_size = self.hparams.get("vocab_size", 65536)
  1241. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  1242. toktypes: list[int] = [gguf.TokenType.CONTROL]
  1243. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  1244. lines = f.readlines()
  1245. for line in lines:
  1246. parts = line.split(' ')
  1247. assert len(parts) >= 3
  1248. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  1249. token = token.encode("utf-8") if isinstance(token, str) else token
  1250. assert isinstance(token, bytes)
  1251. assert len(token) == token_len
  1252. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  1253. tokens.append(token_text.encode("utf-8"))
  1254. toktypes.append(gguf.TokenType.NORMAL)
  1255. remainder = vocab_size - len(tokens)
  1256. assert remainder >= 0
  1257. for i in range(len(tokens), vocab_size):
  1258. tokens.append(f"[PAD{i}]".encode("utf-8"))
  1259. toktypes.append(gguf.TokenType.UNUSED)
  1260. self.gguf_writer.add_tokenizer_model("rwkv")
  1261. self.gguf_writer.add_token_list(tokens)
  1262. self.gguf_writer.add_token_types(toktypes)
  1263. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  1264. if special_vocab.chat_template is None:
  1265. template_path = Path(__file__).parent / "models" / "templates" / "llama-cpp-rwkv-world.jinja"
  1266. if template_path.is_file():
  1267. with open(template_path, "r", encoding="utf-8") as f:
  1268. template = f.read()
  1269. else:
  1270. template = "rwkv-world"
  1271. special_vocab.chat_template = template
  1272. # hack: Add '\n\n' as the EOT token to make it chat normally
  1273. special_vocab._set_special_token("eot", 261)
  1274. # hack: Override these as they have already been set (incorrectly)
  1275. special_vocab.special_token_ids["bos"] = 0
  1276. special_vocab.special_token_ids["eos"] = 0
  1277. special_vocab.add_to_gguf(self.gguf_writer)
  1278. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  1279. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  1280. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  1281. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  1282. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  1283. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  1284. assert field # tokenizer model
  1285. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  1286. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  1287. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  1288. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  1289. assert field # token list
  1290. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  1291. if model_name == "llama-spm":
  1292. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  1293. assert field # token scores
  1294. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1295. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  1296. assert field # token types
  1297. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1298. if model_name != "llama-spm":
  1299. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  1300. assert field # token merges
  1301. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  1302. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  1303. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  1304. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  1305. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  1306. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  1307. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  1308. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  1309. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  1310. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  1311. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  1312. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  1313. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  1314. def _try_set_pooling_type(self) -> None:
  1315. # get pooling path
  1316. pooling_path = None
  1317. module_path = self.dir_model / "modules.json"
  1318. if module_path.is_file():
  1319. with open(module_path, encoding="utf-8") as f:
  1320. modules = json.load(f)
  1321. for mod in modules:
  1322. if mod["type"] == "sentence_transformers.models.Pooling":
  1323. pooling_path = mod["path"]
  1324. break
  1325. # get pooling type
  1326. if pooling_path is not None:
  1327. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1328. pooling = json.load(f)
  1329. if pooling["pooling_mode_mean_tokens"]:
  1330. pooling_type = gguf.PoolingType.MEAN
  1331. elif pooling["pooling_mode_cls_token"]:
  1332. pooling_type = gguf.PoolingType.CLS
  1333. elif pooling["pooling_mode_lasttoken"]:
  1334. pooling_type = gguf.PoolingType.LAST
  1335. else:
  1336. raise NotImplementedError("Only MEAN, CLS, and LAST pooling types supported")
  1337. self.gguf_writer.add_pooling_type(pooling_type)
  1338. def _set_vocab_glmedge(self):
  1339. from transformers import AutoTokenizer
  1340. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  1341. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1342. tokens, toktypes, tokpre = self.get_vocab_base()
  1343. self.gguf_writer.add_tokenizer_model("gpt2")
  1344. self.gguf_writer.add_tokenizer_pre(tokpre)
  1345. self.gguf_writer.add_token_list(tokens)
  1346. self.gguf_writer.add_token_types(toktypes)
  1347. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  1348. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  1349. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  1350. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  1351. special_vocab.add_to_gguf(self.gguf_writer)
  1352. def _set_vocab_interns1(self):
  1353. tokens: list[str] = []
  1354. toktypes: list[int] = []
  1355. from transformers import AutoTokenizer
  1356. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  1357. vocab = getattr(tokenizer, 'vocab', tokenizer.get_vocab())
  1358. vocab_size = self.hparams.get("vocab_size", len(vocab))
  1359. assert max(vocab.values()) < vocab_size
  1360. tokpre = self.get_vocab_base_pre(tokenizer)
  1361. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab.items()}
  1362. added_vocab = tokenizer.get_added_vocab()
  1363. added_tokens_decoder = tokenizer.added_tokens_decoder
  1364. for i in range(vocab_size):
  1365. if i not in reverse_vocab:
  1366. tokens.append(f"[PAD{i}]")
  1367. toktypes.append(gguf.TokenType.UNUSED)
  1368. else:
  1369. token: str = reverse_vocab[i]
  1370. if token in added_vocab:
  1371. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  1372. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  1373. if not added_tokens_decoder[i].normalized:
  1374. previous_token = token
  1375. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  1376. if previous_token != token:
  1377. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  1378. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  1379. toktypes.append(gguf.TokenType.CONTROL)
  1380. else:
  1381. toktypes.append(gguf.TokenType.USER_DEFINED)
  1382. else:
  1383. toktypes.append(gguf.TokenType.NORMAL)
  1384. tokens.append(token)
  1385. self.gguf_writer.add_tokenizer_model("gpt2")
  1386. self.gguf_writer.add_tokenizer_pre(tokpre)
  1387. self.gguf_writer.add_token_list(tokens)
  1388. self.gguf_writer.add_token_types(toktypes)
  1389. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1390. special_vocab._set_special_token("bos", 151643)
  1391. special_vocab.add_to_gguf(self.gguf_writer)
  1392. def _set_vocab_mistral(self):
  1393. if not _mistral_common_installed:
  1394. raise ImportError(_mistral_import_error_msg)
  1395. vocab = MistralVocab(self.dir_model)
  1396. logger.info(
  1397. f"Converting tokenizer {vocab.tokenizer_type} of size {vocab.vocab_size}."
  1398. )
  1399. self.gguf_writer.add_tokenizer_model(vocab.gguf_tokenizer_model)
  1400. tokens = []
  1401. scores = []
  1402. toktypes = []
  1403. for text, score, toktype in vocab.all_tokens():
  1404. tokens.append(text)
  1405. scores.append(score)
  1406. toktypes.append(toktype)
  1407. assert len(tokens) == vocab.vocab_size, (
  1408. f"token count ({len(tokens)}) != vocab size ({vocab.vocab_size})"
  1409. )
  1410. if vocab.tokenizer_type == MistralTokenizerType.tekken:
  1411. self.gguf_writer.add_tokenizer_pre("tekken")
  1412. self.gguf_writer.add_token_merges(
  1413. vocab.extract_vocab_merges_from_model()
  1414. )
  1415. logger.info(
  1416. f"Setting bos, eos, unk and pad token IDs to {vocab.bos_id}, {vocab.eos_id}, {vocab.unk_id}, {vocab.pad_id}."
  1417. )
  1418. self.gguf_writer.add_bos_token_id(vocab.bos_id)
  1419. self.gguf_writer.add_eos_token_id(vocab.eos_id)
  1420. self.gguf_writer.add_unk_token_id(vocab.unk_id)
  1421. self.gguf_writer.add_pad_token_id(vocab.pad_id)
  1422. self.gguf_writer.add_token_list(tokens)
  1423. self.gguf_writer.add_token_scores(scores)
  1424. self.gguf_writer.add_token_types(toktypes)
  1425. self.gguf_writer.add_vocab_size(vocab.vocab_size)
  1426. self.gguf_writer.add_add_bos_token(True)
  1427. self.gguf_writer.add_add_eos_token(False)
  1428. local_template_file_path = self.dir_model / "chat_template.jinja"
  1429. if self.is_mistral_format and local_template_file_path.is_file():
  1430. # Ministral-3 and other new Mistral models come with chat templates.
  1431. # ref: https://huggingface.co/mistralai/Ministral-3-14B-Instruct-2512/tree/main
  1432. logger.info("Using an existing Mistral local chat template.")
  1433. with open(local_template_file_path, "r", encoding="utf-8") as f:
  1434. template = f.read()
  1435. elif not self.is_mistral_format or not self.disable_mistral_community_chat_template:
  1436. template_dir = Path(__file__).parent / "models/templates/"
  1437. # Log only for Mistral format that the official tokenization and detokenization is via `mistral-common`.
  1438. if self.is_mistral_format:
  1439. logger.info(
  1440. "Using a Mistral community chat template. These templates can be subject to errors in early days or weeks after a release. "
  1441. "Mistral recommends to use `mistral-common` to perform tokenization and detokenization."
  1442. )
  1443. template = MistralModel.get_community_chat_template(vocab, template_dir, self.is_mistral_format)
  1444. else:
  1445. logger.info("Not using a Mistral local or community chat template. Ensure to perform the tokenization and detokenization via `mistral-common`.")
  1446. template = None
  1447. if template is not None:
  1448. self.gguf_writer.add_chat_template(template)
  1449. class MmprojModel(ModelBase):
  1450. model_type = ModelType.MMPROJ
  1451. model_arch = gguf.MODEL_ARCH.MMPROJ
  1452. preprocessor_config: dict[str, Any]
  1453. global_config: dict[str, Any]
  1454. n_block_keys = ["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth", "encoder_layers"]
  1455. has_vision_encoder: bool = True # by default
  1456. has_audio_encoder: bool = False
  1457. # for models having multiple encoders, we need to separate their hparams
  1458. hparams_vision: dict[str, Any] | None = None
  1459. hparams_audio: dict[str, Any] | None = None
  1460. def __init__(self, *args, **kwargs):
  1461. super().__init__(*args, **kwargs)
  1462. if self.model_arch != gguf.MODEL_ARCH.MMPROJ:
  1463. raise TypeError("MmprojModel must be subclassed with model_arch = gguf.MODEL_ARCH.MMPROJ")
  1464. # get n_embd of the text model
  1465. if not self.is_mistral_format:
  1466. if "text_config" not in self.hparams:
  1467. self.hparams["text_config"] = {}
  1468. if "audio_config" not in self.hparams:
  1469. self.hparams["audio_config"] = {}
  1470. text_config = {**self.hparams, **self.hparams["text_config"]}
  1471. self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
  1472. else:
  1473. text_config = {
  1474. k: v for k, v in self.hparams.items() if k not in ["vision_encoder", "audio_encoder"]
  1475. }
  1476. self.n_embd_text = text_config.get("hidden_dim", 0)
  1477. assert self.n_embd_text > 0, "n_embd not found in hparams"
  1478. # move vision config to the top level, while preserving the original hparams in global_config
  1479. import copy
  1480. self.global_config = copy.deepcopy(self.hparams)
  1481. self.hparams_vision = self.get_vision_config()
  1482. self.hparams_audio = self.get_audio_config()
  1483. if self.hparams_vision is None and self.hparams_audio is None:
  1484. raise ValueError("vision_config / audio_config not found in hparams")
  1485. # for compat with vision-only models
  1486. self.hparams = self.hparams_vision or self.hparams_audio or self.hparams
  1487. # TODO @ngxson : this is a hack to support both vision and audio encoders
  1488. have_multiple_encoders = self.has_audio_encoder and self.has_vision_encoder
  1489. self.block_count = 128 if have_multiple_encoders else self.find_hparam(self.n_block_keys, True)
  1490. self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.MMPROJ, self.block_count)
  1491. # load preprocessor config
  1492. self.preprocessor_config = {}
  1493. # prefer preprocessor_config.json if possible
  1494. preprocessor_config_path = self.dir_model / "preprocessor_config.json"
  1495. if preprocessor_config_path.is_file():
  1496. with open(preprocessor_config_path, "r", encoding="utf-8") as f:
  1497. self.preprocessor_config = json.load(f)
  1498. # prefer processor_config.json if possible
  1499. processor_config_path = self.dir_model / "processor_config.json"
  1500. if processor_config_path.is_file():
  1501. with open(processor_config_path, "r", encoding="utf-8") as f:
  1502. cfg = json.load(f)
  1503. # move image_processor to root level for compat
  1504. if "image_processor" in cfg:
  1505. cfg = {
  1506. **cfg,
  1507. **cfg["image_processor"],
  1508. }
  1509. # merge configs
  1510. self.preprocessor_config = {**self.preprocessor_config, **cfg}
  1511. def get_vision_config(self) -> dict[str, Any] | None:
  1512. config_name = "vision_config" if not self.is_mistral_format else "vision_encoder"
  1513. return self.global_config.get(config_name)
  1514. def get_audio_config(self) -> dict[str, Any] | None:
  1515. mm_config_key = "whisper_config" if "whisper_config" in self.hparams else "audio_config"
  1516. return self.global_config.get(mm_config_key)
  1517. def set_type(self):
  1518. self.gguf_writer.add_type(gguf.GGUFType.MMPROJ)
  1519. def prepare_metadata(self, vocab_only: bool):
  1520. super().prepare_metadata(vocab_only=vocab_only)
  1521. output_type: str = self.ftype.name.partition("_")[2]
  1522. if self.fname_out.is_dir():
  1523. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=output_type, model_type=None)
  1524. self.fname_out = self.fname_out / f"mmproj-{fname_default}.gguf"
  1525. else:
  1526. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  1527. def set_gguf_parameters(self):
  1528. self.gguf_writer.add_file_type(self.ftype)
  1529. if self.has_vision_encoder:
  1530. self.gguf_writer.add_clip_has_vision_encoder(True)
  1531. self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
  1532. # vision config
  1533. self.image_size = self.find_vparam(["image_size"])
  1534. self.gguf_writer.add_vision_image_size(self.image_size)
  1535. self.gguf_writer.add_vision_patch_size(self.find_vparam(["patch_size"]))
  1536. self.gguf_writer.add_vision_embedding_length(self.find_vparam(["hidden_size"]))
  1537. self.gguf_writer.add_vision_feed_forward_length(self.find_vparam(["intermediate_size"]))
  1538. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys))
  1539. self.gguf_writer.add_vision_head_count(self.find_vparam(["num_attention_heads", "num_heads"]))
  1540. # preprocessor config
  1541. image_mean = _MISTRAL_COMMON_DATASET_MEAN if self.is_mistral_format else self.preprocessor_config["image_mean"]
  1542. image_std = _MISTRAL_COMMON_DATASET_STD if self.is_mistral_format else self.preprocessor_config["image_std"]
  1543. self.gguf_writer.add_vision_image_mean(image_mean)
  1544. self.gguf_writer.add_vision_image_std(image_std)
  1545. if self.has_audio_encoder:
  1546. self.gguf_writer.add_clip_has_audio_encoder(True)
  1547. self.gguf_writer.add_audio_projection_dim(self.n_embd_text)
  1548. # audio config
  1549. self.gguf_writer.add_audio_embedding_length(self.find_aparam(["hidden_size"]))
  1550. self.gguf_writer.add_audio_feed_forward_length(self.find_aparam(["intermediate_size"]))
  1551. self.gguf_writer.add_audio_block_count(self.find_aparam(self.n_block_keys))
  1552. self.gguf_writer.add_audio_head_count(self.find_aparam(["num_attention_heads"]))
  1553. if not self.has_vision_encoder and not self.has_audio_encoder:
  1554. raise ValueError("MmprojModel must have either vision or audio encoder")
  1555. def write_vocab(self):
  1556. raise ValueError("MmprojModel does not support vocab writing")
  1557. def find_vparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1558. assert self.hparams_vision is not None
  1559. return self._find_param(self.hparams_vision, keys, optional)
  1560. def find_aparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1561. assert self.hparams_audio is not None
  1562. return self._find_param(self.hparams_audio, keys, optional)
  1563. def _find_param(self, obj: dict[str, Any], keys: Iterable[str], optional: bool = False) -> Any:
  1564. key = next((k for k in keys if k in obj), None)
  1565. if key is not None:
  1566. return obj[key]
  1567. if optional:
  1568. return None
  1569. raise KeyError(f"could not find any of: {keys}")
  1570. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1571. del bid, name, n_dims # unused
  1572. if ".patch_embd.weight" in new_name or ".patch_merger.weight" in new_name:
  1573. return gguf.GGMLQuantizationType.F16 if self.ftype == gguf.LlamaFileType.MOSTLY_F16 else gguf.GGMLQuantizationType.F32
  1574. return False
  1575. @ModelBase.register("GPTNeoXForCausalLM")
  1576. class GPTNeoXModel(TextModel):
  1577. model_arch = gguf.MODEL_ARCH.GPTNEOX
  1578. def set_gguf_parameters(self):
  1579. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1580. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1581. self.gguf_writer.add_block_count(self.block_count)
  1582. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1583. self.gguf_writer.add_rope_dimension_count(
  1584. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  1585. )
  1586. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1587. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  1588. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  1589. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1590. del bid # unused
  1591. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1592. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1593. tensors: list[tuple[str, Tensor]] = []
  1594. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  1595. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1596. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1597. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1598. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1599. data_torch = torch.cat(
  1600. (
  1601. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1602. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1603. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1604. ),
  1605. dim=0,
  1606. )
  1607. logger.info("re-format attention.linear_qkv.weight")
  1608. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  1609. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1610. data_torch = torch.cat(
  1611. (
  1612. qkv_bias[:, 0, :].reshape((n_embed,)),
  1613. qkv_bias[:, 1, :].reshape((n_embed,)),
  1614. qkv_bias[:, 2, :].reshape((n_embed,)),
  1615. ),
  1616. dim=0,
  1617. )
  1618. logger.info("re-format attention.linear_qkv.bias")
  1619. tensors.append((self.map_tensor_name(name), data_torch))
  1620. return tensors
  1621. @ModelBase.register("BloomForCausalLM", "BloomModel")
  1622. class BloomModel(TextModel):
  1623. model_arch = gguf.MODEL_ARCH.BLOOM
  1624. def set_gguf_parameters(self):
  1625. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1626. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1627. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  1628. self.gguf_writer.add_embedding_length(n_embed)
  1629. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  1630. self.gguf_writer.add_block_count(self.block_count)
  1631. self.gguf_writer.add_head_count(n_head)
  1632. self.gguf_writer.add_head_count_kv(n_head)
  1633. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1634. self.gguf_writer.add_file_type(self.ftype)
  1635. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1636. del bid # unused
  1637. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1638. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1639. name = re.sub(r'transformer\.', '', name)
  1640. tensors: list[tuple[str, Tensor]] = []
  1641. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  1642. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1643. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1644. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1645. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1646. data_torch = torch.cat(
  1647. (
  1648. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1649. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1650. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1651. ),
  1652. dim=0,
  1653. )
  1654. logger.info("re-format attention.linear_qkv.weight")
  1655. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  1656. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1657. data_torch = torch.cat(
  1658. (
  1659. qkv_bias[:, 0, :].reshape((n_embed,)),
  1660. qkv_bias[:, 1, :].reshape((n_embed,)),
  1661. qkv_bias[:, 2, :].reshape((n_embed,)),
  1662. ),
  1663. dim=0,
  1664. )
  1665. logger.info("re-format attention.linear_qkv.bias")
  1666. tensors.append((self.map_tensor_name(name), data_torch))
  1667. return tensors
  1668. @ModelBase.register("MPTForCausalLM")
  1669. class MPTModel(TextModel):
  1670. model_arch = gguf.MODEL_ARCH.MPT
  1671. def set_vocab(self):
  1672. try:
  1673. self._set_vocab_gpt2()
  1674. except Exception:
  1675. # Fallback for SEA-LION model
  1676. self._set_vocab_sentencepiece()
  1677. self.gguf_writer.add_add_bos_token(False)
  1678. self.gguf_writer.add_pad_token_id(3)
  1679. self.gguf_writer.add_eos_token_id(1)
  1680. self.gguf_writer.add_unk_token_id(0)
  1681. def set_gguf_parameters(self):
  1682. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1683. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1684. self.gguf_writer.add_block_count(self.block_count)
  1685. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  1686. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1687. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  1688. self.gguf_writer.add_head_count_kv(kv_n_heads)
  1689. self.gguf_writer.add_layer_norm_eps(1e-5)
  1690. if self.hparams["attn_config"]["clip_qkv"] is not None:
  1691. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  1692. if self.hparams["attn_config"]["alibi"]:
  1693. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  1694. else:
  1695. self.gguf_writer.add_max_alibi_bias(0.0)
  1696. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1697. del bid # unused
  1698. if "scales" in name:
  1699. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  1700. new_name = new_name.replace("scales", "act.scales")
  1701. else:
  1702. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  1703. return [(new_name, data_torch)]
  1704. @ModelBase.register("OrionForCausalLM")
  1705. class OrionModel(TextModel):
  1706. model_arch = gguf.MODEL_ARCH.ORION
  1707. def set_vocab(self):
  1708. self._set_vocab_sentencepiece()
  1709. def set_gguf_parameters(self):
  1710. head_count = self.hparams["num_attention_heads"]
  1711. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1712. ctx_length = 0
  1713. if "max_sequence_length" in self.hparams:
  1714. ctx_length = self.hparams["max_sequence_length"]
  1715. elif "max_position_embeddings" in self.hparams:
  1716. ctx_length = self.hparams["max_position_embeddings"]
  1717. elif "model_max_length" in self.hparams:
  1718. ctx_length = self.hparams["model_max_length"]
  1719. else:
  1720. raise ValueError("gguf: can not find ctx length parameter.")
  1721. self.gguf_writer.add_file_type(self.ftype)
  1722. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1723. self.gguf_writer.add_context_length(ctx_length)
  1724. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1725. self.gguf_writer.add_block_count(self.block_count)
  1726. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1727. self.gguf_writer.add_head_count(head_count)
  1728. self.gguf_writer.add_head_count_kv(head_count_kv)
  1729. # note: config provides rms norm but it is actually layer norm
  1730. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  1731. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  1732. @ModelBase.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  1733. class BaichuanModel(TextModel):
  1734. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1735. def set_vocab(self):
  1736. self._set_vocab_sentencepiece()
  1737. def set_gguf_parameters(self):
  1738. super().set_gguf_parameters()
  1739. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1740. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1741. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1742. head_count = self.hparams["num_attention_heads"]
  1743. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1744. tensors: list[tuple[str, Tensor]] = []
  1745. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1746. logger.info(f"Unpacking and permuting layer {bid}")
  1747. tensors = [
  1748. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1749. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1750. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1751. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1752. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1753. self._reverse_hf_part(data_torch, 2)),
  1754. ]
  1755. else:
  1756. tensors = [(self.map_tensor_name(name), data_torch)]
  1757. return tensors
  1758. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1759. if n_kv_head is not None and n_head != n_kv_head:
  1760. n_head //= n_kv_head
  1761. return (
  1762. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1763. .swapaxes(1, 2)
  1764. .reshape(weights.shape)
  1765. )
  1766. def _reverse_hf_permute_part(
  1767. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1768. ) -> Tensor:
  1769. r = weights.shape[0] // 3
  1770. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1771. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1772. r = weights.shape[0] // 3
  1773. return weights[r * n_part:r * n_part + r, ...]
  1774. @ModelBase.register("XverseForCausalLM")
  1775. class XverseModel(TextModel):
  1776. model_arch = gguf.MODEL_ARCH.XVERSE
  1777. def set_vocab(self):
  1778. assert (self.dir_model / "tokenizer.json").is_file()
  1779. dir_model = self.dir_model
  1780. hparams = self.hparams
  1781. tokens: list[bytes] = []
  1782. toktypes: list[int] = []
  1783. from transformers import AutoTokenizer
  1784. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1785. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1786. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1787. # because vocab_size is the count of items, and indexes start at 0.
  1788. max_vocab_index = max(tokenizer.get_vocab().values())
  1789. if max_vocab_index >= vocab_size:
  1790. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1791. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1792. added_vocab = tokenizer.get_added_vocab()
  1793. for token_id in range(vocab_size):
  1794. token_text = reverse_vocab[token_id].encode('utf-8')
  1795. # replace "\x00" to string with length > 0
  1796. if token_text == b"\x00":
  1797. toktype = gguf.TokenType.BYTE # special
  1798. token_text = f"<{token_text}>".encode('utf-8')
  1799. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1800. toktype = gguf.TokenType.BYTE # special
  1801. elif reverse_vocab[token_id] in added_vocab:
  1802. if tokenizer.added_tokens_decoder[token_id].special:
  1803. toktype = gguf.TokenType.CONTROL
  1804. else:
  1805. toktype = gguf.TokenType.USER_DEFINED
  1806. else:
  1807. toktype = gguf.TokenType.NORMAL
  1808. tokens.append(token_text)
  1809. toktypes.append(toktype)
  1810. self.gguf_writer.add_tokenizer_model("llama")
  1811. self.gguf_writer.add_tokenizer_pre("default")
  1812. self.gguf_writer.add_token_list(tokens)
  1813. self.gguf_writer.add_token_types(toktypes)
  1814. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1815. special_vocab.add_to_gguf(self.gguf_writer)
  1816. def set_gguf_parameters(self):
  1817. super().set_gguf_parameters()
  1818. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1819. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1820. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1821. del bid # unused
  1822. head_count = self.hparams["num_attention_heads"]
  1823. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1824. # HF models permute some of the tensors, so we need to undo that
  1825. if name.endswith("q_proj.weight"):
  1826. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1827. if name.endswith("k_proj.weight"):
  1828. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1829. return [(self.map_tensor_name(name), data_torch)]
  1830. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1831. if n_kv_head is not None and n_head != n_kv_head:
  1832. n_head //= n_kv_head
  1833. return (
  1834. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1835. .swapaxes(1, 2)
  1836. .reshape(weights.shape)
  1837. )
  1838. @ModelBase.register("FalconForCausalLM", "RWForCausalLM")
  1839. class FalconModel(TextModel):
  1840. model_arch = gguf.MODEL_ARCH.FALCON
  1841. def set_gguf_parameters(self):
  1842. n_head = self.hparams.get("num_attention_heads")
  1843. if n_head is None:
  1844. n_head = self.hparams["n_head"] # old name
  1845. n_head_kv = self.hparams.get("num_kv_heads")
  1846. if n_head_kv is None:
  1847. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1848. self.gguf_writer.add_context_length(2048) # not in config.json
  1849. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1850. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1851. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1852. self.gguf_writer.add_block_count(self.block_count)
  1853. self.gguf_writer.add_head_count(n_head)
  1854. self.gguf_writer.add_head_count_kv(n_head_kv)
  1855. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1856. self.gguf_writer.add_file_type(self.ftype)
  1857. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1858. del bid # unused
  1859. # QKV tensor transform
  1860. # The original query_key_value tensor contains n_head_kv "kv groups",
  1861. # each consisting of n_head/n_head_kv query weights followed by one key
  1862. # and one value weight (shared by all query heads in the kv group).
  1863. # This layout makes it a big pain to work with in GGML.
  1864. # So we rearrange them here,, so that we have n_head query weights
  1865. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1866. # in contiguous fashion.
  1867. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1868. if "query_key_value" in name:
  1869. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1870. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1871. head_dim = self.hparams["hidden_size"] // n_head
  1872. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1873. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1874. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1875. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1876. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1877. return [(self.map_tensor_name(name), data_torch)]
  1878. @ModelBase.register("GPTBigCodeForCausalLM")
  1879. class StarCoderModel(TextModel):
  1880. model_arch = gguf.MODEL_ARCH.STARCODER
  1881. def set_gguf_parameters(self):
  1882. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1883. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1884. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1885. self.gguf_writer.add_block_count(self.block_count)
  1886. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1887. self.gguf_writer.add_head_count_kv(1)
  1888. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1889. self.gguf_writer.add_file_type(self.ftype)
  1890. @ModelBase.register("GPTRefactForCausalLM")
  1891. class RefactModel(TextModel):
  1892. model_arch = gguf.MODEL_ARCH.REFACT
  1893. def set_vocab(self):
  1894. super().set_vocab()
  1895. # TODO: how to determine special FIM tokens automatically?
  1896. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1897. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1898. special_vocab._set_special_token("prefix", 1)
  1899. special_vocab._set_special_token("suffix", 3)
  1900. special_vocab._set_special_token("middle", 2)
  1901. special_vocab.chat_template = None # do not add it twice
  1902. special_vocab.add_to_gguf(self.gguf_writer)
  1903. def set_gguf_parameters(self):
  1904. hidden_dim = self.hparams["n_embd"]
  1905. inner_dim = 4 * hidden_dim
  1906. hidden_dim = int(2 * inner_dim / 3)
  1907. multiple_of = 256
  1908. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1909. # refact uses Alibi. So this is from config.json which might be used by training.
  1910. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1911. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1912. self.gguf_writer.add_feed_forward_length(ff_dim)
  1913. self.gguf_writer.add_block_count(self.block_count)
  1914. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1915. self.gguf_writer.add_head_count_kv(1)
  1916. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1917. self.gguf_writer.add_file_type(self.ftype)
  1918. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1919. hidden_dim = self.hparams["n_embd"]
  1920. inner_dim = 4 * hidden_dim
  1921. hidden_dim = int(2 * inner_dim / 3)
  1922. multiple_of = 256
  1923. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1924. n_head = self.hparams["n_head"]
  1925. n_head_kv = 1
  1926. head_dim = self.hparams["n_embd"] // n_head
  1927. tensors: list[tuple[str, Tensor]] = []
  1928. if bid is not None:
  1929. if name == f"transformer.h.{bid}.attn.kv.weight":
  1930. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1931. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1932. elif name == f"transformer.h.{bid}.attn.q.weight":
  1933. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1934. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1935. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1936. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1937. if len(tensors) == 0:
  1938. tensors.append((self.map_tensor_name(name), data_torch))
  1939. return tensors
  1940. @ModelBase.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1941. class StableLMModel(TextModel):
  1942. model_arch = gguf.MODEL_ARCH.STABLELM
  1943. def set_vocab(self):
  1944. if (self.dir_model / "tokenizer.json").is_file():
  1945. self._set_vocab_gpt2()
  1946. else:
  1947. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1948. self._set_vocab_qwen()
  1949. def set_gguf_parameters(self):
  1950. hparams = self.hparams
  1951. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1952. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1953. self.gguf_writer.add_block_count(self.block_count)
  1954. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1955. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1956. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1957. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1958. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1959. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1960. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1961. self.gguf_writer.add_file_type(self.ftype)
  1962. _q_norms: list[dict[str, Tensor]] | None = None
  1963. _k_norms: list[dict[str, Tensor]] | None = None
  1964. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1965. n_head = self.hparams["num_attention_heads"]
  1966. n_kv_head = self.hparams["num_key_value_heads"]
  1967. if name.find("q_layernorm.norms") != -1:
  1968. assert bid is not None
  1969. if self._q_norms is None:
  1970. self._q_norms = [{} for _ in range(self.block_count)]
  1971. self._q_norms[bid][name] = data_torch
  1972. if len(self._q_norms[bid]) >= n_head:
  1973. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1974. else:
  1975. return []
  1976. if name.find("k_layernorm.norms") != -1:
  1977. assert bid is not None
  1978. if self._k_norms is None:
  1979. self._k_norms = [{} for _ in range(self.block_count)]
  1980. self._k_norms[bid][name] = data_torch
  1981. if len(self._k_norms[bid]) >= n_kv_head:
  1982. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1983. else:
  1984. return []
  1985. return [(self.map_tensor_name(name), data_torch)]
  1986. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1987. datas: list[Tensor] = []
  1988. # extract the norms in order
  1989. for xid in range(n_head):
  1990. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1991. datas.append(norms[ename])
  1992. del norms[ename]
  1993. data_torch = torch.stack(datas, dim=0)
  1994. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1995. new_name = self.map_tensor_name(merged_name)
  1996. return [(new_name, data_torch)]
  1997. def prepare_tensors(self):
  1998. super().prepare_tensors()
  1999. if self._q_norms is not None or self._k_norms is not None:
  2000. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  2001. norms = (
  2002. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  2003. ) + (
  2004. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  2005. )
  2006. if len(norms) > 0:
  2007. raise ValueError(f"Unprocessed norms: {norms}")
  2008. @ModelBase.register(
  2009. "LLaMAForCausalLM",
  2010. "LlamaForCausalLM",
  2011. "MistralForCausalLM",
  2012. "MixtralForCausalLM",
  2013. "VLlama3ForCausalLM",
  2014. "LlavaForConditionalGeneration",
  2015. "VoxtralForConditionalGeneration",
  2016. "LlamaModel")
  2017. class LlamaModel(TextModel):
  2018. model_arch = gguf.MODEL_ARCH.LLAMA
  2019. undo_permute = True
  2020. def __init__(self, *args, **kwargs):
  2021. super().__init__(*args, **kwargs)
  2022. # fix for SmolVLM2, missing `num_attention_heads` in config.json
  2023. if self.hf_arch == "VLlama3ForCausalLM":
  2024. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
  2025. hparams = ModelBase.load_hparams(self.dir_model, is_mistral_format=False)
  2026. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  2027. def set_vocab(self):
  2028. if self.origin_hf_arch == "GlmasrModel":
  2029. return self._set_vocab_glmedge()
  2030. if self.is_mistral_format:
  2031. return self._set_vocab_mistral()
  2032. path_tekken_json = self.dir_model / "tekken.json"
  2033. path_tokenizer_json = self.dir_model / "tokenizer.json"
  2034. if path_tekken_json.is_file() and not path_tokenizer_json.is_file():
  2035. self._set_vocab_mistral()
  2036. try:
  2037. self._set_vocab_sentencepiece()
  2038. except FileNotFoundError:
  2039. try:
  2040. self._set_vocab_llama_hf()
  2041. except (FileNotFoundError, TypeError):
  2042. # Llama 3
  2043. self._set_vocab_gpt2()
  2044. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  2045. if self.hparams.get("vocab_size", 32000) == 32016:
  2046. special_vocab = gguf.SpecialVocab(
  2047. self.dir_model, load_merges=False,
  2048. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  2049. )
  2050. special_vocab._set_special_token("prefix", 32007)
  2051. special_vocab._set_special_token("suffix", 32008)
  2052. special_vocab._set_special_token("middle", 32009)
  2053. special_vocab._set_special_token("eot", 32010)
  2054. special_vocab.add_to_gguf(self.gguf_writer)
  2055. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2056. if tokenizer_config_file.is_file():
  2057. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2058. tokenizer_config_json = json.load(f)
  2059. if "add_prefix_space" in tokenizer_config_json:
  2060. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  2061. # Apply to granite small models only
  2062. if self.hparams.get("vocab_size", 32000) == 49152:
  2063. self.gguf_writer.add_add_bos_token(False)
  2064. def set_gguf_parameters(self):
  2065. super().set_gguf_parameters()
  2066. hparams = self.hparams
  2067. if not self.is_mistral_format:
  2068. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2069. if (rope_dim := hparams.get("head_dim")) is None:
  2070. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2071. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2072. @staticmethod
  2073. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2074. if n_head_kv is not None and n_head != n_head_kv:
  2075. n_head = n_head_kv
  2076. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2077. .swapaxes(1, 2)
  2078. .reshape(weights.shape))
  2079. _experts: list[dict[str, Tensor]] | None = None
  2080. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2081. n_head = self.find_hparam(["n_heads", "num_attention_heads"])
  2082. n_kv_head = self.find_hparam(["n_kv_heads", "num_key_value_heads"])
  2083. vision_prefixes = [
  2084. "vision_encoder.",
  2085. "vision_language_adapter.",
  2086. "patch_merger.",
  2087. "pre_mm_projector_norm",
  2088. "audio_encoder.",
  2089. ]
  2090. is_multimodal_tensor = "vision_tower" in name \
  2091. or "vision_model" in name \
  2092. or "audio_tower" in name \
  2093. or "model.connector" in name \
  2094. or "multi_modal_projector" in name \
  2095. or any(
  2096. name.startswith(prefix)
  2097. for prefix in vision_prefixes
  2098. )
  2099. if is_multimodal_tensor:
  2100. return [] # skip vision tensors
  2101. elif self.hf_arch == "LlamaModel":
  2102. name = "model." + name
  2103. elif name.startswith("model.text_model"):
  2104. name = name.replace("text_model.", "") # for SmolVLM
  2105. elif name.startswith("language_model."):
  2106. name = name.replace("language_model.", "") # for the rest
  2107. if self.undo_permute:
  2108. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2109. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2110. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2111. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2112. # process the experts separately
  2113. if name.find("block_sparse_moe.experts") != -1:
  2114. n_experts = self.hparams["num_local_experts"]
  2115. assert bid is not None
  2116. if self._experts is None:
  2117. self._experts = [{} for _ in range(self.block_count)]
  2118. self._experts[bid][name] = data_torch
  2119. if len(self._experts[bid]) >= n_experts * 3:
  2120. tensors: list[tuple[str, Tensor]] = []
  2121. # merge the experts into a single 3d tensor
  2122. for wid in ["w1", "w2", "w3"]:
  2123. datas: list[Tensor] = []
  2124. for xid in range(n_experts):
  2125. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  2126. datas.append(self._experts[bid][ename])
  2127. del self._experts[bid][ename]
  2128. data_torch = torch.stack(datas, dim=0)
  2129. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  2130. new_name = self.map_tensor_name(merged_name)
  2131. tensors.append((new_name, data_torch))
  2132. return tensors
  2133. else:
  2134. return []
  2135. return [(self.map_tensor_name(name), data_torch)]
  2136. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2137. if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters):
  2138. if rope_params.get("rope_type", '').lower() == "llama3":
  2139. base = rope_params.get("rope_theta", 10000.0)
  2140. if (dim := self.hparams.get("head_dim")) is None:
  2141. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2142. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  2143. factor = rope_params.get("factor", 8.0)
  2144. low_freq_factor = rope_params.get("low_freq_factor", 1.0)
  2145. high_freq_factor = rope_params.get("high_freq_factor", 4.0)
  2146. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2147. low_freq_wavelen = old_context_len / low_freq_factor
  2148. high_freq_wavelen = old_context_len / high_freq_factor
  2149. # assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
  2150. rope_factors = []
  2151. for freq in freqs:
  2152. wavelen = 2 * math.pi / freq
  2153. if wavelen < high_freq_wavelen:
  2154. rope_factors.append(1)
  2155. elif wavelen > low_freq_wavelen:
  2156. rope_factors.append(factor)
  2157. else:
  2158. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2159. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2160. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2161. def prepare_tensors(self):
  2162. super().prepare_tensors()
  2163. if self._experts is not None:
  2164. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2165. experts = [k for d in self._experts for k in d.keys()]
  2166. if len(experts) > 0:
  2167. raise ValueError(f"Unprocessed experts: {experts}")
  2168. @ModelBase.register("ArceeForCausalLM")
  2169. class ArceeModel(LlamaModel):
  2170. model_arch = gguf.MODEL_ARCH.ARCEE
  2171. def set_gguf_parameters(self):
  2172. super().set_gguf_parameters()
  2173. self._try_set_pooling_type()
  2174. @ModelBase.register("AfmoeForCausalLM")
  2175. class AfmoeModel(LlamaModel):
  2176. model_arch = gguf.MODEL_ARCH.AFMOE
  2177. def set_gguf_parameters(self):
  2178. super().set_gguf_parameters()
  2179. # MoE parameters
  2180. if (n_experts := self.hparams.get("num_experts")) is not None:
  2181. self.gguf_writer.add_expert_count(n_experts)
  2182. if (n_shared_experts := self.hparams.get("num_shared_experts")) is not None:
  2183. self.gguf_writer.add_expert_shared_count(n_shared_experts)
  2184. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2185. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2186. if (n_dense_layers := self.hparams.get("num_dense_layers")) is not None:
  2187. self.gguf_writer.add_leading_dense_block_count(n_dense_layers)
  2188. # Route normalization and scaling
  2189. if (route_norm := self.hparams.get("route_norm")) is not None:
  2190. self.gguf_writer.add_expert_weights_norm(route_norm)
  2191. if (route_scale := self.hparams.get("route_scale")) is not None:
  2192. self.gguf_writer.add_expert_weights_scale(route_scale)
  2193. # Sliding window attention
  2194. if (sliding_window := self.hparams.get("sliding_window")) is not None:
  2195. self.gguf_writer.add_sliding_window(sliding_window)
  2196. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2197. # Handle expert weights - they're already merged in the HF format
  2198. # process the experts separately
  2199. if name.find("mlp.experts") != -1:
  2200. n_experts = self.hparams["num_experts"]
  2201. assert bid is not None
  2202. if self._experts is None:
  2203. self._experts = [{} for _ in range(self.block_count)]
  2204. self._experts[bid][name] = data_torch
  2205. if len(self._experts[bid]) >= n_experts * 3:
  2206. tensors: list[tuple[str, Tensor]] = []
  2207. # merge the experts into a single 3d tensor
  2208. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  2209. datas: list[Tensor] = []
  2210. for xid in range(n_experts):
  2211. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2212. datas.append(self._experts[bid][ename_to_retrieve])
  2213. del self._experts[bid][ename_to_retrieve]
  2214. data_torch = torch.stack(datas, dim=0)
  2215. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2216. new_name = self.map_tensor_name(merged_name)
  2217. tensors.append((new_name, data_torch))
  2218. return tensors
  2219. else:
  2220. return []
  2221. if name.endswith(".expert_bias"):
  2222. name = name.replace(".expert_bias", ".expert_bias.bias")
  2223. return [(self.map_tensor_name(name), data_torch)]
  2224. @ModelBase.register(
  2225. "LlavaForConditionalGeneration", # pixtral
  2226. "Mistral3ForConditionalGeneration", # mistral small 3.1
  2227. )
  2228. class LlavaVisionModel(MmprojModel):
  2229. img_break_tok_id = -1
  2230. use_break_tok = True
  2231. def __init__(self, *args, **kwargs):
  2232. super().__init__(*args, **kwargs)
  2233. if self.hparams.get("model_type") == "pixtral":
  2234. # layer_norm_eps is not in config.json, it is hard-coded in modeling_pixtral.py
  2235. self.hparams["layer_norm_eps"] = self.hparams.get("layer_norm_eps", 1e-5)
  2236. if self.use_break_tok:
  2237. self.img_break_tok_id = self.get_token_id("[IMG_BREAK]")
  2238. elif self.is_mistral_format:
  2239. # hparams is already vision config here so norm_eps is only defined in global_config.
  2240. self.hparams["norm_eps"] = self.global_config.get("norm_eps", None)
  2241. assert self.hparams["norm_eps"] is not None, "norm_eps not found in params.json"
  2242. if self.use_break_tok:
  2243. self.img_break_tok_id = self.find_vparam(["image_break_token_id"])
  2244. else:
  2245. raise ValueError(f"Unsupported model type: {self.hparams['model_type']}")
  2246. logger.info(f"Image break token id: {self.img_break_tok_id}")
  2247. def get_token_id(self, token: str) -> int:
  2248. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2249. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2250. added_tokens_decoder = json.load(f)['added_tokens_decoder']
  2251. for id_, token_data in added_tokens_decoder.items():
  2252. if token_data["content"] == token:
  2253. return int(id_)
  2254. raise ValueError(f"Token '{token}' not found in tokenizer config.")
  2255. def set_gguf_parameters(self):
  2256. super().set_gguf_parameters()
  2257. hparams = self.hparams
  2258. if hparams.get("model_type") == "pixtral":
  2259. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  2260. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  2261. # hidden_act
  2262. if hparams["hidden_act"] == "silu":
  2263. self.gguf_writer.add_vision_use_silu(True)
  2264. elif hparams["hidden_act"] == "gelu":
  2265. self.gguf_writer.add_vision_use_gelu(True)
  2266. else:
  2267. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  2268. # spatial_merge_size
  2269. if "spatial_merge_size" in self.global_config:
  2270. self.gguf_writer.add_vision_spatial_merge_size(self.global_config["spatial_merge_size"])
  2271. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2272. del bid # unused
  2273. n_head = (
  2274. self.hparams["num_attention_heads"] if not self.is_mistral_format else self.find_vparam(["num_attention_heads"])
  2275. )
  2276. n_kv_head = n_head
  2277. valid_prefixes = (
  2278. "multi_modal_projector.",
  2279. "vision_tower.",
  2280. "vision_encoder.",
  2281. "vision_language_adapter.",
  2282. "patch_merger.",
  2283. "pre_mm_projector_norm",
  2284. )
  2285. if any(name.startswith(prefix) for prefix in valid_prefixes):
  2286. # process vision tensors
  2287. if name.endswith(("q_proj.weight", "q_proj.bias")) and not self.is_mistral_format:
  2288. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2289. if name.endswith(("k_proj.weight", "k_proj.bias")) and not self.is_mistral_format:
  2290. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2291. return [(self.map_tensor_name(name), data_torch)]
  2292. embed_key = "embed_tokens.weight" if not self.is_mistral_format else "tok_embeddings.weight"
  2293. if self.img_break_tok_id > 0 and embed_key in name:
  2294. logger.info(f"Extracting [IMG_BREAK] token embedding from {name}")
  2295. # for pixtral model, we need to extract the [IMG_BREAK] token embedding
  2296. img_break_embd = data_torch[self.img_break_tok_id]
  2297. name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK]
  2298. return [(self.map_tensor_name(name), img_break_embd)]
  2299. return [] # skip other tensors
  2300. @ModelBase.register("Idefics3ForConditionalGeneration", "SmolVLMForConditionalGeneration")
  2301. class SmolVLMModel(MmprojModel):
  2302. def __init__(self, *args, **kwargs):
  2303. super().__init__(*args, **kwargs)
  2304. if self.hparams["model_type"] == "smolvlm_vision":
  2305. # fix for SmolVLM2, missing some keys in config.json
  2306. # default values are taken from transformers code
  2307. self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1152)
  2308. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
  2309. self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 3072)
  2310. def set_gguf_parameters(self):
  2311. super().set_gguf_parameters()
  2312. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.IDEFICS3)
  2313. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  2314. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
  2315. self.gguf_writer.add_vision_use_gelu(True)
  2316. # Add the preprocessor longest edge size
  2317. preproc_image_size = self.preprocessor_config.get("size", {}).get("longest_edge", self.image_size)
  2318. self.gguf_writer.add_vision_preproc_image_size(preproc_image_size)
  2319. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2320. if ".embeddings." in name:
  2321. return gguf.GGMLQuantizationType.F32
  2322. return super().tensor_force_quant(name, new_name, bid, n_dims)
  2323. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2324. del bid # unused
  2325. is_vision_tensor = "vision_tower" in name or "vision_model" in name or "model.connector" in name
  2326. if is_vision_tensor:
  2327. return [(self.map_tensor_name(name), data_torch)]
  2328. return [] # skip other tensors
  2329. @ModelBase.register(
  2330. "Llama4ForConditionalGeneration",
  2331. "Llama4ForCausalLM",
  2332. )
  2333. class Llama4Model(LlamaModel):
  2334. model_arch = gguf.MODEL_ARCH.LLAMA4
  2335. undo_permute = False
  2336. def __init__(self, *args, **kwargs):
  2337. super().__init__(*args, **kwargs)
  2338. # IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
  2339. self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
  2340. self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
  2341. def set_vocab(self):
  2342. self._set_vocab_gpt2()
  2343. def set_gguf_parameters(self):
  2344. super().set_gguf_parameters()
  2345. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
  2346. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
  2347. if "layer_types" in self.hparams:
  2348. if all(lt == "full_attention" for lt in self.hparams["layer_types"]):
  2349. # all layers are full attention (for MobileLLM), disable swa
  2350. self.gguf_writer.add_sliding_window(0)
  2351. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  2352. if name.startswith("language_model."):
  2353. name = name.replace("language_model.", "")
  2354. # split the gate_up into gate and up
  2355. if "gate_up_proj" in name:
  2356. name_up = name.replace("gate_up_proj", "up_proj.weight")
  2357. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  2358. dim_half = data_torch.shape[-1] // 2
  2359. gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
  2360. return [
  2361. (self.map_tensor_name(name_gate), gate_proj_weight),
  2362. (self.map_tensor_name(name_up), up_proj_weight)
  2363. ]
  2364. if name.endswith("down_proj"):
  2365. name += ".weight"
  2366. data_torch = data_torch.transpose(-1, -2)
  2367. if "multi_modal_projector" in name or "vision_model" in name:
  2368. return []
  2369. return super().modify_tensors(data_torch, name, bid)
  2370. @ModelBase.register("Llama4ForConditionalGeneration")
  2371. class Llama4VisionModel(MmprojModel):
  2372. def set_gguf_parameters(self):
  2373. super().set_gguf_parameters()
  2374. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LLAMA4)
  2375. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams["norm_eps"])
  2376. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / self.hparams["pixel_shuffle_ratio"]))
  2377. assert self.hparams["hidden_act"] == "gelu"
  2378. self.gguf_writer.add_vision_use_gelu(True)
  2379. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2380. del bid # unused
  2381. if "multi_modal_projector" in name or "vision_model" in name:
  2382. # process vision tensors
  2383. if "positional_embedding_vlm" in name and ".weight" not in name:
  2384. name += ".weight"
  2385. if "multi_modal_projector.linear_1" in name:
  2386. # despite the name with number postfix, this is a single fully connected layer
  2387. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_MMPROJ_FC] + '.weight', data_torch)]
  2388. return [(self.map_tensor_name(name), data_torch)]
  2389. return []
  2390. @ModelBase.register("Mistral3ForConditionalGeneration")
  2391. class Mistral3Model(LlamaModel):
  2392. model_arch = gguf.MODEL_ARCH.MISTRAL3
  2393. def __init__(self, *args, **kwargs):
  2394. super().__init__(*args, **kwargs)
  2395. # for compatibility, we use LLAMA arch for older models
  2396. # TODO: remove this once everyone has migrated to newer version of llama.cpp
  2397. if self.hparams.get("model_type") != "ministral3":
  2398. self.model_arch = gguf.MODEL_ARCH.LLAMA
  2399. self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[self.model_arch]
  2400. self.gguf_writer.add_architecture()
  2401. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  2402. def set_gguf_parameters(self):
  2403. super().set_gguf_parameters()
  2404. rope_params = self.rope_parameters
  2405. if self.hparams.get("model_type") == "ministral3":
  2406. assert rope_params, "ministral3 must have 'rope_parameters' config"
  2407. assert rope_params["rope_type"] == "yarn", "ministral3 rope_type must be 'yarn'"
  2408. self.gguf_writer.add_rope_scaling_yarn_log_mul(rope_params["mscale_all_dim"])
  2409. self.gguf_writer.add_attn_temperature_scale(rope_params["llama_4_scaling_beta"])
  2410. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  2411. name = name.replace("language_model.", "")
  2412. if "multi_modal_projector" in name or "vision_tower" in name:
  2413. return []
  2414. return super().modify_tensors(data_torch, name, bid)
  2415. @ModelBase.register("DeciLMForCausalLM")
  2416. class DeciModel(TextModel):
  2417. model_arch = gguf.MODEL_ARCH.DECI
  2418. @staticmethod
  2419. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  2420. # DeciLM-specific code
  2421. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  2422. return DeciModel._find_multiple(intermediate_size, 256)
  2423. @staticmethod
  2424. def _find_multiple(n: int, k: int) -> int:
  2425. # DeciLM-specific code
  2426. if n % k == 0:
  2427. return n
  2428. return n + k - (n % k)
  2429. def __init__(self, *args, **kwargs):
  2430. super().__init__(*args, **kwargs)
  2431. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2432. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  2433. assert self.block_count == len(_block_configs)
  2434. self._num_kv_heads = list()
  2435. self._num_heads = list()
  2436. _ffn_multipliers = list()
  2437. # ***linear attention layer***
  2438. # if n_heads_in_group is None and replace_with_linear is True
  2439. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  2440. # ***attention-free layer***
  2441. # if n_heads_in_group is None and replace_with_linear is False
  2442. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  2443. # ***normal attention-layer***
  2444. # if n_heads_in_group is not None, then
  2445. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  2446. # _num_heads[il] is num_attention_head
  2447. # ***dummy layer*** for nemotron 253B
  2448. # if n_heads_in_group is None and ffn_mult is None
  2449. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0 and _ffn_dims is 0
  2450. for il in range(len(_block_configs)):
  2451. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  2452. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  2453. self._num_kv_heads.append(0)
  2454. self._num_heads.append(self.hparams["num_attention_heads"])
  2455. else:
  2456. self._num_kv_heads.append(0)
  2457. self._num_heads.append(0)
  2458. else:
  2459. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  2460. self._num_heads.append(self.hparams["num_attention_heads"])
  2461. if _block_configs[il]["ffn"]["ffn_mult"] is None: # dummy layer
  2462. _ffn_multipliers.append(0.0)
  2463. else:
  2464. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  2465. assert self.block_count == len(self._num_kv_heads)
  2466. assert self.block_count == len(self._num_heads)
  2467. assert self.block_count == len(_ffn_multipliers)
  2468. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  2469. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  2470. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  2471. self._ffn_dims: list[int] = [
  2472. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  2473. for multiplier in _ffn_multipliers
  2474. ]
  2475. def set_vocab(self):
  2476. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  2477. # eos_token from '|eot_id|' to '|end_of_text|'
  2478. if self.hparams.get("vocab_size", 128256) == 128256:
  2479. tokens, toktypes, tokpre = self.get_vocab_base()
  2480. self.gguf_writer.add_tokenizer_model("gpt2")
  2481. self.gguf_writer.add_tokenizer_pre(tokpre)
  2482. self.gguf_writer.add_token_list(tokens)
  2483. self.gguf_writer.add_token_types(toktypes)
  2484. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  2485. special_vocab.add_to_gguf(self.gguf_writer)
  2486. else:
  2487. # DeciLM-7B
  2488. self._set_vocab_llama_hf()
  2489. def set_gguf_parameters(self):
  2490. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2491. assert self.block_count == len(self._num_kv_heads)
  2492. assert self.block_count == len(self._num_heads)
  2493. assert self.block_count == len(self._ffn_dims)
  2494. if (rope_theta := self.rope_parameters.get("rope_theta")) is not None:
  2495. self.gguf_writer.add_rope_freq_base(rope_theta)
  2496. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2497. self.gguf_writer.add_head_count(self._num_heads)
  2498. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  2499. self.gguf_writer.add_block_count(self.block_count)
  2500. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2501. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2502. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2503. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2504. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2505. self.gguf_writer.add_file_type(self.ftype)
  2506. else: # DeciLM-7B
  2507. super().set_gguf_parameters()
  2508. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  2509. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  2510. assert self.block_count == len(self._num_kv_heads)
  2511. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2512. hparams = self.hparams
  2513. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2514. if (rope_dim := hparams.get("head_dim")) is None:
  2515. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2516. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2517. @staticmethod
  2518. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2519. if n_head_kv is not None and n_head != n_head_kv:
  2520. n_head = n_head_kv
  2521. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2522. .swapaxes(1, 2)
  2523. .reshape(weights.shape))
  2524. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2525. n_head = self.hparams["num_attention_heads"]
  2526. if bid is not None:
  2527. if "num_key_value_heads_per_layer" in self.hparams:
  2528. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  2529. elif "block_configs" in self.hparams:
  2530. n_kv_head = self._num_kv_heads[bid]
  2531. n_head = self._num_heads[bid]
  2532. else:
  2533. n_kv_head = self.hparams.get("num_key_value_heads")
  2534. else:
  2535. n_kv_head = self.hparams.get("num_key_value_heads")
  2536. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2537. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  2538. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2539. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  2540. return [(self.map_tensor_name(name), data_torch)]
  2541. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2542. if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters):
  2543. if rope_params.get("rope_type", '').lower() == "llama3":
  2544. base = rope_params.get("rope_theta", 10000.0)
  2545. if (dim := self.hparams.get("head_dim")) is None:
  2546. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2547. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  2548. factor = rope_params.get("factor", 8.0)
  2549. low_freq_factor = rope_params.get("low_freq_factor", 1.0)
  2550. high_freq_factor = rope_params.get("high_freq_factor", 4.0)
  2551. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2552. low_freq_wavelen = old_context_len / low_freq_factor
  2553. high_freq_wavelen = old_context_len / high_freq_factor
  2554. assert low_freq_wavelen != high_freq_wavelen
  2555. rope_factors = []
  2556. for freq in freqs:
  2557. wavelen = 2 * math.pi / freq
  2558. if wavelen < high_freq_wavelen:
  2559. rope_factors.append(1)
  2560. elif wavelen > low_freq_wavelen:
  2561. rope_factors.append(factor)
  2562. else:
  2563. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2564. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2565. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2566. def prepare_tensors(self):
  2567. super().prepare_tensors()
  2568. @ModelBase.register("BitnetForCausalLM")
  2569. class BitnetModel(TextModel):
  2570. model_arch = gguf.MODEL_ARCH.BITNET
  2571. def set_vocab(self):
  2572. self._set_vocab_sentencepiece()
  2573. def set_gguf_parameters(self):
  2574. super().set_gguf_parameters()
  2575. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2576. self.gguf_writer.add_rope_scaling_factor(1.0)
  2577. def weight_quant(self, weight: Tensor) -> Tensor:
  2578. dtype = weight.dtype
  2579. weight = weight.float()
  2580. scale = weight.abs().mean().clamp(min=1e-5)
  2581. iscale = 1 / scale
  2582. # TODO: multiply by the scale directly instead of inverting it twice
  2583. # (this is also unnecessarily doubly inverted upstream)
  2584. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  2585. result = (weight * iscale).round().clamp(-1, 1) / iscale
  2586. return result.type(dtype)
  2587. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2588. new_name = self.map_tensor_name(name)
  2589. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  2590. gguf.MODEL_TENSOR.ATTN_Q,
  2591. gguf.MODEL_TENSOR.ATTN_K,
  2592. gguf.MODEL_TENSOR.ATTN_V,
  2593. gguf.MODEL_TENSOR.ATTN_OUT,
  2594. gguf.MODEL_TENSOR.FFN_UP,
  2595. gguf.MODEL_TENSOR.FFN_DOWN,
  2596. gguf.MODEL_TENSOR.FFN_GATE,
  2597. ]):
  2598. # transform weight into 1/0/-1 (in fp32)
  2599. data_torch = self.weight_quant(data_torch)
  2600. yield (new_name, data_torch)
  2601. @ModelBase.register("GrokForCausalLM", "Grok1ForCausalLM")
  2602. class GrokModel(TextModel):
  2603. model_arch = gguf.MODEL_ARCH.GROK
  2604. def set_vocab(self):
  2605. if (self.dir_model / 'tokenizer.model').is_file():
  2606. self._set_vocab_sentencepiece()
  2607. return
  2608. if not (self.dir_model / 'tokenizer.json').is_file() or not (self.dir_model / 'chat_template.jinja').is_file():
  2609. logger.error('Error: Missing vocab and chat template, download files from https://huggingface.co/alvarobartt/grok-2-tokenizer')
  2610. sys.exit(1)
  2611. self._set_vocab_gpt2()
  2612. def __init__(self, *args, **kwargs):
  2613. super().__init__(*args, **kwargs)
  2614. def set_gguf_parameters(self):
  2615. super().set_gguf_parameters()
  2616. self.gguf_writer.add_attn_logit_softcapping(self.hparams.get("attn_logit_softcapping", 30.0))
  2617. self.gguf_writer.add_router_logit_softcapping(self.hparams.get("router_logit_softcapping", 30.0))
  2618. if (final_logit_softcap := self.hparams.get("final_logit_softcapping")):
  2619. self.gguf_writer.add_final_logit_softcapping(final_logit_softcap)
  2620. if (rope_dim := self.hparams.get("head_dim")) is None:
  2621. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2622. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2623. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2624. # Treat "original" as "yarn", seems to have been a mistake
  2625. if self.hparams.get("rope_type") in ("yarn", "original"):
  2626. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2627. self.gguf_writer.add_rope_scaling_factor(self.hparams["scaling_factor"])
  2628. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["original_max_position_embeddings"])
  2629. self.gguf_writer.add_rope_scaling_yarn_ext_factor(self.hparams["extrapolation_factor"])
  2630. self.gguf_writer.add_rope_scaling_yarn_attn_factor(self.hparams["attn_factor"])
  2631. self.gguf_writer.add_rope_scaling_yarn_beta_fast(self.hparams["beta_fast"])
  2632. self.gguf_writer.add_rope_scaling_yarn_beta_slow(self.hparams["beta_slow"])
  2633. if temp_len := self.hparams.get("attn_temperature_len"):
  2634. self.gguf_writer.add_attn_temperature_length(temp_len)
  2635. self.gguf_writer.add_attn_output_scale(self.hparams.get("attn_output_multiplier", rope_dim**-0.5))
  2636. self.gguf_writer.add_embedding_scale(self.hparams["embedding_multiplier_scale"])
  2637. self.gguf_writer.add_logit_scale(self.hparams["output_multiplier_scale"])
  2638. _experts: list[dict[str, list[Tensor]]] | None = None
  2639. _cur_expert = ""
  2640. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2641. tensors: list[tuple[str, Tensor]] = []
  2642. is_expert = ".moe." in name or ".block_sparse_moe.experts." in name
  2643. if not is_expert:
  2644. tensors.append((self.map_tensor_name(name), data_torch))
  2645. # process the experts separately
  2646. if is_expert or self._cur_expert:
  2647. n_experts = self.hparams["num_local_experts"]
  2648. assert bid is not None
  2649. if self._experts is None:
  2650. self._experts = [{} for _ in range(self.block_count)]
  2651. # concatenate split tensors
  2652. if name in self._experts[bid]:
  2653. self._cur_expert = name
  2654. self._experts[bid][name].append(data_torch)
  2655. return []
  2656. elif is_expert:
  2657. self._cur_expert = name
  2658. self._experts[bid][name] = [data_torch]
  2659. return []
  2660. else:
  2661. self._cur_expert = ""
  2662. for bid in range(self.block_count):
  2663. if len(self._experts[bid]) >= n_experts * 3:
  2664. # merge the experts into a single 3d tensor
  2665. for wid in [("linear", "w1", 0), ("linear_1", "w2", 1), ("linear_v", "w3", 0)]:
  2666. datas: list[Tensor] = []
  2667. for xid in range(n_experts):
  2668. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid[0]}.weight"
  2669. if ename not in self._experts[bid]:
  2670. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid[1]}.weight"
  2671. tensor_list = self._experts[bid][ename]
  2672. datas.append(torch.cat(tensor_list, dim=wid[2]) if len(tensor_list) > 1 else tensor_list[0])
  2673. del self._experts[bid][ename]
  2674. data_torch = torch.stack(datas, dim=0)
  2675. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid[0]}.weight"
  2676. new_name = self.map_tensor_name(merged_name)
  2677. yield (new_name, data_torch)
  2678. yield from tensors
  2679. @ModelBase.register("DbrxForCausalLM")
  2680. class DbrxModel(TextModel):
  2681. model_arch = gguf.MODEL_ARCH.DBRX
  2682. def set_gguf_parameters(self):
  2683. ffn_config = self.hparams["ffn_config"]
  2684. attn_config = self.hparams["attn_config"]
  2685. self.gguf_writer.add_block_count(self.block_count)
  2686. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  2687. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2688. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  2689. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  2690. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  2691. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  2692. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  2693. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  2694. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  2695. self.gguf_writer.add_layer_norm_eps(1e-5)
  2696. self.gguf_writer.add_file_type(self.ftype)
  2697. logger.info(f"gguf: file type = {self.ftype}")
  2698. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2699. del bid # unused
  2700. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  2701. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  2702. n_embd = self.hparams["d_model"]
  2703. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  2704. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  2705. # But llama.cpp moe graph works differently
  2706. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  2707. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  2708. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2709. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  2710. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2711. experts = False
  2712. for exp_tensor_name in exp_tensor_names.keys():
  2713. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  2714. experts = True
  2715. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  2716. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  2717. data_torch = data_torch.permute(*permute_tensor)
  2718. break
  2719. # map tensor names
  2720. # In MoE models the ffn tensors are typically most of the model weights,
  2721. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  2722. # Every other model has the weight names ending in .weight,
  2723. # let's assume that is the convention which is not the case for dbrx:
  2724. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  2725. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  2726. return [(new_name, data_torch)]
  2727. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  2728. del name, new_name, bid # unused
  2729. return n_dims > 1
  2730. @ModelBase.register("MiniCPMForCausalLM")
  2731. class MiniCPMModel(TextModel):
  2732. model_arch = gguf.MODEL_ARCH.MINICPM
  2733. def set_gguf_parameters(self):
  2734. super().set_gguf_parameters()
  2735. embedding_scale = float(self.hparams["scale_emb"])
  2736. self.gguf_writer.add_embedding_scale(embedding_scale)
  2737. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  2738. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  2739. self.gguf_writer.add_residual_scale(residual_scale)
  2740. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  2741. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  2742. self.gguf_writer.add_logit_scale(logit_scale)
  2743. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  2744. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2745. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2746. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2747. if rope_scaling is not None:
  2748. long_factors = rope_scaling.get('long_factor', None)
  2749. short_factors = rope_scaling.get('short_factor', None)
  2750. if long_factors is None or short_factors is None:
  2751. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2752. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2753. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2754. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2755. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2756. def set_vocab(self):
  2757. self._set_vocab_sentencepiece()
  2758. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2759. del bid # unused
  2760. n_head = self.hparams["num_attention_heads"]
  2761. n_kv_head = self.hparams.get("num_key_value_heads")
  2762. # HF models permute some of the tensors, so we need to undo that
  2763. if name.endswith(("q_proj.weight")):
  2764. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2765. if name.endswith(("k_proj.weight")):
  2766. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2767. return [(self.map_tensor_name(name), data_torch)]
  2768. @ModelBase.register("MiniCPM3ForCausalLM")
  2769. class MiniCPM3Model(TextModel):
  2770. model_arch = gguf.MODEL_ARCH.MINICPM3
  2771. def set_gguf_parameters(self):
  2772. hparams = self.hparams
  2773. self.gguf_writer.add_file_type(self.ftype)
  2774. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2775. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2776. self.gguf_writer.add_block_count(self.block_count)
  2777. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2778. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2779. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  2780. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2781. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2782. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2783. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2784. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2785. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2786. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2787. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2788. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2789. if rope_scaling is not None:
  2790. rope_dims = self.hparams["qk_rope_head_dim"]
  2791. long_factors = rope_scaling.get('long_factor', None)
  2792. short_factors = rope_scaling.get('short_factor', None)
  2793. if long_factors is None or short_factors is None:
  2794. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2795. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2796. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2797. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2798. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2799. def set_vocab(self):
  2800. self._set_vocab_sentencepiece()
  2801. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  2802. if n_kv_head is not None and n_head != n_kv_head:
  2803. n_head //= n_kv_head
  2804. return (
  2805. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2806. .swapaxes(1, 2)
  2807. .reshape(weights.shape)
  2808. )
  2809. @ModelBase.register("QWenLMHeadModel")
  2810. class QwenModel(TextModel):
  2811. model_arch = gguf.MODEL_ARCH.QWEN
  2812. @staticmethod
  2813. def token_bytes_to_string(b):
  2814. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2815. byte_encoder = bytes_to_unicode()
  2816. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2817. @staticmethod
  2818. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2819. parts = [bytes([b]) for b in token]
  2820. while True:
  2821. min_idx = None
  2822. min_rank = None
  2823. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2824. rank = mergeable_ranks.get(pair[0] + pair[1])
  2825. if rank is not None and (min_rank is None or rank < min_rank):
  2826. min_idx = i
  2827. min_rank = rank
  2828. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2829. break
  2830. assert min_idx is not None
  2831. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2832. return parts
  2833. def set_vocab(self):
  2834. self._set_vocab_qwen()
  2835. @ModelBase.register("Qwen2Model", "Qwen2ForCausalLM", "Qwen2AudioForConditionalGeneration", "KORMoForCausalLM")
  2836. class Qwen2Model(TextModel):
  2837. model_arch = gguf.MODEL_ARCH.QWEN2
  2838. def set_vocab(self):
  2839. try:
  2840. self._set_vocab_sentencepiece()
  2841. except FileNotFoundError:
  2842. self._set_vocab_gpt2()
  2843. def set_gguf_parameters(self):
  2844. super().set_gguf_parameters()
  2845. self._try_set_pooling_type()
  2846. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2847. if self.hf_arch == "Qwen2Model":
  2848. name = f"model.{name}" # map to Qwen2ForCausalLM tensors
  2849. if "language_model." in name:
  2850. name = name.replace("language_model.", "") # for InternVL
  2851. if name.startswith("mlp") or name.startswith("multi_modal_projector") \
  2852. or name.startswith("vision_model") or name.startswith("audio_tower") \
  2853. or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector"):
  2854. # skip vision and audio tensors
  2855. return []
  2856. yield from super().modify_tensors(data_torch, name, bid)
  2857. @ModelBase.register("DreamModel")
  2858. class DreamModel(TextModel):
  2859. model_arch = gguf.MODEL_ARCH.DREAM
  2860. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2861. tokens: list[str] = []
  2862. toktypes: list[int] = []
  2863. from transformers import AutoTokenizer
  2864. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2865. vocab_dict = tokenizer.get_vocab()
  2866. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2867. assert max(vocab_dict.values()) < vocab_size
  2868. tokpre = self.get_vocab_base_pre(tokenizer)
  2869. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2870. added_vocab = tokenizer.get_added_vocab()
  2871. for i in range(vocab_size):
  2872. if i not in reverse_vocab:
  2873. tokens.append(f"[PAD{i}]")
  2874. toktypes.append(gguf.TokenType.UNUSED)
  2875. elif reverse_vocab[i] in added_vocab:
  2876. tokens.append(reverse_vocab[i])
  2877. # Check if it's a special token - treat special tokens as CONTROL tokens
  2878. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2879. if tokenizer.added_tokens_decoder[i].special:
  2880. toktypes.append(gguf.TokenType.CONTROL)
  2881. else:
  2882. toktypes.append(gguf.TokenType.USER_DEFINED)
  2883. else:
  2884. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2885. toktypes.append(gguf.TokenType.CONTROL)
  2886. else:
  2887. tokens.append(reverse_vocab[i])
  2888. toktypes.append(gguf.TokenType.NORMAL)
  2889. return tokens, toktypes, tokpre
  2890. def set_vocab(self):
  2891. try:
  2892. self._set_vocab_sentencepiece()
  2893. except FileNotFoundError:
  2894. self._set_vocab_gpt2()
  2895. def set_gguf_parameters(self):
  2896. super().set_gguf_parameters()
  2897. self._try_set_pooling_type()
  2898. # Dream models use non-causal attention for diffusion
  2899. self.gguf_writer.add_causal_attention(False)
  2900. # Add Dream-specific parameters
  2901. mask_token_id = self.hparams.get("mask_token_id")
  2902. if mask_token_id is not None:
  2903. self.gguf_writer.add_mask_token_id(mask_token_id)
  2904. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2905. # Dream model tensors should be mapped directly since it's the base model
  2906. yield from super().modify_tensors(data_torch, name, bid)
  2907. @ModelBase.register("LLaDAModelLM")
  2908. class LLaDAModel(TextModel):
  2909. model_arch = gguf.MODEL_ARCH.LLADA
  2910. undo_permute = True
  2911. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2912. tokens: list[str] = []
  2913. toktypes: list[int] = []
  2914. from transformers import AutoTokenizer
  2915. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2916. vocab_dict = tokenizer.get_vocab()
  2917. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2918. assert max(vocab_dict.values()) < vocab_size
  2919. tokpre = self.get_vocab_base_pre(tokenizer)
  2920. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2921. added_vocab = tokenizer.get_added_vocab()
  2922. for i in range(vocab_size):
  2923. if i not in reverse_vocab:
  2924. tokens.append(f"[PAD{i}]")
  2925. toktypes.append(gguf.TokenType.UNUSED)
  2926. elif reverse_vocab[i] in added_vocab:
  2927. tokens.append(reverse_vocab[i])
  2928. # Check if it's a special token - treat special tokens as CONTROL tokens
  2929. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2930. if tokenizer.added_tokens_decoder[i].special:
  2931. toktypes.append(gguf.TokenType.CONTROL)
  2932. else:
  2933. toktypes.append(gguf.TokenType.USER_DEFINED)
  2934. else:
  2935. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2936. toktypes.append(gguf.TokenType.CONTROL)
  2937. else:
  2938. tokens.append(reverse_vocab[i])
  2939. toktypes.append(gguf.TokenType.NORMAL)
  2940. return tokens, toktypes, tokpre
  2941. def set_vocab(self):
  2942. self._set_vocab_gpt2()
  2943. # LLaDA specific parameters
  2944. self.gguf_writer.add_add_bos_token(True)
  2945. def set_gguf_parameters(self):
  2946. super().set_gguf_parameters()
  2947. self._try_set_pooling_type()
  2948. # Add parameters similar to LlamaModel
  2949. hparams = self.hparams
  2950. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2951. if (rope_dim := hparams.get("head_dim")) is None:
  2952. n_heads = hparams.get("num_attention_heads", hparams.get("n_heads"))
  2953. rope_dim = hparams.get("hidden_size", hparams.get("d_model")) // n_heads
  2954. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2955. # Set context length for LLaDA
  2956. context_length = self.hparams.get("max_sequence_length", 4096)
  2957. self.gguf_writer.add_context_length(context_length)
  2958. # Set embedding length (dimension size)
  2959. embedding_length = self.hparams.get("d_model", 4096)
  2960. self.gguf_writer.add_embedding_length(embedding_length)
  2961. # Set feed forward length (MLP hidden size)
  2962. feed_forward_length = self.hparams.get("mlp_hidden_size", 12288)
  2963. self.gguf_writer.add_feed_forward_length(feed_forward_length)
  2964. # LLaDA models use non-causal attention for diffusion, similar to Dream
  2965. self.gguf_writer.add_causal_attention(False)
  2966. # LLaDA models don't shift their logits
  2967. self.gguf_writer.add_diffusion_shift_logits(False)
  2968. @staticmethod
  2969. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2970. if n_head_kv is not None and n_head != n_head_kv:
  2971. n_head = n_head_kv
  2972. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2973. .swapaxes(1, 2)
  2974. .reshape(weights.shape))
  2975. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2976. n_head = self.hparams.get("num_attention_heads", self.hparams.get("n_heads"))
  2977. n_kv_head = self.hparams.get("num_key_value_heads", self.hparams.get("n_kv_heads"))
  2978. if self.undo_permute:
  2979. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2980. data_torch = LLaDAModel.permute(data_torch, n_head, n_head)
  2981. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2982. data_torch = LLaDAModel.permute(data_torch, n_head, n_kv_head)
  2983. # LLaDA model tensors should be mapped directly since it's the base model
  2984. yield from super().modify_tensors(data_torch, name, bid)
  2985. @ModelBase.register("Ernie4_5_ForCausalLM", "Ernie4_5ForCausalLM")
  2986. class Ernie4_5Model(TextModel):
  2987. model_arch = gguf.MODEL_ARCH.ERNIE4_5
  2988. def set_vocab(self):
  2989. self._set_vocab_sentencepiece()
  2990. def set_gguf_parameters(self):
  2991. super().set_gguf_parameters()
  2992. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2993. num_heads = self.hparams["num_attention_heads"]
  2994. num_kv_heads = self.hparams["num_key_value_heads"]
  2995. if (head_dim := self.hparams.get("head_dim")) is None:
  2996. head_dim = self.hparams["hidden_size"] // num_heads
  2997. if "ernie." in name:
  2998. name = name.replace("ernie.", "model.")
  2999. # split the qkv weights
  3000. # qkv_proj shape: [(num_heads + 2 * num_kv_heads) * head_dim, hidden_size]
  3001. if "qkv_proj" in name:
  3002. name_q = name.replace("qkv_proj.weight", "q_proj.weight")
  3003. name_k = name.replace("qkv_proj.weight", "k_proj.weight")
  3004. name_v = name.replace("qkv_proj.weight", "v_proj.weight")
  3005. total_q_dim = num_heads * head_dim
  3006. total_k_dim = num_kv_heads * head_dim
  3007. total_v_dim = num_kv_heads * head_dim
  3008. q_proj_weight, k_proj_weight, v_proj_weight = data_torch.split([total_q_dim, total_k_dim, total_v_dim], dim=0)
  3009. return [
  3010. (self.map_tensor_name(name_q), q_proj_weight),
  3011. (self.map_tensor_name(name_k), k_proj_weight),
  3012. (self.map_tensor_name(name_v), v_proj_weight)
  3013. ]
  3014. # split the up_gate_proj into gate and up
  3015. # up_gate_proj shape: [2 * intermediate_size, hidden_size]
  3016. if "up_gate_proj" in name:
  3017. name_up = name.replace("up_gate_proj.weight", "up_proj.weight")
  3018. name_gate = name.replace("up_gate_proj.weight", "gate_proj.weight")
  3019. dim_half = data_torch.shape[0] // 2
  3020. gate_proj_weight, up_proj_weight = data_torch.split(dim_half, dim=0)
  3021. return [
  3022. (self.map_tensor_name(name_gate), gate_proj_weight),
  3023. (self.map_tensor_name(name_up), up_proj_weight)
  3024. ]
  3025. return [(self.map_tensor_name(name), data_torch)]
  3026. @ModelBase.register("Ernie4_5_MoeForCausalLM")
  3027. class Ernie4_5MoeModel(Ernie4_5Model):
  3028. model_arch = gguf.MODEL_ARCH.ERNIE4_5_MOE
  3029. _experts: list[dict[str, Tensor]] | None = None
  3030. def __init__(self, *args, **kwargs):
  3031. super().__init__(*args, **kwargs)
  3032. self._experts = [{} for _ in range(self.block_count)]
  3033. def set_gguf_parameters(self):
  3034. super().set_gguf_parameters()
  3035. self.gguf_writer.add_expert_count(self.hparams["moe_num_experts"])
  3036. self.gguf_writer.add_expert_used_count(self.hparams["moe_k"])
  3037. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["moe_layer_interval"])
  3038. self.gguf_writer.add_leading_dense_block_count(self.hparams["moe_layer_start_index"])
  3039. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  3040. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  3041. if (shared_expert_count := self.hparams.get('moe_num_shared_experts')) is not None:
  3042. self.gguf_writer.add_expert_shared_count(shared_expert_count)
  3043. if shared_expert_count > 0 and (shared_expert_intermediate_size := self.hparams.get('intermediate_size')) is not None and (num_key_value_heads := self.hparams.get('num_key_value_heads')) is not None:
  3044. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size // num_key_value_heads)
  3045. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3046. # Modify correction bias name as in DeepseekV2
  3047. if name.endswith("e_score_correction_bias"):
  3048. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  3049. # skip Multi-Token Prediction (MTP) layers (again, same as DeepseekV2)
  3050. match = re.match(r"model.mtp_block.(\d+)", name)
  3051. if match:
  3052. return []
  3053. # skip all other MTP tensors for now
  3054. match = re.match(r"model.mtp_emb_norm.(\d+)", name)
  3055. if match:
  3056. return []
  3057. match = re.match(r"model.mtp_hidden_norm.(\d+)", name)
  3058. if match:
  3059. return []
  3060. match = re.match(r"model.mtp_linear_proj.(\d+)", name)
  3061. if match:
  3062. return []
  3063. # process the experts separately
  3064. if name.find("mlp.experts") != -1:
  3065. n_experts = self.hparams["moe_num_experts"]
  3066. assert bid is not None
  3067. if self._experts is None:
  3068. self._experts = [{} for _ in range(self.block_count)]
  3069. self._experts[bid][name] = data_torch
  3070. if len(self._experts[bid]) >= n_experts * 3:
  3071. tensors: list[tuple[str, Tensor]] = []
  3072. # merge the experts into a single 3d tensor
  3073. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  3074. datas: list[Tensor] = []
  3075. for xid in range(n_experts):
  3076. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3077. datas.append(self._experts[bid][ename_to_retrieve])
  3078. del self._experts[bid][ename_to_retrieve]
  3079. data_torch = torch.stack(datas, dim=0)
  3080. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3081. new_name = self.map_tensor_name(merged_name)
  3082. tensors.append((new_name, data_torch))
  3083. return tensors
  3084. else:
  3085. return []
  3086. return [(self.map_tensor_name(name), data_torch)]
  3087. def prepare_tensors(self):
  3088. super().prepare_tensors()
  3089. if self._experts is not None:
  3090. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3091. experts = [k for d in self._experts for k in d.keys()]
  3092. if len(experts) > 0:
  3093. raise ValueError(f"Unprocessed experts: {experts}")
  3094. @ModelBase.register(
  3095. "Qwen2VLModel",
  3096. "Qwen2VLForConditionalGeneration",
  3097. "Qwen2_5_VLForConditionalGeneration",
  3098. "Qwen2_5OmniModel",
  3099. )
  3100. class Qwen2VLModel(TextModel):
  3101. model_arch = gguf.MODEL_ARCH.QWEN2VL
  3102. def set_gguf_parameters(self):
  3103. super().set_gguf_parameters()
  3104. def set_vocab(self):
  3105. try:
  3106. self._set_vocab_sentencepiece()
  3107. except FileNotFoundError:
  3108. self._set_vocab_gpt2()
  3109. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3110. del bid # unused
  3111. if name.startswith("thinker."):
  3112. name = name.replace("thinker.", "")
  3113. if name.startswith("visual") or name.startswith("audio") or \
  3114. name.startswith("talker") or name.startswith("token2wav"):
  3115. # skip multimodal tensors
  3116. return []
  3117. return [(self.map_tensor_name(name), data_torch)]
  3118. @ModelBase.register("Qwen2VLModel", "Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  3119. class Qwen2VLVisionModel(MmprojModel):
  3120. def __init__(self, *args, **kwargs):
  3121. super().__init__(*args, **kwargs)
  3122. assert self.hparams_vision is not None
  3123. self.hparams_vision["image_size"] = self.hparams_vision.get("image_size", 560)
  3124. # rename config.json values
  3125. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  3126. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  3127. if "embed_dim" in self.hparams_vision: # qwen2vl
  3128. self.hparams_vision["intermediate_size"] = self.hparams_vision.get("hidden_size")
  3129. self.hparams_vision["hidden_size"] = self.hparams_vision.get("embed_dim")
  3130. def set_gguf_parameters(self):
  3131. super().set_gguf_parameters()
  3132. assert self.hparams_vision is not None
  3133. hparams = self.hparams_vision
  3134. model_type = self.global_config['model_type']
  3135. if model_type == 'qwen2_vl':
  3136. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2VL)
  3137. elif model_type == 'qwen2_5_vl' or model_type == 'qwen2_5_omni':
  3138. if model_type == 'qwen2_5_omni':
  3139. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25O)
  3140. else:
  3141. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25VL)
  3142. self.gguf_writer.add_vision_use_silu(True)
  3143. # find n_wa_pattern (window attention pattern)
  3144. fullatt_block_indexes = hparams.get("fullatt_block_indexes")
  3145. assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for qwen2_5_vl"
  3146. n_wa_pattern = fullatt_block_indexes[0] + 1
  3147. # validate n_wa_pattern
  3148. for i in range(1, len(fullatt_block_indexes)):
  3149. if fullatt_block_indexes[i] - fullatt_block_indexes[i - 1] != n_wa_pattern:
  3150. raise ValueError(f"Invalid fullatt_block_indexes: {fullatt_block_indexes}")
  3151. self.gguf_writer.add_vision_n_wa_pattern(n_wa_pattern)
  3152. else:
  3153. raise ValueError(f"Unknown QwenVL model type: {self.global_config['model_type']}")
  3154. # default values below are taken from HF tranformers code
  3155. self.gguf_writer.add_vision_attention_layernorm_eps(self.global_config.get("rms_norm_eps", 1e-6))
  3156. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3157. if ".position_embd." in new_name:
  3158. return gguf.GGMLQuantizationType.F32
  3159. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3160. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3161. del bid # unused
  3162. if name.startswith("visual."):
  3163. # process visual tensors
  3164. # split QKV tensors if needed
  3165. if ".qkv." in name:
  3166. if data_torch.ndim == 2: # weight
  3167. c3, _ = data_torch.shape
  3168. else: # bias
  3169. c3 = data_torch.shape[0]
  3170. assert c3 % 3 == 0
  3171. c = c3 // 3
  3172. wq = data_torch[:c]
  3173. wk = data_torch[c: c * 2]
  3174. wv = data_torch[c * 2:]
  3175. return [
  3176. (self.map_tensor_name(name.replace("qkv", "q")), wq),
  3177. (self.map_tensor_name(name.replace("qkv", "k")), wk),
  3178. (self.map_tensor_name(name.replace("qkv", "v")), wv),
  3179. ]
  3180. elif 'patch_embed.proj.weight' in name:
  3181. # split Conv3D into Conv2Ds
  3182. c1, c2, kt, kh, kw = data_torch.shape
  3183. del c1, c2, kh, kw # unused
  3184. assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
  3185. return [
  3186. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight" , data_torch[:, :, 0, ...]),
  3187. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  3188. ]
  3189. else:
  3190. return [(self.map_tensor_name(name), data_torch)]
  3191. return [] # skip other tensors
  3192. @ModelBase.register("Qwen2_5OmniModel")
  3193. class Qwen25OmniModel(Qwen2VLVisionModel):
  3194. has_vision_encoder = True
  3195. has_audio_encoder = True
  3196. def __init__(self, *args, **kwargs):
  3197. super().__init__(*args, **kwargs)
  3198. assert self.hparams_audio is not None
  3199. self.hparams_audio["hidden_size"] = self.hparams_audio["d_model"]
  3200. self.hparams_audio["intermediate_size"] = self.hparams_audio["encoder_ffn_dim"]
  3201. self.hparams_audio["num_attention_heads"] = self.hparams_audio["encoder_attention_heads"]
  3202. def set_gguf_parameters(self):
  3203. super().set_gguf_parameters()
  3204. assert self.hparams_audio is not None
  3205. self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["num_mel_bins"])
  3206. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams_audio.get("layer_norm_eps", 1e-5))
  3207. def get_vision_config(self) -> dict[str, Any] | None:
  3208. return self.global_config["thinker_config"].get("vision_config")
  3209. def get_audio_config(self) -> dict[str, Any] | None:
  3210. return self.global_config["thinker_config"].get("audio_config")
  3211. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3212. # SinusoidsPositionEmbedding
  3213. assert self.hparams_audio is not None
  3214. max_timescale = 10000
  3215. length = 1500
  3216. channels = self.hparams_audio["hidden_size"]
  3217. log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
  3218. inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2).float())
  3219. scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
  3220. pos_embd = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1).to(dtype=torch.float32)
  3221. yield ("audio_tower.embed_positions.weight", pos_embd)
  3222. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3223. if ".conv" in name and ".weight" in name:
  3224. return gguf.GGMLQuantizationType.F16
  3225. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3226. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3227. if name.startswith("thinker."):
  3228. name = name.replace("thinker.", "")
  3229. if name.startswith("audio_tower"):
  3230. # process audio tensors
  3231. if "conv1.bias" in name or "conv2.bias" in name:
  3232. # transpose conv1 and conv2 bias
  3233. data_torch = data_torch.unsqueeze(-1)
  3234. if "audio_bos_eos_token" in name:
  3235. # this tensor is left unused in transformers code
  3236. # https://github.com/huggingface/transformers/blob/6e3063422c4b1c014aa60c32b9254fd2902f0f28/src/transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py#L1809
  3237. return []
  3238. return [(self.map_tensor_name(name), data_torch)]
  3239. return super().modify_tensors(data_torch, name, bid)
  3240. @ModelBase.register("InternVisionModel")
  3241. class InternVisionModel(MmprojModel):
  3242. def set_gguf_parameters(self):
  3243. assert self.hparams_vision is not None
  3244. if isinstance(self.hparams_vision['image_size'], list):
  3245. self.hparams_vision['image_size'] = self.hparams_vision['image_size'][0]
  3246. if isinstance(self.hparams_vision['patch_size'], list):
  3247. self.hparams_vision['patch_size'] = self.hparams_vision['patch_size'][0]
  3248. super().set_gguf_parameters()
  3249. hparams = self.hparams
  3250. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.INTERNVL)
  3251. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  3252. # hidden_act
  3253. if hparams["hidden_act"] == "silu":
  3254. self.gguf_writer.add_vision_use_silu(True)
  3255. elif hparams["hidden_act"] == "gelu":
  3256. self.gguf_writer.add_vision_use_gelu(True)
  3257. else:
  3258. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  3259. # downsample_ratio
  3260. downsample_ratio = self.global_config.get("downsample_ratio")
  3261. assert downsample_ratio is not None
  3262. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / downsample_ratio))
  3263. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3264. if ".position_embd." in new_name:
  3265. return gguf.GGMLQuantizationType.F32
  3266. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3267. def _mapping_interns1_name(self, name):
  3268. names_map = {
  3269. "model.multi_modal_projector.layer_norm.bias": "mlp1.0.bias",
  3270. "model.multi_modal_projector.layer_norm.weight": "mlp1.0.weight",
  3271. "model.multi_modal_projector.linear_1.bias": "mlp1.1.bias",
  3272. "model.multi_modal_projector.linear_1.weight": "mlp1.1.weight",
  3273. "model.multi_modal_projector.linear_2.bias": "mlp1.3.bias",
  3274. "model.multi_modal_projector.linear_2.weight": "mlp1.3.weight",
  3275. }
  3276. if name in names_map:
  3277. name = names_map[name]
  3278. return name
  3279. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3280. del bid # unused
  3281. vision_prefix = ['vision_model', 'mlp', 'model.vision_tower', 'model.multi_modal_projector']
  3282. # deal with intern-s1 special case
  3283. name = self._mapping_interns1_name(name)
  3284. if any([name.startswith(prefix) for prefix in vision_prefix]):
  3285. # process visual tensors
  3286. # correct name
  3287. if name.startswith("vision_model"):
  3288. name = "vision_tower." + name
  3289. if (".ls" in name or ".lambda_" in name or "position_embedding" in name) and not name.endswith(".weight"):
  3290. name += ".weight"
  3291. # split QKV tensors if needed
  3292. if ".qkv." in name:
  3293. if data_torch.ndim == 2: # weight
  3294. c3, _ = data_torch.shape
  3295. else: # bias
  3296. c3 = data_torch.shape[0]
  3297. assert c3 % 3 == 0
  3298. c = c3 // 3
  3299. wq = data_torch[:c]
  3300. wk = data_torch[c: c * 2]
  3301. wv = data_torch[c * 2:]
  3302. return [
  3303. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.q_proj")), wq),
  3304. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.k_proj")), wk),
  3305. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.v_proj")), wv),
  3306. ]
  3307. return [(self.map_tensor_name(name), data_torch)]
  3308. return [] # skip other tensors
  3309. @ModelBase.register("WavTokenizerDec")
  3310. class WavTokenizerDecModel(TextModel):
  3311. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  3312. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3313. del bid # unused
  3314. if \
  3315. name.endswith("codebook.cluster_size") or \
  3316. name.endswith("codebook.embed_avg") or \
  3317. name.endswith("codebook.inited"):
  3318. logger.debug(f"Skipping {name!r}")
  3319. return []
  3320. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  3321. return [(self.map_tensor_name(name), data_torch)]
  3322. def set_vocab(self):
  3323. self._set_vocab_none()
  3324. def set_gguf_parameters(self):
  3325. super().set_gguf_parameters()
  3326. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  3327. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  3328. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  3329. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  3330. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  3331. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  3332. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  3333. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  3334. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  3335. self.gguf_writer.add_causal_attention(False)
  3336. @ModelBase.register("Qwen2MoeForCausalLM")
  3337. class Qwen2MoeModel(TextModel):
  3338. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  3339. def set_gguf_parameters(self):
  3340. super().set_gguf_parameters()
  3341. if (n_experts := self.hparams.get("num_experts")) is not None:
  3342. self.gguf_writer.add_expert_count(n_experts)
  3343. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  3344. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  3345. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  3346. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  3347. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  3348. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  3349. _experts: list[dict[str, Tensor]] | None = None
  3350. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3351. # process the experts separately
  3352. name = name.replace("language_model.", "") # InternVL
  3353. # handle aggregated expert tensors
  3354. # GGUF stores dimensions reversed from PyTorch, so:
  3355. # PyTorch (A,B,C) -> GGUF writes [C,B,A] -> GGML reads ne={C,B,A}
  3356. # Input shapes from HF: (n_expert, n_ff_exp, n_embd) or (n_expert, n_embd, n_ff_exp)
  3357. # Expected GGML ne: {n_embd, n_ff_exp, n_expert} for gate/up, {n_ff_exp, n_embd, n_expert} for down
  3358. if name.endswith("mlp.experts.down_proj") or name.endswith("mlp.experts.down_proj.weight"):
  3359. mapped = f"{name}.weight" if not name.endswith(".weight") else name
  3360. # Input: (n_expert=128, n_ff_exp=768, n_embd=2048)
  3361. # Want GGML ne: {n_ff_exp, n_embd, n_expert} = {768, 2048, 128}
  3362. # Need PyTorch: (128, 2048, 768) [reversed of GGML]
  3363. # So: permute(0, 2, 1): (128, 768, 2048) -> (128, 2048, 768)
  3364. permuted = data_torch.permute(0, 2, 1).contiguous()
  3365. return [(self.map_tensor_name(mapped), permuted)]
  3366. if name.endswith("mlp.experts.gate_up_proj") or name.endswith("mlp.experts.gate_up_proj.weight"):
  3367. if data_torch.ndim < 3 or data_torch.shape[-1] % 2 != 0:
  3368. raise ValueError(f"Unexpected gate_up_proj shape for {name}: {tuple(data_torch.shape)}")
  3369. split_dim = data_torch.shape[-1] // 2
  3370. gate = data_torch[..., :split_dim].contiguous()
  3371. up = data_torch[..., split_dim:].contiguous()
  3372. # Input gate/up: (n_expert=128, n_embd=2048, n_ff_exp=768)
  3373. # Want GGML ne: {n_embd, n_ff_exp, n_expert} = {2048, 768, 128}
  3374. # Need PyTorch: (128, 768, 2048) [reversed of GGML]
  3375. # So: permute(0, 2, 1): (128, 2048, 768) -> (128, 768, 2048)
  3376. base_name = name.removesuffix(".weight")
  3377. base = base_name.rsplit('.', 1)[0]
  3378. mapped_gate = f"{base}.gate_proj.weight"
  3379. mapped_up = f"{base}.up_proj.weight"
  3380. perm_gate = gate.permute(0, 2, 1).contiguous()
  3381. perm_up = up.permute(0, 2, 1).contiguous()
  3382. return [
  3383. (self.map_tensor_name(mapped_gate), perm_gate),
  3384. (self.map_tensor_name(mapped_up), perm_up),
  3385. ]
  3386. if name.startswith("mlp") or name.startswith("vision_model") or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector") or name.startswith("model.visual"):
  3387. # skip visual tensors
  3388. return []
  3389. if name.find("experts") != -1:
  3390. n_experts = self.hparams["num_experts"]
  3391. assert bid is not None
  3392. if self._experts is None:
  3393. self._experts = [{} for _ in range(self.block_count)]
  3394. self._experts[bid][name] = data_torch
  3395. if len(self._experts[bid]) >= n_experts * 3:
  3396. tensors: list[tuple[str, Tensor]] = []
  3397. # merge the experts into a single 3d tensor
  3398. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3399. datas: list[Tensor] = []
  3400. for xid in range(n_experts):
  3401. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3402. datas.append(self._experts[bid][ename])
  3403. del self._experts[bid][ename]
  3404. data_torch = torch.stack(datas, dim=0)
  3405. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3406. new_name = self.map_tensor_name(merged_name)
  3407. tensors.append((new_name, data_torch))
  3408. return tensors
  3409. else:
  3410. return []
  3411. return [(self.map_tensor_name(name), data_torch)]
  3412. def prepare_tensors(self):
  3413. super().prepare_tensors()
  3414. if self._experts is not None:
  3415. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3416. experts = [k for d in self._experts for k in d.keys()]
  3417. if len(experts) > 0:
  3418. raise ValueError(f"Unprocessed experts: {experts}")
  3419. @ModelBase.register("Qwen3ForCausalLM")
  3420. class Qwen3Model(Qwen2Model):
  3421. model_arch = gguf.MODEL_ARCH.QWEN3
  3422. # extra logic for rerank models
  3423. is_rerank: bool = False
  3424. is_tied_embeddings: bool = False
  3425. token_false_id: int | None = None
  3426. token_true_id: int | None = None
  3427. def __init__(self, *args, **kwargs):
  3428. super().__init__(*args, **kwargs)
  3429. # track for intern-s1-mini
  3430. hparams = ModelBase.load_hparams(self.dir_model, is_mistral_format=False)
  3431. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  3432. # a bit hacky, but currently the only way to detect if this is a rerank model
  3433. # ref: https://huggingface.co/Qwen/Qwen3-Reranker-0.6B
  3434. readme_path = self.dir_model / "README.md"
  3435. readme_text = ""
  3436. if readme_path.exists():
  3437. with readme_path.open("r", encoding="utf-8") as f:
  3438. readme_text = f.read()
  3439. if "# Qwen3-Reranker" in readme_text:
  3440. self._find_rerank_config()
  3441. def set_vocab(self):
  3442. # deal with intern-s1-mini
  3443. if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
  3444. self._set_vocab_interns1()
  3445. return
  3446. super().set_vocab()
  3447. def _find_rerank_config(self):
  3448. from transformers import AutoTokenizer
  3449. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  3450. self.is_rerank = True
  3451. self.is_tied_embeddings = self.hparams.get("tie_word_embeddings", False)
  3452. self.token_false_id = tokenizer.convert_tokens_to_ids("no")
  3453. self.token_true_id = tokenizer.convert_tokens_to_ids("yes")
  3454. self.sep_token_id = tokenizer.convert_tokens_to_ids("|")
  3455. assert self.token_false_id is not None and self.token_true_id is not None
  3456. def set_gguf_parameters(self):
  3457. super().set_gguf_parameters()
  3458. if self.is_rerank:
  3459. self.gguf_writer.add_pooling_type(gguf.PoolingType.RANK)
  3460. self.gguf_writer.add_classifier_output_labels(["yes", "no"])
  3461. self.gguf_writer.add_chat_template([{
  3462. "name": "rerank",
  3463. "template": "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n"
  3464. "<|im_start|>user\n<Instruct>: Given a web search query, retrieve relevant passages that answer the query\n<Query>: {query}\n<Document>: {document}<|im_end|>\n"
  3465. "<|im_start|>assistant\n<think>\n\n</think>\n\n"
  3466. }])
  3467. def _get_cls_out_tensor(self, data_torch: Tensor) -> Tensor:
  3468. # extract "yes" and "no" tokens from the output lm_head tensor
  3469. false_row = data_torch[self.token_false_id]
  3470. true_row = data_torch[self.token_true_id]
  3471. return torch.stack([true_row, false_row], dim=0)
  3472. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3473. if "model.vision_" in name:
  3474. # skip multimodal tensors
  3475. return []
  3476. if self.is_rerank:
  3477. is_tied_head = self.is_tied_embeddings and "embed_tokens" in name
  3478. is_real_head = not self.is_tied_embeddings and "lm_head" in name
  3479. if is_tied_head or is_real_head:
  3480. cls_out_head = (
  3481. gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.CLS_OUT] + ".weight",
  3482. self._get_cls_out_tensor(data_torch),
  3483. )
  3484. if is_tied_head:
  3485. embed = (self.map_tensor_name(name), data_torch)
  3486. return [cls_out_head, embed]
  3487. if is_real_head:
  3488. return [cls_out_head]
  3489. return super().modify_tensors(data_torch, name, bid)
  3490. @ModelBase.register("Qwen3MoeForCausalLM")
  3491. class Qwen3MoeModel(Qwen2MoeModel):
  3492. model_arch = gguf.MODEL_ARCH.QWEN3MOE
  3493. def __init__(self, *args, **kwargs):
  3494. super().__init__(*args, **kwargs)
  3495. hparams = ModelBase.load_hparams(self.dir_model, False)
  3496. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  3497. def set_vocab(self):
  3498. # deal with intern-s1
  3499. if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
  3500. self._set_vocab_interns1()
  3501. return
  3502. super().set_vocab()
  3503. @ModelBase.register("Qwen3NextForCausalLM")
  3504. class Qwen3NextModel(Qwen2MoeModel):
  3505. model_arch = gguf.MODEL_ARCH.QWEN3NEXT
  3506. def set_gguf_parameters(self):
  3507. super().set_gguf_parameters()
  3508. self.gguf_writer.add_ssm_conv_kernel(self.hparams["linear_conv_kernel_dim"])
  3509. self.gguf_writer.add_ssm_state_size(self.hparams["linear_key_head_dim"])
  3510. self.gguf_writer.add_ssm_group_count(self.hparams["linear_num_key_heads"])
  3511. self.gguf_writer.add_ssm_time_step_rank(self.hparams["linear_num_value_heads"])
  3512. self.gguf_writer.add_ssm_inner_size(self.hparams["linear_value_head_dim"] * self.hparams["linear_num_value_heads"])
  3513. if (rope_dim := self.hparams.get("head_dim")) is None:
  3514. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  3515. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.25)))
  3516. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3517. if name.startswith("mtp"):
  3518. return [] # ignore MTP layers for now
  3519. if name.endswith(".A_log"):
  3520. data_torch = -torch.exp(data_torch)
  3521. elif name.endswith(".dt_bias"):
  3522. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  3523. elif "conv1d" in name:
  3524. data_torch = data_torch.squeeze()
  3525. elif name.endswith("norm.weight") and not name.endswith("linear_attn.norm.weight"):
  3526. data_torch = data_torch + 1
  3527. yield from super().modify_tensors(data_torch, name, bid)
  3528. @ModelBase.register("RND1")
  3529. class RND1Model(Qwen2MoeModel):
  3530. model_arch = gguf.MODEL_ARCH.RND1
  3531. def set_gguf_parameters(self):
  3532. super().set_gguf_parameters()
  3533. # RND1 specific parameters
  3534. # RND1 uses bidirectional attention
  3535. self.gguf_writer.add_causal_attention(False)
  3536. if (mask_token_id := self.hparams.get("mask_token_id")) is not None:
  3537. self.gguf_writer.add_mask_token_id(mask_token_id)
  3538. @ModelBase.register("Qwen3VLForConditionalGeneration", "Qwen3VLMoeForConditionalGeneration")
  3539. class Qwen3VLVisionModel(MmprojModel):
  3540. def __init__(self, *args, **kwargs):
  3541. super().__init__(*args, **kwargs)
  3542. assert self.hparams_vision is not None
  3543. # Compute image_size if not present
  3544. if "image_size" not in self.hparams_vision:
  3545. # For Qwen3VL/Qwen3VLMoe, compute from num_position_embeddings
  3546. num_pos = self.hparams_vision.get("num_position_embeddings", 2304)
  3547. patch_size = self.hparams_vision.get("patch_size", 16)
  3548. # num_position_embeddings = (image_size / patch_size) ** 2
  3549. # So image_size = sqrt(num_position_embeddings) * patch_size
  3550. image_size = int(num_pos**0.5 * patch_size)
  3551. self.hparams_vision["image_size"] = image_size
  3552. # Rename config values for compatibility
  3553. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  3554. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  3555. self.is_deepstack_layers = [False] * int(self.hparams_vision["num_hidden_layers"] or 0)
  3556. for idx in self.hparams_vision.get("deepstack_visual_indexes", []):
  3557. self.is_deepstack_layers[idx] = True
  3558. def set_gguf_parameters(self):
  3559. super().set_gguf_parameters()
  3560. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN3VL)
  3561. self.gguf_writer.add_vision_use_gelu(True)
  3562. if self.hparams_vision is not None:
  3563. merge_size = self.hparams_vision.get("spatial_merge_size")
  3564. if merge_size is not None:
  3565. self.gguf_writer.add_vision_spatial_merge_size(int(merge_size))
  3566. # Use text config's rms_norm_eps for vision attention layernorm eps
  3567. rms_norm_eps = self.global_config.get("text_config", {}).get("rms_norm_eps", 1e-6)
  3568. self.gguf_writer.add_vision_attention_layernorm_eps(rms_norm_eps)
  3569. if self.is_deepstack_layers:
  3570. self.gguf_writer.add_vision_is_deepstack_layers(self.is_deepstack_layers)
  3571. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3572. assert self.hparams_vision is not None
  3573. # Skip text model tensors - they go in the text model file
  3574. if name.startswith("model.language_model.") or name.startswith("lm_head."):
  3575. return []
  3576. if name.startswith("model.visual."):
  3577. name = name.replace("model.visual.", "visual.", 1)
  3578. if name.startswith("visual.deepstack_merger_list."):
  3579. prefix, rest = name.split(".", maxsplit=3)[2:]
  3580. # prefix is the layer index, convert to absolute clip layer index!
  3581. idx = self.hparams_vision.get("deepstack_visual_indexes", [])[int(prefix)]
  3582. target = rest
  3583. tensor_type: gguf.MODEL_TENSOR
  3584. if target.startswith("norm."):
  3585. tensor_type = gguf.MODEL_TENSOR.V_DS_NORM
  3586. suffix = target.split(".", 1)[1]
  3587. elif target.startswith("linear_fc1."):
  3588. tensor_type = gguf.MODEL_TENSOR.V_DS_FC1
  3589. suffix = target.split(".", 1)[1]
  3590. elif target.startswith("linear_fc2."):
  3591. tensor_type = gguf.MODEL_TENSOR.V_DS_FC2
  3592. suffix = target.split(".", 1)[1]
  3593. else:
  3594. raise ValueError(f"Unexpected deepstack tensor: {name}")
  3595. new_name = self.format_tensor_name(tensor_type, idx, suffix=f".{suffix}")
  3596. return [(new_name, data_torch)]
  3597. if name.startswith("visual.merger."):
  3598. suffix = name.split(".", 2)[2]
  3599. if suffix.startswith("linear_fc"):
  3600. fc_idx_str, tail = suffix.split(".", 1)
  3601. fc_num = int(fc_idx_str.replace("linear_fc", ""))
  3602. # Qwen3VL has linear_fc1 and linear_fc2
  3603. # Map to indices 0 and 2 (matching Qwen2VL which uses indices 0 and 2)
  3604. if fc_num == 1:
  3605. fc_idx = 0
  3606. elif fc_num == 2:
  3607. fc_idx = 2
  3608. else:
  3609. raise ValueError(f"unexpected fc index {fc_num} in {name}")
  3610. new_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_MMPROJ, fc_idx, suffix=f".{tail}")
  3611. elif suffix.startswith("norm."):
  3612. new_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_POST_NORM, suffix=f".{suffix.split('.', 1)[1]}")
  3613. else:
  3614. raise ValueError(f"Unexpected merger tensor: {name}")
  3615. return [(new_name, data_torch)]
  3616. if name == "visual.patch_embed.proj.weight":
  3617. # split Conv3D into Conv2Ds along temporal dimension
  3618. c1, c2, kt, _, _ = data_torch.shape
  3619. del c1, c2
  3620. if kt != 2:
  3621. raise ValueError("Current implementation only supports temporal_patch_size of 2")
  3622. return [
  3623. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight", data_torch[:, :, 0, ...]),
  3624. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  3625. ]
  3626. if name == "visual.patch_embed.proj.bias":
  3627. # Include the bias - it's used by the C++ code
  3628. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".bias", data_torch)]
  3629. if name.startswith("visual."):
  3630. return [(self.map_tensor_name(name), data_torch)]
  3631. # Fall back to parent class for other tensors
  3632. return super().modify_tensors(data_torch, name, bid)
  3633. @ModelBase.register("Glm4vForConditionalGeneration", "Glm4vMoeForConditionalGeneration")
  3634. class Glm4VVisionModel(Qwen3VLVisionModel):
  3635. def set_gguf_parameters(self):
  3636. MmprojModel.set_gguf_parameters(self) # skip Qwen3VLVisionModel parameters
  3637. assert self.hparams_vision is not None
  3638. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GLM4V)
  3639. hidden_act = str(self.hparams_vision.get("hidden_act", "")).lower()
  3640. if hidden_act == "gelu":
  3641. self.gguf_writer.add_vision_use_gelu(True)
  3642. elif hidden_act == "silu":
  3643. self.gguf_writer.add_vision_use_silu(True)
  3644. rms_norm_eps = self.hparams_vision.get("rms_norm_eps", 1e-5)
  3645. self.gguf_writer.add_vision_attention_layernorm_eps(rms_norm_eps)
  3646. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3647. if name.startswith("model.visual."):
  3648. name = name.replace("model.visual.", "visual.")
  3649. if name.startswith("visual.merger."):
  3650. return [(self.map_tensor_name(name), data_torch)]
  3651. return super().modify_tensors(data_torch, name, bid)
  3652. @ModelBase.register("Qwen3VLForConditionalGeneration")
  3653. class Qwen3VLTextModel(Qwen3Model):
  3654. model_arch = gguf.MODEL_ARCH.QWEN3VL
  3655. def set_gguf_parameters(self):
  3656. super().set_gguf_parameters()
  3657. # Handle MRoPE (Multi-axis Rotary Position Embedding) for Qwen3-VL
  3658. vision_config = self.hparams.get("vision_config", {})
  3659. deepstack_layer_num = len(vision_config.get("deepstack_visual_indexes", []))
  3660. self.gguf_writer.add_num_deepstack_layers(deepstack_layer_num)
  3661. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3662. # Skip vision tensors - they go in the mmproj file
  3663. if name.startswith("model.visual."):
  3664. return []
  3665. return super().modify_tensors(data_torch, name, bid)
  3666. @ModelBase.register("Qwen3VLMoeForConditionalGeneration")
  3667. class Qwen3VLMoeTextModel(Qwen3MoeModel):
  3668. model_arch = gguf.MODEL_ARCH.QWEN3VLMOE
  3669. def set_gguf_parameters(self):
  3670. super().set_gguf_parameters()
  3671. vision_config = self.hparams.get("vision_config", {})
  3672. deepstack_layer_num = len(vision_config.get("deepstack_visual_indexes", []))
  3673. self.gguf_writer.add_num_deepstack_layers(deepstack_layer_num)
  3674. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3675. # Skip vision tensors - they go in the mmproj file
  3676. if name.startswith("model.visual."):
  3677. return []
  3678. return super().modify_tensors(data_torch, name, bid)
  3679. @ModelBase.register("GPT2LMHeadModel")
  3680. class GPT2Model(TextModel):
  3681. model_arch = gguf.MODEL_ARCH.GPT2
  3682. def set_gguf_parameters(self):
  3683. self.gguf_writer.add_block_count(self.block_count)
  3684. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  3685. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3686. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  3687. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3688. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3689. self.gguf_writer.add_file_type(self.ftype)
  3690. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3691. del bid # unused
  3692. tensors: list[tuple[str, Tensor]] = []
  3693. # we don't need these
  3694. if name.endswith((".attn.bias", ".attn.masked_bias")):
  3695. return tensors
  3696. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  3697. data_torch = data_torch.transpose(1, 0)
  3698. new_name = self.map_tensor_name(name)
  3699. tensors.append((new_name, data_torch))
  3700. return tensors
  3701. @ModelBase.register("PhiForCausalLM")
  3702. class Phi2Model(TextModel):
  3703. model_arch = gguf.MODEL_ARCH.PHI2
  3704. def set_gguf_parameters(self):
  3705. rot_pct = self.find_hparam(["partial_rotary_factor"])
  3706. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3707. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3708. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  3709. self.gguf_writer.add_embedding_length(n_embd)
  3710. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  3711. self.gguf_writer.add_block_count(self.block_count)
  3712. self.gguf_writer.add_head_count(n_head)
  3713. self.gguf_writer.add_head_count_kv(n_head)
  3714. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  3715. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  3716. self.gguf_writer.add_file_type(self.ftype)
  3717. self.gguf_writer.add_add_bos_token(False)
  3718. @ModelBase.register("Phi3ForCausalLM")
  3719. class Phi3MiniModel(TextModel):
  3720. model_arch = gguf.MODEL_ARCH.PHI3
  3721. def set_vocab(self):
  3722. # Phi-4 model uses GPT2Tokenizer
  3723. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3724. if tokenizer_config_file.is_file():
  3725. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3726. tokenizer_config_json = json.load(f)
  3727. tokenizer_class = tokenizer_config_json['tokenizer_class']
  3728. if tokenizer_class == 'GPT2Tokenizer':
  3729. return self._set_vocab_gpt2()
  3730. from sentencepiece import SentencePieceProcessor
  3731. tokenizer_path = self.dir_model / 'tokenizer.model'
  3732. if not tokenizer_path.is_file():
  3733. raise ValueError(f'Error: Missing {tokenizer_path}')
  3734. tokenizer = SentencePieceProcessor()
  3735. tokenizer.LoadFromFile(str(tokenizer_path))
  3736. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3737. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3738. scores: list[float] = [-10000.0] * vocab_size
  3739. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3740. for token_id in range(tokenizer.vocab_size()):
  3741. piece = tokenizer.IdToPiece(token_id)
  3742. text = piece.encode("utf-8")
  3743. score = tokenizer.GetScore(token_id)
  3744. toktype = SentencePieceTokenTypes.NORMAL
  3745. if tokenizer.IsUnknown(token_id):
  3746. toktype = SentencePieceTokenTypes.UNKNOWN
  3747. elif tokenizer.IsControl(token_id):
  3748. toktype = SentencePieceTokenTypes.CONTROL
  3749. elif tokenizer.IsUnused(token_id):
  3750. toktype = SentencePieceTokenTypes.UNUSED
  3751. elif tokenizer.IsByte(token_id):
  3752. toktype = SentencePieceTokenTypes.BYTE
  3753. tokens[token_id] = text
  3754. scores[token_id] = score
  3755. toktypes[token_id] = toktype
  3756. added_tokens_file = self.dir_model / 'added_tokens.json'
  3757. if added_tokens_file.is_file():
  3758. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3759. added_tokens_json = json.load(f)
  3760. for key in added_tokens_json:
  3761. token_id = added_tokens_json[key]
  3762. if token_id >= vocab_size:
  3763. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3764. continue
  3765. tokens[token_id] = key.encode("utf-8")
  3766. scores[token_id] = -1000.0
  3767. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3768. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3769. if tokenizer_config_file.is_file():
  3770. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3771. tokenizer_config_json = json.load(f)
  3772. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  3773. for token_id, foken_data in added_tokens_decoder.items():
  3774. token_id = int(token_id)
  3775. token = foken_data["content"].encode("utf-8")
  3776. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3777. if tokens[token_id] != token:
  3778. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3779. tokens[token_id] = token
  3780. scores[token_id] = -1000.0
  3781. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3782. if foken_data.get("special"):
  3783. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3784. tokenizer_file = self.dir_model / 'tokenizer.json'
  3785. if tokenizer_file.is_file():
  3786. with open(tokenizer_file, "r", encoding="utf-8") as f:
  3787. tokenizer_json = json.load(f)
  3788. added_tokens = tokenizer_json.get("added_tokens", [])
  3789. for foken_data in added_tokens:
  3790. token_id = int(foken_data["id"])
  3791. token = foken_data["content"].encode("utf-8")
  3792. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3793. if tokens[token_id] != token:
  3794. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3795. tokens[token_id] = token
  3796. scores[token_id] = -1000.0
  3797. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3798. if foken_data.get("special"):
  3799. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3800. self.gguf_writer.add_tokenizer_model("llama")
  3801. self.gguf_writer.add_tokenizer_pre("default")
  3802. self.gguf_writer.add_token_list(tokens)
  3803. self.gguf_writer.add_token_scores(scores)
  3804. self.gguf_writer.add_token_types(toktypes)
  3805. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3806. special_vocab.add_to_gguf(self.gguf_writer)
  3807. def set_gguf_parameters(self):
  3808. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3809. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3810. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  3811. rms_eps = self.find_hparam(["rms_norm_eps"])
  3812. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3813. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3814. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3815. rope_dims = int(rot_pct * n_embd) // n_head
  3816. self.gguf_writer.add_context_length(max_pos_embds)
  3817. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  3818. self.gguf_writer.add_embedding_length(n_embd)
  3819. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  3820. self.gguf_writer.add_block_count(self.block_count)
  3821. self.gguf_writer.add_head_count(n_head)
  3822. self.gguf_writer.add_head_count_kv(n_head_kv)
  3823. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  3824. self.gguf_writer.add_rope_dimension_count(rope_dims)
  3825. self.gguf_writer.add_rope_freq_base(self.rope_parameters.get("full_attention", self.rope_parameters)["rope_theta"])
  3826. self.gguf_writer.add_file_type(self.ftype)
  3827. sliding_window = self.hparams.get("sliding_window")
  3828. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  3829. if sliding_window is None:
  3830. sliding_window = 0
  3831. self.gguf_writer.add_sliding_window(sliding_window)
  3832. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3833. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3834. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3835. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3836. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3837. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3838. rope_dims = int(rot_pct * n_embd) // n_head
  3839. # write rope scaling for long context (128k) model
  3840. rope_scaling = self.find_hparam(['rope_scaling'], True)
  3841. if rope_scaling is None:
  3842. return
  3843. scale = max_pos_embds / orig_max_pos_embds
  3844. rope_scaling_type = rope_scaling.get('rope_type', rope_scaling.get('type', '')).lower()
  3845. if len(rope_scaling_type) == 0:
  3846. raise KeyError('Missing the required key rope_scaling.type')
  3847. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  3848. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  3849. elif rope_scaling_type == 'yarn':
  3850. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  3851. else:
  3852. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  3853. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  3854. long_factors = rope_scaling.get('long_factor', None)
  3855. short_factors = rope_scaling.get('short_factor', None)
  3856. if long_factors is None or short_factors is None:
  3857. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  3858. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  3859. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  3860. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  3861. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  3862. @ModelBase.register("PhiMoEForCausalLM")
  3863. class PhiMoeModel(Phi3MiniModel):
  3864. model_arch = gguf.MODEL_ARCH.PHIMOE
  3865. _experts: list[dict[str, Tensor]] | None = None
  3866. def set_gguf_parameters(self):
  3867. super().set_gguf_parameters()
  3868. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  3869. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  3870. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3871. # process the experts separately
  3872. if name.find("block_sparse_moe.experts") != -1:
  3873. n_experts = self.hparams["num_local_experts"]
  3874. assert bid is not None
  3875. if self._experts is None:
  3876. self._experts = [{} for _ in range(self.block_count)]
  3877. self._experts[bid][name] = data_torch
  3878. if len(self._experts[bid]) >= n_experts * 3:
  3879. tensors: list[tuple[str, Tensor]] = []
  3880. # merge the experts into a single 3d tensor
  3881. for w_name in ["w1", "w2", "w3"]:
  3882. datas: list[Tensor] = []
  3883. for xid in range(n_experts):
  3884. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  3885. datas.append(self._experts[bid][ename])
  3886. del self._experts[bid][ename]
  3887. data_torch = torch.stack(datas, dim=0)
  3888. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  3889. new_name = self.map_tensor_name(merged_name)
  3890. tensors.append((new_name, data_torch))
  3891. return tensors
  3892. else:
  3893. return []
  3894. return [(self.map_tensor_name(name), data_torch)]
  3895. def prepare_tensors(self):
  3896. super().prepare_tensors()
  3897. if self._experts is not None:
  3898. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3899. experts = [k for d in self._experts for k in d.keys()]
  3900. if len(experts) > 0:
  3901. raise ValueError(f"Unprocessed experts: {experts}")
  3902. @ModelBase.register("PlamoForCausalLM")
  3903. class PlamoModel(TextModel):
  3904. model_arch = gguf.MODEL_ARCH.PLAMO
  3905. def set_vocab(self):
  3906. self._set_vocab_sentencepiece()
  3907. def set_gguf_parameters(self):
  3908. hparams = self.hparams
  3909. self.gguf_writer.add_context_length(4096) # not in config.json
  3910. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3911. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3912. self.gguf_writer.add_block_count(self.block_count)
  3913. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3914. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  3915. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  3916. self.gguf_writer.add_file_type(self.ftype)
  3917. def shuffle_attn_q_weight(self, data_torch):
  3918. assert data_torch.size() == (5120, 5120)
  3919. data_torch = data_torch.reshape(8, 5, 128, 5120)
  3920. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  3921. data_torch = torch.reshape(data_torch, (5120, 5120))
  3922. return data_torch
  3923. def shuffle_attn_output_weight(self, data_torch):
  3924. assert data_torch.size() == (5120, 5120)
  3925. data_torch = data_torch.reshape(5120, 8, 5, 128)
  3926. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  3927. data_torch = torch.reshape(data_torch, (5120, 5120))
  3928. return data_torch
  3929. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3930. del bid # unused
  3931. new_name = self.map_tensor_name(name)
  3932. # shuffle for broadcasting of gqa in ggml_mul_mat
  3933. if new_name.endswith("attn_q.weight"):
  3934. data_torch = self.shuffle_attn_q_weight(data_torch)
  3935. elif new_name.endswith("attn_output.weight"):
  3936. data_torch = self.shuffle_attn_output_weight(data_torch)
  3937. return [(new_name, data_torch)]
  3938. @ModelBase.register("Plamo2ForCausalLM", "PLaMo2ForCausalLM")
  3939. class Plamo2Model(TextModel):
  3940. model_arch = gguf.MODEL_ARCH.PLAMO2
  3941. def set_vocab(self):
  3942. # PLaMo 2 uses a custom tokenizer with a .jsonl file
  3943. # We need to handle this specially
  3944. tokenizer_jsonl_path = self.dir_model / "tokenizer.jsonl"
  3945. tokenizer_config_path = self.dir_model / "tokenizer_config.json"
  3946. if not tokenizer_jsonl_path.is_file():
  3947. raise FileNotFoundError(f"PLaMo 2 tokenizer file not found: {tokenizer_jsonl_path}")
  3948. # Load tokenizer config
  3949. with open(tokenizer_config_path, 'r', encoding='utf-8') as f:
  3950. tokenizer_config = json.load(f)
  3951. # Load tokens from JSONL file (actually a list format)
  3952. tokens = []
  3953. scores = []
  3954. toktypes = []
  3955. with open(tokenizer_jsonl_path, 'r', encoding='utf-8') as f:
  3956. for line_num, line in enumerate(f):
  3957. if line.strip():
  3958. token_data = json.loads(line)
  3959. # Format: [token, score, type, ?, ?, ?, ?]
  3960. token = token_data[0].encode("utf-8")
  3961. score = float(token_data[1])
  3962. token_type_str = token_data[2] if len(token_data) > 2 else "NORMAL"
  3963. tokens.append(token)
  3964. scores.append(score)
  3965. # Map token type strings to GGUF token types
  3966. if token_type_str == "UNKNOWN":
  3967. toktypes.append(gguf.TokenType.UNKNOWN)
  3968. elif token_type_str == "CONTROL":
  3969. toktypes.append(gguf.TokenType.CONTROL)
  3970. elif token_type_str == "BYTE":
  3971. toktypes.append(gguf.TokenType.BYTE)
  3972. else:
  3973. # Check for PLaMo-2 special tokens
  3974. token_str = token_data[0]
  3975. if token_str.startswith("<|plamo:") and token_str.endswith("|>"):
  3976. toktypes.append(gguf.TokenType.CONTROL)
  3977. else:
  3978. toktypes.append(gguf.TokenType.NORMAL)
  3979. vocab_size = self.hparams["vocab_size"]
  3980. if vocab_size > len(tokens):
  3981. pad_count = vocab_size - len(tokens)
  3982. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3983. for i in range(1, pad_count + 1):
  3984. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3985. scores.append(-1000.0)
  3986. toktypes.append(gguf.TokenType.UNUSED)
  3987. # Use "plamo2" tokenizer type for PLaMo-2's custom Aho-Corasick tokenizer
  3988. self.gguf_writer.add_tokenizer_model("plamo2")
  3989. self.gguf_writer.add_tokenizer_pre("default")
  3990. self.gguf_writer.add_token_list(tokens)
  3991. self.gguf_writer.add_token_scores(scores)
  3992. self.gguf_writer.add_token_types(toktypes)
  3993. # Add special tokens from config
  3994. if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] is not None:
  3995. token_id = tokens.index(tokenizer_config["bos_token"].encode("utf-8"))
  3996. self.gguf_writer.add_bos_token_id(token_id)
  3997. if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] is not None:
  3998. token_id = tokens.index(tokenizer_config["eos_token"].encode("utf-8"))
  3999. self.gguf_writer.add_eos_token_id(token_id)
  4000. if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] is not None:
  4001. token_id = tokens.index(tokenizer_config["pad_token"].encode("utf-8"))
  4002. self.gguf_writer.add_pad_token_id(token_id)
  4003. if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] is not None:
  4004. token_id = tokens.index(tokenizer_config["sep_token"].encode("utf-8"))
  4005. self.gguf_writer.add_sep_token_id(token_id)
  4006. if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] is not None:
  4007. token_id = tokens.index(tokenizer_config["unk_token"].encode("utf-8"))
  4008. self.gguf_writer.add_unk_token_id(token_id)
  4009. # Add <|plamo:op|> as EOT to ensure appropriate end of generation
  4010. self.gguf_writer.add_eot_token_id(4)
  4011. self.gguf_writer.add_add_space_prefix(False)
  4012. def set_gguf_parameters(self):
  4013. hparams = self.hparams
  4014. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  4015. # Which layers are Mamba layers
  4016. # PLaMo 2 uses mamba_step to indicate the pattern (e.g., 2 means every other layer)
  4017. # This logic matches modeling_plamo.py's is_mamba function
  4018. mamba_step = hparams.get("mamba_step", 2)
  4019. mamba_enabled = hparams.get("mamba_enabled", True)
  4020. num_key_value_heads = []
  4021. num_attention_heads = []
  4022. if mamba_enabled:
  4023. for i in range(self.block_count):
  4024. if self.block_count <= (mamba_step // 2):
  4025. # use attention in last layer
  4026. is_mamba = (i != self.block_count - 1)
  4027. else:
  4028. is_mamba = (i % mamba_step) != (mamba_step // 2)
  4029. if is_mamba:
  4030. num_key_value_heads.append(0)
  4031. num_attention_heads.append(0)
  4032. else:
  4033. num_key_value_heads.append(hparams.get("num_key_value_heads", 4))
  4034. num_attention_heads.append(hparams.get("num_attention_heads", 32))
  4035. if num_key_value_heads and num_attention_heads:
  4036. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  4037. self.gguf_writer.add_head_count(num_attention_heads)
  4038. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 2048))
  4039. self.gguf_writer.add_embedding_length(hparams.get("hidden_size", 4096))
  4040. self.gguf_writer.add_key_length(hparams.get("hidden_size_per_head", 128))
  4041. self.gguf_writer.add_value_length(hparams.get("hidden_size_per_head", 128))
  4042. self.gguf_writer.add_block_count(self.block_count)
  4043. self.gguf_writer.add_layer_norm_rms_eps(hparams.get("rms_norm_eps", 1e-06))
  4044. self.gguf_writer.add_rope_freq_base(self.rope_parameters.get("rope_theta", 10000))
  4045. # Mamba parameters
  4046. self.gguf_writer.add_ssm_state_size(hparams.get("mamba_d_state", 64))
  4047. self.gguf_writer.add_ssm_conv_kernel(hparams.get("mamba_d_conv", 4))
  4048. self.gguf_writer.add_ssm_time_step_rank(hparams.get("mamba_num_heads", 64))
  4049. intermediate_size = hparams.get("mamba_num_heads", 64) * hparams.get("hidden_size_per_head", 128)
  4050. self.gguf_writer.add_ssm_inner_size(intermediate_size)
  4051. self.gguf_writer.add_ssm_group_count(0)
  4052. # MLP feed forward parameters (for attention layers)
  4053. self.gguf_writer.add_feed_forward_length(hparams.get("intermediate_size", 13312))
  4054. self.gguf_writer.add_file_type(self.ftype)
  4055. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4056. del bid # unused
  4057. if name.endswith(".A_log"):
  4058. data_torch = -torch.exp(data_torch)
  4059. elif name.endswith(".dt_bias"):
  4060. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  4061. elif name.endswith(".dt_norm_weight"):
  4062. name = name.rpartition(".dt_norm_weight")[0] + ".dt_norm.weight"
  4063. elif name.endswith(".B_norm_weight"):
  4064. name = name.rpartition(".B_norm_weight")[0] + ".B_norm.weight"
  4065. elif name.endswith(".C_norm_weight"):
  4066. name = name.rpartition(".C_norm_weight")[0] + ".C_norm.weight"
  4067. elif name.endswith(".k_weight"):
  4068. name = name.rpartition(".k_weight")[0] + ".k.weight"
  4069. elif name.endswith(".q_weight"):
  4070. name = name.rpartition(".q_weight")[0] + ".q.weight"
  4071. elif name.endswith(".conv1d.weight"):
  4072. data_torch = torch.squeeze(data_torch) # remove (, 1, )
  4073. assert data_torch.ndim == 2
  4074. elif name.endswith(".pre_mixer_norm.weight"):
  4075. data_torch += 1.0
  4076. elif name.endswith(".post_mixer_norm.weight"):
  4077. data_torch += 1.0 / 5
  4078. elif name.endswith(".pre_mlp_norm.weight"):
  4079. data_torch += 1.0
  4080. elif name.endswith(".post_mlp_norm.weight"):
  4081. data_torch += 1.0 / (5**1.5)
  4082. elif name.endswith(".norm.weight"):
  4083. data_torch += 1.0
  4084. new_name = self.map_tensor_name(name)
  4085. return [(new_name, data_torch)]
  4086. @ModelBase.register("CodeShellForCausalLM")
  4087. class CodeShellModel(TextModel):
  4088. model_arch = gguf.MODEL_ARCH.CODESHELL
  4089. def set_gguf_parameters(self):
  4090. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  4091. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  4092. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  4093. self.gguf_writer.add_block_count(self.block_count)
  4094. self.gguf_writer.add_head_count(self.hparams["n_head"])
  4095. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  4096. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4097. self.gguf_writer.add_file_type(self.ftype)
  4098. self.gguf_writer.add_rope_freq_base(10000.0)
  4099. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4100. self.gguf_writer.add_rope_scaling_factor(1.0)
  4101. @ModelBase.register("InternLM2ForCausalLM")
  4102. class InternLM2Model(TextModel):
  4103. model_arch = gguf.MODEL_ARCH.INTERNLM2
  4104. def set_vocab(self):
  4105. # (TODO): Is there a better way?
  4106. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  4107. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  4108. # recognized as an empty string in C++.
  4109. from sentencepiece import SentencePieceProcessor
  4110. from sentencepiece import sentencepiece_model_pb2 as model
  4111. tokenizer_path = self.dir_model / 'tokenizer.model'
  4112. tokens: list[bytes] = []
  4113. scores: list[float] = []
  4114. toktypes: list[int] = []
  4115. if not tokenizer_path.is_file():
  4116. logger.error(f'Error: Missing {tokenizer_path}')
  4117. sys.exit(1)
  4118. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4119. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4120. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4121. tokenizer = SentencePieceProcessor()
  4122. tokenizer.LoadFromFile(str(tokenizer_path))
  4123. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4124. for token_id in range(vocab_size):
  4125. piece = tokenizer.IdToPiece(token_id)
  4126. text = piece.encode("utf-8")
  4127. score = tokenizer.GetScore(token_id)
  4128. if text == b"\x00":
  4129. # (TODO): fixme
  4130. # Hack here and replace the \x00 characters.
  4131. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  4132. text = "🐉".encode("utf-8")
  4133. toktype = SentencePieceTokenTypes.NORMAL
  4134. if tokenizer.IsUnknown(token_id):
  4135. toktype = SentencePieceTokenTypes.UNKNOWN
  4136. elif tokenizer.IsControl(token_id):
  4137. toktype = SentencePieceTokenTypes.CONTROL
  4138. elif tokenizer.IsUnused(token_id):
  4139. toktype = SentencePieceTokenTypes.UNUSED
  4140. elif tokenizer.IsByte(token_id):
  4141. toktype = SentencePieceTokenTypes.BYTE
  4142. # take care of ununsed raw token
  4143. if piece.startswith('[UNUSED'):
  4144. toktype = SentencePieceTokenTypes.UNUSED
  4145. tokens.append(text)
  4146. scores.append(score)
  4147. toktypes.append(toktype)
  4148. added_tokens_file = self.dir_model / 'added_tokens.json'
  4149. if added_tokens_file.is_file():
  4150. with open(added_tokens_file, "r", encoding="utf-8") as f:
  4151. added_tokens_json = json.load(f)
  4152. for key in added_tokens_json:
  4153. tokens.append(key.encode("utf-8"))
  4154. scores.append(-1000.0)
  4155. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  4156. chat_eos_token = '<|im_end|>'
  4157. chat_eos_token_id = None
  4158. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  4159. if tokenizer_config_file.is_file():
  4160. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  4161. tokenizer_config_json = json.load(f)
  4162. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  4163. for token_id, foken_data in added_tokens_decoder.items():
  4164. token_id = int(token_id)
  4165. token = foken_data["content"]
  4166. if token == chat_eos_token:
  4167. chat_eos_token_id = token_id
  4168. token = token.encode("utf-8")
  4169. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  4170. if tokens[token_id] != token:
  4171. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  4172. tokens[token_id] = token
  4173. scores[token_id] = -1000.0
  4174. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4175. if foken_data.get("special"):
  4176. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  4177. tokenizer_file = self.dir_model / 'tokenizer.json'
  4178. if tokenizer_file.is_file():
  4179. with open(tokenizer_file, "r", encoding="utf-8") as f:
  4180. tokenizer_json = json.load(f)
  4181. added_tokens = tokenizer_json.get("added_tokens", [])
  4182. for foken_data in added_tokens:
  4183. token_id = int(foken_data["id"])
  4184. token = foken_data["content"]
  4185. if token == chat_eos_token:
  4186. chat_eos_token_id = token_id
  4187. token = token.encode("utf-8")
  4188. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  4189. if tokens[token_id] != token:
  4190. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  4191. tokens[token_id] = token
  4192. scores[token_id] = -1000.0
  4193. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4194. if foken_data.get("special"):
  4195. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  4196. self.gguf_writer.add_tokenizer_model("llama")
  4197. self.gguf_writer.add_tokenizer_pre("default")
  4198. self.gguf_writer.add_token_list(tokens)
  4199. self.gguf_writer.add_token_scores(scores)
  4200. self.gguf_writer.add_token_types(toktypes)
  4201. self.gguf_writer.add_add_space_prefix(add_prefix)
  4202. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4203. old_eos = special_vocab.special_token_ids["eos"]
  4204. if chat_eos_token_id is not None:
  4205. # For the chat model, we replace the eos with '<|im_end|>'.
  4206. # TODO: this is a hack, should be fixed
  4207. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  4208. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  4209. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  4210. " in chat mode so that the conversation can end normally.")
  4211. special_vocab.add_to_gguf(self.gguf_writer)
  4212. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4213. num_heads = self.hparams["num_attention_heads"]
  4214. num_kv_heads = self.hparams["num_key_value_heads"]
  4215. n_embd = self.hparams["hidden_size"]
  4216. q_per_kv = num_heads // num_kv_heads
  4217. head_dim = n_embd // num_heads
  4218. num_groups = num_heads // q_per_kv
  4219. name = name.replace("language_model.", "") # InternVL
  4220. if name.startswith("mlp") or name.startswith("vision_model"):
  4221. # skip visual tensors
  4222. return []
  4223. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  4224. qkv = data_torch
  4225. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  4226. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  4227. # The model weights of q and k equire additional reshape.
  4228. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  4229. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  4230. v = v.reshape((-1, v.shape[-1]))
  4231. return [
  4232. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  4233. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  4234. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  4235. ]
  4236. else:
  4237. return [(self.map_tensor_name(name), data_torch)]
  4238. @ModelBase.register("InternLM3ForCausalLM")
  4239. class InternLM3Model(TextModel):
  4240. model_arch = gguf.MODEL_ARCH.LLAMA
  4241. def set_vocab(self):
  4242. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  4243. self.gguf_writer.add_tokenizer_model("llama")
  4244. self.gguf_writer.add_tokenizer_pre("default")
  4245. self.gguf_writer.add_token_list(tokens)
  4246. self.gguf_writer.add_token_scores(scores)
  4247. self.gguf_writer.add_token_types(toktypes)
  4248. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4249. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  4250. if tokenizer_config_file.is_file():
  4251. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  4252. tokenizer_config_json = json.load(f)
  4253. if "add_prefix_space" in tokenizer_config_json:
  4254. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  4255. if "added_tokens_decoder" in tokenizer_config_json:
  4256. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  4257. if token_data.get("special"):
  4258. token_id = int(token_id)
  4259. token = token_data["content"]
  4260. special_vocab._set_special_token(token, token_id)
  4261. # update eos token
  4262. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  4263. special_vocab.special_token_ids["eos"] = token_id
  4264. special_vocab.add_to_gguf(self.gguf_writer)
  4265. def set_gguf_parameters(self):
  4266. super().set_gguf_parameters()
  4267. hparams = self.hparams
  4268. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4269. if (rope_dim := hparams.get("head_dim")) is None:
  4270. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  4271. self.gguf_writer.add_rope_dimension_count(rope_dim)
  4272. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4273. n_head = self.hparams["num_attention_heads"]
  4274. n_kv_head = self.hparams.get("num_key_value_heads")
  4275. name = name.replace("language_model.", "") # InternVL
  4276. if name.startswith("mlp") or name.startswith("vision_model"):
  4277. # skip visual tensors
  4278. return []
  4279. if name.endswith(("q_proj.weight", "q_proj.bias")):
  4280. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4281. if name.endswith(("k_proj.weight", "k_proj.bias")):
  4282. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4283. return [(self.map_tensor_name(name), data_torch)]
  4284. @ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel", "BertForSequenceClassification")
  4285. class BertModel(TextModel):
  4286. model_arch = gguf.MODEL_ARCH.BERT
  4287. def __init__(self, *args, **kwargs):
  4288. super().__init__(*args, **kwargs)
  4289. self.vocab_size = None
  4290. if cls_out_labels := self.hparams.get("id2label"):
  4291. if len(cls_out_labels) == 2 and cls_out_labels[0] == "LABEL_0":
  4292. # Remove dummy labels added by AutoConfig
  4293. cls_out_labels = None
  4294. self.cls_out_labels = cls_out_labels
  4295. def set_gguf_parameters(self):
  4296. super().set_gguf_parameters()
  4297. self.gguf_writer.add_causal_attention(False)
  4298. self._try_set_pooling_type()
  4299. if self.cls_out_labels:
  4300. self.gguf_writer.add_classifier_output_labels([v for k, v in sorted(self.cls_out_labels.items())])
  4301. def set_vocab(self):
  4302. tokens, toktypes, tokpre = self.get_vocab_base()
  4303. self.vocab_size = len(tokens)
  4304. # we need this to validate the size of the token_type embeddings
  4305. # though currently we are passing all zeros to the token_type embeddings
  4306. # "Sequence A" or "Sequence B"
  4307. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4308. # convert to phantom space vocab
  4309. def phantom(tok):
  4310. if tok.startswith("[") and tok.endswith("]"):
  4311. return tok
  4312. if tok.startswith("##"):
  4313. return tok[2:]
  4314. return "\u2581" + tok
  4315. tokens = list(map(phantom, tokens))
  4316. # add vocab to gguf
  4317. self.gguf_writer.add_tokenizer_model("bert")
  4318. self.gguf_writer.add_tokenizer_pre(tokpre)
  4319. self.gguf_writer.add_token_list(tokens)
  4320. self.gguf_writer.add_token_types(toktypes)
  4321. # handle special tokens
  4322. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4323. special_vocab.add_to_gguf(self.gguf_writer)
  4324. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4325. del bid # unused
  4326. if name.startswith("bert."):
  4327. name = name[5:]
  4328. if name.endswith(".gamma"):
  4329. name = name[:-6] + ".weight"
  4330. if name.endswith(".beta"):
  4331. name = name[:-5] + ".bias"
  4332. # we are only using BERT for embeddings so we don't need the pooling layer
  4333. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  4334. return [] # we don't need these
  4335. if name.startswith("cls.predictions"):
  4336. return []
  4337. if name.startswith("cls.seq_relationship"):
  4338. return []
  4339. if self.cls_out_labels:
  4340. # For BertForSequenceClassification (direct projection layer)
  4341. if name == "classifier.weight":
  4342. name = "classifier.out_proj.weight"
  4343. if name == "classifier.bias":
  4344. name = "classifier.out_proj.bias"
  4345. return [(self.map_tensor_name(name), data_torch)]
  4346. def _xlmroberta_tokenizer_init(self) -> None:
  4347. # we need the pad_token_id to know how to chop down position_embd matrix
  4348. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  4349. self._position_offset = 1 + pad_token_id
  4350. if "max_position_embeddings" in self.hparams:
  4351. self.hparams["max_position_embeddings"] -= self._position_offset
  4352. else:
  4353. self._position_offset = None
  4354. def _xlmroberta_set_vocab(self) -> None:
  4355. # to avoid TypeError: Descriptors cannot be created directly
  4356. # exception when importing sentencepiece_model_pb2
  4357. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  4358. from sentencepiece import SentencePieceProcessor
  4359. from sentencepiece import sentencepiece_model_pb2 as model
  4360. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  4361. tokenizer_json = {}
  4362. tokenizer_config_json = {}
  4363. if not tokenizer_path.is_file():
  4364. tokenizer_path = self.dir_model / 'tokenizer.json'
  4365. tokenizer_config_path = self.dir_model / 'tokenizer_config.json'
  4366. if not tokenizer_path.is_file():
  4367. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  4368. from base64 import b64decode
  4369. from transformers import AutoTokenizer
  4370. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  4371. with open(tokenizer_path, "r", encoding="utf-8") as fp:
  4372. tokenizer_json = json.load(fp)
  4373. if tokenizer_config_path.is_file():
  4374. with open(tokenizer_config_path, "r", encoding="utf-8") as fp:
  4375. tokenizer_config_json = json.load(fp)
  4376. add_prefix = tokenizer.add_prefix_space
  4377. remove_whitespaces = tokenizer.clean_up_tokenization_spaces
  4378. precompiled_charsmap = b64decode(tokenizer_json["normalizer"]["precompiled_charsmap"])
  4379. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size)
  4380. else:
  4381. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4382. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4383. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  4384. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4385. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  4386. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  4387. tokenizer = SentencePieceProcessor()
  4388. tokenizer.LoadFromFile(str(tokenizer_path))
  4389. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size())
  4390. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4391. scores: list[float] = [-10000.0] * vocab_size
  4392. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4393. if isinstance(tokenizer, SentencePieceProcessor):
  4394. for token_id in range(tokenizer.vocab_size()):
  4395. piece = tokenizer.IdToPiece(token_id)
  4396. text = piece.encode("utf-8")
  4397. score = tokenizer.GetScore(token_id)
  4398. toktype = SentencePieceTokenTypes.NORMAL
  4399. if tokenizer.IsUnknown(token_id):
  4400. toktype = SentencePieceTokenTypes.UNKNOWN
  4401. elif tokenizer.IsControl(token_id):
  4402. toktype = SentencePieceTokenTypes.CONTROL
  4403. elif tokenizer.IsUnused(token_id):
  4404. toktype = SentencePieceTokenTypes.UNUSED
  4405. elif tokenizer.IsByte(token_id):
  4406. toktype = SentencePieceTokenTypes.BYTE
  4407. tokens[token_id] = text
  4408. scores[token_id] = score
  4409. toktypes[token_id] = toktype
  4410. else:
  4411. added_vocab = tokenizer.get_added_vocab()
  4412. unk_token = tokenizer_config_json.get("unk_token")
  4413. unk_token_id = added_vocab.get(unk_token, tokenizer_json["model"].get("unk_id", 3))
  4414. for token_id in range(tokenizer.vocab_size):
  4415. piece = tokenizer._convert_id_to_token(token_id)
  4416. if (piece := tokenizer._convert_id_to_token(token_id)) is not None:
  4417. text = piece.encode("utf-8")
  4418. score = tokenizer_json["model"]["vocab"][token_id][1]
  4419. toktype = SentencePieceTokenTypes.NORMAL
  4420. if token_id == unk_token_id:
  4421. toktype = SentencePieceTokenTypes.UNKNOWN
  4422. elif token_id in tokenizer.all_special_ids:
  4423. toktype = SentencePieceTokenTypes.CONTROL
  4424. elif token_id in added_vocab.values():
  4425. toktype = SentencePieceTokenTypes.USER_DEFINED
  4426. # No reliable way to detect this, but jina doesn't have any
  4427. # elif tokenizer.IsByte(token_id):
  4428. # toktype = SentencePieceTokenTypes.BYTE
  4429. tokens[token_id] = text
  4430. scores[token_id] = score
  4431. toktypes[token_id] = toktype
  4432. if isinstance(tokenizer, SentencePieceProcessor):
  4433. # realign tokens (see HF tokenizer code)
  4434. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  4435. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  4436. toktypes = [
  4437. SentencePieceTokenTypes.CONTROL,
  4438. SentencePieceTokenTypes.CONTROL,
  4439. SentencePieceTokenTypes.CONTROL,
  4440. SentencePieceTokenTypes.UNKNOWN,
  4441. ] + toktypes[3:-1]
  4442. if self.model_arch == gguf.MODEL_ARCH.NOMIC_BERT_MOE:
  4443. # Add mask token missing from sentencepiece.bpe.model
  4444. tokens[250001] = b'<mask>'
  4445. scores[250001] = 0.0
  4446. toktypes[250001] = SentencePieceTokenTypes.CONTROL
  4447. self.gguf_writer.add_tokenizer_model("t5")
  4448. self.gguf_writer.add_tokenizer_pre("default")
  4449. self.gguf_writer.add_token_list(tokens)
  4450. self.gguf_writer.add_token_scores(scores)
  4451. self.gguf_writer.add_token_types(toktypes)
  4452. self.gguf_writer.add_add_space_prefix(add_prefix)
  4453. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4454. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  4455. if precompiled_charsmap:
  4456. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  4457. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4458. special_vocab.add_to_gguf(self.gguf_writer)
  4459. @ModelBase.register("DistilBertModel", "DistilBertForMaskedLM", "DistilBertForSequenceClassification")
  4460. class DistilBertModel(BertModel):
  4461. model_arch = gguf.MODEL_ARCH.BERT
  4462. def set_gguf_parameters(self):
  4463. self.gguf_writer.add_layer_norm_eps(1e-12)
  4464. logger.info("gguf: layer norm epsilon = 1e-12")
  4465. super().set_gguf_parameters()
  4466. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4467. if name.startswith("distilbert."):
  4468. name = name[11:]
  4469. # These layers act as MLM head, so we don't need them
  4470. if name.startswith("vocab_"):
  4471. return []
  4472. return super().modify_tensors(data_torch, name, bid)
  4473. @ModelBase.register("RobertaModel", "RobertaForSequenceClassification")
  4474. class RobertaModel(BertModel):
  4475. model_arch = gguf.MODEL_ARCH.BERT
  4476. def __init__(self, *args, **kwargs):
  4477. super().__init__(*args, **kwargs)
  4478. # we need the pad_token_id to know how to chop down position_embd matrix
  4479. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  4480. self._position_offset = 1 + pad_token_id
  4481. if "max_position_embeddings" in self.hparams:
  4482. self.hparams["max_position_embeddings"] -= self._position_offset
  4483. else:
  4484. self._position_offset = None
  4485. def set_vocab(self):
  4486. """Support BPE tokenizers for roberta models"""
  4487. bpe_tok_path = self.dir_model / "tokenizer.json"
  4488. if bpe_tok_path.exists():
  4489. self._set_vocab_gpt2()
  4490. # we need this to validate the size of the token_type embeddings
  4491. # though currently we are passing all zeros to the token_type embeddings
  4492. # "Sequence A" or "Sequence B"
  4493. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4494. else:
  4495. return super().set_vocab()
  4496. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4497. # if name starts with "roberta.", remove the prefix
  4498. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  4499. if name.startswith("roberta."):
  4500. name = name[8:]
  4501. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  4502. if name == "embeddings.position_embeddings.weight":
  4503. if self._position_offset is not None:
  4504. data_torch = data_torch[self._position_offset:,:]
  4505. return super().modify_tensors(data_torch, name, bid)
  4506. @ModelBase.register("NomicBertModel")
  4507. class NomicBertModel(BertModel):
  4508. model_arch = gguf.MODEL_ARCH.BERT
  4509. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  4510. hparams = kwargs.pop("hparams", None)
  4511. if hparams is None:
  4512. hparams = ModelBase.load_hparams(dir_model, False)
  4513. self.is_moe = bool(hparams.get("moe_every_n_layers"))
  4514. self.model_arch = gguf.MODEL_ARCH.NOMIC_BERT_MOE if self.is_moe else gguf.MODEL_ARCH.NOMIC_BERT
  4515. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  4516. self._tokenizer_is_xlmroberta = self._is_tokenizer_xlmroberta()
  4517. if self._tokenizer_is_xlmroberta:
  4518. self._xlmroberta_tokenizer_init()
  4519. npos, mtp = self.hparams["n_positions"], self.hparams.get("max_trained_positions", 2048)
  4520. if npos == 8192 and mtp == 2048:
  4521. self.hparams["n_positions"] = 2048 # nomic-embed-text v1 and v1.5 are trained for 2048 tokens.
  4522. elif npos == 2048 and mtp == 2048:
  4523. self.hparams["n_positions"] = 512 # nomic-embed-text-v2-moe is trained for 512 tokens.
  4524. else:
  4525. raise ValueError(f"unrecognized parameters: n_positions={npos}, max_trained_positions={mtp}")
  4526. assert self.hparams["activation_function"] == "gelu" if self.is_moe else "swiglu"
  4527. # this doesn't do anything in the HF version
  4528. assert self.hparams["causal"] is False
  4529. # no bias tensors unless MoE
  4530. assert self.hparams["qkv_proj_bias"] == self.is_moe
  4531. assert self.hparams["mlp_fc1_bias"] == self.is_moe
  4532. assert self.hparams["mlp_fc2_bias"] == self.is_moe
  4533. # norm at end of layer
  4534. assert self.hparams["prenorm"] is False
  4535. # standard RoPE
  4536. assert self.hparams["rotary_emb_fraction"] == 1.0
  4537. assert self.hparams["rotary_emb_interleaved"] is False
  4538. assert self.hparams["rotary_emb_scale_base"] is None
  4539. def set_vocab(self) -> None:
  4540. if self._tokenizer_is_xlmroberta:
  4541. return self._xlmroberta_set_vocab()
  4542. return super().set_vocab()
  4543. def modify_tensors(self, data_torch: torch.Tensor, name: str, bid: int | None) -> Iterable[tuple[str, torch.Tensor]]:
  4544. # If the tensor is an experts bias tensor, skip it by returning an empty list.
  4545. if "mlp.experts.bias" in name:
  4546. return [] # Explicitly return an empty list.
  4547. if "mlp.experts.mlp.w1" in name:
  4548. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  4549. name += ".weight"
  4550. if "mlp.experts.mlp.w2" in name:
  4551. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  4552. data_torch = data_torch.transpose(1, 2)
  4553. name += ".weight"
  4554. return [(self.map_tensor_name(name), data_torch)]
  4555. def set_gguf_parameters(self):
  4556. super().set_gguf_parameters()
  4557. if self.is_moe:
  4558. self.gguf_writer.add_moe_every_n_layers(self.hparams["moe_every_n_layers"])
  4559. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  4560. self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"])
  4561. def _is_tokenizer_xlmroberta(self) -> bool:
  4562. with open(self.dir_model / "tokenizer.json") as f:
  4563. tokenizer_json = json.load(f)
  4564. toktyp = tokenizer_json["model"]["type"]
  4565. if toktyp == "Unigram":
  4566. return True
  4567. if toktyp == "WordPiece":
  4568. return False
  4569. raise ValueError(f"unknown tokenizer: {toktyp}")
  4570. @ModelBase.register("NeoBERT", "NeoBERTLMHead", "NeoBERTForSequenceClassification")
  4571. class NeoBert(BertModel):
  4572. model_arch = gguf.MODEL_ARCH.NEO_BERT
  4573. def set_gguf_parameters(self):
  4574. super().set_gguf_parameters()
  4575. # NeoBERT uses 2/3 of the intermediate size as feed forward length
  4576. self.gguf_writer.add_feed_forward_length(int(2 * self.hparams["intermediate_size"] / 3))
  4577. self.gguf_writer.add_rope_freq_base(10000.0) # default value for NeoBERT
  4578. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4579. f_rms_eps = self.hparams.get("norm_eps", 1e-6) # default value for NeoBERT
  4580. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  4581. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  4582. self.gguf_writer.add_pooling_type(gguf.PoolingType.CLS) # https://huggingface.co/chandar-lab/NeoBERT#how-to-use
  4583. def modify_tensors(self, data_torch, name, bid):
  4584. if name.startswith("decoder."):
  4585. return []
  4586. if name.startswith("model."):
  4587. name = name[6:]
  4588. return super().modify_tensors(data_torch, name, bid)
  4589. @ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  4590. class XLMRobertaModel(BertModel):
  4591. model_arch = gguf.MODEL_ARCH.BERT
  4592. _lora_files = {}
  4593. _lora_names = []
  4594. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  4595. hparams = kwargs.pop("hparams", None)
  4596. if hparams is None:
  4597. hparams = ModelBase.load_hparams(dir_model, False)
  4598. if lora_names := hparams.get("lora_adaptations"):
  4599. self._lora_names = lora_names
  4600. self.model_arch = gguf.MODEL_ARCH.JINA_BERT_V3
  4601. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  4602. self._xlmroberta_tokenizer_init()
  4603. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4604. if self._lora_names:
  4605. for name in self._lora_names:
  4606. fname = self.add_prefix_to_filename(self.fname_out, f"lora-{name}-")
  4607. self._lora_files[name] = gguf.GGUFWriter(fname, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file, dry_run=self.dry_run)
  4608. return super().generate_extra_tensors()
  4609. def set_type(self):
  4610. for lora_writer in self._lora_files.values():
  4611. lora_writer.add_type(gguf.GGUFType.ADAPTER)
  4612. lora_writer.add_string(gguf.Keys.Adapter.TYPE, "lora")
  4613. super().set_type()
  4614. def set_vocab(self):
  4615. self._xlmroberta_set_vocab()
  4616. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4617. # if name starts with "roberta.", remove the prefix
  4618. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  4619. if name.startswith("roberta."):
  4620. name = name[8:]
  4621. # jina-embeddings-v3
  4622. if ".parametrizations." in name:
  4623. name = name.replace(".parametrizations.", ".")
  4624. if name.endswith(".original"):
  4625. name = name[:-9]
  4626. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  4627. if name == "embeddings.position_embeddings.weight":
  4628. if self._position_offset is not None:
  4629. data_torch = data_torch[self._position_offset:,:]
  4630. if name.endswith(".0.lora_A") or name.endswith(".0.lora_B"):
  4631. if name.startswith("pooler.dense"):
  4632. return []
  4633. num_loras = data_torch.size(0)
  4634. assert num_loras == len(self._lora_names)
  4635. # Split out each LoRA in their own GGUF
  4636. for i, lora_writer in enumerate(self._lora_files.values()):
  4637. new_name = self.map_tensor_name(name[:-9]) + name[-7:].lower()
  4638. data = data_torch[i, :, :]
  4639. # Transpose/flip token_embd/types into correct shape
  4640. if new_name == "token_embd.weight.lora_b":
  4641. data = data.T
  4642. elif new_name.startswith("token_types.weight."):
  4643. new_name = new_name[:-1] + ("a" if new_name[-1:] == "b" else "b")
  4644. lora_writer.add_tensor(new_name, data.float().numpy(), raw_dtype=gguf.GGMLQuantizationType.F32)
  4645. return []
  4646. return super().modify_tensors(data_torch, name, bid)
  4647. def set_gguf_parameters(self):
  4648. super().set_gguf_parameters()
  4649. # jina-embeddings-v3
  4650. lora_alpha = self.hparams.get("lora_alpha")
  4651. if lora_prompt_prefixes := self.hparams.get("task_instructions"):
  4652. assert self._lora_files and all(lora_name in lora_prompt_prefixes for lora_name in self._lora_files.keys())
  4653. for lora_name, lora_writer in self._lora_files.items():
  4654. lora_writer.add_float32(gguf.Keys.Adapter.LORA_ALPHA, lora_alpha if lora_alpha is not None else 1.0)
  4655. lora_writer.add_string(gguf.Keys.Adapter.LORA_TASK_NAME, lora_name)
  4656. if lora_prompt_prefixes:
  4657. lora_writer.add_string(gguf.Keys.Adapter.LORA_PROMPT_PREFIX, lora_prompt_prefixes[lora_name])
  4658. def write(self):
  4659. super().write()
  4660. for lora_writer in self._lora_files.values():
  4661. lora_writer.write_header_to_file()
  4662. lora_writer.write_kv_data_to_file()
  4663. lora_writer.write_tensors_to_file(progress=True)
  4664. lora_writer.close()
  4665. @ModelBase.register("GemmaForCausalLM")
  4666. class GemmaModel(TextModel):
  4667. model_arch = gguf.MODEL_ARCH.GEMMA
  4668. def set_vocab(self):
  4669. self._set_vocab_sentencepiece()
  4670. # TODO: these special tokens should be exported only for the CodeGemma family
  4671. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  4672. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  4673. special_vocab._set_special_token("prefix", 67)
  4674. special_vocab._set_special_token("suffix", 69)
  4675. special_vocab._set_special_token("middle", 68)
  4676. special_vocab._set_special_token("fsep", 70)
  4677. special_vocab._set_special_token("eot", 107)
  4678. special_vocab.chat_template = None # do not add it twice
  4679. special_vocab.add_to_gguf(self.gguf_writer)
  4680. self.gguf_writer.add_add_space_prefix(False)
  4681. def set_gguf_parameters(self):
  4682. hparams = self.hparams
  4683. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4684. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4685. self.gguf_writer.add_block_count(self.block_count)
  4686. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4687. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4688. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4689. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4690. self.gguf_writer.add_key_length(hparams["head_dim"])
  4691. self.gguf_writer.add_value_length(hparams["head_dim"])
  4692. self.gguf_writer.add_file_type(self.ftype)
  4693. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4694. del bid # unused
  4695. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4696. # To prevent errors, skip loading lm_head.weight.
  4697. if name == "lm_head.weight":
  4698. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4699. return []
  4700. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4701. if name.endswith("norm.weight"):
  4702. data_torch = data_torch + 1
  4703. return [(self.map_tensor_name(name), data_torch)]
  4704. @ModelBase.register("Gemma2ForCausalLM")
  4705. class Gemma2Model(TextModel):
  4706. model_arch = gguf.MODEL_ARCH.GEMMA2
  4707. def set_vocab(self):
  4708. self._set_vocab_sentencepiece()
  4709. self.gguf_writer.add_add_space_prefix(False)
  4710. def set_gguf_parameters(self):
  4711. hparams = self.hparams
  4712. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4713. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4714. self.gguf_writer.add_block_count(self.block_count)
  4715. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4716. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4717. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4718. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4719. self.gguf_writer.add_key_length(hparams["head_dim"])
  4720. self.gguf_writer.add_value_length(hparams["head_dim"])
  4721. self.gguf_writer.add_file_type(self.ftype)
  4722. self.gguf_writer.add_attn_logit_softcapping(
  4723. self.hparams["attn_logit_softcapping"]
  4724. )
  4725. self.gguf_writer.add_final_logit_softcapping(
  4726. self.hparams["final_logit_softcapping"]
  4727. )
  4728. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  4729. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4730. del bid # unused
  4731. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4732. # To prevent errors, skip loading lm_head.weight.
  4733. if name == "lm_head.weight":
  4734. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4735. return []
  4736. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4737. if name.endswith("norm.weight"):
  4738. data_torch = data_torch + 1
  4739. return [(self.map_tensor_name(name), data_torch)]
  4740. @ModelBase.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  4741. class Gemma3Model(TextModel):
  4742. model_arch = gguf.MODEL_ARCH.GEMMA3
  4743. norm_shift = 1.0 # Gemma3RMSNorm adds 1.0 to the norm value
  4744. def set_vocab(self):
  4745. if (self.dir_model / "tokenizer.model").is_file():
  4746. self._set_vocab_sentencepiece()
  4747. self.gguf_writer.add_add_space_prefix(False)
  4748. else:
  4749. self._set_vocab_gpt2()
  4750. def set_gguf_parameters(self):
  4751. super().set_gguf_parameters()
  4752. hparams = self.hparams
  4753. # some default values are not specified in the hparams
  4754. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  4755. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  4756. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  4757. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  4758. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  4759. self.gguf_writer.add_rope_freq_base(self.rope_parameters.get("full_attention", self.rope_parameters).get("rope_theta", 1_000_000.0)) # for global layers
  4760. # attn_logit_softcapping is removed in Gemma3
  4761. assert hparams.get("attn_logit_softcapping") is None
  4762. if (final_logit_softcap := hparams.get("final_logit_softcapping")):
  4763. self.gguf_writer.add_final_logit_softcapping(final_logit_softcap)
  4764. if hparams.get("sliding_window_pattern") != 1:
  4765. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  4766. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  4767. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4768. del bid # unused
  4769. if "language_model." in name:
  4770. name = name.replace("language_model.", "")
  4771. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4772. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4773. return [] # skip vision tensors
  4774. # remove OOV (out-of-vocabulary) rows in token_embd
  4775. if "embed_tokens.weight" in name:
  4776. if (self.dir_model / "tokenizer.model").is_file():
  4777. tokens = self._create_vocab_sentencepiece()[0]
  4778. else:
  4779. tokens = self.get_vocab_base()[0]
  4780. data_torch = data_torch[:len(tokens)]
  4781. # ref code in Gemma3RMSNorm
  4782. # output = output * (1.0 + self.weight.float())
  4783. # note: this is not the case on gemma3n
  4784. if name.endswith("norm.weight"):
  4785. data_torch = data_torch + self.norm_shift
  4786. return [(self.map_tensor_name(name), data_torch)]
  4787. @ModelBase.register("Gemma3TextModel")
  4788. class EmbeddingGemma(Gemma3Model):
  4789. model_arch = gguf.MODEL_ARCH.GEMMA_EMBEDDING
  4790. module_paths = []
  4791. dense_features_dims = {}
  4792. def __init__(self, *args, **kwargs):
  4793. super().__init__(*args, **kwargs)
  4794. if self.sentence_transformers_dense_modules:
  4795. # read modules.json to determine if model has Dense layers
  4796. modules_file = self.dir_model / "modules.json"
  4797. if modules_file.is_file():
  4798. with open(modules_file, encoding="utf-8") as modules_json_file:
  4799. mods = json.load(modules_json_file)
  4800. for mod in mods:
  4801. if mod["type"] == "sentence_transformers.models.Dense":
  4802. mod_path = mod["path"]
  4803. # check if model.safetensors file for Dense layer exists
  4804. model_tensors_file = self.dir_model / mod_path / "model.safetensors"
  4805. if model_tensors_file.is_file():
  4806. self.module_paths.append(mod_path)
  4807. # read config.json of the Dense layer to get in/out features
  4808. mod_conf_file = self.dir_model / mod_path / "config.json"
  4809. if mod_conf_file.is_file():
  4810. with open(mod_conf_file, encoding="utf-8") as mod_conf_json_file:
  4811. mod_conf = json.load(mod_conf_json_file)
  4812. # hparams dense_2_feat_out and dense_3_feat_in are required when loading model's dense weights
  4813. prefix = self._get_dense_prefix(mod_path)
  4814. if mod_conf["in_features"] is not None and mod_conf["out_features"] is not None:
  4815. self.dense_features_dims[prefix] = (mod_conf["in_features"], mod_conf["out_features"])
  4816. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4817. from safetensors.torch import load_file
  4818. module_paths = list(self.module_paths)
  4819. for i, module_path in enumerate(module_paths):
  4820. tensors_file = self.dir_model / module_path / "model.safetensors"
  4821. local_tensors = load_file(tensors_file)
  4822. tensor_name = self._get_dense_prefix(module_path)
  4823. for name, local_tensor in local_tensors.items():
  4824. if not name.endswith(".weight"):
  4825. continue
  4826. orig_name = name.replace("linear", tensor_name)
  4827. name = self.map_tensor_name(orig_name)
  4828. yield name, local_tensor.clone()
  4829. @staticmethod
  4830. def _get_dense_prefix(module_path) -> str:
  4831. """Get the tensor name prefix for the Dense layer from module path."""
  4832. tensor_name = "dense_2" if module_path == "2_Dense" else "dense_3"
  4833. return tensor_name
  4834. def set_gguf_parameters(self):
  4835. super().set_gguf_parameters()
  4836. # Override the sliding window size as it gets adjusted by the Gemma3TextConfig
  4837. # constructor. We want to use the value from the original model's config.json.
  4838. # ref: https://github.com/huggingface/transformers/pull/40700
  4839. with open(self.dir_model / "config.json", "r", encoding="utf-8") as f:
  4840. config = json.load(f)
  4841. orig_sliding_window = config.get("sliding_window")
  4842. if orig_sliding_window is None:
  4843. raise ValueError("sliding_window not found in model config - this is required for the model")
  4844. logger.info(f"Using original sliding_window from config: {orig_sliding_window} "
  4845. f"instead of {self.hparams['sliding_window']}")
  4846. self.gguf_writer.add_sliding_window(orig_sliding_window)
  4847. if self.sentence_transformers_dense_modules:
  4848. for dense, dims in self.dense_features_dims.items():
  4849. logger.info(f"Setting dense layer {dense} in/out features to {dims}")
  4850. self.gguf_writer.add_dense_features_dims(dense, dims[0], dims[1])
  4851. self._try_set_pooling_type()
  4852. @ModelBase.register("Gemma3ForConditionalGeneration")
  4853. class Gemma3VisionModel(MmprojModel):
  4854. def set_gguf_parameters(self):
  4855. super().set_gguf_parameters()
  4856. hparams = self.hparams
  4857. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GEMMA3)
  4858. # default values below are taken from HF tranformers code
  4859. self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
  4860. self.gguf_writer.add_vision_use_gelu(True)
  4861. # calculate proj_scale_factor (used by tinygemma3 test model)
  4862. image_seq_length = self.preprocessor_config.get("image_seq_length", 256)
  4863. n_per_side = int(image_seq_length ** 0.5)
  4864. image_size = self.hparams["image_size"]
  4865. patch_size = self.hparams["patch_size"]
  4866. proj_scale_factor = (image_size // patch_size) // n_per_side
  4867. if proj_scale_factor > 0 and proj_scale_factor != 4:
  4868. # we only need to write this if it's not the default value
  4869. # in this case, we are converting a test model
  4870. self.gguf_writer.add_vision_projector_scale_factor(proj_scale_factor)
  4871. def tensor_force_quant(self, name, new_name, bid, n_dims):
  4872. # related to https://github.com/ggml-org/llama.cpp/issues/13025
  4873. if "input_projection" in name:
  4874. return gguf.GGMLQuantizationType.F16
  4875. if ".embeddings." in name:
  4876. return gguf.GGMLQuantizationType.F32
  4877. return super().tensor_force_quant(name, new_name, bid, n_dims)
  4878. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4879. del bid # unused
  4880. if "vision_model.head." in name:
  4881. return [] # skip redundant tensors for tinygemma3
  4882. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4883. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4884. # process vision tensors
  4885. name = name.replace("_weight", ".weight")
  4886. # correct norm value ; only this "soft_emb_norm" need to be corrected as it's part of Gemma projector
  4887. # the other norm values are part of SigLIP model, and they are already correct
  4888. # ref code: Gemma3RMSNorm
  4889. if "soft_emb_norm.weight" in name:
  4890. logger.info(f"Correcting norm value for '{name}'")
  4891. data_torch = data_torch + 1
  4892. return [(self.map_tensor_name(name), data_torch)]
  4893. return [] # skip other tensors
  4894. @ModelBase.register("Gemma3nForConditionalGeneration")
  4895. class Gemma3NModel(Gemma3Model):
  4896. model_arch = gguf.MODEL_ARCH.GEMMA3N
  4897. norm_shift = 0.0 # same value with Gemma3p5RMSNorm scale_shift on python code
  4898. _altup_proj: list[Tensor] = []
  4899. _altup_unembd: list[Tensor] = []
  4900. def __init__(self, *args, **kwargs):
  4901. super().__init__(*args, **kwargs)
  4902. assert self.hparams["altup_num_inputs"] == 4, "Current conversion only supports 4 altup inputs"
  4903. self._altup_proj = [
  4904. torch.Tensor(), # to be replaced
  4905. torch.Tensor(), # to be replaced
  4906. torch.Tensor(), # to be replaced
  4907. ]
  4908. self._altup_unembd = [
  4909. torch.Tensor(), # to be replaced
  4910. torch.Tensor(), # to be replaced
  4911. torch.Tensor(), # to be replaced
  4912. ]
  4913. def set_vocab(self):
  4914. super().set_vocab()
  4915. def set_gguf_parameters(self):
  4916. super().set_gguf_parameters()
  4917. self.gguf_writer.add_altup_active_idx(self.hparams["altup_active_idx"])
  4918. self.gguf_writer.add_altup_num_inputs(self.hparams["altup_num_inputs"])
  4919. self.gguf_writer.add_embedding_length_per_layer_input(self.hparams["hidden_size_per_layer_input"])
  4920. self.gguf_writer.add_shared_kv_layers(self.hparams["num_kv_shared_layers"])
  4921. activation_sparsity_scale = []
  4922. for s in self.hparams["activation_sparsity_pattern"]:
  4923. normal_dist = torch.distributions.normal.Normal(0, 1)
  4924. std_multiplier = normal_dist.icdf(torch.tensor(s, dtype=torch.float32))
  4925. activation_sparsity_scale.append(std_multiplier.item())
  4926. self.gguf_writer.add_activation_sparsity_scale(activation_sparsity_scale)
  4927. sliding_window_pattern = []
  4928. for t in self.hparams["layer_types"]:
  4929. sliding_window_pattern.append(t == "sliding_attention")
  4930. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  4931. def _stack_matrices(self, matrices: list[Tensor]) -> Tensor | None:
  4932. has_all = all(m.numel() > 0 for m in matrices)
  4933. if not has_all:
  4934. return None
  4935. else:
  4936. return torch.stack(matrices, dim=0)
  4937. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4938. if name.endswith("_scale"):
  4939. name = name + ".weight"
  4940. # TODO: implement self.prediction_coefs.weight.clamp_(...)
  4941. if "language_model." not in name:
  4942. return [] # skip non-language model tensors
  4943. if "altup_unembed_projections" in name:
  4944. data_torch = data_torch.to(device="cpu")
  4945. if ".0." in name:
  4946. self._altup_unembd[0] = data_torch
  4947. elif ".1." in name:
  4948. self._altup_unembd[1] = data_torch
  4949. elif ".2." in name:
  4950. self._altup_unembd[2] = data_torch
  4951. else:
  4952. raise ValueError(f"Unknown name: {name}")
  4953. out = self._stack_matrices(self._altup_unembd)
  4954. if out is not None:
  4955. return [(self.map_tensor_name("model.altup_unembed_projections.weight"), out)]
  4956. else:
  4957. return []
  4958. if "altup_projections" in name:
  4959. data_torch = data_torch.to(device="cpu")
  4960. if ".0." in name:
  4961. self._altup_proj[0] = data_torch
  4962. elif ".1." in name:
  4963. self._altup_proj[1] = data_torch
  4964. elif ".2." in name:
  4965. self._altup_proj[2] = data_torch
  4966. else:
  4967. raise ValueError(f"Unknown name: {name}")
  4968. out = self._stack_matrices(self._altup_proj)
  4969. if out is not None:
  4970. return [(self.map_tensor_name("model.altup_projections.weight"), out)]
  4971. else:
  4972. return []
  4973. return super().modify_tensors(data_torch, name, bid)
  4974. @ModelBase.register("Starcoder2ForCausalLM")
  4975. class StarCoder2Model(TextModel):
  4976. model_arch = gguf.MODEL_ARCH.STARCODER2
  4977. @ModelBase.register("Rwkv6ForCausalLM")
  4978. class Rwkv6Model(TextModel):
  4979. model_arch = gguf.MODEL_ARCH.RWKV6
  4980. def set_vocab(self):
  4981. self._set_vocab_rwkv_world()
  4982. def set_gguf_parameters(self):
  4983. head_size = self.hparams["head_size"]
  4984. hidden_size = self.hparams["hidden_size"]
  4985. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  4986. rescale_every_n_layers = self.hparams["rescale_every"]
  4987. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  4988. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  4989. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  4990. # RWKV isn't context limited
  4991. self.gguf_writer.add_context_length(1048576)
  4992. self.gguf_writer.add_embedding_length(hidden_size)
  4993. self.gguf_writer.add_block_count(self.block_count)
  4994. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  4995. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  4996. self.gguf_writer.add_wkv_head_size(head_size)
  4997. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  4998. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  4999. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5000. self.gguf_writer.add_file_type(self.ftype)
  5001. # required by llama.cpp, unused
  5002. self.gguf_writer.add_head_count(0)
  5003. lerp_weights: dict[int, dict[str, Tensor]] = {}
  5004. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5005. new_name = self.map_tensor_name(name)
  5006. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  5007. new_name += ".weight"
  5008. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  5009. data_torch = data_torch.transpose(0, 1)
  5010. if new_name.endswith("time_mix_w2.weight"):
  5011. data_torch = data_torch.permute(0, 2, 1)
  5012. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  5013. data_torch = data_torch.squeeze()
  5014. try:
  5015. rescale_every_n_layers = self.hparams["rescale_every"]
  5016. if rescale_every_n_layers > 0:
  5017. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  5018. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  5019. except KeyError:
  5020. pass
  5021. # concat time_mix_lerp weights to reduce some cpu overhead
  5022. # also reduces the number of tensors in the model
  5023. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  5024. try:
  5025. self.lerp_weights[bid][new_name] = data_torch
  5026. except KeyError:
  5027. self.lerp_weights[bid] = {new_name: data_torch}
  5028. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  5029. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  5030. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  5031. yield (new_name, data)
  5032. return
  5033. yield (new_name, data_torch)
  5034. @ModelBase.register("RWKV6Qwen2ForCausalLM")
  5035. class RWKV6Qwen2Model(Rwkv6Model):
  5036. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  5037. def set_vocab(self):
  5038. try:
  5039. self._set_vocab_sentencepiece()
  5040. except FileNotFoundError:
  5041. self._set_vocab_gpt2()
  5042. def set_gguf_parameters(self):
  5043. num_attention_heads = self.hparams["num_attention_heads"]
  5044. num_key_value_heads = self.hparams["num_key_value_heads"]
  5045. hidden_size = self.hparams["hidden_size"]
  5046. head_size = hidden_size // num_attention_heads
  5047. rms_norm_eps = self.hparams["rms_norm_eps"]
  5048. intermediate_size = self.hparams["intermediate_size"]
  5049. time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
  5050. time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
  5051. # RWKV isn't context limited
  5052. self.gguf_writer.add_context_length(1048576)
  5053. self.gguf_writer.add_embedding_length(hidden_size)
  5054. self.gguf_writer.add_block_count(self.block_count)
  5055. self.gguf_writer.add_wkv_head_size(head_size)
  5056. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  5057. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  5058. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5059. self.gguf_writer.add_file_type(self.ftype)
  5060. # special parameters for time_mixing in RWKV6QWEN2
  5061. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5062. self.gguf_writer.add_token_shift_count(1)
  5063. # RWKV6QWEN2 use grouped key/value like GQA
  5064. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  5065. # required by llama.cpp, unused
  5066. self.gguf_writer.add_head_count(0)
  5067. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5068. for new_name, data in super().modify_tensors(data_torch, name, bid):
  5069. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  5070. data = data.view(5, -1, data.shape[-1])
  5071. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  5072. # permute them here to avoid code changes
  5073. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  5074. if "w2" in new_name:
  5075. data = data.view(5, -1, data.shape[-1])
  5076. yield (new_name, data)
  5077. continue
  5078. yield (new_name, data)
  5079. @ModelBase.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  5080. class Rwkv7Model(TextModel):
  5081. model_arch = gguf.MODEL_ARCH.RWKV7
  5082. def set_vocab(self):
  5083. self._set_vocab_rwkv_world()
  5084. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  5085. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  5086. def set_gguf_parameters(self):
  5087. try:
  5088. head_size = self.hparams["head_size"]
  5089. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  5090. except KeyError:
  5091. head_size = self.hparams["head_dim"]
  5092. layer_norm_eps = self.hparams["norm_eps"]
  5093. hidden_size = self.hparams["hidden_size"]
  5094. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  5095. # ICLR: In-Context-Learning-Rate
  5096. try:
  5097. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5098. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5099. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  5100. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  5101. except KeyError:
  5102. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5103. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5104. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  5105. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  5106. # RWKV isn't context limited
  5107. self.gguf_writer.add_context_length(1048576)
  5108. self.gguf_writer.add_embedding_length(hidden_size)
  5109. self.gguf_writer.add_block_count(self.block_count)
  5110. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  5111. self.gguf_writer.add_wkv_head_size(head_size)
  5112. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  5113. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  5114. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  5115. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  5116. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5117. self.gguf_writer.add_file_type(self.ftype)
  5118. # required by llama.cpp, unused
  5119. self.gguf_writer.add_head_count(0)
  5120. lerp_weights: dict[int, dict[str, Tensor]] = {}
  5121. lora_needs_transpose: bool = True
  5122. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5123. # unify tensor names here to make life easier
  5124. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  5125. name = name.replace("self_attn", "attention").replace("attn", "attention")
  5126. name = name.replace("time_mixer.", "")
  5127. # lora layer names in fla-hub's impl
  5128. if "_lora.lora" in name:
  5129. self.lora_needs_transpose = False
  5130. name = name.replace("_lora.lora.0.weight", "1.weight")
  5131. name = name.replace("_lora.lora.2.weight", "2.weight")
  5132. name = name.replace("_lora.lora.2.bias", "0.weight")
  5133. name = name.replace("feed_forward_norm", "ln2")
  5134. name = name.replace("g_norm", "ln_x")
  5135. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  5136. # some models have dummy v0/v1/v2 on first layer while others don't
  5137. # ignore them all since they are not used
  5138. return
  5139. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  5140. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  5141. if bid is not None and "attention.x_" in name:
  5142. if "attention.x_x" in name:
  5143. # already concatenated
  5144. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  5145. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  5146. yield (new_name, data)
  5147. else:
  5148. try:
  5149. self.lerp_weights[bid][name] = data_torch
  5150. except KeyError:
  5151. self.lerp_weights[bid] = {name: data_torch}
  5152. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  5153. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  5154. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  5155. yield (new_name, data)
  5156. return
  5157. else:
  5158. data_torch = data_torch.squeeze()
  5159. new_name = self.map_tensor_name(name)
  5160. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  5161. new_name += ".weight"
  5162. if self.lora_needs_transpose and any(
  5163. new_name.endswith(t) for t in [
  5164. "time_mix_w1.weight", "time_mix_w2.weight",
  5165. "time_mix_a1.weight", "time_mix_a2.weight",
  5166. "time_mix_v1.weight", "time_mix_v2.weight",
  5167. "time_mix_g1.weight", "time_mix_g2.weight",
  5168. ]
  5169. ):
  5170. data_torch = data_torch.transpose(0, 1)
  5171. if 'r_k' in new_name:
  5172. data_torch = data_torch.flatten()
  5173. if bid == 0 and "time_mix_a" in new_name:
  5174. # dummy v0/v1/v2 on first layer
  5175. # easist way to make llama happy
  5176. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  5177. yield (new_name, data_torch)
  5178. @ModelBase.register("RwkvHybridForCausalLM")
  5179. class ARwkv7Model(Rwkv7Model):
  5180. model_arch = gguf.MODEL_ARCH.ARWKV7
  5181. def set_vocab(self):
  5182. try:
  5183. self._set_vocab_sentencepiece()
  5184. except FileNotFoundError:
  5185. self._set_vocab_gpt2()
  5186. def set_gguf_parameters(self):
  5187. hidden_size = self.hparams["hidden_size"]
  5188. head_size = self.hparams["head_size"]
  5189. rms_norm_eps = self.hparams["rms_norm_eps"]
  5190. intermediate_size = self.hparams["intermediate_size"]
  5191. wkv_has_gate = self.hparams["wkv_has_gate"]
  5192. assert self.hparams["wkv_version"] == 7
  5193. # ICLR: In-Context-Learning-Rate
  5194. lora_rank_decay = 64
  5195. lora_rank_iclr = 64
  5196. lora_rank_value_residual_mix = 32
  5197. lora_rank_gate = 128 if wkv_has_gate else 0
  5198. # RWKV isn't context limited
  5199. self.gguf_writer.add_context_length(1048576)
  5200. self.gguf_writer.add_embedding_length(hidden_size)
  5201. self.gguf_writer.add_block_count(self.block_count)
  5202. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5203. self.gguf_writer.add_wkv_head_size(head_size)
  5204. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  5205. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  5206. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  5207. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  5208. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5209. self.gguf_writer.add_file_type(self.ftype)
  5210. self.gguf_writer.add_token_shift_count(1)
  5211. # required by llama.cpp, unused
  5212. self.gguf_writer.add_head_count(0)
  5213. @ModelBase.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  5214. class MambaModel(TextModel):
  5215. model_arch = gguf.MODEL_ARCH.MAMBA
  5216. def __init__(self, dir_model: Path, *args, **kwargs):
  5217. # Avoid using AutoConfig for hparams
  5218. hparams = kwargs.pop("hparams", None)
  5219. if hparams is None:
  5220. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  5221. hparams = json.load(f)
  5222. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  5223. def set_vocab(self):
  5224. vocab_size = self.hparams["vocab_size"]
  5225. # Round vocab size to next multiple of 8
  5226. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  5227. # pad using ceiling division
  5228. # ref: https://stackoverflow.com/a/17511341/22827863
  5229. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  5230. self.hparams["vocab_size"] = vocab_size
  5231. if (self.dir_model / "tokenizer.json").is_file():
  5232. self._set_vocab_gpt2()
  5233. elif (self.dir_model / "tokenizer.model").is_file():
  5234. self._set_vocab_sentencepiece()
  5235. else:
  5236. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  5237. self._set_vocab_builtin("gpt-neox", vocab_size)
  5238. def set_gguf_parameters(self):
  5239. d_model = self.find_hparam(["hidden_size", "d_model"])
  5240. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  5241. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  5242. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  5243. # ceiling division
  5244. # ref: https://stackoverflow.com/a/17511341/22827863
  5245. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  5246. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  5247. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  5248. use_dt_b_c_norm = False
  5249. # For falconmamba we do apply RMS norm on B / DT and C layers
  5250. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  5251. use_dt_b_c_norm = True
  5252. # Fail early for models which don't have a block expansion factor of 2
  5253. assert d_inner == 2 * d_model
  5254. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  5255. self.gguf_writer.add_embedding_length(d_model)
  5256. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  5257. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  5258. self.gguf_writer.add_block_count(self.block_count)
  5259. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5260. self.gguf_writer.add_ssm_inner_size(d_inner)
  5261. self.gguf_writer.add_ssm_state_size(d_state)
  5262. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  5263. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5264. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  5265. self.gguf_writer.add_file_type(self.ftype)
  5266. _tok_embd = None
  5267. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5268. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  5269. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  5270. new_name = self.map_tensor_name(name)
  5271. if name.endswith(".A_log"):
  5272. logger.debug("A_log --> A ==> " + new_name)
  5273. data_torch = -torch.exp(data_torch)
  5274. # [4 1 8192 1] -> [4 8192 1 1]
  5275. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5276. data_torch = data_torch.squeeze()
  5277. # assuming token_embd.weight is seen before output.weight
  5278. if self._tok_embd is not None and new_name == output_name:
  5279. if torch.equal(self._tok_embd, data_torch):
  5280. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  5281. return []
  5282. elif new_name == tok_embd_name:
  5283. self._tok_embd = data_torch
  5284. return [(new_name, data_torch)]
  5285. @ModelBase.register("Mamba2ForCausalLM")
  5286. class Mamba2Model(TextModel):
  5287. model_arch = gguf.MODEL_ARCH.MAMBA2
  5288. def __init__(self, dir_model: Path, *args, **kwargs):
  5289. # Avoid using AutoConfig for hparams
  5290. # It wrongly assumes all Mamba2 models are Mamba-Codestral-7B-v0.1
  5291. hparams = kwargs.pop("hparams", None)
  5292. if hparams is None:
  5293. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  5294. hparams = json.load(f)
  5295. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  5296. self.d_model = self.find_hparam(["hidden_size", "d_model", "dim"])
  5297. self.d_inner = self.find_hparam(["mamba_d_ssm", "intermediate_size", "d_inner"], optional=True) or 2 * self.d_model
  5298. self.n_group = self.find_hparam(["n_groups"], optional=True) or 1
  5299. def set_vocab(self):
  5300. vocab_size = self.hparams["vocab_size"]
  5301. # Round vocab size to next multiple of 16
  5302. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 16)
  5303. # pad using ceiling division
  5304. # ref: https://stackoverflow.com/a/17511341/22827863
  5305. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  5306. self.hparams["vocab_size"] = vocab_size
  5307. if (self.dir_model / "tokenizer.model").is_file():
  5308. self._set_vocab_sentencepiece()
  5309. elif (self.dir_model / "tokenizer.model.v3").is_file():
  5310. # mamba-codestral
  5311. raise NotImplementedError(f"Please rename {self.dir_model / 'tokenizer.model.v3'} to {self.dir_model / 'tokenizer.model'}")
  5312. elif (self.dir_model / "tokenizer.json").is_file():
  5313. self._set_vocab_gpt2()
  5314. else:
  5315. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  5316. self._set_vocab_builtin("gpt-neox", vocab_size)
  5317. def set_gguf_parameters(self):
  5318. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  5319. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 128
  5320. head_dim = self.find_hparam(["mamba_d_head", "head_dim"], optional=True) or 64
  5321. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  5322. # Fail early for models which don't have a block expansion factor of 2
  5323. # TODO: does this really matter?
  5324. # skip the assertion for FalconH1 Model
  5325. if self.model_arch != gguf.MODEL_ARCH.FALCON_H1:
  5326. assert self.d_inner == 2 * self.d_model
  5327. assert self.d_inner % head_dim == 0
  5328. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  5329. self.gguf_writer.add_embedding_length(self.d_model)
  5330. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  5331. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  5332. self.gguf_writer.add_block_count(self.block_count)
  5333. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5334. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  5335. self.gguf_writer.add_ssm_state_size(d_state)
  5336. self.gguf_writer.add_ssm_time_step_rank(self.d_inner // head_dim)
  5337. self.gguf_writer.add_ssm_group_count(self.n_group)
  5338. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5339. self.gguf_writer.add_file_type(self.ftype)
  5340. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5341. if name.startswith("model.backbone") or name.startswith("model.lm_head"):
  5342. # map Mamba-Codestral-7B-v0.1 tensor names to the names used by Mamba-2
  5343. name = name.removeprefix("model.")
  5344. if name.endswith(".dt_bias"):
  5345. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  5346. new_name = self.map_tensor_name(name)
  5347. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5348. data_torch = data_torch.squeeze()
  5349. elif any(self.match_model_tensor_name(new_name, t, bid, suffix="") for t in [
  5350. gguf.MODEL_TENSOR.SSM_A,
  5351. gguf.MODEL_TENSOR.SSM_D,
  5352. ]):
  5353. # unsqueeze A to use similar shape semantics as Mamba-1
  5354. # (D is also unsqueezed, but for more straightforward broadcast internally)
  5355. data_torch = data_torch.reshape((*data_torch.shape, 1))
  5356. elif self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_NORM, bid):
  5357. data_torch = data_torch.reshape((self.n_group, self.d_inner // self.n_group))
  5358. if name.endswith(".A_log"):
  5359. logger.debug("A_log --> A ==> " + new_name)
  5360. data_torch = -torch.exp(data_torch)
  5361. yield (new_name, data_torch)
  5362. @ModelBase.register("JambaForCausalLM")
  5363. class JambaModel(TextModel):
  5364. model_arch = gguf.MODEL_ARCH.JAMBA
  5365. def set_vocab(self):
  5366. if (self.dir_model / "tokenizer.model").is_file():
  5367. self._set_vocab_sentencepiece()
  5368. else:
  5369. self._set_vocab_llama_hf()
  5370. self.gguf_writer.add_add_space_prefix(False)
  5371. def set_gguf_parameters(self):
  5372. d_model = self.find_hparam(["hidden_size", "mamba_d_model"])
  5373. d_conv = self.find_hparam(["mamba_d_conv"], optional=True) or 4
  5374. d_inner = self.hparams["mamba_expand"] * d_model
  5375. d_state = self.find_hparam(["mamba_d_state"], optional=True) or 16
  5376. # ceiling division
  5377. # ref: https://stackoverflow.com/a/17511341/22827863
  5378. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  5379. dt_rank = self.find_hparam(["mamba_dt_rank"], optional=True) or -(d_model // -16)
  5380. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-6
  5381. n_kv_head = self.hparams["num_key_value_heads"]
  5382. attn_offset = self.hparams["attn_layer_offset"]
  5383. attn_period = self.hparams["attn_layer_period"]
  5384. n_kv_vec = [0 for _ in range(attn_offset)] + [
  5385. n_kv_head if (i - attn_offset) % attn_period == 0 else 0 for i in range(attn_offset, self.block_count)
  5386. ]
  5387. self.gguf_writer.add_block_count(self.block_count)
  5388. self.gguf_writer.add_context_length(self.find_hparam(["max_position_embeddings", "n_ctx"]))
  5389. self.gguf_writer.add_embedding_length(d_model)
  5390. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  5391. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  5392. self.gguf_writer.add_head_count_kv(n_kv_vec)
  5393. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5394. self.gguf_writer.add_ssm_inner_size(d_inner)
  5395. self.gguf_writer.add_ssm_state_size(d_state)
  5396. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  5397. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5398. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  5399. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  5400. self.gguf_writer.add_file_type(self.ftype)
  5401. _experts: list[dict[str, Tensor]] | None = None
  5402. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5403. # Mini-Jamba
  5404. name = name.replace(".moe.", ".feed_forward.")
  5405. if bid is not None:
  5406. moe_offset = self.hparams["expert_layer_offset"]
  5407. moe_period = self.hparams["expert_layer_period"]
  5408. if not (bid >= moe_offset and (bid - moe_offset) % moe_period == 0):
  5409. name = name.replace(".experts.0.", ".")
  5410. # process the experts separately
  5411. if ".feed_forward.experts." in name:
  5412. n_experts = self.hparams["num_experts"]
  5413. assert bid is not None
  5414. if self._experts is None:
  5415. self._experts = [{} for _ in range(self.block_count)]
  5416. self._experts[bid][name] = data_torch
  5417. if len(self._experts[bid]) >= n_experts * 3:
  5418. # merge the experts into a single 3d tensor
  5419. for wid in ["down_proj", "gate_proj", "up_proj"]:
  5420. datas: list[Tensor] = []
  5421. for xid in range(n_experts):
  5422. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{wid}.weight"
  5423. datas.append(self._experts[bid][ename])
  5424. del self._experts[bid][ename]
  5425. data_torch = torch.stack(datas, dim=0)
  5426. # using the same merged name as qwen2moe
  5427. merged_name = f"model.layers.{bid}.mlp.experts.{wid}.weight"
  5428. new_name = self.map_tensor_name(merged_name)
  5429. yield new_name, data_torch
  5430. return
  5431. new_name = self.map_tensor_name(name)
  5432. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5433. data_torch = data_torch.squeeze()
  5434. if name.endswith(".A_log"):
  5435. logger.debug("A_log --> A ==> " + new_name)
  5436. data_torch = -torch.exp(data_torch)
  5437. yield (new_name, data_torch)
  5438. def prepare_tensors(self):
  5439. super().prepare_tensors()
  5440. if self._experts is not None:
  5441. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5442. experts = [k for d in self._experts for k in d.keys()]
  5443. if len(experts) > 0:
  5444. raise ValueError(f"Unprocessed experts: {experts}")
  5445. @ModelBase.register("CohereForCausalLM")
  5446. class CommandR2Model(TextModel):
  5447. model_arch = gguf.MODEL_ARCH.COMMAND_R
  5448. def __init__(self, *args, **kwargs):
  5449. super().__init__(*args, **kwargs)
  5450. # max_position_embeddings = 8192 in config.json but model was actually
  5451. # trained on 128k context length
  5452. # aya-23 models don't have model_max_length specified
  5453. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  5454. def set_gguf_parameters(self):
  5455. super().set_gguf_parameters()
  5456. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  5457. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5458. @ModelBase.register("Cohere2ForCausalLM")
  5459. class Cohere2Model(TextModel):
  5460. model_arch = gguf.MODEL_ARCH.COHERE2
  5461. def set_gguf_parameters(self):
  5462. super().set_gguf_parameters()
  5463. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  5464. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  5465. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  5466. rotary_pct = self.hparams["rotary_pct"]
  5467. hidden_size = self.hparams["hidden_size"]
  5468. num_attention_heads = self.hparams["num_attention_heads"]
  5469. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  5470. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5471. @ModelBase.register("OlmoForCausalLM")
  5472. @ModelBase.register("OLMoForCausalLM")
  5473. class OlmoModel(TextModel):
  5474. model_arch = gguf.MODEL_ARCH.OLMO
  5475. def set_gguf_parameters(self):
  5476. super().set_gguf_parameters()
  5477. self.gguf_writer.add_layer_norm_eps(1e-5)
  5478. clip_qkv = self.hparams.get("clip_qkv")
  5479. if clip_qkv is not None:
  5480. self.gguf_writer.add_clamp_kqv(clip_qkv)
  5481. # Same as super class, but permuting q_proj, k_proj
  5482. # Copied from: LlamaModel
  5483. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5484. del bid # unused
  5485. n_head = self.hparams["num_attention_heads"]
  5486. n_kv_head = self.hparams.get("num_key_value_heads")
  5487. if name.endswith("q_proj.weight"):
  5488. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5489. if name.endswith("k_proj.weight"):
  5490. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5491. return [(self.map_tensor_name(name), data_torch)]
  5492. @ModelBase.register("SeedOssForCausalLM")
  5493. class SeedOssModel(TextModel):
  5494. model_arch = gguf.MODEL_ARCH.SEED_OSS
  5495. @ModelBase.register("Olmo2ForCausalLM")
  5496. @ModelBase.register("Olmo3ForCausalLM")
  5497. class Olmo2Model(TextModel):
  5498. model_arch = gguf.MODEL_ARCH.OLMO2
  5499. def set_gguf_parameters(self):
  5500. super().set_gguf_parameters()
  5501. if "sliding_window" in self.hparams:
  5502. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  5503. sliding_window_pattern = []
  5504. if "layer_types" in self.hparams:
  5505. sliding_window_pattern = [t == "sliding_attention" for t in self.hparams["layer_types"]]
  5506. else:
  5507. # Olmo2 does not use sliding window attention.
  5508. # Olmo3 defaults to using sliding window for all layers except every 4th.
  5509. for i in range(self.hparams["num_hidden_layers"]):
  5510. sliding_window_pattern.append((i + 1) % 4 != 0)
  5511. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  5512. @ModelBase.register("OlmoeForCausalLM")
  5513. class OlmoeModel(TextModel):
  5514. model_arch = gguf.MODEL_ARCH.OLMOE
  5515. def set_gguf_parameters(self):
  5516. super().set_gguf_parameters()
  5517. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  5518. if (n_experts := self.hparams.get("num_experts")) is not None:
  5519. self.gguf_writer.add_expert_count(n_experts)
  5520. _experts: list[dict[str, Tensor]] | None = None
  5521. # Copied from: Qwen2MoeModel
  5522. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5523. # process the experts separately
  5524. if name.find("experts") != -1:
  5525. n_experts = self.hparams["num_experts"]
  5526. assert bid is not None
  5527. if self._experts is None:
  5528. self._experts = [{} for _ in range(self.block_count)]
  5529. self._experts[bid][name] = data_torch
  5530. if len(self._experts[bid]) >= n_experts * 3:
  5531. tensors: list[tuple[str, Tensor]] = []
  5532. # merge the experts into a single 3d tensor
  5533. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5534. datas: list[Tensor] = []
  5535. for xid in range(n_experts):
  5536. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5537. datas.append(self._experts[bid][ename])
  5538. del self._experts[bid][ename]
  5539. data_torch = torch.stack(datas, dim=0)
  5540. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5541. new_name = self.map_tensor_name(merged_name)
  5542. tensors.append((new_name, data_torch))
  5543. return tensors
  5544. else:
  5545. return []
  5546. return [(self.map_tensor_name(name), data_torch)]
  5547. # Copied from: Qwen2MoeModel
  5548. def prepare_tensors(self):
  5549. super().prepare_tensors()
  5550. if self._experts is not None:
  5551. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5552. experts = [k for d in self._experts for k in d.keys()]
  5553. if len(experts) > 0:
  5554. raise ValueError(f"Unprocessed experts: {experts}")
  5555. @ModelBase.register("JinaBertModel", "JinaBertForMaskedLM")
  5556. class JinaBertV2Model(BertModel):
  5557. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  5558. def set_vocab(self):
  5559. tokenizer_class = 'BertTokenizer'
  5560. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  5561. tokenizer_class = json.load(f)['tokenizer_class']
  5562. if tokenizer_class == 'BertTokenizer':
  5563. super().set_vocab()
  5564. elif tokenizer_class == 'RobertaTokenizer':
  5565. self._set_vocab_gpt2()
  5566. self.gguf_writer.add_token_type_count(2)
  5567. else:
  5568. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  5569. @ModelBase.register("OpenELMForCausalLM")
  5570. class OpenELMModel(TextModel):
  5571. model_arch = gguf.MODEL_ARCH.OPENELM
  5572. @staticmethod
  5573. def _make_divisible(v: float | int, divisor: int) -> int:
  5574. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  5575. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  5576. # Make sure that round down does not go down by more than 10%.
  5577. if new_v < 0.9 * v:
  5578. new_v += divisor
  5579. return new_v
  5580. def __init__(self, *args, **kwargs):
  5581. super().__init__(*args, **kwargs)
  5582. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  5583. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  5584. self._n_embd: int = self.hparams["model_dim"]
  5585. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  5586. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  5587. self._ffn_dims: list[int] = [
  5588. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  5589. for multiplier in ffn_multipliers
  5590. ]
  5591. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  5592. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  5593. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  5594. def set_vocab(self):
  5595. try:
  5596. self._set_vocab_sentencepiece()
  5597. except FileNotFoundError:
  5598. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  5599. def set_gguf_parameters(self):
  5600. n_embd = self._n_embd
  5601. head_dim = self.hparams["head_dim"]
  5602. rot_pct = 1.0
  5603. assert self.block_count == len(self._num_kv_heads)
  5604. assert self.block_count == len(self._num_query_heads)
  5605. assert self.block_count == len(self._ffn_dims)
  5606. self.gguf_writer.add_block_count(self.block_count)
  5607. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  5608. self.gguf_writer.add_embedding_length(n_embd)
  5609. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  5610. self.gguf_writer.add_head_count(self._num_query_heads)
  5611. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  5612. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  5613. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  5614. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  5615. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  5616. self.gguf_writer.add_key_length(head_dim)
  5617. self.gguf_writer.add_value_length(head_dim)
  5618. self.gguf_writer.add_file_type(self.ftype)
  5619. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  5620. if "n_layers" in keys:
  5621. return self.hparams["num_transformer_layers"]
  5622. return super().find_hparam(keys, optional)
  5623. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5624. # split ff
  5625. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  5626. ff_dim = self._ffn_dims[bid]
  5627. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  5628. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  5629. return
  5630. yield (self.map_tensor_name(name), data_torch)
  5631. @ModelBase.register("ArcticForCausalLM")
  5632. class ArcticModel(TextModel):
  5633. model_arch = gguf.MODEL_ARCH.ARCTIC
  5634. def set_vocab(self):
  5635. # The reason for using a custom implementation here is that the
  5636. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  5637. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  5638. from sentencepiece import SentencePieceProcessor
  5639. tokenizer_path = self.dir_model / 'tokenizer.model'
  5640. if not tokenizer_path.is_file():
  5641. logger.error(f'Error: Missing {tokenizer_path}')
  5642. sys.exit(1)
  5643. # Read the whole vocabulary from the tokenizer.model file
  5644. tokenizer = SentencePieceProcessor()
  5645. tokenizer.LoadFromFile(str(tokenizer_path))
  5646. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5647. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5648. scores: list[float] = [-10000.0] * vocab_size
  5649. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5650. for token_id in range(tokenizer.vocab_size()):
  5651. piece = tokenizer.IdToPiece(token_id)
  5652. text = piece.encode("utf-8")
  5653. score = tokenizer.GetScore(token_id)
  5654. toktype = SentencePieceTokenTypes.NORMAL
  5655. if tokenizer.IsUnknown(token_id):
  5656. toktype = SentencePieceTokenTypes.UNKNOWN
  5657. elif tokenizer.IsControl(token_id):
  5658. toktype = SentencePieceTokenTypes.CONTROL
  5659. elif tokenizer.IsUnused(token_id):
  5660. toktype = SentencePieceTokenTypes.UNUSED
  5661. elif tokenizer.IsByte(token_id):
  5662. toktype = SentencePieceTokenTypes.BYTE
  5663. tokens[token_id] = text
  5664. scores[token_id] = score
  5665. toktypes[token_id] = toktype
  5666. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  5667. # of information about added/redefined tokens and modify them accordingly.
  5668. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  5669. if tokenizer_config_file.is_file():
  5670. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  5671. tokenizer_config_json = json.load(f)
  5672. if "added_tokens_decoder" in tokenizer_config_json:
  5673. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  5674. for token_id, token_json in added_tokens_decoder.items():
  5675. token_id = int(token_id)
  5676. if token_id >= vocab_size:
  5677. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5678. continue
  5679. token_content = token_json["content"]
  5680. token_type = SentencePieceTokenTypes.USER_DEFINED
  5681. token_score = -10000.0
  5682. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  5683. # Set the score to 0.0 as in the original tokenizer.model
  5684. if ("special" in token_json) and token_json["special"]:
  5685. if token_content == tokenizer_config_json["unk_token"]:
  5686. token_type = SentencePieceTokenTypes.UNKNOWN
  5687. else:
  5688. token_type = SentencePieceTokenTypes.CONTROL
  5689. token_score = 0.0
  5690. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  5691. tokens[token_id] = token_content.encode("utf-8")
  5692. toktypes[token_id] = token_type
  5693. scores[token_id] = token_score
  5694. self.gguf_writer.add_tokenizer_model("llama")
  5695. self.gguf_writer.add_tokenizer_pre("default")
  5696. self.gguf_writer.add_token_list(tokens)
  5697. self.gguf_writer.add_token_scores(scores)
  5698. self.gguf_writer.add_token_types(toktypes)
  5699. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5700. special_vocab.add_to_gguf(self.gguf_writer)
  5701. def set_gguf_parameters(self):
  5702. super().set_gguf_parameters()
  5703. hparams = self.hparams
  5704. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5705. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  5706. _experts: list[dict[str, Tensor]] | None = None
  5707. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5708. n_head = self.hparams["num_attention_heads"]
  5709. n_kv_head = self.hparams.get("num_key_value_heads")
  5710. if name.endswith("q_proj.weight"):
  5711. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5712. if name.endswith("k_proj.weight"):
  5713. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5714. # process the experts separately
  5715. if name.find("block_sparse_moe.experts") != -1:
  5716. n_experts = self.hparams["num_local_experts"]
  5717. assert bid is not None
  5718. if self._experts is None:
  5719. self._experts = [{} for _ in range(self.block_count)]
  5720. self._experts[bid][name] = data_torch
  5721. if len(self._experts[bid]) >= n_experts * 3:
  5722. tensors: list[tuple[str, Tensor]] = []
  5723. # merge the experts into a single 3d tensor
  5724. for wid in ["w1", "w2", "w3"]:
  5725. datas: list[Tensor] = []
  5726. for xid in range(n_experts):
  5727. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  5728. datas.append(self._experts[bid][ename])
  5729. del self._experts[bid][ename]
  5730. data_torch = torch.stack(datas, dim=0)
  5731. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  5732. new_name = self.map_tensor_name(merged_name)
  5733. tensors.append((new_name, data_torch))
  5734. return tensors
  5735. else:
  5736. return []
  5737. return [(self.map_tensor_name(name), data_torch)]
  5738. def prepare_tensors(self):
  5739. super().prepare_tensors()
  5740. if self._experts is not None:
  5741. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5742. experts = [k for d in self._experts for k in d.keys()]
  5743. if len(experts) > 0:
  5744. raise ValueError(f"Unprocessed experts: {experts}")
  5745. @ModelBase.register("DeepseekForCausalLM")
  5746. class DeepseekModel(TextModel):
  5747. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  5748. def set_vocab(self):
  5749. try:
  5750. self._set_vocab_sentencepiece()
  5751. except FileNotFoundError:
  5752. self._set_vocab_gpt2()
  5753. def set_gguf_parameters(self):
  5754. super().set_gguf_parameters()
  5755. hparams = self.hparams
  5756. if (rope_dim := hparams.get("head_dim")) is None:
  5757. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  5758. self.gguf_writer.add_rope_dimension_count(rope_dim)
  5759. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5760. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5761. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5762. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5763. self.gguf_writer.add_expert_weights_scale(1.0)
  5764. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  5765. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  5766. _experts: list[dict[str, Tensor]] | None = None
  5767. @staticmethod
  5768. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  5769. if n_head_kv is not None and n_head != n_head_kv:
  5770. n_head = n_head_kv
  5771. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  5772. .swapaxes(1, 2)
  5773. .reshape(weights.shape))
  5774. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5775. n_head = self.hparams["num_attention_heads"]
  5776. n_kv_head = self.hparams.get("num_key_value_heads")
  5777. if name.endswith(("q_proj.weight", "q_proj.bias")):
  5778. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  5779. if name.endswith(("k_proj.weight", "k_proj.bias")):
  5780. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  5781. # process the experts separately
  5782. if name.find("mlp.experts") != -1:
  5783. n_experts = self.hparams["n_routed_experts"]
  5784. assert bid is not None
  5785. if self._experts is None:
  5786. self._experts = [{} for _ in range(self.block_count)]
  5787. self._experts[bid][name] = data_torch
  5788. if len(self._experts[bid]) >= n_experts * 3:
  5789. tensors: list[tuple[str, Tensor]] = []
  5790. # merge the experts into a single 3d tensor
  5791. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5792. datas: list[Tensor] = []
  5793. for xid in range(n_experts):
  5794. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5795. datas.append(self._experts[bid][ename])
  5796. del self._experts[bid][ename]
  5797. data_torch = torch.stack(datas, dim=0)
  5798. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5799. new_name = self.map_tensor_name(merged_name)
  5800. tensors.append((new_name, data_torch))
  5801. return tensors
  5802. else:
  5803. return []
  5804. return [(self.map_tensor_name(name), data_torch)]
  5805. def prepare_tensors(self):
  5806. super().prepare_tensors()
  5807. if self._experts is not None:
  5808. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5809. experts = [k for d in self._experts for k in d.keys()]
  5810. if len(experts) > 0:
  5811. raise ValueError(f"Unprocessed experts: {experts}")
  5812. @ModelBase.register(
  5813. "DeepseekV2ForCausalLM",
  5814. "DeepseekV3ForCausalLM",
  5815. "KimiVLForConditionalGeneration",
  5816. )
  5817. class DeepseekV2Model(TextModel):
  5818. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  5819. def set_vocab(self):
  5820. try:
  5821. self._set_vocab_gpt2()
  5822. return
  5823. except Exception:
  5824. pass
  5825. from transformers import AutoTokenizer
  5826. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  5827. tokpre = self.get_vocab_base_pre(tokenizer)
  5828. if tokpre == "kimi-k2":
  5829. # Build merges list using the approach similar to HunYuanMoE
  5830. merges = []
  5831. vocab = {}
  5832. mergeable_ranks = tokenizer.model._mergeable_ranks
  5833. for token, rank in mergeable_ranks.items():
  5834. vocab[QwenModel.token_bytes_to_string(token)] = rank
  5835. if len(token) == 1:
  5836. continue
  5837. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  5838. if len(merged) == 2:
  5839. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  5840. # Build token list
  5841. vocab_size = self.hparams["vocab_size"]
  5842. special_tokens = tokenizer.special_tokens
  5843. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  5844. tokens: list[str] = []
  5845. toktypes: list[int] = []
  5846. for i in range(vocab_size):
  5847. if i not in reverse_vocab:
  5848. tokens.append(f"[PAD{i}]")
  5849. toktypes.append(gguf.TokenType.UNUSED)
  5850. else:
  5851. token = reverse_vocab[i]
  5852. tokens.append(token)
  5853. if i in special_tokens.values():
  5854. toktypes.append(gguf.TokenType.CONTROL)
  5855. else:
  5856. toktypes.append(gguf.TokenType.NORMAL)
  5857. self.gguf_writer.add_tokenizer_model("gpt2")
  5858. self.gguf_writer.add_tokenizer_pre(tokpre)
  5859. self.gguf_writer.add_token_list(tokens)
  5860. self.gguf_writer.add_token_types(toktypes)
  5861. self.gguf_writer.add_token_merges(merges)
  5862. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  5863. special_vocab.add_to_gguf(self.gguf_writer)
  5864. else:
  5865. raise NotImplementedError(f"Deepseek pre-tokenizer {tokpre!r} is not supported yet!")
  5866. def set_gguf_parameters(self):
  5867. # note: deepseek2 using MLA converts into MQA (ie: GQA with 1 group)
  5868. self.hparams["num_key_value_heads"] = 1
  5869. super().set_gguf_parameters()
  5870. hparams = self.hparams
  5871. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5872. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5873. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  5874. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  5875. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  5876. # note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
  5877. self.gguf_writer.add_key_length(hparams["kv_lora_rank"] + hparams["qk_rope_head_dim"])
  5878. self.gguf_writer.add_value_length(hparams["kv_lora_rank"])
  5879. self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  5880. self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
  5881. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5882. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  5883. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  5884. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  5885. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  5886. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  5887. if (rope_mscale_all := self.rope_parameters.get("mscale_all_dim")) is not None:
  5888. # [TAG_DEEPSEEK2_YARN_LOG_MUL_FIX]
  5889. # note: for legacy reasons, this is not consistent with the other usages of self.gguf_writer.add_rope_scaling_yarn_log_mul
  5890. # ref https://github.com/ggml-org/llama.cpp/pull/17945
  5891. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * rope_mscale_all)
  5892. _experts: list[dict[str, Tensor]] | None = None
  5893. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5894. # skip vision tensors and remove "language_model." for Kimi-VL
  5895. if "vision_tower" in name or "multi_modal_projector" in name:
  5896. return []
  5897. if name.startswith("language_model."):
  5898. name = name.replace("language_model.", "")
  5899. # rename e_score_correction_bias tensors
  5900. if name.endswith("e_score_correction_bias"):
  5901. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5902. # skip Multi-Token Prediction (MTP) layers
  5903. block_count = self.hparams["num_hidden_layers"]
  5904. match = re.match(r"model.layers.(\d+)", name)
  5905. if match and int(match.group(1)) >= block_count:
  5906. return []
  5907. # process the experts separately
  5908. if name.find("mlp.experts") != -1:
  5909. n_experts = self.hparams["n_routed_experts"]
  5910. assert bid is not None
  5911. if self._experts is None:
  5912. self._experts = [{} for _ in range(self.block_count)]
  5913. self._experts[bid][name] = data_torch
  5914. if len(self._experts[bid]) >= n_experts * 3:
  5915. tensors: list[tuple[str, Tensor]] = []
  5916. # merge the experts into a single 3d tensor
  5917. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5918. datas: list[Tensor] = []
  5919. for xid in range(n_experts):
  5920. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5921. datas.append(self._experts[bid][ename])
  5922. del self._experts[bid][ename]
  5923. data_torch = torch.stack(datas, dim=0)
  5924. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5925. new_name = self.map_tensor_name(merged_name)
  5926. tensors.append((new_name, data_torch))
  5927. return tensors
  5928. else:
  5929. return []
  5930. # note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
  5931. if name.endswith("kv_b_proj.weight"):
  5932. name_kb = name.replace("kv_b_proj", "k_b_proj")
  5933. name_vb = name.replace("kv_b_proj", "v_b_proj")
  5934. n_head_kv = self.hparams["num_key_value_heads"]
  5935. v_head_dim = self.hparams["v_head_dim"]
  5936. qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
  5937. assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
  5938. kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
  5939. k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
  5940. k_b = k_b.transpose(1, 2)
  5941. return [
  5942. (self.map_tensor_name(name_kb), k_b),
  5943. (self.map_tensor_name(name_vb), v_b)
  5944. ]
  5945. return [(self.map_tensor_name(name), data_torch)]
  5946. def prepare_tensors(self):
  5947. super().prepare_tensors()
  5948. if self._experts is not None:
  5949. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5950. experts = [k for d in self._experts for k in d.keys()]
  5951. if len(experts) > 0:
  5952. raise ValueError(f"Unprocessed experts: {experts}")
  5953. @ModelBase.register("MiniMaxM2ForCausalLM")
  5954. class MiniMaxM2Model(TextModel):
  5955. model_arch = gguf.MODEL_ARCH.MINIMAXM2
  5956. _experts_cache: dict[int, dict[str, Tensor]] = {}
  5957. def __init__(self, *args, **kwargs):
  5958. super().__init__(*args, **kwargs)
  5959. self.hparams["num_experts"] = self.hparams["num_local_experts"]
  5960. def set_gguf_parameters(self):
  5961. super().set_gguf_parameters()
  5962. self.gguf_writer.add_expert_feed_forward_length(self.find_hparam(["intermediate_size"]))
  5963. self.gguf_writer.add_rope_dimension_count(self.find_hparam(["rotary_dim"]))
  5964. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  5965. if name.endswith("e_score_correction_bias"):
  5966. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5967. # merge expert weights
  5968. if 'experts' in name:
  5969. n_experts = self.hparams["num_experts"]
  5970. assert bid is not None
  5971. expert_cache = self._experts_cache.setdefault(bid, {})
  5972. expert_cache[name] = data_torch
  5973. expert_weights = ["w1", "w2", "w3"]
  5974. # not enough expert weights to merge
  5975. if len(expert_cache) < n_experts * len(expert_weights):
  5976. return []
  5977. tensors: list[tuple[str, Tensor]] = []
  5978. for w_name in expert_weights:
  5979. datas: list[Tensor] = []
  5980. for xid in range(n_experts):
  5981. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  5982. datas.append(expert_cache[ename])
  5983. del expert_cache[ename]
  5984. data_torch = torch.stack(datas, dim=0)
  5985. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  5986. new_name = self.map_tensor_name(merged_name)
  5987. tensors.append((new_name, data_torch))
  5988. del self._experts_cache[bid]
  5989. return tensors
  5990. return super().modify_tensors(data_torch, name, bid)
  5991. @ModelBase.register("MiMoV2FlashForCausalLM")
  5992. class MimoV2Model(TextModel):
  5993. model_arch = gguf.MODEL_ARCH.MIMO2
  5994. def set_gguf_parameters(self):
  5995. super().set_gguf_parameters()
  5996. assert self.hparams["swa_head_dim"] == self.hparams["head_dim"]
  5997. assert self.hparams["swa_num_attention_heads"] == self.hparams["num_attention_heads"]
  5998. assert self.hparams["swa_v_head_dim"] == self.hparams["v_head_dim"]
  5999. assert self.hparams["topk_method"] == "noaux_tc"
  6000. n_head_kv = self.hparams["num_key_value_heads"]
  6001. n_head_kv_swa = self.hparams["swa_num_key_value_heads"]
  6002. n_head_kv_arr = [n_head_kv_swa if use_swa == 1 else n_head_kv for use_swa in self.hparams["hybrid_layer_pattern"]]
  6003. self.gguf_writer.add_head_count_kv(n_head_kv_arr)
  6004. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  6005. self.gguf_writer.add_sliding_window_pattern(self.hparams["hybrid_layer_pattern"])
  6006. self.gguf_writer.add_rope_freq_base_swa(self.hparams["swa_rope_theta"])
  6007. self.gguf_writer.add_value_length(self.hparams["v_head_dim"])
  6008. self.gguf_writer.add_expert_count(self.hparams["n_routed_experts"])
  6009. self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
  6010. rope_dim = int(self.hparams["head_dim"] * self.hparams["partial_rotary_factor"])
  6011. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6012. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon", 1e-5))
  6013. _experts: list[dict[str, Tensor]] | None = None
  6014. def modify_tensors(self, data_torch, name, bid):
  6015. if name.endswith("e_score_correction_bias"):
  6016. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  6017. if "attention_sink" in name and not name.endswith(".weight"):
  6018. name += ".weight"
  6019. # TODO: mimo v2 does not indicate the number of next-token-prediction layers, therefore we cannot do the same way as GLM4_MOE
  6020. if "model.mtp." in name:
  6021. return []
  6022. # process the experts separately
  6023. if name.find("mlp.experts") != -1:
  6024. n_experts = self.hparams["n_routed_experts"]
  6025. assert bid is not None
  6026. if self._experts is None:
  6027. self._experts = [{} for _ in range(self.block_count)]
  6028. self._experts[bid][name] = data_torch
  6029. if len(self._experts[bid]) >= n_experts * 3:
  6030. tensors: list[tuple[str, Tensor]] = []
  6031. # merge the experts into a single 3d tensor
  6032. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  6033. datas: list[Tensor] = []
  6034. for xid in range(n_experts):
  6035. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6036. datas.append(self._experts[bid][ename_to_retrieve])
  6037. del self._experts[bid][ename_to_retrieve]
  6038. data_torch = torch.stack(datas, dim=0)
  6039. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6040. new_name = self.map_tensor_name(merged_name)
  6041. tensors.append((new_name, data_torch))
  6042. return tensors
  6043. else:
  6044. return []
  6045. return [(self.map_tensor_name(name), data_torch)]
  6046. def prepare_tensors(self):
  6047. super().prepare_tensors()
  6048. if self._experts is not None:
  6049. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6050. experts = [k for d in self._experts for k in d.keys()]
  6051. if len(experts) > 0:
  6052. raise ValueError(f"Unprocessed experts: {experts}")
  6053. @ModelBase.register("PanguEmbeddedForCausalLM")
  6054. class PanguEmbeddedModel(TextModel):
  6055. model_arch = gguf.MODEL_ARCH.PANGU_EMBED
  6056. def set_vocab(self):
  6057. self._set_vocab_sentencepiece()
  6058. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  6059. if tokenizer_config_file.is_file():
  6060. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  6061. tokenizer_config_json = json.load(f)
  6062. if "add_prefix_space" in tokenizer_config_json:
  6063. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  6064. def set_gguf_parameters(self):
  6065. super().set_gguf_parameters()
  6066. hparams = self.hparams
  6067. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6068. # PanguEmbedded's hparam loaded from config.json without head_dim
  6069. if (rope_dim := hparams.get("head_dim")) is None:
  6070. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  6071. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6072. if hparams.get("head_dim") is None:
  6073. self.gguf_writer.add_key_length(rope_dim)
  6074. self.gguf_writer.add_value_length(rope_dim)
  6075. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6076. if name == "lm_head.weight":
  6077. if self.hparams.get("tie_word_embeddings", False):
  6078. logger.info("Skipping tied output layer 'lm_head.weight'")
  6079. return []
  6080. return [(self.map_tensor_name(name), data_torch)]
  6081. @ModelBase.register("Dots1ForCausalLM")
  6082. class Dots1Model(Qwen2MoeModel):
  6083. model_arch = gguf.MODEL_ARCH.DOTS1
  6084. def __init__(self, *args, **kwargs):
  6085. super().__init__(*args, **kwargs)
  6086. self.hparams["num_experts"] = self.hparams["n_routed_experts"]
  6087. def set_gguf_parameters(self):
  6088. super().set_gguf_parameters()
  6089. self.gguf_writer.add_leading_dense_block_count(self.hparams["first_k_dense_replace"])
  6090. self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
  6091. self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
  6092. self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
  6093. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  6094. if name.endswith("e_score_correction_bias"):
  6095. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  6096. if "shared_experts" in name:
  6097. return [(self.map_tensor_name(name), data_torch)]
  6098. return super().modify_tensors(data_torch, name, bid)
  6099. @ModelBase.register("PLMForCausalLM")
  6100. class PLMModel(TextModel):
  6101. model_arch = gguf.MODEL_ARCH.PLM
  6102. def set_vocab(self):
  6103. self._set_vocab_gpt2()
  6104. def set_gguf_parameters(self):
  6105. super().set_gguf_parameters()
  6106. hparams = self.hparams
  6107. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6108. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  6109. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  6110. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  6111. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  6112. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6113. return [(self.map_tensor_name(name), data_torch)]
  6114. def prepare_tensors(self):
  6115. super().prepare_tensors()
  6116. @ModelBase.register("T5WithLMHeadModel")
  6117. @ModelBase.register("T5ForConditionalGeneration")
  6118. @ModelBase.register("MT5ForConditionalGeneration")
  6119. @ModelBase.register("UMT5ForConditionalGeneration")
  6120. @ModelBase.register("UMT5Model")
  6121. class T5Model(TextModel):
  6122. model_arch = gguf.MODEL_ARCH.T5
  6123. def __init__(self, *args, **kwargs):
  6124. super().__init__(*args, **kwargs)
  6125. self.shared_token_embeddings_found = False
  6126. def set_vocab(self):
  6127. # to avoid TypeError: Descriptors cannot be created directly
  6128. # exception when importing sentencepiece_model_pb2
  6129. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  6130. from sentencepiece import SentencePieceProcessor
  6131. from sentencepiece import sentencepiece_model_pb2 as model
  6132. tokenizer_path = self.dir_model / 'tokenizer.model'
  6133. # many older models use spiece.model tokenizer model filename
  6134. if not tokenizer_path.is_file():
  6135. tokenizer_path = self.dir_model / 'spiece.model'
  6136. if not tokenizer_path.is_file():
  6137. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  6138. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  6139. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  6140. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  6141. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  6142. # assure the tokenizer model file name is correct
  6143. assert tokenizer_path.name == 'tokenizer.model'
  6144. return self._set_vocab_sentencepiece()
  6145. else:
  6146. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  6147. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  6148. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  6149. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  6150. tokenizer = SentencePieceProcessor()
  6151. tokenizer.LoadFromFile(str(tokenizer_path))
  6152. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  6153. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  6154. scores: list[float] = [-10000.0] * vocab_size
  6155. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  6156. for token_id in range(tokenizer.vocab_size()):
  6157. piece = tokenizer.IdToPiece(token_id)
  6158. text = piece.encode("utf-8")
  6159. score = tokenizer.GetScore(token_id)
  6160. toktype = SentencePieceTokenTypes.NORMAL
  6161. if tokenizer.IsUnknown(token_id):
  6162. toktype = SentencePieceTokenTypes.UNKNOWN
  6163. elif tokenizer.IsControl(token_id):
  6164. toktype = SentencePieceTokenTypes.CONTROL
  6165. elif tokenizer.IsUnused(token_id):
  6166. toktype = SentencePieceTokenTypes.UNUSED
  6167. elif tokenizer.IsByte(token_id):
  6168. toktype = SentencePieceTokenTypes.BYTE
  6169. tokens[token_id] = text
  6170. scores[token_id] = score
  6171. toktypes[token_id] = toktype
  6172. added_tokens_file = self.dir_model / 'added_tokens.json'
  6173. if added_tokens_file.is_file():
  6174. with open(added_tokens_file, "r", encoding="utf-8") as f:
  6175. added_tokens_json = json.load(f)
  6176. for key in added_tokens_json:
  6177. token_id = added_tokens_json[key]
  6178. if token_id >= vocab_size:
  6179. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  6180. continue
  6181. tokens[token_id] = key.encode("utf-8")
  6182. scores[token_id] = -1000.0
  6183. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  6184. if vocab_size > len(tokens):
  6185. pad_count = vocab_size - len(tokens)
  6186. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  6187. for i in range(1, pad_count + 1):
  6188. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  6189. scores.append(-1000.0)
  6190. toktypes.append(SentencePieceTokenTypes.UNUSED)
  6191. self.gguf_writer.add_tokenizer_model("t5")
  6192. self.gguf_writer.add_tokenizer_pre("default")
  6193. self.gguf_writer.add_token_list(tokens)
  6194. self.gguf_writer.add_token_scores(scores)
  6195. self.gguf_writer.add_token_types(toktypes)
  6196. self.gguf_writer.add_add_space_prefix(add_prefix)
  6197. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  6198. if precompiled_charsmap:
  6199. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  6200. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6201. special_vocab.add_to_gguf(self.gguf_writer)
  6202. def set_gguf_parameters(self):
  6203. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  6204. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  6205. n_ctx = 512
  6206. self.gguf_writer.add_context_length(n_ctx)
  6207. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  6208. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  6209. self.gguf_writer.add_block_count(self.block_count)
  6210. if (dec_n_layer := self.hparams.get("num_decoder_layers")) is not None:
  6211. self.gguf_writer.add_decoder_block_count(dec_n_layer)
  6212. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  6213. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  6214. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  6215. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6216. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  6217. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  6218. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  6219. self.gguf_writer.add_file_type(self.ftype)
  6220. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6221. del bid # unused
  6222. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  6223. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  6224. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  6225. # and decoder and ignore the remaining ones.
  6226. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  6227. if not self.shared_token_embeddings_found:
  6228. name = "shared.weight"
  6229. self.shared_token_embeddings_found = True
  6230. else:
  6231. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  6232. return []
  6233. return [(self.map_tensor_name(name), data_torch)]
  6234. @ModelBase.register("T5EncoderModel")
  6235. class T5EncoderModel(TextModel):
  6236. model_arch = gguf.MODEL_ARCH.T5ENCODER
  6237. def __init__(self, *args, **kwargs):
  6238. super().__init__(*args, **kwargs)
  6239. self.shared_token_embeddings_found = False
  6240. def set_vocab(self):
  6241. # to avoid TypeError: Descriptors cannot be created directly
  6242. # exception when importing sentencepiece_model_pb2
  6243. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  6244. from sentencepiece import SentencePieceProcessor
  6245. from sentencepiece import sentencepiece_model_pb2 as model
  6246. tokenizer_path = self.dir_model / 'tokenizer.model'
  6247. # many older models use spiece.model tokenizer model filename
  6248. if not tokenizer_path.is_file():
  6249. tokenizer_path = self.dir_model / 'spiece.model'
  6250. if not tokenizer_path.is_file():
  6251. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  6252. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  6253. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  6254. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  6255. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  6256. # assure the tokenizer model file name is correct
  6257. assert tokenizer_path.name == 'tokenizer.model'
  6258. return self._set_vocab_sentencepiece()
  6259. else:
  6260. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  6261. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  6262. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  6263. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  6264. tokenizer = SentencePieceProcessor()
  6265. tokenizer.LoadFromFile(str(tokenizer_path))
  6266. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  6267. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  6268. scores: list[float] = [-10000.0] * vocab_size
  6269. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  6270. for token_id in range(tokenizer.vocab_size()):
  6271. piece = tokenizer.IdToPiece(token_id)
  6272. text = piece.encode("utf-8")
  6273. score = tokenizer.GetScore(token_id)
  6274. toktype = SentencePieceTokenTypes.NORMAL
  6275. if tokenizer.IsUnknown(token_id):
  6276. toktype = SentencePieceTokenTypes.UNKNOWN
  6277. elif tokenizer.IsControl(token_id):
  6278. toktype = SentencePieceTokenTypes.CONTROL
  6279. elif tokenizer.IsUnused(token_id):
  6280. toktype = SentencePieceTokenTypes.UNUSED
  6281. elif tokenizer.IsByte(token_id):
  6282. toktype = SentencePieceTokenTypes.BYTE
  6283. tokens[token_id] = text
  6284. scores[token_id] = score
  6285. toktypes[token_id] = toktype
  6286. added_tokens_file = self.dir_model / 'added_tokens.json'
  6287. if added_tokens_file.is_file():
  6288. with open(added_tokens_file, "r", encoding="utf-8") as f:
  6289. added_tokens_json = json.load(f)
  6290. for key in added_tokens_json:
  6291. token_id = added_tokens_json[key]
  6292. if token_id >= vocab_size:
  6293. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  6294. continue
  6295. tokens[token_id] = key.encode("utf-8")
  6296. scores[token_id] = -1000.0
  6297. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  6298. if vocab_size > len(tokens):
  6299. pad_count = vocab_size - len(tokens)
  6300. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  6301. for i in range(1, pad_count + 1):
  6302. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  6303. scores.append(-1000.0)
  6304. toktypes.append(SentencePieceTokenTypes.UNUSED)
  6305. self.gguf_writer.add_tokenizer_model("t5")
  6306. self.gguf_writer.add_tokenizer_pre("default")
  6307. self.gguf_writer.add_token_list(tokens)
  6308. self.gguf_writer.add_token_scores(scores)
  6309. self.gguf_writer.add_token_types(toktypes)
  6310. self.gguf_writer.add_add_space_prefix(add_prefix)
  6311. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  6312. if precompiled_charsmap:
  6313. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  6314. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6315. special_vocab.add_to_gguf(self.gguf_writer)
  6316. def set_gguf_parameters(self):
  6317. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  6318. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  6319. n_ctx = 512
  6320. self.gguf_writer.add_context_length(n_ctx)
  6321. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  6322. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  6323. self.gguf_writer.add_block_count(self.block_count)
  6324. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  6325. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  6326. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  6327. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6328. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  6329. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  6330. self.gguf_writer.add_file_type(self.ftype)
  6331. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6332. del bid # unused
  6333. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  6334. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  6335. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  6336. # and decoder and ignore the remaining ones.
  6337. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  6338. if not self.shared_token_embeddings_found:
  6339. name = "shared.weight"
  6340. self.shared_token_embeddings_found = True
  6341. else:
  6342. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  6343. return []
  6344. return [(self.map_tensor_name(name), data_torch)]
  6345. @ModelBase.register("JAISLMHeadModel")
  6346. class JaisModel(TextModel):
  6347. model_arch = gguf.MODEL_ARCH.JAIS
  6348. def __init__(self, *args, **kwargs):
  6349. super().__init__(*args, **kwargs)
  6350. # SwigLU activation
  6351. assert self.hparams["activation_function"] == "swiglu"
  6352. # ALiBi position embedding
  6353. assert self.hparams["position_embedding_type"] == "alibi"
  6354. # Embeddings scale
  6355. self.embeddings_scale = 1.0
  6356. if 'mup_embeddings_scale' in self.hparams:
  6357. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  6358. elif 'embeddings_scale' in self.hparams:
  6359. self.embeddings_scale = self.hparams['embeddings_scale']
  6360. else:
  6361. assert False
  6362. self.width_scale = 1.0
  6363. if 'mup_output_alpha' in self.hparams:
  6364. assert 'mup_width_scale' in self.hparams
  6365. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  6366. elif 'width_scale' in self.hparams:
  6367. self.width_scale = self.hparams['width_scale']
  6368. else:
  6369. assert False
  6370. self.max_alibi_bias = 8.0
  6371. def set_vocab(self):
  6372. self._set_vocab_gpt2()
  6373. def set_gguf_parameters(self):
  6374. self.gguf_writer.add_block_count(self.block_count)
  6375. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  6376. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  6377. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  6378. self.gguf_writer.add_head_count(self.hparams["n_head"])
  6379. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6380. self.gguf_writer.add_file_type(self.ftype)
  6381. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6382. del bid # unused
  6383. tensors: list[tuple[str, Tensor]] = []
  6384. # we don't need these
  6385. if name.endswith((".attn.bias")):
  6386. return tensors
  6387. if name.endswith(("relative_pe.slopes")):
  6388. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  6389. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  6390. # but Jais's PyTorch model simply precalculates the slope values and places them
  6391. # in relative_pes.slopes
  6392. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  6393. first_val = float(data_torch[0].item())
  6394. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  6395. return tensors
  6396. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  6397. data_torch = data_torch.transpose(1, 0)
  6398. new_name = self.map_tensor_name(name)
  6399. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  6400. tensors.append((new_name, data_torch * self.embeddings_scale))
  6401. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  6402. tensors.append((new_name, data_torch * self.width_scale))
  6403. else:
  6404. tensors.append((new_name, data_torch))
  6405. return tensors
  6406. def prepare_tensors(self):
  6407. super().prepare_tensors()
  6408. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  6409. @ModelBase.register("Glm4ForCausalLM", "Glm4vForConditionalGeneration")
  6410. class Glm4Model(TextModel):
  6411. model_arch = gguf.MODEL_ARCH.GLM4
  6412. use_mrope = False
  6413. partial_rotary_factor = 0.5
  6414. def __init__(self, *args, **kwargs):
  6415. super().__init__(*args, **kwargs)
  6416. self.partial_rotary_factor = self.rope_parameters.get("partial_rotary_factor", 0.5)
  6417. if "mrope_section" in self.rope_parameters:
  6418. self.use_mrope = True
  6419. logger.info("Q/K weight will need to be permuted for M-RoPE")
  6420. def set_vocab(self):
  6421. from transformers import AutoTokenizer
  6422. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  6423. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6424. tokens, toktypes, tokpre = self.get_vocab_base()
  6425. self.gguf_writer.add_tokenizer_model("gpt2")
  6426. self.gguf_writer.add_tokenizer_pre(tokpre)
  6427. self.gguf_writer.add_token_list(tokens)
  6428. self.gguf_writer.add_token_types(toktypes)
  6429. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6430. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6431. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  6432. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  6433. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6434. special_vocab.add_to_gguf(self.gguf_writer)
  6435. def set_gguf_parameters(self):
  6436. super().set_gguf_parameters()
  6437. if (rope_dim := self.hparams.get("head_dim")) is None:
  6438. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6439. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.partial_rotary_factor))
  6440. @staticmethod
  6441. def normal_to_neox(weights: Tensor, n_head: int, n_head_kv: int, head_dim: int, partial_rotary_factor: float) -> Tensor:
  6442. orig_shape = weights.shape
  6443. if len(orig_shape) == 1:
  6444. weights = weights.unsqueeze(1) # [out_dim, 1]
  6445. if len(weights.shape) != 2:
  6446. raise ValueError("Only 1D and 2D tensors are supported.")
  6447. n_effective_heads = weights.shape[0] // head_dim
  6448. if n_head_kv is not None and n_effective_heads != n_head:
  6449. if n_effective_heads != n_head_kv:
  6450. raise AssertionError(f"Mismatch in effective heads: computed {n_effective_heads}, expected {n_head} or {n_head_kv}")
  6451. rotary_dim = int(head_dim * partial_rotary_factor)
  6452. if rotary_dim % 2 != 0:
  6453. raise ValueError("rotary_dim must be even.")
  6454. reshaped = weights.reshape(n_effective_heads, head_dim, -1)
  6455. rot_part = reshaped[:, :rotary_dim, :]
  6456. non_rot_part = reshaped[:, rotary_dim:, :]
  6457. permuted_rot = torch.cat((rot_part[:, ::2, :], rot_part[:, 1::2, :]), dim=1)
  6458. combined = torch.cat((permuted_rot, non_rot_part), dim=1)
  6459. result = combined.reshape(weights.shape)
  6460. return result if len(orig_shape) != 1 else result.squeeze(1)
  6461. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6462. if name.startswith("model.visual."): # ignore visual part of Glm4v
  6463. return []
  6464. elif name.startswith("model.language_model."):
  6465. name = name.replace("language_model.", "") # for Glm4v
  6466. if self.use_mrope:
  6467. n_head = self.hparams["num_attention_heads"]
  6468. n_kv_head = self.hparams["num_key_value_heads"]
  6469. n_embd = self.hparams["hidden_size"]
  6470. head_dim = n_embd // n_head
  6471. # because llama.cpp M-RoPE kernel only supports Neox ordering, we have to permute the weights here
  6472. if name.endswith(("q_proj.weight", "q_proj.bias")):
  6473. data_torch = Glm4Model.normal_to_neox(data_torch, n_head, n_head, head_dim, self.partial_rotary_factor)
  6474. if name.endswith(("k_proj.weight", "k_proj.bias")):
  6475. data_torch = Glm4Model.normal_to_neox(data_torch, n_head, n_kv_head, head_dim, self.partial_rotary_factor)
  6476. return super().modify_tensors(data_torch, name, bid)
  6477. @ModelBase.register("Glm4MoeForCausalLM", "Glm4vMoeForConditionalGeneration")
  6478. class Glm4MoeModel(TextModel):
  6479. model_arch = gguf.MODEL_ARCH.GLM4_MOE
  6480. def __init__(self, *args, **kwargs):
  6481. super().__init__(*args, **kwargs)
  6482. # GLM4_MOE has num_hidden_layers + 1 actual layers (including NextN layer)
  6483. self.block_count = self.hparams["num_hidden_layers"] + self.hparams.get("num_nextn_predict_layers", 0)
  6484. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  6485. def set_vocab(self):
  6486. from transformers import AutoTokenizer
  6487. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  6488. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6489. tokens, toktypes, tokpre = self.get_vocab_base()
  6490. self.gguf_writer.add_tokenizer_model("gpt2")
  6491. self.gguf_writer.add_tokenizer_pre(tokpre)
  6492. self.gguf_writer.add_token_list(tokens)
  6493. self.gguf_writer.add_token_types(toktypes)
  6494. # Special tokens
  6495. # Note: Using <|endoftext|> (151329) for eot causes endless generation
  6496. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["[gMASK]"]) # 151331
  6497. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"]) # 151336
  6498. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"]) # 151329
  6499. special_vocab._set_special_token("eom", tokenizer.get_added_vocab()["<|observation|>"]) # 151338
  6500. special_vocab.add_to_gguf(self.gguf_writer)
  6501. def set_gguf_parameters(self):
  6502. super().set_gguf_parameters()
  6503. if (rope_dim := self.hparams.get("head_dim")) is None:
  6504. rope_dim = (
  6505. self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6506. )
  6507. self.gguf_writer.add_rope_dimension_count(
  6508. int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5))
  6509. )
  6510. # MoE parameters - Use only routed expert count (shared experts handled separately)
  6511. if (n_routed_experts := self.hparams.get("n_routed_experts")) is not None:
  6512. self.gguf_writer.add_expert_count(n_routed_experts)
  6513. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  6514. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  6515. if (n_shared_experts := self.hparams.get("n_shared_experts")) is not None:
  6516. self.gguf_writer.add_expert_shared_count(n_shared_experts)
  6517. if (first_k_dense_replace := self.hparams.get("first_k_dense_replace")) is not None:
  6518. self.gguf_writer.add_leading_dense_block_count(first_k_dense_replace)
  6519. # Expert gating function (sigmoid for GLM4_MOE)
  6520. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  6521. # Routed scaling factor
  6522. if (routed_scaling_factor := self.hparams.get("routed_scaling_factor")) is not None:
  6523. self.gguf_writer.add_expert_weights_scale(routed_scaling_factor)
  6524. # Normalise topk probabilities
  6525. if (norm_topk_prob := self.hparams.get("norm_topk_prob")) is not None:
  6526. self.gguf_writer.add_expert_weights_norm(norm_topk_prob)
  6527. # NextN/MTP prediction layers
  6528. if (num_nextn_predict_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
  6529. self.gguf_writer.add_nextn_predict_layers(num_nextn_predict_layers)
  6530. _experts: list[dict[str, Tensor]] | None = None
  6531. # note: unlike GLM4V non-MoE, we don't need to permute Q/K here since GLM4V_MOE uses Neox ordering already
  6532. def modify_tensors(
  6533. self, data_torch: Tensor, name: str, bid: int | None
  6534. ) -> Iterable[tuple[str, Tensor]]:
  6535. if name.startswith("model.visual."): # ignore visual part
  6536. return []
  6537. elif name.startswith("model.language_model."):
  6538. name = name.replace("language_model.", "") # for multimodal variants
  6539. # Handle main token embedding (but not layer-specific NextN embeddings)
  6540. if name == "model.embed_tokens.weight" and ".layers." not in name:
  6541. return [(self.map_tensor_name("token_embd.weight"), data_torch)]
  6542. # Handle routed experts
  6543. if name.find("mlp.experts") != -1:
  6544. n_experts = self.hparams["n_routed_experts"]
  6545. assert bid is not None
  6546. if self._experts is None:
  6547. self._experts = [{} for _ in range(self.block_count)]
  6548. self._experts[bid][name] = data_torch
  6549. if len(self._experts[bid]) >= n_experts * 3:
  6550. tensors: list[tuple[str, Tensor]] = []
  6551. # merge the experts into a single 3d tensor
  6552. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6553. datas: list[Tensor] = []
  6554. for xid in range(n_experts):
  6555. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6556. datas.append(self._experts[bid][ename])
  6557. del self._experts[bid][ename]
  6558. data_torch = torch.stack(datas, dim=0)
  6559. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6560. new_name = self.map_tensor_name(merged_name)
  6561. tensors.append((new_name, data_torch))
  6562. return tensors
  6563. else:
  6564. return []
  6565. if name.endswith("e_score_correction_bias"):
  6566. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  6567. new_name = self.map_tensor_name(name)
  6568. return [(new_name, data_torch)]
  6569. def prepare_tensors(self):
  6570. super().prepare_tensors()
  6571. if self._experts is not None:
  6572. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6573. experts = [k for d in self._experts for k in d.keys()]
  6574. if len(experts) > 0:
  6575. raise ValueError(f"Unprocessed experts: {experts}")
  6576. @ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  6577. class ChatGLMModel(TextModel):
  6578. model_arch = gguf.MODEL_ARCH.CHATGLM
  6579. def set_vocab_chatglm3(self):
  6580. dir_model = self.dir_model
  6581. hparams = self.hparams
  6582. tokens: list[bytes] = []
  6583. toktypes: list[int] = []
  6584. scores: list[float] = []
  6585. from transformers import AutoTokenizer
  6586. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  6587. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  6588. assert max(tokenizer.get_vocab().values()) < vocab_size
  6589. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  6590. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  6591. for token_id in range(vocab_size):
  6592. piece = tokenizer._convert_id_to_token(token_id)
  6593. if token_id == 0:
  6594. piece = "<unk>"
  6595. elif token_id == 1:
  6596. piece = "<bos>"
  6597. elif token_id == 2:
  6598. piece = "<eos>"
  6599. text = piece.encode("utf-8")
  6600. score = 0.0
  6601. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  6602. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  6603. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  6604. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  6605. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  6606. if piece in special_tokens:
  6607. toktype = SentencePieceTokenTypes.CONTROL
  6608. elif len(piece) == 0:
  6609. text = f"[PAD{token_id}]".encode("utf-8")
  6610. toktype = SentencePieceTokenTypes.UNUSED
  6611. else:
  6612. toktype = SentencePieceTokenTypes.USER_DEFINED
  6613. tokens.append(text)
  6614. scores.append(score)
  6615. toktypes.append(toktype)
  6616. continue
  6617. toktype = SentencePieceTokenTypes.NORMAL
  6618. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  6619. toktype = SentencePieceTokenTypes.UNKNOWN
  6620. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  6621. toktype = SentencePieceTokenTypes.CONTROL
  6622. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  6623. toktype = SentencePieceTokenTypes.UNUSED
  6624. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  6625. toktype = SentencePieceTokenTypes.BYTE
  6626. tokens.append(text)
  6627. scores.append(score)
  6628. toktypes.append(toktype)
  6629. self.gguf_writer.add_tokenizer_model("llama")
  6630. # glm3 needs prefix and suffix formatted as:
  6631. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  6632. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  6633. self.gguf_writer.add_token_list(tokens)
  6634. self.gguf_writer.add_token_scores(scores)
  6635. self.gguf_writer.add_token_types(toktypes)
  6636. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6637. special_vocab.add_to_gguf(self.gguf_writer)
  6638. @staticmethod
  6639. def token_bytes_to_string(b):
  6640. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  6641. byte_encoder = bytes_to_unicode()
  6642. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  6643. @staticmethod
  6644. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  6645. parts = [bytes([b]) for b in token]
  6646. while True:
  6647. min_idx = None
  6648. min_rank = None
  6649. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  6650. rank = mergeable_ranks.get(pair[0] + pair[1])
  6651. if rank is not None and (min_rank is None or rank < min_rank):
  6652. min_idx = i
  6653. min_rank = rank
  6654. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  6655. break
  6656. assert min_idx is not None
  6657. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  6658. return parts
  6659. def set_vocab(self):
  6660. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  6661. self.set_vocab_chatglm3()
  6662. return
  6663. dir_model = self.dir_model
  6664. hparams = self.hparams
  6665. tokens: list[str] = []
  6666. toktypes: list[int] = []
  6667. from transformers import AutoTokenizer
  6668. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  6669. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  6670. assert max(tokenizer.get_vocab().values()) < vocab_size
  6671. tokens, toktypes, tokpre = self.get_vocab_base()
  6672. self.gguf_writer.add_tokenizer_model("gpt2")
  6673. self.gguf_writer.add_tokenizer_pre(tokpre)
  6674. self.gguf_writer.add_token_list(tokens)
  6675. self.gguf_writer.add_token_types(toktypes)
  6676. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6677. # only add special tokens when they were not already loaded from config.json
  6678. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6679. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  6680. # this one is usually not in config.json anyway
  6681. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  6682. special_vocab.add_to_gguf(self.gguf_writer)
  6683. def set_gguf_parameters(self):
  6684. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  6685. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  6686. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  6687. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  6688. self.gguf_writer.add_embedding_length(n_embed)
  6689. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  6690. self.gguf_writer.add_block_count(self.block_count)
  6691. self.gguf_writer.add_head_count(n_head)
  6692. self.gguf_writer.add_head_count_kv(n_head_kv)
  6693. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  6694. self.gguf_writer.add_file_type(self.ftype)
  6695. if "attention_dim" in self.hparams:
  6696. rope_dim = self.hparams["attention_dim"]
  6697. else:
  6698. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6699. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  6700. self.gguf_writer.add_add_bos_token(False)
  6701. rope_freq = 10000
  6702. if "rope_ratio" in self.hparams:
  6703. rope_freq = rope_freq * self.hparams["rope_ratio"]
  6704. self.gguf_writer.add_rope_freq_base(rope_freq)
  6705. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6706. del bid # unused
  6707. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  6708. return []
  6709. name = name.removeprefix("transformer.")
  6710. return [(self.map_tensor_name(name), data_torch)]
  6711. @ModelBase.register("NemotronForCausalLM")
  6712. class NemotronModel(TextModel):
  6713. model_arch = gguf.MODEL_ARCH.NEMOTRON
  6714. def set_vocab(self):
  6715. self._set_vocab_sentencepiece()
  6716. self.gguf_writer.add_pad_token_id(0)
  6717. self.gguf_writer.add_unk_token_id(1)
  6718. def set_gguf_parameters(self):
  6719. super().set_gguf_parameters()
  6720. hparams = self.hparams
  6721. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6722. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  6723. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  6724. # * Partial RoPE
  6725. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  6726. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  6727. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  6728. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  6729. # * RopeScaling for Nemotron
  6730. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  6731. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6732. else:
  6733. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  6734. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  6735. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6736. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  6737. # model.layers.{l}.input_layernorm.weight
  6738. # model.layers.{l}.post_attention_layernorm.weight
  6739. # model.norm.weight
  6740. if name.endswith("norm.weight"):
  6741. data_torch = data_torch + 1
  6742. return [(self.map_tensor_name(name), data_torch)]
  6743. @ModelBase.register("ExaoneForCausalLM")
  6744. class ExaoneModel(TextModel):
  6745. model_arch = gguf.MODEL_ARCH.EXAONE
  6746. def set_gguf_parameters(self):
  6747. super().set_gguf_parameters()
  6748. hparams = self.hparams
  6749. assert (hparams["activation_function"] == "silu")
  6750. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  6751. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  6752. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  6753. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  6754. if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters):
  6755. if rope_params.get("rope_type", '').lower() == "llama3":
  6756. base = self.rope_parameters.get("rope_theta", 10000.0)
  6757. if (dim := self.hparams.get("head_dim")) is None:
  6758. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6759. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  6760. factor = rope_params.get("factor", 8.0)
  6761. low_freq_factor = rope_params.get("low_freq_factor", 1.0)
  6762. high_freq_factor = rope_params.get("high_freq_factor", 4.0)
  6763. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  6764. low_freq_wavelen = old_context_len / low_freq_factor
  6765. high_freq_wavelen = old_context_len / high_freq_factor
  6766. assert low_freq_wavelen != high_freq_wavelen
  6767. rope_factors = []
  6768. for freq in freqs:
  6769. wavelen = 2 * math.pi / freq
  6770. if wavelen < high_freq_wavelen:
  6771. rope_factors.append(1)
  6772. elif wavelen > low_freq_wavelen:
  6773. rope_factors.append(factor)
  6774. else:
  6775. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  6776. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  6777. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  6778. @ModelBase.register("Exaone4ForCausalLM")
  6779. class Exaone4Model(TextModel):
  6780. model_arch = gguf.MODEL_ARCH.EXAONE4
  6781. def set_vocab(self):
  6782. tokens, toktypes, tokpre = self.get_vocab_base()
  6783. self.gguf_writer.add_tokenizer_model("gpt2")
  6784. self.gguf_writer.add_tokenizer_pre(tokpre)
  6785. self.gguf_writer.add_token_list(tokens)
  6786. self.gguf_writer.add_token_types(toktypes)
  6787. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6788. special_vocab.add_to_gguf(self.gguf_writer)
  6789. def set_gguf_parameters(self):
  6790. super().set_gguf_parameters()
  6791. hparams = self.hparams
  6792. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6793. if hparams.get("sliding_window") is not None:
  6794. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  6795. if "layer_types" in hparams:
  6796. self.gguf_writer.add_sliding_window_pattern([t == "sliding_attention" for t in hparams["layer_types"]])
  6797. elif "sliding_window_pattern" in hparams:
  6798. sliding_window_pattern = []
  6799. if isinstance(hparams["sliding_window_pattern"], str): # e.g. LLLG
  6800. for i in range(hparams["num_hidden_layers"]):
  6801. sliding_window_pattern.append(hparams["sliding_window_pattern"][i % len(hparams["sliding_window_pattern"])] == "L")
  6802. if isinstance(hparams["sliding_window_pattern"], int): # e.g. 4
  6803. for i in range(hparams["num_hidden_layers"]):
  6804. sliding_window_pattern.append((i + 1) % hparams["sliding_window_pattern"] != 0)
  6805. if len(sliding_window_pattern) == hparams["num_hidden_layers"]:
  6806. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  6807. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  6808. if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters):
  6809. if rope_params.get("rope_type", '').lower() == "llama3":
  6810. base = rope_params.get("rope_theta", 10_000.0)
  6811. if (dim := self.hparams.get("head_dim")) is None:
  6812. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6813. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  6814. factor = rope_params.get("factor", 16.0)
  6815. low_freq_factor = rope_params.get("low_freq_factor", 1.0)
  6816. high_freq_factor = rope_params.get("high_freq_factor", 4.0)
  6817. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  6818. low_freq_wavelen = old_context_len / low_freq_factor
  6819. high_freq_wavelen = old_context_len / high_freq_factor
  6820. rope_factors = []
  6821. for freq in freqs:
  6822. wavelen = 2 * math.pi / freq
  6823. if wavelen < high_freq_wavelen:
  6824. rope_factors.append(1)
  6825. elif wavelen > low_freq_wavelen:
  6826. rope_factors.append(factor)
  6827. else:
  6828. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  6829. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  6830. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  6831. @ModelBase.register("GraniteForCausalLM")
  6832. class GraniteModel(LlamaModel):
  6833. """Conversion for IBM's GraniteForCausalLM"""
  6834. model_arch = gguf.MODEL_ARCH.GRANITE
  6835. def set_gguf_parameters(self):
  6836. """Granite uses standard llama parameters with the following differences:
  6837. - No head_dim support
  6838. - New multiplier params:
  6839. - attention_scale
  6840. - embedding_scale
  6841. - residual_scale
  6842. - logits_scaling
  6843. """
  6844. if head_dim := self.hparams.pop("head_dim", None):
  6845. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  6846. super().set_gguf_parameters()
  6847. # NOTE: Convert _multiplier params to _scale params for naming
  6848. # consistency
  6849. if attention_scale := self.hparams.get("attention_multiplier"):
  6850. self.gguf_writer.add_attention_scale(attention_scale)
  6851. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  6852. if embedding_scale := self.hparams.get("embedding_multiplier"):
  6853. self.gguf_writer.add_embedding_scale(embedding_scale)
  6854. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  6855. if residual_scale := self.hparams.get("residual_multiplier"):
  6856. self.gguf_writer.add_residual_scale(residual_scale)
  6857. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  6858. if logits_scale := self.hparams.get("logits_scaling"):
  6859. self.gguf_writer.add_logit_scale(logits_scale)
  6860. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  6861. @ModelBase.register("GraniteMoeForCausalLM", "GraniteMoeSharedForCausalLM")
  6862. class GraniteMoeModel(GraniteModel):
  6863. """Conversion for IBM's GraniteMoeForCausalLM"""
  6864. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  6865. def set_gguf_parameters(self):
  6866. """GraniteMoeShared uses GraniteMoe parameters plus the following:
  6867. - shared_intermediate_size
  6868. """
  6869. super().set_gguf_parameters()
  6870. if shared_feed_forward_length := self.hparams.get("shared_intermediate_size"):
  6871. self.gguf_writer.add_expert_shared_feed_forward_length(shared_feed_forward_length)
  6872. logger.info("gguf: (granitemoeshared) shared_feed_forward_length = %s", shared_feed_forward_length)
  6873. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6874. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  6875. is used. This essentially merges w1 and w3 into a single tensor with 2x
  6876. the hidden size that is then split during forward. To keep compatibility
  6877. with existing mixtral support, we pull them apart here.
  6878. """
  6879. if name.endswith("block_sparse_moe.input_linear.weight"):
  6880. ffn_dim = self.hparams["intermediate_size"]
  6881. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  6882. gate, up = data_torch.split(ffn_dim, dim=-2)
  6883. return [
  6884. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  6885. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  6886. ]
  6887. has_experts = bool(self.hparams.get('num_local_experts'))
  6888. if name.endswith("shared_mlp.input_linear.weight"):
  6889. ffn_dim = self.hparams["shared_intermediate_size"]
  6890. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * shared_intermediate_size"
  6891. gate, up = data_torch.split(ffn_dim, dim=-2)
  6892. if has_experts:
  6893. return [
  6894. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_SHEXP, bid), gate),
  6895. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_SHEXP, bid), up),
  6896. ]
  6897. return [
  6898. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), gate),
  6899. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), up),
  6900. ]
  6901. if not has_experts and name.endswith("shared_mlp.output_linear.weight"):
  6902. return [
  6903. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, bid), data_torch)
  6904. ]
  6905. return super().modify_tensors(data_torch, name, bid)
  6906. @ModelBase.register("GraniteMoeHybridForCausalLM", "BambaForCausalLM")
  6907. class GraniteHybridModel(Mamba2Model, GraniteMoeModel):
  6908. """GraniteHybrid is a hybrid SSM + Attention model that uses Mamba2 SSM
  6909. layers and optionally uses MoE w/ a shared expert"""
  6910. model_arch = gguf.MODEL_ARCH.GRANITE_HYBRID
  6911. undo_permute = True
  6912. def __init__(self, *args, **kwargs):
  6913. # Hybrid mamba models use a prefix for the mamba-specific params.
  6914. # TODO: Extend this if the prefix(es) need to be configurable
  6915. self.hparam_prefixes = ["mamba"]
  6916. super().__init__(*args, **kwargs)
  6917. # Lists of which layers use ssm vs attention
  6918. self._attn_layers = self.get_attn_layers()
  6919. self._ssm_layers = [
  6920. i for i in range(self.block_count)
  6921. if i not in self._attn_layers
  6922. ]
  6923. # There are some models in this family that are non-hybrid, but keep the
  6924. # same parent class by setting all layers to "attention." If this is the
  6925. # case, the model architecture needs to be updated to a standard
  6926. # "granite" or "granitemoe" model
  6927. if not self._ssm_layers:
  6928. has_experts = self.find_hparam(["num_experts_per_tok"], optional=True)
  6929. new_arch = (
  6930. gguf.MODEL_ARCH.GRANITE_MOE
  6931. if has_experts else
  6932. gguf.MODEL_ARCH.GRANITE
  6933. )
  6934. self.model_arch = new_arch
  6935. self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[new_arch]
  6936. self.gguf_writer.add_architecture()
  6937. # n_group and d_inner are used during reshape_tensors for mamba2
  6938. # NOTE: Explicitly include hparam prefix prefix for d_model to
  6939. # disambiguate with top-level head_dim
  6940. # NOTE 2: If needed for future models, this can be isolated in a method
  6941. # to separate the prefix setting and teh keys used
  6942. self.d_model = self.find_hparam([f"{self.hparam_prefixes[0]}_head_dim", "hidden_size", "d_model"])
  6943. self.n_group = self.find_hparam(["n_groups", "num_groups"])
  6944. self.d_inner = self.find_hparam(["expand", "num_heads"]) * self.d_model
  6945. def get_attn_layers(self):
  6946. # Explicit list of layer type names
  6947. if layer_types := self.hparams.get("layer_types"):
  6948. return [
  6949. i for i, typ in enumerate(layer_types)
  6950. if typ == "attention"
  6951. ]
  6952. # Layer types indicated by index or period
  6953. attn_layers = self.hparams.get("attn_layer_indices", [])
  6954. if not attn_layers:
  6955. attn_period = self.hparams.get("attn_layer_period")
  6956. assert attn_period, "Didn't find attn_layer_indices or attn_layer_period"
  6957. attn_offset = self.hparams.get("attn_layer_offset")
  6958. assert attn_offset is not None, "No attention layer offset set with attn_layer_period"
  6959. attn_layers = [
  6960. i for i in range(self.block_count)
  6961. if i % attn_period == attn_offset
  6962. ]
  6963. return attn_layers
  6964. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  6965. prefixed = []
  6966. for pfx in self.hparam_prefixes:
  6967. prefixed.extend(
  6968. "_".join([pfx, k])
  6969. for k in keys
  6970. )
  6971. keys = list(keys) + prefixed
  6972. return Mamba2Model.find_hparam(self, keys, *args, **kwargs)
  6973. def modify_tensors(
  6974. self, data_torch: Tensor, name: str, bid: int | None
  6975. ) -> Iterable[tuple[str, Tensor]]:
  6976. if (
  6977. name.endswith("block_sparse_moe.input_linear.weight")
  6978. or "shared_mlp" in name
  6979. ):
  6980. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  6981. # Determine whether this is a mamba layer or an attention layer
  6982. if bid in self._ssm_layers:
  6983. return Mamba2Model.modify_tensors(self, data_torch, name, bid)
  6984. elif bid in self._attn_layers:
  6985. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  6986. return [(self.map_tensor_name(name), data_torch)]
  6987. def set_gguf_parameters(self):
  6988. """This method merges params from both parents and some that are
  6989. specific to this model. The result is some duplication of how the params
  6990. get set. The following warnings are expected during conversion:
  6991. WARNING:Duplicated key name 'granitehybrid.attention.head_count_kv'
  6992. WARNING:Duplicated key name 'granitehybrid.context_length'
  6993. """
  6994. GraniteMoeModel.set_gguf_parameters(self)
  6995. ## Mamba mixer params ##
  6996. self.gguf_writer.add_ssm_conv_kernel(self.find_hparam(["conv_kernel", "d_conv"]))
  6997. self.gguf_writer.add_ssm_state_size(self.find_hparam(["state_size", "d_state", "state_dim", "ssm_state_size"]))
  6998. self.gguf_writer.add_ssm_group_count(self.n_group)
  6999. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  7000. # NOTE: The mamba_dt_rank is _not_ the right field for how this is used
  7001. # in llama.cpp
  7002. self.gguf_writer.add_ssm_time_step_rank(self.find_hparam(["n_heads", "num_heads"]))
  7003. ## Attention params ##
  7004. head_count_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  7005. head_count_kv_vec = [
  7006. head_count_kv if i in self._attn_layers else 0 for i in range(self.block_count)
  7007. ]
  7008. if rope_dim := self.hparams.get("attn_rotary_emb"):
  7009. self.gguf_writer.add_rope_dimension_count(rope_dim)
  7010. self.gguf_writer.add_head_count_kv(head_count_kv_vec)
  7011. ## If Bamba or non-hybrid, use rope, otherwise don't
  7012. use_rope = (
  7013. "BambaForCausalLM" in self.hparams["architectures"]
  7014. or not self._ssm_layers
  7015. )
  7016. self.gguf_writer.add_rope_scaling_finetuned(use_rope)
  7017. if not use_rope:
  7018. self.gguf_writer.add_context_length(2**20)
  7019. ## Validation ##
  7020. d_head = self.find_hparam(["d_head"], optional=True) or 64
  7021. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  7022. assert self.d_inner % d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {d_head}"
  7023. def set_vocab(self):
  7024. self.hparams["pad_vocab_size_multiple"] = 8
  7025. Mamba2Model.set_vocab(self)
  7026. @ModelBase.register("NemotronHForCausalLM")
  7027. class NemotronHModel(GraniteHybridModel):
  7028. """Hybrid mamba2/attention model from NVIDIA"""
  7029. model_arch = gguf.MODEL_ARCH.NEMOTRON_H
  7030. is_moe: bool = False
  7031. def __init__(self, *args, **kwargs):
  7032. # We have to determine the correct model architecture (MoE vs non-MoE) before
  7033. # calling the parent __init__. This is because the parent constructor
  7034. # uses self.model_arch to build the tensor name map, and all MoE-specific
  7035. # mappings would be missed if it were called with the default non-MoE arch.
  7036. hparams = ModelBase.load_hparams(args[0], self.is_mistral_format)
  7037. if "num_experts_per_tok" in hparams:
  7038. self.model_arch = gguf.MODEL_ARCH.NEMOTRON_H_MOE
  7039. self.is_moe = True
  7040. super().__init__(*args, **kwargs)
  7041. # Save the top-level head_dim for later
  7042. self.head_dim = self.hparams.get("head_dim", self.hparams.get("attention_head_dim"))
  7043. assert self.head_dim is not None, "Could not find the attention head dim in config"
  7044. # Don't use expand to calculate d_inner
  7045. self.d_inner = self.find_hparam(["num_heads"]) * self.d_model
  7046. # Update the ssm / attn / mlp layers
  7047. # M: Mamba2, *: Attention, -: MLP
  7048. # MoE:
  7049. # M: Mamba2, *: Attention, E: Expert
  7050. hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
  7051. self._ssm_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == "M"]
  7052. self._mlp_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == ("E" if self.is_moe else "-")]
  7053. def get_attn_layers(self):
  7054. hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
  7055. assert len(hybrid_override_pattern) == self.block_count, "Mismatch between hybrid override and num_hidden_layers!"
  7056. return [i for i, val in enumerate(hybrid_override_pattern) if val == "*"]
  7057. def set_gguf_parameters(self):
  7058. super().set_gguf_parameters()
  7059. self.gguf_writer.add_key_length(self.head_dim)
  7060. self.gguf_writer.add_value_length(self.head_dim)
  7061. # Set feed_forward_length
  7062. # NOTE: This will trigger an override warning. This is preferrable to
  7063. # duplicating all the parent logic
  7064. if not self.is_moe:
  7065. n_ff = self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"])
  7066. self.gguf_writer.add_feed_forward_length([
  7067. n_ff if i in self._mlp_layers else 0 for i in range(self.block_count)
  7068. ])
  7069. else:
  7070. moe_intermediate_size = self.hparams["moe_intermediate_size"]
  7071. self.gguf_writer.add_feed_forward_length([
  7072. moe_intermediate_size if i in self._mlp_layers else 0 for i in range(self.block_count)
  7073. ])
  7074. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  7075. self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
  7076. self.gguf_writer.add_expert_shared_feed_forward_length(self.hparams["moe_shared_expert_intermediate_size"])
  7077. self.gguf_writer.add_expert_count(self.hparams["n_routed_experts"])
  7078. self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
  7079. self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
  7080. self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
  7081. self.gguf_writer.add_expert_group_count(self.hparams["n_group"])
  7082. # number of experts used per token (top-k)
  7083. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  7084. self.gguf_writer.add_expert_used_count(n_experts_used)
  7085. def set_vocab(self):
  7086. super().set_vocab()
  7087. # The tokenizer _does_ add a BOS token (via post_processor type
  7088. # TemplateProcessing) but does not set add_bos_token to true in the
  7089. # config, so we need to explicitly override it here.
  7090. if not self.is_moe:
  7091. self.gguf_writer.add_add_bos_token(True)
  7092. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7093. if self.is_moe and bid is not None:
  7094. if name.endswith("mixer.gate.e_score_correction_bias"):
  7095. new_name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  7096. mapped_name = self.map_tensor_name(new_name)
  7097. return [(mapped_name, data_torch)]
  7098. if name.endswith("mixer.dt_bias"):
  7099. new_name = name.replace("dt_bias", "dt.bias")
  7100. mapped_name = self.map_tensor_name(new_name)
  7101. return [(mapped_name, data_torch)]
  7102. if name.endswith("mixer.conv1d.weight"):
  7103. squeezed_data = data_torch.squeeze()
  7104. mapped_name = self.map_tensor_name(name)
  7105. return [(mapped_name, squeezed_data)]
  7106. if name.endswith("mixer.A_log"):
  7107. transformed_data = -torch.exp(data_torch)
  7108. reshaped_data = transformed_data.squeeze().reshape(-1, 1)
  7109. mapped_name = self.map_tensor_name(name)
  7110. return [(mapped_name, reshaped_data)]
  7111. if name.endswith("mixer.D"):
  7112. reshaped_data = data_torch.squeeze().reshape(-1, 1)
  7113. mapped_name = self.map_tensor_name(name)
  7114. return [(mapped_name, reshaped_data)]
  7115. if name.endswith("mixer.norm.weight"):
  7116. reshaped_data = data_torch.reshape(8, 512)
  7117. mapped_name = self.map_tensor_name(name)
  7118. return [(mapped_name, reshaped_data)]
  7119. if name.find("mixer.experts") != -1:
  7120. n_experts = self.hparams["n_routed_experts"]
  7121. assert bid is not None
  7122. if self._experts is None:
  7123. self._experts = [{} for _ in range(self.block_count)]
  7124. self._experts[bid][name] = data_torch
  7125. if len(self._experts[bid]) >= n_experts * 2:
  7126. # merge the experts into a single tensor
  7127. tensors: list[tuple[str, Tensor]] = []
  7128. for w_name in ["down_proj", "up_proj"]:
  7129. datas: list[Tensor] = []
  7130. for xid in range(n_experts):
  7131. ename = f"backbone.layers.{bid}.mixer.experts.{xid}.{w_name}.weight"
  7132. datas.append(self._experts[bid][ename])
  7133. del self._experts[bid][ename]
  7134. data_torch = torch.stack(datas, dim=0)
  7135. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7136. new_name = self.map_tensor_name(merged_name)
  7137. tensors.append((new_name, data_torch))
  7138. return tensors
  7139. else:
  7140. return []
  7141. return super().modify_tensors(data_torch, name, bid)
  7142. def prepare_tensors(self):
  7143. super().prepare_tensors()
  7144. if self._experts is not None:
  7145. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7146. experts = [k for d in self._experts for k in d.keys()]
  7147. if len(experts) > 0:
  7148. raise ValueError(f"Unprocessed experts: {experts}")
  7149. @ModelBase.register("LlamaBidirectionalModel")
  7150. class LlamaEmbedNemotronModel(LlamaModel):
  7151. model_arch = gguf.MODEL_ARCH.LLAMA_EMBED
  7152. @ModelBase.register("BailingMoeForCausalLM")
  7153. class BailingMoeModel(TextModel):
  7154. model_arch = gguf.MODEL_ARCH.BAILINGMOE
  7155. def set_vocab(self):
  7156. self._set_vocab_gpt2()
  7157. def set_gguf_parameters(self):
  7158. super().set_gguf_parameters()
  7159. hparams = self.hparams
  7160. if (rope_dim := hparams.get("head_dim")) is None:
  7161. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  7162. self.gguf_writer.add_rope_dimension_count(rope_dim)
  7163. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  7164. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  7165. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  7166. self.gguf_writer.add_expert_weights_scale(1.0)
  7167. self.gguf_writer.add_expert_count(hparams["num_experts"])
  7168. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  7169. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  7170. _experts: list[dict[str, Tensor]] | None = None
  7171. @staticmethod
  7172. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  7173. if n_head_kv is not None and n_head != n_head_kv:
  7174. n_head = n_head_kv
  7175. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  7176. .swapaxes(1, 2)
  7177. .reshape(weights.shape))
  7178. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7179. n_head = self.hparams["num_attention_heads"]
  7180. n_kv_head = self.hparams.get("num_key_value_heads")
  7181. n_embd = self.hparams["hidden_size"]
  7182. if (head_dim := self.hparams.get("head_dim")) is None:
  7183. head_dim = n_embd // n_head
  7184. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  7185. if name.endswith("attention.dense.weight"):
  7186. return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
  7187. elif name.endswith("query_key_value.weight"):
  7188. q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
  7189. return [
  7190. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
  7191. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
  7192. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
  7193. ]
  7194. elif name.find("mlp.experts") != -1:
  7195. n_experts = self.hparams["num_experts"]
  7196. assert bid is not None
  7197. tensors: list[tuple[str, Tensor]] = []
  7198. if self._experts is None:
  7199. self._experts = [{} for _ in range(self.block_count)]
  7200. self._experts[bid][name] = data_torch
  7201. if len(self._experts[bid]) >= n_experts * 3:
  7202. # merge the experts into a single 3d tensor
  7203. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7204. datas: list[Tensor] = []
  7205. for xid in range(n_experts):
  7206. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7207. datas.append(self._experts[bid][ename])
  7208. del self._experts[bid][ename]
  7209. data_torch = torch.stack(datas, dim=0)
  7210. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7211. new_name = self.map_tensor_name(merged_name)
  7212. tensors.append((new_name, data_torch))
  7213. return tensors
  7214. new_name = self.map_tensor_name(name)
  7215. if new_name == output_name and self.hparams.get("norm_head"):
  7216. data_torch = data_torch.float()
  7217. data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
  7218. return [(new_name, data_torch)]
  7219. def prepare_tensors(self):
  7220. super().prepare_tensors()
  7221. if self._experts is not None:
  7222. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7223. experts = [k for d in self._experts for k in d.keys()]
  7224. if len(experts) > 0:
  7225. raise ValueError(f"Unprocessed experts: {experts}")
  7226. @ModelBase.register("BailingMoeV2ForCausalLM")
  7227. class BailingMoeV2Model(TextModel):
  7228. model_arch = gguf.MODEL_ARCH.BAILINGMOE2
  7229. def __init__(self, *args, **kwargs):
  7230. super().__init__(*args, **kwargs)
  7231. if nextn_layers := self.hparams.get("num_nextn_predict_layers", 0):
  7232. self.block_count = self.hparams["num_hidden_layers"] + nextn_layers
  7233. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  7234. def set_vocab(self):
  7235. self._set_vocab_gpt2()
  7236. def set_gguf_parameters(self):
  7237. super().set_gguf_parameters()
  7238. hparams = self.hparams
  7239. if (rope_dim := hparams.get("head_dim")) is None:
  7240. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  7241. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  7242. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  7243. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  7244. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  7245. self.gguf_writer.add_expert_shared_feed_forward_length(hparams.get("moe_shared_expert_intermediate_size", hparams["moe_intermediate_size"] * hparams["num_shared_experts"]))
  7246. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  7247. self.gguf_writer.add_expert_count(hparams["num_experts"])
  7248. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  7249. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  7250. if (nextn_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
  7251. self.gguf_writer.add_nextn_predict_layers(nextn_layers)
  7252. _experts: list[dict[str, Tensor]] | None = None
  7253. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7254. if "mlp.experts" in name:
  7255. n_experts = self.hparams["num_experts"]
  7256. assert bid is not None
  7257. tensors: list[tuple[str, Tensor]] = []
  7258. if self._experts is None:
  7259. self._experts = [{} for _ in range(self.block_count)]
  7260. self._experts[bid][name] = data_torch
  7261. if len(self._experts[bid]) >= n_experts * 3:
  7262. # merge the experts into a single 3d tensor
  7263. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7264. datas: list[Tensor] = []
  7265. for xid in range(n_experts):
  7266. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7267. datas.append(self._experts[bid][ename])
  7268. del self._experts[bid][ename]
  7269. data_torch = torch.stack(datas, dim=0)
  7270. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7271. new_name = self.map_tensor_name(merged_name)
  7272. tensors.append((new_name, data_torch))
  7273. return tensors
  7274. if name.endswith(".expert_bias"):
  7275. name = name.replace(".expert_bias", ".expert_bias.bias")
  7276. return [(self.map_tensor_name(name), data_torch)]
  7277. def prepare_tensors(self):
  7278. super().prepare_tensors()
  7279. if self._experts is not None:
  7280. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7281. experts = [k for d in self._experts for k in d.keys()]
  7282. if len(experts) > 0:
  7283. raise ValueError(f"Unprocessed experts: {experts}")
  7284. @ModelBase.register("GroveMoeForCausalLM", "modeling_grove_moe.GroveMoeForCausalLM")
  7285. class GroveMoeModel(TextModel):
  7286. model_arch = gguf.MODEL_ARCH.GROVEMOE
  7287. def set_gguf_parameters(self):
  7288. super().set_gguf_parameters()
  7289. if (n_experts := self.hparams.get("num_experts")) is not None:
  7290. self.gguf_writer.add_expert_count(n_experts)
  7291. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  7292. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  7293. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  7294. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L299
  7295. self.gguf_writer.add_expert_chunk_feed_forward_length(self.hparams.get("head_dim") or 128)
  7296. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L298
  7297. self.gguf_writer.add_experts_per_group(2)
  7298. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L376
  7299. self.gguf_writer.add_expert_group_scale(0.05)
  7300. _experts: list[dict[str, Tensor]] | None = None
  7301. _chunk_experts: list[dict[str, Tensor]] | None = None
  7302. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7303. if name.endswith(".expert_bias"):
  7304. # FIXME?: Unused https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L303
  7305. return []
  7306. # process the experts separately
  7307. if name.find("chunk_experts") != -1:
  7308. n_experts = self.hparams["num_experts"] // 2 # see add_experts_per_group
  7309. assert bid is not None
  7310. if self._chunk_experts is None:
  7311. self._chunk_experts = [{} for _ in range(self.block_count)]
  7312. self._chunk_experts[bid][name] = data_torch
  7313. if len(self._chunk_experts[bid]) >= n_experts * 3:
  7314. tensors: list[tuple[str, Tensor]] = []
  7315. # merge the experts into a single 3d tensor
  7316. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7317. datas: list[Tensor] = []
  7318. for xid in range(n_experts):
  7319. ename = f"model.layers.{bid}.mlp.chunk_experts.{xid}.{w_name}.weight"
  7320. datas.append(self._chunk_experts[bid][ename])
  7321. del self._chunk_experts[bid][ename]
  7322. data_torch = torch.stack(datas, dim=0)
  7323. merged_name = f"model.layers.{bid}.mlp.chunk_experts.{w_name}.weight"
  7324. new_name = self.map_tensor_name(merged_name)
  7325. tensors.append((new_name, data_torch))
  7326. return tensors
  7327. else:
  7328. return []
  7329. elif name.find("experts") != -1:
  7330. n_experts = self.hparams["num_experts"]
  7331. assert bid is not None
  7332. if self._experts is None:
  7333. self._experts = [{} for _ in range(self.block_count)]
  7334. self._experts[bid][name] = data_torch
  7335. if len(self._experts[bid]) >= n_experts * 3:
  7336. tensors: list[tuple[str, Tensor]] = []
  7337. # merge the experts into a single 3d tensor
  7338. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7339. datas: list[Tensor] = []
  7340. for xid in range(n_experts):
  7341. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7342. datas.append(self._experts[bid][ename])
  7343. del self._experts[bid][ename]
  7344. data_torch = torch.stack(datas, dim=0)
  7345. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7346. new_name = self.map_tensor_name(merged_name)
  7347. tensors.append((new_name, data_torch))
  7348. return tensors
  7349. else:
  7350. return []
  7351. return [(self.map_tensor_name(name), data_torch)]
  7352. def prepare_tensors(self):
  7353. super().prepare_tensors()
  7354. if self._chunk_experts is not None:
  7355. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7356. chunk_experts = [k for d in self._chunk_experts for k in d.keys()]
  7357. if len(chunk_experts) > 0:
  7358. raise ValueError(f"Unprocessed adjugate experts: {chunk_experts}")
  7359. if self._experts is not None:
  7360. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7361. experts = [k for d in self._experts for k in d.keys()]
  7362. if len(experts) > 0:
  7363. raise ValueError(f"Unprocessed experts: {experts}")
  7364. @ModelBase.register("ChameleonForConditionalGeneration")
  7365. @ModelBase.register("ChameleonForCausalLM") # obsolete
  7366. class ChameleonModel(TextModel):
  7367. model_arch = gguf.MODEL_ARCH.CHAMELEON
  7368. def set_gguf_parameters(self):
  7369. super().set_gguf_parameters()
  7370. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  7371. def set_vocab(self):
  7372. self._set_vocab_gpt2()
  7373. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7374. # ignore image tokenizer for now
  7375. # TODO: remove this once image support is implemented for Chameleon
  7376. if name.startswith("model.vqmodel"):
  7377. return []
  7378. n_head = self.hparams["num_attention_heads"]
  7379. n_kv_head = self.hparams.get("num_key_value_heads")
  7380. hidden_dim = self.hparams.get("hidden_size")
  7381. if name.endswith(("q_proj.weight", "q_proj.bias")):
  7382. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  7383. if name.endswith(("k_proj.weight", "k_proj.bias")):
  7384. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  7385. if name.endswith(("q_norm.weight", "q_norm.bias")):
  7386. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  7387. if name.endswith(("k_norm.weight", "k_norm.bias")):
  7388. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  7389. return [(self.map_tensor_name(name), data_torch)]
  7390. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  7391. @staticmethod
  7392. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  7393. head_dim = hidden_dim // n_heads
  7394. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  7395. data_torch = data_torch.repeat_interleave(n_heads, 0)
  7396. return data_torch
  7397. @ModelBase.register("UltravoxModel")
  7398. class UltravoxModel(TextModel):
  7399. model_arch = gguf.MODEL_ARCH.LLAMA # dummy
  7400. def __init__(self, *args, **kwargs):
  7401. super().__init__(*args, **kwargs)
  7402. raise NotImplementedError("Ultravox does not have text decoder. Instead, it uses Llama or other models for text. If you want to get the audio encoder, please use --mmproj argument")
  7403. @ModelBase.register("GlmasrModel")
  7404. class GlmASRWhisperEncoderModel(MmprojModel):
  7405. has_vision_encoder = False
  7406. has_audio_encoder = True
  7407. def __init__(self, *args, **kwargs):
  7408. super().__init__(*args, **kwargs)
  7409. if "hidden_size" not in self.hparams and "intermediate_size" not in self.hparams:
  7410. self.hparams["hidden_size"] = self.hparams["d_model"]
  7411. self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
  7412. self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
  7413. def set_gguf_parameters(self):
  7414. super().set_gguf_parameters()
  7415. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GLMA)
  7416. self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
  7417. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  7418. self.gguf_writer.add_audio_stack_factor(self.global_config["merge_factor"])
  7419. def tensor_force_quant(self, name, new_name, bid, n_dims):
  7420. if ".conv" in name and ".weight" in name:
  7421. return gguf.GGMLQuantizationType.F16
  7422. return super().tensor_force_quant(name, new_name, bid, n_dims)
  7423. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7424. del bid # unused
  7425. if name.startswith("model.") or name.startswith("lm_head."):
  7426. # skip language model tensors
  7427. return []
  7428. if name.startswith("audio_encoder.whisper."):
  7429. name = name.replace("audio_encoder.whisper.","audio_tower.")
  7430. if "audio_encoder.layer_norm." in name or "audio_encoder.proj." in name:
  7431. name = name.replace("audio_encoder.", "audio_encoder.adapting.")
  7432. if name.startswith("audio_encoder.audio_bos_eos_token."):
  7433. return [(self.map_tensor_name("model.vision.boi"), data_torch[0]), (self.map_tensor_name("model.vision.eoi"), data_torch[1])]
  7434. if name.startswith("audio_encoder.adapting."):
  7435. name = name.replace("audio_encoder.adapting.","audio.multi_modal_projector.")
  7436. if ".layer_norm." in name:
  7437. name = name.replace(".layer_norm.", ".ln_pre.")
  7438. if ".0." in name:
  7439. name = name.replace(".0.", ".linear_1.")
  7440. if ".2." in name:
  7441. name = name.replace(".2.", ".linear_2.")
  7442. if ".proj." in name:
  7443. return []
  7444. if "conv1.bias" in name or "conv2.bias" in name:
  7445. # transpose conv1 and conv2 bias
  7446. data_torch = data_torch.unsqueeze(-1)
  7447. return [(self.map_tensor_name(name), data_torch)]
  7448. @ModelBase.register("Qwen2AudioForConditionalGeneration")
  7449. class WhisperEncoderModel(MmprojModel):
  7450. has_vision_encoder = False # no vision encoder
  7451. has_audio_encoder = True
  7452. def __init__(self, *args, **kwargs):
  7453. super().__init__(*args, **kwargs)
  7454. if "hidden_size" not in self.hparams and "intermediate_size" not in self.hparams:
  7455. self.hparams["hidden_size"] = self.hparams["d_model"]
  7456. self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
  7457. self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
  7458. def set_gguf_parameters(self):
  7459. super().set_gguf_parameters()
  7460. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2A)
  7461. self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
  7462. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  7463. def tensor_force_quant(self, name, new_name, bid, n_dims):
  7464. if ".conv" in name and ".weight" in name:
  7465. return gguf.GGMLQuantizationType.F16
  7466. return super().tensor_force_quant(name, new_name, bid, n_dims)
  7467. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7468. del bid # unused
  7469. if name.startswith("language_model."):
  7470. # skip language model tensors
  7471. return []
  7472. # prevent clash naming with vision tensors
  7473. if name.startswith("multi_modal_projector"):
  7474. name = "audio." + name
  7475. if "conv1.bias" in name or "conv2.bias" in name:
  7476. # transpose conv1 and conv2 bias
  7477. data_torch = data_torch.unsqueeze(-1)
  7478. return [(self.map_tensor_name(name), data_torch)]
  7479. @ModelBase.register("UltravoxModel")
  7480. class UltravoxWhisperEncoderModel(WhisperEncoderModel):
  7481. has_vision_encoder = False # no vision encoder
  7482. has_audio_encoder = True
  7483. def set_gguf_parameters(self):
  7484. super().set_gguf_parameters()
  7485. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.ULTRAVOX)
  7486. self.gguf_writer.add_audio_stack_factor(self.global_config["stack_factor"])
  7487. @ModelBase.register("VoxtralForConditionalGeneration")
  7488. class VoxtralWhisperEncoderModel(WhisperEncoderModel):
  7489. has_vision_encoder = False # no vision encoder
  7490. has_audio_encoder = True
  7491. def set_gguf_parameters(self):
  7492. super().set_gguf_parameters()
  7493. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.VOXTRAL)
  7494. self.gguf_writer.add_audio_stack_factor(4) # == intermediate_size // hidden_size
  7495. @ModelBase.register("FalconH1ForCausalLM")
  7496. class FalconH1Model(Mamba2Model):
  7497. model_arch = gguf.MODEL_ARCH.FALCON_H1
  7498. def __init__(self, *args, **kwargs):
  7499. # Set the hparam prefixes for Falcon Mamba2
  7500. self.hparam_prefixes = ["mamba"]
  7501. # Initialize the base Mamba2Model
  7502. super().__init__(*args, **kwargs)
  7503. # Use Llama conversion for attention
  7504. self._transformer_model_class = LlamaModel
  7505. # n_group and d_inner are used during reshape_tensors for mamba2
  7506. self.n_group = self.find_hparam(["n_groups"])
  7507. self.d_inner = self.find_hparam(["mamba_d_ssm"])
  7508. self.d_head = self.find_hparam(["d_head"])
  7509. # Initialize any Falcon Mamba2 specific attributes
  7510. self.has_attention = True # Falcon Mamba2 has attention components
  7511. # Load Falcon-H1 multipliers from hyperparameters
  7512. self.attention_in_multiplier = self.find_hparam(["attention_in_multiplier"], optional=True)
  7513. self.attention_out_multiplier = self.find_hparam(["attention_out_multiplier"], optional=True)
  7514. self.ssm_in_multiplier = self.find_hparam(["ssm_in_multiplier"], optional=True)
  7515. self.ssm_out_multiplier = self.find_hparam(["ssm_out_multiplier"], optional=True)
  7516. self.mlp_multipliers = self.find_hparam(["mlp_multipliers"], optional=True)
  7517. self.ssm_multipliers = self.find_hparam(["ssm_multipliers"], optional=True)
  7518. self.intermediate_size = self.find_hparam(["intermediate_size"])
  7519. self.key_multiplier = self.find_hparam(["key_multiplier"], optional=True)
  7520. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  7521. prefixed = []
  7522. for pfx in self.hparam_prefixes:
  7523. prefixed.extend(
  7524. "_".join([pfx, k])
  7525. for k in keys
  7526. )
  7527. keys = list(keys) + prefixed
  7528. return super().find_hparam(keys, *args, **kwargs)
  7529. def set_vocab(self):
  7530. self._set_vocab_gpt2()
  7531. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7532. tensors = list(super().modify_tensors(data_torch, name, bid))
  7533. tensor = tensors[0][1]
  7534. if "down_proj" in name:
  7535. tensor = tensor * self.mlp_multipliers[1]
  7536. elif "gate_proj" in name:
  7537. tensor = tensor * self.mlp_multipliers[0]
  7538. elif "k_proj" in name:
  7539. tensor = tensor * self.key_multiplier * self.attention_in_multiplier
  7540. elif "q_proj" in name:
  7541. tensor = tensor * self.attention_in_multiplier
  7542. elif "v_proj" in name:
  7543. tensor = tensor * self.attention_in_multiplier
  7544. elif "o_proj" in name:
  7545. tensor = tensor * self.attention_out_multiplier
  7546. elif "out_proj" in name:
  7547. tensor = tensor * self.ssm_out_multiplier
  7548. elif "in_proj" in name:
  7549. tensor = tensor * self.ssm_in_multiplier
  7550. zxbcdt_multipliers = self.hparams["ssm_multipliers"]
  7551. intermediate_size = self.hparams["mamba_d_ssm"]
  7552. groups_time_state_size = self.hparams["mamba_n_groups"] * self.hparams["mamba_d_state"]
  7553. tensor[:intermediate_size, :] *= zxbcdt_multipliers[0]
  7554. tensor[intermediate_size:2 * intermediate_size, :] *= zxbcdt_multipliers[1]
  7555. tensor[2 * intermediate_size:2 * intermediate_size + groups_time_state_size, :] *= zxbcdt_multipliers[2]
  7556. tensor[2 * intermediate_size + groups_time_state_size:2 * intermediate_size + 2 * groups_time_state_size, :] *= zxbcdt_multipliers[3]
  7557. tensor[2 * intermediate_size + 2 * groups_time_state_size:, :] *= zxbcdt_multipliers[4]
  7558. elif "lm_head" in name:
  7559. tensor = tensor * self.hparams["lm_head_multiplier"]
  7560. elif "embed_tokens" in name:
  7561. tensor = tensor * self.hparams["embedding_multiplier"]
  7562. elif "mamba.norm" in name:
  7563. tensor = tensor.reshape(self.n_group, self.d_inner // self.n_group)
  7564. tensors = [(tensors[0][0], tensor)]
  7565. return tensors
  7566. def set_gguf_parameters(self):
  7567. super().set_gguf_parameters()
  7568. ## General Params ##
  7569. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  7570. # Override some Mamba2 defaults
  7571. self.gguf_writer.add_block_count(self.block_count)
  7572. self.gguf_writer.add_context_length(self.hparams.get("max_position_embeddings", 0))
  7573. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  7574. ## Attention params ##
  7575. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) # Override value 0 from Mamba2
  7576. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  7577. self.gguf_writer.add_key_length(self.hparams["head_dim"])
  7578. self.gguf_writer.add_value_length(self.hparams["head_dim"])
  7579. ## Validation ##
  7580. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  7581. assert self.d_inner % self.d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {self.d_head}"
  7582. # Add any other Falcon Mamba2 specific configuration
  7583. self.gguf_writer.add_rope_freq_base(self.rope_parameters["rope_theta"])
  7584. @ModelBase.register("HunYuanMoEV1ForCausalLM")
  7585. class HunYuanMoEModel(TextModel):
  7586. model_arch = gguf.MODEL_ARCH.HUNYUAN_MOE
  7587. def set_vocab(self):
  7588. from transformers import AutoTokenizer
  7589. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  7590. # 1. Get the pre-tokenizer identifier hash
  7591. tokpre = self.get_vocab_base_pre(tokenizer)
  7592. # 2. Reverse-engineer the merges list from mergeable_ranks
  7593. merges = []
  7594. vocab = {}
  7595. mergeable_ranks = tokenizer.mergeable_ranks
  7596. for token, rank in mergeable_ranks.items():
  7597. vocab[QwenModel.token_bytes_to_string(token)] = rank
  7598. if len(token) == 1:
  7599. continue
  7600. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  7601. if len(merged) == 2: # todo this is an assert in Qwen, why?
  7602. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  7603. # 3. Generate the tokens and toktypes lists
  7604. vocab_size = self.hparams["vocab_size"]
  7605. assert tokenizer.vocab_size == vocab_size
  7606. special_tokens = tokenizer.special_tokens
  7607. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  7608. tokens: list[str] = []
  7609. toktypes: list[int] = []
  7610. for i in range(vocab_size):
  7611. if i not in reverse_vocab:
  7612. tokens.append(f"[PAD{i}]")
  7613. toktypes.append(gguf.TokenType.UNUSED)
  7614. else:
  7615. token = reverse_vocab[i]
  7616. tokens.append(token)
  7617. if i in special_tokens.values():
  7618. toktypes.append(gguf.TokenType.CONTROL)
  7619. else:
  7620. toktypes.append(gguf.TokenType.NORMAL)
  7621. # 4. Write all vocab-related fields to the GGUF writer
  7622. self.gguf_writer.add_tokenizer_model("gpt2")
  7623. self.gguf_writer.add_tokenizer_pre(tokpre)
  7624. self.gguf_writer.add_token_list(tokens)
  7625. self.gguf_writer.add_token_types(toktypes)
  7626. self.gguf_writer.add_token_merges(merges)
  7627. # 5. Add special tokens and chat templates
  7628. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  7629. special_vocab.add_to_gguf(self.gguf_writer)
  7630. # FIX for BOS token: Overwrite incorrect id read from config.json
  7631. self.gguf_writer.add_bos_token_id(127959) # <|bos|>
  7632. def set_gguf_parameters(self):
  7633. super().set_gguf_parameters()
  7634. hparams = self.hparams
  7635. self.gguf_writer.add_expert_count(hparams["num_experts"])
  7636. self.gguf_writer.add_expert_shared_feed_forward_length(hparams["intermediate_size"])
  7637. moe_intermediate_size = hparams["moe_intermediate_size"]
  7638. assert all(n == moe_intermediate_size[0] for n in moe_intermediate_size)
  7639. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size[0])
  7640. moe_topk = hparams["moe_topk"]
  7641. assert all(topk == moe_topk[0] for topk in moe_topk)
  7642. self.gguf_writer.add_expert_used_count(moe_topk[0])
  7643. moe_shared_expert = hparams["num_shared_expert"]
  7644. assert all(n == moe_shared_expert[0] for n in moe_shared_expert)
  7645. self.gguf_writer.add_expert_shared_count(moe_shared_expert[0])
  7646. # Rope
  7647. if self.rope_parameters.get("rope_type") == "dynamic":
  7648. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  7649. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  7650. alpha = self.rope_parameters.get("alpha", 1000)
  7651. base = self.rope_parameters.get("rope_theta", 10000.0)
  7652. dim = (hparams["hidden_size"] // hparams["num_attention_heads"]) # 128
  7653. scaled_base = base * (alpha ** (dim / (dim - 2))) # 10000 * (1000 ** (128 / 126)) = 11158839.9251
  7654. self.gguf_writer.add_rope_freq_base(scaled_base)
  7655. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  7656. self.gguf_writer.add_rope_scaling_factor(1)
  7657. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  7658. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  7659. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  7660. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  7661. assert alpha == 1000 and base == 10000.0 and dim == 128 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  7662. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  7663. _experts: list[dict[str, Tensor]] | None = None
  7664. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7665. if name == "lm_head.weight":
  7666. if self.hparams.get("tie_word_embeddings", False):
  7667. logger.info("Skipping tied output layer 'lm_head.weight'")
  7668. return []
  7669. if name.find("mlp.experts") != -1:
  7670. n_experts = self.hparams["num_experts"]
  7671. assert bid is not None
  7672. if self._experts is None:
  7673. self._experts = [{} for _ in range(self.block_count)]
  7674. self._experts[bid][name] = data_torch
  7675. if len(self._experts[bid]) >= n_experts * 3:
  7676. # merge the experts into a single 3d tensor
  7677. tensors: list[tuple[str, Tensor]] = []
  7678. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7679. datas: list[Tensor] = []
  7680. for xid in range(n_experts):
  7681. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7682. datas.append(self._experts[bid][ename])
  7683. del self._experts[bid][ename]
  7684. data_torch = torch.stack(datas, dim=0)
  7685. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7686. new_name = self.map_tensor_name(merged_name)
  7687. tensors.append((new_name, data_torch))
  7688. return tensors
  7689. else:
  7690. return []
  7691. return [(self.map_tensor_name(name), data_torch)]
  7692. def prepare_tensors(self):
  7693. super().prepare_tensors()
  7694. if self._experts is not None:
  7695. experts = [k for d in self._experts for k in d.keys()]
  7696. if len(experts) > 0:
  7697. raise ValueError(f"Unprocessed experts: {experts}")
  7698. @ModelBase.register("LLaDAMoEModel", "LLaDAMoEModelLM")
  7699. class LLaDAMoEModel(TextModel):
  7700. model_arch = gguf.MODEL_ARCH.LLADA_MOE
  7701. def set_gguf_parameters(self):
  7702. super().set_gguf_parameters()
  7703. if (n_experts := self.hparams.get("num_experts")) is not None:
  7704. self.gguf_writer.add_expert_count(n_experts)
  7705. if (expert_intermediate_size := self.hparams.get("expert_intermediate_size")) is not None:
  7706. self.gguf_writer.add_expert_feed_forward_length(expert_intermediate_size)
  7707. # number of experts used per token (top-k)
  7708. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  7709. self.gguf_writer.add_expert_used_count(n_experts_used)
  7710. self.gguf_writer.add_mask_token_id(156895)
  7711. self.gguf_writer.add_causal_attention(False)
  7712. self.gguf_writer.add_diffusion_shift_logits(False)
  7713. _experts: list[dict[str, Tensor]] | None = None
  7714. # Copied from: Qwen2MoeModel
  7715. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7716. # process the experts separately
  7717. if name.find("experts") != -1:
  7718. n_experts = self.hparams["num_experts"]
  7719. assert bid is not None
  7720. if self._experts is None:
  7721. self._experts = [{} for _ in range(self.block_count)]
  7722. self._experts[bid][name] = data_torch
  7723. if len(self._experts[bid]) >= n_experts * 3:
  7724. tensors: list[tuple[str, Tensor]] = []
  7725. # merge the experts into a single 3d tensor
  7726. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7727. datas: list[Tensor] = []
  7728. for xid in range(n_experts):
  7729. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7730. datas.append(self._experts[bid][ename])
  7731. del self._experts[bid][ename]
  7732. data_torch = torch.stack(datas, dim=0)
  7733. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7734. new_name = self.map_tensor_name(merged_name)
  7735. tensors.append((new_name, data_torch))
  7736. return tensors
  7737. else:
  7738. return []
  7739. return [(self.map_tensor_name(name), data_torch)]
  7740. # Copied from: Qwen2MoeModel
  7741. def prepare_tensors(self):
  7742. super().prepare_tensors()
  7743. if self._experts is not None:
  7744. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7745. experts = [k for d in self._experts for k in d.keys()]
  7746. if len(experts) > 0:
  7747. raise ValueError(f"Unprocessed experts: {experts}")
  7748. @ModelBase.register("HunYuanDenseV1ForCausalLM")
  7749. class HunYuanModel(TextModel):
  7750. model_arch = gguf.MODEL_ARCH.HUNYUAN_DENSE
  7751. def set_vocab(self):
  7752. if (self.dir_model / "tokenizer.json").is_file():
  7753. self._set_vocab_gpt2()
  7754. else:
  7755. from transformers import AutoTokenizer
  7756. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  7757. # 1. Get the pre-tokenizer identifier hash
  7758. tokpre = self.get_vocab_base_pre(tokenizer)
  7759. # 2. Reverse-engineer the merges list from mergeable_ranks
  7760. merges = []
  7761. vocab = {}
  7762. mergeable_ranks = tokenizer.mergeable_ranks
  7763. for token, rank in mergeable_ranks.items():
  7764. vocab[QwenModel.token_bytes_to_string(token)] = rank
  7765. if len(token) == 1:
  7766. continue
  7767. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  7768. if len(merged) == 2:
  7769. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  7770. # 3. Generate the tokens and toktypes lists
  7771. vocab_size = self.hparams["vocab_size"]
  7772. assert tokenizer.vocab_size == vocab_size
  7773. special_tokens = tokenizer.special_tokens
  7774. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  7775. tokens: list[str] = []
  7776. toktypes: list[int] = []
  7777. for i in range(vocab_size):
  7778. if i not in reverse_vocab:
  7779. tokens.append(f"[PAD{i}]")
  7780. toktypes.append(gguf.TokenType.UNUSED)
  7781. else:
  7782. token = reverse_vocab[i]
  7783. tokens.append(token)
  7784. if i in special_tokens.values():
  7785. toktypes.append(gguf.TokenType.CONTROL)
  7786. else:
  7787. toktypes.append(gguf.TokenType.NORMAL)
  7788. # 4. Write all vocab-related fields to the GGUF writer
  7789. self.gguf_writer.add_tokenizer_model("gpt2")
  7790. self.gguf_writer.add_tokenizer_pre(tokpre)
  7791. self.gguf_writer.add_token_list(tokens)
  7792. self.gguf_writer.add_token_types(toktypes)
  7793. self.gguf_writer.add_token_merges(merges)
  7794. # 5. Add special tokens and chat templates
  7795. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  7796. special_vocab.add_to_gguf(self.gguf_writer)
  7797. # FIX for BOS token: Overwrite incorrect id read from config.json
  7798. if self.hparams['hidden_size'] == 4096:
  7799. self.gguf_writer.add_bos_token_id(127958) # only for 7b dense, fix <|bos|> token
  7800. def set_gguf_parameters(self):
  7801. super().set_gguf_parameters()
  7802. hparams = self.hparams
  7803. # Rope
  7804. if self.rope_parameters.get("rope_type") == "dynamic":
  7805. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  7806. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  7807. alpha = self.rope_parameters.get("alpha", 50)
  7808. base = self.rope_parameters.get("rope_theta", 10000.0)
  7809. dim = hparams["head_dim"]
  7810. scaled_base = base * (alpha ** (dim / (dim - 2)))
  7811. self.gguf_writer.add_rope_freq_base(scaled_base)
  7812. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  7813. self.gguf_writer.add_rope_scaling_factor(1)
  7814. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  7815. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  7816. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  7817. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  7818. assert base == 10000.0 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  7819. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  7820. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7821. if name == "lm_head.weight":
  7822. if self.hparams.get("tie_word_embeddings", False):
  7823. logger.info("Skipping tied output layer 'lm_head.weight'")
  7824. return []
  7825. return [(self.map_tensor_name(name), data_torch)]
  7826. @ModelBase.register("SmolLM3ForCausalLM")
  7827. class SmolLM3Model(LlamaModel):
  7828. model_arch = gguf.MODEL_ARCH.SMOLLM3
  7829. @ModelBase.register("GptOssForCausalLM")
  7830. class GptOssModel(TextModel):
  7831. model_arch = gguf.MODEL_ARCH.GPT_OSS
  7832. # TODO: remove once MXFP4 is supported more generally
  7833. def dequant_model(self):
  7834. quant_config = self.hparams.get("quantization_config")
  7835. if quant_config is not None and quant_config.get("quant_method") == "mxfp4":
  7836. return
  7837. return super().dequant_model()
  7838. def transform_nibble_layout(self, tensor):
  7839. assert tensor.dtype == torch.uint8
  7840. assert tensor.shape[-1] == 16
  7841. # swap nibbles
  7842. t_lo = tensor & 0x0F
  7843. t_hi = tensor & 0xF0
  7844. t_swapped = (t_lo << 4) | (t_hi >> 4)
  7845. tensor = t_swapped
  7846. # transform aaaa...bbbb... to abababab...
  7847. blk_a, blk_b = tensor.chunk(2, dim=-1)
  7848. # get a_
  7849. blk_a0 = (blk_a & 0xF0).view(-1, 1)
  7850. blk_a1 = (blk_a << 4).view(-1, 1)
  7851. blk_a = torch.stack((blk_a0, blk_a1), dim=2).view(tensor.shape)
  7852. # get _b
  7853. blk_b0 = (blk_b >> 4).view(-1, 1)
  7854. blk_b1 = (blk_b & 0x0F).view(-1, 1)
  7855. blk_b = torch.stack((blk_b0, blk_b1), dim=2).view(tensor.shape)
  7856. # swap once more
  7857. out = blk_a | blk_b
  7858. out_h = out & 0xF0
  7859. out_l = out & 0x0F
  7860. out = (out_h >> 4) | (out_l << 4)
  7861. return out
  7862. def repack_mxfp4(self, new_name: str, blocks: Tensor, scales: Tensor):
  7863. assert blocks.dtype == torch.uint8
  7864. assert scales.dtype == torch.uint8
  7865. scales = scales.unsqueeze(-1)
  7866. assert len(blocks.shape) == 4
  7867. assert len(scales.shape) == 4
  7868. blocks = self.transform_nibble_layout(blocks)
  7869. new_data = torch.concat((scales, blocks), dim=-1)
  7870. new_shape = [new_data.shape[0], new_data.shape[1], new_data.shape[2] * 32]
  7871. logger.info(f"Repacked {new_name} with shape {new_shape} and quantization MXFP4")
  7872. # flatten last dim
  7873. new_data = new_data.view(new_data.shape[0], new_data.shape[1], new_data.shape[2] * new_data.shape[3])
  7874. new_data = new_data.numpy()
  7875. self.gguf_writer.add_tensor(new_name, new_data, raw_dtype=gguf.GGMLQuantizationType.MXFP4)
  7876. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  7877. blocks0: Tensor = torch.zeros(1)
  7878. blocks1: Tensor = torch.zeros(1)
  7879. # we assume that tensors are loaded in the correct order
  7880. for name, data_torch in self.get_tensors():
  7881. if "mlp.experts.down_proj_blocks" in name:
  7882. blocks0 = data_torch
  7883. elif "mlp.experts.down_proj_scales" in name:
  7884. new_name = self.map_tensor_name(name.replace("_scales", ".weight"))
  7885. self.repack_mxfp4(new_name, blocks0, data_torch)
  7886. elif "mlp.experts.gate_up_proj_blocks" in name:
  7887. blocks0, blocks1 = data_torch[:, ::2, :, :], data_torch[:, 1::2, :, :]
  7888. elif "mlp.experts.gate_up_proj_scales" in name:
  7889. scales0, scales1 = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  7890. new_name_gate = self.map_tensor_name(name.replace("gate_up_proj_scales", "gate_proj.weight"))
  7891. new_name_up = self.map_tensor_name(name.replace("gate_up_proj_scales", "up_proj.weight"))
  7892. self.repack_mxfp4(new_name_gate, blocks0, scales0)
  7893. self.repack_mxfp4(new_name_up, blocks1, scales1)
  7894. return []
  7895. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7896. del bid # unused
  7897. if "sinks" in name:
  7898. name += ".weight"
  7899. # correct naming for down_proj
  7900. if "down_proj" in name:
  7901. if name.endswith("_bias"):
  7902. name = name.replace("down_proj_bias", "down_proj.bias")
  7903. elif "_blocks" not in name and "_scales" not in name:
  7904. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  7905. name = name.replace("down_proj", "down_proj.weight")
  7906. data_torch = data_torch.transpose(-1, -2)
  7907. else:
  7908. # otherwise, it should already be repacked to ggml MXFP4 format
  7909. return []
  7910. # split the gate_up into gate and up
  7911. if "gate_up_proj" in name:
  7912. if name.endswith("_bias"):
  7913. name_up = name.replace("gate_up_proj_bias", "up_proj.bias")
  7914. name_gate = name.replace("gate_up_proj_bias", "gate_proj.bias")
  7915. gate_proj_bias, up_proj_bias = data_torch[..., ::2], data_torch[..., 1::2]
  7916. return [
  7917. (self.map_tensor_name(name_gate), gate_proj_bias),
  7918. (self.map_tensor_name(name_up), up_proj_bias)
  7919. ]
  7920. elif "_blocks" not in name and "_scales" not in name:
  7921. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  7922. name_up = name.replace("gate_up_proj", "up_proj.weight")
  7923. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  7924. data_torch = data_torch.transpose(-1, -2)
  7925. gate_proj_weight, up_proj_weight = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  7926. return [
  7927. (self.map_tensor_name(name_gate), gate_proj_weight),
  7928. (self.map_tensor_name(name_up), up_proj_weight)
  7929. ]
  7930. else:
  7931. # otherwise, it should already be repacked to ggml MXFP4 format
  7932. return []
  7933. return [(self.map_tensor_name(name), data_torch)]
  7934. def set_vocab(self):
  7935. self._set_vocab_gpt2()
  7936. def set_gguf_parameters(self):
  7937. super().set_gguf_parameters()
  7938. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  7939. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size"])
  7940. @ModelBase.register("Lfm2ForCausalLM", "LFM2ForCausalLM")
  7941. class LFM2Model(TextModel):
  7942. model_arch = gguf.MODEL_ARCH.LFM2
  7943. def _add_feed_forward_length(self):
  7944. ff_dim = self.hparams["block_ff_dim"]
  7945. auto_adjust_ff_dim = self.hparams["block_auto_adjust_ff_dim"]
  7946. ff_dim = self.hparams["block_ff_dim"]
  7947. ffn_dim_multiplier = self.hparams["block_ffn_dim_multiplier"]
  7948. multiple_of = self.hparams["block_multiple_of"]
  7949. if auto_adjust_ff_dim:
  7950. ff_dim = int(2 * ff_dim / 3)
  7951. # custom dim factor multiplier
  7952. if ffn_dim_multiplier is not None:
  7953. ff_dim = int(ffn_dim_multiplier * ff_dim)
  7954. ff_dim = multiple_of * ((ff_dim + multiple_of - 1) // multiple_of)
  7955. self.gguf_writer.add_feed_forward_length(ff_dim)
  7956. def set_gguf_parameters(self):
  7957. # set num_key_value_heads only for attention layers
  7958. self.hparams["num_key_value_heads"] = [
  7959. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  7960. for layer_type in self.hparams["layer_types"]
  7961. ]
  7962. super().set_gguf_parameters()
  7963. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  7964. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  7965. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["norm_eps"])
  7966. self._add_feed_forward_length()
  7967. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7968. if self._is_vision_tensor(name) or self._is_audio_tensor(name):
  7969. # skip multimodal tensors
  7970. return []
  7971. name = name.replace("language_model.", "") # vision
  7972. name = name.replace("lfm.", "model.") # audio
  7973. # conv op requires 2d tensor
  7974. if 'conv.conv' in name:
  7975. data_torch = data_torch.squeeze(1)
  7976. return [(self.map_tensor_name(name), data_torch)]
  7977. def _is_vision_tensor(self, name: str) -> bool:
  7978. return "vision_tower" in name or "multi_modal_projector" in name
  7979. def _is_audio_tensor(self, name: str):
  7980. return any(p in name for p in ["audio", "codebook", "conformer", "depth_embedding", "depthformer", "depth_linear"])
  7981. @ModelBase.register("Lfm2MoeForCausalLM")
  7982. class LFM2MoeModel(TextModel):
  7983. model_arch = gguf.MODEL_ARCH.LFM2MOE
  7984. def set_gguf_parameters(self):
  7985. # set num_key_value_heads only for attention layers
  7986. self.hparams["num_key_value_heads"] = [
  7987. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  7988. for layer_type in self.hparams["layer_types"]
  7989. ]
  7990. super().set_gguf_parameters()
  7991. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  7992. self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
  7993. self.gguf_writer.add_leading_dense_block_count(self.hparams["num_dense_layers"])
  7994. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  7995. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  7996. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  7997. # cache for experts weights for merging
  7998. _experts_cache: dict[int, dict[str, Tensor]] = {}
  7999. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8000. # conv op requires 2d tensor
  8001. if 'conv.conv' in name:
  8002. data_torch = data_torch.squeeze(1)
  8003. if name.endswith(".expert_bias"):
  8004. name = name.replace(".expert_bias", ".expert_bias.bias")
  8005. # merge expert weights
  8006. if 'experts' in name:
  8007. n_experts = self.hparams["num_experts"]
  8008. assert bid is not None
  8009. expert_cache = self._experts_cache.setdefault(bid, {})
  8010. expert_cache[name] = data_torch
  8011. expert_weights = ["w1", "w2", "w3"]
  8012. # not enough expert weights to merge
  8013. if len(expert_cache) < n_experts * len(expert_weights):
  8014. return []
  8015. tensors: list[tuple[str, Tensor]] = []
  8016. for w_name in expert_weights:
  8017. datas: list[Tensor] = []
  8018. for xid in range(n_experts):
  8019. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{w_name}.weight"
  8020. datas.append(expert_cache[ename])
  8021. del expert_cache[ename]
  8022. data_torch = torch.stack(datas, dim=0)
  8023. merged_name = f"layers.{bid}.feed_forward.experts.{w_name}.weight"
  8024. new_name = self.map_tensor_name(merged_name)
  8025. tensors.append((new_name, data_torch))
  8026. del self._experts_cache[bid]
  8027. return tensors
  8028. return [(self.map_tensor_name(name), data_torch)]
  8029. def prepare_tensors(self):
  8030. super().prepare_tensors()
  8031. assert not self._experts_cache
  8032. @ModelBase.register("Lfm2VlForConditionalGeneration")
  8033. class LFM2VLModel(MmprojModel):
  8034. def __init__(self, *args, **kwargs):
  8035. super().__init__(*args, **kwargs)
  8036. assert self.hparams_vision is not None
  8037. # TODO(tarek): for dynamic resolution image_size is not specified, setting here for compatibility
  8038. self.hparams_vision["image_size"] = 256
  8039. def set_gguf_parameters(self):
  8040. super().set_gguf_parameters()
  8041. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LFM2)
  8042. self.gguf_writer.add_vision_attention_layernorm_eps(self.find_vparam(["layer_norm_eps"]))
  8043. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("downsample_factor", 2))
  8044. self.gguf_writer.add_vision_use_gelu(True)
  8045. # python notation, e.g. for vision_feature_layer == -1, we pick last layer -> vision_feature_layers_to_drop = 0
  8046. vision_feature_layers_to_drop = -(self.global_config.get("vision_feature_layer", -1) + 1)
  8047. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys) - vision_feature_layers_to_drop)
  8048. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8049. del bid # unused
  8050. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  8051. if is_vision_tensor:
  8052. # remove "model." prefix
  8053. name = name.replace("model.vision_tower.", "vision_tower.")
  8054. name = name.replace("model.multi_modal_projector.", "multi_modal_projector.")
  8055. if "patch_embedding.weight" in name:
  8056. data_torch = data_torch.view(data_torch.shape[0], 16, 16, 3).permute(0, 3, 1, 2)
  8057. return [(self.map_tensor_name(name), data_torch)]
  8058. return [] # skip other tensors
  8059. @ModelBase.register("Lfm2AudioForConditionalGeneration")
  8060. class LFM2AudioModel(MmprojModel):
  8061. has_vision_encoder = False
  8062. has_audio_encoder = True
  8063. model_name = "Lfm2AudioEncoder"
  8064. _batch_norm_tensors: list[dict[str, Tensor]] | None = None
  8065. def get_audio_config(self) -> dict[str, Any] | None:
  8066. return self.global_config.get("encoder")
  8067. def set_gguf_parameters(self):
  8068. assert self.hparams_audio is not None
  8069. self.hparams_audio["hidden_size"] = self.hparams_audio["d_model"]
  8070. self.hparams_audio["intermediate_size"] = self.hparams_audio["d_model"]
  8071. self.hparams_audio["num_attention_heads"] = self.hparams_audio["n_heads"]
  8072. super().set_gguf_parameters()
  8073. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LFM2A)
  8074. self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["feat_in"])
  8075. self.gguf_writer.add_audio_attention_layernorm_eps(1e-5)
  8076. def tensor_force_quant(self, name, new_name, bid, n_dims):
  8077. if ".conv" in name and ".weight" in name:
  8078. return gguf.GGMLQuantizationType.F32
  8079. return super().tensor_force_quant(name, new_name, bid, n_dims)
  8080. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8081. # skip language model tensors
  8082. if name.startswith("lfm."):
  8083. return []
  8084. # for training only
  8085. if any(p in name for p in ["audio_loss_weight"]):
  8086. return []
  8087. # for audio output
  8088. if any(p in name for p in ["codebook_offsets", "depth_embeddings", "depth_linear", "depthformer"]):
  8089. return []
  8090. # fold running_mean, running_var and eps into weight and bias for batch_norm
  8091. if "batch_norm" in name:
  8092. if self._batch_norm_tensors is None:
  8093. self._batch_norm_tensors = [{} for _ in range(self.block_count)]
  8094. assert bid is not None
  8095. self._batch_norm_tensors[bid][name] = data_torch
  8096. if len(self._batch_norm_tensors[bid]) < 5:
  8097. return []
  8098. weight = self._batch_norm_tensors[bid][f"conformer.layers.{bid}.conv.batch_norm.weight"]
  8099. bias = self._batch_norm_tensors[bid][f"conformer.layers.{bid}.conv.batch_norm.bias"]
  8100. running_mean = self._batch_norm_tensors[bid][f"conformer.layers.{bid}.conv.batch_norm.running_mean"]
  8101. running_var = self._batch_norm_tensors[bid][f"conformer.layers.{bid}.conv.batch_norm.running_var"]
  8102. eps = 1e-5 # default value
  8103. a = weight / torch.sqrt(running_var + eps)
  8104. b = bias - running_mean * a
  8105. return [
  8106. (self.map_tensor_name(f"conformer.layers.{bid}.conv.batch_norm.weight"), a),
  8107. (self.map_tensor_name(f"conformer.layers.{bid}.conv.batch_norm.bias"), b),
  8108. ]
  8109. # reshape conv weights
  8110. if name.startswith("conformer.pre_encode.conv.") and name.endswith(".bias"):
  8111. data_torch = data_torch[:, None, None]
  8112. if "conv.depthwise_conv" in name and name.endswith(".weight"):
  8113. assert data_torch.shape[1] == 1
  8114. data_torch = data_torch.reshape(data_torch.shape[0], data_torch.shape[2])
  8115. if "conv.pointwise_conv" in name and name.endswith(".weight"):
  8116. assert data_torch.shape[2] == 1
  8117. data_torch = data_torch.reshape(data_torch.shape[0], data_torch.shape[1])
  8118. return [(self.map_tensor_name(name), data_torch)]
  8119. @ModelBase.register("SmallThinkerForCausalLM")
  8120. class SmallThinkerModel(TextModel):
  8121. model_arch = gguf.MODEL_ARCH.SMALLTHINKER
  8122. def set_gguf_parameters(self):
  8123. super().set_gguf_parameters()
  8124. if (n_experts := self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))) is not None:
  8125. self.gguf_writer.add_expert_count(n_experts)
  8126. if (n_experts_used := self.hparams.get("num_experts_per_tok", self.hparams.get("moe_num_active_primary_experts"))) is not None:
  8127. self.gguf_writer.add_expert_used_count(n_experts_used)
  8128. if (moe_intermediate_size := self.hparams.get("moe_ffn_hidden_size")) is not None:
  8129. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  8130. self.gguf_writer.add_feed_forward_length(moe_intermediate_size)
  8131. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  8132. if (self.hparams.get('moe_primary_router_apply_softmax')):
  8133. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  8134. else:
  8135. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  8136. sliding_window_layout = self.hparams.get("sliding_window_layout")
  8137. if sliding_window_layout:
  8138. for i in sliding_window_layout:
  8139. if i != 0:
  8140. sliding_window = self.hparams.get("sliding_window_size")
  8141. if sliding_window:
  8142. self.gguf_writer.add_sliding_window(sliding_window)
  8143. break
  8144. _experts: list[dict[str, Tensor]] | None = None
  8145. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8146. # process the experts separately
  8147. if name.find("experts") != -1:
  8148. n_experts = self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))
  8149. assert bid is not None
  8150. if self._experts is None:
  8151. self._experts = [{} for _ in range(self.block_count)]
  8152. self._experts[bid][name] = data_torch
  8153. if len(self._experts[bid]) >= n_experts * 3:
  8154. tensors: list[tuple[str, Tensor]] = []
  8155. # merge the experts into a single 3d tensor
  8156. for w_name in ["down", "gate", "up"]:
  8157. datas: list[Tensor] = []
  8158. for xid in range(n_experts):
  8159. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  8160. datas.append(self._experts[bid][ename])
  8161. del self._experts[bid][ename]
  8162. data_torch = torch.stack(datas, dim=0)
  8163. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  8164. new_name = self.map_tensor_name(merged_name)
  8165. tensors.append((new_name, data_torch))
  8166. return tensors
  8167. else:
  8168. return []
  8169. return [(self.map_tensor_name(name), data_torch)]
  8170. def prepare_tensors(self):
  8171. super().prepare_tensors()
  8172. if self._experts is not None:
  8173. # flatten `list[dict[str, Tensor]]` into `list[str]`
  8174. experts = [k for d in self._experts for k in d.keys()]
  8175. if len(experts) > 0:
  8176. raise ValueError(f"Unprocessed experts: {experts}")
  8177. @ModelBase.register("ModernBertModel", "ModernBertForMaskedLM", "ModernBertForSequenceClassification")
  8178. class ModernBertModel(BertModel):
  8179. model_arch = gguf.MODEL_ARCH.MODERN_BERT
  8180. def set_vocab(self):
  8181. self.gguf_writer.add_add_bos_token(True)
  8182. self.gguf_writer.add_add_eos_token(True)
  8183. self.gguf_writer.add_add_sep_token(True)
  8184. self._set_vocab_gpt2()
  8185. def set_gguf_parameters(self):
  8186. super().set_gguf_parameters()
  8187. self.gguf_writer.add_sliding_window(self.hparams["local_attention"])
  8188. if (sliding_window_pattern := self.hparams.get("global_attn_every_n_layers")) is not None:
  8189. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  8190. self.gguf_writer.add_rope_freq_base_swa(self.rope_parameters.get("sliding_attention", {"rope_theta": self.hparams.get("local_rope_theta")})["rope_theta"])
  8191. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  8192. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  8193. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8194. # these layers act as MLM head, so we don't need them
  8195. if name.startswith("decoder."):
  8196. return []
  8197. if name.startswith("model."):
  8198. name = name[6:]
  8199. return super().modify_tensors(data_torch, name, bid)
  8200. @ModelBase.register("ApertusForCausalLM")
  8201. class ApertusModel(LlamaModel):
  8202. model_arch = gguf.MODEL_ARCH.APERTUS
  8203. undo_permute = False
  8204. _alpha_n = {}
  8205. _alpha_p = {}
  8206. _beta = {}
  8207. _eps = {}
  8208. def modify_tensors(self, data_torch, name, bid):
  8209. # Handle xIELU activation parameters
  8210. n_layers = self.hparams["num_hidden_layers"]
  8211. if name.endswith(".act_fn.alpha_n"):
  8212. self._alpha_n[bid] = data_torch.to("cpu").float().item()
  8213. if (len(self._alpha_n) == n_layers):
  8214. self.gguf_writer.add_xielu_alpha_n([self._alpha_n[k] for k in sorted(self._alpha_n)])
  8215. return []
  8216. if name.endswith(".act_fn.alpha_p"):
  8217. self._alpha_p[bid] = data_torch.to("cpu").float().item()
  8218. if (len(self._alpha_p) == n_layers):
  8219. self.gguf_writer.add_xielu_alpha_p([self._alpha_p[k] for k in sorted(self._alpha_p)])
  8220. return []
  8221. if name.endswith(".act_fn.beta"):
  8222. self._beta[bid] = data_torch.to("cpu").float().item()
  8223. if (len(self._beta) == n_layers):
  8224. self.gguf_writer.add_xielu_beta([self._beta[k] for k in sorted(self._beta)])
  8225. return []
  8226. if name.endswith(".act_fn.eps"):
  8227. self._eps[bid] = data_torch.to("cpu").float().item()
  8228. if (len(self._eps) == n_layers):
  8229. self.gguf_writer.add_xielu_eps([self._eps[k] for k in sorted(self._eps)])
  8230. return []
  8231. return super().modify_tensors(data_torch, name, bid)
  8232. class MistralModel(LlamaModel):
  8233. model_arch = gguf.MODEL_ARCH.MISTRAL3
  8234. model_name = "Mistral"
  8235. hf_arch = ""
  8236. is_mistral_format = True
  8237. undo_permute = False
  8238. def __init__(self, *args, **kwargs):
  8239. super().__init__(*args, **kwargs)
  8240. # for compatibility, we use LLAMA arch for older models
  8241. # TODO: remove this once everyone migrates to newer version of llama.cpp
  8242. if "llama_4_scaling" not in self.hparams:
  8243. self.model_arch = gguf.MODEL_ARCH.LLAMA
  8244. self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[self.model_arch]
  8245. self.gguf_writer.add_architecture()
  8246. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  8247. def dequant_model(self):
  8248. # transform quantization config into HF format
  8249. quant_config = self.hparams.get("quantization")
  8250. if quant_config is not None:
  8251. assert quant_config["qformat_weight"] == "fp8_e4m3"
  8252. self.hparams["quantization_config"] = {
  8253. "activation_scheme": "static",
  8254. "quant_method": "fp8",
  8255. "weight_block_size": None,
  8256. }
  8257. return super().dequant_model()
  8258. @staticmethod
  8259. def get_community_chat_template(vocab: MistralVocab, templates_dir: Path, is_mistral_format: bool):
  8260. assert TokenizerVersion is not None and Tekkenizer is not None and SentencePieceTokenizer is not None, _mistral_import_error_msg
  8261. assert isinstance(vocab.tokenizer, (Tekkenizer, SentencePieceTokenizer)), (
  8262. f"Expected Tekkenizer or SentencePieceTokenizer, got {type(vocab.tokenizer)}"
  8263. )
  8264. if vocab.tokenizer.version == TokenizerVersion.v1:
  8265. return "mistral-v1"
  8266. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.spm:
  8267. return "mistral-v3"
  8268. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  8269. return "mistral-v3-tekken"
  8270. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.spm:
  8271. return "mistral-v7"
  8272. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  8273. return "mistral-v7-tekken"
  8274. elif vocab.tokenizer.version == TokenizerVersion.v11:
  8275. template_file = "Mistral-Small-3.2-24B-Instruct-2506.jinja"
  8276. elif vocab.tokenizer.version == TokenizerVersion.v13:
  8277. template_file = "unsloth-mistral-Devstral-Small-2507.jinja"
  8278. else:
  8279. err_message = f"Unknown tokenizer type: {vocab.tokenizer_type} and version {vocab.tokenizer.version}"
  8280. if is_mistral_format:
  8281. err_message += (
  8282. " . Please pass --disable-mistral-community-chat-template argument to the CLI "
  8283. "if you want to skip this error and use the Mistral official `mistral-common` pre-processing library."
  8284. )
  8285. raise ValueError(err_message)
  8286. template_path = templates_dir / template_file
  8287. if not template_path.exists():
  8288. raise FileNotFoundError(f"Template file not found: {template_path}")
  8289. with open(template_path, "r", encoding="utf-8") as f:
  8290. template = f.read()
  8291. return template
  8292. def set_gguf_parameters(self):
  8293. super().set_gguf_parameters()
  8294. MistralModel.set_mistral_config(self.gguf_writer, self.hparams)
  8295. @staticmethod
  8296. def set_mistral_config(gguf_writer: gguf.GGUFWriter, hparams: dict):
  8297. if "yarn" in hparams:
  8298. yarn_params = hparams["yarn"]
  8299. gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  8300. gguf_writer.add_rope_scaling_factor(yarn_params["factor"])
  8301. gguf_writer.add_rope_scaling_yarn_beta_fast(yarn_params["beta"])
  8302. gguf_writer.add_rope_scaling_yarn_beta_slow(yarn_params["alpha"])
  8303. gguf_writer.add_rope_scaling_yarn_log_mul(1.0) # mscale_all_dim
  8304. gguf_writer.add_rope_scaling_orig_ctx_len(yarn_params["original_max_position_embeddings"])
  8305. if "llama_4_scaling" in hparams:
  8306. gguf_writer.add_attn_temperature_scale(hparams["llama_4_scaling"]["beta"])
  8307. class MistralMoeModel(DeepseekV2Model):
  8308. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  8309. model_name = "Mistral"
  8310. hf_arch = ""
  8311. is_mistral_format = True
  8312. def __init__(self, *args, **kwargs):
  8313. super().__init__(*args, **kwargs)
  8314. logger.info("Using MistralMoeModel")
  8315. # remap hparams from Mistral MoE format to DeepseekV2 format
  8316. # we do this way to be able to reuse DeepseekV2Model set_gguf_parameters logic
  8317. # ref: https://github.com/vllm-project/vllm/blob/b294e28db2c5dee61bc25157664edcada8b90b31/vllm/transformers_utils/configs/mistral.py
  8318. config = self.hparams
  8319. # Mistral key -> HF key
  8320. config_mapping = {
  8321. "dim": "hidden_size",
  8322. "norm_eps": "rms_norm_eps",
  8323. "n_kv_heads": "num_key_value_heads",
  8324. "n_layers": "num_hidden_layers",
  8325. "n_heads": "num_attention_heads",
  8326. "hidden_dim": "intermediate_size",
  8327. }
  8328. # HF key -> (Mistral key, default value)
  8329. top_level_mapping_with_default = {
  8330. "model_type": ("model_type", "transformer"),
  8331. "hidden_act": ("activation", "silu"),
  8332. "tie_word_embeddings": ("tied_embeddings", False),
  8333. "max_seq_len": ("max_seq_len", config.get("max_position_embeddings", 128_000)),
  8334. "max_position_embeddings": ("max_position_embeddings", 128_000),
  8335. }
  8336. # mapping top-level keys
  8337. for key, new_key in config_mapping.items():
  8338. if key in config:
  8339. config[new_key] = config[key]
  8340. for new_key, (key, default_value) in top_level_mapping_with_default.items():
  8341. config[new_key] = config.get(key, default_value)
  8342. # mapping MoE-specific keys
  8343. moe_config_map = {
  8344. "route_every_n": "moe_layer_freq",
  8345. "first_k_dense_replace": "first_k_dense_replace",
  8346. "num_experts_per_tok": "num_experts_per_tok",
  8347. "num_experts": "n_routed_experts",
  8348. "expert_hidden_dim": "moe_intermediate_size",
  8349. "routed_scale": "routed_scaling_factor",
  8350. "num_shared_experts": "n_shared_experts",
  8351. "num_expert_groups": "n_group",
  8352. "num_expert_groups_per_tok": "topk_group",
  8353. }
  8354. moe = config["moe"]
  8355. for key, new_key in moe_config_map.items():
  8356. if key in moe:
  8357. config[new_key] = moe[key]
  8358. # provide missing values
  8359. config["topk_method"] = None
  8360. config["norm_topk_prob"] = True
  8361. config["scoring_func"] = "softmax"
  8362. def set_vocab(self):
  8363. self._set_vocab_mistral()
  8364. def set_gguf_parameters(self):
  8365. super().set_gguf_parameters()
  8366. MistralModel.set_mistral_config(self.gguf_writer, self.hparams)
  8367. yarn_params = self.hparams["yarn"]
  8368. self.gguf_writer.add_attn_temperature_length(yarn_params["original_max_position_embeddings"])
  8369. # [TAG_DEEPSEEK2_YARN_LOG_MUL_FIX]
  8370. # note: for legacy reasons, this is not consistent with the other usages of self.gguf_writer.add_rope_scaling_yarn_log_mul
  8371. # ref https://github.com/ggml-org/llama.cpp/pull/17945
  8372. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1) # mscale_all_dim * 0.1
  8373. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  8374. if name.startswith("vision_") or name.startswith("patch_merger.") or "mm_projector" in name:
  8375. return []
  8376. # rename certain tensors so that we can reuse DeepseekV2Model modify_tensors logic
  8377. if name.endswith(".qscale_act"):
  8378. name = name.replace(".qscale_act", ".input_scale")
  8379. if name.endswith(".qscale_weight"):
  8380. name = name.replace(".qscale_weight", ".weight_scale")
  8381. if ".wkv_b." in name:
  8382. name = name.replace(".wkv_b.", ".kv_b_proj.")
  8383. if ".experts." in name:
  8384. name = name.replace(".experts.", ".mlp.experts.")
  8385. name = name.replace(".w1.", ".gate_proj.")
  8386. name = name.replace(".w2.", ".down_proj.")
  8387. name = name.replace(".w3.", ".up_proj.")
  8388. name = "model." + name
  8389. return super().modify_tensors(data_torch, name, bid)
  8390. class PixtralModel(LlavaVisionModel):
  8391. model_name = "Pixtral"
  8392. hf_arch = ""
  8393. is_mistral_format = True
  8394. def set_gguf_parameters(self):
  8395. super().set_gguf_parameters()
  8396. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  8397. self.gguf_writer.add_vision_attention_layernorm_eps(
  8398. self.find_hparam(["norm_eps"])
  8399. )
  8400. self.gguf_writer.add_rope_freq_base(self.find_vparam(["rope_theta"]))
  8401. self.gguf_writer.add_vision_use_silu(True)
  8402. # spatial_merge_size
  8403. if self.find_vparam(["mm_projector_id"]) == "patch_merge":
  8404. self.gguf_writer.add_vision_spatial_merge_size(
  8405. self.find_vparam(["spatial_merge_size"])
  8406. )
  8407. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  8408. if name == "vision_language_adapter.w_in.weight":
  8409. return "mm.1.weight"
  8410. elif name == "vision_language_adapter.w_out.weight":
  8411. return "mm.2.weight"
  8412. return super().map_tensor_name(name, try_suffixes)
  8413. @ModelBase.register("LightOnOCRForConditionalGeneration")
  8414. class LightOnOCRVisionModel(LlavaVisionModel):
  8415. is_mistral_format = False
  8416. use_break_tok = False
  8417. def set_gguf_parameters(self):
  8418. super().set_gguf_parameters()
  8419. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LIGHTONOCR)
  8420. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  8421. name = name.replace("model.vision_encoder.", "vision_tower.")
  8422. name = name.replace("model.vision_projection.", "multi_modal_projector.")
  8423. return super().modify_tensors(data_torch, name, bid)
  8424. @ModelBase.register("KimiVLForConditionalGeneration")
  8425. class KimiVLModel(MmprojModel):
  8426. def __init__(self, *args, **kwargs):
  8427. super().__init__(*args, **kwargs)
  8428. assert self.hparams_vision is not None
  8429. self.hparams_vision["image_size"] = 64 * 14 # for compatibility
  8430. def set_gguf_parameters(self):
  8431. super().set_gguf_parameters()
  8432. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.KIMIVL)
  8433. self.gguf_writer.add_vision_use_gelu(True)
  8434. self.gguf_writer.add_vision_projector_scale_factor(2)
  8435. # eps is the same as pytorch's default value
  8436. assert self.hparams_vision is not None
  8437. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams_vision.get("layer_norm_eps", 1e-5))
  8438. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8439. del bid # unused
  8440. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  8441. if is_vision_tensor:
  8442. if "pos_emb.weight" in name:
  8443. data_torch = data_torch.view(data_torch.shape[0] * data_torch.shape[1], data_torch.shape[2])
  8444. elif "wqkv" in name:
  8445. split_dim = 0 if "weight" in name else -1
  8446. wq, wk, wv = data_torch.chunk(3, dim=split_dim)
  8447. return [
  8448. (self.map_tensor_name(name.replace("wqkv", "wq")), wq),
  8449. (self.map_tensor_name(name.replace("wqkv", "wk")), wk),
  8450. (self.map_tensor_name(name.replace("wqkv", "wv")), wv)
  8451. ]
  8452. return [(self.map_tensor_name(name), data_torch)]
  8453. return [] # skip other tensors
  8454. @ModelBase.register("CogVLMForCausalLM")
  8455. class CogVLMVisionModel(MmprojModel):
  8456. def set_gguf_parameters(self):
  8457. super().set_gguf_parameters()
  8458. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-6))
  8459. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.COGVLM)
  8460. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8461. del bid # unused
  8462. if not name.startswith("model.vision."):
  8463. return []
  8464. return [(self.map_tensor_name(name), data_torch)]
  8465. @ModelBase.register("CogVLMForCausalLM")
  8466. class CogVLMModel(LlamaModel):
  8467. model_arch = gguf.MODEL_ARCH.COGVLM
  8468. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8469. del bid # unused
  8470. # block vision tensors
  8471. if name.startswith("model.vision."):
  8472. return []
  8473. return [(self.map_tensor_name(name), data_torch)]
  8474. @ModelBase.register("JanusForConditionalGeneration")
  8475. class JanusProModel(LlamaModel):
  8476. model_arch = gguf.MODEL_ARCH.LLAMA # reuse Llama arch
  8477. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8478. # Skip vision, aligner, and generation tensors
  8479. skip_prefixes = (
  8480. 'model.vision_model.',
  8481. 'model.aligner.',
  8482. 'model.vqmodel.',
  8483. 'model.generation_embeddings.',
  8484. 'model.generation_aligner.',
  8485. 'model.generation_head.',
  8486. )
  8487. if name.startswith(skip_prefixes):
  8488. return []
  8489. if name.startswith('model.language_model.'):
  8490. name = name.replace('model.language_model.', 'model.')
  8491. elif name.startswith('language_model.'):
  8492. name = name.replace('language_model.', '')
  8493. return super().modify_tensors(data_torch, name, bid)
  8494. @ModelBase.register("JanusForConditionalGeneration")
  8495. class JanusProVisionModel(MmprojModel):
  8496. def __init__(self, *args, **kwargs):
  8497. super().__init__(*args, **kwargs)
  8498. assert self.hparams_vision is not None
  8499. if "intermediate_size" not in self.hparams_vision:
  8500. mlp_ratio = self.hparams_vision.get("mlp_ratio")
  8501. hidden_size = self.hparams_vision.get("hidden_size")
  8502. if mlp_ratio is not None and hidden_size is not None:
  8503. self.hparams_vision["intermediate_size"] = int(round(hidden_size * mlp_ratio))
  8504. def set_gguf_parameters(self):
  8505. super().set_gguf_parameters()
  8506. assert self.hparams_vision is not None
  8507. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.JANUS_PRO)
  8508. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams_vision.get("layer_norm_eps", 1e-6))
  8509. hidden_act = str(self.hparams_vision.get("hidden_act", "")).lower()
  8510. if hidden_act == "gelu":
  8511. self.gguf_writer.add_vision_use_gelu(True)
  8512. elif hidden_act == "silu":
  8513. self.gguf_writer.add_vision_use_silu(True)
  8514. def _map_aligner_tensor(self, data_torch: Tensor, name: str) -> Iterable[tuple[str, Tensor]]:
  8515. """Map aligner tensors to projector format"""
  8516. suffix = ".bias" if name.endswith(".bias") else ".weight"
  8517. if name.startswith("model.aligner."):
  8518. local_name = name[len("model.aligner."):]
  8519. elif name.startswith("aligner."):
  8520. local_name = name[len("aligner."):]
  8521. else:
  8522. raise ValueError(f"Unsupported Janus aligner prefix: {name}")
  8523. if local_name.startswith("fc1."):
  8524. mm_index = 0
  8525. elif local_name.startswith("hidden_layers."):
  8526. parts = local_name.split(".", 2)
  8527. if len(parts) < 3:
  8528. raise ValueError(f"Unexpected Janus aligner tensor name: {name}")
  8529. mm_index = int(parts[1]) + 1
  8530. else:
  8531. raise ValueError(f"Unsupported Janus aligner tensor: {name}")
  8532. tensor_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_MMPROJ, mm_index, suffix=suffix)
  8533. return [(tensor_name, data_torch)]
  8534. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8535. del bid # unused
  8536. # Skip language model tensors as they will be handled by `JanusProModel`
  8537. if name.startswith(('model.language_model.', 'language_model.')):
  8538. return []
  8539. # Skip generation-related components
  8540. skip_generation_prefixes = (
  8541. 'model.vqmodel.',
  8542. 'vqmodel.',
  8543. 'model.generation_embeddings.',
  8544. 'generation_embeddings.',
  8545. 'model.generation_aligner.',
  8546. 'generation_aligner.',
  8547. 'model.generation_head.',
  8548. 'generation_head.',
  8549. )
  8550. if name.startswith(skip_generation_prefixes):
  8551. return []
  8552. # Handle aligner tensors
  8553. if name.startswith(('model.aligner.', 'aligner.')):
  8554. return list(self._map_aligner_tensor(data_torch, name))
  8555. # Handle vision tensors
  8556. if name.startswith(('model.vision_model.', 'vision_model.')):
  8557. return [(self.map_tensor_name(name), data_torch)]
  8558. return []
  8559. ###### CONVERSION LOGIC ######
  8560. # tree of lazy tensors
  8561. class LazyTorchTensor(gguf.LazyBase):
  8562. _tensor_type = torch.Tensor
  8563. # to keep the type-checker happy
  8564. dtype: torch.dtype
  8565. shape: torch.Size
  8566. # only used when converting a torch.Tensor to a np.ndarray
  8567. _dtype_map: dict[torch.dtype, type] = {
  8568. torch.float16: np.float16,
  8569. torch.float32: np.float32,
  8570. torch.uint8: np.uint8,
  8571. }
  8572. # only used when byteswapping data. Only correct size is needed
  8573. _dtype_byteswap_map: dict[torch.dtype, type] = {
  8574. torch.float64: np.float64,
  8575. torch.float32: np.float32,
  8576. torch.bfloat16: np.float16,
  8577. torch.float16: np.float16,
  8578. torch.int64: np.int64,
  8579. torch.uint64: np.uint64,
  8580. torch.int32: np.int32,
  8581. torch.uint32: np.uint32,
  8582. torch.int16: np.int16,
  8583. torch.uint16: np.uint16,
  8584. torch.int8: np.int8,
  8585. torch.uint8: np.uint8,
  8586. torch.bool: np.uint8,
  8587. torch.float8_e4m3fn: np.uint8,
  8588. torch.float8_e5m2: np.uint8,
  8589. }
  8590. # used for safetensors slices
  8591. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  8592. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  8593. _dtype_str_map: dict[str, torch.dtype] = {
  8594. "F64": torch.float64,
  8595. "F32": torch.float32,
  8596. "BF16": torch.bfloat16,
  8597. "F16": torch.float16,
  8598. # "U64": torch.uint64,
  8599. "I64": torch.int64,
  8600. # "U32": torch.uint32,
  8601. "I32": torch.int32,
  8602. # "U16": torch.uint16,
  8603. "I16": torch.int16,
  8604. "U8": torch.uint8,
  8605. "I8": torch.int8,
  8606. "BOOL": torch.bool,
  8607. "F8_E4M3": torch.float8_e4m3fn,
  8608. "F8_E5M2": torch.float8_e5m2,
  8609. }
  8610. def numpy(self) -> gguf.LazyNumpyTensor:
  8611. dtype = self._dtype_map[self.dtype]
  8612. return gguf.LazyNumpyTensor(
  8613. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  8614. args=(self,),
  8615. func=(lambda s: s.numpy())
  8616. )
  8617. @classmethod
  8618. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  8619. return torch.empty(size=shape, dtype=dtype, device="meta")
  8620. @classmethod
  8621. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  8622. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  8623. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  8624. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[...] if len(s.get_shape()) == 0 else s[:])
  8625. return cast(torch.Tensor, lazy)
  8626. @classmethod
  8627. def from_local_tensor(cls, t: gguf.utility.LocalTensor) -> Tensor:
  8628. def load_tensor(tensor: gguf.utility.LocalTensor) -> Tensor:
  8629. def byteswap_tensor(tensor: np.ndarray, dtype: type) -> np.ndarray:
  8630. if sys.byteorder == 'big':
  8631. # switch data back to big endian
  8632. tensor = tensor.view(dtype).byteswap(inplace=False)
  8633. return tensor
  8634. dtype = cls._dtype_str_map[tensor.dtype]
  8635. numpy_dtype = cls._dtype_byteswap_map[dtype]
  8636. return torch.from_numpy(byteswap_tensor(tensor.mmap_bytes(), numpy_dtype)).view(dtype).reshape(tensor.shape)
  8637. dtype = cls._dtype_str_map[t.dtype]
  8638. shape = t.shape
  8639. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(t,), func=lambda r: load_tensor(r))
  8640. return cast(torch.Tensor, lazy)
  8641. @classmethod
  8642. def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
  8643. def byteswap_tensor(tensor: np.ndarray, dtype: type) -> np.ndarray:
  8644. if sys.byteorder == 'big':
  8645. # switch data back to big endian
  8646. tensor = tensor.view(dtype).byteswap(inplace=False)
  8647. return tensor
  8648. dtype = cls._dtype_str_map[remote_tensor.dtype]
  8649. numpy_dtype = cls._dtype_byteswap_map[dtype]
  8650. shape = remote_tensor.shape
  8651. meta = cls.meta_with_dtype_and_shape(dtype, shape)
  8652. lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.from_numpy(byteswap_tensor(np.frombuffer(r.data(), dtype=numpy_dtype), numpy_dtype)).view(dtype).reshape(shape))
  8653. return cast(torch.Tensor, lazy)
  8654. @classmethod
  8655. def __torch_function__(cls, func, types, args=(), kwargs=None):
  8656. del types # unused
  8657. if kwargs is None:
  8658. kwargs = {}
  8659. if func is torch.Tensor.numpy:
  8660. return args[0].numpy()
  8661. return cls._wrap_fn(func)(*args, **kwargs)
  8662. def parse_args() -> argparse.Namespace:
  8663. parser = argparse.ArgumentParser(
  8664. description="Convert a huggingface model to a GGML compatible file")
  8665. parser.add_argument(
  8666. "--vocab-only", action="store_true",
  8667. help="extract only the vocab",
  8668. )
  8669. parser.add_argument(
  8670. "--outfile", type=Path,
  8671. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  8672. )
  8673. parser.add_argument(
  8674. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="auto",
  8675. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type",
  8676. )
  8677. parser.add_argument(
  8678. "--bigendian", action="store_true",
  8679. help="model is executed on big endian machine",
  8680. )
  8681. parser.add_argument(
  8682. "model", type=str,
  8683. help="directory containing model file or huggingface repository ID (if --remote)",
  8684. nargs="?",
  8685. )
  8686. parser.add_argument(
  8687. "--use-temp-file", action="store_true",
  8688. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  8689. )
  8690. parser.add_argument(
  8691. "--no-lazy", action="store_true",
  8692. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  8693. )
  8694. parser.add_argument(
  8695. "--model-name", type=str, default=None,
  8696. help="name of the model",
  8697. )
  8698. parser.add_argument(
  8699. "--verbose", action="store_true",
  8700. help="increase output verbosity",
  8701. )
  8702. parser.add_argument(
  8703. "--split-max-tensors", type=int, default=0,
  8704. help="max tensors in each split",
  8705. )
  8706. parser.add_argument(
  8707. "--split-max-size", type=str, default="0",
  8708. help="max size per split N(M|G)",
  8709. )
  8710. parser.add_argument(
  8711. "--dry-run", action="store_true",
  8712. help="only print out a split plan and exit, without writing any new files",
  8713. )
  8714. parser.add_argument(
  8715. "--no-tensor-first-split", action="store_true",
  8716. help="do not add tensors to the first split (disabled by default)"
  8717. )
  8718. parser.add_argument(
  8719. "--metadata", type=Path,
  8720. help="Specify the path for an authorship metadata override file"
  8721. )
  8722. parser.add_argument(
  8723. "--print-supported-models", action="store_true",
  8724. help="Print the supported models"
  8725. )
  8726. parser.add_argument(
  8727. "--remote", action="store_true",
  8728. help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
  8729. )
  8730. parser.add_argument(
  8731. "--mmproj", action="store_true",
  8732. help="(Experimental) Export multimodal projector (mmproj) for vision models. This will only work on some vision models. A prefix 'mmproj-' will be added to the output file name.",
  8733. )
  8734. parser.add_argument(
  8735. "--mistral-format", action="store_true",
  8736. help="Whether the model is stored following the Mistral format.",
  8737. )
  8738. parser.add_argument(
  8739. "--disable-mistral-community-chat-template", action="store_true",
  8740. help=(
  8741. "Whether to disable usage of Mistral community chat templates. If set, use the Mistral official `mistral-common` library for tokenization and detokenization of Mistral models. "
  8742. "Using `mistral-common` ensure correctness and zero-day support of tokenization for models converted from the Mistral format but requires to manually setup the tokenization server."
  8743. )
  8744. )
  8745. parser.add_argument(
  8746. "--sentence-transformers-dense-modules", action="store_true",
  8747. help=("Whether to include sentence-transformers dense modules."
  8748. "It can be used for sentence-transformers models, like google/embeddinggemma-300m"
  8749. "Default these modules are not included.")
  8750. )
  8751. args = parser.parse_args()
  8752. if not args.print_supported_models and args.model is None:
  8753. parser.error("the following arguments are required: model")
  8754. return args
  8755. def split_str_to_n_bytes(split_str: str) -> int:
  8756. if split_str.endswith("K"):
  8757. n = int(split_str[:-1]) * 1000
  8758. elif split_str.endswith("M"):
  8759. n = int(split_str[:-1]) * 1000 * 1000
  8760. elif split_str.endswith("G"):
  8761. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  8762. elif split_str.isnumeric():
  8763. n = int(split_str)
  8764. else:
  8765. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  8766. if n < 0:
  8767. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  8768. return n
  8769. def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> str:
  8770. # TODO @ngxson : this won't work correctly if the model has both audio & vision encoders
  8771. # maybe we should fallback to text model's arch in that case, since not many models have both
  8772. text_config = hparams.get("text_config", {})
  8773. vision_config = hparams.get("vision_config", {})
  8774. arch = None
  8775. if (arches := hparams.get("architectures")) is not None and len(arches) > 0:
  8776. arch = arches[0]
  8777. elif "ssm_cfg" in hparams:
  8778. # For non-hf Mamba and Mamba2 models
  8779. arch = hparams["ssm_cfg"].get("layer", "Mamba") + "ForCausalLM"
  8780. # if "architectures" is found in the sub-config, use that instead
  8781. if model_type == ModelType.TEXT and text_config.get("architectures") is not None:
  8782. arch = text_config["architectures"][0]
  8783. elif model_type == ModelType.MMPROJ and vision_config.get("architectures") is not None:
  8784. arch = vision_config["architectures"][0]
  8785. if arch is None:
  8786. raise ValueError("Failed to detect model architecture")
  8787. return arch
  8788. def main() -> None:
  8789. args = parse_args()
  8790. if args.print_supported_models:
  8791. logger.error("Supported models:")
  8792. ModelBase.print_registered_models()
  8793. sys.exit(0)
  8794. if args.verbose:
  8795. logging.basicConfig(level=logging.DEBUG)
  8796. else:
  8797. logging.basicConfig(level=logging.INFO)
  8798. if args.remote:
  8799. hf_repo_id = args.model
  8800. from huggingface_hub import snapshot_download
  8801. allowed_patterns = ["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"]
  8802. if args.sentence_transformers_dense_modules:
  8803. # include sentence-transformers dense modules safetensors files
  8804. allowed_patterns.append("*.safetensors")
  8805. local_dir = snapshot_download(
  8806. repo_id=hf_repo_id,
  8807. allow_patterns=allowed_patterns)
  8808. dir_model = Path(local_dir)
  8809. logger.info(f"Downloaded config and tokenizer to {local_dir}")
  8810. else:
  8811. hf_repo_id = None
  8812. dir_model = Path(args.model)
  8813. if not dir_model.is_dir():
  8814. logger.error(f'Error: {dir_model} is not a directory')
  8815. sys.exit(1)
  8816. ftype_map: dict[str, gguf.LlamaFileType] = {
  8817. "f32": gguf.LlamaFileType.ALL_F32,
  8818. "f16": gguf.LlamaFileType.MOSTLY_F16,
  8819. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  8820. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  8821. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  8822. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  8823. "auto": gguf.LlamaFileType.GUESSED,
  8824. }
  8825. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  8826. if args.use_temp_file and is_split:
  8827. logger.error("Error: Cannot use temp file when splitting")
  8828. sys.exit(1)
  8829. if args.outfile is not None:
  8830. fname_out = args.outfile
  8831. elif hf_repo_id:
  8832. # if remote, use the model ID as the output file name
  8833. fname_out = Path("./" + hf_repo_id.replace("/", "-") + "-{ftype}.gguf")
  8834. else:
  8835. fname_out = dir_model
  8836. logger.info(f"Loading model: {dir_model.name}")
  8837. is_mistral_format = args.mistral_format
  8838. if is_mistral_format and not _mistral_common_installed:
  8839. raise ImportError(_mistral_import_error_msg)
  8840. disable_mistral_community_chat_template = args.disable_mistral_community_chat_template
  8841. with torch.inference_mode():
  8842. output_type = ftype_map[args.outtype]
  8843. model_type = ModelType.MMPROJ if args.mmproj else ModelType.TEXT
  8844. hparams = ModelBase.load_hparams(dir_model, is_mistral_format)
  8845. if not is_mistral_format:
  8846. model_architecture = get_model_architecture(hparams, model_type)
  8847. logger.info(f"Model architecture: {model_architecture}")
  8848. try:
  8849. model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
  8850. except NotImplementedError:
  8851. logger.error(f"Model {model_architecture} is not supported")
  8852. sys.exit(1)
  8853. elif args.mmproj:
  8854. assert hparams.get("vision_encoder") is not None, "This model does not support multimodal"
  8855. model_class = PixtralModel
  8856. elif "moe" in hparams:
  8857. model_class = MistralMoeModel
  8858. else:
  8859. model_class = MistralModel
  8860. model_instance = model_class(dir_model, output_type, fname_out,
  8861. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  8862. eager=args.no_lazy,
  8863. metadata_override=args.metadata, model_name=args.model_name,
  8864. split_max_tensors=args.split_max_tensors,
  8865. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  8866. small_first_shard=args.no_tensor_first_split,
  8867. remote_hf_model_id=hf_repo_id, disable_mistral_community_chat_template=disable_mistral_community_chat_template,
  8868. sentence_transformers_dense_modules=args.sentence_transformers_dense_modules
  8869. )
  8870. if args.vocab_only:
  8871. logger.info("Exporting model vocab...")
  8872. model_instance.write_vocab()
  8873. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  8874. else:
  8875. logger.info("Exporting model...")
  8876. model_instance.write()
  8877. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  8878. logger.info(f"Model successfully exported to {out_path}")
  8879. if __name__ == '__main__':
  8880. main()