tensor_mapping.py 80 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787
  1. from __future__ import annotations
  2. from typing import Sequence
  3. from .constants import MODEL_ARCH, MODEL_TENSOR, MODEL_TENSORS, TENSOR_NAMES
  4. class TensorNameMap:
  5. mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  6. # Token embeddings
  7. MODEL_TENSOR.TOKEN_EMBD: (
  8. "gpt_neox.embed_in", # gptneox
  9. "transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais exaone
  10. "transformer.word_embeddings", # falcon
  11. "word_embeddings", # bloom
  12. "model.embed_tokens", # llama-hf nemotron olmoe olmo2 rwkv6qwen2 glm4-0414 plamo2 granite-hybrid
  13. "embed_tokens", # embeddinggemma
  14. "tok_embeddings", # llama-pth
  15. "embeddings.word_embeddings", # bert nomic-bert
  16. "embeddings.tok_embeddings", # modern-bert
  17. "language_model.embedding.word_embeddings", # persimmon
  18. "wte", # gpt2
  19. "transformer.embd.wte", # phi2
  20. "model.tok_embeddings", # internlm2
  21. "model.embedding", # mamba-qbert
  22. "backbone.embedding", # mamba
  23. "backbone.embeddings", # mamba-hf
  24. "transformer.in_out_embed", # Grok
  25. "embedding.word_embeddings", # chatglm
  26. "transformer.token_embeddings", # openelm
  27. "shared", # t5
  28. "rwkv.embeddings", # rwkv6
  29. "model.embeddings", # rwkv7
  30. "model.word_embeddings", # bailingmoe
  31. "language_model.model.embed_tokens", # llama4
  32. "encoder", # neobert
  33. "model.transformer.wte", # llada
  34. "embed_tokens", # qwen3-embedding
  35. ),
  36. # Token type embeddings
  37. MODEL_TENSOR.TOKEN_TYPES: (
  38. "embeddings.token_type_embeddings", # bert nomic-bert
  39. ),
  40. # Normalization of token embeddings
  41. MODEL_TENSOR.TOKEN_EMBD_NORM: (
  42. "word_embeddings_layernorm", # bloom
  43. "embeddings.LayerNorm", # bert
  44. "embeddings.norm", # modern-bert
  45. "emb_ln", # nomic-bert
  46. "transformer.norm", # openelm
  47. "rwkv.blocks.0.pre_ln", # rwkv
  48. "rwkv.blocks.0.pre_ln", # rwkv6
  49. "model.pre_ln", # rwkv7
  50. "model.layers.0.pre_norm", # rwkv7
  51. "backbone.norm", # wavtokenizer
  52. "model.embedding_norm", # lfm2
  53. ),
  54. # Position embeddings
  55. MODEL_TENSOR.POS_EMBD: (
  56. "transformer.wpe", # gpt2
  57. "embeddings.position_embeddings", # bert
  58. "wpe", # gpt2
  59. ),
  60. # Output
  61. MODEL_TENSOR.OUTPUT: (
  62. "embed_out", # gptneox
  63. "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone olmoe olmo2 phimoe plamo2
  64. "output", # llama-pth bloom internlm2
  65. "word_embeddings_for_head", # persimmon
  66. "lm_head.linear", # phi2
  67. "output_layer", # chatglm
  68. "head", # rwkv
  69. "head.out", # wavtokenizer
  70. "lm_head", # llama4
  71. "model.transformer.ff_out", # llada
  72. "head.decoder", # modern-bert
  73. ),
  74. MODEL_TENSOR.DENSE_2_OUT: (
  75. "dense_2_out", # embeddinggemma
  76. ),
  77. MODEL_TENSOR.DENSE_3_OUT: (
  78. "dense_3_out", # embeddinggemma
  79. ),
  80. # Output norm
  81. MODEL_TENSOR.OUTPUT_NORM: (
  82. "gpt_neox.final_layer_norm", # gptneox
  83. "transformer.ln_f", # gpt2 gpt-j falcon jais exaone
  84. "model.norm", # llama-hf baichuan internlm2 olmoe olmo2 phimoe plamo2
  85. "norm", # llama-pth
  86. "transformer.norm_f", # mpt dbrx
  87. "ln_f", # refact bloom qwen gpt2
  88. "language_model.encoder.final_layernorm", # persimmon
  89. "model.final_layernorm", # persimmon
  90. "lm_head.ln", # phi2
  91. "model.norm_f", # mamba-qbert
  92. "backbone.norm_f", # mamba
  93. "transformer.rms_norm", # Grok
  94. "encoder.final_layernorm", # chatglm
  95. "transformer.norm", # openelm
  96. "model.norm", # nemotron
  97. "rwkv.ln_out", # rwkv6
  98. "model.ln_out", # rwkv7
  99. "backbone.final_layer_norm", # wavtokenizer
  100. "model.norm", # llama4
  101. "model.transformer.ln_f", # llada
  102. "final_norm", # modern-bert
  103. "model.norm", # cogvlm
  104. ),
  105. # Rope frequencies
  106. MODEL_TENSOR.ROPE_FREQS: (
  107. "rope.freqs", # llama-pth
  108. "rotary_pos_emb.inv_freq", # chatglm
  109. ),
  110. MODEL_TENSOR.ROPE_FACTORS_LONG: (),
  111. MODEL_TENSOR.ROPE_FACTORS_SHORT: (),
  112. MODEL_TENSOR.CONV1D: (
  113. "backbone.embed", # roberta
  114. ),
  115. }
  116. block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  117. # Attention norm
  118. MODEL_TENSOR.ATTN_NORM: (
  119. "gpt_neox.layers.{bid}.input_layernorm", # gptneox
  120. "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen jais exaone
  121. "transformer.blocks.{bid}.norm_1", # mpt
  122. "transformer.h.{bid}.input_layernorm", # falcon7b
  123. "h.{bid}.input_layernorm", # bloom
  124. "transformer.h.{bid}.ln_mlp", # falcon40b
  125. "model.layers.{bid}.input_layernorm", # llama-hf nemotron olmoe phimoe granite-hybrid
  126. "layers.{bid}.attention_norm", # llama-pth
  127. "language_model.encoder.layers.{bid}.input_layernorm", # persimmon
  128. "model.layers.{bid}.ln1", # yi
  129. "h.{bid}.ln_1", # gpt2
  130. "transformer.h.{bid}.ln", # phi2
  131. "model.layers.layers.{bid}.norm", # plamo
  132. "model.layers.layers.{bid}.pre_mixer_norm", # plamo2
  133. "model.layers.{bid}.attention_norm", # internlm2
  134. "model.layers.{bid}.norm", # mamba-qbert
  135. "backbone.layers.{bid}.norm", # mamba
  136. "transformer.decoder_layer.{bid}.rms_norm", # Grok
  137. "model.layers.{bid}.pre_attn_norm", # grok-2
  138. "transformer.blocks.{bid}.norm_attn_norm.norm_1", # dbrx
  139. "encoder.layers.{bid}.input_layernorm", # chatglm
  140. "transformer.layers.{bid}.attn_norm", # openelm
  141. "rwkv.blocks.{bid}.ln1", # rwkv6
  142. "model.layers.{bid}.ln1", # rwkv7
  143. "model.layers.{bid}.input_layernorm", # llama4
  144. "layers.{bid}.input_layernorm", # embeddinggemma
  145. "transformer_encoder.{bid}.attention_norm", # neobert
  146. "layers.{bid}.attn_norm", # modern-bert
  147. "model.layers.{bid}.operator_norm", # lfm2
  148. "model.transformer.blocks.{bid}.attn_norm", # llada
  149. "layers.{bid}.input_layernorm", # qwen3-embedding
  150. "model.layers.{bid}.attention_layernorm", # apertus
  151. "model.layers.{bid}.pre_attention_layernorm", # kormo
  152. ),
  153. # Attention norm 2
  154. MODEL_TENSOR.ATTN_NORM_2: (
  155. "transformer.h.{bid}.ln_attn", # falcon40b
  156. "encoder.layer.{bid}.layer_norm_1", # jina-v2-code
  157. "rwkv.blocks.{bid}.ln2", # rwkv6
  158. "model.layers.{bid}.ln2", # rwkv7
  159. "model.layers.{bid}.post_attention_layernorm", # cogvlm
  160. ),
  161. # Attention query-key-value
  162. MODEL_TENSOR.ATTN_QKV: (
  163. "gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
  164. "transformer.h.{bid}.attn.c_attn", # gpt2 qwen jais
  165. "transformer.blocks.{bid}.attn.Wqkv", # mpt
  166. "transformer.blocks.{bid}.norm_attn_norm.attn.Wqkv", # dbrx
  167. "transformer.h.{bid}.self_attention.query_key_value", # falcon
  168. "h.{bid}.self_attention.query_key_value", # bloom
  169. "language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
  170. "model.layers.{bid}.self_attn.query_key_value", # persimmon
  171. "model.layers.{bid}.attention.query_key_value", # bailingmoe2
  172. "h.{bid}.attn.c_attn", # gpt2
  173. "transformer.h.{bid}.mixer.Wqkv", # phi2
  174. "encoder.layers.{bid}.attn.Wqkv", # nomic-bert
  175. "encoder.layers.{bid}.mixer.Wqkv", # jina
  176. "model.layers.{bid}.self_attn.qkv_proj", # phi3
  177. "model.layers.layers.{bid}.mixer.qkv_proj", # plamo2
  178. "encoder.layers.{bid}.self_attention.query_key_value", # chatglm
  179. "transformer.layers.{bid}.attn.qkv_proj", # openelm
  180. "transformer_encoder.{bid}.qkv", # neobert
  181. "layers.{bid}.attn.Wqkv", # modern-bert
  182. "model.layers.{bid}.self_attn.language_expert_query_key_value", # cogvlm
  183. ),
  184. # Attention query
  185. MODEL_TENSOR.ATTN_Q: (
  186. "model.layers.{bid}.self_attn.q_proj", # llama-hf nemotron olmoe olmo2 phimoe
  187. "layers.{bid}.self_attn.q_proj", # embeddinggemma
  188. "model.layers.{bid}.self_attn.q_proj_no_perm", # llama-custom
  189. "layers.{bid}.attention.wq", # llama-pth
  190. "encoder.layer.{bid}.attention.self.query", # bert
  191. "transformer.layer.{bid}.attention.q_lin", # distillbert
  192. "transformer.h.{bid}.attn.q_proj", # gpt-j
  193. "model.layers.layers.{bid}.self_attn.q_proj", # plamo
  194. "model.layers.{bid}.attention.wq", # internlm2
  195. "transformer.decoder_layer.{bid}.multi_head_attention.query",# Grok
  196. "transformer.h.{bid}.attn.attention.q_proj", # exaone
  197. "model.layers.{bid}.self_attn.q_proj", # llama4
  198. "model.transformer.blocks.{bid}.q_proj", # llada
  199. "layers.{bid}.self_attn.q_proj", # qwen3-embedding
  200. "backbone.layers.{bid}.mixer.q_proj", # nemotron-h
  201. ),
  202. # Attention key
  203. MODEL_TENSOR.ATTN_K: (
  204. "model.layers.{bid}.self_attn.k_proj", # llama-hf nemotron olmoe olmo2 phimoe
  205. "layers.{bid}.self_attn.k_proj", # embeddinggemma
  206. "model.layers.{bid}.self_attn.k_proj_no_perm", # llama-custom
  207. "layers.{bid}.attention.wk", # llama-pth
  208. "encoder.layer.{bid}.attention.self.key", # bert
  209. "transformer.layer.{bid}.attention.k_lin", # distillbert
  210. "transformer.h.{bid}.attn.k_proj", # gpt-j
  211. "transformer.h.{bid}.attn.k", # refact
  212. "model.layers.layers.{bid}.self_attn.k_proj", # plamo
  213. "model.layers.{bid}.attention.wk", # internlm2
  214. "transformer.decoder_layer.{bid}.multi_head_attention.key",# Grok
  215. "transformer.h.{bid}.attn.attention.k_proj", # exaone
  216. "model.layers.{bid}.self_attn.k_proj", # llama4
  217. "model.transformer.blocks.{bid}.k_proj", # llada
  218. "layers.{bid}.self_attn.k_proj", # qwen3-embedding
  219. "backbone.layers.{bid}.mixer.k_proj", # nemotron-h
  220. ),
  221. # Attention value
  222. MODEL_TENSOR.ATTN_V: (
  223. "model.layers.{bid}.self_attn.v_proj", # llama-hf nemotron olmoe olmo2 phimoe
  224. "layers.{bid}.self_attn.v_proj", # embeddinggemma
  225. "layers.{bid}.attention.wv", # llama-pth
  226. "encoder.layer.{bid}.attention.self.value", # bert
  227. "transformer.layer.{bid}.attention.v_lin", # distillbert
  228. "transformer.h.{bid}.attn.v_proj", # gpt-j
  229. "transformer.h.{bid}.attn.v", # refact
  230. "model.layers.layers.{bid}.self_attn.v_proj", # plamo
  231. "model.layers.{bid}.attention.wv", # internlm2
  232. "transformer.decoder_layer.{bid}.multi_head_attention.value",# Grok
  233. "transformer.h.{bid}.attn.attention.v_proj", # exaone
  234. "model.layers.{bid}.self_attn.v_proj", # llama4
  235. "model.transformer.blocks.{bid}.v_proj", # llada
  236. "layers.{bid}.self_attn.v_proj", # qwen3-embedding
  237. "backbone.layers.{bid}.mixer.v_proj", # nemotron-h
  238. ),
  239. # Attention output
  240. MODEL_TENSOR.ATTN_OUT: (
  241. "gpt_neox.layers.{bid}.attention.dense", # gptneox
  242. "transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen jais
  243. "transformer.blocks.{bid}.attn.out_proj", # mpt
  244. "transformer.h.{bid}.self_attention.dense", # falcon
  245. "h.{bid}.self_attention.dense", # bloom
  246. "model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron olmoe olmo2 phimoe
  247. "layers.{bid}.self_attn.o_proj", # embeddinggemma
  248. "model.layers.{bid}.self_attn.out_proj", # lfm2
  249. "model.layers.{bid}.self_attn.linear_attn", # deci
  250. "layers.{bid}.attention.wo", # llama-pth
  251. "encoder.layer.{bid}.attention.output.dense", # bert
  252. "layers.{bid}.attn.Wo", # modern-bert
  253. "transformer.layer.{bid}.attention.out_lin", # distillbert
  254. "transformer.h.{bid}.attn.out_proj", # gpt-j
  255. "language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
  256. "model.layers.{bid}.self_attn.dense", # persimmon
  257. "model.layers.{bid}.attention.dense", # bailingmoe2
  258. "h.{bid}.attn.c_proj", # gpt2
  259. "transformer.h.{bid}.mixer.out_proj", # phi2
  260. "model.layers.layers.{bid}.self_attn.o_proj", # plamo
  261. "model.layers.layers.{bid}.mixer.o_proj", # plamo2
  262. "model.layers.{bid}.attention.wo", # internlm2
  263. "encoder.layers.{bid}.attn.out_proj", # nomic-bert
  264. "encoder.layers.{bid}.mixer.out_proj", # jina
  265. "transformer.decoder_layer.{bid}.multi_head_attention.linear", # Grok
  266. "transformer.blocks.{bid}.norm_attn_norm.attn.out_proj", # dbrx
  267. "encoder.layers.{bid}.self_attention.dense", # chatglm
  268. "transformer.layers.{bid}.attn.out_proj", # openelm
  269. "transformer.h.{bid}.attn.attention.out_proj", # exaone
  270. "model.layers.{bid}.self_attn.o_proj", # llama4
  271. "transformer_encoder.{bid}.wo", # neobert
  272. "model.transformer.blocks.{bid}.attn_out", # llada
  273. "layers.{bid}.self_attn.o_proj", # qwen3-embedding
  274. "backbone.layers.{bid}.mixer.o_proj", # nemotron-h
  275. "model.layers.{bid}.self_attn.language_expert_dense", # cogvlm
  276. ),
  277. # Attention output norm
  278. MODEL_TENSOR.ATTN_OUT_NORM: (
  279. "encoder.layer.{bid}.attention.output.LayerNorm", # bert
  280. "transformer.layer.{bid}.sa_layer_norm", # distillbert
  281. "encoder.layers.{bid}.norm1", # nomic-bert
  282. "transformer.decoder_layer.{bid}.rms_norm_1", # Grok
  283. "model.layers.{bid}.post_attn_norm", # grok-2
  284. "transformer.blocks.{bid}.norm_attn_norm.norm_2", # dbrx
  285. ),
  286. MODEL_TENSOR.ATTN_POST_NORM: (
  287. "model.layers.{bid}.post_attention_layernorm", # gemma2 olmo2 # ge
  288. "layers.{bid}.post_attention_layernorm", # embeddinggemma
  289. "model.layers.{bid}.post_self_attn_layernorm", # glm-4-0414
  290. "model.layers.layers.{bid}.post_mixer_norm.weight", # plamo2
  291. ),
  292. # Rotary embeddings
  293. MODEL_TENSOR.ATTN_ROT_EMBD: (
  294. "model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf
  295. "layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth
  296. "model.layers.layers.{bid}.self_attn.rotary_emb.inv_freq", # plamo
  297. "transformer.h.{bid}.attn.rotary_emb.inv_freq", # codeshell
  298. ),
  299. MODEL_TENSOR.ATTN_SINKS: (
  300. "model.layers.{bid}.self_attn.sinks", # openai-moe
  301. "model.layers.{bid}.self_attn.attention_sink_bias", # mimov2
  302. ),
  303. MODEL_TENSOR.ATTN_GATE: (
  304. "model.layers.{bid}.self_attn.gate_proj", # afmoe
  305. ),
  306. # Feed-forward norm
  307. MODEL_TENSOR.FFN_NORM: (
  308. "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
  309. "transformer.h.{bid}.ln_2", # gpt2 refact qwen jais exaone
  310. "h.{bid}.post_attention_layernorm", # bloom
  311. "transformer.blocks.{bid}.norm_2", # mpt
  312. "model.layers.{bid}.post_attention_layernorm", # llama-hf nemotron olmoe phimoe
  313. "layers.{bid}.ffn_norm", # llama-pth
  314. "language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
  315. "model.layers.{bid}.ln2", # yi
  316. "h.{bid}.ln_2", # gpt2
  317. "model.layers.{bid}.ffn_norm", # internlm2
  318. "transformer.decoder_layer.{bid}.rms_norm_2", # Grok
  319. "model.layers.{bid}.pre_moe_norm", # grok-2
  320. "encoder.layers.{bid}.post_attention_layernorm", # chatglm
  321. "transformer.layers.{bid}.ffn_norm", # openelm
  322. "model.layers.{bid}.pre_ff_layernorm", # jamba granite-hybrid
  323. "model.layers.{bid}.pre_moe_layernorm", # mini-jamba
  324. "model.layers.{bid}.post_attention_layernorm", # llama4
  325. "transformer_encoder.{bid}.ffn_norm", # neobert
  326. "model.layers.layers.{bid}.pre_mlp_norm", # plamo2
  327. "model.transformer.blocks.{bid}.ff_norm", # llada
  328. "layers.{bid}.post_attention_layernorm", # qwen3-embedding
  329. "model.layers.{bid}.feedforward_layernorm", # apertus
  330. "model.layers.{bid}.pre_mlp_layernorm", # kormo
  331. "layers.{bid}.mlp_norm" # modern-bert
  332. ),
  333. # Pre feed-forward norm
  334. MODEL_TENSOR.FFN_PRE_NORM: (
  335. "model.layers.{bid}.pre_feedforward_layernorm", # gemma2
  336. "layers.{bid}.pre_feedforward_layernorm", # embeddinggemma
  337. "model.layers.{bid}.pre_ff_layernorm.weight",
  338. "model.layers.{bid}.pre_mlp_layernorm", # afmoe
  339. ),
  340. # Post feed-forward norm
  341. MODEL_TENSOR.FFN_POST_NORM: (
  342. "model.layers.{bid}.post_feedforward_layernorm", # gemma2 olmo2
  343. "layers.{bid}.post_feedforward_layernorm", # embeddinggemma
  344. "model.layers.{bid}.post_mlp_layernorm", # glm-4-0414
  345. "model.layers.layers.{bid}.post_mlp_norm.weight", # plamo2
  346. "model.layers.{bid}.feed_forward.up_proj",
  347. "model.layers.{bid}.post_moe_norm", # grok-2
  348. ),
  349. MODEL_TENSOR.FFN_GATE_INP: (
  350. "layers.{bid}.feed_forward.gate", # mixtral
  351. "model.layers.{bid}.block_sparse_moe.gate", # mixtral phimoe
  352. "model.layers.{bid}.mlp.gate", # qwen2moe olmoe
  353. "transformer.decoder_layer.{bid}.router", # Grok
  354. "transformer.blocks.{bid}.ffn.router.layer", # dbrx
  355. "model.layers.{bid}.block_sparse_moe.router.layer", # granitemoe
  356. "model.layers.{bid}.feed_forward.router", # llama4 jamba
  357. "encoder.layers.{bid}.mlp.router.layer", # nomic-bert-moe
  358. "model.layers.{bid}.mlp.router", # openai-moe
  359. "model.layers.{bid}.mlp.gate.wg", # hunyuan
  360. "model.layers.{bid}.block_sparse_moe.primary_router", # smallthinker
  361. "model.layers.{bid}.feed_forward.gate", # lfm2moe
  362. "model.layers.{bid}.mlp.router.gate", # afmoe
  363. "layers.{bid}.gate", # mistral-large
  364. "backbone.layers.{bid}.mixer.gate", # nemotron-h-moe
  365. ),
  366. MODEL_TENSOR.FFN_GATE_INP_SHEXP: (
  367. "model.layers.{bid}.mlp.shared_expert_gate", # qwen2moe
  368. ),
  369. MODEL_TENSOR.FFN_EXP_PROBS_B: (
  370. "model.layers.{bid}.mlp.gate.e_score_correction", # deepseek-v3 dots1
  371. "model.layers.{bid}.mlp.moe_statics.e_score_correction", # ernie4.5-moe
  372. "model.layers.{bid}.mlp.gate.expert_bias", # bailingmoe2
  373. "model.layers.{bid}.mlp.expert_bias", # afmoe
  374. "model.layers.{bid}.feed_forward.expert_bias", # lfm2moe
  375. "model.layers.{bid}.block_sparse_moe.e_score_correction", # minimax-m2
  376. "backbone.layers.{bid}.mixer.gate.e_score_correction" # nemotron-h-moe
  377. ),
  378. # Feed-forward up
  379. MODEL_TENSOR.FFN_UP: (
  380. "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
  381. "transformer.h.{bid}.mlp.c_fc", # gpt2 jais
  382. "transformer.blocks.{bid}.ffn.up_proj", # mpt
  383. "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
  384. "h.{bid}.mlp.dense_h_to_4h", # bloom
  385. "model.layers.{bid}.mlp.up_proj", # llama-hf refact nemotron olmo2
  386. "layers.{bid}.mlp.up_proj", # embeddinggemma
  387. "layers.{bid}.feed_forward.w3", # llama-pth
  388. "encoder.layer.{bid}.intermediate.dense", # bert
  389. "layers.{bid}.mlp.Wi", # modern-bert
  390. "transformer.layer.{bid}.ffn.lin1", # distillbert
  391. "transformer.h.{bid}.mlp.fc_in", # gpt-j
  392. "transformer.h.{bid}.mlp.linear_3", # refact
  393. "language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  394. "model.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  395. "transformer.h.{bid}.mlp.w1", # qwen
  396. "h.{bid}.mlp.c_fc", # gpt2
  397. "transformer.h.{bid}.mlp.fc1", # phi2
  398. "model.layers.{bid}.mlp.fc1", # phi2
  399. "model.layers.{bid}.mlp.gate_up_proj", # phi3 glm-4-0414
  400. "model.layers.layers.{bid}.mlp.up_proj", # plamo
  401. "model.layers.layers.{bid}.mlp.gate_up_proj", # plamo2
  402. "model.layers.{bid}.feed_forward.w3", # internlm2
  403. "encoder.layers.{bid}.mlp.fc11", # nomic-bert
  404. "encoder.layers.{bid}.mlp.fc1", # nomic-bert-moe
  405. "model.layers.{bid}.mlp.c_fc", # starcoder2
  406. "encoder.layer.{bid}.mlp.gated_layers_v", # jina-bert-v2 (split up/gate, no longer used)
  407. "encoder.layer.{bid}.mlp.gated_layers", # jina-bert-v2 (GEGLU)
  408. "encoder.layer.{bid}.mlp.up_gated_layer", # jina-v2-code (GEGLU)
  409. "model.layers.{bid}.residual_mlp.w3", # arctic
  410. "encoder.layers.{bid}.mlp.dense_h_to_4h", # chatglm
  411. "transformer.h.{bid}.mlp.c_fc_1", # exaone
  412. "model.layers.{bid}.feed_forward.up_proj", # llama4 jamba granite-hybrid
  413. "transformer_encoder.{bid}.ffn.w12", # neobert
  414. "model.layers.{bid}.block_sparse_moe.up", # smallthinker
  415. "model.transformer.blocks.{bid}.up_proj", # llada
  416. "layers.{bid}.mlp.up_proj", # qwen3-embedding
  417. "backbone.layers.{bid}.mixer.up_proj", # nemotron-h
  418. "model.layers.{bid}.mlp.language_mlp.up_proj", # cogvlm
  419. ),
  420. MODEL_TENSOR.FFN_UP_EXP: (
  421. "layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
  422. "transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
  423. "transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx
  424. "model.layers.{bid}.mlp.experts.up_proj", # qwen2moe olmoe (merged) ernie4.5-moe, nemotron-h-moe (merged)
  425. "model.layers.{bid}.block_sparse_moe.experts.w3", # phimoe (merged)
  426. "model.layers.{bid}.feed_forward.experts.up_proj", # llama4
  427. "encoder.layers.{bid}.mlp.experts.mlp.w1", # nomic-bert-moe
  428. "model.layers.{bid}.block_sparse_moe.experts.up", # smallthinker
  429. ),
  430. MODEL_TENSOR.FFN_UP_SHEXP: (
  431. "model.layers.{bid}.mlp.shared_expert.up_proj", # qwen2moe
  432. "model.layers.{bid}.mlp.shared_experts.up_proj", # deepseek deepseek2
  433. "model.layers.{bid}.feed_forward.shared_expert.up_proj", # llama4
  434. "model.layers.{bid}.feed_forward.down_proj",
  435. "model.layers.{bid}.mlp.shared_mlp.up_proj", # hunyuan
  436. "layers.{bid}.shared_experts.w3", # mistral-large
  437. "backbone.layers.{bid}.mixer.shared_experts.up_proj", # nemotron-h-moe
  438. ),
  439. MODEL_TENSOR.FFN_UP_CHEXP: (
  440. "model.layers.{bid}.mlp.chunk_experts.up_proj", # grovemoe
  441. ),
  442. # AWQ-activation gate
  443. MODEL_TENSOR.FFN_ACT: (
  444. "transformer.blocks.{bid}.ffn.act", # mpt
  445. ),
  446. # Feed-forward gate
  447. MODEL_TENSOR.FFN_GATE: (
  448. "model.layers.{bid}.mlp.gate_proj", # llama-hf refact olmo2
  449. "layers.{bid}.mlp.gate_proj", # embeddinggemma
  450. "layers.{bid}.feed_forward.w1", # llama-pth
  451. "transformer.h.{bid}.mlp.w2", # qwen
  452. "transformer.h.{bid}.mlp.c_fc2", # jais
  453. "model.layers.layers.{bid}.mlp.gate_proj", # plamo
  454. "model.layers.{bid}.feed_forward.w1", # internlm2
  455. "encoder.layers.{bid}.mlp.fc12", # nomic-bert
  456. "encoder.layer.{bid}.mlp.gated_layers_w", # jina-bert-v2 (split up/gate, no longer used)
  457. "transformer.h.{bid}.mlp.linear_1", # refact
  458. "model.layers.{bid}.residual_mlp.w1", # arctic
  459. "transformer.h.{bid}.mlp.c_fc_0", # exaone
  460. "model.layers.{bid}.feed_forward.gate_proj", # llama4 jamba granite-hybrid
  461. "model.transformer.blocks.{bid}.ff_proj", # llada
  462. "layers.{bid}.mlp.gate_proj", # qwen3-embedding
  463. "model.layers.{bid}.mlp.language_mlp.gate_proj", # cogvlm
  464. ),
  465. MODEL_TENSOR.FFN_GATE_EXP: (
  466. "layers.{bid}.feed_forward.experts.w1", # mixtral (merged)
  467. "transformer.decoder_layer.{bid}.moe.linear", # Grok (merged)
  468. "transformer.blocks.{bid}.ffn.experts.mlp.w1", # dbrx
  469. "model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe olmoe (merged) ernie4.5-moe
  470. "model.layers.{bid}.block_sparse_moe.experts.w1", # phimoe (merged)
  471. "model.layers.{bid}.feed_forward.experts.gate_proj", # llama4
  472. "model.layers.{bid}.block_sparse_moe.experts.gate", # smallthinker
  473. ),
  474. MODEL_TENSOR.FFN_GATE_SHEXP: (
  475. "model.layers.{bid}.mlp.shared_expert.gate_proj", # qwen2moe
  476. "model.layers.{bid}.mlp.shared_experts.gate_proj", # deepseek deepseek2
  477. "model.layers.{bid}.feed_forward.shared_expert.gate_proj", # llama4
  478. "model.layers.{bid}.mlp.shared_mlp.gate_proj", # hunyuan
  479. "layers.{bid}.shared_experts.w1", # mistral-large
  480. ),
  481. MODEL_TENSOR.FFN_GATE_CHEXP: (
  482. "model.layers.{bid}.mlp.chunk_experts.gate_proj", # grovemoe
  483. ),
  484. # Feed-forward down
  485. MODEL_TENSOR.FFN_DOWN: (
  486. "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
  487. "transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen jais
  488. "transformer.blocks.{bid}.ffn.down_proj", # mpt
  489. "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
  490. "h.{bid}.mlp.dense_4h_to_h", # bloom
  491. "model.layers.{bid}.mlp.down_proj", # llama-hf nemotron olmo2
  492. "layers.{bid}.mlp.down_proj", # embeddinggemma
  493. "layers.{bid}.feed_forward.w2", # llama-pth
  494. "encoder.layer.{bid}.output.dense", # bert
  495. "layers.{bid}.mlp.Wo", # modern-bert
  496. "transformer.layer.{bid}.ffn.lin2", # distillbert
  497. "transformer.h.{bid}.mlp.fc_out", # gpt-j
  498. "language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  499. "model.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  500. "h.{bid}.mlp.c_proj", # gpt2
  501. "transformer.h.{bid}.mlp.fc2", # phi2
  502. "model.layers.{bid}.mlp.fc2", # phi2
  503. "model.layers.layers.{bid}.mlp.down_proj", # plamo
  504. "model.layers.{bid}.feed_forward.w2", # internlm2
  505. "encoder.layers.{bid}.mlp.fc2", # nomic-bert
  506. "model.layers.{bid}.mlp.c_proj", # starcoder2
  507. "encoder.layer.{bid}.mlp.wo", # jina-bert-v2
  508. "transformer.layers.{bid}.ffn.proj_2", # openelm
  509. "model.layers.{bid}.residual_mlp.w2", # arctic
  510. "encoder.layer.{bid}.mlp.down_layer", # jina-bert-v2
  511. "encoder.layers.{bid}.mlp.dense_4h_to_h", # chatglm
  512. "model.layers.h.{bid}.mlp.c_proj", # exaone
  513. "model.layers.{bid}.feed_forward.down_proj", # llama4 jamba granite-hybrid
  514. "transformer_encoder.{bid}.ffn.w3", # neobert
  515. "model.layers.{bid}.block_sparse_moe.down", # smallthinker
  516. "model.transformer.blocks.{bid}.ff_out", # llada
  517. "layers.{bid}.mlp.down_proj", # qwen3-embedding
  518. "backbone.layers.{bid}.mixer.down_proj", # nemotron-h
  519. "model.layers.{bid}.mlp.language_mlp.down_proj", # cogvlm
  520. ),
  521. MODEL_TENSOR.FFN_DOWN_EXP: (
  522. "layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
  523. "transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
  524. "transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx
  525. "model.layers.{bid}.mlp.experts.down_proj", # qwen2moe olmoe (merged) ernie4.5-moe nemotron-h-moe (merged)
  526. "model.layers.{bid}.block_sparse_moe.output_linear", # granitemoe
  527. "model.layers.{bid}.block_sparse_moe.experts.w2", # phimoe (merged)
  528. "model.layers.{bid}.feed_forward.experts.down_proj", # llama4
  529. "encoder.layers.{bid}.mlp.experts.mlp.w2", # nomic-bert-moe
  530. "model.layers.{bid}.block_sparse_moe.experts.down", # smallthinker
  531. ),
  532. MODEL_TENSOR.FFN_DOWN_SHEXP: (
  533. "model.layers.{bid}.mlp.shared_expert.down_proj", # qwen2moe
  534. "model.layers.{bid}.mlp.shared_experts.down_proj", # deepseek deepseek2
  535. "model.layers.{bid}.feed_forward.shared_expert.down_proj", # llama4
  536. "model.layers.{bid}.shared_mlp.output_linear", # granitemoe
  537. "model.layers.{bid}.mlp.shared_mlp.down_proj", # hunyuan
  538. "layers.{bid}.shared_experts.w2", # mistral-large
  539. "backbone.layers.{bid}.mixer.shared_experts.down_proj", # nemotron-h-moe
  540. ),
  541. MODEL_TENSOR.FFN_DOWN_CHEXP: (
  542. "model.layers.{bid}.mlp.chunk_experts.down_proj", # grovemoe
  543. ),
  544. MODEL_TENSOR.ATTN_Q_NORM: (
  545. "language_model.encoder.layers.{bid}.self_attention.q_layernorm",
  546. "model.layers.{bid}.self_attn.q_layernorm", # persimmon
  547. "model.layers.{bid}.self_attn.query_layernorm", # hunyuan
  548. "model.layers.{bid}.attention.query_layernorm", # bailingmoe2
  549. "model.layers.{bid}.self_attn.q_norm", # cohere olmoe chameleon olmo2
  550. "layers.{bid}.self_attn.q_norm", # embeddinggemma
  551. "transformer.blocks.{bid}.attn.q_ln", # sea-lion
  552. "encoder.layer.{bid}.attention.self.layer_norm_q", # jina-bert-v2
  553. "transformer.layers.{bid}.attn.q_norm", # openelm
  554. "model.layers.layers.{bid}.mixer.q", # plamo2
  555. "layers.{bid}.self_attn.q_norm", # qwen3-embedding
  556. "model.layers.{bid}.attention.query_layernorm", # apertus
  557. ),
  558. MODEL_TENSOR.ATTN_K_NORM: (
  559. "language_model.encoder.layers.{bid}.self_attention.k_layernorm",
  560. "model.layers.{bid}.self_attn.k_layernorm", # persimmon
  561. "model.layers.{bid}.self_attn.key_layernorm", # hunyuan
  562. "model.layers.{bid}.attention.key_layernorm", # bailingmoe2
  563. "model.layers.{bid}.self_attn.k_norm", # cohere olmoe chameleon olmo2
  564. "layers.{bid}.self_attn.k_norm", # embeddinggemma
  565. "transformer.blocks.{bid}.attn.k_ln", # sea-lion
  566. "encoder.layer.{bid}.attention.self.layer_norm_k", # jina-bert-v2
  567. "transformer.layers.{bid}.attn.k_norm", # openelm
  568. "model.layers.layers.{bid}.mixer.k", # plamo2
  569. "layers.{bid}.self_attn.k_norm", # qwen3-embedding
  570. "model.layers.{bid}.attention.key_layernorm", # apertus
  571. ),
  572. MODEL_TENSOR.ROPE_FREQS: (
  573. "language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq", # persimmon
  574. ),
  575. MODEL_TENSOR.LAYER_OUT_NORM: (
  576. "encoder.layer.{bid}.output.LayerNorm", # bert
  577. "transformer.layer.{bid}.output_layer_norm", # distillbert
  578. "encoder.layers.{bid}.norm2", # nomic-bert
  579. "transformer.decoder_layer.{bid}.rms_norm_3", # Grok
  580. "encoder.layer.{bid}.mlp.layernorm", # jina-bert-v2
  581. "encoder.layer.{bid}.layer_norm_2", # jina-v2-code
  582. "model.layers.{bid}.final_layernorm", # bailingmoe2
  583. ),
  584. MODEL_TENSOR.PER_LAYER_TOKEN_EMBD: (
  585. "model.embed_tokens_per_layer", # gemma3n
  586. ),
  587. MODEL_TENSOR.PER_LAYER_MODEL_PROJ: (
  588. "model.per_layer_model_projection", # gemma3n
  589. ),
  590. MODEL_TENSOR.PER_LAYER_PROJ_NORM: (
  591. "model.per_layer_projection_norm", # gemma3n
  592. ),
  593. MODEL_TENSOR.ALTUP_PROJ: (
  594. "model.altup_projections", # gemma3n
  595. ),
  596. MODEL_TENSOR.ALTUP_UNEMBD_PROJ: (
  597. "model.altup_unembed_projections", # gemma3n
  598. ),
  599. MODEL_TENSOR.PER_LAYER_INP_GATE: (
  600. "model.layers.{bid}.per_layer_input_gate", # gemma3n
  601. ),
  602. MODEL_TENSOR.PER_LAYER_PROJ: (
  603. "model.layers.{bid}.per_layer_projection", # gemma3n
  604. ),
  605. MODEL_TENSOR.PER_LAYER_POST_NORM: (
  606. "model.layers.{bid}.post_per_layer_input_norm", # gemma3n
  607. ),
  608. MODEL_TENSOR.ALTUP_CORRECT_COEF: (
  609. "model.layers.{bid}.altup.correction_coefs", # gemma3n
  610. ),
  611. MODEL_TENSOR.ALTUP_CORRECT_SCALE: (
  612. "model.layers.{bid}.altup.correct_output_scale", # gemma3n
  613. ),
  614. MODEL_TENSOR.ALTUP_PREDICT_COEF: (
  615. "model.layers.{bid}.altup.prediction_coefs", # gemma3n
  616. ),
  617. MODEL_TENSOR.ALTUP_ROUTER: (
  618. "model.layers.{bid}.altup.modality_router", # gemma3n
  619. ),
  620. MODEL_TENSOR.ALTUP_ROUTER_NORM: (
  621. "model.layers.{bid}.altup.router_norm", # gemma3n
  622. ),
  623. MODEL_TENSOR.LAUREL_L: (
  624. "model.layers.{bid}.laurel.linear_left", # gemma3n
  625. ),
  626. MODEL_TENSOR.LAUREL_R: (
  627. "model.layers.{bid}.laurel.linear_right", # gemma3n
  628. ),
  629. MODEL_TENSOR.LAUREL_POST_NORM: (
  630. "model.layers.{bid}.laurel.post_laurel_norm", # gemma3n
  631. ),
  632. MODEL_TENSOR.SSM_IN: (
  633. "model.layers.{bid}.in_proj", # mamba-hf
  634. "backbone.layers.{bid}.mixer.in_proj", # mamba
  635. "model.layers.{bid}.mamba.in_proj", # jamba falcon-h1 granite-hybrid
  636. "model.layers.layers.{bid}.mixer.in_proj", # plamo2
  637. "model.layers.{bid}.linear_attn.in_proj_qkvz", # qwen3next
  638. ),
  639. MODEL_TENSOR.SSM_CONV1D: (
  640. "model.layers.{bid}.conv1d", # mamba-hf
  641. "backbone.layers.{bid}.mixer.conv1d", # mamba
  642. "model.layers.{bid}.mamba.conv1d", # jamba falcon-h1 granite-hybrid
  643. "model.layers.layers.{bid}.mixer.conv1d", # plamo2
  644. "model.layers.{bid}.linear_attn.conv1d", # qwen3next
  645. ),
  646. MODEL_TENSOR.SSM_X: (
  647. "model.layers.{bid}.x_proj", # mamba-hf
  648. "backbone.layers.{bid}.mixer.x_proj", # mamba
  649. "model.layers.{bid}.mamba.x_proj", # jamba
  650. "model.layers.layers.{bid}.mixer.bcdt_proj", # plamo2
  651. ),
  652. MODEL_TENSOR.SSM_DT: (
  653. "model.layers.{bid}.dt_proj", # mamba-hf
  654. "backbone.layers.{bid}.mixer.dt_proj", # mamba
  655. "model.layers.{bid}.mamba.dt_proj", # jamba falcon-h1 granite-hybrid
  656. "model.layers.layers.{bid}.mixer.dt_proj", # plamo2
  657. "model.layers.{bid}.linear_attn.dt_proj", # qwen3next
  658. "backbone.layers.{bid}.mixer.dt", # nemotron-h-moe
  659. ),
  660. MODEL_TENSOR.SSM_DT_NORM: (
  661. "model.layers.layers.{bid}.mixer.dt_norm.weight", # plamo2
  662. "model.layers.{bid}.mamba.dt_layernorm", # jamba
  663. ),
  664. MODEL_TENSOR.SSM_A: (
  665. "model.layers.{bid}.A_log", # mamba-hf
  666. "backbone.layers.{bid}.mixer.A_log", # mamba
  667. "model.layers.{bid}.mamba.A_log", # jamba falcon-h1 granite-hybrid
  668. "model.layers.layers.{bid}.mixer.A_log", # plamo2
  669. "model.layers.{bid}.linear_attn.A_log", # qwen3next
  670. ),
  671. MODEL_TENSOR.SSM_B_NORM: (
  672. "model.layers.{bid}.mamba.b_layernorm", # jamba
  673. "model.layers.{bid}.mamba.B_layernorm", # mini-jamba
  674. "model.layers.layers.{bid}.mixer.B_norm.weight", # plamo2
  675. ),
  676. MODEL_TENSOR.SSM_C_NORM: (
  677. "model.layers.{bid}.mamba.c_layernorm", # jamba
  678. "model.layers.{bid}.mamba.C_layernorm", # mini-jamba
  679. "model.layers.layers.{bid}.mixer.C_norm.weight", # plamo2
  680. ),
  681. MODEL_TENSOR.SSM_D: (
  682. "model.layers.{bid}.D", # mamba-hf
  683. "backbone.layers.{bid}.mixer.D", # mamba
  684. "model.layers.{bid}.mamba.D", # jamba falcon-h1 granite-hybrid
  685. "model.layers.layers.{bid}.mixer.D", # plamo2
  686. ),
  687. MODEL_TENSOR.SSM_NORM: (
  688. "model.layers.{bid}.mamba.norm", # falcon-h1 granite-hybrid
  689. "model.layers.{bid}.linear_attn.norm", # qwen3next
  690. "backbone.layers.{bid}.mixer.norm", # mamba2
  691. ),
  692. MODEL_TENSOR.SSM_OUT: (
  693. "model.layers.{bid}.out_proj", # mamba-hf
  694. "backbone.layers.{bid}.mixer.out_proj", # mamba
  695. "model.layers.{bid}.mamba.out_proj", # jamba falcon-h1 granite-hybrid
  696. "model.layers.{bid}.linear_attn.out_proj", # qwen3next
  697. "model.layers.layers.{bid}.mixer.out_proj", # plamo2
  698. ),
  699. MODEL_TENSOR.SSM_BETA_ALPHA: (
  700. "model.layers.{bid}.linear_attn.in_proj_ba", # qwen3next
  701. ),
  702. MODEL_TENSOR.TIME_MIX_W0: (
  703. "model.layers.{bid}.attention.w0", # rwkv7
  704. ),
  705. MODEL_TENSOR.TIME_MIX_W1: (
  706. "rwkv.blocks.{bid}.attention.time_maa_w1", # rwkv6
  707. "model.layers.{bid}.self_attn.time_maa_w1", # rwkv6qwen2
  708. "model.layers.{bid}.attention.w1", # rwkv7
  709. ),
  710. MODEL_TENSOR.TIME_MIX_W2: (
  711. "rwkv.blocks.{bid}.attention.time_maa_w2", # rwkv6
  712. "model.layers.{bid}.self_attn.time_maa_w2", # rwkv6qwen2
  713. "model.layers.{bid}.attention.w2", # rwkv7
  714. ),
  715. MODEL_TENSOR.TIME_MIX_A0: (
  716. "model.layers.{bid}.attention.a0", # rwkv7
  717. ),
  718. MODEL_TENSOR.TIME_MIX_A1: (
  719. "model.layers.{bid}.attention.a1", # rwkv7
  720. ),
  721. MODEL_TENSOR.TIME_MIX_A2: (
  722. "model.layers.{bid}.attention.a2", # rwkv7
  723. ),
  724. MODEL_TENSOR.TIME_MIX_V0: (
  725. "model.layers.{bid}.attention.v0", # rwkv7
  726. ),
  727. MODEL_TENSOR.TIME_MIX_V1: (
  728. "model.layers.{bid}.attention.v1", # rwkv7
  729. ),
  730. MODEL_TENSOR.TIME_MIX_V2: (
  731. "model.layers.{bid}.attention.v2", # rwkv7
  732. ),
  733. MODEL_TENSOR.TIME_MIX_G1: (
  734. "model.layers.{bid}.attention.g1", # rwkv7
  735. ),
  736. MODEL_TENSOR.TIME_MIX_G2: (
  737. "model.layers.{bid}.attention.g2", # rwkv7
  738. ),
  739. MODEL_TENSOR.TIME_MIX_K_K: (
  740. "model.layers.{bid}.attention.k_k", # rwkv7
  741. ),
  742. MODEL_TENSOR.TIME_MIX_K_A: (
  743. "model.layers.{bid}.attention.k_a", # rwkv7
  744. ),
  745. MODEL_TENSOR.TIME_MIX_R_K: (
  746. "model.layers.{bid}.attention.r_k", # rwkv7
  747. ),
  748. MODEL_TENSOR.TIME_MIX_LERP_X: (
  749. "rwkv.blocks.{bid}.attention.time_maa_x", # rwkv6
  750. "model.layers.{bid}.self_attn.time_maa_x", # rwkv6qwen2
  751. ),
  752. MODEL_TENSOR.TIME_MIX_LERP_K: (
  753. "rwkv.blocks.{bid}.attention.time_maa_k", # rwkv6
  754. "model.layers.{bid}.self_attn.time_maa_k", # rwkv6qwen2
  755. ),
  756. MODEL_TENSOR.TIME_MIX_LERP_V: (
  757. "rwkv.blocks.{bid}.attention.time_maa_v", # rwkv6
  758. "model.layers.{bid}.self_attn.time_maa_v", # rwkv6qwen2
  759. ),
  760. MODEL_TENSOR.TIME_MIX_LERP_R: (
  761. "rwkv.blocks.{bid}.attention.time_maa_r", # rwkv6
  762. "model.layers.{bid}.self_attn.time_maa_r", # rwkv6qwen2
  763. ),
  764. MODEL_TENSOR.TIME_MIX_LERP_G: (
  765. "rwkv.blocks.{bid}.attention.time_maa_g", # rwkv6
  766. "model.layers.{bid}.self_attn.time_maa_g", # rwkv6qwen2
  767. ),
  768. MODEL_TENSOR.TIME_MIX_LERP_W: (
  769. "rwkv.blocks.{bid}.attention.time_maa_w", # rwkv6
  770. "model.layers.{bid}.self_attn.time_maa_w", # rwkv6qwen2
  771. ),
  772. MODEL_TENSOR.TIME_MIX_FIRST: (
  773. "rwkv.blocks.{bid}.attention.time_faaaa", # rwkv6
  774. ),
  775. MODEL_TENSOR.TIME_MIX_DECAY: (
  776. "rwkv.blocks.{bid}.attention.time_decay", # rwkv6
  777. "model.layers.{bid}.self_attn.time_decay", # rwkv6qwen2
  778. ),
  779. MODEL_TENSOR.TIME_MIX_DECAY_W1: (
  780. "rwkv.blocks.{bid}.attention.time_decay_w1", # rwkv6
  781. "model.layers.{bid}.self_attn.time_decay_w1", # rwkv6qwen2
  782. ),
  783. MODEL_TENSOR.TIME_MIX_DECAY_W2: (
  784. "rwkv.blocks.{bid}.attention.time_decay_w2", # rwkv6
  785. "model.layers.{bid}.self_attn.time_decay_w2", # rwkv6qwen2
  786. ),
  787. MODEL_TENSOR.TIME_MIX_KEY: (
  788. "rwkv.blocks.{bid}.attention.key", # rwkv6
  789. "model.layers.{bid}.self_attn.k_proj", # rwkv6qwen2
  790. "model.layers.{bid}.attention.key", # rwkv7
  791. "model.layers.{bid}.attention.k_proj", # rwkv7
  792. ),
  793. MODEL_TENSOR.TIME_MIX_VALUE: (
  794. "rwkv.blocks.{bid}.attention.value", # rwkv6
  795. "model.layers.{bid}.self_attn.v_proj", # rwkv6qwen2
  796. "model.layers.{bid}.attention.value", # rwkv7
  797. "model.layers.{bid}.attention.v_proj", # rwkv7
  798. ),
  799. MODEL_TENSOR.TIME_MIX_RECEPTANCE: (
  800. "rwkv.blocks.{bid}.attention.receptance", # rwkv6
  801. "model.layers.{bid}.self_attn.q_proj", # rwkv6qwen2
  802. "model.layers.{bid}.attention.receptance", # rwkv7
  803. "model.layers.{bid}.attention.r_proj", # rwkv7
  804. ),
  805. MODEL_TENSOR.TIME_MIX_GATE: (
  806. "rwkv.blocks.{bid}.attention.gate", # rwkv6
  807. "model.layers.{bid}.self_attn.gate", # rwkv6qwen2
  808. ),
  809. MODEL_TENSOR.TIME_MIX_LN: (
  810. "rwkv.blocks.{bid}.attention.ln_x", # rwkv6
  811. "model.layers.{bid}.attention.ln_x" # rwkv7
  812. ),
  813. MODEL_TENSOR.TIME_MIX_OUTPUT: (
  814. "rwkv.blocks.{bid}.attention.output", # rwkv6
  815. "model.layers.{bid}.self_attn.o_proj", # rwkv6qwen2
  816. "model.layers.{bid}.attention.output", # rwkv7
  817. "model.layers.{bid}.attention.o_proj", # rwkv7
  818. ),
  819. MODEL_TENSOR.CHANNEL_MIX_LERP_K: (
  820. "rwkv.blocks.{bid}.feed_forward.time_maa_k", # rwkv6
  821. "model.layers.{bid}.feed_forward.x_k", # rwkv7
  822. ),
  823. MODEL_TENSOR.CHANNEL_MIX_LERP_R: (
  824. "rwkv.blocks.{bid}.feed_forward.time_maa_r", # rwkv6
  825. ),
  826. MODEL_TENSOR.CHANNEL_MIX_KEY: (
  827. "rwkv.blocks.{bid}.feed_forward.key", # rwkv6
  828. "model.layers.{bid}.feed_forward.key", # rwkv7
  829. ),
  830. MODEL_TENSOR.CHANNEL_MIX_RECEPTANCE: (
  831. "rwkv.blocks.{bid}.feed_forward.receptance", # rwkv6
  832. ),
  833. MODEL_TENSOR.CHANNEL_MIX_VALUE: (
  834. "rwkv.blocks.{bid}.feed_forward.value", # rwkv6
  835. "model.layers.{bid}.feed_forward.value", # rwkv7
  836. ),
  837. MODEL_TENSOR.ATTN_Q_A: (
  838. "model.layers.{bid}.self_attn.q_a_proj", # deepseek2
  839. "layers.{bid}.attention.wq_a", # mistral-large
  840. ),
  841. MODEL_TENSOR.ATTN_Q_B: (
  842. "model.layers.{bid}.self_attn.q_b_proj", # deepseek2
  843. "layers.{bid}.attention.wq_b", # mistral-large
  844. ),
  845. MODEL_TENSOR.ATTN_KV_A_MQA: (
  846. "model.layers.{bid}.self_attn.kv_a_proj_with_mqa", # deepseek2
  847. "layers.{bid}.attention.wkv_a_with_mqa", # mistral-large
  848. ),
  849. MODEL_TENSOR.ATTN_KV_B: (
  850. "model.layers.{bid}.self_attn.kv_b_proj", # deepseek2
  851. ),
  852. MODEL_TENSOR.ATTN_K_B: (
  853. "model.layers.{bid}.self_attn.k_b_proj", # deepseek2
  854. "layers.{bid}.attention.k_b_proj", # mistral-large
  855. ),
  856. MODEL_TENSOR.ATTN_V_B: (
  857. "model.layers.{bid}.self_attn.v_b_proj", # deepseek2
  858. "layers.{bid}.attention.v_b_proj", # mistral-large
  859. ),
  860. MODEL_TENSOR.ATTN_Q_A_NORM: (
  861. "model.layers.{bid}.self_attn.q_a_layernorm", # deepseek2
  862. "layers.{bid}.attention.q_a_norm", # mistral-large
  863. ),
  864. MODEL_TENSOR.ATTN_KV_A_NORM: (
  865. "model.layers.{bid}.self_attn.kv_a_layernorm", # deepseek2
  866. "layers.{bid}.attention.kv_a_norm", # mistral-large
  867. ),
  868. MODEL_TENSOR.ATTN_SUB_NORM: (
  869. "model.layers.{bid}.self_attn.inner_attn_ln", # bitnet
  870. ),
  871. MODEL_TENSOR.FFN_SUB_NORM: (
  872. "model.layers.{bid}.mlp.ffn_layernorm", # bitnet
  873. ),
  874. MODEL_TENSOR.DEC_ATTN_NORM: (
  875. "decoder.block.{bid}.layer.0.layer_norm", # t5
  876. ),
  877. MODEL_TENSOR.DEC_ATTN_Q: (
  878. "decoder.block.{bid}.layer.0.SelfAttention.q", # t5
  879. ),
  880. MODEL_TENSOR.DEC_ATTN_K: (
  881. "decoder.block.{bid}.layer.0.SelfAttention.k", # t5
  882. ),
  883. MODEL_TENSOR.DEC_ATTN_V: (
  884. "decoder.block.{bid}.layer.0.SelfAttention.v", # t5
  885. ),
  886. MODEL_TENSOR.DEC_ATTN_OUT: (
  887. "decoder.block.{bid}.layer.0.SelfAttention.o", # t5
  888. ),
  889. MODEL_TENSOR.DEC_ATTN_REL_B: (
  890. "decoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  891. ),
  892. MODEL_TENSOR.DEC_CROSS_ATTN_NORM: (
  893. "decoder.block.{bid}.layer.1.layer_norm", # t5
  894. ),
  895. MODEL_TENSOR.DEC_CROSS_ATTN_Q: (
  896. "decoder.block.{bid}.layer.1.EncDecAttention.q", # t5
  897. ),
  898. MODEL_TENSOR.DEC_CROSS_ATTN_K: (
  899. "decoder.block.{bid}.layer.1.EncDecAttention.k", # t5
  900. ),
  901. MODEL_TENSOR.DEC_CROSS_ATTN_V: (
  902. "decoder.block.{bid}.layer.1.EncDecAttention.v", # t5
  903. ),
  904. MODEL_TENSOR.DEC_CROSS_ATTN_OUT: (
  905. "decoder.block.{bid}.layer.1.EncDecAttention.o", # t5
  906. ),
  907. MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: (
  908. "decoder.block.{bid}.layer.1.EncDecAttention.relative_attention_bias", # t5
  909. ),
  910. MODEL_TENSOR.DEC_FFN_NORM: (
  911. "decoder.block.{bid}.layer.2.layer_norm", # t5
  912. ),
  913. MODEL_TENSOR.DEC_FFN_GATE: (
  914. "decoder.block.{bid}.layer.2.DenseReluDense.wi_0", # flan-t5
  915. ),
  916. MODEL_TENSOR.DEC_FFN_UP: (
  917. "decoder.block.{bid}.layer.2.DenseReluDense.wi", # t5
  918. "decoder.block.{bid}.layer.2.DenseReluDense.wi_1", # flan-t5
  919. ),
  920. MODEL_TENSOR.DEC_FFN_DOWN: (
  921. "decoder.block.{bid}.layer.2.DenseReluDense.wo", # t5
  922. ),
  923. MODEL_TENSOR.DEC_OUTPUT_NORM: (
  924. "decoder.final_layer_norm", # t5
  925. ),
  926. MODEL_TENSOR.ENC_ATTN_NORM: (
  927. "encoder.block.{bid}.layer.0.layer_norm", # t5
  928. ),
  929. MODEL_TENSOR.ENC_ATTN_Q: (
  930. "encoder.block.{bid}.layer.0.SelfAttention.q", # t5
  931. ),
  932. MODEL_TENSOR.ENC_ATTN_K: (
  933. "encoder.block.{bid}.layer.0.SelfAttention.k", # t5
  934. ),
  935. MODEL_TENSOR.ENC_ATTN_V: (
  936. "encoder.block.{bid}.layer.0.SelfAttention.v", # t5
  937. ),
  938. MODEL_TENSOR.ENC_ATTN_OUT: (
  939. "encoder.block.{bid}.layer.0.SelfAttention.o", # t5
  940. ),
  941. MODEL_TENSOR.ENC_ATTN_REL_B: (
  942. "encoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  943. ),
  944. MODEL_TENSOR.ENC_FFN_NORM: (
  945. "encoder.block.{bid}.layer.1.layer_norm", # t5
  946. ),
  947. MODEL_TENSOR.ENC_FFN_GATE: (
  948. "encoder.block.{bid}.layer.1.DenseReluDense.wi_0", # flan-t5
  949. ),
  950. MODEL_TENSOR.ENC_FFN_UP: (
  951. "encoder.block.{bid}.layer.1.DenseReluDense.wi", # t5
  952. "encoder.block.{bid}.layer.1.DenseReluDense.wi_1", # flan-t5
  953. ),
  954. MODEL_TENSOR.ENC_FFN_DOWN: (
  955. "encoder.block.{bid}.layer.1.DenseReluDense.wo", # t5
  956. ),
  957. MODEL_TENSOR.VISEXP_UP: (
  958. "model.layers.{bid}.mlp.vision_mlp.up_proj", # cogvlm
  959. ),
  960. MODEL_TENSOR.VISEXP_GATE: (
  961. "model.layers.{bid}.mlp.vision_mlp.gate_proj", # cogvlm
  962. ),
  963. MODEL_TENSOR.VISEXP_DOWN: (
  964. "model.layers.{bid}.mlp.vision_mlp.down_proj", # cogvlm
  965. ),
  966. MODEL_TENSOR.VISEXP_ATTN_OUT: (
  967. "model.layers.{bid}.self_attn.vision_expert_dense", # cogvlm
  968. ),
  969. MODEL_TENSOR.VISEXP_ATTN_QKV: (
  970. "model.layers.{bid}.self_attn.vision_expert_query_key_value", # cogvlm
  971. ),
  972. ############################################################################
  973. # TODO: these do not belong to block_mappings_cfg - move them to mappings_cfg
  974. MODEL_TENSOR.ENC_OUTPUT_NORM: (
  975. "encoder.final_layer_norm", # t5
  976. "layer_norm", # neobert
  977. ),
  978. MODEL_TENSOR.CLS: (
  979. "classifier", # jina
  980. "classifier.dense", # roberta
  981. "pre_classifier", # distillbert
  982. "dense", # neobert
  983. "head.dense", # modern-bert
  984. ),
  985. MODEL_TENSOR.CLS_OUT: (
  986. "classifier.out_proj", # roberta
  987. ),
  988. #############################################################################
  989. MODEL_TENSOR.CONVNEXT_DW: (
  990. "backbone.convnext.{bid}.dwconv", # wavtokenizer
  991. ),
  992. MODEL_TENSOR.CONVNEXT_NORM: (
  993. "backbone.convnext.{bid}.norm", # wavtokenizer
  994. ),
  995. MODEL_TENSOR.CONVNEXT_PW1: (
  996. "backbone.convnext.{bid}.pwconv1", # wavtokenizer
  997. ),
  998. MODEL_TENSOR.CONVNEXT_PW2: (
  999. "backbone.convnext.{bid}.pwconv2", # wavtokenizer
  1000. ),
  1001. MODEL_TENSOR.CONVNEXT_GAMMA: (
  1002. "backbone.convnext.{bid}.gamma", # wavtokenizer
  1003. ),
  1004. MODEL_TENSOR.POSNET_CONV1: (
  1005. "backbone.posnet.{bid}.conv1", # wavtokenizer
  1006. ),
  1007. MODEL_TENSOR.POSNET_CONV2: (
  1008. "backbone.posnet.{bid}.conv2", # wavtokenizer
  1009. ),
  1010. MODEL_TENSOR.POSNET_NORM: (
  1011. "backbone.posnet.{bid}.norm", # wavtokenizer
  1012. ),
  1013. MODEL_TENSOR.POSNET_NORM1: (
  1014. "backbone.posnet.{bid}.norm1", # wavtokenizer
  1015. ),
  1016. MODEL_TENSOR.POSNET_NORM2: (
  1017. "backbone.posnet.{bid}.norm2", # wavtokenizer
  1018. ),
  1019. MODEL_TENSOR.POSNET_ATTN_NORM: (
  1020. "backbone.posnet.{bid}.norm", # wavtokenizer
  1021. ),
  1022. MODEL_TENSOR.POSNET_ATTN_Q: (
  1023. "backbone.posnet.{bid}.q", # wavtokenizer
  1024. ),
  1025. MODEL_TENSOR.POSNET_ATTN_K: (
  1026. "backbone.posnet.{bid}.k", # wavtokenizer
  1027. ),
  1028. MODEL_TENSOR.POSNET_ATTN_V: (
  1029. "backbone.posnet.{bid}.v", # wavtokenizer
  1030. ),
  1031. MODEL_TENSOR.POSNET_ATTN_OUT: (
  1032. "backbone.posnet.{bid}.proj_out", # wavtokenizer
  1033. ),
  1034. MODEL_TENSOR.SHORTCONV_CONV: (
  1035. "model.layers.{bid}.conv.conv",
  1036. ),
  1037. MODEL_TENSOR.SHORTCONV_INPROJ: (
  1038. "model.layers.{bid}.conv.in_proj",
  1039. ),
  1040. MODEL_TENSOR.SHORTCONV_OUTPROJ: (
  1041. "model.layers.{bid}.conv.out_proj",
  1042. ),
  1043. #############################################################################
  1044. ## Vision encoder
  1045. MODEL_TENSOR.V_MMPROJ: (
  1046. "multi_modal_projector.linear_{bid}",
  1047. "visual.merger.mlp.{bid}", # qwen2vl
  1048. ),
  1049. MODEL_TENSOR.V_MMPROJ_FC: (
  1050. "model.connector.modality_projection.proj", # SmolVLM
  1051. "model.vision.linear_proj.linear_proj", # cogvlm
  1052. "visual.merger.proj", # glm4v
  1053. ),
  1054. MODEL_TENSOR.V_MMPROJ_MLP: (
  1055. "model.mm_projector.mlp.mlp.{bid}",
  1056. "vision_model.vision_adapter.mlp.fc{bid}", # llama 4
  1057. "mlp1.{bid}", # InternVL
  1058. "model.aligner.fc1.hidden_layers.{bid}", # Janus Pro
  1059. ),
  1060. MODEL_TENSOR.V_MMPROJ_PEG: (
  1061. "model.mm_projector.peg.peg.{bid}",
  1062. ),
  1063. MODEL_TENSOR.V_ENC_EMBD_CLS: (
  1064. "vision_tower.vision_model.embeddings.class_embedding",
  1065. "model.vision_tower.embeddings.cls_token", # Intern-S1
  1066. "vision_model.class_embedding", # llama 4
  1067. "model.vision.patch_embedding.cls_embedding", # cogvlm
  1068. ),
  1069. MODEL_TENSOR.V_ENC_EMBD_PATCH: (
  1070. "vision_tower.vision_model.embeddings.patch_embedding",
  1071. "model.vision_tower.embeddings.patch_embeddings.projection", # Intern-S1
  1072. "vpm.embeddings.patch_embedding",
  1073. "model.vision_model.embeddings.patch_embedding", # SmolVLM
  1074. "vision_tower.patch_conv", # pixtral-hf
  1075. "vision_encoder.patch_conv", # pixtral
  1076. "vision_model.patch_embedding.linear", # llama 4
  1077. "visual.patch_embed.proj", # qwen2vl
  1078. "vision_tower.patch_embed.proj", # kimi-vl
  1079. "model.vision.patch_embedding.proj", # cogvlm
  1080. ),
  1081. MODEL_TENSOR.V_ENC_EMBD_NORM: (
  1082. "visual.post_conv_layernorm", # glm4v
  1083. ),
  1084. MODEL_TENSOR.V_ENC_EMBD_POS: (
  1085. "vision_tower.vision_model.embeddings.position_embedding",
  1086. "model.vision_tower.embeddings.position_embeddings", # Intern-S1
  1087. "vpm.embeddings.position_embedding",
  1088. "model.vision_model.embeddings.position_embedding", # SmolVLM
  1089. "vision_model.positional_embedding_vlm", # llama 4
  1090. "vision_tower.patch_embed.pos_emb", # kimi-vl
  1091. "visual.pos_embed", # qwen3vl
  1092. "model.vision.patch_embedding.position_embedding", # cogvlm
  1093. "visual.embeddings.position_embedding", # glm4v
  1094. ),
  1095. MODEL_TENSOR.V_ENC_ATTN_QKV: (
  1096. "visual.blocks.{bid}.attn.qkv", # qwen3vl
  1097. "model.vision.transformer.layers.{bid}.attention.query_key_value", # cogvlm
  1098. ),
  1099. MODEL_TENSOR.V_ENC_ATTN_Q: (
  1100. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.q_proj",
  1101. "model.vision_tower.encoder.layer.{bid}.attention.q_proj", # Intern-S1
  1102. "vpm.encoder.layers.{bid}.self_attn.q_proj",
  1103. "model.vision_model.encoder.layers.{bid}.self_attn.q_proj", # SmolVLM
  1104. "vision_model.model.layers.{bid}.self_attn.q_proj", # llama4
  1105. "vision_tower.transformer.layers.{bid}.attention.q_proj", # pixtral-hf
  1106. "vision_encoder.transformer.layers.{bid}.attention.wq", # pixtral
  1107. "visual.blocks.{bid}.attn.q", # qwen2vl, generated
  1108. "vision_tower.encoder.blocks.{bid}.wq", # kimi-vl, generated
  1109. ),
  1110. MODEL_TENSOR.V_ENC_ATTN_Q_NORM: (
  1111. "vision_tower.vision_model.encoder.layers.{bid}.attn.q_norm", # InternVL
  1112. "model.vision_tower.encoder.layer.{bid}.attention.q_norm", # Intern-S1
  1113. ),
  1114. MODEL_TENSOR.V_ENC_ATTN_K: (
  1115. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.k_proj",
  1116. "model.vision_tower.encoder.layer.{bid}.attention.k_proj", # Intern-S1
  1117. "vpm.encoder.layers.{bid}.self_attn.k_proj",
  1118. "model.vision_model.encoder.layers.{bid}.self_attn.k_proj", # SmolVLM
  1119. "vision_model.model.layers.{bid}.self_attn.k_proj", # llama4
  1120. "vision_tower.transformer.layers.{bid}.attention.k_proj", # pixtral-hf
  1121. "vision_encoder.transformer.layers.{bid}.attention.wk", # pixtral
  1122. "visual.blocks.{bid}.attn.k", # qwen2vl, generated
  1123. "vision_tower.encoder.blocks.{bid}.wk", # kimi-vl, generated
  1124. ),
  1125. MODEL_TENSOR.V_ENC_ATTN_K_NORM: (
  1126. "vision_tower.vision_model.encoder.layers.{bid}.attn.k_norm", # InternVL
  1127. "model.vision_tower.encoder.layer.{bid}.attention.k_norm", # Intern-S1
  1128. ),
  1129. MODEL_TENSOR.V_ENC_ATTN_V: (
  1130. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.v_proj",
  1131. "model.vision_tower.encoder.layer.{bid}.attention.v_proj", # Intern-S1
  1132. "vpm.encoder.layers.{bid}.self_attn.v_proj",
  1133. "model.vision_model.encoder.layers.{bid}.self_attn.v_proj", # SmolVLM
  1134. "vision_model.model.layers.{bid}.self_attn.v_proj", # llama4
  1135. "vision_tower.transformer.layers.{bid}.attention.v_proj", # pixtral-hf
  1136. "vision_encoder.transformer.layers.{bid}.attention.wv", # pixtral
  1137. "visual.blocks.{bid}.attn.v", # qwen2vl, generated
  1138. "vision_tower.encoder.blocks.{bid}.wv", # kimi-vl, generated
  1139. ),
  1140. MODEL_TENSOR.V_ENC_INPUT_NORM: (
  1141. "vision_tower.vision_model.encoder.layers.{bid}.layer_norm1",
  1142. "vision_tower.vision_model.encoder.layers.{bid}.norm1", # InternVL
  1143. "model.vision_tower.encoder.layer.{bid}.layernorm_before", # Intern-S1
  1144. "vpm.encoder.layers.{bid}.layer_norm1",
  1145. "model.vision_model.encoder.layers.{bid}.layer_norm1", # SmolVLM
  1146. "vision_tower.transformer.layers.{bid}.attention_norm", # pixtral-hf
  1147. "vision_encoder.transformer.layers.{bid}.attention_norm", # pixtral
  1148. "vision_model.model.layers.{bid}.input_layernorm", # llama4
  1149. "visual.blocks.{bid}.norm1", # qwen2vl
  1150. "vision_tower.encoder.blocks.{bid}.norm0", # kimi-vl (norm0/norm1)
  1151. "model.vision.transformer.layers.{bid}.input_layernorm", # cogvlm
  1152. ),
  1153. MODEL_TENSOR.V_ENC_ATTN_O: (
  1154. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.out_proj",
  1155. "vision_tower.vision_model.encoder.layers.{bid}.attn.proj", # InternVL
  1156. "model.vision_tower.encoder.layer.{bid}.attention.projection_layer", # Intern-S1
  1157. "vpm.encoder.layers.{bid}.self_attn.out_proj",
  1158. "model.vision_model.encoder.layers.{bid}.self_attn.out_proj", # SmolVLM
  1159. "model.vision_model.encoder.layers.{bid}.self_attn.projection_layer", # Janus Pro
  1160. "vision_model.model.layers.{bid}.self_attn.o_proj", # llama4
  1161. "vision_tower.transformer.layers.{bid}.attention.o_proj", # pixtral-hf
  1162. "vision_encoder.transformer.layers.{bid}.attention.wo", # pixtral
  1163. "visual.blocks.{bid}.attn.proj", # qwen2vl
  1164. "vision_tower.encoder.blocks.{bid}.wo", # kimi-vl
  1165. "model.vision.transformer.layers.{bid}.attention.dense", # cogvlm
  1166. ),
  1167. MODEL_TENSOR.V_ENC_POST_ATTN_NORM: (
  1168. "vision_tower.vision_model.encoder.layers.{bid}.layer_norm2",
  1169. "vision_tower.vision_model.encoder.layers.{bid}.norm2", # InternVL
  1170. "model.vision_tower.encoder.layer.{bid}.layernorm_after", # Intern-S1
  1171. "vpm.encoder.layers.{bid}.layer_norm2",
  1172. "model.vision_model.encoder.layers.{bid}.layer_norm2", # SmolVLM
  1173. "vision_model.model.layers.{bid}.post_attention_layernorm", # llama4
  1174. "vision_tower.transformer.layers.{bid}.ffn_norm", # pixtral-hf
  1175. "vision_encoder.transformer.layers.{bid}.ffn_norm", # pixtral
  1176. "visual.blocks.{bid}.norm2", # qwen2vl
  1177. "vision_tower.encoder.blocks.{bid}.norm1", # kimi-vl (norm0/norm1)
  1178. "model.vision.transformer.layers.{bid}.post_attention_layernorm", # cogvlm
  1179. ),
  1180. MODEL_TENSOR.V_ENC_FFN_UP: (
  1181. "vision_tower.vision_model.encoder.layers.{bid}.mlp.fc1",
  1182. "model.vision_tower.encoder.layer.{bid}.mlp.fc1", # Intern-S1
  1183. "vpm.encoder.layers.{bid}.mlp.fc1",
  1184. "model.vision_model.encoder.layers.{bid}.mlp.fc1", # SmolVLM, gemma3
  1185. "vision_tower.transformer.layers.{bid}.feed_forward.up_proj", # pixtral-hf
  1186. "vision_encoder.transformer.layers.{bid}.feed_forward.w3", # pixtral
  1187. "vision_model.model.layers.{bid}.mlp.fc1", # llama4
  1188. "visual.blocks.{bid}.mlp.fc1", # qwen2vl
  1189. "visual.blocks.{bid}.mlp.up_proj", # qwen2.5vl
  1190. "visual.blocks.{bid}.mlp.linear_fc1", # qwen3vl
  1191. "vision_tower.encoder.blocks.{bid}.mlp.fc0", # kimi-vl (fc0/fc1)
  1192. "model.vision.transformer.layers.{bid}.mlp.fc1", # cogvlm
  1193. ),
  1194. MODEL_TENSOR.V_ENC_FFN_GATE: (
  1195. "vision_tower.transformer.layers.{bid}.feed_forward.gate_proj", # pixtral-hf
  1196. "vision_encoder.transformer.layers.{bid}.feed_forward.w1", # pixtral
  1197. "visual.blocks.{bid}.mlp.gate_proj", # qwen2.5vl
  1198. ),
  1199. MODEL_TENSOR.V_ENC_FFN_DOWN: (
  1200. "vision_tower.vision_model.encoder.layers.{bid}.mlp.fc2",
  1201. "model.vision_tower.encoder.layer.{bid}.mlp.fc2", # Intern-S1
  1202. "vpm.encoder.layers.{bid}.mlp.fc2",
  1203. "model.vision_model.encoder.layers.{bid}.mlp.fc2", # SmolVLM, gemma3
  1204. "vision_tower.transformer.layers.{bid}.feed_forward.down_proj", # pixtral-hf
  1205. "vision_encoder.transformer.layers.{bid}.feed_forward.w2", # pixtral
  1206. "vision_model.model.layers.{bid}.mlp.fc2", # llama4
  1207. "visual.blocks.{bid}.mlp.fc2", # qwen2vl
  1208. "visual.blocks.{bid}.mlp.down_proj", # qwen2.5vl
  1209. "visual.blocks.{bid}.mlp.linear_fc2", # qwen3vl
  1210. "vision_tower.encoder.blocks.{bid}.mlp.fc1", # kimi-vl (fc0/fc1)
  1211. "model.vision.transformer.layers.{bid}.mlp.fc2", # cogvlm
  1212. ),
  1213. MODEL_TENSOR.V_LAYER_SCALE_1: (
  1214. "vision_tower.vision_model.encoder.layers.{bid}.ls1", # InternVL
  1215. "model.vision_tower.encoder.layer.{bid}.lambda_1", # Intern-S1
  1216. ),
  1217. MODEL_TENSOR.V_LAYER_SCALE_2: (
  1218. "vision_tower.vision_model.encoder.layers.{bid}.ls2", # InternVL
  1219. "model.vision_tower.encoder.layer.{bid}.lambda_2", # Intern-S1
  1220. ),
  1221. MODEL_TENSOR.V_PRE_NORM: (
  1222. "vision_tower.vision_model.pre_layrnorm",
  1223. "vision_tower.ln_pre", # pixtral-hf
  1224. "vision_encoder.ln_pre", # pixtral
  1225. "vision_model.layernorm_pre", # llama4
  1226. ),
  1227. MODEL_TENSOR.V_POST_NORM: (
  1228. "vision_tower.vision_model.post_layernorm",
  1229. "model.vision_model.post_layernorm", # SmolVLM
  1230. "vision_model.layernorm_post", # llama4
  1231. "visual.merger.ln_q", # qwen2vl
  1232. "vision_tower.encoder.final_layernorm", # kimi-vl
  1233. "visual.post_layernorm", # glm4v
  1234. ),
  1235. MODEL_TENSOR.V_MM_POST_NORM: (
  1236. "visual.merger.post_projection_norm", # glm4v
  1237. ),
  1238. MODEL_TENSOR.V_MM_INP_PROJ: (
  1239. "multi_modal_projector.mm_input_projection",
  1240. ),
  1241. MODEL_TENSOR.V_MM_INP_NORM: (
  1242. "multi_modal_projector.norm",
  1243. "multi_modal_projector.layer_norm",
  1244. "multi_modal_projector.pre_norm",
  1245. "pre_mm_projector_norm",
  1246. "model.vision.linear_proj.norm1", # cogvlm
  1247. ),
  1248. MODEL_TENSOR.V_MM_SOFT_EMB_NORM: (
  1249. "multi_modal_projector.mm_soft_emb_norm",
  1250. ),
  1251. MODEL_TENSOR.V_RESMPL_POS_EMBD_K: (
  1252. "resampler.pos_embed_k",
  1253. ),
  1254. MODEL_TENSOR.V_RESMPL_ATTN_Q: (
  1255. "resampler.attn.in_proj_q", # tensor generated from resampler.attn.in_proj
  1256. ),
  1257. MODEL_TENSOR.V_RESMPL_ATTN_K: (
  1258. "resampler.attn.in_proj_k", # tensor generated from resampler.attn.in_proj
  1259. ),
  1260. MODEL_TENSOR.V_RESMPL_ATTN_V: (
  1261. "resampler.attn.in_proj_v", # tensor generated from resampler.attn.in_proj
  1262. ),
  1263. MODEL_TENSOR.V_RESMPL_ATTN_OUT: (
  1264. "resampler.attn.out_proj",
  1265. ),
  1266. MODEL_TENSOR.V_RESMPL_KV: (
  1267. "resampler.kv_proj",
  1268. ),
  1269. MODEL_TENSOR.V_RESMPL_POST_NORM: (
  1270. "resampler.ln_post",
  1271. ),
  1272. MODEL_TENSOR.V_RESMPL_KV_NORM: (
  1273. "resampler.ln_kv",
  1274. ),
  1275. MODEL_TENSOR.V_RESMPL_Q_NORM: (
  1276. "resampler.ln_q",
  1277. ),
  1278. MODEL_TENSOR.V_RESMPL_PROJ: (
  1279. "resampler.proj",
  1280. ),
  1281. MODEL_TENSOR.V_RESMPL_QUERY: (
  1282. "resampler.query",
  1283. ),
  1284. MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK: (
  1285. "v.token_embd.img_break", # for pixtral, this is a generated vector
  1286. ),
  1287. MODEL_TENSOR.V_MM_PATCH_MERGER: (
  1288. "multi_modal_projector.patch_merger.merging_layer", # mistral small 3.1 - hf
  1289. "patch_merger.merging_layer", # mistral
  1290. "visual.downsample", # glm4v
  1291. ),
  1292. MODEL_TENSOR.V_DS_NORM: (
  1293. "model.visual.deepstack_merger_list.{bid}.norm", # deepstack in qwen3vl
  1294. ),
  1295. MODEL_TENSOR.V_DS_FC1: (
  1296. "model.visual.deepstack_merger_list.{bid}.linear_fc1", # deepstack in qwen3vl
  1297. ),
  1298. MODEL_TENSOR.V_DS_FC2: (
  1299. "model.visual.deepstack_merger_list.{bid}.linear_fc2", # deepstack in qwen3vl
  1300. ),
  1301. MODEL_TENSOR.V_MM_POST_FC_NORM: (
  1302. "model.vision.linear_proj.norm1", # cogvlm
  1303. ),
  1304. MODEL_TENSOR.V_MM_UP: (
  1305. "model.vision.linear_proj.dense_h_to_4h", # cogvlm
  1306. "visual.merger.up_proj", # glm4v
  1307. ),
  1308. MODEL_TENSOR.V_MM_DOWN: (
  1309. "model.vision.linear_proj.dense_4h_to_h", # cogvlm
  1310. "visual.merger.down_proj", # glm4v
  1311. ),
  1312. MODEL_TENSOR.V_MM_GATE: (
  1313. "model.vision.linear_proj.gate_proj", # cogvlm
  1314. "visual.merger.gate_proj", # glm4v
  1315. ),
  1316. MODEL_TENSOR.V_TOK_BOI: (
  1317. "model.vision.boi", # cogvlm
  1318. ),
  1319. MODEL_TENSOR.V_TOK_EOI: (
  1320. "model.vision.eoi", # cogvlm
  1321. ),
  1322. # audio (mtmd)
  1323. MODEL_TENSOR.A_ENC_EMBD_POS: (
  1324. "audio_tower.embed_positions", # ultravox
  1325. "audio_embedding.embedding", # lfm2
  1326. ),
  1327. MODEL_TENSOR.A_ENC_EMBD_NORM: (
  1328. "audio_embedding.embedding_norm", # lfm2
  1329. ),
  1330. MODEL_TENSOR.A_ENC_EMBD_TO_LOGITS: (
  1331. "audio_embedding.to_logits", # lfm2
  1332. ),
  1333. MODEL_TENSOR.A_ENC_CONV1D: (
  1334. "audio_tower.conv{bid}", # ultravox
  1335. "conformer.pre_encode.conv.{bid}", # lfm2
  1336. ),
  1337. MODEL_TENSOR.A_PRE_NORM: (),
  1338. MODEL_TENSOR.A_POST_NORM: (
  1339. "audio_tower.layer_norm", # ultravox
  1340. "audio_tower.ln_post", # qwen2omni
  1341. ),
  1342. MODEL_TENSOR.A_ENC_ATTN_Q: (
  1343. "audio_tower.layers.{bid}.self_attn.q_proj", # ultravox
  1344. "conformer.layers.{bid}.self_attn.linear_q", # lfm2
  1345. ),
  1346. MODEL_TENSOR.A_ENC_ATTN_K: (
  1347. "audio_tower.layers.{bid}.self_attn.k_proj", # ultravox
  1348. "conformer.layers.{bid}.self_attn.linear_k", # lfm2
  1349. ),
  1350. MODEL_TENSOR.A_ENC_ATTN_V: (
  1351. "audio_tower.layers.{bid}.self_attn.v_proj", # ultravox
  1352. "conformer.layers.{bid}.self_attn.linear_v", # lfm2
  1353. ),
  1354. MODEL_TENSOR.A_ENC_INPUT_NORM: (
  1355. "audio_tower.layers.{bid}.self_attn_layer_norm", # ultravox
  1356. "conformer.layers.{bid}.norm_self_att", # lfm2
  1357. ),
  1358. MODEL_TENSOR.A_ENC_OUTPUT: (
  1359. "audio_tower.layers.{bid}.self_attn.out_proj", # ultravox
  1360. "conformer.layers.{bid}.self_attn.linear_out", # lfm2
  1361. ),
  1362. MODEL_TENSOR.A_ENC_OUTPUT_NORM: (
  1363. "audio_tower.layers.{bid}.final_layer_norm", # ultravox
  1364. "conformer.layers.{bid}.norm_out", # lfm2
  1365. ),
  1366. MODEL_TENSOR.A_ENC_FFN_NORM: (
  1367. "conformer.layers.{bid}.norm_feed_forward1", # lfm2
  1368. ),
  1369. MODEL_TENSOR.A_ENC_FFN_UP: (
  1370. "audio_tower.layers.{bid}.fc1", # ultravox
  1371. "conformer.layers.{bid}.feed_forward1.linear1", # lfm2
  1372. ),
  1373. MODEL_TENSOR.A_ENC_FFN_GATE: (),
  1374. MODEL_TENSOR.A_ENC_FFN_DOWN: (
  1375. "audio_tower.layers.{bid}.fc2", # ultravox
  1376. "conformer.layers.{bid}.feed_forward1.linear2", # lfm2
  1377. ),
  1378. MODEL_TENSOR.A_ENC_FFN_UP_1: (
  1379. "conformer.layers.{bid}.feed_forward2.linear1", # lfm2
  1380. ),
  1381. MODEL_TENSOR.A_ENC_FFN_DOWN_1: (
  1382. "conformer.layers.{bid}.feed_forward2.linear2", # lfm2
  1383. ),
  1384. MODEL_TENSOR.A_ENC_FFN_NORM_1: (
  1385. "conformer.layers.{bid}.norm_feed_forward2", # lfm2
  1386. ),
  1387. MODEL_TENSOR.A_ENC_LINEAR_POS: (
  1388. "conformer.layers.{bid}.self_attn.linear_pos", # lfm2
  1389. ),
  1390. MODEL_TENSOR.A_ENC_POS_BIAS_U: (
  1391. "conformer.layers.{bid}.self_attn.pos_bias_u", # lfm2
  1392. ),
  1393. MODEL_TENSOR.A_ENC_POS_BIAS_V: (
  1394. "conformer.layers.{bid}.self_attn.pos_bias_v", # lfm2
  1395. ),
  1396. MODEL_TENSOR.A_ENC_OUT: (
  1397. "conformer.pre_encode.out", # lfm2
  1398. ),
  1399. # note: some tensors below has "audio." pseudo-prefix, to prevent conflicts with vision tensors
  1400. # this prefix is added in the conversion code in modify_tensors()
  1401. MODEL_TENSOR.A_MMPROJ: (
  1402. "audio.multi_modal_projector.linear_{bid}", # ultravox
  1403. "audio_adapter.model.{bid}" # lfm2
  1404. ),
  1405. MODEL_TENSOR.A_MMPROJ_FC: (
  1406. "audio.multi_modal_projector.linear", # qwen2audio
  1407. "audio_tower.proj", # qwen2omni
  1408. ),
  1409. MODEL_TENSOR.A_MM_NORM_PRE: (
  1410. "audio.multi_modal_projector.ln_pre", # ultravox
  1411. ),
  1412. MODEL_TENSOR.A_MM_NORM_MID: (
  1413. "audio.multi_modal_projector.ln_mid", # ultravox
  1414. ),
  1415. MODEL_TENSOR.A_ENC_CONV_DW: (
  1416. "conformer.layers.{bid}.conv.depthwise_conv", # lfm2
  1417. ),
  1418. MODEL_TENSOR.A_ENC_CONV_NORM: (
  1419. "conformer.layers.{bid}.conv.batch_norm", # lfm2
  1420. ),
  1421. MODEL_TENSOR.A_ENC_CONV_PW1: (
  1422. "conformer.layers.{bid}.conv.pointwise_conv1", # lfm2
  1423. ),
  1424. MODEL_TENSOR.A_ENC_CONV_PW2: (
  1425. "conformer.layers.{bid}.conv.pointwise_conv2", # lfm2
  1426. ),
  1427. MODEL_TENSOR.A_ENC_NORM_CONV: (
  1428. "conformer.layers.{bid}.norm_conv", # lfm2
  1429. ),
  1430. # NextN/MTP tensors for GLM4_MOE
  1431. MODEL_TENSOR.NEXTN_EH_PROJ: (
  1432. "model.layers.{bid}.eh_proj",
  1433. ),
  1434. MODEL_TENSOR.NEXTN_EMBED_TOKENS: (
  1435. "model.layers.{bid}.embed_tokens",
  1436. ),
  1437. MODEL_TENSOR.NEXTN_ENORM: (
  1438. "model.layers.{bid}.enorm",
  1439. ),
  1440. MODEL_TENSOR.NEXTN_HNORM: (
  1441. "model.layers.{bid}.hnorm",
  1442. ),
  1443. MODEL_TENSOR.NEXTN_SHARED_HEAD_HEAD: (
  1444. "model.layers.{bid}.shared_head.head",
  1445. ),
  1446. MODEL_TENSOR.NEXTN_SHARED_HEAD_NORM: (
  1447. "model.layers.{bid}.shared_head.norm",
  1448. ),
  1449. }
  1450. # architecture-specific block mappings
  1451. arch_block_mappings_cfg: dict[MODEL_ARCH, dict[MODEL_TENSOR, tuple[str, ...]]] = {
  1452. MODEL_ARCH.ARCTIC: {
  1453. MODEL_TENSOR.FFN_NORM: (
  1454. "model.layers.{bid}.residual_layernorm",
  1455. ),
  1456. MODEL_TENSOR.FFN_NORM_EXP: (
  1457. "model.layers.{bid}.post_attention_layernorm",
  1458. ),
  1459. },
  1460. }
  1461. mapping: dict[str, tuple[MODEL_TENSOR, str]]
  1462. def __init__(self, arch: MODEL_ARCH, n_blocks: int):
  1463. self.mapping = {}
  1464. for tensor, keys in self.mappings_cfg.items():
  1465. if tensor not in MODEL_TENSORS[arch]:
  1466. continue
  1467. tensor_name = TENSOR_NAMES[tensor]
  1468. self.mapping[tensor_name] = (tensor, tensor_name)
  1469. for key in keys:
  1470. self.mapping[key] = (tensor, tensor_name)
  1471. if arch in self.arch_block_mappings_cfg:
  1472. self.block_mappings_cfg.update(self.arch_block_mappings_cfg[arch])
  1473. for bid in range(n_blocks):
  1474. for tensor, keys in self.block_mappings_cfg.items():
  1475. if tensor not in MODEL_TENSORS[arch]:
  1476. continue
  1477. tensor_name = TENSOR_NAMES[tensor].format(bid = bid)
  1478. self.mapping[tensor_name] = (tensor, tensor_name)
  1479. for key in keys:
  1480. key = key.format(bid = bid)
  1481. self.mapping[key] = (tensor, tensor_name)
  1482. def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
  1483. result = self.mapping.get(key)
  1484. if result is not None:
  1485. return result
  1486. for suffix in try_suffixes:
  1487. if key.endswith(suffix):
  1488. result = self.mapping.get(key[:-len(suffix)])
  1489. if result is not None:
  1490. return result[0], result[1] + suffix
  1491. return None
  1492. def get_name(self, key: str, try_suffixes: Sequence[str] = ()) -> str | None:
  1493. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  1494. if result is None:
  1495. return None
  1496. return result[1]
  1497. def get_type(self, key: str, try_suffixes: Sequence[str] = ()) -> MODEL_TENSOR | None:
  1498. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  1499. if result is None:
  1500. return None
  1501. return result[0]
  1502. def __getitem__(self, key: str) -> str:
  1503. try:
  1504. return self.mapping[key][1]
  1505. except KeyError:
  1506. raise KeyError(key)
  1507. def __contains__(self, key: str) -> bool:
  1508. return key in self.mapping
  1509. def __repr__(self) -> str:
  1510. return repr(self.mapping)
  1511. def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap:
  1512. return TensorNameMap(arch, n_blocks)