convert_hf_to_gguf.py 248 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. import math
  18. import numpy as np
  19. import torch
  20. if TYPE_CHECKING:
  21. from torch import Tensor
  22. if 'NO_LOCAL_GGUF' not in os.environ:
  23. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  24. import gguf
  25. logger = logging.getLogger("hf-to-gguf")
  26. ###### MODEL DEFINITIONS ######
  27. class SentencePieceTokenTypes(IntEnum):
  28. NORMAL = 1
  29. UNKNOWN = 2
  30. CONTROL = 3
  31. USER_DEFINED = 4
  32. UNUSED = 5
  33. BYTE = 6
  34. AnyModel = TypeVar("AnyModel", bound="type[Model]")
  35. class Model:
  36. _model_classes: dict[str, type[Model]] = {}
  37. dir_model: Path
  38. ftype: gguf.LlamaFileType
  39. fname_out: Path
  40. is_big_endian: bool
  41. endianess: gguf.GGUFEndian
  42. use_temp_file: bool
  43. lazy: bool
  44. part_names: list[str]
  45. is_safetensors: bool
  46. hparams: dict[str, Any]
  47. block_count: int
  48. tensor_map: gguf.TensorNameMap
  49. tensor_names: set[str] | None
  50. gguf_writer: gguf.GGUFWriter
  51. model_name: str | None
  52. metadata_override: Path | None
  53. dir_model_card: Path
  54. # subclasses should define this!
  55. model_arch: gguf.MODEL_ARCH
  56. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool = False,
  57. use_temp_file: bool = False, eager: bool = False,
  58. metadata_override: Path | None = None, model_name: str | None = None,
  59. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  60. small_first_shard: bool = False, hparams: dict[str, Any] | None = None):
  61. if type(self) is Model:
  62. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  63. self.dir_model = dir_model
  64. self.ftype = ftype
  65. self.fname_out = fname_out
  66. self.is_big_endian = is_big_endian
  67. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  68. self.use_temp_file = use_temp_file
  69. self.lazy = not eager
  70. self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors")
  71. self.is_safetensors = len(self.part_names) > 0
  72. if not self.is_safetensors:
  73. self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  74. self.hparams = Model.load_hparams(self.dir_model) if hparams is None else hparams
  75. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  76. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  77. self.tensor_names = None
  78. self.metadata_override = metadata_override
  79. self.model_name = model_name
  80. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  81. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  82. if self.ftype == gguf.LlamaFileType.GUESSED:
  83. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  84. _, first_tensor = next(self.get_tensors())
  85. if first_tensor.dtype == torch.float16:
  86. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  87. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  88. else:
  89. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  90. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  91. # Configure GGUF Writer
  92. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  93. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  94. @classmethod
  95. def __init_subclass__(cls):
  96. # can't use an abstract property, because overriding it without type errors
  97. # would require using decorated functions instead of simply defining the property
  98. if "model_arch" not in cls.__dict__:
  99. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  100. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  101. key = next((k for k in keys if k in self.hparams), None)
  102. if key is not None:
  103. return self.hparams[key]
  104. if optional:
  105. return None
  106. raise KeyError(f"could not find any of: {keys}")
  107. def set_vocab(self):
  108. self._set_vocab_gpt2()
  109. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  110. tensor_names_from_parts: set[str] = set()
  111. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  112. index_name += ".index.json"
  113. index_file = self.dir_model / index_name
  114. if index_file.is_file():
  115. self.tensor_names = set()
  116. logger.info(f"gguf: loading model weight map from '{index_name}'")
  117. with open(index_file, "r", encoding="utf-8") as f:
  118. index: dict[str, Any] = json.load(f)
  119. weight_map = index.get("weight_map")
  120. if weight_map is None or not isinstance(weight_map, dict):
  121. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  122. self.tensor_names.update(weight_map.keys())
  123. else:
  124. self.tensor_names = tensor_names_from_parts
  125. weight_map = {}
  126. for part_name in self.part_names:
  127. logger.info(f"gguf: loading model part '{part_name}'")
  128. ctx: ContextManager[Any]
  129. if self.is_safetensors:
  130. from safetensors import safe_open
  131. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  132. else:
  133. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  134. with ctx as model_part:
  135. tensor_names_from_parts.update(model_part.keys())
  136. for name in model_part.keys():
  137. if self.is_safetensors:
  138. if self.lazy:
  139. data = model_part.get_slice(name)
  140. data = LazyTorchTensor.from_safetensors_slice(data)
  141. else:
  142. data = model_part.get_tensor(name)
  143. else:
  144. data = model_part[name]
  145. if self.lazy:
  146. data = LazyTorchTensor.from_eager(data)
  147. yield name, data
  148. # verify tensor name presence and identify potentially missing files
  149. if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  150. missing = sorted(self.tensor_names.difference(tensor_names_from_parts))
  151. extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
  152. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  153. if len(extra) == 0 and len(missing_files) > 0:
  154. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  155. f"Missing tensors: {missing}")
  156. else:
  157. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  158. f"Missing tensors: {missing}\n"
  159. f"Extra tensors: {extra}")
  160. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  161. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  162. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  163. name: str = gguf.TENSOR_NAMES[key]
  164. if "{bid}" in name:
  165. assert bid is not None
  166. name = name.format(bid=bid)
  167. return name + suffix
  168. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  169. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  170. return False
  171. key_name: str = gguf.TENSOR_NAMES[key]
  172. if "{bid}" in key_name:
  173. if bid is None:
  174. return False
  175. key_name = key_name.format(bid=bid)
  176. else:
  177. if bid is not None:
  178. return False
  179. return name == (key_name + suffix)
  180. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  181. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  182. if new_name is None:
  183. raise ValueError(f"Can not map tensor {name!r}")
  184. return new_name
  185. def set_gguf_parameters(self):
  186. self.gguf_writer.add_block_count(self.block_count)
  187. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  188. self.gguf_writer.add_context_length(n_ctx)
  189. logger.info(f"gguf: context length = {n_ctx}")
  190. if (n_embd := self.find_hparam(["hidden_size", "n_embd"], optional=True)) is not None:
  191. self.gguf_writer.add_embedding_length(n_embd)
  192. logger.info(f"gguf: embedding length = {n_embd}")
  193. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  194. self.gguf_writer.add_feed_forward_length(n_ff)
  195. logger.info(f"gguf: feed forward length = {n_ff}")
  196. if (n_head := self.find_hparam(["num_attention_heads", "n_head"], optional=True)) is not None:
  197. self.gguf_writer.add_head_count(n_head)
  198. logger.info(f"gguf: head count = {n_head}")
  199. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  200. self.gguf_writer.add_head_count_kv(n_head_kv)
  201. logger.info(f"gguf: key-value head count = {n_head_kv}")
  202. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  203. self.gguf_writer.add_rope_freq_base(rope_theta)
  204. logger.info(f"gguf: rope theta = {rope_theta}")
  205. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  206. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  207. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  208. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  209. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  210. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  211. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  212. self.gguf_writer.add_expert_count(n_experts)
  213. logger.info(f"gguf: expert count = {n_experts}")
  214. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  215. self.gguf_writer.add_expert_used_count(n_experts_used)
  216. logger.info(f"gguf: experts used count = {n_experts_used}")
  217. if (head_dim := self.hparams.get("head_dim")) is not None:
  218. self.gguf_writer.add_key_length(head_dim)
  219. self.gguf_writer.add_value_length(head_dim)
  220. self.gguf_writer.add_file_type(self.ftype)
  221. logger.info(f"gguf: file type = {self.ftype}")
  222. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  223. del bid # unused
  224. return [(self.map_tensor_name(name), data_torch)]
  225. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  226. del name, new_name, bid, n_dims # unused
  227. return False
  228. # some models need extra generated tensors (like rope_freqs)
  229. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  230. return ()
  231. def prepare_tensors(self):
  232. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  233. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  234. # we don't need these
  235. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  236. continue
  237. old_dtype = data_torch.dtype
  238. # convert any unsupported data types to float32
  239. if data_torch.dtype not in (torch.float16, torch.float32):
  240. data_torch = data_torch.to(torch.float32)
  241. # use the first number-like part of the tensor name as the block id
  242. bid = None
  243. for part in name.split("."):
  244. if part.isdecimal():
  245. bid = int(part)
  246. break
  247. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  248. # TODO: why do we squeeze here?
  249. # data = data_torch.squeeze().numpy()
  250. data = data_torch.numpy()
  251. # if data ends up empty, it means data_torch was a scalar tensor -> restore
  252. if len(data.shape) == 0:
  253. data = data_torch.numpy()
  254. n_dims = len(data.shape)
  255. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  256. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  257. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  258. data_qtype = gguf.GGMLQuantizationType.F32
  259. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  260. # Some tensor types are always in float32
  261. if data_qtype is False and (
  262. any(
  263. self.match_model_tensor_name(new_name, key, bid)
  264. for key in (
  265. gguf.MODEL_TENSOR.FFN_GATE_INP,
  266. gguf.MODEL_TENSOR.POS_EMBD,
  267. gguf.MODEL_TENSOR.TOKEN_TYPES,
  268. gguf.MODEL_TENSOR.SSM_CONV1D,
  269. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  270. gguf.MODEL_TENSOR.TIME_MIX_W1,
  271. gguf.MODEL_TENSOR.TIME_MIX_W2,
  272. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  273. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  274. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  275. gguf.MODEL_TENSOR.POSNET_NORM1,
  276. gguf.MODEL_TENSOR.POSNET_NORM2,
  277. )
  278. )
  279. or not new_name.endswith(".weight")
  280. ):
  281. data_qtype = gguf.GGMLQuantizationType.F32
  282. if data_qtype is False and any(
  283. self.match_model_tensor_name(new_name, key, bid)
  284. for key in (
  285. gguf.MODEL_TENSOR.TOKEN_EMBD,
  286. gguf.MODEL_TENSOR.OUTPUT,
  287. )
  288. ):
  289. if self.ftype in (
  290. gguf.LlamaFileType.MOSTLY_TQ1_0,
  291. gguf.LlamaFileType.MOSTLY_TQ2_0,
  292. ):
  293. # TODO: use Q4_K and Q6_K
  294. data_qtype = gguf.GGMLQuantizationType.F16
  295. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  296. if isinstance(data_qtype, bool):
  297. if self.ftype == gguf.LlamaFileType.ALL_F32:
  298. data_qtype = gguf.GGMLQuantizationType.F32
  299. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  300. data_qtype = gguf.GGMLQuantizationType.F16
  301. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  302. data_qtype = gguf.GGMLQuantizationType.BF16
  303. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  304. data_qtype = gguf.GGMLQuantizationType.Q8_0
  305. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  306. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  307. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  308. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  309. else:
  310. raise ValueError(f"Unknown file type: {self.ftype.name}")
  311. try:
  312. data = gguf.quants.quantize(data, data_qtype)
  313. except gguf.QuantError as e:
  314. logger.warning("%s, %s", e, "falling back to F16")
  315. data_qtype = gguf.GGMLQuantizationType.F16
  316. data = gguf.quants.quantize(data, data_qtype)
  317. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  318. # reverse shape to make it similar to the internal ggml dimension order
  319. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  320. # n_dims is implicit in the shape
  321. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  322. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  323. def set_type(self):
  324. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  325. def prepare_metadata(self, vocab_only: bool):
  326. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  327. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  328. # Fallback to model directory name if metadata name is still missing
  329. if self.metadata.name is None:
  330. self.metadata.name = self.dir_model.name
  331. # Generate parameter weight class (useful for leader boards) if not yet determined
  332. if self.metadata.size_label is None and total_params > 0:
  333. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  334. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  335. output_type: str = self.ftype.name.partition("_")[2]
  336. # Filename Output
  337. if self.fname_out.is_dir():
  338. # Generate default filename based on model specification and available metadata
  339. if not vocab_only:
  340. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  341. else:
  342. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  343. # Use the default filename
  344. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  345. else:
  346. # Output path is a custom defined templated filename
  347. # Note: `not is_dir()` is used because `.is_file()` will not detect
  348. # file template strings as it doesn't actually exist as a file
  349. # Process templated file name with the output ftype, useful with the "auto" ftype
  350. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  351. self.set_type()
  352. logger.info("Set meta model")
  353. self.metadata.set_gguf_meta_model(self.gguf_writer)
  354. logger.info("Set model parameters")
  355. self.set_gguf_parameters()
  356. logger.info("Set model tokenizer")
  357. self.set_vocab()
  358. logger.info("Set model quantization version")
  359. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  360. def write(self):
  361. self.prepare_tensors()
  362. self.prepare_metadata(vocab_only=False)
  363. self.gguf_writer.write_header_to_file(path=self.fname_out)
  364. self.gguf_writer.write_kv_data_to_file()
  365. self.gguf_writer.write_tensors_to_file(progress=True)
  366. self.gguf_writer.close()
  367. def write_vocab(self):
  368. if len(self.gguf_writer.tensors) != 1:
  369. raise ValueError('Splitting the vocabulary is not supported')
  370. self.prepare_metadata(vocab_only=True)
  371. self.gguf_writer.write_header_to_file(path=self.fname_out)
  372. self.gguf_writer.write_kv_data_to_file()
  373. self.gguf_writer.close()
  374. @staticmethod
  375. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  376. part_names: list[str] = []
  377. for filename in os.listdir(dir_model):
  378. if filename.startswith(prefix) and filename.endswith(suffix):
  379. part_names.append(filename)
  380. part_names.sort()
  381. return part_names
  382. @staticmethod
  383. def load_hparams(dir_model: Path):
  384. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  385. return json.load(f)
  386. @classmethod
  387. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  388. assert names
  389. def func(modelcls: AnyModel) -> AnyModel:
  390. for name in names:
  391. cls._model_classes[name] = modelcls
  392. return modelcls
  393. return func
  394. @classmethod
  395. def print_registered_models(cls):
  396. for name in sorted(cls._model_classes.keys()):
  397. logger.error(f"- {name}")
  398. @classmethod
  399. def from_model_architecture(cls, arch: str) -> type[Model]:
  400. try:
  401. return cls._model_classes[arch]
  402. except KeyError:
  403. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  404. def does_token_look_special(self, token: str | bytes) -> bool:
  405. if isinstance(token, (bytes, bytearray)):
  406. token_text = token.decode(encoding="utf-8")
  407. elif isinstance(token, memoryview):
  408. token_text = token.tobytes().decode(encoding="utf-8")
  409. else:
  410. token_text = token
  411. # Some models mark some added tokens which ought to be control tokens as not special.
  412. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  413. seems_special = token_text in (
  414. "<pad>", # deepseek-coder
  415. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  416. )
  417. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  418. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  419. # TODO: should these be marked as UNUSED instead? (maybe not)
  420. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  421. return seems_special
  422. # used for GPT-2 BPE and WordPiece vocabs
  423. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  424. tokens: list[str] = []
  425. toktypes: list[int] = []
  426. from transformers import AutoTokenizer
  427. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  428. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  429. assert max(tokenizer.vocab.values()) < vocab_size
  430. tokpre = self.get_vocab_base_pre(tokenizer)
  431. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  432. added_vocab = tokenizer.get_added_vocab()
  433. added_tokens_decoder = tokenizer.added_tokens_decoder
  434. for i in range(vocab_size):
  435. if i not in reverse_vocab:
  436. tokens.append(f"[PAD{i}]")
  437. toktypes.append(gguf.TokenType.UNUSED)
  438. else:
  439. token: str = reverse_vocab[i]
  440. if token in added_vocab:
  441. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  442. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  443. if not added_tokens_decoder[i].normalized:
  444. previous_token = token
  445. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  446. if previous_token != token:
  447. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  448. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  449. toktypes.append(gguf.TokenType.CONTROL)
  450. else:
  451. # NOTE: this was added for Gemma.
  452. # Encoding and decoding the tokens above isn't sufficient for this case.
  453. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  454. toktypes.append(gguf.TokenType.USER_DEFINED)
  455. else:
  456. toktypes.append(gguf.TokenType.NORMAL)
  457. tokens.append(token)
  458. return tokens, toktypes, tokpre
  459. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  460. # do not modify it manually!
  461. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  462. # Marker: Start get_vocab_base_pre
  463. def get_vocab_base_pre(self, tokenizer) -> str:
  464. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  465. # is specific for the BPE pre-tokenizer used by the model
  466. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  467. # use in llama.cpp to implement the same pre-tokenizer
  468. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  469. chktok = tokenizer.encode(chktxt)
  470. chkhsh = sha256(str(chktok).encode()).hexdigest()
  471. logger.debug(f"chktok: {chktok}")
  472. logger.debug(f"chkhsh: {chkhsh}")
  473. res = None
  474. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  475. # or pull the latest version of the model from Huggingface
  476. # don't edit the hashes manually!
  477. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  478. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  479. res = "llama-bpe"
  480. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  481. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  482. res = "deepseek-llm"
  483. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  484. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  485. res = "deepseek-coder"
  486. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  487. # ref: https://huggingface.co/tiiuae/falcon-7b
  488. res = "falcon"
  489. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  490. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  491. res = "falcon3"
  492. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  493. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  494. res = "bert-bge"
  495. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  496. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  497. res = "bert-bge-large"
  498. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  499. # ref: https://huggingface.co/mosaicml/mpt-7b
  500. res = "mpt"
  501. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  502. # ref: https://huggingface.co/bigcode/starcoder2-3b
  503. res = "starcoder"
  504. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  505. # ref: https://huggingface.co/openai-community/gpt2
  506. res = "gpt-2"
  507. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  508. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  509. res = "stablelm2"
  510. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  511. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  512. res = "refact"
  513. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  514. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  515. res = "command-r"
  516. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  517. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  518. res = "qwen2"
  519. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  520. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  521. res = "olmo"
  522. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  523. # ref: https://huggingface.co/databricks/dbrx-base
  524. res = "dbrx"
  525. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  526. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  527. res = "jina-v1-en"
  528. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  529. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  530. res = "jina-v2-en"
  531. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  532. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  533. res = "jina-v2-es"
  534. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  535. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  536. res = "jina-v2-de"
  537. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  538. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  539. res = "smaug-bpe"
  540. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  541. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  542. res = "poro-chat"
  543. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  544. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  545. res = "jina-v2-code"
  546. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b" or chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  547. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  548. res = "chatglm-bpe"
  549. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  550. # ref: https://huggingface.co/LumiOpen/Viking-7B
  551. res = "viking"
  552. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  553. # ref: https://huggingface.co/core42/jais-13b
  554. res = "jais"
  555. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  556. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  557. res = "codeshell"
  558. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  559. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  560. res = "tekken"
  561. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  562. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  563. res = "smollm"
  564. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  565. # ref: https://huggingface.co/bigscience/bloom
  566. res = "bloom"
  567. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  568. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  569. res = "gpt3-finnish"
  570. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  571. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  572. res = "exaone"
  573. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  574. # ref: https://huggingface.co/microsoft/phi-2
  575. res = "phi-2"
  576. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  577. # ref: https://huggingface.co/facebook/chameleon-7b
  578. res = "chameleon"
  579. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  580. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  581. res = "minerva-7b"
  582. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  583. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  584. res = "roberta-bpe"
  585. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  586. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  587. res = "gigachat"
  588. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  589. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  590. res = "megrez"
  591. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  592. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  593. res = "deepseek-v3"
  594. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  595. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  596. res = "deepseek-r1-qwen"
  597. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  598. # ref: https://huggingface.co/Xenova/gpt-4o
  599. res = "gpt-4o"
  600. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  601. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  602. res = "superbpe"
  603. if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
  604. # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
  605. res = "trillion"
  606. if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
  607. # ref: https://huggingface.co/inclusionAI/Ling-lite
  608. res = "bailingmoe"
  609. if res is None:
  610. logger.warning("\n")
  611. logger.warning("**************************************************************************************")
  612. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  613. logger.warning("** There are 2 possible reasons for this:")
  614. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  615. logger.warning("** - the pre-tokenization config has changed upstream")
  616. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  617. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  618. logger.warning("**")
  619. logger.warning(f"** chkhsh: {chkhsh}")
  620. logger.warning("**************************************************************************************")
  621. logger.warning("\n")
  622. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  623. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  624. logger.debug(f"chkhsh: {chkhsh}")
  625. return res
  626. # Marker: End get_vocab_base_pre
  627. def _set_vocab_none(self) -> None:
  628. self.gguf_writer.add_tokenizer_model("none")
  629. def _set_vocab_gpt2(self) -> None:
  630. tokens, toktypes, tokpre = self.get_vocab_base()
  631. self.gguf_writer.add_tokenizer_model("gpt2")
  632. self.gguf_writer.add_tokenizer_pre(tokpre)
  633. self.gguf_writer.add_token_list(tokens)
  634. self.gguf_writer.add_token_types(toktypes)
  635. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  636. special_vocab.add_to_gguf(self.gguf_writer)
  637. def _set_vocab_qwen(self):
  638. dir_model = self.dir_model
  639. hparams = self.hparams
  640. tokens: list[str] = []
  641. toktypes: list[int] = []
  642. from transformers import AutoTokenizer
  643. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  644. vocab_size = hparams["vocab_size"]
  645. assert max(tokenizer.get_vocab().values()) < vocab_size
  646. tokpre = self.get_vocab_base_pre(tokenizer)
  647. merges = []
  648. vocab = {}
  649. mergeable_ranks = tokenizer.mergeable_ranks
  650. for token, rank in mergeable_ranks.items():
  651. vocab[QwenModel.token_bytes_to_string(token)] = rank
  652. if len(token) == 1:
  653. continue
  654. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  655. assert len(merged) == 2
  656. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  657. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  658. added_vocab = tokenizer.special_tokens
  659. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  660. for i in range(vocab_size):
  661. if i not in reverse_vocab:
  662. tokens.append(f"[PAD{i}]")
  663. toktypes.append(gguf.TokenType.UNUSED)
  664. elif reverse_vocab[i] in added_vocab:
  665. tokens.append(reverse_vocab[i])
  666. toktypes.append(gguf.TokenType.CONTROL)
  667. else:
  668. tokens.append(reverse_vocab[i])
  669. toktypes.append(gguf.TokenType.NORMAL)
  670. self.gguf_writer.add_tokenizer_model("gpt2")
  671. self.gguf_writer.add_tokenizer_pre(tokpre)
  672. self.gguf_writer.add_token_list(tokens)
  673. self.gguf_writer.add_token_types(toktypes)
  674. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  675. special_vocab.merges = merges
  676. # only add special tokens when they were not already loaded from config.json
  677. if len(special_vocab.special_token_ids) == 0:
  678. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  679. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  680. # this one is usually not in config.json anyway
  681. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  682. special_vocab.add_to_gguf(self.gguf_writer)
  683. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  684. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  685. self.gguf_writer.add_tokenizer_model("llama")
  686. self.gguf_writer.add_tokenizer_pre("default")
  687. self.gguf_writer.add_token_list(tokens)
  688. self.gguf_writer.add_token_scores(scores)
  689. self.gguf_writer.add_token_types(toktypes)
  690. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  691. special_vocab.add_to_gguf(self.gguf_writer)
  692. def _create_vocab_sentencepiece(self):
  693. from sentencepiece import SentencePieceProcessor
  694. tokenizer_path = self.dir_model / 'tokenizer.model'
  695. if not tokenizer_path.is_file():
  696. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  697. tokenizer = SentencePieceProcessor()
  698. tokenizer.LoadFromFile(str(tokenizer_path))
  699. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  700. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  701. scores: list[float] = [-10000.0] * vocab_size
  702. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  703. for token_id in range(tokenizer.vocab_size()):
  704. piece = tokenizer.IdToPiece(token_id)
  705. text = piece.encode("utf-8")
  706. score = tokenizer.GetScore(token_id)
  707. toktype = SentencePieceTokenTypes.NORMAL
  708. if tokenizer.IsUnknown(token_id):
  709. toktype = SentencePieceTokenTypes.UNKNOWN
  710. elif tokenizer.IsControl(token_id):
  711. toktype = SentencePieceTokenTypes.CONTROL
  712. elif tokenizer.IsUnused(token_id):
  713. toktype = SentencePieceTokenTypes.UNUSED
  714. elif tokenizer.IsByte(token_id):
  715. toktype = SentencePieceTokenTypes.BYTE
  716. tokens[token_id] = text
  717. scores[token_id] = score
  718. toktypes[token_id] = toktype
  719. added_tokens_file = self.dir_model / 'added_tokens.json'
  720. if added_tokens_file.is_file():
  721. with open(added_tokens_file, "r", encoding="utf-8") as f:
  722. added_tokens_json = json.load(f)
  723. for key in added_tokens_json:
  724. token_id = added_tokens_json[key]
  725. if token_id >= vocab_size:
  726. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  727. continue
  728. tokens[token_id] = key.encode("utf-8")
  729. scores[token_id] = -1000.0
  730. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  731. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  732. if tokenizer_config_file.is_file():
  733. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  734. tokenizer_config_json = json.load(f)
  735. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  736. for token_id, token_data in added_tokens_decoder.items():
  737. token_id = int(token_id)
  738. token: str = token_data["content"]
  739. if token_id >= vocab_size:
  740. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  741. continue
  742. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  743. if tokens[token_id] != token.encode("utf-8"):
  744. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  745. if token_data.get("special") or self.does_token_look_special(token):
  746. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  747. else:
  748. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  749. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  750. scores[token_id] = -1000.0
  751. tokens[token_id] = token.encode("utf-8")
  752. if vocab_size > len(tokens):
  753. pad_count = vocab_size - len(tokens)
  754. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  755. for i in range(1, pad_count + 1):
  756. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  757. scores.append(-1000.0)
  758. toktypes.append(SentencePieceTokenTypes.UNUSED)
  759. return tokens, scores, toktypes
  760. def _set_vocab_llama_hf(self):
  761. vocab = gguf.LlamaHfVocab(self.dir_model)
  762. tokens = []
  763. scores = []
  764. toktypes = []
  765. for text, score, toktype in vocab.all_tokens():
  766. tokens.append(text)
  767. scores.append(score)
  768. toktypes.append(toktype)
  769. assert len(tokens) == vocab.vocab_size
  770. self.gguf_writer.add_tokenizer_model("llama")
  771. self.gguf_writer.add_tokenizer_pre("default")
  772. self.gguf_writer.add_token_list(tokens)
  773. self.gguf_writer.add_token_scores(scores)
  774. self.gguf_writer.add_token_types(toktypes)
  775. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  776. special_vocab.add_to_gguf(self.gguf_writer)
  777. def _set_vocab_rwkv_world(self):
  778. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  779. vocab_size = self.hparams.get("vocab_size", 65536)
  780. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  781. toktypes: list[int] = [gguf.TokenType.CONTROL]
  782. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  783. lines = f.readlines()
  784. for line in lines:
  785. parts = line.split(' ')
  786. assert len(parts) >= 3
  787. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  788. token = token.encode("utf-8") if isinstance(token, str) else token
  789. assert isinstance(token, bytes)
  790. assert len(token) == token_len
  791. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  792. tokens.append(token_text.encode("utf-8"))
  793. toktypes.append(gguf.TokenType.NORMAL)
  794. remainder = vocab_size - len(tokens)
  795. assert remainder >= 0
  796. for i in range(len(tokens), vocab_size):
  797. tokens.append(f"[PAD{i}]".encode("utf-8"))
  798. toktypes.append(gguf.TokenType.UNUSED)
  799. self.gguf_writer.add_tokenizer_model("rwkv")
  800. self.gguf_writer.add_token_list(tokens)
  801. self.gguf_writer.add_token_types(toktypes)
  802. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  803. special_vocab.chat_template = "rwkv-world"
  804. # hack: Add '\n\n' as the EOT token to make it chat normally
  805. special_vocab._set_special_token("eot", 261)
  806. special_vocab.add_to_gguf(self.gguf_writer)
  807. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  808. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  809. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  810. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  811. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  812. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  813. assert field # tokenizer model
  814. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  815. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  816. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  817. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  818. assert field # token list
  819. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  820. if model_name == "llama-spm":
  821. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  822. assert field # token scores
  823. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  824. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  825. assert field # token types
  826. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  827. if model_name != "llama-spm":
  828. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  829. assert field # token merges
  830. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  831. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  832. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  833. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  834. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  835. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  836. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  837. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  838. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  839. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  840. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  841. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  842. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  843. @Model.register("GPTNeoXForCausalLM")
  844. class GPTNeoXModel(Model):
  845. model_arch = gguf.MODEL_ARCH.GPTNEOX
  846. def set_gguf_parameters(self):
  847. block_count = self.hparams["num_hidden_layers"]
  848. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  849. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  850. self.gguf_writer.add_block_count(block_count)
  851. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  852. self.gguf_writer.add_rope_dimension_count(
  853. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  854. )
  855. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  856. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  857. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  858. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  859. del bid # unused
  860. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  861. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  862. tensors: list[tuple[str, Tensor]] = []
  863. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  864. # Map bloom-style qkv_linear to gpt-style qkv_linear
  865. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  866. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  867. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  868. data_torch = torch.cat(
  869. (
  870. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  871. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  872. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  873. ),
  874. dim=0,
  875. )
  876. logger.info("re-format attention.linear_qkv.weight")
  877. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  878. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  879. data_torch = torch.cat(
  880. (
  881. qkv_bias[:, 0, :].reshape((n_embed,)),
  882. qkv_bias[:, 1, :].reshape((n_embed,)),
  883. qkv_bias[:, 2, :].reshape((n_embed,)),
  884. ),
  885. dim=0,
  886. )
  887. logger.info("re-format attention.linear_qkv.bias")
  888. tensors.append((self.map_tensor_name(name), data_torch))
  889. return tensors
  890. @Model.register("BloomForCausalLM", "BloomModel")
  891. class BloomModel(Model):
  892. model_arch = gguf.MODEL_ARCH.BLOOM
  893. def set_gguf_parameters(self):
  894. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  895. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  896. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  897. self.gguf_writer.add_embedding_length(n_embed)
  898. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  899. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  900. self.gguf_writer.add_head_count(n_head)
  901. self.gguf_writer.add_head_count_kv(n_head)
  902. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  903. self.gguf_writer.add_file_type(self.ftype)
  904. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  905. del bid # unused
  906. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  907. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  908. name = re.sub(r'transformer\.', '', name)
  909. tensors: list[tuple[str, Tensor]] = []
  910. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  911. # Map bloom-style qkv_linear to gpt-style qkv_linear
  912. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  913. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  914. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  915. data_torch = torch.cat(
  916. (
  917. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  918. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  919. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  920. ),
  921. dim=0,
  922. )
  923. logger.info("re-format attention.linear_qkv.weight")
  924. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  925. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  926. data_torch = torch.cat(
  927. (
  928. qkv_bias[:, 0, :].reshape((n_embed,)),
  929. qkv_bias[:, 1, :].reshape((n_embed,)),
  930. qkv_bias[:, 2, :].reshape((n_embed,)),
  931. ),
  932. dim=0,
  933. )
  934. logger.info("re-format attention.linear_qkv.bias")
  935. tensors.append((self.map_tensor_name(name), data_torch))
  936. return tensors
  937. @Model.register("MPTForCausalLM")
  938. class MPTModel(Model):
  939. model_arch = gguf.MODEL_ARCH.MPT
  940. def set_vocab(self):
  941. try:
  942. self._set_vocab_gpt2()
  943. except Exception:
  944. # Fallback for SEA-LION model
  945. self._set_vocab_sentencepiece()
  946. self.gguf_writer.add_add_bos_token(False)
  947. self.gguf_writer.add_pad_token_id(3)
  948. self.gguf_writer.add_eos_token_id(1)
  949. self.gguf_writer.add_unk_token_id(0)
  950. def set_gguf_parameters(self):
  951. block_count = self.hparams["n_layers"]
  952. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  953. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  954. self.gguf_writer.add_block_count(block_count)
  955. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  956. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  957. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  958. self.gguf_writer.add_head_count_kv(kv_n_heads)
  959. self.gguf_writer.add_layer_norm_eps(1e-5)
  960. if self.hparams["attn_config"]["clip_qkv"] is not None:
  961. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  962. if self.hparams["attn_config"]["alibi"]:
  963. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  964. else:
  965. self.gguf_writer.add_max_alibi_bias(0.0)
  966. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  967. del bid # unused
  968. if "scales" in name:
  969. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  970. new_name = new_name.replace("scales", "act.scales")
  971. else:
  972. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  973. return [(new_name, data_torch)]
  974. @Model.register("OrionForCausalLM")
  975. class OrionModel(Model):
  976. model_arch = gguf.MODEL_ARCH.ORION
  977. def set_vocab(self):
  978. self._set_vocab_sentencepiece()
  979. def set_gguf_parameters(self):
  980. block_count = self.hparams["num_hidden_layers"]
  981. head_count = self.hparams["num_attention_heads"]
  982. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  983. ctx_length = 0
  984. if "max_sequence_length" in self.hparams:
  985. ctx_length = self.hparams["max_sequence_length"]
  986. elif "max_position_embeddings" in self.hparams:
  987. ctx_length = self.hparams["max_position_embeddings"]
  988. elif "model_max_length" in self.hparams:
  989. ctx_length = self.hparams["model_max_length"]
  990. else:
  991. raise ValueError("gguf: can not find ctx length parameter.")
  992. self.gguf_writer.add_file_type(self.ftype)
  993. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  994. self.gguf_writer.add_context_length(ctx_length)
  995. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  996. self.gguf_writer.add_block_count(block_count)
  997. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  998. self.gguf_writer.add_head_count(head_count)
  999. self.gguf_writer.add_head_count_kv(head_count_kv)
  1000. # note: config provides rms norm but it is actually layer norm
  1001. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  1002. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  1003. @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  1004. class BaichuanModel(Model):
  1005. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1006. def set_vocab(self):
  1007. self._set_vocab_sentencepiece()
  1008. def set_gguf_parameters(self):
  1009. block_count = self.hparams["num_hidden_layers"]
  1010. head_count = self.hparams["num_attention_heads"]
  1011. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1012. ctx_length = 0
  1013. if "max_sequence_length" in self.hparams:
  1014. ctx_length = self.hparams["max_sequence_length"]
  1015. elif "max_position_embeddings" in self.hparams:
  1016. ctx_length = self.hparams["max_position_embeddings"]
  1017. elif "model_max_length" in self.hparams:
  1018. ctx_length = self.hparams["model_max_length"]
  1019. else:
  1020. raise ValueError("gguf: can not find ctx length parameter.")
  1021. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1022. self.gguf_writer.add_context_length(ctx_length)
  1023. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1024. self.gguf_writer.add_block_count(block_count)
  1025. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1026. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1027. self.gguf_writer.add_head_count(head_count)
  1028. self.gguf_writer.add_head_count_kv(head_count_kv)
  1029. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1030. self.gguf_writer.add_file_type(self.ftype)
  1031. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1032. if self.hparams["rope_scaling"].get("type") == "linear":
  1033. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1034. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1035. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1036. head_count = self.hparams["num_attention_heads"]
  1037. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1038. tensors: list[tuple[str, Tensor]] = []
  1039. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1040. logger.info(f"Unpacking and permuting layer {bid}")
  1041. tensors = [
  1042. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1043. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1044. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1045. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1046. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1047. self._reverse_hf_part(data_torch, 2)),
  1048. ]
  1049. else:
  1050. tensors = [(self.map_tensor_name(name), data_torch)]
  1051. return tensors
  1052. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1053. if n_kv_head is not None and n_head != n_kv_head:
  1054. n_head //= n_kv_head
  1055. return (
  1056. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1057. .swapaxes(1, 2)
  1058. .reshape(weights.shape)
  1059. )
  1060. def _reverse_hf_permute_part(
  1061. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1062. ) -> Tensor:
  1063. r = weights.shape[0] // 3
  1064. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1065. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1066. r = weights.shape[0] // 3
  1067. return weights[r * n_part:r * n_part + r, ...]
  1068. @Model.register("XverseForCausalLM")
  1069. class XverseModel(Model):
  1070. model_arch = gguf.MODEL_ARCH.XVERSE
  1071. def set_vocab(self):
  1072. assert (self.dir_model / "tokenizer.json").is_file()
  1073. dir_model = self.dir_model
  1074. hparams = self.hparams
  1075. tokens: list[bytes] = []
  1076. toktypes: list[int] = []
  1077. from transformers import AutoTokenizer
  1078. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1079. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1080. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1081. # because vocab_size is the count of items, and indexes start at 0.
  1082. max_vocab_index = max(tokenizer.get_vocab().values())
  1083. if max_vocab_index >= vocab_size:
  1084. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1085. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1086. added_vocab = tokenizer.get_added_vocab()
  1087. for token_id in range(vocab_size):
  1088. token_text = reverse_vocab[token_id].encode('utf-8')
  1089. # replace "\x00" to string with length > 0
  1090. if token_text == b"\x00":
  1091. toktype = gguf.TokenType.BYTE # special
  1092. token_text = f"<{token_text}>".encode('utf-8')
  1093. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1094. toktype = gguf.TokenType.BYTE # special
  1095. elif reverse_vocab[token_id] in added_vocab:
  1096. if tokenizer.added_tokens_decoder[token_id].special:
  1097. toktype = gguf.TokenType.CONTROL
  1098. else:
  1099. toktype = gguf.TokenType.USER_DEFINED
  1100. else:
  1101. toktype = gguf.TokenType.NORMAL
  1102. tokens.append(token_text)
  1103. toktypes.append(toktype)
  1104. self.gguf_writer.add_tokenizer_model("llama")
  1105. self.gguf_writer.add_tokenizer_pre("default")
  1106. self.gguf_writer.add_token_list(tokens)
  1107. self.gguf_writer.add_token_types(toktypes)
  1108. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1109. special_vocab.add_to_gguf(self.gguf_writer)
  1110. def set_gguf_parameters(self):
  1111. block_count = self.hparams["num_hidden_layers"]
  1112. head_count = self.hparams["num_attention_heads"]
  1113. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1114. ctx_length = 0
  1115. if "max_sequence_length" in self.hparams:
  1116. ctx_length = self.hparams["max_sequence_length"]
  1117. elif "max_position_embeddings" in self.hparams:
  1118. ctx_length = self.hparams["max_position_embeddings"]
  1119. elif "model_max_length" in self.hparams:
  1120. ctx_length = self.hparams["model_max_length"]
  1121. else:
  1122. raise ValueError("gguf: can not find ctx length parameter.")
  1123. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1124. self.gguf_writer.add_context_length(ctx_length)
  1125. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1126. self.gguf_writer.add_block_count(block_count)
  1127. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1128. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1129. self.gguf_writer.add_head_count(head_count)
  1130. self.gguf_writer.add_head_count_kv(head_count_kv)
  1131. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1132. self.gguf_writer.add_file_type(self.ftype)
  1133. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1134. if self.hparams["rope_scaling"].get("type") == "linear":
  1135. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1136. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1137. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1138. del bid # unused
  1139. head_count = self.hparams["num_attention_heads"]
  1140. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1141. # HF models permute some of the tensors, so we need to undo that
  1142. if name.endswith("q_proj.weight"):
  1143. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1144. if name.endswith("k_proj.weight"):
  1145. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1146. return [(self.map_tensor_name(name), data_torch)]
  1147. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1148. if n_kv_head is not None and n_head != n_kv_head:
  1149. n_head //= n_kv_head
  1150. return (
  1151. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1152. .swapaxes(1, 2)
  1153. .reshape(weights.shape)
  1154. )
  1155. @Model.register("FalconForCausalLM", "RWForCausalLM")
  1156. class FalconModel(Model):
  1157. model_arch = gguf.MODEL_ARCH.FALCON
  1158. def set_gguf_parameters(self):
  1159. block_count = self.hparams.get("num_hidden_layers")
  1160. if block_count is None:
  1161. block_count = self.hparams["n_layer"] # old name
  1162. n_head = self.hparams.get("num_attention_heads")
  1163. if n_head is None:
  1164. n_head = self.hparams["n_head"] # old name
  1165. n_head_kv = self.hparams.get("num_kv_heads")
  1166. if n_head_kv is None:
  1167. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1168. self.gguf_writer.add_context_length(2048) # not in config.json
  1169. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1170. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1171. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1172. self.gguf_writer.add_block_count(block_count)
  1173. self.gguf_writer.add_head_count(n_head)
  1174. self.gguf_writer.add_head_count_kv(n_head_kv)
  1175. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1176. self.gguf_writer.add_file_type(self.ftype)
  1177. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1178. del bid # unused
  1179. # QKV tensor transform
  1180. # The original query_key_value tensor contains n_head_kv "kv groups",
  1181. # each consisting of n_head/n_head_kv query weights followed by one key
  1182. # and one value weight (shared by all query heads in the kv group).
  1183. # This layout makes it a big pain to work with in GGML.
  1184. # So we rearrange them here,, so that we have n_head query weights
  1185. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1186. # in contiguous fashion.
  1187. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1188. if "query_key_value" in name:
  1189. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1190. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1191. head_dim = self.hparams["hidden_size"] // n_head
  1192. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1193. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1194. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1195. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1196. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1197. return [(self.map_tensor_name(name), data_torch)]
  1198. @Model.register("GPTBigCodeForCausalLM")
  1199. class StarCoderModel(Model):
  1200. model_arch = gguf.MODEL_ARCH.STARCODER
  1201. def set_gguf_parameters(self):
  1202. block_count = self.hparams["n_layer"]
  1203. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1204. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1205. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1206. self.gguf_writer.add_block_count(block_count)
  1207. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1208. self.gguf_writer.add_head_count_kv(1)
  1209. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1210. self.gguf_writer.add_file_type(self.ftype)
  1211. @Model.register("GPTRefactForCausalLM")
  1212. class RefactModel(Model):
  1213. model_arch = gguf.MODEL_ARCH.REFACT
  1214. def set_vocab(self):
  1215. super().set_vocab()
  1216. # TODO: how to determine special FIM tokens automatically?
  1217. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1218. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1219. special_vocab._set_special_token("prefix", 1)
  1220. special_vocab._set_special_token("suffix", 3)
  1221. special_vocab._set_special_token("middle", 2)
  1222. special_vocab.chat_template = None # do not add it twice
  1223. special_vocab.add_to_gguf(self.gguf_writer)
  1224. def set_gguf_parameters(self):
  1225. hidden_dim = self.hparams["n_embd"]
  1226. inner_dim = 4 * hidden_dim
  1227. hidden_dim = int(2 * inner_dim / 3)
  1228. multiple_of = 256
  1229. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1230. block_count = self.hparams["n_layer"]
  1231. # refact uses Alibi. So this is from config.json which might be used by training.
  1232. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1233. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1234. self.gguf_writer.add_feed_forward_length(ff_dim)
  1235. self.gguf_writer.add_block_count(block_count)
  1236. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1237. self.gguf_writer.add_head_count_kv(1)
  1238. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1239. self.gguf_writer.add_file_type(self.ftype)
  1240. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1241. hidden_dim = self.hparams["n_embd"]
  1242. inner_dim = 4 * hidden_dim
  1243. hidden_dim = int(2 * inner_dim / 3)
  1244. multiple_of = 256
  1245. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1246. n_head = self.hparams["n_head"]
  1247. n_head_kv = 1
  1248. head_dim = self.hparams["n_embd"] // n_head
  1249. tensors: list[tuple[str, Tensor]] = []
  1250. if bid is not None:
  1251. if name == f"transformer.h.{bid}.attn.kv.weight":
  1252. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1253. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1254. elif name == f"transformer.h.{bid}.attn.q.weight":
  1255. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1256. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1257. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1258. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1259. if len(tensors) == 0:
  1260. tensors.append((self.map_tensor_name(name), data_torch))
  1261. return tensors
  1262. @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1263. class StableLMModel(Model):
  1264. model_arch = gguf.MODEL_ARCH.STABLELM
  1265. def set_vocab(self):
  1266. if (self.dir_model / "tokenizer.json").is_file():
  1267. self._set_vocab_gpt2()
  1268. else:
  1269. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1270. self._set_vocab_qwen()
  1271. def set_gguf_parameters(self):
  1272. hparams = self.hparams
  1273. block_count = hparams["num_hidden_layers"]
  1274. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1275. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1276. self.gguf_writer.add_block_count(block_count)
  1277. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1278. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1279. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1280. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1281. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1282. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1283. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1284. self.gguf_writer.add_file_type(self.ftype)
  1285. _q_norms: list[dict[str, Tensor]] | None = None
  1286. _k_norms: list[dict[str, Tensor]] | None = None
  1287. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1288. n_head = self.hparams["num_attention_heads"]
  1289. n_kv_head = self.hparams["num_key_value_heads"]
  1290. if name.find("q_layernorm.norms") != -1:
  1291. assert bid is not None
  1292. if self._q_norms is None:
  1293. self._q_norms = [{} for _ in range(self.block_count)]
  1294. self._q_norms[bid][name] = data_torch
  1295. if len(self._q_norms[bid]) >= n_head:
  1296. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1297. else:
  1298. return []
  1299. if name.find("k_layernorm.norms") != -1:
  1300. assert bid is not None
  1301. if self._k_norms is None:
  1302. self._k_norms = [{} for _ in range(self.block_count)]
  1303. self._k_norms[bid][name] = data_torch
  1304. if len(self._k_norms[bid]) >= n_kv_head:
  1305. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1306. else:
  1307. return []
  1308. return [(self.map_tensor_name(name), data_torch)]
  1309. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1310. datas: list[Tensor] = []
  1311. # extract the norms in order
  1312. for xid in range(n_head):
  1313. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1314. datas.append(norms[ename])
  1315. del norms[ename]
  1316. data_torch = torch.stack(datas, dim=0)
  1317. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1318. new_name = self.map_tensor_name(merged_name)
  1319. return [(new_name, data_torch)]
  1320. def prepare_tensors(self):
  1321. super().prepare_tensors()
  1322. if self._q_norms is not None or self._k_norms is not None:
  1323. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1324. norms = (
  1325. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1326. ) + (
  1327. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1328. )
  1329. if len(norms) > 0:
  1330. raise ValueError(f"Unprocessed norms: {norms}")
  1331. @Model.register("LLaMAForCausalLM", "LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
  1332. class LlamaModel(Model):
  1333. model_arch = gguf.MODEL_ARCH.LLAMA
  1334. def set_vocab(self):
  1335. try:
  1336. self._set_vocab_sentencepiece()
  1337. except FileNotFoundError:
  1338. try:
  1339. self._set_vocab_llama_hf()
  1340. except (FileNotFoundError, TypeError):
  1341. # Llama 3
  1342. self._set_vocab_gpt2()
  1343. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1344. if self.hparams.get("vocab_size", 32000) == 32016:
  1345. special_vocab = gguf.SpecialVocab(
  1346. self.dir_model, load_merges=False,
  1347. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1348. )
  1349. special_vocab._set_special_token("prefix", 32007)
  1350. special_vocab._set_special_token("suffix", 32008)
  1351. special_vocab._set_special_token("middle", 32009)
  1352. special_vocab._set_special_token("eot", 32010)
  1353. special_vocab.add_to_gguf(self.gguf_writer)
  1354. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1355. if tokenizer_config_file.is_file():
  1356. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1357. tokenizer_config_json = json.load(f)
  1358. if "add_prefix_space" in tokenizer_config_json:
  1359. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1360. # Apply to granite small models only
  1361. if self.hparams.get("vocab_size", 32000) == 49152:
  1362. self.gguf_writer.add_add_bos_token(False)
  1363. def set_gguf_parameters(self):
  1364. super().set_gguf_parameters()
  1365. hparams = self.hparams
  1366. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1367. if "head_dim" in hparams:
  1368. rope_dim = hparams["head_dim"]
  1369. else:
  1370. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1371. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1372. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1373. if self.hparams["rope_scaling"].get("type") == "linear":
  1374. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1375. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1376. @staticmethod
  1377. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1378. if n_head_kv is not None and n_head != n_head_kv:
  1379. n_head = n_head_kv
  1380. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1381. .swapaxes(1, 2)
  1382. .reshape(weights.shape))
  1383. _experts: list[dict[str, Tensor]] | None = None
  1384. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1385. n_head = self.hparams["num_attention_heads"]
  1386. n_kv_head = self.hparams.get("num_key_value_heads")
  1387. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1388. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1389. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1390. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1391. # process the experts separately
  1392. if name.find("block_sparse_moe.experts") != -1:
  1393. n_experts = self.hparams["num_local_experts"]
  1394. assert bid is not None
  1395. if self._experts is None:
  1396. self._experts = [{} for _ in range(self.block_count)]
  1397. self._experts[bid][name] = data_torch
  1398. if len(self._experts[bid]) >= n_experts * 3:
  1399. tensors: list[tuple[str, Tensor]] = []
  1400. # merge the experts into a single 3d tensor
  1401. for wid in ["w1", "w2", "w3"]:
  1402. datas: list[Tensor] = []
  1403. for xid in range(n_experts):
  1404. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1405. datas.append(self._experts[bid][ename])
  1406. del self._experts[bid][ename]
  1407. data_torch = torch.stack(datas, dim=0)
  1408. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1409. new_name = self.map_tensor_name(merged_name)
  1410. tensors.append((new_name, data_torch))
  1411. return tensors
  1412. else:
  1413. return []
  1414. return [(self.map_tensor_name(name), data_torch)]
  1415. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1416. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1417. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1418. base = self.hparams.get("rope_theta", 10000.0)
  1419. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1420. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1421. factor = rope_scaling.get("factor", 8.0)
  1422. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1423. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1424. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1425. low_freq_wavelen = old_context_len / low_freq_factor
  1426. high_freq_wavelen = old_context_len / high_freq_factor
  1427. assert low_freq_wavelen != high_freq_wavelen
  1428. rope_factors = []
  1429. for freq in freqs:
  1430. wavelen = 2 * math.pi / freq
  1431. if wavelen < high_freq_wavelen:
  1432. rope_factors.append(1)
  1433. elif wavelen > low_freq_wavelen:
  1434. rope_factors.append(factor)
  1435. else:
  1436. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1437. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1438. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1439. def prepare_tensors(self):
  1440. super().prepare_tensors()
  1441. if self._experts is not None:
  1442. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1443. experts = [k for d in self._experts for k in d.keys()]
  1444. if len(experts) > 0:
  1445. raise ValueError(f"Unprocessed experts: {experts}")
  1446. @Model.register("Mistral3ForConditionalGeneration")
  1447. class Mistral3Model(LlamaModel):
  1448. model_arch = gguf.MODEL_ARCH.LLAMA
  1449. # we need to merge the text_config into the root level of hparams
  1450. def __init__(self, *args, **kwargs):
  1451. hparams = kwargs["hparams"] if "hparams" in kwargs else Model.load_hparams(args[0])
  1452. if "text_config" in hparams:
  1453. hparams = {**hparams, **hparams["text_config"]}
  1454. kwargs["hparams"] = hparams
  1455. super().__init__(*args, **kwargs)
  1456. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1457. name = name.replace("language_model.", "")
  1458. if "multi_modal_projector" in name or "vision_tower" in name:
  1459. return []
  1460. return super().modify_tensors(data_torch, name, bid)
  1461. @Model.register("DeciLMForCausalLM")
  1462. class DeciModel(Model):
  1463. model_arch = gguf.MODEL_ARCH.DECI
  1464. @staticmethod
  1465. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  1466. # DeciLM-specific code
  1467. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  1468. return DeciModel._find_multiple(intermediate_size, 256)
  1469. @staticmethod
  1470. def _find_multiple(n: int, k: int) -> int:
  1471. # DeciLM-specific code
  1472. if n % k == 0:
  1473. return n
  1474. return n + k - (n % k)
  1475. def __init__(self, *args, **kwargs):
  1476. super().__init__(*args, **kwargs)
  1477. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1478. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  1479. assert self.block_count == len(_block_configs)
  1480. self._num_kv_heads = list()
  1481. self._num_heads = list()
  1482. _ffn_multipliers = list()
  1483. # ***linear attention layer***
  1484. # if n_heads_in_group is None and replace_with_linear is True
  1485. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  1486. # ***attention-free layer***
  1487. # if n_heads_in_group is None and replace_with_linear is False
  1488. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  1489. # ***normal attention-layer***
  1490. # if n_heads_in_group is not None, then
  1491. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  1492. # _num_heads[il] is num_attention_head
  1493. for il in range(len(_block_configs)):
  1494. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  1495. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  1496. self._num_kv_heads.append(0)
  1497. self._num_heads.append(self.hparams["num_attention_heads"])
  1498. else:
  1499. self._num_kv_heads.append(0)
  1500. self._num_heads.append(0)
  1501. else:
  1502. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  1503. self._num_heads.append(self.hparams["num_attention_heads"])
  1504. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  1505. assert self.block_count == len(self._num_kv_heads)
  1506. assert self.block_count == len(self._num_heads)
  1507. assert self.block_count == len(_ffn_multipliers)
  1508. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  1509. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  1510. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  1511. self._ffn_dims: list[int] = [
  1512. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  1513. for multiplier in _ffn_multipliers
  1514. ]
  1515. def set_vocab(self):
  1516. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  1517. # eos_token from '|eot_id|' to '|end_of_text|'
  1518. if self.hparams.get("vocab_size", 128256) == 128256:
  1519. tokens, toktypes, tokpre = self.get_vocab_base()
  1520. self.gguf_writer.add_tokenizer_model("gpt2")
  1521. self.gguf_writer.add_tokenizer_pre(tokpre)
  1522. self.gguf_writer.add_token_list(tokens)
  1523. self.gguf_writer.add_token_types(toktypes)
  1524. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1525. special_vocab.add_to_gguf(self.gguf_writer)
  1526. else:
  1527. # DeciLM-7B
  1528. self._set_vocab_llama_hf()
  1529. def set_gguf_parameters(self):
  1530. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1531. assert self.block_count == len(self._num_kv_heads)
  1532. assert self.block_count == len(self._num_heads)
  1533. assert self.block_count == len(self._ffn_dims)
  1534. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  1535. self.gguf_writer.add_rope_freq_base(rope_theta)
  1536. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1537. self.gguf_writer.add_head_count(self._num_heads)
  1538. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  1539. self.gguf_writer.add_block_count(self.block_count)
  1540. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1541. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1542. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1543. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1544. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1545. self.gguf_writer.add_file_type(self.ftype)
  1546. else: # DeciLM-7B
  1547. super().set_gguf_parameters()
  1548. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  1549. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  1550. assert self.block_count == len(self._num_kv_heads)
  1551. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1552. hparams = self.hparams
  1553. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1554. if "head_dim" in hparams:
  1555. rope_dim = hparams["head_dim"]
  1556. else:
  1557. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1558. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1559. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1560. if self.hparams["rope_scaling"].get("type") == "linear":
  1561. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1562. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1563. @staticmethod
  1564. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1565. if n_head_kv is not None and n_head != n_head_kv:
  1566. n_head = n_head_kv
  1567. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1568. .swapaxes(1, 2)
  1569. .reshape(weights.shape))
  1570. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1571. n_head = self.hparams["num_attention_heads"]
  1572. if bid is not None:
  1573. if "num_key_value_heads_per_layer" in self.hparams:
  1574. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  1575. elif "block_configs" in self.hparams:
  1576. n_kv_head = self._num_kv_heads[bid]
  1577. n_head = self._num_heads[bid]
  1578. else:
  1579. n_kv_head = self.hparams.get("num_key_value_heads")
  1580. else:
  1581. n_kv_head = self.hparams.get("num_key_value_heads")
  1582. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1583. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  1584. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1585. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  1586. return [(self.map_tensor_name(name), data_torch)]
  1587. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1588. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1589. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1590. base = self.hparams.get("rope_theta", 10000.0)
  1591. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1592. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1593. factor = rope_scaling.get("factor", 8.0)
  1594. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1595. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1596. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1597. low_freq_wavelen = old_context_len / low_freq_factor
  1598. high_freq_wavelen = old_context_len / high_freq_factor
  1599. assert low_freq_wavelen != high_freq_wavelen
  1600. rope_factors = []
  1601. for freq in freqs:
  1602. wavelen = 2 * math.pi / freq
  1603. if wavelen < high_freq_wavelen:
  1604. rope_factors.append(1)
  1605. elif wavelen > low_freq_wavelen:
  1606. rope_factors.append(factor)
  1607. else:
  1608. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1609. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1610. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1611. def prepare_tensors(self):
  1612. super().prepare_tensors()
  1613. @Model.register("BitnetForCausalLM")
  1614. class BitnetModel(Model):
  1615. model_arch = gguf.MODEL_ARCH.BITNET
  1616. def set_vocab(self):
  1617. self._set_vocab_sentencepiece()
  1618. def set_gguf_parameters(self):
  1619. super().set_gguf_parameters()
  1620. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1621. self.gguf_writer.add_rope_scaling_factor(1.0)
  1622. def weight_quant(self, weight: Tensor) -> Tensor:
  1623. dtype = weight.dtype
  1624. weight = weight.float()
  1625. scale = weight.abs().mean().clamp(min=1e-5)
  1626. iscale = 1 / scale
  1627. # TODO: multiply by the scale directly instead of inverting it twice
  1628. # (this is also unnecessarily doubly inverted upstream)
  1629. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  1630. result = (weight * iscale).round().clamp(-1, 1) / iscale
  1631. return result.type(dtype)
  1632. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1633. new_name = self.map_tensor_name(name)
  1634. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  1635. gguf.MODEL_TENSOR.ATTN_Q,
  1636. gguf.MODEL_TENSOR.ATTN_K,
  1637. gguf.MODEL_TENSOR.ATTN_V,
  1638. gguf.MODEL_TENSOR.ATTN_OUT,
  1639. gguf.MODEL_TENSOR.FFN_UP,
  1640. gguf.MODEL_TENSOR.FFN_DOWN,
  1641. gguf.MODEL_TENSOR.FFN_GATE,
  1642. ]):
  1643. # transform weight into 1/0/-1 (in fp32)
  1644. data_torch = self.weight_quant(data_torch)
  1645. yield (new_name, data_torch)
  1646. @Model.register("GrokForCausalLM")
  1647. class GrokModel(Model):
  1648. model_arch = gguf.MODEL_ARCH.GROK
  1649. def set_vocab(self):
  1650. self._set_vocab_sentencepiece()
  1651. def __init__(self, *args, **kwargs):
  1652. super().__init__(*args, **kwargs)
  1653. def set_gguf_parameters(self):
  1654. super().set_gguf_parameters()
  1655. _experts: list[dict[str, Tensor]] | None = None
  1656. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1657. # process the experts separately
  1658. if name.find(".moe.") != -1:
  1659. n_experts = self.hparams["num_local_experts"]
  1660. assert bid is not None
  1661. if self._experts is None:
  1662. self._experts = [{} for _ in range(self.block_count)]
  1663. self._experts[bid][name] = data_torch
  1664. if len(self._experts[bid]) >= n_experts * 3:
  1665. tensors: list[tuple[str, Tensor]] = []
  1666. # merge the experts into a single 3d tensor
  1667. for wid in ["linear", "linear_1", "linear_v"]:
  1668. datas: list[Tensor] = []
  1669. for xid in range(n_experts):
  1670. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1671. datas.append(self._experts[bid][ename])
  1672. del self._experts[bid][ename]
  1673. data_torch = torch.stack(datas, dim=0)
  1674. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1675. new_name = self.map_tensor_name(merged_name)
  1676. tensors.append((new_name, data_torch))
  1677. return tensors
  1678. else:
  1679. return []
  1680. return [(self.map_tensor_name(name), data_torch)]
  1681. @Model.register("DbrxForCausalLM")
  1682. class DbrxModel(Model):
  1683. model_arch = gguf.MODEL_ARCH.DBRX
  1684. def set_gguf_parameters(self):
  1685. ffn_config = self.hparams["ffn_config"]
  1686. attn_config = self.hparams["attn_config"]
  1687. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1688. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1689. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1690. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1691. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1692. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1693. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1694. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1695. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1696. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1697. self.gguf_writer.add_layer_norm_eps(1e-5)
  1698. self.gguf_writer.add_file_type(self.ftype)
  1699. logger.info(f"gguf: file type = {self.ftype}")
  1700. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1701. del bid # unused
  1702. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1703. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1704. n_embd = self.hparams["d_model"]
  1705. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1706. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1707. # But llama.cpp moe graph works differently
  1708. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1709. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1710. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1711. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1712. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1713. experts = False
  1714. for exp_tensor_name in exp_tensor_names.keys():
  1715. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1716. experts = True
  1717. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1718. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1719. data_torch = data_torch.permute(*permute_tensor)
  1720. break
  1721. # map tensor names
  1722. # In MoE models the ffn tensors are typically most of the model weights,
  1723. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1724. # Every other model has the weight names ending in .weight,
  1725. # let's assume that is the convention which is not the case for dbrx:
  1726. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  1727. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  1728. return [(new_name, data_torch)]
  1729. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  1730. del name, new_name, bid # unused
  1731. return n_dims > 1
  1732. @Model.register("MiniCPMForCausalLM")
  1733. class MiniCPMModel(Model):
  1734. model_arch = gguf.MODEL_ARCH.MINICPM
  1735. def set_gguf_parameters(self):
  1736. super().set_gguf_parameters()
  1737. embedding_scale = float(self.hparams["scale_emb"])
  1738. self.gguf_writer.add_embedding_scale(embedding_scale)
  1739. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  1740. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  1741. self.gguf_writer.add_residual_scale(residual_scale)
  1742. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  1743. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  1744. self.gguf_writer.add_logit_scale(logit_scale)
  1745. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  1746. if self.hparams.get("rope_scaling") is not None:
  1747. if self.hparams["rope_scaling"].get("type") == "longrope":
  1748. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
  1749. logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
  1750. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1751. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  1752. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1753. if rope_scaling is not None:
  1754. long_factors = rope_scaling.get('long_factor', None)
  1755. short_factors = rope_scaling.get('short_factor', None)
  1756. if long_factors is None or short_factors is None:
  1757. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1758. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1759. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1760. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  1761. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  1762. def set_vocab(self):
  1763. self._set_vocab_sentencepiece()
  1764. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1765. del bid # unused
  1766. n_head = self.hparams["num_attention_heads"]
  1767. n_kv_head = self.hparams.get("num_key_value_heads")
  1768. # HF models permute some of the tensors, so we need to undo that
  1769. if name.endswith(("q_proj.weight")):
  1770. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1771. if name.endswith(("k_proj.weight")):
  1772. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1773. return [(self.map_tensor_name(name), data_torch)]
  1774. @Model.register("MiniCPM3ForCausalLM")
  1775. class MiniCPM3Model(Model):
  1776. model_arch = gguf.MODEL_ARCH.MINICPM3
  1777. def set_gguf_parameters(self):
  1778. hparams = self.hparams
  1779. self.gguf_writer.add_file_type(self.ftype)
  1780. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1781. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1782. self.gguf_writer.add_block_count(self.block_count)
  1783. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1784. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1785. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1786. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1787. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1788. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  1789. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  1790. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  1791. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  1792. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  1793. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1794. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1795. if rope_scaling is not None:
  1796. rope_dims = self.hparams["qk_rope_head_dim"]
  1797. long_factors = rope_scaling.get('long_factor', None)
  1798. short_factors = rope_scaling.get('short_factor', None)
  1799. if long_factors is None or short_factors is None:
  1800. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1801. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1802. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1803. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  1804. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  1805. def set_vocab(self):
  1806. self._set_vocab_sentencepiece()
  1807. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1808. if n_kv_head is not None and n_head != n_kv_head:
  1809. n_head //= n_kv_head
  1810. return (
  1811. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1812. .swapaxes(1, 2)
  1813. .reshape(weights.shape)
  1814. )
  1815. @Model.register("QWenLMHeadModel")
  1816. class QwenModel(Model):
  1817. model_arch = gguf.MODEL_ARCH.QWEN
  1818. @staticmethod
  1819. def token_bytes_to_string(b):
  1820. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  1821. byte_encoder = bytes_to_unicode()
  1822. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  1823. @staticmethod
  1824. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  1825. parts = [bytes([b]) for b in token]
  1826. while True:
  1827. min_idx = None
  1828. min_rank = None
  1829. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  1830. rank = mergeable_ranks.get(pair[0] + pair[1])
  1831. if rank is not None and (min_rank is None or rank < min_rank):
  1832. min_idx = i
  1833. min_rank = rank
  1834. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  1835. break
  1836. assert min_idx is not None
  1837. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  1838. return parts
  1839. def set_vocab(self):
  1840. self._set_vocab_qwen()
  1841. def set_gguf_parameters(self):
  1842. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1843. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1844. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1845. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1846. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1847. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1848. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1849. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1850. self.gguf_writer.add_file_type(self.ftype)
  1851. @Model.register("Qwen2ForCausalLM")
  1852. class Qwen2Model(Model):
  1853. model_arch = gguf.MODEL_ARCH.QWEN2
  1854. def set_vocab(self):
  1855. try:
  1856. self._set_vocab_sentencepiece()
  1857. except FileNotFoundError:
  1858. self._set_vocab_gpt2()
  1859. def set_gguf_parameters(self):
  1860. super().set_gguf_parameters()
  1861. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1862. if self.hparams["rope_scaling"].get("type") == "yarn":
  1863. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  1864. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1865. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  1866. @Model.register("Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  1867. class Qwen2VLModel(Model):
  1868. model_arch = gguf.MODEL_ARCH.QWEN2VL
  1869. def set_gguf_parameters(self):
  1870. super().set_gguf_parameters()
  1871. mrope_section = self.hparams["rope_scaling"]["mrope_section"]
  1872. mrope_section += [0] * max(0, 4 - len(mrope_section))
  1873. self.gguf_writer.add_rope_dimension_sections(mrope_section)
  1874. def set_vocab(self):
  1875. try:
  1876. self._set_vocab_sentencepiece()
  1877. except FileNotFoundError:
  1878. self._set_vocab_gpt2()
  1879. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  1880. for name, data in super().get_tensors():
  1881. if name.startswith("visual."):
  1882. continue
  1883. yield name, data
  1884. @Model.register("WavTokenizerDec")
  1885. class WavTokenizerDecModel(Model):
  1886. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  1887. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1888. del bid # unused
  1889. if \
  1890. name.endswith("codebook.cluster_size") or \
  1891. name.endswith("codebook.embed_avg") or \
  1892. name.endswith("codebook.inited"):
  1893. logger.debug(f"Skipping {name!r}")
  1894. return []
  1895. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  1896. return [(self.map_tensor_name(name), data_torch)]
  1897. def set_vocab(self):
  1898. self._set_vocab_none()
  1899. def set_gguf_parameters(self):
  1900. super().set_gguf_parameters()
  1901. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  1902. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  1903. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  1904. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  1905. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  1906. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  1907. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  1908. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  1909. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  1910. self.gguf_writer.add_causal_attention(False)
  1911. @Model.register("Qwen2MoeForCausalLM")
  1912. class Qwen2MoeModel(Model):
  1913. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  1914. def set_gguf_parameters(self):
  1915. super().set_gguf_parameters()
  1916. if (n_experts := self.hparams.get("num_experts")) is not None:
  1917. self.gguf_writer.add_expert_count(n_experts)
  1918. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  1919. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  1920. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  1921. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  1922. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  1923. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  1924. _experts: list[dict[str, Tensor]] | None = None
  1925. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1926. # process the experts separately
  1927. if name.find("experts") != -1:
  1928. n_experts = self.hparams["num_experts"]
  1929. assert bid is not None
  1930. if self._experts is None:
  1931. self._experts = [{} for _ in range(self.block_count)]
  1932. self._experts[bid][name] = data_torch
  1933. if len(self._experts[bid]) >= n_experts * 3:
  1934. tensors: list[tuple[str, Tensor]] = []
  1935. # merge the experts into a single 3d tensor
  1936. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  1937. datas: list[Tensor] = []
  1938. for xid in range(n_experts):
  1939. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  1940. datas.append(self._experts[bid][ename])
  1941. del self._experts[bid][ename]
  1942. data_torch = torch.stack(datas, dim=0)
  1943. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  1944. new_name = self.map_tensor_name(merged_name)
  1945. tensors.append((new_name, data_torch))
  1946. return tensors
  1947. else:
  1948. return []
  1949. return [(self.map_tensor_name(name), data_torch)]
  1950. def prepare_tensors(self):
  1951. super().prepare_tensors()
  1952. if self._experts is not None:
  1953. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1954. experts = [k for d in self._experts for k in d.keys()]
  1955. if len(experts) > 0:
  1956. raise ValueError(f"Unprocessed experts: {experts}")
  1957. @Model.register("GPT2LMHeadModel")
  1958. class GPT2Model(Model):
  1959. model_arch = gguf.MODEL_ARCH.GPT2
  1960. def set_gguf_parameters(self):
  1961. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1962. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  1963. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1964. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1965. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1966. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1967. self.gguf_writer.add_file_type(self.ftype)
  1968. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1969. del bid # unused
  1970. tensors: list[tuple[str, Tensor]] = []
  1971. # we don't need these
  1972. if name.endswith((".attn.bias", ".attn.masked_bias")):
  1973. return tensors
  1974. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  1975. data_torch = data_torch.transpose(1, 0)
  1976. new_name = self.map_tensor_name(name)
  1977. tensors.append((new_name, data_torch))
  1978. return tensors
  1979. @Model.register("PhiForCausalLM")
  1980. class Phi2Model(Model):
  1981. model_arch = gguf.MODEL_ARCH.PHI2
  1982. def set_gguf_parameters(self):
  1983. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1984. rot_pct = self.find_hparam(["partial_rotary_factor"])
  1985. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1986. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1987. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1988. self.gguf_writer.add_embedding_length(n_embd)
  1989. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  1990. self.gguf_writer.add_block_count(block_count)
  1991. self.gguf_writer.add_head_count(n_head)
  1992. self.gguf_writer.add_head_count_kv(n_head)
  1993. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  1994. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1995. self.gguf_writer.add_file_type(self.ftype)
  1996. self.gguf_writer.add_add_bos_token(False)
  1997. @Model.register("Phi3ForCausalLM")
  1998. class Phi3MiniModel(Model):
  1999. model_arch = gguf.MODEL_ARCH.PHI3
  2000. def set_vocab(self):
  2001. # Phi-4 model uses GPT2Tokenizer
  2002. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2003. if tokenizer_config_file.is_file():
  2004. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2005. tokenizer_config_json = json.load(f)
  2006. tokenizer_class = tokenizer_config_json['tokenizer_class']
  2007. if tokenizer_class == 'GPT2Tokenizer':
  2008. return self._set_vocab_gpt2()
  2009. from sentencepiece import SentencePieceProcessor
  2010. tokenizer_path = self.dir_model / 'tokenizer.model'
  2011. if not tokenizer_path.is_file():
  2012. raise ValueError(f'Error: Missing {tokenizer_path}')
  2013. tokenizer = SentencePieceProcessor()
  2014. tokenizer.LoadFromFile(str(tokenizer_path))
  2015. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2016. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2017. scores: list[float] = [-10000.0] * vocab_size
  2018. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2019. for token_id in range(tokenizer.vocab_size()):
  2020. piece = tokenizer.IdToPiece(token_id)
  2021. text = piece.encode("utf-8")
  2022. score = tokenizer.GetScore(token_id)
  2023. toktype = SentencePieceTokenTypes.NORMAL
  2024. if tokenizer.IsUnknown(token_id):
  2025. toktype = SentencePieceTokenTypes.UNKNOWN
  2026. elif tokenizer.IsControl(token_id):
  2027. toktype = SentencePieceTokenTypes.CONTROL
  2028. elif tokenizer.IsUnused(token_id):
  2029. toktype = SentencePieceTokenTypes.UNUSED
  2030. elif tokenizer.IsByte(token_id):
  2031. toktype = SentencePieceTokenTypes.BYTE
  2032. tokens[token_id] = text
  2033. scores[token_id] = score
  2034. toktypes[token_id] = toktype
  2035. added_tokens_file = self.dir_model / 'added_tokens.json'
  2036. if added_tokens_file.is_file():
  2037. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2038. added_tokens_json = json.load(f)
  2039. for key in added_tokens_json:
  2040. token_id = added_tokens_json[key]
  2041. if token_id >= vocab_size:
  2042. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2043. continue
  2044. tokens[token_id] = key.encode("utf-8")
  2045. scores[token_id] = -1000.0
  2046. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2047. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2048. if tokenizer_config_file.is_file():
  2049. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2050. tokenizer_config_json = json.load(f)
  2051. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2052. for token_id, foken_data in added_tokens_decoder.items():
  2053. token_id = int(token_id)
  2054. token = foken_data["content"].encode("utf-8")
  2055. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2056. if tokens[token_id] != token:
  2057. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2058. tokens[token_id] = token
  2059. scores[token_id] = -1000.0
  2060. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2061. if foken_data.get("special"):
  2062. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2063. tokenizer_file = self.dir_model / 'tokenizer.json'
  2064. if tokenizer_file.is_file():
  2065. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2066. tokenizer_json = json.load(f)
  2067. added_tokens = tokenizer_json.get("added_tokens", [])
  2068. for foken_data in added_tokens:
  2069. token_id = int(foken_data["id"])
  2070. token = foken_data["content"].encode("utf-8")
  2071. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2072. if tokens[token_id] != token:
  2073. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2074. tokens[token_id] = token
  2075. scores[token_id] = -1000.0
  2076. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2077. if foken_data.get("special"):
  2078. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2079. self.gguf_writer.add_tokenizer_model("llama")
  2080. self.gguf_writer.add_tokenizer_pre("default")
  2081. self.gguf_writer.add_token_list(tokens)
  2082. self.gguf_writer.add_token_scores(scores)
  2083. self.gguf_writer.add_token_types(toktypes)
  2084. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2085. special_vocab.add_to_gguf(self.gguf_writer)
  2086. def set_gguf_parameters(self):
  2087. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2088. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2089. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2090. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  2091. rms_eps = self.find_hparam(["rms_norm_eps"])
  2092. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2093. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2094. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  2095. rope_dims = int(rot_pct * n_embd) // n_head
  2096. self.gguf_writer.add_context_length(max_pos_embds)
  2097. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  2098. self.gguf_writer.add_embedding_length(n_embd)
  2099. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  2100. self.gguf_writer.add_block_count(block_count)
  2101. self.gguf_writer.add_head_count(n_head)
  2102. self.gguf_writer.add_head_count_kv(n_head_kv)
  2103. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  2104. self.gguf_writer.add_rope_dimension_count(rope_dims)
  2105. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  2106. self.gguf_writer.add_file_type(self.ftype)
  2107. sliding_window = self.hparams.get("sliding_window")
  2108. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  2109. if sliding_window is None:
  2110. sliding_window = 0
  2111. self.gguf_writer.add_sliding_window(sliding_window)
  2112. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2113. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2114. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2115. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2116. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2117. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  2118. rope_dims = int(rot_pct * n_embd) // n_head
  2119. # write rope scaling for long context (128k) model
  2120. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2121. if rope_scaling is None:
  2122. return
  2123. scale = max_pos_embds / orig_max_pos_embds
  2124. rope_scaling_type = rope_scaling.get('type', '').lower()
  2125. if len(rope_scaling_type) == 0:
  2126. raise KeyError('Missing the required key rope_scaling.type')
  2127. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  2128. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  2129. elif rope_scaling_type == 'yarn':
  2130. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  2131. else:
  2132. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  2133. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  2134. long_factors = rope_scaling.get('long_factor', None)
  2135. short_factors = rope_scaling.get('short_factor', None)
  2136. if long_factors is None or short_factors is None:
  2137. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2138. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2139. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  2140. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2141. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2142. @Model.register("PhiMoEForCausalLM")
  2143. class PhiMoeModel(Phi3MiniModel):
  2144. model_arch = gguf.MODEL_ARCH.PHIMOE
  2145. _experts: list[dict[str, Tensor]] | None = None
  2146. def set_gguf_parameters(self):
  2147. super().set_gguf_parameters()
  2148. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  2149. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  2150. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2151. # process the experts separately
  2152. if name.find("block_sparse_moe.experts") != -1:
  2153. n_experts = self.hparams["num_local_experts"]
  2154. assert bid is not None
  2155. if self._experts is None:
  2156. self._experts = [{} for _ in range(self.block_count)]
  2157. self._experts[bid][name] = data_torch
  2158. if len(self._experts[bid]) >= n_experts * 3:
  2159. tensors: list[tuple[str, Tensor]] = []
  2160. # merge the experts into a single 3d tensor
  2161. for w_name in ["w1", "w2", "w3"]:
  2162. datas: list[Tensor] = []
  2163. for xid in range(n_experts):
  2164. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  2165. datas.append(self._experts[bid][ename])
  2166. del self._experts[bid][ename]
  2167. data_torch = torch.stack(datas, dim=0)
  2168. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  2169. new_name = self.map_tensor_name(merged_name)
  2170. tensors.append((new_name, data_torch))
  2171. return tensors
  2172. else:
  2173. return []
  2174. return [(self.map_tensor_name(name), data_torch)]
  2175. def prepare_tensors(self):
  2176. super().prepare_tensors()
  2177. if self._experts is not None:
  2178. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2179. experts = [k for d in self._experts for k in d.keys()]
  2180. if len(experts) > 0:
  2181. raise ValueError(f"Unprocessed experts: {experts}")
  2182. @Model.register("PlamoForCausalLM")
  2183. class PlamoModel(Model):
  2184. model_arch = gguf.MODEL_ARCH.PLAMO
  2185. def set_vocab(self):
  2186. self._set_vocab_sentencepiece()
  2187. def set_gguf_parameters(self):
  2188. hparams = self.hparams
  2189. block_count = hparams["num_hidden_layers"]
  2190. self.gguf_writer.add_context_length(4096) # not in config.json
  2191. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2192. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2193. self.gguf_writer.add_block_count(block_count)
  2194. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2195. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  2196. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2197. self.gguf_writer.add_file_type(self.ftype)
  2198. def shuffle_attn_q_weight(self, data_torch):
  2199. assert data_torch.size() == (5120, 5120)
  2200. data_torch = data_torch.reshape(8, 5, 128, 5120)
  2201. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  2202. data_torch = torch.reshape(data_torch, (5120, 5120))
  2203. return data_torch
  2204. def shuffle_attn_output_weight(self, data_torch):
  2205. assert data_torch.size() == (5120, 5120)
  2206. data_torch = data_torch.reshape(5120, 8, 5, 128)
  2207. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  2208. data_torch = torch.reshape(data_torch, (5120, 5120))
  2209. return data_torch
  2210. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2211. del bid # unused
  2212. new_name = self.map_tensor_name(name)
  2213. # shuffle for broadcasting of gqa in ggml_mul_mat
  2214. if new_name.endswith("attn_q.weight"):
  2215. data_torch = self.shuffle_attn_q_weight(data_torch)
  2216. elif new_name.endswith("attn_output.weight"):
  2217. data_torch = self.shuffle_attn_output_weight(data_torch)
  2218. return [(new_name, data_torch)]
  2219. @Model.register("CodeShellForCausalLM")
  2220. class CodeShellModel(Model):
  2221. model_arch = gguf.MODEL_ARCH.CODESHELL
  2222. def set_gguf_parameters(self):
  2223. block_count = self.hparams["n_layer"]
  2224. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  2225. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2226. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  2227. self.gguf_writer.add_block_count(block_count)
  2228. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2229. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  2230. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2231. self.gguf_writer.add_file_type(self.ftype)
  2232. self.gguf_writer.add_rope_freq_base(10000.0)
  2233. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2234. self.gguf_writer.add_rope_scaling_factor(1.0)
  2235. _has_tok_embd = False
  2236. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2237. del bid # unused
  2238. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  2239. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  2240. new_name = self.map_tensor_name(name)
  2241. # assuming token_embd.weight is seen before output.weight
  2242. if not self._has_tok_embd and new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  2243. # even though the tensor file(s) does not contain the word embeddings they are still in the weight map
  2244. if self.tensor_names and "transformer.wte.weight" in self.tensor_names:
  2245. logger.debug(f"{tok_embd_name} not found before {output_name}, assuming they are tied")
  2246. self.tensor_names.remove("transformer.wte.weight")
  2247. elif new_name == tok_embd_name:
  2248. self._has_tok_embd = True
  2249. return [(new_name, data_torch)]
  2250. @Model.register("InternLM2ForCausalLM")
  2251. class InternLM2Model(Model):
  2252. model_arch = gguf.MODEL_ARCH.INTERNLM2
  2253. def set_vocab(self):
  2254. # (TODO): Is there a better way?
  2255. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  2256. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  2257. # recognized as an empty string in C++.
  2258. from sentencepiece import SentencePieceProcessor
  2259. from sentencepiece import sentencepiece_model_pb2 as model
  2260. tokenizer_path = self.dir_model / 'tokenizer.model'
  2261. tokens: list[bytes] = []
  2262. scores: list[float] = []
  2263. toktypes: list[int] = []
  2264. if not tokenizer_path.is_file():
  2265. logger.error(f'Error: Missing {tokenizer_path}')
  2266. sys.exit(1)
  2267. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2268. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2269. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2270. tokenizer = SentencePieceProcessor()
  2271. tokenizer.LoadFromFile(str(tokenizer_path))
  2272. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2273. for token_id in range(vocab_size):
  2274. piece = tokenizer.IdToPiece(token_id)
  2275. text = piece.encode("utf-8")
  2276. score = tokenizer.GetScore(token_id)
  2277. if text == b"\x00":
  2278. # (TODO): fixme
  2279. # Hack here and replace the \x00 characters.
  2280. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  2281. text = "🐉".encode("utf-8")
  2282. toktype = SentencePieceTokenTypes.NORMAL
  2283. if tokenizer.IsUnknown(token_id):
  2284. toktype = SentencePieceTokenTypes.UNKNOWN
  2285. elif tokenizer.IsControl(token_id):
  2286. toktype = SentencePieceTokenTypes.CONTROL
  2287. elif tokenizer.IsUnused(token_id):
  2288. toktype = SentencePieceTokenTypes.UNUSED
  2289. elif tokenizer.IsByte(token_id):
  2290. toktype = SentencePieceTokenTypes.BYTE
  2291. # take care of ununsed raw token
  2292. if piece.startswith('[UNUSED'):
  2293. toktype = SentencePieceTokenTypes.UNUSED
  2294. tokens.append(text)
  2295. scores.append(score)
  2296. toktypes.append(toktype)
  2297. added_tokens_file = self.dir_model / 'added_tokens.json'
  2298. if added_tokens_file.is_file():
  2299. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2300. added_tokens_json = json.load(f)
  2301. for key in added_tokens_json:
  2302. tokens.append(key.encode("utf-8"))
  2303. scores.append(-1000.0)
  2304. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  2305. chat_eos_token = '<|im_end|>'
  2306. chat_eos_token_id = None
  2307. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2308. if tokenizer_config_file.is_file():
  2309. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2310. tokenizer_config_json = json.load(f)
  2311. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2312. for token_id, foken_data in added_tokens_decoder.items():
  2313. token_id = int(token_id)
  2314. token = foken_data["content"]
  2315. if token == chat_eos_token:
  2316. chat_eos_token_id = token_id
  2317. token = token.encode("utf-8")
  2318. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2319. if tokens[token_id] != token:
  2320. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2321. tokens[token_id] = token
  2322. scores[token_id] = -1000.0
  2323. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2324. if foken_data.get("special"):
  2325. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2326. tokenizer_file = self.dir_model / 'tokenizer.json'
  2327. if tokenizer_file.is_file():
  2328. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2329. tokenizer_json = json.load(f)
  2330. added_tokens = tokenizer_json.get("added_tokens", [])
  2331. for foken_data in added_tokens:
  2332. token_id = int(foken_data["id"])
  2333. token = foken_data["content"]
  2334. if token == chat_eos_token:
  2335. chat_eos_token_id = token_id
  2336. token = token.encode("utf-8")
  2337. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2338. if tokens[token_id] != token:
  2339. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2340. tokens[token_id] = token
  2341. scores[token_id] = -1000.0
  2342. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2343. if foken_data.get("special"):
  2344. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2345. self.gguf_writer.add_tokenizer_model("llama")
  2346. self.gguf_writer.add_tokenizer_pre("default")
  2347. self.gguf_writer.add_token_list(tokens)
  2348. self.gguf_writer.add_token_scores(scores)
  2349. self.gguf_writer.add_token_types(toktypes)
  2350. self.gguf_writer.add_add_space_prefix(add_prefix)
  2351. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2352. old_eos = special_vocab.special_token_ids["eos"]
  2353. if chat_eos_token_id is not None:
  2354. # For the chat model, we replace the eos with '<|im_end|>'.
  2355. # TODO: this is a hack, should be fixed
  2356. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  2357. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  2358. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  2359. " in chat mode so that the conversation can end normally.")
  2360. special_vocab.add_to_gguf(self.gguf_writer)
  2361. def set_gguf_parameters(self):
  2362. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2363. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2364. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2365. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2366. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  2367. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2368. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2369. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  2370. self.gguf_writer.add_file_type(self.ftype)
  2371. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2372. if self.hparams["rope_scaling"].get("type") == "linear":
  2373. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2374. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2375. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2376. num_heads = self.hparams["num_attention_heads"]
  2377. num_kv_heads = self.hparams["num_key_value_heads"]
  2378. n_embd = self.hparams["hidden_size"]
  2379. q_per_kv = num_heads // num_kv_heads
  2380. head_dim = n_embd // num_heads
  2381. num_groups = num_heads // q_per_kv
  2382. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  2383. qkv = data_torch
  2384. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  2385. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  2386. # The model weights of q and k equire additional reshape.
  2387. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  2388. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  2389. v = v.reshape((-1, v.shape[-1]))
  2390. return [
  2391. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  2392. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  2393. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  2394. ]
  2395. else:
  2396. return [(self.map_tensor_name(name), data_torch)]
  2397. @Model.register("InternLM3ForCausalLM")
  2398. class InternLM3Model(Model):
  2399. model_arch = gguf.MODEL_ARCH.LLAMA
  2400. def set_vocab(self):
  2401. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  2402. self.gguf_writer.add_tokenizer_model("llama")
  2403. self.gguf_writer.add_tokenizer_pre("default")
  2404. self.gguf_writer.add_token_list(tokens)
  2405. self.gguf_writer.add_token_scores(scores)
  2406. self.gguf_writer.add_token_types(toktypes)
  2407. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2408. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2409. if tokenizer_config_file.is_file():
  2410. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2411. tokenizer_config_json = json.load(f)
  2412. if "add_prefix_space" in tokenizer_config_json:
  2413. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  2414. if "added_tokens_decoder" in tokenizer_config_json:
  2415. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  2416. if token_data.get("special"):
  2417. token_id = int(token_id)
  2418. token = token_data["content"]
  2419. special_vocab._set_special_token(token, token_id)
  2420. # update eos token
  2421. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  2422. special_vocab.special_token_ids["eos"] = token_id
  2423. special_vocab.add_to_gguf(self.gguf_writer)
  2424. def set_gguf_parameters(self):
  2425. super().set_gguf_parameters()
  2426. hparams = self.hparams
  2427. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2428. if "head_dim" in hparams:
  2429. rope_dim = hparams["head_dim"]
  2430. else:
  2431. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2432. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2433. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2434. if self.hparams["rope_scaling"].get("type") == "linear" or self.hparams["rope_scaling"].get("rope_type") == "linear":
  2435. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2436. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2437. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2438. n_head = self.hparams["num_attention_heads"]
  2439. n_kv_head = self.hparams.get("num_key_value_heads")
  2440. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2441. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2442. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2443. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2444. return [(self.map_tensor_name(name), data_torch)]
  2445. @Model.register("BertModel", "BertForMaskedLM", "CamembertModel")
  2446. class BertModel(Model):
  2447. model_arch = gguf.MODEL_ARCH.BERT
  2448. def __init__(self, *args, **kwargs):
  2449. super().__init__(*args, **kwargs)
  2450. self.vocab_size = None
  2451. def set_gguf_parameters(self):
  2452. super().set_gguf_parameters()
  2453. self.gguf_writer.add_causal_attention(False)
  2454. # get pooling path
  2455. pooling_path = None
  2456. module_path = self.dir_model / "modules.json"
  2457. if module_path.is_file():
  2458. with open(module_path, encoding="utf-8") as f:
  2459. modules = json.load(f)
  2460. for mod in modules:
  2461. if mod["type"] == "sentence_transformers.models.Pooling":
  2462. pooling_path = mod["path"]
  2463. break
  2464. # get pooling type
  2465. if pooling_path is not None:
  2466. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  2467. pooling = json.load(f)
  2468. if pooling["pooling_mode_mean_tokens"]:
  2469. pooling_type = gguf.PoolingType.MEAN
  2470. elif pooling["pooling_mode_cls_token"]:
  2471. pooling_type = gguf.PoolingType.CLS
  2472. else:
  2473. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  2474. self.gguf_writer.add_pooling_type(pooling_type)
  2475. def set_vocab(self):
  2476. tokens, toktypes, tokpre = self.get_vocab_base()
  2477. self.vocab_size = len(tokens)
  2478. # we need this to validate the size of the token_type embeddings
  2479. # though currently we are passing all zeros to the token_type embeddings
  2480. # "Sequence A" or "Sequence B"
  2481. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2482. # convert to phantom space vocab
  2483. def phantom(tok):
  2484. if tok.startswith("[") and tok.endswith("]"):
  2485. return tok
  2486. if tok.startswith("##"):
  2487. return tok[2:]
  2488. return "\u2581" + tok
  2489. tokens = list(map(phantom, tokens))
  2490. # add vocab to gguf
  2491. self.gguf_writer.add_tokenizer_model("bert")
  2492. self.gguf_writer.add_tokenizer_pre(tokpre)
  2493. self.gguf_writer.add_token_list(tokens)
  2494. self.gguf_writer.add_token_types(toktypes)
  2495. # handle special tokens
  2496. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2497. special_vocab.add_to_gguf(self.gguf_writer)
  2498. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2499. del bid # unused
  2500. if name.startswith("bert."):
  2501. name = name[5:]
  2502. if name.endswith(".gamma"):
  2503. name = name[:-6] + ".weight"
  2504. if name.endswith(".beta"):
  2505. name = name[:-5] + ".bias"
  2506. # we are only using BERT for embeddings so we don't need the pooling layer
  2507. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  2508. return [] # we don't need these
  2509. if name.startswith("cls.predictions"):
  2510. return []
  2511. if name.startswith("cls.seq_relationship"):
  2512. return []
  2513. return [(self.map_tensor_name(name), data_torch)]
  2514. @Model.register("RobertaModel")
  2515. class RobertaModel(BertModel):
  2516. model_arch = gguf.MODEL_ARCH.BERT
  2517. def __init__(self, *args, **kwargs):
  2518. super().__init__(*args, **kwargs)
  2519. # we need the pad_token_id to know how to chop down position_embd matrix
  2520. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2521. self._position_offset = 1 + pad_token_id
  2522. if "max_position_embeddings" in self.hparams:
  2523. self.hparams["max_position_embeddings"] -= self._position_offset
  2524. else:
  2525. self._position_offset = None
  2526. def set_vocab(self):
  2527. """Support BPE tokenizers for roberta models"""
  2528. bpe_tok_path = self.dir_model / "tokenizer.json"
  2529. if bpe_tok_path.exists():
  2530. self._set_vocab_gpt2()
  2531. self.gguf_writer.add_add_bos_token(True)
  2532. self.gguf_writer.add_add_eos_token(True)
  2533. # we need this to validate the size of the token_type embeddings
  2534. # though currently we are passing all zeros to the token_type embeddings
  2535. # "Sequence A" or "Sequence B"
  2536. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2537. else:
  2538. return super().set_vocab()
  2539. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2540. # if name starts with "roberta.", remove the prefix
  2541. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  2542. if name.startswith("roberta."):
  2543. name = name[8:]
  2544. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  2545. if name == "embeddings.position_embeddings.weight":
  2546. if self._position_offset is not None:
  2547. data_torch = data_torch[self._position_offset:,:]
  2548. return super().modify_tensors(data_torch, name, bid)
  2549. @Model.register("NomicBertModel")
  2550. class NomicBertModel(BertModel):
  2551. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  2552. def __init__(self, *args, **kwargs):
  2553. super().__init__(*args, **kwargs)
  2554. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  2555. self.hparams["n_ctx"] = 2048
  2556. # SwigLU activation
  2557. assert self.hparams["activation_function"] == "swiglu"
  2558. # this doesn't do anything in the HF version
  2559. assert self.hparams["causal"] is False
  2560. # no bias tensors
  2561. assert self.hparams["qkv_proj_bias"] is False
  2562. assert self.hparams["mlp_fc1_bias"] is False
  2563. assert self.hparams["mlp_fc2_bias"] is False
  2564. # norm at end of layer
  2565. assert self.hparams["prenorm"] is False
  2566. # standard RoPE
  2567. assert self.hparams["rotary_emb_fraction"] == 1.0
  2568. assert self.hparams["rotary_emb_interleaved"] is False
  2569. assert self.hparams["rotary_emb_scale_base"] is None
  2570. def set_gguf_parameters(self):
  2571. super().set_gguf_parameters()
  2572. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2573. @Model.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  2574. class XLMRobertaModel(BertModel):
  2575. model_arch = gguf.MODEL_ARCH.BERT
  2576. def __init__(self, *args, **kwargs):
  2577. super().__init__(*args, **kwargs)
  2578. # we need the pad_token_id to know how to chop down position_embd matrix
  2579. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2580. self._position_offset = 1 + pad_token_id
  2581. if "max_position_embeddings" in self.hparams:
  2582. self.hparams["max_position_embeddings"] -= self._position_offset
  2583. else:
  2584. self._position_offset = None
  2585. def set_vocab(self):
  2586. # to avoid TypeError: Descriptors cannot be created directly
  2587. # exception when importing sentencepiece_model_pb2
  2588. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2589. from sentencepiece import SentencePieceProcessor
  2590. from sentencepiece import sentencepiece_model_pb2 as model
  2591. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  2592. if not tokenizer_path.is_file():
  2593. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2594. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2595. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2596. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2597. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2598. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2599. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2600. tokenizer = SentencePieceProcessor()
  2601. tokenizer.LoadFromFile(str(tokenizer_path))
  2602. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2603. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2604. scores: list[float] = [-10000.0] * vocab_size
  2605. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2606. for token_id in range(tokenizer.vocab_size()):
  2607. piece = tokenizer.IdToPiece(token_id)
  2608. text = piece.encode("utf-8")
  2609. score = tokenizer.GetScore(token_id)
  2610. toktype = SentencePieceTokenTypes.NORMAL
  2611. if tokenizer.IsUnknown(token_id):
  2612. toktype = SentencePieceTokenTypes.UNKNOWN
  2613. elif tokenizer.IsControl(token_id):
  2614. toktype = SentencePieceTokenTypes.CONTROL
  2615. elif tokenizer.IsUnused(token_id):
  2616. toktype = SentencePieceTokenTypes.UNUSED
  2617. elif tokenizer.IsByte(token_id):
  2618. toktype = SentencePieceTokenTypes.BYTE
  2619. tokens[token_id] = text
  2620. scores[token_id] = score
  2621. toktypes[token_id] = toktype
  2622. if vocab_size > len(tokens):
  2623. pad_count = vocab_size - len(tokens)
  2624. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2625. for i in range(1, pad_count + 1):
  2626. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2627. scores.append(-1000.0)
  2628. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2629. # realign tokens (see HF tokenizer code)
  2630. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  2631. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  2632. toktypes = [
  2633. SentencePieceTokenTypes.CONTROL,
  2634. SentencePieceTokenTypes.CONTROL,
  2635. SentencePieceTokenTypes.CONTROL,
  2636. SentencePieceTokenTypes.UNKNOWN,
  2637. ] + toktypes[3:-1]
  2638. self.gguf_writer.add_tokenizer_model("t5")
  2639. self.gguf_writer.add_tokenizer_pre("default")
  2640. self.gguf_writer.add_token_list(tokens)
  2641. self.gguf_writer.add_token_scores(scores)
  2642. self.gguf_writer.add_token_types(toktypes)
  2643. self.gguf_writer.add_add_space_prefix(add_prefix)
  2644. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2645. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2646. if precompiled_charsmap:
  2647. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2648. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2649. special_vocab.add_to_gguf(self.gguf_writer)
  2650. self.gguf_writer.add_add_bos_token(True)
  2651. self.gguf_writer.add_add_eos_token(True)
  2652. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2653. # if name starts with "roberta.", remove the prefix
  2654. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  2655. if name.startswith("roberta."):
  2656. name = name[8:]
  2657. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  2658. if name == "embeddings.position_embeddings.weight":
  2659. if self._position_offset is not None:
  2660. data_torch = data_torch[self._position_offset:,:]
  2661. return super().modify_tensors(data_torch, name, bid)
  2662. @Model.register("GemmaForCausalLM")
  2663. class GemmaModel(Model):
  2664. model_arch = gguf.MODEL_ARCH.GEMMA
  2665. def set_vocab(self):
  2666. self._set_vocab_sentencepiece()
  2667. # TODO: these special tokens should be exported only for the CodeGemma family
  2668. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  2669. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  2670. special_vocab._set_special_token("prefix", 67)
  2671. special_vocab._set_special_token("suffix", 69)
  2672. special_vocab._set_special_token("middle", 68)
  2673. special_vocab._set_special_token("fsep", 70)
  2674. special_vocab._set_special_token("eot", 107)
  2675. special_vocab.chat_template = None # do not add it twice
  2676. special_vocab.add_to_gguf(self.gguf_writer)
  2677. self.gguf_writer.add_add_space_prefix(False)
  2678. def set_gguf_parameters(self):
  2679. hparams = self.hparams
  2680. block_count = hparams["num_hidden_layers"]
  2681. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2682. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2683. self.gguf_writer.add_block_count(block_count)
  2684. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2685. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2686. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2687. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2688. self.gguf_writer.add_key_length(hparams["head_dim"])
  2689. self.gguf_writer.add_value_length(hparams["head_dim"])
  2690. self.gguf_writer.add_file_type(self.ftype)
  2691. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2692. del bid # unused
  2693. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2694. # To prevent errors, skip loading lm_head.weight.
  2695. if name == "lm_head.weight":
  2696. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2697. return []
  2698. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2699. if name.endswith("norm.weight"):
  2700. data_torch = data_torch + 1
  2701. return [(self.map_tensor_name(name), data_torch)]
  2702. @Model.register("Gemma2ForCausalLM")
  2703. class Gemma2Model(Model):
  2704. model_arch = gguf.MODEL_ARCH.GEMMA2
  2705. def set_vocab(self):
  2706. self._set_vocab_sentencepiece()
  2707. self.gguf_writer.add_add_space_prefix(False)
  2708. def set_gguf_parameters(self):
  2709. hparams = self.hparams
  2710. block_count = hparams["num_hidden_layers"]
  2711. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2712. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2713. self.gguf_writer.add_block_count(block_count)
  2714. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2715. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2716. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2717. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2718. self.gguf_writer.add_key_length(hparams["head_dim"])
  2719. self.gguf_writer.add_value_length(hparams["head_dim"])
  2720. self.gguf_writer.add_file_type(self.ftype)
  2721. self.gguf_writer.add_attn_logit_softcapping(
  2722. self.hparams["attn_logit_softcapping"]
  2723. )
  2724. self.gguf_writer.add_final_logit_softcapping(
  2725. self.hparams["final_logit_softcapping"]
  2726. )
  2727. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  2728. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2729. del bid # unused
  2730. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2731. # To prevent errors, skip loading lm_head.weight.
  2732. if name == "lm_head.weight":
  2733. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2734. return []
  2735. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2736. if name.endswith("norm.weight"):
  2737. data_torch = data_torch + 1
  2738. return [(self.map_tensor_name(name), data_torch)]
  2739. @Model.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  2740. class Gemma3Model(Model):
  2741. model_arch = gguf.MODEL_ARCH.GEMMA3
  2742. has_vision: bool = False
  2743. # we need to merge the text_config into the root level of hparams
  2744. def __init__(self, *args, **kwargs):
  2745. hparams = kwargs["hparams"] if "hparams" in kwargs else Model.load_hparams(args[0])
  2746. if "text_config" in hparams:
  2747. hparams = {**hparams, **hparams["text_config"]}
  2748. kwargs["hparams"] = hparams
  2749. super().__init__(*args, **kwargs)
  2750. if "vision_config" in hparams:
  2751. logger.info("Has vision encoder, but it will be ignored")
  2752. self.has_vision = True
  2753. def write(self):
  2754. super().write()
  2755. if self.has_vision:
  2756. logger.info("NOTE: this script only convert the language model to GGUF")
  2757. logger.info(" for the vision model, please use gemma3_convert_encoder_to_gguf.py")
  2758. def set_vocab(self):
  2759. self._set_vocab_sentencepiece()
  2760. self.gguf_writer.add_add_space_prefix(False)
  2761. def set_gguf_parameters(self):
  2762. hparams = self.hparams
  2763. block_count = hparams["num_hidden_layers"]
  2764. # some default values are not specified in the hparams
  2765. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  2766. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2767. self.gguf_writer.add_block_count(block_count)
  2768. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2769. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  2770. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  2771. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  2772. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  2773. self.gguf_writer.add_file_type(self.ftype)
  2774. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1_000_000.0)) # for global layers
  2775. # both attn_logit_softcapping and final_logit_softcapping are removed in Gemma3
  2776. assert hparams.get("attn_logit_softcapping") is None
  2777. assert hparams.get("final_logit_softcapping") is None
  2778. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  2779. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  2780. if hparams.get("rope_scaling") is not None:
  2781. assert hparams["rope_scaling"]["rope_type"] == "linear"
  2782. # important: this rope_scaling is only applied for global layers, and not used by 1B model
  2783. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2784. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  2785. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2786. del bid # unused
  2787. if name.startswith("language_model."):
  2788. name = name.replace("language_model.", "")
  2789. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  2790. or name.startswith("multimodal_projector.") or name.startswith("vision_model."): # this is for old HF model, should be removed later
  2791. # ignore vision tensors
  2792. return []
  2793. # remove OOV (out-of-vocabulary) rows in token_embd
  2794. if "embed_tokens.weight" in name:
  2795. vocab = self._create_vocab_sentencepiece()
  2796. tokens = vocab[0]
  2797. data_torch = data_torch[:len(tokens)]
  2798. # ref code in Gemma3RMSNorm
  2799. # output = output * (1.0 + self.weight.float())
  2800. if name.endswith("norm.weight"):
  2801. data_torch = data_torch + 1
  2802. return [(self.map_tensor_name(name), data_torch)]
  2803. @Model.register("Starcoder2ForCausalLM")
  2804. class StarCoder2Model(Model):
  2805. model_arch = gguf.MODEL_ARCH.STARCODER2
  2806. @Model.register("Rwkv6ForCausalLM")
  2807. class Rwkv6Model(Model):
  2808. model_arch = gguf.MODEL_ARCH.RWKV6
  2809. def set_vocab(self):
  2810. self._set_vocab_rwkv_world()
  2811. def set_gguf_parameters(self):
  2812. block_count = self.hparams["num_hidden_layers"]
  2813. head_size = self.hparams["head_size"]
  2814. hidden_size = self.hparams["hidden_size"]
  2815. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  2816. rescale_every_n_layers = self.hparams["rescale_every"]
  2817. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  2818. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  2819. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  2820. # RWKV isn't context limited
  2821. self.gguf_writer.add_context_length(1048576)
  2822. self.gguf_writer.add_embedding_length(hidden_size)
  2823. self.gguf_writer.add_block_count(block_count)
  2824. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  2825. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  2826. self.gguf_writer.add_wkv_head_size(head_size)
  2827. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  2828. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  2829. self.gguf_writer.add_feed_forward_length(intermediate_size)
  2830. self.gguf_writer.add_file_type(self.ftype)
  2831. # required by llama.cpp, unused
  2832. self.gguf_writer.add_head_count(0)
  2833. lerp_weights: dict[int, dict[str, Tensor]] = {}
  2834. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2835. new_name = self.map_tensor_name(name)
  2836. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  2837. new_name += ".weight"
  2838. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  2839. data_torch = data_torch.transpose(0, 1)
  2840. if new_name.endswith("time_mix_w2.weight"):
  2841. data_torch = data_torch.permute(0, 2, 1)
  2842. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  2843. data_torch = data_torch.squeeze()
  2844. try:
  2845. rescale_every_n_layers = self.hparams["rescale_every"]
  2846. if rescale_every_n_layers > 0:
  2847. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  2848. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  2849. except KeyError:
  2850. pass
  2851. # concat time_mix_lerp weights to reduce some cpu overhead
  2852. # also reduces the number of tensors in the model
  2853. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  2854. try:
  2855. self.lerp_weights[bid][new_name] = data_torch
  2856. except KeyError:
  2857. self.lerp_weights[bid] = {new_name: data_torch}
  2858. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  2859. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  2860. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  2861. yield (new_name, data)
  2862. return
  2863. yield (new_name, data_torch)
  2864. @Model.register("RWKV6Qwen2ForCausalLM")
  2865. class RWKV6Qwen2Model(Rwkv6Model):
  2866. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  2867. def set_vocab(self):
  2868. try:
  2869. self._set_vocab_sentencepiece()
  2870. except FileNotFoundError:
  2871. self._set_vocab_gpt2()
  2872. def set_gguf_parameters(self):
  2873. block_count = self.hparams["num_hidden_layers"]
  2874. num_attention_heads = self.hparams["num_attention_heads"]
  2875. num_key_value_heads = self.hparams["num_key_value_heads"]
  2876. hidden_size = self.hparams["hidden_size"]
  2877. head_size = hidden_size // num_attention_heads
  2878. rms_norm_eps = self.hparams["rms_norm_eps"]
  2879. intermediate_size = self.hparams["intermediate_size"]
  2880. time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
  2881. time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
  2882. # RWKV isn't context limited
  2883. self.gguf_writer.add_context_length(1048576)
  2884. self.gguf_writer.add_embedding_length(hidden_size)
  2885. self.gguf_writer.add_block_count(block_count)
  2886. self.gguf_writer.add_wkv_head_size(head_size)
  2887. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  2888. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  2889. self.gguf_writer.add_feed_forward_length(intermediate_size)
  2890. self.gguf_writer.add_file_type(self.ftype)
  2891. # special parameters for time_mixing in RWKV6QWEN2
  2892. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  2893. self.gguf_writer.add_token_shift_count(1)
  2894. # RWKV6QWEN2 use grouped key/value like GQA
  2895. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  2896. # required by llama.cpp, unused
  2897. self.gguf_writer.add_head_count(0)
  2898. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2899. for new_name, data in super().modify_tensors(data_torch, name, bid):
  2900. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  2901. data = data.view(5, -1, data.shape[-1])
  2902. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  2903. # permute them here to avoid code changes
  2904. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  2905. if "w2" in new_name:
  2906. data = data.view(5, -1, data.shape[-1])
  2907. yield (new_name, data)
  2908. continue
  2909. yield (new_name, data)
  2910. @Model.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  2911. class Rwkv7Model(Model):
  2912. model_arch = gguf.MODEL_ARCH.RWKV7
  2913. def set_vocab(self):
  2914. self._set_vocab_rwkv_world()
  2915. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  2916. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  2917. def set_gguf_parameters(self):
  2918. block_count = self.hparams["num_hidden_layers"]
  2919. try:
  2920. head_size = self.hparams["head_size"]
  2921. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  2922. except KeyError:
  2923. head_size = self.hparams["head_dim"]
  2924. layer_norm_eps = self.hparams["norm_eps"]
  2925. hidden_size = self.hparams["hidden_size"]
  2926. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  2927. # ICLR: In-Context-Learning-Rate
  2928. try:
  2929. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  2930. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  2931. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  2932. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  2933. except KeyError:
  2934. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  2935. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  2936. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  2937. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  2938. # RWKV isn't context limited
  2939. self.gguf_writer.add_context_length(1048576)
  2940. self.gguf_writer.add_embedding_length(hidden_size)
  2941. self.gguf_writer.add_block_count(block_count)
  2942. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  2943. self.gguf_writer.add_wkv_head_size(head_size)
  2944. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  2945. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  2946. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  2947. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  2948. self.gguf_writer.add_feed_forward_length(intermediate_size)
  2949. self.gguf_writer.add_file_type(self.ftype)
  2950. # required by llama.cpp, unused
  2951. self.gguf_writer.add_head_count(0)
  2952. lerp_weights: dict[int, dict[str, Tensor]] = {}
  2953. lora_needs_transpose: bool = True
  2954. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2955. # unify tensor names here to make life easier
  2956. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  2957. name = name.replace("self_attn", "attention").replace("attn", "attention")
  2958. name = name.replace("time_mixer.", "")
  2959. # lora layer names in fla-hub's impl
  2960. if "_lora.lora" in name:
  2961. self.lora_needs_transpose = False
  2962. name = name.replace("_lora.lora.0.weight", "1.weight")
  2963. name = name.replace("_lora.lora.2.weight", "2.weight")
  2964. name = name.replace("_lora.lora.2.bias", "0.weight")
  2965. name = name.replace("feed_forward_norm", "ln2")
  2966. name = name.replace("g_norm", "ln_x")
  2967. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  2968. # some models have dummy v0/v1/v2 on first layer while others don't
  2969. # ignore them all since they are not used
  2970. return
  2971. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  2972. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  2973. if bid is not None and "attention.x_" in name:
  2974. if "attention.x_x" in name:
  2975. # already concatenated
  2976. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  2977. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  2978. yield (new_name, data)
  2979. else:
  2980. try:
  2981. self.lerp_weights[bid][name] = data_torch
  2982. except KeyError:
  2983. self.lerp_weights[bid] = {name: data_torch}
  2984. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  2985. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  2986. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  2987. yield (new_name, data)
  2988. return
  2989. else:
  2990. data_torch = data_torch.squeeze()
  2991. new_name = self.map_tensor_name(name)
  2992. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  2993. new_name += ".weight"
  2994. if self.lora_needs_transpose and any(
  2995. new_name.endswith(t) for t in [
  2996. "time_mix_w1.weight", "time_mix_w2.weight",
  2997. "time_mix_a1.weight", "time_mix_a2.weight",
  2998. "time_mix_v1.weight", "time_mix_v2.weight",
  2999. "time_mix_g1.weight", "time_mix_g2.weight",
  3000. ]
  3001. ):
  3002. data_torch = data_torch.transpose(0, 1)
  3003. if 'r_k' in new_name:
  3004. data_torch = data_torch.flatten()
  3005. if bid == 0 and "time_mix_a" in new_name:
  3006. # dummy v0/v1/v2 on first layer
  3007. # easist way to make llama happy
  3008. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  3009. yield (new_name, data_torch)
  3010. @Model.register("RwkvHybridForCausalLM")
  3011. class ARwkv7Model(Rwkv7Model):
  3012. model_arch = gguf.MODEL_ARCH.ARWKV7
  3013. def set_vocab(self):
  3014. try:
  3015. self._set_vocab_sentencepiece()
  3016. except FileNotFoundError:
  3017. self._set_vocab_gpt2()
  3018. def set_gguf_parameters(self):
  3019. block_count = self.hparams["num_hidden_layers"]
  3020. hidden_size = self.hparams["hidden_size"]
  3021. head_size = self.hparams["head_size"]
  3022. rms_norm_eps = self.hparams["rms_norm_eps"]
  3023. intermediate_size = self.hparams["intermediate_size"]
  3024. wkv_has_gate = self.hparams["wkv_has_gate"]
  3025. assert self.hparams["wkv_version"] == 7
  3026. # ICLR: In-Context-Learning-Rate
  3027. lora_rank_decay = 64
  3028. lora_rank_iclr = 64
  3029. lora_rank_value_residual_mix = 32
  3030. lora_rank_gate = 128 if wkv_has_gate else 0
  3031. # RWKV isn't context limited
  3032. self.gguf_writer.add_context_length(1048576)
  3033. self.gguf_writer.add_embedding_length(hidden_size)
  3034. self.gguf_writer.add_block_count(block_count)
  3035. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3036. self.gguf_writer.add_wkv_head_size(head_size)
  3037. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  3038. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  3039. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  3040. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  3041. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3042. self.gguf_writer.add_file_type(self.ftype)
  3043. self.gguf_writer.add_token_shift_count(1)
  3044. # required by llama.cpp, unused
  3045. self.gguf_writer.add_head_count(0)
  3046. @Model.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  3047. class MambaModel(Model):
  3048. model_arch = gguf.MODEL_ARCH.MAMBA
  3049. def set_vocab(self):
  3050. vocab_size = self.hparams["vocab_size"]
  3051. # Round vocab size to next multiple of 8
  3052. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  3053. # pad using ceiling division
  3054. # ref: https://stackoverflow.com/a/17511341/22827863
  3055. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  3056. self.hparams["vocab_size"] = vocab_size
  3057. if (self.dir_model / "tokenizer.json").is_file():
  3058. self._set_vocab_gpt2()
  3059. elif (self.dir_model / "tokenizer.model").is_file():
  3060. self._set_vocab_sentencepiece()
  3061. else:
  3062. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  3063. self._set_vocab_builtin("gpt-neox", vocab_size)
  3064. def set_gguf_parameters(self):
  3065. d_model = self.find_hparam(["hidden_size", "d_model"])
  3066. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  3067. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  3068. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  3069. # ceiling division
  3070. # ref: https://stackoverflow.com/a/17511341/22827863
  3071. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  3072. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  3073. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  3074. use_dt_b_c_norm = False
  3075. # For falconmamba we do apply RMS norm on B / DT and C layers
  3076. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  3077. use_dt_b_c_norm = True
  3078. # Fail early for models which don't have a block expansion factor of 2
  3079. assert d_inner == 2 * d_model
  3080. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  3081. self.gguf_writer.add_embedding_length(d_model)
  3082. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  3083. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  3084. self.gguf_writer.add_block_count(self.block_count)
  3085. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  3086. self.gguf_writer.add_ssm_inner_size(d_inner)
  3087. self.gguf_writer.add_ssm_state_size(d_state)
  3088. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  3089. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3090. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  3091. self.gguf_writer.add_file_type(self.ftype)
  3092. _tok_embd = None
  3093. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3094. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  3095. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  3096. new_name = self.map_tensor_name(name)
  3097. if name.endswith(".A_log"):
  3098. logger.debug("A_log --> A ==> " + new_name)
  3099. data_torch = -torch.exp(data_torch)
  3100. # [4 1 8192 1] -> [4 8192 1 1]
  3101. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  3102. data_torch = data_torch.squeeze()
  3103. # assuming token_embd.weight is seen before output.weight
  3104. if self._tok_embd is not None and new_name == output_name:
  3105. if torch.equal(self._tok_embd, data_torch):
  3106. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  3107. return []
  3108. elif new_name == tok_embd_name:
  3109. self._tok_embd = data_torch
  3110. return [(new_name, data_torch)]
  3111. @Model.register("CohereForCausalLM")
  3112. class CommandR2Model(Model):
  3113. model_arch = gguf.MODEL_ARCH.COMMAND_R
  3114. def __init__(self, *args, **kwargs):
  3115. super().__init__(*args, **kwargs)
  3116. # max_position_embeddings = 8192 in config.json but model was actually
  3117. # trained on 128k context length
  3118. # aya-23 models don't have model_max_length specified
  3119. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  3120. def set_gguf_parameters(self):
  3121. super().set_gguf_parameters()
  3122. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  3123. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3124. @Model.register("Cohere2ForCausalLM")
  3125. class Cohere2Model(Model):
  3126. model_arch = gguf.MODEL_ARCH.COHERE2
  3127. def set_gguf_parameters(self):
  3128. super().set_gguf_parameters()
  3129. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  3130. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  3131. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  3132. rotary_pct = self.hparams["rotary_pct"]
  3133. hidden_size = self.hparams["hidden_size"]
  3134. num_attention_heads = self.hparams["num_attention_heads"]
  3135. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  3136. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3137. @Model.register("OlmoForCausalLM")
  3138. @Model.register("OLMoForCausalLM")
  3139. class OlmoModel(Model):
  3140. model_arch = gguf.MODEL_ARCH.OLMO
  3141. def set_gguf_parameters(self):
  3142. super().set_gguf_parameters()
  3143. self.gguf_writer.add_layer_norm_eps(1e-5)
  3144. clip_qkv = self.hparams.get("clip_qkv")
  3145. if clip_qkv is not None:
  3146. self.gguf_writer.add_clamp_kqv(clip_qkv)
  3147. # Same as super class, but permuting q_proj, k_proj
  3148. # Copied from: LlamaModel
  3149. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3150. del bid # unused
  3151. n_head = self.hparams["num_attention_heads"]
  3152. n_kv_head = self.hparams.get("num_key_value_heads")
  3153. if name.endswith("q_proj.weight"):
  3154. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3155. if name.endswith("k_proj.weight"):
  3156. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3157. return [(self.map_tensor_name(name), data_torch)]
  3158. @Model.register("Olmo2ForCausalLM")
  3159. class Olmo2Model(Model):
  3160. model_arch = gguf.MODEL_ARCH.OLMO2
  3161. @Model.register("OlmoeForCausalLM")
  3162. class OlmoeModel(Model):
  3163. model_arch = gguf.MODEL_ARCH.OLMOE
  3164. def set_gguf_parameters(self):
  3165. super().set_gguf_parameters()
  3166. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  3167. if (n_experts := self.hparams.get("num_experts")) is not None:
  3168. self.gguf_writer.add_expert_count(n_experts)
  3169. _experts: list[dict[str, Tensor]] | None = None
  3170. # Copied from: Qwen2MoeModel
  3171. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3172. # process the experts separately
  3173. if name.find("experts") != -1:
  3174. n_experts = self.hparams["num_experts"]
  3175. assert bid is not None
  3176. if self._experts is None:
  3177. self._experts = [{} for _ in range(self.block_count)]
  3178. self._experts[bid][name] = data_torch
  3179. if len(self._experts[bid]) >= n_experts * 3:
  3180. tensors: list[tuple[str, Tensor]] = []
  3181. # merge the experts into a single 3d tensor
  3182. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3183. datas: list[Tensor] = []
  3184. for xid in range(n_experts):
  3185. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3186. datas.append(self._experts[bid][ename])
  3187. del self._experts[bid][ename]
  3188. data_torch = torch.stack(datas, dim=0)
  3189. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3190. new_name = self.map_tensor_name(merged_name)
  3191. tensors.append((new_name, data_torch))
  3192. return tensors
  3193. else:
  3194. return []
  3195. return [(self.map_tensor_name(name), data_torch)]
  3196. # Copied from: Qwen2MoeModel
  3197. def prepare_tensors(self):
  3198. super().prepare_tensors()
  3199. if self._experts is not None:
  3200. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3201. experts = [k for d in self._experts for k in d.keys()]
  3202. if len(experts) > 0:
  3203. raise ValueError(f"Unprocessed experts: {experts}")
  3204. @Model.register("JinaBertModel", "JinaBertForMaskedLM")
  3205. class JinaBertV2Model(BertModel):
  3206. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  3207. def __init__(self, *args, **kwargs):
  3208. super().__init__(*args, **kwargs)
  3209. self.intermediate_size = self.hparams["intermediate_size"]
  3210. def get_tensors(self):
  3211. for name, data in super().get_tensors():
  3212. if 'gated_layer' in name:
  3213. d1 = data[:self.intermediate_size, :]
  3214. name1 = name.replace('gated_layers', 'gated_layers_w')
  3215. name1 = name1.replace('up_gated_layer', 'gated_layers_v')
  3216. d2 = data[self.intermediate_size:, :]
  3217. name2 = name.replace('gated_layers', 'gated_layers_v')
  3218. name2 = name2.replace('up_gated_layer', 'gated_layers_w')
  3219. yield name1, d1
  3220. yield name2, d2
  3221. continue
  3222. yield name, data
  3223. def set_vocab(self):
  3224. tokenizer_class = 'BertTokenizer'
  3225. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  3226. tokenizer_class = json.load(f)['tokenizer_class']
  3227. if tokenizer_class == 'BertTokenizer':
  3228. super().set_vocab()
  3229. elif tokenizer_class == 'RobertaTokenizer':
  3230. self._set_vocab_gpt2()
  3231. self.gguf_writer.add_token_type_count(2)
  3232. else:
  3233. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  3234. self.gguf_writer.add_add_bos_token(True)
  3235. self.gguf_writer.add_add_eos_token(True)
  3236. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3237. # if name starts with "bert.", remove the prefix
  3238. # e.g. https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  3239. if name.startswith("bert."):
  3240. name = name[5:]
  3241. return super().modify_tensors(data_torch, name, bid)
  3242. @Model.register("OpenELMForCausalLM")
  3243. class OpenELMModel(Model):
  3244. model_arch = gguf.MODEL_ARCH.OPENELM
  3245. @staticmethod
  3246. def _make_divisible(v: float | int, divisor: int) -> int:
  3247. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  3248. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  3249. # Make sure that round down does not go down by more than 10%.
  3250. if new_v < 0.9 * v:
  3251. new_v += divisor
  3252. return new_v
  3253. def __init__(self, *args, **kwargs):
  3254. super().__init__(*args, **kwargs)
  3255. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  3256. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  3257. self._n_embd: int = self.hparams["model_dim"]
  3258. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  3259. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  3260. self._ffn_dims: list[int] = [
  3261. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  3262. for multiplier in ffn_multipliers
  3263. ]
  3264. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  3265. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  3266. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  3267. def set_vocab(self):
  3268. try:
  3269. self._set_vocab_sentencepiece()
  3270. except FileNotFoundError:
  3271. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  3272. def set_gguf_parameters(self):
  3273. n_embd = self._n_embd
  3274. head_dim = self.hparams["head_dim"]
  3275. rot_pct = 1.0
  3276. assert self.block_count == len(self._num_kv_heads)
  3277. assert self.block_count == len(self._num_query_heads)
  3278. assert self.block_count == len(self._ffn_dims)
  3279. self.gguf_writer.add_block_count(self.block_count)
  3280. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  3281. self.gguf_writer.add_embedding_length(n_embd)
  3282. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  3283. self.gguf_writer.add_head_count(self._num_query_heads)
  3284. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  3285. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  3286. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  3287. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  3288. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  3289. self.gguf_writer.add_key_length(head_dim)
  3290. self.gguf_writer.add_value_length(head_dim)
  3291. self.gguf_writer.add_file_type(self.ftype)
  3292. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  3293. if "n_layers" in keys:
  3294. return self.hparams["num_transformer_layers"]
  3295. return super().find_hparam(keys, optional)
  3296. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3297. # split ff
  3298. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  3299. ff_dim = self._ffn_dims[bid]
  3300. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  3301. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  3302. return
  3303. yield (self.map_tensor_name(name), data_torch)
  3304. @Model.register("ArcticForCausalLM")
  3305. class ArcticModel(Model):
  3306. model_arch = gguf.MODEL_ARCH.ARCTIC
  3307. def set_vocab(self):
  3308. # The reason for using a custom implementation here is that the
  3309. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  3310. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  3311. from sentencepiece import SentencePieceProcessor
  3312. tokenizer_path = self.dir_model / 'tokenizer.model'
  3313. if not tokenizer_path.is_file():
  3314. logger.error(f'Error: Missing {tokenizer_path}')
  3315. sys.exit(1)
  3316. # Read the whole vocabulary from the tokenizer.model file
  3317. tokenizer = SentencePieceProcessor()
  3318. tokenizer.LoadFromFile(str(tokenizer_path))
  3319. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3320. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3321. scores: list[float] = [-10000.0] * vocab_size
  3322. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3323. for token_id in range(tokenizer.vocab_size()):
  3324. piece = tokenizer.IdToPiece(token_id)
  3325. text = piece.encode("utf-8")
  3326. score = tokenizer.GetScore(token_id)
  3327. toktype = SentencePieceTokenTypes.NORMAL
  3328. if tokenizer.IsUnknown(token_id):
  3329. toktype = SentencePieceTokenTypes.UNKNOWN
  3330. elif tokenizer.IsControl(token_id):
  3331. toktype = SentencePieceTokenTypes.CONTROL
  3332. elif tokenizer.IsUnused(token_id):
  3333. toktype = SentencePieceTokenTypes.UNUSED
  3334. elif tokenizer.IsByte(token_id):
  3335. toktype = SentencePieceTokenTypes.BYTE
  3336. tokens[token_id] = text
  3337. scores[token_id] = score
  3338. toktypes[token_id] = toktype
  3339. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  3340. # of information about added/redefined tokens and modify them accordingly.
  3341. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3342. if tokenizer_config_file.is_file():
  3343. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3344. tokenizer_config_json = json.load(f)
  3345. if "added_tokens_decoder" in tokenizer_config_json:
  3346. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  3347. for token_id, token_json in added_tokens_decoder.items():
  3348. token_id = int(token_id)
  3349. if token_id >= vocab_size:
  3350. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3351. continue
  3352. token_content = token_json["content"]
  3353. token_type = SentencePieceTokenTypes.USER_DEFINED
  3354. token_score = -10000.0
  3355. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  3356. # Set the score to 0.0 as in the original tokenizer.model
  3357. if ("special" in token_json) and token_json["special"]:
  3358. if token_content == tokenizer_config_json["unk_token"]:
  3359. token_type = SentencePieceTokenTypes.UNKNOWN
  3360. else:
  3361. token_type = SentencePieceTokenTypes.CONTROL
  3362. token_score = 0.0
  3363. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  3364. tokens[token_id] = token_content.encode("utf-8")
  3365. toktypes[token_id] = token_type
  3366. scores[token_id] = token_score
  3367. self.gguf_writer.add_tokenizer_model("llama")
  3368. self.gguf_writer.add_tokenizer_pre("default")
  3369. self.gguf_writer.add_token_list(tokens)
  3370. self.gguf_writer.add_token_scores(scores)
  3371. self.gguf_writer.add_token_types(toktypes)
  3372. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3373. special_vocab.add_to_gguf(self.gguf_writer)
  3374. def set_gguf_parameters(self):
  3375. super().set_gguf_parameters()
  3376. hparams = self.hparams
  3377. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3378. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  3379. _experts: list[dict[str, Tensor]] | None = None
  3380. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3381. n_head = self.hparams["num_attention_heads"]
  3382. n_kv_head = self.hparams.get("num_key_value_heads")
  3383. if name.endswith("q_proj.weight"):
  3384. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3385. if name.endswith("k_proj.weight"):
  3386. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3387. # process the experts separately
  3388. if name.find("block_sparse_moe.experts") != -1:
  3389. n_experts = self.hparams["num_local_experts"]
  3390. assert bid is not None
  3391. if self._experts is None:
  3392. self._experts = [{} for _ in range(self.block_count)]
  3393. self._experts[bid][name] = data_torch
  3394. if len(self._experts[bid]) >= n_experts * 3:
  3395. tensors: list[tuple[str, Tensor]] = []
  3396. # merge the experts into a single 3d tensor
  3397. for wid in ["w1", "w2", "w3"]:
  3398. datas: list[Tensor] = []
  3399. for xid in range(n_experts):
  3400. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  3401. datas.append(self._experts[bid][ename])
  3402. del self._experts[bid][ename]
  3403. data_torch = torch.stack(datas, dim=0)
  3404. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  3405. new_name = self.map_tensor_name(merged_name)
  3406. tensors.append((new_name, data_torch))
  3407. return tensors
  3408. else:
  3409. return []
  3410. return [(self.map_tensor_name(name), data_torch)]
  3411. def prepare_tensors(self):
  3412. super().prepare_tensors()
  3413. if self._experts is not None:
  3414. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3415. experts = [k for d in self._experts for k in d.keys()]
  3416. if len(experts) > 0:
  3417. raise ValueError(f"Unprocessed experts: {experts}")
  3418. @Model.register("DeepseekForCausalLM")
  3419. class DeepseekModel(Model):
  3420. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  3421. def set_vocab(self):
  3422. try:
  3423. self._set_vocab_sentencepiece()
  3424. except FileNotFoundError:
  3425. self._set_vocab_gpt2()
  3426. def set_gguf_parameters(self):
  3427. super().set_gguf_parameters()
  3428. hparams = self.hparams
  3429. if "head_dim" in hparams:
  3430. rope_dim = hparams["head_dim"]
  3431. else:
  3432. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  3433. self.gguf_writer.add_rope_dimension_count(rope_dim)
  3434. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3435. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  3436. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3437. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  3438. self.gguf_writer.add_expert_weights_scale(1.0)
  3439. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  3440. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  3441. _experts: list[dict[str, Tensor]] | None = None
  3442. @staticmethod
  3443. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  3444. if n_head_kv is not None and n_head != n_head_kv:
  3445. n_head = n_head_kv
  3446. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  3447. .swapaxes(1, 2)
  3448. .reshape(weights.shape))
  3449. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3450. n_head = self.hparams["num_attention_heads"]
  3451. n_kv_head = self.hparams.get("num_key_value_heads")
  3452. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3453. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  3454. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3455. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  3456. # process the experts separately
  3457. if name.find("mlp.experts") != -1:
  3458. n_experts = self.hparams["n_routed_experts"]
  3459. assert bid is not None
  3460. if self._experts is None:
  3461. self._experts = [{} for _ in range(self.block_count)]
  3462. self._experts[bid][name] = data_torch
  3463. if len(self._experts[bid]) >= n_experts * 3:
  3464. tensors: list[tuple[str, Tensor]] = []
  3465. # merge the experts into a single 3d tensor
  3466. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3467. datas: list[Tensor] = []
  3468. for xid in range(n_experts):
  3469. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3470. datas.append(self._experts[bid][ename])
  3471. del self._experts[bid][ename]
  3472. data_torch = torch.stack(datas, dim=0)
  3473. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3474. new_name = self.map_tensor_name(merged_name)
  3475. tensors.append((new_name, data_torch))
  3476. return tensors
  3477. else:
  3478. return []
  3479. return [(self.map_tensor_name(name), data_torch)]
  3480. def prepare_tensors(self):
  3481. super().prepare_tensors()
  3482. if self._experts is not None:
  3483. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3484. experts = [k for d in self._experts for k in d.keys()]
  3485. if len(experts) > 0:
  3486. raise ValueError(f"Unprocessed experts: {experts}")
  3487. @Model.register("DeepseekV2ForCausalLM")
  3488. @Model.register("DeepseekV3ForCausalLM")
  3489. class DeepseekV2Model(Model):
  3490. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  3491. def set_vocab(self):
  3492. self._set_vocab_gpt2()
  3493. def set_gguf_parameters(self):
  3494. super().set_gguf_parameters()
  3495. hparams = self.hparams
  3496. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  3497. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3498. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  3499. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  3500. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  3501. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  3502. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  3503. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  3504. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  3505. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  3506. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  3507. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  3508. if hparams["scoring_func"] == "sigmoid":
  3509. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  3510. elif hparams["scoring_func"] == "softmax":
  3511. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  3512. else:
  3513. raise ValueError(f"Unsupported scoring_func value: {hparams['scoring_func']}")
  3514. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  3515. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  3516. if self.hparams["rope_scaling"].get("type") == "yarn":
  3517. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  3518. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  3519. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  3520. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"])
  3521. _experts: list[dict[str, Tensor]] | None = None
  3522. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3523. # rename e_score_correction_bias tensors
  3524. if name.endswith("e_score_correction_bias"):
  3525. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  3526. # skip Multi-Token Prediction (MTP) layers
  3527. block_count = self.hparams["num_hidden_layers"]
  3528. match = re.match(r"model.layers.(\d+)", name)
  3529. if match and int(match.group(1)) >= block_count:
  3530. return []
  3531. # process the experts separately
  3532. if name.find("mlp.experts") != -1:
  3533. n_experts = self.hparams["n_routed_experts"]
  3534. assert bid is not None
  3535. if self._experts is None:
  3536. self._experts = [{} for _ in range(self.block_count)]
  3537. self._experts[bid][name] = data_torch
  3538. if len(self._experts[bid]) >= n_experts * 3:
  3539. tensors: list[tuple[str, Tensor]] = []
  3540. # merge the experts into a single 3d tensor
  3541. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3542. datas: list[Tensor] = []
  3543. for xid in range(n_experts):
  3544. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3545. datas.append(self._experts[bid][ename])
  3546. del self._experts[bid][ename]
  3547. data_torch = torch.stack(datas, dim=0)
  3548. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3549. new_name = self.map_tensor_name(merged_name)
  3550. tensors.append((new_name, data_torch))
  3551. return tensors
  3552. else:
  3553. return []
  3554. return [(self.map_tensor_name(name), data_torch)]
  3555. def prepare_tensors(self):
  3556. super().prepare_tensors()
  3557. if self._experts is not None:
  3558. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3559. experts = [k for d in self._experts for k in d.keys()]
  3560. if len(experts) > 0:
  3561. raise ValueError(f"Unprocessed experts: {experts}")
  3562. @Model.register("PLMForCausalLM")
  3563. class PLMModel(Model):
  3564. model_arch = gguf.MODEL_ARCH.PLM
  3565. def set_vocab(self):
  3566. self._set_vocab_gpt2()
  3567. def set_gguf_parameters(self):
  3568. super().set_gguf_parameters()
  3569. hparams = self.hparams
  3570. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3571. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  3572. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  3573. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  3574. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  3575. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3576. return [(self.map_tensor_name(name), data_torch)]
  3577. def prepare_tensors(self):
  3578. super().prepare_tensors()
  3579. @Model.register("T5WithLMHeadModel")
  3580. @Model.register("T5ForConditionalGeneration")
  3581. @Model.register("MT5ForConditionalGeneration")
  3582. @Model.register("UMT5ForConditionalGeneration")
  3583. class T5Model(Model):
  3584. model_arch = gguf.MODEL_ARCH.T5
  3585. def __init__(self, *args, **kwargs):
  3586. super().__init__(*args, **kwargs)
  3587. self.shared_token_embeddings_found = False
  3588. def set_vocab(self):
  3589. # to avoid TypeError: Descriptors cannot be created directly
  3590. # exception when importing sentencepiece_model_pb2
  3591. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3592. from sentencepiece import SentencePieceProcessor
  3593. from sentencepiece import sentencepiece_model_pb2 as model
  3594. tokenizer_path = self.dir_model / 'tokenizer.model'
  3595. # many older models use spiece.model tokenizer model filename
  3596. if not tokenizer_path.is_file():
  3597. tokenizer_path = self.dir_model / 'spiece.model'
  3598. if not tokenizer_path.is_file():
  3599. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3600. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3601. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3602. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  3603. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  3604. # assure the tokenizer model file name is correct
  3605. assert tokenizer_path.name == 'tokenizer.model'
  3606. return self._set_vocab_sentencepiece()
  3607. else:
  3608. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3609. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3610. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3611. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3612. tokenizer = SentencePieceProcessor()
  3613. tokenizer.LoadFromFile(str(tokenizer_path))
  3614. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3615. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3616. scores: list[float] = [-10000.0] * vocab_size
  3617. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3618. for token_id in range(tokenizer.vocab_size()):
  3619. piece = tokenizer.IdToPiece(token_id)
  3620. text = piece.encode("utf-8")
  3621. score = tokenizer.GetScore(token_id)
  3622. toktype = SentencePieceTokenTypes.NORMAL
  3623. if tokenizer.IsUnknown(token_id):
  3624. toktype = SentencePieceTokenTypes.UNKNOWN
  3625. elif tokenizer.IsControl(token_id):
  3626. toktype = SentencePieceTokenTypes.CONTROL
  3627. elif tokenizer.IsUnused(token_id):
  3628. toktype = SentencePieceTokenTypes.UNUSED
  3629. elif tokenizer.IsByte(token_id):
  3630. toktype = SentencePieceTokenTypes.BYTE
  3631. tokens[token_id] = text
  3632. scores[token_id] = score
  3633. toktypes[token_id] = toktype
  3634. added_tokens_file = self.dir_model / 'added_tokens.json'
  3635. if added_tokens_file.is_file():
  3636. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3637. added_tokens_json = json.load(f)
  3638. for key in added_tokens_json:
  3639. token_id = added_tokens_json[key]
  3640. if token_id >= vocab_size:
  3641. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3642. continue
  3643. tokens[token_id] = key.encode("utf-8")
  3644. scores[token_id] = -1000.0
  3645. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3646. if vocab_size > len(tokens):
  3647. pad_count = vocab_size - len(tokens)
  3648. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3649. for i in range(1, pad_count + 1):
  3650. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3651. scores.append(-1000.0)
  3652. toktypes.append(SentencePieceTokenTypes.UNUSED)
  3653. self.gguf_writer.add_tokenizer_model("t5")
  3654. self.gguf_writer.add_tokenizer_pre("default")
  3655. self.gguf_writer.add_token_list(tokens)
  3656. self.gguf_writer.add_token_scores(scores)
  3657. self.gguf_writer.add_token_types(toktypes)
  3658. self.gguf_writer.add_add_space_prefix(add_prefix)
  3659. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3660. if precompiled_charsmap:
  3661. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3662. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3663. special_vocab.add_to_gguf(self.gguf_writer)
  3664. self.gguf_writer.add_add_bos_token(False)
  3665. self.gguf_writer.add_add_eos_token(True)
  3666. def set_gguf_parameters(self):
  3667. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  3668. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  3669. n_ctx = 512
  3670. self.gguf_writer.add_context_length(n_ctx)
  3671. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  3672. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  3673. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  3674. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  3675. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  3676. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  3677. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3678. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  3679. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  3680. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  3681. self.gguf_writer.add_file_type(self.ftype)
  3682. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3683. del bid # unused
  3684. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  3685. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  3686. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  3687. # and decoder and ignore the remaining ones.
  3688. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  3689. if not self.shared_token_embeddings_found:
  3690. name = "shared.weight"
  3691. self.shared_token_embeddings_found = True
  3692. else:
  3693. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  3694. return []
  3695. return [(self.map_tensor_name(name), data_torch)]
  3696. @Model.register("T5EncoderModel")
  3697. class T5EncoderModel(Model):
  3698. model_arch = gguf.MODEL_ARCH.T5ENCODER
  3699. def __init__(self, *args, **kwargs):
  3700. super().__init__(*args, **kwargs)
  3701. self.shared_token_embeddings_found = False
  3702. def set_vocab(self):
  3703. # to avoid TypeError: Descriptors cannot be created directly
  3704. # exception when importing sentencepiece_model_pb2
  3705. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3706. from sentencepiece import SentencePieceProcessor
  3707. from sentencepiece import sentencepiece_model_pb2 as model
  3708. tokenizer_path = self.dir_model / 'tokenizer.model'
  3709. # many older models use spiece.model tokenizer model filename
  3710. if not tokenizer_path.is_file():
  3711. tokenizer_path = self.dir_model / 'spiece.model'
  3712. if not tokenizer_path.is_file():
  3713. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3714. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3715. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3716. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  3717. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  3718. # assure the tokenizer model file name is correct
  3719. assert tokenizer_path.name == 'tokenizer.model'
  3720. return self._set_vocab_sentencepiece()
  3721. else:
  3722. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3723. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3724. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3725. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3726. tokenizer = SentencePieceProcessor()
  3727. tokenizer.LoadFromFile(str(tokenizer_path))
  3728. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3729. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3730. scores: list[float] = [-10000.0] * vocab_size
  3731. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3732. for token_id in range(tokenizer.vocab_size()):
  3733. piece = tokenizer.IdToPiece(token_id)
  3734. text = piece.encode("utf-8")
  3735. score = tokenizer.GetScore(token_id)
  3736. toktype = SentencePieceTokenTypes.NORMAL
  3737. if tokenizer.IsUnknown(token_id):
  3738. toktype = SentencePieceTokenTypes.UNKNOWN
  3739. elif tokenizer.IsControl(token_id):
  3740. toktype = SentencePieceTokenTypes.CONTROL
  3741. elif tokenizer.IsUnused(token_id):
  3742. toktype = SentencePieceTokenTypes.UNUSED
  3743. elif tokenizer.IsByte(token_id):
  3744. toktype = SentencePieceTokenTypes.BYTE
  3745. tokens[token_id] = text
  3746. scores[token_id] = score
  3747. toktypes[token_id] = toktype
  3748. added_tokens_file = self.dir_model / 'added_tokens.json'
  3749. if added_tokens_file.is_file():
  3750. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3751. added_tokens_json = json.load(f)
  3752. for key in added_tokens_json:
  3753. token_id = added_tokens_json[key]
  3754. if token_id >= vocab_size:
  3755. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3756. continue
  3757. tokens[token_id] = key.encode("utf-8")
  3758. scores[token_id] = -1000.0
  3759. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3760. if vocab_size > len(tokens):
  3761. pad_count = vocab_size - len(tokens)
  3762. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3763. for i in range(1, pad_count + 1):
  3764. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3765. scores.append(-1000.0)
  3766. toktypes.append(SentencePieceTokenTypes.UNUSED)
  3767. self.gguf_writer.add_tokenizer_model("t5")
  3768. self.gguf_writer.add_tokenizer_pre("default")
  3769. self.gguf_writer.add_token_list(tokens)
  3770. self.gguf_writer.add_token_scores(scores)
  3771. self.gguf_writer.add_token_types(toktypes)
  3772. self.gguf_writer.add_add_space_prefix(add_prefix)
  3773. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3774. if precompiled_charsmap:
  3775. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3776. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3777. special_vocab.add_to_gguf(self.gguf_writer)
  3778. self.gguf_writer.add_add_bos_token(False)
  3779. self.gguf_writer.add_add_eos_token(True)
  3780. def set_gguf_parameters(self):
  3781. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  3782. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  3783. n_ctx = 512
  3784. self.gguf_writer.add_context_length(n_ctx)
  3785. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  3786. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  3787. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  3788. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  3789. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  3790. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  3791. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3792. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  3793. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  3794. self.gguf_writer.add_file_type(self.ftype)
  3795. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3796. del bid # unused
  3797. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  3798. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  3799. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  3800. # and decoder and ignore the remaining ones.
  3801. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  3802. if not self.shared_token_embeddings_found:
  3803. name = "shared.weight"
  3804. self.shared_token_embeddings_found = True
  3805. else:
  3806. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  3807. return []
  3808. return [(self.map_tensor_name(name), data_torch)]
  3809. @Model.register("JAISLMHeadModel")
  3810. class JaisModel(Model):
  3811. model_arch = gguf.MODEL_ARCH.JAIS
  3812. def __init__(self, *args, **kwargs):
  3813. super().__init__(*args, **kwargs)
  3814. # SwigLU activation
  3815. assert self.hparams["activation_function"] == "swiglu"
  3816. # ALiBi position embedding
  3817. assert self.hparams["position_embedding_type"] == "alibi"
  3818. # Embeddings scale
  3819. self.embeddings_scale = 1.0
  3820. if 'mup_embeddings_scale' in self.hparams:
  3821. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  3822. elif 'embeddings_scale' in self.hparams:
  3823. self.embeddings_scale = self.hparams['embeddings_scale']
  3824. else:
  3825. assert False
  3826. self.width_scale = 1.0
  3827. if 'mup_output_alpha' in self.hparams:
  3828. assert 'mup_width_scale' in self.hparams
  3829. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  3830. elif 'width_scale' in self.hparams:
  3831. self.width_scale = self.hparams['width_scale']
  3832. else:
  3833. assert False
  3834. self.max_alibi_bias = 8.0
  3835. def set_vocab(self):
  3836. self._set_vocab_gpt2()
  3837. def set_gguf_parameters(self):
  3838. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  3839. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  3840. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3841. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  3842. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3843. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3844. self.gguf_writer.add_file_type(self.ftype)
  3845. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3846. del bid # unused
  3847. tensors: list[tuple[str, Tensor]] = []
  3848. # we don't need these
  3849. if name.endswith((".attn.bias")):
  3850. return tensors
  3851. if name.endswith(("relative_pe.slopes")):
  3852. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  3853. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  3854. # but Jais's PyTorch model simply precalculates the slope values and places them
  3855. # in relative_pes.slopes
  3856. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  3857. first_val = float(data_torch[0].item())
  3858. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  3859. return tensors
  3860. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  3861. data_torch = data_torch.transpose(1, 0)
  3862. new_name = self.map_tensor_name(name)
  3863. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  3864. tensors.append((new_name, data_torch * self.embeddings_scale))
  3865. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  3866. tensors.append((new_name, data_torch * self.width_scale))
  3867. else:
  3868. tensors.append((new_name, data_torch))
  3869. return tensors
  3870. def prepare_tensors(self):
  3871. super().prepare_tensors()
  3872. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  3873. @Model.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  3874. class ChatGLMModel(Model):
  3875. model_arch = gguf.MODEL_ARCH.CHATGLM
  3876. def set_vocab_chatglm3(self):
  3877. dir_model = self.dir_model
  3878. hparams = self.hparams
  3879. tokens: list[bytes] = []
  3880. toktypes: list[int] = []
  3881. scores: list[float] = []
  3882. from transformers import AutoTokenizer
  3883. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  3884. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  3885. assert max(tokenizer.get_vocab().values()) < vocab_size
  3886. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  3887. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  3888. for token_id in range(vocab_size):
  3889. piece = tokenizer._convert_id_to_token(token_id)
  3890. if token_id == 0:
  3891. piece = "<unk>"
  3892. elif token_id == 1:
  3893. piece = "<bos>"
  3894. elif token_id == 2:
  3895. piece = "<eos>"
  3896. text = piece.encode("utf-8")
  3897. score = 0.0
  3898. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  3899. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  3900. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  3901. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  3902. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  3903. if piece in special_tokens:
  3904. toktype = SentencePieceTokenTypes.CONTROL
  3905. elif len(piece) == 0:
  3906. text = f"[PAD{token_id}]".encode("utf-8")
  3907. toktype = SentencePieceTokenTypes.UNUSED
  3908. else:
  3909. toktype = SentencePieceTokenTypes.USER_DEFINED
  3910. tokens.append(text)
  3911. scores.append(score)
  3912. toktypes.append(toktype)
  3913. continue
  3914. toktype = SentencePieceTokenTypes.NORMAL
  3915. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  3916. toktype = SentencePieceTokenTypes.UNKNOWN
  3917. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  3918. toktype = SentencePieceTokenTypes.CONTROL
  3919. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  3920. toktype = SentencePieceTokenTypes.UNUSED
  3921. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  3922. toktype = SentencePieceTokenTypes.BYTE
  3923. tokens.append(text)
  3924. scores.append(score)
  3925. toktypes.append(toktype)
  3926. self.gguf_writer.add_tokenizer_model("llama")
  3927. # glm3 needs prefix and suffix formatted as:
  3928. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  3929. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  3930. self.gguf_writer.add_token_list(tokens)
  3931. self.gguf_writer.add_token_scores(scores)
  3932. self.gguf_writer.add_token_types(toktypes)
  3933. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3934. special_vocab.add_to_gguf(self.gguf_writer)
  3935. @staticmethod
  3936. def token_bytes_to_string(b):
  3937. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  3938. byte_encoder = bytes_to_unicode()
  3939. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  3940. @staticmethod
  3941. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  3942. parts = [bytes([b]) for b in token]
  3943. while True:
  3944. min_idx = None
  3945. min_rank = None
  3946. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  3947. rank = mergeable_ranks.get(pair[0] + pair[1])
  3948. if rank is not None and (min_rank is None or rank < min_rank):
  3949. min_idx = i
  3950. min_rank = rank
  3951. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  3952. break
  3953. assert min_idx is not None
  3954. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  3955. return parts
  3956. def set_vocab(self):
  3957. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  3958. self.set_vocab_chatglm3()
  3959. return
  3960. dir_model = self.dir_model
  3961. hparams = self.hparams
  3962. tokens: list[str] = []
  3963. toktypes: list[int] = []
  3964. from transformers import AutoTokenizer
  3965. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  3966. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  3967. assert max(tokenizer.get_vocab().values()) < vocab_size
  3968. tokens, toktypes, tokpre = self.get_vocab_base()
  3969. self.gguf_writer.add_tokenizer_model("gpt2")
  3970. self.gguf_writer.add_tokenizer_pre(tokpre)
  3971. self.gguf_writer.add_token_list(tokens)
  3972. self.gguf_writer.add_token_types(toktypes)
  3973. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  3974. # only add special tokens when they were not already loaded from config.json
  3975. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  3976. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  3977. # this one is usually not in config.json anyway
  3978. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  3979. special_vocab.add_to_gguf(self.gguf_writer)
  3980. def set_gguf_parameters(self):
  3981. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  3982. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  3983. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  3984. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  3985. self.gguf_writer.add_embedding_length(n_embed)
  3986. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  3987. self.gguf_writer.add_block_count(self.hparams.get("num_layers", self.hparams["num_hidden_layers"]))
  3988. self.gguf_writer.add_head_count(n_head)
  3989. self.gguf_writer.add_head_count_kv(n_head_kv)
  3990. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  3991. self.gguf_writer.add_file_type(self.ftype)
  3992. if "attention_dim" in self.hparams:
  3993. rope_dim = self.hparams["attention_dim"]
  3994. else:
  3995. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  3996. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  3997. self.gguf_writer.add_add_bos_token(False)
  3998. rope_freq = 10000
  3999. if "rope_ratio" in self.hparams:
  4000. rope_freq = rope_freq * self.hparams["rope_ratio"]
  4001. self.gguf_writer.add_rope_freq_base(rope_freq)
  4002. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4003. del bid # unused
  4004. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  4005. return []
  4006. name = name.removeprefix("transformer.")
  4007. return [(self.map_tensor_name(name), data_torch)]
  4008. @Model.register("NemotronForCausalLM")
  4009. class NemotronModel(Model):
  4010. model_arch = gguf.MODEL_ARCH.NEMOTRON
  4011. def set_vocab(self):
  4012. self._set_vocab_sentencepiece()
  4013. self.gguf_writer.add_pad_token_id(0)
  4014. self.gguf_writer.add_unk_token_id(1)
  4015. def set_gguf_parameters(self):
  4016. super().set_gguf_parameters()
  4017. hparams = self.hparams
  4018. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4019. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  4020. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  4021. # * Partial RoPE
  4022. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  4023. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  4024. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  4025. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  4026. # * RopeScaling for Nemotron
  4027. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  4028. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4029. else:
  4030. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4031. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  4032. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4033. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  4034. # model.layers.{l}.input_layernorm.weight
  4035. # model.layers.{l}.post_attention_layernorm.weight
  4036. # model.norm.weight
  4037. if name.endswith("norm.weight"):
  4038. data_torch = data_torch + 1
  4039. return [(self.map_tensor_name(name), data_torch)]
  4040. @Model.register("ExaoneForCausalLM")
  4041. class ExaoneModel(Model):
  4042. model_arch = gguf.MODEL_ARCH.EXAONE
  4043. def set_gguf_parameters(self):
  4044. hparams = self.hparams
  4045. assert (hparams["activation_function"] == "silu")
  4046. max_position_embeddings = hparams["max_position_embeddings"]
  4047. embed_dim = hparams["hidden_size"]
  4048. num_heads = hparams["num_attention_heads"]
  4049. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  4050. layer_norm_eps = hparams["layer_norm_epsilon"]
  4051. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  4052. num_layers = hparams["num_layers"]
  4053. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  4054. # attention_dropout_rate = hparams["attention_dropout"]
  4055. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  4056. # embed_dropout_rate = hparams["embed_dropout"]
  4057. self.gguf_writer.add_embedding_length(embed_dim)
  4058. self.gguf_writer.add_head_count(num_heads)
  4059. self.gguf_writer.add_head_count_kv(num_kv_heads)
  4060. self.gguf_writer.add_context_length(max_position_embeddings)
  4061. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  4062. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4063. self.gguf_writer.add_block_count(num_layers)
  4064. self.gguf_writer.add_file_type(self.ftype)
  4065. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  4066. self.gguf_writer.add_rope_freq_base(rope_theta)
  4067. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  4068. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  4069. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  4070. if hparams.get("rope_scaling") is not None and "factor" in hparams["rope_scaling"]:
  4071. if hparams["rope_scaling"].get("type") == "linear":
  4072. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4073. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  4074. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4075. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  4076. if rope_scaling.get("rope_type", '').lower() == "llama3":
  4077. base = self.hparams.get("rope_theta", 10000.0)
  4078. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  4079. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  4080. factor = rope_scaling.get("factor", 8.0)
  4081. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  4082. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  4083. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  4084. low_freq_wavelen = old_context_len / low_freq_factor
  4085. high_freq_wavelen = old_context_len / high_freq_factor
  4086. assert low_freq_wavelen != high_freq_wavelen
  4087. rope_factors = []
  4088. for freq in freqs:
  4089. wavelen = 2 * math.pi / freq
  4090. if wavelen < high_freq_wavelen:
  4091. rope_factors.append(1)
  4092. elif wavelen > low_freq_wavelen:
  4093. rope_factors.append(factor)
  4094. else:
  4095. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  4096. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  4097. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  4098. @Model.register("GraniteForCausalLM")
  4099. class GraniteModel(LlamaModel):
  4100. """Conversion for IBM's GraniteForCausalLM"""
  4101. model_arch = gguf.MODEL_ARCH.GRANITE
  4102. def set_gguf_parameters(self):
  4103. """Granite uses standard llama parameters with the following differences:
  4104. - No head_dim support
  4105. - New multiplier params:
  4106. - attention_scale
  4107. - embedding_scale
  4108. - residual_scale
  4109. - logits_scaling
  4110. """
  4111. if head_dim := self.hparams.pop("head_dim", None):
  4112. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  4113. super().set_gguf_parameters()
  4114. # NOTE: Convert _multiplier params to _scale params for naming
  4115. # consistency
  4116. if attention_scale := self.hparams.get("attention_multiplier"):
  4117. self.gguf_writer.add_attention_scale(attention_scale)
  4118. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  4119. if embedding_scale := self.hparams.get("embedding_multiplier"):
  4120. self.gguf_writer.add_embedding_scale(embedding_scale)
  4121. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  4122. if residual_scale := self.hparams.get("residual_multiplier"):
  4123. self.gguf_writer.add_residual_scale(residual_scale)
  4124. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  4125. if logits_scale := self.hparams.get("logits_scaling"):
  4126. self.gguf_writer.add_logit_scale(logits_scale)
  4127. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  4128. @Model.register("GraniteMoeForCausalLM")
  4129. class GraniteMoeModel(GraniteModel):
  4130. """Conversion for IBM's GraniteMoeForCausalLM"""
  4131. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  4132. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4133. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  4134. is used. This essentially merges w1 and w3 into a single tensor with 2x
  4135. the hidden size that is then split during forward. To keep compatibility
  4136. with existing mixtral support, we pull them apart here.
  4137. """
  4138. if name.endswith("block_sparse_moe.input_linear.weight"):
  4139. ffn_dim = self.hparams["intermediate_size"]
  4140. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  4141. gate, up = data_torch[..., :ffn_dim, :], data_torch[..., ffn_dim:, :]
  4142. return [
  4143. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  4144. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  4145. ]
  4146. return super().modify_tensors(data_torch, name, bid)
  4147. @Model.register("BailingMoeForCausalLM")
  4148. class BailingMoeModel(Model):
  4149. model_arch = gguf.MODEL_ARCH.BAILINGMOE
  4150. def set_vocab(self):
  4151. self._set_vocab_gpt2()
  4152. def set_gguf_parameters(self):
  4153. super().set_gguf_parameters()
  4154. hparams = self.hparams
  4155. rope_dim = hparams.get("head_dim") or hparams["hidden_size"] // hparams["num_attention_heads"]
  4156. self.gguf_writer.add_rope_dimension_count(rope_dim)
  4157. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4158. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  4159. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4160. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  4161. self.gguf_writer.add_expert_weights_scale(1.0)
  4162. self.gguf_writer.add_expert_count(hparams["num_experts"])
  4163. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  4164. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  4165. _experts: list[dict[str, Tensor]] | None = None
  4166. @staticmethod
  4167. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  4168. if n_head_kv is not None and n_head != n_head_kv:
  4169. n_head = n_head_kv
  4170. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  4171. .swapaxes(1, 2)
  4172. .reshape(weights.shape))
  4173. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4174. n_head = self.hparams["num_attention_heads"]
  4175. n_kv_head = self.hparams.get("num_key_value_heads")
  4176. n_embd = self.hparams["hidden_size"]
  4177. head_dim = self.hparams.get("head_dim") or n_embd // n_head
  4178. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  4179. if name.endswith("attention.dense.weight"):
  4180. return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
  4181. elif name.endswith("query_key_value.weight"):
  4182. q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
  4183. return [
  4184. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
  4185. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
  4186. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
  4187. ]
  4188. elif name.find("mlp.experts") != -1:
  4189. n_experts = self.hparams["num_experts"]
  4190. assert bid is not None
  4191. tensors: list[tuple[str, Tensor]] = []
  4192. if self._experts is None:
  4193. self._experts = [{} for _ in range(self.block_count)]
  4194. self._experts[bid][name] = data_torch
  4195. if len(self._experts[bid]) >= n_experts * 3:
  4196. # merge the experts into a single 3d tensor
  4197. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4198. datas: list[Tensor] = []
  4199. for xid in range(n_experts):
  4200. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4201. datas.append(self._experts[bid][ename])
  4202. del self._experts[bid][ename]
  4203. data_torch = torch.stack(datas, dim=0)
  4204. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4205. new_name = self.map_tensor_name(merged_name)
  4206. tensors.append((new_name, data_torch))
  4207. return tensors
  4208. new_name = self.map_tensor_name(name)
  4209. if new_name == output_name and self.hparams.get("norm_head"):
  4210. data_torch = data_torch.float()
  4211. data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
  4212. return [(new_name, data_torch)]
  4213. def prepare_tensors(self):
  4214. super().prepare_tensors()
  4215. if self._experts is not None:
  4216. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4217. experts = [k for d in self._experts for k in d.keys()]
  4218. if len(experts) > 0:
  4219. raise ValueError(f"Unprocessed experts: {experts}")
  4220. @Model.register("ChameleonForConditionalGeneration")
  4221. @Model.register("ChameleonForCausalLM") # obsolete
  4222. class ChameleonModel(Model):
  4223. model_arch = gguf.MODEL_ARCH.CHAMELEON
  4224. def set_gguf_parameters(self):
  4225. super().set_gguf_parameters()
  4226. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  4227. def set_vocab(self):
  4228. self._set_vocab_gpt2()
  4229. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4230. # ignore image tokenizer for now
  4231. # TODO: remove this once image support is implemented for Chameleon
  4232. if name.startswith("model.vqmodel"):
  4233. return []
  4234. n_head = self.hparams["num_attention_heads"]
  4235. n_kv_head = self.hparams.get("num_key_value_heads")
  4236. hidden_dim = self.hparams.get("hidden_size")
  4237. if name.endswith(("q_proj.weight", "q_proj.bias")):
  4238. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4239. if name.endswith(("k_proj.weight", "k_proj.bias")):
  4240. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4241. if name.endswith(("q_norm.weight", "q_norm.bias")):
  4242. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  4243. if name.endswith(("k_norm.weight", "k_norm.bias")):
  4244. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  4245. return [(self.map_tensor_name(name), data_torch)]
  4246. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  4247. @staticmethod
  4248. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  4249. head_dim = hidden_dim // n_heads
  4250. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  4251. data_torch = data_torch.repeat_interleave(n_heads, 0)
  4252. return data_torch
  4253. ###### CONVERSION LOGIC ######
  4254. # tree of lazy tensors
  4255. class LazyTorchTensor(gguf.LazyBase):
  4256. _tensor_type = torch.Tensor
  4257. # to keep the type-checker happy
  4258. dtype: torch.dtype
  4259. shape: torch.Size
  4260. # only used when converting a torch.Tensor to a np.ndarray
  4261. _dtype_map: dict[torch.dtype, type] = {
  4262. torch.float16: np.float16,
  4263. torch.float32: np.float32,
  4264. }
  4265. # used for safetensors slices
  4266. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  4267. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  4268. _dtype_str_map: dict[str, torch.dtype] = {
  4269. "F64": torch.float64,
  4270. "F32": torch.float32,
  4271. "BF16": torch.bfloat16,
  4272. "F16": torch.float16,
  4273. # "U64": torch.uint64,
  4274. "I64": torch.int64,
  4275. # "U32": torch.uint32,
  4276. "I32": torch.int32,
  4277. # "U16": torch.uint16,
  4278. "I16": torch.int16,
  4279. "U8": torch.uint8,
  4280. "I8": torch.int8,
  4281. "BOOL": torch.bool,
  4282. "F8_E4M3": torch.float8_e4m3fn,
  4283. "F8_E5M2": torch.float8_e5m2,
  4284. }
  4285. def numpy(self) -> gguf.LazyNumpyTensor:
  4286. dtype = self._dtype_map[self.dtype]
  4287. return gguf.LazyNumpyTensor(
  4288. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  4289. args=(self,),
  4290. func=(lambda s: s.numpy())
  4291. )
  4292. @classmethod
  4293. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  4294. return torch.empty(size=shape, dtype=dtype, device="meta")
  4295. @classmethod
  4296. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  4297. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  4298. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  4299. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  4300. return cast(torch.Tensor, lazy)
  4301. @classmethod
  4302. def __torch_function__(cls, func, types, args=(), kwargs=None):
  4303. del types # unused
  4304. if kwargs is None:
  4305. kwargs = {}
  4306. if func is torch.Tensor.numpy:
  4307. return args[0].numpy()
  4308. return cls._wrap_fn(func)(*args, **kwargs)
  4309. def parse_args() -> argparse.Namespace:
  4310. parser = argparse.ArgumentParser(
  4311. description="Convert a huggingface model to a GGML compatible file")
  4312. parser.add_argument(
  4313. "--vocab-only", action="store_true",
  4314. help="extract only the vocab",
  4315. )
  4316. parser.add_argument(
  4317. "--outfile", type=Path,
  4318. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  4319. )
  4320. parser.add_argument(
  4321. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  4322. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  4323. )
  4324. parser.add_argument(
  4325. "--bigendian", action="store_true",
  4326. help="model is executed on big endian machine",
  4327. )
  4328. parser.add_argument(
  4329. "model", type=Path,
  4330. help="directory containing model file",
  4331. nargs="?",
  4332. )
  4333. parser.add_argument(
  4334. "--use-temp-file", action="store_true",
  4335. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  4336. )
  4337. parser.add_argument(
  4338. "--no-lazy", action="store_true",
  4339. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  4340. )
  4341. parser.add_argument(
  4342. "--model-name", type=str, default=None,
  4343. help="name of the model",
  4344. )
  4345. parser.add_argument(
  4346. "--verbose", action="store_true",
  4347. help="increase output verbosity",
  4348. )
  4349. parser.add_argument(
  4350. "--split-max-tensors", type=int, default=0,
  4351. help="max tensors in each split",
  4352. )
  4353. parser.add_argument(
  4354. "--split-max-size", type=str, default="0",
  4355. help="max size per split N(M|G)",
  4356. )
  4357. parser.add_argument(
  4358. "--dry-run", action="store_true",
  4359. help="only print out a split plan and exit, without writing any new files",
  4360. )
  4361. parser.add_argument(
  4362. "--no-tensor-first-split", action="store_true",
  4363. help="do not add tensors to the first split (disabled by default)"
  4364. )
  4365. parser.add_argument(
  4366. "--metadata", type=Path,
  4367. help="Specify the path for an authorship metadata override file"
  4368. )
  4369. parser.add_argument(
  4370. "--print-supported-models", action="store_true",
  4371. help="Print the supported models"
  4372. )
  4373. args = parser.parse_args()
  4374. if not args.print_supported_models and args.model is None:
  4375. parser.error("the following arguments are required: model")
  4376. return args
  4377. def split_str_to_n_bytes(split_str: str) -> int:
  4378. if split_str.endswith("K"):
  4379. n = int(split_str[:-1]) * 1000
  4380. elif split_str.endswith("M"):
  4381. n = int(split_str[:-1]) * 1000 * 1000
  4382. elif split_str.endswith("G"):
  4383. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  4384. elif split_str.isnumeric():
  4385. n = int(split_str)
  4386. else:
  4387. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  4388. if n < 0:
  4389. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  4390. return n
  4391. def main() -> None:
  4392. args = parse_args()
  4393. if args.print_supported_models:
  4394. logger.error("Supported models:")
  4395. Model.print_registered_models()
  4396. sys.exit(0)
  4397. if args.verbose:
  4398. logging.basicConfig(level=logging.DEBUG)
  4399. else:
  4400. logging.basicConfig(level=logging.INFO)
  4401. dir_model = args.model
  4402. if not dir_model.is_dir():
  4403. logger.error(f'Error: {args.model} is not a directory')
  4404. sys.exit(1)
  4405. ftype_map: dict[str, gguf.LlamaFileType] = {
  4406. "f32": gguf.LlamaFileType.ALL_F32,
  4407. "f16": gguf.LlamaFileType.MOSTLY_F16,
  4408. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  4409. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  4410. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  4411. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  4412. "auto": gguf.LlamaFileType.GUESSED,
  4413. }
  4414. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  4415. if args.use_temp_file and is_split:
  4416. logger.error("Error: Cannot use temp file when splitting")
  4417. sys.exit(1)
  4418. if args.outfile is not None:
  4419. fname_out = args.outfile
  4420. else:
  4421. fname_out = dir_model
  4422. logger.info(f"Loading model: {dir_model.name}")
  4423. hparams = Model.load_hparams(dir_model)
  4424. with torch.inference_mode():
  4425. output_type = ftype_map[args.outtype]
  4426. model_architecture = hparams["architectures"][0]
  4427. try:
  4428. model_class = Model.from_model_architecture(model_architecture)
  4429. except NotImplementedError:
  4430. logger.error(f"Model {model_architecture} is not supported")
  4431. sys.exit(1)
  4432. model_instance = model_class(dir_model, output_type, fname_out,
  4433. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  4434. eager=args.no_lazy,
  4435. metadata_override=args.metadata, model_name=args.model_name,
  4436. split_max_tensors=args.split_max_tensors,
  4437. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  4438. small_first_shard=args.no_tensor_first_split)
  4439. if args.vocab_only:
  4440. logger.info("Exporting model vocab...")
  4441. model_instance.write_vocab()
  4442. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  4443. else:
  4444. logger.info("Exporting model...")
  4445. model_instance.write()
  4446. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  4447. logger.info(f"Model successfully exported to {out_path}")
  4448. if __name__ == '__main__':
  4449. main()