tensor_mapping.py 40 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935
  1. from __future__ import annotations
  2. from typing import Sequence
  3. from .constants import MODEL_ARCH, MODEL_TENSOR, MODEL_TENSORS, TENSOR_NAMES
  4. class TensorNameMap:
  5. mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  6. # Token embeddings
  7. MODEL_TENSOR.TOKEN_EMBD: (
  8. "gpt_neox.embed_in", # gptneox
  9. "transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais exaone
  10. "transformer.word_embeddings", # falcon
  11. "word_embeddings", # bloom
  12. "model.embed_tokens", # llama-hf nemotron olmoe olmo2 rwkv6qwen2
  13. "tok_embeddings", # llama-pth
  14. "embeddings.word_embeddings", # bert nomic-bert
  15. "language_model.embedding.word_embeddings", # persimmon
  16. "wte", # gpt2
  17. "transformer.embd.wte", # phi2
  18. "model.tok_embeddings", # internlm2
  19. "model.embedding", # mamba-qbert
  20. "backbone.embedding", # mamba
  21. "backbone.embeddings", # mamba-hf
  22. "transformer.in_out_embed", # Grok
  23. "embedding.word_embeddings", # chatglm
  24. "transformer.token_embeddings", # openelm
  25. "shared", # t5
  26. "rwkv.embeddings", # rwkv6
  27. "model.embeddings", # rwkv7
  28. "model.word_embeddings", # bailingmoe
  29. ),
  30. # Token type embeddings
  31. MODEL_TENSOR.TOKEN_TYPES: (
  32. "embeddings.token_type_embeddings", # bert nomic-bert
  33. ),
  34. # Normalization of token embeddings
  35. MODEL_TENSOR.TOKEN_EMBD_NORM: (
  36. "word_embeddings_layernorm", # bloom
  37. "embeddings.LayerNorm", # bert
  38. "emb_ln", # nomic-bert
  39. "transformer.norm", # openelm
  40. "rwkv.blocks.0.pre_ln", # rwkv
  41. "rwkv.blocks.0.pre_ln", # rwkv6
  42. "model.pre_ln", # rwkv7
  43. "model.layers.0.pre_norm", # rwkv7
  44. "backbone.norm", # wavtokenizer
  45. ),
  46. # Position embeddings
  47. MODEL_TENSOR.POS_EMBD: (
  48. "transformer.wpe", # gpt2
  49. "embeddings.position_embeddings", # bert
  50. "wpe", # gpt2
  51. ),
  52. # Output
  53. MODEL_TENSOR.OUTPUT: (
  54. "embed_out", # gptneox
  55. "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone olmoe olmo2 phimoe
  56. "output", # llama-pth bloom internlm2
  57. "word_embeddings_for_head", # persimmon
  58. "lm_head.linear", # phi2
  59. "output_layer", # chatglm
  60. "head", # rwkv
  61. "head.out", # wavtokenizer
  62. ),
  63. # Output norm
  64. MODEL_TENSOR.OUTPUT_NORM: (
  65. "gpt_neox.final_layer_norm", # gptneox
  66. "transformer.ln_f", # gpt2 gpt-j falcon jais exaone
  67. "model.norm", # llama-hf baichuan internlm2 olmoe olmo2 phimoe
  68. "norm", # llama-pth
  69. "transformer.norm_f", # mpt dbrx
  70. "ln_f", # refact bloom qwen gpt2
  71. "language_model.encoder.final_layernorm", # persimmon
  72. "model.final_layernorm", # persimmon
  73. "lm_head.ln", # phi2
  74. "model.norm_f", # mamba-qbert
  75. "backbone.norm_f", # mamba
  76. "transformer.rms_norm", # Grok
  77. "encoder.final_layernorm", # chatglm
  78. "transformer.norm", # openelm
  79. "model.norm", # nemotron
  80. "rwkv.ln_out", # rwkv6
  81. "model.ln_out", # rwkv7
  82. "backbone.final_layer_norm", # wavtokenizer
  83. ),
  84. # Rope frequencies
  85. MODEL_TENSOR.ROPE_FREQS: (
  86. "rope.freqs", # llama-pth
  87. "rotary_pos_emb.inv_freq", # chatglm
  88. ),
  89. MODEL_TENSOR.ROPE_FACTORS_LONG: (),
  90. MODEL_TENSOR.ROPE_FACTORS_SHORT: (),
  91. MODEL_TENSOR.CONV1D: (
  92. "backbone.embed", # roberta
  93. ),
  94. }
  95. block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  96. # Attention norm
  97. MODEL_TENSOR.ATTN_NORM: (
  98. "gpt_neox.layers.{bid}.input_layernorm", # gptneox
  99. "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen jais exaone
  100. "transformer.blocks.{bid}.norm_1", # mpt
  101. "transformer.h.{bid}.input_layernorm", # falcon7b
  102. "h.{bid}.input_layernorm", # bloom
  103. "transformer.h.{bid}.ln_mlp", # falcon40b
  104. "model.layers.{bid}.input_layernorm", # llama-hf nemotron olmoe phimoe
  105. "layers.{bid}.attention_norm", # llama-pth
  106. "language_model.encoder.layers.{bid}.input_layernorm", # persimmon
  107. "model.layers.{bid}.ln1", # yi
  108. "h.{bid}.ln_1", # gpt2
  109. "transformer.h.{bid}.ln", # phi2
  110. "model.layers.layers.{bid}.norm", # plamo
  111. "model.layers.{bid}.attention_norm", # internlm2
  112. "model.layers.{bid}.norm", # mamba-qbert
  113. "backbone.layers.{bid}.norm", # mamba
  114. "transformer.decoder_layer.{bid}.rms_norm", # Grok
  115. "transformer.blocks.{bid}.norm_attn_norm.norm_1", # dbrx
  116. "encoder.layers.{bid}.input_layernorm", # chatglm
  117. "transformer.layers.{bid}.attn_norm", # openelm
  118. "rwkv.blocks.{bid}.ln1", # rwkv6
  119. "model.layers.{bid}.ln1", # rwkv7
  120. ),
  121. # Attention norm 2
  122. MODEL_TENSOR.ATTN_NORM_2: (
  123. "transformer.h.{bid}.ln_attn", # falcon40b
  124. "encoder.layer.{bid}.layer_norm_1", # jina-v2-code
  125. "rwkv.blocks.{bid}.ln2", # rwkv6
  126. "model.layers.{bid}.ln2", # rwkv7
  127. ),
  128. # Attention query-key-value
  129. MODEL_TENSOR.ATTN_QKV: (
  130. "gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
  131. "transformer.h.{bid}.attn.c_attn", # gpt2 qwen jais
  132. "transformer.blocks.{bid}.attn.Wqkv", # mpt
  133. "transformer.blocks.{bid}.norm_attn_norm.attn.Wqkv", # dbrx
  134. "transformer.h.{bid}.self_attention.query_key_value", # falcon
  135. "h.{bid}.self_attention.query_key_value", # bloom
  136. "language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
  137. "model.layers.{bid}.self_attn.query_key_value", # persimmon
  138. "h.{bid}.attn.c_attn", # gpt2
  139. "transformer.h.{bid}.mixer.Wqkv", # phi2
  140. "encoder.layers.{bid}.attn.Wqkv", # nomic-bert
  141. "model.layers.{bid}.self_attn.qkv_proj", # phi3
  142. "encoder.layers.{bid}.self_attention.query_key_value", # chatglm
  143. "transformer.layers.{bid}.attn.qkv_proj", # openelm
  144. ),
  145. # Attention query
  146. MODEL_TENSOR.ATTN_Q: (
  147. "model.layers.{bid}.self_attn.q_proj", # llama-hf nemotron olmoe olmo2 phimoe
  148. "model.layers.{bid}.self_attn.q_proj_no_perm", # llama-custom
  149. "layers.{bid}.attention.wq", # llama-pth
  150. "encoder.layer.{bid}.attention.self.query", # bert
  151. "transformer.h.{bid}.attn.q_proj", # gpt-j
  152. "model.layers.layers.{bid}.self_attn.q_proj", # plamo
  153. "model.layers.{bid}.attention.wq", # internlm2
  154. "transformer.decoder_layer.{bid}.multi_head_attention.query",# Grok
  155. "transformer.h.{bid}.attn.attention.q_proj", # exaone
  156. ),
  157. # Attention key
  158. MODEL_TENSOR.ATTN_K: (
  159. "model.layers.{bid}.self_attn.k_proj", # llama-hf nemotron olmoe olmo2 phimoe
  160. "model.layers.{bid}.self_attn.k_proj_no_perm", # llama-custom
  161. "layers.{bid}.attention.wk", # llama-pth
  162. "encoder.layer.{bid}.attention.self.key", # bert
  163. "transformer.h.{bid}.attn.k_proj", # gpt-j
  164. "transformer.h.{bid}.attn.k", # refact
  165. "model.layers.layers.{bid}.self_attn.k_proj", # plamo
  166. "model.layers.{bid}.attention.wk", # internlm2
  167. "transformer.decoder_layer.{bid}.multi_head_attention.key",# Grok
  168. "transformer.h.{bid}.attn.attention.k_proj", # exaone
  169. ),
  170. # Attention value
  171. MODEL_TENSOR.ATTN_V: (
  172. "model.layers.{bid}.self_attn.v_proj", # llama-hf nemotron olmoe olmo2 phimoe
  173. "layers.{bid}.attention.wv", # llama-pth
  174. "encoder.layer.{bid}.attention.self.value", # bert
  175. "transformer.h.{bid}.attn.v_proj", # gpt-j
  176. "transformer.h.{bid}.attn.v", # refact
  177. "model.layers.layers.{bid}.self_attn.v_proj", # plamo
  178. "model.layers.{bid}.attention.wv", # internlm2
  179. "transformer.decoder_layer.{bid}.multi_head_attention.value",# Grok
  180. "transformer.h.{bid}.attn.attention.v_proj", # exaone
  181. ),
  182. # Attention output
  183. MODEL_TENSOR.ATTN_OUT: (
  184. "gpt_neox.layers.{bid}.attention.dense", # gptneox
  185. "transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen jais
  186. "transformer.blocks.{bid}.attn.out_proj", # mpt
  187. "transformer.h.{bid}.self_attention.dense", # falcon
  188. "h.{bid}.self_attention.dense", # bloom
  189. "model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron olmoe olmo2 phimoe
  190. "model.layers.{bid}.self_attn.linear_attn", # deci
  191. "layers.{bid}.attention.wo", # llama-pth
  192. "encoder.layer.{bid}.attention.output.dense", # bert
  193. "transformer.h.{bid}.attn.out_proj", # gpt-j
  194. "language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
  195. "model.layers.{bid}.self_attn.dense", # persimmon
  196. "h.{bid}.attn.c_proj", # gpt2
  197. "transformer.h.{bid}.mixer.out_proj", # phi2
  198. "model.layers.layers.{bid}.self_attn.o_proj", # plamo
  199. "model.layers.{bid}.attention.wo", # internlm2
  200. "encoder.layers.{bid}.attn.out_proj", # nomic-bert
  201. "transformer.decoder_layer.{bid}.multi_head_attention.linear", # Grok
  202. "transformer.blocks.{bid}.norm_attn_norm.attn.out_proj", # dbrx
  203. "encoder.layers.{bid}.self_attention.dense", # chatglm
  204. "transformer.layers.{bid}.attn.out_proj", # openelm
  205. "transformer.h.{bid}.attn.attention.out_proj", # exaone
  206. ),
  207. # Attention output norm
  208. MODEL_TENSOR.ATTN_OUT_NORM: (
  209. "encoder.layer.{bid}.attention.output.LayerNorm", # bert
  210. "encoder.layers.{bid}.norm1", # nomic-bert
  211. "transformer.decoder_layer.{bid}.rms_norm_1", # Grok
  212. "transformer.blocks.{bid}.norm_attn_norm.norm_2", # dbrx
  213. ),
  214. MODEL_TENSOR.ATTN_POST_NORM: (
  215. "model.layers.{bid}.post_attention_layernorm", # gemma2 olmo2
  216. ),
  217. # Rotary embeddings
  218. MODEL_TENSOR.ATTN_ROT_EMBD: (
  219. "model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf
  220. "layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth
  221. "model.layers.layers.{bid}.self_attn.rotary_emb.inv_freq", # plamo
  222. "transformer.h.{bid}.attn.rotary_emb.inv_freq", # codeshell
  223. ),
  224. # Feed-forward norm
  225. MODEL_TENSOR.FFN_NORM: (
  226. "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
  227. "transformer.h.{bid}.ln_2", # gpt2 refact qwen jais exaone
  228. "h.{bid}.post_attention_layernorm", # bloom
  229. "transformer.blocks.{bid}.norm_2", # mpt
  230. "model.layers.{bid}.post_attention_layernorm", # llama-hf nemotron olmoe phimoe
  231. "layers.{bid}.ffn_norm", # llama-pth
  232. "language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
  233. "model.layers.{bid}.ln2", # yi
  234. "h.{bid}.ln_2", # gpt2
  235. "model.layers.{bid}.ffn_norm", # internlm2
  236. "transformer.decoder_layer.{bid}.rms_norm_2", # Grok
  237. "encoder.layers.{bid}.post_attention_layernorm", # chatglm
  238. "transformer.layers.{bid}.ffn_norm", # openelm
  239. ),
  240. # Post feed-forward norm
  241. MODEL_TENSOR.FFN_PRE_NORM: (
  242. "model.layers.{bid}.pre_feedforward_layernorm", # gemma2
  243. ),
  244. # Post feed-forward norm
  245. MODEL_TENSOR.FFN_POST_NORM: (
  246. "model.layers.{bid}.post_feedforward_layernorm", # gemma2 olmo2
  247. ),
  248. MODEL_TENSOR.FFN_GATE_INP: (
  249. "layers.{bid}.feed_forward.gate", # mixtral
  250. "model.layers.{bid}.block_sparse_moe.gate", # mixtral phimoe
  251. "model.layers.{bid}.mlp.gate", # qwen2moe olmoe
  252. "transformer.decoder_layer.{bid}.router", # Grok
  253. "transformer.blocks.{bid}.ffn.router.layer", # dbrx
  254. "model.layers.{bid}.block_sparse_moe.router.layer", # granitemoe
  255. ),
  256. MODEL_TENSOR.FFN_GATE_INP_SHEXP: (
  257. "model.layers.{bid}.mlp.shared_expert_gate", # qwen2moe
  258. ),
  259. MODEL_TENSOR.FFN_EXP_PROBS_B: (
  260. "model.layers.{bid}.mlp.gate.e_score_correction", # deepseek-v3
  261. ),
  262. # Feed-forward up
  263. MODEL_TENSOR.FFN_UP: (
  264. "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
  265. "transformer.h.{bid}.mlp.c_fc", # gpt2 jais
  266. "transformer.blocks.{bid}.ffn.up_proj", # mpt
  267. "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
  268. "h.{bid}.mlp.dense_h_to_4h", # bloom
  269. "model.layers.{bid}.mlp.up_proj", # llama-hf refact nemotron olmo2
  270. "layers.{bid}.feed_forward.w3", # llama-pth
  271. "encoder.layer.{bid}.intermediate.dense", # bert
  272. "transformer.h.{bid}.mlp.fc_in", # gpt-j
  273. "transformer.h.{bid}.mlp.linear_3", # refact
  274. "language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  275. "model.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  276. "transformer.h.{bid}.mlp.w1", # qwen
  277. "h.{bid}.mlp.c_fc", # gpt2
  278. "transformer.h.{bid}.mlp.fc1", # phi2
  279. "model.layers.{bid}.mlp.fc1", # phi2
  280. "model.layers.{bid}.mlp.gate_up_proj", # phi3
  281. "model.layers.layers.{bid}.mlp.up_proj", # plamo
  282. "model.layers.{bid}.feed_forward.w3", # internlm2
  283. "encoder.layers.{bid}.mlp.fc11", # nomic-bert
  284. "model.layers.{bid}.mlp.c_fc", # starcoder2
  285. "encoder.layer.{bid}.mlp.gated_layers_v", # jina-bert-v2
  286. "model.layers.{bid}.residual_mlp.w3", # arctic
  287. "encoder.layers.{bid}.mlp.dense_h_to_4h", # chatglm
  288. "transformer.h.{bid}.mlp.c_fc_1", # exaone
  289. ),
  290. MODEL_TENSOR.FFN_UP_EXP: (
  291. "layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
  292. "transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
  293. "transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx
  294. "model.layers.{bid}.mlp.experts.up_proj", # qwen2moe olmoe (merged)
  295. "model.layers.{bid}.block_sparse_moe.experts.w3", # phimoe (merged)
  296. ),
  297. MODEL_TENSOR.FFN_UP_SHEXP: (
  298. "model.layers.{bid}.mlp.shared_expert.up_proj", # qwen2moe
  299. "model.layers.{bid}.mlp.shared_experts.up_proj", # deepseek deepseek2
  300. ),
  301. # AWQ-activation gate
  302. MODEL_TENSOR.FFN_ACT: (
  303. "transformer.blocks.{bid}.ffn.act", # mpt
  304. ),
  305. # Feed-forward gate
  306. MODEL_TENSOR.FFN_GATE: (
  307. "model.layers.{bid}.mlp.gate_proj", # llama-hf refact olmo2
  308. "layers.{bid}.feed_forward.w1", # llama-pth
  309. "transformer.h.{bid}.mlp.w2", # qwen
  310. "transformer.h.{bid}.mlp.c_fc2", # jais
  311. "model.layers.layers.{bid}.mlp.gate_proj", # plamo
  312. "model.layers.{bid}.feed_forward.w1", # internlm2
  313. "encoder.layers.{bid}.mlp.fc12", # nomic-bert
  314. "encoder.layer.{bid}.mlp.gated_layers_w", # jina-bert-v2
  315. "transformer.h.{bid}.mlp.linear_1", # refact
  316. "model.layers.{bid}.residual_mlp.w1", # arctic
  317. "transformer.h.{bid}.mlp.c_fc_0", # exaone
  318. ),
  319. MODEL_TENSOR.FFN_GATE_EXP: (
  320. "layers.{bid}.feed_forward.experts.w1", # mixtral (merged)
  321. "transformer.decoder_layer.{bid}.moe.linear", # Grok (merged)
  322. "transformer.blocks.{bid}.ffn.experts.mlp.w1", # dbrx
  323. "model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe olmoe (merged)
  324. "model.layers.{bid}.block_sparse_moe.experts.w1", # phimoe (merged)
  325. ),
  326. MODEL_TENSOR.FFN_GATE_SHEXP: (
  327. "model.layers.{bid}.mlp.shared_expert.gate_proj", # qwen2moe
  328. "model.layers.{bid}.mlp.shared_experts.gate_proj", # deepseek deepseek2
  329. ),
  330. # Feed-forward down
  331. MODEL_TENSOR.FFN_DOWN: (
  332. "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
  333. "transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen jais
  334. "transformer.blocks.{bid}.ffn.down_proj", # mpt
  335. "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
  336. "h.{bid}.mlp.dense_4h_to_h", # bloom
  337. "model.layers.{bid}.mlp.down_proj", # llama-hf nemotron olmo2
  338. "layers.{bid}.feed_forward.w2", # llama-pth
  339. "encoder.layer.{bid}.output.dense", # bert
  340. "transformer.h.{bid}.mlp.fc_out", # gpt-j
  341. "language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  342. "model.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  343. "h.{bid}.mlp.c_proj", # gpt2
  344. "transformer.h.{bid}.mlp.fc2", # phi2
  345. "model.layers.{bid}.mlp.fc2", # phi2
  346. "model.layers.layers.{bid}.mlp.down_proj", # plamo
  347. "model.layers.{bid}.feed_forward.w2", # internlm2
  348. "encoder.layers.{bid}.mlp.fc2", # nomic-bert
  349. "model.layers.{bid}.mlp.c_proj", # starcoder2
  350. "encoder.layer.{bid}.mlp.wo", # jina-bert-v2
  351. "transformer.layers.{bid}.ffn.proj_2", # openelm
  352. "model.layers.{bid}.residual_mlp.w2", # arctic
  353. "encoder.layer.{bid}.mlp.down_layer", # jina-bert-v2
  354. "encoder.layers.{bid}.mlp.dense_4h_to_h", # chatglm
  355. "model.layers.h.{bid}.mlp.c_proj", # exaone
  356. ),
  357. MODEL_TENSOR.FFN_DOWN_EXP: (
  358. "layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
  359. "transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
  360. "transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx
  361. "model.layers.{bid}.mlp.experts.down_proj", # qwen2moe olmoe (merged)
  362. "model.layers.{bid}.block_sparse_moe.output_linear", # granitemoe
  363. "model.layers.{bid}.block_sparse_moe.experts.w2", # phimoe (merged)
  364. ),
  365. MODEL_TENSOR.FFN_DOWN_SHEXP: (
  366. "model.layers.{bid}.mlp.shared_expert.down_proj", # qwen2moe
  367. "model.layers.{bid}.mlp.shared_experts.down_proj", # deepseek deepseek2
  368. ),
  369. MODEL_TENSOR.ATTN_Q_NORM: (
  370. "language_model.encoder.layers.{bid}.self_attention.q_layernorm",
  371. "model.layers.{bid}.self_attn.q_layernorm", # persimmon
  372. "model.layers.{bid}.self_attn.q_norm", # cohere olmoe chameleon olmo2
  373. "transformer.blocks.{bid}.attn.q_ln", # sea-lion
  374. "encoder.layer.{bid}.attention.self.layer_norm_q", # jina-bert-v2
  375. "transformer.layers.{bid}.attn.q_norm", # openelm
  376. ),
  377. MODEL_TENSOR.ATTN_K_NORM: (
  378. "language_model.encoder.layers.{bid}.self_attention.k_layernorm",
  379. "model.layers.{bid}.self_attn.k_layernorm", # persimmon
  380. "model.layers.{bid}.self_attn.k_norm", # cohere olmoe chameleon olmo2
  381. "transformer.blocks.{bid}.attn.k_ln", # sea-lion
  382. "encoder.layer.{bid}.attention.self.layer_norm_k", # jina-bert-v2
  383. "transformer.layers.{bid}.attn.k_norm", # openelm
  384. ),
  385. MODEL_TENSOR.ROPE_FREQS: (
  386. "language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq", # persimmon
  387. ),
  388. MODEL_TENSOR.LAYER_OUT_NORM: (
  389. "encoder.layer.{bid}.output.LayerNorm", # bert
  390. "encoder.layers.{bid}.norm2", # nomic-bert
  391. "transformer.decoder_layer.{bid}.rms_norm_3", # Grok
  392. "encoder.layer.{bid}.mlp.layernorm", # jina-bert-v2
  393. "encoder.layer.{bid}.layer_norm_2" # jina-v2-code
  394. ),
  395. MODEL_TENSOR.SSM_IN: (
  396. "model.layers.{bid}.in_proj",
  397. "backbone.layers.{bid}.mixer.in_proj",
  398. ),
  399. MODEL_TENSOR.SSM_CONV1D: (
  400. "model.layers.{bid}.conv1d",
  401. "backbone.layers.{bid}.mixer.conv1d",
  402. ),
  403. MODEL_TENSOR.SSM_X: (
  404. "model.layers.{bid}.x_proj",
  405. "backbone.layers.{bid}.mixer.x_proj",
  406. ),
  407. MODEL_TENSOR.SSM_DT: (
  408. "model.layers.{bid}.dt_proj",
  409. "backbone.layers.{bid}.mixer.dt_proj",
  410. ),
  411. MODEL_TENSOR.SSM_A: (
  412. "model.layers.{bid}.A_log",
  413. "backbone.layers.{bid}.mixer.A_log",
  414. ),
  415. MODEL_TENSOR.SSM_D: (
  416. "model.layers.{bid}.D",
  417. "backbone.layers.{bid}.mixer.D",
  418. ),
  419. MODEL_TENSOR.SSM_OUT: (
  420. "model.layers.{bid}.out_proj",
  421. "backbone.layers.{bid}.mixer.out_proj",
  422. ),
  423. MODEL_TENSOR.TIME_MIX_W0: (
  424. "model.layers.{bid}.attention.w0", # rwkv7
  425. ),
  426. MODEL_TENSOR.TIME_MIX_W1: (
  427. "rwkv.blocks.{bid}.attention.time_maa_w1", # rwkv6
  428. "model.layers.{bid}.self_attn.time_maa_w1", # rwkv6qwen2
  429. "model.layers.{bid}.attention.w1", # rwkv7
  430. ),
  431. MODEL_TENSOR.TIME_MIX_W2: (
  432. "rwkv.blocks.{bid}.attention.time_maa_w2", # rwkv6
  433. "model.layers.{bid}.self_attn.time_maa_w2", # rwkv6qwen2
  434. "model.layers.{bid}.attention.w2", # rwkv7
  435. ),
  436. MODEL_TENSOR.TIME_MIX_A0: (
  437. "model.layers.{bid}.attention.a0", # rwkv7
  438. ),
  439. MODEL_TENSOR.TIME_MIX_A1: (
  440. "model.layers.{bid}.attention.a1", # rwkv7
  441. ),
  442. MODEL_TENSOR.TIME_MIX_A2: (
  443. "model.layers.{bid}.attention.a2", # rwkv7
  444. ),
  445. MODEL_TENSOR.TIME_MIX_V0: (
  446. "model.layers.{bid}.attention.v0", # rwkv7
  447. ),
  448. MODEL_TENSOR.TIME_MIX_V1: (
  449. "model.layers.{bid}.attention.v1", # rwkv7
  450. ),
  451. MODEL_TENSOR.TIME_MIX_V2: (
  452. "model.layers.{bid}.attention.v2", # rwkv7
  453. ),
  454. MODEL_TENSOR.TIME_MIX_G1: (
  455. "model.layers.{bid}.attention.g1", # rwkv7
  456. ),
  457. MODEL_TENSOR.TIME_MIX_G2: (
  458. "model.layers.{bid}.attention.g2", # rwkv7
  459. ),
  460. MODEL_TENSOR.TIME_MIX_K_K: (
  461. "model.layers.{bid}.attention.k_k", # rwkv7
  462. ),
  463. MODEL_TENSOR.TIME_MIX_K_A: (
  464. "model.layers.{bid}.attention.k_a", # rwkv7
  465. ),
  466. MODEL_TENSOR.TIME_MIX_R_K: (
  467. "model.layers.{bid}.attention.r_k", # rwkv7
  468. ),
  469. MODEL_TENSOR.TIME_MIX_LERP_X: (
  470. "rwkv.blocks.{bid}.attention.time_maa_x", # rwkv6
  471. "model.layers.{bid}.self_attn.time_maa_x", # rwkv6qwen2
  472. ),
  473. MODEL_TENSOR.TIME_MIX_LERP_K: (
  474. "rwkv.blocks.{bid}.attention.time_maa_k", # rwkv6
  475. "model.layers.{bid}.self_attn.time_maa_k", # rwkv6qwen2
  476. ),
  477. MODEL_TENSOR.TIME_MIX_LERP_V: (
  478. "rwkv.blocks.{bid}.attention.time_maa_v", # rwkv6
  479. "model.layers.{bid}.self_attn.time_maa_v", # rwkv6qwen2
  480. ),
  481. MODEL_TENSOR.TIME_MIX_LERP_R: (
  482. "rwkv.blocks.{bid}.attention.time_maa_r", # rwkv6
  483. "model.layers.{bid}.self_attn.time_maa_r", # rwkv6qwen2
  484. ),
  485. MODEL_TENSOR.TIME_MIX_LERP_G: (
  486. "rwkv.blocks.{bid}.attention.time_maa_g", # rwkv6
  487. "model.layers.{bid}.self_attn.time_maa_g", # rwkv6qwen2
  488. ),
  489. MODEL_TENSOR.TIME_MIX_LERP_W: (
  490. "rwkv.blocks.{bid}.attention.time_maa_w", # rwkv6
  491. "model.layers.{bid}.self_attn.time_maa_w", # rwkv6qwen2
  492. ),
  493. MODEL_TENSOR.TIME_MIX_FIRST: (
  494. "rwkv.blocks.{bid}.attention.time_faaaa", # rwkv6
  495. ),
  496. MODEL_TENSOR.TIME_MIX_DECAY: (
  497. "rwkv.blocks.{bid}.attention.time_decay", # rwkv6
  498. "model.layers.{bid}.self_attn.time_decay", # rwkv6qwen2
  499. ),
  500. MODEL_TENSOR.TIME_MIX_DECAY_W1: (
  501. "rwkv.blocks.{bid}.attention.time_decay_w1", # rwkv6
  502. "model.layers.{bid}.self_attn.time_decay_w1", # rwkv6qwen2
  503. ),
  504. MODEL_TENSOR.TIME_MIX_DECAY_W2: (
  505. "rwkv.blocks.{bid}.attention.time_decay_w2", # rwkv6
  506. "model.layers.{bid}.self_attn.time_decay_w2", # rwkv6qwen2
  507. ),
  508. MODEL_TENSOR.TIME_MIX_KEY: (
  509. "rwkv.blocks.{bid}.attention.key", # rwkv6
  510. "model.layers.{bid}.self_attn.k_proj", # rwkv6qwen2
  511. "model.layers.{bid}.attention.key", # rwkv7
  512. "model.layers.{bid}.attention.k_proj", # rwkv7
  513. ),
  514. MODEL_TENSOR.TIME_MIX_VALUE: (
  515. "rwkv.blocks.{bid}.attention.value", # rwkv6
  516. "model.layers.{bid}.self_attn.v_proj", # rwkv6qwen2
  517. "model.layers.{bid}.attention.value", # rwkv7
  518. "model.layers.{bid}.attention.v_proj", # rwkv7
  519. ),
  520. MODEL_TENSOR.TIME_MIX_RECEPTANCE: (
  521. "rwkv.blocks.{bid}.attention.receptance", # rwkv6
  522. "model.layers.{bid}.self_attn.q_proj", # rwkv6qwen2
  523. "model.layers.{bid}.attention.receptance", # rwkv7
  524. "model.layers.{bid}.attention.r_proj", # rwkv7
  525. ),
  526. MODEL_TENSOR.TIME_MIX_GATE: (
  527. "rwkv.blocks.{bid}.attention.gate", # rwkv6
  528. "model.layers.{bid}.self_attn.gate", # rwkv6qwen2
  529. ),
  530. MODEL_TENSOR.TIME_MIX_LN: (
  531. "rwkv.blocks.{bid}.attention.ln_x", # rwkv6
  532. "model.layers.{bid}.attention.ln_x" # rwkv7
  533. ),
  534. MODEL_TENSOR.TIME_MIX_OUTPUT: (
  535. "rwkv.blocks.{bid}.attention.output", # rwkv6
  536. "model.layers.{bid}.self_attn.o_proj", # rwkv6qwen2
  537. "model.layers.{bid}.attention.output", # rwkv7
  538. "model.layers.{bid}.attention.o_proj", # rwkv7
  539. ),
  540. MODEL_TENSOR.CHANNEL_MIX_LERP_K: (
  541. "rwkv.blocks.{bid}.feed_forward.time_maa_k", # rwkv6
  542. "model.layers.{bid}.feed_forward.x_k", # rwkv7
  543. ),
  544. MODEL_TENSOR.CHANNEL_MIX_LERP_R: (
  545. "rwkv.blocks.{bid}.feed_forward.time_maa_r", # rwkv6
  546. ),
  547. MODEL_TENSOR.CHANNEL_MIX_KEY: (
  548. "rwkv.blocks.{bid}.feed_forward.key", # rwkv6
  549. "model.layers.{bid}.feed_forward.key", # rwkv7
  550. ),
  551. MODEL_TENSOR.CHANNEL_MIX_RECEPTANCE: (
  552. "rwkv.blocks.{bid}.feed_forward.receptance", # rwkv6
  553. ),
  554. MODEL_TENSOR.CHANNEL_MIX_VALUE: (
  555. "rwkv.blocks.{bid}.feed_forward.value", # rwkv6
  556. "model.layers.{bid}.feed_forward.value", # rwkv7
  557. ),
  558. MODEL_TENSOR.ATTN_Q_A: (
  559. "model.layers.{bid}.self_attn.q_a_proj", # deepseek2
  560. ),
  561. MODEL_TENSOR.ATTN_Q_B: (
  562. "model.layers.{bid}.self_attn.q_b_proj", # deepseek2
  563. ),
  564. MODEL_TENSOR.ATTN_KV_A_MQA: (
  565. "model.layers.{bid}.self_attn.kv_a_proj_with_mqa", # deepseek2
  566. ),
  567. MODEL_TENSOR.ATTN_KV_B: (
  568. "model.layers.{bid}.self_attn.kv_b_proj", # deepseek2
  569. ),
  570. MODEL_TENSOR.ATTN_Q_A_NORM: (
  571. "model.layers.{bid}.self_attn.q_a_layernorm", # deepseek2
  572. ),
  573. MODEL_TENSOR.ATTN_KV_A_NORM: (
  574. "model.layers.{bid}.self_attn.kv_a_layernorm", # deepseek2
  575. ),
  576. MODEL_TENSOR.ATTN_SUB_NORM: (
  577. "model.layers.{bid}.self_attn.inner_attn_ln", # bitnet
  578. ),
  579. MODEL_TENSOR.FFN_SUB_NORM: (
  580. "model.layers.{bid}.mlp.ffn_layernorm", # bitnet
  581. ),
  582. MODEL_TENSOR.DEC_ATTN_NORM: (
  583. "decoder.block.{bid}.layer.0.layer_norm", # t5
  584. ),
  585. MODEL_TENSOR.DEC_ATTN_Q: (
  586. "decoder.block.{bid}.layer.0.SelfAttention.q", # t5
  587. ),
  588. MODEL_TENSOR.DEC_ATTN_K: (
  589. "decoder.block.{bid}.layer.0.SelfAttention.k", # t5
  590. ),
  591. MODEL_TENSOR.DEC_ATTN_V: (
  592. "decoder.block.{bid}.layer.0.SelfAttention.v", # t5
  593. ),
  594. MODEL_TENSOR.DEC_ATTN_OUT: (
  595. "decoder.block.{bid}.layer.0.SelfAttention.o", # t5
  596. ),
  597. MODEL_TENSOR.DEC_ATTN_REL_B: (
  598. "decoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  599. ),
  600. MODEL_TENSOR.DEC_CROSS_ATTN_NORM: (
  601. "decoder.block.{bid}.layer.1.layer_norm", # t5
  602. ),
  603. MODEL_TENSOR.DEC_CROSS_ATTN_Q: (
  604. "decoder.block.{bid}.layer.1.EncDecAttention.q", # t5
  605. ),
  606. MODEL_TENSOR.DEC_CROSS_ATTN_K: (
  607. "decoder.block.{bid}.layer.1.EncDecAttention.k", # t5
  608. ),
  609. MODEL_TENSOR.DEC_CROSS_ATTN_V: (
  610. "decoder.block.{bid}.layer.1.EncDecAttention.v", # t5
  611. ),
  612. MODEL_TENSOR.DEC_CROSS_ATTN_OUT: (
  613. "decoder.block.{bid}.layer.1.EncDecAttention.o", # t5
  614. ),
  615. MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: (
  616. "decoder.block.{bid}.layer.1.EncDecAttention.relative_attention_bias", # t5
  617. ),
  618. MODEL_TENSOR.DEC_FFN_NORM: (
  619. "decoder.block.{bid}.layer.2.layer_norm", # t5
  620. ),
  621. MODEL_TENSOR.DEC_FFN_GATE: (
  622. "decoder.block.{bid}.layer.2.DenseReluDense.wi_0", # flan-t5
  623. ),
  624. MODEL_TENSOR.DEC_FFN_UP: (
  625. "decoder.block.{bid}.layer.2.DenseReluDense.wi", # t5
  626. "decoder.block.{bid}.layer.2.DenseReluDense.wi_1", # flan-t5
  627. ),
  628. MODEL_TENSOR.DEC_FFN_DOWN: (
  629. "decoder.block.{bid}.layer.2.DenseReluDense.wo", # t5
  630. ),
  631. MODEL_TENSOR.DEC_OUTPUT_NORM: (
  632. "decoder.final_layer_norm", # t5
  633. ),
  634. MODEL_TENSOR.ENC_ATTN_NORM: (
  635. "encoder.block.{bid}.layer.0.layer_norm", # t5
  636. ),
  637. MODEL_TENSOR.ENC_ATTN_Q: (
  638. "encoder.block.{bid}.layer.0.SelfAttention.q", # t5
  639. ),
  640. MODEL_TENSOR.ENC_ATTN_K: (
  641. "encoder.block.{bid}.layer.0.SelfAttention.k", # t5
  642. ),
  643. MODEL_TENSOR.ENC_ATTN_V: (
  644. "encoder.block.{bid}.layer.0.SelfAttention.v", # t5
  645. ),
  646. MODEL_TENSOR.ENC_ATTN_OUT: (
  647. "encoder.block.{bid}.layer.0.SelfAttention.o", # t5
  648. ),
  649. MODEL_TENSOR.ENC_ATTN_REL_B: (
  650. "encoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  651. ),
  652. MODEL_TENSOR.ENC_FFN_NORM: (
  653. "encoder.block.{bid}.layer.1.layer_norm", # t5
  654. ),
  655. MODEL_TENSOR.ENC_FFN_GATE: (
  656. "encoder.block.{bid}.layer.1.DenseReluDense.wi_0", # flan-t5
  657. ),
  658. MODEL_TENSOR.ENC_FFN_UP: (
  659. "encoder.block.{bid}.layer.1.DenseReluDense.wi", # t5
  660. "encoder.block.{bid}.layer.1.DenseReluDense.wi_1", # flan-t5
  661. ),
  662. MODEL_TENSOR.ENC_FFN_DOWN: (
  663. "encoder.block.{bid}.layer.1.DenseReluDense.wo", # t5
  664. ),
  665. ############################################################################
  666. # TODO: these do not belong to block_mappings_cfg - move them to mappings_cfg
  667. MODEL_TENSOR.ENC_OUTPUT_NORM: (
  668. "encoder.final_layer_norm", # t5
  669. ),
  670. MODEL_TENSOR.CLS: (
  671. "classifier", # jina
  672. "classifier.dense", # roberta
  673. ),
  674. MODEL_TENSOR.CLS_OUT: (
  675. "classifier.out_proj", # roberta
  676. ),
  677. #############################################################################
  678. MODEL_TENSOR.CONVNEXT_DW: (
  679. "backbone.convnext.{bid}.dwconv", # wavtokenizer
  680. ),
  681. MODEL_TENSOR.CONVNEXT_NORM: (
  682. "backbone.convnext.{bid}.norm", # wavtokenizer
  683. ),
  684. MODEL_TENSOR.CONVNEXT_PW1: (
  685. "backbone.convnext.{bid}.pwconv1", # wavtokenizer
  686. ),
  687. MODEL_TENSOR.CONVNEXT_PW2: (
  688. "backbone.convnext.{bid}.pwconv2", # wavtokenizer
  689. ),
  690. MODEL_TENSOR.CONVNEXT_GAMMA: (
  691. "backbone.convnext.{bid}.gamma", # wavtokenizer
  692. ),
  693. MODEL_TENSOR.POSNET_CONV1: (
  694. "backbone.posnet.{bid}.conv1", # wavtokenizer
  695. ),
  696. MODEL_TENSOR.POSNET_CONV2: (
  697. "backbone.posnet.{bid}.conv2", # wavtokenizer
  698. ),
  699. MODEL_TENSOR.POSNET_NORM: (
  700. "backbone.posnet.{bid}.norm", # wavtokenizer
  701. ),
  702. MODEL_TENSOR.POSNET_NORM1: (
  703. "backbone.posnet.{bid}.norm1", # wavtokenizer
  704. ),
  705. MODEL_TENSOR.POSNET_NORM2: (
  706. "backbone.posnet.{bid}.norm2", # wavtokenizer
  707. ),
  708. MODEL_TENSOR.POSNET_ATTN_NORM: (
  709. "backbone.posnet.{bid}.norm", # wavtokenizer
  710. ),
  711. MODEL_TENSOR.POSNET_ATTN_Q: (
  712. "backbone.posnet.{bid}.q", # wavtokenizer
  713. ),
  714. MODEL_TENSOR.POSNET_ATTN_K: (
  715. "backbone.posnet.{bid}.k", # wavtokenizer
  716. ),
  717. MODEL_TENSOR.POSNET_ATTN_V: (
  718. "backbone.posnet.{bid}.v", # wavtokenizer
  719. ),
  720. MODEL_TENSOR.POSNET_ATTN_OUT: (
  721. "backbone.posnet.{bid}.proj_out", # wavtokenizer
  722. ),
  723. }
  724. # architecture-specific block mappings
  725. arch_block_mappings_cfg: dict[MODEL_ARCH, dict[MODEL_TENSOR, tuple[str, ...]]] = {
  726. MODEL_ARCH.ARCTIC: {
  727. MODEL_TENSOR.FFN_NORM: (
  728. "model.layers.{bid}.residual_layernorm",
  729. ),
  730. MODEL_TENSOR.FFN_NORM_EXP: (
  731. "model.layers.{bid}.post_attention_layernorm",
  732. ),
  733. },
  734. }
  735. mapping: dict[str, tuple[MODEL_TENSOR, str]]
  736. def __init__(self, arch: MODEL_ARCH, n_blocks: int):
  737. self.mapping = {}
  738. for tensor, keys in self.mappings_cfg.items():
  739. if tensor not in MODEL_TENSORS[arch]:
  740. continue
  741. tensor_name = TENSOR_NAMES[tensor]
  742. self.mapping[tensor_name] = (tensor, tensor_name)
  743. for key in keys:
  744. self.mapping[key] = (tensor, tensor_name)
  745. if arch in self.arch_block_mappings_cfg:
  746. self.block_mappings_cfg.update(self.arch_block_mappings_cfg[arch])
  747. for bid in range(n_blocks):
  748. for tensor, keys in self.block_mappings_cfg.items():
  749. if tensor not in MODEL_TENSORS[arch]:
  750. continue
  751. tensor_name = TENSOR_NAMES[tensor].format(bid = bid)
  752. self.mapping[tensor_name] = (tensor, tensor_name)
  753. for key in keys:
  754. key = key.format(bid = bid)
  755. self.mapping[key] = (tensor, tensor_name)
  756. def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
  757. result = self.mapping.get(key)
  758. if result is not None:
  759. return result
  760. for suffix in try_suffixes:
  761. if key.endswith(suffix):
  762. result = self.mapping.get(key[:-len(suffix)])
  763. if result is not None:
  764. return result[0], result[1] + suffix
  765. return None
  766. def get_name(self, key: str, try_suffixes: Sequence[str] = ()) -> str | None:
  767. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  768. if result is None:
  769. return None
  770. return result[1]
  771. def get_type(self, key: str, try_suffixes: Sequence[str] = ()) -> MODEL_TENSOR | None:
  772. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  773. if result is None:
  774. return None
  775. return result[0]
  776. def __getitem__(self, key: str) -> str:
  777. try:
  778. return self.mapping[key][1]
  779. except KeyError:
  780. raise KeyError(key)
  781. def __contains__(self, key: str) -> bool:
  782. return key in self.mapping
  783. def __repr__(self) -> str:
  784. return repr(self.mapping)
  785. def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap:
  786. return TensorNameMap(arch, n_blocks)