llama.h 52 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148
  1. #ifndef LLAMA_H
  2. #define LLAMA_H
  3. #include "ggml.h"
  4. #include "ggml-backend.h"
  5. #include <stddef.h>
  6. #include <stdint.h>
  7. #include <stdio.h>
  8. #include <stdbool.h>
  9. #ifdef LLAMA_SHARED
  10. # if defined(_WIN32) && !defined(__MINGW32__)
  11. # ifdef LLAMA_BUILD
  12. # define LLAMA_API __declspec(dllexport)
  13. # else
  14. # define LLAMA_API __declspec(dllimport)
  15. # endif
  16. # else
  17. # define LLAMA_API __attribute__ ((visibility ("default")))
  18. # endif
  19. #else
  20. # define LLAMA_API
  21. #endif
  22. #ifdef __GNUC__
  23. # define DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
  24. #elif defined(_MSC_VER)
  25. # define DEPRECATED(func, hint) __declspec(deprecated(hint)) func
  26. #else
  27. # define DEPRECATED(func, hint) func
  28. #endif
  29. #define LLAMA_DEFAULT_SEED 0xFFFFFFFF
  30. #define LLAMA_MAX_RNG_STATE (64*1024)
  31. #define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
  32. #define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
  33. #define LLAMA_FILE_MAGIC_GGSQ 0x67677371u // 'ggsq'
  34. #define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
  35. #define LLAMA_SESSION_VERSION 6
  36. #define LLAMA_STATE_SEQ_MAGIC LLAMA_FILE_MAGIC_GGSQ
  37. #define LLAMA_STATE_SEQ_VERSION 1
  38. #ifdef __cplusplus
  39. extern "C" {
  40. #endif
  41. //
  42. // C interface
  43. //
  44. // TODO: show sample usage
  45. //
  46. struct llama_model;
  47. struct llama_context;
  48. typedef int32_t llama_pos;
  49. typedef int32_t llama_token;
  50. typedef int32_t llama_seq_id;
  51. enum llama_vocab_type {
  52. LLAMA_VOCAB_TYPE_NONE = 0, // For models without vocab
  53. LLAMA_VOCAB_TYPE_SPM = 1, // LLaMA tokenizer based on byte-level BPE with byte fallback
  54. LLAMA_VOCAB_TYPE_BPE = 2, // GPT-2 tokenizer based on byte-level BPE
  55. LLAMA_VOCAB_TYPE_WPM = 3, // BERT tokenizer based on WordPiece
  56. };
  57. // pre-tokenization types
  58. enum llama_vocab_pre_type {
  59. LLAMA_VOCAB_PRE_TYPE_DEFAULT = 0,
  60. LLAMA_VOCAB_PRE_TYPE_LLAMA3 = 1,
  61. LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM = 2,
  62. LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER = 3,
  63. LLAMA_VOCAB_PRE_TYPE_FALCON = 4,
  64. LLAMA_VOCAB_PRE_TYPE_MPT = 5,
  65. LLAMA_VOCAB_PRE_TYPE_STARCODER = 6,
  66. LLAMA_VOCAB_PRE_TYPE_GPT2 = 7,
  67. LLAMA_VOCAB_PRE_TYPE_REFACT = 8,
  68. LLAMA_VOCAB_PRE_TYPE_COMMAND_R = 9,
  69. LLAMA_VOCAB_PRE_TYPE_OLMO = 10,
  70. LLAMA_VOCAB_PRE_TYPE_DBRX = 11,
  71. };
  72. // note: these values should be synchronized with ggml_rope
  73. // TODO: maybe move this enum to ggml.h (ggml_rope_type)
  74. enum llama_rope_type {
  75. LLAMA_ROPE_TYPE_NONE = -1,
  76. LLAMA_ROPE_TYPE_NORM = 0,
  77. LLAMA_ROPE_TYPE_NEOX = 2,
  78. LLAMA_ROPE_TYPE_GLM = 4,
  79. };
  80. enum llama_token_type {
  81. LLAMA_TOKEN_TYPE_UNDEFINED = 0,
  82. LLAMA_TOKEN_TYPE_NORMAL = 1,
  83. LLAMA_TOKEN_TYPE_UNKNOWN = 2,
  84. LLAMA_TOKEN_TYPE_CONTROL = 3,
  85. LLAMA_TOKEN_TYPE_USER_DEFINED = 4,
  86. LLAMA_TOKEN_TYPE_UNUSED = 5,
  87. LLAMA_TOKEN_TYPE_BYTE = 6,
  88. };
  89. // model file types
  90. enum llama_ftype {
  91. LLAMA_FTYPE_ALL_F32 = 0,
  92. LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  93. LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  94. LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  95. LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  96. // LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
  97. // LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
  98. LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  99. LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  100. LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  101. LLAMA_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
  102. LLAMA_FTYPE_MOSTLY_Q3_K_S = 11, // except 1d tensors
  103. LLAMA_FTYPE_MOSTLY_Q3_K_M = 12, // except 1d tensors
  104. LLAMA_FTYPE_MOSTLY_Q3_K_L = 13, // except 1d tensors
  105. LLAMA_FTYPE_MOSTLY_Q4_K_S = 14, // except 1d tensors
  106. LLAMA_FTYPE_MOSTLY_Q4_K_M = 15, // except 1d tensors
  107. LLAMA_FTYPE_MOSTLY_Q5_K_S = 16, // except 1d tensors
  108. LLAMA_FTYPE_MOSTLY_Q5_K_M = 17, // except 1d tensors
  109. LLAMA_FTYPE_MOSTLY_Q6_K = 18, // except 1d tensors
  110. LLAMA_FTYPE_MOSTLY_IQ2_XXS = 19, // except 1d tensors
  111. LLAMA_FTYPE_MOSTLY_IQ2_XS = 20, // except 1d tensors
  112. LLAMA_FTYPE_MOSTLY_Q2_K_S = 21, // except 1d tensors
  113. LLAMA_FTYPE_MOSTLY_IQ3_XS = 22, // except 1d tensors
  114. LLAMA_FTYPE_MOSTLY_IQ3_XXS = 23, // except 1d tensors
  115. LLAMA_FTYPE_MOSTLY_IQ1_S = 24, // except 1d tensors
  116. LLAMA_FTYPE_MOSTLY_IQ4_NL = 25, // except 1d tensors
  117. LLAMA_FTYPE_MOSTLY_IQ3_S = 26, // except 1d tensors
  118. LLAMA_FTYPE_MOSTLY_IQ3_M = 27, // except 1d tensors
  119. LLAMA_FTYPE_MOSTLY_IQ2_S = 28, // except 1d tensors
  120. LLAMA_FTYPE_MOSTLY_IQ2_M = 29, // except 1d tensors
  121. LLAMA_FTYPE_MOSTLY_IQ4_XS = 30, // except 1d tensors
  122. LLAMA_FTYPE_MOSTLY_IQ1_M = 31, // except 1d tensors
  123. LLAMA_FTYPE_MOSTLY_BF16 = 32, // except 1d tensors
  124. LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
  125. };
  126. enum llama_rope_scaling_type {
  127. LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED = -1,
  128. LLAMA_ROPE_SCALING_TYPE_NONE = 0,
  129. LLAMA_ROPE_SCALING_TYPE_LINEAR = 1,
  130. LLAMA_ROPE_SCALING_TYPE_YARN = 2,
  131. LLAMA_ROPE_SCALING_TYPE_MAX_VALUE = LLAMA_ROPE_SCALING_TYPE_YARN,
  132. };
  133. enum llama_pooling_type {
  134. LLAMA_POOLING_TYPE_UNSPECIFIED = -1,
  135. LLAMA_POOLING_TYPE_NONE = 0,
  136. LLAMA_POOLING_TYPE_MEAN = 1,
  137. LLAMA_POOLING_TYPE_CLS = 2,
  138. };
  139. enum llama_split_mode {
  140. LLAMA_SPLIT_MODE_NONE = 0, // single GPU
  141. LLAMA_SPLIT_MODE_LAYER = 1, // split layers and KV across GPUs
  142. LLAMA_SPLIT_MODE_ROW = 2, // split rows across GPUs
  143. };
  144. typedef struct llama_token_data {
  145. llama_token id; // token id
  146. float logit; // log-odds of the token
  147. float p; // probability of the token
  148. } llama_token_data;
  149. typedef struct llama_token_data_array {
  150. llama_token_data * data;
  151. size_t size;
  152. bool sorted;
  153. } llama_token_data_array;
  154. typedef bool (*llama_progress_callback)(float progress, void * user_data);
  155. // Input data for llama_decode
  156. // A llama_batch object can contain input about one or many sequences
  157. // The provided arrays (i.e. token, embd, pos, etc.) must have size of n_tokens
  158. //
  159. // - token : the token ids of the input (used when embd is NULL)
  160. // - embd : token embeddings (i.e. float vector of size n_embd) (used when token is NULL)
  161. // - pos : the positions of the respective token in the sequence
  162. // - seq_id : the sequence to which the respective token belongs
  163. // - logits : if zero, the logits (and/or the embeddings) for the respective token will not be output
  164. //
  165. typedef struct llama_batch {
  166. int32_t n_tokens;
  167. llama_token * token;
  168. float * embd;
  169. llama_pos * pos;
  170. int32_t * n_seq_id;
  171. llama_seq_id ** seq_id;
  172. int8_t * logits; // TODO: rename this to "output"
  173. // NOTE: helpers for smooth API transition - can be deprecated in the future
  174. // for future-proof code, use the above fields instead and ignore everything below
  175. //
  176. // pos[i] = all_pos_0 + i*all_pos_1
  177. //
  178. llama_pos all_pos_0; // used if pos == NULL
  179. llama_pos all_pos_1; // used if pos == NULL
  180. llama_seq_id all_seq_id; // used if seq_id == NULL
  181. } llama_batch;
  182. enum llama_model_kv_override_type {
  183. LLAMA_KV_OVERRIDE_TYPE_INT,
  184. LLAMA_KV_OVERRIDE_TYPE_FLOAT,
  185. LLAMA_KV_OVERRIDE_TYPE_BOOL,
  186. LLAMA_KV_OVERRIDE_TYPE_STR,
  187. };
  188. struct llama_model_kv_override {
  189. enum llama_model_kv_override_type tag;
  190. char key[128];
  191. union {
  192. int64_t val_i64;
  193. double val_f64;
  194. bool val_bool;
  195. char val_str[128];
  196. };
  197. };
  198. struct llama_model_params {
  199. int32_t n_gpu_layers; // number of layers to store in VRAM
  200. enum llama_split_mode split_mode; // how to split the model across multiple GPUs
  201. // main_gpu interpretation depends on split_mode:
  202. // LLAMA_SPLIT_NONE: the GPU that is used for the entire model
  203. // LLAMA_SPLIT_ROW: the GPU that is used for small tensors and intermediate results
  204. // LLAMA_SPLIT_LAYER: ignored
  205. int32_t main_gpu;
  206. // proportion of the model (layers or rows) to offload to each GPU, size: llama_max_devices()
  207. const float * tensor_split;
  208. // Called with a progress value between 0.0 and 1.0. Pass NULL to disable.
  209. // If the provided progress_callback returns true, model loading continues.
  210. // If it returns false, model loading is immediately aborted.
  211. llama_progress_callback progress_callback;
  212. // context pointer passed to the progress callback
  213. void * progress_callback_user_data;
  214. // override key-value pairs of the model meta data
  215. const struct llama_model_kv_override * kv_overrides;
  216. // Keep the booleans together to avoid misalignment during copy-by-value.
  217. bool vocab_only; // only load the vocabulary, no weights
  218. bool use_mmap; // use mmap if possible
  219. bool use_mlock; // force system to keep model in RAM
  220. bool check_tensors; // validate model tensor data
  221. };
  222. struct llama_context_params {
  223. uint32_t seed; // RNG seed, -1 for random
  224. uint32_t n_ctx; // text context, 0 = from model
  225. uint32_t n_batch; // logical maximum batch size that can be submitted to llama_decode
  226. uint32_t n_ubatch; // physical maximum batch size
  227. uint32_t n_seq_max; // max number of sequences (i.e. distinct states for recurrent models)
  228. uint32_t n_threads; // number of threads to use for generation
  229. uint32_t n_threads_batch; // number of threads to use for batch processing
  230. enum llama_rope_scaling_type rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type`
  231. enum llama_pooling_type pooling_type; // whether to pool (sum) embedding results by sequence id
  232. // (ignored if no pooling layer)
  233. // ref: https://github.com/ggerganov/llama.cpp/pull/2054
  234. float rope_freq_base; // RoPE base frequency, 0 = from model
  235. float rope_freq_scale; // RoPE frequency scaling factor, 0 = from model
  236. float yarn_ext_factor; // YaRN extrapolation mix factor, negative = from model
  237. float yarn_attn_factor; // YaRN magnitude scaling factor
  238. float yarn_beta_fast; // YaRN low correction dim
  239. float yarn_beta_slow; // YaRN high correction dim
  240. uint32_t yarn_orig_ctx; // YaRN original context size
  241. float defrag_thold; // defragment the KV cache if holes/size > thold, < 0 disabled (default)
  242. ggml_backend_sched_eval_callback cb_eval;
  243. void * cb_eval_user_data;
  244. enum ggml_type type_k; // data type for K cache
  245. enum ggml_type type_v; // data type for V cache
  246. // Keep the booleans together to avoid misalignment during copy-by-value.
  247. bool logits_all; // the llama_decode() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead)
  248. bool embeddings; // if true, extract embeddings (together with logits)
  249. bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
  250. bool flash_attn; // whether to use flash attention
  251. // Abort callback
  252. // if it returns true, execution of llama_decode() will be aborted
  253. // currently works only with CPU execution
  254. ggml_abort_callback abort_callback;
  255. void * abort_callback_data;
  256. };
  257. // model quantization parameters
  258. typedef struct llama_model_quantize_params {
  259. int32_t nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
  260. enum llama_ftype ftype; // quantize to this llama_ftype
  261. enum ggml_type output_tensor_type; // output tensor type
  262. enum ggml_type token_embedding_type; // itoken embeddings tensor type
  263. bool allow_requantize; // allow quantizing non-f32/f16 tensors
  264. bool quantize_output_tensor; // quantize output.weight
  265. bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
  266. bool pure; // quantize all tensors to the default type
  267. bool keep_split; // quantize to the same number of shards
  268. void * imatrix; // pointer to importance matrix data
  269. void * kv_overrides; // pointer to vector containing overrides
  270. } llama_model_quantize_params;
  271. // grammar types
  272. struct llama_grammar;
  273. // grammar element type
  274. enum llama_gretype {
  275. // end of rule definition
  276. LLAMA_GRETYPE_END = 0,
  277. // start of alternate definition for rule
  278. LLAMA_GRETYPE_ALT = 1,
  279. // non-terminal element: reference to rule
  280. LLAMA_GRETYPE_RULE_REF = 2,
  281. // terminal element: character (code point)
  282. LLAMA_GRETYPE_CHAR = 3,
  283. // inverse char(s) ([^a], [^a-b] [^abc])
  284. LLAMA_GRETYPE_CHAR_NOT = 4,
  285. // modifies a preceding LLAMA_GRETYPE_CHAR or LLAMA_GRETYPE_CHAR_ALT to
  286. // be an inclusive range ([a-z])
  287. LLAMA_GRETYPE_CHAR_RNG_UPPER = 5,
  288. // modifies a preceding LLAMA_GRETYPE_CHAR or
  289. // LLAMA_GRETYPE_CHAR_RNG_UPPER to add an alternate char to match ([ab], [a-zA])
  290. LLAMA_GRETYPE_CHAR_ALT = 6,
  291. };
  292. typedef struct llama_grammar_element {
  293. enum llama_gretype type;
  294. uint32_t value; // Unicode code point or rule ID
  295. } llama_grammar_element;
  296. // performance timing information
  297. struct llama_timings {
  298. double t_start_ms;
  299. double t_end_ms;
  300. double t_load_ms;
  301. double t_sample_ms;
  302. double t_p_eval_ms;
  303. double t_eval_ms;
  304. int32_t n_sample;
  305. int32_t n_p_eval;
  306. int32_t n_eval;
  307. };
  308. // used in chat template
  309. typedef struct llama_chat_message {
  310. const char * role;
  311. const char * content;
  312. } llama_chat_message;
  313. // Helpers for getting default parameters
  314. LLAMA_API struct llama_model_params llama_model_default_params(void);
  315. LLAMA_API struct llama_context_params llama_context_default_params(void);
  316. LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params(void);
  317. // Initialize the llama + ggml backend
  318. // If numa is true, use NUMA optimizations
  319. // Call once at the start of the program
  320. LLAMA_API void llama_backend_init(void);
  321. //optional:
  322. LLAMA_API void llama_numa_init(enum ggml_numa_strategy numa);
  323. // Call once at the end of the program - currently only used for MPI
  324. LLAMA_API void llama_backend_free(void);
  325. LLAMA_API struct llama_model * llama_load_model_from_file(
  326. const char * path_model,
  327. struct llama_model_params params);
  328. LLAMA_API void llama_free_model(struct llama_model * model);
  329. LLAMA_API struct llama_context * llama_new_context_with_model(
  330. struct llama_model * model,
  331. struct llama_context_params params);
  332. // Frees all allocated memory
  333. LLAMA_API void llama_free(struct llama_context * ctx);
  334. LLAMA_API int64_t llama_time_us(void);
  335. LLAMA_API size_t llama_max_devices(void);
  336. LLAMA_API bool llama_supports_mmap (void);
  337. LLAMA_API bool llama_supports_mlock (void);
  338. LLAMA_API bool llama_supports_gpu_offload(void);
  339. LLAMA_API const struct llama_model * llama_get_model(const struct llama_context * ctx);
  340. LLAMA_API uint32_t llama_n_ctx (const struct llama_context * ctx);
  341. LLAMA_API uint32_t llama_n_batch (const struct llama_context * ctx);
  342. LLAMA_API uint32_t llama_n_ubatch (const struct llama_context * ctx);
  343. LLAMA_API uint32_t llama_n_seq_max (const struct llama_context * ctx);
  344. LLAMA_API enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx);
  345. LLAMA_API enum llama_vocab_type llama_vocab_type (const struct llama_model * model);
  346. LLAMA_API enum llama_rope_type llama_rope_type (const struct llama_model * model);
  347. LLAMA_API int32_t llama_n_vocab (const struct llama_model * model);
  348. LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model);
  349. LLAMA_API int32_t llama_n_embd (const struct llama_model * model);
  350. LLAMA_API int32_t llama_n_layer (const struct llama_model * model);
  351. // Get the model's RoPE frequency scaling factor
  352. LLAMA_API float llama_rope_freq_scale_train(const struct llama_model * model);
  353. // Functions to access the model's GGUF metadata scalar values
  354. // - The functions return the length of the string on success, or -1 on failure
  355. // - The output string is always null-terminated and cleared on failure
  356. // - GGUF array values are not supported by these functions
  357. // Get metadata value as a string by key name
  358. LLAMA_API int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size);
  359. // Get the number of metadata key/value pairs
  360. LLAMA_API int32_t llama_model_meta_count(const struct llama_model * model);
  361. // Get metadata key name by index
  362. LLAMA_API int32_t llama_model_meta_key_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
  363. // Get metadata value as a string by index
  364. LLAMA_API int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
  365. // Get a string describing the model type
  366. LLAMA_API int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size);
  367. // Returns the total size of all the tensors in the model in bytes
  368. LLAMA_API uint64_t llama_model_size(const struct llama_model * model);
  369. // Returns the total number of parameters in the model
  370. LLAMA_API uint64_t llama_model_n_params(const struct llama_model * model);
  371. // Get a llama model tensor
  372. LLAMA_API struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name);
  373. // Returns 0 on success
  374. LLAMA_API uint32_t llama_model_quantize(
  375. const char * fname_inp,
  376. const char * fname_out,
  377. const llama_model_quantize_params * params);
  378. // Apply a LoRA adapter to a loaded model
  379. // path_base_model is the path to a higher quality model to use as a base for
  380. // the layers modified by the adapter. Can be NULL to use the current loaded model.
  381. // The model needs to be reloaded before applying a new adapter, otherwise the adapter
  382. // will be applied on top of the previous one
  383. // Returns 0 on success
  384. LLAMA_API int32_t llama_model_apply_lora_from_file(
  385. const struct llama_model * model,
  386. const char * path_lora,
  387. float scale,
  388. const char * path_base_model,
  389. int32_t n_threads);
  390. // Apply a loaded control vector to a llama_context, or if data is NULL, clear
  391. // the currently loaded vector.
  392. // n_embd should be the size of a single layer's control, and data should point
  393. // to an n_embd x n_layers buffer starting from layer 1.
  394. // il_start and il_end are the layer range the vector should apply to (both inclusive)
  395. // See llama_control_vector_load in common to load a control vector.
  396. LLAMA_API int32_t llama_control_vector_apply(
  397. struct llama_context * lctx,
  398. const float * data,
  399. size_t len,
  400. int32_t n_embd,
  401. int32_t il_start,
  402. int32_t il_end);
  403. //
  404. // KV cache
  405. //
  406. // Information associated with an individual cell in the KV cache view.
  407. struct llama_kv_cache_view_cell {
  408. // The position for this cell. Takes KV cache shifts into account.
  409. // May be negative if the cell is not populated.
  410. llama_pos pos;
  411. };
  412. // An updateable view of the KV cache.
  413. struct llama_kv_cache_view {
  414. // Number of KV cache cells. This will be the same as the context size.
  415. int32_t n_cells;
  416. // Maximum number of sequences that can exist in a cell. It's not an error
  417. // if there are more sequences in a cell than this value, however they will
  418. // not be visible in the view cells_sequences.
  419. int32_t n_seq_max;
  420. // Number of tokens in the cache. For example, if there are two populated
  421. // cells, the first with 1 sequence id in it and the second with 2 sequence
  422. // ids then you'll have 3 tokens.
  423. int32_t token_count;
  424. // Number of populated cache cells.
  425. int32_t used_cells;
  426. // Maximum contiguous empty slots in the cache.
  427. int32_t max_contiguous;
  428. // Index to the start of the max_contiguous slot range. Can be negative
  429. // when cache is full.
  430. int32_t max_contiguous_idx;
  431. // Information for an individual cell.
  432. struct llama_kv_cache_view_cell * cells;
  433. // The sequences for each cell. There will be n_seq_max items per cell.
  434. llama_seq_id * cells_sequences;
  435. };
  436. // Create an empty KV cache view. (use only for debugging purposes)
  437. LLAMA_API struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max);
  438. // Free a KV cache view. (use only for debugging purposes)
  439. LLAMA_API void llama_kv_cache_view_free(struct llama_kv_cache_view * view);
  440. // Update the KV cache view structure with the current state of the KV cache. (use only for debugging purposes)
  441. LLAMA_API void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view);
  442. // Returns the number of tokens in the KV cache (slow, use only for debug)
  443. // If a KV cell has multiple sequences assigned to it, it will be counted multiple times
  444. LLAMA_API int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx);
  445. // Returns the number of used KV cells (i.e. have at least one sequence assigned to them)
  446. LLAMA_API int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx);
  447. // Clear the KV cache - both cell info is erased and KV data is zeroed
  448. LLAMA_API void llama_kv_cache_clear(
  449. struct llama_context * ctx);
  450. // Removes all tokens that belong to the specified sequence and have positions in [p0, p1)
  451. // Returns false if a partial sequence cannot be removed. Removing a whole sequence never fails
  452. // seq_id < 0 : match any sequence
  453. // p0 < 0 : [0, p1]
  454. // p1 < 0 : [p0, inf)
  455. LLAMA_API bool llama_kv_cache_seq_rm(
  456. struct llama_context * ctx,
  457. llama_seq_id seq_id,
  458. llama_pos p0,
  459. llama_pos p1);
  460. // Copy all tokens that belong to the specified sequence to another sequence
  461. // Note that this does not allocate extra KV cache memory - it simply assigns the tokens to the new sequence
  462. // p0 < 0 : [0, p1]
  463. // p1 < 0 : [p0, inf)
  464. LLAMA_API void llama_kv_cache_seq_cp(
  465. struct llama_context * ctx,
  466. llama_seq_id seq_id_src,
  467. llama_seq_id seq_id_dst,
  468. llama_pos p0,
  469. llama_pos p1);
  470. // Removes all tokens that do not belong to the specified sequence
  471. LLAMA_API void llama_kv_cache_seq_keep(
  472. struct llama_context * ctx,
  473. llama_seq_id seq_id);
  474. // Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1)
  475. // If the KV cache is RoPEd, the KV data is updated accordingly:
  476. // - lazily on next llama_decode()
  477. // - explicitly with llama_kv_cache_update()
  478. // p0 < 0 : [0, p1]
  479. // p1 < 0 : [p0, inf)
  480. LLAMA_API void llama_kv_cache_seq_add(
  481. struct llama_context * ctx,
  482. llama_seq_id seq_id,
  483. llama_pos p0,
  484. llama_pos p1,
  485. llama_pos delta);
  486. // Integer division of the positions by factor of `d > 1`
  487. // If the KV cache is RoPEd, the KV data is updated accordingly:
  488. // - lazily on next llama_decode()
  489. // - explicitly with llama_kv_cache_update()
  490. // p0 < 0 : [0, p1]
  491. // p1 < 0 : [p0, inf)
  492. LLAMA_API void llama_kv_cache_seq_div(
  493. struct llama_context * ctx,
  494. llama_seq_id seq_id,
  495. llama_pos p0,
  496. llama_pos p1,
  497. int d);
  498. // Returns the largest position present in the KV cache for the specified sequence
  499. LLAMA_API llama_pos llama_kv_cache_seq_pos_max(
  500. struct llama_context * ctx,
  501. llama_seq_id seq_id);
  502. // Defragment the KV cache
  503. // This will be applied:
  504. // - lazily on next llama_decode()
  505. // - explicitly with llama_kv_cache_update()
  506. LLAMA_API void llama_kv_cache_defrag(struct llama_context * ctx);
  507. // Apply the KV cache updates (such as K-shifts, defragmentation, etc.)
  508. LLAMA_API void llama_kv_cache_update(struct llama_context * ctx);
  509. //
  510. // State / sessions
  511. //
  512. // Returns the maximum size in bytes of the state (rng, logits, embedding
  513. // and kv_cache) - will often be smaller after compacting tokens
  514. LLAMA_API size_t llama_state_get_size(const struct llama_context * ctx);
  515. LLAMA_API DEPRECATED(size_t llama_get_state_size(const struct llama_context * ctx),
  516. "use llama_state_get_size instead");
  517. // Copies the state to the specified destination address.
  518. // Destination needs to have allocated enough memory.
  519. // Returns the number of bytes copied
  520. LLAMA_API size_t llama_state_get_data(
  521. struct llama_context * ctx,
  522. uint8_t * dst);
  523. LLAMA_API DEPRECATED(size_t llama_copy_state_data(
  524. struct llama_context * ctx,
  525. uint8_t * dst),
  526. "use llama_state_get_data instead");
  527. // Set the state reading from the specified address
  528. // Returns the number of bytes read
  529. LLAMA_API size_t llama_state_set_data(
  530. struct llama_context * ctx,
  531. const uint8_t * src);
  532. LLAMA_API DEPRECATED(size_t llama_set_state_data(
  533. struct llama_context * ctx,
  534. const uint8_t * src),
  535. "use llama_state_set_data instead");
  536. // Save/load session file
  537. LLAMA_API bool llama_state_load_file(
  538. struct llama_context * ctx,
  539. const char * path_session,
  540. llama_token * tokens_out,
  541. size_t n_token_capacity,
  542. size_t * n_token_count_out);
  543. LLAMA_API DEPRECATED(bool llama_load_session_file(
  544. struct llama_context * ctx,
  545. const char * path_session,
  546. llama_token * tokens_out,
  547. size_t n_token_capacity,
  548. size_t * n_token_count_out),
  549. "use llama_state_load_file instead");
  550. LLAMA_API bool llama_state_save_file(
  551. struct llama_context * ctx,
  552. const char * path_session,
  553. const llama_token * tokens,
  554. size_t n_token_count);
  555. LLAMA_API DEPRECATED(bool llama_save_session_file(
  556. struct llama_context * ctx,
  557. const char * path_session,
  558. const llama_token * tokens,
  559. size_t n_token_count),
  560. "use llama_state_save_file instead");
  561. // Get the exact size needed to copy the KV cache of a single sequence
  562. LLAMA_API size_t llama_state_seq_get_size(
  563. struct llama_context * ctx,
  564. llama_seq_id seq_id);
  565. // Copy the KV cache of a single sequence into the specified buffer
  566. LLAMA_API size_t llama_state_seq_get_data(
  567. struct llama_context * ctx,
  568. uint8_t * dst,
  569. llama_seq_id seq_id);
  570. // Copy the sequence data (originally copied with `llama_state_seq_get_data`) into the specified sequence
  571. // Returns:
  572. // - Positive: Ok
  573. // - Zero: Failed to load
  574. LLAMA_API size_t llama_state_seq_set_data(
  575. struct llama_context * ctx,
  576. const uint8_t * src,
  577. llama_seq_id dest_seq_id);
  578. LLAMA_API size_t llama_state_seq_save_file(
  579. struct llama_context * ctx,
  580. const char * filepath,
  581. llama_seq_id seq_id,
  582. const llama_token * tokens,
  583. size_t n_token_count);
  584. LLAMA_API size_t llama_state_seq_load_file(
  585. struct llama_context * ctx,
  586. const char * filepath,
  587. llama_seq_id dest_seq_id,
  588. llama_token * tokens_out,
  589. size_t n_token_capacity,
  590. size_t * n_token_count_out);
  591. //
  592. // Decoding
  593. //
  594. // Return batch for single sequence of tokens starting at pos_0
  595. //
  596. // NOTE: this is a helper function to facilitate transition to the new batch API - avoid using it
  597. //
  598. LLAMA_API struct llama_batch llama_batch_get_one(
  599. llama_token * tokens,
  600. int32_t n_tokens,
  601. llama_pos pos_0,
  602. llama_seq_id seq_id);
  603. // Allocates a batch of tokens on the heap that can hold a maximum of n_tokens
  604. // Each token can be assigned up to n_seq_max sequence ids
  605. // The batch has to be freed with llama_batch_free()
  606. // If embd != 0, llama_batch.embd will be allocated with size of n_tokens * embd * sizeof(float)
  607. // Otherwise, llama_batch.token will be allocated to store n_tokens llama_token
  608. // The rest of the llama_batch members are allocated with size n_tokens
  609. // All members are left uninitialized
  610. LLAMA_API struct llama_batch llama_batch_init(
  611. int32_t n_tokens,
  612. int32_t embd,
  613. int32_t n_seq_max);
  614. // Frees a batch of tokens allocated with llama_batch_init()
  615. LLAMA_API void llama_batch_free(struct llama_batch batch);
  616. // Positive return values does not mean a fatal error, but rather a warning.
  617. // 0 - success
  618. // 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
  619. // < 0 - error
  620. LLAMA_API int32_t llama_decode(
  621. struct llama_context * ctx,
  622. struct llama_batch batch);
  623. // Set the number of threads used for decoding
  624. // n_threads is the number of threads used for generation (single token)
  625. // n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens)
  626. LLAMA_API void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch);
  627. // Set whether to use causal attention or not
  628. // If set to true, the model will only attend to the past tokens
  629. LLAMA_API void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn);
  630. // Set abort callback
  631. LLAMA_API void llama_set_abort_callback(struct llama_context * ctx, ggml_abort_callback abort_callback, void * abort_callback_data);
  632. // Wait until all computations are finished
  633. // This is automatically done when using one of the functions below to obtain the computation results
  634. // and is not necessary to call it explicitly in most cases
  635. LLAMA_API void llama_synchronize(struct llama_context * ctx);
  636. // Token logits obtained from the last call to llama_decode()
  637. // The logits for which llama_batch.logits[i] != 0 are stored contiguously
  638. // in the order they have appeared in the batch.
  639. // Rows: number of tokens for which llama_batch.logits[i] != 0
  640. // Cols: n_vocab
  641. LLAMA_API float * llama_get_logits(struct llama_context * ctx);
  642. // Logits for the ith token. For positive indices, Equivalent to:
  643. // llama_get_logits(ctx) + ctx->output_ids[i]*n_vocab
  644. // Negative indicies can be used to access logits in reverse order, -1 is the last logit.
  645. // returns NULL for invalid ids.
  646. LLAMA_API float * llama_get_logits_ith(struct llama_context * ctx, int32_t i);
  647. // Get all output token embeddings.
  648. // when pooling_type == LLAMA_POOLING_TYPE_NONE or when using a generative model,
  649. // the embeddings for which llama_batch.logits[i] != 0 are stored contiguously
  650. // in the order they have appeared in the batch.
  651. // shape: [n_outputs*n_embd]
  652. // Otherwise, returns NULL.
  653. LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
  654. // Get the embeddings for the ith token. For positive indices, Equivalent to:
  655. // llama_get_embeddings(ctx) + ctx->output_ids[i]*n_embd
  656. // Negative indicies can be used to access embeddings in reverse order, -1 is the last embedding.
  657. // shape: [n_embd] (1-dimensional)
  658. // returns NULL for invalid ids.
  659. LLAMA_API float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i);
  660. // Get the embeddings for a sequence id
  661. // Returns NULL if pooling_type is LLAMA_POOLING_TYPE_NONE
  662. // shape: [n_embd] (1-dimensional)
  663. LLAMA_API float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id);
  664. //
  665. // Vocab
  666. //
  667. LLAMA_API const char * llama_token_get_text(const struct llama_model * model, llama_token token);
  668. LLAMA_API float llama_token_get_score(const struct llama_model * model, llama_token token);
  669. LLAMA_API enum llama_token_type llama_token_get_type(const struct llama_model * model, llama_token token);
  670. // Check if the token is supposed to end generation (end-of-generation, eg. EOS, EOT, etc.)
  671. LLAMA_API bool llama_token_is_eog(const struct llama_model * model, llama_token token);
  672. // Special tokens
  673. LLAMA_API llama_token llama_token_bos(const struct llama_model * model); // beginning-of-sentence
  674. LLAMA_API llama_token llama_token_eos(const struct llama_model * model); // end-of-sentence
  675. LLAMA_API llama_token llama_token_cls(const struct llama_model * model); // classification
  676. LLAMA_API llama_token llama_token_sep(const struct llama_model * model); // sentence separator
  677. LLAMA_API llama_token llama_token_nl (const struct llama_model * model); // next-line
  678. // Returns -1 if unknown, 1 for true or 0 for false.
  679. LLAMA_API int32_t llama_add_bos_token(const struct llama_model * model);
  680. // Returns -1 if unknown, 1 for true or 0 for false.
  681. LLAMA_API int32_t llama_add_eos_token(const struct llama_model * model);
  682. // Codellama infill tokens
  683. LLAMA_API llama_token llama_token_prefix(const struct llama_model * model); // Beginning of infill prefix
  684. LLAMA_API llama_token llama_token_middle(const struct llama_model * model); // Beginning of infill middle
  685. LLAMA_API llama_token llama_token_suffix(const struct llama_model * model); // Beginning of infill suffix
  686. LLAMA_API llama_token llama_token_eot (const struct llama_model * model); // End of infill middle
  687. //
  688. // Tokenization
  689. //
  690. /// @details Convert the provided text into tokens.
  691. /// @param tokens The tokens pointer must be large enough to hold the resulting tokens.
  692. /// @return Returns the number of tokens on success, no more than n_tokens_max
  693. /// @return Returns a negative number on failure - the number of tokens that would have been returned
  694. /// @param parse_special Allow tokenizing special and/or control tokens which otherwise are not exposed and treated
  695. /// as plaintext. Does not insert a leading space.
  696. LLAMA_API int32_t llama_tokenize(
  697. const struct llama_model * model,
  698. const char * text,
  699. int32_t text_len,
  700. llama_token * tokens,
  701. int32_t n_tokens_max,
  702. bool add_special,
  703. bool parse_special);
  704. // Token Id -> Piece.
  705. // Uses the vocabulary in the provided context.
  706. // Does not write null terminator to the buffer.
  707. // User code is responsible to remove the leading whitespace of the first non-BOS token when decoding multiple tokens.
  708. // @param special If true, special tokens are rendered in the output.
  709. LLAMA_API int32_t llama_token_to_piece(
  710. const struct llama_model * model,
  711. llama_token token,
  712. char * buf,
  713. int32_t length,
  714. bool special);
  715. /// Apply chat template. Inspired by hf apply_chat_template() on python.
  716. /// Both "model" and "custom_template" are optional, but at least one is required. "custom_template" has higher precedence than "model"
  717. /// NOTE: This function does not use a jinja parser. It only support a pre-defined list of template. See more: https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template
  718. /// @param tmpl A Jinja template to use for this chat. If this is nullptr, the model’s default chat template will be used instead.
  719. /// @param chat Pointer to a list of multiple llama_chat_message
  720. /// @param n_msg Number of llama_chat_message in this chat
  721. /// @param add_ass Whether to end the prompt with the token(s) that indicate the start of an assistant message.
  722. /// @param buf A buffer to hold the output formatted prompt. The recommended alloc size is 2 * (total number of characters of all messages)
  723. /// @param length The size of the allocated buffer
  724. /// @return The total number of bytes of the formatted prompt. If is it larger than the size of buffer, you may need to re-alloc it and then re-apply the template.
  725. LLAMA_API int32_t llama_chat_apply_template(
  726. const struct llama_model * model,
  727. const char * tmpl,
  728. const struct llama_chat_message * chat,
  729. size_t n_msg,
  730. bool add_ass,
  731. char * buf,
  732. int32_t length);
  733. //
  734. // Grammar
  735. //
  736. LLAMA_API struct llama_grammar * llama_grammar_init(
  737. const llama_grammar_element ** rules,
  738. size_t n_rules,
  739. size_t start_rule_index);
  740. LLAMA_API void llama_grammar_free(struct llama_grammar * grammar);
  741. LLAMA_API struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar);
  742. //
  743. // Sampling functions
  744. //
  745. // Sets the current rng seed.
  746. LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed);
  747. /// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
  748. /// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
  749. LLAMA_API void llama_sample_repetition_penalties(
  750. struct llama_context * ctx,
  751. llama_token_data_array * candidates,
  752. const llama_token * last_tokens,
  753. size_t penalty_last_n,
  754. float penalty_repeat,
  755. float penalty_freq,
  756. float penalty_present);
  757. /// @details Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806
  758. /// @param logits Logits extracted from the original generation context.
  759. /// @param logits_guidance Logits extracted from a separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context.
  760. /// @param scale Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance.
  761. LLAMA_API void llama_sample_apply_guidance(
  762. struct llama_context * ctx,
  763. float * logits,
  764. float * logits_guidance,
  765. float scale);
  766. /// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
  767. LLAMA_API void llama_sample_softmax(
  768. struct llama_context * ctx,
  769. llama_token_data_array * candidates);
  770. /// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  771. LLAMA_API void llama_sample_top_k(
  772. struct llama_context * ctx,
  773. llama_token_data_array * candidates,
  774. int32_t k,
  775. size_t min_keep);
  776. /// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  777. LLAMA_API void llama_sample_top_p(
  778. struct llama_context * ctx,
  779. llama_token_data_array * candidates,
  780. float p,
  781. size_t min_keep);
  782. /// @details Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841
  783. LLAMA_API void llama_sample_min_p(
  784. struct llama_context * ctx,
  785. llama_token_data_array * candidates,
  786. float p,
  787. size_t min_keep);
  788. /// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
  789. LLAMA_API void llama_sample_tail_free(
  790. struct llama_context * ctx,
  791. llama_token_data_array * candidates,
  792. float z,
  793. size_t min_keep);
  794. /// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
  795. LLAMA_API void llama_sample_typical(
  796. struct llama_context * ctx,
  797. llama_token_data_array * candidates,
  798. float p,
  799. size_t min_keep);
  800. /// @details Dynamic temperature implementation described in the paper https://arxiv.org/abs/2309.02772.
  801. LLAMA_API void llama_sample_entropy(
  802. struct llama_context * ctx,
  803. llama_token_data_array * candidates_p,
  804. float min_temp,
  805. float max_temp,
  806. float exponent_val);
  807. LLAMA_API void llama_sample_temp(
  808. struct llama_context * ctx,
  809. llama_token_data_array * candidates,
  810. float temp);
  811. /// @details Apply constraints from grammar
  812. LLAMA_API void llama_sample_grammar(
  813. struct llama_context * ctx,
  814. llama_token_data_array * candidates,
  815. const struct llama_grammar * grammar);
  816. /// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  817. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  818. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  819. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  820. /// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
  821. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  822. LLAMA_API llama_token llama_sample_token_mirostat(
  823. struct llama_context * ctx,
  824. llama_token_data_array * candidates,
  825. float tau,
  826. float eta,
  827. int32_t m,
  828. float * mu);
  829. /// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  830. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  831. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  832. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  833. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  834. LLAMA_API llama_token llama_sample_token_mirostat_v2(
  835. struct llama_context * ctx,
  836. llama_token_data_array * candidates,
  837. float tau,
  838. float eta,
  839. float * mu);
  840. /// @details Selects the token with the highest probability.
  841. /// Does not compute the token probabilities. Use llama_sample_softmax() instead.
  842. LLAMA_API llama_token llama_sample_token_greedy(
  843. struct llama_context * ctx,
  844. llama_token_data_array * candidates);
  845. /// @details Randomly selects a token from the candidates based on their probabilities using the RNG of ctx.
  846. LLAMA_API llama_token llama_sample_token(
  847. struct llama_context * ctx,
  848. llama_token_data_array * candidates);
  849. /// @details Accepts the sampled token into the grammar
  850. LLAMA_API void llama_grammar_accept_token(
  851. struct llama_context * ctx,
  852. struct llama_grammar * grammar,
  853. llama_token token);
  854. //
  855. // Beam search
  856. //
  857. struct llama_beam_view {
  858. const llama_token * tokens;
  859. size_t n_tokens;
  860. float p; // Cumulative beam probability (renormalized relative to all beams)
  861. bool eob; // Callback should set this to true when a beam is at end-of-beam.
  862. };
  863. // Passed to beam_search_callback function.
  864. // Whenever 0 < common_prefix_length, this number of tokens should be copied from any of the beams
  865. // (e.g. beams[0]) as they will be removed (shifted) from all beams in all subsequent callbacks.
  866. // These pointers are valid only during the synchronous callback, so should not be saved.
  867. struct llama_beams_state {
  868. struct llama_beam_view * beam_views;
  869. size_t n_beams; // Number of elements in beam_views[].
  870. size_t common_prefix_length; // Current max length of prefix tokens shared by all beams.
  871. bool last_call; // True iff this is the last callback invocation.
  872. };
  873. // Type of pointer to the beam_search_callback function.
  874. // void* callback_data is any custom data passed to llama_beam_search, that is subsequently
  875. // passed back to beam_search_callback. This avoids having to use global variables in the callback.
  876. typedef void (*llama_beam_search_callback_fn_t)(void * callback_data, struct llama_beams_state);
  877. /// @details Deterministically returns entire sentence constructed by a beam search.
  878. /// @param ctx Pointer to the llama_context.
  879. /// @param callback Invoked for each iteration of the beam_search loop, passing in beams_state.
  880. /// @param callback_data A pointer that is simply passed back to callback.
  881. /// @param n_beams Number of beams to use.
  882. /// @param n_past Number of tokens already evaluated.
  883. /// @param n_predict Maximum number of tokens to predict. EOS may occur earlier.
  884. LLAMA_API void llama_beam_search(
  885. struct llama_context * ctx,
  886. llama_beam_search_callback_fn_t callback,
  887. void * callback_data,
  888. size_t n_beams,
  889. int32_t n_past,
  890. int32_t n_predict);
  891. /// @details Build a split GGUF final path for this chunk.
  892. /// llama_split_path(split_path, sizeof(split_path), "/models/ggml-model-q4_0", 2, 4) => split_path = "/models/ggml-model-q4_0-00002-of-00004.gguf"
  893. // Returns the split_path length.
  894. LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count);
  895. /// @details Extract the path prefix from the split_path if and only if the split_no and split_count match.
  896. /// llama_split_prefix(split_prefix, 64, "/models/ggml-model-q4_0-00002-of-00004.gguf", 2, 4) => split_prefix = "/models/ggml-model-q4_0"
  897. // Returns the split_prefix length.
  898. LLAMA_API int llama_split_prefix(char * split_prefix, size_t maxlen, const char * split_path, int split_no, int split_count);
  899. // Performance information
  900. LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx);
  901. LLAMA_API void llama_print_timings(struct llama_context * ctx);
  902. LLAMA_API void llama_reset_timings(struct llama_context * ctx);
  903. // Print system information
  904. LLAMA_API const char * llama_print_system_info(void);
  905. // Set callback for all future logging events.
  906. // If this is not called, or NULL is supplied, everything is output on stderr.
  907. LLAMA_API void llama_log_set(ggml_log_callback log_callback, void * user_data);
  908. LLAMA_API void llama_dump_timing_info_yaml(FILE * stream, const struct llama_context * ctx);
  909. #ifdef __cplusplus
  910. }
  911. #endif
  912. // Internal API to be implemented by llama.cpp and used by tests/benchmarks only
  913. #ifdef LLAMA_API_INTERNAL
  914. #include <random>
  915. #include <string>
  916. #include <vector>
  917. struct ggml_tensor;
  918. struct llama_partial_utf8 {
  919. uint32_t value; // bit value so far (unshifted)
  920. int n_remain; // num bytes remaining; -1 indicates invalid sequence
  921. };
  922. struct llama_grammar {
  923. const std::vector<std::vector<llama_grammar_element>> rules;
  924. std::vector<std::vector<const llama_grammar_element *>> stacks;
  925. // buffer for partially generated UTF-8 sequence from accepted tokens
  926. llama_partial_utf8 partial_utf8;
  927. };
  928. struct llama_grammar_candidate {
  929. size_t index;
  930. const uint32_t * code_points;
  931. llama_partial_utf8 partial_utf8;
  932. };
  933. const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
  934. struct llama_context * ctx
  935. );
  936. void llama_grammar_accept(
  937. const std::vector<std::vector<llama_grammar_element>> & rules,
  938. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  939. const uint32_t chr,
  940. std::vector<std::vector<const llama_grammar_element *>> & new_stacks);
  941. std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
  942. const std::string & src,
  943. llama_partial_utf8 partial_start);
  944. // Randomly selects a token from the candidates based on their probabilities using given std::mt19937.
  945. // This is a temporary workaround in order to fix race conditions when sampling with multiple sequences.
  946. llama_token llama_sample_token_with_rng(struct llama_context * ctx, llama_token_data_array * candidates, std::mt19937 & rng);
  947. #endif // LLAMA_API_INTERNAL
  948. #endif // LLAMA_H