convert_hf_to_gguf.py 487 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. from transformers import AutoConfig
  18. import math
  19. import numpy as np
  20. import torch
  21. if TYPE_CHECKING:
  22. from torch import Tensor
  23. if 'NO_LOCAL_GGUF' not in os.environ:
  24. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  25. import gguf
  26. from gguf.vocab import MistralTokenizerType, MistralVocab
  27. try:
  28. from mistral_common.tokens.tokenizers.base import TokenizerVersion # pyright: ignore[reportMissingImports]
  29. from mistral_common.tokens.tokenizers.multimodal import DATASET_MEAN as _MISTRAL_COMMON_DATASET_MEAN, DATASET_STD as _MISTRAL_COMMON_DATASET_STD # pyright: ignore[reportMissingImports]
  30. from mistral_common.tokens.tokenizers.tekken import Tekkenizer # pyright: ignore[reportMissingImports]
  31. from mistral_common.tokens.tokenizers.sentencepiece import ( # pyright: ignore[reportMissingImports]
  32. SentencePieceTokenizer,
  33. )
  34. _mistral_common_installed = True
  35. _mistral_import_error_msg = ""
  36. except ImportError:
  37. _MISTRAL_COMMON_DATASET_MEAN = (0.48145466, 0.4578275, 0.40821073)
  38. _MISTRAL_COMMON_DATASET_STD = (0.26862954, 0.26130258, 0.27577711)
  39. _mistral_common_installed = False
  40. TokenizerVersion = None
  41. Tekkenizer = None
  42. SentencePieceTokenizer = None
  43. _mistral_import_error_msg = (
  44. "Mistral format requires `mistral-common` to be installed. Please run "
  45. "`pip install mistral-common[image,audio]` to install it."
  46. )
  47. logger = logging.getLogger("hf-to-gguf")
  48. ###### MODEL DEFINITIONS ######
  49. class SentencePieceTokenTypes(IntEnum):
  50. NORMAL = 1
  51. UNKNOWN = 2
  52. CONTROL = 3
  53. USER_DEFINED = 4
  54. UNUSED = 5
  55. BYTE = 6
  56. class ModelType(IntEnum):
  57. TEXT = 1
  58. MMPROJ = 2
  59. AnyModel = TypeVar("AnyModel", bound="type[ModelBase]")
  60. class ModelBase:
  61. _model_classes: dict[ModelType, dict[str, type[ModelBase]]] = {
  62. ModelType.TEXT: {},
  63. ModelType.MMPROJ: {},
  64. }
  65. dir_model: Path
  66. ftype: gguf.LlamaFileType
  67. fname_out: Path
  68. is_big_endian: bool
  69. endianess: gguf.GGUFEndian
  70. use_temp_file: bool
  71. lazy: bool
  72. dry_run: bool
  73. hparams: dict[str, Any]
  74. model_tensors: dict[str, Callable[[], Tensor]]
  75. gguf_writer: gguf.GGUFWriter
  76. model_name: str | None
  77. metadata_override: Path | None
  78. dir_model_card: Path
  79. remote_hf_model_id: str | None
  80. # subclasses should define this!
  81. model_arch: gguf.MODEL_ARCH
  82. # subclasses should initialize this!
  83. block_count: int
  84. tensor_map: gguf.TensorNameMap
  85. # Mistral format specifics
  86. is_mistral_format: bool = False
  87. disable_mistral_community_chat_template: bool = False
  88. sentence_transformers_dense_modules: bool = False
  89. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, *, is_big_endian: bool = False,
  90. use_temp_file: bool = False, eager: bool = False,
  91. metadata_override: Path | None = None, model_name: str | None = None,
  92. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  93. small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None,
  94. disable_mistral_community_chat_template: bool = False,
  95. sentence_transformers_dense_modules: bool = False):
  96. if type(self) is ModelBase or \
  97. type(self) is TextModel or \
  98. type(self) is MmprojModel:
  99. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  100. if self.is_mistral_format and not _mistral_common_installed:
  101. raise ImportError(_mistral_import_error_msg)
  102. self.dir_model = dir_model
  103. self.ftype = ftype
  104. self.fname_out = fname_out
  105. self.is_big_endian = is_big_endian
  106. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  107. self.use_temp_file = use_temp_file
  108. self.lazy = not eager or (remote_hf_model_id is not None)
  109. self.dry_run = dry_run
  110. self.remote_hf_model_id = remote_hf_model_id
  111. self.sentence_transformers_dense_modules = sentence_transformers_dense_modules
  112. self.hparams = ModelBase.load_hparams(self.dir_model, self.is_mistral_format) if hparams is None else hparams
  113. self.model_tensors = self.index_tensors(remote_hf_model_id=remote_hf_model_id)
  114. self.metadata_override = metadata_override
  115. self.model_name = model_name
  116. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  117. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  118. if self.ftype == gguf.LlamaFileType.GUESSED:
  119. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  120. _, first_tensor = next(self.get_tensors())
  121. if first_tensor.dtype == torch.float16:
  122. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  123. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  124. else:
  125. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  126. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  127. self.dequant_model()
  128. # Configure GGUF Writer
  129. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  130. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  131. # Mistral specific
  132. self.disable_mistral_community_chat_template = disable_mistral_community_chat_template
  133. @classmethod
  134. def add_prefix_to_filename(cls, path: Path, prefix: str) -> Path:
  135. stem, suffix = path.stem, path.suffix
  136. new_name = f"{prefix}{stem}{suffix}"
  137. return path.with_name(new_name)
  138. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  139. key = next((k for k in keys if k in self.hparams), None)
  140. if key is not None:
  141. return self.hparams[key]
  142. if optional:
  143. return None
  144. raise KeyError(f"could not find any of: {keys}")
  145. def index_tensors(self, remote_hf_model_id: str | None = None) -> dict[str, Callable[[], Tensor]]:
  146. tensors: dict[str, Callable[[], Tensor]] = {}
  147. if remote_hf_model_id is not None:
  148. is_safetensors = True
  149. logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
  150. remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
  151. for name, remote_tensor in remote_tensors.items():
  152. tensors[name] = lambda r=remote_tensor: LazyTorchTensor.from_remote_tensor(r)
  153. return tensors
  154. prefix = "model" if not self.is_mistral_format else "consolidated"
  155. part_names: list[str] = ModelBase.get_model_part_names(self.dir_model, prefix, ".safetensors")
  156. is_safetensors: bool = len(part_names) > 0
  157. if not is_safetensors:
  158. part_names = ModelBase.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  159. tensor_names_from_index: set[str] = set()
  160. if not self.is_mistral_format:
  161. index_name = "model.safetensors" if is_safetensors else "pytorch_model.bin"
  162. index_name += ".index.json"
  163. index_file = self.dir_model / index_name
  164. if index_file.is_file():
  165. logger.info(f"gguf: loading model weight map from '{index_name}'")
  166. with open(index_file, "r", encoding="utf-8") as f:
  167. index: dict[str, Any] = json.load(f)
  168. weight_map = index.get("weight_map")
  169. if weight_map is None or not isinstance(weight_map, dict):
  170. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  171. tensor_names_from_index.update(weight_map.keys())
  172. part_dict: dict[str, None] = dict.fromkeys(weight_map.values(), None)
  173. part_names = sorted(part_dict.keys())
  174. else:
  175. weight_map = {}
  176. else:
  177. weight_map = {}
  178. for part_name in part_names:
  179. logger.info(f"gguf: indexing model part '{part_name}'")
  180. ctx: ContextManager[Any]
  181. if is_safetensors:
  182. ctx = cast(ContextManager[Any], gguf.utility.SafetensorsLocal(self.dir_model / part_name))
  183. else:
  184. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  185. with ctx as model_part:
  186. assert model_part is not None
  187. for name in model_part.keys():
  188. if is_safetensors:
  189. data: gguf.utility.LocalTensor = model_part[name]
  190. if self.lazy:
  191. data_gen = lambda data=data: LazyTorchTensor.from_local_tensor(data) # noqa: E731
  192. else:
  193. dtype = LazyTorchTensor._dtype_str_map[data.dtype]
  194. data_gen = lambda data=data, dtype=dtype: torch.from_numpy(data.mmap_bytes()).view(dtype).reshape(data.shape) # noqa: E731
  195. else:
  196. data_torch: Tensor = model_part[name]
  197. if self.lazy:
  198. data_gen = lambda data=data_torch: LazyTorchTensor.from_eager(data) # noqa: E731
  199. else:
  200. data_gen = lambda data=data_torch: data # noqa: E731
  201. tensors[name] = data_gen
  202. # verify tensor name presence and identify potentially missing files
  203. if len(tensor_names_from_index) > 0:
  204. tensor_names_from_parts = set(tensors.keys())
  205. if len(tensor_names_from_parts.symmetric_difference(tensor_names_from_index)) > 0:
  206. missing = sorted(tensor_names_from_index.difference(tensor_names_from_parts))
  207. extra = sorted(tensor_names_from_parts.difference(tensor_names_from_index))
  208. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  209. if len(extra) == 0 and len(missing_files) > 0:
  210. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  211. f"Missing tensors: {missing}")
  212. else:
  213. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  214. f"Missing tensors: {missing}\n"
  215. f"Extra tensors: {extra}")
  216. return tensors
  217. def dequant_model(self):
  218. tensors_to_remove: list[str] = []
  219. new_tensors: dict[str, Callable[[], Tensor]] = {}
  220. if (quant_config := self.hparams.get("quantization_config")) and isinstance(quant_config, dict):
  221. quant_method = quant_config.get("quant_method")
  222. def dequant_bitnet(weight: Tensor, scale: Tensor) -> Tensor:
  223. weight = weight.view(torch.uint8)
  224. orig_shape = weight.shape
  225. shift = torch.tensor([0, 2, 4, 6], dtype=torch.uint8).reshape((4, *(1 for _ in range(len(orig_shape)))))
  226. data = weight.unsqueeze(0).expand((4, *orig_shape)) >> shift
  227. data = data & 3
  228. data = (data.float() - 1).reshape((orig_shape[0] * 4, *orig_shape[1:]))
  229. # The scale is inverted
  230. return data / scale.float()
  231. def dequant_simple(weight: Tensor, scale: Tensor, block_size: Sequence[int] | None = None) -> Tensor:
  232. scale = scale.float()
  233. if block_size is not None:
  234. for i, size in enumerate(block_size):
  235. scale = scale.repeat_interleave(size, i)
  236. # unpad the scale (e.g. when the tensor size isn't a multiple of the block size)
  237. scale = scale[tuple(slice(0, size) for size in weight.shape)]
  238. return weight.float() * scale
  239. # ref: https://github.com/ModelCloud/GPTQModel/blob/037c5c0f6c9e33c500d975b038d02e7ca437546d/gptqmodel/nn_modules/qlinear/__init__.py#L437-L476
  240. def dequant_gptq(g_idx: Tensor, qweight: Tensor, qzeros: Tensor, scales: Tensor) -> Tensor:
  241. bits = quant_config["bits"]
  242. assert bits in (2, 3, 4, 8)
  243. assert qweight.dtype == qzeros.dtype
  244. maxq = (2 ** bits) - 1
  245. weight = None
  246. zeros = None
  247. pack_dtype_bits = qweight.dtype.itemsize * 8
  248. if bits in [2, 4, 8]:
  249. pack_factor = pack_dtype_bits // bits
  250. wf = torch.tensor(list(range(0, pack_dtype_bits, bits)), dtype=torch.int32).unsqueeze(0)
  251. if self.lazy:
  252. wf = LazyTorchTensor.from_eager(wf)
  253. zeros = torch.bitwise_right_shift(
  254. qzeros.unsqueeze(2).expand(-1, -1, pack_factor),
  255. wf.unsqueeze(0)
  256. ).to(torch.int16 if bits == 8 else torch.int8)
  257. zeros = torch.bitwise_and(zeros, maxq).reshape(scales.shape)
  258. weight = torch.bitwise_and(
  259. torch.bitwise_right_shift(
  260. qweight.unsqueeze(1).expand(-1, pack_factor, -1),
  261. wf.unsqueeze(-1)
  262. ).to(torch.int16 if bits == 8 else torch.int8),
  263. maxq
  264. )
  265. elif bits == 3:
  266. raise NotImplementedError("3-bit gptq dequantization is not yet implemented")
  267. assert weight is not None
  268. assert zeros is not None
  269. weight = weight.reshape(weight.shape[0] * weight.shape[1], weight.shape[2])
  270. # gptq_v2 doesn't need to offset zeros
  271. if quant_config.get("checkpoint_format", "gptq") == "gptq":
  272. zeros += 1
  273. return (scales[g_idx].float() * (weight - zeros[g_idx]).float()).T
  274. def dequant_packed(w: Tensor, scale: Tensor, shape_tensor: Tensor, zero_point: Tensor | None, num_bits: int, group_size: int):
  275. assert w.dtype == torch.int32
  276. shape = tuple(shape_tensor.tolist())
  277. assert len(shape) == 2
  278. mask = (1 << num_bits) - 1
  279. shifts = torch.arange(0, 32 - (num_bits - 1), num_bits, dtype=torch.int32)
  280. if self.lazy:
  281. shifts = LazyTorchTensor.from_eager(shifts)
  282. if zero_point is None:
  283. offset = 1 << (num_bits - 1)
  284. else:
  285. assert len(zero_point.shape) == 2
  286. offset = (zero_point.unsqueeze(1) >> shifts.reshape(1, -1, 1)) & mask
  287. offset = offset.reshape(-1, zero_point.shape[1])
  288. # trim padding, and prepare for broadcast
  289. # NOTE: the zero-point is packed along dim 0
  290. offset = offset[:shape[0], :].unsqueeze(-1)
  291. # extract values
  292. # NOTE: the weights are packed along dim 1
  293. unpacked = (w.unsqueeze(-1) >> shifts.reshape(1, 1, -1)) & mask
  294. unpacked = unpacked.reshape(shape[0], -1)
  295. # trim padding
  296. unpacked = unpacked[:, :shape[1]]
  297. # prepare for broadcast of the scale
  298. unpacked = unpacked.reshape(shape[0], (unpacked.shape[-1] + group_size - 1) // group_size, group_size)
  299. unpacked = unpacked - offset
  300. return (unpacked * scale.unsqueeze(-1).float()).reshape(shape)
  301. if quant_method == "bitnet":
  302. for name in self.model_tensors.keys():
  303. if name.endswith(".weight_scale"):
  304. weight_name = name.removesuffix("_scale")
  305. w = self.model_tensors[weight_name]
  306. s = self.model_tensors[name]
  307. self.model_tensors[weight_name] = lambda w=w, s=s: dequant_bitnet(w(), s())
  308. tensors_to_remove.append(name)
  309. elif quant_method == "fp8":
  310. block_size = quant_config.get("weight_block_size")
  311. for name in self.model_tensors.keys():
  312. if name.endswith(".weight_scale_inv"):
  313. weight_name = name.removesuffix("_scale_inv")
  314. w = self.model_tensors[weight_name]
  315. s = self.model_tensors[name]
  316. self.model_tensors[weight_name] = lambda w=w, s=s, bs=block_size: dequant_simple(w(), s(), bs)
  317. tensors_to_remove.append(name)
  318. if name.endswith(".activation_scale"): # unused
  319. tensors_to_remove.append(name)
  320. # mistral format
  321. if name.endswith(".qscale_weight"):
  322. weight_name = name.removesuffix("qscale_weight") + "weight"
  323. w = self.model_tensors[weight_name]
  324. s = self.model_tensors[name]
  325. self.model_tensors[weight_name] = lambda w=w, s=s, bs=block_size: dequant_simple(w(), s(), bs)
  326. tensors_to_remove.append(name)
  327. if name.endswith(".qscale_act"):
  328. tensors_to_remove.append(name)
  329. elif quant_method == "gptq":
  330. for name in self.model_tensors.keys():
  331. if name.endswith(".qweight"):
  332. base_name = name.removesuffix(".qweight")
  333. g_idx = self.model_tensors[base_name + ".g_idx"]
  334. qweight = self.model_tensors[base_name + ".qweight"]
  335. qzeros = self.model_tensors[base_name + ".qzeros"]
  336. scales = self.model_tensors[base_name + ".scales"]
  337. new_tensors[base_name + ".weight"] = (
  338. lambda g=g_idx, z=qzeros, w=qweight, s=scales: dequant_gptq(
  339. g(), w(), z(), s()
  340. )
  341. )
  342. tensors_to_remove += [
  343. base_name + n
  344. for n in (
  345. ".g_idx",
  346. ".qzeros",
  347. ".qweight",
  348. ".scales",
  349. )
  350. ]
  351. elif quant_method == "compressed-tensors":
  352. quant_format = quant_config["format"]
  353. groups = quant_config["config_groups"]
  354. if len(groups) > 1:
  355. raise NotImplementedError("Can't handle multiple config groups for compressed-tensors yet")
  356. weight_config = tuple(groups.values())[0]["weights"]
  357. if quant_format == "float-quantized" or quant_format == "int-quantized" or quant_format == "naive-quantized":
  358. block_size = weight_config.get("block_structure", None)
  359. strategy = weight_config.get("strategy")
  360. assert strategy == "channel" or strategy == "block"
  361. assert weight_config.get("group_size") is None # didn't find a model using this yet
  362. for name in self.model_tensors.keys():
  363. if name.endswith(".weight_scale"):
  364. weight_name = name.removesuffix("_scale")
  365. w = self.model_tensors[weight_name]
  366. s = self.model_tensors[name]
  367. self.model_tensors[weight_name] = lambda w=w, s=s: dequant_simple(w(), s(), block_size)
  368. tensors_to_remove.append(name)
  369. elif quant_format == "pack-quantized":
  370. assert weight_config.get("strategy") == "group"
  371. assert weight_config.get("type", "int") == "int"
  372. num_bits = weight_config.get("num_bits")
  373. group_size = weight_config.get("group_size")
  374. assert isinstance(num_bits, int)
  375. assert isinstance(group_size, int)
  376. for name in self.model_tensors.keys():
  377. if name.endswith(".weight_packed"):
  378. base_name = name.removesuffix("_packed")
  379. w = self.model_tensors[name]
  380. scale = self.model_tensors[base_name + "_scale"]
  381. shape = self.model_tensors[base_name + "_shape"]
  382. zero_point = self.model_tensors.get(base_name + "_zero_point", lambda: None)
  383. new_tensors[base_name] = (
  384. lambda w=w, scale=scale, shape=shape, zero_point=zero_point: dequant_packed(
  385. w(), scale(), shape(), zero_point(), num_bits, group_size,
  386. )
  387. )
  388. tensors_to_remove += [base_name + n for n in ("_packed", "_shape", "_scale")]
  389. if (base_name + "_zero_point") in self.model_tensors:
  390. tensors_to_remove.append(base_name + "_zero_point")
  391. else:
  392. raise NotImplementedError(f"Quant format {quant_format!r} for method {quant_method!r} is not yet supported")
  393. else:
  394. raise NotImplementedError(f"Quant method is not yet supported: {quant_method!r}")
  395. for name in tensors_to_remove:
  396. if name in self.model_tensors:
  397. del self.model_tensors[name]
  398. for name, value in new_tensors.items():
  399. self.model_tensors[name] = value
  400. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  401. for name, gen in self.model_tensors.items():
  402. yield name, gen()
  403. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  404. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  405. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  406. name: str = gguf.TENSOR_NAMES[key]
  407. if "{bid}" in name:
  408. assert bid is not None
  409. name = name.format(bid=bid)
  410. return name + suffix
  411. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  412. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  413. return False
  414. key_name: str = gguf.TENSOR_NAMES[key]
  415. if "{bid}" in key_name:
  416. if bid is None:
  417. return False
  418. key_name = key_name.format(bid=bid)
  419. else:
  420. if bid is not None:
  421. return False
  422. return name == (key_name + suffix)
  423. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  424. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  425. if new_name is None:
  426. raise ValueError(f"Can not map tensor {name!r}")
  427. return new_name
  428. def set_gguf_parameters(self):
  429. raise NotImplementedError("set_gguf_parameters() must be implemented in subclasses")
  430. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  431. del bid # unused
  432. return [(self.map_tensor_name(name), data_torch)]
  433. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  434. del name, new_name, bid, n_dims # unused
  435. return False
  436. # some models need extra generated tensors (like rope_freqs)
  437. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  438. return ()
  439. def prepare_tensors(self):
  440. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  441. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  442. # we don't need these
  443. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  444. continue
  445. old_dtype = data_torch.dtype
  446. # convert any unsupported data types to float32
  447. if data_torch.dtype not in (torch.float16, torch.float32):
  448. data_torch = data_torch.to(torch.float32)
  449. # use the first number-like part of the tensor name as the block id
  450. bid = None
  451. for part in name.split("."):
  452. if part.isdecimal():
  453. bid = int(part)
  454. break
  455. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  456. # TODO: why do we squeeze here?
  457. # data = data_torch.squeeze().numpy()
  458. data = data_torch.numpy()
  459. n_dims = len(data.shape)
  460. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  461. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  462. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  463. data_qtype = gguf.GGMLQuantizationType.F32
  464. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  465. # Some tensor types are always in float32
  466. if data_qtype is False and (
  467. any(
  468. self.match_model_tensor_name(new_name, key, bid)
  469. for key in (
  470. gguf.MODEL_TENSOR.FFN_GATE_INP,
  471. gguf.MODEL_TENSOR.POS_EMBD,
  472. gguf.MODEL_TENSOR.TOKEN_TYPES,
  473. gguf.MODEL_TENSOR.SSM_CONV1D,
  474. gguf.MODEL_TENSOR.SHORTCONV_CONV,
  475. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  476. gguf.MODEL_TENSOR.TIME_MIX_W1,
  477. gguf.MODEL_TENSOR.TIME_MIX_W2,
  478. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  479. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  480. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  481. gguf.MODEL_TENSOR.POSNET_NORM1,
  482. gguf.MODEL_TENSOR.POSNET_NORM2,
  483. gguf.MODEL_TENSOR.V_ENC_EMBD_POS,
  484. gguf.MODEL_TENSOR.A_ENC_EMBD_POS,
  485. gguf.MODEL_TENSOR.ALTUP_CORRECT_COEF,
  486. gguf.MODEL_TENSOR.ALTUP_PREDICT_COEF,
  487. )
  488. )
  489. or new_name[-7:] not in (".weight", ".lora_a", ".lora_b")
  490. ):
  491. data_qtype = gguf.GGMLQuantizationType.F32
  492. if data_qtype is False and any(
  493. self.match_model_tensor_name(new_name, key, bid)
  494. for key in (
  495. gguf.MODEL_TENSOR.TOKEN_EMBD,
  496. gguf.MODEL_TENSOR.PER_LAYER_TOKEN_EMBD,
  497. gguf.MODEL_TENSOR.OUTPUT,
  498. gguf.MODEL_TENSOR.ALTUP_ROUTER,
  499. gguf.MODEL_TENSOR.LAUREL_L,
  500. gguf.MODEL_TENSOR.LAUREL_R,
  501. )
  502. ):
  503. if self.ftype in (
  504. gguf.LlamaFileType.MOSTLY_TQ1_0,
  505. gguf.LlamaFileType.MOSTLY_TQ2_0,
  506. ):
  507. # TODO: use Q4_K and Q6_K
  508. data_qtype = gguf.GGMLQuantizationType.F16
  509. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  510. if isinstance(data_qtype, bool):
  511. if self.ftype == gguf.LlamaFileType.ALL_F32:
  512. data_qtype = gguf.GGMLQuantizationType.F32
  513. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  514. data_qtype = gguf.GGMLQuantizationType.F16
  515. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  516. data_qtype = gguf.GGMLQuantizationType.BF16
  517. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  518. data_qtype = gguf.GGMLQuantizationType.Q8_0
  519. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  520. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  521. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  522. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  523. else:
  524. raise ValueError(f"Unknown file type: {self.ftype.name}")
  525. try:
  526. data = gguf.quants.quantize(data, data_qtype)
  527. except gguf.QuantError as e:
  528. logger.warning("%s, %s", e, "falling back to F16")
  529. data_qtype = gguf.GGMLQuantizationType.F16
  530. data = gguf.quants.quantize(data, data_qtype)
  531. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  532. # reverse shape to make it similar to the internal ggml dimension order
  533. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  534. # n_dims is implicit in the shape
  535. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  536. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  537. def set_type(self):
  538. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  539. def prepare_metadata(self, vocab_only: bool):
  540. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  541. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  542. # If we are using HF model id, set the metadata name to the model id
  543. if self.remote_hf_model_id:
  544. self.metadata.name = self.remote_hf_model_id
  545. # Fallback to model directory name if metadata name is still missing
  546. if self.metadata.name is None:
  547. self.metadata.name = self.dir_model.name
  548. # Generate parameter weight class (useful for leader boards) if not yet determined
  549. if self.metadata.size_label is None and total_params > 0:
  550. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  551. self.set_type()
  552. logger.info("Set meta model")
  553. self.metadata.set_gguf_meta_model(self.gguf_writer)
  554. logger.info("Set model parameters")
  555. self.set_gguf_parameters()
  556. logger.info("Set model quantization version")
  557. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  558. def write_vocab(self):
  559. raise NotImplementedError("write_vocab() must be implemented in subclasses")
  560. def write(self):
  561. self.prepare_tensors()
  562. self.prepare_metadata(vocab_only=False)
  563. self.gguf_writer.write_header_to_file(path=self.fname_out)
  564. self.gguf_writer.write_kv_data_to_file()
  565. self.gguf_writer.write_tensors_to_file(progress=True)
  566. self.gguf_writer.close()
  567. @staticmethod
  568. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  569. part_names: list[str] = []
  570. for filename in os.listdir(dir_model):
  571. if filename.startswith(prefix) and filename.endswith(suffix):
  572. part_names.append(filename)
  573. part_names.sort()
  574. return part_names
  575. @staticmethod
  576. def load_hparams(dir_model: Path, is_mistral_format: bool):
  577. if is_mistral_format:
  578. with open(dir_model / "params.json", "r", encoding="utf-8") as f:
  579. config = json.load(f)
  580. return config
  581. try:
  582. # for security reason, we don't allow loading remote code by default
  583. # if a model need remote code, we will fallback to config.json
  584. config = AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
  585. except Exception as e:
  586. logger.warning(f"Failed to load model config from {dir_model}: {e}")
  587. logger.warning("Trying to load config.json instead")
  588. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  589. config = json.load(f)
  590. if "llm_config" in config:
  591. # rename for InternVL
  592. config["text_config"] = config["llm_config"]
  593. if "lm_config" in config:
  594. # rename for GlmASR
  595. config["text_config"] = config["lm_config"]
  596. if "thinker_config" in config:
  597. # rename for Qwen2.5-Omni
  598. config["text_config"] = config["thinker_config"]["text_config"]
  599. return config
  600. @classmethod
  601. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  602. assert names
  603. def func(modelcls: AnyModel) -> AnyModel:
  604. model_type = ModelType.MMPROJ if modelcls.model_arch == gguf.MODEL_ARCH.MMPROJ else ModelType.TEXT
  605. for name in names:
  606. cls._model_classes[model_type][name] = modelcls
  607. return modelcls
  608. return func
  609. @classmethod
  610. def print_registered_models(cls):
  611. for model_type, model_classes in cls._model_classes.items():
  612. logger.error(f"{model_type.name} models:")
  613. for name in sorted(model_classes.keys()):
  614. logger.error(f" - {name}")
  615. @classmethod
  616. def from_model_architecture(cls, arch: str, model_type = ModelType.TEXT) -> type[ModelBase]:
  617. try:
  618. return cls._model_classes[model_type][arch]
  619. except KeyError:
  620. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  621. class TextModel(ModelBase):
  622. model_type = ModelType.TEXT
  623. hf_arch: str
  624. def __init__(self, *args, **kwargs):
  625. super().__init__(*args, **kwargs)
  626. if not self.is_mistral_format:
  627. self.hf_arch = get_model_architecture(self.hparams, self.model_type)
  628. else:
  629. self.hf_arch = ""
  630. if "text_config" in self.hparams:
  631. # move the text_config to the root level
  632. self.hparams = {**self.hparams, **self.hparams["text_config"]}
  633. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  634. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  635. self.rope_parameters = self.hparams.get("rope_parameters", self.hparams.get("rope_scaling")) or {}
  636. # Ensure "rope_theta" and "rope_type" is mirrored in rope_parameters
  637. if "full_attention" not in self.rope_parameters and "sliding_attention" not in self.rope_parameters:
  638. if "rope_theta" not in self.rope_parameters and (rope_theta := self.find_hparam(["rope_theta", "global_rope_theta", "rotary_emb_base"], optional=True)) is not None:
  639. self.rope_parameters["rope_theta"] = rope_theta
  640. if "rope_type" not in self.rope_parameters and (rope_type := self.rope_parameters.get("type")) is not None:
  641. self.rope_parameters["rope_type"] = rope_type
  642. @classmethod
  643. def __init_subclass__(cls):
  644. # can't use an abstract property, because overriding it without type errors
  645. # would require using decorated functions instead of simply defining the property
  646. if "model_arch" not in cls.__dict__:
  647. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  648. def set_vocab(self):
  649. self._set_vocab_gpt2()
  650. def prepare_metadata(self, vocab_only: bool):
  651. super().prepare_metadata(vocab_only=vocab_only)
  652. total_params = self.gguf_writer.get_total_parameter_count()[0]
  653. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  654. output_type: str = self.ftype.name.partition("_")[2]
  655. # Filename Output
  656. if self.fname_out.is_dir():
  657. # Generate default filename based on model specification and available metadata
  658. if not vocab_only:
  659. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  660. else:
  661. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  662. # Use the default filename
  663. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  664. else:
  665. # Output path is a custom defined templated filename
  666. # Note: `not is_dir()` is used because `.is_file()` will not detect
  667. # file template strings as it doesn't actually exist as a file
  668. # Process templated file name with the output ftype, useful with the "auto" ftype
  669. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  670. logger.info("Set model tokenizer")
  671. self.set_vocab()
  672. def set_gguf_parameters(self):
  673. self.gguf_writer.add_block_count(self.block_count)
  674. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions", "max_length", "max_sequence_length", "model_max_length"], optional=True)) is not None:
  675. self.gguf_writer.add_context_length(n_ctx)
  676. logger.info(f"gguf: context length = {n_ctx}")
  677. if (n_embd := self.find_hparam(["hidden_size", "n_embd", "dim"], optional=True)) is not None:
  678. self.gguf_writer.add_embedding_length(n_embd)
  679. logger.info(f"gguf: embedding length = {n_embd}")
  680. if (n_ff := self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"], optional=True)) is not None:
  681. self.gguf_writer.add_feed_forward_length(n_ff)
  682. logger.info(f"gguf: feed forward length = {n_ff}")
  683. if (n_head := self.find_hparam(["num_attention_heads", "n_head", "n_heads"], optional=True)) is not None:
  684. self.gguf_writer.add_head_count(n_head)
  685. logger.info(f"gguf: head count = {n_head}")
  686. if (n_head_kv := self.find_hparam(["num_key_value_heads", "n_kv_heads"], optional=True)) is not None:
  687. self.gguf_writer.add_head_count_kv(n_head_kv)
  688. logger.info(f"gguf: key-value head count = {n_head_kv}")
  689. rope_params = self.rope_parameters.get("full_attention", self.rope_parameters)
  690. if (rope_type := rope_params.get("rope_type")) is not None:
  691. rope_factor = rope_params.get("factor")
  692. rope_gguf_type = gguf.RopeScalingType.NONE
  693. if rope_type == "linear" and rope_factor is not None:
  694. rope_gguf_type = gguf.RopeScalingType.LINEAR
  695. self.gguf_writer.add_rope_scaling_type(rope_gguf_type)
  696. self.gguf_writer.add_rope_scaling_factor(rope_factor)
  697. elif rope_type == "yarn" and rope_factor is not None:
  698. rope_gguf_type = gguf.RopeScalingType.YARN
  699. self.gguf_writer.add_rope_scaling_type(rope_gguf_type)
  700. self.gguf_writer.add_rope_scaling_factor(rope_factor)
  701. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_params["original_max_position_embeddings"])
  702. if (yarn_ext_factor := rope_params.get("extrapolation_factor")) is not None:
  703. self.gguf_writer.add_rope_scaling_yarn_ext_factor(yarn_ext_factor)
  704. if (yarn_attn_factor := rope_params.get("attention_factor", rope_params.get("attn_factor"))) is not None:
  705. self.gguf_writer.add_rope_scaling_yarn_attn_factor(yarn_attn_factor)
  706. if (yarn_beta_fast := rope_params.get("beta_fast")) is not None:
  707. self.gguf_writer.add_rope_scaling_yarn_beta_fast(yarn_beta_fast)
  708. if (yarn_beta_slow := rope_params.get("beta_slow")) is not None:
  709. self.gguf_writer.add_rope_scaling_yarn_beta_slow(yarn_beta_slow)
  710. # self.gguf_writer.add_rope_scaling_yarn_log_mul(rope_params["mscale_all_dim"])
  711. elif rope_type == "su" or rope_type == "longrope":
  712. rope_gguf_type = gguf.RopeScalingType.LONGROPE
  713. self.gguf_writer.add_rope_scaling_type(rope_gguf_type)
  714. elif rope_type == "dynamic":
  715. # HunYuan, handled in model class
  716. pass
  717. elif rope_type.lower() == "llama3":
  718. # Handled in generate_extra_tensors
  719. pass
  720. else:
  721. logger.warning(f"Unknown RoPE type: {rope_type}")
  722. logger.info(f"gguf: rope scaling type = {rope_gguf_type.name}")
  723. if "mrope_section" in self.rope_parameters:
  724. mrope_section = self.rope_parameters["mrope_section"]
  725. # Pad to 4 dimensions [time, height, width, extra]
  726. while len(mrope_section) < 4:
  727. mrope_section.append(0)
  728. self.gguf_writer.add_rope_dimension_sections(mrope_section[:4])
  729. logger.info(f"gguf: mrope sections: {mrope_section[:4]}")
  730. if (rope_theta := rope_params.get("rope_theta")) is not None:
  731. self.gguf_writer.add_rope_freq_base(rope_theta)
  732. logger.info(f"gguf: rope theta = {rope_theta}")
  733. if (f_rms_eps := self.find_hparam(["rms_norm_eps", "norm_eps"], optional=True)) is not None:
  734. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  735. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  736. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  737. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  738. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  739. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  740. self.gguf_writer.add_expert_count(n_experts)
  741. logger.info(f"gguf: expert count = {n_experts}")
  742. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  743. self.gguf_writer.add_expert_used_count(n_experts_used)
  744. logger.info(f"gguf: experts used count = {n_experts_used}")
  745. if (n_expert_groups := self.hparams.get("n_group")) is not None:
  746. self.gguf_writer.add_expert_group_count(n_expert_groups)
  747. logger.info(f"gguf: expert groups count = {n_expert_groups}")
  748. if (n_group_used := self.hparams.get("topk_group")) is not None:
  749. self.gguf_writer.add_expert_group_used_count(n_group_used)
  750. logger.info(f"gguf: expert groups used count = {n_group_used}")
  751. if (score_func := self.find_hparam(["score_function", "scoring_func", "score_func"], optional=True)) is not None:
  752. if score_func == "sigmoid":
  753. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  754. elif score_func == "softmax":
  755. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  756. else:
  757. raise ValueError(f"Unsupported expert score gating function value: {score_func}")
  758. logger.info(f"gguf: expert score gating function = {score_func}")
  759. if (head_dim := self.hparams.get("head_dim")) is not None:
  760. self.gguf_writer.add_key_length(head_dim)
  761. self.gguf_writer.add_value_length(head_dim)
  762. self.gguf_writer.add_file_type(self.ftype)
  763. logger.info(f"gguf: file type = {self.ftype}")
  764. def write_vocab(self):
  765. if len(self.gguf_writer.tensors) != 1:
  766. raise ValueError('Splitting the vocabulary is not supported')
  767. self.prepare_metadata(vocab_only=True)
  768. self.gguf_writer.write_header_to_file(path=self.fname_out)
  769. self.gguf_writer.write_kv_data_to_file()
  770. self.gguf_writer.close()
  771. def does_token_look_special(self, token: str | bytes) -> bool:
  772. if isinstance(token, (bytes, bytearray)):
  773. token_text = token.decode(encoding="utf-8")
  774. elif isinstance(token, memoryview):
  775. token_text = token.tobytes().decode(encoding="utf-8")
  776. else:
  777. token_text = token
  778. # Some models mark some added tokens which ought to be control tokens as not special.
  779. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  780. seems_special = token_text in (
  781. "<pad>", # deepseek-coder
  782. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  783. )
  784. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  785. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  786. # TODO: should these be marked as UNUSED instead? (maybe not)
  787. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  788. return seems_special
  789. # used for GPT-2 BPE and WordPiece vocabs
  790. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  791. tokens: list[str] = []
  792. toktypes: list[int] = []
  793. from transformers import AutoTokenizer
  794. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  795. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  796. assert max(tokenizer.vocab.values()) < vocab_size
  797. tokpre = self.get_vocab_base_pre(tokenizer)
  798. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  799. added_vocab = tokenizer.get_added_vocab()
  800. added_tokens_decoder = tokenizer.added_tokens_decoder
  801. for i in range(vocab_size):
  802. if i not in reverse_vocab:
  803. tokens.append(f"[PAD{i}]")
  804. toktypes.append(gguf.TokenType.UNUSED)
  805. else:
  806. token: str = reverse_vocab[i]
  807. if token in added_vocab:
  808. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  809. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  810. if not added_tokens_decoder[i].normalized:
  811. previous_token = token
  812. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  813. if previous_token != token:
  814. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  815. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  816. toktypes.append(gguf.TokenType.CONTROL)
  817. else:
  818. # NOTE: this was added for Gemma.
  819. # Encoding and decoding the tokens above isn't sufficient for this case.
  820. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  821. toktypes.append(gguf.TokenType.USER_DEFINED)
  822. else:
  823. toktypes.append(gguf.TokenType.NORMAL)
  824. tokens.append(token)
  825. return tokens, toktypes, tokpre
  826. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  827. # do not modify it manually!
  828. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  829. # Marker: Start get_vocab_base_pre
  830. def get_vocab_base_pre(self, tokenizer) -> str:
  831. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  832. # is specific for the BPE pre-tokenizer used by the model
  833. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  834. # use in llama.cpp to implement the same pre-tokenizer
  835. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  836. chktok = tokenizer.encode(chktxt)
  837. chkhsh = sha256(str(chktok).encode()).hexdigest()
  838. logger.debug(f"chktok: {chktok}")
  839. logger.debug(f"chkhsh: {chkhsh}")
  840. res = None
  841. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  842. # or pull the latest version of the model from Huggingface
  843. # don't edit the hashes manually!
  844. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  845. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  846. res = "chatglm-bpe"
  847. if chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  848. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  849. res = "chatglm-bpe"
  850. if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
  851. # ref: https://huggingface.co/THUDM/glm-4-9b-hf
  852. res = "glm4"
  853. if chkhsh == "9ca2dd618e8afaf09731a7cf6e2105b373ba6a1821559f258b272fe83e6eb902":
  854. # ref: https://huggingface.co/zai-org/GLM-4.5-Air
  855. res = "glm4"
  856. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  857. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  858. res = "minerva-7b"
  859. if chkhsh == "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664":
  860. # ref: https://huggingface.co/tencent/Hunyuan-A13B-Instruct
  861. res = "hunyuan"
  862. if chkhsh == "bba3b3366b646dbdded5dbc42d59598b849371afc42f7beafa914afaa5b70aa6":
  863. # ref: https://huggingface.co/tencent/Hunyuan-4B-Instruct
  864. res = "hunyuan-dense"
  865. if chkhsh == "a6b57017d60e6edb4d88ecc2845188e0eb333a70357e45dcc9b53964a73bbae6":
  866. # ref: https://huggingface.co/tiiuae/Falcon-H1-0.5B-Base
  867. res = "falcon-h1"
  868. if chkhsh == "60476e1243776c4fb1b993dbd7a5f15ac22f83c80afdf425fa5ae01c8d44ef86":
  869. # ref: https://huggingface.co/tiiuae/Falcon-H1-1B-Base
  870. res = "falcon-h1"
  871. if chkhsh == "3eda48b4c4dc7de733d1a8b3e3b4a85243dbbf704da2ee9d42c6beced8897896":
  872. # ref: https://huggingface.co/tiiuae/Falcon-H1-7B-Base
  873. res = "falcon-h1"
  874. if chkhsh == "48f8e02c0359c0bbdd82f26909171fac1c18a457bb47573ed1fe3bbb2c1cfd4b":
  875. # ref: https://huggingface.co/tiiuae/Falcon-H1-34B-Base
  876. res = "falcon-h1"
  877. if chkhsh == "81212dc7cdb7e0c1074ca62c5aeab0d43c9f52b8a737be7b12a777c953027890":
  878. # ref: https://huggingface.co/moonshotai/Kimi-K2-Base
  879. res = "kimi-k2"
  880. if chkhsh == "d4540891389ea895b53b399da6ac824becc30f2fba0e9ddbb98f92e55ca0e97c":
  881. # ref: https://huggingface.co/Qwen/Qwen3-Embedding-0.6B
  882. res = "qwen2"
  883. if chkhsh == "66b8d4e19ab16c3bfd89bce5d785fb7e0155e8648708a1f42077cb9fe002c273":
  884. # ref: https://huggingface.co/alvarobartt/grok-2-tokenizer
  885. res = "grok-2"
  886. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  887. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  888. res = "llama-bpe"
  889. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  890. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  891. res = "deepseek-llm"
  892. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  893. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  894. res = "deepseek-coder"
  895. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  896. # ref: https://huggingface.co/tiiuae/falcon-7b
  897. res = "falcon"
  898. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  899. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  900. res = "bert-bge"
  901. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  902. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  903. res = "falcon3"
  904. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  905. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  906. res = "bert-bge-large"
  907. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  908. # ref: https://huggingface.co/mosaicml/mpt-7b
  909. res = "mpt"
  910. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  911. # ref: https://huggingface.co/bigcode/starcoder2-3b
  912. res = "starcoder"
  913. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  914. # ref: https://huggingface.co/openai-community/gpt2
  915. res = "gpt-2"
  916. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  917. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  918. res = "stablelm2"
  919. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  920. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  921. res = "refact"
  922. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  923. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  924. res = "command-r"
  925. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  926. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  927. res = "qwen2"
  928. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  929. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  930. res = "olmo"
  931. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  932. # ref: https://huggingface.co/databricks/dbrx-base
  933. res = "dbrx"
  934. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  935. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  936. res = "jina-v1-en"
  937. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  938. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  939. res = "jina-v2-en"
  940. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  941. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  942. res = "jina-v2-es"
  943. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  944. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  945. res = "jina-v2-de"
  946. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  947. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  948. res = "smaug-bpe"
  949. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  950. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  951. res = "poro-chat"
  952. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  953. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  954. res = "jina-v2-code"
  955. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  956. # ref: https://huggingface.co/LumiOpen/Viking-7B
  957. res = "viking"
  958. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  959. # ref: https://huggingface.co/core42/jais-13b
  960. res = "jais"
  961. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  962. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  963. res = "codeshell"
  964. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  965. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  966. res = "tekken"
  967. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  968. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  969. res = "smollm"
  970. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  971. # ref: https://huggingface.co/bigscience/bloom
  972. res = "bloom"
  973. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  974. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  975. res = "gpt3-finnish"
  976. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  977. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  978. res = "exaone"
  979. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  980. # ref: https://huggingface.co/microsoft/phi-2
  981. res = "phi-2"
  982. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  983. # ref: https://huggingface.co/facebook/chameleon-7b
  984. res = "chameleon"
  985. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  986. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  987. res = "roberta-bpe"
  988. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  989. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  990. res = "gigachat"
  991. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  992. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  993. res = "megrez"
  994. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  995. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  996. res = "deepseek-v3"
  997. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  998. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  999. res = "deepseek-r1-qwen"
  1000. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  1001. # ref: https://huggingface.co/Xenova/gpt-4o
  1002. res = "gpt-4o"
  1003. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  1004. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  1005. res = "superbpe"
  1006. if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
  1007. # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
  1008. res = "trillion"
  1009. if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
  1010. # ref: https://huggingface.co/inclusionAI/Ling-lite
  1011. res = "bailingmoe"
  1012. if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
  1013. # ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
  1014. res = "llama4"
  1015. if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
  1016. # ref: https://huggingface.co/mistral-community/pixtral-12b
  1017. res = "pixtral"
  1018. if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec":
  1019. # ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base
  1020. res = "seed-coder"
  1021. if chkhsh == "b0a6b1c0bd5998ebd9df08611efde34a4ff03faed45ae09c43e6b31ebd4b94cf":
  1022. # ref: https://huggingface.co/skt/A.X-4.0
  1023. res = "a.x-4.0"
  1024. if chkhsh == "f6791d196f87ce6b56a7d234be618e0d58f8cda3549416635b2bebcd22cd95c4":
  1025. # ref: https://huggingface.co/K-intelligence/Midm-2.0-Base-Instruct
  1026. res = "midm-2.0"
  1027. if chkhsh == "169bf0296a13c4d9b7672313f749eb36501d931022de052aad6e36f2bf34dd51":
  1028. # ref: https://huggingface.co/LiquidAI/LFM2-Tokenizer
  1029. res = "lfm2"
  1030. if chkhsh == "2085e1638f6c377a0aa4ead21b27bb4cb941bf800df86ed391011769c1758dfb":
  1031. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B
  1032. res = "exaone4"
  1033. if chkhsh == "a1e163ecab2e718a4c829d1148b6e86824ec36163bb71941c3dca9cd5ac25756":
  1034. # ref: https://huggingface.co/JetBrains/Mellum-4b-base
  1035. res = "mellum"
  1036. if chkhsh == "49fc0303c9e0d2c2c565c510f64b2d9b271276acdcdadff733249eda9f7d59df":
  1037. # ref: https://huggingface.co/arcee-ai/Trinity-Tokenizer
  1038. res = "afmoe"
  1039. if chkhsh == "9b1be57e70d20d9501b2b3186e792d81181ae36ada3903c26f9fea418cf87206":
  1040. # ref: https://huggingface.co/inclusionAI/Ling-mini-base-2.0
  1041. res = "bailingmoe2"
  1042. if chkhsh == "53e325976a6e142379c19b09afcae354f2f496f147afa8f9e189a33fe4e3024e":
  1043. # ref: https://huggingface.co/ibm-granite/granite-docling-258M
  1044. res = "granite-docling"
  1045. if chkhsh == "f4f37b6c8eb9ea29b3eac6bb8c8487c5ab7885f8d8022e67edc1c68ce8403e95":
  1046. # ref: https://huggingface.co/MiniMaxAI/MiniMax-M2
  1047. res = "minimax-m2"
  1048. if chkhsh == "4a2e2abae11ca2b86d570fc5b44be4d5eb5e72cc8f22dd136a94b37da83ab665":
  1049. # ref: https://huggingface.co/KORMo-Team/KORMo-tokenizer
  1050. res = "kormo"
  1051. if res is None:
  1052. logger.warning("\n")
  1053. logger.warning("**************************************************************************************")
  1054. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  1055. logger.warning("** There are 2 possible reasons for this:")
  1056. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  1057. logger.warning("** - the pre-tokenization config has changed upstream")
  1058. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  1059. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  1060. logger.warning("**")
  1061. logger.warning(f"** chkhsh: {chkhsh}")
  1062. logger.warning("**************************************************************************************")
  1063. logger.warning("\n")
  1064. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  1065. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  1066. logger.debug(f"chkhsh: {chkhsh}")
  1067. return res
  1068. # Marker: End get_vocab_base_pre
  1069. def _set_vocab_none(self) -> None:
  1070. self.gguf_writer.add_tokenizer_model("none")
  1071. def _set_vocab_gpt2(self) -> None:
  1072. tokens, toktypes, tokpre = self.get_vocab_base()
  1073. self.gguf_writer.add_tokenizer_model("gpt2")
  1074. self.gguf_writer.add_tokenizer_pre(tokpre)
  1075. self.gguf_writer.add_token_list(tokens)
  1076. self.gguf_writer.add_token_types(toktypes)
  1077. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1078. special_vocab.add_to_gguf(self.gguf_writer)
  1079. def _set_vocab_qwen(self):
  1080. dir_model = self.dir_model
  1081. hparams = self.hparams
  1082. tokens: list[str] = []
  1083. toktypes: list[int] = []
  1084. from transformers import AutoTokenizer
  1085. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  1086. vocab_size = hparams["vocab_size"]
  1087. assert max(tokenizer.get_vocab().values()) < vocab_size
  1088. tokpre = self.get_vocab_base_pre(tokenizer)
  1089. merges = []
  1090. vocab = {}
  1091. mergeable_ranks = tokenizer.mergeable_ranks
  1092. for token, rank in mergeable_ranks.items():
  1093. vocab[QwenModel.token_bytes_to_string(token)] = rank
  1094. if len(token) == 1:
  1095. continue
  1096. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  1097. assert len(merged) == 2
  1098. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  1099. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  1100. added_vocab = tokenizer.special_tokens
  1101. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  1102. for i in range(vocab_size):
  1103. if i not in reverse_vocab:
  1104. tokens.append(f"[PAD{i}]")
  1105. toktypes.append(gguf.TokenType.UNUSED)
  1106. elif reverse_vocab[i] in added_vocab:
  1107. tokens.append(reverse_vocab[i])
  1108. toktypes.append(gguf.TokenType.CONTROL)
  1109. else:
  1110. tokens.append(reverse_vocab[i])
  1111. toktypes.append(gguf.TokenType.NORMAL)
  1112. self.gguf_writer.add_tokenizer_model("gpt2")
  1113. self.gguf_writer.add_tokenizer_pre(tokpre)
  1114. self.gguf_writer.add_token_list(tokens)
  1115. self.gguf_writer.add_token_types(toktypes)
  1116. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  1117. special_vocab.merges = merges
  1118. # only add special tokens when they were not already loaded from config.json
  1119. if len(special_vocab.special_token_ids) == 0:
  1120. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  1121. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  1122. # this one is usually not in config.json anyway
  1123. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  1124. special_vocab.add_to_gguf(self.gguf_writer)
  1125. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  1126. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  1127. self.gguf_writer.add_tokenizer_model("llama")
  1128. self.gguf_writer.add_tokenizer_pre("default")
  1129. self.gguf_writer.add_token_list(tokens)
  1130. self.gguf_writer.add_token_scores(scores)
  1131. self.gguf_writer.add_token_types(toktypes)
  1132. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1133. special_vocab.add_to_gguf(self.gguf_writer)
  1134. def _create_vocab_sentencepiece(self):
  1135. from sentencepiece import SentencePieceProcessor
  1136. tokenizer_path = self.dir_model / 'tokenizer.model'
  1137. if not tokenizer_path.is_file():
  1138. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  1139. tokenizer = SentencePieceProcessor()
  1140. tokenizer.LoadFromFile(str(tokenizer_path))
  1141. vocab_size = self.find_hparam([
  1142. "vocab_size_per_layer_input", # gemma3n
  1143. "vocab_size",
  1144. ], optional=True) or tokenizer.vocab_size()
  1145. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1146. scores: list[float] = [-10000.0] * vocab_size
  1147. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  1148. for token_id in range(tokenizer.vocab_size()):
  1149. if token_id >= vocab_size:
  1150. logger.warning(f'ignore tokens from {token_id}: id is out of range, max={vocab_size - 1}')
  1151. break
  1152. piece = tokenizer.IdToPiece(token_id)
  1153. text = piece.encode("utf-8")
  1154. score = tokenizer.GetScore(token_id)
  1155. toktype = SentencePieceTokenTypes.NORMAL
  1156. if tokenizer.IsUnknown(token_id):
  1157. toktype = SentencePieceTokenTypes.UNKNOWN
  1158. elif tokenizer.IsControl(token_id):
  1159. toktype = SentencePieceTokenTypes.CONTROL
  1160. elif tokenizer.IsUnused(token_id):
  1161. toktype = SentencePieceTokenTypes.UNUSED
  1162. elif tokenizer.IsByte(token_id):
  1163. toktype = SentencePieceTokenTypes.BYTE
  1164. tokens[token_id] = text
  1165. scores[token_id] = score
  1166. toktypes[token_id] = toktype
  1167. added_tokens_file = self.dir_model / 'added_tokens.json'
  1168. if added_tokens_file.is_file():
  1169. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1170. added_tokens_json = json.load(f)
  1171. for key in added_tokens_json:
  1172. token_id = added_tokens_json[key]
  1173. if token_id >= vocab_size:
  1174. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1175. continue
  1176. tokens[token_id] = key.encode("utf-8")
  1177. scores[token_id] = -1000.0
  1178. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1179. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1180. if tokenizer_config_file.is_file():
  1181. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1182. tokenizer_config_json = json.load(f)
  1183. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1184. for token_id, token_data in added_tokens_decoder.items():
  1185. token_id = int(token_id)
  1186. token: str = token_data["content"]
  1187. if token_id >= vocab_size:
  1188. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1189. continue
  1190. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1191. if tokens[token_id] != token.encode("utf-8"):
  1192. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  1193. if token_data.get("special") or self.does_token_look_special(token):
  1194. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1195. else:
  1196. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  1197. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1198. scores[token_id] = -1000.0
  1199. tokens[token_id] = token.encode("utf-8")
  1200. if vocab_size > len(tokens):
  1201. pad_count = vocab_size - len(tokens)
  1202. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  1203. for i in range(1, pad_count + 1):
  1204. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  1205. scores.append(-1000.0)
  1206. toktypes.append(SentencePieceTokenTypes.UNUSED)
  1207. return tokens, scores, toktypes
  1208. def _set_vocab_llama_hf(self):
  1209. vocab = gguf.LlamaHfVocab(self.dir_model)
  1210. tokens = []
  1211. scores = []
  1212. toktypes = []
  1213. for text, score, toktype in vocab.all_tokens():
  1214. tokens.append(text)
  1215. scores.append(score)
  1216. toktypes.append(toktype)
  1217. assert len(tokens) == vocab.vocab_size
  1218. self.gguf_writer.add_tokenizer_model("llama")
  1219. self.gguf_writer.add_tokenizer_pre("default")
  1220. self.gguf_writer.add_token_list(tokens)
  1221. self.gguf_writer.add_token_scores(scores)
  1222. self.gguf_writer.add_token_types(toktypes)
  1223. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1224. special_vocab.add_to_gguf(self.gguf_writer)
  1225. def _set_vocab_rwkv_world(self):
  1226. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  1227. vocab_size = self.hparams.get("vocab_size", 65536)
  1228. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  1229. toktypes: list[int] = [gguf.TokenType.CONTROL]
  1230. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  1231. lines = f.readlines()
  1232. for line in lines:
  1233. parts = line.split(' ')
  1234. assert len(parts) >= 3
  1235. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  1236. token = token.encode("utf-8") if isinstance(token, str) else token
  1237. assert isinstance(token, bytes)
  1238. assert len(token) == token_len
  1239. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  1240. tokens.append(token_text.encode("utf-8"))
  1241. toktypes.append(gguf.TokenType.NORMAL)
  1242. remainder = vocab_size - len(tokens)
  1243. assert remainder >= 0
  1244. for i in range(len(tokens), vocab_size):
  1245. tokens.append(f"[PAD{i}]".encode("utf-8"))
  1246. toktypes.append(gguf.TokenType.UNUSED)
  1247. self.gguf_writer.add_tokenizer_model("rwkv")
  1248. self.gguf_writer.add_token_list(tokens)
  1249. self.gguf_writer.add_token_types(toktypes)
  1250. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  1251. if special_vocab.chat_template is None:
  1252. template_path = Path(__file__).parent / "models" / "templates" / "llama-cpp-rwkv-world.jinja"
  1253. if template_path.is_file():
  1254. with open(template_path, "r", encoding="utf-8") as f:
  1255. template = f.read()
  1256. else:
  1257. template = "rwkv-world"
  1258. special_vocab.chat_template = template
  1259. # hack: Add '\n\n' as the EOT token to make it chat normally
  1260. special_vocab._set_special_token("eot", 261)
  1261. # hack: Override these as they have already been set (incorrectly)
  1262. special_vocab.special_token_ids["bos"] = 0
  1263. special_vocab.special_token_ids["eos"] = 0
  1264. special_vocab.add_to_gguf(self.gguf_writer)
  1265. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  1266. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  1267. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  1268. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  1269. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  1270. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  1271. assert field # tokenizer model
  1272. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  1273. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  1274. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  1275. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  1276. assert field # token list
  1277. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  1278. if model_name == "llama-spm":
  1279. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  1280. assert field # token scores
  1281. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1282. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  1283. assert field # token types
  1284. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1285. if model_name != "llama-spm":
  1286. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  1287. assert field # token merges
  1288. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  1289. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  1290. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  1291. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  1292. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  1293. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  1294. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  1295. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  1296. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  1297. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  1298. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  1299. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  1300. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  1301. def _try_set_pooling_type(self) -> None:
  1302. # get pooling path
  1303. pooling_path = None
  1304. module_path = self.dir_model / "modules.json"
  1305. if module_path.is_file():
  1306. with open(module_path, encoding="utf-8") as f:
  1307. modules = json.load(f)
  1308. for mod in modules:
  1309. if mod["type"] == "sentence_transformers.models.Pooling":
  1310. pooling_path = mod["path"]
  1311. break
  1312. # get pooling type
  1313. if pooling_path is not None:
  1314. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1315. pooling = json.load(f)
  1316. if pooling["pooling_mode_mean_tokens"]:
  1317. pooling_type = gguf.PoolingType.MEAN
  1318. elif pooling["pooling_mode_cls_token"]:
  1319. pooling_type = gguf.PoolingType.CLS
  1320. elif pooling["pooling_mode_lasttoken"]:
  1321. pooling_type = gguf.PoolingType.LAST
  1322. else:
  1323. raise NotImplementedError("Only MEAN, CLS, and LAST pooling types supported")
  1324. self.gguf_writer.add_pooling_type(pooling_type)
  1325. def _set_vocab_glmedge(self):
  1326. from transformers import AutoTokenizer
  1327. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  1328. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1329. tokens, toktypes, tokpre = self.get_vocab_base()
  1330. self.gguf_writer.add_tokenizer_model("gpt2")
  1331. self.gguf_writer.add_tokenizer_pre(tokpre)
  1332. self.gguf_writer.add_token_list(tokens)
  1333. self.gguf_writer.add_token_types(toktypes)
  1334. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  1335. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  1336. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  1337. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  1338. special_vocab.add_to_gguf(self.gguf_writer)
  1339. def _set_vocab_interns1(self):
  1340. tokens: list[str] = []
  1341. toktypes: list[int] = []
  1342. from transformers import AutoTokenizer
  1343. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  1344. vocab = getattr(tokenizer, 'vocab', tokenizer.get_vocab())
  1345. vocab_size = self.hparams.get("vocab_size", len(vocab))
  1346. assert max(vocab.values()) < vocab_size
  1347. tokpre = self.get_vocab_base_pre(tokenizer)
  1348. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab.items()}
  1349. added_vocab = tokenizer.get_added_vocab()
  1350. added_tokens_decoder = tokenizer.added_tokens_decoder
  1351. for i in range(vocab_size):
  1352. if i not in reverse_vocab:
  1353. tokens.append(f"[PAD{i}]")
  1354. toktypes.append(gguf.TokenType.UNUSED)
  1355. else:
  1356. token: str = reverse_vocab[i]
  1357. if token in added_vocab:
  1358. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  1359. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  1360. if not added_tokens_decoder[i].normalized:
  1361. previous_token = token
  1362. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  1363. if previous_token != token:
  1364. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  1365. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  1366. toktypes.append(gguf.TokenType.CONTROL)
  1367. else:
  1368. toktypes.append(gguf.TokenType.USER_DEFINED)
  1369. else:
  1370. toktypes.append(gguf.TokenType.NORMAL)
  1371. tokens.append(token)
  1372. self.gguf_writer.add_tokenizer_model("gpt2")
  1373. self.gguf_writer.add_tokenizer_pre(tokpre)
  1374. self.gguf_writer.add_token_list(tokens)
  1375. self.gguf_writer.add_token_types(toktypes)
  1376. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1377. special_vocab._set_special_token("bos", 151643)
  1378. special_vocab.add_to_gguf(self.gguf_writer)
  1379. def _set_vocab_mistral(self):
  1380. if not _mistral_common_installed:
  1381. raise ImportError(_mistral_import_error_msg)
  1382. vocab = MistralVocab(self.dir_model)
  1383. logger.info(
  1384. f"Converting tokenizer {vocab.tokenizer_type} of size {vocab.vocab_size}."
  1385. )
  1386. self.gguf_writer.add_tokenizer_model(vocab.gguf_tokenizer_model)
  1387. tokens = []
  1388. scores = []
  1389. toktypes = []
  1390. for text, score, toktype in vocab.all_tokens():
  1391. tokens.append(text)
  1392. scores.append(score)
  1393. toktypes.append(toktype)
  1394. assert len(tokens) == vocab.vocab_size, (
  1395. f"token count ({len(tokens)}) != vocab size ({vocab.vocab_size})"
  1396. )
  1397. if vocab.tokenizer_type == MistralTokenizerType.tekken:
  1398. self.gguf_writer.add_tokenizer_pre("tekken")
  1399. self.gguf_writer.add_token_merges(
  1400. vocab.extract_vocab_merges_from_model()
  1401. )
  1402. logger.info(
  1403. f"Setting bos, eos, unk and pad token IDs to {vocab.bos_id}, {vocab.eos_id}, {vocab.unk_id}, {vocab.pad_id}."
  1404. )
  1405. self.gguf_writer.add_bos_token_id(vocab.bos_id)
  1406. self.gguf_writer.add_eos_token_id(vocab.eos_id)
  1407. self.gguf_writer.add_unk_token_id(vocab.unk_id)
  1408. self.gguf_writer.add_pad_token_id(vocab.pad_id)
  1409. self.gguf_writer.add_token_list(tokens)
  1410. self.gguf_writer.add_token_scores(scores)
  1411. self.gguf_writer.add_token_types(toktypes)
  1412. self.gguf_writer.add_vocab_size(vocab.vocab_size)
  1413. self.gguf_writer.add_add_bos_token(True)
  1414. self.gguf_writer.add_add_eos_token(False)
  1415. local_template_file_path = self.dir_model / "chat_template.jinja"
  1416. if self.is_mistral_format and local_template_file_path.is_file():
  1417. # Ministral-3 and other new Mistral models come with chat templates.
  1418. # ref: https://huggingface.co/mistralai/Ministral-3-14B-Instruct-2512/tree/main
  1419. logger.info("Using an existing Mistral local chat template.")
  1420. with open(local_template_file_path, "r", encoding="utf-8") as f:
  1421. template = f.read()
  1422. elif not self.is_mistral_format or not self.disable_mistral_community_chat_template:
  1423. template_dir = Path(__file__).parent / "models/templates/"
  1424. # Log only for Mistral format that the official tokenization and detokenization is via `mistral-common`.
  1425. if self.is_mistral_format:
  1426. logger.info(
  1427. "Using a Mistral community chat template. These templates can be subject to errors in early days or weeks after a release. "
  1428. "Mistral recommends to use `mistral-common` to perform tokenization and detokenization."
  1429. )
  1430. template = MistralModel.get_community_chat_template(vocab, template_dir, self.is_mistral_format)
  1431. else:
  1432. logger.info("Not using a Mistral local or community chat template. Ensure to perform the tokenization and detokenization via `mistral-common`.")
  1433. template = None
  1434. if template is not None:
  1435. self.gguf_writer.add_chat_template(template)
  1436. class MmprojModel(ModelBase):
  1437. model_type = ModelType.MMPROJ
  1438. model_arch = gguf.MODEL_ARCH.MMPROJ
  1439. preprocessor_config: dict[str, Any]
  1440. global_config: dict[str, Any]
  1441. n_block_keys = ["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth", "encoder_layers"]
  1442. has_vision_encoder: bool = True # by default
  1443. has_audio_encoder: bool = False
  1444. # for models having multiple encoders, we need to separate their hparams
  1445. hparams_vision: dict[str, Any] | None = None
  1446. hparams_audio: dict[str, Any] | None = None
  1447. def __init__(self, *args, **kwargs):
  1448. super().__init__(*args, **kwargs)
  1449. if self.model_arch != gguf.MODEL_ARCH.MMPROJ:
  1450. raise TypeError("MmprojModel must be subclassed with model_arch = gguf.MODEL_ARCH.MMPROJ")
  1451. # get n_embd of the text model
  1452. if not self.is_mistral_format:
  1453. if "text_config" not in self.hparams:
  1454. self.hparams["text_config"] = {}
  1455. if "audio_config" not in self.hparams:
  1456. self.hparams["audio_config"] = {}
  1457. text_config = {**self.hparams, **self.hparams["text_config"]}
  1458. self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
  1459. else:
  1460. text_config = {
  1461. k: v for k, v in self.hparams.items() if k not in ["vision_encoder", "audio_encoder"]
  1462. }
  1463. self.n_embd_text = text_config.get("hidden_dim", 0)
  1464. assert self.n_embd_text > 0, "n_embd not found in hparams"
  1465. # move vision config to the top level, while preserving the original hparams in global_config
  1466. import copy
  1467. self.global_config = copy.deepcopy(self.hparams)
  1468. self.hparams_vision = self.get_vision_config()
  1469. self.hparams_audio = self.get_audio_config()
  1470. if self.hparams_vision is None and self.hparams_audio is None:
  1471. raise ValueError("vision_config / audio_config not found in hparams")
  1472. # for compat with vision-only models
  1473. self.hparams = self.hparams_vision or self.hparams_audio or self.hparams
  1474. # TODO @ngxson : this is a hack to support both vision and audio encoders
  1475. have_multiple_encoders = self.has_audio_encoder and self.has_vision_encoder
  1476. self.block_count = 128 if have_multiple_encoders else self.find_hparam(self.n_block_keys, True)
  1477. self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.MMPROJ, self.block_count)
  1478. # load preprocessor config
  1479. self.preprocessor_config = {}
  1480. # prefer preprocessor_config.json if possible
  1481. preprocessor_config_path = self.dir_model / "preprocessor_config.json"
  1482. if preprocessor_config_path.is_file():
  1483. with open(preprocessor_config_path, "r", encoding="utf-8") as f:
  1484. self.preprocessor_config = json.load(f)
  1485. # prefer processor_config.json if possible
  1486. processor_config_path = self.dir_model / "processor_config.json"
  1487. if processor_config_path.is_file():
  1488. with open(processor_config_path, "r", encoding="utf-8") as f:
  1489. cfg = json.load(f)
  1490. # move image_processor to root level for compat
  1491. if "image_processor" in cfg:
  1492. cfg = {
  1493. **cfg,
  1494. **cfg["image_processor"],
  1495. }
  1496. # merge configs
  1497. self.preprocessor_config = {**self.preprocessor_config, **cfg}
  1498. def get_vision_config(self) -> dict[str, Any] | None:
  1499. config_name = "vision_config" if not self.is_mistral_format else "vision_encoder"
  1500. return self.global_config.get(config_name)
  1501. def get_audio_config(self) -> dict[str, Any] | None:
  1502. mm_config_key = "whisper_config" if "whisper_config" in self.hparams else "audio_config"
  1503. return self.global_config.get(mm_config_key)
  1504. def set_type(self):
  1505. self.gguf_writer.add_type(gguf.GGUFType.MMPROJ)
  1506. def prepare_metadata(self, vocab_only: bool):
  1507. super().prepare_metadata(vocab_only=vocab_only)
  1508. output_type: str = self.ftype.name.partition("_")[2]
  1509. if self.fname_out.is_dir():
  1510. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=output_type, model_type=None)
  1511. self.fname_out = self.fname_out / f"mmproj-{fname_default}.gguf"
  1512. else:
  1513. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  1514. def set_gguf_parameters(self):
  1515. self.gguf_writer.add_file_type(self.ftype)
  1516. if self.has_vision_encoder:
  1517. self.gguf_writer.add_clip_has_vision_encoder(True)
  1518. self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
  1519. # vision config
  1520. self.image_size = self.find_vparam(["image_size"])
  1521. self.gguf_writer.add_vision_image_size(self.image_size)
  1522. self.gguf_writer.add_vision_patch_size(self.find_vparam(["patch_size"]))
  1523. self.gguf_writer.add_vision_embedding_length(self.find_vparam(["hidden_size"]))
  1524. self.gguf_writer.add_vision_feed_forward_length(self.find_vparam(["intermediate_size"]))
  1525. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys))
  1526. self.gguf_writer.add_vision_head_count(self.find_vparam(["num_attention_heads", "num_heads"]))
  1527. # preprocessor config
  1528. image_mean = _MISTRAL_COMMON_DATASET_MEAN if self.is_mistral_format else self.preprocessor_config["image_mean"]
  1529. image_std = _MISTRAL_COMMON_DATASET_STD if self.is_mistral_format else self.preprocessor_config["image_std"]
  1530. self.gguf_writer.add_vision_image_mean(image_mean)
  1531. self.gguf_writer.add_vision_image_std(image_std)
  1532. if self.has_audio_encoder:
  1533. self.gguf_writer.add_clip_has_audio_encoder(True)
  1534. self.gguf_writer.add_audio_projection_dim(self.n_embd_text)
  1535. # audio config
  1536. self.gguf_writer.add_audio_embedding_length(self.find_aparam(["hidden_size"]))
  1537. self.gguf_writer.add_audio_feed_forward_length(self.find_aparam(["intermediate_size"]))
  1538. self.gguf_writer.add_audio_block_count(self.find_aparam(self.n_block_keys))
  1539. self.gguf_writer.add_audio_head_count(self.find_aparam(["num_attention_heads"]))
  1540. if not self.has_vision_encoder and not self.has_audio_encoder:
  1541. raise ValueError("MmprojModel must have either vision or audio encoder")
  1542. def write_vocab(self):
  1543. raise ValueError("MmprojModel does not support vocab writing")
  1544. def find_vparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1545. assert self.hparams_vision is not None
  1546. return self._find_param(self.hparams_vision, keys, optional)
  1547. def find_aparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1548. assert self.hparams_audio is not None
  1549. return self._find_param(self.hparams_audio, keys, optional)
  1550. def _find_param(self, obj: dict[str, Any], keys: Iterable[str], optional: bool = False) -> Any:
  1551. key = next((k for k in keys if k in obj), None)
  1552. if key is not None:
  1553. return obj[key]
  1554. if optional:
  1555. return None
  1556. raise KeyError(f"could not find any of: {keys}")
  1557. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1558. del bid, name, n_dims # unused
  1559. if ".patch_embd.weight" in new_name or ".patch_merger.weight" in new_name:
  1560. return gguf.GGMLQuantizationType.F16 if self.ftype == gguf.LlamaFileType.MOSTLY_F16 else gguf.GGMLQuantizationType.F32
  1561. return False
  1562. @ModelBase.register("GPTNeoXForCausalLM")
  1563. class GPTNeoXModel(TextModel):
  1564. model_arch = gguf.MODEL_ARCH.GPTNEOX
  1565. def set_gguf_parameters(self):
  1566. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1567. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1568. self.gguf_writer.add_block_count(self.block_count)
  1569. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1570. self.gguf_writer.add_rope_dimension_count(
  1571. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  1572. )
  1573. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1574. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  1575. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  1576. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1577. del bid # unused
  1578. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1579. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1580. tensors: list[tuple[str, Tensor]] = []
  1581. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  1582. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1583. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1584. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1585. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1586. data_torch = torch.cat(
  1587. (
  1588. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1589. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1590. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1591. ),
  1592. dim=0,
  1593. )
  1594. logger.info("re-format attention.linear_qkv.weight")
  1595. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  1596. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1597. data_torch = torch.cat(
  1598. (
  1599. qkv_bias[:, 0, :].reshape((n_embed,)),
  1600. qkv_bias[:, 1, :].reshape((n_embed,)),
  1601. qkv_bias[:, 2, :].reshape((n_embed,)),
  1602. ),
  1603. dim=0,
  1604. )
  1605. logger.info("re-format attention.linear_qkv.bias")
  1606. tensors.append((self.map_tensor_name(name), data_torch))
  1607. return tensors
  1608. @ModelBase.register("BloomForCausalLM", "BloomModel")
  1609. class BloomModel(TextModel):
  1610. model_arch = gguf.MODEL_ARCH.BLOOM
  1611. def set_gguf_parameters(self):
  1612. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1613. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1614. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  1615. self.gguf_writer.add_embedding_length(n_embed)
  1616. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  1617. self.gguf_writer.add_block_count(self.block_count)
  1618. self.gguf_writer.add_head_count(n_head)
  1619. self.gguf_writer.add_head_count_kv(n_head)
  1620. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1621. self.gguf_writer.add_file_type(self.ftype)
  1622. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1623. del bid # unused
  1624. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1625. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1626. name = re.sub(r'transformer\.', '', name)
  1627. tensors: list[tuple[str, Tensor]] = []
  1628. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  1629. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1630. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1631. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1632. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1633. data_torch = torch.cat(
  1634. (
  1635. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1636. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1637. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1638. ),
  1639. dim=0,
  1640. )
  1641. logger.info("re-format attention.linear_qkv.weight")
  1642. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  1643. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1644. data_torch = torch.cat(
  1645. (
  1646. qkv_bias[:, 0, :].reshape((n_embed,)),
  1647. qkv_bias[:, 1, :].reshape((n_embed,)),
  1648. qkv_bias[:, 2, :].reshape((n_embed,)),
  1649. ),
  1650. dim=0,
  1651. )
  1652. logger.info("re-format attention.linear_qkv.bias")
  1653. tensors.append((self.map_tensor_name(name), data_torch))
  1654. return tensors
  1655. @ModelBase.register("MPTForCausalLM")
  1656. class MPTModel(TextModel):
  1657. model_arch = gguf.MODEL_ARCH.MPT
  1658. def set_vocab(self):
  1659. try:
  1660. self._set_vocab_gpt2()
  1661. except Exception:
  1662. # Fallback for SEA-LION model
  1663. self._set_vocab_sentencepiece()
  1664. self.gguf_writer.add_add_bos_token(False)
  1665. self.gguf_writer.add_pad_token_id(3)
  1666. self.gguf_writer.add_eos_token_id(1)
  1667. self.gguf_writer.add_unk_token_id(0)
  1668. def set_gguf_parameters(self):
  1669. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1670. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1671. self.gguf_writer.add_block_count(self.block_count)
  1672. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  1673. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1674. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  1675. self.gguf_writer.add_head_count_kv(kv_n_heads)
  1676. self.gguf_writer.add_layer_norm_eps(1e-5)
  1677. if self.hparams["attn_config"]["clip_qkv"] is not None:
  1678. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  1679. if self.hparams["attn_config"]["alibi"]:
  1680. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  1681. else:
  1682. self.gguf_writer.add_max_alibi_bias(0.0)
  1683. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1684. del bid # unused
  1685. if "scales" in name:
  1686. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  1687. new_name = new_name.replace("scales", "act.scales")
  1688. else:
  1689. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  1690. return [(new_name, data_torch)]
  1691. @ModelBase.register("OrionForCausalLM")
  1692. class OrionModel(TextModel):
  1693. model_arch = gguf.MODEL_ARCH.ORION
  1694. def set_vocab(self):
  1695. self._set_vocab_sentencepiece()
  1696. def set_gguf_parameters(self):
  1697. head_count = self.hparams["num_attention_heads"]
  1698. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1699. ctx_length = 0
  1700. if "max_sequence_length" in self.hparams:
  1701. ctx_length = self.hparams["max_sequence_length"]
  1702. elif "max_position_embeddings" in self.hparams:
  1703. ctx_length = self.hparams["max_position_embeddings"]
  1704. elif "model_max_length" in self.hparams:
  1705. ctx_length = self.hparams["model_max_length"]
  1706. else:
  1707. raise ValueError("gguf: can not find ctx length parameter.")
  1708. self.gguf_writer.add_file_type(self.ftype)
  1709. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1710. self.gguf_writer.add_context_length(ctx_length)
  1711. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1712. self.gguf_writer.add_block_count(self.block_count)
  1713. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1714. self.gguf_writer.add_head_count(head_count)
  1715. self.gguf_writer.add_head_count_kv(head_count_kv)
  1716. # note: config provides rms norm but it is actually layer norm
  1717. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  1718. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  1719. @ModelBase.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  1720. class BaichuanModel(TextModel):
  1721. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1722. def set_vocab(self):
  1723. self._set_vocab_sentencepiece()
  1724. def set_gguf_parameters(self):
  1725. super().set_gguf_parameters()
  1726. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1727. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1728. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1729. head_count = self.hparams["num_attention_heads"]
  1730. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1731. tensors: list[tuple[str, Tensor]] = []
  1732. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1733. logger.info(f"Unpacking and permuting layer {bid}")
  1734. tensors = [
  1735. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1736. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1737. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1738. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1739. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1740. self._reverse_hf_part(data_torch, 2)),
  1741. ]
  1742. else:
  1743. tensors = [(self.map_tensor_name(name), data_torch)]
  1744. return tensors
  1745. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1746. if n_kv_head is not None and n_head != n_kv_head:
  1747. n_head //= n_kv_head
  1748. return (
  1749. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1750. .swapaxes(1, 2)
  1751. .reshape(weights.shape)
  1752. )
  1753. def _reverse_hf_permute_part(
  1754. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1755. ) -> Tensor:
  1756. r = weights.shape[0] // 3
  1757. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1758. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1759. r = weights.shape[0] // 3
  1760. return weights[r * n_part:r * n_part + r, ...]
  1761. @ModelBase.register("XverseForCausalLM")
  1762. class XverseModel(TextModel):
  1763. model_arch = gguf.MODEL_ARCH.XVERSE
  1764. def set_vocab(self):
  1765. assert (self.dir_model / "tokenizer.json").is_file()
  1766. dir_model = self.dir_model
  1767. hparams = self.hparams
  1768. tokens: list[bytes] = []
  1769. toktypes: list[int] = []
  1770. from transformers import AutoTokenizer
  1771. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1772. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1773. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1774. # because vocab_size is the count of items, and indexes start at 0.
  1775. max_vocab_index = max(tokenizer.get_vocab().values())
  1776. if max_vocab_index >= vocab_size:
  1777. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1778. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1779. added_vocab = tokenizer.get_added_vocab()
  1780. for token_id in range(vocab_size):
  1781. token_text = reverse_vocab[token_id].encode('utf-8')
  1782. # replace "\x00" to string with length > 0
  1783. if token_text == b"\x00":
  1784. toktype = gguf.TokenType.BYTE # special
  1785. token_text = f"<{token_text}>".encode('utf-8')
  1786. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1787. toktype = gguf.TokenType.BYTE # special
  1788. elif reverse_vocab[token_id] in added_vocab:
  1789. if tokenizer.added_tokens_decoder[token_id].special:
  1790. toktype = gguf.TokenType.CONTROL
  1791. else:
  1792. toktype = gguf.TokenType.USER_DEFINED
  1793. else:
  1794. toktype = gguf.TokenType.NORMAL
  1795. tokens.append(token_text)
  1796. toktypes.append(toktype)
  1797. self.gguf_writer.add_tokenizer_model("llama")
  1798. self.gguf_writer.add_tokenizer_pre("default")
  1799. self.gguf_writer.add_token_list(tokens)
  1800. self.gguf_writer.add_token_types(toktypes)
  1801. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1802. special_vocab.add_to_gguf(self.gguf_writer)
  1803. def set_gguf_parameters(self):
  1804. super().set_gguf_parameters()
  1805. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1806. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1807. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1808. del bid # unused
  1809. head_count = self.hparams["num_attention_heads"]
  1810. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1811. # HF models permute some of the tensors, so we need to undo that
  1812. if name.endswith("q_proj.weight"):
  1813. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1814. if name.endswith("k_proj.weight"):
  1815. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1816. return [(self.map_tensor_name(name), data_torch)]
  1817. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1818. if n_kv_head is not None and n_head != n_kv_head:
  1819. n_head //= n_kv_head
  1820. return (
  1821. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1822. .swapaxes(1, 2)
  1823. .reshape(weights.shape)
  1824. )
  1825. @ModelBase.register("FalconForCausalLM", "RWForCausalLM")
  1826. class FalconModel(TextModel):
  1827. model_arch = gguf.MODEL_ARCH.FALCON
  1828. def set_gguf_parameters(self):
  1829. n_head = self.hparams.get("num_attention_heads")
  1830. if n_head is None:
  1831. n_head = self.hparams["n_head"] # old name
  1832. n_head_kv = self.hparams.get("num_kv_heads")
  1833. if n_head_kv is None:
  1834. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1835. self.gguf_writer.add_context_length(2048) # not in config.json
  1836. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1837. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1838. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1839. self.gguf_writer.add_block_count(self.block_count)
  1840. self.gguf_writer.add_head_count(n_head)
  1841. self.gguf_writer.add_head_count_kv(n_head_kv)
  1842. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1843. self.gguf_writer.add_file_type(self.ftype)
  1844. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1845. del bid # unused
  1846. # QKV tensor transform
  1847. # The original query_key_value tensor contains n_head_kv "kv groups",
  1848. # each consisting of n_head/n_head_kv query weights followed by one key
  1849. # and one value weight (shared by all query heads in the kv group).
  1850. # This layout makes it a big pain to work with in GGML.
  1851. # So we rearrange them here,, so that we have n_head query weights
  1852. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1853. # in contiguous fashion.
  1854. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1855. if "query_key_value" in name:
  1856. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1857. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1858. head_dim = self.hparams["hidden_size"] // n_head
  1859. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1860. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1861. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1862. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1863. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1864. return [(self.map_tensor_name(name), data_torch)]
  1865. @ModelBase.register("GPTBigCodeForCausalLM")
  1866. class StarCoderModel(TextModel):
  1867. model_arch = gguf.MODEL_ARCH.STARCODER
  1868. def set_gguf_parameters(self):
  1869. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1870. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1871. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1872. self.gguf_writer.add_block_count(self.block_count)
  1873. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1874. self.gguf_writer.add_head_count_kv(1)
  1875. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1876. self.gguf_writer.add_file_type(self.ftype)
  1877. @ModelBase.register("GPTRefactForCausalLM")
  1878. class RefactModel(TextModel):
  1879. model_arch = gguf.MODEL_ARCH.REFACT
  1880. def set_vocab(self):
  1881. super().set_vocab()
  1882. # TODO: how to determine special FIM tokens automatically?
  1883. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1884. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1885. special_vocab._set_special_token("prefix", 1)
  1886. special_vocab._set_special_token("suffix", 3)
  1887. special_vocab._set_special_token("middle", 2)
  1888. special_vocab.chat_template = None # do not add it twice
  1889. special_vocab.add_to_gguf(self.gguf_writer)
  1890. def set_gguf_parameters(self):
  1891. hidden_dim = self.hparams["n_embd"]
  1892. inner_dim = 4 * hidden_dim
  1893. hidden_dim = int(2 * inner_dim / 3)
  1894. multiple_of = 256
  1895. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1896. # refact uses Alibi. So this is from config.json which might be used by training.
  1897. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1898. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1899. self.gguf_writer.add_feed_forward_length(ff_dim)
  1900. self.gguf_writer.add_block_count(self.block_count)
  1901. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1902. self.gguf_writer.add_head_count_kv(1)
  1903. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1904. self.gguf_writer.add_file_type(self.ftype)
  1905. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1906. hidden_dim = self.hparams["n_embd"]
  1907. inner_dim = 4 * hidden_dim
  1908. hidden_dim = int(2 * inner_dim / 3)
  1909. multiple_of = 256
  1910. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1911. n_head = self.hparams["n_head"]
  1912. n_head_kv = 1
  1913. head_dim = self.hparams["n_embd"] // n_head
  1914. tensors: list[tuple[str, Tensor]] = []
  1915. if bid is not None:
  1916. if name == f"transformer.h.{bid}.attn.kv.weight":
  1917. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1918. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1919. elif name == f"transformer.h.{bid}.attn.q.weight":
  1920. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1921. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1922. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1923. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1924. if len(tensors) == 0:
  1925. tensors.append((self.map_tensor_name(name), data_torch))
  1926. return tensors
  1927. @ModelBase.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1928. class StableLMModel(TextModel):
  1929. model_arch = gguf.MODEL_ARCH.STABLELM
  1930. def set_vocab(self):
  1931. if (self.dir_model / "tokenizer.json").is_file():
  1932. self._set_vocab_gpt2()
  1933. else:
  1934. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1935. self._set_vocab_qwen()
  1936. def set_gguf_parameters(self):
  1937. hparams = self.hparams
  1938. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1939. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1940. self.gguf_writer.add_block_count(self.block_count)
  1941. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1942. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1943. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1944. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1945. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1946. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1947. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1948. self.gguf_writer.add_file_type(self.ftype)
  1949. _q_norms: list[dict[str, Tensor]] | None = None
  1950. _k_norms: list[dict[str, Tensor]] | None = None
  1951. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1952. n_head = self.hparams["num_attention_heads"]
  1953. n_kv_head = self.hparams["num_key_value_heads"]
  1954. if name.find("q_layernorm.norms") != -1:
  1955. assert bid is not None
  1956. if self._q_norms is None:
  1957. self._q_norms = [{} for _ in range(self.block_count)]
  1958. self._q_norms[bid][name] = data_torch
  1959. if len(self._q_norms[bid]) >= n_head:
  1960. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1961. else:
  1962. return []
  1963. if name.find("k_layernorm.norms") != -1:
  1964. assert bid is not None
  1965. if self._k_norms is None:
  1966. self._k_norms = [{} for _ in range(self.block_count)]
  1967. self._k_norms[bid][name] = data_torch
  1968. if len(self._k_norms[bid]) >= n_kv_head:
  1969. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1970. else:
  1971. return []
  1972. return [(self.map_tensor_name(name), data_torch)]
  1973. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1974. datas: list[Tensor] = []
  1975. # extract the norms in order
  1976. for xid in range(n_head):
  1977. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1978. datas.append(norms[ename])
  1979. del norms[ename]
  1980. data_torch = torch.stack(datas, dim=0)
  1981. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1982. new_name = self.map_tensor_name(merged_name)
  1983. return [(new_name, data_torch)]
  1984. def prepare_tensors(self):
  1985. super().prepare_tensors()
  1986. if self._q_norms is not None or self._k_norms is not None:
  1987. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1988. norms = (
  1989. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1990. ) + (
  1991. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1992. )
  1993. if len(norms) > 0:
  1994. raise ValueError(f"Unprocessed norms: {norms}")
  1995. @ModelBase.register(
  1996. "LLaMAForCausalLM",
  1997. "LlamaForCausalLM",
  1998. "MistralForCausalLM",
  1999. "MixtralForCausalLM",
  2000. "VLlama3ForCausalLM",
  2001. "LlavaForConditionalGeneration",
  2002. "VoxtralForConditionalGeneration",
  2003. "LlamaModel")
  2004. class LlamaModel(TextModel):
  2005. model_arch = gguf.MODEL_ARCH.LLAMA
  2006. undo_permute = True
  2007. def __init__(self, *args, **kwargs):
  2008. super().__init__(*args, **kwargs)
  2009. # fix for SmolVLM2, missing `num_attention_heads` in config.json
  2010. if self.hf_arch == "VLlama3ForCausalLM":
  2011. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
  2012. hparams = ModelBase.load_hparams(self.dir_model, is_mistral_format=False)
  2013. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  2014. def set_vocab(self):
  2015. if self.origin_hf_arch == "GlmasrModel":
  2016. return self._set_vocab_glmedge()
  2017. if self.is_mistral_format:
  2018. return self._set_vocab_mistral()
  2019. path_tekken_json = self.dir_model / "tekken.json"
  2020. path_tokenizer_json = self.dir_model / "tokenizer.json"
  2021. if path_tekken_json.is_file() and not path_tokenizer_json.is_file():
  2022. self._set_vocab_mistral()
  2023. try:
  2024. self._set_vocab_sentencepiece()
  2025. except FileNotFoundError:
  2026. try:
  2027. self._set_vocab_llama_hf()
  2028. except (FileNotFoundError, TypeError):
  2029. # Llama 3
  2030. self._set_vocab_gpt2()
  2031. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  2032. if self.hparams.get("vocab_size", 32000) == 32016:
  2033. special_vocab = gguf.SpecialVocab(
  2034. self.dir_model, load_merges=False,
  2035. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  2036. )
  2037. special_vocab._set_special_token("prefix", 32007)
  2038. special_vocab._set_special_token("suffix", 32008)
  2039. special_vocab._set_special_token("middle", 32009)
  2040. special_vocab._set_special_token("eot", 32010)
  2041. special_vocab.add_to_gguf(self.gguf_writer)
  2042. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2043. if tokenizer_config_file.is_file():
  2044. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2045. tokenizer_config_json = json.load(f)
  2046. if "add_prefix_space" in tokenizer_config_json:
  2047. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  2048. # Apply to granite small models only
  2049. if self.hparams.get("vocab_size", 32000) == 49152:
  2050. self.gguf_writer.add_add_bos_token(False)
  2051. def set_gguf_parameters(self):
  2052. super().set_gguf_parameters()
  2053. hparams = self.hparams
  2054. if not self.is_mistral_format:
  2055. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2056. if (rope_dim := hparams.get("head_dim")) is None:
  2057. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2058. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2059. @staticmethod
  2060. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2061. if n_head_kv is not None and n_head != n_head_kv:
  2062. n_head = n_head_kv
  2063. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2064. .swapaxes(1, 2)
  2065. .reshape(weights.shape))
  2066. _experts: list[dict[str, Tensor]] | None = None
  2067. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2068. n_head = self.find_hparam(["n_heads", "num_attention_heads"])
  2069. n_kv_head = self.find_hparam(["n_kv_heads", "num_key_value_heads"])
  2070. vision_prefixes = [
  2071. "vision_encoder.",
  2072. "vision_language_adapter.",
  2073. "patch_merger.",
  2074. "pre_mm_projector_norm",
  2075. "audio_encoder.",
  2076. ]
  2077. is_multimodal_tensor = "vision_tower" in name \
  2078. or "vision_model" in name \
  2079. or "audio_tower" in name \
  2080. or "model.connector" in name \
  2081. or "multi_modal_projector" in name \
  2082. or any(
  2083. name.startswith(prefix)
  2084. for prefix in vision_prefixes
  2085. )
  2086. if is_multimodal_tensor:
  2087. return [] # skip vision tensors
  2088. elif self.hf_arch == "LlamaModel":
  2089. name = "model." + name
  2090. elif name.startswith("model.text_model"):
  2091. name = name.replace("text_model.", "") # for SmolVLM
  2092. elif name.startswith("language_model."):
  2093. name = name.replace("language_model.", "") # for the rest
  2094. if self.undo_permute:
  2095. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2096. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2097. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2098. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2099. # process the experts separately
  2100. if name.find("block_sparse_moe.experts") != -1:
  2101. n_experts = self.hparams["num_local_experts"]
  2102. assert bid is not None
  2103. if self._experts is None:
  2104. self._experts = [{} for _ in range(self.block_count)]
  2105. self._experts[bid][name] = data_torch
  2106. if len(self._experts[bid]) >= n_experts * 3:
  2107. tensors: list[tuple[str, Tensor]] = []
  2108. # merge the experts into a single 3d tensor
  2109. for wid in ["w1", "w2", "w3"]:
  2110. datas: list[Tensor] = []
  2111. for xid in range(n_experts):
  2112. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  2113. datas.append(self._experts[bid][ename])
  2114. del self._experts[bid][ename]
  2115. data_torch = torch.stack(datas, dim=0)
  2116. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  2117. new_name = self.map_tensor_name(merged_name)
  2118. tensors.append((new_name, data_torch))
  2119. return tensors
  2120. else:
  2121. return []
  2122. return [(self.map_tensor_name(name), data_torch)]
  2123. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2124. if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters):
  2125. if rope_params.get("rope_type", '').lower() == "llama3":
  2126. base = rope_params.get("rope_theta", 10000.0)
  2127. if (dim := self.hparams.get("head_dim")) is None:
  2128. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2129. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  2130. factor = rope_params.get("factor", 8.0)
  2131. low_freq_factor = rope_params.get("low_freq_factor", 1.0)
  2132. high_freq_factor = rope_params.get("high_freq_factor", 4.0)
  2133. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2134. low_freq_wavelen = old_context_len / low_freq_factor
  2135. high_freq_wavelen = old_context_len / high_freq_factor
  2136. # assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
  2137. rope_factors = []
  2138. for freq in freqs:
  2139. wavelen = 2 * math.pi / freq
  2140. if wavelen < high_freq_wavelen:
  2141. rope_factors.append(1)
  2142. elif wavelen > low_freq_wavelen:
  2143. rope_factors.append(factor)
  2144. else:
  2145. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2146. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2147. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2148. def prepare_tensors(self):
  2149. super().prepare_tensors()
  2150. if self._experts is not None:
  2151. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2152. experts = [k for d in self._experts for k in d.keys()]
  2153. if len(experts) > 0:
  2154. raise ValueError(f"Unprocessed experts: {experts}")
  2155. @ModelBase.register("ArceeForCausalLM")
  2156. class ArceeModel(LlamaModel):
  2157. model_arch = gguf.MODEL_ARCH.ARCEE
  2158. def set_gguf_parameters(self):
  2159. super().set_gguf_parameters()
  2160. self._try_set_pooling_type()
  2161. @ModelBase.register("AfmoeForCausalLM")
  2162. class AfmoeModel(LlamaModel):
  2163. model_arch = gguf.MODEL_ARCH.AFMOE
  2164. def set_gguf_parameters(self):
  2165. super().set_gguf_parameters()
  2166. # MoE parameters
  2167. if (n_experts := self.hparams.get("num_experts")) is not None:
  2168. self.gguf_writer.add_expert_count(n_experts)
  2169. if (n_shared_experts := self.hparams.get("num_shared_experts")) is not None:
  2170. self.gguf_writer.add_expert_shared_count(n_shared_experts)
  2171. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2172. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2173. if (n_dense_layers := self.hparams.get("num_dense_layers")) is not None:
  2174. self.gguf_writer.add_leading_dense_block_count(n_dense_layers)
  2175. # Route normalization and scaling
  2176. if (route_norm := self.hparams.get("route_norm")) is not None:
  2177. self.gguf_writer.add_expert_weights_norm(route_norm)
  2178. if (route_scale := self.hparams.get("route_scale")) is not None:
  2179. self.gguf_writer.add_expert_weights_scale(route_scale)
  2180. # Sliding window attention
  2181. if (sliding_window := self.hparams.get("sliding_window")) is not None:
  2182. self.gguf_writer.add_sliding_window(sliding_window)
  2183. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2184. # Handle expert weights - they're already merged in the HF format
  2185. # process the experts separately
  2186. if name.find("mlp.experts") != -1:
  2187. n_experts = self.hparams["num_experts"]
  2188. assert bid is not None
  2189. if self._experts is None:
  2190. self._experts = [{} for _ in range(self.block_count)]
  2191. self._experts[bid][name] = data_torch
  2192. if len(self._experts[bid]) >= n_experts * 3:
  2193. tensors: list[tuple[str, Tensor]] = []
  2194. # merge the experts into a single 3d tensor
  2195. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  2196. datas: list[Tensor] = []
  2197. for xid in range(n_experts):
  2198. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2199. datas.append(self._experts[bid][ename_to_retrieve])
  2200. del self._experts[bid][ename_to_retrieve]
  2201. data_torch = torch.stack(datas, dim=0)
  2202. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2203. new_name = self.map_tensor_name(merged_name)
  2204. tensors.append((new_name, data_torch))
  2205. return tensors
  2206. else:
  2207. return []
  2208. if name.endswith(".expert_bias"):
  2209. name = name.replace(".expert_bias", ".expert_bias.bias")
  2210. return [(self.map_tensor_name(name), data_torch)]
  2211. @ModelBase.register(
  2212. "LlavaForConditionalGeneration", # pixtral
  2213. "Mistral3ForConditionalGeneration", # mistral small 3.1
  2214. )
  2215. class LlavaVisionModel(MmprojModel):
  2216. img_break_tok_id = -1
  2217. use_break_tok = True
  2218. def __init__(self, *args, **kwargs):
  2219. super().__init__(*args, **kwargs)
  2220. if self.hparams.get("model_type") == "pixtral":
  2221. # layer_norm_eps is not in config.json, it is hard-coded in modeling_pixtral.py
  2222. self.hparams["layer_norm_eps"] = self.hparams.get("layer_norm_eps", 1e-5)
  2223. if self.use_break_tok:
  2224. self.img_break_tok_id = self.get_token_id("[IMG_BREAK]")
  2225. elif self.is_mistral_format:
  2226. # hparams is already vision config here so norm_eps is only defined in global_config.
  2227. self.hparams["norm_eps"] = self.global_config.get("norm_eps", None)
  2228. assert self.hparams["norm_eps"] is not None, "norm_eps not found in params.json"
  2229. if self.use_break_tok:
  2230. self.img_break_tok_id = self.find_vparam(["image_break_token_id"])
  2231. else:
  2232. raise ValueError(f"Unsupported model type: {self.hparams['model_type']}")
  2233. logger.info(f"Image break token id: {self.img_break_tok_id}")
  2234. def get_token_id(self, token: str) -> int:
  2235. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2236. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2237. added_tokens_decoder = json.load(f)['added_tokens_decoder']
  2238. for id_, token_data in added_tokens_decoder.items():
  2239. if token_data["content"] == token:
  2240. return int(id_)
  2241. raise ValueError(f"Token '{token}' not found in tokenizer config.")
  2242. def set_gguf_parameters(self):
  2243. super().set_gguf_parameters()
  2244. hparams = self.hparams
  2245. if hparams.get("model_type") == "pixtral":
  2246. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  2247. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  2248. # hidden_act
  2249. if hparams["hidden_act"] == "silu":
  2250. self.gguf_writer.add_vision_use_silu(True)
  2251. elif hparams["hidden_act"] == "gelu":
  2252. self.gguf_writer.add_vision_use_gelu(True)
  2253. else:
  2254. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  2255. # spatial_merge_size
  2256. if "spatial_merge_size" in self.global_config:
  2257. self.gguf_writer.add_vision_spatial_merge_size(self.global_config["spatial_merge_size"])
  2258. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2259. del bid # unused
  2260. n_head = (
  2261. self.hparams["num_attention_heads"] if not self.is_mistral_format else self.find_vparam(["num_attention_heads"])
  2262. )
  2263. n_kv_head = n_head
  2264. valid_prefixes = (
  2265. "multi_modal_projector.",
  2266. "vision_tower.",
  2267. "vision_encoder.",
  2268. "vision_language_adapter.",
  2269. "patch_merger.",
  2270. "pre_mm_projector_norm",
  2271. )
  2272. if any(name.startswith(prefix) for prefix in valid_prefixes):
  2273. # process vision tensors
  2274. if name.endswith(("q_proj.weight", "q_proj.bias")) and not self.is_mistral_format:
  2275. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2276. if name.endswith(("k_proj.weight", "k_proj.bias")) and not self.is_mistral_format:
  2277. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2278. return [(self.map_tensor_name(name), data_torch)]
  2279. embed_key = "embed_tokens.weight" if not self.is_mistral_format else "tok_embeddings.weight"
  2280. if self.img_break_tok_id > 0 and embed_key in name:
  2281. logger.info(f"Extracting [IMG_BREAK] token embedding from {name}")
  2282. # for pixtral model, we need to extract the [IMG_BREAK] token embedding
  2283. img_break_embd = data_torch[self.img_break_tok_id]
  2284. name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK]
  2285. return [(self.map_tensor_name(name), img_break_embd)]
  2286. return [] # skip other tensors
  2287. @ModelBase.register("Idefics3ForConditionalGeneration", "SmolVLMForConditionalGeneration")
  2288. class SmolVLMModel(MmprojModel):
  2289. def __init__(self, *args, **kwargs):
  2290. super().__init__(*args, **kwargs)
  2291. if self.hparams["model_type"] == "smolvlm_vision":
  2292. # fix for SmolVLM2, missing some keys in config.json
  2293. # default values are taken from transformers code
  2294. self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1152)
  2295. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
  2296. self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 3072)
  2297. def set_gguf_parameters(self):
  2298. super().set_gguf_parameters()
  2299. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.IDEFICS3)
  2300. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  2301. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
  2302. self.gguf_writer.add_vision_use_gelu(True)
  2303. # Add the preprocessor longest edge size
  2304. preproc_image_size = self.preprocessor_config.get("size", {}).get("longest_edge", self.image_size)
  2305. self.gguf_writer.add_vision_preproc_image_size(preproc_image_size)
  2306. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2307. if ".embeddings." in name:
  2308. return gguf.GGMLQuantizationType.F32
  2309. return super().tensor_force_quant(name, new_name, bid, n_dims)
  2310. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2311. del bid # unused
  2312. is_vision_tensor = "vision_tower" in name or "vision_model" in name or "model.connector" in name
  2313. if is_vision_tensor:
  2314. return [(self.map_tensor_name(name), data_torch)]
  2315. return [] # skip other tensors
  2316. @ModelBase.register(
  2317. "Llama4ForConditionalGeneration",
  2318. "Llama4ForCausalLM",
  2319. )
  2320. class Llama4Model(LlamaModel):
  2321. model_arch = gguf.MODEL_ARCH.LLAMA4
  2322. undo_permute = False
  2323. def __init__(self, *args, **kwargs):
  2324. super().__init__(*args, **kwargs)
  2325. # IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
  2326. self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
  2327. self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
  2328. def set_vocab(self):
  2329. self._set_vocab_gpt2()
  2330. def set_gguf_parameters(self):
  2331. super().set_gguf_parameters()
  2332. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
  2333. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
  2334. if "layer_types" in self.hparams:
  2335. if all(lt == "full_attention" for lt in self.hparams["layer_types"]):
  2336. # all layers are full attention (for MobileLLM), disable swa
  2337. self.gguf_writer.add_sliding_window(0)
  2338. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  2339. if name.startswith("language_model."):
  2340. name = name.replace("language_model.", "")
  2341. # split the gate_up into gate and up
  2342. if "gate_up_proj" in name:
  2343. name_up = name.replace("gate_up_proj", "up_proj.weight")
  2344. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  2345. dim_half = data_torch.shape[-1] // 2
  2346. gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
  2347. return [
  2348. (self.map_tensor_name(name_gate), gate_proj_weight),
  2349. (self.map_tensor_name(name_up), up_proj_weight)
  2350. ]
  2351. if name.endswith("down_proj"):
  2352. name += ".weight"
  2353. data_torch = data_torch.transpose(-1, -2)
  2354. if "multi_modal_projector" in name or "vision_model" in name:
  2355. return []
  2356. return super().modify_tensors(data_torch, name, bid)
  2357. @ModelBase.register("Llama4ForConditionalGeneration")
  2358. class Llama4VisionModel(MmprojModel):
  2359. def set_gguf_parameters(self):
  2360. super().set_gguf_parameters()
  2361. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LLAMA4)
  2362. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams["norm_eps"])
  2363. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / self.hparams["pixel_shuffle_ratio"]))
  2364. assert self.hparams["hidden_act"] == "gelu"
  2365. self.gguf_writer.add_vision_use_gelu(True)
  2366. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2367. del bid # unused
  2368. if "multi_modal_projector" in name or "vision_model" in name:
  2369. # process vision tensors
  2370. if "positional_embedding_vlm" in name and ".weight" not in name:
  2371. name += ".weight"
  2372. if "multi_modal_projector.linear_1" in name:
  2373. # despite the name with number postfix, this is a single fully connected layer
  2374. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_MMPROJ_FC] + '.weight', data_torch)]
  2375. return [(self.map_tensor_name(name), data_torch)]
  2376. return []
  2377. @ModelBase.register("Mistral3ForConditionalGeneration")
  2378. class Mistral3Model(LlamaModel):
  2379. model_arch = gguf.MODEL_ARCH.MISTRAL3
  2380. def __init__(self, *args, **kwargs):
  2381. super().__init__(*args, **kwargs)
  2382. # for compatibility, we use LLAMA arch for older models
  2383. # TODO: remove this once everyone has migrated to newer version of llama.cpp
  2384. if self.hparams.get("model_type") != "ministral3":
  2385. self.model_arch = gguf.MODEL_ARCH.LLAMA
  2386. self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[self.model_arch]
  2387. self.gguf_writer.add_architecture()
  2388. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  2389. def set_gguf_parameters(self):
  2390. super().set_gguf_parameters()
  2391. rope_params = self.rope_parameters
  2392. if self.hparams.get("model_type") == "ministral3":
  2393. assert rope_params, "ministral3 must have 'rope_parameters' config"
  2394. assert rope_params["rope_type"] == "yarn", "ministral3 rope_type must be 'yarn'"
  2395. self.gguf_writer.add_rope_scaling_yarn_log_mul(rope_params["mscale_all_dim"])
  2396. self.gguf_writer.add_attn_temperature_scale(rope_params["llama_4_scaling_beta"])
  2397. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  2398. name = name.replace("language_model.", "")
  2399. if "multi_modal_projector" in name or "vision_tower" in name:
  2400. return []
  2401. return super().modify_tensors(data_torch, name, bid)
  2402. @ModelBase.register("DeciLMForCausalLM")
  2403. class DeciModel(TextModel):
  2404. model_arch = gguf.MODEL_ARCH.DECI
  2405. @staticmethod
  2406. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  2407. # DeciLM-specific code
  2408. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  2409. return DeciModel._find_multiple(intermediate_size, 256)
  2410. @staticmethod
  2411. def _find_multiple(n: int, k: int) -> int:
  2412. # DeciLM-specific code
  2413. if n % k == 0:
  2414. return n
  2415. return n + k - (n % k)
  2416. def __init__(self, *args, **kwargs):
  2417. super().__init__(*args, **kwargs)
  2418. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2419. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  2420. assert self.block_count == len(_block_configs)
  2421. self._num_kv_heads = list()
  2422. self._num_heads = list()
  2423. _ffn_multipliers = list()
  2424. # ***linear attention layer***
  2425. # if n_heads_in_group is None and replace_with_linear is True
  2426. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  2427. # ***attention-free layer***
  2428. # if n_heads_in_group is None and replace_with_linear is False
  2429. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  2430. # ***normal attention-layer***
  2431. # if n_heads_in_group is not None, then
  2432. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  2433. # _num_heads[il] is num_attention_head
  2434. # ***dummy layer*** for nemotron 253B
  2435. # if n_heads_in_group is None and ffn_mult is None
  2436. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0 and _ffn_dims is 0
  2437. for il in range(len(_block_configs)):
  2438. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  2439. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  2440. self._num_kv_heads.append(0)
  2441. self._num_heads.append(self.hparams["num_attention_heads"])
  2442. else:
  2443. self._num_kv_heads.append(0)
  2444. self._num_heads.append(0)
  2445. else:
  2446. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  2447. self._num_heads.append(self.hparams["num_attention_heads"])
  2448. if _block_configs[il]["ffn"]["ffn_mult"] is None: # dummy layer
  2449. _ffn_multipliers.append(0.0)
  2450. else:
  2451. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  2452. assert self.block_count == len(self._num_kv_heads)
  2453. assert self.block_count == len(self._num_heads)
  2454. assert self.block_count == len(_ffn_multipliers)
  2455. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  2456. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  2457. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  2458. self._ffn_dims: list[int] = [
  2459. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  2460. for multiplier in _ffn_multipliers
  2461. ]
  2462. def set_vocab(self):
  2463. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  2464. # eos_token from '|eot_id|' to '|end_of_text|'
  2465. if self.hparams.get("vocab_size", 128256) == 128256:
  2466. tokens, toktypes, tokpre = self.get_vocab_base()
  2467. self.gguf_writer.add_tokenizer_model("gpt2")
  2468. self.gguf_writer.add_tokenizer_pre(tokpre)
  2469. self.gguf_writer.add_token_list(tokens)
  2470. self.gguf_writer.add_token_types(toktypes)
  2471. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  2472. special_vocab.add_to_gguf(self.gguf_writer)
  2473. else:
  2474. # DeciLM-7B
  2475. self._set_vocab_llama_hf()
  2476. def set_gguf_parameters(self):
  2477. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2478. assert self.block_count == len(self._num_kv_heads)
  2479. assert self.block_count == len(self._num_heads)
  2480. assert self.block_count == len(self._ffn_dims)
  2481. if (rope_theta := self.rope_parameters.get("rope_theta")) is not None:
  2482. self.gguf_writer.add_rope_freq_base(rope_theta)
  2483. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2484. self.gguf_writer.add_head_count(self._num_heads)
  2485. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  2486. self.gguf_writer.add_block_count(self.block_count)
  2487. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2488. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2489. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2490. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2491. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2492. self.gguf_writer.add_file_type(self.ftype)
  2493. else: # DeciLM-7B
  2494. super().set_gguf_parameters()
  2495. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  2496. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  2497. assert self.block_count == len(self._num_kv_heads)
  2498. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2499. hparams = self.hparams
  2500. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2501. if (rope_dim := hparams.get("head_dim")) is None:
  2502. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2503. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2504. @staticmethod
  2505. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2506. if n_head_kv is not None and n_head != n_head_kv:
  2507. n_head = n_head_kv
  2508. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2509. .swapaxes(1, 2)
  2510. .reshape(weights.shape))
  2511. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2512. n_head = self.hparams["num_attention_heads"]
  2513. if bid is not None:
  2514. if "num_key_value_heads_per_layer" in self.hparams:
  2515. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  2516. elif "block_configs" in self.hparams:
  2517. n_kv_head = self._num_kv_heads[bid]
  2518. n_head = self._num_heads[bid]
  2519. else:
  2520. n_kv_head = self.hparams.get("num_key_value_heads")
  2521. else:
  2522. n_kv_head = self.hparams.get("num_key_value_heads")
  2523. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2524. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  2525. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2526. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  2527. return [(self.map_tensor_name(name), data_torch)]
  2528. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2529. if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters):
  2530. if rope_params.get("rope_type", '').lower() == "llama3":
  2531. base = rope_params.get("rope_theta", 10000.0)
  2532. if (dim := self.hparams.get("head_dim")) is None:
  2533. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2534. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  2535. factor = rope_params.get("factor", 8.0)
  2536. low_freq_factor = rope_params.get("low_freq_factor", 1.0)
  2537. high_freq_factor = rope_params.get("high_freq_factor", 4.0)
  2538. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2539. low_freq_wavelen = old_context_len / low_freq_factor
  2540. high_freq_wavelen = old_context_len / high_freq_factor
  2541. assert low_freq_wavelen != high_freq_wavelen
  2542. rope_factors = []
  2543. for freq in freqs:
  2544. wavelen = 2 * math.pi / freq
  2545. if wavelen < high_freq_wavelen:
  2546. rope_factors.append(1)
  2547. elif wavelen > low_freq_wavelen:
  2548. rope_factors.append(factor)
  2549. else:
  2550. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2551. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2552. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2553. def prepare_tensors(self):
  2554. super().prepare_tensors()
  2555. @ModelBase.register("BitnetForCausalLM")
  2556. class BitnetModel(TextModel):
  2557. model_arch = gguf.MODEL_ARCH.BITNET
  2558. def set_vocab(self):
  2559. self._set_vocab_sentencepiece()
  2560. def set_gguf_parameters(self):
  2561. super().set_gguf_parameters()
  2562. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2563. self.gguf_writer.add_rope_scaling_factor(1.0)
  2564. def weight_quant(self, weight: Tensor) -> Tensor:
  2565. dtype = weight.dtype
  2566. weight = weight.float()
  2567. scale = weight.abs().mean().clamp(min=1e-5)
  2568. iscale = 1 / scale
  2569. # TODO: multiply by the scale directly instead of inverting it twice
  2570. # (this is also unnecessarily doubly inverted upstream)
  2571. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  2572. result = (weight * iscale).round().clamp(-1, 1) / iscale
  2573. return result.type(dtype)
  2574. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2575. new_name = self.map_tensor_name(name)
  2576. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  2577. gguf.MODEL_TENSOR.ATTN_Q,
  2578. gguf.MODEL_TENSOR.ATTN_K,
  2579. gguf.MODEL_TENSOR.ATTN_V,
  2580. gguf.MODEL_TENSOR.ATTN_OUT,
  2581. gguf.MODEL_TENSOR.FFN_UP,
  2582. gguf.MODEL_TENSOR.FFN_DOWN,
  2583. gguf.MODEL_TENSOR.FFN_GATE,
  2584. ]):
  2585. # transform weight into 1/0/-1 (in fp32)
  2586. data_torch = self.weight_quant(data_torch)
  2587. yield (new_name, data_torch)
  2588. @ModelBase.register("GrokForCausalLM", "Grok1ForCausalLM")
  2589. class GrokModel(TextModel):
  2590. model_arch = gguf.MODEL_ARCH.GROK
  2591. def set_vocab(self):
  2592. if (self.dir_model / 'tokenizer.model').is_file():
  2593. self._set_vocab_sentencepiece()
  2594. return
  2595. if not (self.dir_model / 'tokenizer.json').is_file() or not (self.dir_model / 'chat_template.jinja').is_file():
  2596. logger.error('Error: Missing vocab and chat template, download files from https://huggingface.co/alvarobartt/grok-2-tokenizer')
  2597. sys.exit(1)
  2598. self._set_vocab_gpt2()
  2599. def __init__(self, *args, **kwargs):
  2600. super().__init__(*args, **kwargs)
  2601. def set_gguf_parameters(self):
  2602. super().set_gguf_parameters()
  2603. self.gguf_writer.add_attn_logit_softcapping(self.hparams.get("attn_logit_softcapping", 30.0))
  2604. self.gguf_writer.add_router_logit_softcapping(self.hparams.get("router_logit_softcapping", 30.0))
  2605. if (final_logit_softcap := self.hparams.get("final_logit_softcapping")):
  2606. self.gguf_writer.add_final_logit_softcapping(final_logit_softcap)
  2607. if (rope_dim := self.hparams.get("head_dim")) is None:
  2608. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2609. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2610. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2611. # Treat "original" as "yarn", seems to have been a mistake
  2612. if self.hparams.get("rope_type") in ("yarn", "original"):
  2613. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2614. self.gguf_writer.add_rope_scaling_factor(self.hparams["scaling_factor"])
  2615. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["original_max_position_embeddings"])
  2616. self.gguf_writer.add_rope_scaling_yarn_ext_factor(self.hparams["extrapolation_factor"])
  2617. self.gguf_writer.add_rope_scaling_yarn_attn_factor(self.hparams["attn_factor"])
  2618. self.gguf_writer.add_rope_scaling_yarn_beta_fast(self.hparams["beta_fast"])
  2619. self.gguf_writer.add_rope_scaling_yarn_beta_slow(self.hparams["beta_slow"])
  2620. if temp_len := self.hparams.get("attn_temperature_len"):
  2621. self.gguf_writer.add_attn_temperature_length(temp_len)
  2622. self.gguf_writer.add_attn_output_scale(self.hparams.get("attn_output_multiplier", rope_dim**-0.5))
  2623. self.gguf_writer.add_embedding_scale(self.hparams["embedding_multiplier_scale"])
  2624. self.gguf_writer.add_logit_scale(self.hparams["output_multiplier_scale"])
  2625. _experts: list[dict[str, list[Tensor]]] | None = None
  2626. _cur_expert = ""
  2627. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2628. tensors: list[tuple[str, Tensor]] = []
  2629. is_expert = ".moe." in name or ".block_sparse_moe.experts." in name
  2630. if not is_expert:
  2631. tensors.append((self.map_tensor_name(name), data_torch))
  2632. # process the experts separately
  2633. if is_expert or self._cur_expert:
  2634. n_experts = self.hparams["num_local_experts"]
  2635. assert bid is not None
  2636. if self._experts is None:
  2637. self._experts = [{} for _ in range(self.block_count)]
  2638. # concatenate split tensors
  2639. if name in self._experts[bid]:
  2640. self._cur_expert = name
  2641. self._experts[bid][name].append(data_torch)
  2642. return []
  2643. elif is_expert:
  2644. self._cur_expert = name
  2645. self._experts[bid][name] = [data_torch]
  2646. return []
  2647. else:
  2648. self._cur_expert = ""
  2649. for bid in range(self.block_count):
  2650. if len(self._experts[bid]) >= n_experts * 3:
  2651. # merge the experts into a single 3d tensor
  2652. for wid in [("linear", "w1", 0), ("linear_1", "w2", 1), ("linear_v", "w3", 0)]:
  2653. datas: list[Tensor] = []
  2654. for xid in range(n_experts):
  2655. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid[0]}.weight"
  2656. if ename not in self._experts[bid]:
  2657. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid[1]}.weight"
  2658. tensor_list = self._experts[bid][ename]
  2659. datas.append(torch.cat(tensor_list, dim=wid[2]) if len(tensor_list) > 1 else tensor_list[0])
  2660. del self._experts[bid][ename]
  2661. data_torch = torch.stack(datas, dim=0)
  2662. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid[0]}.weight"
  2663. new_name = self.map_tensor_name(merged_name)
  2664. yield (new_name, data_torch)
  2665. yield from tensors
  2666. @ModelBase.register("DbrxForCausalLM")
  2667. class DbrxModel(TextModel):
  2668. model_arch = gguf.MODEL_ARCH.DBRX
  2669. def set_gguf_parameters(self):
  2670. ffn_config = self.hparams["ffn_config"]
  2671. attn_config = self.hparams["attn_config"]
  2672. self.gguf_writer.add_block_count(self.block_count)
  2673. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  2674. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2675. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  2676. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  2677. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  2678. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  2679. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  2680. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  2681. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  2682. self.gguf_writer.add_layer_norm_eps(1e-5)
  2683. self.gguf_writer.add_file_type(self.ftype)
  2684. logger.info(f"gguf: file type = {self.ftype}")
  2685. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2686. del bid # unused
  2687. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  2688. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  2689. n_embd = self.hparams["d_model"]
  2690. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  2691. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  2692. # But llama.cpp moe graph works differently
  2693. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  2694. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  2695. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2696. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  2697. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2698. experts = False
  2699. for exp_tensor_name in exp_tensor_names.keys():
  2700. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  2701. experts = True
  2702. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  2703. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  2704. data_torch = data_torch.permute(*permute_tensor)
  2705. break
  2706. # map tensor names
  2707. # In MoE models the ffn tensors are typically most of the model weights,
  2708. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  2709. # Every other model has the weight names ending in .weight,
  2710. # let's assume that is the convention which is not the case for dbrx:
  2711. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  2712. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  2713. return [(new_name, data_torch)]
  2714. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  2715. del name, new_name, bid # unused
  2716. return n_dims > 1
  2717. @ModelBase.register("MiniCPMForCausalLM")
  2718. class MiniCPMModel(TextModel):
  2719. model_arch = gguf.MODEL_ARCH.MINICPM
  2720. def set_gguf_parameters(self):
  2721. super().set_gguf_parameters()
  2722. embedding_scale = float(self.hparams["scale_emb"])
  2723. self.gguf_writer.add_embedding_scale(embedding_scale)
  2724. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  2725. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  2726. self.gguf_writer.add_residual_scale(residual_scale)
  2727. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  2728. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  2729. self.gguf_writer.add_logit_scale(logit_scale)
  2730. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  2731. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2732. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2733. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2734. if rope_scaling is not None:
  2735. long_factors = rope_scaling.get('long_factor', None)
  2736. short_factors = rope_scaling.get('short_factor', None)
  2737. if long_factors is None or short_factors is None:
  2738. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2739. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2740. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2741. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2742. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2743. def set_vocab(self):
  2744. self._set_vocab_sentencepiece()
  2745. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2746. del bid # unused
  2747. n_head = self.hparams["num_attention_heads"]
  2748. n_kv_head = self.hparams.get("num_key_value_heads")
  2749. # HF models permute some of the tensors, so we need to undo that
  2750. if name.endswith(("q_proj.weight")):
  2751. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2752. if name.endswith(("k_proj.weight")):
  2753. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2754. return [(self.map_tensor_name(name), data_torch)]
  2755. @ModelBase.register("MiniCPM3ForCausalLM")
  2756. class MiniCPM3Model(TextModel):
  2757. model_arch = gguf.MODEL_ARCH.MINICPM3
  2758. def set_gguf_parameters(self):
  2759. hparams = self.hparams
  2760. self.gguf_writer.add_file_type(self.ftype)
  2761. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2762. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2763. self.gguf_writer.add_block_count(self.block_count)
  2764. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2765. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2766. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  2767. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2768. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2769. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2770. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2771. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2772. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2773. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2774. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2775. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2776. if rope_scaling is not None:
  2777. rope_dims = self.hparams["qk_rope_head_dim"]
  2778. long_factors = rope_scaling.get('long_factor', None)
  2779. short_factors = rope_scaling.get('short_factor', None)
  2780. if long_factors is None or short_factors is None:
  2781. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2782. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2783. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2784. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2785. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2786. def set_vocab(self):
  2787. self._set_vocab_sentencepiece()
  2788. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  2789. if n_kv_head is not None and n_head != n_kv_head:
  2790. n_head //= n_kv_head
  2791. return (
  2792. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2793. .swapaxes(1, 2)
  2794. .reshape(weights.shape)
  2795. )
  2796. @ModelBase.register("QWenLMHeadModel")
  2797. class QwenModel(TextModel):
  2798. model_arch = gguf.MODEL_ARCH.QWEN
  2799. @staticmethod
  2800. def token_bytes_to_string(b):
  2801. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2802. byte_encoder = bytes_to_unicode()
  2803. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2804. @staticmethod
  2805. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2806. parts = [bytes([b]) for b in token]
  2807. while True:
  2808. min_idx = None
  2809. min_rank = None
  2810. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2811. rank = mergeable_ranks.get(pair[0] + pair[1])
  2812. if rank is not None and (min_rank is None or rank < min_rank):
  2813. min_idx = i
  2814. min_rank = rank
  2815. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2816. break
  2817. assert min_idx is not None
  2818. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2819. return parts
  2820. def set_vocab(self):
  2821. self._set_vocab_qwen()
  2822. @ModelBase.register("Qwen2Model", "Qwen2ForCausalLM", "Qwen2AudioForConditionalGeneration", "KORMoForCausalLM")
  2823. class Qwen2Model(TextModel):
  2824. model_arch = gguf.MODEL_ARCH.QWEN2
  2825. def set_vocab(self):
  2826. try:
  2827. self._set_vocab_sentencepiece()
  2828. except FileNotFoundError:
  2829. self._set_vocab_gpt2()
  2830. def set_gguf_parameters(self):
  2831. super().set_gguf_parameters()
  2832. self._try_set_pooling_type()
  2833. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2834. if self.hf_arch == "Qwen2Model":
  2835. name = f"model.{name}" # map to Qwen2ForCausalLM tensors
  2836. if "language_model." in name:
  2837. name = name.replace("language_model.", "") # for InternVL
  2838. if name.startswith("mlp") or name.startswith("multi_modal_projector") \
  2839. or name.startswith("vision_model") or name.startswith("audio_tower") \
  2840. or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector"):
  2841. # skip vision and audio tensors
  2842. return []
  2843. yield from super().modify_tensors(data_torch, name, bid)
  2844. @ModelBase.register("DreamModel")
  2845. class DreamModel(TextModel):
  2846. model_arch = gguf.MODEL_ARCH.DREAM
  2847. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2848. tokens: list[str] = []
  2849. toktypes: list[int] = []
  2850. from transformers import AutoTokenizer
  2851. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2852. vocab_dict = tokenizer.get_vocab()
  2853. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2854. assert max(vocab_dict.values()) < vocab_size
  2855. tokpre = self.get_vocab_base_pre(tokenizer)
  2856. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2857. added_vocab = tokenizer.get_added_vocab()
  2858. for i in range(vocab_size):
  2859. if i not in reverse_vocab:
  2860. tokens.append(f"[PAD{i}]")
  2861. toktypes.append(gguf.TokenType.UNUSED)
  2862. elif reverse_vocab[i] in added_vocab:
  2863. tokens.append(reverse_vocab[i])
  2864. # Check if it's a special token - treat special tokens as CONTROL tokens
  2865. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2866. if tokenizer.added_tokens_decoder[i].special:
  2867. toktypes.append(gguf.TokenType.CONTROL)
  2868. else:
  2869. toktypes.append(gguf.TokenType.USER_DEFINED)
  2870. else:
  2871. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2872. toktypes.append(gguf.TokenType.CONTROL)
  2873. else:
  2874. tokens.append(reverse_vocab[i])
  2875. toktypes.append(gguf.TokenType.NORMAL)
  2876. return tokens, toktypes, tokpre
  2877. def set_vocab(self):
  2878. try:
  2879. self._set_vocab_sentencepiece()
  2880. except FileNotFoundError:
  2881. self._set_vocab_gpt2()
  2882. def set_gguf_parameters(self):
  2883. super().set_gguf_parameters()
  2884. self._try_set_pooling_type()
  2885. # Dream models use non-causal attention for diffusion
  2886. self.gguf_writer.add_causal_attention(False)
  2887. # Add Dream-specific parameters
  2888. mask_token_id = self.hparams.get("mask_token_id")
  2889. if mask_token_id is not None:
  2890. self.gguf_writer.add_mask_token_id(mask_token_id)
  2891. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2892. # Dream model tensors should be mapped directly since it's the base model
  2893. yield from super().modify_tensors(data_torch, name, bid)
  2894. @ModelBase.register("LLaDAModelLM")
  2895. class LLaDAModel(TextModel):
  2896. model_arch = gguf.MODEL_ARCH.LLADA
  2897. undo_permute = True
  2898. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2899. tokens: list[str] = []
  2900. toktypes: list[int] = []
  2901. from transformers import AutoTokenizer
  2902. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2903. vocab_dict = tokenizer.get_vocab()
  2904. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2905. assert max(vocab_dict.values()) < vocab_size
  2906. tokpre = self.get_vocab_base_pre(tokenizer)
  2907. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2908. added_vocab = tokenizer.get_added_vocab()
  2909. for i in range(vocab_size):
  2910. if i not in reverse_vocab:
  2911. tokens.append(f"[PAD{i}]")
  2912. toktypes.append(gguf.TokenType.UNUSED)
  2913. elif reverse_vocab[i] in added_vocab:
  2914. tokens.append(reverse_vocab[i])
  2915. # Check if it's a special token - treat special tokens as CONTROL tokens
  2916. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2917. if tokenizer.added_tokens_decoder[i].special:
  2918. toktypes.append(gguf.TokenType.CONTROL)
  2919. else:
  2920. toktypes.append(gguf.TokenType.USER_DEFINED)
  2921. else:
  2922. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2923. toktypes.append(gguf.TokenType.CONTROL)
  2924. else:
  2925. tokens.append(reverse_vocab[i])
  2926. toktypes.append(gguf.TokenType.NORMAL)
  2927. return tokens, toktypes, tokpre
  2928. def set_vocab(self):
  2929. self._set_vocab_gpt2()
  2930. # LLaDA specific parameters
  2931. self.gguf_writer.add_add_bos_token(True)
  2932. def set_gguf_parameters(self):
  2933. super().set_gguf_parameters()
  2934. self._try_set_pooling_type()
  2935. # Add parameters similar to LlamaModel
  2936. hparams = self.hparams
  2937. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2938. if (rope_dim := hparams.get("head_dim")) is None:
  2939. n_heads = hparams.get("num_attention_heads", hparams.get("n_heads"))
  2940. rope_dim = hparams.get("hidden_size", hparams.get("d_model")) // n_heads
  2941. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2942. # Set context length for LLaDA
  2943. context_length = self.hparams.get("max_sequence_length", 4096)
  2944. self.gguf_writer.add_context_length(context_length)
  2945. # Set embedding length (dimension size)
  2946. embedding_length = self.hparams.get("d_model", 4096)
  2947. self.gguf_writer.add_embedding_length(embedding_length)
  2948. # Set feed forward length (MLP hidden size)
  2949. feed_forward_length = self.hparams.get("mlp_hidden_size", 12288)
  2950. self.gguf_writer.add_feed_forward_length(feed_forward_length)
  2951. # LLaDA models use non-causal attention for diffusion, similar to Dream
  2952. self.gguf_writer.add_causal_attention(False)
  2953. # LLaDA models don't shift their logits
  2954. self.gguf_writer.add_diffusion_shift_logits(False)
  2955. @staticmethod
  2956. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2957. if n_head_kv is not None and n_head != n_head_kv:
  2958. n_head = n_head_kv
  2959. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2960. .swapaxes(1, 2)
  2961. .reshape(weights.shape))
  2962. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2963. n_head = self.hparams.get("num_attention_heads", self.hparams.get("n_heads"))
  2964. n_kv_head = self.hparams.get("num_key_value_heads", self.hparams.get("n_kv_heads"))
  2965. if self.undo_permute:
  2966. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2967. data_torch = LLaDAModel.permute(data_torch, n_head, n_head)
  2968. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2969. data_torch = LLaDAModel.permute(data_torch, n_head, n_kv_head)
  2970. # LLaDA model tensors should be mapped directly since it's the base model
  2971. yield from super().modify_tensors(data_torch, name, bid)
  2972. @ModelBase.register("Ernie4_5_ForCausalLM", "Ernie4_5ForCausalLM")
  2973. class Ernie4_5Model(TextModel):
  2974. model_arch = gguf.MODEL_ARCH.ERNIE4_5
  2975. def set_vocab(self):
  2976. self._set_vocab_sentencepiece()
  2977. def set_gguf_parameters(self):
  2978. super().set_gguf_parameters()
  2979. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2980. num_heads = self.hparams["num_attention_heads"]
  2981. num_kv_heads = self.hparams["num_key_value_heads"]
  2982. if (head_dim := self.hparams.get("head_dim")) is None:
  2983. head_dim = self.hparams["hidden_size"] // num_heads
  2984. if "ernie." in name:
  2985. name = name.replace("ernie.", "model.")
  2986. # split the qkv weights
  2987. # qkv_proj shape: [(num_heads + 2 * num_kv_heads) * head_dim, hidden_size]
  2988. if "qkv_proj" in name:
  2989. name_q = name.replace("qkv_proj.weight", "q_proj.weight")
  2990. name_k = name.replace("qkv_proj.weight", "k_proj.weight")
  2991. name_v = name.replace("qkv_proj.weight", "v_proj.weight")
  2992. total_q_dim = num_heads * head_dim
  2993. total_k_dim = num_kv_heads * head_dim
  2994. total_v_dim = num_kv_heads * head_dim
  2995. q_proj_weight, k_proj_weight, v_proj_weight = data_torch.split([total_q_dim, total_k_dim, total_v_dim], dim=0)
  2996. return [
  2997. (self.map_tensor_name(name_q), q_proj_weight),
  2998. (self.map_tensor_name(name_k), k_proj_weight),
  2999. (self.map_tensor_name(name_v), v_proj_weight)
  3000. ]
  3001. # split the up_gate_proj into gate and up
  3002. # up_gate_proj shape: [2 * intermediate_size, hidden_size]
  3003. if "up_gate_proj" in name:
  3004. name_up = name.replace("up_gate_proj.weight", "up_proj.weight")
  3005. name_gate = name.replace("up_gate_proj.weight", "gate_proj.weight")
  3006. dim_half = data_torch.shape[0] // 2
  3007. gate_proj_weight, up_proj_weight = data_torch.split(dim_half, dim=0)
  3008. return [
  3009. (self.map_tensor_name(name_gate), gate_proj_weight),
  3010. (self.map_tensor_name(name_up), up_proj_weight)
  3011. ]
  3012. return [(self.map_tensor_name(name), data_torch)]
  3013. @ModelBase.register("Ernie4_5_MoeForCausalLM")
  3014. class Ernie4_5MoeModel(Ernie4_5Model):
  3015. model_arch = gguf.MODEL_ARCH.ERNIE4_5_MOE
  3016. _experts: list[dict[str, Tensor]] | None = None
  3017. def __init__(self, *args, **kwargs):
  3018. super().__init__(*args, **kwargs)
  3019. self._experts = [{} for _ in range(self.block_count)]
  3020. def set_gguf_parameters(self):
  3021. super().set_gguf_parameters()
  3022. self.gguf_writer.add_expert_count(self.hparams["moe_num_experts"])
  3023. self.gguf_writer.add_expert_used_count(self.hparams["moe_k"])
  3024. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["moe_layer_interval"])
  3025. self.gguf_writer.add_leading_dense_block_count(self.hparams["moe_layer_start_index"])
  3026. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  3027. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  3028. if (shared_expert_count := self.hparams.get('moe_num_shared_experts')) is not None:
  3029. self.gguf_writer.add_expert_shared_count(shared_expert_count)
  3030. if shared_expert_count > 0 and (shared_expert_intermediate_size := self.hparams.get('intermediate_size')) is not None and (num_key_value_heads := self.hparams.get('num_key_value_heads')) is not None:
  3031. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size // num_key_value_heads)
  3032. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3033. # Modify correction bias name as in DeepseekV2
  3034. if name.endswith("e_score_correction_bias"):
  3035. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  3036. # skip Multi-Token Prediction (MTP) layers (again, same as DeepseekV2)
  3037. match = re.match(r"model.mtp_block.(\d+)", name)
  3038. if match:
  3039. return []
  3040. # skip all other MTP tensors for now
  3041. match = re.match(r"model.mtp_emb_norm.(\d+)", name)
  3042. if match:
  3043. return []
  3044. match = re.match(r"model.mtp_hidden_norm.(\d+)", name)
  3045. if match:
  3046. return []
  3047. match = re.match(r"model.mtp_linear_proj.(\d+)", name)
  3048. if match:
  3049. return []
  3050. # process the experts separately
  3051. if name.find("mlp.experts") != -1:
  3052. n_experts = self.hparams["moe_num_experts"]
  3053. assert bid is not None
  3054. if self._experts is None:
  3055. self._experts = [{} for _ in range(self.block_count)]
  3056. self._experts[bid][name] = data_torch
  3057. if len(self._experts[bid]) >= n_experts * 3:
  3058. tensors: list[tuple[str, Tensor]] = []
  3059. # merge the experts into a single 3d tensor
  3060. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  3061. datas: list[Tensor] = []
  3062. for xid in range(n_experts):
  3063. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3064. datas.append(self._experts[bid][ename_to_retrieve])
  3065. del self._experts[bid][ename_to_retrieve]
  3066. data_torch = torch.stack(datas, dim=0)
  3067. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3068. new_name = self.map_tensor_name(merged_name)
  3069. tensors.append((new_name, data_torch))
  3070. return tensors
  3071. else:
  3072. return []
  3073. return [(self.map_tensor_name(name), data_torch)]
  3074. def prepare_tensors(self):
  3075. super().prepare_tensors()
  3076. if self._experts is not None:
  3077. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3078. experts = [k for d in self._experts for k in d.keys()]
  3079. if len(experts) > 0:
  3080. raise ValueError(f"Unprocessed experts: {experts}")
  3081. @ModelBase.register(
  3082. "Qwen2VLModel",
  3083. "Qwen2VLForConditionalGeneration",
  3084. "Qwen2_5_VLForConditionalGeneration",
  3085. "Qwen2_5OmniModel",
  3086. )
  3087. class Qwen2VLModel(TextModel):
  3088. model_arch = gguf.MODEL_ARCH.QWEN2VL
  3089. def set_gguf_parameters(self):
  3090. super().set_gguf_parameters()
  3091. def set_vocab(self):
  3092. try:
  3093. self._set_vocab_sentencepiece()
  3094. except FileNotFoundError:
  3095. self._set_vocab_gpt2()
  3096. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3097. del bid # unused
  3098. if name.startswith("thinker."):
  3099. name = name.replace("thinker.", "")
  3100. if name.startswith("visual") or name.startswith("audio") or \
  3101. name.startswith("talker") or name.startswith("token2wav"):
  3102. # skip multimodal tensors
  3103. return []
  3104. return [(self.map_tensor_name(name), data_torch)]
  3105. @ModelBase.register("Qwen2VLModel", "Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  3106. class Qwen2VLVisionModel(MmprojModel):
  3107. def __init__(self, *args, **kwargs):
  3108. super().__init__(*args, **kwargs)
  3109. assert self.hparams_vision is not None
  3110. self.hparams_vision["image_size"] = self.hparams_vision.get("image_size", 560)
  3111. # rename config.json values
  3112. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  3113. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  3114. if "embed_dim" in self.hparams_vision: # qwen2vl
  3115. self.hparams_vision["intermediate_size"] = self.hparams_vision.get("hidden_size")
  3116. self.hparams_vision["hidden_size"] = self.hparams_vision.get("embed_dim")
  3117. def set_gguf_parameters(self):
  3118. super().set_gguf_parameters()
  3119. assert self.hparams_vision is not None
  3120. hparams = self.hparams_vision
  3121. model_type = self.global_config['model_type']
  3122. if model_type == 'qwen2_vl':
  3123. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2VL)
  3124. elif model_type == 'qwen2_5_vl' or model_type == 'qwen2_5_omni':
  3125. if model_type == 'qwen2_5_omni':
  3126. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25O)
  3127. else:
  3128. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25VL)
  3129. self.gguf_writer.add_vision_use_silu(True)
  3130. # find n_wa_pattern (window attention pattern)
  3131. fullatt_block_indexes = hparams.get("fullatt_block_indexes")
  3132. assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for qwen2_5_vl"
  3133. n_wa_pattern = fullatt_block_indexes[0] + 1
  3134. # validate n_wa_pattern
  3135. for i in range(1, len(fullatt_block_indexes)):
  3136. if fullatt_block_indexes[i] - fullatt_block_indexes[i - 1] != n_wa_pattern:
  3137. raise ValueError(f"Invalid fullatt_block_indexes: {fullatt_block_indexes}")
  3138. self.gguf_writer.add_vision_n_wa_pattern(n_wa_pattern)
  3139. else:
  3140. raise ValueError(f"Unknown QwenVL model type: {self.global_config['model_type']}")
  3141. # default values below are taken from HF tranformers code
  3142. self.gguf_writer.add_vision_attention_layernorm_eps(self.global_config.get("rms_norm_eps", 1e-6))
  3143. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3144. if ".position_embd." in new_name:
  3145. return gguf.GGMLQuantizationType.F32
  3146. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3147. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3148. del bid # unused
  3149. if name.startswith("visual."):
  3150. # process visual tensors
  3151. # split QKV tensors if needed
  3152. if ".qkv." in name:
  3153. if data_torch.ndim == 2: # weight
  3154. c3, _ = data_torch.shape
  3155. else: # bias
  3156. c3 = data_torch.shape[0]
  3157. assert c3 % 3 == 0
  3158. c = c3 // 3
  3159. wq = data_torch[:c]
  3160. wk = data_torch[c: c * 2]
  3161. wv = data_torch[c * 2:]
  3162. return [
  3163. (self.map_tensor_name(name.replace("qkv", "q")), wq),
  3164. (self.map_tensor_name(name.replace("qkv", "k")), wk),
  3165. (self.map_tensor_name(name.replace("qkv", "v")), wv),
  3166. ]
  3167. elif 'patch_embed.proj.weight' in name:
  3168. # split Conv3D into Conv2Ds
  3169. c1, c2, kt, kh, kw = data_torch.shape
  3170. del c1, c2, kh, kw # unused
  3171. assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
  3172. return [
  3173. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight" , data_torch[:, :, 0, ...]),
  3174. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  3175. ]
  3176. else:
  3177. return [(self.map_tensor_name(name), data_torch)]
  3178. return [] # skip other tensors
  3179. @ModelBase.register("Qwen2_5OmniModel")
  3180. class Qwen25OmniModel(Qwen2VLVisionModel):
  3181. has_vision_encoder = True
  3182. has_audio_encoder = True
  3183. def __init__(self, *args, **kwargs):
  3184. super().__init__(*args, **kwargs)
  3185. assert self.hparams_audio is not None
  3186. self.hparams_audio["hidden_size"] = self.hparams_audio["d_model"]
  3187. self.hparams_audio["intermediate_size"] = self.hparams_audio["encoder_ffn_dim"]
  3188. self.hparams_audio["num_attention_heads"] = self.hparams_audio["encoder_attention_heads"]
  3189. def set_gguf_parameters(self):
  3190. super().set_gguf_parameters()
  3191. assert self.hparams_audio is not None
  3192. self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["num_mel_bins"])
  3193. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams_audio.get("layer_norm_eps", 1e-5))
  3194. def get_vision_config(self) -> dict[str, Any] | None:
  3195. return self.global_config["thinker_config"].get("vision_config")
  3196. def get_audio_config(self) -> dict[str, Any] | None:
  3197. return self.global_config["thinker_config"].get("audio_config")
  3198. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3199. # SinusoidsPositionEmbedding
  3200. assert self.hparams_audio is not None
  3201. max_timescale = 10000
  3202. length = 1500
  3203. channels = self.hparams_audio["hidden_size"]
  3204. log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
  3205. inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2).float())
  3206. scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
  3207. pos_embd = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1).to(dtype=torch.float32)
  3208. yield ("audio_tower.embed_positions.weight", pos_embd)
  3209. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3210. if ".conv" in name and ".weight" in name:
  3211. return gguf.GGMLQuantizationType.F16
  3212. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3213. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3214. if name.startswith("thinker."):
  3215. name = name.replace("thinker.", "")
  3216. if name.startswith("audio_tower"):
  3217. # process audio tensors
  3218. if "conv1.bias" in name or "conv2.bias" in name:
  3219. # transpose conv1 and conv2 bias
  3220. data_torch = data_torch.unsqueeze(-1)
  3221. if "audio_bos_eos_token" in name:
  3222. # this tensor is left unused in transformers code
  3223. # https://github.com/huggingface/transformers/blob/6e3063422c4b1c014aa60c32b9254fd2902f0f28/src/transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py#L1809
  3224. return []
  3225. return [(self.map_tensor_name(name), data_torch)]
  3226. return super().modify_tensors(data_torch, name, bid)
  3227. @ModelBase.register("InternVisionModel")
  3228. class InternVisionModel(MmprojModel):
  3229. def set_gguf_parameters(self):
  3230. assert self.hparams_vision is not None
  3231. if isinstance(self.hparams_vision['image_size'], list):
  3232. self.hparams_vision['image_size'] = self.hparams_vision['image_size'][0]
  3233. if isinstance(self.hparams_vision['patch_size'], list):
  3234. self.hparams_vision['patch_size'] = self.hparams_vision['patch_size'][0]
  3235. super().set_gguf_parameters()
  3236. hparams = self.hparams
  3237. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.INTERNVL)
  3238. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  3239. # hidden_act
  3240. if hparams["hidden_act"] == "silu":
  3241. self.gguf_writer.add_vision_use_silu(True)
  3242. elif hparams["hidden_act"] == "gelu":
  3243. self.gguf_writer.add_vision_use_gelu(True)
  3244. else:
  3245. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  3246. # downsample_ratio
  3247. downsample_ratio = self.global_config.get("downsample_ratio")
  3248. assert downsample_ratio is not None
  3249. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / downsample_ratio))
  3250. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3251. if ".position_embd." in new_name:
  3252. return gguf.GGMLQuantizationType.F32
  3253. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3254. def _mapping_interns1_name(self, name):
  3255. names_map = {
  3256. "model.multi_modal_projector.layer_norm.bias": "mlp1.0.bias",
  3257. "model.multi_modal_projector.layer_norm.weight": "mlp1.0.weight",
  3258. "model.multi_modal_projector.linear_1.bias": "mlp1.1.bias",
  3259. "model.multi_modal_projector.linear_1.weight": "mlp1.1.weight",
  3260. "model.multi_modal_projector.linear_2.bias": "mlp1.3.bias",
  3261. "model.multi_modal_projector.linear_2.weight": "mlp1.3.weight",
  3262. }
  3263. if name in names_map:
  3264. name = names_map[name]
  3265. return name
  3266. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3267. del bid # unused
  3268. vision_prefix = ['vision_model', 'mlp', 'model.vision_tower', 'model.multi_modal_projector']
  3269. # deal with intern-s1 special case
  3270. name = self._mapping_interns1_name(name)
  3271. if any([name.startswith(prefix) for prefix in vision_prefix]):
  3272. # process visual tensors
  3273. # correct name
  3274. if name.startswith("vision_model"):
  3275. name = "vision_tower." + name
  3276. if (".ls" in name or ".lambda_" in name or "position_embedding" in name) and not name.endswith(".weight"):
  3277. name += ".weight"
  3278. # split QKV tensors if needed
  3279. if ".qkv." in name:
  3280. if data_torch.ndim == 2: # weight
  3281. c3, _ = data_torch.shape
  3282. else: # bias
  3283. c3 = data_torch.shape[0]
  3284. assert c3 % 3 == 0
  3285. c = c3 // 3
  3286. wq = data_torch[:c]
  3287. wk = data_torch[c: c * 2]
  3288. wv = data_torch[c * 2:]
  3289. return [
  3290. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.q_proj")), wq),
  3291. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.k_proj")), wk),
  3292. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.v_proj")), wv),
  3293. ]
  3294. return [(self.map_tensor_name(name), data_torch)]
  3295. return [] # skip other tensors
  3296. @ModelBase.register("WavTokenizerDec")
  3297. class WavTokenizerDecModel(TextModel):
  3298. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  3299. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3300. del bid # unused
  3301. if \
  3302. name.endswith("codebook.cluster_size") or \
  3303. name.endswith("codebook.embed_avg") or \
  3304. name.endswith("codebook.inited"):
  3305. logger.debug(f"Skipping {name!r}")
  3306. return []
  3307. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  3308. return [(self.map_tensor_name(name), data_torch)]
  3309. def set_vocab(self):
  3310. self._set_vocab_none()
  3311. def set_gguf_parameters(self):
  3312. super().set_gguf_parameters()
  3313. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  3314. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  3315. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  3316. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  3317. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  3318. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  3319. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  3320. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  3321. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  3322. self.gguf_writer.add_causal_attention(False)
  3323. @ModelBase.register("Qwen2MoeForCausalLM")
  3324. class Qwen2MoeModel(TextModel):
  3325. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  3326. def set_gguf_parameters(self):
  3327. super().set_gguf_parameters()
  3328. if (n_experts := self.hparams.get("num_experts")) is not None:
  3329. self.gguf_writer.add_expert_count(n_experts)
  3330. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  3331. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  3332. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  3333. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  3334. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  3335. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  3336. _experts: list[dict[str, Tensor]] | None = None
  3337. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3338. # process the experts separately
  3339. name = name.replace("language_model.", "") # InternVL
  3340. # handle aggregated expert tensors
  3341. # GGUF stores dimensions reversed from PyTorch, so:
  3342. # PyTorch (A,B,C) -> GGUF writes [C,B,A] -> GGML reads ne={C,B,A}
  3343. # Input shapes from HF: (n_expert, n_ff_exp, n_embd) or (n_expert, n_embd, n_ff_exp)
  3344. # Expected GGML ne: {n_embd, n_ff_exp, n_expert} for gate/up, {n_ff_exp, n_embd, n_expert} for down
  3345. if name.endswith("mlp.experts.down_proj") or name.endswith("mlp.experts.down_proj.weight"):
  3346. mapped = f"{name}.weight" if not name.endswith(".weight") else name
  3347. # Input: (n_expert=128, n_ff_exp=768, n_embd=2048)
  3348. # Want GGML ne: {n_ff_exp, n_embd, n_expert} = {768, 2048, 128}
  3349. # Need PyTorch: (128, 2048, 768) [reversed of GGML]
  3350. # So: permute(0, 2, 1): (128, 768, 2048) -> (128, 2048, 768)
  3351. permuted = data_torch.permute(0, 2, 1).contiguous()
  3352. return [(self.map_tensor_name(mapped), permuted)]
  3353. if name.endswith("mlp.experts.gate_up_proj") or name.endswith("mlp.experts.gate_up_proj.weight"):
  3354. if data_torch.ndim < 3 or data_torch.shape[-1] % 2 != 0:
  3355. raise ValueError(f"Unexpected gate_up_proj shape for {name}: {tuple(data_torch.shape)}")
  3356. split_dim = data_torch.shape[-1] // 2
  3357. gate = data_torch[..., :split_dim].contiguous()
  3358. up = data_torch[..., split_dim:].contiguous()
  3359. # Input gate/up: (n_expert=128, n_embd=2048, n_ff_exp=768)
  3360. # Want GGML ne: {n_embd, n_ff_exp, n_expert} = {2048, 768, 128}
  3361. # Need PyTorch: (128, 768, 2048) [reversed of GGML]
  3362. # So: permute(0, 2, 1): (128, 2048, 768) -> (128, 768, 2048)
  3363. base_name = name.removesuffix(".weight")
  3364. base = base_name.rsplit('.', 1)[0]
  3365. mapped_gate = f"{base}.gate_proj.weight"
  3366. mapped_up = f"{base}.up_proj.weight"
  3367. perm_gate = gate.permute(0, 2, 1).contiguous()
  3368. perm_up = up.permute(0, 2, 1).contiguous()
  3369. return [
  3370. (self.map_tensor_name(mapped_gate), perm_gate),
  3371. (self.map_tensor_name(mapped_up), perm_up),
  3372. ]
  3373. if name.startswith("mlp") or name.startswith("vision_model") or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector") or name.startswith("model.visual"):
  3374. # skip visual tensors
  3375. return []
  3376. if name.find("experts") != -1:
  3377. n_experts = self.hparams["num_experts"]
  3378. assert bid is not None
  3379. if self._experts is None:
  3380. self._experts = [{} for _ in range(self.block_count)]
  3381. self._experts[bid][name] = data_torch
  3382. if len(self._experts[bid]) >= n_experts * 3:
  3383. tensors: list[tuple[str, Tensor]] = []
  3384. # merge the experts into a single 3d tensor
  3385. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3386. datas: list[Tensor] = []
  3387. for xid in range(n_experts):
  3388. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3389. datas.append(self._experts[bid][ename])
  3390. del self._experts[bid][ename]
  3391. data_torch = torch.stack(datas, dim=0)
  3392. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3393. new_name = self.map_tensor_name(merged_name)
  3394. tensors.append((new_name, data_torch))
  3395. return tensors
  3396. else:
  3397. return []
  3398. return [(self.map_tensor_name(name), data_torch)]
  3399. def prepare_tensors(self):
  3400. super().prepare_tensors()
  3401. if self._experts is not None:
  3402. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3403. experts = [k for d in self._experts for k in d.keys()]
  3404. if len(experts) > 0:
  3405. raise ValueError(f"Unprocessed experts: {experts}")
  3406. @ModelBase.register("Qwen3ForCausalLM")
  3407. class Qwen3Model(Qwen2Model):
  3408. model_arch = gguf.MODEL_ARCH.QWEN3
  3409. # extra logic for rerank models
  3410. is_rerank: bool = False
  3411. is_tied_embeddings: bool = False
  3412. token_false_id: int | None = None
  3413. token_true_id: int | None = None
  3414. def __init__(self, *args, **kwargs):
  3415. super().__init__(*args, **kwargs)
  3416. # track for intern-s1-mini
  3417. hparams = ModelBase.load_hparams(self.dir_model, is_mistral_format=False)
  3418. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  3419. # a bit hacky, but currently the only way to detect if this is a rerank model
  3420. # ref: https://huggingface.co/Qwen/Qwen3-Reranker-0.6B
  3421. readme_path = self.dir_model / "README.md"
  3422. readme_text = ""
  3423. if readme_path.exists():
  3424. with readme_path.open("r", encoding="utf-8") as f:
  3425. readme_text = f.read()
  3426. if "# Qwen3-Reranker" in readme_text:
  3427. self._find_rerank_config()
  3428. def set_vocab(self):
  3429. # deal with intern-s1-mini
  3430. if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
  3431. self._set_vocab_interns1()
  3432. return
  3433. super().set_vocab()
  3434. def _find_rerank_config(self):
  3435. from transformers import AutoTokenizer
  3436. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  3437. self.is_rerank = True
  3438. self.is_tied_embeddings = self.hparams.get("tie_word_embeddings", False)
  3439. self.token_false_id = tokenizer.convert_tokens_to_ids("no")
  3440. self.token_true_id = tokenizer.convert_tokens_to_ids("yes")
  3441. self.sep_token_id = tokenizer.convert_tokens_to_ids("|")
  3442. assert self.token_false_id is not None and self.token_true_id is not None
  3443. def set_gguf_parameters(self):
  3444. super().set_gguf_parameters()
  3445. if self.is_rerank:
  3446. self.gguf_writer.add_pooling_type(gguf.PoolingType.RANK)
  3447. self.gguf_writer.add_classifier_output_labels(["yes", "no"])
  3448. self.gguf_writer.add_chat_template([{
  3449. "name": "rerank",
  3450. "template": "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n"
  3451. "<|im_start|>user\n<Instruct>: Given a web search query, retrieve relevant passages that answer the query\n<Query>: {query}\n<Document>: {document}<|im_end|>\n"
  3452. "<|im_start|>assistant\n<think>\n\n</think>\n\n"
  3453. }])
  3454. def _get_cls_out_tensor(self, data_torch: Tensor) -> Tensor:
  3455. # extract "yes" and "no" tokens from the output lm_head tensor
  3456. false_row = data_torch[self.token_false_id]
  3457. true_row = data_torch[self.token_true_id]
  3458. return torch.stack([true_row, false_row], dim=0)
  3459. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3460. if "model.vision_" in name:
  3461. # skip multimodal tensors
  3462. return []
  3463. if self.is_rerank:
  3464. is_tied_head = self.is_tied_embeddings and "embed_tokens" in name
  3465. is_real_head = not self.is_tied_embeddings and "lm_head" in name
  3466. if is_tied_head or is_real_head:
  3467. cls_out_head = (
  3468. gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.CLS_OUT] + ".weight",
  3469. self._get_cls_out_tensor(data_torch),
  3470. )
  3471. if is_tied_head:
  3472. embed = (self.map_tensor_name(name), data_torch)
  3473. return [cls_out_head, embed]
  3474. if is_real_head:
  3475. return [cls_out_head]
  3476. return super().modify_tensors(data_torch, name, bid)
  3477. @ModelBase.register("Qwen3MoeForCausalLM")
  3478. class Qwen3MoeModel(Qwen2MoeModel):
  3479. model_arch = gguf.MODEL_ARCH.QWEN3MOE
  3480. def __init__(self, *args, **kwargs):
  3481. super().__init__(*args, **kwargs)
  3482. hparams = ModelBase.load_hparams(self.dir_model, False)
  3483. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  3484. def set_vocab(self):
  3485. # deal with intern-s1
  3486. if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
  3487. self._set_vocab_interns1()
  3488. return
  3489. super().set_vocab()
  3490. @ModelBase.register("Qwen3NextForCausalLM")
  3491. class Qwen3NextModel(Qwen2MoeModel):
  3492. model_arch = gguf.MODEL_ARCH.QWEN3NEXT
  3493. def set_gguf_parameters(self):
  3494. super().set_gguf_parameters()
  3495. self.gguf_writer.add_ssm_conv_kernel(self.hparams["linear_conv_kernel_dim"])
  3496. self.gguf_writer.add_ssm_state_size(self.hparams["linear_key_head_dim"])
  3497. self.gguf_writer.add_ssm_group_count(self.hparams["linear_num_key_heads"])
  3498. self.gguf_writer.add_ssm_time_step_rank(self.hparams["linear_num_value_heads"])
  3499. self.gguf_writer.add_ssm_inner_size(self.hparams["linear_value_head_dim"] * self.hparams["linear_num_value_heads"])
  3500. if (rope_dim := self.hparams.get("head_dim")) is None:
  3501. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  3502. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.25)))
  3503. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3504. if name.startswith("mtp"):
  3505. return [] # ignore MTP layers for now
  3506. if name.endswith(".A_log"):
  3507. data_torch = -torch.exp(data_torch)
  3508. elif name.endswith(".dt_bias"):
  3509. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  3510. elif "conv1d" in name:
  3511. data_torch = data_torch.squeeze()
  3512. elif name.endswith("norm.weight") and not name.endswith("linear_attn.norm.weight"):
  3513. data_torch = data_torch + 1
  3514. yield from super().modify_tensors(data_torch, name, bid)
  3515. @ModelBase.register("RND1")
  3516. class RND1Model(Qwen2MoeModel):
  3517. model_arch = gguf.MODEL_ARCH.RND1
  3518. def set_gguf_parameters(self):
  3519. super().set_gguf_parameters()
  3520. # RND1 specific parameters
  3521. # RND1 uses bidirectional attention
  3522. self.gguf_writer.add_causal_attention(False)
  3523. if (mask_token_id := self.hparams.get("mask_token_id")) is not None:
  3524. self.gguf_writer.add_mask_token_id(mask_token_id)
  3525. @ModelBase.register("Qwen3VLForConditionalGeneration", "Qwen3VLMoeForConditionalGeneration")
  3526. class Qwen3VLVisionModel(MmprojModel):
  3527. def __init__(self, *args, **kwargs):
  3528. super().__init__(*args, **kwargs)
  3529. assert self.hparams_vision is not None
  3530. # Compute image_size if not present
  3531. if "image_size" not in self.hparams_vision:
  3532. # For Qwen3VL/Qwen3VLMoe, compute from num_position_embeddings
  3533. num_pos = self.hparams_vision.get("num_position_embeddings", 2304)
  3534. patch_size = self.hparams_vision.get("patch_size", 16)
  3535. # num_position_embeddings = (image_size / patch_size) ** 2
  3536. # So image_size = sqrt(num_position_embeddings) * patch_size
  3537. image_size = int(num_pos**0.5 * patch_size)
  3538. self.hparams_vision["image_size"] = image_size
  3539. # Rename config values for compatibility
  3540. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  3541. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  3542. self.is_deepstack_layers = [False] * int(self.hparams_vision["num_hidden_layers"] or 0)
  3543. for idx in self.hparams_vision.get("deepstack_visual_indexes", []):
  3544. self.is_deepstack_layers[idx] = True
  3545. def set_gguf_parameters(self):
  3546. super().set_gguf_parameters()
  3547. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN3VL)
  3548. self.gguf_writer.add_vision_use_gelu(True)
  3549. if self.hparams_vision is not None:
  3550. merge_size = self.hparams_vision.get("spatial_merge_size")
  3551. if merge_size is not None:
  3552. self.gguf_writer.add_vision_spatial_merge_size(int(merge_size))
  3553. # Use text config's rms_norm_eps for vision attention layernorm eps
  3554. rms_norm_eps = self.global_config.get("text_config", {}).get("rms_norm_eps", 1e-6)
  3555. self.gguf_writer.add_vision_attention_layernorm_eps(rms_norm_eps)
  3556. if self.is_deepstack_layers:
  3557. self.gguf_writer.add_vision_is_deepstack_layers(self.is_deepstack_layers)
  3558. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3559. assert self.hparams_vision is not None
  3560. # Skip text model tensors - they go in the text model file
  3561. if name.startswith("model.language_model.") or name.startswith("lm_head."):
  3562. return []
  3563. if name.startswith("model.visual."):
  3564. name = name.replace("model.visual.", "visual.", 1)
  3565. if name.startswith("visual.deepstack_merger_list."):
  3566. prefix, rest = name.split(".", maxsplit=3)[2:]
  3567. # prefix is the layer index, convert to absolute clip layer index!
  3568. idx = self.hparams_vision.get("deepstack_visual_indexes", [])[int(prefix)]
  3569. target = rest
  3570. tensor_type: gguf.MODEL_TENSOR
  3571. if target.startswith("norm."):
  3572. tensor_type = gguf.MODEL_TENSOR.V_DS_NORM
  3573. suffix = target.split(".", 1)[1]
  3574. elif target.startswith("linear_fc1."):
  3575. tensor_type = gguf.MODEL_TENSOR.V_DS_FC1
  3576. suffix = target.split(".", 1)[1]
  3577. elif target.startswith("linear_fc2."):
  3578. tensor_type = gguf.MODEL_TENSOR.V_DS_FC2
  3579. suffix = target.split(".", 1)[1]
  3580. else:
  3581. raise ValueError(f"Unexpected deepstack tensor: {name}")
  3582. new_name = self.format_tensor_name(tensor_type, idx, suffix=f".{suffix}")
  3583. return [(new_name, data_torch)]
  3584. if name.startswith("visual.merger."):
  3585. suffix = name.split(".", 2)[2]
  3586. if suffix.startswith("linear_fc"):
  3587. fc_idx_str, tail = suffix.split(".", 1)
  3588. fc_num = int(fc_idx_str.replace("linear_fc", ""))
  3589. # Qwen3VL has linear_fc1 and linear_fc2
  3590. # Map to indices 0 and 2 (matching Qwen2VL which uses indices 0 and 2)
  3591. if fc_num == 1:
  3592. fc_idx = 0
  3593. elif fc_num == 2:
  3594. fc_idx = 2
  3595. else:
  3596. raise ValueError(f"unexpected fc index {fc_num} in {name}")
  3597. new_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_MMPROJ, fc_idx, suffix=f".{tail}")
  3598. elif suffix.startswith("norm."):
  3599. new_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_POST_NORM, suffix=f".{suffix.split('.', 1)[1]}")
  3600. else:
  3601. raise ValueError(f"Unexpected merger tensor: {name}")
  3602. return [(new_name, data_torch)]
  3603. if name == "visual.patch_embed.proj.weight":
  3604. # split Conv3D into Conv2Ds along temporal dimension
  3605. c1, c2, kt, _, _ = data_torch.shape
  3606. del c1, c2
  3607. if kt != 2:
  3608. raise ValueError("Current implementation only supports temporal_patch_size of 2")
  3609. return [
  3610. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight", data_torch[:, :, 0, ...]),
  3611. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  3612. ]
  3613. if name == "visual.patch_embed.proj.bias":
  3614. # Include the bias - it's used by the C++ code
  3615. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".bias", data_torch)]
  3616. if name.startswith("visual."):
  3617. return [(self.map_tensor_name(name), data_torch)]
  3618. # Fall back to parent class for other tensors
  3619. return super().modify_tensors(data_torch, name, bid)
  3620. @ModelBase.register("Glm4vForConditionalGeneration", "Glm4vMoeForConditionalGeneration")
  3621. class Glm4VVisionModel(Qwen3VLVisionModel):
  3622. def set_gguf_parameters(self):
  3623. MmprojModel.set_gguf_parameters(self) # skip Qwen3VLVisionModel parameters
  3624. assert self.hparams_vision is not None
  3625. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GLM4V)
  3626. hidden_act = str(self.hparams_vision.get("hidden_act", "")).lower()
  3627. if hidden_act == "gelu":
  3628. self.gguf_writer.add_vision_use_gelu(True)
  3629. elif hidden_act == "silu":
  3630. self.gguf_writer.add_vision_use_silu(True)
  3631. rms_norm_eps = self.hparams_vision.get("rms_norm_eps", 1e-5)
  3632. self.gguf_writer.add_vision_attention_layernorm_eps(rms_norm_eps)
  3633. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3634. if name.startswith("model.visual."):
  3635. name = name.replace("model.visual.", "visual.")
  3636. if name.startswith("visual.merger."):
  3637. return [(self.map_tensor_name(name), data_torch)]
  3638. return super().modify_tensors(data_torch, name, bid)
  3639. @ModelBase.register("Qwen3VLForConditionalGeneration")
  3640. class Qwen3VLTextModel(Qwen3Model):
  3641. model_arch = gguf.MODEL_ARCH.QWEN3VL
  3642. def set_gguf_parameters(self):
  3643. super().set_gguf_parameters()
  3644. # Handle MRoPE (Multi-axis Rotary Position Embedding) for Qwen3-VL
  3645. vision_config = self.hparams.get("vision_config", {})
  3646. deepstack_layer_num = len(vision_config.get("deepstack_visual_indexes", []))
  3647. self.gguf_writer.add_num_deepstack_layers(deepstack_layer_num)
  3648. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3649. # Skip vision tensors - they go in the mmproj file
  3650. if name.startswith("model.visual."):
  3651. return []
  3652. return super().modify_tensors(data_torch, name, bid)
  3653. @ModelBase.register("Qwen3VLMoeForConditionalGeneration")
  3654. class Qwen3VLMoeTextModel(Qwen3MoeModel):
  3655. model_arch = gguf.MODEL_ARCH.QWEN3VLMOE
  3656. def set_gguf_parameters(self):
  3657. super().set_gguf_parameters()
  3658. vision_config = self.hparams.get("vision_config", {})
  3659. deepstack_layer_num = len(vision_config.get("deepstack_visual_indexes", []))
  3660. self.gguf_writer.add_num_deepstack_layers(deepstack_layer_num)
  3661. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3662. # Skip vision tensors - they go in the mmproj file
  3663. if name.startswith("model.visual."):
  3664. return []
  3665. return super().modify_tensors(data_torch, name, bid)
  3666. @ModelBase.register("GPT2LMHeadModel")
  3667. class GPT2Model(TextModel):
  3668. model_arch = gguf.MODEL_ARCH.GPT2
  3669. def set_gguf_parameters(self):
  3670. self.gguf_writer.add_block_count(self.block_count)
  3671. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  3672. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3673. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  3674. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3675. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3676. self.gguf_writer.add_file_type(self.ftype)
  3677. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3678. del bid # unused
  3679. tensors: list[tuple[str, Tensor]] = []
  3680. # we don't need these
  3681. if name.endswith((".attn.bias", ".attn.masked_bias")):
  3682. return tensors
  3683. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  3684. data_torch = data_torch.transpose(1, 0)
  3685. new_name = self.map_tensor_name(name)
  3686. tensors.append((new_name, data_torch))
  3687. return tensors
  3688. @ModelBase.register("PhiForCausalLM")
  3689. class Phi2Model(TextModel):
  3690. model_arch = gguf.MODEL_ARCH.PHI2
  3691. def set_gguf_parameters(self):
  3692. rot_pct = self.find_hparam(["partial_rotary_factor"])
  3693. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3694. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3695. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  3696. self.gguf_writer.add_embedding_length(n_embd)
  3697. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  3698. self.gguf_writer.add_block_count(self.block_count)
  3699. self.gguf_writer.add_head_count(n_head)
  3700. self.gguf_writer.add_head_count_kv(n_head)
  3701. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  3702. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  3703. self.gguf_writer.add_file_type(self.ftype)
  3704. self.gguf_writer.add_add_bos_token(False)
  3705. @ModelBase.register("Phi3ForCausalLM")
  3706. class Phi3MiniModel(TextModel):
  3707. model_arch = gguf.MODEL_ARCH.PHI3
  3708. def set_vocab(self):
  3709. # Phi-4 model uses GPT2Tokenizer
  3710. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3711. if tokenizer_config_file.is_file():
  3712. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3713. tokenizer_config_json = json.load(f)
  3714. tokenizer_class = tokenizer_config_json['tokenizer_class']
  3715. if tokenizer_class == 'GPT2Tokenizer':
  3716. return self._set_vocab_gpt2()
  3717. from sentencepiece import SentencePieceProcessor
  3718. tokenizer_path = self.dir_model / 'tokenizer.model'
  3719. if not tokenizer_path.is_file():
  3720. raise ValueError(f'Error: Missing {tokenizer_path}')
  3721. tokenizer = SentencePieceProcessor()
  3722. tokenizer.LoadFromFile(str(tokenizer_path))
  3723. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3724. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3725. scores: list[float] = [-10000.0] * vocab_size
  3726. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3727. for token_id in range(tokenizer.vocab_size()):
  3728. piece = tokenizer.IdToPiece(token_id)
  3729. text = piece.encode("utf-8")
  3730. score = tokenizer.GetScore(token_id)
  3731. toktype = SentencePieceTokenTypes.NORMAL
  3732. if tokenizer.IsUnknown(token_id):
  3733. toktype = SentencePieceTokenTypes.UNKNOWN
  3734. elif tokenizer.IsControl(token_id):
  3735. toktype = SentencePieceTokenTypes.CONTROL
  3736. elif tokenizer.IsUnused(token_id):
  3737. toktype = SentencePieceTokenTypes.UNUSED
  3738. elif tokenizer.IsByte(token_id):
  3739. toktype = SentencePieceTokenTypes.BYTE
  3740. tokens[token_id] = text
  3741. scores[token_id] = score
  3742. toktypes[token_id] = toktype
  3743. added_tokens_file = self.dir_model / 'added_tokens.json'
  3744. if added_tokens_file.is_file():
  3745. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3746. added_tokens_json = json.load(f)
  3747. for key in added_tokens_json:
  3748. token_id = added_tokens_json[key]
  3749. if token_id >= vocab_size:
  3750. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3751. continue
  3752. tokens[token_id] = key.encode("utf-8")
  3753. scores[token_id] = -1000.0
  3754. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3755. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3756. if tokenizer_config_file.is_file():
  3757. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3758. tokenizer_config_json = json.load(f)
  3759. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  3760. for token_id, foken_data in added_tokens_decoder.items():
  3761. token_id = int(token_id)
  3762. token = foken_data["content"].encode("utf-8")
  3763. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3764. if tokens[token_id] != token:
  3765. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3766. tokens[token_id] = token
  3767. scores[token_id] = -1000.0
  3768. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3769. if foken_data.get("special"):
  3770. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3771. tokenizer_file = self.dir_model / 'tokenizer.json'
  3772. if tokenizer_file.is_file():
  3773. with open(tokenizer_file, "r", encoding="utf-8") as f:
  3774. tokenizer_json = json.load(f)
  3775. added_tokens = tokenizer_json.get("added_tokens", [])
  3776. for foken_data in added_tokens:
  3777. token_id = int(foken_data["id"])
  3778. token = foken_data["content"].encode("utf-8")
  3779. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3780. if tokens[token_id] != token:
  3781. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3782. tokens[token_id] = token
  3783. scores[token_id] = -1000.0
  3784. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3785. if foken_data.get("special"):
  3786. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3787. self.gguf_writer.add_tokenizer_model("llama")
  3788. self.gguf_writer.add_tokenizer_pre("default")
  3789. self.gguf_writer.add_token_list(tokens)
  3790. self.gguf_writer.add_token_scores(scores)
  3791. self.gguf_writer.add_token_types(toktypes)
  3792. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3793. special_vocab.add_to_gguf(self.gguf_writer)
  3794. def set_gguf_parameters(self):
  3795. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3796. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3797. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  3798. rms_eps = self.find_hparam(["rms_norm_eps"])
  3799. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3800. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3801. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3802. rope_dims = int(rot_pct * n_embd) // n_head
  3803. self.gguf_writer.add_context_length(max_pos_embds)
  3804. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  3805. self.gguf_writer.add_embedding_length(n_embd)
  3806. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  3807. self.gguf_writer.add_block_count(self.block_count)
  3808. self.gguf_writer.add_head_count(n_head)
  3809. self.gguf_writer.add_head_count_kv(n_head_kv)
  3810. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  3811. self.gguf_writer.add_rope_dimension_count(rope_dims)
  3812. self.gguf_writer.add_rope_freq_base(self.rope_parameters.get("full_attention", self.rope_parameters)["rope_theta"])
  3813. self.gguf_writer.add_file_type(self.ftype)
  3814. sliding_window = self.hparams.get("sliding_window")
  3815. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  3816. if sliding_window is None:
  3817. sliding_window = 0
  3818. self.gguf_writer.add_sliding_window(sliding_window)
  3819. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3820. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3821. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3822. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3823. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3824. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3825. rope_dims = int(rot_pct * n_embd) // n_head
  3826. # write rope scaling for long context (128k) model
  3827. rope_scaling = self.find_hparam(['rope_scaling'], True)
  3828. if rope_scaling is None:
  3829. return
  3830. scale = max_pos_embds / orig_max_pos_embds
  3831. rope_scaling_type = rope_scaling.get('rope_type', rope_scaling.get('type', '')).lower()
  3832. if len(rope_scaling_type) == 0:
  3833. raise KeyError('Missing the required key rope_scaling.type')
  3834. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  3835. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  3836. elif rope_scaling_type == 'yarn':
  3837. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  3838. else:
  3839. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  3840. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  3841. long_factors = rope_scaling.get('long_factor', None)
  3842. short_factors = rope_scaling.get('short_factor', None)
  3843. if long_factors is None or short_factors is None:
  3844. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  3845. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  3846. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  3847. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  3848. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  3849. @ModelBase.register("PhiMoEForCausalLM")
  3850. class PhiMoeModel(Phi3MiniModel):
  3851. model_arch = gguf.MODEL_ARCH.PHIMOE
  3852. _experts: list[dict[str, Tensor]] | None = None
  3853. def set_gguf_parameters(self):
  3854. super().set_gguf_parameters()
  3855. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  3856. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  3857. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3858. # process the experts separately
  3859. if name.find("block_sparse_moe.experts") != -1:
  3860. n_experts = self.hparams["num_local_experts"]
  3861. assert bid is not None
  3862. if self._experts is None:
  3863. self._experts = [{} for _ in range(self.block_count)]
  3864. self._experts[bid][name] = data_torch
  3865. if len(self._experts[bid]) >= n_experts * 3:
  3866. tensors: list[tuple[str, Tensor]] = []
  3867. # merge the experts into a single 3d tensor
  3868. for w_name in ["w1", "w2", "w3"]:
  3869. datas: list[Tensor] = []
  3870. for xid in range(n_experts):
  3871. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  3872. datas.append(self._experts[bid][ename])
  3873. del self._experts[bid][ename]
  3874. data_torch = torch.stack(datas, dim=0)
  3875. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  3876. new_name = self.map_tensor_name(merged_name)
  3877. tensors.append((new_name, data_torch))
  3878. return tensors
  3879. else:
  3880. return []
  3881. return [(self.map_tensor_name(name), data_torch)]
  3882. def prepare_tensors(self):
  3883. super().prepare_tensors()
  3884. if self._experts is not None:
  3885. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3886. experts = [k for d in self._experts for k in d.keys()]
  3887. if len(experts) > 0:
  3888. raise ValueError(f"Unprocessed experts: {experts}")
  3889. @ModelBase.register("PlamoForCausalLM")
  3890. class PlamoModel(TextModel):
  3891. model_arch = gguf.MODEL_ARCH.PLAMO
  3892. def set_vocab(self):
  3893. self._set_vocab_sentencepiece()
  3894. def set_gguf_parameters(self):
  3895. hparams = self.hparams
  3896. self.gguf_writer.add_context_length(4096) # not in config.json
  3897. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3898. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3899. self.gguf_writer.add_block_count(self.block_count)
  3900. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3901. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  3902. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  3903. self.gguf_writer.add_file_type(self.ftype)
  3904. def shuffle_attn_q_weight(self, data_torch):
  3905. assert data_torch.size() == (5120, 5120)
  3906. data_torch = data_torch.reshape(8, 5, 128, 5120)
  3907. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  3908. data_torch = torch.reshape(data_torch, (5120, 5120))
  3909. return data_torch
  3910. def shuffle_attn_output_weight(self, data_torch):
  3911. assert data_torch.size() == (5120, 5120)
  3912. data_torch = data_torch.reshape(5120, 8, 5, 128)
  3913. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  3914. data_torch = torch.reshape(data_torch, (5120, 5120))
  3915. return data_torch
  3916. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3917. del bid # unused
  3918. new_name = self.map_tensor_name(name)
  3919. # shuffle for broadcasting of gqa in ggml_mul_mat
  3920. if new_name.endswith("attn_q.weight"):
  3921. data_torch = self.shuffle_attn_q_weight(data_torch)
  3922. elif new_name.endswith("attn_output.weight"):
  3923. data_torch = self.shuffle_attn_output_weight(data_torch)
  3924. return [(new_name, data_torch)]
  3925. @ModelBase.register("Plamo2ForCausalLM", "PLaMo2ForCausalLM")
  3926. class Plamo2Model(TextModel):
  3927. model_arch = gguf.MODEL_ARCH.PLAMO2
  3928. def set_vocab(self):
  3929. # PLaMo 2 uses a custom tokenizer with a .jsonl file
  3930. # We need to handle this specially
  3931. tokenizer_jsonl_path = self.dir_model / "tokenizer.jsonl"
  3932. tokenizer_config_path = self.dir_model / "tokenizer_config.json"
  3933. if not tokenizer_jsonl_path.is_file():
  3934. raise FileNotFoundError(f"PLaMo 2 tokenizer file not found: {tokenizer_jsonl_path}")
  3935. # Load tokenizer config
  3936. with open(tokenizer_config_path, 'r', encoding='utf-8') as f:
  3937. tokenizer_config = json.load(f)
  3938. # Load tokens from JSONL file (actually a list format)
  3939. tokens = []
  3940. scores = []
  3941. toktypes = []
  3942. with open(tokenizer_jsonl_path, 'r', encoding='utf-8') as f:
  3943. for line_num, line in enumerate(f):
  3944. if line.strip():
  3945. token_data = json.loads(line)
  3946. # Format: [token, score, type, ?, ?, ?, ?]
  3947. token = token_data[0].encode("utf-8")
  3948. score = float(token_data[1])
  3949. token_type_str = token_data[2] if len(token_data) > 2 else "NORMAL"
  3950. tokens.append(token)
  3951. scores.append(score)
  3952. # Map token type strings to GGUF token types
  3953. if token_type_str == "UNKNOWN":
  3954. toktypes.append(gguf.TokenType.UNKNOWN)
  3955. elif token_type_str == "CONTROL":
  3956. toktypes.append(gguf.TokenType.CONTROL)
  3957. elif token_type_str == "BYTE":
  3958. toktypes.append(gguf.TokenType.BYTE)
  3959. else:
  3960. # Check for PLaMo-2 special tokens
  3961. token_str = token_data[0]
  3962. if token_str.startswith("<|plamo:") and token_str.endswith("|>"):
  3963. toktypes.append(gguf.TokenType.CONTROL)
  3964. else:
  3965. toktypes.append(gguf.TokenType.NORMAL)
  3966. vocab_size = self.hparams["vocab_size"]
  3967. if vocab_size > len(tokens):
  3968. pad_count = vocab_size - len(tokens)
  3969. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3970. for i in range(1, pad_count + 1):
  3971. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3972. scores.append(-1000.0)
  3973. toktypes.append(gguf.TokenType.UNUSED)
  3974. # Use "plamo2" tokenizer type for PLaMo-2's custom Aho-Corasick tokenizer
  3975. self.gguf_writer.add_tokenizer_model("plamo2")
  3976. self.gguf_writer.add_tokenizer_pre("default")
  3977. self.gguf_writer.add_token_list(tokens)
  3978. self.gguf_writer.add_token_scores(scores)
  3979. self.gguf_writer.add_token_types(toktypes)
  3980. # Add special tokens from config
  3981. if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] is not None:
  3982. token_id = tokens.index(tokenizer_config["bos_token"].encode("utf-8"))
  3983. self.gguf_writer.add_bos_token_id(token_id)
  3984. if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] is not None:
  3985. token_id = tokens.index(tokenizer_config["eos_token"].encode("utf-8"))
  3986. self.gguf_writer.add_eos_token_id(token_id)
  3987. if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] is not None:
  3988. token_id = tokens.index(tokenizer_config["pad_token"].encode("utf-8"))
  3989. self.gguf_writer.add_pad_token_id(token_id)
  3990. if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] is not None:
  3991. token_id = tokens.index(tokenizer_config["sep_token"].encode("utf-8"))
  3992. self.gguf_writer.add_sep_token_id(token_id)
  3993. if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] is not None:
  3994. token_id = tokens.index(tokenizer_config["unk_token"].encode("utf-8"))
  3995. self.gguf_writer.add_unk_token_id(token_id)
  3996. # Add <|plamo:op|> as EOT to ensure appropriate end of generation
  3997. self.gguf_writer.add_eot_token_id(4)
  3998. self.gguf_writer.add_add_space_prefix(False)
  3999. def set_gguf_parameters(self):
  4000. hparams = self.hparams
  4001. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  4002. # Which layers are Mamba layers
  4003. # PLaMo 2 uses mamba_step to indicate the pattern (e.g., 2 means every other layer)
  4004. # This logic matches modeling_plamo.py's is_mamba function
  4005. mamba_step = hparams.get("mamba_step", 2)
  4006. mamba_enabled = hparams.get("mamba_enabled", True)
  4007. num_key_value_heads = []
  4008. num_attention_heads = []
  4009. if mamba_enabled:
  4010. for i in range(self.block_count):
  4011. if self.block_count <= (mamba_step // 2):
  4012. # use attention in last layer
  4013. is_mamba = (i != self.block_count - 1)
  4014. else:
  4015. is_mamba = (i % mamba_step) != (mamba_step // 2)
  4016. if is_mamba:
  4017. num_key_value_heads.append(0)
  4018. num_attention_heads.append(0)
  4019. else:
  4020. num_key_value_heads.append(hparams.get("num_key_value_heads", 4))
  4021. num_attention_heads.append(hparams.get("num_attention_heads", 32))
  4022. if num_key_value_heads and num_attention_heads:
  4023. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  4024. self.gguf_writer.add_head_count(num_attention_heads)
  4025. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 2048))
  4026. self.gguf_writer.add_embedding_length(hparams.get("hidden_size", 4096))
  4027. self.gguf_writer.add_key_length(hparams.get("hidden_size_per_head", 128))
  4028. self.gguf_writer.add_value_length(hparams.get("hidden_size_per_head", 128))
  4029. self.gguf_writer.add_block_count(self.block_count)
  4030. self.gguf_writer.add_layer_norm_rms_eps(hparams.get("rms_norm_eps", 1e-06))
  4031. self.gguf_writer.add_rope_freq_base(self.rope_parameters.get("rope_theta", 10000))
  4032. # Mamba parameters
  4033. self.gguf_writer.add_ssm_state_size(hparams.get("mamba_d_state", 64))
  4034. self.gguf_writer.add_ssm_conv_kernel(hparams.get("mamba_d_conv", 4))
  4035. self.gguf_writer.add_ssm_time_step_rank(hparams.get("mamba_num_heads", 64))
  4036. intermediate_size = hparams.get("mamba_num_heads", 64) * hparams.get("hidden_size_per_head", 128)
  4037. self.gguf_writer.add_ssm_inner_size(intermediate_size)
  4038. self.gguf_writer.add_ssm_group_count(0)
  4039. # MLP feed forward parameters (for attention layers)
  4040. self.gguf_writer.add_feed_forward_length(hparams.get("intermediate_size", 13312))
  4041. self.gguf_writer.add_file_type(self.ftype)
  4042. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4043. del bid # unused
  4044. if name.endswith(".A_log"):
  4045. data_torch = -torch.exp(data_torch)
  4046. elif name.endswith(".dt_bias"):
  4047. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  4048. elif name.endswith(".dt_norm_weight"):
  4049. name = name.rpartition(".dt_norm_weight")[0] + ".dt_norm.weight"
  4050. elif name.endswith(".B_norm_weight"):
  4051. name = name.rpartition(".B_norm_weight")[0] + ".B_norm.weight"
  4052. elif name.endswith(".C_norm_weight"):
  4053. name = name.rpartition(".C_norm_weight")[0] + ".C_norm.weight"
  4054. elif name.endswith(".k_weight"):
  4055. name = name.rpartition(".k_weight")[0] + ".k.weight"
  4056. elif name.endswith(".q_weight"):
  4057. name = name.rpartition(".q_weight")[0] + ".q.weight"
  4058. elif name.endswith(".conv1d.weight"):
  4059. data_torch = torch.squeeze(data_torch) # remove (, 1, )
  4060. assert data_torch.ndim == 2
  4061. elif name.endswith(".pre_mixer_norm.weight"):
  4062. data_torch += 1.0
  4063. elif name.endswith(".post_mixer_norm.weight"):
  4064. data_torch += 1.0 / 5
  4065. elif name.endswith(".pre_mlp_norm.weight"):
  4066. data_torch += 1.0
  4067. elif name.endswith(".post_mlp_norm.weight"):
  4068. data_torch += 1.0 / (5**1.5)
  4069. elif name.endswith(".norm.weight"):
  4070. data_torch += 1.0
  4071. new_name = self.map_tensor_name(name)
  4072. return [(new_name, data_torch)]
  4073. @ModelBase.register("CodeShellForCausalLM")
  4074. class CodeShellModel(TextModel):
  4075. model_arch = gguf.MODEL_ARCH.CODESHELL
  4076. def set_gguf_parameters(self):
  4077. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  4078. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  4079. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  4080. self.gguf_writer.add_block_count(self.block_count)
  4081. self.gguf_writer.add_head_count(self.hparams["n_head"])
  4082. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  4083. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4084. self.gguf_writer.add_file_type(self.ftype)
  4085. self.gguf_writer.add_rope_freq_base(10000.0)
  4086. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4087. self.gguf_writer.add_rope_scaling_factor(1.0)
  4088. @ModelBase.register("InternLM2ForCausalLM")
  4089. class InternLM2Model(TextModel):
  4090. model_arch = gguf.MODEL_ARCH.INTERNLM2
  4091. def set_vocab(self):
  4092. # (TODO): Is there a better way?
  4093. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  4094. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  4095. # recognized as an empty string in C++.
  4096. from sentencepiece import SentencePieceProcessor
  4097. from sentencepiece import sentencepiece_model_pb2 as model
  4098. tokenizer_path = self.dir_model / 'tokenizer.model'
  4099. tokens: list[bytes] = []
  4100. scores: list[float] = []
  4101. toktypes: list[int] = []
  4102. if not tokenizer_path.is_file():
  4103. logger.error(f'Error: Missing {tokenizer_path}')
  4104. sys.exit(1)
  4105. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4106. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4107. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4108. tokenizer = SentencePieceProcessor()
  4109. tokenizer.LoadFromFile(str(tokenizer_path))
  4110. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4111. for token_id in range(vocab_size):
  4112. piece = tokenizer.IdToPiece(token_id)
  4113. text = piece.encode("utf-8")
  4114. score = tokenizer.GetScore(token_id)
  4115. if text == b"\x00":
  4116. # (TODO): fixme
  4117. # Hack here and replace the \x00 characters.
  4118. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  4119. text = "🐉".encode("utf-8")
  4120. toktype = SentencePieceTokenTypes.NORMAL
  4121. if tokenizer.IsUnknown(token_id):
  4122. toktype = SentencePieceTokenTypes.UNKNOWN
  4123. elif tokenizer.IsControl(token_id):
  4124. toktype = SentencePieceTokenTypes.CONTROL
  4125. elif tokenizer.IsUnused(token_id):
  4126. toktype = SentencePieceTokenTypes.UNUSED
  4127. elif tokenizer.IsByte(token_id):
  4128. toktype = SentencePieceTokenTypes.BYTE
  4129. # take care of ununsed raw token
  4130. if piece.startswith('[UNUSED'):
  4131. toktype = SentencePieceTokenTypes.UNUSED
  4132. tokens.append(text)
  4133. scores.append(score)
  4134. toktypes.append(toktype)
  4135. added_tokens_file = self.dir_model / 'added_tokens.json'
  4136. if added_tokens_file.is_file():
  4137. with open(added_tokens_file, "r", encoding="utf-8") as f:
  4138. added_tokens_json = json.load(f)
  4139. for key in added_tokens_json:
  4140. tokens.append(key.encode("utf-8"))
  4141. scores.append(-1000.0)
  4142. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  4143. chat_eos_token = '<|im_end|>'
  4144. chat_eos_token_id = None
  4145. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  4146. if tokenizer_config_file.is_file():
  4147. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  4148. tokenizer_config_json = json.load(f)
  4149. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  4150. for token_id, foken_data in added_tokens_decoder.items():
  4151. token_id = int(token_id)
  4152. token = foken_data["content"]
  4153. if token == chat_eos_token:
  4154. chat_eos_token_id = token_id
  4155. token = token.encode("utf-8")
  4156. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  4157. if tokens[token_id] != token:
  4158. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  4159. tokens[token_id] = token
  4160. scores[token_id] = -1000.0
  4161. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4162. if foken_data.get("special"):
  4163. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  4164. tokenizer_file = self.dir_model / 'tokenizer.json'
  4165. if tokenizer_file.is_file():
  4166. with open(tokenizer_file, "r", encoding="utf-8") as f:
  4167. tokenizer_json = json.load(f)
  4168. added_tokens = tokenizer_json.get("added_tokens", [])
  4169. for foken_data in added_tokens:
  4170. token_id = int(foken_data["id"])
  4171. token = foken_data["content"]
  4172. if token == chat_eos_token:
  4173. chat_eos_token_id = token_id
  4174. token = token.encode("utf-8")
  4175. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  4176. if tokens[token_id] != token:
  4177. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  4178. tokens[token_id] = token
  4179. scores[token_id] = -1000.0
  4180. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4181. if foken_data.get("special"):
  4182. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  4183. self.gguf_writer.add_tokenizer_model("llama")
  4184. self.gguf_writer.add_tokenizer_pre("default")
  4185. self.gguf_writer.add_token_list(tokens)
  4186. self.gguf_writer.add_token_scores(scores)
  4187. self.gguf_writer.add_token_types(toktypes)
  4188. self.gguf_writer.add_add_space_prefix(add_prefix)
  4189. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4190. old_eos = special_vocab.special_token_ids["eos"]
  4191. if chat_eos_token_id is not None:
  4192. # For the chat model, we replace the eos with '<|im_end|>'.
  4193. # TODO: this is a hack, should be fixed
  4194. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  4195. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  4196. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  4197. " in chat mode so that the conversation can end normally.")
  4198. special_vocab.add_to_gguf(self.gguf_writer)
  4199. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4200. num_heads = self.hparams["num_attention_heads"]
  4201. num_kv_heads = self.hparams["num_key_value_heads"]
  4202. n_embd = self.hparams["hidden_size"]
  4203. q_per_kv = num_heads // num_kv_heads
  4204. head_dim = n_embd // num_heads
  4205. num_groups = num_heads // q_per_kv
  4206. name = name.replace("language_model.", "") # InternVL
  4207. if name.startswith("mlp") or name.startswith("vision_model"):
  4208. # skip visual tensors
  4209. return []
  4210. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  4211. qkv = data_torch
  4212. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  4213. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  4214. # The model weights of q and k equire additional reshape.
  4215. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  4216. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  4217. v = v.reshape((-1, v.shape[-1]))
  4218. return [
  4219. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  4220. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  4221. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  4222. ]
  4223. else:
  4224. return [(self.map_tensor_name(name), data_torch)]
  4225. @ModelBase.register("InternLM3ForCausalLM")
  4226. class InternLM3Model(TextModel):
  4227. model_arch = gguf.MODEL_ARCH.LLAMA
  4228. def set_vocab(self):
  4229. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  4230. self.gguf_writer.add_tokenizer_model("llama")
  4231. self.gguf_writer.add_tokenizer_pre("default")
  4232. self.gguf_writer.add_token_list(tokens)
  4233. self.gguf_writer.add_token_scores(scores)
  4234. self.gguf_writer.add_token_types(toktypes)
  4235. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4236. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  4237. if tokenizer_config_file.is_file():
  4238. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  4239. tokenizer_config_json = json.load(f)
  4240. if "add_prefix_space" in tokenizer_config_json:
  4241. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  4242. if "added_tokens_decoder" in tokenizer_config_json:
  4243. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  4244. if token_data.get("special"):
  4245. token_id = int(token_id)
  4246. token = token_data["content"]
  4247. special_vocab._set_special_token(token, token_id)
  4248. # update eos token
  4249. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  4250. special_vocab.special_token_ids["eos"] = token_id
  4251. special_vocab.add_to_gguf(self.gguf_writer)
  4252. def set_gguf_parameters(self):
  4253. super().set_gguf_parameters()
  4254. hparams = self.hparams
  4255. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4256. if (rope_dim := hparams.get("head_dim")) is None:
  4257. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  4258. self.gguf_writer.add_rope_dimension_count(rope_dim)
  4259. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4260. n_head = self.hparams["num_attention_heads"]
  4261. n_kv_head = self.hparams.get("num_key_value_heads")
  4262. name = name.replace("language_model.", "") # InternVL
  4263. if name.startswith("mlp") or name.startswith("vision_model"):
  4264. # skip visual tensors
  4265. return []
  4266. if name.endswith(("q_proj.weight", "q_proj.bias")):
  4267. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4268. if name.endswith(("k_proj.weight", "k_proj.bias")):
  4269. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4270. return [(self.map_tensor_name(name), data_torch)]
  4271. @ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel", "BertForSequenceClassification")
  4272. class BertModel(TextModel):
  4273. model_arch = gguf.MODEL_ARCH.BERT
  4274. def __init__(self, *args, **kwargs):
  4275. super().__init__(*args, **kwargs)
  4276. self.vocab_size = None
  4277. if cls_out_labels := self.hparams.get("id2label"):
  4278. if len(cls_out_labels) == 2 and cls_out_labels[0] == "LABEL_0":
  4279. # Remove dummy labels added by AutoConfig
  4280. cls_out_labels = None
  4281. self.cls_out_labels = cls_out_labels
  4282. def set_gguf_parameters(self):
  4283. super().set_gguf_parameters()
  4284. self.gguf_writer.add_causal_attention(False)
  4285. self._try_set_pooling_type()
  4286. if self.cls_out_labels:
  4287. self.gguf_writer.add_classifier_output_labels([v for k, v in sorted(self.cls_out_labels.items())])
  4288. def set_vocab(self):
  4289. tokens, toktypes, tokpre = self.get_vocab_base()
  4290. self.vocab_size = len(tokens)
  4291. # we need this to validate the size of the token_type embeddings
  4292. # though currently we are passing all zeros to the token_type embeddings
  4293. # "Sequence A" or "Sequence B"
  4294. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4295. # convert to phantom space vocab
  4296. def phantom(tok):
  4297. if tok.startswith("[") and tok.endswith("]"):
  4298. return tok
  4299. if tok.startswith("##"):
  4300. return tok[2:]
  4301. return "\u2581" + tok
  4302. tokens = list(map(phantom, tokens))
  4303. # add vocab to gguf
  4304. self.gguf_writer.add_tokenizer_model("bert")
  4305. self.gguf_writer.add_tokenizer_pre(tokpre)
  4306. self.gguf_writer.add_token_list(tokens)
  4307. self.gguf_writer.add_token_types(toktypes)
  4308. # handle special tokens
  4309. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4310. special_vocab.add_to_gguf(self.gguf_writer)
  4311. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4312. del bid # unused
  4313. if name.startswith("bert."):
  4314. name = name[5:]
  4315. if name.endswith(".gamma"):
  4316. name = name[:-6] + ".weight"
  4317. if name.endswith(".beta"):
  4318. name = name[:-5] + ".bias"
  4319. # we are only using BERT for embeddings so we don't need the pooling layer
  4320. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  4321. return [] # we don't need these
  4322. if name.startswith("cls.predictions"):
  4323. return []
  4324. if name.startswith("cls.seq_relationship"):
  4325. return []
  4326. if self.cls_out_labels:
  4327. # For BertForSequenceClassification (direct projection layer)
  4328. if name == "classifier.weight":
  4329. name = "classifier.out_proj.weight"
  4330. if name == "classifier.bias":
  4331. name = "classifier.out_proj.bias"
  4332. return [(self.map_tensor_name(name), data_torch)]
  4333. def _xlmroberta_tokenizer_init(self) -> None:
  4334. # we need the pad_token_id to know how to chop down position_embd matrix
  4335. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  4336. self._position_offset = 1 + pad_token_id
  4337. if "max_position_embeddings" in self.hparams:
  4338. self.hparams["max_position_embeddings"] -= self._position_offset
  4339. else:
  4340. self._position_offset = None
  4341. def _xlmroberta_set_vocab(self) -> None:
  4342. # to avoid TypeError: Descriptors cannot be created directly
  4343. # exception when importing sentencepiece_model_pb2
  4344. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  4345. from sentencepiece import SentencePieceProcessor
  4346. from sentencepiece import sentencepiece_model_pb2 as model
  4347. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  4348. tokenizer_json = {}
  4349. tokenizer_config_json = {}
  4350. if not tokenizer_path.is_file():
  4351. tokenizer_path = self.dir_model / 'tokenizer.json'
  4352. tokenizer_config_path = self.dir_model / 'tokenizer_config.json'
  4353. if not tokenizer_path.is_file():
  4354. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  4355. from base64 import b64decode
  4356. from transformers import AutoTokenizer
  4357. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  4358. with open(tokenizer_path, "r", encoding="utf-8") as fp:
  4359. tokenizer_json = json.load(fp)
  4360. if tokenizer_config_path.is_file():
  4361. with open(tokenizer_config_path, "r", encoding="utf-8") as fp:
  4362. tokenizer_config_json = json.load(fp)
  4363. add_prefix = tokenizer.add_prefix_space
  4364. remove_whitespaces = tokenizer.clean_up_tokenization_spaces
  4365. precompiled_charsmap = b64decode(tokenizer_json["normalizer"]["precompiled_charsmap"])
  4366. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size)
  4367. else:
  4368. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4369. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4370. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  4371. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4372. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  4373. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  4374. tokenizer = SentencePieceProcessor()
  4375. tokenizer.LoadFromFile(str(tokenizer_path))
  4376. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size())
  4377. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4378. scores: list[float] = [-10000.0] * vocab_size
  4379. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4380. if isinstance(tokenizer, SentencePieceProcessor):
  4381. for token_id in range(tokenizer.vocab_size()):
  4382. piece = tokenizer.IdToPiece(token_id)
  4383. text = piece.encode("utf-8")
  4384. score = tokenizer.GetScore(token_id)
  4385. toktype = SentencePieceTokenTypes.NORMAL
  4386. if tokenizer.IsUnknown(token_id):
  4387. toktype = SentencePieceTokenTypes.UNKNOWN
  4388. elif tokenizer.IsControl(token_id):
  4389. toktype = SentencePieceTokenTypes.CONTROL
  4390. elif tokenizer.IsUnused(token_id):
  4391. toktype = SentencePieceTokenTypes.UNUSED
  4392. elif tokenizer.IsByte(token_id):
  4393. toktype = SentencePieceTokenTypes.BYTE
  4394. tokens[token_id] = text
  4395. scores[token_id] = score
  4396. toktypes[token_id] = toktype
  4397. else:
  4398. added_vocab = tokenizer.get_added_vocab()
  4399. unk_token = tokenizer_config_json.get("unk_token")
  4400. unk_token_id = added_vocab.get(unk_token, tokenizer_json["model"].get("unk_id", 3))
  4401. for token_id in range(tokenizer.vocab_size):
  4402. piece = tokenizer._convert_id_to_token(token_id)
  4403. if (piece := tokenizer._convert_id_to_token(token_id)) is not None:
  4404. text = piece.encode("utf-8")
  4405. score = tokenizer_json["model"]["vocab"][token_id][1]
  4406. toktype = SentencePieceTokenTypes.NORMAL
  4407. if token_id == unk_token_id:
  4408. toktype = SentencePieceTokenTypes.UNKNOWN
  4409. elif token_id in tokenizer.all_special_ids:
  4410. toktype = SentencePieceTokenTypes.CONTROL
  4411. elif token_id in added_vocab.values():
  4412. toktype = SentencePieceTokenTypes.USER_DEFINED
  4413. # No reliable way to detect this, but jina doesn't have any
  4414. # elif tokenizer.IsByte(token_id):
  4415. # toktype = SentencePieceTokenTypes.BYTE
  4416. tokens[token_id] = text
  4417. scores[token_id] = score
  4418. toktypes[token_id] = toktype
  4419. if isinstance(tokenizer, SentencePieceProcessor):
  4420. # realign tokens (see HF tokenizer code)
  4421. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  4422. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  4423. toktypes = [
  4424. SentencePieceTokenTypes.CONTROL,
  4425. SentencePieceTokenTypes.CONTROL,
  4426. SentencePieceTokenTypes.CONTROL,
  4427. SentencePieceTokenTypes.UNKNOWN,
  4428. ] + toktypes[3:-1]
  4429. if self.model_arch == gguf.MODEL_ARCH.NOMIC_BERT_MOE:
  4430. # Add mask token missing from sentencepiece.bpe.model
  4431. tokens[250001] = b'<mask>'
  4432. scores[250001] = 0.0
  4433. toktypes[250001] = SentencePieceTokenTypes.CONTROL
  4434. self.gguf_writer.add_tokenizer_model("t5")
  4435. self.gguf_writer.add_tokenizer_pre("default")
  4436. self.gguf_writer.add_token_list(tokens)
  4437. self.gguf_writer.add_token_scores(scores)
  4438. self.gguf_writer.add_token_types(toktypes)
  4439. self.gguf_writer.add_add_space_prefix(add_prefix)
  4440. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4441. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  4442. if precompiled_charsmap:
  4443. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  4444. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4445. special_vocab.add_to_gguf(self.gguf_writer)
  4446. @ModelBase.register("DistilBertModel", "DistilBertForMaskedLM", "DistilBertForSequenceClassification")
  4447. class DistilBertModel(BertModel):
  4448. model_arch = gguf.MODEL_ARCH.BERT
  4449. def set_gguf_parameters(self):
  4450. self.gguf_writer.add_layer_norm_eps(1e-12)
  4451. logger.info("gguf: layer norm epsilon = 1e-12")
  4452. super().set_gguf_parameters()
  4453. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4454. if name.startswith("distilbert."):
  4455. name = name[11:]
  4456. # These layers act as MLM head, so we don't need them
  4457. if name.startswith("vocab_"):
  4458. return []
  4459. return super().modify_tensors(data_torch, name, bid)
  4460. @ModelBase.register("RobertaModel", "RobertaForSequenceClassification")
  4461. class RobertaModel(BertModel):
  4462. model_arch = gguf.MODEL_ARCH.BERT
  4463. def __init__(self, *args, **kwargs):
  4464. super().__init__(*args, **kwargs)
  4465. # we need the pad_token_id to know how to chop down position_embd matrix
  4466. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  4467. self._position_offset = 1 + pad_token_id
  4468. if "max_position_embeddings" in self.hparams:
  4469. self.hparams["max_position_embeddings"] -= self._position_offset
  4470. else:
  4471. self._position_offset = None
  4472. def set_vocab(self):
  4473. """Support BPE tokenizers for roberta models"""
  4474. bpe_tok_path = self.dir_model / "tokenizer.json"
  4475. if bpe_tok_path.exists():
  4476. self._set_vocab_gpt2()
  4477. # we need this to validate the size of the token_type embeddings
  4478. # though currently we are passing all zeros to the token_type embeddings
  4479. # "Sequence A" or "Sequence B"
  4480. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4481. else:
  4482. return super().set_vocab()
  4483. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4484. # if name starts with "roberta.", remove the prefix
  4485. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  4486. if name.startswith("roberta."):
  4487. name = name[8:]
  4488. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  4489. if name == "embeddings.position_embeddings.weight":
  4490. if self._position_offset is not None:
  4491. data_torch = data_torch[self._position_offset:,:]
  4492. return super().modify_tensors(data_torch, name, bid)
  4493. @ModelBase.register("NomicBertModel")
  4494. class NomicBertModel(BertModel):
  4495. model_arch = gguf.MODEL_ARCH.BERT
  4496. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  4497. hparams = kwargs.pop("hparams", None)
  4498. if hparams is None:
  4499. hparams = ModelBase.load_hparams(dir_model, False)
  4500. self.is_moe = bool(hparams.get("moe_every_n_layers"))
  4501. self.model_arch = gguf.MODEL_ARCH.NOMIC_BERT_MOE if self.is_moe else gguf.MODEL_ARCH.NOMIC_BERT
  4502. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  4503. self._tokenizer_is_xlmroberta = self._is_tokenizer_xlmroberta()
  4504. if self._tokenizer_is_xlmroberta:
  4505. self._xlmroberta_tokenizer_init()
  4506. npos, mtp = self.hparams["n_positions"], self.hparams.get("max_trained_positions", 2048)
  4507. if npos == 8192 and mtp == 2048:
  4508. self.hparams["n_positions"] = 2048 # nomic-embed-text v1 and v1.5 are trained for 2048 tokens.
  4509. elif npos == 2048 and mtp == 2048:
  4510. self.hparams["n_positions"] = 512 # nomic-embed-text-v2-moe is trained for 512 tokens.
  4511. else:
  4512. raise ValueError(f"unrecognized parameters: n_positions={npos}, max_trained_positions={mtp}")
  4513. assert self.hparams["activation_function"] == "gelu" if self.is_moe else "swiglu"
  4514. # this doesn't do anything in the HF version
  4515. assert self.hparams["causal"] is False
  4516. # no bias tensors unless MoE
  4517. assert self.hparams["qkv_proj_bias"] == self.is_moe
  4518. assert self.hparams["mlp_fc1_bias"] == self.is_moe
  4519. assert self.hparams["mlp_fc2_bias"] == self.is_moe
  4520. # norm at end of layer
  4521. assert self.hparams["prenorm"] is False
  4522. # standard RoPE
  4523. assert self.hparams["rotary_emb_fraction"] == 1.0
  4524. assert self.hparams["rotary_emb_interleaved"] is False
  4525. assert self.hparams["rotary_emb_scale_base"] is None
  4526. def set_vocab(self) -> None:
  4527. if self._tokenizer_is_xlmroberta:
  4528. return self._xlmroberta_set_vocab()
  4529. return super().set_vocab()
  4530. def modify_tensors(self, data_torch: torch.Tensor, name: str, bid: int | None) -> Iterable[tuple[str, torch.Tensor]]:
  4531. # If the tensor is an experts bias tensor, skip it by returning an empty list.
  4532. if "mlp.experts.bias" in name:
  4533. return [] # Explicitly return an empty list.
  4534. if "mlp.experts.mlp.w1" in name:
  4535. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  4536. name += ".weight"
  4537. if "mlp.experts.mlp.w2" in name:
  4538. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  4539. data_torch = data_torch.transpose(1, 2)
  4540. name += ".weight"
  4541. return [(self.map_tensor_name(name), data_torch)]
  4542. def set_gguf_parameters(self):
  4543. super().set_gguf_parameters()
  4544. if self.is_moe:
  4545. self.gguf_writer.add_moe_every_n_layers(self.hparams["moe_every_n_layers"])
  4546. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  4547. self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"])
  4548. def _is_tokenizer_xlmroberta(self) -> bool:
  4549. with open(self.dir_model / "tokenizer.json") as f:
  4550. tokenizer_json = json.load(f)
  4551. toktyp = tokenizer_json["model"]["type"]
  4552. if toktyp == "Unigram":
  4553. return True
  4554. if toktyp == "WordPiece":
  4555. return False
  4556. raise ValueError(f"unknown tokenizer: {toktyp}")
  4557. @ModelBase.register("NeoBERT", "NeoBERTLMHead", "NeoBERTForSequenceClassification")
  4558. class NeoBert(BertModel):
  4559. model_arch = gguf.MODEL_ARCH.NEO_BERT
  4560. def set_gguf_parameters(self):
  4561. super().set_gguf_parameters()
  4562. # NeoBERT uses 2/3 of the intermediate size as feed forward length
  4563. self.gguf_writer.add_feed_forward_length(int(2 * self.hparams["intermediate_size"] / 3))
  4564. self.gguf_writer.add_rope_freq_base(10000.0) # default value for NeoBERT
  4565. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4566. f_rms_eps = self.hparams.get("norm_eps", 1e-6) # default value for NeoBERT
  4567. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  4568. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  4569. self.gguf_writer.add_pooling_type(gguf.PoolingType.CLS) # https://huggingface.co/chandar-lab/NeoBERT#how-to-use
  4570. def modify_tensors(self, data_torch, name, bid):
  4571. if name.startswith("decoder."):
  4572. return []
  4573. if name.startswith("model."):
  4574. name = name[6:]
  4575. return super().modify_tensors(data_torch, name, bid)
  4576. @ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  4577. class XLMRobertaModel(BertModel):
  4578. model_arch = gguf.MODEL_ARCH.BERT
  4579. _lora_files = {}
  4580. _lora_names = []
  4581. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  4582. hparams = kwargs.pop("hparams", None)
  4583. if hparams is None:
  4584. hparams = ModelBase.load_hparams(dir_model, False)
  4585. if lora_names := hparams.get("lora_adaptations"):
  4586. self._lora_names = lora_names
  4587. self.model_arch = gguf.MODEL_ARCH.JINA_BERT_V3
  4588. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  4589. self._xlmroberta_tokenizer_init()
  4590. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4591. if self._lora_names:
  4592. for name in self._lora_names:
  4593. fname = self.add_prefix_to_filename(self.fname_out, f"lora-{name}-")
  4594. self._lora_files[name] = gguf.GGUFWriter(fname, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file, dry_run=self.dry_run)
  4595. return super().generate_extra_tensors()
  4596. def set_type(self):
  4597. for lora_writer in self._lora_files.values():
  4598. lora_writer.add_type(gguf.GGUFType.ADAPTER)
  4599. lora_writer.add_string(gguf.Keys.Adapter.TYPE, "lora")
  4600. super().set_type()
  4601. def set_vocab(self):
  4602. self._xlmroberta_set_vocab()
  4603. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4604. # if name starts with "roberta.", remove the prefix
  4605. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  4606. if name.startswith("roberta."):
  4607. name = name[8:]
  4608. # jina-embeddings-v3
  4609. if ".parametrizations." in name:
  4610. name = name.replace(".parametrizations.", ".")
  4611. if name.endswith(".original"):
  4612. name = name[:-9]
  4613. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  4614. if name == "embeddings.position_embeddings.weight":
  4615. if self._position_offset is not None:
  4616. data_torch = data_torch[self._position_offset:,:]
  4617. if name.endswith(".0.lora_A") or name.endswith(".0.lora_B"):
  4618. if name.startswith("pooler.dense"):
  4619. return []
  4620. num_loras = data_torch.size(0)
  4621. assert num_loras == len(self._lora_names)
  4622. # Split out each LoRA in their own GGUF
  4623. for i, lora_writer in enumerate(self._lora_files.values()):
  4624. new_name = self.map_tensor_name(name[:-9]) + name[-7:].lower()
  4625. data = data_torch[i, :, :]
  4626. # Transpose/flip token_embd/types into correct shape
  4627. if new_name == "token_embd.weight.lora_b":
  4628. data = data.T
  4629. elif new_name.startswith("token_types.weight."):
  4630. new_name = new_name[:-1] + ("a" if new_name[-1:] == "b" else "b")
  4631. lora_writer.add_tensor(new_name, data.float().numpy(), raw_dtype=gguf.GGMLQuantizationType.F32)
  4632. return []
  4633. return super().modify_tensors(data_torch, name, bid)
  4634. def set_gguf_parameters(self):
  4635. super().set_gguf_parameters()
  4636. # jina-embeddings-v3
  4637. lora_alpha = self.hparams.get("lora_alpha")
  4638. if lora_prompt_prefixes := self.hparams.get("task_instructions"):
  4639. assert self._lora_files and all(lora_name in lora_prompt_prefixes for lora_name in self._lora_files.keys())
  4640. for lora_name, lora_writer in self._lora_files.items():
  4641. lora_writer.add_float32(gguf.Keys.Adapter.LORA_ALPHA, lora_alpha if lora_alpha is not None else 1.0)
  4642. lora_writer.add_string(gguf.Keys.Adapter.LORA_TASK_NAME, lora_name)
  4643. if lora_prompt_prefixes:
  4644. lora_writer.add_string(gguf.Keys.Adapter.LORA_PROMPT_PREFIX, lora_prompt_prefixes[lora_name])
  4645. def write(self):
  4646. super().write()
  4647. for lora_writer in self._lora_files.values():
  4648. lora_writer.write_header_to_file()
  4649. lora_writer.write_kv_data_to_file()
  4650. lora_writer.write_tensors_to_file(progress=True)
  4651. lora_writer.close()
  4652. @ModelBase.register("GemmaForCausalLM")
  4653. class GemmaModel(TextModel):
  4654. model_arch = gguf.MODEL_ARCH.GEMMA
  4655. def set_vocab(self):
  4656. self._set_vocab_sentencepiece()
  4657. # TODO: these special tokens should be exported only for the CodeGemma family
  4658. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  4659. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  4660. special_vocab._set_special_token("prefix", 67)
  4661. special_vocab._set_special_token("suffix", 69)
  4662. special_vocab._set_special_token("middle", 68)
  4663. special_vocab._set_special_token("fsep", 70)
  4664. special_vocab._set_special_token("eot", 107)
  4665. special_vocab.chat_template = None # do not add it twice
  4666. special_vocab.add_to_gguf(self.gguf_writer)
  4667. self.gguf_writer.add_add_space_prefix(False)
  4668. def set_gguf_parameters(self):
  4669. hparams = self.hparams
  4670. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4671. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4672. self.gguf_writer.add_block_count(self.block_count)
  4673. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4674. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4675. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4676. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4677. self.gguf_writer.add_key_length(hparams["head_dim"])
  4678. self.gguf_writer.add_value_length(hparams["head_dim"])
  4679. self.gguf_writer.add_file_type(self.ftype)
  4680. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4681. del bid # unused
  4682. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4683. # To prevent errors, skip loading lm_head.weight.
  4684. if name == "lm_head.weight":
  4685. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4686. return []
  4687. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4688. if name.endswith("norm.weight"):
  4689. data_torch = data_torch + 1
  4690. return [(self.map_tensor_name(name), data_torch)]
  4691. @ModelBase.register("Gemma2ForCausalLM")
  4692. class Gemma2Model(TextModel):
  4693. model_arch = gguf.MODEL_ARCH.GEMMA2
  4694. def set_vocab(self):
  4695. self._set_vocab_sentencepiece()
  4696. self.gguf_writer.add_add_space_prefix(False)
  4697. def set_gguf_parameters(self):
  4698. hparams = self.hparams
  4699. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4700. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4701. self.gguf_writer.add_block_count(self.block_count)
  4702. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4703. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4704. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4705. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4706. self.gguf_writer.add_key_length(hparams["head_dim"])
  4707. self.gguf_writer.add_value_length(hparams["head_dim"])
  4708. self.gguf_writer.add_file_type(self.ftype)
  4709. self.gguf_writer.add_attn_logit_softcapping(
  4710. self.hparams["attn_logit_softcapping"]
  4711. )
  4712. self.gguf_writer.add_final_logit_softcapping(
  4713. self.hparams["final_logit_softcapping"]
  4714. )
  4715. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  4716. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4717. del bid # unused
  4718. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4719. # To prevent errors, skip loading lm_head.weight.
  4720. if name == "lm_head.weight":
  4721. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4722. return []
  4723. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4724. if name.endswith("norm.weight"):
  4725. data_torch = data_torch + 1
  4726. return [(self.map_tensor_name(name), data_torch)]
  4727. @ModelBase.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  4728. class Gemma3Model(TextModel):
  4729. model_arch = gguf.MODEL_ARCH.GEMMA3
  4730. norm_shift = 1.0 # Gemma3RMSNorm adds 1.0 to the norm value
  4731. def set_vocab(self):
  4732. if (self.dir_model / "tokenizer.model").is_file():
  4733. self._set_vocab_sentencepiece()
  4734. self.gguf_writer.add_add_space_prefix(False)
  4735. else:
  4736. self._set_vocab_gpt2()
  4737. def set_gguf_parameters(self):
  4738. super().set_gguf_parameters()
  4739. hparams = self.hparams
  4740. # some default values are not specified in the hparams
  4741. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  4742. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  4743. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  4744. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  4745. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  4746. self.gguf_writer.add_rope_freq_base(self.rope_parameters.get("full_attention", self.rope_parameters).get("rope_theta", 1_000_000.0)) # for global layers
  4747. # attn_logit_softcapping is removed in Gemma3
  4748. assert hparams.get("attn_logit_softcapping") is None
  4749. if (final_logit_softcap := hparams.get("final_logit_softcapping")):
  4750. self.gguf_writer.add_final_logit_softcapping(final_logit_softcap)
  4751. if hparams.get("sliding_window_pattern") != 1:
  4752. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  4753. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  4754. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4755. del bid # unused
  4756. if "language_model." in name:
  4757. name = name.replace("language_model.", "")
  4758. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4759. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4760. return [] # skip vision tensors
  4761. # remove OOV (out-of-vocabulary) rows in token_embd
  4762. if "embed_tokens.weight" in name:
  4763. if (self.dir_model / "tokenizer.model").is_file():
  4764. tokens = self._create_vocab_sentencepiece()[0]
  4765. else:
  4766. tokens = self.get_vocab_base()[0]
  4767. data_torch = data_torch[:len(tokens)]
  4768. # ref code in Gemma3RMSNorm
  4769. # output = output * (1.0 + self.weight.float())
  4770. # note: this is not the case on gemma3n
  4771. if name.endswith("norm.weight"):
  4772. data_torch = data_torch + self.norm_shift
  4773. return [(self.map_tensor_name(name), data_torch)]
  4774. @ModelBase.register("Gemma3TextModel")
  4775. class EmbeddingGemma(Gemma3Model):
  4776. model_arch = gguf.MODEL_ARCH.GEMMA_EMBEDDING
  4777. module_paths = []
  4778. dense_features_dims = {}
  4779. def __init__(self, *args, **kwargs):
  4780. super().__init__(*args, **kwargs)
  4781. if self.sentence_transformers_dense_modules:
  4782. # read modules.json to determine if model has Dense layers
  4783. modules_file = self.dir_model / "modules.json"
  4784. if modules_file.is_file():
  4785. with open(modules_file, encoding="utf-8") as modules_json_file:
  4786. mods = json.load(modules_json_file)
  4787. for mod in mods:
  4788. if mod["type"] == "sentence_transformers.models.Dense":
  4789. mod_path = mod["path"]
  4790. # check if model.safetensors file for Dense layer exists
  4791. model_tensors_file = self.dir_model / mod_path / "model.safetensors"
  4792. if model_tensors_file.is_file():
  4793. self.module_paths.append(mod_path)
  4794. # read config.json of the Dense layer to get in/out features
  4795. mod_conf_file = self.dir_model / mod_path / "config.json"
  4796. if mod_conf_file.is_file():
  4797. with open(mod_conf_file, encoding="utf-8") as mod_conf_json_file:
  4798. mod_conf = json.load(mod_conf_json_file)
  4799. # hparams dense_2_feat_out and dense_3_feat_in are required when loading model's dense weights
  4800. prefix = self._get_dense_prefix(mod_path)
  4801. if mod_conf["in_features"] is not None and mod_conf["out_features"] is not None:
  4802. self.dense_features_dims[prefix] = (mod_conf["in_features"], mod_conf["out_features"])
  4803. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4804. from safetensors.torch import load_file
  4805. module_paths = list(self.module_paths)
  4806. for i, module_path in enumerate(module_paths):
  4807. tensors_file = self.dir_model / module_path / "model.safetensors"
  4808. local_tensors = load_file(tensors_file)
  4809. tensor_name = self._get_dense_prefix(module_path)
  4810. for name, local_tensor in local_tensors.items():
  4811. if not name.endswith(".weight"):
  4812. continue
  4813. orig_name = name.replace("linear", tensor_name)
  4814. name = self.map_tensor_name(orig_name)
  4815. yield name, local_tensor.clone()
  4816. @staticmethod
  4817. def _get_dense_prefix(module_path) -> str:
  4818. """Get the tensor name prefix for the Dense layer from module path."""
  4819. tensor_name = "dense_2" if module_path == "2_Dense" else "dense_3"
  4820. return tensor_name
  4821. def set_gguf_parameters(self):
  4822. super().set_gguf_parameters()
  4823. # Override the sliding window size as it gets adjusted by the Gemma3TextConfig
  4824. # constructor. We want to use the value from the original model's config.json.
  4825. # ref: https://github.com/huggingface/transformers/pull/40700
  4826. with open(self.dir_model / "config.json", "r", encoding="utf-8") as f:
  4827. config = json.load(f)
  4828. orig_sliding_window = config.get("sliding_window")
  4829. if orig_sliding_window is None:
  4830. raise ValueError("sliding_window not found in model config - this is required for the model")
  4831. logger.info(f"Using original sliding_window from config: {orig_sliding_window} "
  4832. f"instead of {self.hparams['sliding_window']}")
  4833. self.gguf_writer.add_sliding_window(orig_sliding_window)
  4834. if self.sentence_transformers_dense_modules:
  4835. for dense, dims in self.dense_features_dims.items():
  4836. logger.info(f"Setting dense layer {dense} in/out features to {dims}")
  4837. self.gguf_writer.add_dense_features_dims(dense, dims[0], dims[1])
  4838. self._try_set_pooling_type()
  4839. @ModelBase.register("Gemma3ForConditionalGeneration")
  4840. class Gemma3VisionModel(MmprojModel):
  4841. def set_gguf_parameters(self):
  4842. super().set_gguf_parameters()
  4843. hparams = self.hparams
  4844. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GEMMA3)
  4845. # default values below are taken from HF tranformers code
  4846. self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
  4847. self.gguf_writer.add_vision_use_gelu(True)
  4848. # calculate proj_scale_factor (used by tinygemma3 test model)
  4849. image_seq_length = self.preprocessor_config.get("image_seq_length", 256)
  4850. n_per_side = int(image_seq_length ** 0.5)
  4851. image_size = self.hparams["image_size"]
  4852. patch_size = self.hparams["patch_size"]
  4853. proj_scale_factor = (image_size // patch_size) // n_per_side
  4854. if proj_scale_factor > 0 and proj_scale_factor != 4:
  4855. # we only need to write this if it's not the default value
  4856. # in this case, we are converting a test model
  4857. self.gguf_writer.add_vision_projector_scale_factor(proj_scale_factor)
  4858. def tensor_force_quant(self, name, new_name, bid, n_dims):
  4859. # related to https://github.com/ggml-org/llama.cpp/issues/13025
  4860. if "input_projection" in name:
  4861. return gguf.GGMLQuantizationType.F16
  4862. if ".embeddings." in name:
  4863. return gguf.GGMLQuantizationType.F32
  4864. return super().tensor_force_quant(name, new_name, bid, n_dims)
  4865. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4866. del bid # unused
  4867. if "vision_model.head." in name:
  4868. return [] # skip redundant tensors for tinygemma3
  4869. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4870. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4871. # process vision tensors
  4872. name = name.replace("_weight", ".weight")
  4873. # correct norm value ; only this "soft_emb_norm" need to be corrected as it's part of Gemma projector
  4874. # the other norm values are part of SigLIP model, and they are already correct
  4875. # ref code: Gemma3RMSNorm
  4876. if "soft_emb_norm.weight" in name:
  4877. logger.info(f"Correcting norm value for '{name}'")
  4878. data_torch = data_torch + 1
  4879. return [(self.map_tensor_name(name), data_torch)]
  4880. return [] # skip other tensors
  4881. @ModelBase.register("Gemma3nForConditionalGeneration")
  4882. class Gemma3NModel(Gemma3Model):
  4883. model_arch = gguf.MODEL_ARCH.GEMMA3N
  4884. norm_shift = 0.0 # same value with Gemma3p5RMSNorm scale_shift on python code
  4885. _altup_proj: list[Tensor] = []
  4886. _altup_unembd: list[Tensor] = []
  4887. def __init__(self, *args, **kwargs):
  4888. super().__init__(*args, **kwargs)
  4889. assert self.hparams["altup_num_inputs"] == 4, "Current conversion only supports 4 altup inputs"
  4890. self._altup_proj = [
  4891. torch.Tensor(), # to be replaced
  4892. torch.Tensor(), # to be replaced
  4893. torch.Tensor(), # to be replaced
  4894. ]
  4895. self._altup_unembd = [
  4896. torch.Tensor(), # to be replaced
  4897. torch.Tensor(), # to be replaced
  4898. torch.Tensor(), # to be replaced
  4899. ]
  4900. def set_vocab(self):
  4901. super().set_vocab()
  4902. def set_gguf_parameters(self):
  4903. super().set_gguf_parameters()
  4904. self.gguf_writer.add_altup_active_idx(self.hparams["altup_active_idx"])
  4905. self.gguf_writer.add_altup_num_inputs(self.hparams["altup_num_inputs"])
  4906. self.gguf_writer.add_embedding_length_per_layer_input(self.hparams["hidden_size_per_layer_input"])
  4907. self.gguf_writer.add_shared_kv_layers(self.hparams["num_kv_shared_layers"])
  4908. activation_sparsity_scale = []
  4909. for s in self.hparams["activation_sparsity_pattern"]:
  4910. normal_dist = torch.distributions.normal.Normal(0, 1)
  4911. std_multiplier = normal_dist.icdf(torch.tensor(s, dtype=torch.float32))
  4912. activation_sparsity_scale.append(std_multiplier.item())
  4913. self.gguf_writer.add_activation_sparsity_scale(activation_sparsity_scale)
  4914. sliding_window_pattern = []
  4915. for t in self.hparams["layer_types"]:
  4916. sliding_window_pattern.append(t == "sliding_attention")
  4917. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  4918. def _stack_matrices(self, matrices: list[Tensor]) -> Tensor | None:
  4919. has_all = all(m.numel() > 0 for m in matrices)
  4920. if not has_all:
  4921. return None
  4922. else:
  4923. return torch.stack(matrices, dim=0)
  4924. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4925. if name.endswith("_scale"):
  4926. name = name + ".weight"
  4927. # TODO: implement self.prediction_coefs.weight.clamp_(...)
  4928. if "language_model." not in name:
  4929. return [] # skip non-language model tensors
  4930. if "altup_unembed_projections" in name:
  4931. data_torch = data_torch.to(device="cpu")
  4932. if ".0." in name:
  4933. self._altup_unembd[0] = data_torch
  4934. elif ".1." in name:
  4935. self._altup_unembd[1] = data_torch
  4936. elif ".2." in name:
  4937. self._altup_unembd[2] = data_torch
  4938. else:
  4939. raise ValueError(f"Unknown name: {name}")
  4940. out = self._stack_matrices(self._altup_unembd)
  4941. if out is not None:
  4942. return [(self.map_tensor_name("model.altup_unembed_projections.weight"), out)]
  4943. else:
  4944. return []
  4945. if "altup_projections" in name:
  4946. data_torch = data_torch.to(device="cpu")
  4947. if ".0." in name:
  4948. self._altup_proj[0] = data_torch
  4949. elif ".1." in name:
  4950. self._altup_proj[1] = data_torch
  4951. elif ".2." in name:
  4952. self._altup_proj[2] = data_torch
  4953. else:
  4954. raise ValueError(f"Unknown name: {name}")
  4955. out = self._stack_matrices(self._altup_proj)
  4956. if out is not None:
  4957. return [(self.map_tensor_name("model.altup_projections.weight"), out)]
  4958. else:
  4959. return []
  4960. return super().modify_tensors(data_torch, name, bid)
  4961. @ModelBase.register("Starcoder2ForCausalLM")
  4962. class StarCoder2Model(TextModel):
  4963. model_arch = gguf.MODEL_ARCH.STARCODER2
  4964. @ModelBase.register("Rwkv6ForCausalLM")
  4965. class Rwkv6Model(TextModel):
  4966. model_arch = gguf.MODEL_ARCH.RWKV6
  4967. def set_vocab(self):
  4968. self._set_vocab_rwkv_world()
  4969. def set_gguf_parameters(self):
  4970. head_size = self.hparams["head_size"]
  4971. hidden_size = self.hparams["hidden_size"]
  4972. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  4973. rescale_every_n_layers = self.hparams["rescale_every"]
  4974. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  4975. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  4976. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  4977. # RWKV isn't context limited
  4978. self.gguf_writer.add_context_length(1048576)
  4979. self.gguf_writer.add_embedding_length(hidden_size)
  4980. self.gguf_writer.add_block_count(self.block_count)
  4981. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  4982. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  4983. self.gguf_writer.add_wkv_head_size(head_size)
  4984. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  4985. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  4986. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4987. self.gguf_writer.add_file_type(self.ftype)
  4988. # required by llama.cpp, unused
  4989. self.gguf_writer.add_head_count(0)
  4990. lerp_weights: dict[int, dict[str, Tensor]] = {}
  4991. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4992. new_name = self.map_tensor_name(name)
  4993. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  4994. new_name += ".weight"
  4995. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  4996. data_torch = data_torch.transpose(0, 1)
  4997. if new_name.endswith("time_mix_w2.weight"):
  4998. data_torch = data_torch.permute(0, 2, 1)
  4999. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  5000. data_torch = data_torch.squeeze()
  5001. try:
  5002. rescale_every_n_layers = self.hparams["rescale_every"]
  5003. if rescale_every_n_layers > 0:
  5004. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  5005. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  5006. except KeyError:
  5007. pass
  5008. # concat time_mix_lerp weights to reduce some cpu overhead
  5009. # also reduces the number of tensors in the model
  5010. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  5011. try:
  5012. self.lerp_weights[bid][new_name] = data_torch
  5013. except KeyError:
  5014. self.lerp_weights[bid] = {new_name: data_torch}
  5015. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  5016. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  5017. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  5018. yield (new_name, data)
  5019. return
  5020. yield (new_name, data_torch)
  5021. @ModelBase.register("RWKV6Qwen2ForCausalLM")
  5022. class RWKV6Qwen2Model(Rwkv6Model):
  5023. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  5024. def set_vocab(self):
  5025. try:
  5026. self._set_vocab_sentencepiece()
  5027. except FileNotFoundError:
  5028. self._set_vocab_gpt2()
  5029. def set_gguf_parameters(self):
  5030. num_attention_heads = self.hparams["num_attention_heads"]
  5031. num_key_value_heads = self.hparams["num_key_value_heads"]
  5032. hidden_size = self.hparams["hidden_size"]
  5033. head_size = hidden_size // num_attention_heads
  5034. rms_norm_eps = self.hparams["rms_norm_eps"]
  5035. intermediate_size = self.hparams["intermediate_size"]
  5036. time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
  5037. time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
  5038. # RWKV isn't context limited
  5039. self.gguf_writer.add_context_length(1048576)
  5040. self.gguf_writer.add_embedding_length(hidden_size)
  5041. self.gguf_writer.add_block_count(self.block_count)
  5042. self.gguf_writer.add_wkv_head_size(head_size)
  5043. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  5044. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  5045. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5046. self.gguf_writer.add_file_type(self.ftype)
  5047. # special parameters for time_mixing in RWKV6QWEN2
  5048. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5049. self.gguf_writer.add_token_shift_count(1)
  5050. # RWKV6QWEN2 use grouped key/value like GQA
  5051. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  5052. # required by llama.cpp, unused
  5053. self.gguf_writer.add_head_count(0)
  5054. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5055. for new_name, data in super().modify_tensors(data_torch, name, bid):
  5056. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  5057. data = data.view(5, -1, data.shape[-1])
  5058. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  5059. # permute them here to avoid code changes
  5060. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  5061. if "w2" in new_name:
  5062. data = data.view(5, -1, data.shape[-1])
  5063. yield (new_name, data)
  5064. continue
  5065. yield (new_name, data)
  5066. @ModelBase.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  5067. class Rwkv7Model(TextModel):
  5068. model_arch = gguf.MODEL_ARCH.RWKV7
  5069. def set_vocab(self):
  5070. self._set_vocab_rwkv_world()
  5071. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  5072. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  5073. def set_gguf_parameters(self):
  5074. try:
  5075. head_size = self.hparams["head_size"]
  5076. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  5077. except KeyError:
  5078. head_size = self.hparams["head_dim"]
  5079. layer_norm_eps = self.hparams["norm_eps"]
  5080. hidden_size = self.hparams["hidden_size"]
  5081. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  5082. # ICLR: In-Context-Learning-Rate
  5083. try:
  5084. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5085. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5086. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  5087. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  5088. except KeyError:
  5089. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5090. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5091. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  5092. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  5093. # RWKV isn't context limited
  5094. self.gguf_writer.add_context_length(1048576)
  5095. self.gguf_writer.add_embedding_length(hidden_size)
  5096. self.gguf_writer.add_block_count(self.block_count)
  5097. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  5098. self.gguf_writer.add_wkv_head_size(head_size)
  5099. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  5100. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  5101. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  5102. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  5103. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5104. self.gguf_writer.add_file_type(self.ftype)
  5105. # required by llama.cpp, unused
  5106. self.gguf_writer.add_head_count(0)
  5107. lerp_weights: dict[int, dict[str, Tensor]] = {}
  5108. lora_needs_transpose: bool = True
  5109. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5110. # unify tensor names here to make life easier
  5111. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  5112. name = name.replace("self_attn", "attention").replace("attn", "attention")
  5113. name = name.replace("time_mixer.", "")
  5114. # lora layer names in fla-hub's impl
  5115. if "_lora.lora" in name:
  5116. self.lora_needs_transpose = False
  5117. name = name.replace("_lora.lora.0.weight", "1.weight")
  5118. name = name.replace("_lora.lora.2.weight", "2.weight")
  5119. name = name.replace("_lora.lora.2.bias", "0.weight")
  5120. name = name.replace("feed_forward_norm", "ln2")
  5121. name = name.replace("g_norm", "ln_x")
  5122. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  5123. # some models have dummy v0/v1/v2 on first layer while others don't
  5124. # ignore them all since they are not used
  5125. return
  5126. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  5127. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  5128. if bid is not None and "attention.x_" in name:
  5129. if "attention.x_x" in name:
  5130. # already concatenated
  5131. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  5132. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  5133. yield (new_name, data)
  5134. else:
  5135. try:
  5136. self.lerp_weights[bid][name] = data_torch
  5137. except KeyError:
  5138. self.lerp_weights[bid] = {name: data_torch}
  5139. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  5140. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  5141. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  5142. yield (new_name, data)
  5143. return
  5144. else:
  5145. data_torch = data_torch.squeeze()
  5146. new_name = self.map_tensor_name(name)
  5147. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  5148. new_name += ".weight"
  5149. if self.lora_needs_transpose and any(
  5150. new_name.endswith(t) for t in [
  5151. "time_mix_w1.weight", "time_mix_w2.weight",
  5152. "time_mix_a1.weight", "time_mix_a2.weight",
  5153. "time_mix_v1.weight", "time_mix_v2.weight",
  5154. "time_mix_g1.weight", "time_mix_g2.weight",
  5155. ]
  5156. ):
  5157. data_torch = data_torch.transpose(0, 1)
  5158. if 'r_k' in new_name:
  5159. data_torch = data_torch.flatten()
  5160. if bid == 0 and "time_mix_a" in new_name:
  5161. # dummy v0/v1/v2 on first layer
  5162. # easist way to make llama happy
  5163. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  5164. yield (new_name, data_torch)
  5165. @ModelBase.register("RwkvHybridForCausalLM")
  5166. class ARwkv7Model(Rwkv7Model):
  5167. model_arch = gguf.MODEL_ARCH.ARWKV7
  5168. def set_vocab(self):
  5169. try:
  5170. self._set_vocab_sentencepiece()
  5171. except FileNotFoundError:
  5172. self._set_vocab_gpt2()
  5173. def set_gguf_parameters(self):
  5174. hidden_size = self.hparams["hidden_size"]
  5175. head_size = self.hparams["head_size"]
  5176. rms_norm_eps = self.hparams["rms_norm_eps"]
  5177. intermediate_size = self.hparams["intermediate_size"]
  5178. wkv_has_gate = self.hparams["wkv_has_gate"]
  5179. assert self.hparams["wkv_version"] == 7
  5180. # ICLR: In-Context-Learning-Rate
  5181. lora_rank_decay = 64
  5182. lora_rank_iclr = 64
  5183. lora_rank_value_residual_mix = 32
  5184. lora_rank_gate = 128 if wkv_has_gate else 0
  5185. # RWKV isn't context limited
  5186. self.gguf_writer.add_context_length(1048576)
  5187. self.gguf_writer.add_embedding_length(hidden_size)
  5188. self.gguf_writer.add_block_count(self.block_count)
  5189. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5190. self.gguf_writer.add_wkv_head_size(head_size)
  5191. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  5192. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  5193. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  5194. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  5195. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5196. self.gguf_writer.add_file_type(self.ftype)
  5197. self.gguf_writer.add_token_shift_count(1)
  5198. # required by llama.cpp, unused
  5199. self.gguf_writer.add_head_count(0)
  5200. @ModelBase.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  5201. class MambaModel(TextModel):
  5202. model_arch = gguf.MODEL_ARCH.MAMBA
  5203. def __init__(self, dir_model: Path, *args, **kwargs):
  5204. # Avoid using AutoConfig for hparams
  5205. hparams = kwargs.pop("hparams", None)
  5206. if hparams is None:
  5207. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  5208. hparams = json.load(f)
  5209. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  5210. def set_vocab(self):
  5211. vocab_size = self.hparams["vocab_size"]
  5212. # Round vocab size to next multiple of 8
  5213. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  5214. # pad using ceiling division
  5215. # ref: https://stackoverflow.com/a/17511341/22827863
  5216. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  5217. self.hparams["vocab_size"] = vocab_size
  5218. if (self.dir_model / "tokenizer.json").is_file():
  5219. self._set_vocab_gpt2()
  5220. elif (self.dir_model / "tokenizer.model").is_file():
  5221. self._set_vocab_sentencepiece()
  5222. else:
  5223. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  5224. self._set_vocab_builtin("gpt-neox", vocab_size)
  5225. def set_gguf_parameters(self):
  5226. d_model = self.find_hparam(["hidden_size", "d_model"])
  5227. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  5228. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  5229. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  5230. # ceiling division
  5231. # ref: https://stackoverflow.com/a/17511341/22827863
  5232. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  5233. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  5234. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  5235. use_dt_b_c_norm = False
  5236. # For falconmamba we do apply RMS norm on B / DT and C layers
  5237. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  5238. use_dt_b_c_norm = True
  5239. # Fail early for models which don't have a block expansion factor of 2
  5240. assert d_inner == 2 * d_model
  5241. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  5242. self.gguf_writer.add_embedding_length(d_model)
  5243. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  5244. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  5245. self.gguf_writer.add_block_count(self.block_count)
  5246. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5247. self.gguf_writer.add_ssm_inner_size(d_inner)
  5248. self.gguf_writer.add_ssm_state_size(d_state)
  5249. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  5250. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5251. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  5252. self.gguf_writer.add_file_type(self.ftype)
  5253. _tok_embd = None
  5254. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5255. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  5256. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  5257. new_name = self.map_tensor_name(name)
  5258. if name.endswith(".A_log"):
  5259. logger.debug("A_log --> A ==> " + new_name)
  5260. data_torch = -torch.exp(data_torch)
  5261. # [4 1 8192 1] -> [4 8192 1 1]
  5262. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5263. data_torch = data_torch.squeeze()
  5264. # assuming token_embd.weight is seen before output.weight
  5265. if self._tok_embd is not None and new_name == output_name:
  5266. if torch.equal(self._tok_embd, data_torch):
  5267. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  5268. return []
  5269. elif new_name == tok_embd_name:
  5270. self._tok_embd = data_torch
  5271. return [(new_name, data_torch)]
  5272. @ModelBase.register("Mamba2ForCausalLM")
  5273. class Mamba2Model(TextModel):
  5274. model_arch = gguf.MODEL_ARCH.MAMBA2
  5275. def __init__(self, dir_model: Path, *args, **kwargs):
  5276. # Avoid using AutoConfig for hparams
  5277. # It wrongly assumes all Mamba2 models are Mamba-Codestral-7B-v0.1
  5278. hparams = kwargs.pop("hparams", None)
  5279. if hparams is None:
  5280. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  5281. hparams = json.load(f)
  5282. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  5283. self.d_model = self.find_hparam(["hidden_size", "d_model", "dim"])
  5284. self.d_inner = self.find_hparam(["mamba_d_ssm", "intermediate_size", "d_inner"], optional=True) or 2 * self.d_model
  5285. self.n_group = self.find_hparam(["n_groups"], optional=True) or 1
  5286. def set_vocab(self):
  5287. vocab_size = self.hparams["vocab_size"]
  5288. # Round vocab size to next multiple of 16
  5289. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 16)
  5290. # pad using ceiling division
  5291. # ref: https://stackoverflow.com/a/17511341/22827863
  5292. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  5293. self.hparams["vocab_size"] = vocab_size
  5294. if (self.dir_model / "tokenizer.model").is_file():
  5295. self._set_vocab_sentencepiece()
  5296. elif (self.dir_model / "tokenizer.model.v3").is_file():
  5297. # mamba-codestral
  5298. raise NotImplementedError(f"Please rename {self.dir_model / 'tokenizer.model.v3'} to {self.dir_model / 'tokenizer.model'}")
  5299. elif (self.dir_model / "tokenizer.json").is_file():
  5300. self._set_vocab_gpt2()
  5301. else:
  5302. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  5303. self._set_vocab_builtin("gpt-neox", vocab_size)
  5304. def set_gguf_parameters(self):
  5305. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  5306. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 128
  5307. head_dim = self.find_hparam(["mamba_d_head", "head_dim"], optional=True) or 64
  5308. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  5309. # Fail early for models which don't have a block expansion factor of 2
  5310. # TODO: does this really matter?
  5311. # skip the assertion for FalconH1 Model
  5312. if self.model_arch != gguf.MODEL_ARCH.FALCON_H1:
  5313. assert self.d_inner == 2 * self.d_model
  5314. assert self.d_inner % head_dim == 0
  5315. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  5316. self.gguf_writer.add_embedding_length(self.d_model)
  5317. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  5318. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  5319. self.gguf_writer.add_block_count(self.block_count)
  5320. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5321. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  5322. self.gguf_writer.add_ssm_state_size(d_state)
  5323. self.gguf_writer.add_ssm_time_step_rank(self.d_inner // head_dim)
  5324. self.gguf_writer.add_ssm_group_count(self.n_group)
  5325. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5326. self.gguf_writer.add_file_type(self.ftype)
  5327. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5328. if name.startswith("model.backbone") or name.startswith("model.lm_head"):
  5329. # map Mamba-Codestral-7B-v0.1 tensor names to the names used by Mamba-2
  5330. name = name.removeprefix("model.")
  5331. if name.endswith(".dt_bias"):
  5332. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  5333. new_name = self.map_tensor_name(name)
  5334. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5335. data_torch = data_torch.squeeze()
  5336. elif any(self.match_model_tensor_name(new_name, t, bid, suffix="") for t in [
  5337. gguf.MODEL_TENSOR.SSM_A,
  5338. gguf.MODEL_TENSOR.SSM_D,
  5339. ]):
  5340. # unsqueeze A to use similar shape semantics as Mamba-1
  5341. # (D is also unsqueezed, but for more straightforward broadcast internally)
  5342. data_torch = data_torch.reshape((*data_torch.shape, 1))
  5343. elif self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_NORM, bid):
  5344. data_torch = data_torch.reshape((self.n_group, self.d_inner // self.n_group))
  5345. if name.endswith(".A_log"):
  5346. logger.debug("A_log --> A ==> " + new_name)
  5347. data_torch = -torch.exp(data_torch)
  5348. yield (new_name, data_torch)
  5349. @ModelBase.register("JambaForCausalLM")
  5350. class JambaModel(TextModel):
  5351. model_arch = gguf.MODEL_ARCH.JAMBA
  5352. def set_vocab(self):
  5353. if (self.dir_model / "tokenizer.model").is_file():
  5354. self._set_vocab_sentencepiece()
  5355. else:
  5356. self._set_vocab_llama_hf()
  5357. self.gguf_writer.add_add_space_prefix(False)
  5358. def set_gguf_parameters(self):
  5359. d_model = self.find_hparam(["hidden_size", "mamba_d_model"])
  5360. d_conv = self.find_hparam(["mamba_d_conv"], optional=True) or 4
  5361. d_inner = self.hparams["mamba_expand"] * d_model
  5362. d_state = self.find_hparam(["mamba_d_state"], optional=True) or 16
  5363. # ceiling division
  5364. # ref: https://stackoverflow.com/a/17511341/22827863
  5365. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  5366. dt_rank = self.find_hparam(["mamba_dt_rank"], optional=True) or -(d_model // -16)
  5367. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-6
  5368. n_kv_head = self.hparams["num_key_value_heads"]
  5369. attn_offset = self.hparams["attn_layer_offset"]
  5370. attn_period = self.hparams["attn_layer_period"]
  5371. n_kv_vec = [0 for _ in range(attn_offset)] + [
  5372. n_kv_head if (i - attn_offset) % attn_period == 0 else 0 for i in range(attn_offset, self.block_count)
  5373. ]
  5374. self.gguf_writer.add_block_count(self.block_count)
  5375. self.gguf_writer.add_context_length(self.find_hparam(["max_position_embeddings", "n_ctx"]))
  5376. self.gguf_writer.add_embedding_length(d_model)
  5377. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  5378. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  5379. self.gguf_writer.add_head_count_kv(n_kv_vec)
  5380. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5381. self.gguf_writer.add_ssm_inner_size(d_inner)
  5382. self.gguf_writer.add_ssm_state_size(d_state)
  5383. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  5384. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5385. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  5386. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  5387. self.gguf_writer.add_file_type(self.ftype)
  5388. _experts: list[dict[str, Tensor]] | None = None
  5389. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5390. # Mini-Jamba
  5391. name = name.replace(".moe.", ".feed_forward.")
  5392. if bid is not None:
  5393. moe_offset = self.hparams["expert_layer_offset"]
  5394. moe_period = self.hparams["expert_layer_period"]
  5395. if not (bid >= moe_offset and (bid - moe_offset) % moe_period == 0):
  5396. name = name.replace(".experts.0.", ".")
  5397. # process the experts separately
  5398. if ".feed_forward.experts." in name:
  5399. n_experts = self.hparams["num_experts"]
  5400. assert bid is not None
  5401. if self._experts is None:
  5402. self._experts = [{} for _ in range(self.block_count)]
  5403. self._experts[bid][name] = data_torch
  5404. if len(self._experts[bid]) >= n_experts * 3:
  5405. # merge the experts into a single 3d tensor
  5406. for wid in ["down_proj", "gate_proj", "up_proj"]:
  5407. datas: list[Tensor] = []
  5408. for xid in range(n_experts):
  5409. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{wid}.weight"
  5410. datas.append(self._experts[bid][ename])
  5411. del self._experts[bid][ename]
  5412. data_torch = torch.stack(datas, dim=0)
  5413. # using the same merged name as qwen2moe
  5414. merged_name = f"model.layers.{bid}.mlp.experts.{wid}.weight"
  5415. new_name = self.map_tensor_name(merged_name)
  5416. yield new_name, data_torch
  5417. return
  5418. new_name = self.map_tensor_name(name)
  5419. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5420. data_torch = data_torch.squeeze()
  5421. if name.endswith(".A_log"):
  5422. logger.debug("A_log --> A ==> " + new_name)
  5423. data_torch = -torch.exp(data_torch)
  5424. yield (new_name, data_torch)
  5425. def prepare_tensors(self):
  5426. super().prepare_tensors()
  5427. if self._experts is not None:
  5428. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5429. experts = [k for d in self._experts for k in d.keys()]
  5430. if len(experts) > 0:
  5431. raise ValueError(f"Unprocessed experts: {experts}")
  5432. @ModelBase.register("CohereForCausalLM")
  5433. class CommandR2Model(TextModel):
  5434. model_arch = gguf.MODEL_ARCH.COMMAND_R
  5435. def __init__(self, *args, **kwargs):
  5436. super().__init__(*args, **kwargs)
  5437. # max_position_embeddings = 8192 in config.json but model was actually
  5438. # trained on 128k context length
  5439. # aya-23 models don't have model_max_length specified
  5440. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  5441. def set_gguf_parameters(self):
  5442. super().set_gguf_parameters()
  5443. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  5444. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5445. @ModelBase.register("Cohere2ForCausalLM")
  5446. class Cohere2Model(TextModel):
  5447. model_arch = gguf.MODEL_ARCH.COHERE2
  5448. def set_gguf_parameters(self):
  5449. super().set_gguf_parameters()
  5450. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  5451. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  5452. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  5453. rotary_pct = self.hparams["rotary_pct"]
  5454. hidden_size = self.hparams["hidden_size"]
  5455. num_attention_heads = self.hparams["num_attention_heads"]
  5456. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  5457. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5458. @ModelBase.register("OlmoForCausalLM")
  5459. @ModelBase.register("OLMoForCausalLM")
  5460. class OlmoModel(TextModel):
  5461. model_arch = gguf.MODEL_ARCH.OLMO
  5462. def set_gguf_parameters(self):
  5463. super().set_gguf_parameters()
  5464. self.gguf_writer.add_layer_norm_eps(1e-5)
  5465. clip_qkv = self.hparams.get("clip_qkv")
  5466. if clip_qkv is not None:
  5467. self.gguf_writer.add_clamp_kqv(clip_qkv)
  5468. # Same as super class, but permuting q_proj, k_proj
  5469. # Copied from: LlamaModel
  5470. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5471. del bid # unused
  5472. n_head = self.hparams["num_attention_heads"]
  5473. n_kv_head = self.hparams.get("num_key_value_heads")
  5474. if name.endswith("q_proj.weight"):
  5475. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5476. if name.endswith("k_proj.weight"):
  5477. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5478. return [(self.map_tensor_name(name), data_torch)]
  5479. @ModelBase.register("SeedOssForCausalLM")
  5480. class SeedOssModel(TextModel):
  5481. model_arch = gguf.MODEL_ARCH.SEED_OSS
  5482. @ModelBase.register("Olmo2ForCausalLM")
  5483. @ModelBase.register("Olmo3ForCausalLM")
  5484. class Olmo2Model(TextModel):
  5485. model_arch = gguf.MODEL_ARCH.OLMO2
  5486. def set_gguf_parameters(self):
  5487. super().set_gguf_parameters()
  5488. if "sliding_window" in self.hparams:
  5489. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  5490. sliding_window_pattern = []
  5491. if "layer_types" in self.hparams:
  5492. sliding_window_pattern = [t == "sliding_attention" for t in self.hparams["layer_types"]]
  5493. else:
  5494. # Olmo2 does not use sliding window attention.
  5495. # Olmo3 defaults to using sliding window for all layers except every 4th.
  5496. for i in range(self.hparams["num_hidden_layers"]):
  5497. sliding_window_pattern.append((i + 1) % 4 != 0)
  5498. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  5499. @ModelBase.register("OlmoeForCausalLM")
  5500. class OlmoeModel(TextModel):
  5501. model_arch = gguf.MODEL_ARCH.OLMOE
  5502. def set_gguf_parameters(self):
  5503. super().set_gguf_parameters()
  5504. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  5505. if (n_experts := self.hparams.get("num_experts")) is not None:
  5506. self.gguf_writer.add_expert_count(n_experts)
  5507. _experts: list[dict[str, Tensor]] | None = None
  5508. # Copied from: Qwen2MoeModel
  5509. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5510. # process the experts separately
  5511. if name.find("experts") != -1:
  5512. n_experts = self.hparams["num_experts"]
  5513. assert bid is not None
  5514. if self._experts is None:
  5515. self._experts = [{} for _ in range(self.block_count)]
  5516. self._experts[bid][name] = data_torch
  5517. if len(self._experts[bid]) >= n_experts * 3:
  5518. tensors: list[tuple[str, Tensor]] = []
  5519. # merge the experts into a single 3d tensor
  5520. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5521. datas: list[Tensor] = []
  5522. for xid in range(n_experts):
  5523. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5524. datas.append(self._experts[bid][ename])
  5525. del self._experts[bid][ename]
  5526. data_torch = torch.stack(datas, dim=0)
  5527. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5528. new_name = self.map_tensor_name(merged_name)
  5529. tensors.append((new_name, data_torch))
  5530. return tensors
  5531. else:
  5532. return []
  5533. return [(self.map_tensor_name(name), data_torch)]
  5534. # Copied from: Qwen2MoeModel
  5535. def prepare_tensors(self):
  5536. super().prepare_tensors()
  5537. if self._experts is not None:
  5538. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5539. experts = [k for d in self._experts for k in d.keys()]
  5540. if len(experts) > 0:
  5541. raise ValueError(f"Unprocessed experts: {experts}")
  5542. @ModelBase.register("JinaBertModel", "JinaBertForMaskedLM")
  5543. class JinaBertV2Model(BertModel):
  5544. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  5545. def set_vocab(self):
  5546. tokenizer_class = 'BertTokenizer'
  5547. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  5548. tokenizer_class = json.load(f)['tokenizer_class']
  5549. if tokenizer_class == 'BertTokenizer':
  5550. super().set_vocab()
  5551. elif tokenizer_class == 'RobertaTokenizer':
  5552. self._set_vocab_gpt2()
  5553. self.gguf_writer.add_token_type_count(2)
  5554. else:
  5555. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  5556. @ModelBase.register("OpenELMForCausalLM")
  5557. class OpenELMModel(TextModel):
  5558. model_arch = gguf.MODEL_ARCH.OPENELM
  5559. @staticmethod
  5560. def _make_divisible(v: float | int, divisor: int) -> int:
  5561. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  5562. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  5563. # Make sure that round down does not go down by more than 10%.
  5564. if new_v < 0.9 * v:
  5565. new_v += divisor
  5566. return new_v
  5567. def __init__(self, *args, **kwargs):
  5568. super().__init__(*args, **kwargs)
  5569. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  5570. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  5571. self._n_embd: int = self.hparams["model_dim"]
  5572. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  5573. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  5574. self._ffn_dims: list[int] = [
  5575. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  5576. for multiplier in ffn_multipliers
  5577. ]
  5578. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  5579. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  5580. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  5581. def set_vocab(self):
  5582. try:
  5583. self._set_vocab_sentencepiece()
  5584. except FileNotFoundError:
  5585. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  5586. def set_gguf_parameters(self):
  5587. n_embd = self._n_embd
  5588. head_dim = self.hparams["head_dim"]
  5589. rot_pct = 1.0
  5590. assert self.block_count == len(self._num_kv_heads)
  5591. assert self.block_count == len(self._num_query_heads)
  5592. assert self.block_count == len(self._ffn_dims)
  5593. self.gguf_writer.add_block_count(self.block_count)
  5594. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  5595. self.gguf_writer.add_embedding_length(n_embd)
  5596. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  5597. self.gguf_writer.add_head_count(self._num_query_heads)
  5598. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  5599. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  5600. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  5601. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  5602. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  5603. self.gguf_writer.add_key_length(head_dim)
  5604. self.gguf_writer.add_value_length(head_dim)
  5605. self.gguf_writer.add_file_type(self.ftype)
  5606. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  5607. if "n_layers" in keys:
  5608. return self.hparams["num_transformer_layers"]
  5609. return super().find_hparam(keys, optional)
  5610. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5611. # split ff
  5612. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  5613. ff_dim = self._ffn_dims[bid]
  5614. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  5615. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  5616. return
  5617. yield (self.map_tensor_name(name), data_torch)
  5618. @ModelBase.register("ArcticForCausalLM")
  5619. class ArcticModel(TextModel):
  5620. model_arch = gguf.MODEL_ARCH.ARCTIC
  5621. def set_vocab(self):
  5622. # The reason for using a custom implementation here is that the
  5623. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  5624. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  5625. from sentencepiece import SentencePieceProcessor
  5626. tokenizer_path = self.dir_model / 'tokenizer.model'
  5627. if not tokenizer_path.is_file():
  5628. logger.error(f'Error: Missing {tokenizer_path}')
  5629. sys.exit(1)
  5630. # Read the whole vocabulary from the tokenizer.model file
  5631. tokenizer = SentencePieceProcessor()
  5632. tokenizer.LoadFromFile(str(tokenizer_path))
  5633. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5634. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5635. scores: list[float] = [-10000.0] * vocab_size
  5636. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5637. for token_id in range(tokenizer.vocab_size()):
  5638. piece = tokenizer.IdToPiece(token_id)
  5639. text = piece.encode("utf-8")
  5640. score = tokenizer.GetScore(token_id)
  5641. toktype = SentencePieceTokenTypes.NORMAL
  5642. if tokenizer.IsUnknown(token_id):
  5643. toktype = SentencePieceTokenTypes.UNKNOWN
  5644. elif tokenizer.IsControl(token_id):
  5645. toktype = SentencePieceTokenTypes.CONTROL
  5646. elif tokenizer.IsUnused(token_id):
  5647. toktype = SentencePieceTokenTypes.UNUSED
  5648. elif tokenizer.IsByte(token_id):
  5649. toktype = SentencePieceTokenTypes.BYTE
  5650. tokens[token_id] = text
  5651. scores[token_id] = score
  5652. toktypes[token_id] = toktype
  5653. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  5654. # of information about added/redefined tokens and modify them accordingly.
  5655. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  5656. if tokenizer_config_file.is_file():
  5657. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  5658. tokenizer_config_json = json.load(f)
  5659. if "added_tokens_decoder" in tokenizer_config_json:
  5660. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  5661. for token_id, token_json in added_tokens_decoder.items():
  5662. token_id = int(token_id)
  5663. if token_id >= vocab_size:
  5664. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5665. continue
  5666. token_content = token_json["content"]
  5667. token_type = SentencePieceTokenTypes.USER_DEFINED
  5668. token_score = -10000.0
  5669. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  5670. # Set the score to 0.0 as in the original tokenizer.model
  5671. if ("special" in token_json) and token_json["special"]:
  5672. if token_content == tokenizer_config_json["unk_token"]:
  5673. token_type = SentencePieceTokenTypes.UNKNOWN
  5674. else:
  5675. token_type = SentencePieceTokenTypes.CONTROL
  5676. token_score = 0.0
  5677. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  5678. tokens[token_id] = token_content.encode("utf-8")
  5679. toktypes[token_id] = token_type
  5680. scores[token_id] = token_score
  5681. self.gguf_writer.add_tokenizer_model("llama")
  5682. self.gguf_writer.add_tokenizer_pre("default")
  5683. self.gguf_writer.add_token_list(tokens)
  5684. self.gguf_writer.add_token_scores(scores)
  5685. self.gguf_writer.add_token_types(toktypes)
  5686. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5687. special_vocab.add_to_gguf(self.gguf_writer)
  5688. def set_gguf_parameters(self):
  5689. super().set_gguf_parameters()
  5690. hparams = self.hparams
  5691. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5692. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  5693. _experts: list[dict[str, Tensor]] | None = None
  5694. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5695. n_head = self.hparams["num_attention_heads"]
  5696. n_kv_head = self.hparams.get("num_key_value_heads")
  5697. if name.endswith("q_proj.weight"):
  5698. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5699. if name.endswith("k_proj.weight"):
  5700. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5701. # process the experts separately
  5702. if name.find("block_sparse_moe.experts") != -1:
  5703. n_experts = self.hparams["num_local_experts"]
  5704. assert bid is not None
  5705. if self._experts is None:
  5706. self._experts = [{} for _ in range(self.block_count)]
  5707. self._experts[bid][name] = data_torch
  5708. if len(self._experts[bid]) >= n_experts * 3:
  5709. tensors: list[tuple[str, Tensor]] = []
  5710. # merge the experts into a single 3d tensor
  5711. for wid in ["w1", "w2", "w3"]:
  5712. datas: list[Tensor] = []
  5713. for xid in range(n_experts):
  5714. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  5715. datas.append(self._experts[bid][ename])
  5716. del self._experts[bid][ename]
  5717. data_torch = torch.stack(datas, dim=0)
  5718. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  5719. new_name = self.map_tensor_name(merged_name)
  5720. tensors.append((new_name, data_torch))
  5721. return tensors
  5722. else:
  5723. return []
  5724. return [(self.map_tensor_name(name), data_torch)]
  5725. def prepare_tensors(self):
  5726. super().prepare_tensors()
  5727. if self._experts is not None:
  5728. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5729. experts = [k for d in self._experts for k in d.keys()]
  5730. if len(experts) > 0:
  5731. raise ValueError(f"Unprocessed experts: {experts}")
  5732. @ModelBase.register("DeepseekForCausalLM")
  5733. class DeepseekModel(TextModel):
  5734. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  5735. def set_vocab(self):
  5736. try:
  5737. self._set_vocab_sentencepiece()
  5738. except FileNotFoundError:
  5739. self._set_vocab_gpt2()
  5740. def set_gguf_parameters(self):
  5741. super().set_gguf_parameters()
  5742. hparams = self.hparams
  5743. if (rope_dim := hparams.get("head_dim")) is None:
  5744. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  5745. self.gguf_writer.add_rope_dimension_count(rope_dim)
  5746. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5747. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5748. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5749. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5750. self.gguf_writer.add_expert_weights_scale(1.0)
  5751. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  5752. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  5753. _experts: list[dict[str, Tensor]] | None = None
  5754. @staticmethod
  5755. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  5756. if n_head_kv is not None and n_head != n_head_kv:
  5757. n_head = n_head_kv
  5758. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  5759. .swapaxes(1, 2)
  5760. .reshape(weights.shape))
  5761. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5762. n_head = self.hparams["num_attention_heads"]
  5763. n_kv_head = self.hparams.get("num_key_value_heads")
  5764. if name.endswith(("q_proj.weight", "q_proj.bias")):
  5765. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  5766. if name.endswith(("k_proj.weight", "k_proj.bias")):
  5767. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  5768. # process the experts separately
  5769. if name.find("mlp.experts") != -1:
  5770. n_experts = self.hparams["n_routed_experts"]
  5771. assert bid is not None
  5772. if self._experts is None:
  5773. self._experts = [{} for _ in range(self.block_count)]
  5774. self._experts[bid][name] = data_torch
  5775. if len(self._experts[bid]) >= n_experts * 3:
  5776. tensors: list[tuple[str, Tensor]] = []
  5777. # merge the experts into a single 3d tensor
  5778. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5779. datas: list[Tensor] = []
  5780. for xid in range(n_experts):
  5781. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5782. datas.append(self._experts[bid][ename])
  5783. del self._experts[bid][ename]
  5784. data_torch = torch.stack(datas, dim=0)
  5785. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5786. new_name = self.map_tensor_name(merged_name)
  5787. tensors.append((new_name, data_torch))
  5788. return tensors
  5789. else:
  5790. return []
  5791. return [(self.map_tensor_name(name), data_torch)]
  5792. def prepare_tensors(self):
  5793. super().prepare_tensors()
  5794. if self._experts is not None:
  5795. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5796. experts = [k for d in self._experts for k in d.keys()]
  5797. if len(experts) > 0:
  5798. raise ValueError(f"Unprocessed experts: {experts}")
  5799. @ModelBase.register(
  5800. "DeepseekV2ForCausalLM",
  5801. "DeepseekV3ForCausalLM",
  5802. "KimiVLForConditionalGeneration",
  5803. )
  5804. class DeepseekV2Model(TextModel):
  5805. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  5806. def set_vocab(self):
  5807. try:
  5808. self._set_vocab_gpt2()
  5809. return
  5810. except Exception:
  5811. pass
  5812. from transformers import AutoTokenizer
  5813. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  5814. tokpre = self.get_vocab_base_pre(tokenizer)
  5815. if tokpre == "kimi-k2":
  5816. # Build merges list using the approach similar to HunYuanMoE
  5817. merges = []
  5818. vocab = {}
  5819. mergeable_ranks = tokenizer.model._mergeable_ranks
  5820. for token, rank in mergeable_ranks.items():
  5821. vocab[QwenModel.token_bytes_to_string(token)] = rank
  5822. if len(token) == 1:
  5823. continue
  5824. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  5825. if len(merged) == 2:
  5826. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  5827. # Build token list
  5828. vocab_size = self.hparams["vocab_size"]
  5829. special_tokens = tokenizer.special_tokens
  5830. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  5831. tokens: list[str] = []
  5832. toktypes: list[int] = []
  5833. for i in range(vocab_size):
  5834. if i not in reverse_vocab:
  5835. tokens.append(f"[PAD{i}]")
  5836. toktypes.append(gguf.TokenType.UNUSED)
  5837. else:
  5838. token = reverse_vocab[i]
  5839. tokens.append(token)
  5840. if i in special_tokens.values():
  5841. toktypes.append(gguf.TokenType.CONTROL)
  5842. else:
  5843. toktypes.append(gguf.TokenType.NORMAL)
  5844. self.gguf_writer.add_tokenizer_model("gpt2")
  5845. self.gguf_writer.add_tokenizer_pre(tokpre)
  5846. self.gguf_writer.add_token_list(tokens)
  5847. self.gguf_writer.add_token_types(toktypes)
  5848. self.gguf_writer.add_token_merges(merges)
  5849. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  5850. special_vocab.add_to_gguf(self.gguf_writer)
  5851. else:
  5852. raise NotImplementedError(f"Deepseek pre-tokenizer {tokpre!r} is not supported yet!")
  5853. def set_gguf_parameters(self):
  5854. # note: deepseek2 using MLA converts into MQA (ie: GQA with 1 group)
  5855. self.hparams["num_key_value_heads"] = 1
  5856. super().set_gguf_parameters()
  5857. hparams = self.hparams
  5858. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5859. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5860. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  5861. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  5862. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  5863. # note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
  5864. self.gguf_writer.add_key_length(hparams["kv_lora_rank"] + hparams["qk_rope_head_dim"])
  5865. self.gguf_writer.add_value_length(hparams["kv_lora_rank"])
  5866. self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  5867. self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
  5868. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5869. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  5870. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  5871. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  5872. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  5873. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  5874. if (rope_mscale_all := self.rope_parameters.get("mscale_all_dim")) is not None:
  5875. # [TAG_DEEPSEEK2_YARN_LOG_MUL_FIX]
  5876. # note: for legacy reasons, this is not consistent with the other usages of self.gguf_writer.add_rope_scaling_yarn_log_mul
  5877. # ref https://github.com/ggml-org/llama.cpp/pull/17945
  5878. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * rope_mscale_all)
  5879. _experts: list[dict[str, Tensor]] | None = None
  5880. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5881. # skip vision tensors and remove "language_model." for Kimi-VL
  5882. if "vision_tower" in name or "multi_modal_projector" in name:
  5883. return []
  5884. if name.startswith("language_model."):
  5885. name = name.replace("language_model.", "")
  5886. # rename e_score_correction_bias tensors
  5887. if name.endswith("e_score_correction_bias"):
  5888. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5889. # skip Multi-Token Prediction (MTP) layers
  5890. block_count = self.hparams["num_hidden_layers"]
  5891. match = re.match(r"model.layers.(\d+)", name)
  5892. if match and int(match.group(1)) >= block_count:
  5893. return []
  5894. # process the experts separately
  5895. if name.find("mlp.experts") != -1:
  5896. n_experts = self.hparams["n_routed_experts"]
  5897. assert bid is not None
  5898. if self._experts is None:
  5899. self._experts = [{} for _ in range(self.block_count)]
  5900. self._experts[bid][name] = data_torch
  5901. if len(self._experts[bid]) >= n_experts * 3:
  5902. tensors: list[tuple[str, Tensor]] = []
  5903. # merge the experts into a single 3d tensor
  5904. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5905. datas: list[Tensor] = []
  5906. for xid in range(n_experts):
  5907. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5908. datas.append(self._experts[bid][ename])
  5909. del self._experts[bid][ename]
  5910. data_torch = torch.stack(datas, dim=0)
  5911. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5912. new_name = self.map_tensor_name(merged_name)
  5913. tensors.append((new_name, data_torch))
  5914. return tensors
  5915. else:
  5916. return []
  5917. # note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
  5918. if name.endswith("kv_b_proj.weight"):
  5919. name_kb = name.replace("kv_b_proj", "k_b_proj")
  5920. name_vb = name.replace("kv_b_proj", "v_b_proj")
  5921. n_head_kv = self.hparams["num_key_value_heads"]
  5922. v_head_dim = self.hparams["v_head_dim"]
  5923. qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
  5924. assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
  5925. kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
  5926. k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
  5927. k_b = k_b.transpose(1, 2)
  5928. return [
  5929. (self.map_tensor_name(name_kb), k_b),
  5930. (self.map_tensor_name(name_vb), v_b)
  5931. ]
  5932. return [(self.map_tensor_name(name), data_torch)]
  5933. def prepare_tensors(self):
  5934. super().prepare_tensors()
  5935. if self._experts is not None:
  5936. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5937. experts = [k for d in self._experts for k in d.keys()]
  5938. if len(experts) > 0:
  5939. raise ValueError(f"Unprocessed experts: {experts}")
  5940. @ModelBase.register("MiniMaxM2ForCausalLM")
  5941. class MiniMaxM2Model(TextModel):
  5942. model_arch = gguf.MODEL_ARCH.MINIMAXM2
  5943. _experts_cache: dict[int, dict[str, Tensor]] = {}
  5944. def __init__(self, *args, **kwargs):
  5945. super().__init__(*args, **kwargs)
  5946. self.hparams["num_experts"] = self.hparams["num_local_experts"]
  5947. def set_gguf_parameters(self):
  5948. super().set_gguf_parameters()
  5949. self.gguf_writer.add_expert_feed_forward_length(self.find_hparam(["intermediate_size"]))
  5950. self.gguf_writer.add_rope_dimension_count(self.find_hparam(["rotary_dim"]))
  5951. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  5952. if name.endswith("e_score_correction_bias"):
  5953. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5954. # merge expert weights
  5955. if 'experts' in name:
  5956. n_experts = self.hparams["num_experts"]
  5957. assert bid is not None
  5958. expert_cache = self._experts_cache.setdefault(bid, {})
  5959. expert_cache[name] = data_torch
  5960. expert_weights = ["w1", "w2", "w3"]
  5961. # not enough expert weights to merge
  5962. if len(expert_cache) < n_experts * len(expert_weights):
  5963. return []
  5964. tensors: list[tuple[str, Tensor]] = []
  5965. for w_name in expert_weights:
  5966. datas: list[Tensor] = []
  5967. for xid in range(n_experts):
  5968. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  5969. datas.append(expert_cache[ename])
  5970. del expert_cache[ename]
  5971. data_torch = torch.stack(datas, dim=0)
  5972. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  5973. new_name = self.map_tensor_name(merged_name)
  5974. tensors.append((new_name, data_torch))
  5975. del self._experts_cache[bid]
  5976. return tensors
  5977. return super().modify_tensors(data_torch, name, bid)
  5978. @ModelBase.register("PanguEmbeddedForCausalLM")
  5979. class PanguEmbeddedModel(TextModel):
  5980. model_arch = gguf.MODEL_ARCH.PANGU_EMBED
  5981. def set_vocab(self):
  5982. self._set_vocab_sentencepiece()
  5983. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  5984. if tokenizer_config_file.is_file():
  5985. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  5986. tokenizer_config_json = json.load(f)
  5987. if "add_prefix_space" in tokenizer_config_json:
  5988. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  5989. def set_gguf_parameters(self):
  5990. super().set_gguf_parameters()
  5991. hparams = self.hparams
  5992. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5993. # PanguEmbedded's hparam loaded from config.json without head_dim
  5994. if (rope_dim := hparams.get("head_dim")) is None:
  5995. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  5996. self.gguf_writer.add_rope_dimension_count(rope_dim)
  5997. if hparams.get("head_dim") is None:
  5998. self.gguf_writer.add_key_length(rope_dim)
  5999. self.gguf_writer.add_value_length(rope_dim)
  6000. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6001. if name == "lm_head.weight":
  6002. if self.hparams.get("tie_word_embeddings", False):
  6003. logger.info("Skipping tied output layer 'lm_head.weight'")
  6004. return []
  6005. return [(self.map_tensor_name(name), data_torch)]
  6006. @ModelBase.register("Dots1ForCausalLM")
  6007. class Dots1Model(Qwen2MoeModel):
  6008. model_arch = gguf.MODEL_ARCH.DOTS1
  6009. def __init__(self, *args, **kwargs):
  6010. super().__init__(*args, **kwargs)
  6011. self.hparams["num_experts"] = self.hparams["n_routed_experts"]
  6012. def set_gguf_parameters(self):
  6013. super().set_gguf_parameters()
  6014. self.gguf_writer.add_leading_dense_block_count(self.hparams["first_k_dense_replace"])
  6015. self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
  6016. self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
  6017. self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
  6018. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  6019. if name.endswith("e_score_correction_bias"):
  6020. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  6021. if "shared_experts" in name:
  6022. return [(self.map_tensor_name(name), data_torch)]
  6023. return super().modify_tensors(data_torch, name, bid)
  6024. @ModelBase.register("PLMForCausalLM")
  6025. class PLMModel(TextModel):
  6026. model_arch = gguf.MODEL_ARCH.PLM
  6027. def set_vocab(self):
  6028. self._set_vocab_gpt2()
  6029. def set_gguf_parameters(self):
  6030. super().set_gguf_parameters()
  6031. hparams = self.hparams
  6032. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6033. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  6034. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  6035. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  6036. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  6037. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6038. return [(self.map_tensor_name(name), data_torch)]
  6039. def prepare_tensors(self):
  6040. super().prepare_tensors()
  6041. @ModelBase.register("T5WithLMHeadModel")
  6042. @ModelBase.register("T5ForConditionalGeneration")
  6043. @ModelBase.register("MT5ForConditionalGeneration")
  6044. @ModelBase.register("UMT5ForConditionalGeneration")
  6045. @ModelBase.register("UMT5Model")
  6046. class T5Model(TextModel):
  6047. model_arch = gguf.MODEL_ARCH.T5
  6048. def __init__(self, *args, **kwargs):
  6049. super().__init__(*args, **kwargs)
  6050. self.shared_token_embeddings_found = False
  6051. def set_vocab(self):
  6052. # to avoid TypeError: Descriptors cannot be created directly
  6053. # exception when importing sentencepiece_model_pb2
  6054. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  6055. from sentencepiece import SentencePieceProcessor
  6056. from sentencepiece import sentencepiece_model_pb2 as model
  6057. tokenizer_path = self.dir_model / 'tokenizer.model'
  6058. # many older models use spiece.model tokenizer model filename
  6059. if not tokenizer_path.is_file():
  6060. tokenizer_path = self.dir_model / 'spiece.model'
  6061. if not tokenizer_path.is_file():
  6062. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  6063. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  6064. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  6065. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  6066. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  6067. # assure the tokenizer model file name is correct
  6068. assert tokenizer_path.name == 'tokenizer.model'
  6069. return self._set_vocab_sentencepiece()
  6070. else:
  6071. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  6072. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  6073. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  6074. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  6075. tokenizer = SentencePieceProcessor()
  6076. tokenizer.LoadFromFile(str(tokenizer_path))
  6077. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  6078. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  6079. scores: list[float] = [-10000.0] * vocab_size
  6080. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  6081. for token_id in range(tokenizer.vocab_size()):
  6082. piece = tokenizer.IdToPiece(token_id)
  6083. text = piece.encode("utf-8")
  6084. score = tokenizer.GetScore(token_id)
  6085. toktype = SentencePieceTokenTypes.NORMAL
  6086. if tokenizer.IsUnknown(token_id):
  6087. toktype = SentencePieceTokenTypes.UNKNOWN
  6088. elif tokenizer.IsControl(token_id):
  6089. toktype = SentencePieceTokenTypes.CONTROL
  6090. elif tokenizer.IsUnused(token_id):
  6091. toktype = SentencePieceTokenTypes.UNUSED
  6092. elif tokenizer.IsByte(token_id):
  6093. toktype = SentencePieceTokenTypes.BYTE
  6094. tokens[token_id] = text
  6095. scores[token_id] = score
  6096. toktypes[token_id] = toktype
  6097. added_tokens_file = self.dir_model / 'added_tokens.json'
  6098. if added_tokens_file.is_file():
  6099. with open(added_tokens_file, "r", encoding="utf-8") as f:
  6100. added_tokens_json = json.load(f)
  6101. for key in added_tokens_json:
  6102. token_id = added_tokens_json[key]
  6103. if token_id >= vocab_size:
  6104. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  6105. continue
  6106. tokens[token_id] = key.encode("utf-8")
  6107. scores[token_id] = -1000.0
  6108. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  6109. if vocab_size > len(tokens):
  6110. pad_count = vocab_size - len(tokens)
  6111. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  6112. for i in range(1, pad_count + 1):
  6113. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  6114. scores.append(-1000.0)
  6115. toktypes.append(SentencePieceTokenTypes.UNUSED)
  6116. self.gguf_writer.add_tokenizer_model("t5")
  6117. self.gguf_writer.add_tokenizer_pre("default")
  6118. self.gguf_writer.add_token_list(tokens)
  6119. self.gguf_writer.add_token_scores(scores)
  6120. self.gguf_writer.add_token_types(toktypes)
  6121. self.gguf_writer.add_add_space_prefix(add_prefix)
  6122. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  6123. if precompiled_charsmap:
  6124. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  6125. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6126. special_vocab.add_to_gguf(self.gguf_writer)
  6127. def set_gguf_parameters(self):
  6128. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  6129. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  6130. n_ctx = 512
  6131. self.gguf_writer.add_context_length(n_ctx)
  6132. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  6133. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  6134. self.gguf_writer.add_block_count(self.block_count)
  6135. if (dec_n_layer := self.hparams.get("num_decoder_layers")) is not None:
  6136. self.gguf_writer.add_decoder_block_count(dec_n_layer)
  6137. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  6138. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  6139. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  6140. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6141. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  6142. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  6143. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  6144. self.gguf_writer.add_file_type(self.ftype)
  6145. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6146. del bid # unused
  6147. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  6148. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  6149. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  6150. # and decoder and ignore the remaining ones.
  6151. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  6152. if not self.shared_token_embeddings_found:
  6153. name = "shared.weight"
  6154. self.shared_token_embeddings_found = True
  6155. else:
  6156. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  6157. return []
  6158. return [(self.map_tensor_name(name), data_torch)]
  6159. @ModelBase.register("T5EncoderModel")
  6160. class T5EncoderModel(TextModel):
  6161. model_arch = gguf.MODEL_ARCH.T5ENCODER
  6162. def __init__(self, *args, **kwargs):
  6163. super().__init__(*args, **kwargs)
  6164. self.shared_token_embeddings_found = False
  6165. def set_vocab(self):
  6166. # to avoid TypeError: Descriptors cannot be created directly
  6167. # exception when importing sentencepiece_model_pb2
  6168. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  6169. from sentencepiece import SentencePieceProcessor
  6170. from sentencepiece import sentencepiece_model_pb2 as model
  6171. tokenizer_path = self.dir_model / 'tokenizer.model'
  6172. # many older models use spiece.model tokenizer model filename
  6173. if not tokenizer_path.is_file():
  6174. tokenizer_path = self.dir_model / 'spiece.model'
  6175. if not tokenizer_path.is_file():
  6176. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  6177. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  6178. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  6179. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  6180. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  6181. # assure the tokenizer model file name is correct
  6182. assert tokenizer_path.name == 'tokenizer.model'
  6183. return self._set_vocab_sentencepiece()
  6184. else:
  6185. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  6186. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  6187. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  6188. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  6189. tokenizer = SentencePieceProcessor()
  6190. tokenizer.LoadFromFile(str(tokenizer_path))
  6191. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  6192. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  6193. scores: list[float] = [-10000.0] * vocab_size
  6194. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  6195. for token_id in range(tokenizer.vocab_size()):
  6196. piece = tokenizer.IdToPiece(token_id)
  6197. text = piece.encode("utf-8")
  6198. score = tokenizer.GetScore(token_id)
  6199. toktype = SentencePieceTokenTypes.NORMAL
  6200. if tokenizer.IsUnknown(token_id):
  6201. toktype = SentencePieceTokenTypes.UNKNOWN
  6202. elif tokenizer.IsControl(token_id):
  6203. toktype = SentencePieceTokenTypes.CONTROL
  6204. elif tokenizer.IsUnused(token_id):
  6205. toktype = SentencePieceTokenTypes.UNUSED
  6206. elif tokenizer.IsByte(token_id):
  6207. toktype = SentencePieceTokenTypes.BYTE
  6208. tokens[token_id] = text
  6209. scores[token_id] = score
  6210. toktypes[token_id] = toktype
  6211. added_tokens_file = self.dir_model / 'added_tokens.json'
  6212. if added_tokens_file.is_file():
  6213. with open(added_tokens_file, "r", encoding="utf-8") as f:
  6214. added_tokens_json = json.load(f)
  6215. for key in added_tokens_json:
  6216. token_id = added_tokens_json[key]
  6217. if token_id >= vocab_size:
  6218. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  6219. continue
  6220. tokens[token_id] = key.encode("utf-8")
  6221. scores[token_id] = -1000.0
  6222. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  6223. if vocab_size > len(tokens):
  6224. pad_count = vocab_size - len(tokens)
  6225. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  6226. for i in range(1, pad_count + 1):
  6227. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  6228. scores.append(-1000.0)
  6229. toktypes.append(SentencePieceTokenTypes.UNUSED)
  6230. self.gguf_writer.add_tokenizer_model("t5")
  6231. self.gguf_writer.add_tokenizer_pre("default")
  6232. self.gguf_writer.add_token_list(tokens)
  6233. self.gguf_writer.add_token_scores(scores)
  6234. self.gguf_writer.add_token_types(toktypes)
  6235. self.gguf_writer.add_add_space_prefix(add_prefix)
  6236. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  6237. if precompiled_charsmap:
  6238. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  6239. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6240. special_vocab.add_to_gguf(self.gguf_writer)
  6241. def set_gguf_parameters(self):
  6242. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  6243. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  6244. n_ctx = 512
  6245. self.gguf_writer.add_context_length(n_ctx)
  6246. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  6247. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  6248. self.gguf_writer.add_block_count(self.block_count)
  6249. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  6250. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  6251. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  6252. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6253. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  6254. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  6255. self.gguf_writer.add_file_type(self.ftype)
  6256. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6257. del bid # unused
  6258. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  6259. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  6260. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  6261. # and decoder and ignore the remaining ones.
  6262. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  6263. if not self.shared_token_embeddings_found:
  6264. name = "shared.weight"
  6265. self.shared_token_embeddings_found = True
  6266. else:
  6267. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  6268. return []
  6269. return [(self.map_tensor_name(name), data_torch)]
  6270. @ModelBase.register("JAISLMHeadModel")
  6271. class JaisModel(TextModel):
  6272. model_arch = gguf.MODEL_ARCH.JAIS
  6273. def __init__(self, *args, **kwargs):
  6274. super().__init__(*args, **kwargs)
  6275. # SwigLU activation
  6276. assert self.hparams["activation_function"] == "swiglu"
  6277. # ALiBi position embedding
  6278. assert self.hparams["position_embedding_type"] == "alibi"
  6279. # Embeddings scale
  6280. self.embeddings_scale = 1.0
  6281. if 'mup_embeddings_scale' in self.hparams:
  6282. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  6283. elif 'embeddings_scale' in self.hparams:
  6284. self.embeddings_scale = self.hparams['embeddings_scale']
  6285. else:
  6286. assert False
  6287. self.width_scale = 1.0
  6288. if 'mup_output_alpha' in self.hparams:
  6289. assert 'mup_width_scale' in self.hparams
  6290. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  6291. elif 'width_scale' in self.hparams:
  6292. self.width_scale = self.hparams['width_scale']
  6293. else:
  6294. assert False
  6295. self.max_alibi_bias = 8.0
  6296. def set_vocab(self):
  6297. self._set_vocab_gpt2()
  6298. def set_gguf_parameters(self):
  6299. self.gguf_writer.add_block_count(self.block_count)
  6300. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  6301. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  6302. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  6303. self.gguf_writer.add_head_count(self.hparams["n_head"])
  6304. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6305. self.gguf_writer.add_file_type(self.ftype)
  6306. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6307. del bid # unused
  6308. tensors: list[tuple[str, Tensor]] = []
  6309. # we don't need these
  6310. if name.endswith((".attn.bias")):
  6311. return tensors
  6312. if name.endswith(("relative_pe.slopes")):
  6313. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  6314. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  6315. # but Jais's PyTorch model simply precalculates the slope values and places them
  6316. # in relative_pes.slopes
  6317. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  6318. first_val = float(data_torch[0].item())
  6319. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  6320. return tensors
  6321. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  6322. data_torch = data_torch.transpose(1, 0)
  6323. new_name = self.map_tensor_name(name)
  6324. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  6325. tensors.append((new_name, data_torch * self.embeddings_scale))
  6326. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  6327. tensors.append((new_name, data_torch * self.width_scale))
  6328. else:
  6329. tensors.append((new_name, data_torch))
  6330. return tensors
  6331. def prepare_tensors(self):
  6332. super().prepare_tensors()
  6333. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  6334. @ModelBase.register("Glm4ForCausalLM", "Glm4vForConditionalGeneration")
  6335. class Glm4Model(TextModel):
  6336. model_arch = gguf.MODEL_ARCH.GLM4
  6337. use_mrope = False
  6338. partial_rotary_factor = 0.5
  6339. def __init__(self, *args, **kwargs):
  6340. super().__init__(*args, **kwargs)
  6341. self.partial_rotary_factor = self.rope_parameters.get("partial_rotary_factor", 0.5)
  6342. if "mrope_section" in self.rope_parameters:
  6343. self.use_mrope = True
  6344. logger.info("Q/K weight will need to be permuted for M-RoPE")
  6345. def set_vocab(self):
  6346. from transformers import AutoTokenizer
  6347. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  6348. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6349. tokens, toktypes, tokpre = self.get_vocab_base()
  6350. self.gguf_writer.add_tokenizer_model("gpt2")
  6351. self.gguf_writer.add_tokenizer_pre(tokpre)
  6352. self.gguf_writer.add_token_list(tokens)
  6353. self.gguf_writer.add_token_types(toktypes)
  6354. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6355. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6356. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  6357. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  6358. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6359. special_vocab.add_to_gguf(self.gguf_writer)
  6360. def set_gguf_parameters(self):
  6361. super().set_gguf_parameters()
  6362. if (rope_dim := self.hparams.get("head_dim")) is None:
  6363. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6364. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.partial_rotary_factor))
  6365. @staticmethod
  6366. def normal_to_neox(weights: Tensor, n_head: int, n_head_kv: int, head_dim: int, partial_rotary_factor: float) -> Tensor:
  6367. orig_shape = weights.shape
  6368. if len(orig_shape) == 1:
  6369. weights = weights.unsqueeze(1) # [out_dim, 1]
  6370. if len(weights.shape) != 2:
  6371. raise ValueError("Only 1D and 2D tensors are supported.")
  6372. n_effective_heads = weights.shape[0] // head_dim
  6373. if n_head_kv is not None and n_effective_heads != n_head:
  6374. if n_effective_heads != n_head_kv:
  6375. raise AssertionError(f"Mismatch in effective heads: computed {n_effective_heads}, expected {n_head} or {n_head_kv}")
  6376. rotary_dim = int(head_dim * partial_rotary_factor)
  6377. if rotary_dim % 2 != 0:
  6378. raise ValueError("rotary_dim must be even.")
  6379. reshaped = weights.reshape(n_effective_heads, head_dim, -1)
  6380. rot_part = reshaped[:, :rotary_dim, :]
  6381. non_rot_part = reshaped[:, rotary_dim:, :]
  6382. permuted_rot = torch.cat((rot_part[:, ::2, :], rot_part[:, 1::2, :]), dim=1)
  6383. combined = torch.cat((permuted_rot, non_rot_part), dim=1)
  6384. result = combined.reshape(weights.shape)
  6385. return result if len(orig_shape) != 1 else result.squeeze(1)
  6386. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6387. if name.startswith("model.visual."): # ignore visual part of Glm4v
  6388. return []
  6389. elif name.startswith("model.language_model."):
  6390. name = name.replace("language_model.", "") # for Glm4v
  6391. if self.use_mrope:
  6392. n_head = self.hparams["num_attention_heads"]
  6393. n_kv_head = self.hparams["num_key_value_heads"]
  6394. n_embd = self.hparams["hidden_size"]
  6395. head_dim = n_embd // n_head
  6396. # because llama.cpp M-RoPE kernel only supports Neox ordering, we have to permute the weights here
  6397. if name.endswith(("q_proj.weight", "q_proj.bias")):
  6398. data_torch = Glm4Model.normal_to_neox(data_torch, n_head, n_head, head_dim, self.partial_rotary_factor)
  6399. if name.endswith(("k_proj.weight", "k_proj.bias")):
  6400. data_torch = Glm4Model.normal_to_neox(data_torch, n_head, n_kv_head, head_dim, self.partial_rotary_factor)
  6401. return super().modify_tensors(data_torch, name, bid)
  6402. @ModelBase.register("Glm4MoeForCausalLM", "Glm4vMoeForConditionalGeneration")
  6403. class Glm4MoeModel(TextModel):
  6404. model_arch = gguf.MODEL_ARCH.GLM4_MOE
  6405. def __init__(self, *args, **kwargs):
  6406. super().__init__(*args, **kwargs)
  6407. # GLM4_MOE has num_hidden_layers + 1 actual layers (including NextN layer)
  6408. self.block_count = self.hparams["num_hidden_layers"] + self.hparams.get("num_nextn_predict_layers", 0)
  6409. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  6410. def set_vocab(self):
  6411. from transformers import AutoTokenizer
  6412. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  6413. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6414. tokens, toktypes, tokpre = self.get_vocab_base()
  6415. self.gguf_writer.add_tokenizer_model("gpt2")
  6416. self.gguf_writer.add_tokenizer_pre(tokpre)
  6417. self.gguf_writer.add_token_list(tokens)
  6418. self.gguf_writer.add_token_types(toktypes)
  6419. # Special tokens
  6420. # Note: Using <|endoftext|> (151329) for eot causes endless generation
  6421. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["[gMASK]"]) # 151331
  6422. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"]) # 151336
  6423. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"]) # 151329
  6424. special_vocab._set_special_token("eom", tokenizer.get_added_vocab()["<|observation|>"]) # 151338
  6425. special_vocab.add_to_gguf(self.gguf_writer)
  6426. def set_gguf_parameters(self):
  6427. super().set_gguf_parameters()
  6428. if (rope_dim := self.hparams.get("head_dim")) is None:
  6429. rope_dim = (
  6430. self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6431. )
  6432. self.gguf_writer.add_rope_dimension_count(
  6433. int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5))
  6434. )
  6435. # MoE parameters - Use only routed expert count (shared experts handled separately)
  6436. if (n_routed_experts := self.hparams.get("n_routed_experts")) is not None:
  6437. self.gguf_writer.add_expert_count(n_routed_experts)
  6438. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  6439. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  6440. if (n_shared_experts := self.hparams.get("n_shared_experts")) is not None:
  6441. self.gguf_writer.add_expert_shared_count(n_shared_experts)
  6442. if (first_k_dense_replace := self.hparams.get("first_k_dense_replace")) is not None:
  6443. self.gguf_writer.add_leading_dense_block_count(first_k_dense_replace)
  6444. # Expert gating function (sigmoid for GLM4_MOE)
  6445. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  6446. # Routed scaling factor
  6447. if (routed_scaling_factor := self.hparams.get("routed_scaling_factor")) is not None:
  6448. self.gguf_writer.add_expert_weights_scale(routed_scaling_factor)
  6449. # Normalise topk probabilities
  6450. if (norm_topk_prob := self.hparams.get("norm_topk_prob")) is not None:
  6451. self.gguf_writer.add_expert_weights_norm(norm_topk_prob)
  6452. # NextN/MTP prediction layers
  6453. if (num_nextn_predict_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
  6454. self.gguf_writer.add_nextn_predict_layers(num_nextn_predict_layers)
  6455. _experts: list[dict[str, Tensor]] | None = None
  6456. # note: unlike GLM4V non-MoE, we don't need to permute Q/K here since GLM4V_MOE uses Neox ordering already
  6457. def modify_tensors(
  6458. self, data_torch: Tensor, name: str, bid: int | None
  6459. ) -> Iterable[tuple[str, Tensor]]:
  6460. if name.startswith("model.visual."): # ignore visual part
  6461. return []
  6462. elif name.startswith("model.language_model."):
  6463. name = name.replace("language_model.", "") # for multimodal variants
  6464. # Handle main token embedding (but not layer-specific NextN embeddings)
  6465. if name == "model.embed_tokens.weight" and ".layers." not in name:
  6466. return [(self.map_tensor_name("token_embd.weight"), data_torch)]
  6467. # Handle routed experts
  6468. if name.find("mlp.experts") != -1:
  6469. n_experts = self.hparams["n_routed_experts"]
  6470. assert bid is not None
  6471. if self._experts is None:
  6472. self._experts = [{} for _ in range(self.block_count)]
  6473. self._experts[bid][name] = data_torch
  6474. if len(self._experts[bid]) >= n_experts * 3:
  6475. tensors: list[tuple[str, Tensor]] = []
  6476. # merge the experts into a single 3d tensor
  6477. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6478. datas: list[Tensor] = []
  6479. for xid in range(n_experts):
  6480. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6481. datas.append(self._experts[bid][ename])
  6482. del self._experts[bid][ename]
  6483. data_torch = torch.stack(datas, dim=0)
  6484. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6485. new_name = self.map_tensor_name(merged_name)
  6486. tensors.append((new_name, data_torch))
  6487. return tensors
  6488. else:
  6489. return []
  6490. if name.endswith("e_score_correction_bias"):
  6491. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  6492. new_name = self.map_tensor_name(name)
  6493. return [(new_name, data_torch)]
  6494. def prepare_tensors(self):
  6495. super().prepare_tensors()
  6496. if self._experts is not None:
  6497. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6498. experts = [k for d in self._experts for k in d.keys()]
  6499. if len(experts) > 0:
  6500. raise ValueError(f"Unprocessed experts: {experts}")
  6501. @ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  6502. class ChatGLMModel(TextModel):
  6503. model_arch = gguf.MODEL_ARCH.CHATGLM
  6504. def set_vocab_chatglm3(self):
  6505. dir_model = self.dir_model
  6506. hparams = self.hparams
  6507. tokens: list[bytes] = []
  6508. toktypes: list[int] = []
  6509. scores: list[float] = []
  6510. from transformers import AutoTokenizer
  6511. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  6512. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  6513. assert max(tokenizer.get_vocab().values()) < vocab_size
  6514. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  6515. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  6516. for token_id in range(vocab_size):
  6517. piece = tokenizer._convert_id_to_token(token_id)
  6518. if token_id == 0:
  6519. piece = "<unk>"
  6520. elif token_id == 1:
  6521. piece = "<bos>"
  6522. elif token_id == 2:
  6523. piece = "<eos>"
  6524. text = piece.encode("utf-8")
  6525. score = 0.0
  6526. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  6527. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  6528. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  6529. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  6530. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  6531. if piece in special_tokens:
  6532. toktype = SentencePieceTokenTypes.CONTROL
  6533. elif len(piece) == 0:
  6534. text = f"[PAD{token_id}]".encode("utf-8")
  6535. toktype = SentencePieceTokenTypes.UNUSED
  6536. else:
  6537. toktype = SentencePieceTokenTypes.USER_DEFINED
  6538. tokens.append(text)
  6539. scores.append(score)
  6540. toktypes.append(toktype)
  6541. continue
  6542. toktype = SentencePieceTokenTypes.NORMAL
  6543. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  6544. toktype = SentencePieceTokenTypes.UNKNOWN
  6545. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  6546. toktype = SentencePieceTokenTypes.CONTROL
  6547. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  6548. toktype = SentencePieceTokenTypes.UNUSED
  6549. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  6550. toktype = SentencePieceTokenTypes.BYTE
  6551. tokens.append(text)
  6552. scores.append(score)
  6553. toktypes.append(toktype)
  6554. self.gguf_writer.add_tokenizer_model("llama")
  6555. # glm3 needs prefix and suffix formatted as:
  6556. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  6557. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  6558. self.gguf_writer.add_token_list(tokens)
  6559. self.gguf_writer.add_token_scores(scores)
  6560. self.gguf_writer.add_token_types(toktypes)
  6561. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6562. special_vocab.add_to_gguf(self.gguf_writer)
  6563. @staticmethod
  6564. def token_bytes_to_string(b):
  6565. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  6566. byte_encoder = bytes_to_unicode()
  6567. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  6568. @staticmethod
  6569. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  6570. parts = [bytes([b]) for b in token]
  6571. while True:
  6572. min_idx = None
  6573. min_rank = None
  6574. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  6575. rank = mergeable_ranks.get(pair[0] + pair[1])
  6576. if rank is not None and (min_rank is None or rank < min_rank):
  6577. min_idx = i
  6578. min_rank = rank
  6579. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  6580. break
  6581. assert min_idx is not None
  6582. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  6583. return parts
  6584. def set_vocab(self):
  6585. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  6586. self.set_vocab_chatglm3()
  6587. return
  6588. dir_model = self.dir_model
  6589. hparams = self.hparams
  6590. tokens: list[str] = []
  6591. toktypes: list[int] = []
  6592. from transformers import AutoTokenizer
  6593. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  6594. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  6595. assert max(tokenizer.get_vocab().values()) < vocab_size
  6596. tokens, toktypes, tokpre = self.get_vocab_base()
  6597. self.gguf_writer.add_tokenizer_model("gpt2")
  6598. self.gguf_writer.add_tokenizer_pre(tokpre)
  6599. self.gguf_writer.add_token_list(tokens)
  6600. self.gguf_writer.add_token_types(toktypes)
  6601. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6602. # only add special tokens when they were not already loaded from config.json
  6603. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6604. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  6605. # this one is usually not in config.json anyway
  6606. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  6607. special_vocab.add_to_gguf(self.gguf_writer)
  6608. def set_gguf_parameters(self):
  6609. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  6610. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  6611. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  6612. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  6613. self.gguf_writer.add_embedding_length(n_embed)
  6614. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  6615. self.gguf_writer.add_block_count(self.block_count)
  6616. self.gguf_writer.add_head_count(n_head)
  6617. self.gguf_writer.add_head_count_kv(n_head_kv)
  6618. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  6619. self.gguf_writer.add_file_type(self.ftype)
  6620. if "attention_dim" in self.hparams:
  6621. rope_dim = self.hparams["attention_dim"]
  6622. else:
  6623. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6624. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  6625. self.gguf_writer.add_add_bos_token(False)
  6626. rope_freq = 10000
  6627. if "rope_ratio" in self.hparams:
  6628. rope_freq = rope_freq * self.hparams["rope_ratio"]
  6629. self.gguf_writer.add_rope_freq_base(rope_freq)
  6630. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6631. del bid # unused
  6632. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  6633. return []
  6634. name = name.removeprefix("transformer.")
  6635. return [(self.map_tensor_name(name), data_torch)]
  6636. @ModelBase.register("NemotronForCausalLM")
  6637. class NemotronModel(TextModel):
  6638. model_arch = gguf.MODEL_ARCH.NEMOTRON
  6639. def set_vocab(self):
  6640. self._set_vocab_sentencepiece()
  6641. self.gguf_writer.add_pad_token_id(0)
  6642. self.gguf_writer.add_unk_token_id(1)
  6643. def set_gguf_parameters(self):
  6644. super().set_gguf_parameters()
  6645. hparams = self.hparams
  6646. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6647. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  6648. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  6649. # * Partial RoPE
  6650. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  6651. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  6652. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  6653. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  6654. # * RopeScaling for Nemotron
  6655. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  6656. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6657. else:
  6658. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  6659. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  6660. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6661. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  6662. # model.layers.{l}.input_layernorm.weight
  6663. # model.layers.{l}.post_attention_layernorm.weight
  6664. # model.norm.weight
  6665. if name.endswith("norm.weight"):
  6666. data_torch = data_torch + 1
  6667. return [(self.map_tensor_name(name), data_torch)]
  6668. @ModelBase.register("ExaoneForCausalLM")
  6669. class ExaoneModel(TextModel):
  6670. model_arch = gguf.MODEL_ARCH.EXAONE
  6671. def set_gguf_parameters(self):
  6672. super().set_gguf_parameters()
  6673. hparams = self.hparams
  6674. assert (hparams["activation_function"] == "silu")
  6675. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  6676. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  6677. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  6678. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  6679. if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters):
  6680. if rope_params.get("rope_type", '').lower() == "llama3":
  6681. base = self.rope_parameters.get("rope_theta", 10000.0)
  6682. if (dim := self.hparams.get("head_dim")) is None:
  6683. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6684. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  6685. factor = rope_params.get("factor", 8.0)
  6686. low_freq_factor = rope_params.get("low_freq_factor", 1.0)
  6687. high_freq_factor = rope_params.get("high_freq_factor", 4.0)
  6688. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  6689. low_freq_wavelen = old_context_len / low_freq_factor
  6690. high_freq_wavelen = old_context_len / high_freq_factor
  6691. assert low_freq_wavelen != high_freq_wavelen
  6692. rope_factors = []
  6693. for freq in freqs:
  6694. wavelen = 2 * math.pi / freq
  6695. if wavelen < high_freq_wavelen:
  6696. rope_factors.append(1)
  6697. elif wavelen > low_freq_wavelen:
  6698. rope_factors.append(factor)
  6699. else:
  6700. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  6701. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  6702. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  6703. @ModelBase.register("Exaone4ForCausalLM")
  6704. class Exaone4Model(TextModel):
  6705. model_arch = gguf.MODEL_ARCH.EXAONE4
  6706. def set_vocab(self):
  6707. tokens, toktypes, tokpre = self.get_vocab_base()
  6708. self.gguf_writer.add_tokenizer_model("gpt2")
  6709. self.gguf_writer.add_tokenizer_pre(tokpre)
  6710. self.gguf_writer.add_token_list(tokens)
  6711. self.gguf_writer.add_token_types(toktypes)
  6712. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6713. special_vocab.add_to_gguf(self.gguf_writer)
  6714. def set_gguf_parameters(self):
  6715. super().set_gguf_parameters()
  6716. hparams = self.hparams
  6717. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6718. if hparams.get("sliding_window") is not None:
  6719. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  6720. if "layer_types" in hparams:
  6721. self.gguf_writer.add_sliding_window_pattern([t == "sliding_attention" for t in hparams["layer_types"]])
  6722. elif "sliding_window_pattern" in hparams:
  6723. sliding_window_pattern = []
  6724. if isinstance(hparams["sliding_window_pattern"], str): # e.g. LLLG
  6725. for i in range(hparams["num_hidden_layers"]):
  6726. sliding_window_pattern.append(hparams["sliding_window_pattern"][i % len(hparams["sliding_window_pattern"])] == "L")
  6727. if isinstance(hparams["sliding_window_pattern"], int): # e.g. 4
  6728. for i in range(hparams["num_hidden_layers"]):
  6729. sliding_window_pattern.append((i + 1) % hparams["sliding_window_pattern"] != 0)
  6730. if len(sliding_window_pattern) == hparams["num_hidden_layers"]:
  6731. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  6732. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  6733. if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters):
  6734. if rope_params.get("rope_type", '').lower() == "llama3":
  6735. base = rope_params.get("rope_theta", 10_000.0)
  6736. if (dim := self.hparams.get("head_dim")) is None:
  6737. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6738. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  6739. factor = rope_params.get("factor", 16.0)
  6740. low_freq_factor = rope_params.get("low_freq_factor", 1.0)
  6741. high_freq_factor = rope_params.get("high_freq_factor", 4.0)
  6742. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  6743. low_freq_wavelen = old_context_len / low_freq_factor
  6744. high_freq_wavelen = old_context_len / high_freq_factor
  6745. rope_factors = []
  6746. for freq in freqs:
  6747. wavelen = 2 * math.pi / freq
  6748. if wavelen < high_freq_wavelen:
  6749. rope_factors.append(1)
  6750. elif wavelen > low_freq_wavelen:
  6751. rope_factors.append(factor)
  6752. else:
  6753. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  6754. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  6755. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  6756. @ModelBase.register("GraniteForCausalLM")
  6757. class GraniteModel(LlamaModel):
  6758. """Conversion for IBM's GraniteForCausalLM"""
  6759. model_arch = gguf.MODEL_ARCH.GRANITE
  6760. def set_gguf_parameters(self):
  6761. """Granite uses standard llama parameters with the following differences:
  6762. - No head_dim support
  6763. - New multiplier params:
  6764. - attention_scale
  6765. - embedding_scale
  6766. - residual_scale
  6767. - logits_scaling
  6768. """
  6769. if head_dim := self.hparams.pop("head_dim", None):
  6770. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  6771. super().set_gguf_parameters()
  6772. # NOTE: Convert _multiplier params to _scale params for naming
  6773. # consistency
  6774. if attention_scale := self.hparams.get("attention_multiplier"):
  6775. self.gguf_writer.add_attention_scale(attention_scale)
  6776. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  6777. if embedding_scale := self.hparams.get("embedding_multiplier"):
  6778. self.gguf_writer.add_embedding_scale(embedding_scale)
  6779. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  6780. if residual_scale := self.hparams.get("residual_multiplier"):
  6781. self.gguf_writer.add_residual_scale(residual_scale)
  6782. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  6783. if logits_scale := self.hparams.get("logits_scaling"):
  6784. self.gguf_writer.add_logit_scale(logits_scale)
  6785. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  6786. @ModelBase.register("GraniteMoeForCausalLM", "GraniteMoeSharedForCausalLM")
  6787. class GraniteMoeModel(GraniteModel):
  6788. """Conversion for IBM's GraniteMoeForCausalLM"""
  6789. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  6790. def set_gguf_parameters(self):
  6791. """GraniteMoeShared uses GraniteMoe parameters plus the following:
  6792. - shared_intermediate_size
  6793. """
  6794. super().set_gguf_parameters()
  6795. if shared_feed_forward_length := self.hparams.get("shared_intermediate_size"):
  6796. self.gguf_writer.add_expert_shared_feed_forward_length(shared_feed_forward_length)
  6797. logger.info("gguf: (granitemoeshared) shared_feed_forward_length = %s", shared_feed_forward_length)
  6798. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6799. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  6800. is used. This essentially merges w1 and w3 into a single tensor with 2x
  6801. the hidden size that is then split during forward. To keep compatibility
  6802. with existing mixtral support, we pull them apart here.
  6803. """
  6804. if name.endswith("block_sparse_moe.input_linear.weight"):
  6805. ffn_dim = self.hparams["intermediate_size"]
  6806. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  6807. gate, up = data_torch.split(ffn_dim, dim=-2)
  6808. return [
  6809. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  6810. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  6811. ]
  6812. has_experts = bool(self.hparams.get('num_local_experts'))
  6813. if name.endswith("shared_mlp.input_linear.weight"):
  6814. ffn_dim = self.hparams["shared_intermediate_size"]
  6815. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * shared_intermediate_size"
  6816. gate, up = data_torch.split(ffn_dim, dim=-2)
  6817. if has_experts:
  6818. return [
  6819. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_SHEXP, bid), gate),
  6820. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_SHEXP, bid), up),
  6821. ]
  6822. return [
  6823. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), gate),
  6824. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), up),
  6825. ]
  6826. if not has_experts and name.endswith("shared_mlp.output_linear.weight"):
  6827. return [
  6828. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, bid), data_torch)
  6829. ]
  6830. return super().modify_tensors(data_torch, name, bid)
  6831. @ModelBase.register("GraniteMoeHybridForCausalLM", "BambaForCausalLM")
  6832. class GraniteHybridModel(Mamba2Model, GraniteMoeModel):
  6833. """GraniteHybrid is a hybrid SSM + Attention model that uses Mamba2 SSM
  6834. layers and optionally uses MoE w/ a shared expert"""
  6835. model_arch = gguf.MODEL_ARCH.GRANITE_HYBRID
  6836. undo_permute = True
  6837. def __init__(self, *args, **kwargs):
  6838. # Hybrid mamba models use a prefix for the mamba-specific params.
  6839. # TODO: Extend this if the prefix(es) need to be configurable
  6840. self.hparam_prefixes = ["mamba"]
  6841. super().__init__(*args, **kwargs)
  6842. # Lists of which layers use ssm vs attention
  6843. self._attn_layers = self.get_attn_layers()
  6844. self._ssm_layers = [
  6845. i for i in range(self.block_count)
  6846. if i not in self._attn_layers
  6847. ]
  6848. # There are some models in this family that are non-hybrid, but keep the
  6849. # same parent class by setting all layers to "attention." If this is the
  6850. # case, the model architecture needs to be updated to a standard
  6851. # "granite" or "granitemoe" model
  6852. if not self._ssm_layers:
  6853. has_experts = self.find_hparam(["num_experts_per_tok"], optional=True)
  6854. new_arch = (
  6855. gguf.MODEL_ARCH.GRANITE_MOE
  6856. if has_experts else
  6857. gguf.MODEL_ARCH.GRANITE
  6858. )
  6859. self.model_arch = new_arch
  6860. self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[new_arch]
  6861. self.gguf_writer.add_architecture()
  6862. # n_group and d_inner are used during reshape_tensors for mamba2
  6863. # NOTE: Explicitly include hparam prefix prefix for d_model to
  6864. # disambiguate with top-level head_dim
  6865. # NOTE 2: If needed for future models, this can be isolated in a method
  6866. # to separate the prefix setting and teh keys used
  6867. self.d_model = self.find_hparam([f"{self.hparam_prefixes[0]}_head_dim", "hidden_size", "d_model"])
  6868. self.n_group = self.find_hparam(["n_groups", "num_groups"])
  6869. self.d_inner = self.find_hparam(["expand", "num_heads"]) * self.d_model
  6870. def get_attn_layers(self):
  6871. # Explicit list of layer type names
  6872. if layer_types := self.hparams.get("layer_types"):
  6873. return [
  6874. i for i, typ in enumerate(layer_types)
  6875. if typ == "attention"
  6876. ]
  6877. # Layer types indicated by index or period
  6878. attn_layers = self.hparams.get("attn_layer_indices", [])
  6879. if not attn_layers:
  6880. attn_period = self.hparams.get("attn_layer_period")
  6881. assert attn_period, "Didn't find attn_layer_indices or attn_layer_period"
  6882. attn_offset = self.hparams.get("attn_layer_offset")
  6883. assert attn_offset is not None, "No attention layer offset set with attn_layer_period"
  6884. attn_layers = [
  6885. i for i in range(self.block_count)
  6886. if i % attn_period == attn_offset
  6887. ]
  6888. return attn_layers
  6889. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  6890. prefixed = []
  6891. for pfx in self.hparam_prefixes:
  6892. prefixed.extend(
  6893. "_".join([pfx, k])
  6894. for k in keys
  6895. )
  6896. keys = list(keys) + prefixed
  6897. return Mamba2Model.find_hparam(self, keys, *args, **kwargs)
  6898. def modify_tensors(
  6899. self, data_torch: Tensor, name: str, bid: int | None
  6900. ) -> Iterable[tuple[str, Tensor]]:
  6901. if (
  6902. name.endswith("block_sparse_moe.input_linear.weight")
  6903. or "shared_mlp" in name
  6904. ):
  6905. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  6906. # Determine whether this is a mamba layer or an attention layer
  6907. if bid in self._ssm_layers:
  6908. return Mamba2Model.modify_tensors(self, data_torch, name, bid)
  6909. elif bid in self._attn_layers:
  6910. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  6911. return [(self.map_tensor_name(name), data_torch)]
  6912. def set_gguf_parameters(self):
  6913. """This method merges params from both parents and some that are
  6914. specific to this model. The result is some duplication of how the params
  6915. get set. The following warnings are expected during conversion:
  6916. WARNING:Duplicated key name 'granitehybrid.attention.head_count_kv'
  6917. WARNING:Duplicated key name 'granitehybrid.context_length'
  6918. """
  6919. GraniteMoeModel.set_gguf_parameters(self)
  6920. ## Mamba mixer params ##
  6921. self.gguf_writer.add_ssm_conv_kernel(self.find_hparam(["conv_kernel", "d_conv"]))
  6922. self.gguf_writer.add_ssm_state_size(self.find_hparam(["state_size", "d_state", "state_dim", "ssm_state_size"]))
  6923. self.gguf_writer.add_ssm_group_count(self.n_group)
  6924. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  6925. # NOTE: The mamba_dt_rank is _not_ the right field for how this is used
  6926. # in llama.cpp
  6927. self.gguf_writer.add_ssm_time_step_rank(self.find_hparam(["n_heads", "num_heads"]))
  6928. ## Attention params ##
  6929. head_count_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  6930. head_count_kv_vec = [
  6931. head_count_kv if i in self._attn_layers else 0 for i in range(self.block_count)
  6932. ]
  6933. if rope_dim := self.hparams.get("attn_rotary_emb"):
  6934. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6935. self.gguf_writer.add_head_count_kv(head_count_kv_vec)
  6936. ## If Bamba or non-hybrid, use rope, otherwise don't
  6937. use_rope = (
  6938. "BambaForCausalLM" in self.hparams["architectures"]
  6939. or not self._ssm_layers
  6940. )
  6941. self.gguf_writer.add_rope_scaling_finetuned(use_rope)
  6942. if not use_rope:
  6943. self.gguf_writer.add_context_length(2**20)
  6944. ## Validation ##
  6945. d_head = self.find_hparam(["d_head"], optional=True) or 64
  6946. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  6947. assert self.d_inner % d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {d_head}"
  6948. def set_vocab(self):
  6949. self.hparams["pad_vocab_size_multiple"] = 8
  6950. Mamba2Model.set_vocab(self)
  6951. @ModelBase.register("NemotronHForCausalLM")
  6952. class NemotronHModel(GraniteHybridModel):
  6953. """Hybrid mamba2/attention model from NVIDIA"""
  6954. model_arch = gguf.MODEL_ARCH.NEMOTRON_H
  6955. is_moe: bool = False
  6956. def __init__(self, *args, **kwargs):
  6957. # We have to determine the correct model architecture (MoE vs non-MoE) before
  6958. # calling the parent __init__. This is because the parent constructor
  6959. # uses self.model_arch to build the tensor name map, and all MoE-specific
  6960. # mappings would be missed if it were called with the default non-MoE arch.
  6961. hparams = ModelBase.load_hparams(args[0], self.is_mistral_format)
  6962. if "num_experts_per_tok" in hparams:
  6963. self.model_arch = gguf.MODEL_ARCH.NEMOTRON_H_MOE
  6964. self.is_moe = True
  6965. super().__init__(*args, **kwargs)
  6966. # Save the top-level head_dim for later
  6967. self.head_dim = self.hparams.get("head_dim", self.hparams.get("attention_head_dim"))
  6968. assert self.head_dim is not None, "Could not find the attention head dim in config"
  6969. # Don't use expand to calculate d_inner
  6970. self.d_inner = self.find_hparam(["num_heads"]) * self.d_model
  6971. # Update the ssm / attn / mlp layers
  6972. # M: Mamba2, *: Attention, -: MLP
  6973. # MoE:
  6974. # M: Mamba2, *: Attention, E: Expert
  6975. hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
  6976. self._ssm_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == "M"]
  6977. self._mlp_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == ("E" if self.is_moe else "-")]
  6978. def get_attn_layers(self):
  6979. hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
  6980. assert len(hybrid_override_pattern) == self.block_count, "Mismatch between hybrid override and num_hidden_layers!"
  6981. return [i for i, val in enumerate(hybrid_override_pattern) if val == "*"]
  6982. def set_gguf_parameters(self):
  6983. super().set_gguf_parameters()
  6984. self.gguf_writer.add_key_length(self.head_dim)
  6985. self.gguf_writer.add_value_length(self.head_dim)
  6986. # Set feed_forward_length
  6987. # NOTE: This will trigger an override warning. This is preferrable to
  6988. # duplicating all the parent logic
  6989. if not self.is_moe:
  6990. n_ff = self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"])
  6991. self.gguf_writer.add_feed_forward_length([
  6992. n_ff if i in self._mlp_layers else 0 for i in range(self.block_count)
  6993. ])
  6994. else:
  6995. moe_intermediate_size = self.hparams["moe_intermediate_size"]
  6996. self.gguf_writer.add_feed_forward_length([
  6997. moe_intermediate_size if i in self._mlp_layers else 0 for i in range(self.block_count)
  6998. ])
  6999. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  7000. self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
  7001. self.gguf_writer.add_expert_shared_feed_forward_length(self.hparams["moe_shared_expert_intermediate_size"])
  7002. self.gguf_writer.add_expert_count(self.hparams["n_routed_experts"])
  7003. self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
  7004. self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
  7005. self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
  7006. self.gguf_writer.add_expert_group_count(self.hparams["n_group"])
  7007. # number of experts used per token (top-k)
  7008. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  7009. self.gguf_writer.add_expert_used_count(n_experts_used)
  7010. def set_vocab(self):
  7011. super().set_vocab()
  7012. # The tokenizer _does_ add a BOS token (via post_processor type
  7013. # TemplateProcessing) but does not set add_bos_token to true in the
  7014. # config, so we need to explicitly override it here.
  7015. if not self.is_moe:
  7016. self.gguf_writer.add_add_bos_token(True)
  7017. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7018. if self.is_moe and bid is not None:
  7019. if name.endswith("mixer.gate.e_score_correction_bias"):
  7020. new_name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  7021. mapped_name = self.map_tensor_name(new_name)
  7022. return [(mapped_name, data_torch)]
  7023. if name.endswith("mixer.dt_bias"):
  7024. new_name = name.replace("dt_bias", "dt.bias")
  7025. mapped_name = self.map_tensor_name(new_name)
  7026. return [(mapped_name, data_torch)]
  7027. if name.endswith("mixer.conv1d.weight"):
  7028. squeezed_data = data_torch.squeeze()
  7029. mapped_name = self.map_tensor_name(name)
  7030. return [(mapped_name, squeezed_data)]
  7031. if name.endswith("mixer.A_log"):
  7032. transformed_data = -torch.exp(data_torch)
  7033. reshaped_data = transformed_data.squeeze().reshape(-1, 1)
  7034. mapped_name = self.map_tensor_name(name)
  7035. return [(mapped_name, reshaped_data)]
  7036. if name.endswith("mixer.D"):
  7037. reshaped_data = data_torch.squeeze().reshape(-1, 1)
  7038. mapped_name = self.map_tensor_name(name)
  7039. return [(mapped_name, reshaped_data)]
  7040. if name.endswith("mixer.norm.weight"):
  7041. reshaped_data = data_torch.reshape(8, 512)
  7042. mapped_name = self.map_tensor_name(name)
  7043. return [(mapped_name, reshaped_data)]
  7044. if name.find("mixer.experts") != -1:
  7045. n_experts = self.hparams["n_routed_experts"]
  7046. assert bid is not None
  7047. if self._experts is None:
  7048. self._experts = [{} for _ in range(self.block_count)]
  7049. self._experts[bid][name] = data_torch
  7050. if len(self._experts[bid]) >= n_experts * 2:
  7051. # merge the experts into a single tensor
  7052. tensors: list[tuple[str, Tensor]] = []
  7053. for w_name in ["down_proj", "up_proj"]:
  7054. datas: list[Tensor] = []
  7055. for xid in range(n_experts):
  7056. ename = f"backbone.layers.{bid}.mixer.experts.{xid}.{w_name}.weight"
  7057. datas.append(self._experts[bid][ename])
  7058. del self._experts[bid][ename]
  7059. data_torch = torch.stack(datas, dim=0)
  7060. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7061. new_name = self.map_tensor_name(merged_name)
  7062. tensors.append((new_name, data_torch))
  7063. return tensors
  7064. else:
  7065. return []
  7066. return super().modify_tensors(data_torch, name, bid)
  7067. def prepare_tensors(self):
  7068. super().prepare_tensors()
  7069. if self._experts is not None:
  7070. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7071. experts = [k for d in self._experts for k in d.keys()]
  7072. if len(experts) > 0:
  7073. raise ValueError(f"Unprocessed experts: {experts}")
  7074. @ModelBase.register("BailingMoeForCausalLM")
  7075. class BailingMoeModel(TextModel):
  7076. model_arch = gguf.MODEL_ARCH.BAILINGMOE
  7077. def set_vocab(self):
  7078. self._set_vocab_gpt2()
  7079. def set_gguf_parameters(self):
  7080. super().set_gguf_parameters()
  7081. hparams = self.hparams
  7082. if (rope_dim := hparams.get("head_dim")) is None:
  7083. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  7084. self.gguf_writer.add_rope_dimension_count(rope_dim)
  7085. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  7086. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  7087. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  7088. self.gguf_writer.add_expert_weights_scale(1.0)
  7089. self.gguf_writer.add_expert_count(hparams["num_experts"])
  7090. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  7091. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  7092. _experts: list[dict[str, Tensor]] | None = None
  7093. @staticmethod
  7094. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  7095. if n_head_kv is not None and n_head != n_head_kv:
  7096. n_head = n_head_kv
  7097. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  7098. .swapaxes(1, 2)
  7099. .reshape(weights.shape))
  7100. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7101. n_head = self.hparams["num_attention_heads"]
  7102. n_kv_head = self.hparams.get("num_key_value_heads")
  7103. n_embd = self.hparams["hidden_size"]
  7104. if (head_dim := self.hparams.get("head_dim")) is None:
  7105. head_dim = n_embd // n_head
  7106. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  7107. if name.endswith("attention.dense.weight"):
  7108. return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
  7109. elif name.endswith("query_key_value.weight"):
  7110. q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
  7111. return [
  7112. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
  7113. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
  7114. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
  7115. ]
  7116. elif name.find("mlp.experts") != -1:
  7117. n_experts = self.hparams["num_experts"]
  7118. assert bid is not None
  7119. tensors: list[tuple[str, Tensor]] = []
  7120. if self._experts is None:
  7121. self._experts = [{} for _ in range(self.block_count)]
  7122. self._experts[bid][name] = data_torch
  7123. if len(self._experts[bid]) >= n_experts * 3:
  7124. # merge the experts into a single 3d tensor
  7125. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7126. datas: list[Tensor] = []
  7127. for xid in range(n_experts):
  7128. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7129. datas.append(self._experts[bid][ename])
  7130. del self._experts[bid][ename]
  7131. data_torch = torch.stack(datas, dim=0)
  7132. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7133. new_name = self.map_tensor_name(merged_name)
  7134. tensors.append((new_name, data_torch))
  7135. return tensors
  7136. new_name = self.map_tensor_name(name)
  7137. if new_name == output_name and self.hparams.get("norm_head"):
  7138. data_torch = data_torch.float()
  7139. data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
  7140. return [(new_name, data_torch)]
  7141. def prepare_tensors(self):
  7142. super().prepare_tensors()
  7143. if self._experts is not None:
  7144. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7145. experts = [k for d in self._experts for k in d.keys()]
  7146. if len(experts) > 0:
  7147. raise ValueError(f"Unprocessed experts: {experts}")
  7148. @ModelBase.register("BailingMoeV2ForCausalLM")
  7149. class BailingMoeV2Model(TextModel):
  7150. model_arch = gguf.MODEL_ARCH.BAILINGMOE2
  7151. def __init__(self, *args, **kwargs):
  7152. super().__init__(*args, **kwargs)
  7153. if nextn_layers := self.hparams.get("num_nextn_predict_layers", 0):
  7154. self.block_count = self.hparams["num_hidden_layers"] + nextn_layers
  7155. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  7156. def set_vocab(self):
  7157. self._set_vocab_gpt2()
  7158. def set_gguf_parameters(self):
  7159. super().set_gguf_parameters()
  7160. hparams = self.hparams
  7161. if (rope_dim := hparams.get("head_dim")) is None:
  7162. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  7163. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  7164. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  7165. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  7166. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  7167. self.gguf_writer.add_expert_shared_feed_forward_length(hparams.get("moe_shared_expert_intermediate_size", hparams["moe_intermediate_size"] * hparams["num_shared_experts"]))
  7168. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  7169. self.gguf_writer.add_expert_count(hparams["num_experts"])
  7170. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  7171. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  7172. if (nextn_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
  7173. self.gguf_writer.add_nextn_predict_layers(nextn_layers)
  7174. _experts: list[dict[str, Tensor]] | None = None
  7175. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7176. if "mlp.experts" in name:
  7177. n_experts = self.hparams["num_experts"]
  7178. assert bid is not None
  7179. tensors: list[tuple[str, Tensor]] = []
  7180. if self._experts is None:
  7181. self._experts = [{} for _ in range(self.block_count)]
  7182. self._experts[bid][name] = data_torch
  7183. if len(self._experts[bid]) >= n_experts * 3:
  7184. # merge the experts into a single 3d tensor
  7185. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7186. datas: list[Tensor] = []
  7187. for xid in range(n_experts):
  7188. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7189. datas.append(self._experts[bid][ename])
  7190. del self._experts[bid][ename]
  7191. data_torch = torch.stack(datas, dim=0)
  7192. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7193. new_name = self.map_tensor_name(merged_name)
  7194. tensors.append((new_name, data_torch))
  7195. return tensors
  7196. if name.endswith(".expert_bias"):
  7197. name = name.replace(".expert_bias", ".expert_bias.bias")
  7198. return [(self.map_tensor_name(name), data_torch)]
  7199. def prepare_tensors(self):
  7200. super().prepare_tensors()
  7201. if self._experts is not None:
  7202. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7203. experts = [k for d in self._experts for k in d.keys()]
  7204. if len(experts) > 0:
  7205. raise ValueError(f"Unprocessed experts: {experts}")
  7206. @ModelBase.register("GroveMoeForCausalLM", "modeling_grove_moe.GroveMoeForCausalLM")
  7207. class GroveMoeModel(TextModel):
  7208. model_arch = gguf.MODEL_ARCH.GROVEMOE
  7209. def set_gguf_parameters(self):
  7210. super().set_gguf_parameters()
  7211. if (n_experts := self.hparams.get("num_experts")) is not None:
  7212. self.gguf_writer.add_expert_count(n_experts)
  7213. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  7214. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  7215. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  7216. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L299
  7217. self.gguf_writer.add_expert_chunk_feed_forward_length(self.hparams.get("head_dim") or 128)
  7218. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L298
  7219. self.gguf_writer.add_experts_per_group(2)
  7220. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L376
  7221. self.gguf_writer.add_expert_group_scale(0.05)
  7222. _experts: list[dict[str, Tensor]] | None = None
  7223. _chunk_experts: list[dict[str, Tensor]] | None = None
  7224. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7225. if name.endswith(".expert_bias"):
  7226. # FIXME?: Unused https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L303
  7227. return []
  7228. # process the experts separately
  7229. if name.find("chunk_experts") != -1:
  7230. n_experts = self.hparams["num_experts"] // 2 # see add_experts_per_group
  7231. assert bid is not None
  7232. if self._chunk_experts is None:
  7233. self._chunk_experts = [{} for _ in range(self.block_count)]
  7234. self._chunk_experts[bid][name] = data_torch
  7235. if len(self._chunk_experts[bid]) >= n_experts * 3:
  7236. tensors: list[tuple[str, Tensor]] = []
  7237. # merge the experts into a single 3d tensor
  7238. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7239. datas: list[Tensor] = []
  7240. for xid in range(n_experts):
  7241. ename = f"model.layers.{bid}.mlp.chunk_experts.{xid}.{w_name}.weight"
  7242. datas.append(self._chunk_experts[bid][ename])
  7243. del self._chunk_experts[bid][ename]
  7244. data_torch = torch.stack(datas, dim=0)
  7245. merged_name = f"model.layers.{bid}.mlp.chunk_experts.{w_name}.weight"
  7246. new_name = self.map_tensor_name(merged_name)
  7247. tensors.append((new_name, data_torch))
  7248. return tensors
  7249. else:
  7250. return []
  7251. elif name.find("experts") != -1:
  7252. n_experts = self.hparams["num_experts"]
  7253. assert bid is not None
  7254. if self._experts is None:
  7255. self._experts = [{} for _ in range(self.block_count)]
  7256. self._experts[bid][name] = data_torch
  7257. if len(self._experts[bid]) >= n_experts * 3:
  7258. tensors: list[tuple[str, Tensor]] = []
  7259. # merge the experts into a single 3d tensor
  7260. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7261. datas: list[Tensor] = []
  7262. for xid in range(n_experts):
  7263. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7264. datas.append(self._experts[bid][ename])
  7265. del self._experts[bid][ename]
  7266. data_torch = torch.stack(datas, dim=0)
  7267. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7268. new_name = self.map_tensor_name(merged_name)
  7269. tensors.append((new_name, data_torch))
  7270. return tensors
  7271. else:
  7272. return []
  7273. return [(self.map_tensor_name(name), data_torch)]
  7274. def prepare_tensors(self):
  7275. super().prepare_tensors()
  7276. if self._chunk_experts is not None:
  7277. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7278. chunk_experts = [k for d in self._chunk_experts for k in d.keys()]
  7279. if len(chunk_experts) > 0:
  7280. raise ValueError(f"Unprocessed adjugate experts: {chunk_experts}")
  7281. if self._experts is not None:
  7282. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7283. experts = [k for d in self._experts for k in d.keys()]
  7284. if len(experts) > 0:
  7285. raise ValueError(f"Unprocessed experts: {experts}")
  7286. @ModelBase.register("ChameleonForConditionalGeneration")
  7287. @ModelBase.register("ChameleonForCausalLM") # obsolete
  7288. class ChameleonModel(TextModel):
  7289. model_arch = gguf.MODEL_ARCH.CHAMELEON
  7290. def set_gguf_parameters(self):
  7291. super().set_gguf_parameters()
  7292. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  7293. def set_vocab(self):
  7294. self._set_vocab_gpt2()
  7295. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7296. # ignore image tokenizer for now
  7297. # TODO: remove this once image support is implemented for Chameleon
  7298. if name.startswith("model.vqmodel"):
  7299. return []
  7300. n_head = self.hparams["num_attention_heads"]
  7301. n_kv_head = self.hparams.get("num_key_value_heads")
  7302. hidden_dim = self.hparams.get("hidden_size")
  7303. if name.endswith(("q_proj.weight", "q_proj.bias")):
  7304. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  7305. if name.endswith(("k_proj.weight", "k_proj.bias")):
  7306. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  7307. if name.endswith(("q_norm.weight", "q_norm.bias")):
  7308. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  7309. if name.endswith(("k_norm.weight", "k_norm.bias")):
  7310. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  7311. return [(self.map_tensor_name(name), data_torch)]
  7312. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  7313. @staticmethod
  7314. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  7315. head_dim = hidden_dim // n_heads
  7316. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  7317. data_torch = data_torch.repeat_interleave(n_heads, 0)
  7318. return data_torch
  7319. @ModelBase.register("UltravoxModel")
  7320. class UltravoxModel(TextModel):
  7321. model_arch = gguf.MODEL_ARCH.LLAMA # dummy
  7322. def __init__(self, *args, **kwargs):
  7323. super().__init__(*args, **kwargs)
  7324. raise NotImplementedError("Ultravox does not have text decoder. Instead, it uses Llama or other models for text. If you want to get the audio encoder, please use --mmproj argument")
  7325. @ModelBase.register("GlmasrModel")
  7326. class GlmASRWhisperEncoderModel(MmprojModel):
  7327. has_vision_encoder = False
  7328. has_audio_encoder = True
  7329. def __init__(self, *args, **kwargs):
  7330. super().__init__(*args, **kwargs)
  7331. if "hidden_size" not in self.hparams and "intermediate_size" not in self.hparams:
  7332. self.hparams["hidden_size"] = self.hparams["d_model"]
  7333. self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
  7334. self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
  7335. def set_gguf_parameters(self):
  7336. super().set_gguf_parameters()
  7337. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GLMA)
  7338. self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
  7339. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  7340. self.gguf_writer.add_audio_stack_factor(self.global_config["merge_factor"])
  7341. def tensor_force_quant(self, name, new_name, bid, n_dims):
  7342. if ".conv" in name and ".weight" in name:
  7343. return gguf.GGMLQuantizationType.F16
  7344. return super().tensor_force_quant(name, new_name, bid, n_dims)
  7345. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7346. del bid # unused
  7347. if name.startswith("model.") or name.startswith("lm_head."):
  7348. # skip language model tensors
  7349. return []
  7350. if name.startswith("audio_encoder.whisper."):
  7351. name = name.replace("audio_encoder.whisper.","audio_tower.")
  7352. if "audio_encoder.layer_norm." in name or "audio_encoder.proj." in name:
  7353. name = name.replace("audio_encoder.", "audio_encoder.adapting.")
  7354. if name.startswith("audio_encoder.audio_bos_eos_token."):
  7355. return [(self.map_tensor_name("model.vision.boi"), data_torch[0]), (self.map_tensor_name("model.vision.eoi"), data_torch[1])]
  7356. if name.startswith("audio_encoder.adapting."):
  7357. name = name.replace("audio_encoder.adapting.","audio.multi_modal_projector.")
  7358. if ".layer_norm." in name:
  7359. name = name.replace(".layer_norm.", ".ln_pre.")
  7360. if ".0." in name:
  7361. name = name.replace(".0.", ".linear_1.")
  7362. if ".2." in name:
  7363. name = name.replace(".2.", ".linear_2.")
  7364. if ".proj." in name:
  7365. return []
  7366. if "conv1.bias" in name or "conv2.bias" in name:
  7367. # transpose conv1 and conv2 bias
  7368. data_torch = data_torch.unsqueeze(-1)
  7369. return [(self.map_tensor_name(name), data_torch)]
  7370. @ModelBase.register("Qwen2AudioForConditionalGeneration")
  7371. class WhisperEncoderModel(MmprojModel):
  7372. has_vision_encoder = False # no vision encoder
  7373. has_audio_encoder = True
  7374. def __init__(self, *args, **kwargs):
  7375. super().__init__(*args, **kwargs)
  7376. if "hidden_size" not in self.hparams and "intermediate_size" not in self.hparams:
  7377. self.hparams["hidden_size"] = self.hparams["d_model"]
  7378. self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
  7379. self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
  7380. def set_gguf_parameters(self):
  7381. super().set_gguf_parameters()
  7382. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2A)
  7383. self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
  7384. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  7385. def tensor_force_quant(self, name, new_name, bid, n_dims):
  7386. if ".conv" in name and ".weight" in name:
  7387. return gguf.GGMLQuantizationType.F16
  7388. return super().tensor_force_quant(name, new_name, bid, n_dims)
  7389. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7390. del bid # unused
  7391. if name.startswith("language_model."):
  7392. # skip language model tensors
  7393. return []
  7394. # prevent clash naming with vision tensors
  7395. if name.startswith("multi_modal_projector"):
  7396. name = "audio." + name
  7397. if "conv1.bias" in name or "conv2.bias" in name:
  7398. # transpose conv1 and conv2 bias
  7399. data_torch = data_torch.unsqueeze(-1)
  7400. return [(self.map_tensor_name(name), data_torch)]
  7401. @ModelBase.register("UltravoxModel")
  7402. class UltravoxWhisperEncoderModel(WhisperEncoderModel):
  7403. has_vision_encoder = False # no vision encoder
  7404. has_audio_encoder = True
  7405. def set_gguf_parameters(self):
  7406. super().set_gguf_parameters()
  7407. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.ULTRAVOX)
  7408. self.gguf_writer.add_audio_stack_factor(self.global_config["stack_factor"])
  7409. @ModelBase.register("VoxtralForConditionalGeneration")
  7410. class VoxtralWhisperEncoderModel(WhisperEncoderModel):
  7411. has_vision_encoder = False # no vision encoder
  7412. has_audio_encoder = True
  7413. def set_gguf_parameters(self):
  7414. super().set_gguf_parameters()
  7415. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.VOXTRAL)
  7416. self.gguf_writer.add_audio_stack_factor(4) # == intermediate_size // hidden_size
  7417. @ModelBase.register("FalconH1ForCausalLM")
  7418. class FalconH1Model(Mamba2Model):
  7419. model_arch = gguf.MODEL_ARCH.FALCON_H1
  7420. def __init__(self, *args, **kwargs):
  7421. # Set the hparam prefixes for Falcon Mamba2
  7422. self.hparam_prefixes = ["mamba"]
  7423. # Initialize the base Mamba2Model
  7424. super().__init__(*args, **kwargs)
  7425. # Use Llama conversion for attention
  7426. self._transformer_model_class = LlamaModel
  7427. # n_group and d_inner are used during reshape_tensors for mamba2
  7428. self.n_group = self.find_hparam(["n_groups"])
  7429. self.d_inner = self.find_hparam(["mamba_d_ssm"])
  7430. self.d_head = self.find_hparam(["d_head"])
  7431. # Initialize any Falcon Mamba2 specific attributes
  7432. self.has_attention = True # Falcon Mamba2 has attention components
  7433. # Load Falcon-H1 multipliers from hyperparameters
  7434. self.attention_in_multiplier = self.find_hparam(["attention_in_multiplier"], optional=True)
  7435. self.attention_out_multiplier = self.find_hparam(["attention_out_multiplier"], optional=True)
  7436. self.ssm_in_multiplier = self.find_hparam(["ssm_in_multiplier"], optional=True)
  7437. self.ssm_out_multiplier = self.find_hparam(["ssm_out_multiplier"], optional=True)
  7438. self.mlp_multipliers = self.find_hparam(["mlp_multipliers"], optional=True)
  7439. self.ssm_multipliers = self.find_hparam(["ssm_multipliers"], optional=True)
  7440. self.intermediate_size = self.find_hparam(["intermediate_size"])
  7441. self.key_multiplier = self.find_hparam(["key_multiplier"], optional=True)
  7442. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  7443. prefixed = []
  7444. for pfx in self.hparam_prefixes:
  7445. prefixed.extend(
  7446. "_".join([pfx, k])
  7447. for k in keys
  7448. )
  7449. keys = list(keys) + prefixed
  7450. return super().find_hparam(keys, *args, **kwargs)
  7451. def set_vocab(self):
  7452. self._set_vocab_gpt2()
  7453. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7454. tensors = list(super().modify_tensors(data_torch, name, bid))
  7455. tensor = tensors[0][1]
  7456. if "down_proj" in name:
  7457. tensor = tensor * self.mlp_multipliers[1]
  7458. elif "gate_proj" in name:
  7459. tensor = tensor * self.mlp_multipliers[0]
  7460. elif "k_proj" in name:
  7461. tensor = tensor * self.key_multiplier * self.attention_in_multiplier
  7462. elif "q_proj" in name:
  7463. tensor = tensor * self.attention_in_multiplier
  7464. elif "v_proj" in name:
  7465. tensor = tensor * self.attention_in_multiplier
  7466. elif "o_proj" in name:
  7467. tensor = tensor * self.attention_out_multiplier
  7468. elif "out_proj" in name:
  7469. tensor = tensor * self.ssm_out_multiplier
  7470. elif "in_proj" in name:
  7471. tensor = tensor * self.ssm_in_multiplier
  7472. zxbcdt_multipliers = self.hparams["ssm_multipliers"]
  7473. intermediate_size = self.hparams["mamba_d_ssm"]
  7474. groups_time_state_size = self.hparams["mamba_n_groups"] * self.hparams["mamba_d_state"]
  7475. tensor[:intermediate_size, :] *= zxbcdt_multipliers[0]
  7476. tensor[intermediate_size:2 * intermediate_size, :] *= zxbcdt_multipliers[1]
  7477. tensor[2 * intermediate_size:2 * intermediate_size + groups_time_state_size, :] *= zxbcdt_multipliers[2]
  7478. tensor[2 * intermediate_size + groups_time_state_size:2 * intermediate_size + 2 * groups_time_state_size, :] *= zxbcdt_multipliers[3]
  7479. tensor[2 * intermediate_size + 2 * groups_time_state_size:, :] *= zxbcdt_multipliers[4]
  7480. elif "lm_head" in name:
  7481. tensor = tensor * self.hparams["lm_head_multiplier"]
  7482. elif "embed_tokens" in name:
  7483. tensor = tensor * self.hparams["embedding_multiplier"]
  7484. elif "mamba.norm" in name:
  7485. tensor = tensor.reshape(self.n_group, self.d_inner // self.n_group)
  7486. tensors = [(tensors[0][0], tensor)]
  7487. return tensors
  7488. def set_gguf_parameters(self):
  7489. super().set_gguf_parameters()
  7490. ## General Params ##
  7491. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  7492. # Override some Mamba2 defaults
  7493. self.gguf_writer.add_block_count(self.block_count)
  7494. self.gguf_writer.add_context_length(self.hparams.get("max_position_embeddings", 0))
  7495. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  7496. ## Attention params ##
  7497. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) # Override value 0 from Mamba2
  7498. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  7499. self.gguf_writer.add_key_length(self.hparams["head_dim"])
  7500. self.gguf_writer.add_value_length(self.hparams["head_dim"])
  7501. ## Validation ##
  7502. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  7503. assert self.d_inner % self.d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {self.d_head}"
  7504. # Add any other Falcon Mamba2 specific configuration
  7505. self.gguf_writer.add_rope_freq_base(self.rope_parameters["rope_theta"])
  7506. @ModelBase.register("HunYuanMoEV1ForCausalLM")
  7507. class HunYuanMoEModel(TextModel):
  7508. model_arch = gguf.MODEL_ARCH.HUNYUAN_MOE
  7509. def set_vocab(self):
  7510. from transformers import AutoTokenizer
  7511. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  7512. # 1. Get the pre-tokenizer identifier hash
  7513. tokpre = self.get_vocab_base_pre(tokenizer)
  7514. # 2. Reverse-engineer the merges list from mergeable_ranks
  7515. merges = []
  7516. vocab = {}
  7517. mergeable_ranks = tokenizer.mergeable_ranks
  7518. for token, rank in mergeable_ranks.items():
  7519. vocab[QwenModel.token_bytes_to_string(token)] = rank
  7520. if len(token) == 1:
  7521. continue
  7522. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  7523. if len(merged) == 2: # todo this is an assert in Qwen, why?
  7524. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  7525. # 3. Generate the tokens and toktypes lists
  7526. vocab_size = self.hparams["vocab_size"]
  7527. assert tokenizer.vocab_size == vocab_size
  7528. special_tokens = tokenizer.special_tokens
  7529. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  7530. tokens: list[str] = []
  7531. toktypes: list[int] = []
  7532. for i in range(vocab_size):
  7533. if i not in reverse_vocab:
  7534. tokens.append(f"[PAD{i}]")
  7535. toktypes.append(gguf.TokenType.UNUSED)
  7536. else:
  7537. token = reverse_vocab[i]
  7538. tokens.append(token)
  7539. if i in special_tokens.values():
  7540. toktypes.append(gguf.TokenType.CONTROL)
  7541. else:
  7542. toktypes.append(gguf.TokenType.NORMAL)
  7543. # 4. Write all vocab-related fields to the GGUF writer
  7544. self.gguf_writer.add_tokenizer_model("gpt2")
  7545. self.gguf_writer.add_tokenizer_pre(tokpre)
  7546. self.gguf_writer.add_token_list(tokens)
  7547. self.gguf_writer.add_token_types(toktypes)
  7548. self.gguf_writer.add_token_merges(merges)
  7549. # 5. Add special tokens and chat templates
  7550. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  7551. special_vocab.add_to_gguf(self.gguf_writer)
  7552. # FIX for BOS token: Overwrite incorrect id read from config.json
  7553. self.gguf_writer.add_bos_token_id(127959) # <|bos|>
  7554. def set_gguf_parameters(self):
  7555. super().set_gguf_parameters()
  7556. hparams = self.hparams
  7557. self.gguf_writer.add_expert_count(hparams["num_experts"])
  7558. self.gguf_writer.add_expert_shared_feed_forward_length(hparams["intermediate_size"])
  7559. moe_intermediate_size = hparams["moe_intermediate_size"]
  7560. assert all(n == moe_intermediate_size[0] for n in moe_intermediate_size)
  7561. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size[0])
  7562. moe_topk = hparams["moe_topk"]
  7563. assert all(topk == moe_topk[0] for topk in moe_topk)
  7564. self.gguf_writer.add_expert_used_count(moe_topk[0])
  7565. moe_shared_expert = hparams["num_shared_expert"]
  7566. assert all(n == moe_shared_expert[0] for n in moe_shared_expert)
  7567. self.gguf_writer.add_expert_shared_count(moe_shared_expert[0])
  7568. # Rope
  7569. if self.rope_parameters.get("rope_type") == "dynamic":
  7570. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  7571. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  7572. alpha = self.rope_parameters.get("alpha", 1000)
  7573. base = self.rope_parameters.get("rope_theta", 10000.0)
  7574. dim = (hparams["hidden_size"] // hparams["num_attention_heads"]) # 128
  7575. scaled_base = base * (alpha ** (dim / (dim - 2))) # 10000 * (1000 ** (128 / 126)) = 11158839.9251
  7576. self.gguf_writer.add_rope_freq_base(scaled_base)
  7577. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  7578. self.gguf_writer.add_rope_scaling_factor(1)
  7579. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  7580. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  7581. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  7582. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  7583. assert alpha == 1000 and base == 10000.0 and dim == 128 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  7584. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  7585. _experts: list[dict[str, Tensor]] | None = None
  7586. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7587. if name == "lm_head.weight":
  7588. if self.hparams.get("tie_word_embeddings", False):
  7589. logger.info("Skipping tied output layer 'lm_head.weight'")
  7590. return []
  7591. if name.find("mlp.experts") != -1:
  7592. n_experts = self.hparams["num_experts"]
  7593. assert bid is not None
  7594. if self._experts is None:
  7595. self._experts = [{} for _ in range(self.block_count)]
  7596. self._experts[bid][name] = data_torch
  7597. if len(self._experts[bid]) >= n_experts * 3:
  7598. # merge the experts into a single 3d tensor
  7599. tensors: list[tuple[str, Tensor]] = []
  7600. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7601. datas: list[Tensor] = []
  7602. for xid in range(n_experts):
  7603. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7604. datas.append(self._experts[bid][ename])
  7605. del self._experts[bid][ename]
  7606. data_torch = torch.stack(datas, dim=0)
  7607. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7608. new_name = self.map_tensor_name(merged_name)
  7609. tensors.append((new_name, data_torch))
  7610. return tensors
  7611. else:
  7612. return []
  7613. return [(self.map_tensor_name(name), data_torch)]
  7614. def prepare_tensors(self):
  7615. super().prepare_tensors()
  7616. if self._experts is not None:
  7617. experts = [k for d in self._experts for k in d.keys()]
  7618. if len(experts) > 0:
  7619. raise ValueError(f"Unprocessed experts: {experts}")
  7620. @ModelBase.register("LLaDAMoEModel", "LLaDAMoEModelLM")
  7621. class LLaDAMoEModel(TextModel):
  7622. model_arch = gguf.MODEL_ARCH.LLADA_MOE
  7623. def set_gguf_parameters(self):
  7624. super().set_gguf_parameters()
  7625. if (n_experts := self.hparams.get("num_experts")) is not None:
  7626. self.gguf_writer.add_expert_count(n_experts)
  7627. if (expert_intermediate_size := self.hparams.get("expert_intermediate_size")) is not None:
  7628. self.gguf_writer.add_expert_feed_forward_length(expert_intermediate_size)
  7629. # number of experts used per token (top-k)
  7630. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  7631. self.gguf_writer.add_expert_used_count(n_experts_used)
  7632. self.gguf_writer.add_mask_token_id(156895)
  7633. self.gguf_writer.add_causal_attention(False)
  7634. self.gguf_writer.add_diffusion_shift_logits(False)
  7635. _experts: list[dict[str, Tensor]] | None = None
  7636. # Copied from: Qwen2MoeModel
  7637. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7638. # process the experts separately
  7639. if name.find("experts") != -1:
  7640. n_experts = self.hparams["num_experts"]
  7641. assert bid is not None
  7642. if self._experts is None:
  7643. self._experts = [{} for _ in range(self.block_count)]
  7644. self._experts[bid][name] = data_torch
  7645. if len(self._experts[bid]) >= n_experts * 3:
  7646. tensors: list[tuple[str, Tensor]] = []
  7647. # merge the experts into a single 3d tensor
  7648. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7649. datas: list[Tensor] = []
  7650. for xid in range(n_experts):
  7651. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7652. datas.append(self._experts[bid][ename])
  7653. del self._experts[bid][ename]
  7654. data_torch = torch.stack(datas, dim=0)
  7655. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7656. new_name = self.map_tensor_name(merged_name)
  7657. tensors.append((new_name, data_torch))
  7658. return tensors
  7659. else:
  7660. return []
  7661. return [(self.map_tensor_name(name), data_torch)]
  7662. # Copied from: Qwen2MoeModel
  7663. def prepare_tensors(self):
  7664. super().prepare_tensors()
  7665. if self._experts is not None:
  7666. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7667. experts = [k for d in self._experts for k in d.keys()]
  7668. if len(experts) > 0:
  7669. raise ValueError(f"Unprocessed experts: {experts}")
  7670. @ModelBase.register("HunYuanDenseV1ForCausalLM")
  7671. class HunYuanModel(TextModel):
  7672. model_arch = gguf.MODEL_ARCH.HUNYUAN_DENSE
  7673. def set_vocab(self):
  7674. if (self.dir_model / "tokenizer.json").is_file():
  7675. self._set_vocab_gpt2()
  7676. else:
  7677. from transformers import AutoTokenizer
  7678. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  7679. # 1. Get the pre-tokenizer identifier hash
  7680. tokpre = self.get_vocab_base_pre(tokenizer)
  7681. # 2. Reverse-engineer the merges list from mergeable_ranks
  7682. merges = []
  7683. vocab = {}
  7684. mergeable_ranks = tokenizer.mergeable_ranks
  7685. for token, rank in mergeable_ranks.items():
  7686. vocab[QwenModel.token_bytes_to_string(token)] = rank
  7687. if len(token) == 1:
  7688. continue
  7689. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  7690. if len(merged) == 2:
  7691. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  7692. # 3. Generate the tokens and toktypes lists
  7693. vocab_size = self.hparams["vocab_size"]
  7694. assert tokenizer.vocab_size == vocab_size
  7695. special_tokens = tokenizer.special_tokens
  7696. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  7697. tokens: list[str] = []
  7698. toktypes: list[int] = []
  7699. for i in range(vocab_size):
  7700. if i not in reverse_vocab:
  7701. tokens.append(f"[PAD{i}]")
  7702. toktypes.append(gguf.TokenType.UNUSED)
  7703. else:
  7704. token = reverse_vocab[i]
  7705. tokens.append(token)
  7706. if i in special_tokens.values():
  7707. toktypes.append(gguf.TokenType.CONTROL)
  7708. else:
  7709. toktypes.append(gguf.TokenType.NORMAL)
  7710. # 4. Write all vocab-related fields to the GGUF writer
  7711. self.gguf_writer.add_tokenizer_model("gpt2")
  7712. self.gguf_writer.add_tokenizer_pre(tokpre)
  7713. self.gguf_writer.add_token_list(tokens)
  7714. self.gguf_writer.add_token_types(toktypes)
  7715. self.gguf_writer.add_token_merges(merges)
  7716. # 5. Add special tokens and chat templates
  7717. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  7718. special_vocab.add_to_gguf(self.gguf_writer)
  7719. # FIX for BOS token: Overwrite incorrect id read from config.json
  7720. if self.hparams['hidden_size'] == 4096:
  7721. self.gguf_writer.add_bos_token_id(127958) # only for 7b dense, fix <|bos|> token
  7722. def set_gguf_parameters(self):
  7723. super().set_gguf_parameters()
  7724. hparams = self.hparams
  7725. # Rope
  7726. if self.rope_parameters.get("rope_type") == "dynamic":
  7727. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  7728. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  7729. alpha = self.rope_parameters.get("alpha", 50)
  7730. base = self.rope_parameters.get("rope_theta", 10000.0)
  7731. dim = hparams["head_dim"]
  7732. scaled_base = base * (alpha ** (dim / (dim - 2)))
  7733. self.gguf_writer.add_rope_freq_base(scaled_base)
  7734. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  7735. self.gguf_writer.add_rope_scaling_factor(1)
  7736. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  7737. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  7738. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  7739. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  7740. assert base == 10000.0 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  7741. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  7742. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7743. if name == "lm_head.weight":
  7744. if self.hparams.get("tie_word_embeddings", False):
  7745. logger.info("Skipping tied output layer 'lm_head.weight'")
  7746. return []
  7747. return [(self.map_tensor_name(name), data_torch)]
  7748. @ModelBase.register("SmolLM3ForCausalLM")
  7749. class SmolLM3Model(LlamaModel):
  7750. model_arch = gguf.MODEL_ARCH.SMOLLM3
  7751. @ModelBase.register("GptOssForCausalLM")
  7752. class GptOssModel(TextModel):
  7753. model_arch = gguf.MODEL_ARCH.GPT_OSS
  7754. # TODO: remove once MXFP4 is supported more generally
  7755. def dequant_model(self):
  7756. quant_config = self.hparams.get("quantization_config")
  7757. if quant_config is not None and quant_config.get("quant_method") == "mxfp4":
  7758. return
  7759. return super().dequant_model()
  7760. def transform_nibble_layout(self, tensor):
  7761. assert tensor.dtype == torch.uint8
  7762. assert tensor.shape[-1] == 16
  7763. # swap nibbles
  7764. t_lo = tensor & 0x0F
  7765. t_hi = tensor & 0xF0
  7766. t_swapped = (t_lo << 4) | (t_hi >> 4)
  7767. tensor = t_swapped
  7768. # transform aaaa...bbbb... to abababab...
  7769. blk_a, blk_b = tensor.chunk(2, dim=-1)
  7770. # get a_
  7771. blk_a0 = (blk_a & 0xF0).view(-1, 1)
  7772. blk_a1 = (blk_a << 4).view(-1, 1)
  7773. blk_a = torch.stack((blk_a0, blk_a1), dim=2).view(tensor.shape)
  7774. # get _b
  7775. blk_b0 = (blk_b >> 4).view(-1, 1)
  7776. blk_b1 = (blk_b & 0x0F).view(-1, 1)
  7777. blk_b = torch.stack((blk_b0, blk_b1), dim=2).view(tensor.shape)
  7778. # swap once more
  7779. out = blk_a | blk_b
  7780. out_h = out & 0xF0
  7781. out_l = out & 0x0F
  7782. out = (out_h >> 4) | (out_l << 4)
  7783. return out
  7784. def repack_mxfp4(self, new_name: str, blocks: Tensor, scales: Tensor):
  7785. assert blocks.dtype == torch.uint8
  7786. assert scales.dtype == torch.uint8
  7787. scales = scales.unsqueeze(-1)
  7788. assert len(blocks.shape) == 4
  7789. assert len(scales.shape) == 4
  7790. blocks = self.transform_nibble_layout(blocks)
  7791. new_data = torch.concat((scales, blocks), dim=-1)
  7792. new_shape = [new_data.shape[0], new_data.shape[1], new_data.shape[2] * 32]
  7793. logger.info(f"Repacked {new_name} with shape {new_shape} and quantization MXFP4")
  7794. # flatten last dim
  7795. new_data = new_data.view(new_data.shape[0], new_data.shape[1], new_data.shape[2] * new_data.shape[3])
  7796. new_data = new_data.numpy()
  7797. self.gguf_writer.add_tensor(new_name, new_data, raw_dtype=gguf.GGMLQuantizationType.MXFP4)
  7798. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  7799. blocks0: Tensor = torch.zeros(1)
  7800. blocks1: Tensor = torch.zeros(1)
  7801. # we assume that tensors are loaded in the correct order
  7802. for name, data_torch in self.get_tensors():
  7803. if "mlp.experts.down_proj_blocks" in name:
  7804. blocks0 = data_torch
  7805. elif "mlp.experts.down_proj_scales" in name:
  7806. new_name = self.map_tensor_name(name.replace("_scales", ".weight"))
  7807. self.repack_mxfp4(new_name, blocks0, data_torch)
  7808. elif "mlp.experts.gate_up_proj_blocks" in name:
  7809. blocks0, blocks1 = data_torch[:, ::2, :, :], data_torch[:, 1::2, :, :]
  7810. elif "mlp.experts.gate_up_proj_scales" in name:
  7811. scales0, scales1 = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  7812. new_name_gate = self.map_tensor_name(name.replace("gate_up_proj_scales", "gate_proj.weight"))
  7813. new_name_up = self.map_tensor_name(name.replace("gate_up_proj_scales", "up_proj.weight"))
  7814. self.repack_mxfp4(new_name_gate, blocks0, scales0)
  7815. self.repack_mxfp4(new_name_up, blocks1, scales1)
  7816. return []
  7817. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7818. del bid # unused
  7819. if "sinks" in name:
  7820. name += ".weight"
  7821. # correct naming for down_proj
  7822. if "down_proj" in name:
  7823. if name.endswith("_bias"):
  7824. name = name.replace("down_proj_bias", "down_proj.bias")
  7825. elif "_blocks" not in name and "_scales" not in name:
  7826. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  7827. name = name.replace("down_proj", "down_proj.weight")
  7828. data_torch = data_torch.transpose(-1, -2)
  7829. else:
  7830. # otherwise, it should already be repacked to ggml MXFP4 format
  7831. return []
  7832. # split the gate_up into gate and up
  7833. if "gate_up_proj" in name:
  7834. if name.endswith("_bias"):
  7835. name_up = name.replace("gate_up_proj_bias", "up_proj.bias")
  7836. name_gate = name.replace("gate_up_proj_bias", "gate_proj.bias")
  7837. gate_proj_bias, up_proj_bias = data_torch[..., ::2], data_torch[..., 1::2]
  7838. return [
  7839. (self.map_tensor_name(name_gate), gate_proj_bias),
  7840. (self.map_tensor_name(name_up), up_proj_bias)
  7841. ]
  7842. elif "_blocks" not in name and "_scales" not in name:
  7843. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  7844. name_up = name.replace("gate_up_proj", "up_proj.weight")
  7845. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  7846. data_torch = data_torch.transpose(-1, -2)
  7847. gate_proj_weight, up_proj_weight = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  7848. return [
  7849. (self.map_tensor_name(name_gate), gate_proj_weight),
  7850. (self.map_tensor_name(name_up), up_proj_weight)
  7851. ]
  7852. else:
  7853. # otherwise, it should already be repacked to ggml MXFP4 format
  7854. return []
  7855. return [(self.map_tensor_name(name), data_torch)]
  7856. def set_vocab(self):
  7857. self._set_vocab_gpt2()
  7858. def set_gguf_parameters(self):
  7859. super().set_gguf_parameters()
  7860. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  7861. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size"])
  7862. @ModelBase.register("Lfm2ForCausalLM", "LFM2ForCausalLM")
  7863. class LFM2Model(TextModel):
  7864. model_arch = gguf.MODEL_ARCH.LFM2
  7865. def _add_feed_forward_length(self):
  7866. ff_dim = self.hparams["block_ff_dim"]
  7867. auto_adjust_ff_dim = self.hparams["block_auto_adjust_ff_dim"]
  7868. ff_dim = self.hparams["block_ff_dim"]
  7869. ffn_dim_multiplier = self.hparams["block_ffn_dim_multiplier"]
  7870. multiple_of = self.hparams["block_multiple_of"]
  7871. if auto_adjust_ff_dim:
  7872. ff_dim = int(2 * ff_dim / 3)
  7873. # custom dim factor multiplier
  7874. if ffn_dim_multiplier is not None:
  7875. ff_dim = int(ffn_dim_multiplier * ff_dim)
  7876. ff_dim = multiple_of * ((ff_dim + multiple_of - 1) // multiple_of)
  7877. self.gguf_writer.add_feed_forward_length(ff_dim)
  7878. def set_gguf_parameters(self):
  7879. # set num_key_value_heads only for attention layers
  7880. self.hparams["num_key_value_heads"] = [
  7881. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  7882. for layer_type in self.hparams["layer_types"]
  7883. ]
  7884. super().set_gguf_parameters()
  7885. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  7886. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  7887. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["norm_eps"])
  7888. self._add_feed_forward_length()
  7889. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7890. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  7891. if is_vision_tensor:
  7892. # skip vision tensors
  7893. return []
  7894. name = name.replace("language_model.", "")
  7895. # conv op requires 2d tensor
  7896. if 'conv.conv' in name:
  7897. data_torch = data_torch.squeeze(1)
  7898. return [(self.map_tensor_name(name), data_torch)]
  7899. @ModelBase.register("Lfm2MoeForCausalLM")
  7900. class LFM2MoeModel(TextModel):
  7901. model_arch = gguf.MODEL_ARCH.LFM2MOE
  7902. def set_gguf_parameters(self):
  7903. # set num_key_value_heads only for attention layers
  7904. self.hparams["num_key_value_heads"] = [
  7905. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  7906. for layer_type in self.hparams["layer_types"]
  7907. ]
  7908. super().set_gguf_parameters()
  7909. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  7910. self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
  7911. self.gguf_writer.add_leading_dense_block_count(self.hparams["num_dense_layers"])
  7912. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  7913. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  7914. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  7915. # cache for experts weights for merging
  7916. _experts_cache: dict[int, dict[str, Tensor]] = {}
  7917. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7918. # conv op requires 2d tensor
  7919. if 'conv.conv' in name:
  7920. data_torch = data_torch.squeeze(1)
  7921. if name.endswith(".expert_bias"):
  7922. name = name.replace(".expert_bias", ".expert_bias.bias")
  7923. # merge expert weights
  7924. if 'experts' in name:
  7925. n_experts = self.hparams["num_experts"]
  7926. assert bid is not None
  7927. expert_cache = self._experts_cache.setdefault(bid, {})
  7928. expert_cache[name] = data_torch
  7929. expert_weights = ["w1", "w2", "w3"]
  7930. # not enough expert weights to merge
  7931. if len(expert_cache) < n_experts * len(expert_weights):
  7932. return []
  7933. tensors: list[tuple[str, Tensor]] = []
  7934. for w_name in expert_weights:
  7935. datas: list[Tensor] = []
  7936. for xid in range(n_experts):
  7937. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{w_name}.weight"
  7938. datas.append(expert_cache[ename])
  7939. del expert_cache[ename]
  7940. data_torch = torch.stack(datas, dim=0)
  7941. merged_name = f"layers.{bid}.feed_forward.experts.{w_name}.weight"
  7942. new_name = self.map_tensor_name(merged_name)
  7943. tensors.append((new_name, data_torch))
  7944. del self._experts_cache[bid]
  7945. return tensors
  7946. return [(self.map_tensor_name(name), data_torch)]
  7947. def prepare_tensors(self):
  7948. super().prepare_tensors()
  7949. assert not self._experts_cache
  7950. @ModelBase.register("Lfm2VlForConditionalGeneration")
  7951. class LFM2VLModel(MmprojModel):
  7952. def __init__(self, *args, **kwargs):
  7953. super().__init__(*args, **kwargs)
  7954. assert self.hparams_vision is not None
  7955. # TODO(tarek): for dynamic resolution image_size is not specified, setting here for compatibility
  7956. self.hparams_vision["image_size"] = 256
  7957. def set_gguf_parameters(self):
  7958. super().set_gguf_parameters()
  7959. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LFM2)
  7960. self.gguf_writer.add_vision_attention_layernorm_eps(self.find_vparam(["layer_norm_eps"]))
  7961. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("downsample_factor", 2))
  7962. self.gguf_writer.add_vision_use_gelu(True)
  7963. # python notation, e.g. for vision_feature_layer == -1, we pick last layer -> vision_feature_layers_to_drop = 0
  7964. vision_feature_layers_to_drop = -(self.global_config.get("vision_feature_layer", -1) + 1)
  7965. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys) - vision_feature_layers_to_drop)
  7966. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7967. del bid # unused
  7968. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  7969. if is_vision_tensor:
  7970. # remove "model." prefix
  7971. name = name.replace("model.vision_tower.", "vision_tower.")
  7972. name = name.replace("model.multi_modal_projector.", "multi_modal_projector.")
  7973. if "patch_embedding.weight" in name:
  7974. data_torch = data_torch.view(data_torch.shape[0], 16, 16, 3).permute(0, 3, 1, 2)
  7975. return [(self.map_tensor_name(name), data_torch)]
  7976. return [] # skip other tensors
  7977. @ModelBase.register("SmallThinkerForCausalLM")
  7978. class SmallThinkerModel(TextModel):
  7979. model_arch = gguf.MODEL_ARCH.SMALLTHINKER
  7980. def set_gguf_parameters(self):
  7981. super().set_gguf_parameters()
  7982. if (n_experts := self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))) is not None:
  7983. self.gguf_writer.add_expert_count(n_experts)
  7984. if (n_experts_used := self.hparams.get("num_experts_per_tok", self.hparams.get("moe_num_active_primary_experts"))) is not None:
  7985. self.gguf_writer.add_expert_used_count(n_experts_used)
  7986. if (moe_intermediate_size := self.hparams.get("moe_ffn_hidden_size")) is not None:
  7987. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  7988. self.gguf_writer.add_feed_forward_length(moe_intermediate_size)
  7989. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  7990. if (self.hparams.get('moe_primary_router_apply_softmax')):
  7991. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  7992. else:
  7993. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  7994. sliding_window_layout = self.hparams.get("sliding_window_layout")
  7995. if sliding_window_layout:
  7996. for i in sliding_window_layout:
  7997. if i != 0:
  7998. sliding_window = self.hparams.get("sliding_window_size")
  7999. if sliding_window:
  8000. self.gguf_writer.add_sliding_window(sliding_window)
  8001. break
  8002. _experts: list[dict[str, Tensor]] | None = None
  8003. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8004. # process the experts separately
  8005. if name.find("experts") != -1:
  8006. n_experts = self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))
  8007. assert bid is not None
  8008. if self._experts is None:
  8009. self._experts = [{} for _ in range(self.block_count)]
  8010. self._experts[bid][name] = data_torch
  8011. if len(self._experts[bid]) >= n_experts * 3:
  8012. tensors: list[tuple[str, Tensor]] = []
  8013. # merge the experts into a single 3d tensor
  8014. for w_name in ["down", "gate", "up"]:
  8015. datas: list[Tensor] = []
  8016. for xid in range(n_experts):
  8017. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  8018. datas.append(self._experts[bid][ename])
  8019. del self._experts[bid][ename]
  8020. data_torch = torch.stack(datas, dim=0)
  8021. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  8022. new_name = self.map_tensor_name(merged_name)
  8023. tensors.append((new_name, data_torch))
  8024. return tensors
  8025. else:
  8026. return []
  8027. return [(self.map_tensor_name(name), data_torch)]
  8028. def prepare_tensors(self):
  8029. super().prepare_tensors()
  8030. if self._experts is not None:
  8031. # flatten `list[dict[str, Tensor]]` into `list[str]`
  8032. experts = [k for d in self._experts for k in d.keys()]
  8033. if len(experts) > 0:
  8034. raise ValueError(f"Unprocessed experts: {experts}")
  8035. @ModelBase.register("ApertusForCausalLM")
  8036. class ApertusModel(LlamaModel):
  8037. model_arch = gguf.MODEL_ARCH.APERTUS
  8038. undo_permute = False
  8039. _alpha_n = {}
  8040. _alpha_p = {}
  8041. _beta = {}
  8042. _eps = {}
  8043. def modify_tensors(self, data_torch, name, bid):
  8044. # Handle xIELU activation parameters
  8045. n_layers = self.hparams["num_hidden_layers"]
  8046. if name.endswith(".act_fn.alpha_n"):
  8047. self._alpha_n[bid] = data_torch.to("cpu").float().item()
  8048. if (len(self._alpha_n) == n_layers):
  8049. self.gguf_writer.add_xielu_alpha_n([self._alpha_n[k] for k in sorted(self._alpha_n)])
  8050. return []
  8051. if name.endswith(".act_fn.alpha_p"):
  8052. self._alpha_p[bid] = data_torch.to("cpu").float().item()
  8053. if (len(self._alpha_p) == n_layers):
  8054. self.gguf_writer.add_xielu_alpha_p([self._alpha_p[k] for k in sorted(self._alpha_p)])
  8055. return []
  8056. if name.endswith(".act_fn.beta"):
  8057. self._beta[bid] = data_torch.to("cpu").float().item()
  8058. if (len(self._beta) == n_layers):
  8059. self.gguf_writer.add_xielu_beta([self._beta[k] for k in sorted(self._beta)])
  8060. return []
  8061. if name.endswith(".act_fn.eps"):
  8062. self._eps[bid] = data_torch.to("cpu").float().item()
  8063. if (len(self._eps) == n_layers):
  8064. self.gguf_writer.add_xielu_eps([self._eps[k] for k in sorted(self._eps)])
  8065. return []
  8066. return super().modify_tensors(data_torch, name, bid)
  8067. class MistralModel(LlamaModel):
  8068. model_arch = gguf.MODEL_ARCH.MISTRAL3
  8069. model_name = "Mistral"
  8070. hf_arch = ""
  8071. is_mistral_format = True
  8072. undo_permute = False
  8073. def __init__(self, *args, **kwargs):
  8074. super().__init__(*args, **kwargs)
  8075. # for compatibility, we use LLAMA arch for older models
  8076. # TODO: remove this once everyone migrates to newer version of llama.cpp
  8077. if "llama_4_scaling" not in self.hparams:
  8078. self.model_arch = gguf.MODEL_ARCH.LLAMA
  8079. self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[self.model_arch]
  8080. self.gguf_writer.add_architecture()
  8081. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  8082. def dequant_model(self):
  8083. # transform quantization config into HF format
  8084. quant_config = self.hparams.get("quantization")
  8085. if quant_config is not None:
  8086. assert quant_config["qformat_weight"] == "fp8_e4m3"
  8087. self.hparams["quantization_config"] = {
  8088. "activation_scheme": "static",
  8089. "quant_method": "fp8",
  8090. "weight_block_size": None,
  8091. }
  8092. return super().dequant_model()
  8093. @staticmethod
  8094. def get_community_chat_template(vocab: MistralVocab, templates_dir: Path, is_mistral_format: bool):
  8095. assert TokenizerVersion is not None and Tekkenizer is not None and SentencePieceTokenizer is not None, _mistral_import_error_msg
  8096. assert isinstance(vocab.tokenizer, (Tekkenizer, SentencePieceTokenizer)), (
  8097. f"Expected Tekkenizer or SentencePieceTokenizer, got {type(vocab.tokenizer)}"
  8098. )
  8099. if vocab.tokenizer.version == TokenizerVersion.v1:
  8100. return "mistral-v1"
  8101. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.spm:
  8102. return "mistral-v3"
  8103. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  8104. return "mistral-v3-tekken"
  8105. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.spm:
  8106. return "mistral-v7"
  8107. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  8108. return "mistral-v7-tekken"
  8109. elif vocab.tokenizer.version == TokenizerVersion.v11:
  8110. template_file = "Mistral-Small-3.2-24B-Instruct-2506.jinja"
  8111. elif vocab.tokenizer.version == TokenizerVersion.v13:
  8112. template_file = "unsloth-mistral-Devstral-Small-2507.jinja"
  8113. else:
  8114. err_message = f"Unknown tokenizer type: {vocab.tokenizer_type} and version {vocab.tokenizer.version}"
  8115. if is_mistral_format:
  8116. err_message += (
  8117. " . Please pass --disable-mistral-community-chat-template argument to the CLI "
  8118. "if you want to skip this error and use the Mistral official `mistral-common` pre-processing library."
  8119. )
  8120. raise ValueError(err_message)
  8121. template_path = templates_dir / template_file
  8122. if not template_path.exists():
  8123. raise FileNotFoundError(f"Template file not found: {template_path}")
  8124. with open(template_path, "r", encoding="utf-8") as f:
  8125. template = f.read()
  8126. return template
  8127. def set_gguf_parameters(self):
  8128. super().set_gguf_parameters()
  8129. MistralModel.set_mistral_config(self.gguf_writer, self.hparams)
  8130. @staticmethod
  8131. def set_mistral_config(gguf_writer: gguf.GGUFWriter, hparams: dict):
  8132. if "yarn" in hparams:
  8133. yarn_params = hparams["yarn"]
  8134. gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  8135. gguf_writer.add_rope_scaling_factor(yarn_params["factor"])
  8136. gguf_writer.add_rope_scaling_yarn_beta_fast(yarn_params["beta"])
  8137. gguf_writer.add_rope_scaling_yarn_beta_slow(yarn_params["alpha"])
  8138. gguf_writer.add_rope_scaling_yarn_log_mul(1.0) # mscale_all_dim
  8139. gguf_writer.add_rope_scaling_orig_ctx_len(yarn_params["original_max_position_embeddings"])
  8140. if "llama_4_scaling" in hparams:
  8141. gguf_writer.add_attn_temperature_scale(hparams["llama_4_scaling"]["beta"])
  8142. class MistralMoeModel(DeepseekV2Model):
  8143. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  8144. model_name = "Mistral"
  8145. hf_arch = ""
  8146. is_mistral_format = True
  8147. def __init__(self, *args, **kwargs):
  8148. super().__init__(*args, **kwargs)
  8149. logger.info("Using MistralMoeModel")
  8150. # remap hparams from Mistral MoE format to DeepseekV2 format
  8151. # we do this way to be able to reuse DeepseekV2Model set_gguf_parameters logic
  8152. # ref: https://github.com/vllm-project/vllm/blob/b294e28db2c5dee61bc25157664edcada8b90b31/vllm/transformers_utils/configs/mistral.py
  8153. config = self.hparams
  8154. # Mistral key -> HF key
  8155. config_mapping = {
  8156. "dim": "hidden_size",
  8157. "norm_eps": "rms_norm_eps",
  8158. "n_kv_heads": "num_key_value_heads",
  8159. "n_layers": "num_hidden_layers",
  8160. "n_heads": "num_attention_heads",
  8161. "hidden_dim": "intermediate_size",
  8162. }
  8163. # HF key -> (Mistral key, default value)
  8164. top_level_mapping_with_default = {
  8165. "model_type": ("model_type", "transformer"),
  8166. "hidden_act": ("activation", "silu"),
  8167. "tie_word_embeddings": ("tied_embeddings", False),
  8168. "max_seq_len": ("max_seq_len", config.get("max_position_embeddings", 128_000)),
  8169. "max_position_embeddings": ("max_position_embeddings", 128_000),
  8170. }
  8171. # mapping top-level keys
  8172. for key, new_key in config_mapping.items():
  8173. if key in config:
  8174. config[new_key] = config[key]
  8175. for new_key, (key, default_value) in top_level_mapping_with_default.items():
  8176. config[new_key] = config.get(key, default_value)
  8177. # mapping MoE-specific keys
  8178. moe_config_map = {
  8179. "route_every_n": "moe_layer_freq",
  8180. "first_k_dense_replace": "first_k_dense_replace",
  8181. "num_experts_per_tok": "num_experts_per_tok",
  8182. "num_experts": "n_routed_experts",
  8183. "expert_hidden_dim": "moe_intermediate_size",
  8184. "routed_scale": "routed_scaling_factor",
  8185. "num_shared_experts": "n_shared_experts",
  8186. "num_expert_groups": "n_group",
  8187. "num_expert_groups_per_tok": "topk_group",
  8188. }
  8189. moe = config["moe"]
  8190. for key, new_key in moe_config_map.items():
  8191. if key in moe:
  8192. config[new_key] = moe[key]
  8193. # provide missing values
  8194. config["topk_method"] = None
  8195. config["norm_topk_prob"] = True
  8196. config["scoring_func"] = "softmax"
  8197. def set_vocab(self):
  8198. self._set_vocab_mistral()
  8199. def set_gguf_parameters(self):
  8200. super().set_gguf_parameters()
  8201. MistralModel.set_mistral_config(self.gguf_writer, self.hparams)
  8202. yarn_params = self.hparams["yarn"]
  8203. self.gguf_writer.add_attn_temperature_length(yarn_params["original_max_position_embeddings"])
  8204. # [TAG_DEEPSEEK2_YARN_LOG_MUL_FIX]
  8205. # note: for legacy reasons, this is not consistent with the other usages of self.gguf_writer.add_rope_scaling_yarn_log_mul
  8206. # ref https://github.com/ggml-org/llama.cpp/pull/17945
  8207. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1) # mscale_all_dim * 0.1
  8208. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  8209. if name.startswith("vision_") or name.startswith("patch_merger.") or "mm_projector" in name:
  8210. return []
  8211. # rename certain tensors so that we can reuse DeepseekV2Model modify_tensors logic
  8212. if name.endswith(".qscale_act"):
  8213. name = name.replace(".qscale_act", ".input_scale")
  8214. if name.endswith(".qscale_weight"):
  8215. name = name.replace(".qscale_weight", ".weight_scale")
  8216. if ".wkv_b." in name:
  8217. name = name.replace(".wkv_b.", ".kv_b_proj.")
  8218. if ".experts." in name:
  8219. name = name.replace(".experts.", ".mlp.experts.")
  8220. name = name.replace(".w1.", ".gate_proj.")
  8221. name = name.replace(".w2.", ".down_proj.")
  8222. name = name.replace(".w3.", ".up_proj.")
  8223. name = "model." + name
  8224. return super().modify_tensors(data_torch, name, bid)
  8225. class PixtralModel(LlavaVisionModel):
  8226. model_name = "Pixtral"
  8227. hf_arch = ""
  8228. is_mistral_format = True
  8229. def set_gguf_parameters(self):
  8230. super().set_gguf_parameters()
  8231. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  8232. self.gguf_writer.add_vision_attention_layernorm_eps(
  8233. self.find_hparam(["norm_eps"])
  8234. )
  8235. self.gguf_writer.add_rope_freq_base(self.find_vparam(["rope_theta"]))
  8236. self.gguf_writer.add_vision_use_silu(True)
  8237. # spatial_merge_size
  8238. if self.find_vparam(["mm_projector_id"]) == "patch_merge":
  8239. self.gguf_writer.add_vision_spatial_merge_size(
  8240. self.find_vparam(["spatial_merge_size"])
  8241. )
  8242. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  8243. if name == "vision_language_adapter.w_in.weight":
  8244. return "mm.1.weight"
  8245. elif name == "vision_language_adapter.w_out.weight":
  8246. return "mm.2.weight"
  8247. return super().map_tensor_name(name, try_suffixes)
  8248. @ModelBase.register("LightOnOCRForConditionalGeneration")
  8249. class LightOnOCRVisionModel(LlavaVisionModel):
  8250. is_mistral_format = False
  8251. use_break_tok = False
  8252. def set_gguf_parameters(self):
  8253. super().set_gguf_parameters()
  8254. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LIGHTONOCR)
  8255. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  8256. name = name.replace("model.vision_encoder.", "vision_tower.")
  8257. name = name.replace("model.vision_projection.", "multi_modal_projector.")
  8258. return super().modify_tensors(data_torch, name, bid)
  8259. @ModelBase.register("KimiVLForConditionalGeneration")
  8260. class KimiVLModel(MmprojModel):
  8261. def __init__(self, *args, **kwargs):
  8262. super().__init__(*args, **kwargs)
  8263. assert self.hparams_vision is not None
  8264. self.hparams_vision["image_size"] = 64 * 14 # for compatibility
  8265. def set_gguf_parameters(self):
  8266. super().set_gguf_parameters()
  8267. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.KIMIVL)
  8268. self.gguf_writer.add_vision_use_gelu(True)
  8269. self.gguf_writer.add_vision_projector_scale_factor(2)
  8270. # eps is the same as pytorch's default value
  8271. assert self.hparams_vision is not None
  8272. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams_vision.get("layer_norm_eps", 1e-5))
  8273. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8274. del bid # unused
  8275. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  8276. if is_vision_tensor:
  8277. if "pos_emb.weight" in name:
  8278. data_torch = data_torch.view(data_torch.shape[0] * data_torch.shape[1], data_torch.shape[2])
  8279. elif "wqkv" in name:
  8280. split_dim = 0 if "weight" in name else -1
  8281. wq, wk, wv = data_torch.chunk(3, dim=split_dim)
  8282. return [
  8283. (self.map_tensor_name(name.replace("wqkv", "wq")), wq),
  8284. (self.map_tensor_name(name.replace("wqkv", "wk")), wk),
  8285. (self.map_tensor_name(name.replace("wqkv", "wv")), wv)
  8286. ]
  8287. return [(self.map_tensor_name(name), data_torch)]
  8288. return [] # skip other tensors
  8289. @ModelBase.register("CogVLMForCausalLM")
  8290. class CogVLMVisionModel(MmprojModel):
  8291. def set_gguf_parameters(self):
  8292. super().set_gguf_parameters()
  8293. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-6))
  8294. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.COGVLM)
  8295. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8296. del bid # unused
  8297. if not name.startswith("model.vision."):
  8298. return []
  8299. return [(self.map_tensor_name(name), data_torch)]
  8300. @ModelBase.register("CogVLMForCausalLM")
  8301. class CogVLMModel(LlamaModel):
  8302. model_arch = gguf.MODEL_ARCH.COGVLM
  8303. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8304. del bid # unused
  8305. # block vision tensors
  8306. if name.startswith("model.vision."):
  8307. return []
  8308. return [(self.map_tensor_name(name), data_torch)]
  8309. @ModelBase.register("JanusForConditionalGeneration")
  8310. class JanusProModel(LlamaModel):
  8311. model_arch = gguf.MODEL_ARCH.LLAMA # reuse Llama arch
  8312. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8313. # Skip vision, aligner, and generation tensors
  8314. skip_prefixes = (
  8315. 'model.vision_model.',
  8316. 'model.aligner.',
  8317. 'model.vqmodel.',
  8318. 'model.generation_embeddings.',
  8319. 'model.generation_aligner.',
  8320. 'model.generation_head.',
  8321. )
  8322. if name.startswith(skip_prefixes):
  8323. return []
  8324. if name.startswith('model.language_model.'):
  8325. name = name.replace('model.language_model.', 'model.')
  8326. elif name.startswith('language_model.'):
  8327. name = name.replace('language_model.', '')
  8328. return super().modify_tensors(data_torch, name, bid)
  8329. @ModelBase.register("JanusForConditionalGeneration")
  8330. class JanusProVisionModel(MmprojModel):
  8331. def __init__(self, *args, **kwargs):
  8332. super().__init__(*args, **kwargs)
  8333. assert self.hparams_vision is not None
  8334. if "intermediate_size" not in self.hparams_vision:
  8335. mlp_ratio = self.hparams_vision.get("mlp_ratio")
  8336. hidden_size = self.hparams_vision.get("hidden_size")
  8337. if mlp_ratio is not None and hidden_size is not None:
  8338. self.hparams_vision["intermediate_size"] = int(round(hidden_size * mlp_ratio))
  8339. def set_gguf_parameters(self):
  8340. super().set_gguf_parameters()
  8341. assert self.hparams_vision is not None
  8342. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.JANUS_PRO)
  8343. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams_vision.get("layer_norm_eps", 1e-6))
  8344. hidden_act = str(self.hparams_vision.get("hidden_act", "")).lower()
  8345. if hidden_act == "gelu":
  8346. self.gguf_writer.add_vision_use_gelu(True)
  8347. elif hidden_act == "silu":
  8348. self.gguf_writer.add_vision_use_silu(True)
  8349. def _map_aligner_tensor(self, data_torch: Tensor, name: str) -> Iterable[tuple[str, Tensor]]:
  8350. """Map aligner tensors to projector format"""
  8351. suffix = ".bias" if name.endswith(".bias") else ".weight"
  8352. if name.startswith("model.aligner."):
  8353. local_name = name[len("model.aligner."):]
  8354. elif name.startswith("aligner."):
  8355. local_name = name[len("aligner."):]
  8356. else:
  8357. raise ValueError(f"Unsupported Janus aligner prefix: {name}")
  8358. if local_name.startswith("fc1."):
  8359. mm_index = 0
  8360. elif local_name.startswith("hidden_layers."):
  8361. parts = local_name.split(".", 2)
  8362. if len(parts) < 3:
  8363. raise ValueError(f"Unexpected Janus aligner tensor name: {name}")
  8364. mm_index = int(parts[1]) + 1
  8365. else:
  8366. raise ValueError(f"Unsupported Janus aligner tensor: {name}")
  8367. tensor_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_MMPROJ, mm_index, suffix=suffix)
  8368. return [(tensor_name, data_torch)]
  8369. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8370. del bid # unused
  8371. # Skip language model tensors as they will be handled by `JanusProModel`
  8372. if name.startswith(('model.language_model.', 'language_model.')):
  8373. return []
  8374. # Skip generation-related components
  8375. skip_generation_prefixes = (
  8376. 'model.vqmodel.',
  8377. 'vqmodel.',
  8378. 'model.generation_embeddings.',
  8379. 'generation_embeddings.',
  8380. 'model.generation_aligner.',
  8381. 'generation_aligner.',
  8382. 'model.generation_head.',
  8383. 'generation_head.',
  8384. )
  8385. if name.startswith(skip_generation_prefixes):
  8386. return []
  8387. # Handle aligner tensors
  8388. if name.startswith(('model.aligner.', 'aligner.')):
  8389. return list(self._map_aligner_tensor(data_torch, name))
  8390. # Handle vision tensors
  8391. if name.startswith(('model.vision_model.', 'vision_model.')):
  8392. return [(self.map_tensor_name(name), data_torch)]
  8393. return []
  8394. ###### CONVERSION LOGIC ######
  8395. # tree of lazy tensors
  8396. class LazyTorchTensor(gguf.LazyBase):
  8397. _tensor_type = torch.Tensor
  8398. # to keep the type-checker happy
  8399. dtype: torch.dtype
  8400. shape: torch.Size
  8401. # only used when converting a torch.Tensor to a np.ndarray
  8402. _dtype_map: dict[torch.dtype, type] = {
  8403. torch.float16: np.float16,
  8404. torch.float32: np.float32,
  8405. torch.uint8: np.uint8,
  8406. }
  8407. # only used when byteswapping data. Only correct size is needed
  8408. _dtype_byteswap_map: dict[torch.dtype, type] = {
  8409. torch.float64: np.float64,
  8410. torch.float32: np.float32,
  8411. torch.bfloat16: np.float16,
  8412. torch.float16: np.float16,
  8413. torch.int64: np.int64,
  8414. torch.uint64: np.uint64,
  8415. torch.int32: np.int32,
  8416. torch.uint32: np.uint32,
  8417. torch.int16: np.int16,
  8418. torch.uint16: np.uint16,
  8419. torch.int8: np.int8,
  8420. torch.uint8: np.uint8,
  8421. torch.bool: np.uint8,
  8422. torch.float8_e4m3fn: np.uint8,
  8423. torch.float8_e5m2: np.uint8,
  8424. }
  8425. # used for safetensors slices
  8426. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  8427. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  8428. _dtype_str_map: dict[str, torch.dtype] = {
  8429. "F64": torch.float64,
  8430. "F32": torch.float32,
  8431. "BF16": torch.bfloat16,
  8432. "F16": torch.float16,
  8433. # "U64": torch.uint64,
  8434. "I64": torch.int64,
  8435. # "U32": torch.uint32,
  8436. "I32": torch.int32,
  8437. # "U16": torch.uint16,
  8438. "I16": torch.int16,
  8439. "U8": torch.uint8,
  8440. "I8": torch.int8,
  8441. "BOOL": torch.bool,
  8442. "F8_E4M3": torch.float8_e4m3fn,
  8443. "F8_E5M2": torch.float8_e5m2,
  8444. }
  8445. def numpy(self) -> gguf.LazyNumpyTensor:
  8446. dtype = self._dtype_map[self.dtype]
  8447. return gguf.LazyNumpyTensor(
  8448. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  8449. args=(self,),
  8450. func=(lambda s: s.numpy())
  8451. )
  8452. @classmethod
  8453. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  8454. return torch.empty(size=shape, dtype=dtype, device="meta")
  8455. @classmethod
  8456. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  8457. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  8458. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  8459. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[...] if len(s.get_shape()) == 0 else s[:])
  8460. return cast(torch.Tensor, lazy)
  8461. @classmethod
  8462. def from_local_tensor(cls, t: gguf.utility.LocalTensor) -> Tensor:
  8463. def load_tensor(tensor: gguf.utility.LocalTensor) -> Tensor:
  8464. def byteswap_tensor(tensor: np.ndarray, dtype: type) -> np.ndarray:
  8465. if sys.byteorder == 'big':
  8466. # switch data back to big endian
  8467. tensor = tensor.view(dtype).byteswap(inplace=False)
  8468. return tensor
  8469. dtype = cls._dtype_str_map[tensor.dtype]
  8470. numpy_dtype = cls._dtype_byteswap_map[dtype]
  8471. return torch.from_numpy(byteswap_tensor(tensor.mmap_bytes(), numpy_dtype)).view(dtype).reshape(tensor.shape)
  8472. dtype = cls._dtype_str_map[t.dtype]
  8473. shape = t.shape
  8474. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(t,), func=lambda r: load_tensor(r))
  8475. return cast(torch.Tensor, lazy)
  8476. @classmethod
  8477. def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
  8478. def byteswap_tensor(tensor: np.ndarray, dtype: type) -> np.ndarray:
  8479. if sys.byteorder == 'big':
  8480. # switch data back to big endian
  8481. tensor = tensor.view(dtype).byteswap(inplace=False)
  8482. return tensor
  8483. dtype = cls._dtype_str_map[remote_tensor.dtype]
  8484. numpy_dtype = cls._dtype_byteswap_map[dtype]
  8485. shape = remote_tensor.shape
  8486. meta = cls.meta_with_dtype_and_shape(dtype, shape)
  8487. lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.from_numpy(byteswap_tensor(np.frombuffer(r.data(), dtype=numpy_dtype), numpy_dtype)).view(dtype).reshape(shape))
  8488. return cast(torch.Tensor, lazy)
  8489. @classmethod
  8490. def __torch_function__(cls, func, types, args=(), kwargs=None):
  8491. del types # unused
  8492. if kwargs is None:
  8493. kwargs = {}
  8494. if func is torch.Tensor.numpy:
  8495. return args[0].numpy()
  8496. return cls._wrap_fn(func)(*args, **kwargs)
  8497. def parse_args() -> argparse.Namespace:
  8498. parser = argparse.ArgumentParser(
  8499. description="Convert a huggingface model to a GGML compatible file")
  8500. parser.add_argument(
  8501. "--vocab-only", action="store_true",
  8502. help="extract only the vocab",
  8503. )
  8504. parser.add_argument(
  8505. "--outfile", type=Path,
  8506. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  8507. )
  8508. parser.add_argument(
  8509. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  8510. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  8511. )
  8512. parser.add_argument(
  8513. "--bigendian", action="store_true",
  8514. help="model is executed on big endian machine",
  8515. )
  8516. parser.add_argument(
  8517. "model", type=str,
  8518. help="directory containing model file or huggingface repository ID (if --remote)",
  8519. nargs="?",
  8520. )
  8521. parser.add_argument(
  8522. "--use-temp-file", action="store_true",
  8523. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  8524. )
  8525. parser.add_argument(
  8526. "--no-lazy", action="store_true",
  8527. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  8528. )
  8529. parser.add_argument(
  8530. "--model-name", type=str, default=None,
  8531. help="name of the model",
  8532. )
  8533. parser.add_argument(
  8534. "--verbose", action="store_true",
  8535. help="increase output verbosity",
  8536. )
  8537. parser.add_argument(
  8538. "--split-max-tensors", type=int, default=0,
  8539. help="max tensors in each split",
  8540. )
  8541. parser.add_argument(
  8542. "--split-max-size", type=str, default="0",
  8543. help="max size per split N(M|G)",
  8544. )
  8545. parser.add_argument(
  8546. "--dry-run", action="store_true",
  8547. help="only print out a split plan and exit, without writing any new files",
  8548. )
  8549. parser.add_argument(
  8550. "--no-tensor-first-split", action="store_true",
  8551. help="do not add tensors to the first split (disabled by default)"
  8552. )
  8553. parser.add_argument(
  8554. "--metadata", type=Path,
  8555. help="Specify the path for an authorship metadata override file"
  8556. )
  8557. parser.add_argument(
  8558. "--print-supported-models", action="store_true",
  8559. help="Print the supported models"
  8560. )
  8561. parser.add_argument(
  8562. "--remote", action="store_true",
  8563. help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
  8564. )
  8565. parser.add_argument(
  8566. "--mmproj", action="store_true",
  8567. help="(Experimental) Export multimodal projector (mmproj) for vision models. This will only work on some vision models. A prefix 'mmproj-' will be added to the output file name.",
  8568. )
  8569. parser.add_argument(
  8570. "--mistral-format", action="store_true",
  8571. help="Whether the model is stored following the Mistral format.",
  8572. )
  8573. parser.add_argument(
  8574. "--disable-mistral-community-chat-template", action="store_true",
  8575. help=(
  8576. "Whether to disable usage of Mistral community chat templates. If set, use the Mistral official `mistral-common` library for tokenization and detokenization of Mistral models. "
  8577. "Using `mistral-common` ensure correctness and zero-day support of tokenization for models converted from the Mistral format but requires to manually setup the tokenization server."
  8578. )
  8579. )
  8580. parser.add_argument(
  8581. "--sentence-transformers-dense-modules", action="store_true",
  8582. help=("Whether to include sentence-transformers dense modules."
  8583. "It can be used for sentence-transformers models, like google/embeddinggemma-300m"
  8584. "Default these modules are not included.")
  8585. )
  8586. args = parser.parse_args()
  8587. if not args.print_supported_models and args.model is None:
  8588. parser.error("the following arguments are required: model")
  8589. return args
  8590. def split_str_to_n_bytes(split_str: str) -> int:
  8591. if split_str.endswith("K"):
  8592. n = int(split_str[:-1]) * 1000
  8593. elif split_str.endswith("M"):
  8594. n = int(split_str[:-1]) * 1000 * 1000
  8595. elif split_str.endswith("G"):
  8596. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  8597. elif split_str.isnumeric():
  8598. n = int(split_str)
  8599. else:
  8600. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  8601. if n < 0:
  8602. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  8603. return n
  8604. def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> str:
  8605. # TODO @ngxson : this won't work correctly if the model has both audio & vision encoders
  8606. # maybe we should fallback to text model's arch in that case, since not many models have both
  8607. text_config = hparams.get("text_config", {})
  8608. vision_config = hparams.get("vision_config", {})
  8609. arch = None
  8610. if (arches := hparams.get("architectures")) is not None and len(arches) > 0:
  8611. arch = arches[0]
  8612. elif "ssm_cfg" in hparams:
  8613. # For non-hf Mamba and Mamba2 models
  8614. arch = hparams["ssm_cfg"].get("layer", "Mamba") + "ForCausalLM"
  8615. # if "architectures" is found in the sub-config, use that instead
  8616. if model_type == ModelType.TEXT and text_config.get("architectures") is not None:
  8617. arch = text_config["architectures"][0]
  8618. elif model_type == ModelType.MMPROJ and vision_config.get("architectures") is not None:
  8619. arch = vision_config["architectures"][0]
  8620. if arch is None:
  8621. raise ValueError("Failed to detect model architecture")
  8622. return arch
  8623. def main() -> None:
  8624. args = parse_args()
  8625. if args.print_supported_models:
  8626. logger.error("Supported models:")
  8627. ModelBase.print_registered_models()
  8628. sys.exit(0)
  8629. if args.verbose:
  8630. logging.basicConfig(level=logging.DEBUG)
  8631. else:
  8632. logging.basicConfig(level=logging.INFO)
  8633. if args.remote:
  8634. hf_repo_id = args.model
  8635. from huggingface_hub import snapshot_download
  8636. allowed_patterns = ["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"]
  8637. if args.sentence_transformers_dense_modules:
  8638. # include sentence-transformers dense modules safetensors files
  8639. allowed_patterns.append("*.safetensors")
  8640. local_dir = snapshot_download(
  8641. repo_id=hf_repo_id,
  8642. allow_patterns=allowed_patterns)
  8643. dir_model = Path(local_dir)
  8644. logger.info(f"Downloaded config and tokenizer to {local_dir}")
  8645. else:
  8646. hf_repo_id = None
  8647. dir_model = Path(args.model)
  8648. if not dir_model.is_dir():
  8649. logger.error(f'Error: {dir_model} is not a directory')
  8650. sys.exit(1)
  8651. ftype_map: dict[str, gguf.LlamaFileType] = {
  8652. "f32": gguf.LlamaFileType.ALL_F32,
  8653. "f16": gguf.LlamaFileType.MOSTLY_F16,
  8654. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  8655. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  8656. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  8657. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  8658. "auto": gguf.LlamaFileType.GUESSED,
  8659. }
  8660. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  8661. if args.use_temp_file and is_split:
  8662. logger.error("Error: Cannot use temp file when splitting")
  8663. sys.exit(1)
  8664. if args.outfile is not None:
  8665. fname_out = args.outfile
  8666. elif hf_repo_id:
  8667. # if remote, use the model ID as the output file name
  8668. fname_out = Path("./" + hf_repo_id.replace("/", "-") + "-{ftype}.gguf")
  8669. else:
  8670. fname_out = dir_model
  8671. logger.info(f"Loading model: {dir_model.name}")
  8672. is_mistral_format = args.mistral_format
  8673. if is_mistral_format and not _mistral_common_installed:
  8674. raise ImportError(_mistral_import_error_msg)
  8675. disable_mistral_community_chat_template = args.disable_mistral_community_chat_template
  8676. with torch.inference_mode():
  8677. output_type = ftype_map[args.outtype]
  8678. model_type = ModelType.MMPROJ if args.mmproj else ModelType.TEXT
  8679. hparams = ModelBase.load_hparams(dir_model, is_mistral_format)
  8680. if not is_mistral_format:
  8681. model_architecture = get_model_architecture(hparams, model_type)
  8682. logger.info(f"Model architecture: {model_architecture}")
  8683. try:
  8684. model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
  8685. except NotImplementedError:
  8686. logger.error(f"Model {model_architecture} is not supported")
  8687. sys.exit(1)
  8688. elif args.mmproj:
  8689. assert hparams.get("vision_encoder") is not None, "This model does not support multimodal"
  8690. model_class = PixtralModel
  8691. elif "moe" in hparams:
  8692. model_class = MistralMoeModel
  8693. else:
  8694. model_class = MistralModel
  8695. model_instance = model_class(dir_model, output_type, fname_out,
  8696. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  8697. eager=args.no_lazy,
  8698. metadata_override=args.metadata, model_name=args.model_name,
  8699. split_max_tensors=args.split_max_tensors,
  8700. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  8701. small_first_shard=args.no_tensor_first_split,
  8702. remote_hf_model_id=hf_repo_id, disable_mistral_community_chat_template=disable_mistral_community_chat_template,
  8703. sentence_transformers_dense_modules=args.sentence_transformers_dense_modules
  8704. )
  8705. if args.vocab_only:
  8706. logger.info("Exporting model vocab...")
  8707. model_instance.write_vocab()
  8708. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  8709. else:
  8710. logger.info("Exporting model...")
  8711. model_instance.write()
  8712. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  8713. logger.info(f"Model successfully exported to {out_path}")
  8714. if __name__ == '__main__':
  8715. main()