| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941 |
- #include "llama-model.h"
- #include "llama-impl.h"
- #include "llama-mmap.h"
- #include "llama-cparams.h"
- #include "llama-model-loader.h"
- #include "llama-kv-cache.h"
- #include "llama-kv-cache-iswa.h"
- #include "llama-memory-hybrid.h"
- #include "llama-memory-recurrent.h"
- #include "ggml-cpp.h"
- #include "models/models.h"
- #include <algorithm>
- #include <cassert>
- #include <cfloat>
- #include <cstring>
- #include <cmath>
- #include <functional>
- #include <map>
- #include <regex>
- #include <sstream>
- #include <stdexcept>
- const char * llm_type_name(llm_type type) {
- switch (type) {
- case LLM_TYPE_14M: return "14M";
- case LLM_TYPE_17M: return "17M";
- case LLM_TYPE_22M: return "22M";
- case LLM_TYPE_33M: return "33M";
- case LLM_TYPE_60M: return "60M";
- case LLM_TYPE_70M: return "70M";
- case LLM_TYPE_80M: return "80M";
- case LLM_TYPE_109M: return "109M";
- case LLM_TYPE_137M: return "137M";
- case LLM_TYPE_140M: return "140M";
- case LLM_TYPE_160M: return "160M";
- case LLM_TYPE_190M: return "190M";
- case LLM_TYPE_220M: return "220M";
- case LLM_TYPE_250M: return "250M";
- case LLM_TYPE_256M: return "256M";
- case LLM_TYPE_270M: return "270M";
- case LLM_TYPE_335M: return "335M";
- case LLM_TYPE_350M: return "350M";
- case LLM_TYPE_360M: return "360M";
- case LLM_TYPE_410M: return "410M";
- case LLM_TYPE_450M: return "450M";
- case LLM_TYPE_475M: return "475M";
- case LLM_TYPE_558M: return "558M";
- case LLM_TYPE_700M: return "700M";
- case LLM_TYPE_770M: return "770M";
- case LLM_TYPE_780M: return "780M";
- case LLM_TYPE_950M: return "950M";
- case LLM_TYPE_0_3B: return "0.3B";
- case LLM_TYPE_0_5B: return "0.5B";
- case LLM_TYPE_0_6B: return "0.6B";
- case LLM_TYPE_1B: return "1B";
- case LLM_TYPE_1_2B: return "1.2B";
- case LLM_TYPE_1_3B: return "1.3B";
- case LLM_TYPE_1_4B: return "1.4B";
- case LLM_TYPE_1_5B: return "1.5B";
- case LLM_TYPE_1_6B: return "1.6B";
- case LLM_TYPE_1_7B: return "1.7B";
- case LLM_TYPE_1_8B: return "1.8B";
- case LLM_TYPE_2B: return "2B";
- case LLM_TYPE_2_6B: return "2.6B";
- case LLM_TYPE_2_8B: return "2.8B";
- case LLM_TYPE_2_9B: return "2.9B";
- case LLM_TYPE_3B: return "3B";
- case LLM_TYPE_4B: return "4B";
- case LLM_TYPE_6B: return "6B";
- case LLM_TYPE_6_9B: return "6.9B";
- case LLM_TYPE_7B: return "7B";
- case LLM_TYPE_8B: return "8B";
- case LLM_TYPE_9B: return "9B";
- case LLM_TYPE_11B: return "11B";
- case LLM_TYPE_12B: return "12B";
- case LLM_TYPE_13B: return "13B";
- case LLM_TYPE_14B: return "14B";
- case LLM_TYPE_15B: return "15B";
- case LLM_TYPE_16B: return "16B";
- case LLM_TYPE_20B: return "20B";
- case LLM_TYPE_26B: return "26B";
- case LLM_TYPE_27B: return "27B";
- case LLM_TYPE_30B: return "30B";
- case LLM_TYPE_32B: return "32B";
- case LLM_TYPE_34B: return "34B";
- case LLM_TYPE_35B: return "35B";
- case LLM_TYPE_36B: return "36B";
- case LLM_TYPE_40B: return "40B";
- case LLM_TYPE_65B: return "65B";
- case LLM_TYPE_70B: return "70B";
- case LLM_TYPE_120B: return "120B";
- case LLM_TYPE_142B: return "142B";
- case LLM_TYPE_236B: return "236B";
- case LLM_TYPE_290B: return "290B";
- case LLM_TYPE_314B: return "314B";
- case LLM_TYPE_405B: return "405B";
- case LLM_TYPE_671B: return "671B";
- case LLM_TYPE_SMALL: return "0.1B";
- case LLM_TYPE_MEDIUM: return "0.4B";
- case LLM_TYPE_LARGE: return "0.8B";
- case LLM_TYPE_XL: return "1.5B";
- case LLM_TYPE_A1_7B: return "A1.7B";
- case LLM_TYPE_A2_7B: return "A2.7B";
- case LLM_TYPE_8x7B: return "8x7B";
- case LLM_TYPE_8x22B: return "8x22B";
- case LLM_TYPE_16x12B: return "16x12B";
- case LLM_TYPE_16x3_8B: return "16x3.8B";
- case LLM_TYPE_10B_128x3_66B: return "10B+128x3.66B";
- case LLM_TYPE_57B_A14B: return "57B.A14B";
- case LLM_TYPE_17B_16E: return "17Bx16E (Scout)";
- case LLM_TYPE_17B_128E: return "17Bx128E (Maverick)";
- case LLM_TYPE_A13B: return "A13B";
- case LLM_TYPE_7B_A1B: return "7B.A1B";
- case LLM_TYPE_8B_A1B: return "8B.A1B";
- case LLM_TYPE_16B_A1B: return "16B.A1B";
- case LLM_TYPE_21B_A3B: return "21B.A3B";
- case LLM_TYPE_30B_A3B: return "30B.A3B";
- case LLM_TYPE_100B_A6B: return "100B.A6B";
- case LLM_TYPE_106B_A12B: return "106B.A12B";
- case LLM_TYPE_230B_A10B: return "230B.A10B";
- case LLM_TYPE_235B_A22B: return "235B.A22B";
- case LLM_TYPE_300B_A47B: return "300B.A47B";
- case LLM_TYPE_355B_A32B: return "355B.A32B";
- case LLM_TYPE_E2B: return "E2B";
- case LLM_TYPE_E4B: return "E4B";
- default: return "?B";
- }
- }
- static const char * llama_expert_gating_func_name(llama_expert_gating_func_type type) {
- switch (type) {
- case LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX: return "softmax";
- case LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID: return "sigmoid";
- default: return "unknown";
- }
- }
- static const std::map<llama_rope_scaling_type, const char *> LLAMA_ROPE_SCALING_TYPES = {
- { LLAMA_ROPE_SCALING_TYPE_NONE, "none" },
- { LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
- { LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" },
- { LLAMA_ROPE_SCALING_TYPE_LONGROPE, "longrope" },
- };
- std::string llama_rope_scaling_type_name(llama_rope_scaling_type rope_scaling_type) {
- return LLAMA_ROPE_SCALING_TYPES.at(rope_scaling_type);
- }
- static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) {
- for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) {
- if (kv.second == name) {
- return (llama_rope_scaling_type) kv.first;
- }
- }
- return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
- }
- // checks if the weight tensor can be used with the specified buffer type and device
- static bool weight_buft_supported(const llama_hparams & hparams, ggml_tensor * w, ggml_op op, ggml_backend_buffer_type_t buft, ggml_backend_dev_t dev) {
- GGML_ASSERT(w != nullptr);
- if (op == GGML_OP_NONE) {
- return true;
- }
- ggml_init_params params = {
- /*.mem_size =*/ ggml_tensor_overhead()*8,
- /*.mem_buffer =*/ NULL,
- /*.no_alloc =*/ true,
- };
- ggml_context_ptr ctx_ptr { ggml_init(params) };
- if (!ctx_ptr) {
- throw std::runtime_error(format("failed to create ggml context"));
- }
- ggml_context * ctx = ctx_ptr.get();
- ggml_tensor * op_tensor = nullptr;
- switch (op) {
- case GGML_OP_GET_ROWS:
- {
- ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 512);
- op_tensor = ggml_get_rows(ctx, w, b);
- } break;
- case GGML_OP_MUL_MAT:
- {
- ggml_tensor * b = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], 512, w->ne[2], w->ne[3]);
- op_tensor = ggml_mul_mat(ctx, w, b);
- } break;
- case GGML_OP_MUL_MAT_ID:
- {
- int n_expert_used = hparams.n_expert_used;
- ggml_tensor * b = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, w->ne[0], n_expert_used, 512);
- ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_expert_used, 512);
- op_tensor = ggml_mul_mat_id(ctx, w, b, ids);
- } break;
- case GGML_OP_ADD:
- {
- ggml_tensor * a = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], w->ne[1], w->ne[2], w->ne[3]);
- op_tensor = ggml_add(ctx, a, w);
- } break;
- case GGML_OP_ADD_ID:
- {
- int n_expert_used = hparams.n_expert_used;
- ggml_tensor * a = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, w->ne[0], n_expert_used, 512);
- ggml_tensor * c = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_expert_used, 512);
- op_tensor = ggml_add_id(ctx, a, w, c);
- } break;
- case GGML_OP_MUL:
- {
- ggml_tensor * a = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], w->ne[1], w->ne[2], w->ne[3]);
- op_tensor = ggml_mul(ctx, a, w);
- } break;
- case GGML_OP_DIV:
- {
- ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, w->ne[0]);
- op_tensor = ggml_div(ctx, a, w);
- } break;
- case GGML_OP_ROPE:
- {
- int n_embd_head = hparams.n_embd_head_v;
- int n_head = hparams.n_head();
- ggml_tensor * a = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, n_embd_head, n_head, 512);
- ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 512);
- op_tensor = ggml_rope_ext(
- ctx, a, b, w,
- 0, 0, 0, 0, 0,
- 0, 0, 0, 0
- );
- } break;
- case GGML_OP_SSM_CONV:
- {
- const int64_t n_seq_tokens = 512;
- const int64_t n_seqs = 3;
- ggml_tensor * conv_x = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, w->ne[0] - 1 + n_seq_tokens, w->ne[1], n_seqs);
- op_tensor = ggml_ssm_conv(ctx, conv_x, w);
- } break;
- case GGML_OP_SSM_SCAN:
- {
- // w is ssm_a, which is used to distinguish Mamba-1 and Mamba-2
- const int64_t d_state = w->ne[0] == 1 ? hparams.ssm_d_state : w->ne[0];
- const int64_t n_head = w->ne[1];
- const int64_t head_dim = hparams.ssm_d_inner / n_head;
- const int64_t n_group = hparams.ssm_n_group ? hparams.ssm_n_group : 1;
- const int64_t n_seq_tokens = 512;
- const int64_t n_seqs = 3;
- ggml_tensor * s = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, d_state, head_dim, n_head, n_seqs);
- ggml_tensor * x = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, head_dim, n_head, n_seq_tokens, n_seqs);
- ggml_tensor * dt = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, n_head, n_seq_tokens, n_seqs);
- ggml_tensor * B = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, d_state, n_group, n_seq_tokens, n_seqs);
- ggml_tensor * C = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, d_state, n_group, n_seq_tokens, n_seqs);
- ggml_tensor * ids = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, n_seqs);
- op_tensor = ggml_ssm_scan(ctx, s, x, dt, w, B, C, ids);
- } break;
- case GGML_OP_RWKV_WKV6:
- {
- // FIXME
- const int64_t S = 123;
- const int64_t H = 123;
- const int64_t n_tokens = 123;
- const int64_t n_seqs = 123;
- ggml_tensor * k = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
- ggml_tensor * v = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
- ggml_tensor * r = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
- ggml_tensor * tf = w;
- ggml_tensor * td = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
- ggml_tensor * state = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, S, n_seqs, S, H);
- op_tensor = ggml_rwkv_wkv6(ctx, k, v, r, tf, td, state);
- } break;
- case GGML_OP_IM2COL:
- {
- const int n_embd_inp = hparams.n_embd_inp();
- ggml_tensor * b = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, n_embd_inp, w->ne[1], 1, 1);
- op_tensor = ggml_im2col(ctx, w, b, 1, 0, 0, 0, 1, 0, false, GGML_TYPE_F16);
- } break;
- case GGML_OP_SCALE:
- {
- op_tensor = ggml_scale(ctx, w, 1.0f);
- } break;
- default:
- GGML_ABORT("%s: missing test for op %s for tensor %s", __func__, ggml_op_name(op), w->name);
- }
- // create a temporary dummy buffer for the weight so that supports_op can check the buffer type
- GGML_ASSERT(w->buffer == nullptr);
- w->buffer = ggml_backend_buft_alloc_buffer(buft, 0);
- bool op_supported = ggml_backend_dev_supports_op(dev, op_tensor);
- ggml_backend_buffer_free(w->buffer);
- w->buffer = nullptr;
- return op_supported;
- }
- // lists of buffer types used for each layer
- using buft_list_t = std::vector<std::pair<ggml_backend_dev_t, ggml_backend_buffer_type_t>>;
- // find the first buffer type in the list that can use the tensor
- static ggml_backend_buffer_type_t select_weight_buft(const llama_hparams & hparams, ggml_tensor * tensor, ggml_op op, const buft_list_t & buft_list) {
- GGML_ASSERT(!buft_list.empty());
- for (const auto & cur : buft_list) {
- ggml_backend_dev_t cur_dev = cur.first;
- ggml_backend_buffer_type_t cur_buft = cur.second;
- if (weight_buft_supported(hparams, tensor, op, cur_buft, cur_dev)) {
- return cur_buft;
- }
- }
- return nullptr;
- }
- // CPU: ACCEL -> GPU host -> CPU extra -> CPU
- static buft_list_t make_cpu_buft_list(const std::vector<ggml_backend_dev_t> & devices, bool use_extra_bufts, bool no_host) {
- buft_list_t buft_list;
- // add ACCEL buffer types
- for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
- ggml_backend_dev_t dev = ggml_backend_dev_get(i);
- if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_ACCEL) {
- auto * buft = ggml_backend_dev_buffer_type(dev);
- // skip
- if (buft != ggml_backend_cpu_buffer_type()) {
- buft_list.emplace_back(dev, buft);
- }
- }
- }
- // add a host buffer type
- // storing the tensors in a host buffer is useful when the processing of large batches
- // is offloaded to a GPU device, since it reduces the time spent on data transfers
- // generally, this will be done using the first device in the list
- // a better approach would be to handle this on a weight-by-weight basis using the offload_op
- // function of the device to determine if it would benefit from being stored in a host buffer
- if (!no_host) {
- for (auto * dev : devices) {
- ggml_backend_buffer_type_t buft = ggml_backend_dev_host_buffer_type(dev);
- if (buft) {
- buft_list.emplace_back(dev, buft);
- break;
- }
- }
- }
- // add extra buffer types
- if (use_extra_bufts) {
- auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
- if (cpu_dev == nullptr) {
- throw std::runtime_error(format("%s: no CPU backend found", __func__));
- }
- auto * cpu_reg = ggml_backend_dev_backend_reg(cpu_dev);
- auto ggml_backend_dev_get_extra_bufts_fn = (ggml_backend_dev_get_extra_bufts_t)
- ggml_backend_reg_get_proc_address(cpu_reg, "ggml_backend_dev_get_extra_bufts");
- if (ggml_backend_dev_get_extra_bufts_fn) {
- ggml_backend_buffer_type_t * extra_bufts = ggml_backend_dev_get_extra_bufts_fn(cpu_dev);
- while (extra_bufts && *extra_bufts) {
- buft_list.emplace_back(cpu_dev, *extra_bufts);
- ++extra_bufts;
- }
- }
- }
- // add the CPU buffer type
- for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
- ggml_backend_dev_t dev = ggml_backend_dev_get(i);
- if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU) {
- buft_list.emplace_back(dev, ggml_backend_dev_buffer_type(dev));
- }
- }
- return buft_list;
- }
- // GPU: split if LLAMA_SPLIT_MODE_ROW -> GPU
- static buft_list_t make_gpu_buft_list(ggml_backend_dev_t dev, llama_split_mode split_mode, const float * tensor_split) {
- buft_list_t buft_list;
- // add the device split buffer type if requested and available
- if (split_mode == LLAMA_SPLIT_MODE_ROW) {
- ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
- auto ggml_backend_split_buffer_type_fn = (ggml_backend_split_buffer_type_t)
- ggml_backend_reg_get_proc_address(reg, "ggml_backend_split_buffer_type");
- if (ggml_backend_split_buffer_type_fn) {
- size_t dev_index = [&]() {
- auto * reg = ggml_backend_dev_backend_reg(dev);
- for (size_t i = 0; i < ggml_backend_reg_dev_count(reg); ++i) {
- if (ggml_backend_reg_dev_get(reg, i) == dev) {
- return i;
- }
- }
- throw std::runtime_error(format("device %s not found in its backend reg", ggml_backend_dev_name(dev)));
- }();
- auto * buft = ggml_backend_split_buffer_type_fn(dev_index, tensor_split);
- if (buft != nullptr) {
- buft_list.emplace_back(dev, buft);
- }
- }
- }
- // add the device default buffer type
- buft_list.emplace_back(dev, ggml_backend_dev_buffer_type(dev));
- // add the device extra buffer type (if any)
- ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
- auto ggml_backend_dev_get_extra_bufts_fn = (ggml_backend_dev_get_extra_bufts_t)
- ggml_backend_reg_get_proc_address(reg, "ggml_backend_dev_get_extra_bufts");
- if (ggml_backend_dev_get_extra_bufts_fn) {
- ggml_backend_buffer_type_t * extra_bufts = ggml_backend_dev_get_extra_bufts_fn(dev);
- while (extra_bufts && *extra_bufts) {
- buft_list.emplace_back(dev, *extra_bufts);
- ++extra_bufts;
- }
- }
- return buft_list;
- }
- struct llama_model::impl {
- impl() = default;
- ~impl() = default;
- uint64_t n_elements = 0;
- size_t n_bytes = 0;
- std::string desc_str;
- // model memory mapped files
- llama_mmaps mappings;
- // objects representing data potentially being locked in memory
- llama_mlocks mlock_bufs;
- llama_mlocks mlock_mmaps;
- // contexts where the model tensors metadata is stored as well ass the corresponding buffers:
- std::vector<std::pair<ggml_context_ptr, std::vector<ggml_backend_buffer_ptr>>> ctxs_bufs;
- buft_list_t cpu_buft_list;
- std::map<ggml_backend_dev_t, buft_list_t> gpu_buft_list;
- struct layer_dev {
- ggml_backend_dev_t dev;
- buft_list_t * buft_list;
- };
- layer_dev dev_input = {};
- layer_dev dev_output = {};
- std::vector<layer_dev> dev_layer;
- bool has_tensor_overrides;
- };
- llama_model::llama_model(const llama_model_params & params) : params(params), pimpl(std::make_unique<impl>()) {
- pimpl->has_tensor_overrides = params.tensor_buft_overrides && params.tensor_buft_overrides[0].pattern;
- }
- llama_model::~llama_model() = default;
- void llama_model::load_stats(llama_model_loader & ml) {
- pimpl->n_elements = ml.n_elements;
- pimpl->n_bytes = ml.n_bytes;
- }
- void llama_model::load_arch(llama_model_loader & ml) {
- arch = ml.get_arch();
- if (arch == LLM_ARCH_UNKNOWN) {
- throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'");
- }
- }
- void llama_model::load_hparams(llama_model_loader & ml) {
- const gguf_context * ctx = ml.meta.get();
- // get metadata as string
- for (int i = 0; i < gguf_get_n_kv(ctx); i++) {
- gguf_type type = gguf_get_kv_type(ctx, i);
- if (type == GGUF_TYPE_ARRAY) {
- continue;
- }
- const char * name = gguf_get_key(ctx, i);
- const std::string value = gguf_kv_to_str(ctx, i);
- gguf_kv.emplace(name, value);
- }
- // get general kv
- ml.get_key(LLM_KV_GENERAL_NAME, name, false);
- // everything past this point is not vocab-related
- // for CLIP models, we only need to load tensors, no hparams
- if (hparams.vocab_only || ml.get_arch() == LLM_ARCH_CLIP) {
- return;
- }
- ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
- ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
- ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer);
- ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false);
- ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
- ml.get_key(LLM_KV_EXPERT_GROUP_COUNT, hparams.n_expert_groups, false);
- ml.get_key(LLM_KV_EXPERT_GROUP_USED_COUNT, hparams.n_group_used, false);
- if (arch == LLM_ARCH_WAVTOKENIZER_DEC) {
- ml.get_key(LLM_KV_FEATURES_LENGTH, hparams.n_embd_features);
- ml.get_key(LLM_KV_POSNET_EMBEDDING_LENGTH, hparams.posnet.n_embd);
- ml.get_key(LLM_KV_POSNET_BLOCK_COUNT, hparams.posnet.n_layer);
- ml.get_key(LLM_KV_CONVNEXT_EMBEDDING_LENGTH, hparams.convnext.n_embd);
- ml.get_key(LLM_KV_CONVNEXT_BLOCK_COUNT, hparams.convnext.n_layer);
- }
- GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS);
- GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert);
- if (hparams.n_expert > 0) {
- GGML_ASSERT(hparams.n_expert_used > 0);
- GGML_ASSERT(hparams.n_expert_groups < hparams.n_expert);
- if (hparams.n_expert_groups > 1) {
- GGML_ASSERT(hparams.n_expert % hparams.n_expert_groups == 0);
- GGML_ASSERT(hparams.n_group_used > 0);
- GGML_ASSERT(hparams.n_group_used < hparams.n_expert_groups);
- }
- } else {
- GGML_ASSERT(hparams.n_expert_used == 0);
- GGML_ASSERT(hparams.n_expert_groups == 0);
- }
- std::fill(hparams.n_head_arr.begin(), hparams.n_head_arr.end(), 0);
- std::fill(hparams.n_head_kv_arr.begin(), hparams.n_head_kv_arr.end(), 0);
- std::fill(hparams.n_ff_arr.begin(), hparams.n_ff_arr.end(), 0);
- std::fill(
- hparams.recurrent_layer_arr.begin(),
- hparams.recurrent_layer_arr.end(),
- llm_arch_is_recurrent(ml.get_arch()));
- std::fill(hparams.rope_sections.begin(), hparams.rope_sections.end(), 0);
- std::fill(hparams.swa_layers.begin(), hparams.swa_layers.end(), 0);
- std::fill(hparams.xielu_alpha_n.begin(), hparams.xielu_alpha_n.end(), 0.0f);
- std::fill(hparams.xielu_alpha_p.begin(), hparams.xielu_alpha_p.end(), 0.0f);
- std::fill(hparams.xielu_beta.begin(), hparams.xielu_beta.end(), 0.0f);
- std::fill(hparams.xielu_eps.begin(), hparams.xielu_eps.end(), 0.0f);
- ml.get_key_or_arr(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff_arr, hparams.n_layer, false);
- ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head_arr, hparams.n_layer, false);
- // n_head_kv is optional, default to n_head
- hparams.n_head_kv_arr = hparams.n_head_arr;
- ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv_arr, hparams.n_layer, false);
- bool rope_finetuned = false;
- ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
- hparams.rope_finetuned = rope_finetuned;
- hparams.n_ctx_orig_yarn = hparams.n_ctx_train;
- ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_ctx_orig_yarn, false);
- // rope_freq_base (optional)
- hparams.rope_freq_base_train = 10000.0f;
- ml.get_key(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train, false);
- std::string rope_scaling("linear");
- ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false);
- hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling);
- GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED);
- // rope_freq_scale (inverse of the kv) is optional
- float ropescale = 0.0f;
- if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) {
- // try the old key name
- ml.get_key(LLM_KV_ROPE_SCALE_LINEAR, ropescale, false);
- }
- hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale;
- // by default assume that the sliding-window layers use the same scaling type as the non-sliding-window layers
- hparams.rope_freq_base_train_swa = hparams.rope_freq_base_train;
- hparams.rope_freq_scale_train_swa = hparams.rope_freq_scale_train;
- ml.get_key(LLM_KV_ROPE_SCALING_ATTN_FACTOR, hparams.rope_attn_factor, false);
- // non-transformer models do not have attention heads
- if (hparams.n_head() > 0) {
- // gpt-neox n_rot = rotary_pct * (n_embd / n_head)
- // gpt-j n_rot = rotary_dim
- hparams.n_embd_head_k = hparams.n_embd / hparams.n_head();
- ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);
- hparams.n_embd_head_v = hparams.n_embd / hparams.n_head();
- ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
- // sanity check for n_rot (optional)
- hparams.n_rot = hparams.n_embd_head_k;
- ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
- if (arch == LLM_ARCH_LLAMA || arch == LLM_ARCH_DECI || arch == LLM_ARCH_FALCON) {
- if (hparams.n_rot != hparams.n_embd_head_k) {
- throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd_head_k));
- }
- }
- } else {
- hparams.n_rot = 0;
- hparams.n_embd_head_k = 0;
- hparams.n_embd_head_v = 0;
- }
- // for differentiating model types
- uint32_t n_vocab = 0;
- ml.get_key(LLM_KV_VOCAB_SIZE, n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, n_vocab, false);
- // for classifier models
- ml.get_arr(LLM_KV_CLASSIFIER_OUTPUT_LABELS, classifier_labels, false);
- if (!classifier_labels.empty()) {
- hparams.n_cls_out = classifier_labels.size();
- }
- // arch-specific KVs
- switch (arch) {
- case LLM_ARCH_LLAMA:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- if (hparams.n_expert == 8) {
- switch (hparams.n_layer) {
- case 32: type = LLM_TYPE_8x7B; break;
- case 56: type = LLM_TYPE_8x22B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } else {
- switch (hparams.n_layer) {
- case 16: type = LLM_TYPE_1B; break; // Llama 3.2 1B
- case 22: type = LLM_TYPE_1B; break;
- case 26: type = LLM_TYPE_3B; break;
- case 28: type = LLM_TYPE_3B; break; // Llama 3.2 3B
- case 30: type = LLM_TYPE_256M; break; // smoldocling 256M
- // granite uses a vocab with len 49152
- case 32: type = n_vocab == 49152 ? LLM_TYPE_3B : (n_vocab < 40000 ? LLM_TYPE_7B : LLM_TYPE_8B); break;
- case 36: type = LLM_TYPE_8B; break; // granite
- case 40: type = LLM_TYPE_13B; break;
- case 48: type = LLM_TYPE_34B; break;
- case 60: type = LLM_TYPE_30B; break;
- case 80: type = hparams.n_head() == hparams.n_head_kv() ? LLM_TYPE_65B : LLM_TYPE_70B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- }
- } break;
- case LLM_ARCH_LLAMA4:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
- ml.get_key(LLM_KV_INTERLEAVE_MOE_LAYER_STEP, hparams.n_moe_layer_step);
- const bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
- if (found_swa && hparams.n_swa == 0) {
- hparams.swa_type = LLAMA_SWA_TYPE_NONE;
- hparams.n_no_rope_layer_step = hparams.n_layer; // always use rope
- } else {
- hparams.swa_type = LLAMA_SWA_TYPE_CHUNKED;
- hparams.n_swa = 8192;
- hparams.n_attn_temp_floor_scale = 8192;
- hparams.f_attn_temp_scale = 0.1f;
- hparams.set_swa_pattern(4); // pattern: 3 chunked - 1 full
- }
- switch (hparams.n_expert) {
- case 0: {
- // MobileLLM (no MoE)
- switch (hparams.n_embd) {
- case 2048: type = LLM_TYPE_140M; break;
- case 4096: type = LLM_TYPE_360M; break;
- case 6144: type = LLM_TYPE_950M; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case 16: type = LLM_TYPE_17B_16E; break;
- case 128: type = LLM_TYPE_17B_128E; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- hparams.use_kq_norm = type != LLM_TYPE_17B_128E;
- } break;
- case LLM_ARCH_ARCEE:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- // Arcee uses the same structure as Llama
- switch (hparams.n_layer) {
- case 36: type = LLM_TYPE_4B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_AFMOE:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
- ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
- ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
- ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false);
- ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale, false);
- ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
- ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
- // Set up interleaved sliding window attention (ISWA)
- // Pattern: 3 sliding - 1 full (global_attn_every_n_layers = 4)
- if (hparams.n_swa > 0) {
- hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
- hparams.set_swa_pattern(4);
- } else {
- hparams.swa_type = LLAMA_SWA_TYPE_NONE;
- }
- // Default to sigmoid if not set
- if (hparams.expert_gating_func == LLAMA_EXPERT_GATING_FUNC_TYPE_NONE) {
- hparams.expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID;
- }
- switch (hparams.n_layer) {
- case 56: type = LLM_TYPE_6B; break;
- case 32: type = LLM_TYPE_26B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_DECI:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 32: type = LLM_TYPE_7B; break;
- case 80: type = LLM_TYPE_70B; break;
- case 162: type = LLM_TYPE_405B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_MINICPM:
- {
- // Backward-compatible defaults for older MiniCPM GGUFs
- hparams.f_embedding_scale = 12.0f;
- hparams.f_residual_scale = 1.4f / sqrtf(float(hparams.n_layer));
- hparams.f_logit_scale = hparams.n_embd ? (256.0f / float(hparams.n_embd)) : 1.0f;
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- // Optional KV reads, override defaults if present in newer GGUF exports
- ml.get_key(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale, /*required=*/false);
- ml.get_key(LLM_KV_RESIDUAL_SCALE, hparams.f_residual_scale, /*required=*/false);
- ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale, /*required=*/false);
- // MiniCPM uses rope by default, unlike Granite which uses it as a switch
- hparams.rope_finetuned = true;
- switch (hparams.n_layer) {
- case 52: type = LLM_TYPE_1B; break;
- case 40: type = LLM_TYPE_2B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_MINICPM3:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- ml.get_key(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q);
- ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
- switch (hparams.n_layer) {
- case 62: type = LLM_TYPE_4B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_GROK:
- {
- // defaults for old GGUFs
- hparams.yarn_beta_fast = 8.0f;
- hparams.f_logit_scale = 0.5773502691896257f;
- hparams.f_embedding_scale = 78.38367176906169f;
- hparams.f_attn_out_scale = 0.08838834764831845f;
- hparams.f_attn_logit_softcapping = 30.0f;
- hparams.f_router_logit_softcapping = 30.0f;
- // no final_logit_softcapping in grok-1
- hparams.f_final_logit_softcapping = 0.0f;
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
- ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale, false);
- ml.get_key(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale, false);
- ml.get_key(LLM_KV_ATTENTION_OUTPUT_SCALE, hparams.f_attn_out_scale, false);
- ml.get_key(LLM_KV_ATTN_LOGIT_SOFTCAPPING, hparams.f_attn_logit_softcapping, false);
- ml.get_key(LLM_KV_ROUTER_LOGIT_SOFTCAPPING, hparams.f_router_logit_softcapping, false);
- ml.get_key(LLM_KV_FINAL_LOGIT_SOFTCAPPING, hparams.f_final_logit_softcapping, false);
- ml.get_key(LLM_KV_ATTENTION_TEMPERATURE_LENGTH, hparams.attn_temp_length, false);
- ml.get_key(LLM_KV_ROPE_SCALING_YARN_EXT_FACTOR, hparams.yarn_ext_factor, false);
- ml.get_key(LLM_KV_ROPE_SCALING_YARN_ATTN_FACTOR, hparams.yarn_attn_factor, false);
- ml.get_key(LLM_KV_ROPE_SCALING_YARN_BETA_FAST, hparams.yarn_beta_fast, false);
- ml.get_key(LLM_KV_ROPE_SCALING_YARN_BETA_SLOW, hparams.yarn_beta_slow, false);
- switch (hparams.n_layer) {
- case 64: type = LLM_TYPE_314B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_FALCON:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- switch (hparams.n_layer) {
- case 32: type = LLM_TYPE_7B; break;
- case 60: type = LLM_TYPE_40B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_BAICHUAN:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 32: type = LLM_TYPE_7B; break;
- case 40: type = LLM_TYPE_13B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- if (type == LLM_TYPE_13B) {
- // TODO: become GGUF KV parameter
- hparams.f_max_alibi_bias = 8.0f;
- }
- } break;
- case LLM_ARCH_STARCODER:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- switch (hparams.n_layer) {
- case 24: type = LLM_TYPE_1B; break;
- case 36: type = LLM_TYPE_3B; break;
- case 42: type = LLM_TYPE_7B; break;
- case 40: type = LLM_TYPE_15B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_REFACT:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 32: type = LLM_TYPE_1B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- // TODO: become GGUF KV parameter
- hparams.f_max_alibi_bias = 8.0f;
- } break;
- case LLM_ARCH_BERT:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
- ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
- switch (hparams.n_layer) {
- case 3:
- type = LLM_TYPE_17M; break; // bge-micro
- case 6:
- type = LLM_TYPE_22M; break; // MiniLM-L6
- case 12:
- switch (hparams.n_embd) {
- case 384: type = LLM_TYPE_33M; break; // MiniLM-L12, bge-small
- case 768: type = LLM_TYPE_109M; break; // bge-base
- default: type = LLM_TYPE_UNKNOWN;
- } break;
- case 24:
- type = LLM_TYPE_335M; break; // bge-large
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_JINA_BERT_V2:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
- ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
- hparams.f_max_alibi_bias = 8.0f;
- switch (hparams.n_layer) {
- case 4: type = LLM_TYPE_33M; break; // jina-embeddings-small
- case 12: type = LLM_TYPE_137M; break; // jina-embeddings-base
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_JINA_BERT_V3:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
- ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
- switch (hparams.n_layer) {
- case 24:
- type = LLM_TYPE_558M; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_NOMIC_BERT:
- case LLM_ARCH_NOMIC_BERT_MOE:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
- ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
- ml.get_key(LLM_KV_MOE_EVERY_N_LAYERS, hparams.moe_every_n_layers, 0);
- if (hparams.n_layer == 12 && hparams.n_embd == 768) {
- if (arch == LLM_ARCH_NOMIC_BERT) {
- type = LLM_TYPE_137M;
- } else if (arch == LLM_ARCH_NOMIC_BERT_MOE && hparams.moe_every_n_layers == 2) {
- type = LLM_TYPE_475M;
- }
- }
- } break;
- case LLM_ARCH_NEO_BERT:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
- ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
- if (hparams.n_layer == 28) {
- type = LLM_TYPE_250M;
- }
- } break;
- case LLM_ARCH_BLOOM:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- switch (hparams.n_layer) {
- case 24: type = LLM_TYPE_1B; break;
- case 30:
- switch (hparams.n_embd) {
- case 2560: type = LLM_TYPE_3B; break;
- case 4096: type = LLM_TYPE_7B; break;
- default: type = LLM_TYPE_UNKNOWN;
- } break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- // TODO: become GGUF KV parameter
- hparams.f_max_alibi_bias = 8.0f;
- } break;
- case LLM_ARCH_MPT:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
- ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
- switch (hparams.n_layer) {
- case 32: type = LLM_TYPE_7B; break;
- case 48: type = LLM_TYPE_30B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_STABLELM:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- switch (hparams.n_layer) {
- case 24: type = LLM_TYPE_1B; break;
- case 32: type = LLM_TYPE_3B; break;
- case 40: type = LLM_TYPE_12B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_QWEN:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 32: type = LLM_TYPE_7B; break;
- case 40: type = LLM_TYPE_13B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_QWEN2VL:
- {
- ml.get_key_or_arr(LLM_KV_ROPE_DIMENSION_SECTIONS, hparams.rope_sections, 4, true);
- }
- // fall through
- case LLM_ARCH_QWEN2:
- {
- ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 24: type = hparams.n_embd == 1024 ? LLM_TYPE_0_5B : LLM_TYPE_1B; break;
- case 28: type = hparams.n_embd == 1536 ? LLM_TYPE_1_5B : LLM_TYPE_7B; break;
- case 32: type = LLM_TYPE_7B; break;
- case 36: type = LLM_TYPE_3B; break;
- case 40: type = hparams.n_head() == 20 ? LLM_TYPE_4B : LLM_TYPE_13B; break;
- case 48: type = LLM_TYPE_14B; break;
- case 64: type = LLM_TYPE_32B; break;
- case 80: type = LLM_TYPE_70B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_DREAM:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- // Dream models are primarily 7B with 28 layers
- switch (hparams.n_layer) {
- case 28:
- type = LLM_TYPE_7B;
- break;
- default:
- type = LLM_TYPE_UNKNOWN;
- }
- // Set non-causal attention for diffusion models
- hparams.causal_attn = false;
- }
- break;
- case LLM_ARCH_LLADA:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- // LLaDA-8B has 32 layers, similar to LLaMA but for diffusion
- switch (hparams.n_layer) {
- case 32:
- type = LLM_TYPE_8B;
- break;
- default:
- type = LLM_TYPE_UNKNOWN;
- }
- // Set non-causal attention for diffusion models
- hparams.causal_attn = false;
- }
- break;
- case LLM_ARCH_LLADA_MOE:
- {
- ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- // diffusion language model uses non-causal attention
- hparams.causal_attn = false;
- switch (hparams.n_layer) {
- case 16: type = LLM_TYPE_A1_7B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_RND1:
- {
- ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 48: type = LLM_TYPE_30B_A3B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- // Set non-causal attention for diffusion models
- hparams.causal_attn = false;
- } break;
- case LLM_ARCH_QWEN2MOE:
- {
- ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
- ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false);
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 24: type = LLM_TYPE_A2_7B; break;
- case 28: type = LLM_TYPE_57B_A14B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_QWEN3:
- {
- ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 28: type = hparams.n_embd == 1024 ? LLM_TYPE_0_6B : LLM_TYPE_1_7B; break;
- case 36: type = hparams.n_embd == 2560 ? LLM_TYPE_4B : LLM_TYPE_8B; break;
- case 40: type = LLM_TYPE_14B; break;
- case 64: type = LLM_TYPE_32B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_QWEN3VL:
- {
- ml.get_key(LLM_KV_NUM_DEEPSTACK_LAYERS, hparams.n_deepstack_layers, false);
- ml.get_key_or_arr(LLM_KV_ROPE_DIMENSION_SECTIONS, hparams.rope_sections, 4, true);
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 28: type = LLM_TYPE_1_7B; break;
- case 36: type = hparams.n_embd == 2560 ? LLM_TYPE_4B : LLM_TYPE_8B; break;
- case 64: type = LLM_TYPE_32B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_QWEN3MOE:
- {
- ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 48: type = LLM_TYPE_30B_A3B; break;
- case 94: type = LLM_TYPE_235B_A22B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_QWEN3VLMOE:
- {
- ml.get_key(LLM_KV_NUM_DEEPSTACK_LAYERS, hparams.n_deepstack_layers, false);
- ml.get_key_or_arr(LLM_KV_ROPE_DIMENSION_SECTIONS, hparams.rope_sections, 4, true);
- ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 48: type = LLM_TYPE_30B_A3B; break;
- case 94: type = LLM_TYPE_235B_A22B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_PHI2:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- switch (hparams.n_layer) {
- case 24: type = LLM_TYPE_1B; break;
- case 32: type = LLM_TYPE_3B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_PHI3:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 24: type = LLM_TYPE_1B; break;
- case 32: type = LLM_TYPE_3B; break;
- case 40: type = LLM_TYPE_14B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- const bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
- if (found_swa && hparams.n_swa > 0) {
- LLAMA_LOG_WARN("%s: Phi SWA is currently disabled - results might be suboptimal for some models (see %s)\n",
- __func__, "https://github.com/ggml-org/llama.cpp/pull/13676");
- // TODO: fix conversion scripts to correctly populate `n_swa` and `n_swa_pattern`
- hparams.swa_type = LLAMA_SWA_TYPE_NONE;
- hparams.n_swa = 0;
- hparams.set_swa_pattern(1);
- }
- } break;
- case LLM_ARCH_PHIMOE:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 32: type = LLM_TYPE_16x3_8B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_PLAMO:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 40: type = LLM_TYPE_13B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_PLAMO2:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- // Load Mamba SSM parameters
- ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
- ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
- ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
- ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
- ml.get_key(LLM_KV_SSM_GROUP_COUNT, hparams.ssm_n_group);
- for (uint32_t i = 0; i < hparams.n_layer; ++i) {
- hparams.recurrent_layer_arr[i] = hparams.n_head_kv(i) == 0;
- }
- switch (hparams.n_layer) {
- case 16: type = LLM_TYPE_1B; break;
- case 32:
- if (hparams.n_embd == 2048) {
- type = LLM_TYPE_2B;
- } else if (hparams.n_embd == 4096) {
- type = LLM_TYPE_8B;
- }
- break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- // Load attention parameters
- ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);
- ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
- } break;
- case LLM_ARCH_GPT2:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- switch (hparams.n_layer) {
- case 12: type = LLM_TYPE_SMALL; break;
- case 24: type = LLM_TYPE_MEDIUM; break;
- case 36: type = LLM_TYPE_LARGE; break;
- case 48: type = LLM_TYPE_XL; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_CODESHELL:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- switch (hparams.n_layer) {
- case 42: type = LLM_TYPE_7B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_ORION:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- switch (hparams.n_layer) {
- case 40: type = LLM_TYPE_14B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_INTERNLM2:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 32: type = LLM_TYPE_7B; break;
- case 48: type = LLM_TYPE_20B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_GEMMA:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 18: type = LLM_TYPE_2B; break;
- case 28: type = LLM_TYPE_7B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_GEMMA2:
- {
- hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
- hparams.n_swa = 4096; // default value of gemma 2
- hparams.set_swa_pattern(2);
- hparams.attn_soft_cap = true;
- ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- ml.get_key(LLM_KV_ATTN_LOGIT_SOFTCAPPING, hparams.f_attn_logit_softcapping, false);
- ml.get_key(LLM_KV_FINAL_LOGIT_SOFTCAPPING, hparams.f_final_logit_softcapping, false);
- switch (hparams.n_layer) {
- case 26: type = LLM_TYPE_2B; break;
- case 42: type = LLM_TYPE_9B; break;
- case 46: type = LLM_TYPE_27B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- // ref: https://github.com/google/gemma_pytorch/blob/014acb7ac4563a5f77c76d7ff98f31b568c16508/gemma/config.py#L173
- hparams.f_attention_scale = type == LLM_TYPE_27B
- ? 1.0f / std::sqrt(float(hparams.n_embd / hparams.n_head(0)))
- : 1.0f / std::sqrt(float(hparams.n_embd_head_k));
- } break;
- case LLM_ARCH_GEMMA3:
- {
- hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
- hparams.set_swa_pattern(6);
- hparams.rope_freq_base_train_swa = 10000.0f;
- hparams.rope_freq_scale_train_swa = 1.0f;
- ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 18: type = LLM_TYPE_270M; break;
- case 26: type = LLM_TYPE_1B; break;
- case 34: type = LLM_TYPE_4B; break;
- case 48: type = LLM_TYPE_12B; break;
- case 62: type = LLM_TYPE_27B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- // ref: https://github.com/google/gemma_pytorch/blob/014acb7ac4563a5f77c76d7ff98f31b568c16508/gemma/config.py#L289
- hparams.f_attention_scale = type == LLM_TYPE_27B
- ? 1.0f / std::sqrt(float(hparams.n_embd / hparams.n_head(0)))
- : 1.0f / std::sqrt(float(hparams.n_embd_head_k));
- } break;
- case LLM_ARCH_GEMMA3N:
- {
- hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
- hparams.set_swa_pattern(5);
- hparams.n_layer_kv_from_start = 20;
- hparams.rope_freq_base_train_swa = 10000.0f;
- hparams.rope_freq_scale_train_swa = 1.0f;
- hparams.f_attention_scale = 1.0f;
- ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 30: type = LLM_TYPE_E2B; break;
- case 35: type = LLM_TYPE_E4B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_GEMMA_EMBEDDING:
- {
- hparams.swa_type = LLAMA_SWA_TYPE_SYMMETRIC;
- hparams.set_swa_pattern(6);
- hparams.causal_attn = false; // embeddings do not use causal attention
- hparams.rope_freq_base_train_swa = 10000.0f;
- hparams.rope_freq_scale_train_swa = 1.0f;
- ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
- //applied only if model converted with --sentence-transformers-dense-modules
- ml.get_key(LLM_KV_DENSE_2_FEAT_IN, hparams.dense_2_feat_in, false);
- ml.get_key(LLM_KV_DENSE_2_FEAT_OUT, hparams.dense_2_feat_out, false);
- ml.get_key(LLM_KV_DENSE_3_FEAT_IN, hparams.dense_3_feat_in, false);
- ml.get_key(LLM_KV_DENSE_3_FEAT_OUT, hparams.dense_3_feat_out, false);
- GGML_ASSERT((hparams.dense_2_feat_in == 0 || hparams.dense_2_feat_in == hparams.n_embd) && "dense_2_feat_in must be equal to n_embd");
- GGML_ASSERT((hparams.dense_3_feat_out == 0 || hparams.dense_3_feat_out == hparams.n_embd) && "dense_3_feat_out must be equal to n_embd");
- switch (hparams.n_layer) {
- case 24: type = LLM_TYPE_0_3B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- hparams.f_attention_scale = 1.0f / std::sqrt(float(hparams.n_embd_head_k));
- } break;
- case LLM_ARCH_STARCODER2:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- switch (hparams.n_layer) {
- case 30: type = LLM_TYPE_3B; break;
- case 32: type = LLM_TYPE_7B; break;
- case 40: type = LLM_TYPE_15B; break;
- case 52: type = LLM_TYPE_20B; break; // granite
- case 88: type = LLM_TYPE_34B; break; // granite
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_MAMBA:
- {
- ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
- ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
- ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
- ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
- ml.get_key(LLM_KV_SSM_DT_B_C_RMS, hparams.ssm_dt_b_c_rms, false);
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 24:
- switch (hparams.n_embd) {
- case 768: type = LLM_TYPE_SMALL; break;
- default: type = LLM_TYPE_UNKNOWN;
- } break;
- case 48:
- switch (hparams.n_embd) {
- case 1024: type = LLM_TYPE_MEDIUM; break;
- case 1536: type = LLM_TYPE_LARGE; break;
- case 2048: type = LLM_TYPE_XL; break;
- default: type = LLM_TYPE_UNKNOWN;
- } break;
- case 64:
- switch (hparams.n_embd) {
- case 2560: type = LLM_TYPE_3B; break;
- default: type = LLM_TYPE_UNKNOWN;
- } break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_MAMBA2:
- {
- ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
- ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
- ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
- ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
- ml.get_key(LLM_KV_SSM_GROUP_COUNT, hparams.ssm_n_group);
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 24:
- switch (hparams.n_embd) {
- case 768: type = LLM_TYPE_SMALL; break;
- default: type = LLM_TYPE_UNKNOWN;
- } break;
- case 48:
- switch (hparams.n_embd) {
- case 1024: type = LLM_TYPE_MEDIUM; break;
- case 1536: type = LLM_TYPE_LARGE; break;
- case 2048: type = LLM_TYPE_XL; break;
- default: type = LLM_TYPE_UNKNOWN;
- } break;
- case 64:
- switch (hparams.n_embd) {
- case 2560: type = LLM_TYPE_3B; break;
- case 4096: type = LLM_TYPE_7B; break;
- default: type = LLM_TYPE_UNKNOWN;
- } break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_JAMBA:
- {
- ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
- ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
- ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
- ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- for (uint32_t i = 0; i < hparams.n_layer; ++i) {
- hparams.recurrent_layer_arr[i] = hparams.n_head_kv(i) == 0;
- }
- switch (hparams.n_layer) {
- // TODO: Jamba layers are a bit heterogenous, so naming this is hard.
- case 12: // 900M 8x???M
- case 32: // 51B 16x?B
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_XVERSE:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 32: type = LLM_TYPE_7B; break;
- case 40: type = LLM_TYPE_13B; break;
- case 80: type = LLM_TYPE_65B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_COMMAND_R:
- {
- ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- switch (hparams.n_layer) {
- case 40: type = LLM_TYPE_35B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_COHERE2:
- {
- hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
- hparams.set_swa_pattern(4);
- ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
- ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- switch (hparams.n_layer) {
- case 32: type = LLM_TYPE_8B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_DBRX:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv);
- switch (hparams.n_layer) {
- case 40: type = LLM_TYPE_16x12B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_OLMO:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
- switch (hparams.n_layer) {
- case 22: type = LLM_TYPE_1B; break;
- case 32: type = LLM_TYPE_7B; break;
- case 80: type = LLM_TYPE_70B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_OLMO2:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- const bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
- if (found_swa && hparams.n_swa > 0) {
- hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
- hparams.set_swa_pattern(4);
- } else {
- hparams.swa_type = LLAMA_SWA_TYPE_NONE;
- }
- switch (hparams.n_layer) {
- case 16: type = LLM_TYPE_1B; break;
- case 32: type = LLM_TYPE_7B; break;
- case 40: type = LLM_TYPE_13B; break;
- case 64: type = LLM_TYPE_32B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_SEED_OSS:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 64: type = LLM_TYPE_36B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_OLMOE:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 16: type = LLM_TYPE_A1_7B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_OPENELM:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 16: type = LLM_TYPE_270M; break;
- case 20: type = LLM_TYPE_450M; break;
- case 28: type = LLM_TYPE_1B; break;
- case 36: type = LLM_TYPE_3B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_GPTNEOX:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- ml.get_key(LLM_KV_USE_PARALLEL_RESIDUAL, hparams.use_par_res);
- switch (hparams.n_layer) {
- case 6:
- switch (hparams.n_ff()) {
- case 512: type = LLM_TYPE_14M; break;
- case 2048: type = LLM_TYPE_70M; break;
- default: type = LLM_TYPE_UNKNOWN;
- } break;
- case 12:
- switch (hparams.n_ff()) {
- case 3072: type = LLM_TYPE_160M; break;
- default: type = LLM_TYPE_UNKNOWN;
- } break;
- case 16:
- switch (hparams.n_ff()) {
- case 8192: type = LLM_TYPE_1B; break;
- default: type = LLM_TYPE_UNKNOWN;
- } break;
- case 24:
- switch (hparams.n_ff()) {
- case 4096: type = LLM_TYPE_410M; break;
- case 8192: type = LLM_TYPE_1_4B; break;
- default: type = LLM_TYPE_UNKNOWN;
- } break;
- case 32:
- switch (hparams.n_ff()) {
- case 10240: type = LLM_TYPE_2_8B; break;
- case 16384: type = LLM_TYPE_6_9B; break;
- default: type = LLM_TYPE_UNKNOWN;
- } break;
- case 36:
- switch (hparams.n_ff()) {
- case 20480: type = LLM_TYPE_12B; break;
- default: type = LLM_TYPE_UNKNOWN;
- } break;
- case 44:
- switch (hparams.n_ff()) {
- case 24576: type = LLM_TYPE_20B; break;
- default: type = LLM_TYPE_UNKNOWN;
- } break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_ARCTIC:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- if (hparams.n_expert == 128) {
- switch (hparams.n_layer) {
- case 35: type = LLM_TYPE_10B_128x3_66B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } else {
- type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_DEEPSEEK:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
- ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
- ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
- ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
- switch (hparams.n_layer) {
- case 28: type = LLM_TYPE_20B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_DEEPSEEK2:
- {
- // lite variants include DeepSeek-V2-Lite, GigaChat3-10B-A1.8B
- bool is_lite = (hparams.n_layer == 27 || hparams.n_layer == 26);
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
- if (!is_lite) {
- ml.get_key(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q);
- }
- ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
- ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH_MLA, hparams.n_embd_head_k_mla, false);
- ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH_MLA, hparams.n_embd_head_v_mla, false);
- ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
- ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
- ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
- ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
- ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false);
- if (hparams.expert_gating_func == LLAMA_EXPERT_GATING_FUNC_TYPE_NONE) {
- // for compatibility with existing DeepSeek V2 and V2.5 GGUFs
- // that have no expert_gating_func model parameter set
- hparams.expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX;
- }
- ml.get_key(LLM_KV_ROPE_SCALING_YARN_LOG_MUL, hparams.rope_yarn_log_mul, false);
- // (optional) temperature tuning - used by mistral-large
- ml.get_key(LLM_KV_ATTENTION_TEMPERATURE_SCALE, hparams.f_attn_temp_scale, false);
- ml.get_key(LLM_KV_ATTENTION_TEMPERATURE_LENGTH, hparams.n_attn_temp_floor_scale, false);
- switch (hparams.n_layer) {
- case 27: type = LLM_TYPE_16B; break;
- case 60: type = LLM_TYPE_236B; break;
- case 61: type = LLM_TYPE_671B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_PLM:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
- switch (hparams.n_layer) {
- case 32: type = LLM_TYPE_1_8B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_CHATGLM:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 28: {
- if (hparams.n_head(0) == 16) {
- type = LLM_TYPE_1_5B;
- } else {
- type = LLM_TYPE_6B;
- }
- } break;
- case 40: {
- if (hparams.n_head(0) == 24) {
- type = LLM_TYPE_4B;
- } else {
- type = LLM_TYPE_9B;
- }
- } break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_GLM4:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 40: type = LLM_TYPE_9B; break;
- case 61: type = LLM_TYPE_32B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_GLM4_MOE:
- {
- ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- // MoE parameters
- ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert);
- ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used);
- ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
- ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead, false);
- ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
- ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
- // Expert gating function (GLM-4.5 uses sigmoid)
- ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false);
- if (hparams.expert_gating_func == LLAMA_EXPERT_GATING_FUNC_TYPE_NONE) {
- hparams.expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID;
- }
- // NextN/MTP parameters
- ml.get_key(LLM_KV_NEXTN_PREDICT_LAYERS, hparams.nextn_predict_layers, false);
- // TODO: when MTP is implemented, this should probably be updated if needed
- hparams.n_layer_kv_from_start = hparams.n_layer - hparams.nextn_predict_layers;
- switch (hparams.n_layer) {
- case 47: type = LLM_TYPE_106B_A12B; break; // GLM-4.5-Air (46 layers + 1 NextN layer)
- case 93: type = LLM_TYPE_355B_A32B; break; // GLM-4.5 (92 layers + 1 NextN layer)
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_BITNET:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 26: type = LLM_TYPE_3B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_T5:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- ml.get_key(LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, hparams.n_rel_attn_bkts);
- uint32_t dec_start_token_id;
- if (ml.get_key(LLM_KV_DECODER_START_TOKEN_ID, dec_start_token_id, false)) {
- hparams.dec_start_token_id = dec_start_token_id;
- }
- hparams.dec_n_layer = hparams.n_layer;
- ml.get_key(LLM_KV_DECODER_BLOCK_COUNT, hparams.dec_n_layer, false);
- switch (hparams.n_layer) {
- case 6: type = LLM_TYPE_60M; break; // t5-small
- case 8: type = LLM_TYPE_80M; break; // flan-t5-small
- case 12:
- switch (hparams.n_ff()) {
- case 3072: type = LLM_TYPE_220M; break; // t5-base
- case 2048: type = LLM_TYPE_250M; break; // flan-t5-base
- default: type = LLM_TYPE_UNKNOWN;
- } break;
- case 24:
- switch (hparams.n_ff()) {
- case 4096: type = LLM_TYPE_770M; break; // t5-large
- case 2816: type = LLM_TYPE_780M; break; // flan-t5-large
- case 16384: type = LLM_TYPE_3B; break; // t5-3b
- case 5120: type = LLM_TYPE_3B; break; // flan-t5-xl
- case 65536: type = LLM_TYPE_11B; break; // t5-11b
- case 10240: type = LLM_TYPE_11B; break; // flan-t5-xxl
- default: type = LLM_TYPE_UNKNOWN;
- } break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_T5ENCODER:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- ml.get_key(LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, hparams.n_rel_attn_bkts);
- type = LLM_TYPE_UNKNOWN;
- } break;
- case LLM_ARCH_JAIS:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
- switch (hparams.n_layer) {
- case 24: type = LLM_TYPE_1_3B; break;
- case 40: type = LLM_TYPE_13B; break;
- /* TODO: add variants */
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_NEMOTRON:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- switch (hparams.n_layer) {
- case 32: type = LLM_TYPE_4B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_NEMOTRON_H:
- {
- ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
- ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
- ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
- ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
- ml.get_key(LLM_KV_SSM_GROUP_COUNT, hparams.ssm_n_group);
- // A layer is recurrent IFF the n_head_kv value is set to 0 and
- // the n_ff value is set to 0
- for (uint32_t i = 0; i < hparams.n_layer; ++i) {
- hparams.recurrent_layer_arr[i] = (hparams.n_head_kv(i) == 0 && hparams.n_ff(i) == 0);
- }
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 56: type = LLM_TYPE_9B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_EXAONE:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 32: type = LLM_TYPE_8B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_EXAONE4:
- {
- if (hparams.n_layer == 64) { // 32B
- hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
- hparams.n_swa = 4096;
- hparams.set_swa_pattern(4);
- }
- ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 30: type = LLM_TYPE_1_2B; break;
- case 64: type = LLM_TYPE_32B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_RWKV6:
- case LLM_ARCH_RWKV6QWEN2:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps, false);
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps, false);
- ml.get_key(LLM_KV_WKV_HEAD_SIZE, hparams.wkv_head_size);
- ml.get_key(LLM_KV_TIME_MIX_EXTRA_DIM, hparams.time_mix_extra_dim);
- ml.get_key(LLM_KV_TIME_DECAY_EXTRA_DIM, hparams.time_decay_extra_dim);
- ml.get_key(LLM_KV_RESCALE_EVERY_N_LAYERS, hparams.rescale_every_n_layers, false);
- ml.get_key(LLM_KV_TOKEN_SHIFT_COUNT, hparams.token_shift_count, false);
- switch (hparams.n_layer) {
- case 24: type = LLM_TYPE_1_6B; break;
- case 32:
- switch (hparams.n_embd) {
- case 2560: type = LLM_TYPE_3B; break;
- case 4096: type = LLM_TYPE_7B; break;
- default: type = LLM_TYPE_UNKNOWN;
- } break;
- case 61: type = LLM_TYPE_14B; break;
- case 64: type = LLM_TYPE_32B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_RWKV7:
- case LLM_ARCH_ARWKV7:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps, false);
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps, false);
- ml.get_key(LLM_KV_WKV_HEAD_SIZE, hparams.wkv_head_size);
- ml.get_key(LLM_KV_ATTENTION_DECAY_LORA_RANK, hparams.n_lora_decay);
- ml.get_key(LLM_KV_ATTENTION_ICLR_LORA_RANK, hparams.n_lora_iclr);
- ml.get_key(LLM_KV_ATTENTION_VALUE_RESIDUAL_MIX_LORA_RANK, hparams.n_lora_value_res_mix);
- ml.get_key(LLM_KV_ATTENTION_GATE_LORA_RANK, hparams.n_lora_gate, false);
- ml.get_key(LLM_KV_TOKEN_SHIFT_COUNT, hparams.token_shift_count, false);
- switch (hparams.n_layer) {
- case 12:
- switch (hparams.n_embd) {
- case 768: type = LLM_TYPE_190M; break;
- default: type = LLM_TYPE_UNKNOWN;
- } break;
- case 24:
- switch (hparams.n_embd) {
- case 1024: type = LLM_TYPE_450M; break;
- case 2048: type = LLM_TYPE_1_5B; break;
- default: type = LLM_TYPE_UNKNOWN;
- } break;
- case 28:
- switch (hparams.n_embd) {
- case 1536: type = LLM_TYPE_1_5B; break;
- case 3584: type = LLM_TYPE_7B; break;
- default: type = LLM_TYPE_UNKNOWN;
- } break;
- case 32:
- switch (hparams.n_embd) {
- case 2560: type = LLM_TYPE_2_9B; break;
- case 4096: type = LLM_TYPE_7B; break;
- default: type = LLM_TYPE_UNKNOWN;
- } break;
- case 61:
- switch (hparams.n_embd) {
- case 4096: type = LLM_TYPE_14B; break;
- default: type = LLM_TYPE_UNKNOWN;
- } break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_GRANITE:
- case LLM_ARCH_GRANITE_MOE:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
- ml.get_key(LLM_KV_RESIDUAL_SCALE, hparams.f_residual_scale);
- ml.get_key(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale);
- ml.get_key(LLM_KV_ATTENTION_SCALE, hparams.f_attention_scale);
- // Granite uses rope_finetuned as a switch for rope, so default to true
- bool rope_finetuned = true;
- ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
- hparams.rope_finetuned = rope_finetuned;
- switch (hparams.n_layer) {
- case 32: type = LLM_TYPE_3B; break;
- case 40: type = LLM_TYPE_3B; break;
- // Add additional layer/vocab/etc checks here for other model sizes
- default: type = LLM_TYPE_UNKNOWN;
- }
- // For Granite MoE Shared
- ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, /* required */ false);
- } break;
- case LLM_ARCH_GRANITE_HYBRID:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale, /* required */ false);
- ml.get_key(LLM_KV_RESIDUAL_SCALE, hparams.f_residual_scale, /* required */ false);
- ml.get_key(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale, /* required */ false);
- ml.get_key(LLM_KV_ATTENTION_SCALE, hparams.f_attention_scale, /* required */ false);
- ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
- ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
- ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
- ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
- ml.get_key(LLM_KV_SSM_GROUP_COUNT, hparams.ssm_n_group);
- // Granite uses rope_finetuned as a switch for rope, so default to true
- bool rope_finetuned = true;
- ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
- hparams.rope_finetuned = rope_finetuned;
- // A layer is recurrent IFF the n_head_kv value is set to 0
- for (uint32_t i = 0; i < hparams.n_layer; ++i) {
- hparams.recurrent_layer_arr[i] = hparams.n_head_kv(i) == 0;
- }
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_embd) {
- case 768: type = LLM_TYPE_350M; break;
- case 1536: type = (hparams.n_embd == 2048 ? LLM_TYPE_7B_A1B : LLM_TYPE_1B); break;
- case 2048: case 2560: type = LLM_TYPE_3B; break;
- case 4096: type = LLM_TYPE_32B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- // For Granite MoE Shared
- ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, /* required */ false);
- } break;
- case LLM_ARCH_CHAMELEON:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- hparams.f_norm_eps = 1e-5; // eps for qk-norm, torch default
- ml.get_key(LLM_KV_SWIN_NORM, hparams.swin_norm);
- switch (hparams.n_layer) {
- case 32: type = LLM_TYPE_7B; break;
- case 48: type = LLM_TYPE_34B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_WAVTOKENIZER_DEC:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- ml.get_key(LLM_KV_ATTENTION_GROUPNORM_EPS, hparams.f_norm_group_eps);
- ml.get_key(LLM_KV_ATTENTION_GROUPNORM_GROUPS, hparams.n_norm_groups);
- ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
- } break;
- case LLM_ARCH_BAILINGMOE:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
- ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
- ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
- ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
- ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
- switch (hparams.n_layer) {
- case 28: type = LLM_TYPE_16B; break;
- case 88: type = LLM_TYPE_290B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_BAILINGMOE2:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
- ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
- ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp);
- ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
- ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
- ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
- ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func);
- ml.get_key(LLM_KV_NEXTN_PREDICT_LAYERS, hparams.nextn_predict_layers, false);
- // TODO: when MTP is implemented, this should probably be updated if needed
- hparams.n_layer_kv_from_start = hparams.n_layer - hparams.nextn_predict_layers;
- switch (hparams.n_layer) {
- case 20: type = LLM_TYPE_16B_A1B; break;
- case 21: type = LLM_TYPE_16B_A1B; break;
- case 32: type = LLM_TYPE_100B_A6B; break;
- case 33: type = LLM_TYPE_100B_A6B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_DOTS1:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
- ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
- ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
- ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
- ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
- ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false);
- switch (hparams.n_layer) {
- case 62: type = LLM_TYPE_142B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_ERNIE4_5:
- case LLM_ARCH_ERNIE4_5_MOE:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- if (arch == LLM_ARCH_ERNIE4_5_MOE) {
- ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
- ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false);
- ml.get_key(LLM_KV_INTERLEAVE_MOE_LAYER_STEP, hparams.n_moe_layer_step);
- ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
- }
- switch (hparams.n_layer) {
- case 18: type = LLM_TYPE_0_3B; break;
- case 28: type = LLM_TYPE_21B_A3B; break;
- case 54: type = LLM_TYPE_300B_A47B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_FALCON_H1:
- {
- // Common parameters
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- // SSM parameters
- ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
- ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
- ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
- ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
- ml.get_key(LLM_KV_SSM_GROUP_COUNT, hparams.ssm_n_group);
- std::fill(hparams.recurrent_layer_arr.begin(), hparams.recurrent_layer_arr.end(), true);
- switch (hparams.n_layer) {
- case 36:
- type = LLM_TYPE_0_5B; break;
- case 24:
- type = LLM_TYPE_1_5B; break;
- case 66:
- type = LLM_TYPE_1B; break;
- case 32:
- type = LLM_TYPE_3B; break;
- case 44:
- type = LLM_TYPE_7B; break;
- case 72:
- type = LLM_TYPE_34B; break;
- default:
- type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_HUNYUAN_MOE:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
- ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp);
- switch (hparams.n_layer) {
- case 32: type = LLM_TYPE_A13B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_HUNYUAN_DENSE:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_embd) {
- case 1024: type = LLM_TYPE_0_5B; break;
- case 2048: type = LLM_TYPE_1_8B; break;
- case 3072: type = LLM_TYPE_4B; break;
- case 4096: type = LLM_TYPE_7B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_SMOLLM3:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- hparams.n_no_rope_layer_step = 4;
- switch (hparams.n_layer) {
- case 36: type = LLM_TYPE_3B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_OPENAI_MOE:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
- ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
- hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
- hparams.set_swa_pattern(2);
- switch (hparams.n_layer) {
- case 24: type = LLM_TYPE_20B; break;
- case 36: type = LLM_TYPE_120B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_LFM2:
- {
- ml.get_key(LLM_KV_SHORTCONV_L_CACHE, hparams.n_shortconv_l_cache);
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- for (uint32_t il = 0; il < hparams.n_layer; ++il) {
- hparams.recurrent_layer_arr[il] = hparams.n_head_kv(il) == 0;
- }
- hparams.n_layer_dense_lead = hparams.n_layer;
- switch (hparams.n_ff()) {
- case 4608: type = LLM_TYPE_350M; break;
- case 6912: type = LLM_TYPE_700M; break;
- case 8192: type = LLM_TYPE_1_2B; break;
- case 10752: type = LLM_TYPE_2_6B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_LFM2MOE:
- {
- ml.get_key(LLM_KV_SHORTCONV_L_CACHE, hparams.n_shortconv_l_cache);
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
- ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
- ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func);
- for (uint32_t il = 0; il < hparams.n_layer; ++il) {
- hparams.recurrent_layer_arr[il] = hparams.n_head_kv(il) == 0;
- }
- type = LLM_TYPE_8B_A1B;
- } break;
- case LLM_ARCH_SMALLTHINKER:
- {
- const bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
- if (found_swa && hparams.n_swa > 0) {
- hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
- hparams.n_swa = 4096;
- hparams.set_swa_pattern(4, true);
- } else {
- hparams.swa_type = LLAMA_SWA_TYPE_NONE;
- hparams.n_no_rope_layer_step = hparams.n_layer;
- }
- ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false);
- switch (hparams.n_layer) {
- case 32: type = LLM_TYPE_4B; break;
- case 52: type = LLM_TYPE_20B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_GROVEMOE:
- {
- ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
- ml.get_key(LLM_KV_EXPERT_CHUNK_FEED_FORWARD_LENGTH, hparams.n_ff_chexp);
- ml.get_key(LLM_KV_EXPERT_GROUP_SCALE, hparams.expert_group_scale);
- ml.get_key(LLM_KV_EXPERTS_PER_GROUP, hparams.n_group_experts);
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 48: type = LLM_TYPE_30B_A3B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_APERTUS:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- ml.get_key_or_arr(LLM_KV_XIELU_ALPHA_N, hparams.xielu_alpha_n, hparams.n_layer);
- ml.get_key_or_arr(LLM_KV_XIELU_ALPHA_P, hparams.xielu_alpha_p, hparams.n_layer);
- ml.get_key_or_arr(LLM_KV_XIELU_BETA, hparams.xielu_beta, hparams.n_layer);
- ml.get_key_or_arr(LLM_KV_XIELU_EPS, hparams.xielu_eps, hparams.n_layer);
- switch (hparams.n_layer) {
- case 32: type = LLM_TYPE_8B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_MINIMAX_M2:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
- ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false);
- switch (hparams.n_layer) {
- case 62: type = LLM_TYPE_230B_A10B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_COGVLM:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 32: type = LLM_TYPE_13B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_PANGU_EMBED:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 26: type = LLM_TYPE_1B; break; // openPangu-Embedded-1B-V1.1
- case 34: type = LLM_TYPE_7B; break; // openPangu-Embedded-7B-V1.1
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_QWEN3NEXT:
- {
- ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
- ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false);
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- // Load linear attention (gated delta net) parameters
- ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
- ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
- ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
- ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
- ml.get_key(LLM_KV_SSM_GROUP_COUNT, hparams.ssm_n_group);
- // Mark recurrent layers (linear attention layers)
- for (uint32_t i = 0; i < hparams.n_layer; ++i) {
- hparams.recurrent_layer_arr[i] = ((i + 1) % 4 != 0); // TODO: extract the magic 4 from "full_attention_interval"
- }
- switch (hparams.n_layer) {
- case 80: type = LLM_TYPE_80B_A3B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_MISTRAL3:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- ml.get_key(LLM_KV_ATTENTION_TEMPERATURE_SCALE, hparams.f_attn_temp_scale, false);
- ml.get_key(LLM_KV_ROPE_SCALING_YARN_BETA_FAST, hparams.yarn_beta_fast, false);
- ml.get_key(LLM_KV_ROPE_SCALING_YARN_BETA_SLOW, hparams.yarn_beta_slow, false);
- ml.get_key(LLM_KV_ROPE_SCALING_YARN_LOG_MUL, hparams.rope_yarn_log_mul, false);
- // TODO: maybe add n_attn_temp_floor_scale as a separate KV?
- if (hparams.f_attn_temp_scale != 0.0f) {
- hparams.n_attn_temp_floor_scale = hparams.n_ctx_orig_yarn;
- if (hparams.n_attn_temp_floor_scale == 0) {
- throw std::runtime_error("invalid n_ctx_orig_yarn for attention temperature scaling");
- }
- }
- // TODO: this seems to be correct with the case of mscale == mscale_all_dims == 1.0f
- // but may need further verification with other values
- if (hparams.rope_yarn_log_mul != 0.0f) {
- float factor = 1.0f / hparams.rope_freq_scale_train;
- float mscale = 1.0f;
- float mscale_all_dims = hparams.rope_yarn_log_mul;
- static auto get_mscale = [](float scale, float mscale) {
- return scale <= 1.0f ? 1.0f : (0.1f * mscale * logf(scale) + 1.0f);
- };
- hparams.yarn_attn_factor = get_mscale(factor, mscale) / get_mscale(factor, mscale_all_dims);
- }
- switch (hparams.n_layer) {
- case 26: type = LLM_TYPE_3B; break;
- case 34: type = LLM_TYPE_8B; break;
- case 40: type = LLM_TYPE_14B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- default: throw std::runtime_error("unsupported model architecture");
- }
- pimpl->n_bytes = ml.n_bytes;
- pimpl->desc_str = arch_name() + " " + type_name() + " " + ml.ftype_name();
- if (hparams.f_max_alibi_bias > 0.0f) {
- hparams.use_alibi = true;
- }
- hparams.rope_type = llama_model_rope_type(this);
- }
- void llama_model::load_vocab(llama_model_loader & ml) {
- const auto kv = LLM_KV(arch);
- vocab.load(ml, kv);
- }
- bool llama_model::load_tensors(llama_model_loader & ml) {
- const auto & split_mode = params.split_mode;
- const auto & n_gpu_layers = params.n_gpu_layers;
- const auto & use_mlock = params.use_mlock;
- const auto & tensor_split = params.tensor_split;
- const int n_layer = hparams.n_layer;
- const bool use_mmap_buffer = true;
- LLAMA_LOG_INFO("%s: loading model tensors, this can take a while... (mmap = %s)\n", __func__, ml.use_mmap ? "true" : "false");
- // build a list of buffer types for the CPU and GPU devices
- pimpl->cpu_buft_list = make_cpu_buft_list(devices, params.use_extra_bufts, params.no_host);
- for (auto * dev : devices) {
- buft_list_t buft_list = make_gpu_buft_list(dev, split_mode, tensor_split);
- // add CPU buffer types as a fallback
- buft_list.insert(buft_list.end(), pimpl->cpu_buft_list.begin(), pimpl->cpu_buft_list.end());
- pimpl->gpu_buft_list.emplace(dev, std::move(buft_list));
- }
- // calculate the split points
- bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + n_devices(), [](float x) { return x == 0.0f; });
- std::vector<float> splits(n_devices());
- if (all_zero) {
- // default split, by free memory
- for (size_t i = 0; i < n_devices(); ++i) {
- ggml_backend_dev_t dev = devices[i];
- size_t total;
- size_t free;
- ggml_backend_dev_memory(dev, &free, &total);
- splits[i] = free;
- }
- } else {
- std::copy(tensor_split, tensor_split + n_devices(), splits.begin());
- }
- // sum and normalize the splits to get the split points
- float split_sum = 0.0f;
- for (size_t i = 0; i < n_devices(); ++i) {
- split_sum += splits[i];
- splits[i] = split_sum;
- }
- for (size_t i = 0; i < n_devices(); ++i) {
- splits[i] /= split_sum;
- }
- ggml_backend_dev_t cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
- if (cpu_dev == nullptr) {
- throw std::runtime_error(format("%s: no CPU backend found", __func__));
- }
- const int i_gpu_start = std::max((int) hparams.n_layer - n_gpu_layers, (int) 0);
- const int act_gpu_layers = devices.empty() ? 0 : std::min(n_gpu_layers, (int)n_layer + 1);
- auto get_layer_buft_list = [&](int il) -> llama_model::impl::layer_dev {
- const bool is_swa = il < (int) hparams.n_layer && hparams.is_swa(il);
- if (il < i_gpu_start || (il - i_gpu_start) >= act_gpu_layers) {
- LLAMA_LOG_DEBUG("load_tensors: layer %3d assigned to device %s, is_swa = %d\n", il, ggml_backend_dev_name(cpu_dev), is_swa);
- return {cpu_dev, &pimpl->cpu_buft_list};
- }
- const int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + n_devices(), float(il - i_gpu_start)/act_gpu_layers) - splits.begin();
- auto * dev = devices.at(layer_gpu);
- LLAMA_LOG_DEBUG("load_tensors: layer %3d assigned to device %s, is_swa = %d\n", il, ggml_backend_dev_name(dev), is_swa);
- return {dev, &pimpl->gpu_buft_list.at(dev)};
- };
- // assign the input layer
- // there is very little benefit to offloading the input layer, so always keep it on the CPU
- pimpl->dev_input = { cpu_dev, &pimpl->cpu_buft_list };
- // assign the repeating layers to the devices according to the splits
- pimpl->dev_layer.resize(n_layer);
- for (int il = 0; il < n_layer; ++il) {
- pimpl->dev_layer[il] = get_layer_buft_list(il);
- }
- // assign the output layer
- pimpl->dev_output = get_layer_buft_list(n_layer);
- // one ggml context per buffer type
- int max_n_tensors = ml.n_tensors;
- max_n_tensors += 1; // duplicated output tensor
- max_n_tensors += n_layer*2; // duplicated rope freq tensors
- const size_t ctx_size = ggml_tensor_overhead()*max_n_tensors;
- // define a comparator for the buft -> ctx map to ensure that the order is well-defined:
- struct ggml_backend_buft_comparator {
- bool operator()(const ggml_backend_buffer_type_t & lhs, const ggml_backend_buffer_type_t & rhs) const {
- return strcmp(ggml_backend_buft_name(lhs), ggml_backend_buft_name(rhs)) < 0;
- }
- };
- std::map<ggml_backend_buffer_type_t, ggml_context_ptr, ggml_backend_buft_comparator> ctx_map;
- auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
- auto it = ctx_map.find(buft);
- if (it == ctx_map.end()) {
- ggml_init_params params = {
- /*.mem_size =*/ ctx_size,
- /*.mem_buffer =*/ NULL,
- /*.no_alloc =*/ true,
- };
- ggml_context * ctx = ggml_init(params);
- if (!ctx) {
- throw std::runtime_error(format("failed to create ggml context"));
- }
- ctx_map.emplace(buft, ctx);
- return ctx;
- }
- return it->second.get();
- };
- const auto TENSOR_DUPLICATED = llama_model_loader::TENSOR_DUPLICATED;
- const auto TENSOR_NOT_REQUIRED = llama_model_loader::TENSOR_NOT_REQUIRED;
- const auto TENSOR_SKIP = llama_model_loader::TENSOR_SKIP;
- // create tensors for the weights
- {
- // note: cast to int64_t since we will use these for the tensor dimensions
- const int64_t n_head = hparams.n_head();
- const int64_t n_head_kv = hparams.n_head_kv();
- const int64_t n_embd = hparams.n_embd;
- const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
- const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
- const int64_t n_embd_head_k = hparams.n_embd_head_k;
- const int64_t n_embd_head_v = hparams.n_embd_head_v;
- const int64_t n_ff = hparams.n_ff();
- const int64_t n_embd_gqa = n_embd_v_gqa;
- const int64_t n_vocab = vocab.n_tokens();
- const int64_t n_token_types = vocab.n_token_types();
- const int64_t n_rot = hparams.n_rot;
- const int64_t n_expert = hparams.n_expert;
- const int64_t n_expert_used = hparams.n_expert_used;
- const int64_t n_ctx_train = hparams.n_ctx_train;
- if (n_expert > 0 && hparams.n_expert_used == 0) {
- throw std::runtime_error("model has expert layers but no expert layers are used");
- }
- int n_moved_tensors = 0;
- ggml_tensor * first_moved_tensor = nullptr;
- ggml_backend_buffer_type_t first_moved_from_buft = nullptr;
- ggml_backend_buffer_type_t first_moved_to_buft = nullptr;
- auto create_tensor = [&](const LLM_TN_IMPL & tn, const std::initializer_list<int64_t> & ne, int flags) -> ggml_tensor * {
- ggml_tensor * t_meta = ml.get_tensor_meta(tn.str().c_str());
- if (!t_meta) {
- if (flags & TENSOR_NOT_REQUIRED) {
- return nullptr;
- }
- throw std::runtime_error(format("missing tensor '%s'", tn.str().c_str()));
- }
- // some models use the token embedding tensor as the output, but since these are used in different layers and with different ops
- // the tensor is duplicated
- // to handle this, we check if the tensor is duplicated, and if so, we assume that it is being loaded as the output tensor
- llm_tensor tn_tensor = tn.tensor;
- if (tn.tensor == LLM_TENSOR_TOKEN_EMBD && flags & TENSOR_DUPLICATED) {
- tn_tensor = LLM_TENSOR_OUTPUT;
- }
- llm_tensor_info info;
- try {
- info = llm_tensor_info_for(tn_tensor);
- } catch (const std::out_of_range & e) {
- throw std::runtime_error(format("missing tensor info mapping for %s", tn.str().c_str()));
- }
- // skip unused tensors
- if (info.op == GGML_OP_NONE || flags & TENSOR_SKIP) {
- const size_t nbytes = ggml_nbytes(t_meta);
- LLAMA_LOG_WARN("model has unused tensor %s (size = %zu bytes) -- ignoring\n", tn.str().c_str(), nbytes);
- ml.size_data -= nbytes;
- ml.n_created++;
- return nullptr;
- }
- // tensors with "bias" suffix are always used with GGML_OP_ADD or GGML_OP_ADD_ID
- ggml_op op;
- bool bias = tn.suffix != nullptr && strcmp(tn.suffix, "bias") == 0;
- if (bias) {
- if (info.op == GGML_OP_MUL_MAT_ID) {
- op = GGML_OP_ADD_ID;
- } else {
- op = GGML_OP_ADD;
- }
- } else {
- op = info.op;
- }
- // sanity checks
- if (info.layer == LLM_TENSOR_LAYER_INPUT || info.layer == LLM_TENSOR_LAYER_OUTPUT) {
- if (tn.bid != -1) {
- GGML_ABORT("input/output layer tensor %s used with a layer number", tn.str().c_str());
- }
- } else {
- if (tn.bid == -1) {
- GGML_ABORT("repeating layer tensor %s used without a layer number", tn.str().c_str());
- }
- }
- // select the buffer type for this tensor
- buft_list_t * buft_list;
- switch (info.layer) {
- case LLM_TENSOR_LAYER_INPUT:
- buft_list = pimpl->dev_input.buft_list;
- break;
- case LLM_TENSOR_LAYER_OUTPUT:
- buft_list = pimpl->dev_output.buft_list;
- break;
- case LLM_TENSOR_LAYER_REPEATING:
- buft_list = pimpl->dev_layer.at(tn.bid).buft_list;
- break;
- default:
- GGML_ABORT("invalid layer %d for tensor %s", info.layer, tn.str().c_str());
- }
- ggml_backend_buffer_type_t buft = nullptr;
- // check overrides
- if (ml.tensor_buft_overrides) {
- std::string tensor_name = tn.str();
- for (const auto * overrides = ml.tensor_buft_overrides; overrides->pattern != nullptr; ++overrides) {
- std::regex pattern(overrides->pattern);
- if (std::regex_search(tensor_name, pattern)) {
- if (overrides->buft == ggml_backend_cpu_buffer_type()) {
- // when overriding to a CPU buffer, consider the extra buffer types
- buft = select_weight_buft(hparams, t_meta, op, pimpl->cpu_buft_list);
- } else {
- buft = overrides->buft;
- }
- LLAMA_LOG_DEBUG("tensor %s (%zu MiB %s) buffer type overridden to %s\n",
- tensor_name.c_str(),
- ggml_nbytes(t_meta) / 1024 / 1024, ggml_type_name(t_meta->type),
- ggml_backend_buft_name(buft));
- break;
- }
- }
- }
- if (!buft) {
- buft = select_weight_buft(hparams, t_meta, op, *buft_list);
- if (!buft) {
- throw std::runtime_error(format("failed to find a compatible buffer type for tensor %s", tn.str().c_str()));
- }
- }
- // avoid using a host buffer when using mmap
- auto * buft_dev = ggml_backend_buft_get_device(buft);
- if (ml.use_mmap && buft_dev && buft == ggml_backend_dev_host_buffer_type(buft_dev)) {
- auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
- if (!cpu_dev) {
- throw std::runtime_error("no CPU backend found");
- }
- buft = ggml_backend_dev_buffer_type(cpu_dev);
- }
- if (buft != buft_list->front().second) {
- n_moved_tensors++;
- if (!first_moved_tensor) {
- first_moved_tensor = t_meta;
- first_moved_from_buft = buft_list->front().second;
- first_moved_to_buft = buft;
- }
- }
- ggml_context * ctx = ctx_for_buft(buft);
- // if duplicated, check if the original tensor was allocated in the same buffer type context and avoid creating a new one
- if (flags & TENSOR_DUPLICATED) {
- ggml_tensor * t = ggml_get_tensor(ctx, tn.str().c_str());
- if (t) {
- return t;
- }
- }
- return ml.create_tensor(ctx, tn, ne, flags);
- };
- layers.resize(n_layer);
- // TODO: move to a separate function
- const auto tn = LLM_TN(arch);
- switch (arch) {
- case LLM_ARCH_LLAMA:
- case LLM_ARCH_REFACT:
- case LLM_ARCH_MINICPM:
- case LLM_ARCH_GRANITE:
- case LLM_ARCH_GRANITE_MOE:
- case LLM_ARCH_MISTRAL3:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
- // optional bias tensors
- layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
- layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
- layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
- layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
- layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
- }
- else {
- layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
- }
- if (n_expert == 0) {
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- // optional MLP bias
- layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
- layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
- } else {
- layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
- layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, TENSOR_NOT_REQUIRED);
- layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
- layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
- // For Granite MoE Shared
- if (hparams.n_ff_shexp > 0) {
- layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
- layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
- layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {hparams.n_ff_shexp, n_embd}, 0);
- }
- }
- }
- } break;
- case LLM_ARCH_LLADA:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output =
- create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
- // Use separate Q, K, V projections without bias, matching LLaDALlamaBlock
- layer.wq =
- create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd_head_k * n_head }, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_k_gqa }, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_v_gqa }, 0);
- // No bias for QKV projections as per config: include_bias=false, include_qkv_bias=false
- layer.wo =
- create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd_head_k * n_head, n_embd }, 0);
- layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), { n_embd }, TENSOR_NOT_REQUIRED);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);
- layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), { n_rot / 2 },
- TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), { n_embd, n_ff }, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, n_ff }, 0);
- // optional MLP bias
- layer.ffn_gate_b =
- create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), { n_ff }, TENSOR_NOT_REQUIRED);
- layer.ffn_down_b =
- create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), { n_embd }, TENSOR_NOT_REQUIRED);
- layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), { n_ff }, TENSOR_NOT_REQUIRED);
- }
- }
- break;
- case LLM_ARCH_LLADA_MOE:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- GGML_ASSERT(n_expert > 0 && "n_expert must be > 0 for llada-moe");
- GGML_ASSERT(n_expert_used > 0 && "n_expert_used must be > 0 for llada-moe");
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
- layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
- const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
- layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
- layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
- layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
- }
- } break;
- case LLM_ARCH_LLAMA4:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- bool is_moe_layer = hparams.n_moe_layer_step > 0 && (i + 1) % hparams.n_moe_layer_step == 0;
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
- if (is_moe_layer) {
- int n_ff_exp = hparams.n_ff_exp;
- layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
- layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
- layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff_exp, n_embd, n_expert}, 0);
- layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
- // Shared expert
- const int64_t n_ff_shexp = n_ff_exp;
- layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0);
- layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd }, 0);
- layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0);
- } else {
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- }
- } break;
- case LLM_ARCH_DECI:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(i);
- const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(i);
- const int64_t n_embd_gqa = hparams.n_embd_v_gqa(i);
- const int64_t n_ff = hparams.n_ff(i);
- const int64_t n_head = hparams.n_head(i);
- const int64_t n_head_kv = hparams.n_head_kv(i);
- if (n_head_kv == 0 && n_head > 0) {
- // linear attention for DeciLMCausalModel
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- }
- else if (n_head_kv > 0) {
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
- }
- // optional bias tensors
- layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
- layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
- layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- if (n_ff > 0) {
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- }
- if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
- layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
- layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
- }
- else {
- layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
- }
- if (n_ff > 0) {
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- // optional MLP bias
- layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
- layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
- }
- } break;
- case LLM_ARCH_MINICPM3:
- {
- const int64_t n_embd_head_qk_rope = hparams.n_rot;
- const int64_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
- const int64_t q_lora_rank = hparams.n_lora_q;
- const int64_t kv_lora_rank = hparams.n_lora_kv;
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_q_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank}, 0);
- layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0);
- layer.wq_a = create_tensor(tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank}, 0);
- layer.wq_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k}, 0);
- layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + (n_embd_head_qk_rope)}, 0);
- layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_head * ( n_embd_head_v), n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_embd_head_qk_rope/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
- layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_embd_head_qk_rope/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
- }
- } break;
- case LLM_ARCH_GROK:
- {
- if (n_expert == 0) {
- throw std::runtime_error("Grok model cannot have zero experts");
- }
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff/* / n_expert_used*/; // grok-1 n_ff_exp == n_ff
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, TENSOR_NOT_REQUIRED);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
- layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
- layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, TENSOR_NOT_REQUIRED);
- layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
- layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
- layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
- if (!layer.ffn_post_norm) {
- layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
- }
- }
- } break;
- case LLM_ARCH_DBRX:
- {
- if (n_expert == 0) {
- throw std::runtime_error("DBRX model cannot have zero experts");
- }
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
- layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
- layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
- layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
- }
- } break;
- case LLM_ARCH_BAICHUAN:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- {
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- } break;
- case LLM_ARCH_FALCON:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- {
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- if (!output) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // needs to be on GPU
- }
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
- layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- } break;
- case LLM_ARCH_STARCODER:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, 0);
- // output
- {
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- if (!output) {
- // needs to be on GPU
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
- layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
- layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
- layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
- }
- } break;
- case LLM_ARCH_BERT:
- case LLM_ARCH_NOMIC_BERT:
- case LLM_ARCH_NOMIC_BERT_MOE:
- case LLM_ARCH_JINA_BERT_V3:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- type_embd = create_tensor(tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_token_types}, TENSOR_NOT_REQUIRED);
- if (arch == LLM_ARCH_BERT) {
- pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, 0);
- cls = create_tensor(tn(LLM_TENSOR_CLS, "weight"), {n_embd, n_embd}, TENSOR_NOT_REQUIRED);
- cls_b = create_tensor(tn(LLM_TENSOR_CLS, "bias"), {n_embd}, TENSOR_NOT_REQUIRED);
- cls_out = create_tensor(tn(LLM_TENSOR_CLS_OUT, "weight"), {n_embd, hparams.n_cls_out}, TENSOR_NOT_REQUIRED);
- cls_out_b = create_tensor(tn(LLM_TENSOR_CLS_OUT, "bias"), {hparams.n_cls_out}, TENSOR_NOT_REQUIRED);
- }
- tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
- tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
- layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
- if (!layer.wqkv) {
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
- }
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0);
- layer.attn_out_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd}, 0);
- if (hparams.moe_every_n_layers > 0 && i % hparams.moe_every_n_layers == 1) {
- layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff, n_expert}, 0);
- layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
- layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
- } else {
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
- layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- if (arch == LLM_ARCH_NOMIC_BERT) {
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- }
- }
- layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, 0);
- layer.layer_out_norm_b = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd}, 0);
- }
- } break;
- case LLM_ARCH_NEO_BERT:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- cls = create_tensor(tn(LLM_TENSOR_CLS, "weight"), {n_embd, n_embd}, TENSOR_NOT_REQUIRED);
- cls_b = create_tensor(tn(LLM_TENSOR_CLS, "bias"), {n_embd}, TENSOR_NOT_REQUIRED);
- cls_out = create_tensor(tn(LLM_TENSOR_CLS_OUT, "weight"), {n_embd, hparams.n_cls_out}, TENSOR_NOT_REQUIRED);
- cls_out_b = create_tensor(tn(LLM_TENSOR_CLS_OUT, "bias"), {hparams.n_cls_out}, TENSOR_NOT_REQUIRED);
- output_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff*2}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
- }
- } break;
- case LLM_ARCH_JINA_BERT_V2:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // word_embeddings
- type_embd = create_tensor(tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_token_types}, 0); // token_type_embeddings
- tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0); // LayerNorm
- tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0); //LayerNorm bias
- cls = create_tensor(tn(LLM_TENSOR_CLS, "weight"), {n_embd, 1}, TENSOR_NOT_REQUIRED);
- cls_b = create_tensor(tn(LLM_TENSOR_CLS, "bias"), {1}, TENSOR_NOT_REQUIRED);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i]; // JinaBertLayer
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
- layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
- layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); //output_dens
- layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0); //output_dens
- layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0); //output_norm
- layer.attn_out_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd}, 0);
- layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, layer.ffn_gate ? n_ff : n_ff * 2}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
- layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
- layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, 0);
- layer.layer_out_norm_b = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd}, 0);
- }
- } break;
- case LLM_ARCH_BLOOM:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
- tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
- layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
- layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
- layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
- }
- } break;
- case LLM_ARCH_MPT:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, TENSOR_NOT_REQUIRED);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, TENSOR_NOT_REQUIRED);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- if (!output) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // needs to be on GPU
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
- layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
- layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
- layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- // AWQ ScaleActivation layer
- layer.ffn_act = create_tensor(tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, TENSOR_NOT_REQUIRED);
- }
- } break;
- case LLM_ARCH_STABLELM:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- // optional bias tensors, present in Stable LM 2 1.6B
- layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
- layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
- // optional q and k layernorms, present in StableLM 2 12B
- layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, TENSOR_NOT_REQUIRED);
- layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, TENSOR_NOT_REQUIRED);
- // optional FFN norm, not present in StableLM 2 12B which uses parallel residual
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- } break;
- case LLM_ARCH_QWEN:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd*3}, 0);
- layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd*3}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff/2}, 0);
- }
- } break;
- case LLM_ARCH_QWEN2:
- case LLM_ARCH_QWEN2VL:
- case LLM_ARCH_DREAM:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- // optional bias tensors
- layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
- layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
- layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- } break;
- case LLM_ARCH_QWEN2MOE:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- // optional bias tensors
- layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
- layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
- if (n_expert == 0) {
- throw std::runtime_error("n_expert must be > 0 for QWEN2MOE");
- }
- if (n_expert_used == 0) {
- throw std::runtime_error("n_expert_used must be > 0 for QWEN2MOE");
- }
- // MoE branch
- const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
- layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
- layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
- layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
- // Shared expert branch
- const int64_t n_ff_shexp = hparams.n_ff_shexp ? hparams.n_ff_shexp : n_ff;
- layer.ffn_gate_inp_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), {n_embd}, 0);
- layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0);
- layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd}, 0);
- layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0);
- }
- } break;
- case LLM_ARCH_QWEN3:
- case LLM_ARCH_QWEN3VL:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- // output rerank head
- cls_out = create_tensor(tn(LLM_TENSOR_CLS_OUT, "weight"), {n_embd, hparams.n_cls_out}, TENSOR_NOT_REQUIRED);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
- layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
- layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- } break;
- case LLM_ARCH_QWEN3MOE:
- case LLM_ARCH_QWEN3VLMOE:
- case LLM_ARCH_RND1:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
- layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
- layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
- if (n_expert == 0) {
- throw std::runtime_error("n_expert must be > 0 for QWEN3MOE");
- }
- if (n_expert_used == 0) {
- throw std::runtime_error("n_expert_used must be > 0 for QWEN3MOE");
- }
- // MoE branch
- const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
- layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
- layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
- layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
- }
- } break;
- case LLM_ARCH_PHI2:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
- layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
- layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
- if (layer.wqkv == nullptr) {
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
- }
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
- layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
- }
- } break;
- case LLM_ARCH_PHI3:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
- layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, TENSOR_NOT_REQUIRED);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff }, 0);
- layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
- layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
- }
- } break;
- case LLM_ARCH_PHIMOE:
- {
- const int64_t n_embd_head = n_embd / n_head;
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
- output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, 0);
- output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), { n_vocab }, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
- layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), { n_embd }, 0);
- layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, TENSOR_NOT_REQUIRED);
- if (layer.wqkv == nullptr) {
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
- }
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0);
- layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), { n_embd }, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);
- layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), { n_embd }, 0);
- layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
- layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
- layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
- layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
- layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
- layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
- }
- } break;
- case LLM_ARCH_PLAMO:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- } break;
- case LLM_ARCH_PLAMO2:
- {
- // mamba parameters
- const uint32_t d_conv = hparams.ssm_d_conv;
- const uint32_t d_state = hparams.ssm_d_state;
- const uint32_t num_heads = hparams.ssm_dt_rank;
- const uint32_t intermediate_size = hparams.ssm_d_inner;
- const int64_t dt_dim = std::max(64, int(hparams.n_embd / 16));
- // attention parameters
- const uint32_t qk_dim = hparams.n_embd_head_k;
- const uint32_t v_dim = hparams.n_embd_head_v;
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- bool is_mamba_layer = hparams.is_recurrent(i);
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- if (is_mamba_layer) {
- layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2 * intermediate_size}, 0);
- layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, intermediate_size}, 0);
- layer.ssm_x = create_tensor(tn(LLM_TENSOR_SSM_X, "weight", i), {intermediate_size, dt_dim + 2*d_state}, 0);
- layer.ssm_dt = create_tensor(tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_dim, num_heads}, 0);
- layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {num_heads}, 0);
- layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {num_heads}, 0);
- layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {num_heads}, 0);
- layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {intermediate_size, n_embd}, 0);
- layer.ssm_dt_norm = create_tensor(tn(LLM_TENSOR_SSM_DT_NORM, i), {dt_dim}, 0);
- layer.ssm_b_norm = create_tensor(tn(LLM_TENSOR_SSM_B_NORM, i), {d_state}, 0);
- layer.ssm_c_norm = create_tensor(tn(LLM_TENSOR_SSM_C_NORM, i), {d_state}, 0);
- } else {
- const int64_t num_attention_heads = hparams.n_head(i);
- const int64_t q_num_heads = num_attention_heads;
- const int64_t num_key_value_heads = hparams.n_head_kv(i);
- const int64_t k_num_heads = num_key_value_heads;
- const int64_t v_num_heads = num_key_value_heads;
- const int64_t q_proj_dim = q_num_heads * qk_dim;
- const int64_t k_proj_dim = k_num_heads * qk_dim;
- const int64_t v_proj_dim = v_num_heads * v_dim;
- layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, q_proj_dim + k_proj_dim + v_proj_dim}, 0);
- layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {qk_dim, num_attention_heads}, 0);
- layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {qk_dim, k_num_heads}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {q_num_heads * v_dim, n_embd}, 0);
- }
- // All layers have post-attention norm, FFN norm, and FFN tensors
- layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, i), {n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff * 2}, 0);
- layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, i), {n_embd}, 0);
- }
- } break;
- case LLM_ARCH_GPT2:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
- layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
- layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
- layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
- }
- } break;
- case LLM_ARCH_CODESHELL:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if tok embd is NULL, init from output
- if (tok_embd == NULL) {
- tok_embd = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
- layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
- layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
- layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
- }
- } break;
- case LLM_ARCH_ORION:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- } break;
- case LLM_ARCH_INTERNLM2:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- // layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- } break;
- case LLM_ARCH_GEMMA:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- }
- } break;
- case LLM_ARCH_GEMMA2:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
- layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
- }
- } break;
- case LLM_ARCH_GEMMA3:
- case LLM_ARCH_GEMMA_EMBEDDING:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- // Dense linear weights
- dense_2_out_layers = create_tensor(tn(LLM_TENSOR_DENSE_2_OUT, "weight"), {n_embd, hparams.dense_2_feat_out}, TENSOR_NOT_REQUIRED);
- dense_3_out_layers = create_tensor(tn(LLM_TENSOR_DENSE_3_OUT, "weight"), {hparams.dense_3_feat_in, n_embd}, TENSOR_NOT_REQUIRED);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
- layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
- layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
- layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
- }
- } break;
- case LLM_ARCH_GEMMA3N:
- {
- const int64_t n_altup = hparams.n_altup;
- const int64_t laurel_rank = hparams.laurel_rank;
- const int64_t n_embd_altup = hparams.n_embd_altup;
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- tok_embd_per_layer = create_tensor(tn(LLM_TENSOR_PER_LAYER_TOKEN_EMBD, "weight"), {n_embd_altup * n_layer, n_vocab}, 0);
- altup_proj = create_tensor(tn(LLM_TENSOR_ALTUP_PROJ, "weight"), {n_embd, n_embd, n_altup - 1}, 0);
- altup_unembd_proj = create_tensor(tn(LLM_TENSOR_ALTUP_UNEMBD_PROJ, "weight"), {n_embd, n_embd, n_altup - 1}, 0);
- per_layer_model_proj = create_tensor(tn(LLM_TENSOR_PER_LAYER_MODEL_PROJ, "weight"), {n_embd, n_embd_altup * n_layer}, 0);
- per_layer_proj_norm = create_tensor(tn(LLM_TENSOR_PER_LAYER_PROJ_NORM, "weight"), {n_embd_altup}, 0);
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
- layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
- layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
- layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
- // altup & laurel
- layer.per_layer_inp_gate = create_tensor(tn(LLM_TENSOR_PER_LAYER_INP_GATE, "weight", i), {n_embd, n_embd_altup}, 0);
- layer.per_layer_proj = create_tensor(tn(LLM_TENSOR_PER_LAYER_PROJ, "weight", i), {n_embd_altup, n_embd}, 0);
- layer.per_layer_post_norm = create_tensor(tn(LLM_TENSOR_PER_LAYER_POST_NORM, "weight", i), {n_embd}, 0);
- layer.altup_correct_coef = create_tensor(tn(LLM_TENSOR_ALTUP_CORRECT_COEF, "weight", i), {n_altup, n_altup}, 0);
- layer.altup_correct_scale = create_tensor(tn(LLM_TENSOR_ALTUP_CORRECT_SCALE, "weight", i), {n_embd}, 0);
- layer.altup_predict_coef = create_tensor(tn(LLM_TENSOR_ALTUP_PREDICT_COEF, "weight", i), {n_altup, n_altup * n_altup}, 0);
- layer.altup_router = create_tensor(tn(LLM_TENSOR_ALTUP_ROUTER, "weight", i), {n_embd, n_altup}, 0);
- layer.altup_router_norm = create_tensor(tn(LLM_TENSOR_ALTUP_ROUTER_NORM, "weight", i), {n_embd}, 0);
- layer.laurel_l = create_tensor(tn(LLM_TENSOR_LAUREL_L, "weight", i), {n_embd, laurel_rank}, 0);
- layer.laurel_r = create_tensor(tn(LLM_TENSOR_LAUREL_R, "weight", i), {laurel_rank, n_embd}, 0);
- layer.laurel_post_norm = create_tensor(tn(LLM_TENSOR_LAUREL_POST_NORM, "weight", i), {n_embd}, 0);
- }
- } break;
- case LLM_ARCH_STARCODER2:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- // optional bias tensors
- layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
- layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
- layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
- layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- // optional bias tensors
- layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
- layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP , "bias", i), { n_ff}, 0);
- }
- } break;
- case LLM_ARCH_MAMBA:
- {
- const int64_t d_conv = hparams.ssm_d_conv;
- const int64_t d_inner = hparams.ssm_d_inner;
- const int64_t d_state = hparams.ssm_d_state;
- const int64_t dt_rank = hparams.ssm_dt_rank;
- // only an expansion factor of 2 is supported for now
- if (2 * n_embd != d_inner) {
- throw std::runtime_error("only an expansion factor of 2 is supported for now");
- }
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed, duplicated to allow offloading
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- // norm
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner}, 0);
- layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner}, 0);
- layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner}, 0);
- layer.ssm_x = create_tensor(tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state}, 0);
- layer.ssm_dt = create_tensor(tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner}, 0);
- layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner}, 0);
- // no "weight" suffix for these
- layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner}, 0);
- layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {d_inner}, 0);
- // out_proj
- layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}, 0);
- }
- } break;
- case LLM_ARCH_MAMBA2:
- {
- const int64_t d_conv = hparams.ssm_d_conv;
- const int64_t d_inner = hparams.ssm_d_inner;
- const int64_t d_state = hparams.ssm_d_state;
- const int64_t n_head = hparams.ssm_dt_rank;
- const int64_t n_group = hparams.ssm_n_group;
- const int64_t d_in_proj = 2*d_inner + 2*n_group*d_state + n_head;
- // only an expansion factor of 2 is supported for now
- GGML_ASSERT(2 * n_embd == d_inner);
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- {
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed, duplicated to allow offloading
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- // norm
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, d_in_proj}, 0);
- layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner + 2*n_group*d_state}, 0);
- layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner + 2*n_group*d_state}, 0);
- layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {n_head}, 0);
- // no "weight" suffix for these
- layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {1, n_head}, 0);
- layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {1, n_head}, 0);
- layer.ssm_norm = create_tensor(tn(LLM_TENSOR_SSM_NORM, "weight", i), {d_inner / n_group, n_group}, 0);
- // out_proj
- layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}, 0);
- }
- } break;
- case LLM_ARCH_JAMBA:
- {
- const int64_t d_conv = hparams.ssm_d_conv;
- const int64_t d_inner = hparams.ssm_d_inner;
- const int64_t d_state = hparams.ssm_d_state;
- const int64_t dt_rank = hparams.ssm_dt_rank;
- // only an expansion factor of 2 is supported for now
- GGML_ASSERT(2 * n_embd == d_inner);
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- {
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed, duplicated to allow offloading
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- }
- for (int i = 0; i < n_layer; ++i) {
- const int64_t n_head_kv = hparams.n_head_kv(i);
- const int64_t n_embd_gqa = hparams.n_embd_v_gqa(i);
- auto & layer = layers[i];
- // norm
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- if (n_head_kv == 0) {
- // Mamba layer
- layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner}, 0);
- layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner}, 0);
- layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner}, 0);
- layer.ssm_x = create_tensor(tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state}, 0);
- layer.ssm_dt_norm = create_tensor(tn(LLM_TENSOR_SSM_DT_NORM, "weight", i), {dt_rank}, 0);
- layer.ssm_dt = create_tensor(tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner}, 0);
- layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner}, 0);
- layer.ssm_b_norm = create_tensor(tn(LLM_TENSOR_SSM_B_NORM, "weight", i), {d_state}, 0);
- layer.ssm_c_norm = create_tensor(tn(LLM_TENSOR_SSM_C_NORM, "weight", i), {d_state}, 0);
- // no "weight" suffix for these
- layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner}, 0);
- layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {d_inner}, 0);
- // out_proj
- layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}, 0);
- } else {
- // Attention layers
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- }
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, TENSOR_NOT_REQUIRED);
- if (layer.ffn_gate_inp) {
- // MoE
- layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
- layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
- layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
- } else {
- // FFN (no MoE)
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- }
- } break;
- case LLM_ARCH_GRANITE_HYBRID:
- {
- // mamba2 Mixer SSM params
- // NOTE: int64_t for tensor dimensions
- const int64_t d_conv = hparams.ssm_d_conv;
- const int64_t d_inner = hparams.ssm_d_inner;
- const int64_t d_state = hparams.ssm_d_state;
- const int64_t n_ssm_head = hparams.ssm_dt_rank;
- const int64_t n_group = hparams.ssm_n_group;
- const int64_t d_in_proj = 2*d_inner + 2*n_group*d_state + n_ssm_head;
- // only an expansion factor of 2 is supported for now
- GGML_ASSERT(2 * n_embd == d_inner);
- // embeddings
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- {
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed, duplicated to allow offloading
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- // norm
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- if (hparams.is_recurrent(i)) {
- // ssm layers
- layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, d_in_proj}, 0);
- layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner + 2*n_group*d_state}, 0);
- layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner + 2*n_group*d_state}, TENSOR_NOT_REQUIRED);
- layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {n_ssm_head}, 0);
- // no "weight" suffix for these
- layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {1, n_ssm_head}, 0);
- layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {1, n_ssm_head}, 0);
- layer.ssm_norm = create_tensor(tn(LLM_TENSOR_SSM_NORM, "weight", i), {d_inner / n_group, n_group}, 0);
- // out_proj
- layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}, 0);
- } else {
- // attention layers (with optional bias)
- const int64_t n_head_i = hparams.n_head(i);
- const int64_t n_embd_k_gqa_i = hparams.n_embd_k_gqa(i);
- const int64_t n_embd_v_gqa_i = hparams.n_embd_v_gqa(i);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head_i}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa_i}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa_i}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head_i, n_embd}, 0);
- layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_k_gqa_i}, TENSOR_NOT_REQUIRED);
- layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_v_gqa_i}, TENSOR_NOT_REQUIRED);
- layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- }
- // feed forward (w/ optional biases)
- if (n_expert > 0) {
- // MoE FFN
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
- layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
- layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, TENSOR_NOT_REQUIRED);
- layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
- layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
- // For Granite MoE Shared
- if (hparams.n_ff_shexp > 0) {
- layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
- layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
- layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {hparams.n_ff_shexp, n_embd}, 0);
- }
- } else {
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
- layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
- }
- }
- } break;
- case LLM_ARCH_XVERSE:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- } break;
- case LLM_ARCH_COMMAND_R:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- // init output from the input tok embed
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- if (n_layer >= 64){
- layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, 0);
- layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, 0);
- }
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- } break;
- case LLM_ARCH_COHERE2:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
- // init output from the input tok embed
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab },
- TENSOR_DUPLICATED);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd }, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_gqa }, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_gqa }, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), { n_embd, n_ff }, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, n_ff }, 0);
- }
- }
- break;
- case LLM_ARCH_OLMO: // adapted from LLM_ARCH_LLAMA with norm params removed
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- } break;
- case LLM_ARCH_OLMO2:
- {
- const int64_t n_embd_head = n_embd / n_head;
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, 0);
- layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_head_kv * n_embd_head}, 0);
- layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
- }
- } break;
- case LLM_ARCH_SEED_OSS:
- {
- const uint32_t head_dim = hparams.n_embd_head_k;
- const int64_t n_qo_dim = n_head * head_dim;
- const int64_t n_kv_dim = n_head_kv * head_dim;
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_qo_dim}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_kv_dim}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_kv_dim}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_qo_dim, n_embd}, 0);
- layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_qo_dim}, TENSOR_NOT_REQUIRED);
- layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_kv_dim}, TENSOR_NOT_REQUIRED);
- layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_kv_dim}, TENSOR_NOT_REQUIRED);
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- }
- } break;
- case LLM_ARCH_OLMOE:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, 0);
- layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
- if (n_expert == 0) {
- throw std::runtime_error("n_expert must be > 0");
- }
- if (n_expert_used == 0) {
- throw std::runtime_error("n_expert_used must be > 0");
- }
- // MoE branch
- layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
- layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
- layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
- }
- } break;
- case LLM_ARCH_OPENELM:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- // init output from the input tok embed
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- for (int i = 0; i < n_layer; ++i) {
- const int64_t n_head = hparams.n_head(i);
- const int64_t n_head_qkv = 2*hparams.n_head_kv(i) + n_head;
- const int64_t n_ff = hparams.n_ff(i);
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_head_qkv*n_embd_head_k}, 0);
- layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
- layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head*n_embd_head_k, n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- } break;
- case LLM_ARCH_GPTNEOX:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
- layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
- layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
- layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
- }
- } break;
- case LLM_ARCH_ARCTIC:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_embd}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_embd, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_embd}, 0);
- layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
- layer.ffn_norm_exps = create_tensor(tn(LLM_TENSOR_FFN_NORM_EXPS, "weight", i), {n_embd}, 0);
- layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
- layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
- layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
- }
- } break;
- case LLM_ARCH_DEEPSEEK:
- {
- const int64_t n_ff_exp = hparams.n_ff_exp;
- const int64_t n_expert_shared = hparams.n_expert_shared;
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- if (i < (int) hparams.n_layer_dense_lead) {
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- } else {
- layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
- if (n_expert == 0) {
- throw std::runtime_error("n_expert must be > 0");
- }
- if (n_expert_used == 0) {
- throw std::runtime_error("n_expert_used must be > 0");
- }
- // MoE branch
- layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
- layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
- layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
- // Shared expert branch
- layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
- layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0);
- layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
- }
- }
- } break;
- case LLM_ARCH_DEEPSEEK2:
- {
- // lite variants include DeepSeek-V2-Lite, GigaChat3-10B-A1.8B
- const bool is_lite = (hparams.n_layer == 27 || hparams.n_layer == 26);
- const bool is_mla = (hparams.n_embd_head_k_mla != 0 && hparams.n_embd_head_v_mla != 0);
- // note: these are the actual head sizes you get when treating as MHA or after "decompression" using wv_b for MLA
- const int64_t n_embd_head_k_mla = is_mla ? hparams.n_embd_head_k_mla : hparams.n_embd_head_k;
- const int64_t n_embd_head_v_mla = is_mla ? hparams.n_embd_head_v_mla : hparams.n_embd_head_v;
- const int64_t n_embd_head_qk_rope = hparams.n_rot;
- const int64_t n_embd_head_qk_nope = n_embd_head_k_mla - n_embd_head_qk_rope;
- const int64_t q_lora_rank = hparams.n_lora_q;
- const int64_t kv_lora_rank = hparams.n_lora_kv;
- const int64_t n_ff_exp = hparams.n_ff_exp;
- const int64_t n_expert_shared = hparams.n_expert_shared;
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- if (!is_lite) {
- layer.attn_q_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank}, 0);
- }
- layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0);
- if (!is_lite) {
- layer.wq_a = create_tensor(tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank}, 0);
- layer.wq_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k_mla}, 0);
- } else {
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_head * n_embd_head_k_mla}, 0);
- }
- layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + n_embd_head_qk_rope}, 0);
- // note: only old legacy GGUF files will have the unsplit wkv_b tensor in
- if (is_mla) {
- layer.wk_b = create_tensor(tn(LLM_TENSOR_ATTN_K_B, "weight", i), {n_embd_head_qk_nope, kv_lora_rank, n_head}, 0);
- layer.wv_b = create_tensor(tn(LLM_TENSOR_ATTN_V_B, "weight", i), {kv_lora_rank, n_embd_head_v_mla, n_head}, 0);
- } else {
- layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v_mla)}, 0);
- }
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head * n_embd_head_v_mla, n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- if (i < (int) hparams.n_layer_dense_lead) {
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- } else {
- layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
- layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED);
- if (n_expert == 0) {
- throw std::runtime_error("n_expert must be > 0");
- }
- if (n_expert_used == 0) {
- throw std::runtime_error("n_expert_used must be > 0");
- }
- // MoE branch
- layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
- layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
- layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
- // Shared expert branch
- layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
- layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0);
- layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
- }
- }
- } break;
- case LLM_ARCH_PLM:
- {
- const int64_t n_embd_head_qk_rope = hparams.n_rot;
- const int64_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
- const int64_t kv_lora_rank = hparams.n_lora_kv;
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- // output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
- layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + (n_embd_head_qk_rope)}, 0);
- layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0);
- layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_head * ( n_embd_head_v), n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- } break;
- case LLM_ARCH_BITNET:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_sub_norm = create_tensor(tn(LLM_TENSOR_ATTN_SUB_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.wq_scale = create_tensor(tn(LLM_TENSOR_ATTN_Q, "scale", i), {1}, TENSOR_NOT_REQUIRED);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wk_scale = create_tensor(tn(LLM_TENSOR_ATTN_K, "scale", i), {1}, TENSOR_NOT_REQUIRED);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv_scale = create_tensor(tn(LLM_TENSOR_ATTN_V, "scale", i), {1}, TENSOR_NOT_REQUIRED);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.wo_scale = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "scale", i), {1}, TENSOR_NOT_REQUIRED);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_sub_norm = create_tensor(tn(LLM_TENSOR_FFN_SUB_NORM, "weight", i), {n_ff}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_gate_scale = create_tensor(tn(LLM_TENSOR_FFN_GATE, "scale", i), {1}, TENSOR_NOT_REQUIRED);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
- layer.ffn_down_scale = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "scale", i), {1}, TENSOR_NOT_REQUIRED);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_up_scale = create_tensor(tn(LLM_TENSOR_FFN_UP, "scale", i), {1}, TENSOR_NOT_REQUIRED);
- }
- } break;
- case LLM_ARCH_T5:
- {
- const auto n_rel_attn_bkts = hparams.n_rel_attn_bkts;
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output_norm = create_tensor(tn(LLM_TENSOR_DEC_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- // n_layer: number of encoder_layers
- // dec_n_layer: number of decoder_layers
- const int dec_n_layer = hparams.dec_n_layer;
- if (dec_n_layer > n_layer) {
- layers.resize(dec_n_layer);
- }
- // load encoder layers
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_rel_b_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
- layer.wq_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- layer.wk_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- layer.wv_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
- layer.wo_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
- layer.ffn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
- layer.ffn_down_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- // load decoder layers
- for (int i = 0; i < dec_n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_DEC_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_rel_b = create_tensor(tn(LLM_TENSOR_DEC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
- layer.wq = create_tensor(tn(LLM_TENSOR_DEC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_DEC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_DEC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_DEC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
- layer.attn_norm_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_NORM, "weight", i), {n_embd}, 0);
- // this tensor seems to be unused in HF transformers implementation
- layer.attn_rel_b_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
- layer.wq_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- layer.wk_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- layer.wv_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
- layer.wo_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_DEC_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_DEC_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_DEC_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_DEC_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- } break;
- case LLM_ARCH_T5ENCODER:
- {
- const auto n_rel_attn_bkts = hparams.n_rel_attn_bkts;
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_rel_b_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
- layer.wq_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- layer.wk_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- layer.wv_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
- layer.wo_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
- layer.ffn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
- layer.ffn_down_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- } break;
- case LLM_ARCH_JAIS:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
- layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
- layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
- layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
- }
- } break;
- case LLM_ARCH_CHATGLM:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
- layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
- if (layer.wqkv == nullptr) {
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
- layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
- layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
- }
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff * 2}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
- }
- } break;
- case LLM_ARCH_GLM4:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
- layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
- if (layer.wqkv == nullptr) {
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
- layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
- layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
- }
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff * 2}, 0);
- layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
- }
- } break;
- case LLM_ARCH_GLM4_MOE:
- {
- const int64_t n_expert = hparams.n_expert;
- const int64_t n_expert_used = hparams.n_expert_used;
- const int64_t n_expert_shared = hparams.n_expert_shared;
- GGML_ASSERT(hparams.n_expert > 0 && "n_expert must be > 0 for GLM4_MOE MoE layers");
- GGML_ASSERT(hparams.n_expert_used > 0 && "n_expert_used must be > 0 for GLM4_MOE MoE layers");
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, TENSOR_DUPLICATED);
- }
- // Load ALL tensors including NextN layer to satisfy total tensor count
- // but only PROCESS up to last layer (skipping final NextN layer) in forward pass
- for (int i = 0; i < n_layer; ++i) {
- int flags = 0;
- if (hparams.nextn_predict_layers > 0 && static_cast<uint32_t>(i) >= n_layer - hparams.nextn_predict_layers) {
- // skip all tensors in the NextN layers
- flags |= TENSOR_SKIP;
- }
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, flags);
- // GLM-style attention with bias terms
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd_head_k * n_head }, flags);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_k_gqa }, flags);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_v_gqa }, flags);
- layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), { n_embd_head_k * n_head }, flags);
- layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), { n_embd_k_gqa }, flags);
- layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), { n_embd_v_gqa }, flags);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd_head_k * n_head, n_embd }, flags);
- // K/Q norm tensors (optional for GLM-4.5 355B variant)
- layer.attn_q_norm = create_tensor(
- tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), { n_embd_head_k }, TENSOR_NOT_REQUIRED | flags);
- layer.attn_k_norm = create_tensor(
- tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), { n_embd_head_k }, TENSOR_NOT_REQUIRED | flags);
- layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), { n_embd }, flags);
- // Check if this layer uses MoE or dense FFN based on n_layer_dense_lead
- // GLM 4.5 uses hybrid architecture: layer 0 is dense, layers 1+ are MoE
- const bool use_moe = (static_cast<uint32_t>(i) >= hparams.n_layer_dense_lead);
- if (use_moe) {
- // MoE layers
- layer.ffn_gate_inp =
- create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), { n_embd, n_expert }, flags);
- layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), { n_expert }, flags);
- // MoE branch
- const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
- layer.ffn_gate_exps = create_tensor(
- tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert }, flags);
- layer.ffn_down_exps = create_tensor(
- tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff_exp, n_embd, n_expert }, flags);
- layer.ffn_up_exps = create_tensor(
- tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert }, flags);
- // Shared expert
- if (n_expert_shared > 0) {
- const int64_t n_ff_shexp = n_ff_exp * n_expert_shared;
- layer.ffn_gate_shexp = create_tensor(
- tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), { n_embd, n_ff_shexp }, flags);
- layer.ffn_down_shexp = create_tensor(
- tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_shexp, n_embd }, flags);
- layer.ffn_up_shexp = create_tensor(
- tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), { n_embd, n_ff_shexp }, flags);
- }
- } else {
- // Dense layers (first k layers) - GLM uses separate gate/up projections
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), { n_embd, n_ff }, flags);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, flags);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, n_ff }, flags);
- }
- // NextN/MTP tensors (preserved but unused) - conditionally load for last nextn_predict_layers
- if (hparams.nextn_predict_layers > 0 && static_cast<uint32_t>(i) >= n_layer - hparams.nextn_predict_layers) {
- layer.nextn.eh_proj = create_tensor(tn(LLM_TENSOR_NEXTN_EH_PROJ, "weight", i), { 2 * n_embd, n_embd }, flags);
- layer.nextn.enorm = create_tensor(tn(LLM_TENSOR_NEXTN_ENORM, "weight", i), { n_embd }, flags);
- layer.nextn.hnorm = create_tensor(tn(LLM_TENSOR_NEXTN_HNORM, "weight", i), { n_embd }, flags);
- // Optional tensors
- layer.nextn.embed_tokens = create_tensor(tn(LLM_TENSOR_NEXTN_EMBED_TOKENS, "weight", i), { n_embd, n_vocab }, flags | TENSOR_NOT_REQUIRED);
- layer.nextn.shared_head_head = create_tensor(tn(LLM_TENSOR_NEXTN_SHARED_HEAD_HEAD, "weight", i), { n_embd, n_vocab }, flags | TENSOR_NOT_REQUIRED);
- layer.nextn.shared_head_norm = create_tensor(tn(LLM_TENSOR_NEXTN_SHARED_HEAD_NORM, "weight", i), { n_embd }, flags | TENSOR_NOT_REQUIRED);
- }
- }
- }
- break;
- case LLM_ARCH_NEMOTRON:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- // optional bias tensors
- layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
- layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
- layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- // optional MLP bias
- layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
- }
- } break;
- case LLM_ARCH_NEMOTRON_H:
- {
- // mamba2 Mixer SSM params
- // NOTE: int64_t for tensor dimensions
- const int64_t d_conv = hparams.ssm_d_conv;
- const int64_t d_inner = hparams.ssm_d_inner;
- const int64_t d_state = hparams.ssm_d_state;
- const int64_t n_ssm_head = hparams.ssm_dt_rank;
- const int64_t n_group = hparams.ssm_n_group;
- const int64_t d_in_proj = 2*d_inner + 2*n_group*d_state + n_ssm_head;
- // embeddings
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- {
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed, duplicated to allow offloading
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- // all blocks use the attn norm
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- if (hparams.is_recurrent(i)) {
- // ssm layers
- layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, d_in_proj}, 0);
- layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner + 2*n_group*d_state}, 0);
- layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner + 2*n_group*d_state}, TENSOR_NOT_REQUIRED);
- layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {n_ssm_head}, 0);
- // no "weight" suffix for these
- layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {1, n_ssm_head}, 0);
- layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {1, n_ssm_head}, 0);
- layer.ssm_norm = create_tensor(tn(LLM_TENSOR_SSM_NORM, "weight", i), {d_inner / n_group, n_group}, 0);
- // out_proj
- layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}, 0);
- } else if (hparams.n_ff(i) == 0) {
- // attention layers (with optional bias)
- const int64_t n_head_i = hparams.n_head(i);
- const int64_t n_embd_k_gqa_i = hparams.n_embd_k_gqa(i);
- const int64_t n_embd_v_gqa_i = hparams.n_embd_v_gqa(i);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head_i}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa_i}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa_i}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head_i, n_embd}, 0);
- layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_k_gqa_i}, TENSOR_NOT_REQUIRED);
- layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_v_gqa_i}, TENSOR_NOT_REQUIRED);
- layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- } else {
- // mlp layers
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { hparams.n_ff(i), n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, hparams.n_ff(i)}, 0);
- layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {hparams.n_ff(i)}, TENSOR_NOT_REQUIRED);
- }
- }
- } break;
- case LLM_ARCH_EXAONE:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- } break;
- case LLM_ARCH_EXAONE4:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
- layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
- layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
- layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
- }
- } break;
- case LLM_ARCH_RWKV6:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // Block 0, LN0
- tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
- tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- const int time_mix_extra_dim = hparams.time_mix_extra_dim;
- const int time_decay_extra_dim = hparams.time_decay_extra_dim;
- const int head_size = hparams.wkv_head_size;
- const int attn_hidden_size = n_embd;
- const int ffn_size = hparams.n_ff_arr[0];
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
- layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, 0);
- layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, 0);
- layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, time_mix_extra_dim * 5}, 0);
- layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {time_mix_extra_dim, n_embd, 5}, 0);
- layer.time_mix_lerp_x = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_X, "weight", i), {n_embd, 1, 1}, 0);
- layer.time_mix_lerp_w = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_W, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
- layer.time_mix_lerp_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
- layer.time_mix_lerp_v = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_V, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
- layer.time_mix_lerp_r = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_R, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
- layer.time_mix_lerp_g = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_G, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
- layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, TENSOR_NOT_REQUIRED);
- GGML_ASSERT(!(layer.time_mix_lerp_fused == NULL && layer.time_mix_lerp_w == NULL));
- layer.time_mix_first = create_tensor(tn(LLM_TENSOR_TIME_MIX_FIRST, "weight", i), {head_size, n_embd / head_size}, 0);
- layer.time_mix_decay = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY, "weight", i), {n_embd}, 0);
- layer.time_mix_decay_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W1, "weight", i), {n_embd, time_decay_extra_dim}, 0);
- layer.time_mix_decay_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W2, "weight", i), {time_decay_extra_dim, attn_hidden_size}, 0);
- layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {attn_hidden_size, n_embd}, 0);
- layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd}, 0);
- layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
- layer.time_mix_gate = create_tensor(tn(LLM_TENSOR_TIME_MIX_GATE, "weight", i), {attn_hidden_size, n_embd}, 0);
- layer.time_mix_ln = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd}, 0);
- layer.time_mix_ln_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}, 0);
- layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
- layer.channel_mix_lerp_k = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, 0);
- layer.channel_mix_lerp_r = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_LERP_R, "weight", i), {n_embd, 1, 1}, 0);
- layer.channel_mix_key = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_KEY, "weight", i), {n_embd, ffn_size}, 0);
- layer.channel_mix_value = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_VALUE, "weight", i), {ffn_size, n_embd}, 0);
- layer.channel_mix_receptance = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_RECEPTANCE, "weight", i), {n_embd, n_embd}, 0);
- }
- } break;
- case LLM_ARCH_RWKV6QWEN2:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, TENSOR_NOT_REQUIRED);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- const int time_mix_extra_dim = hparams.time_mix_extra_dim;
- const int time_decay_extra_dim = hparams.time_decay_extra_dim;
- const int head_size = hparams.wkv_head_size;
- const int attn_hidden_size = n_embd;
- const int n_head_kv = hparams.n_head_kv();
- int attn_key_value_size;
- if (n_head_kv == 0 || attn_hidden_size / head_size == n_head_kv) {
- attn_key_value_size = attn_hidden_size;
- } else {
- attn_key_value_size = n_head_kv * head_size;
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, time_mix_extra_dim * 5}, 0);
- layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {time_mix_extra_dim, n_embd, 5}, 0);
- layer.time_mix_lerp_x = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_X, "weight", i), {n_embd, 1, 1}, 0);
- layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, 0);
- layer.time_mix_first = create_tensor(tn(LLM_TENSOR_TIME_MIX_FIRST, "weight", i), {head_size, n_embd / head_size}, TENSOR_NOT_REQUIRED);
- layer.time_mix_decay = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY, "weight", i), {n_embd}, 0);
- layer.time_mix_decay_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W1, "weight", i), {n_embd, time_decay_extra_dim}, 0);
- layer.time_mix_decay_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W2, "weight", i), {time_decay_extra_dim, attn_hidden_size}, 0);
- layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {n_embd, attn_key_value_size}, 0);
- layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {n_embd, attn_key_value_size}, 0);
- layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
- layer.time_mix_gate = create_tensor(tn(LLM_TENSOR_TIME_MIX_GATE, "weight", i), {attn_hidden_size, n_embd}, 0);
- // optional bias tensors
- layer.time_mix_key_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "bias", i), {attn_key_value_size}, TENSOR_NOT_REQUIRED);
- layer.time_mix_value_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "bias", i), {attn_key_value_size}, TENSOR_NOT_REQUIRED);
- layer.time_mix_receptance_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "bias", i), {attn_hidden_size}, TENSOR_NOT_REQUIRED);
- layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- } break;
- case LLM_ARCH_RWKV7:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // Block 0, LN0
- tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
- tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- const int n_lora_decay = hparams.n_lora_decay;
- const int n_lora_iclr = hparams.n_lora_iclr;
- const int n_lora_value_res_mix = hparams.n_lora_value_res_mix;
- const int n_lora_gate = hparams.n_lora_gate;
- const int attn_hidden_size = n_embd;
- const int ffn_size = hparams.n_ff_arr[0];
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
- layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, 0);
- layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, 0);
- layer.time_mix_w0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W0, "weight", i), {n_embd}, 0);
- layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, n_lora_decay}, 0);
- layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {n_lora_decay, n_embd}, 0);
- layer.time_mix_a0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A0, "weight", i), {n_embd}, 0);
- layer.time_mix_a1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A1, "weight", i), {n_embd, n_lora_iclr}, 0);
- layer.time_mix_a2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A2, "weight", i), {n_lora_iclr, n_embd}, 0);
- if (i == 0) {
- // actually not used
- layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
- layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_iclr}, 0);
- layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_iclr, n_embd}, 0);
- } else {
- layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
- layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_value_res_mix}, 0);
- layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_value_res_mix, n_embd}, 0);
- }
- layer.time_mix_g1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G1, "weight", i), {n_embd, n_lora_gate}, 0);
- layer.time_mix_g2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G2, "weight", i), {n_lora_gate, n_embd}, 0);
- layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 6}, 0);
- layer.time_mix_k_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_K, "weight", i), {attn_hidden_size}, 0);
- layer.time_mix_k_a = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_A, "weight", i), {attn_hidden_size}, 0);
- layer.time_mix_r_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_R_K, "weight", i), {attn_hidden_size}, 0);
- layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {attn_hidden_size, n_embd}, 0);
- layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd}, 0);
- layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
- layer.time_mix_ln = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd}, 0);
- layer.time_mix_ln_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}, 0);
- layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
- layer.channel_mix_lerp_k = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, 0);
- layer.channel_mix_key = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_KEY, "weight", i), {n_embd, ffn_size}, 0);
- layer.channel_mix_value = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_VALUE, "weight", i), {ffn_size, n_embd}, 0);
- }
- } break;
- case LLM_ARCH_ARWKV7:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- const int n_lora_decay = hparams.n_lora_decay;
- const int n_lora_iclr = hparams.n_lora_iclr;
- const int n_lora_value_res_mix = hparams.n_lora_value_res_mix;
- const int n_lora_gate = hparams.n_lora_gate;
- const int attn_hidden_size = n_embd;
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.time_mix_w0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W0, "weight", i), {n_embd}, 0);
- layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, n_lora_decay}, 0);
- layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {n_lora_decay, n_embd}, 0);
- layer.time_mix_a0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A0, "weight", i), {n_embd}, 0);
- layer.time_mix_a1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A1, "weight", i), {n_embd, n_lora_iclr}, 0);
- layer.time_mix_a2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A2, "weight", i), {n_lora_iclr, n_embd}, 0);
- if (i == 0) {
- // actually not used
- layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
- layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_iclr}, 0);
- layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_iclr, n_embd}, 0);
- } else {
- layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
- layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_value_res_mix}, 0);
- layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_value_res_mix, n_embd}, 0);
- }
- layer.time_mix_g1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G1, "weight", i), {n_embd, n_lora_gate}, TENSOR_NOT_REQUIRED);
- layer.time_mix_g2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G2, "weight", i), {n_lora_gate, n_embd}, TENSOR_NOT_REQUIRED);
- try {
- layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 6}, 0);
- } catch(std::runtime_error & e) {
- // ARWKV models may not have gate tensors
- layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, 0);
- }
- layer.time_mix_k_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_K, "weight", i), {attn_hidden_size}, 0);
- layer.time_mix_k_a = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_A, "weight", i), {attn_hidden_size}, 0);
- layer.time_mix_r_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_R_K, "weight", i), {attn_hidden_size}, 0);
- layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {attn_hidden_size, n_embd}, 0);
- layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd}, 0);
- layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
- layer.time_mix_ln = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.time_mix_ln_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- } break;
- case LLM_ARCH_CHAMELEON:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, 0);
- layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, 0);
- layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd_head_k, n_head}, TENSOR_NOT_REQUIRED);
- layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd_head_k, n_head_kv}, TENSOR_NOT_REQUIRED);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- } break;
- case LLM_ARCH_WAVTOKENIZER_DEC:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {hparams.n_embd_features, n_vocab}, 0);
- conv1d = create_tensor(tn(LLM_TENSOR_CONV1D, "weight"), {7, hparams.n_embd_features, hparams.posnet.n_embd}, 0);
- conv1d_b = create_tensor(tn(LLM_TENSOR_CONV1D, "bias"), {1, hparams.posnet.n_embd}, 0);
- // posnet
- {
- const int64_t n_embd = hparams.posnet.n_embd;
- for (uint32_t i = 0; i < hparams.posnet.n_layer; ++i) {
- auto & layer = layers[i].posnet;
- // posnet:
- //
- // - resnet
- // - resnet
- // - attn
- // - resnet
- // - resnet
- // - norm
- //
- switch (i) {
- case 0:
- case 1:
- case 3:
- case 4:
- {
- layer.norm1 = create_tensor(tn(LLM_TENSOR_POS_NET_NORM1, "weight", i), {1, n_embd}, 0);
- layer.norm1_b = create_tensor(tn(LLM_TENSOR_POS_NET_NORM1, "bias", i), {1, n_embd}, 0);
- layer.conv1 = create_tensor(tn(LLM_TENSOR_POS_NET_CONV1, "weight", i), {3, n_embd, n_embd}, 0);
- layer.conv1_b = create_tensor(tn(LLM_TENSOR_POS_NET_CONV1, "bias", i), {1, n_embd}, 0);
- layer.norm2 = create_tensor(tn(LLM_TENSOR_POS_NET_NORM2, "weight", i), {1, n_embd}, 0);
- layer.norm2_b = create_tensor(tn(LLM_TENSOR_POS_NET_NORM2, "bias", i), {1, n_embd}, 0);
- layer.conv2 = create_tensor(tn(LLM_TENSOR_POS_NET_CONV2, "weight", i), {3, n_embd, n_embd}, 0);
- layer.conv2_b = create_tensor(tn(LLM_TENSOR_POS_NET_CONV2, "bias", i), {1, n_embd}, 0);
- } break;
- case 2:
- {
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "weight", i), {1, n_embd}, 0);
- layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "bias", i), {1, n_embd}, 0);
- layer.attn_q = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_Q, "weight", i), {1, n_embd, n_embd}, 0);
- layer.attn_q_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_Q, "bias", i), {1, n_embd}, 0);
- layer.attn_k = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_K, "weight", i), {1, n_embd, n_embd}, 0);
- layer.attn_k_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_K, "bias", i), {1, n_embd}, 0);
- layer.attn_v = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_V, "weight", i), {1, n_embd, n_embd}, 0);
- layer.attn_v_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_V, "bias", i), {1, n_embd}, 0);
- layer.attn_o = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_OUT, "weight", i), {1, n_embd, n_embd}, 0);
- layer.attn_o_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_OUT, "bias", i), {1, n_embd}, 0);
- } break;
- case 5:
- {
- layer.norm = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "weight", i), {1, n_embd}, 0);
- layer.norm_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "bias", i), {1, n_embd}, 0);
- } break;
- default: GGML_ABORT("unknown posnet layer");
- };
- }
- }
- GGML_ASSERT(hparams.posnet.n_embd == hparams.convnext.n_embd);
- tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {hparams.posnet.n_embd}, 0);
- tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {hparams.posnet.n_embd}, 0);
- // convnext
- {
- const int64_t n_embd = hparams.convnext.n_embd;
- for (uint32_t i = 0; i < hparams.convnext.n_layer; ++i) {
- auto & layer = layers[i].convnext;
- layer.dw = create_tensor(tn(LLM_TENSOR_CONVNEXT_DW, "weight", i), {7, 1, n_embd}, 0);
- layer.dw_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_DW, "bias", i), {1, n_embd}, 0);
- layer.norm = create_tensor(tn(LLM_TENSOR_CONVNEXT_NORM, "weight", i), {n_embd}, 0);
- layer.norm_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_NORM, "bias", i), {n_embd}, 0);
- layer.pw1 = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW1, "weight", i), {n_embd, n_ff}, 0);
- layer.pw1_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW1, "bias", i), {n_ff}, 0);
- layer.pw2 = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW2, "weight", i), {n_ff, n_embd}, 0);
- layer.pw2_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW2, "bias", i), {n_embd}, 0);
- layer.gamma = create_tensor(tn(LLM_TENSOR_CONVNEXT_GAMMA, "weight", i), {n_embd}, 0);
- }
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
- }
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {hparams.convnext.n_embd, n_embd}, 0);
- output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), {n_embd}, 0);
- } break;
- case LLM_ARCH_BAILINGMOE:
- {
- const int64_t n_ff_exp = hparams.n_ff_exp;
- const int64_t n_expert_shared = hparams.n_expert_shared;
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_head * n_rot}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_head_kv * n_rot}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_head_kv * n_rot}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head * n_rot, n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
- if (n_expert == 0) {
- throw std::runtime_error("n_expert must be > 0");
- }
- if (n_expert_used == 0) {
- throw std::runtime_error("n_expert_used must be > 0");
- }
- layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
- layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
- layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
- layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
- layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0);
- layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
- }
- } break;
- case LLM_ARCH_BAILINGMOE2:
- {
- const int64_t n_ff_exp = hparams.n_ff_exp;
- const int64_t n_expert_shared = hparams.n_expert_shared;
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- GGML_ASSERT(n_expert > 0 && "n_expert must be > 0 for bailingmoe2");
- GGML_ASSERT(n_expert_used > 0 && "n_expert_used must be > 0 for bailingmoe2");
- for (int i = 0; i < n_layer; ++i) {
- int flags = 0;
- if (hparams.nextn_predict_layers > 0 && static_cast<uint32_t>(i) >= n_layer - hparams.nextn_predict_layers) {
- // skip all tensors in the NextN layers
- flags |= TENSOR_SKIP;
- }
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, flags);
- layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, flags);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, flags);
- layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, flags);
- layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, flags);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, flags);
- if (static_cast<uint32_t>(i) >= hparams.n_layer_dense_lead) { // MoE layers
- const int64_t n_ff_shexp = (hparams.n_ff_shexp ? hparams.n_ff_shexp : n_ff_exp) * n_expert_shared;
- layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, flags);
- layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED | flags);
- layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, flags);
- layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, flags);
- layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, flags);
- layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_shexp}, flags);
- layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd}, flags);
- layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_shexp}, flags);
- } else { // Dense layers
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, flags);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, flags);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, flags);
- }
- // NextN/MTP tensors (preserved but unused) - conditionally load for last nextn_predict_layers
- if (hparams.nextn_predict_layers > 0 && static_cast<uint32_t>(i) >= n_layer - hparams.nextn_predict_layers) {
- layer.nextn.eh_proj = create_tensor(tn(LLM_TENSOR_NEXTN_EH_PROJ, "weight", i), { 2 * n_embd, n_embd }, flags);
- layer.nextn.embed_tokens = create_tensor(tn(LLM_TENSOR_NEXTN_EMBED_TOKENS, "weight", i), { n_embd, n_vocab }, TENSOR_NOT_REQUIRED | flags);
- layer.nextn.enorm = create_tensor(tn(LLM_TENSOR_NEXTN_ENORM, "weight", i), { n_embd }, flags);
- layer.nextn.hnorm = create_tensor(tn(LLM_TENSOR_NEXTN_HNORM, "weight", i), { n_embd }, flags);
- layer.nextn.shared_head_head = create_tensor(tn(LLM_TENSOR_NEXTN_SHARED_HEAD_HEAD, "weight", i), { n_embd, n_vocab }, TENSOR_NOT_REQUIRED | flags);
- layer.nextn.shared_head_norm = create_tensor(tn(LLM_TENSOR_NEXTN_SHARED_HEAD_NORM, "weight", i), { n_embd }, TENSOR_NOT_REQUIRED | flags);
- layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, flags);
- }
- }
- } break;
- case LLM_ARCH_DOTS1:
- {
- const int64_t n_ff_exp = hparams.n_ff_exp;
- const int64_t n_expert_shared = hparams.n_expert_shared;
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
- layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
- layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- if (i < (int) hparams.n_layer_dense_lead) {
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- } else {
- layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
- layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED);
- if (n_expert == 0) {
- throw std::runtime_error("n_expert must be > 0");
- }
- if (n_expert_used == 0) {
- throw std::runtime_error("n_expert_used must be > 0");
- }
- // MoE branch
- layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
- layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
- layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
- // Shared expert branch
- layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
- layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0);
- layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
- }
- }
- } break;
- case LLM_ARCH_ARCEE:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- } break;
- case LLM_ARCH_AFMOE:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- const int64_t n_ff_exp = hparams.n_ff_exp;
- const int64_t n_expert_shared = hparams.n_expert_shared;
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- // dual attention normalization
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
- // attention projections
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
- // Q/K normalization
- layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
- layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
- // attention gating
- layer.wqkv_gate = create_tensor(tn(LLM_TENSOR_ATTN_GATE, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
- // dual ffn normalization
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
- if (static_cast<uint32_t>(i) >= hparams.n_layer_dense_lead) {
- // MoE layers
- layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
- layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, 0);
- // grouped expert weights
- layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
- layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
- layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
- // shared expert
- if (n_expert_shared > 0) {
- const int64_t n_ff_shexp = n_ff_exp * n_expert_shared;
- layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_shexp}, 0);
- layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd}, 0);
- layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_shexp}, 0);
- }
- } else {
- // Dense layers
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- }
- } break;
- case LLM_ARCH_ERNIE4_5:
- case LLM_ARCH_ERNIE4_5_MOE:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
- // optional bias tensors
- layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
- layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
- layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- if (arch == LLM_ARCH_ERNIE4_5_MOE && static_cast<uint32_t>(i) >= hparams.n_layer_dense_lead) { // MoE layers
- int n_ff_exp = hparams.n_ff_exp;
- layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
- layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED);
- layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, TENSOR_NOT_REQUIRED);
- layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff_exp, n_embd, n_expert}, 0);
- layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
- // Shared expert (if present)
- if (hparams.n_ff_shexp > 0) {
- layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), { n_embd, hparams.n_ff_shexp}, 0);
- layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {hparams.n_ff_shexp, n_embd }, 0);
- layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), { n_embd, hparams.n_ff_shexp}, 0);
- }
- } else { // Dense layers
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- }
- } break;
- case LLM_ARCH_FALCON_H1:
- {
- // Common
- const int64_t hidden_size = hparams.n_embd; // hidden_size
- // mamba2 Mixer SSM params
- const int64_t ssm_conv_kernel_size = hparams.ssm_d_conv; // ssm_conv_kernel_size
- const int64_t ssm_n_groups = hparams.ssm_n_group; // ssm_n_groups
- const int64_t ssm_state_size = hparams.ssm_d_state; // ssm_state_size
- const int64_t ssm_intermediate_size = hparams.ssm_d_inner; // TODO expand
- const int64_t ssm_num_heads = hparams.ssm_dt_rank; // ssm_num_heads
- const int64_t ssm_conv_dim = ssm_intermediate_size + 2 * ssm_n_groups * ssm_state_size;
- const int64_t ssm_projection_size = ssm_intermediate_size + ssm_conv_dim + ssm_num_heads;
- // attn params
- const int64_t attn_num_attention_head = hparams.n_head(0); // rename to: attn_num_attention_head
- const int64_t attn_num_key_value_head = hparams.n_head_kv(0);
- // ffn params
- const int64_t ffn_intermediate_size = hparams.n_ff(0);
- // embeddings
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {hidden_size, n_vocab}, 0);
- // output
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {hidden_size, n_vocab}, TENSOR_NOT_REQUIRED);
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {hidden_size}, 0);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {hidden_size, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- /*SSM LAYERS*/
- // ssm in
- layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {hidden_size, ssm_projection_size}, 0);
- // ssm 1d conv
- layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {ssm_conv_kernel_size, ssm_conv_dim}, 0);
- layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {ssm_conv_dim}, TENSOR_NOT_REQUIRED);
- // ssm_dt
- layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {ssm_num_heads}, 0);
- // no "weight" suffix for these
- layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {1, ssm_num_heads}, 0);
- layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {1, ssm_num_heads}, 0);
- // ssm_norm
- layer.ssm_norm = create_tensor(tn(LLM_TENSOR_SSM_NORM, "weight", i), {ssm_intermediate_size / ssm_n_groups, ssm_n_groups}, TENSOR_NOT_REQUIRED);
- // out_proj
- layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {ssm_intermediate_size, hidden_size}, 0);
- /*ATTENTION LAYERS*/
- // attention layers (with optional bias)
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {hidden_size, n_embd_head_k * attn_num_attention_head}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {hidden_size, attn_num_key_value_head * n_embd_head_k}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {hidden_size, attn_num_key_value_head * n_embd_head_v}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * attn_num_attention_head, hidden_size}, 0);
- layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {hidden_size}, TENSOR_NOT_REQUIRED);
- layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {attn_num_key_value_head * n_embd_head_k}, TENSOR_NOT_REQUIRED);
- layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {attn_num_key_value_head * n_embd_head_v}, TENSOR_NOT_REQUIRED);
- layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {hidden_size}, TENSOR_NOT_REQUIRED);
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {hidden_size}, 0);
- // feed forward (w/ optional biases)
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, i), {hidden_size}, 0);
- layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {hidden_size, ffn_intermediate_size}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { ffn_intermediate_size, hidden_size}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {hidden_size, ffn_intermediate_size}, 0);
- layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {ffn_intermediate_size}, TENSOR_NOT_REQUIRED);
- layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {hidden_size}, TENSOR_NOT_REQUIRED);
- layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {ffn_intermediate_size}, TENSOR_NOT_REQUIRED);
- }
- } break;
- case LLM_ARCH_HUNYUAN_MOE:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
- layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
- layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
- layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
- layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
- layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
- layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
- layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
- layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {hparams.n_ff_shexp, n_embd}, 0);
- }
- } break;
- case LLM_ARCH_HUNYUAN_DENSE:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
- layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
- layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- } break;
- case LLM_ARCH_SMOLLM3:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- } break;
- case LLM_ARCH_OPENAI_MOE:
- {
- const int64_t n_ff_exp = hparams.n_ff_exp;
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_head * n_rot}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_head_kv * n_rot}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_head_kv * n_rot}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head * n_rot, n_embd}, 0);
- layer.attn_sinks = create_tensor(tn(LLM_TENSOR_ATTN_SINKS, "weight", i), {n_head}, 0);
- layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), { n_embd, n_expert}, 0);
- layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
- layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
- layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
- // bias
- layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_head * n_rot}, 0);
- layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_head_kv * n_rot}, 0);
- layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_head_kv * n_rot}, 0);
- layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
- layer.ffn_gate_inp_b = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "bias", i), {n_expert}, 0);
- layer.ffn_gate_exps_b = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "bias", i), {n_ff_exp, n_expert}, 0);
- layer.ffn_down_exps_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "bias", i), { n_embd, n_expert}, 0);
- layer.ffn_up_exps_b = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "bias", i), {n_ff_exp, n_expert}, 0);
- }
- } break;
- case LLM_ARCH_LFM2:
- case LLM_ARCH_LFM2MOE:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- const bool is_moe_layer = i >= static_cast<int>(hparams.n_layer_dense_lead);
- // ffn/moe is same for transformer and conv layers
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- if (is_moe_layer) {
- GGML_ASSERT(n_expert && n_expert_used);
- layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
- layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, hparams.n_ff_exp, n_expert}, 0);
- layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {hparams.n_ff_exp, n_embd, n_expert}, 0);
- layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, hparams.n_ff_exp, n_expert}, 0);
- layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, 0);
- } else { // dense
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- // for operator_norm
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- if (!hparams.is_recurrent(i)) {
- layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
- layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
- GGML_ASSERT(n_embd_v_gqa == n_embd_k_gqa);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, hparams.n_embd_k_gqa(i)}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, hparams.n_embd_v_gqa(i)}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- } else {
- layer.shortconv.conv = create_tensor(tn(LLM_TENSOR_SHORTCONV_CONV, "weight", i), {hparams.n_shortconv_l_cache, n_embd}, 0);
- layer.shortconv.in_proj = create_tensor(tn(LLM_TENSOR_SHORTCONV_INPROJ, "weight", i), {n_embd, 3 * n_embd}, 0);
- layer.shortconv.out_proj = create_tensor(tn(LLM_TENSOR_SHORTCONV_OUTPROJ, "weight", i), {n_embd, n_embd}, 0);
- }
- }
- } break;
- case LLM_ARCH_SMALLTHINKER:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd_head_k * n_head }, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_gqa }, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_gqa }, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd_head_k * n_head, n_embd }, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);
- GGML_ASSERT(n_expert > 0 && "n_expert must be > 0 for SMALLTHINKER");
- GGML_ASSERT(n_expert_used > 0 && "n_expert_used must be > 0 for SMALLTHINKER");
- // MoE branch
- const int64_t n_ff_exp = hparams.n_ff_exp;
- layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), { n_embd, n_expert }, 0);
- layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert }, 0);
- layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff_exp, n_embd, n_expert }, 0);
- layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert }, 0);
- }
- } break;
- case LLM_ARCH_GROVEMOE:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- GGML_ASSERT(n_expert > 0 && "n_expert must be > 0 for GROVEMOE");
- GGML_ASSERT(n_expert_used > 0 && "n_expert_used must be > 0 for GROVEMOE");
- GGML_ASSERT(hparams.n_group_experts > 0 && "n_group_experts must be > 0 for GROVEMOE");
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
- layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
- layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
- // MoE branch
- const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
- const int64_t n_ff_chexp = hparams.n_ff_chexp ? hparams.n_ff_chexp : n_embd_head_k;
- const int64_t n_chunk_expert = n_expert / hparams.n_group_experts;
- layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
- layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
- layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
- layer.ffn_gate_chexps = create_tensor(tn(LLM_TENSOR_FFN_GATE_CHEXPS, "weight", i), { n_embd, n_ff_chexp, n_chunk_expert}, 0);
- layer.ffn_down_chexps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_CHEXPS, "weight", i), {n_ff_chexp, n_embd, n_chunk_expert}, 0);
- layer.ffn_up_chexps = create_tensor(tn(LLM_TENSOR_FFN_UP_CHEXPS, "weight", i), { n_embd, n_ff_chexp, n_chunk_expert}, 0);
- }
- } break;
- case LLM_ARCH_APERTUS:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
- if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
- layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
- layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
- } else {
- layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
- }
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd_head_k * n_head }, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_gqa }, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_gqa }, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd_head_k * n_head, n_embd }, 0);
- // optional bias tensors
- layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), { n_embd }, TENSOR_NOT_REQUIRED);
- layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), { n_embd_gqa }, TENSOR_NOT_REQUIRED);
- layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), { n_embd_gqa }, TENSOR_NOT_REQUIRED);
- layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), { n_embd }, TENSOR_NOT_REQUIRED);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, n_ff }, 0);
- // Q and K layernorms for Apertus
- layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), { n_embd_head_k }, 0);
- layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), { n_embd_head_k }, TENSOR_NOT_REQUIRED);
- layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), { n_embd_head_k }, 0);
- layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), { n_embd_head_k }, TENSOR_NOT_REQUIRED);
- }
- } break;
- case LLM_ARCH_MINIMAX_M2:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd_head_k * n_head }, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_gqa }, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_gqa }, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd_head_k * n_head, n_embd }, 0);
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k * n_head}, 0);
- layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_k_gqa}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
- layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
- layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
- layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
- layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, 0);
- }
- } break;
- case LLM_ARCH_COGVLM:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd_head_k * n_head * 3}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
- layer.visexp_attn_wqkv = create_tensor(tn(LLM_TENSOR_VISEXP_ATTN_QKV, "weight", i), {n_embd, n_embd_head_k * n_head * 3}, 0);
- layer.visexp_attn_wo = create_tensor(tn(LLM_TENSOR_VISEXP_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
- layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- layer.visexp_ffn_gate = create_tensor(tn(LLM_TENSOR_VISEXP_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.visexp_ffn_down = create_tensor(tn(LLM_TENSOR_VISEXP_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.visexp_ffn_up = create_tensor(tn(LLM_TENSOR_VISEXP_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- } break;
- case LLM_ARCH_PANGU_EMBED:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- // weight tensors
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
- // bias tensors
- layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd_head_k * n_head}, 0);
- layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
- layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
- layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
- layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
- layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
- } else {
- layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
- }
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- } break;
- case LLM_ARCH_QWEN3NEXT:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, TENSOR_DUPLICATED);
- }
- const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
- // Calculate dimensions from hyperparameters
- const int64_t head_k_dim = hparams.ssm_d_state;
- const int64_t head_v_dim = hparams.ssm_d_state;
- const int64_t n_k_heads = hparams.ssm_n_group;
- const int64_t n_v_heads = hparams.ssm_dt_rank;
- const int64_t key_dim = head_k_dim * n_k_heads;
- const int64_t value_dim = head_v_dim * n_v_heads;
- const int64_t conv_dim = key_dim * 2 + value_dim;
- // Calculate projection sizes
- const int64_t qkvz_dim = key_dim * 2 + value_dim * 2;
- const int64_t ba_dim = n_v_heads * 2;
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
- layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), { n_embd }, 0);
- if (!hparams.is_recurrent(i)) {
- // Attention layers
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd_head_k * n_head * 2 }, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_k_gqa }, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_v_gqa }, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd_head_k * n_head, n_embd }, 0);
- // Q/K normalization for attention layers
- layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), { n_embd_head_k }, 0);
- layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), { n_embd_head_k }, 0);
- } else {
- // Linear attention (gated delta net) specific tensors
- // Create tensors with calculated dimensions
- layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), { n_embd, qkvz_dim }, 0);
- layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), { hparams.ssm_d_conv, conv_dim }, 0);
- layer.ssm_dt = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), { hparams.ssm_dt_rank }, 0);
- layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A_NOSCAN, i), { hparams.ssm_dt_rank }, 0);
- layer.ssm_beta_alpha = create_tensor(tn(LLM_TENSOR_SSM_BETA_ALPHA, "weight", i), { n_embd, ba_dim }, 0);
- layer.ssm_norm = create_tensor(tn(LLM_TENSOR_SSM_NORM, "weight", i), { head_v_dim }, 0);
- layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), { value_dim, n_embd }, 0);
- }
- layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), { n_embd, n_expert }, 0);
- layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert }, 0);
- layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff_exp, n_embd, n_expert }, 0);
- layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert }, 0);
- // Shared experts
- layer.ffn_gate_inp_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), { n_embd }, 0);
- layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), { n_embd, hparams.n_ff_shexp }, 0);
- layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), { n_embd, hparams.n_ff_shexp }, 0);
- layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { hparams.n_ff_shexp, n_embd }, 0);
- }
- } break;
- default:
- throw std::runtime_error("unknown architecture");
- }
- if (n_moved_tensors > 0) {
- LLAMA_LOG_DEBUG("%s: tensor '%s' (%s) (and %d others) cannot be used with preferred buffer type %s, using %s instead\n",
- __func__, first_moved_tensor->name, ggml_type_name(first_moved_tensor->type), n_moved_tensors - 1,
- ggml_backend_buft_name(first_moved_from_buft), ggml_backend_buft_name(first_moved_to_buft));
- }
- }
- ml.done_getting_tensors();
- ml.init_mappings(true, use_mlock ? &pimpl->mlock_mmaps : nullptr);
- pimpl->mappings.reserve(ml.mappings.size());
- // create the backend buffers
- std::vector<std::pair<ggml_context *, llama_buf_map>> ctx_buf_maps;
- ctx_buf_maps.reserve(ctx_map.size());
- // Ensure we have enough capacity for the maximum backend buffer we will potentially create
- const size_t n_max_backend_buffer = ctx_map.size() * ml.files.size();
- pimpl->ctxs_bufs.reserve(n_max_backend_buffer);
- for (auto & [buft, ctx_ptr] : ctx_map) {
- ggml_context * ctx = ctx_ptr.get();
- // skip contexts without tensors
- if (ggml_get_first_tensor(ctx) == nullptr) {
- continue;
- }
- llama_buf_map buf_map;
- buf_map.reserve(n_max_backend_buffer);
- // check if it is possible to use buffer_from_host_ptr with this buffer type
- ggml_backend_dev_t dev = ggml_backend_buft_get_device(buft);
- if (!dev) {
- // FIXME: workaround for CPU backend buft having a NULL device
- dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
- if (!dev) {
- throw std::runtime_error(format("%s: no CPU backend found", __func__));
- }
- }
- ggml_backend_dev_props props;
- ggml_backend_dev_get_props(dev, &props);
- bool buffer_from_host_ptr_supported = props.caps.buffer_from_host_ptr;
- bool is_default_buft = buft == ggml_backend_dev_buffer_type(dev);
- std::vector<ggml_backend_buffer_ptr> bufs;
- if (ml.use_mmap && use_mmap_buffer && buffer_from_host_ptr_supported && is_default_buft) {
- for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
- // only the mmap region containing the tensors in the model is mapped to the backend buffer
- // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers
- // this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
- void * addr = nullptr;
- size_t first, last; // NOLINT
- ml.get_mapping_range(&first, &last, &addr, idx, ctx);
- if (first >= last) {
- continue;
- }
- const size_t max_size = ggml_get_max_tensor_size(ctx);
- ggml_backend_buffer_t buf = ggml_backend_dev_buffer_from_host_ptr(dev, (char *) addr + first, last - first, max_size);
- if (buf == nullptr) {
- throw std::runtime_error(format("unable to allocate %s buffer", ggml_backend_buft_name(buft)));
- }
- bufs.emplace_back(buf);
- buf_map.emplace(idx, buf);
- }
- }
- else {
- ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
- if (buf == nullptr) {
- throw std::runtime_error(format("unable to allocate %s buffer", ggml_backend_buft_name(buft)));
- }
- if (use_mlock && ggml_backend_buffer_is_host(buf)) {
- pimpl->mlock_bufs.emplace_back(new llama_mlock);
- auto & mlock_buf = pimpl->mlock_bufs.back();
- mlock_buf->init (ggml_backend_buffer_get_base(buf));
- mlock_buf->grow_to(ggml_backend_buffer_get_size(buf));
- }
- bufs.emplace_back(buf);
- for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
- buf_map.emplace(idx, buf);
- }
- }
- pimpl->ctxs_bufs.emplace_back(std::move(ctx_ptr), std::move(bufs));
- for (auto & buf : buf_map) {
- // indicate that this buffer contains weights
- // this is used by ggml_backend_sched to improve op scheduling: ops that use a weight are preferably scheduled to the backend that contains the weight
- ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
- }
- ctx_buf_maps.emplace_back(ctx, buf_map);
- }
- if (llama_supports_gpu_offload()) {
- const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
- LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
- if (n_gpu_layers > (int) hparams.n_layer) {
- LLAMA_LOG_INFO("%s: offloading output layer to GPU\n", __func__);
- }
- const int max_backend_supported_layers = hparams.n_layer + 1;
- const int max_offloadable_layers = hparams.n_layer + 1;
- LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
- }
- // print memory requirements per buffer type
- for (auto & [_, bufs] : pimpl->ctxs_bufs) {
- for (auto & buf: bufs) {
- LLAMA_LOG_INFO("%s: %12s model buffer size = %8.2f MiB\n",
- __func__, ggml_backend_buffer_name(buf.get()), ggml_backend_buffer_get_size(buf.get()) / 1024.0 / 1024.0);
- }
- }
- // populate tensors_by_name
- for (auto & [ctx, _] : pimpl->ctxs_bufs) {
- for (auto * cur = ggml_get_first_tensor(ctx.get()); cur != NULL; cur = ggml_get_next_tensor(ctx.get(), cur)) {
- tensors_by_name.emplace_back(ggml_get_name(cur), cur);
- }
- }
- // load tensor data
- for (auto & [ctx, buf_map] : ctx_buf_maps) {
- if (!ml.load_all_data(ctx, buf_map, use_mlock ? &pimpl->mlock_mmaps : NULL, params.progress_callback, params.progress_callback_user_data)) {
- return false;
- }
- }
- if (use_mmap_buffer) {
- for (auto & mapping : ml.mappings) {
- pimpl->mappings.emplace_back(std::move(mapping));
- }
- }
- return true;
- }
- std::string llama_model::arch_name() const {
- return llm_arch_name(arch);
- }
- std::string llama_model::type_name() const {
- return llm_type_name(type);
- }
- std::string llama_model::desc() const {
- return pimpl->desc_str;
- }
- size_t llama_model::size() const {
- return pimpl->n_bytes;
- }
- size_t llama_model::n_tensors() const {
- return tensors_by_name.size();
- }
- size_t llama_model::n_devices() const {
- return devices.size();
- }
- std::map<ggml_backend_buffer_type_t, size_t> llama_model::memory_breakdown() const {
- std::map<ggml_backend_buffer_type_t, size_t> ret;
- for (const auto & [_, bufs] : pimpl->ctxs_bufs) {
- for (const auto & buf : bufs) {
- ret[ggml_backend_buffer_get_type(buf.get())] += ggml_backend_buffer_get_size(buf.get());
- }
- }
- return ret;
- }
- uint64_t llama_model::n_elements() const {
- return pimpl->n_elements;
- }
- void llama_model::print_info() const {
- const std::string rope_scaling_type = llama_rope_scaling_type_name(hparams.rope_scaling_type_train);
- auto print_f = [](const std::function<uint32_t(uint32_t)> & f, uint32_t n) {
- bool is_var = false;
- std::vector<uint32_t> v;
- for (uint32_t i = 0; i < n; ++i) {
- v.push_back(f(i));
- if (v[i] != v[0]) {
- is_var = true;
- }
- }
- std::stringstream ss;
- if (is_var) {
- ss << "[";
- for (uint32_t i = 0; i < n; ++i) {
- ss << v[i];
- if (i < n - 1) {
- ss << ", ";
- }
- }
- ss << "]";
- } else {
- ss << v[0];
- }
- return ss.str();
- };
- // hparams
- LLAMA_LOG_INFO("%s: arch = %s\n", __func__, arch_name().c_str());
- LLAMA_LOG_INFO("%s: vocab_only = %d\n", __func__, hparams.vocab_only);
- if (!hparams.vocab_only) {
- LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
- LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
- LLAMA_LOG_INFO("%s: n_embd_inp = %u\n", __func__, hparams.n_embd_inp());
- LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
- LLAMA_LOG_INFO("%s: n_head = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_head(il); }, hparams.n_layer).c_str());
- LLAMA_LOG_INFO("%s: n_head_kv = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_head_kv(il); }, hparams.n_layer).c_str());
- LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot);
- LLAMA_LOG_INFO("%s: n_swa = %u\n", __func__, hparams.n_swa);
- LLAMA_LOG_INFO("%s: is_swa_any = %u\n", __func__, hparams.is_swa_any());
- LLAMA_LOG_INFO("%s: n_embd_head_k = %u\n", __func__, hparams.n_embd_head_k);
- LLAMA_LOG_INFO("%s: n_embd_head_v = %u\n", __func__, hparams.n_embd_head_v);
- LLAMA_LOG_INFO("%s: n_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_gqa(il); }, hparams.n_layer).c_str());
- LLAMA_LOG_INFO("%s: n_embd_k_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_embd_k_gqa(il); }, hparams.n_layer).c_str());
- LLAMA_LOG_INFO("%s: n_embd_v_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_embd_v_gqa(il); }, hparams.n_layer).c_str());
- LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps);
- LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
- LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
- LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
- LLAMA_LOG_INFO("%s: f_logit_scale = %.1e\n", __func__, hparams.f_logit_scale);
- LLAMA_LOG_INFO("%s: f_attn_scale = %.1e\n", __func__, hparams.f_attention_scale);
- LLAMA_LOG_INFO("%s: n_ff = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_ff(il); }, hparams.n_layer).c_str());
- LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert);
- LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used);
- LLAMA_LOG_INFO("%s: n_expert_groups = %d\n", __func__, hparams.n_expert_groups);
- LLAMA_LOG_INFO("%s: n_group_used = %d\n", __func__, hparams.n_group_used);
- LLAMA_LOG_INFO("%s: causal attn = %d\n", __func__, hparams.causal_attn);
- LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type);
- LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type);
- LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type.c_str());
- LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
- LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
- LLAMA_LOG_INFO("%s: n_ctx_orig_yarn = %u\n", __func__, hparams.n_ctx_orig_yarn);
- LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown");
- // MRoPE (Multi-axis Rotary Position Embedding) sections
- if (const auto & s = hparams.rope_sections; s[0] || s[1] || s[2] || s[3]) {
- LLAMA_LOG_INFO("%s: mrope sections = [%d, %d, %d, %d]\n", __func__, s[0], s[1], s[2], s[3]);
- }
- if (!classifier_labels.empty()) {
- LLAMA_LOG_INFO("%s: n_cls_out = %u\n", __func__, hparams.n_cls_out);
- size_t i = 0;
- for (auto label : classifier_labels) {
- LLAMA_LOG_INFO("%s: cls_label[%2zu] = %s\n", __func__, i++, label.c_str());
- }
- }
- }
- if (arch == LLM_ARCH_MAMBA ||
- arch == LLM_ARCH_MAMBA2 ||
- arch == LLM_ARCH_JAMBA ||
- arch == LLM_ARCH_FALCON_H1 ||
- arch == LLM_ARCH_PLAMO2 ||
- arch == LLM_ARCH_GRANITE_HYBRID ||
- arch == LLM_ARCH_QWEN3NEXT ||
- arch == LLM_ARCH_NEMOTRON_H) {
- LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
- LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
- LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state);
- LLAMA_LOG_INFO("%s: ssm_dt_rank = %u\n", __func__, hparams.ssm_dt_rank);
- LLAMA_LOG_INFO("%s: ssm_n_group = %u\n", __func__, hparams.ssm_n_group);
- LLAMA_LOG_INFO("%s: ssm_dt_b_c_rms = %d\n", __func__, hparams.ssm_dt_b_c_rms);
- }
- LLAMA_LOG_INFO("%s: model type = %s\n", __func__, type_name().c_str());
- if (pimpl->n_elements >= 1e12) {
- LLAMA_LOG_INFO("%s: model params = %.2f T\n", __func__, pimpl->n_elements*1e-12);
- } else if (pimpl->n_elements >= 1e9) {
- LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, pimpl->n_elements*1e-9);
- } else if (pimpl->n_elements >= 1e6) {
- LLAMA_LOG_INFO("%s: model params = %.2f M\n", __func__, pimpl->n_elements*1e-6);
- } else {
- LLAMA_LOG_INFO("%s: model params = %.2f K\n", __func__, pimpl->n_elements*1e-3);
- }
- // general kv
- LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, name.c_str());
- if (arch == LLM_ARCH_DEEPSEEK) {
- LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
- LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
- LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
- LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
- }
- if (arch == LLM_ARCH_DEEPSEEK2) {
- LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
- LLAMA_LOG_INFO("%s: n_lora_q = %d\n", __func__, hparams.n_lora_q);
- LLAMA_LOG_INFO("%s: n_lora_kv = %d\n", __func__, hparams.n_lora_kv);
- LLAMA_LOG_INFO("%s: n_embd_head_k_mla = %d\n", __func__, hparams.n_embd_head_k_mla);
- LLAMA_LOG_INFO("%s: n_embd_head_v_mla = %d\n", __func__, hparams.n_embd_head_v_mla);
- LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
- LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
- LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
- LLAMA_LOG_INFO("%s: expert_weights_norm = %d\n", __func__, hparams.expert_weights_norm);
- LLAMA_LOG_INFO("%s: expert_gating_func = %s\n", __func__, llama_expert_gating_func_name((llama_expert_gating_func_type) hparams.expert_gating_func));
- LLAMA_LOG_INFO("%s: rope_yarn_log_mul = %.4f\n", __func__, hparams.rope_yarn_log_mul);
- }
- if (arch == LLM_ARCH_QWEN2MOE) {
- LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
- LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp);
- }
- if (arch == LLM_ARCH_QWEN3MOE || arch == LLM_ARCH_OPENAI_MOE || arch == LLM_ARCH_QWEN3VLMOE || arch == LLM_ARCH_RND1) {
- LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
- }
- if (arch == LLM_ARCH_MINICPM ||
- arch == LLM_ARCH_GRANITE ||
- arch == LLM_ARCH_GRANITE_MOE ||
- arch == LLM_ARCH_GRANITE_HYBRID) {
- LLAMA_LOG_INFO("%s: f_embedding_scale = %f\n", __func__, hparams.f_embedding_scale);
- LLAMA_LOG_INFO("%s: f_residual_scale = %f\n", __func__, hparams.f_residual_scale);
- LLAMA_LOG_INFO("%s: f_attention_scale = %f\n", __func__, hparams.f_attention_scale);
- LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp);
- }
- if (arch == LLM_ARCH_BAILINGMOE) {
- LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
- LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
- LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
- LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
- LLAMA_LOG_INFO("%s: expert_weights_norm = %d\n", __func__, hparams.expert_weights_norm);
- }
- if (arch == LLM_ARCH_BAILINGMOE2) {
- LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
- LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
- LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp);
- LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
- LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
- LLAMA_LOG_INFO("%s: expert_weights_norm = %d\n", __func__, hparams.expert_weights_norm);
- LLAMA_LOG_INFO("%s: expert_gating_func = %s\n", __func__, llama_expert_gating_func_name((llama_expert_gating_func_type) hparams.expert_gating_func));
- LLAMA_LOG_INFO("%s: nextn_predict_layers = %d\n", __func__, hparams.nextn_predict_layers);
- }
- if (arch == LLM_ARCH_SMALLTHINKER || arch == LLM_ARCH_LFM2MOE) {
- LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
- LLAMA_LOG_INFO("%s: expert_gating_func = %s\n", __func__, llama_expert_gating_func_name((llama_expert_gating_func_type) hparams.expert_gating_func));
- }
- if (arch == LLM_ARCH_GROVEMOE) {
- LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
- LLAMA_LOG_INFO("%s: n_ff_chexp = %d\n", __func__, hparams.n_ff_chexp);
- LLAMA_LOG_INFO("%s: n_group_experts = %d\n", __func__, hparams.n_group_experts);
- LLAMA_LOG_INFO("%s: expert_group_scale = %.2f\n", __func__, hparams.expert_group_scale);
- }
- vocab.print_info();
- }
- ggml_backend_dev_t llama_model::dev_layer(int il) const {
- return pimpl->dev_layer.at(il).dev;
- }
- ggml_backend_dev_t llama_model::dev_output() const {
- return pimpl->dev_output.dev;
- }
- template<typename F>
- static bool buft_supported(ggml_backend_buffer_type_t buft, ggml_backend_dev_t dev, F & fn) {
- ggml_init_params params = {
- /*.mem_size =*/ ggml_tensor_overhead()*8,
- /*.mem_buffer =*/ NULL,
- /*.no_alloc =*/ true,
- };
- ggml_context_ptr ctx { ggml_init(params) };
- if (!ctx) {
- throw std::runtime_error(format("failed to create ggml context"));
- }
- ggml_backend_buffer_ptr buf { ggml_backend_buft_alloc_buffer(buft, 0) };
- ggml_tensor * op_tensor = fn(ctx.get());
- for (int i = 0; i < GGML_MAX_SRC; i++) {
- if (op_tensor->src[i] != nullptr) {
- assert(op_tensor->src[i]->buffer == nullptr);
- op_tensor->src[i]->buffer = buf.get();
- }
- }
- bool op_supported = ggml_backend_dev_supports_op(dev, op_tensor);
- return op_supported;
- }
- template<typename F>
- static ggml_backend_buffer_type_t select_buft(const buft_list_t & buft_list, const F & fn) {
- for (const auto & cur : buft_list) {
- ggml_backend_dev_t cur_dev = cur.first;
- ggml_backend_buffer_type_t cur_buft = cur.second;
- if (buft_supported(cur_buft, cur_dev, fn)) {
- return cur_buft;
- }
- }
- throw std::runtime_error(format("no suitable buffer type found"));
- }
- ggml_backend_buffer_type_t llama_model::select_buft(int il) const {
- return ::select_buft(
- *pimpl->dev_layer.at(il).buft_list,
- [&](ggml_context * ctx) {
- ggml_tensor * cur = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hparams.n_embd);
- ggml_tensor * layer_dir = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hparams.n_embd);
- return ggml_add(ctx, cur, layer_dir);
- });
- }
- bool llama_model::has_tensor_overrides() const {
- return pimpl->has_tensor_overrides;
- }
- const ggml_tensor * llama_model::get_tensor(const char * name) const {
- auto it = std::find_if(tensors_by_name.begin(), tensors_by_name.end(),
- [name](const std::pair<std::string, ggml_tensor *> & it) {
- return it.first == name;
- });
- if (it == tensors_by_name.end()) {
- return nullptr;
- }
- return it->second;
- }
- float llama_model::get_rope_freq_base (const llama_cparams & cparams, int il) const {
- return hparams.is_swa(il) ? hparams.rope_freq_base_train_swa : cparams.rope_freq_base;
- }
- float llama_model::get_rope_freq_scale(const llama_cparams & cparams, int il) const {
- return hparams.is_swa(il) ? hparams.rope_freq_scale_train_swa : cparams.rope_freq_scale;
- }
- ggml_tensor * llama_model::get_rope_factors(const llama_cparams & cparams, int il) const {
- const uint32_t n_ctx_seq = cparams.n_ctx_seq;
- // choose long/short freq factors based on the context size
- if (layers[il].rope_freqs != nullptr) {
- return layers[il].rope_freqs;
- }
- if (n_ctx_seq > hparams.n_ctx_orig_yarn) {
- return layers[il].rope_long;
- }
- return layers[il].rope_short;
- }
- llama_memory_i * llama_model::create_memory(const llama_memory_params & params, const llama_cparams & cparams) const {
- llama_memory_i * res;
- switch (arch) {
- // Models that need specific instantiation should be handled in the
- // switch statement
- case LLM_ARCH_BERT:
- case LLM_ARCH_JINA_BERT_V2:
- case LLM_ARCH_JINA_BERT_V3:
- case LLM_ARCH_NOMIC_BERT:
- case LLM_ARCH_NOMIC_BERT_MOE:
- case LLM_ARCH_NEO_BERT:
- case LLM_ARCH_WAVTOKENIZER_DEC:
- case LLM_ARCH_GEMMA_EMBEDDING:
- case LLM_ARCH_DREAM:
- case LLM_ARCH_LLADA:
- case LLM_ARCH_LLADA_MOE:
- case LLM_ARCH_RND1:
- {
- res = nullptr;
- } break;
- // Models that need standard caching should rely on recurrent/hybrid
- // checks
- default:
- {
- if (llm_arch_is_recurrent(arch)) {
- res = new llama_memory_recurrent(
- *this,
- GGML_TYPE_F32,
- GGML_TYPE_F32,
- cparams.offload_kqv,
- std::max((uint32_t) 1, cparams.n_seq_max),
- cparams.n_seq_max,
- nullptr);
- } else if (llm_arch_is_hybrid(arch)) {
- // The main difference between hybrid architectures is the
- // layer filters, so pick the right one here
- llama_memory_hybrid::layer_filter_cb filter_attn = nullptr;
- llama_memory_hybrid::layer_filter_cb filter_recr = nullptr;
- if (arch == LLM_ARCH_FALCON_H1) {
- filter_attn = [&](int32_t) { return true; };
- filter_recr = [&](int32_t) { return true; };
- } else if (arch == LLM_ARCH_NEMOTRON_H) {
- filter_attn = [&](int32_t il) {
- return !hparams.is_recurrent(il) && hparams.n_ff(il) == 0;
- };
- filter_recr = [&](int32_t il) {
- return hparams.is_recurrent(il) && hparams.n_ff(il) == 0;
- };
- }
- res = new llama_memory_hybrid(
- /* model */ *this,
- /* attn_type_k */ params.type_k,
- /* attn_type_v */ params.type_v,
- /* attn_v_trans */ !cparams.flash_attn,
- /* attn_kv_size */ cparams.n_ctx,
- /* attn_n_pad */ 1,
- /* attn_n_swa */ hparams.n_swa,
- /* attn_swa_type */ hparams.swa_type,
- /* recurrent_type_k */ GGML_TYPE_F32,
- /* recurrent_type_v */ GGML_TYPE_F32,
- /* recurrent_kv_size */ std::max((uint32_t) 1, cparams.n_seq_max),
- /* n_seq_max */ cparams.n_seq_max,
- /* offload */ cparams.offload_kqv,
- /* unified */ cparams.kv_unified,
- /* filter_attn */ std::move(filter_attn),
- /* filter_recr */ std::move(filter_recr));
- } else {
- llama_memory_i::layer_reuse_cb reuse = nullptr;
- if (arch == LLM_ARCH_GEMMA3N) {
- reuse = [&](int32_t il) {
- if (il >= (int32_t) hparams.n_layer_kv_from_start) {
- return (int32_t) hparams.n_layer_kv_from_start - (hparams.is_swa(il) ? 2 : 1);
- }
- return -1;
- };
- }
- if (hparams.swa_type != LLAMA_SWA_TYPE_NONE) {
- GGML_ASSERT(hparams.is_swa_any());
- res = new llama_kv_cache_iswa(
- *this,
- params.type_k,
- params.type_v,
- !cparams.flash_attn,
- cparams.offload_kqv,
- params.swa_full,
- cparams.kv_unified,
- cparams.n_ctx_seq,
- cparams.n_seq_max,
- cparams.n_ubatch,
- 1,
- nullptr,
- reuse);
- } else {
- GGML_ASSERT(!hparams.is_swa_any());
- res = new llama_kv_cache(
- *this,
- params.type_k,
- params.type_v,
- !cparams.flash_attn,
- cparams.offload_kqv,
- cparams.kv_unified,
- cparams.n_ctx_seq,
- cparams.n_seq_max,
- 1,
- hparams.n_swa,
- hparams.swa_type,
- nullptr,
- nullptr);
- }
- }
- }
- }
- return res;
- }
- ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
- std::unique_ptr<llm_graph_context> llm;
- switch (arch) {
- case LLM_ARCH_LLAMA:
- {
- llm = std::make_unique<llm_build_llama>(*this, params);
- } break;
- case LLM_ARCH_LLAMA4:
- {
- if (hparams.swa_type == LLAMA_SWA_TYPE_NONE) {
- llm = std::make_unique<llm_build_llama>(*this, params);
- } else {
- llm = std::make_unique<llm_build_llama_iswa>(*this, params);
- }
- } break;
- case LLM_ARCH_DECI:
- {
- llm = std::make_unique<llm_build_deci>(*this, params);
- } break;
- case LLM_ARCH_BAICHUAN:
- {
- llm = std::make_unique<llm_build_baichuan>(*this, params);
- } break;
- case LLM_ARCH_FALCON:
- {
- llm = std::make_unique<llm_build_falcon>(*this, params);
- } break;
- case LLM_ARCH_GROK:
- {
- llm = std::make_unique<llm_build_grok>(*this, params);
- } break;
- case LLM_ARCH_STARCODER:
- {
- llm = std::make_unique<llm_build_starcoder>(*this, params);
- } break;
- case LLM_ARCH_REFACT:
- {
- llm = std::make_unique<llm_build_refact>(*this, params);
- } break;
- case LLM_ARCH_BERT:
- case LLM_ARCH_JINA_BERT_V2:
- case LLM_ARCH_JINA_BERT_V3:
- case LLM_ARCH_NOMIC_BERT:
- case LLM_ARCH_NOMIC_BERT_MOE:
- {
- llm = std::make_unique<llm_build_bert>(*this, params);
- } break;
- case LLM_ARCH_NEO_BERT:
- {
- llm = std::make_unique<llm_build_neo_bert>(*this, params);
- } break;
- case LLM_ARCH_BLOOM:
- {
- llm = std::make_unique<llm_build_bloom>(*this, params);
- } break;
- case LLM_ARCH_MPT:
- {
- llm = std::make_unique<llm_build_mpt>(*this, params);
- } break;
- case LLM_ARCH_STABLELM:
- {
- llm = std::make_unique<llm_build_stablelm>(*this, params);
- } break;
- case LLM_ARCH_QWEN:
- {
- llm = std::make_unique<llm_build_qwen>(*this, params);
- } break;
- case LLM_ARCH_QWEN2:
- {
- llm = std::make_unique<llm_build_qwen2>(*this, params);
- } break;
- case LLM_ARCH_DREAM:
- {
- llm = std::make_unique<llm_build_dream>(*this, params);
- }
- break;
- case LLM_ARCH_LLADA:
- {
- llm = std::make_unique<llm_build_llada>(*this, params);
- }
- break;
- case LLM_ARCH_LLADA_MOE:
- {
- llm = std::make_unique<llm_build_llada_moe>(*this, params);
- }
- break;
- case LLM_ARCH_RND1:
- {
- llm = std::make_unique<llm_build_rnd1>(*this, params);
- }
- break;
- case LLM_ARCH_QWEN2VL:
- {
- llm = std::make_unique<llm_build_qwen2vl>(*this, params);
- } break;
- case LLM_ARCH_QWEN2MOE:
- {
- llm = std::make_unique<llm_build_qwen2moe>(*this, params);
- } break;
- case LLM_ARCH_QWEN3:
- {
- llm = std::make_unique<llm_build_qwen3>(*this, params);
- } break;
- case LLM_ARCH_QWEN3MOE:
- {
- llm = std::make_unique<llm_build_qwen3moe>(*this, params);
- } break;
- case LLM_ARCH_QWEN3VL:
- {
- llm = std::make_unique<llm_build_qwen3vl>(*this, params);
- } break;
- case LLM_ARCH_QWEN3VLMOE:
- {
- llm = std::make_unique<llm_build_qwen3vlmoe>(*this, params);
- } break;
- case LLM_ARCH_PHI2:
- {
- llm = std::make_unique<llm_build_phi2>(*this, params);
- } break;
- case LLM_ARCH_PHI3:
- case LLM_ARCH_PHIMOE:
- {
- if (hparams.swa_type != LLAMA_SWA_TYPE_NONE) {
- llm = std::make_unique<llm_build_phi3<true>> (*this, params);
- } else {
- llm = std::make_unique<llm_build_phi3<false>>(*this, params);
- }
- } break;
- case LLM_ARCH_PLAMO:
- {
- llm = std::make_unique<llm_build_plamo>(*this, params);
- } break;
- case LLM_ARCH_PLAMO2:
- {
- llm = std::make_unique<llm_build_plamo2>(*this, params);
- } break;
- case LLM_ARCH_GPT2:
- {
- llm = std::make_unique<llm_build_gpt2>(*this, params);
- } break;
- case LLM_ARCH_CODESHELL:
- {
- llm = std::make_unique<llm_build_codeshell>(*this, params);
- } break;
- case LLM_ARCH_ORION:
- {
- llm = std::make_unique<llm_build_orion>(*this, params);
- } break;
- case LLM_ARCH_INTERNLM2:
- {
- llm = std::make_unique<llm_build_internlm2>(*this, params);
- } break;
- case LLM_ARCH_MINICPM3:
- {
- llm = std::make_unique<llm_build_minicpm3>(*this, params);
- } break;
- case LLM_ARCH_GEMMA:
- {
- llm = std::make_unique<llm_build_gemma>(*this, params);
- } break;
- case LLM_ARCH_GEMMA2:
- {
- llm = std::make_unique<llm_build_gemma2_iswa>(*this, params);
- } break;
- case LLM_ARCH_GEMMA3:
- {
- llm = std::make_unique<llm_build_gemma3_iswa>(*this, params);
- } break;
- case LLM_ARCH_GEMMA3N:
- {
- llm = std::make_unique<llm_build_gemma3n_iswa>(*this, params);
- } break;
- case LLM_ARCH_GEMMA_EMBEDDING:
- {
- llm = std::make_unique<llm_build_gemma_embedding>(*this, params);
- } break;
- case LLM_ARCH_STARCODER2:
- {
- llm = std::make_unique<llm_build_starcoder2>(*this, params);
- } break;
- case LLM_ARCH_MAMBA:
- case LLM_ARCH_MAMBA2:
- {
- llm = std::make_unique<llm_build_mamba>(*this, params);
- } break;
- case LLM_ARCH_JAMBA:
- {
- llm = std::make_unique<llm_build_jamba>(*this, params);
- } break;
- case LLM_ARCH_XVERSE:
- {
- llm = std::make_unique<llm_build_xverse>(*this, params);
- } break;
- case LLM_ARCH_COMMAND_R:
- {
- llm = std::make_unique<llm_build_command_r>(*this, params);
- } break;
- case LLM_ARCH_COHERE2:
- {
- llm = std::make_unique<llm_build_cohere2_iswa>(*this, params);
- } break;
- case LLM_ARCH_DBRX:
- {
- llm = std::make_unique<llm_build_dbrx>(*this, params);
- } break;
- case LLM_ARCH_OLMO:
- {
- llm = std::make_unique<llm_build_olmo>(*this, params);
- } break;
- case LLM_ARCH_OLMO2:
- {
- if (hparams.swa_type == LLAMA_SWA_TYPE_STANDARD) {
- llm = std::make_unique<llm_build_olmo2<true>>(*this, params);
- } else {
- llm = std::make_unique<llm_build_olmo2<false>>(*this, params);
- }
- } break;
- case LLM_ARCH_OLMOE:
- {
- llm = std::make_unique<llm_build_olmoe>(*this, params);
- } break;
- case LLM_ARCH_OPENELM:
- {
- llm = std::make_unique<llm_build_openelm>(*this, params);
- } break;
- case LLM_ARCH_GPTNEOX:
- {
- llm = std::make_unique<llm_build_gptneox>(*this, params);
- } break;
- case LLM_ARCH_ARCTIC:
- {
- llm = std::make_unique<llm_build_arctic>(*this, params);
- } break;
- case LLM_ARCH_DEEPSEEK:
- {
- llm = std::make_unique<llm_build_deepseek>(*this, params);
- } break;
- case LLM_ARCH_DEEPSEEK2:
- {
- llm = std::make_unique<llm_build_deepseek2>(*this, params);
- } break;
- case LLM_ARCH_CHATGLM:
- {
- llm = std::make_unique<llm_build_chatglm>(*this, params);
- } break;
- case LLM_ARCH_GLM4:
- {
- llm = std::make_unique<llm_build_glm4>(*this, params);
- } break;
- case LLM_ARCH_GLM4_MOE:
- {
- llm = std::make_unique<llm_build_glm4_moe>(*this, params);
- } break;
- case LLM_ARCH_BITNET:
- {
- llm = std::make_unique<llm_build_bitnet>(*this, params);
- } break;
- case LLM_ARCH_T5:
- {
- switch (params.gtype) {
- case LLM_GRAPH_TYPE_ENCODER:
- llm = std::make_unique<llm_build_t5_enc>(*this, params);
- break;
- case LLM_GRAPH_TYPE_DEFAULT:
- case LLM_GRAPH_TYPE_DECODER:
- llm = std::make_unique<llm_build_t5_dec>(*this, params);
- break;
- default:
- GGML_ABORT("invalid graph type");
- };
- } break;
- case LLM_ARCH_T5ENCODER:
- {
- llm = std::make_unique<llm_build_t5_enc>(*this, params);
- }
- break;
- case LLM_ARCH_JAIS:
- {
- llm = std::make_unique<llm_build_jais>(*this, params);
- } break;
- case LLM_ARCH_NEMOTRON:
- {
- llm = std::make_unique<llm_build_nemotron>(*this, params);
- } break;
- case LLM_ARCH_NEMOTRON_H:
- {
- llm = std::make_unique<llm_build_nemotron_h>(*this, params);
- } break;
- case LLM_ARCH_EXAONE:
- {
- llm = std::make_unique<llm_build_exaone>(*this, params);
- } break;
- case LLM_ARCH_EXAONE4:
- {
- if (hparams.swa_type == LLAMA_SWA_TYPE_STANDARD) {
- llm = std::make_unique<llm_build_exaone4<true>>(*this, params);
- } else {
- llm = std::make_unique<llm_build_exaone4<false>>(*this, params);
- }
- } break;
- case LLM_ARCH_RWKV6:
- {
- llm = std::make_unique<llm_build_rwkv6>(*this, params);
- } break;
- case LLM_ARCH_RWKV6QWEN2:
- {
- llm = std::make_unique<llm_build_rwkv6qwen2>(*this, params);
- } break;
- case LLM_ARCH_RWKV7:
- {
- llm = std::make_unique<llm_build_rwkv7>(*this, params);
- } break;
- case LLM_ARCH_ARWKV7:
- {
- llm = std::make_unique<llm_build_arwkv7>(*this, params);
- } break;
- case LLM_ARCH_GRANITE:
- case LLM_ARCH_GRANITE_MOE:
- case LLM_ARCH_MINICPM:
- {
- llm = std::make_unique<llm_build_granite>(*this, params);
- } break;
- case LLM_ARCH_GRANITE_HYBRID:
- {
- llm = std::make_unique<llm_build_granite_hybrid>(*this, params);
- } break;
- case LLM_ARCH_CHAMELEON:
- {
- llm = std::make_unique<llm_build_chameleon>(*this, params);
- } break;
- case LLM_ARCH_WAVTOKENIZER_DEC:
- {
- llm = std::make_unique<llm_build_wavtokenizer_dec>(*this, params);
- } break;
- case LLM_ARCH_PLM:
- {
- llm = std::make_unique<llm_build_plm>(*this, params);
- } break;
- case LLM_ARCH_BAILINGMOE:
- {
- llm = std::make_unique<llm_build_bailingmoe>(*this, params);
- } break;
- case LLM_ARCH_BAILINGMOE2:
- {
- llm = std::make_unique<llm_build_bailingmoe2>(*this, params);
- } break;
- case LLM_ARCH_SEED_OSS:
- {
- llm = std::make_unique<llm_build_seed_oss>(*this, params);
- } break;
- case LLM_ARCH_DOTS1:
- {
- llm = std::make_unique<llm_build_dots1>(*this, params);
- } break;
- case LLM_ARCH_ARCEE:
- {
- llm = std::make_unique<llm_build_arcee>(*this, params);
- } break;
- case LLM_ARCH_AFMOE:
- {
- llm = std::make_unique<llm_build_afmoe>(*this, params);
- } break;
- case LLM_ARCH_ERNIE4_5:
- {
- llm = std::make_unique<llm_build_ernie4_5>(*this, params);
- } break;
- case LLM_ARCH_ERNIE4_5_MOE:
- {
- llm = std::make_unique<llm_build_ernie4_5_moe>(*this, params);
- } break;
- case LLM_ARCH_HUNYUAN_MOE:
- {
- llm = std::make_unique<llm_build_hunyuan_moe>(*this, params);
- } break;
- case LLM_ARCH_HUNYUAN_DENSE:
- {
- llm = std::make_unique<llm_build_hunyuan_dense>(*this, params);
- } break;
- case LLM_ARCH_SMOLLM3:
- {
- llm = std::make_unique<llm_build_smollm3>(*this, params);
- } break;
- case LLM_ARCH_OPENAI_MOE:
- {
- llm = std::make_unique<llm_build_openai_moe_iswa>(*this, params);
- } break;
- case LLM_ARCH_FALCON_H1:
- {
- llm = std::make_unique<llm_build_falcon_h1>(*this, params);
- } break;
- case LLM_ARCH_LFM2:
- case LLM_ARCH_LFM2MOE:
- {
- llm = std::make_unique<llm_build_lfm2>(*this, params);
- } break;
- case LLM_ARCH_SMALLTHINKER:
- {
- if (hparams.swa_type == LLAMA_SWA_TYPE_STANDARD) {
- llm = std::make_unique<llm_build_smallthinker<true>> (*this, params);
- } else {
- llm = std::make_unique<llm_build_smallthinker<false>>(*this, params);
- }
- } break;
- case LLM_ARCH_GROVEMOE:
- {
- llm = std::make_unique<llm_build_grovemoe>(*this, params);
- } break;
- case LLM_ARCH_APERTUS:
- {
- llm = std::make_unique<llm_build_apertus>(*this, params);
- } break;
- case LLM_ARCH_MINIMAX_M2:
- {
- llm = std::make_unique<llm_build_minimax_m2>(*this, params);
- } break;
- case LLM_ARCH_COGVLM:
- {
- llm = std::make_unique<llm_build_cogvlm>(*this, params);
- } break;
- case LLM_ARCH_PANGU_EMBED:
- {
- llm = std::make_unique<llm_build_pangu_embedded>(*this, params);
- } break;
- case LLM_ARCH_QWEN3NEXT:
- {
- llm = std::make_unique<llm_build_qwen3next>(*this, params);
- } break;
- case LLM_ARCH_MISTRAL3:
- {
- llm = std::make_unique<llm_build_mistral3>(*this, params);
- } break;
- default:
- GGML_ABORT("fatal error");
- }
- // add on pooling layer
- llm->build_pooling(cls, cls_b, cls_out, cls_out_b);
- // if the gguf model was converted with --sentence-transformers-dense-modules
- // there will be two additional dense projection layers
- // dense linear projections are applied after pooling
- // TODO: move reranking logic here and generalize
- llm->build_dense_out(dense_2_out_layers, dense_3_out_layers);
- return llm->res->get_gf();
- }
- //
- // interface implementation
- //
- llama_model_params llama_model_default_params() {
- llama_model_params result = {
- /*.devices =*/ nullptr,
- /*.tensor_buft_overrides =*/ nullptr,
- /*.n_gpu_layers =*/ 999,
- /*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER,
- /*.main_gpu =*/ 0,
- /*.tensor_split =*/ nullptr,
- /*.progress_callback =*/ nullptr,
- /*.progress_callback_user_data =*/ nullptr,
- /*.kv_overrides =*/ nullptr,
- /*.vocab_only =*/ false,
- /*.use_mmap =*/ true,
- /*.use_mlock =*/ false,
- /*.check_tensors =*/ false,
- /*.use_extra_bufts =*/ true,
- /*.no_host =*/ false,
- };
- return result;
- }
- const llama_vocab * llama_model_get_vocab(const llama_model * model) {
- return &model->vocab;
- }
- void llama_free_model(llama_model * model) {
- llama_model_free(model);
- }
- void llama_model_free(llama_model * model) {
- delete model;
- }
- int32_t llama_model_n_ctx_train(const llama_model * model) {
- return model->hparams.n_ctx_train;
- }
- int32_t llama_model_n_embd(const llama_model * model) {
- return model->hparams.n_embd;
- }
- int32_t llama_model_n_embd_inp(const llama_model * model) {
- return model->hparams.n_embd_inp();
- }
- int32_t llama_model_n_layer(const llama_model * model) {
- return model->hparams.n_layer;
- }
- int32_t llama_model_n_head(const llama_model * model) {
- return model->hparams.n_head();
- }
- int32_t llama_model_n_head_kv(const llama_model * model) {
- return model->hparams.n_head_kv();
- }
- int32_t llama_model_n_swa(const llama_model * model) {
- return model->hparams.n_swa;
- }
- uint32_t llama_model_n_cls_out(const struct llama_model * model) {
- return model->hparams.n_cls_out;
- }
- const char * llama_model_cls_label(const struct llama_model * model, uint32_t i) {
- if (i < model->classifier_labels.size()) {
- return model->classifier_labels[i].c_str();
- }
- return nullptr;
- }
- // deprecated
- int32_t llama_n_ctx_train(const llama_model * model) {
- return llama_model_n_ctx_train(model);
- }
- // deprecated
- int32_t llama_n_embd(const llama_model * model) {
- return llama_model_n_embd(model);
- }
- // deprecated
- int32_t llama_n_layer(const llama_model * model) {
- return llama_model_n_layer(model);
- }
- // deprecated
- int32_t llama_n_head(const llama_model * model) {
- return llama_model_n_head(model);
- }
- llama_rope_type llama_model_rope_type(const llama_model * model) {
- switch (model->arch) {
- // these models do not use RoPE
- case LLM_ARCH_CLIP:
- case LLM_ARCH_GPT2:
- case LLM_ARCH_GPTJ:
- case LLM_ARCH_MPT:
- case LLM_ARCH_REFACT:
- case LLM_ARCH_BLOOM:
- case LLM_ARCH_MAMBA:
- case LLM_ARCH_MAMBA2:
- case LLM_ARCH_JAMBA:
- case LLM_ARCH_JINA_BERT_V2:
- case LLM_ARCH_T5:
- case LLM_ARCH_T5ENCODER:
- case LLM_ARCH_JAIS:
- case LLM_ARCH_RWKV6:
- case LLM_ARCH_RWKV6QWEN2:
- case LLM_ARCH_RWKV7:
- case LLM_ARCH_ARWKV7:
- case LLM_ARCH_WAVTOKENIZER_DEC:
- case LLM_ARCH_NEMOTRON_H:
- return LLAMA_ROPE_TYPE_NONE;
- // use what we call a normal RoPE, operating on pairs of consecutive head values
- case LLM_ARCH_LLAMA:
- case LLM_ARCH_LLADA:
- case LLM_ARCH_LLAMA4:
- case LLM_ARCH_DECI:
- case LLM_ARCH_BAICHUAN:
- case LLM_ARCH_STARCODER:
- case LLM_ARCH_INTERNLM2:
- case LLM_ARCH_MINICPM:
- case LLM_ARCH_XVERSE:
- case LLM_ARCH_COMMAND_R:
- case LLM_ARCH_COHERE2:
- case LLM_ARCH_OLMO:
- case LLM_ARCH_ARCTIC:
- case LLM_ARCH_DEEPSEEK:
- case LLM_ARCH_DEEPSEEK2:
- case LLM_ARCH_PLM:
- case LLM_ARCH_CHATGLM:
- case LLM_ARCH_GLM4:
- case LLM_ARCH_GRANITE:
- case LLM_ARCH_GRANITE_MOE:
- case LLM_ARCH_GRANITE_HYBRID:
- case LLM_ARCH_CHAMELEON:
- case LLM_ARCH_BAILINGMOE:
- case LLM_ARCH_NEO_BERT:
- case LLM_ARCH_SMOLLM3:
- case LLM_ARCH_ARCEE:
- case LLM_ARCH_ERNIE4_5:
- case LLM_ARCH_ERNIE4_5_MOE:
- case LLM_ARCH_MISTRAL3:
- return LLAMA_ROPE_TYPE_NORM;
- // the pairs of head values are offset by n_rot/2
- case LLM_ARCH_FALCON:
- case LLM_ARCH_FALCON_H1:
- case LLM_ARCH_GROK:
- case LLM_ARCH_DBRX:
- case LLM_ARCH_BERT:
- case LLM_ARCH_JINA_BERT_V3:
- case LLM_ARCH_NOMIC_BERT:
- case LLM_ARCH_NOMIC_BERT_MOE:
- case LLM_ARCH_STABLELM:
- case LLM_ARCH_BITNET:
- case LLM_ARCH_QWEN:
- case LLM_ARCH_QWEN2:
- case LLM_ARCH_DREAM:
- case LLM_ARCH_QWEN2MOE:
- case LLM_ARCH_QWEN3:
- case LLM_ARCH_QWEN3MOE:
- case LLM_ARCH_LLADA_MOE:
- case LLM_ARCH_RND1:
- case LLM_ARCH_OLMO2:
- case LLM_ARCH_OLMOE:
- case LLM_ARCH_PHI2:
- case LLM_ARCH_PHI3:
- case LLM_ARCH_PHIMOE:
- case LLM_ARCH_PLAMO:
- case LLM_ARCH_PLAMO2:
- case LLM_ARCH_GEMMA:
- case LLM_ARCH_GEMMA2:
- case LLM_ARCH_GEMMA3:
- case LLM_ARCH_GEMMA3N:
- case LLM_ARCH_GEMMA_EMBEDDING:
- case LLM_ARCH_STARCODER2:
- case LLM_ARCH_OPENELM:
- case LLM_ARCH_GPTNEOX:
- case LLM_ARCH_CODESHELL:
- case LLM_ARCH_ORION:
- case LLM_ARCH_NEMOTRON:
- case LLM_ARCH_EXAONE:
- case LLM_ARCH_EXAONE4:
- case LLM_ARCH_MINICPM3:
- case LLM_ARCH_BAILINGMOE2:
- case LLM_ARCH_DOTS1:
- case LLM_ARCH_HUNYUAN_MOE:
- case LLM_ARCH_OPENAI_MOE:
- case LLM_ARCH_HUNYUAN_DENSE:
- case LLM_ARCH_LFM2:
- case LLM_ARCH_LFM2MOE:
- case LLM_ARCH_SMALLTHINKER:
- case LLM_ARCH_GLM4_MOE:
- case LLM_ARCH_SEED_OSS:
- case LLM_ARCH_GROVEMOE:
- case LLM_ARCH_APERTUS:
- case LLM_ARCH_MINIMAX_M2:
- case LLM_ARCH_COGVLM:
- case LLM_ARCH_PANGU_EMBED:
- case LLM_ARCH_AFMOE:
- case LLM_ARCH_QWEN3NEXT:
- return LLAMA_ROPE_TYPE_NEOX;
- case LLM_ARCH_QWEN2VL:
- return LLAMA_ROPE_TYPE_MROPE;
- case LLM_ARCH_QWEN3VL:
- case LLM_ARCH_QWEN3VLMOE:
- return LLAMA_ROPE_TYPE_IMROPE;
- // all model arches should be listed explicitly here
- case LLM_ARCH_UNKNOWN:
- GGML_ABORT("unknown architecture");
- }
- return LLAMA_ROPE_TYPE_NONE;
- }
- float llama_model_rope_freq_scale_train(const llama_model * model) {
- return model->hparams.rope_freq_scale_train;
- }
- int32_t llama_model_meta_val_str(const llama_model * model, const char * key, char * buf, size_t buf_size) {
- const auto & it = model->gguf_kv.find(key);
- if (it == model->gguf_kv.end()) {
- if (buf_size > 0) {
- buf[0] = '\0';
- }
- return -1;
- }
- return snprintf(buf, buf_size, "%s", it->second.c_str());
- }
- int32_t llama_model_meta_count(const llama_model * model) {
- return (int)model->gguf_kv.size();
- }
- const char * llama_model_meta_key_str(llama_model_meta_key key) {
- switch (key) {
- case LLAMA_MODEL_META_KEY_SAMPLING_SEQUENCE: return "general.sampling.sequence";
- case LLAMA_MODEL_META_KEY_SAMPLING_TOP_K: return "general.sampling.top_k";
- case LLAMA_MODEL_META_KEY_SAMPLING_TOP_P: return "general.sampling.top_p";
- case LLAMA_MODEL_META_KEY_SAMPLING_MIN_P: return "general.sampling.min_p";
- case LLAMA_MODEL_META_KEY_SAMPLING_XTC_PROBABILITY: return "general.sampling.xtc_probability";
- case LLAMA_MODEL_META_KEY_SAMPLING_XTC_THRESHOLD: return "general.sampling.xtc_threshold";
- case LLAMA_MODEL_META_KEY_SAMPLING_TEMP: return "general.sampling.temp";
- case LLAMA_MODEL_META_KEY_SAMPLING_PENALTY_LAST_N: return "general.sampling.penalty_last_n";
- case LLAMA_MODEL_META_KEY_SAMPLING_PENALTY_REPEAT: return "general.sampling.penalty_repeat";
- case LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT: return "general.sampling.mirostat";
- case LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT_TAU: return "general.sampling.mirostat_tau";
- case LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT_ETA: return "general.sampling.mirostat_eta";
- default: return nullptr;
- }
- }
- int32_t llama_model_meta_key_by_index(const llama_model * model, int i, char * buf, size_t buf_size) {
- if (i < 0 || i >= (int)model->gguf_kv.size()) {
- if (buf_size > 0) {
- buf[0] = '\0';
- }
- return -1;
- }
- auto it = model->gguf_kv.begin();
- std::advance(it, i);
- return snprintf(buf, buf_size, "%s", it->first.c_str());
- }
- int32_t llama_model_meta_val_str_by_index(const llama_model * model, int32_t i, char * buf, size_t buf_size) {
- if (i < 0 || i >= (int)model->gguf_kv.size()) {
- if (buf_size > 0) {
- buf[0] = '\0';
- }
- return -1;
- }
- auto it = model->gguf_kv.begin();
- std::advance(it, i);
- return snprintf(buf, buf_size, "%s", it->second.c_str());
- }
- int32_t llama_model_desc(const llama_model * model, char * buf, size_t buf_size) {
- return snprintf(buf, buf_size, "%s", model->desc().c_str());
- }
- uint64_t llama_model_size(const llama_model * model) {
- return model->size();
- }
- const char * llama_model_chat_template(const llama_model * model, const char * name) {
- const auto key = name ? LLM_KV(model->arch, name)(LLM_KV_TOKENIZER_CHAT_TEMPLATE)
- : LLM_KV(model->arch)(LLM_KV_TOKENIZER_CHAT_TEMPLATE);
- const auto & it = model->gguf_kv.find(key);
- if (it == model->gguf_kv.end()) {
- // one-off fix for very popular models (so we are not flooded with issues)
- // do not extend this list unless absolutely necessary
- // Mistral-Small-2503 does not have built-in chat template
- llama_vocab_pre_type pre_type = model->vocab.get_pre_type();
- if (!name && pre_type == LLAMA_VOCAB_PRE_TYPE_TEKKEN && model->layers.size() == 40) {
- return "mistral-v7-tekken";
- }
- return nullptr;
- }
- return it->second.c_str();
- }
- uint64_t llama_model_n_params(const llama_model * model) {
- return model->n_elements();
- }
- bool llama_model_has_encoder(const llama_model * model) {
- switch (model->arch) {
- case LLM_ARCH_T5: return true;
- case LLM_ARCH_T5ENCODER: return true;
- default: return false;
- }
- }
- bool llama_model_has_decoder(const llama_model * model) {
- switch (model->arch) {
- case LLM_ARCH_T5ENCODER: return false;
- default: return true;
- }
- }
- llama_token llama_model_decoder_start_token(const llama_model * model) {
- return model->hparams.dec_start_token_id;
- }
- bool llama_model_is_recurrent(const llama_model * model) {
- return llm_arch_is_recurrent(model->arch);
- }
- bool llama_model_is_hybrid(const llama_model * model) {
- return llm_arch_is_hybrid(model->arch);
- }
- bool llama_model_is_diffusion(const llama_model * model) {
- return llm_arch_is_diffusion(model->arch);
- }
- const std::vector<std::pair<std::string, ggml_tensor *>> & llama_internal_get_tensor_map(const llama_model * model) {
- return model->tensors_by_name;
- }
|