llama-model.cpp 441 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941
  1. #include "llama-model.h"
  2. #include "llama-impl.h"
  3. #include "llama-mmap.h"
  4. #include "llama-cparams.h"
  5. #include "llama-model-loader.h"
  6. #include "llama-kv-cache.h"
  7. #include "llama-kv-cache-iswa.h"
  8. #include "llama-memory-hybrid.h"
  9. #include "llama-memory-recurrent.h"
  10. #include "ggml-cpp.h"
  11. #include "models/models.h"
  12. #include <algorithm>
  13. #include <cassert>
  14. #include <cfloat>
  15. #include <cstring>
  16. #include <cmath>
  17. #include <functional>
  18. #include <map>
  19. #include <regex>
  20. #include <sstream>
  21. #include <stdexcept>
  22. const char * llm_type_name(llm_type type) {
  23. switch (type) {
  24. case LLM_TYPE_14M: return "14M";
  25. case LLM_TYPE_17M: return "17M";
  26. case LLM_TYPE_22M: return "22M";
  27. case LLM_TYPE_33M: return "33M";
  28. case LLM_TYPE_60M: return "60M";
  29. case LLM_TYPE_70M: return "70M";
  30. case LLM_TYPE_80M: return "80M";
  31. case LLM_TYPE_109M: return "109M";
  32. case LLM_TYPE_137M: return "137M";
  33. case LLM_TYPE_140M: return "140M";
  34. case LLM_TYPE_160M: return "160M";
  35. case LLM_TYPE_190M: return "190M";
  36. case LLM_TYPE_220M: return "220M";
  37. case LLM_TYPE_250M: return "250M";
  38. case LLM_TYPE_256M: return "256M";
  39. case LLM_TYPE_270M: return "270M";
  40. case LLM_TYPE_335M: return "335M";
  41. case LLM_TYPE_350M: return "350M";
  42. case LLM_TYPE_360M: return "360M";
  43. case LLM_TYPE_410M: return "410M";
  44. case LLM_TYPE_450M: return "450M";
  45. case LLM_TYPE_475M: return "475M";
  46. case LLM_TYPE_558M: return "558M";
  47. case LLM_TYPE_700M: return "700M";
  48. case LLM_TYPE_770M: return "770M";
  49. case LLM_TYPE_780M: return "780M";
  50. case LLM_TYPE_950M: return "950M";
  51. case LLM_TYPE_0_3B: return "0.3B";
  52. case LLM_TYPE_0_5B: return "0.5B";
  53. case LLM_TYPE_0_6B: return "0.6B";
  54. case LLM_TYPE_1B: return "1B";
  55. case LLM_TYPE_1_2B: return "1.2B";
  56. case LLM_TYPE_1_3B: return "1.3B";
  57. case LLM_TYPE_1_4B: return "1.4B";
  58. case LLM_TYPE_1_5B: return "1.5B";
  59. case LLM_TYPE_1_6B: return "1.6B";
  60. case LLM_TYPE_1_7B: return "1.7B";
  61. case LLM_TYPE_1_8B: return "1.8B";
  62. case LLM_TYPE_2B: return "2B";
  63. case LLM_TYPE_2_6B: return "2.6B";
  64. case LLM_TYPE_2_8B: return "2.8B";
  65. case LLM_TYPE_2_9B: return "2.9B";
  66. case LLM_TYPE_3B: return "3B";
  67. case LLM_TYPE_4B: return "4B";
  68. case LLM_TYPE_6B: return "6B";
  69. case LLM_TYPE_6_9B: return "6.9B";
  70. case LLM_TYPE_7B: return "7B";
  71. case LLM_TYPE_8B: return "8B";
  72. case LLM_TYPE_9B: return "9B";
  73. case LLM_TYPE_11B: return "11B";
  74. case LLM_TYPE_12B: return "12B";
  75. case LLM_TYPE_13B: return "13B";
  76. case LLM_TYPE_14B: return "14B";
  77. case LLM_TYPE_15B: return "15B";
  78. case LLM_TYPE_16B: return "16B";
  79. case LLM_TYPE_20B: return "20B";
  80. case LLM_TYPE_26B: return "26B";
  81. case LLM_TYPE_27B: return "27B";
  82. case LLM_TYPE_30B: return "30B";
  83. case LLM_TYPE_32B: return "32B";
  84. case LLM_TYPE_34B: return "34B";
  85. case LLM_TYPE_35B: return "35B";
  86. case LLM_TYPE_36B: return "36B";
  87. case LLM_TYPE_40B: return "40B";
  88. case LLM_TYPE_65B: return "65B";
  89. case LLM_TYPE_70B: return "70B";
  90. case LLM_TYPE_120B: return "120B";
  91. case LLM_TYPE_142B: return "142B";
  92. case LLM_TYPE_236B: return "236B";
  93. case LLM_TYPE_290B: return "290B";
  94. case LLM_TYPE_314B: return "314B";
  95. case LLM_TYPE_405B: return "405B";
  96. case LLM_TYPE_671B: return "671B";
  97. case LLM_TYPE_SMALL: return "0.1B";
  98. case LLM_TYPE_MEDIUM: return "0.4B";
  99. case LLM_TYPE_LARGE: return "0.8B";
  100. case LLM_TYPE_XL: return "1.5B";
  101. case LLM_TYPE_A1_7B: return "A1.7B";
  102. case LLM_TYPE_A2_7B: return "A2.7B";
  103. case LLM_TYPE_8x7B: return "8x7B";
  104. case LLM_TYPE_8x22B: return "8x22B";
  105. case LLM_TYPE_16x12B: return "16x12B";
  106. case LLM_TYPE_16x3_8B: return "16x3.8B";
  107. case LLM_TYPE_10B_128x3_66B: return "10B+128x3.66B";
  108. case LLM_TYPE_57B_A14B: return "57B.A14B";
  109. case LLM_TYPE_17B_16E: return "17Bx16E (Scout)";
  110. case LLM_TYPE_17B_128E: return "17Bx128E (Maverick)";
  111. case LLM_TYPE_A13B: return "A13B";
  112. case LLM_TYPE_7B_A1B: return "7B.A1B";
  113. case LLM_TYPE_8B_A1B: return "8B.A1B";
  114. case LLM_TYPE_16B_A1B: return "16B.A1B";
  115. case LLM_TYPE_21B_A3B: return "21B.A3B";
  116. case LLM_TYPE_30B_A3B: return "30B.A3B";
  117. case LLM_TYPE_100B_A6B: return "100B.A6B";
  118. case LLM_TYPE_106B_A12B: return "106B.A12B";
  119. case LLM_TYPE_230B_A10B: return "230B.A10B";
  120. case LLM_TYPE_235B_A22B: return "235B.A22B";
  121. case LLM_TYPE_300B_A47B: return "300B.A47B";
  122. case LLM_TYPE_355B_A32B: return "355B.A32B";
  123. case LLM_TYPE_E2B: return "E2B";
  124. case LLM_TYPE_E4B: return "E4B";
  125. default: return "?B";
  126. }
  127. }
  128. static const char * llama_expert_gating_func_name(llama_expert_gating_func_type type) {
  129. switch (type) {
  130. case LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX: return "softmax";
  131. case LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID: return "sigmoid";
  132. default: return "unknown";
  133. }
  134. }
  135. static const std::map<llama_rope_scaling_type, const char *> LLAMA_ROPE_SCALING_TYPES = {
  136. { LLAMA_ROPE_SCALING_TYPE_NONE, "none" },
  137. { LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
  138. { LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" },
  139. { LLAMA_ROPE_SCALING_TYPE_LONGROPE, "longrope" },
  140. };
  141. std::string llama_rope_scaling_type_name(llama_rope_scaling_type rope_scaling_type) {
  142. return LLAMA_ROPE_SCALING_TYPES.at(rope_scaling_type);
  143. }
  144. static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) {
  145. for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) {
  146. if (kv.second == name) {
  147. return (llama_rope_scaling_type) kv.first;
  148. }
  149. }
  150. return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
  151. }
  152. // checks if the weight tensor can be used with the specified buffer type and device
  153. static bool weight_buft_supported(const llama_hparams & hparams, ggml_tensor * w, ggml_op op, ggml_backend_buffer_type_t buft, ggml_backend_dev_t dev) {
  154. GGML_ASSERT(w != nullptr);
  155. if (op == GGML_OP_NONE) {
  156. return true;
  157. }
  158. ggml_init_params params = {
  159. /*.mem_size =*/ ggml_tensor_overhead()*8,
  160. /*.mem_buffer =*/ NULL,
  161. /*.no_alloc =*/ true,
  162. };
  163. ggml_context_ptr ctx_ptr { ggml_init(params) };
  164. if (!ctx_ptr) {
  165. throw std::runtime_error(format("failed to create ggml context"));
  166. }
  167. ggml_context * ctx = ctx_ptr.get();
  168. ggml_tensor * op_tensor = nullptr;
  169. switch (op) {
  170. case GGML_OP_GET_ROWS:
  171. {
  172. ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 512);
  173. op_tensor = ggml_get_rows(ctx, w, b);
  174. } break;
  175. case GGML_OP_MUL_MAT:
  176. {
  177. ggml_tensor * b = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], 512, w->ne[2], w->ne[3]);
  178. op_tensor = ggml_mul_mat(ctx, w, b);
  179. } break;
  180. case GGML_OP_MUL_MAT_ID:
  181. {
  182. int n_expert_used = hparams.n_expert_used;
  183. ggml_tensor * b = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, w->ne[0], n_expert_used, 512);
  184. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_expert_used, 512);
  185. op_tensor = ggml_mul_mat_id(ctx, w, b, ids);
  186. } break;
  187. case GGML_OP_ADD:
  188. {
  189. ggml_tensor * a = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], w->ne[1], w->ne[2], w->ne[3]);
  190. op_tensor = ggml_add(ctx, a, w);
  191. } break;
  192. case GGML_OP_ADD_ID:
  193. {
  194. int n_expert_used = hparams.n_expert_used;
  195. ggml_tensor * a = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, w->ne[0], n_expert_used, 512);
  196. ggml_tensor * c = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_expert_used, 512);
  197. op_tensor = ggml_add_id(ctx, a, w, c);
  198. } break;
  199. case GGML_OP_MUL:
  200. {
  201. ggml_tensor * a = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], w->ne[1], w->ne[2], w->ne[3]);
  202. op_tensor = ggml_mul(ctx, a, w);
  203. } break;
  204. case GGML_OP_DIV:
  205. {
  206. ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, w->ne[0]);
  207. op_tensor = ggml_div(ctx, a, w);
  208. } break;
  209. case GGML_OP_ROPE:
  210. {
  211. int n_embd_head = hparams.n_embd_head_v;
  212. int n_head = hparams.n_head();
  213. ggml_tensor * a = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, n_embd_head, n_head, 512);
  214. ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 512);
  215. op_tensor = ggml_rope_ext(
  216. ctx, a, b, w,
  217. 0, 0, 0, 0, 0,
  218. 0, 0, 0, 0
  219. );
  220. } break;
  221. case GGML_OP_SSM_CONV:
  222. {
  223. const int64_t n_seq_tokens = 512;
  224. const int64_t n_seqs = 3;
  225. ggml_tensor * conv_x = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, w->ne[0] - 1 + n_seq_tokens, w->ne[1], n_seqs);
  226. op_tensor = ggml_ssm_conv(ctx, conv_x, w);
  227. } break;
  228. case GGML_OP_SSM_SCAN:
  229. {
  230. // w is ssm_a, which is used to distinguish Mamba-1 and Mamba-2
  231. const int64_t d_state = w->ne[0] == 1 ? hparams.ssm_d_state : w->ne[0];
  232. const int64_t n_head = w->ne[1];
  233. const int64_t head_dim = hparams.ssm_d_inner / n_head;
  234. const int64_t n_group = hparams.ssm_n_group ? hparams.ssm_n_group : 1;
  235. const int64_t n_seq_tokens = 512;
  236. const int64_t n_seqs = 3;
  237. ggml_tensor * s = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, d_state, head_dim, n_head, n_seqs);
  238. ggml_tensor * x = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, head_dim, n_head, n_seq_tokens, n_seqs);
  239. ggml_tensor * dt = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, n_head, n_seq_tokens, n_seqs);
  240. ggml_tensor * B = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, d_state, n_group, n_seq_tokens, n_seqs);
  241. ggml_tensor * C = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, d_state, n_group, n_seq_tokens, n_seqs);
  242. ggml_tensor * ids = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, n_seqs);
  243. op_tensor = ggml_ssm_scan(ctx, s, x, dt, w, B, C, ids);
  244. } break;
  245. case GGML_OP_RWKV_WKV6:
  246. {
  247. // FIXME
  248. const int64_t S = 123;
  249. const int64_t H = 123;
  250. const int64_t n_tokens = 123;
  251. const int64_t n_seqs = 123;
  252. ggml_tensor * k = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
  253. ggml_tensor * v = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
  254. ggml_tensor * r = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
  255. ggml_tensor * tf = w;
  256. ggml_tensor * td = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
  257. ggml_tensor * state = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, S, n_seqs, S, H);
  258. op_tensor = ggml_rwkv_wkv6(ctx, k, v, r, tf, td, state);
  259. } break;
  260. case GGML_OP_IM2COL:
  261. {
  262. const int n_embd_inp = hparams.n_embd_inp();
  263. ggml_tensor * b = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, n_embd_inp, w->ne[1], 1, 1);
  264. op_tensor = ggml_im2col(ctx, w, b, 1, 0, 0, 0, 1, 0, false, GGML_TYPE_F16);
  265. } break;
  266. case GGML_OP_SCALE:
  267. {
  268. op_tensor = ggml_scale(ctx, w, 1.0f);
  269. } break;
  270. default:
  271. GGML_ABORT("%s: missing test for op %s for tensor %s", __func__, ggml_op_name(op), w->name);
  272. }
  273. // create a temporary dummy buffer for the weight so that supports_op can check the buffer type
  274. GGML_ASSERT(w->buffer == nullptr);
  275. w->buffer = ggml_backend_buft_alloc_buffer(buft, 0);
  276. bool op_supported = ggml_backend_dev_supports_op(dev, op_tensor);
  277. ggml_backend_buffer_free(w->buffer);
  278. w->buffer = nullptr;
  279. return op_supported;
  280. }
  281. // lists of buffer types used for each layer
  282. using buft_list_t = std::vector<std::pair<ggml_backend_dev_t, ggml_backend_buffer_type_t>>;
  283. // find the first buffer type in the list that can use the tensor
  284. static ggml_backend_buffer_type_t select_weight_buft(const llama_hparams & hparams, ggml_tensor * tensor, ggml_op op, const buft_list_t & buft_list) {
  285. GGML_ASSERT(!buft_list.empty());
  286. for (const auto & cur : buft_list) {
  287. ggml_backend_dev_t cur_dev = cur.first;
  288. ggml_backend_buffer_type_t cur_buft = cur.second;
  289. if (weight_buft_supported(hparams, tensor, op, cur_buft, cur_dev)) {
  290. return cur_buft;
  291. }
  292. }
  293. return nullptr;
  294. }
  295. // CPU: ACCEL -> GPU host -> CPU extra -> CPU
  296. static buft_list_t make_cpu_buft_list(const std::vector<ggml_backend_dev_t> & devices, bool use_extra_bufts, bool no_host) {
  297. buft_list_t buft_list;
  298. // add ACCEL buffer types
  299. for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
  300. ggml_backend_dev_t dev = ggml_backend_dev_get(i);
  301. if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_ACCEL) {
  302. auto * buft = ggml_backend_dev_buffer_type(dev);
  303. // skip
  304. if (buft != ggml_backend_cpu_buffer_type()) {
  305. buft_list.emplace_back(dev, buft);
  306. }
  307. }
  308. }
  309. // add a host buffer type
  310. // storing the tensors in a host buffer is useful when the processing of large batches
  311. // is offloaded to a GPU device, since it reduces the time spent on data transfers
  312. // generally, this will be done using the first device in the list
  313. // a better approach would be to handle this on a weight-by-weight basis using the offload_op
  314. // function of the device to determine if it would benefit from being stored in a host buffer
  315. if (!no_host) {
  316. for (auto * dev : devices) {
  317. ggml_backend_buffer_type_t buft = ggml_backend_dev_host_buffer_type(dev);
  318. if (buft) {
  319. buft_list.emplace_back(dev, buft);
  320. break;
  321. }
  322. }
  323. }
  324. // add extra buffer types
  325. if (use_extra_bufts) {
  326. auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  327. if (cpu_dev == nullptr) {
  328. throw std::runtime_error(format("%s: no CPU backend found", __func__));
  329. }
  330. auto * cpu_reg = ggml_backend_dev_backend_reg(cpu_dev);
  331. auto ggml_backend_dev_get_extra_bufts_fn = (ggml_backend_dev_get_extra_bufts_t)
  332. ggml_backend_reg_get_proc_address(cpu_reg, "ggml_backend_dev_get_extra_bufts");
  333. if (ggml_backend_dev_get_extra_bufts_fn) {
  334. ggml_backend_buffer_type_t * extra_bufts = ggml_backend_dev_get_extra_bufts_fn(cpu_dev);
  335. while (extra_bufts && *extra_bufts) {
  336. buft_list.emplace_back(cpu_dev, *extra_bufts);
  337. ++extra_bufts;
  338. }
  339. }
  340. }
  341. // add the CPU buffer type
  342. for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
  343. ggml_backend_dev_t dev = ggml_backend_dev_get(i);
  344. if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU) {
  345. buft_list.emplace_back(dev, ggml_backend_dev_buffer_type(dev));
  346. }
  347. }
  348. return buft_list;
  349. }
  350. // GPU: split if LLAMA_SPLIT_MODE_ROW -> GPU
  351. static buft_list_t make_gpu_buft_list(ggml_backend_dev_t dev, llama_split_mode split_mode, const float * tensor_split) {
  352. buft_list_t buft_list;
  353. // add the device split buffer type if requested and available
  354. if (split_mode == LLAMA_SPLIT_MODE_ROW) {
  355. ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
  356. auto ggml_backend_split_buffer_type_fn = (ggml_backend_split_buffer_type_t)
  357. ggml_backend_reg_get_proc_address(reg, "ggml_backend_split_buffer_type");
  358. if (ggml_backend_split_buffer_type_fn) {
  359. size_t dev_index = [&]() {
  360. auto * reg = ggml_backend_dev_backend_reg(dev);
  361. for (size_t i = 0; i < ggml_backend_reg_dev_count(reg); ++i) {
  362. if (ggml_backend_reg_dev_get(reg, i) == dev) {
  363. return i;
  364. }
  365. }
  366. throw std::runtime_error(format("device %s not found in its backend reg", ggml_backend_dev_name(dev)));
  367. }();
  368. auto * buft = ggml_backend_split_buffer_type_fn(dev_index, tensor_split);
  369. if (buft != nullptr) {
  370. buft_list.emplace_back(dev, buft);
  371. }
  372. }
  373. }
  374. // add the device default buffer type
  375. buft_list.emplace_back(dev, ggml_backend_dev_buffer_type(dev));
  376. // add the device extra buffer type (if any)
  377. ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
  378. auto ggml_backend_dev_get_extra_bufts_fn = (ggml_backend_dev_get_extra_bufts_t)
  379. ggml_backend_reg_get_proc_address(reg, "ggml_backend_dev_get_extra_bufts");
  380. if (ggml_backend_dev_get_extra_bufts_fn) {
  381. ggml_backend_buffer_type_t * extra_bufts = ggml_backend_dev_get_extra_bufts_fn(dev);
  382. while (extra_bufts && *extra_bufts) {
  383. buft_list.emplace_back(dev, *extra_bufts);
  384. ++extra_bufts;
  385. }
  386. }
  387. return buft_list;
  388. }
  389. struct llama_model::impl {
  390. impl() = default;
  391. ~impl() = default;
  392. uint64_t n_elements = 0;
  393. size_t n_bytes = 0;
  394. std::string desc_str;
  395. // model memory mapped files
  396. llama_mmaps mappings;
  397. // objects representing data potentially being locked in memory
  398. llama_mlocks mlock_bufs;
  399. llama_mlocks mlock_mmaps;
  400. // contexts where the model tensors metadata is stored as well ass the corresponding buffers:
  401. std::vector<std::pair<ggml_context_ptr, std::vector<ggml_backend_buffer_ptr>>> ctxs_bufs;
  402. buft_list_t cpu_buft_list;
  403. std::map<ggml_backend_dev_t, buft_list_t> gpu_buft_list;
  404. struct layer_dev {
  405. ggml_backend_dev_t dev;
  406. buft_list_t * buft_list;
  407. };
  408. layer_dev dev_input = {};
  409. layer_dev dev_output = {};
  410. std::vector<layer_dev> dev_layer;
  411. bool has_tensor_overrides;
  412. };
  413. llama_model::llama_model(const llama_model_params & params) : params(params), pimpl(std::make_unique<impl>()) {
  414. pimpl->has_tensor_overrides = params.tensor_buft_overrides && params.tensor_buft_overrides[0].pattern;
  415. }
  416. llama_model::~llama_model() = default;
  417. void llama_model::load_stats(llama_model_loader & ml) {
  418. pimpl->n_elements = ml.n_elements;
  419. pimpl->n_bytes = ml.n_bytes;
  420. }
  421. void llama_model::load_arch(llama_model_loader & ml) {
  422. arch = ml.get_arch();
  423. if (arch == LLM_ARCH_UNKNOWN) {
  424. throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'");
  425. }
  426. }
  427. void llama_model::load_hparams(llama_model_loader & ml) {
  428. const gguf_context * ctx = ml.meta.get();
  429. // get metadata as string
  430. for (int i = 0; i < gguf_get_n_kv(ctx); i++) {
  431. gguf_type type = gguf_get_kv_type(ctx, i);
  432. if (type == GGUF_TYPE_ARRAY) {
  433. continue;
  434. }
  435. const char * name = gguf_get_key(ctx, i);
  436. const std::string value = gguf_kv_to_str(ctx, i);
  437. gguf_kv.emplace(name, value);
  438. }
  439. // get general kv
  440. ml.get_key(LLM_KV_GENERAL_NAME, name, false);
  441. // everything past this point is not vocab-related
  442. // for CLIP models, we only need to load tensors, no hparams
  443. if (hparams.vocab_only || ml.get_arch() == LLM_ARCH_CLIP) {
  444. return;
  445. }
  446. ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
  447. ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
  448. ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer);
  449. ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false);
  450. ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
  451. ml.get_key(LLM_KV_EXPERT_GROUP_COUNT, hparams.n_expert_groups, false);
  452. ml.get_key(LLM_KV_EXPERT_GROUP_USED_COUNT, hparams.n_group_used, false);
  453. if (arch == LLM_ARCH_WAVTOKENIZER_DEC) {
  454. ml.get_key(LLM_KV_FEATURES_LENGTH, hparams.n_embd_features);
  455. ml.get_key(LLM_KV_POSNET_EMBEDDING_LENGTH, hparams.posnet.n_embd);
  456. ml.get_key(LLM_KV_POSNET_BLOCK_COUNT, hparams.posnet.n_layer);
  457. ml.get_key(LLM_KV_CONVNEXT_EMBEDDING_LENGTH, hparams.convnext.n_embd);
  458. ml.get_key(LLM_KV_CONVNEXT_BLOCK_COUNT, hparams.convnext.n_layer);
  459. }
  460. GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS);
  461. GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert);
  462. if (hparams.n_expert > 0) {
  463. GGML_ASSERT(hparams.n_expert_used > 0);
  464. GGML_ASSERT(hparams.n_expert_groups < hparams.n_expert);
  465. if (hparams.n_expert_groups > 1) {
  466. GGML_ASSERT(hparams.n_expert % hparams.n_expert_groups == 0);
  467. GGML_ASSERT(hparams.n_group_used > 0);
  468. GGML_ASSERT(hparams.n_group_used < hparams.n_expert_groups);
  469. }
  470. } else {
  471. GGML_ASSERT(hparams.n_expert_used == 0);
  472. GGML_ASSERT(hparams.n_expert_groups == 0);
  473. }
  474. std::fill(hparams.n_head_arr.begin(), hparams.n_head_arr.end(), 0);
  475. std::fill(hparams.n_head_kv_arr.begin(), hparams.n_head_kv_arr.end(), 0);
  476. std::fill(hparams.n_ff_arr.begin(), hparams.n_ff_arr.end(), 0);
  477. std::fill(
  478. hparams.recurrent_layer_arr.begin(),
  479. hparams.recurrent_layer_arr.end(),
  480. llm_arch_is_recurrent(ml.get_arch()));
  481. std::fill(hparams.rope_sections.begin(), hparams.rope_sections.end(), 0);
  482. std::fill(hparams.swa_layers.begin(), hparams.swa_layers.end(), 0);
  483. std::fill(hparams.xielu_alpha_n.begin(), hparams.xielu_alpha_n.end(), 0.0f);
  484. std::fill(hparams.xielu_alpha_p.begin(), hparams.xielu_alpha_p.end(), 0.0f);
  485. std::fill(hparams.xielu_beta.begin(), hparams.xielu_beta.end(), 0.0f);
  486. std::fill(hparams.xielu_eps.begin(), hparams.xielu_eps.end(), 0.0f);
  487. ml.get_key_or_arr(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff_arr, hparams.n_layer, false);
  488. ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head_arr, hparams.n_layer, false);
  489. // n_head_kv is optional, default to n_head
  490. hparams.n_head_kv_arr = hparams.n_head_arr;
  491. ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv_arr, hparams.n_layer, false);
  492. bool rope_finetuned = false;
  493. ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
  494. hparams.rope_finetuned = rope_finetuned;
  495. hparams.n_ctx_orig_yarn = hparams.n_ctx_train;
  496. ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_ctx_orig_yarn, false);
  497. // rope_freq_base (optional)
  498. hparams.rope_freq_base_train = 10000.0f;
  499. ml.get_key(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train, false);
  500. std::string rope_scaling("linear");
  501. ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false);
  502. hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling);
  503. GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED);
  504. // rope_freq_scale (inverse of the kv) is optional
  505. float ropescale = 0.0f;
  506. if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) {
  507. // try the old key name
  508. ml.get_key(LLM_KV_ROPE_SCALE_LINEAR, ropescale, false);
  509. }
  510. hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale;
  511. // by default assume that the sliding-window layers use the same scaling type as the non-sliding-window layers
  512. hparams.rope_freq_base_train_swa = hparams.rope_freq_base_train;
  513. hparams.rope_freq_scale_train_swa = hparams.rope_freq_scale_train;
  514. ml.get_key(LLM_KV_ROPE_SCALING_ATTN_FACTOR, hparams.rope_attn_factor, false);
  515. // non-transformer models do not have attention heads
  516. if (hparams.n_head() > 0) {
  517. // gpt-neox n_rot = rotary_pct * (n_embd / n_head)
  518. // gpt-j n_rot = rotary_dim
  519. hparams.n_embd_head_k = hparams.n_embd / hparams.n_head();
  520. ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);
  521. hparams.n_embd_head_v = hparams.n_embd / hparams.n_head();
  522. ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
  523. // sanity check for n_rot (optional)
  524. hparams.n_rot = hparams.n_embd_head_k;
  525. ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
  526. if (arch == LLM_ARCH_LLAMA || arch == LLM_ARCH_DECI || arch == LLM_ARCH_FALCON) {
  527. if (hparams.n_rot != hparams.n_embd_head_k) {
  528. throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd_head_k));
  529. }
  530. }
  531. } else {
  532. hparams.n_rot = 0;
  533. hparams.n_embd_head_k = 0;
  534. hparams.n_embd_head_v = 0;
  535. }
  536. // for differentiating model types
  537. uint32_t n_vocab = 0;
  538. ml.get_key(LLM_KV_VOCAB_SIZE, n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, n_vocab, false);
  539. // for classifier models
  540. ml.get_arr(LLM_KV_CLASSIFIER_OUTPUT_LABELS, classifier_labels, false);
  541. if (!classifier_labels.empty()) {
  542. hparams.n_cls_out = classifier_labels.size();
  543. }
  544. // arch-specific KVs
  545. switch (arch) {
  546. case LLM_ARCH_LLAMA:
  547. {
  548. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  549. if (hparams.n_expert == 8) {
  550. switch (hparams.n_layer) {
  551. case 32: type = LLM_TYPE_8x7B; break;
  552. case 56: type = LLM_TYPE_8x22B; break;
  553. default: type = LLM_TYPE_UNKNOWN;
  554. }
  555. } else {
  556. switch (hparams.n_layer) {
  557. case 16: type = LLM_TYPE_1B; break; // Llama 3.2 1B
  558. case 22: type = LLM_TYPE_1B; break;
  559. case 26: type = LLM_TYPE_3B; break;
  560. case 28: type = LLM_TYPE_3B; break; // Llama 3.2 3B
  561. case 30: type = LLM_TYPE_256M; break; // smoldocling 256M
  562. // granite uses a vocab with len 49152
  563. case 32: type = n_vocab == 49152 ? LLM_TYPE_3B : (n_vocab < 40000 ? LLM_TYPE_7B : LLM_TYPE_8B); break;
  564. case 36: type = LLM_TYPE_8B; break; // granite
  565. case 40: type = LLM_TYPE_13B; break;
  566. case 48: type = LLM_TYPE_34B; break;
  567. case 60: type = LLM_TYPE_30B; break;
  568. case 80: type = hparams.n_head() == hparams.n_head_kv() ? LLM_TYPE_65B : LLM_TYPE_70B; break;
  569. default: type = LLM_TYPE_UNKNOWN;
  570. }
  571. }
  572. } break;
  573. case LLM_ARCH_LLAMA4:
  574. {
  575. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  576. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  577. ml.get_key(LLM_KV_INTERLEAVE_MOE_LAYER_STEP, hparams.n_moe_layer_step);
  578. const bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
  579. if (found_swa && hparams.n_swa == 0) {
  580. hparams.swa_type = LLAMA_SWA_TYPE_NONE;
  581. hparams.n_no_rope_layer_step = hparams.n_layer; // always use rope
  582. } else {
  583. hparams.swa_type = LLAMA_SWA_TYPE_CHUNKED;
  584. hparams.n_swa = 8192;
  585. hparams.n_attn_temp_floor_scale = 8192;
  586. hparams.f_attn_temp_scale = 0.1f;
  587. hparams.set_swa_pattern(4); // pattern: 3 chunked - 1 full
  588. }
  589. switch (hparams.n_expert) {
  590. case 0: {
  591. // MobileLLM (no MoE)
  592. switch (hparams.n_embd) {
  593. case 2048: type = LLM_TYPE_140M; break;
  594. case 4096: type = LLM_TYPE_360M; break;
  595. case 6144: type = LLM_TYPE_950M; break;
  596. default: type = LLM_TYPE_UNKNOWN;
  597. }
  598. } break;
  599. case 16: type = LLM_TYPE_17B_16E; break;
  600. case 128: type = LLM_TYPE_17B_128E; break;
  601. default: type = LLM_TYPE_UNKNOWN;
  602. }
  603. hparams.use_kq_norm = type != LLM_TYPE_17B_128E;
  604. } break;
  605. case LLM_ARCH_ARCEE:
  606. {
  607. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  608. // Arcee uses the same structure as Llama
  609. switch (hparams.n_layer) {
  610. case 36: type = LLM_TYPE_4B; break;
  611. default: type = LLM_TYPE_UNKNOWN;
  612. }
  613. } break;
  614. case LLM_ARCH_AFMOE:
  615. {
  616. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  617. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
  618. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  619. ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
  620. ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false);
  621. ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale, false);
  622. ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
  623. ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
  624. // Set up interleaved sliding window attention (ISWA)
  625. // Pattern: 3 sliding - 1 full (global_attn_every_n_layers = 4)
  626. if (hparams.n_swa > 0) {
  627. hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
  628. hparams.set_swa_pattern(4);
  629. } else {
  630. hparams.swa_type = LLAMA_SWA_TYPE_NONE;
  631. }
  632. // Default to sigmoid if not set
  633. if (hparams.expert_gating_func == LLAMA_EXPERT_GATING_FUNC_TYPE_NONE) {
  634. hparams.expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID;
  635. }
  636. switch (hparams.n_layer) {
  637. case 56: type = LLM_TYPE_6B; break;
  638. case 32: type = LLM_TYPE_26B; break;
  639. default: type = LLM_TYPE_UNKNOWN;
  640. }
  641. } break;
  642. case LLM_ARCH_DECI:
  643. {
  644. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  645. switch (hparams.n_layer) {
  646. case 32: type = LLM_TYPE_7B; break;
  647. case 80: type = LLM_TYPE_70B; break;
  648. case 162: type = LLM_TYPE_405B; break;
  649. default: type = LLM_TYPE_UNKNOWN;
  650. }
  651. } break;
  652. case LLM_ARCH_MINICPM:
  653. {
  654. // Backward-compatible defaults for older MiniCPM GGUFs
  655. hparams.f_embedding_scale = 12.0f;
  656. hparams.f_residual_scale = 1.4f / sqrtf(float(hparams.n_layer));
  657. hparams.f_logit_scale = hparams.n_embd ? (256.0f / float(hparams.n_embd)) : 1.0f;
  658. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  659. // Optional KV reads, override defaults if present in newer GGUF exports
  660. ml.get_key(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale, /*required=*/false);
  661. ml.get_key(LLM_KV_RESIDUAL_SCALE, hparams.f_residual_scale, /*required=*/false);
  662. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale, /*required=*/false);
  663. // MiniCPM uses rope by default, unlike Granite which uses it as a switch
  664. hparams.rope_finetuned = true;
  665. switch (hparams.n_layer) {
  666. case 52: type = LLM_TYPE_1B; break;
  667. case 40: type = LLM_TYPE_2B; break;
  668. default: type = LLM_TYPE_UNKNOWN;
  669. }
  670. } break;
  671. case LLM_ARCH_MINICPM3:
  672. {
  673. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  674. ml.get_key(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q);
  675. ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
  676. switch (hparams.n_layer) {
  677. case 62: type = LLM_TYPE_4B; break;
  678. default: type = LLM_TYPE_UNKNOWN;
  679. }
  680. } break;
  681. case LLM_ARCH_GROK:
  682. {
  683. // defaults for old GGUFs
  684. hparams.yarn_beta_fast = 8.0f;
  685. hparams.f_logit_scale = 0.5773502691896257f;
  686. hparams.f_embedding_scale = 78.38367176906169f;
  687. hparams.f_attn_out_scale = 0.08838834764831845f;
  688. hparams.f_attn_logit_softcapping = 30.0f;
  689. hparams.f_router_logit_softcapping = 30.0f;
  690. // no final_logit_softcapping in grok-1
  691. hparams.f_final_logit_softcapping = 0.0f;
  692. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  693. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
  694. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale, false);
  695. ml.get_key(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale, false);
  696. ml.get_key(LLM_KV_ATTENTION_OUTPUT_SCALE, hparams.f_attn_out_scale, false);
  697. ml.get_key(LLM_KV_ATTN_LOGIT_SOFTCAPPING, hparams.f_attn_logit_softcapping, false);
  698. ml.get_key(LLM_KV_ROUTER_LOGIT_SOFTCAPPING, hparams.f_router_logit_softcapping, false);
  699. ml.get_key(LLM_KV_FINAL_LOGIT_SOFTCAPPING, hparams.f_final_logit_softcapping, false);
  700. ml.get_key(LLM_KV_ATTENTION_TEMPERATURE_LENGTH, hparams.attn_temp_length, false);
  701. ml.get_key(LLM_KV_ROPE_SCALING_YARN_EXT_FACTOR, hparams.yarn_ext_factor, false);
  702. ml.get_key(LLM_KV_ROPE_SCALING_YARN_ATTN_FACTOR, hparams.yarn_attn_factor, false);
  703. ml.get_key(LLM_KV_ROPE_SCALING_YARN_BETA_FAST, hparams.yarn_beta_fast, false);
  704. ml.get_key(LLM_KV_ROPE_SCALING_YARN_BETA_SLOW, hparams.yarn_beta_slow, false);
  705. switch (hparams.n_layer) {
  706. case 64: type = LLM_TYPE_314B; break;
  707. default: type = LLM_TYPE_UNKNOWN;
  708. }
  709. } break;
  710. case LLM_ARCH_FALCON:
  711. {
  712. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  713. switch (hparams.n_layer) {
  714. case 32: type = LLM_TYPE_7B; break;
  715. case 60: type = LLM_TYPE_40B; break;
  716. default: type = LLM_TYPE_UNKNOWN;
  717. }
  718. } break;
  719. case LLM_ARCH_BAICHUAN:
  720. {
  721. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  722. switch (hparams.n_layer) {
  723. case 32: type = LLM_TYPE_7B; break;
  724. case 40: type = LLM_TYPE_13B; break;
  725. default: type = LLM_TYPE_UNKNOWN;
  726. }
  727. if (type == LLM_TYPE_13B) {
  728. // TODO: become GGUF KV parameter
  729. hparams.f_max_alibi_bias = 8.0f;
  730. }
  731. } break;
  732. case LLM_ARCH_STARCODER:
  733. {
  734. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  735. switch (hparams.n_layer) {
  736. case 24: type = LLM_TYPE_1B; break;
  737. case 36: type = LLM_TYPE_3B; break;
  738. case 42: type = LLM_TYPE_7B; break;
  739. case 40: type = LLM_TYPE_15B; break;
  740. default: type = LLM_TYPE_UNKNOWN;
  741. }
  742. } break;
  743. case LLM_ARCH_REFACT:
  744. {
  745. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  746. switch (hparams.n_layer) {
  747. case 32: type = LLM_TYPE_1B; break;
  748. default: type = LLM_TYPE_UNKNOWN;
  749. }
  750. // TODO: become GGUF KV parameter
  751. hparams.f_max_alibi_bias = 8.0f;
  752. } break;
  753. case LLM_ARCH_BERT:
  754. {
  755. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  756. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  757. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  758. switch (hparams.n_layer) {
  759. case 3:
  760. type = LLM_TYPE_17M; break; // bge-micro
  761. case 6:
  762. type = LLM_TYPE_22M; break; // MiniLM-L6
  763. case 12:
  764. switch (hparams.n_embd) {
  765. case 384: type = LLM_TYPE_33M; break; // MiniLM-L12, bge-small
  766. case 768: type = LLM_TYPE_109M; break; // bge-base
  767. default: type = LLM_TYPE_UNKNOWN;
  768. } break;
  769. case 24:
  770. type = LLM_TYPE_335M; break; // bge-large
  771. default: type = LLM_TYPE_UNKNOWN;
  772. }
  773. } break;
  774. case LLM_ARCH_JINA_BERT_V2:
  775. {
  776. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  777. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  778. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  779. hparams.f_max_alibi_bias = 8.0f;
  780. switch (hparams.n_layer) {
  781. case 4: type = LLM_TYPE_33M; break; // jina-embeddings-small
  782. case 12: type = LLM_TYPE_137M; break; // jina-embeddings-base
  783. default: type = LLM_TYPE_UNKNOWN;
  784. }
  785. } break;
  786. case LLM_ARCH_JINA_BERT_V3:
  787. {
  788. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  789. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  790. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  791. switch (hparams.n_layer) {
  792. case 24:
  793. type = LLM_TYPE_558M; break;
  794. default: type = LLM_TYPE_UNKNOWN;
  795. }
  796. } break;
  797. case LLM_ARCH_NOMIC_BERT:
  798. case LLM_ARCH_NOMIC_BERT_MOE:
  799. {
  800. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  801. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  802. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  803. ml.get_key(LLM_KV_MOE_EVERY_N_LAYERS, hparams.moe_every_n_layers, 0);
  804. if (hparams.n_layer == 12 && hparams.n_embd == 768) {
  805. if (arch == LLM_ARCH_NOMIC_BERT) {
  806. type = LLM_TYPE_137M;
  807. } else if (arch == LLM_ARCH_NOMIC_BERT_MOE && hparams.moe_every_n_layers == 2) {
  808. type = LLM_TYPE_475M;
  809. }
  810. }
  811. } break;
  812. case LLM_ARCH_NEO_BERT:
  813. {
  814. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  815. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  816. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  817. if (hparams.n_layer == 28) {
  818. type = LLM_TYPE_250M;
  819. }
  820. } break;
  821. case LLM_ARCH_BLOOM:
  822. {
  823. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  824. switch (hparams.n_layer) {
  825. case 24: type = LLM_TYPE_1B; break;
  826. case 30:
  827. switch (hparams.n_embd) {
  828. case 2560: type = LLM_TYPE_3B; break;
  829. case 4096: type = LLM_TYPE_7B; break;
  830. default: type = LLM_TYPE_UNKNOWN;
  831. } break;
  832. default: type = LLM_TYPE_UNKNOWN;
  833. }
  834. // TODO: become GGUF KV parameter
  835. hparams.f_max_alibi_bias = 8.0f;
  836. } break;
  837. case LLM_ARCH_MPT:
  838. {
  839. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  840. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  841. ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
  842. switch (hparams.n_layer) {
  843. case 32: type = LLM_TYPE_7B; break;
  844. case 48: type = LLM_TYPE_30B; break;
  845. default: type = LLM_TYPE_UNKNOWN;
  846. }
  847. } break;
  848. case LLM_ARCH_STABLELM:
  849. {
  850. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  851. switch (hparams.n_layer) {
  852. case 24: type = LLM_TYPE_1B; break;
  853. case 32: type = LLM_TYPE_3B; break;
  854. case 40: type = LLM_TYPE_12B; break;
  855. default: type = LLM_TYPE_UNKNOWN;
  856. }
  857. } break;
  858. case LLM_ARCH_QWEN:
  859. {
  860. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  861. switch (hparams.n_layer) {
  862. case 32: type = LLM_TYPE_7B; break;
  863. case 40: type = LLM_TYPE_13B; break;
  864. default: type = LLM_TYPE_UNKNOWN;
  865. }
  866. } break;
  867. case LLM_ARCH_QWEN2VL:
  868. {
  869. ml.get_key_or_arr(LLM_KV_ROPE_DIMENSION_SECTIONS, hparams.rope_sections, 4, true);
  870. }
  871. // fall through
  872. case LLM_ARCH_QWEN2:
  873. {
  874. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  875. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  876. switch (hparams.n_layer) {
  877. case 24: type = hparams.n_embd == 1024 ? LLM_TYPE_0_5B : LLM_TYPE_1B; break;
  878. case 28: type = hparams.n_embd == 1536 ? LLM_TYPE_1_5B : LLM_TYPE_7B; break;
  879. case 32: type = LLM_TYPE_7B; break;
  880. case 36: type = LLM_TYPE_3B; break;
  881. case 40: type = hparams.n_head() == 20 ? LLM_TYPE_4B : LLM_TYPE_13B; break;
  882. case 48: type = LLM_TYPE_14B; break;
  883. case 64: type = LLM_TYPE_32B; break;
  884. case 80: type = LLM_TYPE_70B; break;
  885. default: type = LLM_TYPE_UNKNOWN;
  886. }
  887. } break;
  888. case LLM_ARCH_DREAM:
  889. {
  890. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  891. // Dream models are primarily 7B with 28 layers
  892. switch (hparams.n_layer) {
  893. case 28:
  894. type = LLM_TYPE_7B;
  895. break;
  896. default:
  897. type = LLM_TYPE_UNKNOWN;
  898. }
  899. // Set non-causal attention for diffusion models
  900. hparams.causal_attn = false;
  901. }
  902. break;
  903. case LLM_ARCH_LLADA:
  904. {
  905. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  906. // LLaDA-8B has 32 layers, similar to LLaMA but for diffusion
  907. switch (hparams.n_layer) {
  908. case 32:
  909. type = LLM_TYPE_8B;
  910. break;
  911. default:
  912. type = LLM_TYPE_UNKNOWN;
  913. }
  914. // Set non-causal attention for diffusion models
  915. hparams.causal_attn = false;
  916. }
  917. break;
  918. case LLM_ARCH_LLADA_MOE:
  919. {
  920. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
  921. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  922. // diffusion language model uses non-causal attention
  923. hparams.causal_attn = false;
  924. switch (hparams.n_layer) {
  925. case 16: type = LLM_TYPE_A1_7B; break;
  926. default: type = LLM_TYPE_UNKNOWN;
  927. }
  928. } break;
  929. case LLM_ARCH_RND1:
  930. {
  931. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
  932. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  933. switch (hparams.n_layer) {
  934. case 48: type = LLM_TYPE_30B_A3B; break;
  935. default: type = LLM_TYPE_UNKNOWN;
  936. }
  937. // Set non-causal attention for diffusion models
  938. hparams.causal_attn = false;
  939. } break;
  940. case LLM_ARCH_QWEN2MOE:
  941. {
  942. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
  943. ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false);
  944. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  945. switch (hparams.n_layer) {
  946. case 24: type = LLM_TYPE_A2_7B; break;
  947. case 28: type = LLM_TYPE_57B_A14B; break;
  948. default: type = LLM_TYPE_UNKNOWN;
  949. }
  950. } break;
  951. case LLM_ARCH_QWEN3:
  952. {
  953. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  954. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  955. switch (hparams.n_layer) {
  956. case 28: type = hparams.n_embd == 1024 ? LLM_TYPE_0_6B : LLM_TYPE_1_7B; break;
  957. case 36: type = hparams.n_embd == 2560 ? LLM_TYPE_4B : LLM_TYPE_8B; break;
  958. case 40: type = LLM_TYPE_14B; break;
  959. case 64: type = LLM_TYPE_32B; break;
  960. default: type = LLM_TYPE_UNKNOWN;
  961. }
  962. } break;
  963. case LLM_ARCH_QWEN3VL:
  964. {
  965. ml.get_key(LLM_KV_NUM_DEEPSTACK_LAYERS, hparams.n_deepstack_layers, false);
  966. ml.get_key_or_arr(LLM_KV_ROPE_DIMENSION_SECTIONS, hparams.rope_sections, 4, true);
  967. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  968. switch (hparams.n_layer) {
  969. case 28: type = LLM_TYPE_1_7B; break;
  970. case 36: type = hparams.n_embd == 2560 ? LLM_TYPE_4B : LLM_TYPE_8B; break;
  971. case 64: type = LLM_TYPE_32B; break;
  972. default: type = LLM_TYPE_UNKNOWN;
  973. }
  974. } break;
  975. case LLM_ARCH_QWEN3MOE:
  976. {
  977. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
  978. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  979. switch (hparams.n_layer) {
  980. case 48: type = LLM_TYPE_30B_A3B; break;
  981. case 94: type = LLM_TYPE_235B_A22B; break;
  982. default: type = LLM_TYPE_UNKNOWN;
  983. }
  984. } break;
  985. case LLM_ARCH_QWEN3VLMOE:
  986. {
  987. ml.get_key(LLM_KV_NUM_DEEPSTACK_LAYERS, hparams.n_deepstack_layers, false);
  988. ml.get_key_or_arr(LLM_KV_ROPE_DIMENSION_SECTIONS, hparams.rope_sections, 4, true);
  989. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
  990. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  991. switch (hparams.n_layer) {
  992. case 48: type = LLM_TYPE_30B_A3B; break;
  993. case 94: type = LLM_TYPE_235B_A22B; break;
  994. default: type = LLM_TYPE_UNKNOWN;
  995. }
  996. } break;
  997. case LLM_ARCH_PHI2:
  998. {
  999. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1000. switch (hparams.n_layer) {
  1001. case 24: type = LLM_TYPE_1B; break;
  1002. case 32: type = LLM_TYPE_3B; break;
  1003. default: type = LLM_TYPE_UNKNOWN;
  1004. }
  1005. } break;
  1006. case LLM_ARCH_PHI3:
  1007. {
  1008. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1009. switch (hparams.n_layer) {
  1010. case 24: type = LLM_TYPE_1B; break;
  1011. case 32: type = LLM_TYPE_3B; break;
  1012. case 40: type = LLM_TYPE_14B; break;
  1013. default: type = LLM_TYPE_UNKNOWN;
  1014. }
  1015. const bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
  1016. if (found_swa && hparams.n_swa > 0) {
  1017. LLAMA_LOG_WARN("%s: Phi SWA is currently disabled - results might be suboptimal for some models (see %s)\n",
  1018. __func__, "https://github.com/ggml-org/llama.cpp/pull/13676");
  1019. // TODO: fix conversion scripts to correctly populate `n_swa` and `n_swa_pattern`
  1020. hparams.swa_type = LLAMA_SWA_TYPE_NONE;
  1021. hparams.n_swa = 0;
  1022. hparams.set_swa_pattern(1);
  1023. }
  1024. } break;
  1025. case LLM_ARCH_PHIMOE:
  1026. {
  1027. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1028. switch (hparams.n_layer) {
  1029. case 32: type = LLM_TYPE_16x3_8B; break;
  1030. default: type = LLM_TYPE_UNKNOWN;
  1031. }
  1032. } break;
  1033. case LLM_ARCH_PLAMO:
  1034. {
  1035. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1036. switch (hparams.n_layer) {
  1037. case 40: type = LLM_TYPE_13B; break;
  1038. default: type = LLM_TYPE_UNKNOWN;
  1039. }
  1040. } break;
  1041. case LLM_ARCH_PLAMO2:
  1042. {
  1043. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1044. // Load Mamba SSM parameters
  1045. ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
  1046. ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
  1047. ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
  1048. ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
  1049. ml.get_key(LLM_KV_SSM_GROUP_COUNT, hparams.ssm_n_group);
  1050. for (uint32_t i = 0; i < hparams.n_layer; ++i) {
  1051. hparams.recurrent_layer_arr[i] = hparams.n_head_kv(i) == 0;
  1052. }
  1053. switch (hparams.n_layer) {
  1054. case 16: type = LLM_TYPE_1B; break;
  1055. case 32:
  1056. if (hparams.n_embd == 2048) {
  1057. type = LLM_TYPE_2B;
  1058. } else if (hparams.n_embd == 4096) {
  1059. type = LLM_TYPE_8B;
  1060. }
  1061. break;
  1062. default: type = LLM_TYPE_UNKNOWN;
  1063. }
  1064. // Load attention parameters
  1065. ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);
  1066. ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
  1067. } break;
  1068. case LLM_ARCH_GPT2:
  1069. {
  1070. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1071. switch (hparams.n_layer) {
  1072. case 12: type = LLM_TYPE_SMALL; break;
  1073. case 24: type = LLM_TYPE_MEDIUM; break;
  1074. case 36: type = LLM_TYPE_LARGE; break;
  1075. case 48: type = LLM_TYPE_XL; break;
  1076. default: type = LLM_TYPE_UNKNOWN;
  1077. }
  1078. } break;
  1079. case LLM_ARCH_CODESHELL:
  1080. {
  1081. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1082. switch (hparams.n_layer) {
  1083. case 42: type = LLM_TYPE_7B; break;
  1084. default: type = LLM_TYPE_UNKNOWN;
  1085. }
  1086. } break;
  1087. case LLM_ARCH_ORION:
  1088. {
  1089. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1090. switch (hparams.n_layer) {
  1091. case 40: type = LLM_TYPE_14B; break;
  1092. default: type = LLM_TYPE_UNKNOWN;
  1093. }
  1094. } break;
  1095. case LLM_ARCH_INTERNLM2:
  1096. {
  1097. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1098. switch (hparams.n_layer) {
  1099. case 32: type = LLM_TYPE_7B; break;
  1100. case 48: type = LLM_TYPE_20B; break;
  1101. default: type = LLM_TYPE_UNKNOWN;
  1102. }
  1103. } break;
  1104. case LLM_ARCH_GEMMA:
  1105. {
  1106. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1107. switch (hparams.n_layer) {
  1108. case 18: type = LLM_TYPE_2B; break;
  1109. case 28: type = LLM_TYPE_7B; break;
  1110. default: type = LLM_TYPE_UNKNOWN;
  1111. }
  1112. } break;
  1113. case LLM_ARCH_GEMMA2:
  1114. {
  1115. hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
  1116. hparams.n_swa = 4096; // default value of gemma 2
  1117. hparams.set_swa_pattern(2);
  1118. hparams.attn_soft_cap = true;
  1119. ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
  1120. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1121. ml.get_key(LLM_KV_ATTN_LOGIT_SOFTCAPPING, hparams.f_attn_logit_softcapping, false);
  1122. ml.get_key(LLM_KV_FINAL_LOGIT_SOFTCAPPING, hparams.f_final_logit_softcapping, false);
  1123. switch (hparams.n_layer) {
  1124. case 26: type = LLM_TYPE_2B; break;
  1125. case 42: type = LLM_TYPE_9B; break;
  1126. case 46: type = LLM_TYPE_27B; break;
  1127. default: type = LLM_TYPE_UNKNOWN;
  1128. }
  1129. // ref: https://github.com/google/gemma_pytorch/blob/014acb7ac4563a5f77c76d7ff98f31b568c16508/gemma/config.py#L173
  1130. hparams.f_attention_scale = type == LLM_TYPE_27B
  1131. ? 1.0f / std::sqrt(float(hparams.n_embd / hparams.n_head(0)))
  1132. : 1.0f / std::sqrt(float(hparams.n_embd_head_k));
  1133. } break;
  1134. case LLM_ARCH_GEMMA3:
  1135. {
  1136. hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
  1137. hparams.set_swa_pattern(6);
  1138. hparams.rope_freq_base_train_swa = 10000.0f;
  1139. hparams.rope_freq_scale_train_swa = 1.0f;
  1140. ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
  1141. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1142. switch (hparams.n_layer) {
  1143. case 18: type = LLM_TYPE_270M; break;
  1144. case 26: type = LLM_TYPE_1B; break;
  1145. case 34: type = LLM_TYPE_4B; break;
  1146. case 48: type = LLM_TYPE_12B; break;
  1147. case 62: type = LLM_TYPE_27B; break;
  1148. default: type = LLM_TYPE_UNKNOWN;
  1149. }
  1150. // ref: https://github.com/google/gemma_pytorch/blob/014acb7ac4563a5f77c76d7ff98f31b568c16508/gemma/config.py#L289
  1151. hparams.f_attention_scale = type == LLM_TYPE_27B
  1152. ? 1.0f / std::sqrt(float(hparams.n_embd / hparams.n_head(0)))
  1153. : 1.0f / std::sqrt(float(hparams.n_embd_head_k));
  1154. } break;
  1155. case LLM_ARCH_GEMMA3N:
  1156. {
  1157. hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
  1158. hparams.set_swa_pattern(5);
  1159. hparams.n_layer_kv_from_start = 20;
  1160. hparams.rope_freq_base_train_swa = 10000.0f;
  1161. hparams.rope_freq_scale_train_swa = 1.0f;
  1162. hparams.f_attention_scale = 1.0f;
  1163. ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
  1164. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1165. switch (hparams.n_layer) {
  1166. case 30: type = LLM_TYPE_E2B; break;
  1167. case 35: type = LLM_TYPE_E4B; break;
  1168. default: type = LLM_TYPE_UNKNOWN;
  1169. }
  1170. } break;
  1171. case LLM_ARCH_GEMMA_EMBEDDING:
  1172. {
  1173. hparams.swa_type = LLAMA_SWA_TYPE_SYMMETRIC;
  1174. hparams.set_swa_pattern(6);
  1175. hparams.causal_attn = false; // embeddings do not use causal attention
  1176. hparams.rope_freq_base_train_swa = 10000.0f;
  1177. hparams.rope_freq_scale_train_swa = 1.0f;
  1178. ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
  1179. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1180. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  1181. //applied only if model converted with --sentence-transformers-dense-modules
  1182. ml.get_key(LLM_KV_DENSE_2_FEAT_IN, hparams.dense_2_feat_in, false);
  1183. ml.get_key(LLM_KV_DENSE_2_FEAT_OUT, hparams.dense_2_feat_out, false);
  1184. ml.get_key(LLM_KV_DENSE_3_FEAT_IN, hparams.dense_3_feat_in, false);
  1185. ml.get_key(LLM_KV_DENSE_3_FEAT_OUT, hparams.dense_3_feat_out, false);
  1186. GGML_ASSERT((hparams.dense_2_feat_in == 0 || hparams.dense_2_feat_in == hparams.n_embd) && "dense_2_feat_in must be equal to n_embd");
  1187. GGML_ASSERT((hparams.dense_3_feat_out == 0 || hparams.dense_3_feat_out == hparams.n_embd) && "dense_3_feat_out must be equal to n_embd");
  1188. switch (hparams.n_layer) {
  1189. case 24: type = LLM_TYPE_0_3B; break;
  1190. default: type = LLM_TYPE_UNKNOWN;
  1191. }
  1192. hparams.f_attention_scale = 1.0f / std::sqrt(float(hparams.n_embd_head_k));
  1193. } break;
  1194. case LLM_ARCH_STARCODER2:
  1195. {
  1196. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1197. switch (hparams.n_layer) {
  1198. case 30: type = LLM_TYPE_3B; break;
  1199. case 32: type = LLM_TYPE_7B; break;
  1200. case 40: type = LLM_TYPE_15B; break;
  1201. case 52: type = LLM_TYPE_20B; break; // granite
  1202. case 88: type = LLM_TYPE_34B; break; // granite
  1203. default: type = LLM_TYPE_UNKNOWN;
  1204. }
  1205. } break;
  1206. case LLM_ARCH_MAMBA:
  1207. {
  1208. ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
  1209. ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
  1210. ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
  1211. ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
  1212. ml.get_key(LLM_KV_SSM_DT_B_C_RMS, hparams.ssm_dt_b_c_rms, false);
  1213. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1214. switch (hparams.n_layer) {
  1215. case 24:
  1216. switch (hparams.n_embd) {
  1217. case 768: type = LLM_TYPE_SMALL; break;
  1218. default: type = LLM_TYPE_UNKNOWN;
  1219. } break;
  1220. case 48:
  1221. switch (hparams.n_embd) {
  1222. case 1024: type = LLM_TYPE_MEDIUM; break;
  1223. case 1536: type = LLM_TYPE_LARGE; break;
  1224. case 2048: type = LLM_TYPE_XL; break;
  1225. default: type = LLM_TYPE_UNKNOWN;
  1226. } break;
  1227. case 64:
  1228. switch (hparams.n_embd) {
  1229. case 2560: type = LLM_TYPE_3B; break;
  1230. default: type = LLM_TYPE_UNKNOWN;
  1231. } break;
  1232. default: type = LLM_TYPE_UNKNOWN;
  1233. }
  1234. } break;
  1235. case LLM_ARCH_MAMBA2:
  1236. {
  1237. ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
  1238. ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
  1239. ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
  1240. ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
  1241. ml.get_key(LLM_KV_SSM_GROUP_COUNT, hparams.ssm_n_group);
  1242. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1243. switch (hparams.n_layer) {
  1244. case 24:
  1245. switch (hparams.n_embd) {
  1246. case 768: type = LLM_TYPE_SMALL; break;
  1247. default: type = LLM_TYPE_UNKNOWN;
  1248. } break;
  1249. case 48:
  1250. switch (hparams.n_embd) {
  1251. case 1024: type = LLM_TYPE_MEDIUM; break;
  1252. case 1536: type = LLM_TYPE_LARGE; break;
  1253. case 2048: type = LLM_TYPE_XL; break;
  1254. default: type = LLM_TYPE_UNKNOWN;
  1255. } break;
  1256. case 64:
  1257. switch (hparams.n_embd) {
  1258. case 2560: type = LLM_TYPE_3B; break;
  1259. case 4096: type = LLM_TYPE_7B; break;
  1260. default: type = LLM_TYPE_UNKNOWN;
  1261. } break;
  1262. default: type = LLM_TYPE_UNKNOWN;
  1263. }
  1264. } break;
  1265. case LLM_ARCH_JAMBA:
  1266. {
  1267. ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
  1268. ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
  1269. ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
  1270. ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
  1271. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1272. for (uint32_t i = 0; i < hparams.n_layer; ++i) {
  1273. hparams.recurrent_layer_arr[i] = hparams.n_head_kv(i) == 0;
  1274. }
  1275. switch (hparams.n_layer) {
  1276. // TODO: Jamba layers are a bit heterogenous, so naming this is hard.
  1277. case 12: // 900M 8x???M
  1278. case 32: // 51B 16x?B
  1279. default: type = LLM_TYPE_UNKNOWN;
  1280. }
  1281. } break;
  1282. case LLM_ARCH_XVERSE:
  1283. {
  1284. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1285. switch (hparams.n_layer) {
  1286. case 32: type = LLM_TYPE_7B; break;
  1287. case 40: type = LLM_TYPE_13B; break;
  1288. case 80: type = LLM_TYPE_65B; break;
  1289. default: type = LLM_TYPE_UNKNOWN;
  1290. }
  1291. } break;
  1292. case LLM_ARCH_COMMAND_R:
  1293. {
  1294. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  1295. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1296. switch (hparams.n_layer) {
  1297. case 40: type = LLM_TYPE_35B; break;
  1298. default: type = LLM_TYPE_UNKNOWN;
  1299. }
  1300. } break;
  1301. case LLM_ARCH_COHERE2:
  1302. {
  1303. hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
  1304. hparams.set_swa_pattern(4);
  1305. ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
  1306. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  1307. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1308. switch (hparams.n_layer) {
  1309. case 32: type = LLM_TYPE_8B; break;
  1310. default: type = LLM_TYPE_UNKNOWN;
  1311. }
  1312. } break;
  1313. case LLM_ARCH_DBRX:
  1314. {
  1315. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1316. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv);
  1317. switch (hparams.n_layer) {
  1318. case 40: type = LLM_TYPE_16x12B; break;
  1319. default: type = LLM_TYPE_UNKNOWN;
  1320. }
  1321. } break;
  1322. case LLM_ARCH_OLMO:
  1323. {
  1324. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1325. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  1326. switch (hparams.n_layer) {
  1327. case 22: type = LLM_TYPE_1B; break;
  1328. case 32: type = LLM_TYPE_7B; break;
  1329. case 80: type = LLM_TYPE_70B; break;
  1330. default: type = LLM_TYPE_UNKNOWN;
  1331. }
  1332. } break;
  1333. case LLM_ARCH_OLMO2:
  1334. {
  1335. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1336. const bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
  1337. if (found_swa && hparams.n_swa > 0) {
  1338. hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
  1339. hparams.set_swa_pattern(4);
  1340. } else {
  1341. hparams.swa_type = LLAMA_SWA_TYPE_NONE;
  1342. }
  1343. switch (hparams.n_layer) {
  1344. case 16: type = LLM_TYPE_1B; break;
  1345. case 32: type = LLM_TYPE_7B; break;
  1346. case 40: type = LLM_TYPE_13B; break;
  1347. case 64: type = LLM_TYPE_32B; break;
  1348. default: type = LLM_TYPE_UNKNOWN;
  1349. }
  1350. } break;
  1351. case LLM_ARCH_SEED_OSS:
  1352. {
  1353. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1354. switch (hparams.n_layer) {
  1355. case 64: type = LLM_TYPE_36B; break;
  1356. default: type = LLM_TYPE_UNKNOWN;
  1357. }
  1358. } break;
  1359. case LLM_ARCH_OLMOE:
  1360. {
  1361. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1362. switch (hparams.n_layer) {
  1363. case 16: type = LLM_TYPE_A1_7B; break;
  1364. default: type = LLM_TYPE_UNKNOWN;
  1365. }
  1366. } break;
  1367. case LLM_ARCH_OPENELM:
  1368. {
  1369. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1370. switch (hparams.n_layer) {
  1371. case 16: type = LLM_TYPE_270M; break;
  1372. case 20: type = LLM_TYPE_450M; break;
  1373. case 28: type = LLM_TYPE_1B; break;
  1374. case 36: type = LLM_TYPE_3B; break;
  1375. default: type = LLM_TYPE_UNKNOWN;
  1376. }
  1377. } break;
  1378. case LLM_ARCH_GPTNEOX:
  1379. {
  1380. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1381. ml.get_key(LLM_KV_USE_PARALLEL_RESIDUAL, hparams.use_par_res);
  1382. switch (hparams.n_layer) {
  1383. case 6:
  1384. switch (hparams.n_ff()) {
  1385. case 512: type = LLM_TYPE_14M; break;
  1386. case 2048: type = LLM_TYPE_70M; break;
  1387. default: type = LLM_TYPE_UNKNOWN;
  1388. } break;
  1389. case 12:
  1390. switch (hparams.n_ff()) {
  1391. case 3072: type = LLM_TYPE_160M; break;
  1392. default: type = LLM_TYPE_UNKNOWN;
  1393. } break;
  1394. case 16:
  1395. switch (hparams.n_ff()) {
  1396. case 8192: type = LLM_TYPE_1B; break;
  1397. default: type = LLM_TYPE_UNKNOWN;
  1398. } break;
  1399. case 24:
  1400. switch (hparams.n_ff()) {
  1401. case 4096: type = LLM_TYPE_410M; break;
  1402. case 8192: type = LLM_TYPE_1_4B; break;
  1403. default: type = LLM_TYPE_UNKNOWN;
  1404. } break;
  1405. case 32:
  1406. switch (hparams.n_ff()) {
  1407. case 10240: type = LLM_TYPE_2_8B; break;
  1408. case 16384: type = LLM_TYPE_6_9B; break;
  1409. default: type = LLM_TYPE_UNKNOWN;
  1410. } break;
  1411. case 36:
  1412. switch (hparams.n_ff()) {
  1413. case 20480: type = LLM_TYPE_12B; break;
  1414. default: type = LLM_TYPE_UNKNOWN;
  1415. } break;
  1416. case 44:
  1417. switch (hparams.n_ff()) {
  1418. case 24576: type = LLM_TYPE_20B; break;
  1419. default: type = LLM_TYPE_UNKNOWN;
  1420. } break;
  1421. default: type = LLM_TYPE_UNKNOWN;
  1422. }
  1423. } break;
  1424. case LLM_ARCH_ARCTIC:
  1425. {
  1426. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1427. if (hparams.n_expert == 128) {
  1428. switch (hparams.n_layer) {
  1429. case 35: type = LLM_TYPE_10B_128x3_66B; break;
  1430. default: type = LLM_TYPE_UNKNOWN;
  1431. }
  1432. } else {
  1433. type = LLM_TYPE_UNKNOWN;
  1434. }
  1435. } break;
  1436. case LLM_ARCH_DEEPSEEK:
  1437. {
  1438. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1439. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
  1440. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  1441. ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
  1442. ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
  1443. switch (hparams.n_layer) {
  1444. case 28: type = LLM_TYPE_20B; break;
  1445. default: type = LLM_TYPE_UNKNOWN;
  1446. }
  1447. } break;
  1448. case LLM_ARCH_DEEPSEEK2:
  1449. {
  1450. // lite variants include DeepSeek-V2-Lite, GigaChat3-10B-A1.8B
  1451. bool is_lite = (hparams.n_layer == 27 || hparams.n_layer == 26);
  1452. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1453. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
  1454. if (!is_lite) {
  1455. ml.get_key(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q);
  1456. }
  1457. ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
  1458. ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH_MLA, hparams.n_embd_head_k_mla, false);
  1459. ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH_MLA, hparams.n_embd_head_v_mla, false);
  1460. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  1461. ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
  1462. ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
  1463. ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
  1464. ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false);
  1465. if (hparams.expert_gating_func == LLAMA_EXPERT_GATING_FUNC_TYPE_NONE) {
  1466. // for compatibility with existing DeepSeek V2 and V2.5 GGUFs
  1467. // that have no expert_gating_func model parameter set
  1468. hparams.expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX;
  1469. }
  1470. ml.get_key(LLM_KV_ROPE_SCALING_YARN_LOG_MUL, hparams.rope_yarn_log_mul, false);
  1471. // (optional) temperature tuning - used by mistral-large
  1472. ml.get_key(LLM_KV_ATTENTION_TEMPERATURE_SCALE, hparams.f_attn_temp_scale, false);
  1473. ml.get_key(LLM_KV_ATTENTION_TEMPERATURE_LENGTH, hparams.n_attn_temp_floor_scale, false);
  1474. switch (hparams.n_layer) {
  1475. case 27: type = LLM_TYPE_16B; break;
  1476. case 60: type = LLM_TYPE_236B; break;
  1477. case 61: type = LLM_TYPE_671B; break;
  1478. default: type = LLM_TYPE_UNKNOWN;
  1479. }
  1480. } break;
  1481. case LLM_ARCH_PLM:
  1482. {
  1483. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1484. ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
  1485. switch (hparams.n_layer) {
  1486. case 32: type = LLM_TYPE_1_8B; break;
  1487. default: type = LLM_TYPE_UNKNOWN;
  1488. }
  1489. } break;
  1490. case LLM_ARCH_CHATGLM:
  1491. {
  1492. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1493. switch (hparams.n_layer) {
  1494. case 28: {
  1495. if (hparams.n_head(0) == 16) {
  1496. type = LLM_TYPE_1_5B;
  1497. } else {
  1498. type = LLM_TYPE_6B;
  1499. }
  1500. } break;
  1501. case 40: {
  1502. if (hparams.n_head(0) == 24) {
  1503. type = LLM_TYPE_4B;
  1504. } else {
  1505. type = LLM_TYPE_9B;
  1506. }
  1507. } break;
  1508. default: type = LLM_TYPE_UNKNOWN;
  1509. }
  1510. } break;
  1511. case LLM_ARCH_GLM4:
  1512. {
  1513. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1514. switch (hparams.n_layer) {
  1515. case 40: type = LLM_TYPE_9B; break;
  1516. case 61: type = LLM_TYPE_32B; break;
  1517. default: type = LLM_TYPE_UNKNOWN;
  1518. }
  1519. } break;
  1520. case LLM_ARCH_GLM4_MOE:
  1521. {
  1522. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  1523. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1524. // MoE parameters
  1525. ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert);
  1526. ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used);
  1527. ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
  1528. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead, false);
  1529. ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
  1530. ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
  1531. // Expert gating function (GLM-4.5 uses sigmoid)
  1532. ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false);
  1533. if (hparams.expert_gating_func == LLAMA_EXPERT_GATING_FUNC_TYPE_NONE) {
  1534. hparams.expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID;
  1535. }
  1536. // NextN/MTP parameters
  1537. ml.get_key(LLM_KV_NEXTN_PREDICT_LAYERS, hparams.nextn_predict_layers, false);
  1538. // TODO: when MTP is implemented, this should probably be updated if needed
  1539. hparams.n_layer_kv_from_start = hparams.n_layer - hparams.nextn_predict_layers;
  1540. switch (hparams.n_layer) {
  1541. case 47: type = LLM_TYPE_106B_A12B; break; // GLM-4.5-Air (46 layers + 1 NextN layer)
  1542. case 93: type = LLM_TYPE_355B_A32B; break; // GLM-4.5 (92 layers + 1 NextN layer)
  1543. default: type = LLM_TYPE_UNKNOWN;
  1544. }
  1545. } break;
  1546. case LLM_ARCH_BITNET:
  1547. {
  1548. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1549. switch (hparams.n_layer) {
  1550. case 26: type = LLM_TYPE_3B; break;
  1551. default: type = LLM_TYPE_UNKNOWN;
  1552. }
  1553. } break;
  1554. case LLM_ARCH_T5:
  1555. {
  1556. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1557. ml.get_key(LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, hparams.n_rel_attn_bkts);
  1558. uint32_t dec_start_token_id;
  1559. if (ml.get_key(LLM_KV_DECODER_START_TOKEN_ID, dec_start_token_id, false)) {
  1560. hparams.dec_start_token_id = dec_start_token_id;
  1561. }
  1562. hparams.dec_n_layer = hparams.n_layer;
  1563. ml.get_key(LLM_KV_DECODER_BLOCK_COUNT, hparams.dec_n_layer, false);
  1564. switch (hparams.n_layer) {
  1565. case 6: type = LLM_TYPE_60M; break; // t5-small
  1566. case 8: type = LLM_TYPE_80M; break; // flan-t5-small
  1567. case 12:
  1568. switch (hparams.n_ff()) {
  1569. case 3072: type = LLM_TYPE_220M; break; // t5-base
  1570. case 2048: type = LLM_TYPE_250M; break; // flan-t5-base
  1571. default: type = LLM_TYPE_UNKNOWN;
  1572. } break;
  1573. case 24:
  1574. switch (hparams.n_ff()) {
  1575. case 4096: type = LLM_TYPE_770M; break; // t5-large
  1576. case 2816: type = LLM_TYPE_780M; break; // flan-t5-large
  1577. case 16384: type = LLM_TYPE_3B; break; // t5-3b
  1578. case 5120: type = LLM_TYPE_3B; break; // flan-t5-xl
  1579. case 65536: type = LLM_TYPE_11B; break; // t5-11b
  1580. case 10240: type = LLM_TYPE_11B; break; // flan-t5-xxl
  1581. default: type = LLM_TYPE_UNKNOWN;
  1582. } break;
  1583. default: type = LLM_TYPE_UNKNOWN;
  1584. }
  1585. } break;
  1586. case LLM_ARCH_T5ENCODER:
  1587. {
  1588. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1589. ml.get_key(LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, hparams.n_rel_attn_bkts);
  1590. type = LLM_TYPE_UNKNOWN;
  1591. } break;
  1592. case LLM_ARCH_JAIS:
  1593. {
  1594. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1595. ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
  1596. switch (hparams.n_layer) {
  1597. case 24: type = LLM_TYPE_1_3B; break;
  1598. case 40: type = LLM_TYPE_13B; break;
  1599. /* TODO: add variants */
  1600. default: type = LLM_TYPE_UNKNOWN;
  1601. }
  1602. } break;
  1603. case LLM_ARCH_NEMOTRON:
  1604. {
  1605. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1606. switch (hparams.n_layer) {
  1607. case 32: type = LLM_TYPE_4B; break;
  1608. default: type = LLM_TYPE_UNKNOWN;
  1609. }
  1610. } break;
  1611. case LLM_ARCH_NEMOTRON_H:
  1612. {
  1613. ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
  1614. ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
  1615. ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
  1616. ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
  1617. ml.get_key(LLM_KV_SSM_GROUP_COUNT, hparams.ssm_n_group);
  1618. // A layer is recurrent IFF the n_head_kv value is set to 0 and
  1619. // the n_ff value is set to 0
  1620. for (uint32_t i = 0; i < hparams.n_layer; ++i) {
  1621. hparams.recurrent_layer_arr[i] = (hparams.n_head_kv(i) == 0 && hparams.n_ff(i) == 0);
  1622. }
  1623. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1624. switch (hparams.n_layer) {
  1625. case 56: type = LLM_TYPE_9B; break;
  1626. default: type = LLM_TYPE_UNKNOWN;
  1627. }
  1628. } break;
  1629. case LLM_ARCH_EXAONE:
  1630. {
  1631. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1632. switch (hparams.n_layer) {
  1633. case 32: type = LLM_TYPE_8B; break;
  1634. default: type = LLM_TYPE_UNKNOWN;
  1635. }
  1636. } break;
  1637. case LLM_ARCH_EXAONE4:
  1638. {
  1639. if (hparams.n_layer == 64) { // 32B
  1640. hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
  1641. hparams.n_swa = 4096;
  1642. hparams.set_swa_pattern(4);
  1643. }
  1644. ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
  1645. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1646. switch (hparams.n_layer) {
  1647. case 30: type = LLM_TYPE_1_2B; break;
  1648. case 64: type = LLM_TYPE_32B; break;
  1649. default: type = LLM_TYPE_UNKNOWN;
  1650. }
  1651. } break;
  1652. case LLM_ARCH_RWKV6:
  1653. case LLM_ARCH_RWKV6QWEN2:
  1654. {
  1655. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps, false);
  1656. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps, false);
  1657. ml.get_key(LLM_KV_WKV_HEAD_SIZE, hparams.wkv_head_size);
  1658. ml.get_key(LLM_KV_TIME_MIX_EXTRA_DIM, hparams.time_mix_extra_dim);
  1659. ml.get_key(LLM_KV_TIME_DECAY_EXTRA_DIM, hparams.time_decay_extra_dim);
  1660. ml.get_key(LLM_KV_RESCALE_EVERY_N_LAYERS, hparams.rescale_every_n_layers, false);
  1661. ml.get_key(LLM_KV_TOKEN_SHIFT_COUNT, hparams.token_shift_count, false);
  1662. switch (hparams.n_layer) {
  1663. case 24: type = LLM_TYPE_1_6B; break;
  1664. case 32:
  1665. switch (hparams.n_embd) {
  1666. case 2560: type = LLM_TYPE_3B; break;
  1667. case 4096: type = LLM_TYPE_7B; break;
  1668. default: type = LLM_TYPE_UNKNOWN;
  1669. } break;
  1670. case 61: type = LLM_TYPE_14B; break;
  1671. case 64: type = LLM_TYPE_32B; break;
  1672. default: type = LLM_TYPE_UNKNOWN;
  1673. }
  1674. } break;
  1675. case LLM_ARCH_RWKV7:
  1676. case LLM_ARCH_ARWKV7:
  1677. {
  1678. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps, false);
  1679. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps, false);
  1680. ml.get_key(LLM_KV_WKV_HEAD_SIZE, hparams.wkv_head_size);
  1681. ml.get_key(LLM_KV_ATTENTION_DECAY_LORA_RANK, hparams.n_lora_decay);
  1682. ml.get_key(LLM_KV_ATTENTION_ICLR_LORA_RANK, hparams.n_lora_iclr);
  1683. ml.get_key(LLM_KV_ATTENTION_VALUE_RESIDUAL_MIX_LORA_RANK, hparams.n_lora_value_res_mix);
  1684. ml.get_key(LLM_KV_ATTENTION_GATE_LORA_RANK, hparams.n_lora_gate, false);
  1685. ml.get_key(LLM_KV_TOKEN_SHIFT_COUNT, hparams.token_shift_count, false);
  1686. switch (hparams.n_layer) {
  1687. case 12:
  1688. switch (hparams.n_embd) {
  1689. case 768: type = LLM_TYPE_190M; break;
  1690. default: type = LLM_TYPE_UNKNOWN;
  1691. } break;
  1692. case 24:
  1693. switch (hparams.n_embd) {
  1694. case 1024: type = LLM_TYPE_450M; break;
  1695. case 2048: type = LLM_TYPE_1_5B; break;
  1696. default: type = LLM_TYPE_UNKNOWN;
  1697. } break;
  1698. case 28:
  1699. switch (hparams.n_embd) {
  1700. case 1536: type = LLM_TYPE_1_5B; break;
  1701. case 3584: type = LLM_TYPE_7B; break;
  1702. default: type = LLM_TYPE_UNKNOWN;
  1703. } break;
  1704. case 32:
  1705. switch (hparams.n_embd) {
  1706. case 2560: type = LLM_TYPE_2_9B; break;
  1707. case 4096: type = LLM_TYPE_7B; break;
  1708. default: type = LLM_TYPE_UNKNOWN;
  1709. } break;
  1710. case 61:
  1711. switch (hparams.n_embd) {
  1712. case 4096: type = LLM_TYPE_14B; break;
  1713. default: type = LLM_TYPE_UNKNOWN;
  1714. } break;
  1715. default: type = LLM_TYPE_UNKNOWN;
  1716. }
  1717. } break;
  1718. case LLM_ARCH_GRANITE:
  1719. case LLM_ARCH_GRANITE_MOE:
  1720. {
  1721. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1722. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  1723. ml.get_key(LLM_KV_RESIDUAL_SCALE, hparams.f_residual_scale);
  1724. ml.get_key(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale);
  1725. ml.get_key(LLM_KV_ATTENTION_SCALE, hparams.f_attention_scale);
  1726. // Granite uses rope_finetuned as a switch for rope, so default to true
  1727. bool rope_finetuned = true;
  1728. ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
  1729. hparams.rope_finetuned = rope_finetuned;
  1730. switch (hparams.n_layer) {
  1731. case 32: type = LLM_TYPE_3B; break;
  1732. case 40: type = LLM_TYPE_3B; break;
  1733. // Add additional layer/vocab/etc checks here for other model sizes
  1734. default: type = LLM_TYPE_UNKNOWN;
  1735. }
  1736. // For Granite MoE Shared
  1737. ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, /* required */ false);
  1738. } break;
  1739. case LLM_ARCH_GRANITE_HYBRID:
  1740. {
  1741. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1742. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale, /* required */ false);
  1743. ml.get_key(LLM_KV_RESIDUAL_SCALE, hparams.f_residual_scale, /* required */ false);
  1744. ml.get_key(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale, /* required */ false);
  1745. ml.get_key(LLM_KV_ATTENTION_SCALE, hparams.f_attention_scale, /* required */ false);
  1746. ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
  1747. ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
  1748. ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
  1749. ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
  1750. ml.get_key(LLM_KV_SSM_GROUP_COUNT, hparams.ssm_n_group);
  1751. // Granite uses rope_finetuned as a switch for rope, so default to true
  1752. bool rope_finetuned = true;
  1753. ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
  1754. hparams.rope_finetuned = rope_finetuned;
  1755. // A layer is recurrent IFF the n_head_kv value is set to 0
  1756. for (uint32_t i = 0; i < hparams.n_layer; ++i) {
  1757. hparams.recurrent_layer_arr[i] = hparams.n_head_kv(i) == 0;
  1758. }
  1759. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1760. switch (hparams.n_embd) {
  1761. case 768: type = LLM_TYPE_350M; break;
  1762. case 1536: type = (hparams.n_embd == 2048 ? LLM_TYPE_7B_A1B : LLM_TYPE_1B); break;
  1763. case 2048: case 2560: type = LLM_TYPE_3B; break;
  1764. case 4096: type = LLM_TYPE_32B; break;
  1765. default: type = LLM_TYPE_UNKNOWN;
  1766. }
  1767. // For Granite MoE Shared
  1768. ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, /* required */ false);
  1769. } break;
  1770. case LLM_ARCH_CHAMELEON:
  1771. {
  1772. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1773. hparams.f_norm_eps = 1e-5; // eps for qk-norm, torch default
  1774. ml.get_key(LLM_KV_SWIN_NORM, hparams.swin_norm);
  1775. switch (hparams.n_layer) {
  1776. case 32: type = LLM_TYPE_7B; break;
  1777. case 48: type = LLM_TYPE_34B; break;
  1778. default: type = LLM_TYPE_UNKNOWN;
  1779. }
  1780. } break;
  1781. case LLM_ARCH_WAVTOKENIZER_DEC:
  1782. {
  1783. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1784. ml.get_key(LLM_KV_ATTENTION_GROUPNORM_EPS, hparams.f_norm_group_eps);
  1785. ml.get_key(LLM_KV_ATTENTION_GROUPNORM_GROUPS, hparams.n_norm_groups);
  1786. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  1787. } break;
  1788. case LLM_ARCH_BAILINGMOE:
  1789. {
  1790. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1791. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
  1792. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  1793. ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
  1794. ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
  1795. ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
  1796. switch (hparams.n_layer) {
  1797. case 28: type = LLM_TYPE_16B; break;
  1798. case 88: type = LLM_TYPE_290B; break;
  1799. default: type = LLM_TYPE_UNKNOWN;
  1800. }
  1801. } break;
  1802. case LLM_ARCH_BAILINGMOE2:
  1803. {
  1804. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1805. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
  1806. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  1807. ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp);
  1808. ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
  1809. ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
  1810. ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
  1811. ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func);
  1812. ml.get_key(LLM_KV_NEXTN_PREDICT_LAYERS, hparams.nextn_predict_layers, false);
  1813. // TODO: when MTP is implemented, this should probably be updated if needed
  1814. hparams.n_layer_kv_from_start = hparams.n_layer - hparams.nextn_predict_layers;
  1815. switch (hparams.n_layer) {
  1816. case 20: type = LLM_TYPE_16B_A1B; break;
  1817. case 21: type = LLM_TYPE_16B_A1B; break;
  1818. case 32: type = LLM_TYPE_100B_A6B; break;
  1819. case 33: type = LLM_TYPE_100B_A6B; break;
  1820. default: type = LLM_TYPE_UNKNOWN;
  1821. }
  1822. } break;
  1823. case LLM_ARCH_DOTS1:
  1824. {
  1825. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1826. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
  1827. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  1828. ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
  1829. ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
  1830. ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
  1831. ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false);
  1832. switch (hparams.n_layer) {
  1833. case 62: type = LLM_TYPE_142B; break;
  1834. default: type = LLM_TYPE_UNKNOWN;
  1835. }
  1836. } break;
  1837. case LLM_ARCH_ERNIE4_5:
  1838. case LLM_ARCH_ERNIE4_5_MOE:
  1839. {
  1840. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1841. if (arch == LLM_ARCH_ERNIE4_5_MOE) {
  1842. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  1843. ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false);
  1844. ml.get_key(LLM_KV_INTERLEAVE_MOE_LAYER_STEP, hparams.n_moe_layer_step);
  1845. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
  1846. }
  1847. switch (hparams.n_layer) {
  1848. case 18: type = LLM_TYPE_0_3B; break;
  1849. case 28: type = LLM_TYPE_21B_A3B; break;
  1850. case 54: type = LLM_TYPE_300B_A47B; break;
  1851. default: type = LLM_TYPE_UNKNOWN;
  1852. }
  1853. } break;
  1854. case LLM_ARCH_FALCON_H1:
  1855. {
  1856. // Common parameters
  1857. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1858. // SSM parameters
  1859. ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
  1860. ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
  1861. ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
  1862. ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
  1863. ml.get_key(LLM_KV_SSM_GROUP_COUNT, hparams.ssm_n_group);
  1864. std::fill(hparams.recurrent_layer_arr.begin(), hparams.recurrent_layer_arr.end(), true);
  1865. switch (hparams.n_layer) {
  1866. case 36:
  1867. type = LLM_TYPE_0_5B; break;
  1868. case 24:
  1869. type = LLM_TYPE_1_5B; break;
  1870. case 66:
  1871. type = LLM_TYPE_1B; break;
  1872. case 32:
  1873. type = LLM_TYPE_3B; break;
  1874. case 44:
  1875. type = LLM_TYPE_7B; break;
  1876. case 72:
  1877. type = LLM_TYPE_34B; break;
  1878. default:
  1879. type = LLM_TYPE_UNKNOWN;
  1880. }
  1881. } break;
  1882. case LLM_ARCH_HUNYUAN_MOE:
  1883. {
  1884. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1885. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  1886. ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp);
  1887. switch (hparams.n_layer) {
  1888. case 32: type = LLM_TYPE_A13B; break;
  1889. default: type = LLM_TYPE_UNKNOWN;
  1890. }
  1891. } break;
  1892. case LLM_ARCH_HUNYUAN_DENSE:
  1893. {
  1894. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1895. switch (hparams.n_embd) {
  1896. case 1024: type = LLM_TYPE_0_5B; break;
  1897. case 2048: type = LLM_TYPE_1_8B; break;
  1898. case 3072: type = LLM_TYPE_4B; break;
  1899. case 4096: type = LLM_TYPE_7B; break;
  1900. default: type = LLM_TYPE_UNKNOWN;
  1901. }
  1902. } break;
  1903. case LLM_ARCH_SMOLLM3:
  1904. {
  1905. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1906. hparams.n_no_rope_layer_step = 4;
  1907. switch (hparams.n_layer) {
  1908. case 36: type = LLM_TYPE_3B; break;
  1909. default: type = LLM_TYPE_UNKNOWN;
  1910. }
  1911. } break;
  1912. case LLM_ARCH_OPENAI_MOE:
  1913. {
  1914. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1915. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  1916. ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
  1917. hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
  1918. hparams.set_swa_pattern(2);
  1919. switch (hparams.n_layer) {
  1920. case 24: type = LLM_TYPE_20B; break;
  1921. case 36: type = LLM_TYPE_120B; break;
  1922. default: type = LLM_TYPE_UNKNOWN;
  1923. }
  1924. } break;
  1925. case LLM_ARCH_LFM2:
  1926. {
  1927. ml.get_key(LLM_KV_SHORTCONV_L_CACHE, hparams.n_shortconv_l_cache);
  1928. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1929. for (uint32_t il = 0; il < hparams.n_layer; ++il) {
  1930. hparams.recurrent_layer_arr[il] = hparams.n_head_kv(il) == 0;
  1931. }
  1932. hparams.n_layer_dense_lead = hparams.n_layer;
  1933. switch (hparams.n_ff()) {
  1934. case 4608: type = LLM_TYPE_350M; break;
  1935. case 6912: type = LLM_TYPE_700M; break;
  1936. case 8192: type = LLM_TYPE_1_2B; break;
  1937. case 10752: type = LLM_TYPE_2_6B; break;
  1938. default: type = LLM_TYPE_UNKNOWN;
  1939. }
  1940. } break;
  1941. case LLM_ARCH_LFM2MOE:
  1942. {
  1943. ml.get_key(LLM_KV_SHORTCONV_L_CACHE, hparams.n_shortconv_l_cache);
  1944. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1945. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
  1946. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  1947. ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func);
  1948. for (uint32_t il = 0; il < hparams.n_layer; ++il) {
  1949. hparams.recurrent_layer_arr[il] = hparams.n_head_kv(il) == 0;
  1950. }
  1951. type = LLM_TYPE_8B_A1B;
  1952. } break;
  1953. case LLM_ARCH_SMALLTHINKER:
  1954. {
  1955. const bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
  1956. if (found_swa && hparams.n_swa > 0) {
  1957. hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
  1958. hparams.n_swa = 4096;
  1959. hparams.set_swa_pattern(4, true);
  1960. } else {
  1961. hparams.swa_type = LLAMA_SWA_TYPE_NONE;
  1962. hparams.n_no_rope_layer_step = hparams.n_layer;
  1963. }
  1964. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
  1965. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1966. ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false);
  1967. switch (hparams.n_layer) {
  1968. case 32: type = LLM_TYPE_4B; break;
  1969. case 52: type = LLM_TYPE_20B; break;
  1970. default: type = LLM_TYPE_UNKNOWN;
  1971. }
  1972. } break;
  1973. case LLM_ARCH_GROVEMOE:
  1974. {
  1975. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  1976. ml.get_key(LLM_KV_EXPERT_CHUNK_FEED_FORWARD_LENGTH, hparams.n_ff_chexp);
  1977. ml.get_key(LLM_KV_EXPERT_GROUP_SCALE, hparams.expert_group_scale);
  1978. ml.get_key(LLM_KV_EXPERTS_PER_GROUP, hparams.n_group_experts);
  1979. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1980. switch (hparams.n_layer) {
  1981. case 48: type = LLM_TYPE_30B_A3B; break;
  1982. default: type = LLM_TYPE_UNKNOWN;
  1983. }
  1984. } break;
  1985. case LLM_ARCH_APERTUS:
  1986. {
  1987. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1988. ml.get_key_or_arr(LLM_KV_XIELU_ALPHA_N, hparams.xielu_alpha_n, hparams.n_layer);
  1989. ml.get_key_or_arr(LLM_KV_XIELU_ALPHA_P, hparams.xielu_alpha_p, hparams.n_layer);
  1990. ml.get_key_or_arr(LLM_KV_XIELU_BETA, hparams.xielu_beta, hparams.n_layer);
  1991. ml.get_key_or_arr(LLM_KV_XIELU_EPS, hparams.xielu_eps, hparams.n_layer);
  1992. switch (hparams.n_layer) {
  1993. case 32: type = LLM_TYPE_8B; break;
  1994. default: type = LLM_TYPE_UNKNOWN;
  1995. }
  1996. } break;
  1997. case LLM_ARCH_MINIMAX_M2:
  1998. {
  1999. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  2000. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  2001. ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false);
  2002. switch (hparams.n_layer) {
  2003. case 62: type = LLM_TYPE_230B_A10B; break;
  2004. default: type = LLM_TYPE_UNKNOWN;
  2005. }
  2006. } break;
  2007. case LLM_ARCH_COGVLM:
  2008. {
  2009. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  2010. switch (hparams.n_layer) {
  2011. case 32: type = LLM_TYPE_13B; break;
  2012. default: type = LLM_TYPE_UNKNOWN;
  2013. }
  2014. } break;
  2015. case LLM_ARCH_PANGU_EMBED:
  2016. {
  2017. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  2018. switch (hparams.n_layer) {
  2019. case 26: type = LLM_TYPE_1B; break; // openPangu-Embedded-1B-V1.1
  2020. case 34: type = LLM_TYPE_7B; break; // openPangu-Embedded-7B-V1.1
  2021. default: type = LLM_TYPE_UNKNOWN;
  2022. }
  2023. } break;
  2024. case LLM_ARCH_QWEN3NEXT:
  2025. {
  2026. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
  2027. ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false);
  2028. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  2029. // Load linear attention (gated delta net) parameters
  2030. ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
  2031. ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
  2032. ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
  2033. ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
  2034. ml.get_key(LLM_KV_SSM_GROUP_COUNT, hparams.ssm_n_group);
  2035. // Mark recurrent layers (linear attention layers)
  2036. for (uint32_t i = 0; i < hparams.n_layer; ++i) {
  2037. hparams.recurrent_layer_arr[i] = ((i + 1) % 4 != 0); // TODO: extract the magic 4 from "full_attention_interval"
  2038. }
  2039. switch (hparams.n_layer) {
  2040. case 80: type = LLM_TYPE_80B_A3B; break;
  2041. default: type = LLM_TYPE_UNKNOWN;
  2042. }
  2043. } break;
  2044. case LLM_ARCH_MISTRAL3:
  2045. {
  2046. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  2047. ml.get_key(LLM_KV_ATTENTION_TEMPERATURE_SCALE, hparams.f_attn_temp_scale, false);
  2048. ml.get_key(LLM_KV_ROPE_SCALING_YARN_BETA_FAST, hparams.yarn_beta_fast, false);
  2049. ml.get_key(LLM_KV_ROPE_SCALING_YARN_BETA_SLOW, hparams.yarn_beta_slow, false);
  2050. ml.get_key(LLM_KV_ROPE_SCALING_YARN_LOG_MUL, hparams.rope_yarn_log_mul, false);
  2051. // TODO: maybe add n_attn_temp_floor_scale as a separate KV?
  2052. if (hparams.f_attn_temp_scale != 0.0f) {
  2053. hparams.n_attn_temp_floor_scale = hparams.n_ctx_orig_yarn;
  2054. if (hparams.n_attn_temp_floor_scale == 0) {
  2055. throw std::runtime_error("invalid n_ctx_orig_yarn for attention temperature scaling");
  2056. }
  2057. }
  2058. // TODO: this seems to be correct with the case of mscale == mscale_all_dims == 1.0f
  2059. // but may need further verification with other values
  2060. if (hparams.rope_yarn_log_mul != 0.0f) {
  2061. float factor = 1.0f / hparams.rope_freq_scale_train;
  2062. float mscale = 1.0f;
  2063. float mscale_all_dims = hparams.rope_yarn_log_mul;
  2064. static auto get_mscale = [](float scale, float mscale) {
  2065. return scale <= 1.0f ? 1.0f : (0.1f * mscale * logf(scale) + 1.0f);
  2066. };
  2067. hparams.yarn_attn_factor = get_mscale(factor, mscale) / get_mscale(factor, mscale_all_dims);
  2068. }
  2069. switch (hparams.n_layer) {
  2070. case 26: type = LLM_TYPE_3B; break;
  2071. case 34: type = LLM_TYPE_8B; break;
  2072. case 40: type = LLM_TYPE_14B; break;
  2073. default: type = LLM_TYPE_UNKNOWN;
  2074. }
  2075. } break;
  2076. default: throw std::runtime_error("unsupported model architecture");
  2077. }
  2078. pimpl->n_bytes = ml.n_bytes;
  2079. pimpl->desc_str = arch_name() + " " + type_name() + " " + ml.ftype_name();
  2080. if (hparams.f_max_alibi_bias > 0.0f) {
  2081. hparams.use_alibi = true;
  2082. }
  2083. hparams.rope_type = llama_model_rope_type(this);
  2084. }
  2085. void llama_model::load_vocab(llama_model_loader & ml) {
  2086. const auto kv = LLM_KV(arch);
  2087. vocab.load(ml, kv);
  2088. }
  2089. bool llama_model::load_tensors(llama_model_loader & ml) {
  2090. const auto & split_mode = params.split_mode;
  2091. const auto & n_gpu_layers = params.n_gpu_layers;
  2092. const auto & use_mlock = params.use_mlock;
  2093. const auto & tensor_split = params.tensor_split;
  2094. const int n_layer = hparams.n_layer;
  2095. const bool use_mmap_buffer = true;
  2096. LLAMA_LOG_INFO("%s: loading model tensors, this can take a while... (mmap = %s)\n", __func__, ml.use_mmap ? "true" : "false");
  2097. // build a list of buffer types for the CPU and GPU devices
  2098. pimpl->cpu_buft_list = make_cpu_buft_list(devices, params.use_extra_bufts, params.no_host);
  2099. for (auto * dev : devices) {
  2100. buft_list_t buft_list = make_gpu_buft_list(dev, split_mode, tensor_split);
  2101. // add CPU buffer types as a fallback
  2102. buft_list.insert(buft_list.end(), pimpl->cpu_buft_list.begin(), pimpl->cpu_buft_list.end());
  2103. pimpl->gpu_buft_list.emplace(dev, std::move(buft_list));
  2104. }
  2105. // calculate the split points
  2106. bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + n_devices(), [](float x) { return x == 0.0f; });
  2107. std::vector<float> splits(n_devices());
  2108. if (all_zero) {
  2109. // default split, by free memory
  2110. for (size_t i = 0; i < n_devices(); ++i) {
  2111. ggml_backend_dev_t dev = devices[i];
  2112. size_t total;
  2113. size_t free;
  2114. ggml_backend_dev_memory(dev, &free, &total);
  2115. splits[i] = free;
  2116. }
  2117. } else {
  2118. std::copy(tensor_split, tensor_split + n_devices(), splits.begin());
  2119. }
  2120. // sum and normalize the splits to get the split points
  2121. float split_sum = 0.0f;
  2122. for (size_t i = 0; i < n_devices(); ++i) {
  2123. split_sum += splits[i];
  2124. splits[i] = split_sum;
  2125. }
  2126. for (size_t i = 0; i < n_devices(); ++i) {
  2127. splits[i] /= split_sum;
  2128. }
  2129. ggml_backend_dev_t cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  2130. if (cpu_dev == nullptr) {
  2131. throw std::runtime_error(format("%s: no CPU backend found", __func__));
  2132. }
  2133. const int i_gpu_start = std::max((int) hparams.n_layer - n_gpu_layers, (int) 0);
  2134. const int act_gpu_layers = devices.empty() ? 0 : std::min(n_gpu_layers, (int)n_layer + 1);
  2135. auto get_layer_buft_list = [&](int il) -> llama_model::impl::layer_dev {
  2136. const bool is_swa = il < (int) hparams.n_layer && hparams.is_swa(il);
  2137. if (il < i_gpu_start || (il - i_gpu_start) >= act_gpu_layers) {
  2138. LLAMA_LOG_DEBUG("load_tensors: layer %3d assigned to device %s, is_swa = %d\n", il, ggml_backend_dev_name(cpu_dev), is_swa);
  2139. return {cpu_dev, &pimpl->cpu_buft_list};
  2140. }
  2141. const int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + n_devices(), float(il - i_gpu_start)/act_gpu_layers) - splits.begin();
  2142. auto * dev = devices.at(layer_gpu);
  2143. LLAMA_LOG_DEBUG("load_tensors: layer %3d assigned to device %s, is_swa = %d\n", il, ggml_backend_dev_name(dev), is_swa);
  2144. return {dev, &pimpl->gpu_buft_list.at(dev)};
  2145. };
  2146. // assign the input layer
  2147. // there is very little benefit to offloading the input layer, so always keep it on the CPU
  2148. pimpl->dev_input = { cpu_dev, &pimpl->cpu_buft_list };
  2149. // assign the repeating layers to the devices according to the splits
  2150. pimpl->dev_layer.resize(n_layer);
  2151. for (int il = 0; il < n_layer; ++il) {
  2152. pimpl->dev_layer[il] = get_layer_buft_list(il);
  2153. }
  2154. // assign the output layer
  2155. pimpl->dev_output = get_layer_buft_list(n_layer);
  2156. // one ggml context per buffer type
  2157. int max_n_tensors = ml.n_tensors;
  2158. max_n_tensors += 1; // duplicated output tensor
  2159. max_n_tensors += n_layer*2; // duplicated rope freq tensors
  2160. const size_t ctx_size = ggml_tensor_overhead()*max_n_tensors;
  2161. // define a comparator for the buft -> ctx map to ensure that the order is well-defined:
  2162. struct ggml_backend_buft_comparator {
  2163. bool operator()(const ggml_backend_buffer_type_t & lhs, const ggml_backend_buffer_type_t & rhs) const {
  2164. return strcmp(ggml_backend_buft_name(lhs), ggml_backend_buft_name(rhs)) < 0;
  2165. }
  2166. };
  2167. std::map<ggml_backend_buffer_type_t, ggml_context_ptr, ggml_backend_buft_comparator> ctx_map;
  2168. auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
  2169. auto it = ctx_map.find(buft);
  2170. if (it == ctx_map.end()) {
  2171. ggml_init_params params = {
  2172. /*.mem_size =*/ ctx_size,
  2173. /*.mem_buffer =*/ NULL,
  2174. /*.no_alloc =*/ true,
  2175. };
  2176. ggml_context * ctx = ggml_init(params);
  2177. if (!ctx) {
  2178. throw std::runtime_error(format("failed to create ggml context"));
  2179. }
  2180. ctx_map.emplace(buft, ctx);
  2181. return ctx;
  2182. }
  2183. return it->second.get();
  2184. };
  2185. const auto TENSOR_DUPLICATED = llama_model_loader::TENSOR_DUPLICATED;
  2186. const auto TENSOR_NOT_REQUIRED = llama_model_loader::TENSOR_NOT_REQUIRED;
  2187. const auto TENSOR_SKIP = llama_model_loader::TENSOR_SKIP;
  2188. // create tensors for the weights
  2189. {
  2190. // note: cast to int64_t since we will use these for the tensor dimensions
  2191. const int64_t n_head = hparams.n_head();
  2192. const int64_t n_head_kv = hparams.n_head_kv();
  2193. const int64_t n_embd = hparams.n_embd;
  2194. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  2195. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  2196. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  2197. const int64_t n_embd_head_v = hparams.n_embd_head_v;
  2198. const int64_t n_ff = hparams.n_ff();
  2199. const int64_t n_embd_gqa = n_embd_v_gqa;
  2200. const int64_t n_vocab = vocab.n_tokens();
  2201. const int64_t n_token_types = vocab.n_token_types();
  2202. const int64_t n_rot = hparams.n_rot;
  2203. const int64_t n_expert = hparams.n_expert;
  2204. const int64_t n_expert_used = hparams.n_expert_used;
  2205. const int64_t n_ctx_train = hparams.n_ctx_train;
  2206. if (n_expert > 0 && hparams.n_expert_used == 0) {
  2207. throw std::runtime_error("model has expert layers but no expert layers are used");
  2208. }
  2209. int n_moved_tensors = 0;
  2210. ggml_tensor * first_moved_tensor = nullptr;
  2211. ggml_backend_buffer_type_t first_moved_from_buft = nullptr;
  2212. ggml_backend_buffer_type_t first_moved_to_buft = nullptr;
  2213. auto create_tensor = [&](const LLM_TN_IMPL & tn, const std::initializer_list<int64_t> & ne, int flags) -> ggml_tensor * {
  2214. ggml_tensor * t_meta = ml.get_tensor_meta(tn.str().c_str());
  2215. if (!t_meta) {
  2216. if (flags & TENSOR_NOT_REQUIRED) {
  2217. return nullptr;
  2218. }
  2219. throw std::runtime_error(format("missing tensor '%s'", tn.str().c_str()));
  2220. }
  2221. // some models use the token embedding tensor as the output, but since these are used in different layers and with different ops
  2222. // the tensor is duplicated
  2223. // to handle this, we check if the tensor is duplicated, and if so, we assume that it is being loaded as the output tensor
  2224. llm_tensor tn_tensor = tn.tensor;
  2225. if (tn.tensor == LLM_TENSOR_TOKEN_EMBD && flags & TENSOR_DUPLICATED) {
  2226. tn_tensor = LLM_TENSOR_OUTPUT;
  2227. }
  2228. llm_tensor_info info;
  2229. try {
  2230. info = llm_tensor_info_for(tn_tensor);
  2231. } catch (const std::out_of_range & e) {
  2232. throw std::runtime_error(format("missing tensor info mapping for %s", tn.str().c_str()));
  2233. }
  2234. // skip unused tensors
  2235. if (info.op == GGML_OP_NONE || flags & TENSOR_SKIP) {
  2236. const size_t nbytes = ggml_nbytes(t_meta);
  2237. LLAMA_LOG_WARN("model has unused tensor %s (size = %zu bytes) -- ignoring\n", tn.str().c_str(), nbytes);
  2238. ml.size_data -= nbytes;
  2239. ml.n_created++;
  2240. return nullptr;
  2241. }
  2242. // tensors with "bias" suffix are always used with GGML_OP_ADD or GGML_OP_ADD_ID
  2243. ggml_op op;
  2244. bool bias = tn.suffix != nullptr && strcmp(tn.suffix, "bias") == 0;
  2245. if (bias) {
  2246. if (info.op == GGML_OP_MUL_MAT_ID) {
  2247. op = GGML_OP_ADD_ID;
  2248. } else {
  2249. op = GGML_OP_ADD;
  2250. }
  2251. } else {
  2252. op = info.op;
  2253. }
  2254. // sanity checks
  2255. if (info.layer == LLM_TENSOR_LAYER_INPUT || info.layer == LLM_TENSOR_LAYER_OUTPUT) {
  2256. if (tn.bid != -1) {
  2257. GGML_ABORT("input/output layer tensor %s used with a layer number", tn.str().c_str());
  2258. }
  2259. } else {
  2260. if (tn.bid == -1) {
  2261. GGML_ABORT("repeating layer tensor %s used without a layer number", tn.str().c_str());
  2262. }
  2263. }
  2264. // select the buffer type for this tensor
  2265. buft_list_t * buft_list;
  2266. switch (info.layer) {
  2267. case LLM_TENSOR_LAYER_INPUT:
  2268. buft_list = pimpl->dev_input.buft_list;
  2269. break;
  2270. case LLM_TENSOR_LAYER_OUTPUT:
  2271. buft_list = pimpl->dev_output.buft_list;
  2272. break;
  2273. case LLM_TENSOR_LAYER_REPEATING:
  2274. buft_list = pimpl->dev_layer.at(tn.bid).buft_list;
  2275. break;
  2276. default:
  2277. GGML_ABORT("invalid layer %d for tensor %s", info.layer, tn.str().c_str());
  2278. }
  2279. ggml_backend_buffer_type_t buft = nullptr;
  2280. // check overrides
  2281. if (ml.tensor_buft_overrides) {
  2282. std::string tensor_name = tn.str();
  2283. for (const auto * overrides = ml.tensor_buft_overrides; overrides->pattern != nullptr; ++overrides) {
  2284. std::regex pattern(overrides->pattern);
  2285. if (std::regex_search(tensor_name, pattern)) {
  2286. if (overrides->buft == ggml_backend_cpu_buffer_type()) {
  2287. // when overriding to a CPU buffer, consider the extra buffer types
  2288. buft = select_weight_buft(hparams, t_meta, op, pimpl->cpu_buft_list);
  2289. } else {
  2290. buft = overrides->buft;
  2291. }
  2292. LLAMA_LOG_DEBUG("tensor %s (%zu MiB %s) buffer type overridden to %s\n",
  2293. tensor_name.c_str(),
  2294. ggml_nbytes(t_meta) / 1024 / 1024, ggml_type_name(t_meta->type),
  2295. ggml_backend_buft_name(buft));
  2296. break;
  2297. }
  2298. }
  2299. }
  2300. if (!buft) {
  2301. buft = select_weight_buft(hparams, t_meta, op, *buft_list);
  2302. if (!buft) {
  2303. throw std::runtime_error(format("failed to find a compatible buffer type for tensor %s", tn.str().c_str()));
  2304. }
  2305. }
  2306. // avoid using a host buffer when using mmap
  2307. auto * buft_dev = ggml_backend_buft_get_device(buft);
  2308. if (ml.use_mmap && buft_dev && buft == ggml_backend_dev_host_buffer_type(buft_dev)) {
  2309. auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  2310. if (!cpu_dev) {
  2311. throw std::runtime_error("no CPU backend found");
  2312. }
  2313. buft = ggml_backend_dev_buffer_type(cpu_dev);
  2314. }
  2315. if (buft != buft_list->front().second) {
  2316. n_moved_tensors++;
  2317. if (!first_moved_tensor) {
  2318. first_moved_tensor = t_meta;
  2319. first_moved_from_buft = buft_list->front().second;
  2320. first_moved_to_buft = buft;
  2321. }
  2322. }
  2323. ggml_context * ctx = ctx_for_buft(buft);
  2324. // if duplicated, check if the original tensor was allocated in the same buffer type context and avoid creating a new one
  2325. if (flags & TENSOR_DUPLICATED) {
  2326. ggml_tensor * t = ggml_get_tensor(ctx, tn.str().c_str());
  2327. if (t) {
  2328. return t;
  2329. }
  2330. }
  2331. return ml.create_tensor(ctx, tn, ne, flags);
  2332. };
  2333. layers.resize(n_layer);
  2334. // TODO: move to a separate function
  2335. const auto tn = LLM_TN(arch);
  2336. switch (arch) {
  2337. case LLM_ARCH_LLAMA:
  2338. case LLM_ARCH_REFACT:
  2339. case LLM_ARCH_MINICPM:
  2340. case LLM_ARCH_GRANITE:
  2341. case LLM_ARCH_GRANITE_MOE:
  2342. case LLM_ARCH_MISTRAL3:
  2343. {
  2344. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2345. // output
  2346. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2347. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2348. // if output is NULL, init from the input tok embed
  2349. if (output == NULL) {
  2350. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2351. }
  2352. for (int i = 0; i < n_layer; ++i) {
  2353. auto & layer = layers[i];
  2354. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2355. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2356. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2357. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2358. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  2359. // optional bias tensors
  2360. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2361. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2362. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2363. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2364. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2365. if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
  2366. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2367. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2368. }
  2369. else {
  2370. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2371. }
  2372. if (n_expert == 0) {
  2373. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2374. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2375. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2376. // optional MLP bias
  2377. layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  2378. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2379. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  2380. } else {
  2381. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2382. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, TENSOR_NOT_REQUIRED);
  2383. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
  2384. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  2385. // For Granite MoE Shared
  2386. if (hparams.n_ff_shexp > 0) {
  2387. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
  2388. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
  2389. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {hparams.n_ff_shexp, n_embd}, 0);
  2390. }
  2391. }
  2392. }
  2393. } break;
  2394. case LLM_ARCH_LLADA:
  2395. {
  2396. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
  2397. // output
  2398. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
  2399. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, TENSOR_NOT_REQUIRED);
  2400. // if output is NULL, init from the input tok embed
  2401. if (output == NULL) {
  2402. output =
  2403. create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, TENSOR_DUPLICATED);
  2404. }
  2405. for (int i = 0; i < n_layer; ++i) {
  2406. auto & layer = layers[i];
  2407. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
  2408. // Use separate Q, K, V projections without bias, matching LLaDALlamaBlock
  2409. layer.wq =
  2410. create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd_head_k * n_head }, 0);
  2411. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_k_gqa }, 0);
  2412. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_v_gqa }, 0);
  2413. // No bias for QKV projections as per config: include_bias=false, include_qkv_bias=false
  2414. layer.wo =
  2415. create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd_head_k * n_head, n_embd }, 0);
  2416. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), { n_embd }, TENSOR_NOT_REQUIRED);
  2417. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);
  2418. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), { n_rot / 2 },
  2419. TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2420. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), { n_embd, n_ff }, 0);
  2421. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
  2422. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, n_ff }, 0);
  2423. // optional MLP bias
  2424. layer.ffn_gate_b =
  2425. create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), { n_ff }, TENSOR_NOT_REQUIRED);
  2426. layer.ffn_down_b =
  2427. create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), { n_embd }, TENSOR_NOT_REQUIRED);
  2428. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), { n_ff }, TENSOR_NOT_REQUIRED);
  2429. }
  2430. }
  2431. break;
  2432. case LLM_ARCH_LLADA_MOE:
  2433. {
  2434. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2435. // output
  2436. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2437. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2438. GGML_ASSERT(n_expert > 0 && "n_expert must be > 0 for llada-moe");
  2439. GGML_ASSERT(n_expert_used > 0 && "n_expert_used must be > 0 for llada-moe");
  2440. for (int i = 0; i < n_layer; ++i) {
  2441. auto & layer = layers[i];
  2442. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2443. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2444. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2445. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2446. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2447. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  2448. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  2449. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2450. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2451. const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
  2452. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2453. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  2454. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2455. }
  2456. } break;
  2457. case LLM_ARCH_LLAMA4:
  2458. {
  2459. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2460. // output
  2461. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2462. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2463. // if output is NULL, init from the input tok embed
  2464. if (output == NULL) {
  2465. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2466. }
  2467. for (int i = 0; i < n_layer; ++i) {
  2468. bool is_moe_layer = hparams.n_moe_layer_step > 0 && (i + 1) % hparams.n_moe_layer_step == 0;
  2469. auto & layer = layers[i];
  2470. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2471. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2472. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2473. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2474. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  2475. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2476. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2477. if (is_moe_layer) {
  2478. int n_ff_exp = hparams.n_ff_exp;
  2479. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2480. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
  2481. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff_exp, n_embd, n_expert}, 0);
  2482. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
  2483. // Shared expert
  2484. const int64_t n_ff_shexp = n_ff_exp;
  2485. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0);
  2486. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd }, 0);
  2487. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0);
  2488. } else {
  2489. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2490. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2491. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2492. }
  2493. }
  2494. } break;
  2495. case LLM_ARCH_DECI:
  2496. {
  2497. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2498. // output
  2499. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2500. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2501. // if output is NULL, init from the input tok embed
  2502. if (output == NULL) {
  2503. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2504. }
  2505. for (int i = 0; i < n_layer; ++i) {
  2506. auto & layer = layers[i];
  2507. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(i);
  2508. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(i);
  2509. const int64_t n_embd_gqa = hparams.n_embd_v_gqa(i);
  2510. const int64_t n_ff = hparams.n_ff(i);
  2511. const int64_t n_head = hparams.n_head(i);
  2512. const int64_t n_head_kv = hparams.n_head_kv(i);
  2513. if (n_head_kv == 0 && n_head > 0) {
  2514. // linear attention for DeciLMCausalModel
  2515. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2516. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2517. }
  2518. else if (n_head_kv > 0) {
  2519. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2520. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2521. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2522. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2523. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  2524. }
  2525. // optional bias tensors
  2526. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2527. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2528. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2529. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2530. if (n_ff > 0) {
  2531. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2532. }
  2533. if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
  2534. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2535. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2536. }
  2537. else {
  2538. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2539. }
  2540. if (n_ff > 0) {
  2541. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2542. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2543. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2544. }
  2545. // optional MLP bias
  2546. layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  2547. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2548. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  2549. }
  2550. } break;
  2551. case LLM_ARCH_MINICPM3:
  2552. {
  2553. const int64_t n_embd_head_qk_rope = hparams.n_rot;
  2554. const int64_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  2555. const int64_t q_lora_rank = hparams.n_lora_q;
  2556. const int64_t kv_lora_rank = hparams.n_lora_kv;
  2557. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2558. // output
  2559. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2560. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2561. // if output is NULL, init from the input tok embed
  2562. if (output == NULL) {
  2563. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2564. }
  2565. for (int i = 0; i < n_layer; ++i) {
  2566. auto & layer = layers[i];
  2567. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2568. layer.attn_q_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank}, 0);
  2569. layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0);
  2570. layer.wq_a = create_tensor(tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank}, 0);
  2571. layer.wq_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k}, 0);
  2572. layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + (n_embd_head_qk_rope)}, 0);
  2573. layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)}, 0);
  2574. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_head * ( n_embd_head_v), n_embd}, 0);
  2575. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2576. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2577. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2578. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2579. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_embd_head_qk_rope/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2580. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_embd_head_qk_rope/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2581. }
  2582. } break;
  2583. case LLM_ARCH_GROK:
  2584. {
  2585. if (n_expert == 0) {
  2586. throw std::runtime_error("Grok model cannot have zero experts");
  2587. }
  2588. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2589. // output
  2590. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2591. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2592. // if output is NULL, init from the input tok embed
  2593. if (output == NULL) {
  2594. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2595. }
  2596. const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff/* / n_expert_used*/; // grok-1 n_ff_exp == n_ff
  2597. for (int i = 0; i < n_layer; ++i) {
  2598. auto & layer = layers[i];
  2599. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2600. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2601. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2602. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2603. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2604. layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0);
  2605. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2606. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
  2607. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, TENSOR_NOT_REQUIRED);
  2608. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
  2609. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2610. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, TENSOR_NOT_REQUIRED);
  2611. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  2612. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
  2613. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2614. if (!layer.ffn_post_norm) {
  2615. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
  2616. }
  2617. }
  2618. } break;
  2619. case LLM_ARCH_DBRX:
  2620. {
  2621. if (n_expert == 0) {
  2622. throw std::runtime_error("DBRX model cannot have zero experts");
  2623. }
  2624. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2625. // output
  2626. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2627. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2628. for (int i = 0; i < n_layer; ++i) {
  2629. auto & layer = layers[i];
  2630. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2631. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2632. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2633. layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0);
  2634. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2635. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  2636. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
  2637. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  2638. }
  2639. } break;
  2640. case LLM_ARCH_BAICHUAN:
  2641. {
  2642. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2643. {
  2644. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2645. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2646. }
  2647. for (int i = 0; i < n_layer; ++i) {
  2648. auto & layer = layers[i];
  2649. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2650. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2651. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2652. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2653. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2654. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2655. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2656. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2657. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2658. }
  2659. } break;
  2660. case LLM_ARCH_FALCON:
  2661. {
  2662. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2663. // output
  2664. {
  2665. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2666. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2667. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2668. if (!output) {
  2669. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // needs to be on GPU
  2670. }
  2671. }
  2672. for (int i = 0; i < n_layer; ++i) {
  2673. auto & layer = layers[i];
  2674. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2675. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2676. layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2677. layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2678. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2679. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2680. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2681. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2682. }
  2683. } break;
  2684. case LLM_ARCH_STARCODER:
  2685. {
  2686. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2687. pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, 0);
  2688. // output
  2689. {
  2690. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2691. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2692. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2693. if (!output) {
  2694. // needs to be on GPU
  2695. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2696. }
  2697. }
  2698. for (int i = 0; i < n_layer; ++i) {
  2699. auto & layer = layers[i];
  2700. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2701. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2702. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2703. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  2704. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2705. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2706. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2707. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2708. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2709. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2710. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2711. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  2712. }
  2713. } break;
  2714. case LLM_ARCH_BERT:
  2715. case LLM_ARCH_NOMIC_BERT:
  2716. case LLM_ARCH_NOMIC_BERT_MOE:
  2717. case LLM_ARCH_JINA_BERT_V3:
  2718. {
  2719. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2720. type_embd = create_tensor(tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_token_types}, TENSOR_NOT_REQUIRED);
  2721. if (arch == LLM_ARCH_BERT) {
  2722. pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, 0);
  2723. cls = create_tensor(tn(LLM_TENSOR_CLS, "weight"), {n_embd, n_embd}, TENSOR_NOT_REQUIRED);
  2724. cls_b = create_tensor(tn(LLM_TENSOR_CLS, "bias"), {n_embd}, TENSOR_NOT_REQUIRED);
  2725. cls_out = create_tensor(tn(LLM_TENSOR_CLS_OUT, "weight"), {n_embd, hparams.n_cls_out}, TENSOR_NOT_REQUIRED);
  2726. cls_out_b = create_tensor(tn(LLM_TENSOR_CLS_OUT, "bias"), {hparams.n_cls_out}, TENSOR_NOT_REQUIRED);
  2727. }
  2728. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
  2729. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
  2730. for (int i = 0; i < n_layer; ++i) {
  2731. auto & layer = layers[i];
  2732. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2733. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2734. if (!layer.wqkv) {
  2735. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2736. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  2737. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2738. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  2739. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2740. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  2741. }
  2742. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2743. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2744. layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0);
  2745. layer.attn_out_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd}, 0);
  2746. if (hparams.moe_every_n_layers > 0 && i % hparams.moe_every_n_layers == 1) {
  2747. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff, n_expert}, 0);
  2748. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
  2749. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2750. } else {
  2751. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2752. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  2753. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2754. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2755. if (arch == LLM_ARCH_NOMIC_BERT) {
  2756. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2757. }
  2758. }
  2759. layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, 0);
  2760. layer.layer_out_norm_b = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd}, 0);
  2761. }
  2762. } break;
  2763. case LLM_ARCH_NEO_BERT:
  2764. {
  2765. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2766. cls = create_tensor(tn(LLM_TENSOR_CLS, "weight"), {n_embd, n_embd}, TENSOR_NOT_REQUIRED);
  2767. cls_b = create_tensor(tn(LLM_TENSOR_CLS, "bias"), {n_embd}, TENSOR_NOT_REQUIRED);
  2768. cls_out = create_tensor(tn(LLM_TENSOR_CLS_OUT, "weight"), {n_embd, hparams.n_cls_out}, TENSOR_NOT_REQUIRED);
  2769. cls_out_b = create_tensor(tn(LLM_TENSOR_CLS_OUT, "bias"), {hparams.n_cls_out}, TENSOR_NOT_REQUIRED);
  2770. output_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2771. for (int i = 0; i < n_layer; ++i) {
  2772. auto & layer = layers[i];
  2773. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2774. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2775. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2776. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2777. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff*2}, 0);
  2778. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2779. }
  2780. } break;
  2781. case LLM_ARCH_JINA_BERT_V2:
  2782. {
  2783. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // word_embeddings
  2784. type_embd = create_tensor(tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_token_types}, 0); // token_type_embeddings
  2785. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0); // LayerNorm
  2786. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0); //LayerNorm bias
  2787. cls = create_tensor(tn(LLM_TENSOR_CLS, "weight"), {n_embd, 1}, TENSOR_NOT_REQUIRED);
  2788. cls_b = create_tensor(tn(LLM_TENSOR_CLS, "bias"), {1}, TENSOR_NOT_REQUIRED);
  2789. for (int i = 0; i < n_layer; ++i) {
  2790. auto & layer = layers[i]; // JinaBertLayer
  2791. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2792. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  2793. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2794. layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2795. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2796. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  2797. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2798. layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2799. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2800. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  2801. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); //output_dens
  2802. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0); //output_dens
  2803. layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0); //output_norm
  2804. layer.attn_out_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd}, 0);
  2805. layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2806. layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2807. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
  2808. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, layer.ffn_gate ? n_ff : n_ff * 2}, 0);
  2809. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2810. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2811. layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, 0);
  2812. layer.layer_out_norm_b = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd}, 0);
  2813. }
  2814. } break;
  2815. case LLM_ARCH_BLOOM:
  2816. {
  2817. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2818. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
  2819. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
  2820. // output
  2821. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2822. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2823. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2824. // if output is NULL, init from the input tok embed
  2825. if (output == NULL) {
  2826. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2827. }
  2828. for (int i = 0; i < n_layer; ++i) {
  2829. auto & layer = layers[i];
  2830. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2831. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2832. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2833. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  2834. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2835. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2836. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2837. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2838. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2839. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2840. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2841. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  2842. }
  2843. } break;
  2844. case LLM_ARCH_MPT:
  2845. {
  2846. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2847. pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, TENSOR_NOT_REQUIRED);
  2848. // output
  2849. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2850. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, TENSOR_NOT_REQUIRED);
  2851. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2852. if (!output) {
  2853. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // needs to be on GPU
  2854. }
  2855. for (int i = 0; i < n_layer; ++i) {
  2856. auto & layer = layers[i];
  2857. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2858. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2859. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2860. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2861. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2862. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2863. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2864. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2865. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2866. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2867. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2868. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  2869. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2870. layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2871. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2872. layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2873. // AWQ ScaleActivation layer
  2874. layer.ffn_act = create_tensor(tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, TENSOR_NOT_REQUIRED);
  2875. }
  2876. } break;
  2877. case LLM_ARCH_STABLELM:
  2878. {
  2879. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2880. // output
  2881. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2882. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2883. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2884. for (int i = 0; i < n_layer; ++i) {
  2885. auto & layer = layers[i];
  2886. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2887. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2888. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2889. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2890. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2891. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2892. // optional bias tensors, present in Stable LM 2 1.6B
  2893. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2894. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2895. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2896. // optional q and k layernorms, present in StableLM 2 12B
  2897. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, TENSOR_NOT_REQUIRED);
  2898. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, TENSOR_NOT_REQUIRED);
  2899. // optional FFN norm, not present in StableLM 2 12B which uses parallel residual
  2900. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2901. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2902. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2903. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2904. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2905. }
  2906. } break;
  2907. case LLM_ARCH_QWEN:
  2908. {
  2909. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2910. // output
  2911. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2912. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2913. for (int i = 0; i < n_layer; ++i) {
  2914. auto & layer = layers[i];
  2915. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2916. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd*3}, 0);
  2917. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd*3}, 0);
  2918. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2919. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2920. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2}, 0);
  2921. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd}, 0);
  2922. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff/2}, 0);
  2923. }
  2924. } break;
  2925. case LLM_ARCH_QWEN2:
  2926. case LLM_ARCH_QWEN2VL:
  2927. case LLM_ARCH_DREAM:
  2928. {
  2929. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2930. // output
  2931. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2932. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2933. output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab}, TENSOR_NOT_REQUIRED);
  2934. // if output is NULL, init from the input tok embed
  2935. if (output == NULL) {
  2936. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2937. }
  2938. for (int i = 0; i < n_layer; ++i) {
  2939. auto & layer = layers[i];
  2940. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2941. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2942. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2943. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2944. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2945. // optional bias tensors
  2946. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  2947. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  2948. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  2949. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2950. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2951. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2952. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2953. }
  2954. } break;
  2955. case LLM_ARCH_QWEN2MOE:
  2956. {
  2957. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2958. // output
  2959. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2960. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2961. for (int i = 0; i < n_layer; ++i) {
  2962. auto & layer = layers[i];
  2963. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2964. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2965. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2966. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2967. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2968. // optional bias tensors
  2969. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2970. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2971. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2972. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2973. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2974. if (n_expert == 0) {
  2975. throw std::runtime_error("n_expert must be > 0 for QWEN2MOE");
  2976. }
  2977. if (n_expert_used == 0) {
  2978. throw std::runtime_error("n_expert_used must be > 0 for QWEN2MOE");
  2979. }
  2980. // MoE branch
  2981. const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
  2982. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2983. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  2984. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2985. // Shared expert branch
  2986. const int64_t n_ff_shexp = hparams.n_ff_shexp ? hparams.n_ff_shexp : n_ff;
  2987. layer.ffn_gate_inp_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), {n_embd}, 0);
  2988. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0);
  2989. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd}, 0);
  2990. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0);
  2991. }
  2992. } break;
  2993. case LLM_ARCH_QWEN3:
  2994. case LLM_ARCH_QWEN3VL:
  2995. {
  2996. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2997. // output
  2998. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2999. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  3000. // if output is NULL, init from the input tok embed
  3001. if (output == NULL) {
  3002. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3003. }
  3004. // output rerank head
  3005. cls_out = create_tensor(tn(LLM_TENSOR_CLS_OUT, "weight"), {n_embd, hparams.n_cls_out}, TENSOR_NOT_REQUIRED);
  3006. for (int i = 0; i < n_layer; ++i) {
  3007. auto & layer = layers[i];
  3008. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3009. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  3010. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  3011. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  3012. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  3013. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  3014. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  3015. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3016. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3017. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3018. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3019. }
  3020. } break;
  3021. case LLM_ARCH_QWEN3MOE:
  3022. case LLM_ARCH_QWEN3VLMOE:
  3023. case LLM_ARCH_RND1:
  3024. {
  3025. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3026. // output
  3027. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3028. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  3029. // if output is NULL, init from the input tok embed
  3030. if (output == NULL) {
  3031. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3032. }
  3033. for (int i = 0; i < n_layer; ++i) {
  3034. auto & layer = layers[i];
  3035. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3036. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  3037. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  3038. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  3039. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  3040. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  3041. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  3042. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3043. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  3044. if (n_expert == 0) {
  3045. throw std::runtime_error("n_expert must be > 0 for QWEN3MOE");
  3046. }
  3047. if (n_expert_used == 0) {
  3048. throw std::runtime_error("n_expert_used must be > 0 for QWEN3MOE");
  3049. }
  3050. // MoE branch
  3051. const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
  3052. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  3053. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  3054. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  3055. }
  3056. } break;
  3057. case LLM_ARCH_PHI2:
  3058. {
  3059. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3060. // output
  3061. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3062. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  3063. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3064. output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab}, 0);
  3065. for (int i = 0; i < n_layer; ++i) {
  3066. auto & layer = layers[i];
  3067. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3068. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  3069. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  3070. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  3071. if (layer.wqkv == nullptr) {
  3072. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  3073. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  3074. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  3075. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  3076. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  3077. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  3078. }
  3079. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3080. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  3081. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  3082. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  3083. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3084. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  3085. }
  3086. } break;
  3087. case LLM_ARCH_PHI3:
  3088. {
  3089. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
  3090. // output
  3091. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
  3092. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  3093. // if output is NULL, init from the input tok embed
  3094. if (output == NULL) {
  3095. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3096. }
  3097. for (int i = 0; i < n_layer; ++i) {
  3098. auto & layer = layers[i];
  3099. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
  3100. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, TENSOR_NOT_REQUIRED);
  3101. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0);
  3102. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);
  3103. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
  3104. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff }, 0);
  3105. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  3106. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  3107. }
  3108. } break;
  3109. case LLM_ARCH_PHIMOE:
  3110. {
  3111. const int64_t n_embd_head = n_embd / n_head;
  3112. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
  3113. // output
  3114. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
  3115. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  3116. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, 0);
  3117. output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), { n_vocab }, 0);
  3118. for (int i = 0; i < n_layer; ++i) {
  3119. auto & layer = layers[i];
  3120. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
  3121. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), { n_embd }, 0);
  3122. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, TENSOR_NOT_REQUIRED);
  3123. if (layer.wqkv == nullptr) {
  3124. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  3125. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  3126. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  3127. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  3128. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  3129. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  3130. }
  3131. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0);
  3132. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), { n_embd }, 0);
  3133. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);
  3134. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), { n_embd }, 0);
  3135. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  3136. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  3137. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
  3138. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  3139. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  3140. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  3141. }
  3142. } break;
  3143. case LLM_ARCH_PLAMO:
  3144. {
  3145. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3146. // output
  3147. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3148. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3149. for (int i = 0; i < n_layer; ++i) {
  3150. auto & layer = layers[i];
  3151. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3152. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  3153. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  3154. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  3155. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3156. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3157. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3158. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3159. }
  3160. } break;
  3161. case LLM_ARCH_PLAMO2:
  3162. {
  3163. // mamba parameters
  3164. const uint32_t d_conv = hparams.ssm_d_conv;
  3165. const uint32_t d_state = hparams.ssm_d_state;
  3166. const uint32_t num_heads = hparams.ssm_dt_rank;
  3167. const uint32_t intermediate_size = hparams.ssm_d_inner;
  3168. const int64_t dt_dim = std::max(64, int(hparams.n_embd / 16));
  3169. // attention parameters
  3170. const uint32_t qk_dim = hparams.n_embd_head_k;
  3171. const uint32_t v_dim = hparams.n_embd_head_v;
  3172. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3173. // output
  3174. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3175. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  3176. // if output is NULL, init from the input tok embed
  3177. if (output == NULL) {
  3178. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3179. }
  3180. for (int i = 0; i < n_layer; ++i) {
  3181. auto & layer = layers[i];
  3182. bool is_mamba_layer = hparams.is_recurrent(i);
  3183. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3184. if (is_mamba_layer) {
  3185. layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2 * intermediate_size}, 0);
  3186. layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, intermediate_size}, 0);
  3187. layer.ssm_x = create_tensor(tn(LLM_TENSOR_SSM_X, "weight", i), {intermediate_size, dt_dim + 2*d_state}, 0);
  3188. layer.ssm_dt = create_tensor(tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_dim, num_heads}, 0);
  3189. layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {num_heads}, 0);
  3190. layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {num_heads}, 0);
  3191. layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {num_heads}, 0);
  3192. layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {intermediate_size, n_embd}, 0);
  3193. layer.ssm_dt_norm = create_tensor(tn(LLM_TENSOR_SSM_DT_NORM, i), {dt_dim}, 0);
  3194. layer.ssm_b_norm = create_tensor(tn(LLM_TENSOR_SSM_B_NORM, i), {d_state}, 0);
  3195. layer.ssm_c_norm = create_tensor(tn(LLM_TENSOR_SSM_C_NORM, i), {d_state}, 0);
  3196. } else {
  3197. const int64_t num_attention_heads = hparams.n_head(i);
  3198. const int64_t q_num_heads = num_attention_heads;
  3199. const int64_t num_key_value_heads = hparams.n_head_kv(i);
  3200. const int64_t k_num_heads = num_key_value_heads;
  3201. const int64_t v_num_heads = num_key_value_heads;
  3202. const int64_t q_proj_dim = q_num_heads * qk_dim;
  3203. const int64_t k_proj_dim = k_num_heads * qk_dim;
  3204. const int64_t v_proj_dim = v_num_heads * v_dim;
  3205. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, q_proj_dim + k_proj_dim + v_proj_dim}, 0);
  3206. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {qk_dim, num_attention_heads}, 0);
  3207. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {qk_dim, k_num_heads}, 0);
  3208. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {q_num_heads * v_dim, n_embd}, 0);
  3209. }
  3210. // All layers have post-attention norm, FFN norm, and FFN tensors
  3211. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, i), {n_embd}, 0);
  3212. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3213. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  3214. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff * 2}, 0);
  3215. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, i), {n_embd}, 0);
  3216. }
  3217. } break;
  3218. case LLM_ARCH_GPT2:
  3219. {
  3220. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3221. pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, 0);
  3222. // output
  3223. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3224. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  3225. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  3226. // if output is NULL, init from the input tok embed
  3227. if (output == NULL) {
  3228. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3229. }
  3230. for (int i = 0; i < n_layer; ++i) {
  3231. auto & layer = layers[i];
  3232. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3233. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  3234. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  3235. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  3236. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3237. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  3238. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3239. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  3240. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  3241. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  3242. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3243. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  3244. }
  3245. } break;
  3246. case LLM_ARCH_CODESHELL:
  3247. {
  3248. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  3249. // if tok embd is NULL, init from output
  3250. if (tok_embd == NULL) {
  3251. tok_embd = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3252. }
  3253. // output
  3254. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3255. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  3256. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3257. for (int i = 0; i < n_layer; ++i) {
  3258. auto & layer = layers[i];
  3259. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3260. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  3261. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  3262. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  3263. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3264. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  3265. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3266. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  3267. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  3268. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  3269. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3270. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  3271. }
  3272. } break;
  3273. case LLM_ARCH_ORION:
  3274. {
  3275. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3276. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3277. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  3278. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3279. for (int i = 0; i < n_layer; ++i) {
  3280. auto & layer = layers[i];
  3281. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3282. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  3283. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  3284. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  3285. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  3286. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3287. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3288. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  3289. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3290. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3291. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3292. }
  3293. } break;
  3294. case LLM_ARCH_INTERNLM2:
  3295. {
  3296. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3297. // output
  3298. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3299. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3300. for (int i = 0; i < n_layer; ++i) {
  3301. auto & layer = layers[i];
  3302. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3303. // layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  3304. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  3305. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  3306. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  3307. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3308. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3309. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3310. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3311. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3312. }
  3313. } break;
  3314. case LLM_ARCH_GEMMA:
  3315. {
  3316. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3317. // output
  3318. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3319. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
  3320. for (int i = 0; i < n_layer; ++i) {
  3321. auto & layer = layers[i];
  3322. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3323. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  3324. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  3325. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  3326. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  3327. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3328. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3329. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3330. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3331. }
  3332. } break;
  3333. case LLM_ARCH_GEMMA2:
  3334. {
  3335. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3336. // output
  3337. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3338. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
  3339. for (int i = 0; i < n_layer; ++i) {
  3340. auto & layer = layers[i];
  3341. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3342. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  3343. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  3344. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  3345. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  3346. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
  3347. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3348. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3349. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3350. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3351. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
  3352. }
  3353. } break;
  3354. case LLM_ARCH_GEMMA3:
  3355. case LLM_ARCH_GEMMA_EMBEDDING:
  3356. {
  3357. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3358. // output
  3359. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3360. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  3361. // if output is NULL, init from the input tok embed
  3362. if (output == NULL) {
  3363. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3364. }
  3365. // Dense linear weights
  3366. dense_2_out_layers = create_tensor(tn(LLM_TENSOR_DENSE_2_OUT, "weight"), {n_embd, hparams.dense_2_feat_out}, TENSOR_NOT_REQUIRED);
  3367. dense_3_out_layers = create_tensor(tn(LLM_TENSOR_DENSE_3_OUT, "weight"), {hparams.dense_3_feat_in, n_embd}, TENSOR_NOT_REQUIRED);
  3368. for (int i = 0; i < n_layer; ++i) {
  3369. auto & layer = layers[i];
  3370. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3371. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  3372. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  3373. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  3374. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  3375. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
  3376. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  3377. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  3378. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3379. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3380. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3381. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3382. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
  3383. }
  3384. } break;
  3385. case LLM_ARCH_GEMMA3N:
  3386. {
  3387. const int64_t n_altup = hparams.n_altup;
  3388. const int64_t laurel_rank = hparams.laurel_rank;
  3389. const int64_t n_embd_altup = hparams.n_embd_altup;
  3390. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  3391. // if output is NULL, init from the input tok embed
  3392. if (output == NULL) {
  3393. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3394. }
  3395. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3396. tok_embd_per_layer = create_tensor(tn(LLM_TENSOR_PER_LAYER_TOKEN_EMBD, "weight"), {n_embd_altup * n_layer, n_vocab}, 0);
  3397. altup_proj = create_tensor(tn(LLM_TENSOR_ALTUP_PROJ, "weight"), {n_embd, n_embd, n_altup - 1}, 0);
  3398. altup_unembd_proj = create_tensor(tn(LLM_TENSOR_ALTUP_UNEMBD_PROJ, "weight"), {n_embd, n_embd, n_altup - 1}, 0);
  3399. per_layer_model_proj = create_tensor(tn(LLM_TENSOR_PER_LAYER_MODEL_PROJ, "weight"), {n_embd, n_embd_altup * n_layer}, 0);
  3400. per_layer_proj_norm = create_tensor(tn(LLM_TENSOR_PER_LAYER_PROJ_NORM, "weight"), {n_embd_altup}, 0);
  3401. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3402. for (int i = 0; i < n_layer; ++i) {
  3403. auto & layer = layers[i];
  3404. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3405. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  3406. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  3407. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  3408. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  3409. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  3410. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  3411. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
  3412. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3413. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3414. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3415. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3416. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
  3417. // altup & laurel
  3418. layer.per_layer_inp_gate = create_tensor(tn(LLM_TENSOR_PER_LAYER_INP_GATE, "weight", i), {n_embd, n_embd_altup}, 0);
  3419. layer.per_layer_proj = create_tensor(tn(LLM_TENSOR_PER_LAYER_PROJ, "weight", i), {n_embd_altup, n_embd}, 0);
  3420. layer.per_layer_post_norm = create_tensor(tn(LLM_TENSOR_PER_LAYER_POST_NORM, "weight", i), {n_embd}, 0);
  3421. layer.altup_correct_coef = create_tensor(tn(LLM_TENSOR_ALTUP_CORRECT_COEF, "weight", i), {n_altup, n_altup}, 0);
  3422. layer.altup_correct_scale = create_tensor(tn(LLM_TENSOR_ALTUP_CORRECT_SCALE, "weight", i), {n_embd}, 0);
  3423. layer.altup_predict_coef = create_tensor(tn(LLM_TENSOR_ALTUP_PREDICT_COEF, "weight", i), {n_altup, n_altup * n_altup}, 0);
  3424. layer.altup_router = create_tensor(tn(LLM_TENSOR_ALTUP_ROUTER, "weight", i), {n_embd, n_altup}, 0);
  3425. layer.altup_router_norm = create_tensor(tn(LLM_TENSOR_ALTUP_ROUTER_NORM, "weight", i), {n_embd}, 0);
  3426. layer.laurel_l = create_tensor(tn(LLM_TENSOR_LAUREL_L, "weight", i), {n_embd, laurel_rank}, 0);
  3427. layer.laurel_r = create_tensor(tn(LLM_TENSOR_LAUREL_R, "weight", i), {laurel_rank, n_embd}, 0);
  3428. layer.laurel_post_norm = create_tensor(tn(LLM_TENSOR_LAUREL_POST_NORM, "weight", i), {n_embd}, 0);
  3429. }
  3430. } break;
  3431. case LLM_ARCH_STARCODER2:
  3432. {
  3433. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3434. // output
  3435. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3436. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  3437. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  3438. // if output is NULL, init from the input tok embed
  3439. if (output == NULL) {
  3440. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3441. }
  3442. for (int i = 0; i < n_layer; ++i) {
  3443. auto & layer = layers[i];
  3444. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3445. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  3446. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  3447. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  3448. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  3449. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3450. // optional bias tensors
  3451. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  3452. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  3453. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  3454. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  3455. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3456. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  3457. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3458. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3459. // optional bias tensors
  3460. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  3461. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP , "bias", i), { n_ff}, 0);
  3462. }
  3463. } break;
  3464. case LLM_ARCH_MAMBA:
  3465. {
  3466. const int64_t d_conv = hparams.ssm_d_conv;
  3467. const int64_t d_inner = hparams.ssm_d_inner;
  3468. const int64_t d_state = hparams.ssm_d_state;
  3469. const int64_t dt_rank = hparams.ssm_dt_rank;
  3470. // only an expansion factor of 2 is supported for now
  3471. if (2 * n_embd != d_inner) {
  3472. throw std::runtime_error("only an expansion factor of 2 is supported for now");
  3473. }
  3474. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3475. // output
  3476. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3477. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  3478. // if output is NULL, init from the input tok embed, duplicated to allow offloading
  3479. if (output == NULL) {
  3480. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3481. }
  3482. for (int i = 0; i < n_layer; ++i) {
  3483. auto & layer = layers[i];
  3484. // norm
  3485. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3486. layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner}, 0);
  3487. layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner}, 0);
  3488. layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner}, 0);
  3489. layer.ssm_x = create_tensor(tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state}, 0);
  3490. layer.ssm_dt = create_tensor(tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner}, 0);
  3491. layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner}, 0);
  3492. // no "weight" suffix for these
  3493. layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner}, 0);
  3494. layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {d_inner}, 0);
  3495. // out_proj
  3496. layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}, 0);
  3497. }
  3498. } break;
  3499. case LLM_ARCH_MAMBA2:
  3500. {
  3501. const int64_t d_conv = hparams.ssm_d_conv;
  3502. const int64_t d_inner = hparams.ssm_d_inner;
  3503. const int64_t d_state = hparams.ssm_d_state;
  3504. const int64_t n_head = hparams.ssm_dt_rank;
  3505. const int64_t n_group = hparams.ssm_n_group;
  3506. const int64_t d_in_proj = 2*d_inner + 2*n_group*d_state + n_head;
  3507. // only an expansion factor of 2 is supported for now
  3508. GGML_ASSERT(2 * n_embd == d_inner);
  3509. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3510. // output
  3511. {
  3512. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3513. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  3514. // if output is NULL, init from the input tok embed, duplicated to allow offloading
  3515. if (output == NULL) {
  3516. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3517. }
  3518. }
  3519. for (int i = 0; i < n_layer; ++i) {
  3520. auto & layer = layers[i];
  3521. // norm
  3522. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3523. layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, d_in_proj}, 0);
  3524. layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner + 2*n_group*d_state}, 0);
  3525. layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner + 2*n_group*d_state}, 0);
  3526. layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {n_head}, 0);
  3527. // no "weight" suffix for these
  3528. layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {1, n_head}, 0);
  3529. layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {1, n_head}, 0);
  3530. layer.ssm_norm = create_tensor(tn(LLM_TENSOR_SSM_NORM, "weight", i), {d_inner / n_group, n_group}, 0);
  3531. // out_proj
  3532. layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}, 0);
  3533. }
  3534. } break;
  3535. case LLM_ARCH_JAMBA:
  3536. {
  3537. const int64_t d_conv = hparams.ssm_d_conv;
  3538. const int64_t d_inner = hparams.ssm_d_inner;
  3539. const int64_t d_state = hparams.ssm_d_state;
  3540. const int64_t dt_rank = hparams.ssm_dt_rank;
  3541. // only an expansion factor of 2 is supported for now
  3542. GGML_ASSERT(2 * n_embd == d_inner);
  3543. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3544. // output
  3545. {
  3546. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3547. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  3548. // if output is NULL, init from the input tok embed, duplicated to allow offloading
  3549. if (output == NULL) {
  3550. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3551. }
  3552. }
  3553. for (int i = 0; i < n_layer; ++i) {
  3554. const int64_t n_head_kv = hparams.n_head_kv(i);
  3555. const int64_t n_embd_gqa = hparams.n_embd_v_gqa(i);
  3556. auto & layer = layers[i];
  3557. // norm
  3558. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3559. if (n_head_kv == 0) {
  3560. // Mamba layer
  3561. layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner}, 0);
  3562. layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner}, 0);
  3563. layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner}, 0);
  3564. layer.ssm_x = create_tensor(tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state}, 0);
  3565. layer.ssm_dt_norm = create_tensor(tn(LLM_TENSOR_SSM_DT_NORM, "weight", i), {dt_rank}, 0);
  3566. layer.ssm_dt = create_tensor(tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner}, 0);
  3567. layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner}, 0);
  3568. layer.ssm_b_norm = create_tensor(tn(LLM_TENSOR_SSM_B_NORM, "weight", i), {d_state}, 0);
  3569. layer.ssm_c_norm = create_tensor(tn(LLM_TENSOR_SSM_C_NORM, "weight", i), {d_state}, 0);
  3570. // no "weight" suffix for these
  3571. layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner}, 0);
  3572. layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {d_inner}, 0);
  3573. // out_proj
  3574. layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}, 0);
  3575. } else {
  3576. // Attention layers
  3577. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  3578. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  3579. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  3580. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3581. }
  3582. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3583. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, TENSOR_NOT_REQUIRED);
  3584. if (layer.ffn_gate_inp) {
  3585. // MoE
  3586. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  3587. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
  3588. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  3589. } else {
  3590. // FFN (no MoE)
  3591. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3592. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  3593. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3594. }
  3595. }
  3596. } break;
  3597. case LLM_ARCH_GRANITE_HYBRID:
  3598. {
  3599. // mamba2 Mixer SSM params
  3600. // NOTE: int64_t for tensor dimensions
  3601. const int64_t d_conv = hparams.ssm_d_conv;
  3602. const int64_t d_inner = hparams.ssm_d_inner;
  3603. const int64_t d_state = hparams.ssm_d_state;
  3604. const int64_t n_ssm_head = hparams.ssm_dt_rank;
  3605. const int64_t n_group = hparams.ssm_n_group;
  3606. const int64_t d_in_proj = 2*d_inner + 2*n_group*d_state + n_ssm_head;
  3607. // only an expansion factor of 2 is supported for now
  3608. GGML_ASSERT(2 * n_embd == d_inner);
  3609. // embeddings
  3610. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3611. // output
  3612. {
  3613. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3614. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  3615. // if output is NULL, init from the input tok embed, duplicated to allow offloading
  3616. if (output == NULL) {
  3617. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3618. }
  3619. }
  3620. for (int i = 0; i < n_layer; ++i) {
  3621. auto & layer = layers[i];
  3622. // norm
  3623. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3624. if (hparams.is_recurrent(i)) {
  3625. // ssm layers
  3626. layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, d_in_proj}, 0);
  3627. layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner + 2*n_group*d_state}, 0);
  3628. layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner + 2*n_group*d_state}, TENSOR_NOT_REQUIRED);
  3629. layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {n_ssm_head}, 0);
  3630. // no "weight" suffix for these
  3631. layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {1, n_ssm_head}, 0);
  3632. layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {1, n_ssm_head}, 0);
  3633. layer.ssm_norm = create_tensor(tn(LLM_TENSOR_SSM_NORM, "weight", i), {d_inner / n_group, n_group}, 0);
  3634. // out_proj
  3635. layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}, 0);
  3636. } else {
  3637. // attention layers (with optional bias)
  3638. const int64_t n_head_i = hparams.n_head(i);
  3639. const int64_t n_embd_k_gqa_i = hparams.n_embd_k_gqa(i);
  3640. const int64_t n_embd_v_gqa_i = hparams.n_embd_v_gqa(i);
  3641. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head_i}, 0);
  3642. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa_i}, 0);
  3643. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa_i}, 0);
  3644. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head_i, n_embd}, 0);
  3645. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  3646. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_k_gqa_i}, TENSOR_NOT_REQUIRED);
  3647. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_v_gqa_i}, TENSOR_NOT_REQUIRED);
  3648. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  3649. }
  3650. // feed forward (w/ optional biases)
  3651. if (n_expert > 0) {
  3652. // MoE FFN
  3653. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3654. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  3655. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  3656. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, TENSOR_NOT_REQUIRED);
  3657. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
  3658. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  3659. // For Granite MoE Shared
  3660. if (hparams.n_ff_shexp > 0) {
  3661. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
  3662. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
  3663. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {hparams.n_ff_shexp, n_embd}, 0);
  3664. }
  3665. } else {
  3666. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3667. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  3668. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3669. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3670. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3671. layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  3672. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  3673. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  3674. }
  3675. }
  3676. } break;
  3677. case LLM_ARCH_XVERSE:
  3678. {
  3679. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3680. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3681. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3682. for (int i = 0; i < n_layer; ++i) {
  3683. auto & layer = layers[i];
  3684. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3685. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  3686. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  3687. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  3688. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3689. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3690. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3691. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3692. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3693. }
  3694. } break;
  3695. case LLM_ARCH_COMMAND_R:
  3696. {
  3697. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3698. // output
  3699. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3700. // init output from the input tok embed
  3701. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3702. for (int i = 0; i < n_layer; ++i) {
  3703. auto & layer = layers[i];
  3704. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3705. if (n_layer >= 64){
  3706. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, 0);
  3707. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, 0);
  3708. }
  3709. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  3710. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  3711. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  3712. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3713. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3714. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3715. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3716. }
  3717. } break;
  3718. case LLM_ARCH_COHERE2:
  3719. {
  3720. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
  3721. // output
  3722. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
  3723. // init output from the input tok embed
  3724. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab },
  3725. TENSOR_DUPLICATED);
  3726. for (int i = 0; i < n_layer; ++i) {
  3727. auto & layer = layers[i];
  3728. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
  3729. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd }, 0);
  3730. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_gqa }, 0);
  3731. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_gqa }, 0);
  3732. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0);
  3733. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), { n_embd, n_ff }, 0);
  3734. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
  3735. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, n_ff }, 0);
  3736. }
  3737. }
  3738. break;
  3739. case LLM_ARCH_OLMO: // adapted from LLM_ARCH_LLAMA with norm params removed
  3740. {
  3741. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3742. // output
  3743. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  3744. // if output is NULL, init from the input tok embed
  3745. if (output == NULL) {
  3746. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3747. }
  3748. for (int i = 0; i < n_layer; ++i) {
  3749. auto & layer = layers[i];
  3750. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  3751. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  3752. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  3753. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3754. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3755. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3756. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3757. }
  3758. } break;
  3759. case LLM_ARCH_OLMO2:
  3760. {
  3761. const int64_t n_embd_head = n_embd / n_head;
  3762. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3763. // output
  3764. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3765. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3766. for (int i = 0; i < n_layer; ++i) {
  3767. auto & layer = layers[i];
  3768. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  3769. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  3770. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  3771. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3772. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, 0);
  3773. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_head_kv * n_embd_head}, 0);
  3774. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
  3775. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3776. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3777. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3778. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
  3779. }
  3780. } break;
  3781. case LLM_ARCH_SEED_OSS:
  3782. {
  3783. const uint32_t head_dim = hparams.n_embd_head_k;
  3784. const int64_t n_qo_dim = n_head * head_dim;
  3785. const int64_t n_kv_dim = n_head_kv * head_dim;
  3786. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3787. // output
  3788. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3789. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  3790. // if output is NULL, init from the input tok embed
  3791. if (output == NULL) {
  3792. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3793. }
  3794. for (int i = 0; i < n_layer; ++i) {
  3795. auto & layer = layers[i];
  3796. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_qo_dim}, 0);
  3797. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_kv_dim}, 0);
  3798. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_kv_dim}, 0);
  3799. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_qo_dim, n_embd}, 0);
  3800. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_qo_dim}, TENSOR_NOT_REQUIRED);
  3801. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_kv_dim}, TENSOR_NOT_REQUIRED);
  3802. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_kv_dim}, TENSOR_NOT_REQUIRED);
  3803. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3804. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
  3805. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3806. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3807. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3808. }
  3809. } break;
  3810. case LLM_ARCH_OLMOE:
  3811. {
  3812. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3813. // output
  3814. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3815. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3816. for (int i = 0; i < n_layer; ++i) {
  3817. auto & layer = layers[i];
  3818. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3819. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  3820. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  3821. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  3822. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3823. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, 0);
  3824. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, 0);
  3825. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3826. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  3827. if (n_expert == 0) {
  3828. throw std::runtime_error("n_expert must be > 0");
  3829. }
  3830. if (n_expert_used == 0) {
  3831. throw std::runtime_error("n_expert_used must be > 0");
  3832. }
  3833. // MoE branch
  3834. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  3835. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
  3836. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  3837. }
  3838. } break;
  3839. case LLM_ARCH_OPENELM:
  3840. {
  3841. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3842. // output
  3843. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3844. // init output from the input tok embed
  3845. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3846. for (int i = 0; i < n_layer; ++i) {
  3847. const int64_t n_head = hparams.n_head(i);
  3848. const int64_t n_head_qkv = 2*hparams.n_head_kv(i) + n_head;
  3849. const int64_t n_ff = hparams.n_ff(i);
  3850. auto & layer = layers[i];
  3851. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3852. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_head_qkv*n_embd_head_k}, 0);
  3853. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  3854. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  3855. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head*n_embd_head_k, n_embd}, 0);
  3856. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3857. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3858. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  3859. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3860. }
  3861. } break;
  3862. case LLM_ARCH_GPTNEOX:
  3863. {
  3864. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3865. // output
  3866. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3867. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  3868. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3869. for (int i = 0; i < n_layer; ++i) {
  3870. auto & layer = layers[i];
  3871. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3872. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  3873. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  3874. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  3875. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3876. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  3877. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3878. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  3879. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  3880. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  3881. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3882. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  3883. }
  3884. } break;
  3885. case LLM_ARCH_ARCTIC:
  3886. {
  3887. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3888. // output
  3889. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3890. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  3891. // if output is NULL, init from the input tok embed
  3892. if (output == NULL) {
  3893. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3894. }
  3895. for (int i = 0; i < n_layer; ++i) {
  3896. auto & layer = layers[i];
  3897. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3898. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  3899. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  3900. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  3901. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3902. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3903. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_embd}, 0);
  3904. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_embd, n_embd}, 0);
  3905. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_embd}, 0);
  3906. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  3907. layer.ffn_norm_exps = create_tensor(tn(LLM_TENSOR_FFN_NORM_EXPS, "weight", i), {n_embd}, 0);
  3908. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
  3909. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
  3910. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  3911. }
  3912. } break;
  3913. case LLM_ARCH_DEEPSEEK:
  3914. {
  3915. const int64_t n_ff_exp = hparams.n_ff_exp;
  3916. const int64_t n_expert_shared = hparams.n_expert_shared;
  3917. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3918. // output
  3919. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3920. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3921. for (int i = 0; i < n_layer; ++i) {
  3922. auto & layer = layers[i];
  3923. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3924. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  3925. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  3926. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  3927. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3928. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3929. if (i < (int) hparams.n_layer_dense_lead) {
  3930. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3931. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3932. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3933. } else {
  3934. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  3935. if (n_expert == 0) {
  3936. throw std::runtime_error("n_expert must be > 0");
  3937. }
  3938. if (n_expert_used == 0) {
  3939. throw std::runtime_error("n_expert_used must be > 0");
  3940. }
  3941. // MoE branch
  3942. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  3943. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  3944. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  3945. // Shared expert branch
  3946. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  3947. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0);
  3948. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  3949. }
  3950. }
  3951. } break;
  3952. case LLM_ARCH_DEEPSEEK2:
  3953. {
  3954. // lite variants include DeepSeek-V2-Lite, GigaChat3-10B-A1.8B
  3955. const bool is_lite = (hparams.n_layer == 27 || hparams.n_layer == 26);
  3956. const bool is_mla = (hparams.n_embd_head_k_mla != 0 && hparams.n_embd_head_v_mla != 0);
  3957. // note: these are the actual head sizes you get when treating as MHA or after "decompression" using wv_b for MLA
  3958. const int64_t n_embd_head_k_mla = is_mla ? hparams.n_embd_head_k_mla : hparams.n_embd_head_k;
  3959. const int64_t n_embd_head_v_mla = is_mla ? hparams.n_embd_head_v_mla : hparams.n_embd_head_v;
  3960. const int64_t n_embd_head_qk_rope = hparams.n_rot;
  3961. const int64_t n_embd_head_qk_nope = n_embd_head_k_mla - n_embd_head_qk_rope;
  3962. const int64_t q_lora_rank = hparams.n_lora_q;
  3963. const int64_t kv_lora_rank = hparams.n_lora_kv;
  3964. const int64_t n_ff_exp = hparams.n_ff_exp;
  3965. const int64_t n_expert_shared = hparams.n_expert_shared;
  3966. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3967. // output
  3968. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3969. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3970. for (int i = 0; i < n_layer; ++i) {
  3971. auto & layer = layers[i];
  3972. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3973. if (!is_lite) {
  3974. layer.attn_q_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank}, 0);
  3975. }
  3976. layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0);
  3977. if (!is_lite) {
  3978. layer.wq_a = create_tensor(tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank}, 0);
  3979. layer.wq_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k_mla}, 0);
  3980. } else {
  3981. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_head * n_embd_head_k_mla}, 0);
  3982. }
  3983. layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + n_embd_head_qk_rope}, 0);
  3984. // note: only old legacy GGUF files will have the unsplit wkv_b tensor in
  3985. if (is_mla) {
  3986. layer.wk_b = create_tensor(tn(LLM_TENSOR_ATTN_K_B, "weight", i), {n_embd_head_qk_nope, kv_lora_rank, n_head}, 0);
  3987. layer.wv_b = create_tensor(tn(LLM_TENSOR_ATTN_V_B, "weight", i), {kv_lora_rank, n_embd_head_v_mla, n_head}, 0);
  3988. } else {
  3989. layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v_mla)}, 0);
  3990. }
  3991. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head * n_embd_head_v_mla, n_embd}, 0);
  3992. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3993. if (i < (int) hparams.n_layer_dense_lead) {
  3994. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3995. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3996. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3997. } else {
  3998. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  3999. layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED);
  4000. if (n_expert == 0) {
  4001. throw std::runtime_error("n_expert must be > 0");
  4002. }
  4003. if (n_expert_used == 0) {
  4004. throw std::runtime_error("n_expert_used must be > 0");
  4005. }
  4006. // MoE branch
  4007. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  4008. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  4009. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  4010. // Shared expert branch
  4011. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  4012. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0);
  4013. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  4014. }
  4015. }
  4016. } break;
  4017. case LLM_ARCH_PLM:
  4018. {
  4019. const int64_t n_embd_head_qk_rope = hparams.n_rot;
  4020. const int64_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  4021. const int64_t kv_lora_rank = hparams.n_lora_kv;
  4022. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  4023. // output
  4024. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4025. // output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  4026. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  4027. for (int i = 0; i < n_layer; ++i) {
  4028. auto & layer = layers[i];
  4029. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  4030. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  4031. layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + (n_embd_head_qk_rope)}, 0);
  4032. layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0);
  4033. layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)}, 0);
  4034. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_head * ( n_embd_head_v), n_embd}, 0);
  4035. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  4036. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  4037. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  4038. }
  4039. } break;
  4040. case LLM_ARCH_BITNET:
  4041. {
  4042. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  4043. // output
  4044. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4045. for (int i = 0; i < n_layer; ++i) {
  4046. auto & layer = layers[i];
  4047. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  4048. layer.attn_sub_norm = create_tensor(tn(LLM_TENSOR_ATTN_SUB_NORM, "weight", i), {n_embd}, 0);
  4049. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  4050. layer.wq_scale = create_tensor(tn(LLM_TENSOR_ATTN_Q, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  4051. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  4052. layer.wk_scale = create_tensor(tn(LLM_TENSOR_ATTN_K, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  4053. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  4054. layer.wv_scale = create_tensor(tn(LLM_TENSOR_ATTN_V, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  4055. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  4056. layer.wo_scale = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  4057. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  4058. layer.ffn_sub_norm = create_tensor(tn(LLM_TENSOR_FFN_SUB_NORM, "weight", i), {n_ff}, 0);
  4059. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  4060. layer.ffn_gate_scale = create_tensor(tn(LLM_TENSOR_FFN_GATE, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  4061. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  4062. layer.ffn_down_scale = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  4063. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  4064. layer.ffn_up_scale = create_tensor(tn(LLM_TENSOR_FFN_UP, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  4065. }
  4066. } break;
  4067. case LLM_ARCH_T5:
  4068. {
  4069. const auto n_rel_attn_bkts = hparams.n_rel_attn_bkts;
  4070. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  4071. // output
  4072. output_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4073. output_norm = create_tensor(tn(LLM_TENSOR_DEC_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4074. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  4075. // if output is NULL, init from the input tok embed
  4076. if (output == NULL) {
  4077. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  4078. }
  4079. // n_layer: number of encoder_layers
  4080. // dec_n_layer: number of decoder_layers
  4081. const int dec_n_layer = hparams.dec_n_layer;
  4082. if (dec_n_layer > n_layer) {
  4083. layers.resize(dec_n_layer);
  4084. }
  4085. // load encoder layers
  4086. for (int i = 0; i < n_layer; ++i) {
  4087. auto & layer = layers[i];
  4088. layer.attn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_NORM, "weight", i), {n_embd}, 0);
  4089. layer.attn_rel_b_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
  4090. layer.wq_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  4091. layer.wk_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  4092. layer.wv_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  4093. layer.wo_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
  4094. layer.ffn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_NORM, "weight", i), {n_embd}, 0);
  4095. layer.ffn_gate_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
  4096. layer.ffn_down_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  4097. layer.ffn_up_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  4098. }
  4099. // load decoder layers
  4100. for (int i = 0; i < dec_n_layer; ++i) {
  4101. auto & layer = layers[i];
  4102. layer.attn_norm = create_tensor(tn(LLM_TENSOR_DEC_ATTN_NORM, "weight", i), {n_embd}, 0);
  4103. layer.attn_rel_b = create_tensor(tn(LLM_TENSOR_DEC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
  4104. layer.wq = create_tensor(tn(LLM_TENSOR_DEC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  4105. layer.wk = create_tensor(tn(LLM_TENSOR_DEC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  4106. layer.wv = create_tensor(tn(LLM_TENSOR_DEC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  4107. layer.wo = create_tensor(tn(LLM_TENSOR_DEC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
  4108. layer.attn_norm_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_NORM, "weight", i), {n_embd}, 0);
  4109. // this tensor seems to be unused in HF transformers implementation
  4110. layer.attn_rel_b_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
  4111. layer.wq_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  4112. layer.wk_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  4113. layer.wv_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  4114. layer.wo_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
  4115. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_DEC_FFN_NORM, "weight", i), {n_embd}, 0);
  4116. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_DEC_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
  4117. layer.ffn_down = create_tensor(tn(LLM_TENSOR_DEC_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  4118. layer.ffn_up = create_tensor(tn(LLM_TENSOR_DEC_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  4119. }
  4120. } break;
  4121. case LLM_ARCH_T5ENCODER:
  4122. {
  4123. const auto n_rel_attn_bkts = hparams.n_rel_attn_bkts;
  4124. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  4125. // output
  4126. output_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4127. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  4128. // if output is NULL, init from the input tok embed
  4129. if (output == NULL) {
  4130. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  4131. }
  4132. for (int i = 0; i < n_layer; ++i) {
  4133. auto & layer = layers[i];
  4134. layer.attn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_NORM, "weight", i), {n_embd}, 0);
  4135. layer.attn_rel_b_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
  4136. layer.wq_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  4137. layer.wk_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  4138. layer.wv_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  4139. layer.wo_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
  4140. layer.ffn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_NORM, "weight", i), {n_embd}, 0);
  4141. layer.ffn_gate_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
  4142. layer.ffn_down_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  4143. layer.ffn_up_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  4144. }
  4145. } break;
  4146. case LLM_ARCH_JAIS:
  4147. {
  4148. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  4149. // output
  4150. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4151. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  4152. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  4153. for (int i = 0; i < n_layer; ++i) {
  4154. auto & layer = layers[i];
  4155. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  4156. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  4157. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  4158. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  4159. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  4160. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  4161. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  4162. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  4163. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  4164. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  4165. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  4166. layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, 0);
  4167. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  4168. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  4169. }
  4170. } break;
  4171. case LLM_ARCH_CHATGLM:
  4172. {
  4173. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  4174. // output
  4175. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4176. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  4177. // if output is NULL, init from the input tok embed
  4178. if (output == NULL) {
  4179. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  4180. }
  4181. for (int i = 0; i < n_layer; ++i) {
  4182. auto & layer = layers[i];
  4183. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  4184. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  4185. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  4186. if (layer.wqkv == nullptr) {
  4187. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  4188. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  4189. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  4190. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  4191. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  4192. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  4193. }
  4194. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  4195. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  4196. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff * 2}, 0);
  4197. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  4198. }
  4199. } break;
  4200. case LLM_ARCH_GLM4:
  4201. {
  4202. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  4203. // output
  4204. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4205. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  4206. // if output is NULL, init from the input tok embed
  4207. if (output == NULL) {
  4208. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  4209. }
  4210. for (int i = 0; i < n_layer; ++i) {
  4211. auto & layer = layers[i];
  4212. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  4213. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  4214. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  4215. if (layer.wqkv == nullptr) {
  4216. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  4217. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  4218. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  4219. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  4220. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  4221. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  4222. }
  4223. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  4224. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
  4225. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  4226. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  4227. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff * 2}, 0);
  4228. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
  4229. }
  4230. } break;
  4231. case LLM_ARCH_GLM4_MOE:
  4232. {
  4233. const int64_t n_expert = hparams.n_expert;
  4234. const int64_t n_expert_used = hparams.n_expert_used;
  4235. const int64_t n_expert_shared = hparams.n_expert_shared;
  4236. GGML_ASSERT(hparams.n_expert > 0 && "n_expert must be > 0 for GLM4_MOE MoE layers");
  4237. GGML_ASSERT(hparams.n_expert_used > 0 && "n_expert_used must be > 0 for GLM4_MOE MoE layers");
  4238. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
  4239. // output
  4240. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
  4241. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, TENSOR_NOT_REQUIRED);
  4242. // if output is NULL, init from the input tok embed
  4243. if (output == NULL) {
  4244. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, TENSOR_DUPLICATED);
  4245. }
  4246. // Load ALL tensors including NextN layer to satisfy total tensor count
  4247. // but only PROCESS up to last layer (skipping final NextN layer) in forward pass
  4248. for (int i = 0; i < n_layer; ++i) {
  4249. int flags = 0;
  4250. if (hparams.nextn_predict_layers > 0 && static_cast<uint32_t>(i) >= n_layer - hparams.nextn_predict_layers) {
  4251. // skip all tensors in the NextN layers
  4252. flags |= TENSOR_SKIP;
  4253. }
  4254. auto & layer = layers[i];
  4255. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, flags);
  4256. // GLM-style attention with bias terms
  4257. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd_head_k * n_head }, flags);
  4258. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_k_gqa }, flags);
  4259. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_v_gqa }, flags);
  4260. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), { n_embd_head_k * n_head }, flags);
  4261. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), { n_embd_k_gqa }, flags);
  4262. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), { n_embd_v_gqa }, flags);
  4263. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd_head_k * n_head, n_embd }, flags);
  4264. // K/Q norm tensors (optional for GLM-4.5 355B variant)
  4265. layer.attn_q_norm = create_tensor(
  4266. tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), { n_embd_head_k }, TENSOR_NOT_REQUIRED | flags);
  4267. layer.attn_k_norm = create_tensor(
  4268. tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), { n_embd_head_k }, TENSOR_NOT_REQUIRED | flags);
  4269. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), { n_embd }, flags);
  4270. // Check if this layer uses MoE or dense FFN based on n_layer_dense_lead
  4271. // GLM 4.5 uses hybrid architecture: layer 0 is dense, layers 1+ are MoE
  4272. const bool use_moe = (static_cast<uint32_t>(i) >= hparams.n_layer_dense_lead);
  4273. if (use_moe) {
  4274. // MoE layers
  4275. layer.ffn_gate_inp =
  4276. create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), { n_embd, n_expert }, flags);
  4277. layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), { n_expert }, flags);
  4278. // MoE branch
  4279. const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
  4280. layer.ffn_gate_exps = create_tensor(
  4281. tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert }, flags);
  4282. layer.ffn_down_exps = create_tensor(
  4283. tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff_exp, n_embd, n_expert }, flags);
  4284. layer.ffn_up_exps = create_tensor(
  4285. tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert }, flags);
  4286. // Shared expert
  4287. if (n_expert_shared > 0) {
  4288. const int64_t n_ff_shexp = n_ff_exp * n_expert_shared;
  4289. layer.ffn_gate_shexp = create_tensor(
  4290. tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), { n_embd, n_ff_shexp }, flags);
  4291. layer.ffn_down_shexp = create_tensor(
  4292. tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_shexp, n_embd }, flags);
  4293. layer.ffn_up_shexp = create_tensor(
  4294. tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), { n_embd, n_ff_shexp }, flags);
  4295. }
  4296. } else {
  4297. // Dense layers (first k layers) - GLM uses separate gate/up projections
  4298. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), { n_embd, n_ff }, flags);
  4299. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, flags);
  4300. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, n_ff }, flags);
  4301. }
  4302. // NextN/MTP tensors (preserved but unused) - conditionally load for last nextn_predict_layers
  4303. if (hparams.nextn_predict_layers > 0 && static_cast<uint32_t>(i) >= n_layer - hparams.nextn_predict_layers) {
  4304. layer.nextn.eh_proj = create_tensor(tn(LLM_TENSOR_NEXTN_EH_PROJ, "weight", i), { 2 * n_embd, n_embd }, flags);
  4305. layer.nextn.enorm = create_tensor(tn(LLM_TENSOR_NEXTN_ENORM, "weight", i), { n_embd }, flags);
  4306. layer.nextn.hnorm = create_tensor(tn(LLM_TENSOR_NEXTN_HNORM, "weight", i), { n_embd }, flags);
  4307. // Optional tensors
  4308. layer.nextn.embed_tokens = create_tensor(tn(LLM_TENSOR_NEXTN_EMBED_TOKENS, "weight", i), { n_embd, n_vocab }, flags | TENSOR_NOT_REQUIRED);
  4309. layer.nextn.shared_head_head = create_tensor(tn(LLM_TENSOR_NEXTN_SHARED_HEAD_HEAD, "weight", i), { n_embd, n_vocab }, flags | TENSOR_NOT_REQUIRED);
  4310. layer.nextn.shared_head_norm = create_tensor(tn(LLM_TENSOR_NEXTN_SHARED_HEAD_NORM, "weight", i), { n_embd }, flags | TENSOR_NOT_REQUIRED);
  4311. }
  4312. }
  4313. }
  4314. break;
  4315. case LLM_ARCH_NEMOTRON:
  4316. {
  4317. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  4318. // output
  4319. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4320. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  4321. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  4322. for (int i = 0; i < n_layer; ++i) {
  4323. auto & layer = layers[i];
  4324. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  4325. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  4326. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  4327. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  4328. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  4329. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  4330. // optional bias tensors
  4331. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  4332. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  4333. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  4334. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  4335. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  4336. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  4337. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  4338. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  4339. // optional MLP bias
  4340. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  4341. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  4342. }
  4343. } break;
  4344. case LLM_ARCH_NEMOTRON_H:
  4345. {
  4346. // mamba2 Mixer SSM params
  4347. // NOTE: int64_t for tensor dimensions
  4348. const int64_t d_conv = hparams.ssm_d_conv;
  4349. const int64_t d_inner = hparams.ssm_d_inner;
  4350. const int64_t d_state = hparams.ssm_d_state;
  4351. const int64_t n_ssm_head = hparams.ssm_dt_rank;
  4352. const int64_t n_group = hparams.ssm_n_group;
  4353. const int64_t d_in_proj = 2*d_inner + 2*n_group*d_state + n_ssm_head;
  4354. // embeddings
  4355. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  4356. // output
  4357. {
  4358. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4359. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  4360. // if output is NULL, init from the input tok embed, duplicated to allow offloading
  4361. if (output == NULL) {
  4362. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  4363. }
  4364. }
  4365. for (int i = 0; i < n_layer; ++i) {
  4366. auto & layer = layers[i];
  4367. // all blocks use the attn norm
  4368. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  4369. if (hparams.is_recurrent(i)) {
  4370. // ssm layers
  4371. layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, d_in_proj}, 0);
  4372. layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner + 2*n_group*d_state}, 0);
  4373. layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner + 2*n_group*d_state}, TENSOR_NOT_REQUIRED);
  4374. layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {n_ssm_head}, 0);
  4375. // no "weight" suffix for these
  4376. layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {1, n_ssm_head}, 0);
  4377. layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {1, n_ssm_head}, 0);
  4378. layer.ssm_norm = create_tensor(tn(LLM_TENSOR_SSM_NORM, "weight", i), {d_inner / n_group, n_group}, 0);
  4379. // out_proj
  4380. layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}, 0);
  4381. } else if (hparams.n_ff(i) == 0) {
  4382. // attention layers (with optional bias)
  4383. const int64_t n_head_i = hparams.n_head(i);
  4384. const int64_t n_embd_k_gqa_i = hparams.n_embd_k_gqa(i);
  4385. const int64_t n_embd_v_gqa_i = hparams.n_embd_v_gqa(i);
  4386. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head_i}, 0);
  4387. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa_i}, 0);
  4388. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa_i}, 0);
  4389. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head_i, n_embd}, 0);
  4390. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  4391. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_k_gqa_i}, TENSOR_NOT_REQUIRED);
  4392. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_v_gqa_i}, TENSOR_NOT_REQUIRED);
  4393. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  4394. } else {
  4395. // mlp layers
  4396. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { hparams.n_ff(i), n_embd}, 0);
  4397. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, hparams.n_ff(i)}, 0);
  4398. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  4399. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {hparams.n_ff(i)}, TENSOR_NOT_REQUIRED);
  4400. }
  4401. }
  4402. } break;
  4403. case LLM_ARCH_EXAONE:
  4404. {
  4405. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  4406. // output
  4407. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4408. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  4409. // if output is NULL, init from the input tok embed
  4410. if (output == NULL) {
  4411. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  4412. }
  4413. for (int i = 0; i < n_layer; ++i) {
  4414. auto & layer = layers[i];
  4415. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  4416. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  4417. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  4418. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  4419. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  4420. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  4421. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  4422. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  4423. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  4424. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  4425. }
  4426. } break;
  4427. case LLM_ARCH_EXAONE4:
  4428. {
  4429. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  4430. // output
  4431. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4432. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  4433. // if output is NULL, init from the input tok embed
  4434. if (output == NULL) {
  4435. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  4436. }
  4437. for (int i = 0; i < n_layer; ++i) {
  4438. auto & layer = layers[i];
  4439. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  4440. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  4441. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  4442. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  4443. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  4444. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
  4445. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  4446. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  4447. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  4448. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  4449. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  4450. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
  4451. }
  4452. } break;
  4453. case LLM_ARCH_RWKV6:
  4454. {
  4455. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  4456. // Block 0, LN0
  4457. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
  4458. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
  4459. // output
  4460. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4461. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  4462. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  4463. const int time_mix_extra_dim = hparams.time_mix_extra_dim;
  4464. const int time_decay_extra_dim = hparams.time_decay_extra_dim;
  4465. const int head_size = hparams.wkv_head_size;
  4466. const int attn_hidden_size = n_embd;
  4467. const int ffn_size = hparams.n_ff_arr[0];
  4468. for (int i = 0; i < n_layer; ++i) {
  4469. auto & layer = layers[i];
  4470. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  4471. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  4472. layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, 0);
  4473. layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, 0);
  4474. layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, time_mix_extra_dim * 5}, 0);
  4475. layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {time_mix_extra_dim, n_embd, 5}, 0);
  4476. layer.time_mix_lerp_x = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_X, "weight", i), {n_embd, 1, 1}, 0);
  4477. layer.time_mix_lerp_w = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_W, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
  4478. layer.time_mix_lerp_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
  4479. layer.time_mix_lerp_v = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_V, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
  4480. layer.time_mix_lerp_r = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_R, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
  4481. layer.time_mix_lerp_g = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_G, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
  4482. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, TENSOR_NOT_REQUIRED);
  4483. GGML_ASSERT(!(layer.time_mix_lerp_fused == NULL && layer.time_mix_lerp_w == NULL));
  4484. layer.time_mix_first = create_tensor(tn(LLM_TENSOR_TIME_MIX_FIRST, "weight", i), {head_size, n_embd / head_size}, 0);
  4485. layer.time_mix_decay = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY, "weight", i), {n_embd}, 0);
  4486. layer.time_mix_decay_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W1, "weight", i), {n_embd, time_decay_extra_dim}, 0);
  4487. layer.time_mix_decay_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W2, "weight", i), {time_decay_extra_dim, attn_hidden_size}, 0);
  4488. layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {attn_hidden_size, n_embd}, 0);
  4489. layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd}, 0);
  4490. layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
  4491. layer.time_mix_gate = create_tensor(tn(LLM_TENSOR_TIME_MIX_GATE, "weight", i), {attn_hidden_size, n_embd}, 0);
  4492. layer.time_mix_ln = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd}, 0);
  4493. layer.time_mix_ln_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}, 0);
  4494. layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
  4495. layer.channel_mix_lerp_k = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, 0);
  4496. layer.channel_mix_lerp_r = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_LERP_R, "weight", i), {n_embd, 1, 1}, 0);
  4497. layer.channel_mix_key = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_KEY, "weight", i), {n_embd, ffn_size}, 0);
  4498. layer.channel_mix_value = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_VALUE, "weight", i), {ffn_size, n_embd}, 0);
  4499. layer.channel_mix_receptance = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_RECEPTANCE, "weight", i), {n_embd, n_embd}, 0);
  4500. }
  4501. } break;
  4502. case LLM_ARCH_RWKV6QWEN2:
  4503. {
  4504. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  4505. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4506. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, TENSOR_NOT_REQUIRED);
  4507. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  4508. const int time_mix_extra_dim = hparams.time_mix_extra_dim;
  4509. const int time_decay_extra_dim = hparams.time_decay_extra_dim;
  4510. const int head_size = hparams.wkv_head_size;
  4511. const int attn_hidden_size = n_embd;
  4512. const int n_head_kv = hparams.n_head_kv();
  4513. int attn_key_value_size;
  4514. if (n_head_kv == 0 || attn_hidden_size / head_size == n_head_kv) {
  4515. attn_key_value_size = attn_hidden_size;
  4516. } else {
  4517. attn_key_value_size = n_head_kv * head_size;
  4518. }
  4519. for (int i = 0; i < n_layer; ++i) {
  4520. auto & layer = layers[i];
  4521. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  4522. layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, time_mix_extra_dim * 5}, 0);
  4523. layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {time_mix_extra_dim, n_embd, 5}, 0);
  4524. layer.time_mix_lerp_x = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_X, "weight", i), {n_embd, 1, 1}, 0);
  4525. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, 0);
  4526. layer.time_mix_first = create_tensor(tn(LLM_TENSOR_TIME_MIX_FIRST, "weight", i), {head_size, n_embd / head_size}, TENSOR_NOT_REQUIRED);
  4527. layer.time_mix_decay = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY, "weight", i), {n_embd}, 0);
  4528. layer.time_mix_decay_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W1, "weight", i), {n_embd, time_decay_extra_dim}, 0);
  4529. layer.time_mix_decay_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W2, "weight", i), {time_decay_extra_dim, attn_hidden_size}, 0);
  4530. layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {n_embd, attn_key_value_size}, 0);
  4531. layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {n_embd, attn_key_value_size}, 0);
  4532. layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
  4533. layer.time_mix_gate = create_tensor(tn(LLM_TENSOR_TIME_MIX_GATE, "weight", i), {attn_hidden_size, n_embd}, 0);
  4534. // optional bias tensors
  4535. layer.time_mix_key_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "bias", i), {attn_key_value_size}, TENSOR_NOT_REQUIRED);
  4536. layer.time_mix_value_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "bias", i), {attn_key_value_size}, TENSOR_NOT_REQUIRED);
  4537. layer.time_mix_receptance_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "bias", i), {attn_hidden_size}, TENSOR_NOT_REQUIRED);
  4538. layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
  4539. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  4540. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  4541. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  4542. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  4543. }
  4544. } break;
  4545. case LLM_ARCH_RWKV7:
  4546. {
  4547. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  4548. // Block 0, LN0
  4549. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
  4550. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
  4551. // output
  4552. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4553. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  4554. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  4555. const int n_lora_decay = hparams.n_lora_decay;
  4556. const int n_lora_iclr = hparams.n_lora_iclr;
  4557. const int n_lora_value_res_mix = hparams.n_lora_value_res_mix;
  4558. const int n_lora_gate = hparams.n_lora_gate;
  4559. const int attn_hidden_size = n_embd;
  4560. const int ffn_size = hparams.n_ff_arr[0];
  4561. for (int i = 0; i < n_layer; ++i) {
  4562. auto & layer = layers[i];
  4563. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  4564. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  4565. layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, 0);
  4566. layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, 0);
  4567. layer.time_mix_w0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W0, "weight", i), {n_embd}, 0);
  4568. layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, n_lora_decay}, 0);
  4569. layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {n_lora_decay, n_embd}, 0);
  4570. layer.time_mix_a0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A0, "weight", i), {n_embd}, 0);
  4571. layer.time_mix_a1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A1, "weight", i), {n_embd, n_lora_iclr}, 0);
  4572. layer.time_mix_a2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A2, "weight", i), {n_lora_iclr, n_embd}, 0);
  4573. if (i == 0) {
  4574. // actually not used
  4575. layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
  4576. layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_iclr}, 0);
  4577. layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_iclr, n_embd}, 0);
  4578. } else {
  4579. layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
  4580. layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_value_res_mix}, 0);
  4581. layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_value_res_mix, n_embd}, 0);
  4582. }
  4583. layer.time_mix_g1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G1, "weight", i), {n_embd, n_lora_gate}, 0);
  4584. layer.time_mix_g2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G2, "weight", i), {n_lora_gate, n_embd}, 0);
  4585. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 6}, 0);
  4586. layer.time_mix_k_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_K, "weight", i), {attn_hidden_size}, 0);
  4587. layer.time_mix_k_a = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_A, "weight", i), {attn_hidden_size}, 0);
  4588. layer.time_mix_r_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_R_K, "weight", i), {attn_hidden_size}, 0);
  4589. layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {attn_hidden_size, n_embd}, 0);
  4590. layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd}, 0);
  4591. layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
  4592. layer.time_mix_ln = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd}, 0);
  4593. layer.time_mix_ln_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}, 0);
  4594. layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
  4595. layer.channel_mix_lerp_k = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, 0);
  4596. layer.channel_mix_key = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_KEY, "weight", i), {n_embd, ffn_size}, 0);
  4597. layer.channel_mix_value = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_VALUE, "weight", i), {ffn_size, n_embd}, 0);
  4598. }
  4599. } break;
  4600. case LLM_ARCH_ARWKV7:
  4601. {
  4602. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  4603. // output
  4604. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4605. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  4606. const int n_lora_decay = hparams.n_lora_decay;
  4607. const int n_lora_iclr = hparams.n_lora_iclr;
  4608. const int n_lora_value_res_mix = hparams.n_lora_value_res_mix;
  4609. const int n_lora_gate = hparams.n_lora_gate;
  4610. const int attn_hidden_size = n_embd;
  4611. for (int i = 0; i < n_layer; ++i) {
  4612. auto & layer = layers[i];
  4613. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  4614. layer.time_mix_w0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W0, "weight", i), {n_embd}, 0);
  4615. layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, n_lora_decay}, 0);
  4616. layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {n_lora_decay, n_embd}, 0);
  4617. layer.time_mix_a0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A0, "weight", i), {n_embd}, 0);
  4618. layer.time_mix_a1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A1, "weight", i), {n_embd, n_lora_iclr}, 0);
  4619. layer.time_mix_a2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A2, "weight", i), {n_lora_iclr, n_embd}, 0);
  4620. if (i == 0) {
  4621. // actually not used
  4622. layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
  4623. layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_iclr}, 0);
  4624. layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_iclr, n_embd}, 0);
  4625. } else {
  4626. layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
  4627. layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_value_res_mix}, 0);
  4628. layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_value_res_mix, n_embd}, 0);
  4629. }
  4630. layer.time_mix_g1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G1, "weight", i), {n_embd, n_lora_gate}, TENSOR_NOT_REQUIRED);
  4631. layer.time_mix_g2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G2, "weight", i), {n_lora_gate, n_embd}, TENSOR_NOT_REQUIRED);
  4632. try {
  4633. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 6}, 0);
  4634. } catch(std::runtime_error & e) {
  4635. // ARWKV models may not have gate tensors
  4636. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, 0);
  4637. }
  4638. layer.time_mix_k_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_K, "weight", i), {attn_hidden_size}, 0);
  4639. layer.time_mix_k_a = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_A, "weight", i), {attn_hidden_size}, 0);
  4640. layer.time_mix_r_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_R_K, "weight", i), {attn_hidden_size}, 0);
  4641. layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {attn_hidden_size, n_embd}, 0);
  4642. layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd}, 0);
  4643. layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
  4644. layer.time_mix_ln = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  4645. layer.time_mix_ln_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  4646. layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
  4647. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  4648. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  4649. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  4650. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  4651. }
  4652. } break;
  4653. case LLM_ARCH_CHAMELEON:
  4654. {
  4655. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  4656. // output
  4657. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4658. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  4659. // if output is NULL, init from the input tok embed
  4660. if (output == NULL) {
  4661. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  4662. }
  4663. for (int i = 0; i < n_layer; ++i) {
  4664. auto & layer = layers[i];
  4665. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  4666. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, 0);
  4667. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, 0);
  4668. layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd_head_k, n_head}, TENSOR_NOT_REQUIRED);
  4669. layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd_head_k, n_head_kv}, TENSOR_NOT_REQUIRED);
  4670. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  4671. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  4672. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  4673. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  4674. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  4675. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  4676. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  4677. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  4678. }
  4679. } break;
  4680. case LLM_ARCH_WAVTOKENIZER_DEC:
  4681. {
  4682. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {hparams.n_embd_features, n_vocab}, 0);
  4683. conv1d = create_tensor(tn(LLM_TENSOR_CONV1D, "weight"), {7, hparams.n_embd_features, hparams.posnet.n_embd}, 0);
  4684. conv1d_b = create_tensor(tn(LLM_TENSOR_CONV1D, "bias"), {1, hparams.posnet.n_embd}, 0);
  4685. // posnet
  4686. {
  4687. const int64_t n_embd = hparams.posnet.n_embd;
  4688. for (uint32_t i = 0; i < hparams.posnet.n_layer; ++i) {
  4689. auto & layer = layers[i].posnet;
  4690. // posnet:
  4691. //
  4692. // - resnet
  4693. // - resnet
  4694. // - attn
  4695. // - resnet
  4696. // - resnet
  4697. // - norm
  4698. //
  4699. switch (i) {
  4700. case 0:
  4701. case 1:
  4702. case 3:
  4703. case 4:
  4704. {
  4705. layer.norm1 = create_tensor(tn(LLM_TENSOR_POS_NET_NORM1, "weight", i), {1, n_embd}, 0);
  4706. layer.norm1_b = create_tensor(tn(LLM_TENSOR_POS_NET_NORM1, "bias", i), {1, n_embd}, 0);
  4707. layer.conv1 = create_tensor(tn(LLM_TENSOR_POS_NET_CONV1, "weight", i), {3, n_embd, n_embd}, 0);
  4708. layer.conv1_b = create_tensor(tn(LLM_TENSOR_POS_NET_CONV1, "bias", i), {1, n_embd}, 0);
  4709. layer.norm2 = create_tensor(tn(LLM_TENSOR_POS_NET_NORM2, "weight", i), {1, n_embd}, 0);
  4710. layer.norm2_b = create_tensor(tn(LLM_TENSOR_POS_NET_NORM2, "bias", i), {1, n_embd}, 0);
  4711. layer.conv2 = create_tensor(tn(LLM_TENSOR_POS_NET_CONV2, "weight", i), {3, n_embd, n_embd}, 0);
  4712. layer.conv2_b = create_tensor(tn(LLM_TENSOR_POS_NET_CONV2, "bias", i), {1, n_embd}, 0);
  4713. } break;
  4714. case 2:
  4715. {
  4716. layer.attn_norm = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "weight", i), {1, n_embd}, 0);
  4717. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "bias", i), {1, n_embd}, 0);
  4718. layer.attn_q = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_Q, "weight", i), {1, n_embd, n_embd}, 0);
  4719. layer.attn_q_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_Q, "bias", i), {1, n_embd}, 0);
  4720. layer.attn_k = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_K, "weight", i), {1, n_embd, n_embd}, 0);
  4721. layer.attn_k_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_K, "bias", i), {1, n_embd}, 0);
  4722. layer.attn_v = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_V, "weight", i), {1, n_embd, n_embd}, 0);
  4723. layer.attn_v_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_V, "bias", i), {1, n_embd}, 0);
  4724. layer.attn_o = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_OUT, "weight", i), {1, n_embd, n_embd}, 0);
  4725. layer.attn_o_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_OUT, "bias", i), {1, n_embd}, 0);
  4726. } break;
  4727. case 5:
  4728. {
  4729. layer.norm = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "weight", i), {1, n_embd}, 0);
  4730. layer.norm_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "bias", i), {1, n_embd}, 0);
  4731. } break;
  4732. default: GGML_ABORT("unknown posnet layer");
  4733. };
  4734. }
  4735. }
  4736. GGML_ASSERT(hparams.posnet.n_embd == hparams.convnext.n_embd);
  4737. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {hparams.posnet.n_embd}, 0);
  4738. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {hparams.posnet.n_embd}, 0);
  4739. // convnext
  4740. {
  4741. const int64_t n_embd = hparams.convnext.n_embd;
  4742. for (uint32_t i = 0; i < hparams.convnext.n_layer; ++i) {
  4743. auto & layer = layers[i].convnext;
  4744. layer.dw = create_tensor(tn(LLM_TENSOR_CONVNEXT_DW, "weight", i), {7, 1, n_embd}, 0);
  4745. layer.dw_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_DW, "bias", i), {1, n_embd}, 0);
  4746. layer.norm = create_tensor(tn(LLM_TENSOR_CONVNEXT_NORM, "weight", i), {n_embd}, 0);
  4747. layer.norm_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_NORM, "bias", i), {n_embd}, 0);
  4748. layer.pw1 = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW1, "weight", i), {n_embd, n_ff}, 0);
  4749. layer.pw1_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW1, "bias", i), {n_ff}, 0);
  4750. layer.pw2 = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW2, "weight", i), {n_ff, n_embd}, 0);
  4751. layer.pw2_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW2, "bias", i), {n_embd}, 0);
  4752. layer.gamma = create_tensor(tn(LLM_TENSOR_CONVNEXT_GAMMA, "weight", i), {n_embd}, 0);
  4753. }
  4754. // output
  4755. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4756. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  4757. }
  4758. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {hparams.convnext.n_embd, n_embd}, 0);
  4759. output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), {n_embd}, 0);
  4760. } break;
  4761. case LLM_ARCH_BAILINGMOE:
  4762. {
  4763. const int64_t n_ff_exp = hparams.n_ff_exp;
  4764. const int64_t n_expert_shared = hparams.n_expert_shared;
  4765. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  4766. // output
  4767. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4768. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  4769. for (int i = 0; i < n_layer; ++i) {
  4770. auto & layer = layers[i];
  4771. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  4772. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_head * n_rot}, 0);
  4773. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_head_kv * n_rot}, 0);
  4774. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_head_kv * n_rot}, 0);
  4775. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head * n_rot, n_embd}, 0);
  4776. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  4777. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  4778. if (n_expert == 0) {
  4779. throw std::runtime_error("n_expert must be > 0");
  4780. }
  4781. if (n_expert_used == 0) {
  4782. throw std::runtime_error("n_expert_used must be > 0");
  4783. }
  4784. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  4785. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  4786. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  4787. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  4788. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0);
  4789. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  4790. }
  4791. } break;
  4792. case LLM_ARCH_BAILINGMOE2:
  4793. {
  4794. const int64_t n_ff_exp = hparams.n_ff_exp;
  4795. const int64_t n_expert_shared = hparams.n_expert_shared;
  4796. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  4797. // output
  4798. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4799. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  4800. GGML_ASSERT(n_expert > 0 && "n_expert must be > 0 for bailingmoe2");
  4801. GGML_ASSERT(n_expert_used > 0 && "n_expert_used must be > 0 for bailingmoe2");
  4802. for (int i = 0; i < n_layer; ++i) {
  4803. int flags = 0;
  4804. if (hparams.nextn_predict_layers > 0 && static_cast<uint32_t>(i) >= n_layer - hparams.nextn_predict_layers) {
  4805. // skip all tensors in the NextN layers
  4806. flags |= TENSOR_SKIP;
  4807. }
  4808. auto & layer = layers[i];
  4809. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, flags);
  4810. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, flags);
  4811. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, flags);
  4812. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, flags);
  4813. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, flags);
  4814. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, flags);
  4815. if (static_cast<uint32_t>(i) >= hparams.n_layer_dense_lead) { // MoE layers
  4816. const int64_t n_ff_shexp = (hparams.n_ff_shexp ? hparams.n_ff_shexp : n_ff_exp) * n_expert_shared;
  4817. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, flags);
  4818. layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED | flags);
  4819. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, flags);
  4820. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, flags);
  4821. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, flags);
  4822. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_shexp}, flags);
  4823. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd}, flags);
  4824. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_shexp}, flags);
  4825. } else { // Dense layers
  4826. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, flags);
  4827. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, flags);
  4828. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, flags);
  4829. }
  4830. // NextN/MTP tensors (preserved but unused) - conditionally load for last nextn_predict_layers
  4831. if (hparams.nextn_predict_layers > 0 && static_cast<uint32_t>(i) >= n_layer - hparams.nextn_predict_layers) {
  4832. layer.nextn.eh_proj = create_tensor(tn(LLM_TENSOR_NEXTN_EH_PROJ, "weight", i), { 2 * n_embd, n_embd }, flags);
  4833. layer.nextn.embed_tokens = create_tensor(tn(LLM_TENSOR_NEXTN_EMBED_TOKENS, "weight", i), { n_embd, n_vocab }, TENSOR_NOT_REQUIRED | flags);
  4834. layer.nextn.enorm = create_tensor(tn(LLM_TENSOR_NEXTN_ENORM, "weight", i), { n_embd }, flags);
  4835. layer.nextn.hnorm = create_tensor(tn(LLM_TENSOR_NEXTN_HNORM, "weight", i), { n_embd }, flags);
  4836. layer.nextn.shared_head_head = create_tensor(tn(LLM_TENSOR_NEXTN_SHARED_HEAD_HEAD, "weight", i), { n_embd, n_vocab }, TENSOR_NOT_REQUIRED | flags);
  4837. layer.nextn.shared_head_norm = create_tensor(tn(LLM_TENSOR_NEXTN_SHARED_HEAD_NORM, "weight", i), { n_embd }, TENSOR_NOT_REQUIRED | flags);
  4838. layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, flags);
  4839. }
  4840. }
  4841. } break;
  4842. case LLM_ARCH_DOTS1:
  4843. {
  4844. const int64_t n_ff_exp = hparams.n_ff_exp;
  4845. const int64_t n_expert_shared = hparams.n_expert_shared;
  4846. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  4847. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4848. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  4849. for (int i = 0; i < n_layer; ++i) {
  4850. auto & layer = layers[i];
  4851. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  4852. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  4853. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  4854. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  4855. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  4856. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  4857. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  4858. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  4859. if (i < (int) hparams.n_layer_dense_lead) {
  4860. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  4861. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  4862. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  4863. } else {
  4864. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  4865. layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED);
  4866. if (n_expert == 0) {
  4867. throw std::runtime_error("n_expert must be > 0");
  4868. }
  4869. if (n_expert_used == 0) {
  4870. throw std::runtime_error("n_expert_used must be > 0");
  4871. }
  4872. // MoE branch
  4873. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  4874. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  4875. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  4876. // Shared expert branch
  4877. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  4878. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0);
  4879. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  4880. }
  4881. }
  4882. } break;
  4883. case LLM_ARCH_ARCEE:
  4884. {
  4885. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  4886. // output
  4887. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4888. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  4889. // if output is NULL, init from the input tok embed
  4890. if (output == NULL) {
  4891. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  4892. }
  4893. for (int i = 0; i < n_layer; ++i) {
  4894. auto & layer = layers[i];
  4895. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  4896. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  4897. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  4898. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  4899. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  4900. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  4901. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  4902. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  4903. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  4904. }
  4905. } break;
  4906. case LLM_ARCH_AFMOE:
  4907. {
  4908. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  4909. // output
  4910. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4911. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  4912. // if output is NULL, init from the input tok embed
  4913. if (output == NULL) {
  4914. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  4915. }
  4916. const int64_t n_ff_exp = hparams.n_ff_exp;
  4917. const int64_t n_expert_shared = hparams.n_expert_shared;
  4918. for (int i = 0; i < n_layer; ++i) {
  4919. auto & layer = layers[i];
  4920. // dual attention normalization
  4921. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  4922. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
  4923. // attention projections
  4924. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  4925. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  4926. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  4927. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  4928. // Q/K normalization
  4929. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  4930. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  4931. // attention gating
  4932. layer.wqkv_gate = create_tensor(tn(LLM_TENSOR_ATTN_GATE, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  4933. // dual ffn normalization
  4934. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  4935. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
  4936. if (static_cast<uint32_t>(i) >= hparams.n_layer_dense_lead) {
  4937. // MoE layers
  4938. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  4939. layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, 0);
  4940. // grouped expert weights
  4941. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
  4942. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  4943. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
  4944. // shared expert
  4945. if (n_expert_shared > 0) {
  4946. const int64_t n_ff_shexp = n_ff_exp * n_expert_shared;
  4947. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_shexp}, 0);
  4948. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd}, 0);
  4949. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_shexp}, 0);
  4950. }
  4951. } else {
  4952. // Dense layers
  4953. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  4954. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  4955. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  4956. }
  4957. }
  4958. } break;
  4959. case LLM_ARCH_ERNIE4_5:
  4960. case LLM_ARCH_ERNIE4_5_MOE:
  4961. {
  4962. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  4963. // output
  4964. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  4965. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  4966. // if output is NULL, init from the input tok embed
  4967. if (output == NULL) {
  4968. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  4969. }
  4970. for (int i = 0; i < n_layer; ++i) {
  4971. auto & layer = layers[i];
  4972. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  4973. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  4974. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  4975. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  4976. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  4977. // optional bias tensors
  4978. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  4979. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  4980. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  4981. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  4982. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  4983. if (arch == LLM_ARCH_ERNIE4_5_MOE && static_cast<uint32_t>(i) >= hparams.n_layer_dense_lead) { // MoE layers
  4984. int n_ff_exp = hparams.n_ff_exp;
  4985. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  4986. layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED);
  4987. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, TENSOR_NOT_REQUIRED);
  4988. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff_exp, n_embd, n_expert}, 0);
  4989. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
  4990. // Shared expert (if present)
  4991. if (hparams.n_ff_shexp > 0) {
  4992. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), { n_embd, hparams.n_ff_shexp}, 0);
  4993. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {hparams.n_ff_shexp, n_embd }, 0);
  4994. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), { n_embd, hparams.n_ff_shexp}, 0);
  4995. }
  4996. } else { // Dense layers
  4997. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  4998. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  4999. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  5000. }
  5001. }
  5002. } break;
  5003. case LLM_ARCH_FALCON_H1:
  5004. {
  5005. // Common
  5006. const int64_t hidden_size = hparams.n_embd; // hidden_size
  5007. // mamba2 Mixer SSM params
  5008. const int64_t ssm_conv_kernel_size = hparams.ssm_d_conv; // ssm_conv_kernel_size
  5009. const int64_t ssm_n_groups = hparams.ssm_n_group; // ssm_n_groups
  5010. const int64_t ssm_state_size = hparams.ssm_d_state; // ssm_state_size
  5011. const int64_t ssm_intermediate_size = hparams.ssm_d_inner; // TODO expand
  5012. const int64_t ssm_num_heads = hparams.ssm_dt_rank; // ssm_num_heads
  5013. const int64_t ssm_conv_dim = ssm_intermediate_size + 2 * ssm_n_groups * ssm_state_size;
  5014. const int64_t ssm_projection_size = ssm_intermediate_size + ssm_conv_dim + ssm_num_heads;
  5015. // attn params
  5016. const int64_t attn_num_attention_head = hparams.n_head(0); // rename to: attn_num_attention_head
  5017. const int64_t attn_num_key_value_head = hparams.n_head_kv(0);
  5018. // ffn params
  5019. const int64_t ffn_intermediate_size = hparams.n_ff(0);
  5020. // embeddings
  5021. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {hidden_size, n_vocab}, 0);
  5022. // output
  5023. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {hidden_size, n_vocab}, TENSOR_NOT_REQUIRED);
  5024. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {hidden_size}, 0);
  5025. // if output is NULL, init from the input tok embed
  5026. if (output == NULL) {
  5027. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {hidden_size, n_vocab}, TENSOR_DUPLICATED);
  5028. }
  5029. for (int i = 0; i < n_layer; ++i) {
  5030. auto & layer = layers[i];
  5031. /*SSM LAYERS*/
  5032. // ssm in
  5033. layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {hidden_size, ssm_projection_size}, 0);
  5034. // ssm 1d conv
  5035. layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {ssm_conv_kernel_size, ssm_conv_dim}, 0);
  5036. layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {ssm_conv_dim}, TENSOR_NOT_REQUIRED);
  5037. // ssm_dt
  5038. layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {ssm_num_heads}, 0);
  5039. // no "weight" suffix for these
  5040. layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {1, ssm_num_heads}, 0);
  5041. layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {1, ssm_num_heads}, 0);
  5042. // ssm_norm
  5043. layer.ssm_norm = create_tensor(tn(LLM_TENSOR_SSM_NORM, "weight", i), {ssm_intermediate_size / ssm_n_groups, ssm_n_groups}, TENSOR_NOT_REQUIRED);
  5044. // out_proj
  5045. layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {ssm_intermediate_size, hidden_size}, 0);
  5046. /*ATTENTION LAYERS*/
  5047. // attention layers (with optional bias)
  5048. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {hidden_size, n_embd_head_k * attn_num_attention_head}, 0);
  5049. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {hidden_size, attn_num_key_value_head * n_embd_head_k}, 0);
  5050. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {hidden_size, attn_num_key_value_head * n_embd_head_v}, 0);
  5051. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * attn_num_attention_head, hidden_size}, 0);
  5052. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {hidden_size}, TENSOR_NOT_REQUIRED);
  5053. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {attn_num_key_value_head * n_embd_head_k}, TENSOR_NOT_REQUIRED);
  5054. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {attn_num_key_value_head * n_embd_head_v}, TENSOR_NOT_REQUIRED);
  5055. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {hidden_size}, TENSOR_NOT_REQUIRED);
  5056. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {hidden_size}, 0);
  5057. // feed forward (w/ optional biases)
  5058. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, i), {hidden_size}, 0);
  5059. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  5060. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {hidden_size, ffn_intermediate_size}, 0);
  5061. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { ffn_intermediate_size, hidden_size}, 0);
  5062. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {hidden_size, ffn_intermediate_size}, 0);
  5063. layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {ffn_intermediate_size}, TENSOR_NOT_REQUIRED);
  5064. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {hidden_size}, TENSOR_NOT_REQUIRED);
  5065. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {ffn_intermediate_size}, TENSOR_NOT_REQUIRED);
  5066. }
  5067. } break;
  5068. case LLM_ARCH_HUNYUAN_MOE:
  5069. {
  5070. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  5071. // output
  5072. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  5073. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  5074. // if output is NULL, init from the input tok embed
  5075. if (output == NULL) {
  5076. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  5077. }
  5078. for (int i = 0; i < n_layer; ++i) {
  5079. auto & layer = layers[i];
  5080. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  5081. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  5082. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  5083. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  5084. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  5085. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  5086. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  5087. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  5088. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  5089. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  5090. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
  5091. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  5092. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
  5093. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
  5094. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {hparams.n_ff_shexp, n_embd}, 0);
  5095. }
  5096. } break;
  5097. case LLM_ARCH_HUNYUAN_DENSE:
  5098. {
  5099. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  5100. // output
  5101. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  5102. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  5103. // if output is NULL, init from the input tok embed
  5104. if (output == NULL) {
  5105. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  5106. }
  5107. for (int i = 0; i < n_layer; ++i) {
  5108. auto & layer = layers[i];
  5109. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  5110. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  5111. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  5112. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  5113. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  5114. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  5115. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  5116. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  5117. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  5118. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  5119. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  5120. }
  5121. } break;
  5122. case LLM_ARCH_SMOLLM3:
  5123. {
  5124. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  5125. // output
  5126. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  5127. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  5128. // if output is NULL, init from the input tok embed
  5129. if (output == NULL) {
  5130. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  5131. }
  5132. for (int i = 0; i < n_layer; ++i) {
  5133. auto & layer = layers[i];
  5134. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  5135. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  5136. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  5137. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  5138. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  5139. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  5140. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  5141. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  5142. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  5143. }
  5144. } break;
  5145. case LLM_ARCH_OPENAI_MOE:
  5146. {
  5147. const int64_t n_ff_exp = hparams.n_ff_exp;
  5148. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  5149. // output
  5150. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  5151. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  5152. for (int i = 0; i < n_layer; ++i) {
  5153. auto & layer = layers[i];
  5154. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  5155. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
  5156. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_head * n_rot}, 0);
  5157. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_head_kv * n_rot}, 0);
  5158. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_head_kv * n_rot}, 0);
  5159. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head * n_rot, n_embd}, 0);
  5160. layer.attn_sinks = create_tensor(tn(LLM_TENSOR_ATTN_SINKS, "weight", i), {n_head}, 0);
  5161. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), { n_embd, n_expert}, 0);
  5162. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  5163. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  5164. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  5165. // bias
  5166. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_head * n_rot}, 0);
  5167. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_head_kv * n_rot}, 0);
  5168. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_head_kv * n_rot}, 0);
  5169. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  5170. layer.ffn_gate_inp_b = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "bias", i), {n_expert}, 0);
  5171. layer.ffn_gate_exps_b = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "bias", i), {n_ff_exp, n_expert}, 0);
  5172. layer.ffn_down_exps_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "bias", i), { n_embd, n_expert}, 0);
  5173. layer.ffn_up_exps_b = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "bias", i), {n_ff_exp, n_expert}, 0);
  5174. }
  5175. } break;
  5176. case LLM_ARCH_LFM2:
  5177. case LLM_ARCH_LFM2MOE:
  5178. {
  5179. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  5180. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  5181. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  5182. if (output == NULL) {
  5183. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  5184. }
  5185. for (int i = 0; i < n_layer; ++i) {
  5186. auto & layer = layers[i];
  5187. const bool is_moe_layer = i >= static_cast<int>(hparams.n_layer_dense_lead);
  5188. // ffn/moe is same for transformer and conv layers
  5189. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  5190. if (is_moe_layer) {
  5191. GGML_ASSERT(n_expert && n_expert_used);
  5192. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  5193. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, hparams.n_ff_exp, n_expert}, 0);
  5194. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {hparams.n_ff_exp, n_embd, n_expert}, 0);
  5195. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, hparams.n_ff_exp, n_expert}, 0);
  5196. layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, 0);
  5197. } else { // dense
  5198. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  5199. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  5200. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  5201. }
  5202. // for operator_norm
  5203. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  5204. if (!hparams.is_recurrent(i)) {
  5205. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  5206. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  5207. GGML_ASSERT(n_embd_v_gqa == n_embd_k_gqa);
  5208. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  5209. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, hparams.n_embd_k_gqa(i)}, 0);
  5210. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, hparams.n_embd_v_gqa(i)}, 0);
  5211. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  5212. } else {
  5213. layer.shortconv.conv = create_tensor(tn(LLM_TENSOR_SHORTCONV_CONV, "weight", i), {hparams.n_shortconv_l_cache, n_embd}, 0);
  5214. layer.shortconv.in_proj = create_tensor(tn(LLM_TENSOR_SHORTCONV_INPROJ, "weight", i), {n_embd, 3 * n_embd}, 0);
  5215. layer.shortconv.out_proj = create_tensor(tn(LLM_TENSOR_SHORTCONV_OUTPROJ, "weight", i), {n_embd, n_embd}, 0);
  5216. }
  5217. }
  5218. } break;
  5219. case LLM_ARCH_SMALLTHINKER:
  5220. {
  5221. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
  5222. // output
  5223. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
  5224. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  5225. // if output is NULL, init from the input tok embed
  5226. if (output == NULL) {
  5227. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  5228. }
  5229. for (int i = 0; i < n_layer; ++i) {
  5230. auto & layer = layers[i];
  5231. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
  5232. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd_head_k * n_head }, 0);
  5233. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_gqa }, 0);
  5234. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_gqa }, 0);
  5235. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd_head_k * n_head, n_embd }, 0);
  5236. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);
  5237. GGML_ASSERT(n_expert > 0 && "n_expert must be > 0 for SMALLTHINKER");
  5238. GGML_ASSERT(n_expert_used > 0 && "n_expert_used must be > 0 for SMALLTHINKER");
  5239. // MoE branch
  5240. const int64_t n_ff_exp = hparams.n_ff_exp;
  5241. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), { n_embd, n_expert }, 0);
  5242. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert }, 0);
  5243. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff_exp, n_embd, n_expert }, 0);
  5244. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert }, 0);
  5245. }
  5246. } break;
  5247. case LLM_ARCH_GROVEMOE:
  5248. {
  5249. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  5250. // output
  5251. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  5252. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  5253. // if output is NULL, init from the input tok embed
  5254. if (output == NULL) {
  5255. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  5256. }
  5257. GGML_ASSERT(n_expert > 0 && "n_expert must be > 0 for GROVEMOE");
  5258. GGML_ASSERT(n_expert_used > 0 && "n_expert_used must be > 0 for GROVEMOE");
  5259. GGML_ASSERT(hparams.n_group_experts > 0 && "n_group_experts must be > 0 for GROVEMOE");
  5260. for (int i = 0; i < n_layer; ++i) {
  5261. auto & layer = layers[i];
  5262. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  5263. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  5264. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  5265. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  5266. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  5267. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  5268. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  5269. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  5270. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  5271. // MoE branch
  5272. const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
  5273. const int64_t n_ff_chexp = hparams.n_ff_chexp ? hparams.n_ff_chexp : n_embd_head_k;
  5274. const int64_t n_chunk_expert = n_expert / hparams.n_group_experts;
  5275. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  5276. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  5277. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  5278. layer.ffn_gate_chexps = create_tensor(tn(LLM_TENSOR_FFN_GATE_CHEXPS, "weight", i), { n_embd, n_ff_chexp, n_chunk_expert}, 0);
  5279. layer.ffn_down_chexps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_CHEXPS, "weight", i), {n_ff_chexp, n_embd, n_chunk_expert}, 0);
  5280. layer.ffn_up_chexps = create_tensor(tn(LLM_TENSOR_FFN_UP_CHEXPS, "weight", i), { n_embd, n_ff_chexp, n_chunk_expert}, 0);
  5281. }
  5282. } break;
  5283. case LLM_ARCH_APERTUS:
  5284. {
  5285. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
  5286. // output
  5287. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
  5288. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, 0);
  5289. for (int i = 0; i < n_layer; ++i) {
  5290. auto & layer = layers[i];
  5291. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
  5292. if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
  5293. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  5294. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  5295. } else {
  5296. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  5297. }
  5298. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd_head_k * n_head }, 0);
  5299. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_gqa }, 0);
  5300. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_gqa }, 0);
  5301. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd_head_k * n_head, n_embd }, 0);
  5302. // optional bias tensors
  5303. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), { n_embd }, TENSOR_NOT_REQUIRED);
  5304. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), { n_embd_gqa }, TENSOR_NOT_REQUIRED);
  5305. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), { n_embd_gqa }, TENSOR_NOT_REQUIRED);
  5306. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), { n_embd }, TENSOR_NOT_REQUIRED);
  5307. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);
  5308. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
  5309. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, n_ff }, 0);
  5310. // Q and K layernorms for Apertus
  5311. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), { n_embd_head_k }, 0);
  5312. layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), { n_embd_head_k }, TENSOR_NOT_REQUIRED);
  5313. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), { n_embd_head_k }, 0);
  5314. layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), { n_embd_head_k }, TENSOR_NOT_REQUIRED);
  5315. }
  5316. } break;
  5317. case LLM_ARCH_MINIMAX_M2:
  5318. {
  5319. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  5320. // output
  5321. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  5322. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  5323. for (int i = 0; i < n_layer; ++i) {
  5324. auto & layer = layers[i];
  5325. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd_head_k * n_head }, 0);
  5326. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_gqa }, 0);
  5327. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_gqa }, 0);
  5328. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd_head_k * n_head, n_embd }, 0);
  5329. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  5330. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k * n_head}, 0);
  5331. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_k_gqa}, 0);
  5332. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  5333. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  5334. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  5335. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
  5336. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  5337. layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, 0);
  5338. }
  5339. } break;
  5340. case LLM_ARCH_COGVLM:
  5341. {
  5342. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  5343. // output
  5344. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  5345. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  5346. // if output is NULL, init from the input tok embed
  5347. if (output == NULL) {
  5348. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  5349. }
  5350. for (int i = 0; i < n_layer; ++i) {
  5351. auto & layer = layers[i];
  5352. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  5353. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd_head_k * n_head * 3}, 0);
  5354. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  5355. layer.visexp_attn_wqkv = create_tensor(tn(LLM_TENSOR_VISEXP_ATTN_QKV, "weight", i), {n_embd, n_embd_head_k * n_head * 3}, 0);
  5356. layer.visexp_attn_wo = create_tensor(tn(LLM_TENSOR_VISEXP_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  5357. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  5358. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  5359. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  5360. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  5361. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  5362. layer.visexp_ffn_gate = create_tensor(tn(LLM_TENSOR_VISEXP_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  5363. layer.visexp_ffn_down = create_tensor(tn(LLM_TENSOR_VISEXP_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  5364. layer.visexp_ffn_up = create_tensor(tn(LLM_TENSOR_VISEXP_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  5365. }
  5366. } break;
  5367. case LLM_ARCH_PANGU_EMBED:
  5368. {
  5369. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  5370. // output
  5371. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  5372. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  5373. // if output is NULL, init from the input tok embed
  5374. if (output == NULL) {
  5375. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  5376. }
  5377. for (int i = 0; i < n_layer; ++i) {
  5378. auto & layer = layers[i];
  5379. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  5380. // weight tensors
  5381. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  5382. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  5383. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  5384. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  5385. // bias tensors
  5386. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd_head_k * n_head}, 0);
  5387. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  5388. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  5389. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  5390. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  5391. if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
  5392. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  5393. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  5394. } else {
  5395. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  5396. }
  5397. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  5398. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  5399. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  5400. }
  5401. } break;
  5402. case LLM_ARCH_QWEN3NEXT:
  5403. {
  5404. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
  5405. // output
  5406. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
  5407. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, TENSOR_NOT_REQUIRED);
  5408. // if output is NULL, init from the input tok embed
  5409. if (output == NULL) {
  5410. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, TENSOR_DUPLICATED);
  5411. }
  5412. const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
  5413. // Calculate dimensions from hyperparameters
  5414. const int64_t head_k_dim = hparams.ssm_d_state;
  5415. const int64_t head_v_dim = hparams.ssm_d_state;
  5416. const int64_t n_k_heads = hparams.ssm_n_group;
  5417. const int64_t n_v_heads = hparams.ssm_dt_rank;
  5418. const int64_t key_dim = head_k_dim * n_k_heads;
  5419. const int64_t value_dim = head_v_dim * n_v_heads;
  5420. const int64_t conv_dim = key_dim * 2 + value_dim;
  5421. // Calculate projection sizes
  5422. const int64_t qkvz_dim = key_dim * 2 + value_dim * 2;
  5423. const int64_t ba_dim = n_v_heads * 2;
  5424. for (int i = 0; i < n_layer; ++i) {
  5425. auto & layer = layers[i];
  5426. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
  5427. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), { n_embd }, 0);
  5428. if (!hparams.is_recurrent(i)) {
  5429. // Attention layers
  5430. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd_head_k * n_head * 2 }, 0);
  5431. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_k_gqa }, 0);
  5432. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_v_gqa }, 0);
  5433. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd_head_k * n_head, n_embd }, 0);
  5434. // Q/K normalization for attention layers
  5435. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), { n_embd_head_k }, 0);
  5436. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), { n_embd_head_k }, 0);
  5437. } else {
  5438. // Linear attention (gated delta net) specific tensors
  5439. // Create tensors with calculated dimensions
  5440. layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), { n_embd, qkvz_dim }, 0);
  5441. layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), { hparams.ssm_d_conv, conv_dim }, 0);
  5442. layer.ssm_dt = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), { hparams.ssm_dt_rank }, 0);
  5443. layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A_NOSCAN, i), { hparams.ssm_dt_rank }, 0);
  5444. layer.ssm_beta_alpha = create_tensor(tn(LLM_TENSOR_SSM_BETA_ALPHA, "weight", i), { n_embd, ba_dim }, 0);
  5445. layer.ssm_norm = create_tensor(tn(LLM_TENSOR_SSM_NORM, "weight", i), { head_v_dim }, 0);
  5446. layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), { value_dim, n_embd }, 0);
  5447. }
  5448. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), { n_embd, n_expert }, 0);
  5449. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert }, 0);
  5450. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff_exp, n_embd, n_expert }, 0);
  5451. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert }, 0);
  5452. // Shared experts
  5453. layer.ffn_gate_inp_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), { n_embd }, 0);
  5454. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), { n_embd, hparams.n_ff_shexp }, 0);
  5455. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), { n_embd, hparams.n_ff_shexp }, 0);
  5456. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { hparams.n_ff_shexp, n_embd }, 0);
  5457. }
  5458. } break;
  5459. default:
  5460. throw std::runtime_error("unknown architecture");
  5461. }
  5462. if (n_moved_tensors > 0) {
  5463. LLAMA_LOG_DEBUG("%s: tensor '%s' (%s) (and %d others) cannot be used with preferred buffer type %s, using %s instead\n",
  5464. __func__, first_moved_tensor->name, ggml_type_name(first_moved_tensor->type), n_moved_tensors - 1,
  5465. ggml_backend_buft_name(first_moved_from_buft), ggml_backend_buft_name(first_moved_to_buft));
  5466. }
  5467. }
  5468. ml.done_getting_tensors();
  5469. ml.init_mappings(true, use_mlock ? &pimpl->mlock_mmaps : nullptr);
  5470. pimpl->mappings.reserve(ml.mappings.size());
  5471. // create the backend buffers
  5472. std::vector<std::pair<ggml_context *, llama_buf_map>> ctx_buf_maps;
  5473. ctx_buf_maps.reserve(ctx_map.size());
  5474. // Ensure we have enough capacity for the maximum backend buffer we will potentially create
  5475. const size_t n_max_backend_buffer = ctx_map.size() * ml.files.size();
  5476. pimpl->ctxs_bufs.reserve(n_max_backend_buffer);
  5477. for (auto & [buft, ctx_ptr] : ctx_map) {
  5478. ggml_context * ctx = ctx_ptr.get();
  5479. // skip contexts without tensors
  5480. if (ggml_get_first_tensor(ctx) == nullptr) {
  5481. continue;
  5482. }
  5483. llama_buf_map buf_map;
  5484. buf_map.reserve(n_max_backend_buffer);
  5485. // check if it is possible to use buffer_from_host_ptr with this buffer type
  5486. ggml_backend_dev_t dev = ggml_backend_buft_get_device(buft);
  5487. if (!dev) {
  5488. // FIXME: workaround for CPU backend buft having a NULL device
  5489. dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  5490. if (!dev) {
  5491. throw std::runtime_error(format("%s: no CPU backend found", __func__));
  5492. }
  5493. }
  5494. ggml_backend_dev_props props;
  5495. ggml_backend_dev_get_props(dev, &props);
  5496. bool buffer_from_host_ptr_supported = props.caps.buffer_from_host_ptr;
  5497. bool is_default_buft = buft == ggml_backend_dev_buffer_type(dev);
  5498. std::vector<ggml_backend_buffer_ptr> bufs;
  5499. if (ml.use_mmap && use_mmap_buffer && buffer_from_host_ptr_supported && is_default_buft) {
  5500. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5501. // only the mmap region containing the tensors in the model is mapped to the backend buffer
  5502. // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers
  5503. // this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
  5504. void * addr = nullptr;
  5505. size_t first, last; // NOLINT
  5506. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  5507. if (first >= last) {
  5508. continue;
  5509. }
  5510. const size_t max_size = ggml_get_max_tensor_size(ctx);
  5511. ggml_backend_buffer_t buf = ggml_backend_dev_buffer_from_host_ptr(dev, (char *) addr + first, last - first, max_size);
  5512. if (buf == nullptr) {
  5513. throw std::runtime_error(format("unable to allocate %s buffer", ggml_backend_buft_name(buft)));
  5514. }
  5515. bufs.emplace_back(buf);
  5516. buf_map.emplace(idx, buf);
  5517. }
  5518. }
  5519. else {
  5520. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  5521. if (buf == nullptr) {
  5522. throw std::runtime_error(format("unable to allocate %s buffer", ggml_backend_buft_name(buft)));
  5523. }
  5524. if (use_mlock && ggml_backend_buffer_is_host(buf)) {
  5525. pimpl->mlock_bufs.emplace_back(new llama_mlock);
  5526. auto & mlock_buf = pimpl->mlock_bufs.back();
  5527. mlock_buf->init (ggml_backend_buffer_get_base(buf));
  5528. mlock_buf->grow_to(ggml_backend_buffer_get_size(buf));
  5529. }
  5530. bufs.emplace_back(buf);
  5531. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5532. buf_map.emplace(idx, buf);
  5533. }
  5534. }
  5535. pimpl->ctxs_bufs.emplace_back(std::move(ctx_ptr), std::move(bufs));
  5536. for (auto & buf : buf_map) {
  5537. // indicate that this buffer contains weights
  5538. // this is used by ggml_backend_sched to improve op scheduling: ops that use a weight are preferably scheduled to the backend that contains the weight
  5539. ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
  5540. }
  5541. ctx_buf_maps.emplace_back(ctx, buf_map);
  5542. }
  5543. if (llama_supports_gpu_offload()) {
  5544. const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
  5545. LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
  5546. if (n_gpu_layers > (int) hparams.n_layer) {
  5547. LLAMA_LOG_INFO("%s: offloading output layer to GPU\n", __func__);
  5548. }
  5549. const int max_backend_supported_layers = hparams.n_layer + 1;
  5550. const int max_offloadable_layers = hparams.n_layer + 1;
  5551. LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
  5552. }
  5553. // print memory requirements per buffer type
  5554. for (auto & [_, bufs] : pimpl->ctxs_bufs) {
  5555. for (auto & buf: bufs) {
  5556. LLAMA_LOG_INFO("%s: %12s model buffer size = %8.2f MiB\n",
  5557. __func__, ggml_backend_buffer_name(buf.get()), ggml_backend_buffer_get_size(buf.get()) / 1024.0 / 1024.0);
  5558. }
  5559. }
  5560. // populate tensors_by_name
  5561. for (auto & [ctx, _] : pimpl->ctxs_bufs) {
  5562. for (auto * cur = ggml_get_first_tensor(ctx.get()); cur != NULL; cur = ggml_get_next_tensor(ctx.get(), cur)) {
  5563. tensors_by_name.emplace_back(ggml_get_name(cur), cur);
  5564. }
  5565. }
  5566. // load tensor data
  5567. for (auto & [ctx, buf_map] : ctx_buf_maps) {
  5568. if (!ml.load_all_data(ctx, buf_map, use_mlock ? &pimpl->mlock_mmaps : NULL, params.progress_callback, params.progress_callback_user_data)) {
  5569. return false;
  5570. }
  5571. }
  5572. if (use_mmap_buffer) {
  5573. for (auto & mapping : ml.mappings) {
  5574. pimpl->mappings.emplace_back(std::move(mapping));
  5575. }
  5576. }
  5577. return true;
  5578. }
  5579. std::string llama_model::arch_name() const {
  5580. return llm_arch_name(arch);
  5581. }
  5582. std::string llama_model::type_name() const {
  5583. return llm_type_name(type);
  5584. }
  5585. std::string llama_model::desc() const {
  5586. return pimpl->desc_str;
  5587. }
  5588. size_t llama_model::size() const {
  5589. return pimpl->n_bytes;
  5590. }
  5591. size_t llama_model::n_tensors() const {
  5592. return tensors_by_name.size();
  5593. }
  5594. size_t llama_model::n_devices() const {
  5595. return devices.size();
  5596. }
  5597. std::map<ggml_backend_buffer_type_t, size_t> llama_model::memory_breakdown() const {
  5598. std::map<ggml_backend_buffer_type_t, size_t> ret;
  5599. for (const auto & [_, bufs] : pimpl->ctxs_bufs) {
  5600. for (const auto & buf : bufs) {
  5601. ret[ggml_backend_buffer_get_type(buf.get())] += ggml_backend_buffer_get_size(buf.get());
  5602. }
  5603. }
  5604. return ret;
  5605. }
  5606. uint64_t llama_model::n_elements() const {
  5607. return pimpl->n_elements;
  5608. }
  5609. void llama_model::print_info() const {
  5610. const std::string rope_scaling_type = llama_rope_scaling_type_name(hparams.rope_scaling_type_train);
  5611. auto print_f = [](const std::function<uint32_t(uint32_t)> & f, uint32_t n) {
  5612. bool is_var = false;
  5613. std::vector<uint32_t> v;
  5614. for (uint32_t i = 0; i < n; ++i) {
  5615. v.push_back(f(i));
  5616. if (v[i] != v[0]) {
  5617. is_var = true;
  5618. }
  5619. }
  5620. std::stringstream ss;
  5621. if (is_var) {
  5622. ss << "[";
  5623. for (uint32_t i = 0; i < n; ++i) {
  5624. ss << v[i];
  5625. if (i < n - 1) {
  5626. ss << ", ";
  5627. }
  5628. }
  5629. ss << "]";
  5630. } else {
  5631. ss << v[0];
  5632. }
  5633. return ss.str();
  5634. };
  5635. // hparams
  5636. LLAMA_LOG_INFO("%s: arch = %s\n", __func__, arch_name().c_str());
  5637. LLAMA_LOG_INFO("%s: vocab_only = %d\n", __func__, hparams.vocab_only);
  5638. if (!hparams.vocab_only) {
  5639. LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
  5640. LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
  5641. LLAMA_LOG_INFO("%s: n_embd_inp = %u\n", __func__, hparams.n_embd_inp());
  5642. LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
  5643. LLAMA_LOG_INFO("%s: n_head = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_head(il); }, hparams.n_layer).c_str());
  5644. LLAMA_LOG_INFO("%s: n_head_kv = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_head_kv(il); }, hparams.n_layer).c_str());
  5645. LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot);
  5646. LLAMA_LOG_INFO("%s: n_swa = %u\n", __func__, hparams.n_swa);
  5647. LLAMA_LOG_INFO("%s: is_swa_any = %u\n", __func__, hparams.is_swa_any());
  5648. LLAMA_LOG_INFO("%s: n_embd_head_k = %u\n", __func__, hparams.n_embd_head_k);
  5649. LLAMA_LOG_INFO("%s: n_embd_head_v = %u\n", __func__, hparams.n_embd_head_v);
  5650. LLAMA_LOG_INFO("%s: n_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_gqa(il); }, hparams.n_layer).c_str());
  5651. LLAMA_LOG_INFO("%s: n_embd_k_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_embd_k_gqa(il); }, hparams.n_layer).c_str());
  5652. LLAMA_LOG_INFO("%s: n_embd_v_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_embd_v_gqa(il); }, hparams.n_layer).c_str());
  5653. LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps);
  5654. LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
  5655. LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
  5656. LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
  5657. LLAMA_LOG_INFO("%s: f_logit_scale = %.1e\n", __func__, hparams.f_logit_scale);
  5658. LLAMA_LOG_INFO("%s: f_attn_scale = %.1e\n", __func__, hparams.f_attention_scale);
  5659. LLAMA_LOG_INFO("%s: n_ff = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_ff(il); }, hparams.n_layer).c_str());
  5660. LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert);
  5661. LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used);
  5662. LLAMA_LOG_INFO("%s: n_expert_groups = %d\n", __func__, hparams.n_expert_groups);
  5663. LLAMA_LOG_INFO("%s: n_group_used = %d\n", __func__, hparams.n_group_used);
  5664. LLAMA_LOG_INFO("%s: causal attn = %d\n", __func__, hparams.causal_attn);
  5665. LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type);
  5666. LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type);
  5667. LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type.c_str());
  5668. LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
  5669. LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
  5670. LLAMA_LOG_INFO("%s: n_ctx_orig_yarn = %u\n", __func__, hparams.n_ctx_orig_yarn);
  5671. LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown");
  5672. // MRoPE (Multi-axis Rotary Position Embedding) sections
  5673. if (const auto & s = hparams.rope_sections; s[0] || s[1] || s[2] || s[3]) {
  5674. LLAMA_LOG_INFO("%s: mrope sections = [%d, %d, %d, %d]\n", __func__, s[0], s[1], s[2], s[3]);
  5675. }
  5676. if (!classifier_labels.empty()) {
  5677. LLAMA_LOG_INFO("%s: n_cls_out = %u\n", __func__, hparams.n_cls_out);
  5678. size_t i = 0;
  5679. for (auto label : classifier_labels) {
  5680. LLAMA_LOG_INFO("%s: cls_label[%2zu] = %s\n", __func__, i++, label.c_str());
  5681. }
  5682. }
  5683. }
  5684. if (arch == LLM_ARCH_MAMBA ||
  5685. arch == LLM_ARCH_MAMBA2 ||
  5686. arch == LLM_ARCH_JAMBA ||
  5687. arch == LLM_ARCH_FALCON_H1 ||
  5688. arch == LLM_ARCH_PLAMO2 ||
  5689. arch == LLM_ARCH_GRANITE_HYBRID ||
  5690. arch == LLM_ARCH_QWEN3NEXT ||
  5691. arch == LLM_ARCH_NEMOTRON_H) {
  5692. LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
  5693. LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
  5694. LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state);
  5695. LLAMA_LOG_INFO("%s: ssm_dt_rank = %u\n", __func__, hparams.ssm_dt_rank);
  5696. LLAMA_LOG_INFO("%s: ssm_n_group = %u\n", __func__, hparams.ssm_n_group);
  5697. LLAMA_LOG_INFO("%s: ssm_dt_b_c_rms = %d\n", __func__, hparams.ssm_dt_b_c_rms);
  5698. }
  5699. LLAMA_LOG_INFO("%s: model type = %s\n", __func__, type_name().c_str());
  5700. if (pimpl->n_elements >= 1e12) {
  5701. LLAMA_LOG_INFO("%s: model params = %.2f T\n", __func__, pimpl->n_elements*1e-12);
  5702. } else if (pimpl->n_elements >= 1e9) {
  5703. LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, pimpl->n_elements*1e-9);
  5704. } else if (pimpl->n_elements >= 1e6) {
  5705. LLAMA_LOG_INFO("%s: model params = %.2f M\n", __func__, pimpl->n_elements*1e-6);
  5706. } else {
  5707. LLAMA_LOG_INFO("%s: model params = %.2f K\n", __func__, pimpl->n_elements*1e-3);
  5708. }
  5709. // general kv
  5710. LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, name.c_str());
  5711. if (arch == LLM_ARCH_DEEPSEEK) {
  5712. LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
  5713. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  5714. LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
  5715. LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
  5716. }
  5717. if (arch == LLM_ARCH_DEEPSEEK2) {
  5718. LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
  5719. LLAMA_LOG_INFO("%s: n_lora_q = %d\n", __func__, hparams.n_lora_q);
  5720. LLAMA_LOG_INFO("%s: n_lora_kv = %d\n", __func__, hparams.n_lora_kv);
  5721. LLAMA_LOG_INFO("%s: n_embd_head_k_mla = %d\n", __func__, hparams.n_embd_head_k_mla);
  5722. LLAMA_LOG_INFO("%s: n_embd_head_v_mla = %d\n", __func__, hparams.n_embd_head_v_mla);
  5723. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  5724. LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
  5725. LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
  5726. LLAMA_LOG_INFO("%s: expert_weights_norm = %d\n", __func__, hparams.expert_weights_norm);
  5727. LLAMA_LOG_INFO("%s: expert_gating_func = %s\n", __func__, llama_expert_gating_func_name((llama_expert_gating_func_type) hparams.expert_gating_func));
  5728. LLAMA_LOG_INFO("%s: rope_yarn_log_mul = %.4f\n", __func__, hparams.rope_yarn_log_mul);
  5729. }
  5730. if (arch == LLM_ARCH_QWEN2MOE) {
  5731. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  5732. LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp);
  5733. }
  5734. if (arch == LLM_ARCH_QWEN3MOE || arch == LLM_ARCH_OPENAI_MOE || arch == LLM_ARCH_QWEN3VLMOE || arch == LLM_ARCH_RND1) {
  5735. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  5736. }
  5737. if (arch == LLM_ARCH_MINICPM ||
  5738. arch == LLM_ARCH_GRANITE ||
  5739. arch == LLM_ARCH_GRANITE_MOE ||
  5740. arch == LLM_ARCH_GRANITE_HYBRID) {
  5741. LLAMA_LOG_INFO("%s: f_embedding_scale = %f\n", __func__, hparams.f_embedding_scale);
  5742. LLAMA_LOG_INFO("%s: f_residual_scale = %f\n", __func__, hparams.f_residual_scale);
  5743. LLAMA_LOG_INFO("%s: f_attention_scale = %f\n", __func__, hparams.f_attention_scale);
  5744. LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp);
  5745. }
  5746. if (arch == LLM_ARCH_BAILINGMOE) {
  5747. LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
  5748. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  5749. LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
  5750. LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
  5751. LLAMA_LOG_INFO("%s: expert_weights_norm = %d\n", __func__, hparams.expert_weights_norm);
  5752. }
  5753. if (arch == LLM_ARCH_BAILINGMOE2) {
  5754. LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
  5755. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  5756. LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp);
  5757. LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
  5758. LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
  5759. LLAMA_LOG_INFO("%s: expert_weights_norm = %d\n", __func__, hparams.expert_weights_norm);
  5760. LLAMA_LOG_INFO("%s: expert_gating_func = %s\n", __func__, llama_expert_gating_func_name((llama_expert_gating_func_type) hparams.expert_gating_func));
  5761. LLAMA_LOG_INFO("%s: nextn_predict_layers = %d\n", __func__, hparams.nextn_predict_layers);
  5762. }
  5763. if (arch == LLM_ARCH_SMALLTHINKER || arch == LLM_ARCH_LFM2MOE) {
  5764. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  5765. LLAMA_LOG_INFO("%s: expert_gating_func = %s\n", __func__, llama_expert_gating_func_name((llama_expert_gating_func_type) hparams.expert_gating_func));
  5766. }
  5767. if (arch == LLM_ARCH_GROVEMOE) {
  5768. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  5769. LLAMA_LOG_INFO("%s: n_ff_chexp = %d\n", __func__, hparams.n_ff_chexp);
  5770. LLAMA_LOG_INFO("%s: n_group_experts = %d\n", __func__, hparams.n_group_experts);
  5771. LLAMA_LOG_INFO("%s: expert_group_scale = %.2f\n", __func__, hparams.expert_group_scale);
  5772. }
  5773. vocab.print_info();
  5774. }
  5775. ggml_backend_dev_t llama_model::dev_layer(int il) const {
  5776. return pimpl->dev_layer.at(il).dev;
  5777. }
  5778. ggml_backend_dev_t llama_model::dev_output() const {
  5779. return pimpl->dev_output.dev;
  5780. }
  5781. template<typename F>
  5782. static bool buft_supported(ggml_backend_buffer_type_t buft, ggml_backend_dev_t dev, F & fn) {
  5783. ggml_init_params params = {
  5784. /*.mem_size =*/ ggml_tensor_overhead()*8,
  5785. /*.mem_buffer =*/ NULL,
  5786. /*.no_alloc =*/ true,
  5787. };
  5788. ggml_context_ptr ctx { ggml_init(params) };
  5789. if (!ctx) {
  5790. throw std::runtime_error(format("failed to create ggml context"));
  5791. }
  5792. ggml_backend_buffer_ptr buf { ggml_backend_buft_alloc_buffer(buft, 0) };
  5793. ggml_tensor * op_tensor = fn(ctx.get());
  5794. for (int i = 0; i < GGML_MAX_SRC; i++) {
  5795. if (op_tensor->src[i] != nullptr) {
  5796. assert(op_tensor->src[i]->buffer == nullptr);
  5797. op_tensor->src[i]->buffer = buf.get();
  5798. }
  5799. }
  5800. bool op_supported = ggml_backend_dev_supports_op(dev, op_tensor);
  5801. return op_supported;
  5802. }
  5803. template<typename F>
  5804. static ggml_backend_buffer_type_t select_buft(const buft_list_t & buft_list, const F & fn) {
  5805. for (const auto & cur : buft_list) {
  5806. ggml_backend_dev_t cur_dev = cur.first;
  5807. ggml_backend_buffer_type_t cur_buft = cur.second;
  5808. if (buft_supported(cur_buft, cur_dev, fn)) {
  5809. return cur_buft;
  5810. }
  5811. }
  5812. throw std::runtime_error(format("no suitable buffer type found"));
  5813. }
  5814. ggml_backend_buffer_type_t llama_model::select_buft(int il) const {
  5815. return ::select_buft(
  5816. *pimpl->dev_layer.at(il).buft_list,
  5817. [&](ggml_context * ctx) {
  5818. ggml_tensor * cur = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hparams.n_embd);
  5819. ggml_tensor * layer_dir = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hparams.n_embd);
  5820. return ggml_add(ctx, cur, layer_dir);
  5821. });
  5822. }
  5823. bool llama_model::has_tensor_overrides() const {
  5824. return pimpl->has_tensor_overrides;
  5825. }
  5826. const ggml_tensor * llama_model::get_tensor(const char * name) const {
  5827. auto it = std::find_if(tensors_by_name.begin(), tensors_by_name.end(),
  5828. [name](const std::pair<std::string, ggml_tensor *> & it) {
  5829. return it.first == name;
  5830. });
  5831. if (it == tensors_by_name.end()) {
  5832. return nullptr;
  5833. }
  5834. return it->second;
  5835. }
  5836. float llama_model::get_rope_freq_base (const llama_cparams & cparams, int il) const {
  5837. return hparams.is_swa(il) ? hparams.rope_freq_base_train_swa : cparams.rope_freq_base;
  5838. }
  5839. float llama_model::get_rope_freq_scale(const llama_cparams & cparams, int il) const {
  5840. return hparams.is_swa(il) ? hparams.rope_freq_scale_train_swa : cparams.rope_freq_scale;
  5841. }
  5842. ggml_tensor * llama_model::get_rope_factors(const llama_cparams & cparams, int il) const {
  5843. const uint32_t n_ctx_seq = cparams.n_ctx_seq;
  5844. // choose long/short freq factors based on the context size
  5845. if (layers[il].rope_freqs != nullptr) {
  5846. return layers[il].rope_freqs;
  5847. }
  5848. if (n_ctx_seq > hparams.n_ctx_orig_yarn) {
  5849. return layers[il].rope_long;
  5850. }
  5851. return layers[il].rope_short;
  5852. }
  5853. llama_memory_i * llama_model::create_memory(const llama_memory_params & params, const llama_cparams & cparams) const {
  5854. llama_memory_i * res;
  5855. switch (arch) {
  5856. // Models that need specific instantiation should be handled in the
  5857. // switch statement
  5858. case LLM_ARCH_BERT:
  5859. case LLM_ARCH_JINA_BERT_V2:
  5860. case LLM_ARCH_JINA_BERT_V3:
  5861. case LLM_ARCH_NOMIC_BERT:
  5862. case LLM_ARCH_NOMIC_BERT_MOE:
  5863. case LLM_ARCH_NEO_BERT:
  5864. case LLM_ARCH_WAVTOKENIZER_DEC:
  5865. case LLM_ARCH_GEMMA_EMBEDDING:
  5866. case LLM_ARCH_DREAM:
  5867. case LLM_ARCH_LLADA:
  5868. case LLM_ARCH_LLADA_MOE:
  5869. case LLM_ARCH_RND1:
  5870. {
  5871. res = nullptr;
  5872. } break;
  5873. // Models that need standard caching should rely on recurrent/hybrid
  5874. // checks
  5875. default:
  5876. {
  5877. if (llm_arch_is_recurrent(arch)) {
  5878. res = new llama_memory_recurrent(
  5879. *this,
  5880. GGML_TYPE_F32,
  5881. GGML_TYPE_F32,
  5882. cparams.offload_kqv,
  5883. std::max((uint32_t) 1, cparams.n_seq_max),
  5884. cparams.n_seq_max,
  5885. nullptr);
  5886. } else if (llm_arch_is_hybrid(arch)) {
  5887. // The main difference between hybrid architectures is the
  5888. // layer filters, so pick the right one here
  5889. llama_memory_hybrid::layer_filter_cb filter_attn = nullptr;
  5890. llama_memory_hybrid::layer_filter_cb filter_recr = nullptr;
  5891. if (arch == LLM_ARCH_FALCON_H1) {
  5892. filter_attn = [&](int32_t) { return true; };
  5893. filter_recr = [&](int32_t) { return true; };
  5894. } else if (arch == LLM_ARCH_NEMOTRON_H) {
  5895. filter_attn = [&](int32_t il) {
  5896. return !hparams.is_recurrent(il) && hparams.n_ff(il) == 0;
  5897. };
  5898. filter_recr = [&](int32_t il) {
  5899. return hparams.is_recurrent(il) && hparams.n_ff(il) == 0;
  5900. };
  5901. }
  5902. res = new llama_memory_hybrid(
  5903. /* model */ *this,
  5904. /* attn_type_k */ params.type_k,
  5905. /* attn_type_v */ params.type_v,
  5906. /* attn_v_trans */ !cparams.flash_attn,
  5907. /* attn_kv_size */ cparams.n_ctx,
  5908. /* attn_n_pad */ 1,
  5909. /* attn_n_swa */ hparams.n_swa,
  5910. /* attn_swa_type */ hparams.swa_type,
  5911. /* recurrent_type_k */ GGML_TYPE_F32,
  5912. /* recurrent_type_v */ GGML_TYPE_F32,
  5913. /* recurrent_kv_size */ std::max((uint32_t) 1, cparams.n_seq_max),
  5914. /* n_seq_max */ cparams.n_seq_max,
  5915. /* offload */ cparams.offload_kqv,
  5916. /* unified */ cparams.kv_unified,
  5917. /* filter_attn */ std::move(filter_attn),
  5918. /* filter_recr */ std::move(filter_recr));
  5919. } else {
  5920. llama_memory_i::layer_reuse_cb reuse = nullptr;
  5921. if (arch == LLM_ARCH_GEMMA3N) {
  5922. reuse = [&](int32_t il) {
  5923. if (il >= (int32_t) hparams.n_layer_kv_from_start) {
  5924. return (int32_t) hparams.n_layer_kv_from_start - (hparams.is_swa(il) ? 2 : 1);
  5925. }
  5926. return -1;
  5927. };
  5928. }
  5929. if (hparams.swa_type != LLAMA_SWA_TYPE_NONE) {
  5930. GGML_ASSERT(hparams.is_swa_any());
  5931. res = new llama_kv_cache_iswa(
  5932. *this,
  5933. params.type_k,
  5934. params.type_v,
  5935. !cparams.flash_attn,
  5936. cparams.offload_kqv,
  5937. params.swa_full,
  5938. cparams.kv_unified,
  5939. cparams.n_ctx_seq,
  5940. cparams.n_seq_max,
  5941. cparams.n_ubatch,
  5942. 1,
  5943. nullptr,
  5944. reuse);
  5945. } else {
  5946. GGML_ASSERT(!hparams.is_swa_any());
  5947. res = new llama_kv_cache(
  5948. *this,
  5949. params.type_k,
  5950. params.type_v,
  5951. !cparams.flash_attn,
  5952. cparams.offload_kqv,
  5953. cparams.kv_unified,
  5954. cparams.n_ctx_seq,
  5955. cparams.n_seq_max,
  5956. 1,
  5957. hparams.n_swa,
  5958. hparams.swa_type,
  5959. nullptr,
  5960. nullptr);
  5961. }
  5962. }
  5963. }
  5964. }
  5965. return res;
  5966. }
  5967. ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
  5968. std::unique_ptr<llm_graph_context> llm;
  5969. switch (arch) {
  5970. case LLM_ARCH_LLAMA:
  5971. {
  5972. llm = std::make_unique<llm_build_llama>(*this, params);
  5973. } break;
  5974. case LLM_ARCH_LLAMA4:
  5975. {
  5976. if (hparams.swa_type == LLAMA_SWA_TYPE_NONE) {
  5977. llm = std::make_unique<llm_build_llama>(*this, params);
  5978. } else {
  5979. llm = std::make_unique<llm_build_llama_iswa>(*this, params);
  5980. }
  5981. } break;
  5982. case LLM_ARCH_DECI:
  5983. {
  5984. llm = std::make_unique<llm_build_deci>(*this, params);
  5985. } break;
  5986. case LLM_ARCH_BAICHUAN:
  5987. {
  5988. llm = std::make_unique<llm_build_baichuan>(*this, params);
  5989. } break;
  5990. case LLM_ARCH_FALCON:
  5991. {
  5992. llm = std::make_unique<llm_build_falcon>(*this, params);
  5993. } break;
  5994. case LLM_ARCH_GROK:
  5995. {
  5996. llm = std::make_unique<llm_build_grok>(*this, params);
  5997. } break;
  5998. case LLM_ARCH_STARCODER:
  5999. {
  6000. llm = std::make_unique<llm_build_starcoder>(*this, params);
  6001. } break;
  6002. case LLM_ARCH_REFACT:
  6003. {
  6004. llm = std::make_unique<llm_build_refact>(*this, params);
  6005. } break;
  6006. case LLM_ARCH_BERT:
  6007. case LLM_ARCH_JINA_BERT_V2:
  6008. case LLM_ARCH_JINA_BERT_V3:
  6009. case LLM_ARCH_NOMIC_BERT:
  6010. case LLM_ARCH_NOMIC_BERT_MOE:
  6011. {
  6012. llm = std::make_unique<llm_build_bert>(*this, params);
  6013. } break;
  6014. case LLM_ARCH_NEO_BERT:
  6015. {
  6016. llm = std::make_unique<llm_build_neo_bert>(*this, params);
  6017. } break;
  6018. case LLM_ARCH_BLOOM:
  6019. {
  6020. llm = std::make_unique<llm_build_bloom>(*this, params);
  6021. } break;
  6022. case LLM_ARCH_MPT:
  6023. {
  6024. llm = std::make_unique<llm_build_mpt>(*this, params);
  6025. } break;
  6026. case LLM_ARCH_STABLELM:
  6027. {
  6028. llm = std::make_unique<llm_build_stablelm>(*this, params);
  6029. } break;
  6030. case LLM_ARCH_QWEN:
  6031. {
  6032. llm = std::make_unique<llm_build_qwen>(*this, params);
  6033. } break;
  6034. case LLM_ARCH_QWEN2:
  6035. {
  6036. llm = std::make_unique<llm_build_qwen2>(*this, params);
  6037. } break;
  6038. case LLM_ARCH_DREAM:
  6039. {
  6040. llm = std::make_unique<llm_build_dream>(*this, params);
  6041. }
  6042. break;
  6043. case LLM_ARCH_LLADA:
  6044. {
  6045. llm = std::make_unique<llm_build_llada>(*this, params);
  6046. }
  6047. break;
  6048. case LLM_ARCH_LLADA_MOE:
  6049. {
  6050. llm = std::make_unique<llm_build_llada_moe>(*this, params);
  6051. }
  6052. break;
  6053. case LLM_ARCH_RND1:
  6054. {
  6055. llm = std::make_unique<llm_build_rnd1>(*this, params);
  6056. }
  6057. break;
  6058. case LLM_ARCH_QWEN2VL:
  6059. {
  6060. llm = std::make_unique<llm_build_qwen2vl>(*this, params);
  6061. } break;
  6062. case LLM_ARCH_QWEN2MOE:
  6063. {
  6064. llm = std::make_unique<llm_build_qwen2moe>(*this, params);
  6065. } break;
  6066. case LLM_ARCH_QWEN3:
  6067. {
  6068. llm = std::make_unique<llm_build_qwen3>(*this, params);
  6069. } break;
  6070. case LLM_ARCH_QWEN3MOE:
  6071. {
  6072. llm = std::make_unique<llm_build_qwen3moe>(*this, params);
  6073. } break;
  6074. case LLM_ARCH_QWEN3VL:
  6075. {
  6076. llm = std::make_unique<llm_build_qwen3vl>(*this, params);
  6077. } break;
  6078. case LLM_ARCH_QWEN3VLMOE:
  6079. {
  6080. llm = std::make_unique<llm_build_qwen3vlmoe>(*this, params);
  6081. } break;
  6082. case LLM_ARCH_PHI2:
  6083. {
  6084. llm = std::make_unique<llm_build_phi2>(*this, params);
  6085. } break;
  6086. case LLM_ARCH_PHI3:
  6087. case LLM_ARCH_PHIMOE:
  6088. {
  6089. if (hparams.swa_type != LLAMA_SWA_TYPE_NONE) {
  6090. llm = std::make_unique<llm_build_phi3<true>> (*this, params);
  6091. } else {
  6092. llm = std::make_unique<llm_build_phi3<false>>(*this, params);
  6093. }
  6094. } break;
  6095. case LLM_ARCH_PLAMO:
  6096. {
  6097. llm = std::make_unique<llm_build_plamo>(*this, params);
  6098. } break;
  6099. case LLM_ARCH_PLAMO2:
  6100. {
  6101. llm = std::make_unique<llm_build_plamo2>(*this, params);
  6102. } break;
  6103. case LLM_ARCH_GPT2:
  6104. {
  6105. llm = std::make_unique<llm_build_gpt2>(*this, params);
  6106. } break;
  6107. case LLM_ARCH_CODESHELL:
  6108. {
  6109. llm = std::make_unique<llm_build_codeshell>(*this, params);
  6110. } break;
  6111. case LLM_ARCH_ORION:
  6112. {
  6113. llm = std::make_unique<llm_build_orion>(*this, params);
  6114. } break;
  6115. case LLM_ARCH_INTERNLM2:
  6116. {
  6117. llm = std::make_unique<llm_build_internlm2>(*this, params);
  6118. } break;
  6119. case LLM_ARCH_MINICPM3:
  6120. {
  6121. llm = std::make_unique<llm_build_minicpm3>(*this, params);
  6122. } break;
  6123. case LLM_ARCH_GEMMA:
  6124. {
  6125. llm = std::make_unique<llm_build_gemma>(*this, params);
  6126. } break;
  6127. case LLM_ARCH_GEMMA2:
  6128. {
  6129. llm = std::make_unique<llm_build_gemma2_iswa>(*this, params);
  6130. } break;
  6131. case LLM_ARCH_GEMMA3:
  6132. {
  6133. llm = std::make_unique<llm_build_gemma3_iswa>(*this, params);
  6134. } break;
  6135. case LLM_ARCH_GEMMA3N:
  6136. {
  6137. llm = std::make_unique<llm_build_gemma3n_iswa>(*this, params);
  6138. } break;
  6139. case LLM_ARCH_GEMMA_EMBEDDING:
  6140. {
  6141. llm = std::make_unique<llm_build_gemma_embedding>(*this, params);
  6142. } break;
  6143. case LLM_ARCH_STARCODER2:
  6144. {
  6145. llm = std::make_unique<llm_build_starcoder2>(*this, params);
  6146. } break;
  6147. case LLM_ARCH_MAMBA:
  6148. case LLM_ARCH_MAMBA2:
  6149. {
  6150. llm = std::make_unique<llm_build_mamba>(*this, params);
  6151. } break;
  6152. case LLM_ARCH_JAMBA:
  6153. {
  6154. llm = std::make_unique<llm_build_jamba>(*this, params);
  6155. } break;
  6156. case LLM_ARCH_XVERSE:
  6157. {
  6158. llm = std::make_unique<llm_build_xverse>(*this, params);
  6159. } break;
  6160. case LLM_ARCH_COMMAND_R:
  6161. {
  6162. llm = std::make_unique<llm_build_command_r>(*this, params);
  6163. } break;
  6164. case LLM_ARCH_COHERE2:
  6165. {
  6166. llm = std::make_unique<llm_build_cohere2_iswa>(*this, params);
  6167. } break;
  6168. case LLM_ARCH_DBRX:
  6169. {
  6170. llm = std::make_unique<llm_build_dbrx>(*this, params);
  6171. } break;
  6172. case LLM_ARCH_OLMO:
  6173. {
  6174. llm = std::make_unique<llm_build_olmo>(*this, params);
  6175. } break;
  6176. case LLM_ARCH_OLMO2:
  6177. {
  6178. if (hparams.swa_type == LLAMA_SWA_TYPE_STANDARD) {
  6179. llm = std::make_unique<llm_build_olmo2<true>>(*this, params);
  6180. } else {
  6181. llm = std::make_unique<llm_build_olmo2<false>>(*this, params);
  6182. }
  6183. } break;
  6184. case LLM_ARCH_OLMOE:
  6185. {
  6186. llm = std::make_unique<llm_build_olmoe>(*this, params);
  6187. } break;
  6188. case LLM_ARCH_OPENELM:
  6189. {
  6190. llm = std::make_unique<llm_build_openelm>(*this, params);
  6191. } break;
  6192. case LLM_ARCH_GPTNEOX:
  6193. {
  6194. llm = std::make_unique<llm_build_gptneox>(*this, params);
  6195. } break;
  6196. case LLM_ARCH_ARCTIC:
  6197. {
  6198. llm = std::make_unique<llm_build_arctic>(*this, params);
  6199. } break;
  6200. case LLM_ARCH_DEEPSEEK:
  6201. {
  6202. llm = std::make_unique<llm_build_deepseek>(*this, params);
  6203. } break;
  6204. case LLM_ARCH_DEEPSEEK2:
  6205. {
  6206. llm = std::make_unique<llm_build_deepseek2>(*this, params);
  6207. } break;
  6208. case LLM_ARCH_CHATGLM:
  6209. {
  6210. llm = std::make_unique<llm_build_chatglm>(*this, params);
  6211. } break;
  6212. case LLM_ARCH_GLM4:
  6213. {
  6214. llm = std::make_unique<llm_build_glm4>(*this, params);
  6215. } break;
  6216. case LLM_ARCH_GLM4_MOE:
  6217. {
  6218. llm = std::make_unique<llm_build_glm4_moe>(*this, params);
  6219. } break;
  6220. case LLM_ARCH_BITNET:
  6221. {
  6222. llm = std::make_unique<llm_build_bitnet>(*this, params);
  6223. } break;
  6224. case LLM_ARCH_T5:
  6225. {
  6226. switch (params.gtype) {
  6227. case LLM_GRAPH_TYPE_ENCODER:
  6228. llm = std::make_unique<llm_build_t5_enc>(*this, params);
  6229. break;
  6230. case LLM_GRAPH_TYPE_DEFAULT:
  6231. case LLM_GRAPH_TYPE_DECODER:
  6232. llm = std::make_unique<llm_build_t5_dec>(*this, params);
  6233. break;
  6234. default:
  6235. GGML_ABORT("invalid graph type");
  6236. };
  6237. } break;
  6238. case LLM_ARCH_T5ENCODER:
  6239. {
  6240. llm = std::make_unique<llm_build_t5_enc>(*this, params);
  6241. }
  6242. break;
  6243. case LLM_ARCH_JAIS:
  6244. {
  6245. llm = std::make_unique<llm_build_jais>(*this, params);
  6246. } break;
  6247. case LLM_ARCH_NEMOTRON:
  6248. {
  6249. llm = std::make_unique<llm_build_nemotron>(*this, params);
  6250. } break;
  6251. case LLM_ARCH_NEMOTRON_H:
  6252. {
  6253. llm = std::make_unique<llm_build_nemotron_h>(*this, params);
  6254. } break;
  6255. case LLM_ARCH_EXAONE:
  6256. {
  6257. llm = std::make_unique<llm_build_exaone>(*this, params);
  6258. } break;
  6259. case LLM_ARCH_EXAONE4:
  6260. {
  6261. if (hparams.swa_type == LLAMA_SWA_TYPE_STANDARD) {
  6262. llm = std::make_unique<llm_build_exaone4<true>>(*this, params);
  6263. } else {
  6264. llm = std::make_unique<llm_build_exaone4<false>>(*this, params);
  6265. }
  6266. } break;
  6267. case LLM_ARCH_RWKV6:
  6268. {
  6269. llm = std::make_unique<llm_build_rwkv6>(*this, params);
  6270. } break;
  6271. case LLM_ARCH_RWKV6QWEN2:
  6272. {
  6273. llm = std::make_unique<llm_build_rwkv6qwen2>(*this, params);
  6274. } break;
  6275. case LLM_ARCH_RWKV7:
  6276. {
  6277. llm = std::make_unique<llm_build_rwkv7>(*this, params);
  6278. } break;
  6279. case LLM_ARCH_ARWKV7:
  6280. {
  6281. llm = std::make_unique<llm_build_arwkv7>(*this, params);
  6282. } break;
  6283. case LLM_ARCH_GRANITE:
  6284. case LLM_ARCH_GRANITE_MOE:
  6285. case LLM_ARCH_MINICPM:
  6286. {
  6287. llm = std::make_unique<llm_build_granite>(*this, params);
  6288. } break;
  6289. case LLM_ARCH_GRANITE_HYBRID:
  6290. {
  6291. llm = std::make_unique<llm_build_granite_hybrid>(*this, params);
  6292. } break;
  6293. case LLM_ARCH_CHAMELEON:
  6294. {
  6295. llm = std::make_unique<llm_build_chameleon>(*this, params);
  6296. } break;
  6297. case LLM_ARCH_WAVTOKENIZER_DEC:
  6298. {
  6299. llm = std::make_unique<llm_build_wavtokenizer_dec>(*this, params);
  6300. } break;
  6301. case LLM_ARCH_PLM:
  6302. {
  6303. llm = std::make_unique<llm_build_plm>(*this, params);
  6304. } break;
  6305. case LLM_ARCH_BAILINGMOE:
  6306. {
  6307. llm = std::make_unique<llm_build_bailingmoe>(*this, params);
  6308. } break;
  6309. case LLM_ARCH_BAILINGMOE2:
  6310. {
  6311. llm = std::make_unique<llm_build_bailingmoe2>(*this, params);
  6312. } break;
  6313. case LLM_ARCH_SEED_OSS:
  6314. {
  6315. llm = std::make_unique<llm_build_seed_oss>(*this, params);
  6316. } break;
  6317. case LLM_ARCH_DOTS1:
  6318. {
  6319. llm = std::make_unique<llm_build_dots1>(*this, params);
  6320. } break;
  6321. case LLM_ARCH_ARCEE:
  6322. {
  6323. llm = std::make_unique<llm_build_arcee>(*this, params);
  6324. } break;
  6325. case LLM_ARCH_AFMOE:
  6326. {
  6327. llm = std::make_unique<llm_build_afmoe>(*this, params);
  6328. } break;
  6329. case LLM_ARCH_ERNIE4_5:
  6330. {
  6331. llm = std::make_unique<llm_build_ernie4_5>(*this, params);
  6332. } break;
  6333. case LLM_ARCH_ERNIE4_5_MOE:
  6334. {
  6335. llm = std::make_unique<llm_build_ernie4_5_moe>(*this, params);
  6336. } break;
  6337. case LLM_ARCH_HUNYUAN_MOE:
  6338. {
  6339. llm = std::make_unique<llm_build_hunyuan_moe>(*this, params);
  6340. } break;
  6341. case LLM_ARCH_HUNYUAN_DENSE:
  6342. {
  6343. llm = std::make_unique<llm_build_hunyuan_dense>(*this, params);
  6344. } break;
  6345. case LLM_ARCH_SMOLLM3:
  6346. {
  6347. llm = std::make_unique<llm_build_smollm3>(*this, params);
  6348. } break;
  6349. case LLM_ARCH_OPENAI_MOE:
  6350. {
  6351. llm = std::make_unique<llm_build_openai_moe_iswa>(*this, params);
  6352. } break;
  6353. case LLM_ARCH_FALCON_H1:
  6354. {
  6355. llm = std::make_unique<llm_build_falcon_h1>(*this, params);
  6356. } break;
  6357. case LLM_ARCH_LFM2:
  6358. case LLM_ARCH_LFM2MOE:
  6359. {
  6360. llm = std::make_unique<llm_build_lfm2>(*this, params);
  6361. } break;
  6362. case LLM_ARCH_SMALLTHINKER:
  6363. {
  6364. if (hparams.swa_type == LLAMA_SWA_TYPE_STANDARD) {
  6365. llm = std::make_unique<llm_build_smallthinker<true>> (*this, params);
  6366. } else {
  6367. llm = std::make_unique<llm_build_smallthinker<false>>(*this, params);
  6368. }
  6369. } break;
  6370. case LLM_ARCH_GROVEMOE:
  6371. {
  6372. llm = std::make_unique<llm_build_grovemoe>(*this, params);
  6373. } break;
  6374. case LLM_ARCH_APERTUS:
  6375. {
  6376. llm = std::make_unique<llm_build_apertus>(*this, params);
  6377. } break;
  6378. case LLM_ARCH_MINIMAX_M2:
  6379. {
  6380. llm = std::make_unique<llm_build_minimax_m2>(*this, params);
  6381. } break;
  6382. case LLM_ARCH_COGVLM:
  6383. {
  6384. llm = std::make_unique<llm_build_cogvlm>(*this, params);
  6385. } break;
  6386. case LLM_ARCH_PANGU_EMBED:
  6387. {
  6388. llm = std::make_unique<llm_build_pangu_embedded>(*this, params);
  6389. } break;
  6390. case LLM_ARCH_QWEN3NEXT:
  6391. {
  6392. llm = std::make_unique<llm_build_qwen3next>(*this, params);
  6393. } break;
  6394. case LLM_ARCH_MISTRAL3:
  6395. {
  6396. llm = std::make_unique<llm_build_mistral3>(*this, params);
  6397. } break;
  6398. default:
  6399. GGML_ABORT("fatal error");
  6400. }
  6401. // add on pooling layer
  6402. llm->build_pooling(cls, cls_b, cls_out, cls_out_b);
  6403. // if the gguf model was converted with --sentence-transformers-dense-modules
  6404. // there will be two additional dense projection layers
  6405. // dense linear projections are applied after pooling
  6406. // TODO: move reranking logic here and generalize
  6407. llm->build_dense_out(dense_2_out_layers, dense_3_out_layers);
  6408. return llm->res->get_gf();
  6409. }
  6410. //
  6411. // interface implementation
  6412. //
  6413. llama_model_params llama_model_default_params() {
  6414. llama_model_params result = {
  6415. /*.devices =*/ nullptr,
  6416. /*.tensor_buft_overrides =*/ nullptr,
  6417. /*.n_gpu_layers =*/ 999,
  6418. /*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER,
  6419. /*.main_gpu =*/ 0,
  6420. /*.tensor_split =*/ nullptr,
  6421. /*.progress_callback =*/ nullptr,
  6422. /*.progress_callback_user_data =*/ nullptr,
  6423. /*.kv_overrides =*/ nullptr,
  6424. /*.vocab_only =*/ false,
  6425. /*.use_mmap =*/ true,
  6426. /*.use_mlock =*/ false,
  6427. /*.check_tensors =*/ false,
  6428. /*.use_extra_bufts =*/ true,
  6429. /*.no_host =*/ false,
  6430. };
  6431. return result;
  6432. }
  6433. const llama_vocab * llama_model_get_vocab(const llama_model * model) {
  6434. return &model->vocab;
  6435. }
  6436. void llama_free_model(llama_model * model) {
  6437. llama_model_free(model);
  6438. }
  6439. void llama_model_free(llama_model * model) {
  6440. delete model;
  6441. }
  6442. int32_t llama_model_n_ctx_train(const llama_model * model) {
  6443. return model->hparams.n_ctx_train;
  6444. }
  6445. int32_t llama_model_n_embd(const llama_model * model) {
  6446. return model->hparams.n_embd;
  6447. }
  6448. int32_t llama_model_n_embd_inp(const llama_model * model) {
  6449. return model->hparams.n_embd_inp();
  6450. }
  6451. int32_t llama_model_n_layer(const llama_model * model) {
  6452. return model->hparams.n_layer;
  6453. }
  6454. int32_t llama_model_n_head(const llama_model * model) {
  6455. return model->hparams.n_head();
  6456. }
  6457. int32_t llama_model_n_head_kv(const llama_model * model) {
  6458. return model->hparams.n_head_kv();
  6459. }
  6460. int32_t llama_model_n_swa(const llama_model * model) {
  6461. return model->hparams.n_swa;
  6462. }
  6463. uint32_t llama_model_n_cls_out(const struct llama_model * model) {
  6464. return model->hparams.n_cls_out;
  6465. }
  6466. const char * llama_model_cls_label(const struct llama_model * model, uint32_t i) {
  6467. if (i < model->classifier_labels.size()) {
  6468. return model->classifier_labels[i].c_str();
  6469. }
  6470. return nullptr;
  6471. }
  6472. // deprecated
  6473. int32_t llama_n_ctx_train(const llama_model * model) {
  6474. return llama_model_n_ctx_train(model);
  6475. }
  6476. // deprecated
  6477. int32_t llama_n_embd(const llama_model * model) {
  6478. return llama_model_n_embd(model);
  6479. }
  6480. // deprecated
  6481. int32_t llama_n_layer(const llama_model * model) {
  6482. return llama_model_n_layer(model);
  6483. }
  6484. // deprecated
  6485. int32_t llama_n_head(const llama_model * model) {
  6486. return llama_model_n_head(model);
  6487. }
  6488. llama_rope_type llama_model_rope_type(const llama_model * model) {
  6489. switch (model->arch) {
  6490. // these models do not use RoPE
  6491. case LLM_ARCH_CLIP:
  6492. case LLM_ARCH_GPT2:
  6493. case LLM_ARCH_GPTJ:
  6494. case LLM_ARCH_MPT:
  6495. case LLM_ARCH_REFACT:
  6496. case LLM_ARCH_BLOOM:
  6497. case LLM_ARCH_MAMBA:
  6498. case LLM_ARCH_MAMBA2:
  6499. case LLM_ARCH_JAMBA:
  6500. case LLM_ARCH_JINA_BERT_V2:
  6501. case LLM_ARCH_T5:
  6502. case LLM_ARCH_T5ENCODER:
  6503. case LLM_ARCH_JAIS:
  6504. case LLM_ARCH_RWKV6:
  6505. case LLM_ARCH_RWKV6QWEN2:
  6506. case LLM_ARCH_RWKV7:
  6507. case LLM_ARCH_ARWKV7:
  6508. case LLM_ARCH_WAVTOKENIZER_DEC:
  6509. case LLM_ARCH_NEMOTRON_H:
  6510. return LLAMA_ROPE_TYPE_NONE;
  6511. // use what we call a normal RoPE, operating on pairs of consecutive head values
  6512. case LLM_ARCH_LLAMA:
  6513. case LLM_ARCH_LLADA:
  6514. case LLM_ARCH_LLAMA4:
  6515. case LLM_ARCH_DECI:
  6516. case LLM_ARCH_BAICHUAN:
  6517. case LLM_ARCH_STARCODER:
  6518. case LLM_ARCH_INTERNLM2:
  6519. case LLM_ARCH_MINICPM:
  6520. case LLM_ARCH_XVERSE:
  6521. case LLM_ARCH_COMMAND_R:
  6522. case LLM_ARCH_COHERE2:
  6523. case LLM_ARCH_OLMO:
  6524. case LLM_ARCH_ARCTIC:
  6525. case LLM_ARCH_DEEPSEEK:
  6526. case LLM_ARCH_DEEPSEEK2:
  6527. case LLM_ARCH_PLM:
  6528. case LLM_ARCH_CHATGLM:
  6529. case LLM_ARCH_GLM4:
  6530. case LLM_ARCH_GRANITE:
  6531. case LLM_ARCH_GRANITE_MOE:
  6532. case LLM_ARCH_GRANITE_HYBRID:
  6533. case LLM_ARCH_CHAMELEON:
  6534. case LLM_ARCH_BAILINGMOE:
  6535. case LLM_ARCH_NEO_BERT:
  6536. case LLM_ARCH_SMOLLM3:
  6537. case LLM_ARCH_ARCEE:
  6538. case LLM_ARCH_ERNIE4_5:
  6539. case LLM_ARCH_ERNIE4_5_MOE:
  6540. case LLM_ARCH_MISTRAL3:
  6541. return LLAMA_ROPE_TYPE_NORM;
  6542. // the pairs of head values are offset by n_rot/2
  6543. case LLM_ARCH_FALCON:
  6544. case LLM_ARCH_FALCON_H1:
  6545. case LLM_ARCH_GROK:
  6546. case LLM_ARCH_DBRX:
  6547. case LLM_ARCH_BERT:
  6548. case LLM_ARCH_JINA_BERT_V3:
  6549. case LLM_ARCH_NOMIC_BERT:
  6550. case LLM_ARCH_NOMIC_BERT_MOE:
  6551. case LLM_ARCH_STABLELM:
  6552. case LLM_ARCH_BITNET:
  6553. case LLM_ARCH_QWEN:
  6554. case LLM_ARCH_QWEN2:
  6555. case LLM_ARCH_DREAM:
  6556. case LLM_ARCH_QWEN2MOE:
  6557. case LLM_ARCH_QWEN3:
  6558. case LLM_ARCH_QWEN3MOE:
  6559. case LLM_ARCH_LLADA_MOE:
  6560. case LLM_ARCH_RND1:
  6561. case LLM_ARCH_OLMO2:
  6562. case LLM_ARCH_OLMOE:
  6563. case LLM_ARCH_PHI2:
  6564. case LLM_ARCH_PHI3:
  6565. case LLM_ARCH_PHIMOE:
  6566. case LLM_ARCH_PLAMO:
  6567. case LLM_ARCH_PLAMO2:
  6568. case LLM_ARCH_GEMMA:
  6569. case LLM_ARCH_GEMMA2:
  6570. case LLM_ARCH_GEMMA3:
  6571. case LLM_ARCH_GEMMA3N:
  6572. case LLM_ARCH_GEMMA_EMBEDDING:
  6573. case LLM_ARCH_STARCODER2:
  6574. case LLM_ARCH_OPENELM:
  6575. case LLM_ARCH_GPTNEOX:
  6576. case LLM_ARCH_CODESHELL:
  6577. case LLM_ARCH_ORION:
  6578. case LLM_ARCH_NEMOTRON:
  6579. case LLM_ARCH_EXAONE:
  6580. case LLM_ARCH_EXAONE4:
  6581. case LLM_ARCH_MINICPM3:
  6582. case LLM_ARCH_BAILINGMOE2:
  6583. case LLM_ARCH_DOTS1:
  6584. case LLM_ARCH_HUNYUAN_MOE:
  6585. case LLM_ARCH_OPENAI_MOE:
  6586. case LLM_ARCH_HUNYUAN_DENSE:
  6587. case LLM_ARCH_LFM2:
  6588. case LLM_ARCH_LFM2MOE:
  6589. case LLM_ARCH_SMALLTHINKER:
  6590. case LLM_ARCH_GLM4_MOE:
  6591. case LLM_ARCH_SEED_OSS:
  6592. case LLM_ARCH_GROVEMOE:
  6593. case LLM_ARCH_APERTUS:
  6594. case LLM_ARCH_MINIMAX_M2:
  6595. case LLM_ARCH_COGVLM:
  6596. case LLM_ARCH_PANGU_EMBED:
  6597. case LLM_ARCH_AFMOE:
  6598. case LLM_ARCH_QWEN3NEXT:
  6599. return LLAMA_ROPE_TYPE_NEOX;
  6600. case LLM_ARCH_QWEN2VL:
  6601. return LLAMA_ROPE_TYPE_MROPE;
  6602. case LLM_ARCH_QWEN3VL:
  6603. case LLM_ARCH_QWEN3VLMOE:
  6604. return LLAMA_ROPE_TYPE_IMROPE;
  6605. // all model arches should be listed explicitly here
  6606. case LLM_ARCH_UNKNOWN:
  6607. GGML_ABORT("unknown architecture");
  6608. }
  6609. return LLAMA_ROPE_TYPE_NONE;
  6610. }
  6611. float llama_model_rope_freq_scale_train(const llama_model * model) {
  6612. return model->hparams.rope_freq_scale_train;
  6613. }
  6614. int32_t llama_model_meta_val_str(const llama_model * model, const char * key, char * buf, size_t buf_size) {
  6615. const auto & it = model->gguf_kv.find(key);
  6616. if (it == model->gguf_kv.end()) {
  6617. if (buf_size > 0) {
  6618. buf[0] = '\0';
  6619. }
  6620. return -1;
  6621. }
  6622. return snprintf(buf, buf_size, "%s", it->second.c_str());
  6623. }
  6624. int32_t llama_model_meta_count(const llama_model * model) {
  6625. return (int)model->gguf_kv.size();
  6626. }
  6627. const char * llama_model_meta_key_str(llama_model_meta_key key) {
  6628. switch (key) {
  6629. case LLAMA_MODEL_META_KEY_SAMPLING_SEQUENCE: return "general.sampling.sequence";
  6630. case LLAMA_MODEL_META_KEY_SAMPLING_TOP_K: return "general.sampling.top_k";
  6631. case LLAMA_MODEL_META_KEY_SAMPLING_TOP_P: return "general.sampling.top_p";
  6632. case LLAMA_MODEL_META_KEY_SAMPLING_MIN_P: return "general.sampling.min_p";
  6633. case LLAMA_MODEL_META_KEY_SAMPLING_XTC_PROBABILITY: return "general.sampling.xtc_probability";
  6634. case LLAMA_MODEL_META_KEY_SAMPLING_XTC_THRESHOLD: return "general.sampling.xtc_threshold";
  6635. case LLAMA_MODEL_META_KEY_SAMPLING_TEMP: return "general.sampling.temp";
  6636. case LLAMA_MODEL_META_KEY_SAMPLING_PENALTY_LAST_N: return "general.sampling.penalty_last_n";
  6637. case LLAMA_MODEL_META_KEY_SAMPLING_PENALTY_REPEAT: return "general.sampling.penalty_repeat";
  6638. case LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT: return "general.sampling.mirostat";
  6639. case LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT_TAU: return "general.sampling.mirostat_tau";
  6640. case LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT_ETA: return "general.sampling.mirostat_eta";
  6641. default: return nullptr;
  6642. }
  6643. }
  6644. int32_t llama_model_meta_key_by_index(const llama_model * model, int i, char * buf, size_t buf_size) {
  6645. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  6646. if (buf_size > 0) {
  6647. buf[0] = '\0';
  6648. }
  6649. return -1;
  6650. }
  6651. auto it = model->gguf_kv.begin();
  6652. std::advance(it, i);
  6653. return snprintf(buf, buf_size, "%s", it->first.c_str());
  6654. }
  6655. int32_t llama_model_meta_val_str_by_index(const llama_model * model, int32_t i, char * buf, size_t buf_size) {
  6656. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  6657. if (buf_size > 0) {
  6658. buf[0] = '\0';
  6659. }
  6660. return -1;
  6661. }
  6662. auto it = model->gguf_kv.begin();
  6663. std::advance(it, i);
  6664. return snprintf(buf, buf_size, "%s", it->second.c_str());
  6665. }
  6666. int32_t llama_model_desc(const llama_model * model, char * buf, size_t buf_size) {
  6667. return snprintf(buf, buf_size, "%s", model->desc().c_str());
  6668. }
  6669. uint64_t llama_model_size(const llama_model * model) {
  6670. return model->size();
  6671. }
  6672. const char * llama_model_chat_template(const llama_model * model, const char * name) {
  6673. const auto key = name ? LLM_KV(model->arch, name)(LLM_KV_TOKENIZER_CHAT_TEMPLATE)
  6674. : LLM_KV(model->arch)(LLM_KV_TOKENIZER_CHAT_TEMPLATE);
  6675. const auto & it = model->gguf_kv.find(key);
  6676. if (it == model->gguf_kv.end()) {
  6677. // one-off fix for very popular models (so we are not flooded with issues)
  6678. // do not extend this list unless absolutely necessary
  6679. // Mistral-Small-2503 does not have built-in chat template
  6680. llama_vocab_pre_type pre_type = model->vocab.get_pre_type();
  6681. if (!name && pre_type == LLAMA_VOCAB_PRE_TYPE_TEKKEN && model->layers.size() == 40) {
  6682. return "mistral-v7-tekken";
  6683. }
  6684. return nullptr;
  6685. }
  6686. return it->second.c_str();
  6687. }
  6688. uint64_t llama_model_n_params(const llama_model * model) {
  6689. return model->n_elements();
  6690. }
  6691. bool llama_model_has_encoder(const llama_model * model) {
  6692. switch (model->arch) {
  6693. case LLM_ARCH_T5: return true;
  6694. case LLM_ARCH_T5ENCODER: return true;
  6695. default: return false;
  6696. }
  6697. }
  6698. bool llama_model_has_decoder(const llama_model * model) {
  6699. switch (model->arch) {
  6700. case LLM_ARCH_T5ENCODER: return false;
  6701. default: return true;
  6702. }
  6703. }
  6704. llama_token llama_model_decoder_start_token(const llama_model * model) {
  6705. return model->hparams.dec_start_token_id;
  6706. }
  6707. bool llama_model_is_recurrent(const llama_model * model) {
  6708. return llm_arch_is_recurrent(model->arch);
  6709. }
  6710. bool llama_model_is_hybrid(const llama_model * model) {
  6711. return llm_arch_is_hybrid(model->arch);
  6712. }
  6713. bool llama_model_is_diffusion(const llama_model * model) {
  6714. return llm_arch_is_diffusion(model->arch);
  6715. }
  6716. const std::vector<std::pair<std::string, ggml_tensor *>> & llama_internal_get_tensor_map(const llama_model * model) {
  6717. return model->tensors_by_name;
  6718. }