convert_hf_to_gguf.py 159 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import logging
  5. import argparse
  6. import contextlib
  7. import json
  8. import os
  9. import re
  10. import sys
  11. from enum import IntEnum
  12. from pathlib import Path
  13. from hashlib import sha256
  14. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  15. import math
  16. import numpy as np
  17. import torch
  18. if TYPE_CHECKING:
  19. from torch import Tensor
  20. if 'NO_LOCAL_GGUF' not in os.environ:
  21. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  22. import gguf
  23. logger = logging.getLogger("hf-to-gguf")
  24. ###### MODEL DEFINITIONS ######
  25. class SentencePieceTokenTypes(IntEnum):
  26. NORMAL = 1
  27. UNKNOWN = 2
  28. CONTROL = 3
  29. USER_DEFINED = 4
  30. UNUSED = 5
  31. BYTE = 6
  32. AnyModel = TypeVar("AnyModel", bound="type[Model]")
  33. class Model:
  34. _model_classes: dict[str, type[Model]] = {}
  35. dir_model: Path
  36. ftype: gguf.LlamaFileType
  37. is_big_endian: bool
  38. endianess: gguf.GGUFEndian
  39. use_temp_file: bool
  40. lazy: bool
  41. model_name: str | None
  42. part_names: list[str]
  43. is_safetensors: bool
  44. hparams: dict[str, Any]
  45. block_count: int
  46. tensor_map: gguf.TensorNameMap
  47. tensor_names: set[str] | None
  48. fname_out: Path
  49. gguf_writer: gguf.GGUFWriter
  50. # subclasses should define this!
  51. model_arch: gguf.MODEL_ARCH
  52. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool, use_temp_file: bool, eager: bool,
  53. model_name: str | None, split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, small_first_shard: bool = False):
  54. if type(self) is Model:
  55. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  56. self.dir_model = dir_model
  57. self.ftype = ftype
  58. self.is_big_endian = is_big_endian
  59. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  60. self.use_temp_file = use_temp_file
  61. self.lazy = not eager
  62. self.model_name = model_name
  63. self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors")
  64. self.is_safetensors = len(self.part_names) > 0
  65. if not self.is_safetensors:
  66. self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  67. self.hparams = Model.load_hparams(self.dir_model)
  68. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  69. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  70. self.tensor_names = None
  71. if self.ftype == gguf.LlamaFileType.GUESSED:
  72. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  73. _, first_tensor = next(self.get_tensors())
  74. if first_tensor.dtype == torch.float16:
  75. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  76. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  77. else:
  78. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  79. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  80. ftype_up: str = self.ftype.name.partition("_")[2].upper()
  81. ftype_lw: str = ftype_up.lower()
  82. # allow templating the file name with the output ftype, useful with the "auto" ftype
  83. self.fname_out = fname_out.parent / fname_out.name.format(ftype_lw, outtype=ftype_lw, ftype=ftype_lw, OUTTYPE=ftype_up, FTYPE=ftype_up)
  84. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  85. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  86. @classmethod
  87. def __init_subclass__(cls):
  88. # can't use an abstract property, because overriding it without type errors
  89. # would require using decorated functions instead of simply defining the property
  90. if "model_arch" not in cls.__dict__:
  91. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  92. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  93. key = next((k for k in keys if k in self.hparams), None)
  94. if key is not None:
  95. return self.hparams[key]
  96. if optional:
  97. return None
  98. raise KeyError(f"could not find any of: {keys}")
  99. def set_vocab(self):
  100. self._set_vocab_gpt2()
  101. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  102. tensor_names_from_parts: set[str] = set()
  103. if len(self.part_names) > 1:
  104. self.tensor_names = set()
  105. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  106. index_name += ".index.json"
  107. logger.info(f"gguf: loading model weight map from '{index_name}'")
  108. with open(self.dir_model / index_name, "r", encoding="utf-8") as f:
  109. index: dict[str, Any] = json.load(f)
  110. weight_map = index.get("weight_map")
  111. if weight_map is None or not isinstance(weight_map, dict):
  112. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  113. self.tensor_names.update(weight_map.keys())
  114. else:
  115. self.tensor_names = tensor_names_from_parts
  116. for part_name in self.part_names:
  117. logger.info(f"gguf: loading model part '{part_name}'")
  118. ctx: ContextManager[Any]
  119. if self.is_safetensors:
  120. from safetensors import safe_open
  121. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  122. else:
  123. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  124. with ctx as model_part:
  125. tensor_names_from_parts.update(model_part.keys())
  126. for name in model_part.keys():
  127. data = model_part.get_tensor(name) if self.is_safetensors else model_part[name]
  128. if self.lazy:
  129. data = LazyTorchTensor.from_eager(data)
  130. yield name, data
  131. # only verify tensor name presence; it doesn't matter if they are not in the right files
  132. if len(sym_diff := tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  133. raise ValueError(f"Mismatch between weight map and model parts for tensor names: {sym_diff}")
  134. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  135. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  136. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  137. name: str = gguf.TENSOR_NAMES[key]
  138. if "{bid}" in name:
  139. assert bid is not None
  140. name = name.format(bid=bid)
  141. return name + suffix
  142. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  143. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  144. return False
  145. key_name: str = gguf.TENSOR_NAMES[key]
  146. if "{bid}" in key_name:
  147. if bid is None:
  148. return False
  149. key_name = key_name.format(bid=bid)
  150. else:
  151. if bid is not None:
  152. return False
  153. return name == (key_name + suffix)
  154. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  155. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  156. if new_name is None:
  157. raise ValueError(f"Can not map tensor {name!r}")
  158. return new_name
  159. def set_gguf_parameters(self):
  160. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  161. self.gguf_writer.add_block_count(self.block_count)
  162. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  163. self.gguf_writer.add_context_length(n_ctx)
  164. logger.info(f"gguf: context length = {n_ctx}")
  165. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  166. self.gguf_writer.add_embedding_length(n_embd)
  167. logger.info(f"gguf: embedding length = {n_embd}")
  168. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  169. self.gguf_writer.add_feed_forward_length(n_ff)
  170. logger.info(f"gguf: feed forward length = {n_ff}")
  171. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  172. self.gguf_writer.add_head_count(n_head)
  173. logger.info(f"gguf: head count = {n_head}")
  174. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  175. self.gguf_writer.add_head_count_kv(n_head_kv)
  176. logger.info(f"gguf: key-value head count = {n_head_kv}")
  177. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  178. self.gguf_writer.add_rope_freq_base(rope_theta)
  179. logger.info(f"gguf: rope theta = {rope_theta}")
  180. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  181. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  182. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  183. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  184. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  185. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  186. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  187. self.gguf_writer.add_expert_count(n_experts)
  188. logger.info(f"gguf: expert count = {n_experts}")
  189. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  190. self.gguf_writer.add_expert_used_count(n_experts_used)
  191. logger.info(f"gguf: experts used count = {n_experts_used}")
  192. self.gguf_writer.add_file_type(self.ftype)
  193. logger.info(f"gguf: file type = {self.ftype}")
  194. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  195. del bid # unused
  196. return [(self.map_tensor_name(name), data_torch)]
  197. def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  198. del name, new_name, bid, n_dims # unused
  199. return False
  200. def extra_f16_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  201. del name, new_name, bid, n_dims # unused
  202. return False
  203. def write_tensors(self):
  204. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  205. for name, data_torch in self.get_tensors():
  206. # we don't need these
  207. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  208. continue
  209. old_dtype = data_torch.dtype
  210. # convert any unsupported data types to float32
  211. if data_torch.dtype not in (torch.float16, torch.float32):
  212. data_torch = data_torch.to(torch.float32)
  213. # use the first number-like part of the tensor name as the block id
  214. bid = None
  215. for part in name.split("."):
  216. if part.isdecimal():
  217. bid = int(part)
  218. break
  219. for new_name, data in ((n, d.squeeze().numpy()) for n, d in self.modify_tensors(data_torch, name, bid)):
  220. data: np.ndarray # type hint
  221. n_dims = len(data.shape)
  222. data_dtype = data.dtype
  223. data_qtype: gguf.GGMLQuantizationType | None = None
  224. # when both are True, f32 should win
  225. extra_f32 = self.extra_f32_tensors(name, new_name, bid, n_dims)
  226. extra_f16 = self.extra_f16_tensors(name, new_name, bid, n_dims)
  227. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  228. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  229. extra_f32 = any(cond for cond in (
  230. extra_f32,
  231. n_dims == 1,
  232. new_name.endswith("_norm.weight"),
  233. ))
  234. # Some tensor types are always in float32
  235. extra_f32 = extra_f32 or any(self.match_model_tensor_name(new_name, key, bid) for key in (
  236. gguf.MODEL_TENSOR.FFN_GATE_INP,
  237. gguf.MODEL_TENSOR.POS_EMBD,
  238. gguf.MODEL_TENSOR.TOKEN_TYPES,
  239. ))
  240. # if f16 desired, convert any float32 2-dim weight tensors to float16
  241. extra_f16 = any(cond for cond in (
  242. extra_f16,
  243. (name.endswith(".weight") and n_dims >= 2),
  244. ))
  245. if self.ftype != gguf.LlamaFileType.ALL_F32 and extra_f16 and not extra_f32:
  246. if self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  247. data = gguf.quantize_bf16(data)
  248. assert data.dtype == np.int16
  249. data_qtype = gguf.GGMLQuantizationType.BF16
  250. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0 and gguf.can_quantize_to_q8_0(data):
  251. data = gguf.quantize_q8_0(data)
  252. assert data.dtype == np.uint8
  253. data_qtype = gguf.GGMLQuantizationType.Q8_0
  254. else: # default to float16 for quantized tensors
  255. if data_dtype != np.float16:
  256. data = data.astype(np.float16)
  257. data_qtype = gguf.GGMLQuantizationType.F16
  258. if data_qtype is None: # by default, convert to float32
  259. if data_dtype != np.float32:
  260. data = data.astype(np.float32)
  261. data_qtype = gguf.GGMLQuantizationType.F32
  262. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  263. # reverse shape to make it similar to the internal ggml dimension order
  264. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  265. # n_dims is implicit in the shape
  266. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  267. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  268. def write(self):
  269. self.write_tensors()
  270. self.gguf_writer.write_header_to_file(self.fname_out)
  271. self.gguf_writer.write_kv_data_to_file()
  272. self.gguf_writer.write_tensors_to_file(progress=True)
  273. self.gguf_writer.close()
  274. def write_vocab(self):
  275. if len(self.gguf_writer.tensors) != 1:
  276. raise ValueError('Splitting the vocabulary is not supported')
  277. self.gguf_writer.write_header_to_file(self.fname_out)
  278. self.gguf_writer.write_kv_data_to_file()
  279. self.gguf_writer.close()
  280. @staticmethod
  281. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  282. part_names: list[str] = []
  283. for filename in os.listdir(dir_model):
  284. if filename.startswith(prefix) and filename.endswith(suffix):
  285. part_names.append(filename)
  286. part_names.sort()
  287. return part_names
  288. @staticmethod
  289. def load_hparams(dir_model: Path):
  290. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  291. return json.load(f)
  292. @classmethod
  293. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  294. assert names
  295. def func(modelcls: AnyModel) -> AnyModel:
  296. for name in names:
  297. cls._model_classes[name] = modelcls
  298. return modelcls
  299. return func
  300. @classmethod
  301. def from_model_architecture(cls, arch: str) -> type[Model]:
  302. try:
  303. return cls._model_classes[arch]
  304. except KeyError:
  305. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  306. # used for GPT-2 BPE and WordPiece vocabs
  307. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  308. tokens: list[str] = []
  309. toktypes: list[int] = []
  310. from transformers import AutoTokenizer
  311. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  312. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  313. assert max(tokenizer.vocab.values()) < vocab_size
  314. tokpre = self.get_vocab_base_pre(tokenizer)
  315. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  316. added_vocab = tokenizer.get_added_vocab()
  317. for i in range(vocab_size):
  318. if i not in reverse_vocab:
  319. tokens.append(f"[PAD{i}]")
  320. toktypes.append(gguf.TokenType.USER_DEFINED)
  321. elif reverse_vocab[i] in added_vocab:
  322. tokens.append(reverse_vocab[i])
  323. if tokenizer.added_tokens_decoder[i].special:
  324. toktypes.append(gguf.TokenType.CONTROL)
  325. else:
  326. toktypes.append(gguf.TokenType.USER_DEFINED)
  327. else:
  328. tokens.append(reverse_vocab[i])
  329. toktypes.append(gguf.TokenType.NORMAL)
  330. return tokens, toktypes, tokpre
  331. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  332. # do not modify it manually!
  333. # ref: https://github.com/ggerganov/llama.cpp/pull/6920
  334. # Marker: Start get_vocab_base_pre
  335. def get_vocab_base_pre(self, tokenizer) -> str:
  336. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  337. # is specific for the BPE pre-tokenizer used by the model
  338. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  339. # use in llama.cpp to implement the same pre-tokenizer
  340. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  341. chktok = tokenizer.encode(chktxt)
  342. chkhsh = sha256(str(chktok).encode()).hexdigest()
  343. logger.debug(f"chktok: {chktok}")
  344. logger.debug(f"chkhsh: {chkhsh}")
  345. res = None
  346. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  347. # or pull the latest version of the model from Huggingface
  348. # don't edit the hashes manually!
  349. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  350. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  351. res = "llama-bpe"
  352. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  353. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  354. res = "deepseek-llm"
  355. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  356. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  357. res = "deepseek-coder"
  358. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  359. # ref: https://huggingface.co/tiiuae/falcon-7b
  360. res = "falcon"
  361. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  362. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  363. res = "bert-bge"
  364. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  365. # ref: https://huggingface.co/mosaicml/mpt-7b
  366. res = "mpt"
  367. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  368. # ref: https://huggingface.co/bigcode/starcoder2-3b
  369. res = "starcoder"
  370. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  371. # ref: https://huggingface.co/openai-community/gpt2
  372. res = "gpt-2"
  373. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  374. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  375. res = "stablelm2"
  376. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  377. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  378. res = "refact"
  379. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  380. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  381. res = "command-r"
  382. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  383. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  384. res = "qwen2"
  385. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  386. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  387. res = "olmo"
  388. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  389. # ref: https://huggingface.co/databricks/dbrx-base
  390. res = "dbrx"
  391. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  392. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  393. res = "jina-v2-en"
  394. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  395. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  396. res = "jina-v2-es"
  397. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  398. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  399. res = "jina-v2-de"
  400. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  401. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  402. res = "smaug-bpe"
  403. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  404. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  405. res = "poro-chat"
  406. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  407. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  408. res = "jina-v2-code"
  409. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  410. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  411. res = "chatglm-bpe"
  412. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  413. # ref: https://huggingface.co/LumiOpen/Viking-7B
  414. res = "viking"
  415. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  416. # ref: https://huggingface.co/core42/jais-13b
  417. res = "jais"
  418. if res is None:
  419. logger.warning("\n")
  420. logger.warning("**************************************************************************************")
  421. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  422. logger.warning("** There are 2 possible reasons for this:")
  423. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  424. logger.warning("** - the pre-tokenization config has changed upstream")
  425. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  426. logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
  427. logger.warning("**")
  428. logger.warning(f"** chkhsh: {chkhsh}")
  429. logger.warning("**************************************************************************************")
  430. logger.warning("\n")
  431. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  432. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  433. logger.debug(f"chkhsh: {chkhsh}")
  434. return res
  435. # Marker: End get_vocab_base_pre
  436. def _set_vocab_gpt2(self) -> None:
  437. tokens, toktypes, tokpre = self.get_vocab_base()
  438. self.gguf_writer.add_tokenizer_model("gpt2")
  439. self.gguf_writer.add_tokenizer_pre(tokpre)
  440. self.gguf_writer.add_token_list(tokens)
  441. self.gguf_writer.add_token_types(toktypes)
  442. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  443. special_vocab.add_to_gguf(self.gguf_writer)
  444. def _set_vocab_qwen(self):
  445. dir_model = self.dir_model
  446. hparams = self.hparams
  447. tokens: list[str] = []
  448. toktypes: list[int] = []
  449. from transformers import AutoTokenizer
  450. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  451. vocab_size = hparams["vocab_size"]
  452. assert max(tokenizer.get_vocab().values()) < vocab_size
  453. tokpre = self.get_vocab_base_pre(tokenizer)
  454. merges = []
  455. vocab = {}
  456. mergeable_ranks = tokenizer.mergeable_ranks
  457. for token, rank in mergeable_ranks.items():
  458. vocab[QwenModel.token_bytes_to_string(token)] = rank
  459. if len(token) == 1:
  460. continue
  461. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  462. assert len(merged) == 2
  463. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  464. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  465. added_vocab = tokenizer.special_tokens
  466. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  467. for i in range(vocab_size):
  468. if i not in reverse_vocab:
  469. tokens.append(f"[PAD{i}]")
  470. toktypes.append(gguf.TokenType.USER_DEFINED)
  471. elif reverse_vocab[i] in added_vocab:
  472. tokens.append(reverse_vocab[i])
  473. toktypes.append(gguf.TokenType.CONTROL)
  474. else:
  475. tokens.append(reverse_vocab[i])
  476. toktypes.append(gguf.TokenType.NORMAL)
  477. self.gguf_writer.add_tokenizer_model("gpt2")
  478. self.gguf_writer.add_tokenizer_pre(tokpre)
  479. self.gguf_writer.add_token_list(tokens)
  480. self.gguf_writer.add_token_types(toktypes)
  481. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  482. special_vocab.merges = merges
  483. # only add special tokens when they were not already loaded from config.json
  484. if len(special_vocab.special_token_ids) == 0:
  485. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  486. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  487. # this one is usually not in config.json anyway
  488. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  489. special_vocab.add_to_gguf(self.gguf_writer)
  490. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  491. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  492. self.gguf_writer.add_tokenizer_model("llama")
  493. self.gguf_writer.add_tokenizer_pre("default")
  494. self.gguf_writer.add_token_list(tokens)
  495. self.gguf_writer.add_token_scores(scores)
  496. self.gguf_writer.add_token_types(toktypes)
  497. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  498. special_vocab.add_to_gguf(self.gguf_writer)
  499. def _create_vocab_sentencepiece(self):
  500. from sentencepiece import SentencePieceProcessor
  501. tokenizer_path = self.dir_model / 'tokenizer.model'
  502. if not tokenizer_path.is_file():
  503. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  504. tokenizer = SentencePieceProcessor()
  505. tokenizer.LoadFromFile(str(tokenizer_path))
  506. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  507. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  508. scores: list[float] = [-10000.0] * vocab_size
  509. toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
  510. for token_id in range(tokenizer.vocab_size()):
  511. piece = tokenizer.IdToPiece(token_id)
  512. text = piece.encode("utf-8")
  513. score = tokenizer.GetScore(token_id)
  514. toktype = SentencePieceTokenTypes.NORMAL
  515. if tokenizer.IsUnknown(token_id):
  516. toktype = SentencePieceTokenTypes.UNKNOWN
  517. elif tokenizer.IsControl(token_id):
  518. toktype = SentencePieceTokenTypes.CONTROL
  519. elif tokenizer.IsUnused(token_id):
  520. toktype = SentencePieceTokenTypes.UNUSED
  521. elif tokenizer.IsByte(token_id):
  522. toktype = SentencePieceTokenTypes.BYTE
  523. tokens[token_id] = text
  524. scores[token_id] = score
  525. toktypes[token_id] = toktype
  526. added_tokens_file = self.dir_model / 'added_tokens.json'
  527. if added_tokens_file.is_file():
  528. with open(added_tokens_file, "r", encoding="utf-8") as f:
  529. added_tokens_json = json.load(f)
  530. for key in added_tokens_json:
  531. token_id = added_tokens_json[key]
  532. if (token_id >= vocab_size):
  533. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  534. continue
  535. tokens[token_id] = key.encode("utf-8")
  536. scores[token_id] = -1000.0
  537. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  538. if vocab_size > len(tokens):
  539. pad_count = vocab_size - len(tokens)
  540. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  541. for i in range(1, pad_count + 1):
  542. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  543. scores.append(-1000.0)
  544. toktypes.append(SentencePieceTokenTypes.UNUSED)
  545. return tokens, scores, toktypes
  546. def _set_vocab_llama_hf(self):
  547. vocab = gguf.LlamaHfVocab(self.dir_model)
  548. tokens = []
  549. scores = []
  550. toktypes = []
  551. for text, score, toktype in vocab.all_tokens():
  552. tokens.append(text)
  553. scores.append(score)
  554. toktypes.append(toktype)
  555. assert len(tokens) == vocab.vocab_size
  556. self.gguf_writer.add_tokenizer_model("llama")
  557. self.gguf_writer.add_tokenizer_pre("default")
  558. self.gguf_writer.add_token_list(tokens)
  559. self.gguf_writer.add_token_scores(scores)
  560. self.gguf_writer.add_token_types(toktypes)
  561. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  562. special_vocab.add_to_gguf(self.gguf_writer)
  563. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  564. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  565. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  566. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  567. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  568. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  569. assert field # tokenizer model
  570. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  571. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  572. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  573. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  574. assert field # token list
  575. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  576. if model_name == "llama-spm":
  577. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  578. assert field # token scores
  579. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  580. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  581. assert field # token types
  582. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  583. if model_name != "llama-spm":
  584. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  585. assert field # token merges
  586. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  587. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  588. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  589. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  590. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  591. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  592. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  593. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  594. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  595. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  596. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  597. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  598. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  599. @Model.register("GPTNeoXForCausalLM")
  600. class GPTNeoXModel(Model):
  601. model_arch = gguf.MODEL_ARCH.GPTNEOX
  602. def set_gguf_parameters(self):
  603. block_count = self.hparams["num_hidden_layers"]
  604. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  605. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  606. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  607. self.gguf_writer.add_block_count(block_count)
  608. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  609. self.gguf_writer.add_rope_dimension_count(
  610. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  611. )
  612. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  613. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  614. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  615. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  616. del bid # unused
  617. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  618. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  619. tensors: list[tuple[str, Tensor]] = []
  620. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  621. # Map bloom-style qkv_linear to gpt-style qkv_linear
  622. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  623. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  624. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  625. data_torch = torch.cat(
  626. (
  627. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  628. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  629. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  630. ),
  631. dim=0,
  632. )
  633. logger.info("re-format attention.linear_qkv.weight")
  634. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  635. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  636. data_torch = torch.cat(
  637. (
  638. qkv_bias[:, 0, :].reshape((n_embed,)),
  639. qkv_bias[:, 1, :].reshape((n_embed,)),
  640. qkv_bias[:, 2, :].reshape((n_embed,)),
  641. ),
  642. dim=0,
  643. )
  644. logger.info("re-format attention.linear_qkv.bias")
  645. tensors.append((self.map_tensor_name(name), data_torch))
  646. return tensors
  647. @Model.register("BloomForCausalLM")
  648. class BloomModel(Model):
  649. model_arch = gguf.MODEL_ARCH.BLOOM
  650. def set_gguf_parameters(self):
  651. self.gguf_writer.add_name("Bloom")
  652. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  653. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  654. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  655. self.gguf_writer.add_embedding_length(n_embed)
  656. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  657. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  658. self.gguf_writer.add_head_count(n_head)
  659. self.gguf_writer.add_head_count_kv(n_head)
  660. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  661. self.gguf_writer.add_file_type(self.ftype)
  662. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  663. del bid # unused
  664. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  665. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  666. name = re.sub(r'transformer\.', '', name)
  667. tensors: list[tuple[str, Tensor]] = []
  668. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  669. # Map bloom-style qkv_linear to gpt-style qkv_linear
  670. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  671. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  672. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  673. data_torch = torch.cat(
  674. (
  675. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  676. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  677. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  678. ),
  679. dim=0,
  680. )
  681. logger.info("re-format attention.linear_qkv.weight")
  682. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  683. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  684. data_torch = torch.cat(
  685. (
  686. qkv_bias[:, 0, :].reshape((n_embed,)),
  687. qkv_bias[:, 1, :].reshape((n_embed,)),
  688. qkv_bias[:, 2, :].reshape((n_embed,)),
  689. ),
  690. dim=0,
  691. )
  692. logger.info("re-format attention.linear_qkv.bias")
  693. tensors.append((self.map_tensor_name(name), data_torch))
  694. if name == "word_embeddings.weight":
  695. assert self.tensor_names is not None
  696. # TODO: tie them at runtime, don't duplicate in the model file
  697. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  698. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  699. return tensors
  700. @Model.register("MPTForCausalLM")
  701. class MPTModel(Model):
  702. model_arch = gguf.MODEL_ARCH.MPT
  703. def set_vocab(self):
  704. try:
  705. self._set_vocab_gpt2()
  706. except Exception:
  707. # Fallback for SEA-LION model
  708. self._set_vocab_sentencepiece()
  709. self.gguf_writer.add_add_bos_token(False)
  710. self.gguf_writer.add_pad_token_id(3)
  711. self.gguf_writer.add_eos_token_id(1)
  712. self.gguf_writer.add_unk_token_id(0)
  713. def set_gguf_parameters(self):
  714. block_count = self.hparams["n_layers"]
  715. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  716. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  717. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  718. self.gguf_writer.add_block_count(block_count)
  719. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  720. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  721. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  722. self.gguf_writer.add_head_count_kv(kv_n_heads)
  723. self.gguf_writer.add_layer_norm_eps(1e-5)
  724. if self.hparams["attn_config"]["clip_qkv"] is not None:
  725. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  726. if self.hparams["attn_config"]["alibi"]:
  727. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  728. else:
  729. self.gguf_writer.add_max_alibi_bias(0.0)
  730. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  731. del bid # unused
  732. if "scales" in name:
  733. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  734. new_name = new_name.replace("scales", "act.scales")
  735. else:
  736. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  737. return [(new_name, data_torch)]
  738. @Model.register("OrionForCausalLM")
  739. class OrionModel(Model):
  740. model_arch = gguf.MODEL_ARCH.ORION
  741. def set_vocab(self):
  742. self._set_vocab_sentencepiece()
  743. def set_gguf_parameters(self):
  744. block_count = self.hparams["num_hidden_layers"]
  745. head_count = self.hparams["num_attention_heads"]
  746. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  747. hf_repo = self.hparams.get("_name_or_path", "")
  748. ctx_length = 0
  749. if "max_sequence_length" in self.hparams:
  750. ctx_length = self.hparams["max_sequence_length"]
  751. elif "max_position_embeddings" in self.hparams:
  752. ctx_length = self.hparams["max_position_embeddings"]
  753. elif "model_max_length" in self.hparams:
  754. ctx_length = self.hparams["model_max_length"]
  755. else:
  756. raise ValueError("gguf: can not find ctx length parameter.")
  757. self.gguf_writer.add_file_type(self.ftype)
  758. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  759. self.gguf_writer.add_source_hf_repo(hf_repo)
  760. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  761. self.gguf_writer.add_context_length(ctx_length)
  762. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  763. self.gguf_writer.add_block_count(block_count)
  764. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  765. self.gguf_writer.add_head_count(head_count)
  766. self.gguf_writer.add_head_count_kv(head_count_kv)
  767. # note: config provides rms norm but it is actually layer norm
  768. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  769. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  770. @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  771. class BaichuanModel(Model):
  772. model_arch = gguf.MODEL_ARCH.BAICHUAN
  773. def set_vocab(self):
  774. self._set_vocab_sentencepiece()
  775. def set_gguf_parameters(self):
  776. block_count = self.hparams["num_hidden_layers"]
  777. head_count = self.hparams["num_attention_heads"]
  778. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  779. hf_repo = self.hparams.get("_name_or_path", "")
  780. ctx_length = 0
  781. if "max_sequence_length" in self.hparams:
  782. ctx_length = self.hparams["max_sequence_length"]
  783. elif "max_position_embeddings" in self.hparams:
  784. ctx_length = self.hparams["max_position_embeddings"]
  785. elif "model_max_length" in self.hparams:
  786. ctx_length = self.hparams["model_max_length"]
  787. else:
  788. raise ValueError("gguf: can not find ctx length parameter.")
  789. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  790. self.gguf_writer.add_source_hf_repo(hf_repo)
  791. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  792. self.gguf_writer.add_context_length(ctx_length)
  793. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  794. self.gguf_writer.add_block_count(block_count)
  795. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  796. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  797. self.gguf_writer.add_head_count(head_count)
  798. self.gguf_writer.add_head_count_kv(head_count_kv)
  799. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  800. self.gguf_writer.add_file_type(self.ftype)
  801. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  802. if self.hparams["rope_scaling"].get("type") == "linear":
  803. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  804. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  805. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  806. head_count = self.hparams["num_attention_heads"]
  807. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  808. tensors: list[tuple[str, Tensor]] = []
  809. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  810. logger.info(f"Unpacking and permuting layer {bid}")
  811. tensors = [
  812. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  813. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  814. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  815. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  816. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  817. self._reverse_hf_part(data_torch, 2)),
  818. ]
  819. else:
  820. tensors = [(self.map_tensor_name(name), data_torch)]
  821. return tensors
  822. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  823. if n_kv_head is not None and n_head != n_kv_head:
  824. n_head //= n_kv_head
  825. return (
  826. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  827. .swapaxes(1, 2)
  828. .reshape(weights.shape)
  829. )
  830. def _reverse_hf_permute_part(
  831. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  832. ) -> Tensor:
  833. r = weights.shape[0] // 3
  834. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  835. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  836. r = weights.shape[0] // 3
  837. return weights[r * n_part:r * n_part + r, ...]
  838. @Model.register("XverseForCausalLM")
  839. class XverseModel(Model):
  840. model_arch = gguf.MODEL_ARCH.XVERSE
  841. def set_vocab(self):
  842. assert (self.dir_model / "tokenizer.json").is_file()
  843. dir_model = self.dir_model
  844. hparams = self.hparams
  845. tokens: list[bytes] = []
  846. toktypes: list[int] = []
  847. from transformers import AutoTokenizer
  848. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  849. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  850. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  851. # because vocab_size is the count of items, and indexes start at 0.
  852. max_vocab_index = max(tokenizer.get_vocab().values())
  853. if max_vocab_index >= vocab_size:
  854. raise ValueError("Vocabulary size exceeds expected maximum size.")
  855. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  856. added_vocab = tokenizer.get_added_vocab()
  857. for token_id in range(vocab_size):
  858. token_text = reverse_vocab[token_id].encode('utf-8')
  859. # replace "\x00" to string with length > 0
  860. if token_text == b"\x00":
  861. toktype = gguf.TokenType.BYTE # special
  862. token_text = f"<{token_text}>".encode('utf-8')
  863. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  864. toktype = gguf.TokenType.BYTE # special
  865. elif reverse_vocab[token_id] in added_vocab:
  866. if tokenizer.added_tokens_decoder[token_id].special:
  867. toktype = gguf.TokenType.CONTROL
  868. else:
  869. toktype = gguf.TokenType.USER_DEFINED
  870. else:
  871. toktype = gguf.TokenType.NORMAL
  872. tokens.append(token_text)
  873. toktypes.append(toktype)
  874. self.gguf_writer.add_tokenizer_model("llama")
  875. self.gguf_writer.add_tokenizer_pre("default")
  876. self.gguf_writer.add_token_list(tokens)
  877. self.gguf_writer.add_token_types(toktypes)
  878. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  879. special_vocab.add_to_gguf(self.gguf_writer)
  880. def set_gguf_parameters(self):
  881. block_count = self.hparams["num_hidden_layers"]
  882. head_count = self.hparams["num_attention_heads"]
  883. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  884. hf_repo = self.hparams.get("_name_or_path", "")
  885. ctx_length = 0
  886. if "max_sequence_length" in self.hparams:
  887. ctx_length = self.hparams["max_sequence_length"]
  888. elif "max_position_embeddings" in self.hparams:
  889. ctx_length = self.hparams["max_position_embeddings"]
  890. elif "model_max_length" in self.hparams:
  891. ctx_length = self.hparams["model_max_length"]
  892. else:
  893. raise ValueError("gguf: can not find ctx length parameter.")
  894. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  895. self.gguf_writer.add_source_hf_repo(hf_repo)
  896. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  897. self.gguf_writer.add_context_length(ctx_length)
  898. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  899. self.gguf_writer.add_block_count(block_count)
  900. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  901. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  902. self.gguf_writer.add_head_count(head_count)
  903. self.gguf_writer.add_head_count_kv(head_count_kv)
  904. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  905. self.gguf_writer.add_file_type(self.ftype)
  906. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  907. if self.hparams["rope_scaling"].get("type") == "linear":
  908. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  909. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  910. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  911. del bid # unused
  912. head_count = self.hparams["num_attention_heads"]
  913. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  914. # HF models permute some of the tensors, so we need to undo that
  915. if name.endswith("q_proj.weight"):
  916. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  917. if name.endswith("k_proj.weight"):
  918. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  919. return [(self.map_tensor_name(name), data_torch)]
  920. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  921. if n_kv_head is not None and n_head != n_kv_head:
  922. n_head //= n_kv_head
  923. return (
  924. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  925. .swapaxes(1, 2)
  926. .reshape(weights.shape)
  927. )
  928. @Model.register("FalconForCausalLM", "RWForCausalLM")
  929. class FalconModel(Model):
  930. model_arch = gguf.MODEL_ARCH.FALCON
  931. def set_gguf_parameters(self):
  932. block_count = self.hparams.get("num_hidden_layers")
  933. if block_count is None:
  934. block_count = self.hparams["n_layer"] # old name
  935. n_head = self.hparams.get("num_attention_heads")
  936. if n_head is None:
  937. n_head = self.hparams["n_head"] # old name
  938. n_head_kv = self.hparams.get("num_kv_heads")
  939. if n_head_kv is None:
  940. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  941. self.gguf_writer.add_name("Falcon")
  942. self.gguf_writer.add_context_length(2048) # not in config.json
  943. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  944. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  945. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  946. self.gguf_writer.add_block_count(block_count)
  947. self.gguf_writer.add_head_count(n_head)
  948. self.gguf_writer.add_head_count_kv(n_head_kv)
  949. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  950. self.gguf_writer.add_file_type(self.ftype)
  951. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  952. del bid # unused
  953. # QKV tensor transform
  954. # The original query_key_value tensor contains n_head_kv "kv groups",
  955. # each consisting of n_head/n_head_kv query weights followed by one key
  956. # and one value weight (shared by all query heads in the kv group).
  957. # This layout makes it a big pain to work with in GGML.
  958. # So we rearrange them here,, so that we have n_head query weights
  959. # followed by n_head_kv key weights followed by n_head_kv value weights,
  960. # in contiguous fashion.
  961. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  962. if "query_key_value" in name:
  963. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  964. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  965. head_dim = self.hparams["hidden_size"] // n_head
  966. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  967. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  968. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  969. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  970. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  971. return [(self.map_tensor_name(name), data_torch)]
  972. @Model.register("GPTBigCodeForCausalLM")
  973. class StarCoderModel(Model):
  974. model_arch = gguf.MODEL_ARCH.STARCODER
  975. def set_gguf_parameters(self):
  976. block_count = self.hparams["n_layer"]
  977. self.gguf_writer.add_name("StarCoder")
  978. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  979. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  980. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  981. self.gguf_writer.add_block_count(block_count)
  982. self.gguf_writer.add_head_count(self.hparams["n_head"])
  983. self.gguf_writer.add_head_count_kv(1)
  984. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  985. self.gguf_writer.add_file_type(self.ftype)
  986. @Model.register("GPTRefactForCausalLM")
  987. class RefactModel(Model):
  988. model_arch = gguf.MODEL_ARCH.REFACT
  989. def set_vocab(self):
  990. super().set_vocab()
  991. # TODO: how to determine special FIM tokens automatically?
  992. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  993. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  994. special_vocab._set_special_token("prefix", 1)
  995. special_vocab._set_special_token("suffix", 3)
  996. special_vocab._set_special_token("middle", 2)
  997. special_vocab.add_to_gguf(self.gguf_writer)
  998. def set_gguf_parameters(self):
  999. hidden_dim = self.hparams["n_embd"]
  1000. inner_dim = 4 * hidden_dim
  1001. hidden_dim = int(2 * inner_dim / 3)
  1002. multiple_of = 256
  1003. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1004. block_count = self.hparams["n_layer"]
  1005. self.gguf_writer.add_name("Refact")
  1006. # refact uses Alibi. So this is from config.json which might be used by training.
  1007. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1008. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1009. self.gguf_writer.add_feed_forward_length(ff_dim)
  1010. self.gguf_writer.add_block_count(block_count)
  1011. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1012. self.gguf_writer.add_head_count_kv(1)
  1013. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1014. self.gguf_writer.add_file_type(self.ftype)
  1015. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1016. hidden_dim = self.hparams["n_embd"]
  1017. inner_dim = 4 * hidden_dim
  1018. hidden_dim = int(2 * inner_dim / 3)
  1019. multiple_of = 256
  1020. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1021. n_head = self.hparams["n_head"]
  1022. n_head_kv = 1
  1023. head_dim = self.hparams["n_embd"] // n_head
  1024. tensors: list[tuple[str, Tensor]] = []
  1025. if bid is not None:
  1026. if name == f"transformer.h.{bid}.attn.kv.weight":
  1027. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1028. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1029. elif name == f"transformer.h.{bid}.attn.q.weight":
  1030. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1031. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1032. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1033. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1034. if len(tensors) == 0:
  1035. tensors.append((self.map_tensor_name(name), data_torch))
  1036. return tensors
  1037. @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1038. class StableLMModel(Model):
  1039. model_arch = gguf.MODEL_ARCH.STABLELM
  1040. def set_vocab(self):
  1041. if (self.dir_model / "tokenizer.json").is_file():
  1042. self._set_vocab_gpt2()
  1043. else:
  1044. # StableLM 2 1.6B uses a vocab in a similar format to Qwen's vocab
  1045. self._set_vocab_qwen()
  1046. def set_gguf_parameters(self):
  1047. hparams = self.hparams
  1048. block_count = hparams["num_hidden_layers"]
  1049. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  1050. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1051. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1052. self.gguf_writer.add_block_count(block_count)
  1053. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1054. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1055. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1056. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1057. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1058. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1059. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1060. self.gguf_writer.add_file_type(self.ftype)
  1061. _q_norms: list[dict[str, Tensor]] | None = None
  1062. _k_norms: list[dict[str, Tensor]] | None = None
  1063. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1064. n_head = self.hparams["num_attention_heads"]
  1065. n_kv_head = self.hparams["num_key_value_heads"]
  1066. if name.find("q_layernorm.norms") != -1:
  1067. assert bid is not None
  1068. if self._q_norms is None:
  1069. self._q_norms = [{} for _ in range(self.block_count)]
  1070. self._q_norms[bid][name] = data_torch
  1071. if len(self._q_norms[bid]) >= n_head:
  1072. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1073. else:
  1074. return []
  1075. if name.find("k_layernorm.norms") != -1:
  1076. assert bid is not None
  1077. if self._k_norms is None:
  1078. self._k_norms = [{} for _ in range(self.block_count)]
  1079. self._k_norms[bid][name] = data_torch
  1080. if len(self._k_norms[bid]) >= n_kv_head:
  1081. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1082. else:
  1083. return []
  1084. return [(self.map_tensor_name(name), data_torch)]
  1085. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1086. datas: list[Tensor] = []
  1087. # extract the norms in order
  1088. for xid in range(n_head):
  1089. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1090. datas.append(norms[ename])
  1091. del norms[ename]
  1092. data_torch = torch.stack(datas, dim=0)
  1093. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1094. new_name = self.map_tensor_name(merged_name)
  1095. return [(new_name, data_torch)]
  1096. def write_tensors(self):
  1097. super().write_tensors()
  1098. if self._q_norms is not None or self._k_norms is not None:
  1099. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1100. norms = (
  1101. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1102. ) + (
  1103. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1104. )
  1105. if len(norms) > 0:
  1106. raise ValueError(f"Unprocessed norms: {norms}")
  1107. @Model.register("LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
  1108. class LlamaModel(Model):
  1109. model_arch = gguf.MODEL_ARCH.LLAMA
  1110. def set_vocab(self):
  1111. try:
  1112. self._set_vocab_sentencepiece()
  1113. except FileNotFoundError:
  1114. try:
  1115. self._set_vocab_llama_hf()
  1116. except (FileNotFoundError, TypeError):
  1117. # Llama 3
  1118. self._set_vocab_gpt2()
  1119. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1120. if self.hparams.get("vocab_size", 32000) == 32016:
  1121. special_vocab = gguf.SpecialVocab(
  1122. self.dir_model, load_merges=False,
  1123. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1124. )
  1125. special_vocab._set_special_token("prefix", 32007)
  1126. special_vocab._set_special_token("suffix", 32008)
  1127. special_vocab._set_special_token("middle", 32009)
  1128. special_vocab._set_special_token("eot", 32010)
  1129. special_vocab.add_to_gguf(self.gguf_writer)
  1130. def set_gguf_parameters(self):
  1131. super().set_gguf_parameters()
  1132. hparams = self.hparams
  1133. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1134. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  1135. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1136. if self.hparams["rope_scaling"].get("type") == "linear":
  1137. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1138. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1139. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1140. if tokenizer_config_file.is_file():
  1141. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1142. tokenizer_config_json = json.load(f)
  1143. if "add_prefix_space" in tokenizer_config_json:
  1144. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1145. # Apply to granite small models only
  1146. if self.hparams.get("vocab_size", 32000) == 49152:
  1147. self.gguf_writer.add_add_bos_token(False)
  1148. @staticmethod
  1149. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1150. if n_head_kv is not None and n_head != n_head_kv:
  1151. n_head = n_head_kv
  1152. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1153. .swapaxes(1, 2)
  1154. .reshape(weights.shape))
  1155. _experts: list[dict[str, Tensor]] | None = None
  1156. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1157. n_head = self.hparams["num_attention_heads"]
  1158. n_kv_head = self.hparams.get("num_key_value_heads")
  1159. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1160. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1161. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1162. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1163. # process the experts separately
  1164. if name.find("block_sparse_moe.experts") != -1:
  1165. n_experts = self.hparams["num_local_experts"]
  1166. assert bid is not None
  1167. if self._experts is None:
  1168. self._experts = [{} for _ in range(self.block_count)]
  1169. self._experts[bid][name] = data_torch
  1170. if len(self._experts[bid]) >= n_experts * 3:
  1171. tensors: list[tuple[str, Tensor]] = []
  1172. # merge the experts into a single 3d tensor
  1173. for wid in ["w1", "w2", "w3"]:
  1174. datas: list[Tensor] = []
  1175. for xid in range(n_experts):
  1176. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1177. datas.append(self._experts[bid][ename])
  1178. del self._experts[bid][ename]
  1179. data_torch = torch.stack(datas, dim=0)
  1180. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1181. new_name = self.map_tensor_name(merged_name)
  1182. tensors.append((new_name, data_torch))
  1183. return tensors
  1184. else:
  1185. return []
  1186. return [(self.map_tensor_name(name), data_torch)]
  1187. def write_tensors(self):
  1188. super().write_tensors()
  1189. if self._experts is not None:
  1190. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1191. experts = [k for d in self._experts for k in d.keys()]
  1192. if len(experts) > 0:
  1193. raise ValueError(f"Unprocessed experts: {experts}")
  1194. @Model.register("BitnetForCausalLM")
  1195. class BitnetModel(Model):
  1196. model_arch = gguf.MODEL_ARCH.BITNET
  1197. def set_vocab(self):
  1198. self._set_vocab_sentencepiece()
  1199. def set_gguf_parameters(self):
  1200. super().set_gguf_parameters()
  1201. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1202. self.gguf_writer.add_rope_scaling_factor(1.0)
  1203. def weight_quant(self, weight):
  1204. dtype = weight.dtype
  1205. weight = weight.float()
  1206. s = 1 / weight.abs().mean().clamp(min=1e-5)
  1207. weight = (weight * s).round().clamp(-1, 1) / s
  1208. scale = weight.abs().max().unsqueeze(0)
  1209. weight = torch.where(weight.abs().less(1e-6), 0, weight).type(dtype)
  1210. weight = torch.sign(weight).type(dtype)
  1211. return weight.type(dtype), scale.type(torch.float32)
  1212. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1213. new_name = self.map_tensor_name(name)
  1214. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  1215. gguf.MODEL_TENSOR.ATTN_Q,
  1216. gguf.MODEL_TENSOR.ATTN_K,
  1217. gguf.MODEL_TENSOR.ATTN_V,
  1218. gguf.MODEL_TENSOR.ATTN_OUT,
  1219. gguf.MODEL_TENSOR.FFN_UP,
  1220. gguf.MODEL_TENSOR.FFN_DOWN,
  1221. gguf.MODEL_TENSOR.FFN_GATE,
  1222. ]):
  1223. # transform weight into 1/0/-1 (in fp32)
  1224. weight_torch, scale_torch = self.weight_quant(data_torch)
  1225. yield (new_name, weight_torch)
  1226. yield (new_name.removesuffix(".weight") + ".scale", scale_torch)
  1227. else:
  1228. yield (new_name, data_torch)
  1229. @Model.register("GrokForCausalLM")
  1230. class GrokModel(Model):
  1231. model_arch = gguf.MODEL_ARCH.GROK
  1232. def set_vocab(self):
  1233. self._set_vocab_sentencepiece()
  1234. def __init__(self, *args, **kwargs):
  1235. super().__init__(*args, **kwargs)
  1236. def set_gguf_parameters(self):
  1237. super().set_gguf_parameters()
  1238. self.gguf_writer.add_name("Grok")
  1239. _experts: list[dict[str, Tensor]] | None = None
  1240. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1241. # process the experts separately
  1242. if name.find(".moe.") != -1:
  1243. n_experts = self.hparams["num_local_experts"]
  1244. assert bid is not None
  1245. if self._experts is None:
  1246. self._experts = [{} for _ in range(self.block_count)]
  1247. self._experts[bid][name] = data_torch
  1248. if len(self._experts[bid]) >= n_experts * 3:
  1249. tensors: list[tuple[str, Tensor]] = []
  1250. # merge the experts into a single 3d tensor
  1251. for wid in ["linear", "linear_1", "linear_v"]:
  1252. datas: list[Tensor] = []
  1253. for xid in range(n_experts):
  1254. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1255. datas.append(self._experts[bid][ename])
  1256. del self._experts[bid][ename]
  1257. data_torch = torch.stack(datas, dim=0)
  1258. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1259. new_name = self.map_tensor_name(merged_name)
  1260. tensors.append((new_name, data_torch))
  1261. return tensors
  1262. else:
  1263. return []
  1264. return [(self.map_tensor_name(name), data_torch)]
  1265. @Model.register("DbrxForCausalLM")
  1266. class DbrxModel(Model):
  1267. model_arch = gguf.MODEL_ARCH.DBRX
  1268. def set_gguf_parameters(self):
  1269. ffn_config = self.hparams["ffn_config"]
  1270. attn_config = self.hparams["attn_config"]
  1271. self.gguf_writer.add_name(self.hparams["model_type"])
  1272. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1273. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1274. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1275. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1276. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1277. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1278. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1279. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1280. self.gguf_writer.add_file_type(self.ftype)
  1281. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1282. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1283. self.gguf_writer.add_layer_norm_eps(1e-5)
  1284. self.gguf_writer.add_file_type(self.ftype)
  1285. logger.info(f"gguf: file type = {self.ftype}")
  1286. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1287. del bid # unused
  1288. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1289. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1290. n_embd = self.hparams["d_model"]
  1291. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1292. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1293. # But llama.cpp moe graph works differently
  1294. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1295. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1296. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1297. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1298. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1299. experts = False
  1300. for exp_tensor_name in exp_tensor_names.keys():
  1301. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1302. experts = True
  1303. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1304. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1305. data_torch = data_torch.permute(*permute_tensor)
  1306. break
  1307. # map tensor names
  1308. # In MoE models the ffn tensors are typically most of the model weights,
  1309. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1310. # Every other model has the weight names ending in .weight,
  1311. # let's assume that is the convention which is not the case for dbrx:
  1312. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  1313. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  1314. return [(new_name, data_torch)]
  1315. def extra_f16_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  1316. del name, new_name, bid # unused
  1317. return n_dims > 1
  1318. @Model.register("MiniCPMForCausalLM")
  1319. class MiniCPMModel(Model):
  1320. model_arch = gguf.MODEL_ARCH.MINICPM
  1321. def set_gguf_parameters(self):
  1322. block_count = self.hparams["num_hidden_layers"]
  1323. self.gguf_writer.add_name("MiniCPM")
  1324. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1325. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1326. self.gguf_writer.add_block_count(block_count)
  1327. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1328. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1329. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1330. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1331. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1332. self.gguf_writer.add_file_type(self.ftype)
  1333. def set_vocab(self):
  1334. self._set_vocab_llama_hf()
  1335. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1336. if n_kv_head is not None and n_head != n_kv_head:
  1337. n_head //= n_kv_head
  1338. return (
  1339. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1340. .swapaxes(1, 2)
  1341. .reshape(weights.shape)
  1342. )
  1343. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1344. del bid # unused
  1345. n_head = self.hparams["num_attention_heads"]
  1346. n_kv_head = self.hparams.get("num_key_value_heads")
  1347. # HF models permute some of the tensors, so we need to undo that
  1348. if name.endswith(("q_proj.weight")):
  1349. data_torch = self._reverse_hf_permute(data_torch, n_head, n_head)
  1350. if name.endswith(("k_proj.weight")):
  1351. data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head)
  1352. return [(self.map_tensor_name(name), data_torch)]
  1353. @Model.register("QWenLMHeadModel")
  1354. class QwenModel(Model):
  1355. model_arch = gguf.MODEL_ARCH.QWEN
  1356. @staticmethod
  1357. def token_bytes_to_string(b):
  1358. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  1359. byte_encoder = bytes_to_unicode()
  1360. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  1361. @staticmethod
  1362. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  1363. parts = [bytes([b]) for b in token]
  1364. while True:
  1365. min_idx = None
  1366. min_rank = None
  1367. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  1368. rank = mergeable_ranks.get(pair[0] + pair[1])
  1369. if rank is not None and (min_rank is None or rank < min_rank):
  1370. min_idx = i
  1371. min_rank = rank
  1372. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  1373. break
  1374. assert min_idx is not None
  1375. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  1376. return parts
  1377. def set_vocab(self):
  1378. self._set_vocab_qwen()
  1379. def set_gguf_parameters(self):
  1380. self.gguf_writer.add_name("Qwen")
  1381. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1382. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1383. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1384. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1385. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1386. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1387. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1388. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1389. self.gguf_writer.add_file_type(self.ftype)
  1390. @Model.register("Qwen2ForCausalLM")
  1391. class Qwen2Model(Model):
  1392. model_arch = gguf.MODEL_ARCH.QWEN2
  1393. def set_vocab(self):
  1394. try:
  1395. self._set_vocab_sentencepiece()
  1396. except FileNotFoundError:
  1397. self._set_vocab_gpt2()
  1398. @Model.register("Qwen2MoeForCausalLM")
  1399. class Qwen2MoeModel(Model):
  1400. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  1401. def set_gguf_parameters(self):
  1402. super().set_gguf_parameters()
  1403. if (n_experts := self.hparams.get("num_experts")) is not None:
  1404. self.gguf_writer.add_expert_count(n_experts)
  1405. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  1406. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  1407. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  1408. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  1409. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  1410. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  1411. _experts: list[dict[str, Tensor]] | None = None
  1412. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1413. # process the experts separately
  1414. if name.find("experts") != -1:
  1415. n_experts = self.hparams["num_experts"]
  1416. assert bid is not None
  1417. if self._experts is None:
  1418. self._experts = [{} for _ in range(self.block_count)]
  1419. self._experts[bid][name] = data_torch
  1420. if len(self._experts[bid]) >= n_experts * 3:
  1421. tensors: list[tuple[str, Tensor]] = []
  1422. # merge the experts into a single 3d tensor
  1423. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  1424. datas: list[Tensor] = []
  1425. for xid in range(n_experts):
  1426. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  1427. datas.append(self._experts[bid][ename])
  1428. del self._experts[bid][ename]
  1429. data_torch = torch.stack(datas, dim=0)
  1430. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  1431. new_name = self.map_tensor_name(merged_name)
  1432. tensors.append((new_name, data_torch))
  1433. return tensors
  1434. else:
  1435. return []
  1436. return [(self.map_tensor_name(name), data_torch)]
  1437. def write_tensors(self):
  1438. super().write_tensors()
  1439. if self._experts is not None:
  1440. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1441. experts = [k for d in self._experts for k in d.keys()]
  1442. if len(experts) > 0:
  1443. raise ValueError(f"Unprocessed experts: {experts}")
  1444. @Model.register("GPT2LMHeadModel")
  1445. class GPT2Model(Model):
  1446. model_arch = gguf.MODEL_ARCH.GPT2
  1447. def set_gguf_parameters(self):
  1448. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  1449. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1450. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  1451. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1452. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1453. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1454. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1455. self.gguf_writer.add_file_type(self.ftype)
  1456. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1457. del bid # unused
  1458. tensors: list[tuple[str, Tensor]] = []
  1459. # we don't need these
  1460. if name.endswith((".attn.bias", ".attn.masked_bias")):
  1461. return tensors
  1462. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  1463. data_torch = data_torch.transpose(1, 0)
  1464. new_name = self.map_tensor_name(name)
  1465. tensors.append((new_name, data_torch))
  1466. # note: GPT2 output is tied to (same as) wte in original model
  1467. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1468. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1469. return tensors
  1470. @Model.register("PhiForCausalLM")
  1471. class Phi2Model(Model):
  1472. model_arch = gguf.MODEL_ARCH.PHI2
  1473. def set_gguf_parameters(self):
  1474. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1475. rot_pct = self.find_hparam(["partial_rotary_factor"])
  1476. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1477. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1478. self.gguf_writer.add_name("Phi2")
  1479. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1480. self.gguf_writer.add_embedding_length(n_embd)
  1481. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  1482. self.gguf_writer.add_block_count(block_count)
  1483. self.gguf_writer.add_head_count(n_head)
  1484. self.gguf_writer.add_head_count_kv(n_head)
  1485. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  1486. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1487. self.gguf_writer.add_file_type(self.ftype)
  1488. self.gguf_writer.add_add_bos_token(False)
  1489. @Model.register("Phi3ForCausalLM")
  1490. class Phi3MiniModel(Model):
  1491. model_arch = gguf.MODEL_ARCH.PHI3
  1492. def set_vocab(self):
  1493. from sentencepiece import SentencePieceProcessor
  1494. tokenizer_path = self.dir_model / 'tokenizer.model'
  1495. if not tokenizer_path.is_file():
  1496. raise ValueError(f'Error: Missing {tokenizer_path}')
  1497. tokenizer = SentencePieceProcessor()
  1498. tokenizer.LoadFromFile(str(tokenizer_path))
  1499. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1500. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1501. scores: list[float] = [-10000.0] * vocab_size
  1502. toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
  1503. for token_id in range(tokenizer.vocab_size()):
  1504. piece = tokenizer.IdToPiece(token_id)
  1505. text = piece.encode("utf-8")
  1506. score = tokenizer.GetScore(token_id)
  1507. toktype = SentencePieceTokenTypes.NORMAL
  1508. if tokenizer.IsUnknown(token_id):
  1509. toktype = SentencePieceTokenTypes.UNKNOWN
  1510. elif tokenizer.IsControl(token_id):
  1511. toktype = SentencePieceTokenTypes.CONTROL
  1512. elif tokenizer.IsUnused(token_id):
  1513. toktype = SentencePieceTokenTypes.UNUSED
  1514. elif tokenizer.IsByte(token_id):
  1515. toktype = SentencePieceTokenTypes.BYTE
  1516. tokens[token_id] = text
  1517. scores[token_id] = score
  1518. toktypes[token_id] = toktype
  1519. added_tokens_file = self.dir_model / 'added_tokens.json'
  1520. if added_tokens_file.is_file():
  1521. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1522. added_tokens_json = json.load(f)
  1523. for key in added_tokens_json:
  1524. token_id = added_tokens_json[key]
  1525. if (token_id >= vocab_size):
  1526. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1527. continue
  1528. tokens[token_id] = key.encode("utf-8")
  1529. scores[token_id] = -1000.0
  1530. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1531. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1532. if tokenizer_config_file.is_file():
  1533. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1534. tokenizer_config_json = json.load(f)
  1535. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1536. for token_id, foken_data in added_tokens_decoder.items():
  1537. token_id = int(token_id)
  1538. token = foken_data["content"].encode("utf-8")
  1539. if toktypes[token_id] != SentencePieceTokenTypes.UNKNOWN:
  1540. assert tokens[token_id] == token
  1541. tokens[token_id] = token
  1542. scores[token_id] = -1000.0
  1543. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1544. if foken_data.get("special"):
  1545. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1546. tokenizer_file = self.dir_model / 'tokenizer.json'
  1547. if tokenizer_file.is_file():
  1548. with open(tokenizer_file, "r", encoding="utf-8") as f:
  1549. tokenizer_json = json.load(f)
  1550. added_tokens = tokenizer_json.get("added_tokens", [])
  1551. for foken_data in added_tokens:
  1552. token_id = int(foken_data["id"])
  1553. token = foken_data["content"].encode("utf-8")
  1554. if toktypes[token_id] != SentencePieceTokenTypes.UNKNOWN:
  1555. assert tokens[token_id] == token
  1556. tokens[token_id] = token
  1557. scores[token_id] = -1000.0
  1558. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1559. if foken_data.get("special"):
  1560. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1561. self.gguf_writer.add_tokenizer_model("llama")
  1562. self.gguf_writer.add_tokenizer_pre("default")
  1563. self.gguf_writer.add_token_list(tokens)
  1564. self.gguf_writer.add_token_scores(scores)
  1565. self.gguf_writer.add_token_types(toktypes)
  1566. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1567. special_vocab.add_to_gguf(self.gguf_writer)
  1568. def set_gguf_parameters(self):
  1569. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1570. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1571. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1572. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  1573. rms_eps = self.find_hparam(["rms_norm_eps"])
  1574. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  1575. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  1576. rope_dims = n_embd // n_head
  1577. self.gguf_writer.add_name("Phi3")
  1578. self.gguf_writer.add_context_length(max_pos_embds)
  1579. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  1580. self.gguf_writer.add_embedding_length(n_embd)
  1581. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  1582. self.gguf_writer.add_block_count(block_count)
  1583. self.gguf_writer.add_head_count(n_head)
  1584. self.gguf_writer.add_head_count_kv(n_head_kv)
  1585. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  1586. self.gguf_writer.add_rope_dimension_count(rope_dims)
  1587. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  1588. self.gguf_writer.add_file_type(self.ftype)
  1589. # write rope scaling for long context (128k) model
  1590. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1591. if (rope_scaling is None):
  1592. return
  1593. scale = max_pos_embds / orig_max_pos_embds
  1594. rope_scaling_type = rope_scaling.get('type', '').lower()
  1595. if len(rope_scaling_type) == 0:
  1596. raise KeyError('Missing the required key rope_scaling.type')
  1597. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  1598. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  1599. elif rope_scaling_type == 'yarn':
  1600. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  1601. else:
  1602. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  1603. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  1604. long_factors = rope_scaling.get('long_factor', None)
  1605. short_factors = rope_scaling.get('short_factor', None)
  1606. if long_factors is None or short_factors is None:
  1607. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1608. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1609. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1610. self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_LONG] + ".weight", np.array(long_factors, dtype=np.float32))
  1611. self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT] + ".weight", np.array(short_factors, dtype=np.float32))
  1612. @Model.register("PlamoForCausalLM")
  1613. class PlamoModel(Model):
  1614. model_arch = gguf.MODEL_ARCH.PLAMO
  1615. def set_vocab(self):
  1616. self._set_vocab_sentencepiece()
  1617. def set_gguf_parameters(self):
  1618. hparams = self.hparams
  1619. block_count = hparams["num_hidden_layers"]
  1620. self.gguf_writer.add_name("PLaMo")
  1621. self.gguf_writer.add_context_length(4096) # not in config.json
  1622. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1623. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1624. self.gguf_writer.add_block_count(block_count)
  1625. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1626. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  1627. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1628. self.gguf_writer.add_file_type(self.ftype)
  1629. def shuffle_attn_q_weight(self, data_torch):
  1630. assert data_torch.size() == (5120, 5120)
  1631. data_torch = data_torch.reshape(8, 5, 128, 5120)
  1632. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  1633. data_torch = torch.reshape(data_torch, (5120, 5120))
  1634. return data_torch
  1635. def shuffle_attn_output_weight(self, data_torch):
  1636. assert data_torch.size() == (5120, 5120)
  1637. data_torch = data_torch.reshape(5120, 8, 5, 128)
  1638. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  1639. data_torch = torch.reshape(data_torch, (5120, 5120))
  1640. return data_torch
  1641. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1642. del bid # unused
  1643. new_name = self.map_tensor_name(name)
  1644. # shuffle for broadcasting of gqa in ggml_mul_mat
  1645. if new_name.endswith("attn_q.weight"):
  1646. data_torch = self.shuffle_attn_q_weight(data_torch)
  1647. elif new_name.endswith("attn_output.weight"):
  1648. data_torch = self.shuffle_attn_output_weight(data_torch)
  1649. return [(new_name, data_torch)]
  1650. @Model.register("CodeShellForCausalLM")
  1651. class CodeShellModel(Model):
  1652. model_arch = gguf.MODEL_ARCH.CODESHELL
  1653. def set_gguf_parameters(self):
  1654. block_count = self.hparams["n_layer"]
  1655. self.gguf_writer.add_name("CodeShell")
  1656. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1657. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1658. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1659. self.gguf_writer.add_block_count(block_count)
  1660. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1661. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  1662. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1663. self.gguf_writer.add_file_type(self.ftype)
  1664. self.gguf_writer.add_rope_freq_base(10000.0)
  1665. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1666. self.gguf_writer.add_rope_scaling_factor(1.0)
  1667. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1668. del bid # unused
  1669. new_name = self.map_tensor_name(name)
  1670. tensors: list[tuple[str, Tensor]] = [(new_name, data_torch)]
  1671. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1672. assert self.tensor_names is not None
  1673. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  1674. # copy tok_embd.weight to output.weight
  1675. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1676. return tensors
  1677. @Model.register("InternLM2ForCausalLM")
  1678. class InternLM2Model(Model):
  1679. model_arch = gguf.MODEL_ARCH.INTERNLM2
  1680. def set_vocab(self):
  1681. # (TODO): Is there a better way?
  1682. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  1683. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  1684. # recognized as an empty string in C++.
  1685. from sentencepiece import SentencePieceProcessor
  1686. from sentencepiece import sentencepiece_model_pb2 as model
  1687. tokenizer_path = self.dir_model / 'tokenizer.model'
  1688. tokens: list[bytes] = []
  1689. scores: list[float] = []
  1690. toktypes: list[int] = []
  1691. if not tokenizer_path.is_file():
  1692. logger.error(f'Error: Missing {tokenizer_path}')
  1693. sys.exit(1)
  1694. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  1695. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  1696. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  1697. tokenizer = SentencePieceProcessor()
  1698. tokenizer.LoadFromFile(str(tokenizer_path))
  1699. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1700. for token_id in range(vocab_size):
  1701. piece = tokenizer.IdToPiece(token_id)
  1702. text = piece.encode("utf-8")
  1703. score = tokenizer.GetScore(token_id)
  1704. if text == b"\x00":
  1705. # (TODO): fixme
  1706. # Hack here and replace the \x00 characters.
  1707. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  1708. text = "🐉".encode("utf-8")
  1709. toktype = SentencePieceTokenTypes.NORMAL
  1710. if tokenizer.IsUnknown(token_id):
  1711. toktype = SentencePieceTokenTypes.UNKNOWN
  1712. elif tokenizer.IsControl(token_id):
  1713. toktype = SentencePieceTokenTypes.CONTROL
  1714. elif tokenizer.IsUnused(token_id):
  1715. toktype = SentencePieceTokenTypes.UNUSED
  1716. elif tokenizer.IsByte(token_id):
  1717. toktype = SentencePieceTokenTypes.BYTE
  1718. # take care of ununsed raw token
  1719. if piece.startswith('[UNUSED'):
  1720. toktype = SentencePieceTokenTypes.UNKNOWN
  1721. tokens.append(text)
  1722. scores.append(score)
  1723. toktypes.append(toktype)
  1724. added_tokens_file = self.dir_model / 'added_tokens.json'
  1725. if added_tokens_file.is_file():
  1726. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1727. added_tokens_json = json.load(f)
  1728. for key in added_tokens_json:
  1729. tokens.append(key.encode("utf-8"))
  1730. scores.append(-1000.0)
  1731. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  1732. chat_eos_token = '<|im_end|>'
  1733. chat_eos_token_id = None
  1734. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1735. if tokenizer_config_file.is_file():
  1736. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1737. tokenizer_config_json = json.load(f)
  1738. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1739. for token_id, foken_data in added_tokens_decoder.items():
  1740. token_id = int(token_id)
  1741. token = foken_data["content"]
  1742. if token == chat_eos_token:
  1743. chat_eos_token_id = token_id
  1744. token = token.encode("utf-8")
  1745. if toktypes[token_id] != SentencePieceTokenTypes.UNKNOWN:
  1746. assert(tokens[token_id] == token)
  1747. tokens[token_id] = token
  1748. scores[token_id] = -1000.0
  1749. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1750. if foken_data.get("special"):
  1751. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1752. tokenizer_file = self.dir_model / 'tokenizer.json'
  1753. if tokenizer_file.is_file():
  1754. with open(tokenizer_file, "r", encoding="utf-8") as f:
  1755. tokenizer_json = json.load(f)
  1756. added_tokens = tokenizer_json.get("added_tokens", [])
  1757. for foken_data in added_tokens:
  1758. token_id = int(foken_data["id"])
  1759. token = foken_data["content"]
  1760. if token == chat_eos_token:
  1761. chat_eos_token_id = token_id
  1762. token = token.encode("utf-8")
  1763. if toktypes[token_id] != SentencePieceTokenTypes.UNKNOWN:
  1764. assert(tokens[token_id] == token)
  1765. tokens[token_id] = token
  1766. scores[token_id] = -1000.0
  1767. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1768. if foken_data.get("special"):
  1769. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1770. self.gguf_writer.add_tokenizer_model("llama")
  1771. self.gguf_writer.add_tokenizer_pre("default")
  1772. self.gguf_writer.add_token_list(tokens)
  1773. self.gguf_writer.add_token_scores(scores)
  1774. self.gguf_writer.add_token_types(toktypes)
  1775. self.gguf_writer.add_add_space_prefix(add_prefix)
  1776. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1777. old_eos = special_vocab.special_token_ids["eos"]
  1778. if chat_eos_token_id is not None:
  1779. # For the chat model, we replace the eos with '<|im_end|>'.
  1780. # TODO: this is a hack, should be fixed
  1781. # https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048
  1782. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  1783. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  1784. " in chat mode so that the conversation can end normally.")
  1785. special_vocab.add_to_gguf(self.gguf_writer)
  1786. def _hf_permute_qk(self, weights, n_head: int, n_head_kv: int):
  1787. if n_head_kv is not None and n_head != n_head_kv:
  1788. n_head = n_head_kv
  1789. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1790. .swapaxes(1, 2)
  1791. .reshape(weights.shape))
  1792. def set_gguf_parameters(self):
  1793. self.gguf_writer.add_name("InternLM2")
  1794. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1795. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1796. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1797. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1798. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  1799. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1800. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1801. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1802. self.gguf_writer.add_file_type(self.ftype)
  1803. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1804. if self.hparams["rope_scaling"].get("type") == "linear":
  1805. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1806. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1807. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1808. num_heads = self.hparams["num_attention_heads"]
  1809. num_kv_heads = self.hparams["num_key_value_heads"]
  1810. hidden_size = self.hparams["hidden_size"]
  1811. q_per_kv = num_heads // num_kv_heads
  1812. head_dim = hidden_size // num_heads
  1813. num_groups = num_heads // q_per_kv
  1814. qkv_pattern = r"model\.layers\.(\d+)\.attention\.wqkv"
  1815. if re.match(qkv_pattern, name):
  1816. bid = re.findall(qkv_pattern, name)[0]
  1817. qkv = data_torch
  1818. # qkv = rearrange(qkv.T, " o (g n i) ->o g n i", g=num_groups, n=q_per_kv + 2, i=head_dim)
  1819. qkv = qkv.T.reshape((-1, num_groups, q_per_kv + 2, head_dim))
  1820. q, k, v = qkv[..., : q_per_kv, :], qkv[..., q_per_kv: q_per_kv + 1, :], qkv[..., q_per_kv + 1: q_per_kv + 2, :]
  1821. # The model weights of q and k equire additional reshape.
  1822. # q = self._hf_permute_qk(rearrange(q, " o g n i -> o (g n i)").T, num_heads, num_heads)
  1823. q = self._hf_permute_qk(q.reshape((q.shape[0], -1)).T, num_heads, num_heads)
  1824. # k = self._hf_permute_qk(rearrange(k, " o g n i -> o (g n i)").T, num_heads, num_kv_heads)
  1825. k = self._hf_permute_qk(k.reshape((k.shape[0], -1)).T, num_heads, num_kv_heads)
  1826. # v = rearrange(v, " o g n i -> o (g n i)").T
  1827. v = v.reshape((v.shape[0], -1)).T
  1828. return [
  1829. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  1830. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  1831. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  1832. ]
  1833. else:
  1834. return [(self.map_tensor_name(name), data_torch)]
  1835. @Model.register("BertModel", "CamembertModel")
  1836. class BertModel(Model):
  1837. model_arch = gguf.MODEL_ARCH.BERT
  1838. def __init__(self, *args, **kwargs):
  1839. super().__init__(*args, **kwargs)
  1840. self.vocab_size = None
  1841. def set_gguf_parameters(self):
  1842. super().set_gguf_parameters()
  1843. self.gguf_writer.add_causal_attention(False)
  1844. # get pooling path
  1845. pooling_path = None
  1846. module_path = self.dir_model / "modules.json"
  1847. if module_path.is_file():
  1848. with open(module_path, encoding="utf-8") as f:
  1849. modules = json.load(f)
  1850. for mod in modules:
  1851. if mod["type"] == "sentence_transformers.models.Pooling":
  1852. pooling_path = mod["path"]
  1853. break
  1854. # get pooling type
  1855. if pooling_path is not None:
  1856. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1857. pooling = json.load(f)
  1858. if pooling["pooling_mode_mean_tokens"]:
  1859. pooling_type = gguf.PoolingType.MEAN
  1860. elif pooling["pooling_mode_cls_token"]:
  1861. pooling_type = gguf.PoolingType.CLS
  1862. else:
  1863. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  1864. self.gguf_writer.add_pooling_type(pooling_type)
  1865. def set_vocab(self):
  1866. tokens, toktypes, tokpre = self.get_vocab_base()
  1867. self.vocab_size = len(tokens)
  1868. # we need this to validate the size of the token_type embeddings
  1869. # though currently we are passing all zeros to the token_type embeddings
  1870. self.gguf_writer.add_token_type_count(2) # "Sequence A" or "Sequence B"
  1871. # convert to phantom space vocab
  1872. def phantom(tok):
  1873. if tok.startswith("[") and tok.endswith("]"):
  1874. return tok
  1875. if tok.startswith("##"):
  1876. return tok[2:]
  1877. return "\u2581" + tok
  1878. tokens = list(map(phantom, tokens))
  1879. # add vocab to gguf
  1880. self.gguf_writer.add_tokenizer_model("bert")
  1881. self.gguf_writer.add_tokenizer_pre(tokpre)
  1882. self.gguf_writer.add_token_list(tokens)
  1883. self.gguf_writer.add_token_types(toktypes)
  1884. # handle special tokens
  1885. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1886. special_vocab.add_to_gguf(self.gguf_writer)
  1887. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1888. del bid # unused
  1889. # we are only using BERT for embeddings so we don't need the pooling layer
  1890. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  1891. return [] # we don't need these
  1892. return [(self.map_tensor_name(name), data_torch)]
  1893. @Model.register("NomicBertModel")
  1894. class NomicBertModel(BertModel):
  1895. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  1896. def __init__(self, *args, **kwargs):
  1897. super().__init__(*args, **kwargs)
  1898. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  1899. self.hparams["n_ctx"] = 2048
  1900. # SwigLU activation
  1901. assert self.hparams["activation_function"] == "swiglu"
  1902. # this doesn't do anything in the HF version
  1903. assert self.hparams["causal"] is False
  1904. # no bias tensors
  1905. assert self.hparams["qkv_proj_bias"] is False
  1906. assert self.hparams["mlp_fc1_bias"] is False
  1907. assert self.hparams["mlp_fc2_bias"] is False
  1908. # norm at end of layer
  1909. assert self.hparams["prenorm"] is False
  1910. # standard RoPE
  1911. assert self.hparams["rotary_emb_fraction"] == 1.0
  1912. assert self.hparams["rotary_emb_interleaved"] is False
  1913. assert self.hparams["rotary_emb_scale_base"] is None
  1914. def set_gguf_parameters(self):
  1915. super().set_gguf_parameters()
  1916. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1917. @Model.register("GemmaForCausalLM")
  1918. class GemmaModel(Model):
  1919. model_arch = gguf.MODEL_ARCH.GEMMA
  1920. def set_vocab(self):
  1921. self._set_vocab_sentencepiece()
  1922. # TODO: these special tokens should be exported only for the CodeGemma family
  1923. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1924. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  1925. special_vocab._set_special_token("prefix", 67)
  1926. special_vocab._set_special_token("suffix", 69)
  1927. special_vocab._set_special_token("middle", 68)
  1928. special_vocab._set_special_token("fsep", 70)
  1929. special_vocab._set_special_token("eot", 107)
  1930. special_vocab.add_to_gguf(self.gguf_writer)
  1931. self.gguf_writer.add_add_space_prefix(False)
  1932. def set_gguf_parameters(self):
  1933. hparams = self.hparams
  1934. block_count = hparams["num_hidden_layers"]
  1935. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  1936. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1937. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1938. self.gguf_writer.add_block_count(block_count)
  1939. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1940. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1941. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  1942. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1943. self.gguf_writer.add_key_length(hparams["head_dim"])
  1944. self.gguf_writer.add_value_length(hparams["head_dim"])
  1945. self.gguf_writer.add_file_type(self.ftype)
  1946. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1947. del bid # unused
  1948. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  1949. # To prevent errors, skip loading lm_head.weight.
  1950. if name == "lm_head.weight":
  1951. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  1952. return []
  1953. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  1954. if name.endswith("norm.weight"):
  1955. data_torch = data_torch + 1
  1956. return [(self.map_tensor_name(name), data_torch)]
  1957. @Model.register("Gemma2ForCausalLM")
  1958. class Gemma2Model(Model):
  1959. model_arch = gguf.MODEL_ARCH.GEMMA2
  1960. def set_vocab(self):
  1961. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  1962. # hack: This is required so that we can properly use start/end-of-turn for chat template
  1963. for i in range(108):
  1964. # including <unusedX>, <start_of_turn>, <end_of_turn>
  1965. toktypes[i] = SentencePieceTokenTypes.CONTROL
  1966. self.gguf_writer.add_tokenizer_model("llama")
  1967. self.gguf_writer.add_tokenizer_pre("default")
  1968. self.gguf_writer.add_token_list(tokens)
  1969. self.gguf_writer.add_token_scores(scores)
  1970. self.gguf_writer.add_token_types(toktypes)
  1971. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1972. special_vocab.add_to_gguf(self.gguf_writer)
  1973. self.gguf_writer.add_add_space_prefix(False)
  1974. def set_gguf_parameters(self):
  1975. hparams = self.hparams
  1976. block_count = hparams["num_hidden_layers"]
  1977. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  1978. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1979. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1980. self.gguf_writer.add_block_count(block_count)
  1981. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1982. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1983. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  1984. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1985. self.gguf_writer.add_key_length(hparams["head_dim"])
  1986. self.gguf_writer.add_value_length(hparams["head_dim"])
  1987. self.gguf_writer.add_file_type(self.ftype)
  1988. self.gguf_writer.add_attn_logit_softcapping(
  1989. self.hparams["attn_logit_softcapping"]
  1990. )
  1991. self.gguf_writer.add_final_logit_softcapping(
  1992. self.hparams["final_logit_softcapping"]
  1993. )
  1994. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  1995. # sanity check
  1996. attn_scalar = self.hparams["query_pre_attn_scalar"]
  1997. if attn_scalar != hparams["hidden_size"] / hparams["num_attention_heads"]:
  1998. raise ValueError("query_pre_attn_scalar must be equal to n_embd / n_head")
  1999. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2000. del bid # unused
  2001. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2002. # To prevent errors, skip loading lm_head.weight.
  2003. if name == "lm_head.weight":
  2004. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2005. return []
  2006. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2007. if name.endswith("norm.weight"):
  2008. data_torch = data_torch + 1
  2009. return [(self.map_tensor_name(name), data_torch)]
  2010. @Model.register("Starcoder2ForCausalLM")
  2011. class StarCoder2Model(Model):
  2012. model_arch = gguf.MODEL_ARCH.STARCODER2
  2013. @Model.register("MambaForCausalLM", "MambaLMHeadModel")
  2014. class MambaModel(Model):
  2015. model_arch = gguf.MODEL_ARCH.MAMBA
  2016. def set_vocab(self):
  2017. vocab_size = self.hparams["vocab_size"]
  2018. # Round vocab size to next multiple of 8
  2019. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  2020. # pad using ceiling division
  2021. # ref: https://stackoverflow.com/a/17511341/22827863
  2022. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  2023. self.hparams["vocab_size"] = vocab_size
  2024. if (self.dir_model / "tokenizer.json").is_file():
  2025. self._set_vocab_gpt2()
  2026. elif (self.dir_model / "tokenizer.model").is_file():
  2027. self._set_vocab_sentencepiece()
  2028. else:
  2029. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  2030. self._set_vocab_builtin("gpt-neox", vocab_size)
  2031. def set_gguf_parameters(self):
  2032. d_model = self.find_hparam(["hidden_size", "d_model"])
  2033. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  2034. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  2035. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  2036. # ceiling division
  2037. # ref: https://stackoverflow.com/a/17511341/22827863
  2038. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  2039. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  2040. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  2041. # Fail early for models which don't have a block expansion factor of 2
  2042. assert d_inner == 2 * d_model
  2043. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  2044. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  2045. self.gguf_writer.add_embedding_length(d_model)
  2046. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  2047. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  2048. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2049. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  2050. self.gguf_writer.add_ssm_inner_size(d_inner)
  2051. self.gguf_writer.add_ssm_state_size(d_state)
  2052. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  2053. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  2054. self.gguf_writer.add_file_type(self.ftype)
  2055. _tok_embd = None
  2056. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2057. del bid # unused
  2058. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  2059. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  2060. new_name = self.map_tensor_name(name)
  2061. if name.endswith(".A_log"):
  2062. logger.debug("A_log --> A ==> " + new_name)
  2063. data_torch = -torch.exp(data_torch)
  2064. # assuming token_embd.weight is seen before output.weight
  2065. if self._tok_embd is not None and new_name == output_name:
  2066. if torch.equal(self._tok_embd, data_torch):
  2067. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  2068. return []
  2069. elif new_name == tok_embd_name:
  2070. self._tok_embd = data_torch
  2071. return [(new_name, data_torch)]
  2072. def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  2073. del n_dims # unused
  2074. return bid is not None and new_name in (
  2075. self.format_tensor_name(n, bid, ".weight" if name.endswith(".weight") else "") for n in [
  2076. gguf.MODEL_TENSOR.SSM_CONV1D,
  2077. gguf.MODEL_TENSOR.SSM_X,
  2078. gguf.MODEL_TENSOR.SSM_DT,
  2079. gguf.MODEL_TENSOR.SSM_A,
  2080. gguf.MODEL_TENSOR.SSM_D,
  2081. ]
  2082. )
  2083. @Model.register("CohereForCausalLM")
  2084. class CommandR2Model(Model):
  2085. model_arch = gguf.MODEL_ARCH.COMMAND_R
  2086. def __init__(self, *args, **kwargs):
  2087. super().__init__(*args, **kwargs)
  2088. # max_position_embeddings = 8192 in config.json but model was actually
  2089. # trained on 128k context length
  2090. # aya-23 models don't have model_max_length specified
  2091. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  2092. def set_gguf_parameters(self):
  2093. super().set_gguf_parameters()
  2094. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  2095. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  2096. @Model.register("OlmoForCausalLM")
  2097. @Model.register("OLMoForCausalLM")
  2098. class OlmoModel(Model):
  2099. model_arch = gguf.MODEL_ARCH.OLMO
  2100. def set_gguf_parameters(self):
  2101. super().set_gguf_parameters()
  2102. self.gguf_writer.add_layer_norm_eps(1e-5)
  2103. clip_qkv = self.hparams.get("clip_qkv")
  2104. if clip_qkv is not None:
  2105. self.gguf_writer.add_clamp_kqv(clip_qkv)
  2106. # Same as super class, but permuting q_proj, k_proj
  2107. # Copied from: LlamaModel
  2108. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2109. del bid # unused
  2110. n_head = self.hparams["num_attention_heads"]
  2111. n_kv_head = self.hparams.get("num_key_value_heads")
  2112. if name.endswith("q_proj.weight"):
  2113. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2114. if name.endswith("k_proj.weight"):
  2115. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2116. return [(self.map_tensor_name(name), data_torch)]
  2117. @Model.register("JinaBertModel", "JinaBertForMaskedLM")
  2118. class JinaBertV2Model(BertModel):
  2119. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  2120. def __init__(self, *args, **kwargs):
  2121. super().__init__(*args, **kwargs)
  2122. self.intermediate_size = self.hparams["intermediate_size"]
  2123. def get_tensors(self):
  2124. for name, data in super().get_tensors():
  2125. if 'gated_layer' in name:
  2126. d1 = data[:self.intermediate_size, :]
  2127. name1 = name.replace('gated_layers', 'gated_layers_w')
  2128. name1 = name1.replace('up_gated_layer', 'gated_layers_v')
  2129. d2 = data[self.intermediate_size:, :]
  2130. name2 = name.replace('gated_layers', 'gated_layers_v')
  2131. name2 = name2.replace('up_gated_layer', 'gated_layers_w')
  2132. yield name1, d1
  2133. yield name2, d2
  2134. continue
  2135. yield name, data
  2136. def set_vocab(self, *args, **kwargs):
  2137. tokenizer_class = 'BertTokenizer'
  2138. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  2139. tokenizer_class = json.load(f)['tokenizer_class']
  2140. if tokenizer_class == 'BertTokenizer':
  2141. super().set_vocab()
  2142. elif tokenizer_class == 'RobertaTokenizer':
  2143. self._set_vocab_gpt2()
  2144. self.gguf_writer.add_token_type_count(2)
  2145. else:
  2146. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  2147. self.gguf_writer.add_add_bos_token(True)
  2148. self.gguf_writer.add_add_eos_token(True)
  2149. @Model.register("OpenELMForCausalLM")
  2150. class OpenELMModel(Model):
  2151. model_arch = gguf.MODEL_ARCH.OPENELM
  2152. @staticmethod
  2153. def _make_divisible(v: float | int, divisor: int) -> int:
  2154. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  2155. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  2156. # Make sure that round down does not go down by more than 10%.
  2157. if new_v < 0.9 * v:
  2158. new_v += divisor
  2159. return new_v
  2160. def __init__(self, *args, **kwargs):
  2161. super().__init__(*args, **kwargs)
  2162. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  2163. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  2164. self._n_embd: int = self.hparams["model_dim"]
  2165. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  2166. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  2167. self._ffn_dims: list[int] = [
  2168. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  2169. for multiplier in ffn_multipliers
  2170. ]
  2171. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  2172. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  2173. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  2174. def set_vocab(self):
  2175. try:
  2176. self._set_vocab_sentencepiece()
  2177. except FileNotFoundError:
  2178. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  2179. def set_gguf_parameters(self):
  2180. n_embd = self._n_embd
  2181. head_dim = self.hparams["head_dim"]
  2182. rot_pct = 1.0
  2183. assert self.block_count == len(self._num_kv_heads)
  2184. assert self.block_count == len(self._num_query_heads)
  2185. assert self.block_count == len(self._ffn_dims)
  2186. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  2187. self.gguf_writer.add_block_count(self.block_count)
  2188. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  2189. self.gguf_writer.add_embedding_length(n_embd)
  2190. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  2191. self.gguf_writer.add_head_count(self._num_query_heads)
  2192. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2193. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  2194. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  2195. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  2196. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  2197. self.gguf_writer.add_key_length(head_dim)
  2198. self.gguf_writer.add_value_length(head_dim)
  2199. self.gguf_writer.add_file_type(self.ftype)
  2200. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  2201. if "n_layers" in keys:
  2202. return self.hparams["num_transformer_layers"]
  2203. return super().find_hparam(keys, optional)
  2204. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2205. # split ff
  2206. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  2207. ff_dim = self._ffn_dims[bid]
  2208. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  2209. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  2210. return
  2211. yield (self.map_tensor_name(name), data_torch)
  2212. @Model.register("ArcticForCausalLM")
  2213. class ArcticModel(Model):
  2214. model_arch = gguf.MODEL_ARCH.ARCTIC
  2215. def set_vocab(self):
  2216. # The reason for using a custom implementation here is that the
  2217. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  2218. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  2219. from sentencepiece import SentencePieceProcessor
  2220. tokenizer_path = self.dir_model / 'tokenizer.model'
  2221. if not tokenizer_path.is_file():
  2222. logger.error(f'Error: Missing {tokenizer_path}')
  2223. sys.exit(1)
  2224. # Read the whole vocabulary from the tokenizer.model file
  2225. tokenizer = SentencePieceProcessor()
  2226. tokenizer.LoadFromFile(str(tokenizer_path))
  2227. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2228. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2229. scores: list[float] = [-10000.0] * vocab_size
  2230. toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
  2231. for token_id in range(tokenizer.vocab_size()):
  2232. piece = tokenizer.IdToPiece(token_id)
  2233. text = piece.encode("utf-8")
  2234. score = tokenizer.GetScore(token_id)
  2235. toktype = SentencePieceTokenTypes.NORMAL
  2236. if tokenizer.IsUnknown(token_id):
  2237. toktype = SentencePieceTokenTypes.UNKNOWN
  2238. elif tokenizer.IsControl(token_id):
  2239. toktype = SentencePieceTokenTypes.CONTROL
  2240. elif tokenizer.IsUnused(token_id):
  2241. toktype = SentencePieceTokenTypes.UNUSED
  2242. elif tokenizer.IsByte(token_id):
  2243. toktype = SentencePieceTokenTypes.BYTE
  2244. tokens[token_id] = text
  2245. scores[token_id] = score
  2246. toktypes[token_id] = toktype
  2247. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  2248. # of information about added/redefined tokens and modify them accordingly.
  2249. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2250. if tokenizer_config_file.is_file():
  2251. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2252. tokenizer_config_json = json.load(f)
  2253. if "added_tokens_decoder" in tokenizer_config_json:
  2254. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  2255. for token_id, token_json in added_tokens_decoder.items():
  2256. token_id = int(token_id)
  2257. if (token_id >= vocab_size):
  2258. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2259. continue
  2260. token_content = token_json["content"]
  2261. token_type = SentencePieceTokenTypes.USER_DEFINED
  2262. token_score = -10000.0
  2263. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  2264. # Set the score to 0.0 as in the original tokenizer.model
  2265. if ("special" in token_json) and token_json["special"]:
  2266. if token_content == tokenizer_config_json["unk_token"]:
  2267. token_type = SentencePieceTokenTypes.UNKNOWN
  2268. else:
  2269. token_type = SentencePieceTokenTypes.CONTROL
  2270. token_score = 0.0
  2271. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  2272. tokens[token_id] = token_content.encode("utf-8")
  2273. toktypes[token_id] = token_type
  2274. scores[token_id] = token_score
  2275. self.gguf_writer.add_tokenizer_model("llama")
  2276. self.gguf_writer.add_tokenizer_pre("default")
  2277. self.gguf_writer.add_token_list(tokens)
  2278. self.gguf_writer.add_token_scores(scores)
  2279. self.gguf_writer.add_token_types(toktypes)
  2280. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2281. special_vocab.add_to_gguf(self.gguf_writer)
  2282. def set_gguf_parameters(self):
  2283. super().set_gguf_parameters()
  2284. hparams = self.hparams
  2285. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2286. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  2287. _experts: list[dict[str, Tensor]] | None = None
  2288. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2289. n_head = self.hparams["num_attention_heads"]
  2290. n_kv_head = self.hparams.get("num_key_value_heads")
  2291. if name.endswith("q_proj.weight"):
  2292. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2293. if name.endswith("k_proj.weight"):
  2294. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2295. # process the experts separately
  2296. if name.find("block_sparse_moe.experts") != -1:
  2297. n_experts = self.hparams["num_local_experts"]
  2298. assert bid is not None
  2299. if self._experts is None:
  2300. self._experts = [{} for _ in range(self.block_count)]
  2301. self._experts[bid][name] = data_torch
  2302. if len(self._experts[bid]) >= n_experts * 3:
  2303. tensors: list[tuple[str, Tensor]] = []
  2304. # merge the experts into a single 3d tensor
  2305. for wid in ["w1", "w2", "w3"]:
  2306. datas: list[Tensor] = []
  2307. for xid in range(n_experts):
  2308. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  2309. datas.append(self._experts[bid][ename])
  2310. del self._experts[bid][ename]
  2311. data_torch = torch.stack(datas, dim=0)
  2312. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  2313. new_name = self.map_tensor_name(merged_name)
  2314. tensors.append((new_name, data_torch))
  2315. return tensors
  2316. else:
  2317. return []
  2318. return [(self.map_tensor_name(name), data_torch)]
  2319. def write_tensors(self):
  2320. super().write_tensors()
  2321. if self._experts is not None:
  2322. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2323. experts = [k for d in self._experts for k in d.keys()]
  2324. if len(experts) > 0:
  2325. raise ValueError(f"Unprocessed experts: {experts}")
  2326. @Model.register("DeepseekV2ForCausalLM")
  2327. class DeepseekV2Model(Model):
  2328. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  2329. def set_vocab(self):
  2330. self._set_vocab_gpt2()
  2331. def set_gguf_parameters(self):
  2332. super().set_gguf_parameters()
  2333. hparams = self.hparams
  2334. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  2335. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2336. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2337. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2338. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2339. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2340. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  2341. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  2342. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  2343. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  2344. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  2345. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2346. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2347. if self.hparams["rope_scaling"].get("type") == "yarn":
  2348. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2349. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2350. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  2351. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"])
  2352. _experts: list[dict[str, Tensor]] | None = None
  2353. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2354. # process the experts separately
  2355. if name.find("mlp.experts") != -1:
  2356. n_experts = self.hparams["n_routed_experts"]
  2357. assert bid is not None
  2358. if self._experts is None:
  2359. self._experts = [{} for _ in range(self.block_count)]
  2360. self._experts[bid][name] = data_torch
  2361. if len(self._experts[bid]) >= n_experts * 3:
  2362. tensors: list[tuple[str, Tensor]] = []
  2363. # merge the experts into a single 3d tensor
  2364. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2365. datas: list[Tensor] = []
  2366. for xid in range(n_experts):
  2367. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2368. datas.append(self._experts[bid][ename])
  2369. del self._experts[bid][ename]
  2370. data_torch = torch.stack(datas, dim=0)
  2371. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2372. new_name = self.map_tensor_name(merged_name)
  2373. tensors.append((new_name, data_torch))
  2374. return tensors
  2375. else:
  2376. return []
  2377. return [(self.map_tensor_name(name), data_torch)]
  2378. def write_tensors(self):
  2379. super().write_tensors()
  2380. if self._experts is not None:
  2381. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2382. experts = [k for d in self._experts for k in d.keys()]
  2383. if len(experts) > 0:
  2384. raise ValueError(f"Unprocessed experts: {experts}")
  2385. @Model.register("T5WithLMHeadModel")
  2386. @Model.register("T5ForConditionalGeneration")
  2387. @Model.register("MT5ForConditionalGeneration")
  2388. @Model.register("UMT5ForConditionalGeneration")
  2389. class T5Model(Model):
  2390. model_arch = gguf.MODEL_ARCH.T5
  2391. def __init__(self, *args, **kwargs):
  2392. super().__init__(*args, **kwargs)
  2393. self.shared_token_embeddings_found = False
  2394. def set_vocab(self):
  2395. # to avoid TypeError: Descriptors cannot be created directly
  2396. # exception when importing sentencepiece_model_pb2
  2397. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2398. from sentencepiece import SentencePieceProcessor
  2399. from sentencepiece import sentencepiece_model_pb2 as model
  2400. tokenizer_path = self.dir_model / 'tokenizer.model'
  2401. # many older models use spiece.model tokenizer model filename
  2402. if not tokenizer_path.is_file():
  2403. tokenizer_path = self.dir_model / 'spiece.model'
  2404. if not tokenizer_path.is_file():
  2405. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2406. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2407. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2408. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  2409. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  2410. # assure the tokenizer model file name is correct
  2411. assert tokenizer_path.name == 'tokenizer.model'
  2412. return self._set_vocab_sentencepiece()
  2413. else:
  2414. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2415. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2416. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2417. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2418. tokenizer = SentencePieceProcessor()
  2419. tokenizer.LoadFromFile(str(tokenizer_path))
  2420. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2421. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2422. scores: list[float] = [-10000.0] * vocab_size
  2423. toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
  2424. for token_id in range(tokenizer.vocab_size()):
  2425. piece = tokenizer.IdToPiece(token_id)
  2426. text = piece.encode("utf-8")
  2427. score = tokenizer.GetScore(token_id)
  2428. toktype = SentencePieceTokenTypes.NORMAL
  2429. if tokenizer.IsUnknown(token_id):
  2430. toktype = SentencePieceTokenTypes.UNKNOWN
  2431. elif tokenizer.IsControl(token_id):
  2432. toktype = SentencePieceTokenTypes.CONTROL
  2433. elif tokenizer.IsUnused(token_id):
  2434. toktype = SentencePieceTokenTypes.UNUSED
  2435. elif tokenizer.IsByte(token_id):
  2436. toktype = SentencePieceTokenTypes.BYTE
  2437. tokens[token_id] = text
  2438. scores[token_id] = score
  2439. toktypes[token_id] = toktype
  2440. added_tokens_file = self.dir_model / 'added_tokens.json'
  2441. if added_tokens_file.is_file():
  2442. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2443. added_tokens_json = json.load(f)
  2444. for key in added_tokens_json:
  2445. token_id = added_tokens_json[key]
  2446. if (token_id >= vocab_size):
  2447. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2448. continue
  2449. tokens[token_id] = key.encode("utf-8")
  2450. scores[token_id] = -1000.0
  2451. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2452. if vocab_size > len(tokens):
  2453. pad_count = vocab_size - len(tokens)
  2454. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2455. for i in range(1, pad_count + 1):
  2456. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2457. scores.append(-1000.0)
  2458. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2459. self.gguf_writer.add_tokenizer_model("t5")
  2460. self.gguf_writer.add_tokenizer_pre("default")
  2461. self.gguf_writer.add_token_list(tokens)
  2462. self.gguf_writer.add_token_scores(scores)
  2463. self.gguf_writer.add_token_types(toktypes)
  2464. self.gguf_writer.add_add_space_prefix(add_prefix)
  2465. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2466. if precompiled_charsmap:
  2467. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2468. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2469. special_vocab.add_to_gguf(self.gguf_writer)
  2470. self.gguf_writer.add_add_bos_token(False)
  2471. self.gguf_writer.add_add_eos_token(True)
  2472. def set_gguf_parameters(self):
  2473. self.gguf_writer.add_name("T5")
  2474. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  2475. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  2476. n_ctx = 512
  2477. self.gguf_writer.add_context_length(n_ctx)
  2478. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2479. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  2480. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  2481. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  2482. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  2483. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  2484. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2485. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  2486. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2487. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  2488. self.gguf_writer.add_file_type(self.ftype)
  2489. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2490. del bid # unused
  2491. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  2492. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  2493. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  2494. # and decoder and ignore the remaining ones.
  2495. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  2496. if not self.shared_token_embeddings_found:
  2497. name = "shared.weight"
  2498. self.shared_token_embeddings_found = True
  2499. else:
  2500. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  2501. return []
  2502. return [(self.map_tensor_name(name), data_torch)]
  2503. @Model.register("JAISLMHeadModel")
  2504. class JaisModel(Model):
  2505. model_arch = gguf.MODEL_ARCH.JAIS
  2506. def __init__(self, *args, **kwargs):
  2507. super().__init__(*args, **kwargs)
  2508. # SwigLU activation
  2509. assert self.hparams["activation_function"] == "swiglu"
  2510. # ALiBi position embedding
  2511. assert self.hparams["position_embedding_type"] == "alibi"
  2512. # Embeddings scale
  2513. self.embeddings_scale = 1.0
  2514. # note: For some JAIS flavors, output is tied to (same as) wte in original model
  2515. self.output_is_wte = False
  2516. if 'mup_embeddings_scale' in self.hparams:
  2517. self.output_is_wte = True # Hack (?)
  2518. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  2519. elif 'embeddings_scale' in self.hparams:
  2520. self.embeddings_scale = self.hparams['embeddings_scale']
  2521. else:
  2522. assert False
  2523. self.width_scale = 1.0
  2524. if 'mup_output_alpha' in self.hparams:
  2525. assert 'mup_width_scale' in self.hparams
  2526. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  2527. elif 'width_scale' in self.hparams:
  2528. self.width_scale = self.hparams['width_scale']
  2529. else:
  2530. assert False
  2531. self.max_alibi_bias = 8.0
  2532. def set_vocab(self):
  2533. self._set_vocab_gpt2()
  2534. def set_gguf_parameters(self):
  2535. self.gguf_writer.add_name(self.dir_model.name)
  2536. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2537. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  2538. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2539. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  2540. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2541. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2542. self.gguf_writer.add_file_type(self.ftype)
  2543. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2544. del bid # unused
  2545. tensors: list[tuple[str, Tensor]] = []
  2546. # we don't need these
  2547. if name.endswith((".attn.bias")):
  2548. return tensors
  2549. if name.endswith(("relative_pe.slopes")):
  2550. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  2551. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  2552. # but Jais's PyTorch model simply precalculates the slope values and places them
  2553. # in relative_pes.slopes
  2554. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  2555. first_val = float(data_torch[0].item())
  2556. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  2557. return tensors
  2558. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  2559. data_torch = data_torch.transpose(1, 0)
  2560. new_name = self.map_tensor_name(name)
  2561. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  2562. tensors.append((new_name, data_torch * self.embeddings_scale))
  2563. if self.output_is_wte:
  2564. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch * self.width_scale))
  2565. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  2566. assert not self.output_is_wte
  2567. tensors.append((new_name, data_torch * self.width_scale))
  2568. else:
  2569. tensors.append((new_name, data_torch))
  2570. return tensors
  2571. def write_tensors(self):
  2572. super().write_tensors()
  2573. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  2574. @Model.register("ChatGLMModel", "ChatGLMForConditionalGeneration")
  2575. class ChatGLMModel(Model):
  2576. model_arch = gguf.MODEL_ARCH.CHATGLM
  2577. def set_vocab_chatglm3(self):
  2578. dir_model = self.dir_model
  2579. hparams = self.hparams
  2580. tokens: list[bytes] = []
  2581. toktypes: list[int] = []
  2582. scores: list[float] = []
  2583. from transformers import AutoTokenizer
  2584. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  2585. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  2586. assert max(tokenizer.get_vocab().values()) < vocab_size
  2587. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  2588. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  2589. for token_id in range(vocab_size):
  2590. piece = tokenizer._convert_id_to_token(token_id)
  2591. if token_id == 0:
  2592. piece = "<unk>"
  2593. elif token_id == 1:
  2594. piece = "<bos>"
  2595. elif token_id == 2:
  2596. piece = "<eos>"
  2597. text = piece.encode("utf-8")
  2598. score = 0.0
  2599. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  2600. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  2601. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  2602. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  2603. if len(piece) == 0:
  2604. text = f"[PAD{token_id}]".encode("utf-8")
  2605. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  2606. if piece in special_tokens:
  2607. # show special tokens in prompt
  2608. toktype = SentencePieceTokenTypes.USER_DEFINED
  2609. else:
  2610. toktype = SentencePieceTokenTypes.UNKNOWN
  2611. tokens.append(text)
  2612. scores.append(score)
  2613. toktypes.append(toktype)
  2614. continue
  2615. toktype = SentencePieceTokenTypes.NORMAL
  2616. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  2617. toktype = SentencePieceTokenTypes.UNKNOWN
  2618. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  2619. toktype = SentencePieceTokenTypes.CONTROL
  2620. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  2621. toktype = SentencePieceTokenTypes.UNUSED
  2622. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  2623. toktype = SentencePieceTokenTypes.BYTE
  2624. tokens.append(text)
  2625. scores.append(score)
  2626. toktypes.append(toktype)
  2627. self.gguf_writer.add_tokenizer_model("llama")
  2628. # glm3 needs prefix and suffix formatted as:
  2629. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  2630. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  2631. self.gguf_writer.add_token_list(tokens)
  2632. self.gguf_writer.add_token_scores(scores)
  2633. self.gguf_writer.add_token_types(toktypes)
  2634. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2635. special_vocab.add_to_gguf(self.gguf_writer)
  2636. @staticmethod
  2637. def token_bytes_to_string(b):
  2638. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2639. byte_encoder = bytes_to_unicode()
  2640. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2641. @staticmethod
  2642. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2643. parts = [bytes([b]) for b in token]
  2644. while True:
  2645. min_idx = None
  2646. min_rank = None
  2647. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2648. rank = mergeable_ranks.get(pair[0] + pair[1])
  2649. if rank is not None and (min_rank is None or rank < min_rank):
  2650. min_idx = i
  2651. min_rank = rank
  2652. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2653. break
  2654. assert min_idx is not None
  2655. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2656. return parts
  2657. def set_vocab(self):
  2658. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  2659. self.set_vocab_chatglm3()
  2660. return
  2661. dir_model = self.dir_model
  2662. hparams = self.hparams
  2663. tokens: list[str] = []
  2664. toktypes: list[int] = []
  2665. from transformers import AutoTokenizer
  2666. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  2667. vocab_size = hparams["padded_vocab_size"]
  2668. assert max(tokenizer.get_vocab().values()) < vocab_size
  2669. tokpre = self.get_vocab_base_pre(tokenizer)
  2670. merges = []
  2671. vocab = {}
  2672. mergeable_ranks = tokenizer.mergeable_ranks
  2673. for token, rank in mergeable_ranks.items():
  2674. vocab[ChatGLMModel.token_bytes_to_string(token)] = rank
  2675. if len(token) == 1:
  2676. continue
  2677. merged = ChatGLMModel.bpe(mergeable_ranks, token, max_rank=rank)
  2678. assert len(merged) >= 2 and len(merged) <= 7
  2679. merges.append(' '.join(map(ChatGLMModel.token_bytes_to_string, merged)))
  2680. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  2681. added_vocab = tokenizer.get_added_vocab()
  2682. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  2683. for i in range(vocab_size):
  2684. if i not in reverse_vocab:
  2685. tokens.append(f"[PAD{i}]")
  2686. toktypes.append(gguf.TokenType.USER_DEFINED)
  2687. elif reverse_vocab[i] in added_vocab:
  2688. tokens.append(reverse_vocab[i])
  2689. if tokenizer.added_tokens_decoder[i].special:
  2690. toktypes.append(gguf.TokenType.CONTROL)
  2691. else:
  2692. toktypes.append(gguf.TokenType.USER_DEFINED)
  2693. else:
  2694. tokens.append(reverse_vocab[i])
  2695. toktypes.append(gguf.TokenType.NORMAL)
  2696. self.gguf_writer.add_tokenizer_model("gpt2")
  2697. self.gguf_writer.add_tokenizer_pre(tokpre)
  2698. self.gguf_writer.add_token_list(tokens)
  2699. self.gguf_writer.add_token_types(toktypes)
  2700. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  2701. special_vocab.merges = merges
  2702. # only add special tokens when they were not already loaded from config.json
  2703. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  2704. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  2705. # this one is usually not in config.json anyway
  2706. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  2707. special_vocab.add_to_gguf(self.gguf_writer)
  2708. def set_gguf_parameters(self):
  2709. self.gguf_writer.add_name(self.hparams["_name_or_path"].split("/")[1]) # THUDM/glm4-9b-chat or THUDM/chatglm3-6b
  2710. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  2711. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  2712. n_head_kv = self.hparams.get("multi_query_group_num", n_head)
  2713. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  2714. self.gguf_writer.add_embedding_length(n_embed)
  2715. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", 4 * n_embed))
  2716. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  2717. self.gguf_writer.add_head_count(n_head)
  2718. self.gguf_writer.add_head_count_kv(n_head_kv)
  2719. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layernorm_epsilon"])
  2720. self.gguf_writer.add_file_type(self.ftype)
  2721. self.gguf_writer.add_rope_dimension_count(64)
  2722. self.gguf_writer.add_add_bos_token(False)
  2723. rope_freq = 10000
  2724. if "rope_ratio" in self.hparams:
  2725. rope_freq = rope_freq * self.hparams["rope_ratio"]
  2726. self.gguf_writer.add_rope_freq_base(rope_freq)
  2727. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2728. del bid # unused
  2729. if name.endswith(".rotary_pos_emb.inv_freq"):
  2730. return []
  2731. name = name.removeprefix("transformer.")
  2732. return [(self.map_tensor_name(name), data_torch)]
  2733. ###### CONVERSION LOGIC ######
  2734. # tree of lazy tensors
  2735. class LazyTorchTensor(gguf.LazyBase):
  2736. _tensor_type = torch.Tensor
  2737. # to keep the type-checker happy
  2738. dtype: torch.dtype
  2739. shape: torch.Size
  2740. # only used when converting a torch.Tensor to a np.ndarray
  2741. _dtype_map: dict[torch.dtype, type] = {
  2742. torch.float16: np.float16,
  2743. torch.float32: np.float32,
  2744. }
  2745. def numpy(self) -> gguf.LazyNumpyTensor:
  2746. dtype = self._dtype_map[self.dtype]
  2747. return gguf.LazyNumpyTensor(
  2748. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  2749. lazy=self._lazy,
  2750. args=(self,),
  2751. func=(lambda s: s[0].numpy())
  2752. )
  2753. @classmethod
  2754. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: torch.Size) -> Tensor:
  2755. return torch.empty(size=shape, dtype=dtype, device="meta")
  2756. @classmethod
  2757. def __torch_function__(cls, func, types, args=(), kwargs=None):
  2758. del types # unused
  2759. if kwargs is None:
  2760. kwargs = {}
  2761. if func is torch.Tensor.numpy:
  2762. return args[0].numpy()
  2763. return LazyTorchTensor._wrap_fn(func)(*args, **kwargs)
  2764. def parse_args() -> argparse.Namespace:
  2765. parser = argparse.ArgumentParser(
  2766. description="Convert a huggingface model to a GGML compatible file")
  2767. parser.add_argument(
  2768. "--vocab-only", action="store_true",
  2769. help="extract only the vocab",
  2770. )
  2771. parser.add_argument(
  2772. "--outfile", type=Path,
  2773. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  2774. )
  2775. parser.add_argument(
  2776. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "auto"], default="f16",
  2777. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  2778. )
  2779. parser.add_argument(
  2780. "--bigendian", action="store_true",
  2781. help="model is executed on big endian machine",
  2782. )
  2783. parser.add_argument(
  2784. "model", type=Path,
  2785. help="directory containing model file",
  2786. )
  2787. parser.add_argument(
  2788. "--use-temp-file", action="store_true",
  2789. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  2790. )
  2791. parser.add_argument(
  2792. "--no-lazy", action="store_true",
  2793. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  2794. )
  2795. parser.add_argument(
  2796. "--model-name", type=str, default=None,
  2797. help="name of the model",
  2798. )
  2799. parser.add_argument(
  2800. "--verbose", action="store_true",
  2801. help="increase output verbosity",
  2802. )
  2803. parser.add_argument(
  2804. "--split-max-tensors", type=int, default=0,
  2805. help="max tensors in each split",
  2806. )
  2807. parser.add_argument(
  2808. "--split-max-size", type=str, default="0",
  2809. help="max size per split N(M|G)",
  2810. )
  2811. parser.add_argument(
  2812. "--dry-run", action="store_true",
  2813. help="only print out a split plan and exit, without writing any new files",
  2814. )
  2815. parser.add_argument(
  2816. "--no-tensor-first-split", action="store_true",
  2817. help="do not add tensors to the first split (disabled by default)"
  2818. )
  2819. return parser.parse_args()
  2820. def split_str_to_n_bytes(split_str: str) -> int:
  2821. if split_str.endswith("K"):
  2822. n = int(split_str[:-1]) * 1000
  2823. elif split_str.endswith("M"):
  2824. n = int(split_str[:-1]) * 1000 * 1000
  2825. elif split_str.endswith("G"):
  2826. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  2827. elif split_str.isnumeric():
  2828. n = int(split_str)
  2829. else:
  2830. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  2831. if n < 0:
  2832. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  2833. return n
  2834. def main() -> None:
  2835. args = parse_args()
  2836. logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
  2837. dir_model = args.model
  2838. if not dir_model.is_dir():
  2839. logger.error(f'Error: {args.model} is not a directory')
  2840. sys.exit(1)
  2841. ftype_map: dict[str, gguf.LlamaFileType] = {
  2842. "f32": gguf.LlamaFileType.ALL_F32,
  2843. "f16": gguf.LlamaFileType.MOSTLY_F16,
  2844. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  2845. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  2846. "auto": gguf.LlamaFileType.GUESSED,
  2847. }
  2848. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  2849. if args.use_temp_file and is_split:
  2850. logger.error("Error: Cannot use temp file when splitting")
  2851. sys.exit(1)
  2852. if args.outfile is not None:
  2853. fname_out = args.outfile
  2854. else:
  2855. # output in the same directory as the model by default
  2856. fname_out = dir_model / 'ggml-model-{ftype}.gguf'
  2857. logger.info(f"Loading model: {dir_model.name}")
  2858. hparams = Model.load_hparams(dir_model)
  2859. with torch.inference_mode():
  2860. try:
  2861. model_class = Model.from_model_architecture(hparams["architectures"][0])
  2862. except NotImplementedError:
  2863. logger.error(f"Model {hparams['architectures'][0]} is not supported")
  2864. sys.exit(1)
  2865. model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian, args.use_temp_file,
  2866. args.no_lazy, args.model_name, split_max_tensors=args.split_max_tensors,
  2867. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  2868. small_first_shard=args.no_tensor_first_split)
  2869. logger.info("Set model parameters")
  2870. model_instance.set_gguf_parameters()
  2871. logger.info("Set model tokenizer")
  2872. model_instance.set_vocab()
  2873. model_instance.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  2874. if args.vocab_only:
  2875. logger.info("Exporting model vocab...")
  2876. model_instance.write_vocab()
  2877. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  2878. else:
  2879. logger.info("Exporting model...")
  2880. model_instance.write()
  2881. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  2882. logger.info(f"Model successfully exported to {out_path}")
  2883. if __name__ == '__main__':
  2884. main()