llava-utils.h 6.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145
  1. #pragma once
  2. // this one and clip lib will be eventually merged to a single lib, let's keep it this way for now
  3. #include "common.h"
  4. #include "llama.h"
  5. #include <cstdio>
  6. #include <cstdlib>
  7. #include <vector>
  8. inline bool eval_image_embd(llama_context * ctx_llama, float * embd, int N, int n_batch, int * n_past) {
  9. int n_embd = llama_n_embd(llama_get_model(ctx_llama));
  10. for (int i = 0; i < N; i += n_batch) {
  11. int n_eval = N - i;
  12. if (n_eval > n_batch) {
  13. n_eval = n_batch;
  14. }
  15. llama_batch batch = {int32_t(n_eval), nullptr, (embd+i*n_embd), nullptr, nullptr, nullptr, nullptr, *n_past, 1, 0, };
  16. if (llama_decode(ctx_llama, batch)) {
  17. fprintf(stderr, "%s : failed to eval\n", __func__);
  18. return false;
  19. }
  20. *n_past += n_eval;
  21. }
  22. return true;
  23. }
  24. inline bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_token> tokens, int n_batch, int * n_past) {
  25. int N = (int) tokens.size();
  26. for (int i = 0; i < N; i += n_batch) {
  27. int n_eval = (int) tokens.size() - i;
  28. if (n_eval > n_batch) {
  29. n_eval = n_batch;
  30. }
  31. if (llama_decode(ctx_llama, llama_batch_get_one(&tokens[i], n_eval, *n_past, 0))) {
  32. fprintf(stderr, "%s : failed to eval\n", __func__);
  33. return false;
  34. }
  35. *n_past += n_eval;
  36. }
  37. return true;
  38. }
  39. inline bool eval_id(struct llama_context * ctx_llama, int id, int * n_past) {
  40. std::vector<llama_token> tokens;
  41. tokens.push_back(id);
  42. return eval_tokens(ctx_llama, tokens, 1, n_past);
  43. }
  44. inline bool eval_string(struct llama_context * ctx_llama, const char* str, int n_batch, int * n_past, bool add_bos){
  45. std::string str2 = str;
  46. std::vector<llama_token> embd_inp = ::llama_tokenize(ctx_llama, str2, add_bos);
  47. eval_tokens(ctx_llama, embd_inp, n_batch, n_past);
  48. return true;
  49. }
  50. // TODO: use common/sampling.h
  51. inline llama_token sample_id(llama_context * ctx_llama, gpt_params & params) {
  52. // out of user input, sample next token
  53. const float temp = params.sampling_params.temp;
  54. const int32_t top_k = params.sampling_params.top_k <= 0 ? llama_n_vocab(llama_get_model(ctx_llama)) : params.sampling_params.top_k;
  55. const float top_p = params.sampling_params.top_p;
  56. const float tfs_z = params.sampling_params.tfs_z;
  57. const float typical_p = params.sampling_params.typical_p;
  58. // const int32_t repeat_last_n = params.sampling_params.repeat_last_n < 0 ? n_ctx : params.sampling_params.repeat_last_n;
  59. // const float repeat_penalty = params.sampling_params.repeat_penalty;
  60. // const float alpha_presence = params.sampling_params.presence_penalty;
  61. // const float alpha_frequency = params.sampling_params.frequency_penalty;
  62. const int mirostat = params.sampling_params.mirostat;
  63. const float mirostat_tau = params.sampling_params.mirostat_tau;
  64. const float mirostat_eta = params.sampling_params.mirostat_eta;
  65. // const bool penalize_nl = params.sampling_params.penalize_nl;
  66. llama_token id = 0;
  67. {
  68. auto logits = llama_get_logits(ctx_llama);
  69. auto n_vocab = llama_n_vocab(llama_get_model(ctx_llama));
  70. // Apply params.logit_bias map
  71. for (auto it = params.sampling_params.logit_bias.begin(); it != params.sampling_params.logit_bias.end(); it++) {
  72. logits[it->first] += it->second;
  73. }
  74. std::vector<llama_token_data> candidates;
  75. candidates.reserve(n_vocab);
  76. for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
  77. candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
  78. }
  79. llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
  80. // TODO: Apply penalties
  81. // float nl_logit = logits[llama_token_nl(ctx)];
  82. // auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx);
  83. // llama_sample_repetition_penalty(ctx, &candidates_p,
  84. // last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
  85. // last_n_repeat, repeat_penalty);
  86. // llama_sample_frequency_and_presence_penalties(ctx, &candidates_p,
  87. // last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
  88. // last_n_repeat, alpha_frequency, alpha_presence);
  89. // if (!penalize_nl) {
  90. // logits[llama_token_nl(ctx)] = nl_logit;
  91. // }
  92. if (temp <= 0) {
  93. // Greedy sampling
  94. id = llama_sample_token_greedy(ctx_llama, &candidates_p);
  95. } else {
  96. if (mirostat == 1) {
  97. static float mirostat_mu = 2.0f * mirostat_tau;
  98. const int mirostat_m = 100;
  99. llama_sample_temp(ctx_llama, &candidates_p, temp);
  100. id = llama_sample_token_mirostat(ctx_llama, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
  101. } else if (mirostat == 2) {
  102. static float mirostat_mu = 2.0f * mirostat_tau;
  103. llama_sample_temp(ctx_llama, &candidates_p, temp);
  104. id = llama_sample_token_mirostat_v2(ctx_llama, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu);
  105. } else {
  106. // Temperature sampling
  107. llama_sample_top_k(ctx_llama, &candidates_p, top_k, 1);
  108. llama_sample_tail_free(ctx_llama, &candidates_p, tfs_z, 1);
  109. llama_sample_typical(ctx_llama, &candidates_p, typical_p, 1);
  110. llama_sample_top_p(ctx_llama, &candidates_p, top_p, 1);
  111. llama_sample_temp(ctx_llama, &candidates_p, temp);
  112. id = llama_sample_token(ctx_llama, &candidates_p);
  113. }
  114. }
  115. }
  116. return id;
  117. }
  118. inline const char * sample(struct llama_context * ctx_llama, gpt_params & params, int * n_past) {
  119. int id = sample_id(ctx_llama, params);
  120. static std::string ret;
  121. if (id == llama_token_eos(ctx_llama)) {
  122. ret = "</s>";
  123. } else {
  124. ret = llama_token_to_piece(ctx_llama, id);
  125. }
  126. eval_id(ctx_llama, id, n_past);
  127. return ret.c_str();
  128. }