llama-bench.cpp 44 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283
  1. #include <algorithm>
  2. #include <array>
  3. #include <cassert>
  4. #include <chrono>
  5. #include <cinttypes>
  6. #include <clocale>
  7. #include <cmath>
  8. #include <cstdio>
  9. #include <cstring>
  10. #include <ctime>
  11. #include <cstdlib>
  12. #include <iterator>
  13. #include <map>
  14. #include <numeric>
  15. #include <regex>
  16. #include <sstream>
  17. #include <string>
  18. #include <vector>
  19. #include "ggml.h"
  20. #include "llama.h"
  21. #include "common.h"
  22. #include "ggml-cuda.h"
  23. #include "ggml-sycl.h"
  24. // utils
  25. static uint64_t get_time_ns() {
  26. using clock = std::chrono::high_resolution_clock;
  27. return std::chrono::nanoseconds(clock::now().time_since_epoch()).count();
  28. }
  29. template<class T>
  30. static std::string join(const std::vector<T> & values, const std::string & delim) {
  31. std::ostringstream str;
  32. for (size_t i = 0; i < values.size(); i++) {
  33. str << values[i];
  34. if (i < values.size() - 1) {
  35. str << delim;
  36. }
  37. }
  38. return str.str();
  39. }
  40. template<class T>
  41. static std::vector<T> split(const std::string & str, char delim) {
  42. std::vector<T> values;
  43. std::istringstream str_stream(str);
  44. std::string token;
  45. while (std::getline(str_stream, token, delim)) {
  46. T value;
  47. std::istringstream token_stream(token);
  48. token_stream >> value;
  49. values.push_back(value);
  50. }
  51. return values;
  52. }
  53. template<typename T, typename F>
  54. static std::vector<std::string> transform_to_str(const std::vector<T> & values, F f) {
  55. std::vector<std::string> str_values;
  56. std::transform(values.begin(), values.end(), std::back_inserter(str_values), f);
  57. return str_values;
  58. }
  59. template<typename T>
  60. static T avg(const std::vector<T> & v) {
  61. if (v.empty()) {
  62. return 0;
  63. }
  64. T sum = std::accumulate(v.begin(), v.end(), T(0));
  65. return sum / (T)v.size();
  66. }
  67. template<typename T>
  68. static T stdev(const std::vector<T> & v) {
  69. if (v.size() <= 1) {
  70. return 0;
  71. }
  72. T mean = avg(v);
  73. T sq_sum = std::inner_product(v.begin(), v.end(), v.begin(), T(0));
  74. T stdev = std::sqrt(sq_sum / (T)(v.size() - 1) - mean * mean * (T)v.size() / (T)(v.size() - 1));
  75. return stdev;
  76. }
  77. static std::string get_cpu_info() {
  78. std::string id;
  79. #ifdef __linux__
  80. FILE * f = fopen("/proc/cpuinfo", "r");
  81. if (f) {
  82. char buf[1024];
  83. while (fgets(buf, sizeof(buf), f)) {
  84. if (strncmp(buf, "model name", 10) == 0) {
  85. char * p = strchr(buf, ':');
  86. if (p) {
  87. p++;
  88. while (std::isspace(*p)) {
  89. p++;
  90. }
  91. while (std::isspace(p[strlen(p) - 1])) {
  92. p[strlen(p) - 1] = '\0';
  93. }
  94. id = p;
  95. break;
  96. }
  97. }
  98. }
  99. fclose(f);
  100. }
  101. #endif
  102. // TODO: other platforms
  103. return id;
  104. }
  105. static std::string get_gpu_info() {
  106. std::string id;
  107. #ifdef GGML_USE_CUBLAS
  108. int count = ggml_cuda_get_device_count();
  109. for (int i = 0; i < count; i++) {
  110. char buf[128];
  111. ggml_cuda_get_device_description(i, buf, sizeof(buf));
  112. id += buf;
  113. if (i < count - 1) {
  114. id += "/";
  115. }
  116. }
  117. #endif
  118. #ifdef GGML_USE_SYCL
  119. int count = ggml_backend_sycl_get_device_count();
  120. for (int i = 0; i < count; i++) {
  121. char buf[128];
  122. ggml_sycl_get_device_description(i, buf, sizeof(buf));
  123. id += buf;
  124. if (i < count - 1) {
  125. id += "/";
  126. }
  127. }
  128. #endif
  129. // TODO: other backends
  130. return id;
  131. }
  132. // command line params
  133. enum output_formats {CSV, JSON, MARKDOWN, SQL};
  134. static const char * output_format_str(output_formats format) {
  135. switch (format) {
  136. case CSV: return "csv";
  137. case JSON: return "json";
  138. case MARKDOWN: return "md";
  139. case SQL: return "sql";
  140. default: GGML_ASSERT(!"invalid output format");
  141. }
  142. }
  143. static const char * split_mode_str(llama_split_mode mode) {
  144. switch (mode) {
  145. case LLAMA_SPLIT_MODE_NONE: return "none";
  146. case LLAMA_SPLIT_MODE_LAYER: return "layer";
  147. case LLAMA_SPLIT_MODE_ROW: return "row";
  148. default: GGML_ASSERT(!"invalid split mode");
  149. }
  150. }
  151. struct cmd_params {
  152. std::vector<std::string> model;
  153. std::vector<int> n_prompt;
  154. std::vector<int> n_gen;
  155. std::vector<int> n_batch;
  156. std::vector<int> n_ubatch;
  157. std::vector<ggml_type> type_k;
  158. std::vector<ggml_type> type_v;
  159. std::vector<int> n_threads;
  160. std::vector<int> n_gpu_layers;
  161. std::vector<llama_split_mode> split_mode;
  162. std::vector<int> main_gpu;
  163. std::vector<bool> no_kv_offload;
  164. std::vector<std::vector<float>> tensor_split;
  165. std::vector<bool> use_mmap;
  166. std::vector<bool> embeddings;
  167. int reps;
  168. bool verbose;
  169. output_formats output_format;
  170. };
  171. static const cmd_params cmd_params_defaults = {
  172. /* model */ {"models/7B/ggml-model-q4_0.gguf"},
  173. /* n_prompt */ {512},
  174. /* n_gen */ {128},
  175. /* n_batch */ {2048},
  176. /* n_ubatch */ {512},
  177. /* type_k */ {GGML_TYPE_F16},
  178. /* type_v */ {GGML_TYPE_F16},
  179. /* n_threads */ {get_num_physical_cores()},
  180. /* n_gpu_layers */ {99},
  181. /* split_mode */ {LLAMA_SPLIT_MODE_LAYER},
  182. /* main_gpu */ {0},
  183. /* no_kv_offload */ {false},
  184. /* tensor_split */ {std::vector<float>(llama_max_devices(), 0.0f)},
  185. /* use_mmap */ {true},
  186. /* embeddings */ {false},
  187. /* reps */ 5,
  188. /* verbose */ false,
  189. /* output_format */ MARKDOWN
  190. };
  191. static void print_usage(int /* argc */, char ** argv) {
  192. printf("usage: %s [options]\n", argv[0]);
  193. printf("\n");
  194. printf("options:\n");
  195. printf(" -h, --help\n");
  196. printf(" -m, --model <filename> (default: %s)\n", join(cmd_params_defaults.model, ",").c_str());
  197. printf(" -p, --n-prompt <n> (default: %s)\n", join(cmd_params_defaults.n_prompt, ",").c_str());
  198. printf(" -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
  199. printf(" -b, --batch-size <n> (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str());
  200. printf(" -ub N, --ubatch-size <n> (default: %s)\n", join(cmd_params_defaults.n_ubatch, ",").c_str());
  201. printf(" -ctk <t>, --cache-type-k <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
  202. printf(" -ctv <t>, --cache-type-v <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
  203. printf(" -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
  204. printf(" -ngl, --n-gpu-layers <n> (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
  205. printf(" -sm, --split-mode <none|layer|row> (default: %s)\n", join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str());
  206. printf(" -mg, --main-gpu <i> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
  207. printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n", join(cmd_params_defaults.no_kv_offload, ",").c_str());
  208. printf(" -mmp, --mmap <0|1> (default: %s)\n", join(cmd_params_defaults.use_mmap, ",").c_str());
  209. printf(" -embd, --embeddings <0|1> (default: %s)\n", join(cmd_params_defaults.embeddings, ",").c_str());
  210. printf(" -ts, --tensor-split <ts0/ts1/..> (default: 0)\n");
  211. printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
  212. printf(" -o, --output <csv|json|md|sql> (default: %s)\n", output_format_str(cmd_params_defaults.output_format));
  213. printf(" -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0");
  214. printf("\n");
  215. printf("Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter multiple times.\n");
  216. }
  217. static ggml_type ggml_type_from_name(const std::string & s) {
  218. if (s == "f16") {
  219. return GGML_TYPE_F16;
  220. }
  221. if (s == "q8_0") {
  222. return GGML_TYPE_Q8_0;
  223. }
  224. if (s == "q4_0") {
  225. return GGML_TYPE_Q4_0;
  226. }
  227. if (s == "q4_1") {
  228. return GGML_TYPE_Q4_1;
  229. }
  230. if (s == "q5_0") {
  231. return GGML_TYPE_Q5_0;
  232. }
  233. if (s == "q5_1") {
  234. return GGML_TYPE_Q5_1;
  235. }
  236. return GGML_TYPE_COUNT;
  237. }
  238. static cmd_params parse_cmd_params(int argc, char ** argv) {
  239. cmd_params params;
  240. std::string arg;
  241. bool invalid_param = false;
  242. const std::string arg_prefix = "--";
  243. const char split_delim = ',';
  244. params.verbose = cmd_params_defaults.verbose;
  245. params.output_format = cmd_params_defaults.output_format;
  246. params.reps = cmd_params_defaults.reps;
  247. for (int i = 1; i < argc; i++) {
  248. arg = argv[i];
  249. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  250. std::replace(arg.begin(), arg.end(), '_', '-');
  251. }
  252. if (arg == "-h" || arg == "--help") {
  253. print_usage(argc, argv);
  254. exit(0);
  255. } else if (arg == "-m" || arg == "--model") {
  256. if (++i >= argc) {
  257. invalid_param = true;
  258. break;
  259. }
  260. auto p = split<std::string>(argv[i], split_delim);
  261. params.model.insert(params.model.end(), p.begin(), p.end());
  262. } else if (arg == "-p" || arg == "--n-prompt") {
  263. if (++i >= argc) {
  264. invalid_param = true;
  265. break;
  266. }
  267. auto p = split<int>(argv[i], split_delim);
  268. params.n_prompt.insert(params.n_prompt.end(), p.begin(), p.end());
  269. } else if (arg == "-n" || arg == "--n-gen") {
  270. if (++i >= argc) {
  271. invalid_param = true;
  272. break;
  273. }
  274. auto p = split<int>(argv[i], split_delim);
  275. params.n_gen.insert(params.n_gen.end(), p.begin(), p.end());
  276. } else if (arg == "-b" || arg == "--batch-size") {
  277. if (++i >= argc) {
  278. invalid_param = true;
  279. break;
  280. }
  281. auto p = split<int>(argv[i], split_delim);
  282. params.n_batch.insert(params.n_batch.end(), p.begin(), p.end());
  283. } else if (arg == "-ub" || arg == "--ubatch-size") {
  284. if (++i >= argc) {
  285. invalid_param = true;
  286. break;
  287. }
  288. auto p = split<int>(argv[i], split_delim);
  289. params.n_ubatch.insert(params.n_ubatch.end(), p.begin(), p.end());
  290. } else if (arg == "-ctk" || arg == "--cache-type-k") {
  291. if (++i >= argc) {
  292. invalid_param = true;
  293. break;
  294. }
  295. auto p = split<std::string>(argv[i], split_delim);
  296. std::vector<ggml_type> types;
  297. for (const auto & t : p) {
  298. ggml_type gt = ggml_type_from_name(t);
  299. if (gt == GGML_TYPE_COUNT) {
  300. invalid_param = true;
  301. break;
  302. }
  303. types.push_back(gt);
  304. }
  305. params.type_k.insert(params.type_k.end(), types.begin(), types.end());
  306. } else if (arg == "-ctv" || arg == "--cache-type-v") {
  307. if (++i >= argc) {
  308. invalid_param = true;
  309. break;
  310. }
  311. auto p = split<std::string>(argv[i], split_delim);
  312. std::vector<ggml_type> types;
  313. for (const auto & t : p) {
  314. ggml_type gt = ggml_type_from_name(t);
  315. if (gt == GGML_TYPE_COUNT) {
  316. invalid_param = true;
  317. break;
  318. }
  319. types.push_back(gt);
  320. }
  321. params.type_v.insert(params.type_v.end(), types.begin(), types.end());
  322. } else if (arg == "-t" || arg == "--threads") {
  323. if (++i >= argc) {
  324. invalid_param = true;
  325. break;
  326. }
  327. auto p = split<int>(argv[i], split_delim);
  328. params.n_threads.insert(params.n_threads.end(), p.begin(), p.end());
  329. } else if (arg == "-ngl" || arg == "--n-gpu-layers") {
  330. if (++i >= argc) {
  331. invalid_param = true;
  332. break;
  333. }
  334. auto p = split<int>(argv[i], split_delim);
  335. params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end());
  336. } else if (arg == "-sm" || arg == "--split-mode") {
  337. if (++i >= argc) {
  338. invalid_param = true;
  339. break;
  340. }
  341. auto p = split<std::string>(argv[i], split_delim);
  342. std::vector<llama_split_mode> modes;
  343. for (const auto & m : p) {
  344. llama_split_mode mode;
  345. if (m == "none") {
  346. mode = LLAMA_SPLIT_MODE_NONE;
  347. } else if (m == "layer") {
  348. mode = LLAMA_SPLIT_MODE_LAYER;
  349. } else if (m == "row") {
  350. mode = LLAMA_SPLIT_MODE_ROW;
  351. } else {
  352. invalid_param = true;
  353. break;
  354. }
  355. modes.push_back(mode);
  356. }
  357. params.split_mode.insert(params.split_mode.end(), modes.begin(), modes.end());
  358. } else if (arg == "-mg" || arg == "--main-gpu") {
  359. if (++i >= argc) {
  360. invalid_param = true;
  361. break;
  362. }
  363. params.main_gpu = split<int>(argv[i], split_delim);
  364. } else if (arg == "-nkvo" || arg == "--no-kv-offload") {
  365. if (++i >= argc) {
  366. invalid_param = true;
  367. break;
  368. }
  369. auto p = split<bool>(argv[i], split_delim);
  370. params.no_kv_offload.insert(params.no_kv_offload.end(), p.begin(), p.end());
  371. } else if (arg == "-mmp" || arg == "--mmap") {
  372. if (++i >= argc) {
  373. invalid_param = true;
  374. break;
  375. }
  376. auto p = split<bool>(argv[i], split_delim);
  377. params.use_mmap.insert(params.use_mmap.end(), p.begin(), p.end());
  378. } else if (arg == "-embd" || arg == "--embeddings") {
  379. if (++i >= argc) {
  380. invalid_param = true;
  381. break;
  382. }
  383. auto p = split<bool>(argv[i], split_delim);
  384. params.embeddings.insert(params.embeddings.end(), p.begin(), p.end());
  385. } else if (arg == "-ts" || arg == "--tensor-split") {
  386. if (++i >= argc) {
  387. invalid_param = true;
  388. break;
  389. }
  390. for (auto ts : split<std::string>(argv[i], split_delim)) {
  391. // split string by ; and /
  392. const std::regex regex{R"([;/]+)"};
  393. std::sregex_token_iterator it{ts.begin(), ts.end(), regex, -1};
  394. std::vector<std::string> split_arg{it, {}};
  395. GGML_ASSERT(split_arg.size() <= llama_max_devices());
  396. std::vector<float> tensor_split(llama_max_devices());
  397. for (size_t i = 0; i < llama_max_devices(); ++i) {
  398. if (i < split_arg.size()) {
  399. tensor_split[i] = std::stof(split_arg[i]);
  400. } else {
  401. tensor_split[i] = 0.0f;
  402. }
  403. }
  404. params.tensor_split.push_back(tensor_split);
  405. }
  406. } else if (arg == "-r" || arg == "--repetitions") {
  407. if (++i >= argc) {
  408. invalid_param = true;
  409. break;
  410. }
  411. params.reps = std::stoi(argv[i]);
  412. } else if (arg == "-o" || arg == "--output") {
  413. if (++i >= argc) {
  414. invalid_param = true;
  415. break;
  416. }
  417. if (argv[i] == std::string("csv")) {
  418. params.output_format = CSV;
  419. } else if (argv[i] == std::string("json")) {
  420. params.output_format = JSON;
  421. } else if (argv[i] == std::string("md")) {
  422. params.output_format = MARKDOWN;
  423. } else if (argv[i] == std::string("sql")) {
  424. params.output_format = SQL;
  425. } else {
  426. invalid_param = true;
  427. break;
  428. }
  429. } else if (arg == "-v" || arg == "--verbose") {
  430. params.verbose = true;
  431. } else {
  432. invalid_param = true;
  433. break;
  434. }
  435. }
  436. if (invalid_param) {
  437. fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
  438. print_usage(argc, argv);
  439. exit(1);
  440. }
  441. // set defaults
  442. if (params.model.empty()) { params.model = cmd_params_defaults.model; }
  443. if (params.n_prompt.empty()) { params.n_prompt = cmd_params_defaults.n_prompt; }
  444. if (params.n_gen.empty()) { params.n_gen = cmd_params_defaults.n_gen; }
  445. if (params.n_batch.empty()) { params.n_batch = cmd_params_defaults.n_batch; }
  446. if (params.n_ubatch.empty()) { params.n_ubatch = cmd_params_defaults.n_ubatch; }
  447. if (params.type_k.empty()) { params.type_k = cmd_params_defaults.type_k; }
  448. if (params.type_v.empty()) { params.type_v = cmd_params_defaults.type_v; }
  449. if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; }
  450. if (params.split_mode.empty()) { params.split_mode = cmd_params_defaults.split_mode; }
  451. if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; }
  452. if (params.no_kv_offload.empty()){ params.no_kv_offload = cmd_params_defaults.no_kv_offload; }
  453. if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; }
  454. if (params.use_mmap.empty()) { params.use_mmap = cmd_params_defaults.use_mmap; }
  455. if (params.embeddings.empty()) { params.embeddings = cmd_params_defaults.embeddings; }
  456. if (params.n_threads.empty()) { params.n_threads = cmd_params_defaults.n_threads; }
  457. return params;
  458. }
  459. struct cmd_params_instance {
  460. std::string model;
  461. int n_prompt;
  462. int n_gen;
  463. int n_batch;
  464. int n_ubatch;
  465. ggml_type type_k;
  466. ggml_type type_v;
  467. int n_threads;
  468. int n_gpu_layers;
  469. llama_split_mode split_mode;
  470. int main_gpu;
  471. bool no_kv_offload;
  472. std::vector<float> tensor_split;
  473. bool use_mmap;
  474. bool embeddings;
  475. llama_model_params to_llama_mparams() const {
  476. llama_model_params mparams = llama_model_default_params();
  477. mparams.n_gpu_layers = n_gpu_layers;
  478. mparams.split_mode = split_mode;
  479. mparams.main_gpu = main_gpu;
  480. mparams.tensor_split = tensor_split.data();
  481. mparams.use_mmap = use_mmap;
  482. return mparams;
  483. }
  484. bool equal_mparams(const cmd_params_instance & other) const {
  485. return model == other.model &&
  486. n_gpu_layers == other.n_gpu_layers &&
  487. split_mode == other.split_mode &&
  488. main_gpu == other.main_gpu &&
  489. use_mmap == other.use_mmap &&
  490. tensor_split == other.tensor_split;
  491. }
  492. llama_context_params to_llama_cparams() const {
  493. llama_context_params cparams = llama_context_default_params();
  494. cparams.n_ctx = n_prompt + n_gen;
  495. cparams.n_batch = n_batch;
  496. cparams.n_ubatch = n_ubatch;
  497. cparams.type_k = type_k;
  498. cparams.type_v = type_v;
  499. cparams.offload_kqv = !no_kv_offload;
  500. cparams.embeddings = embeddings;
  501. return cparams;
  502. }
  503. };
  504. static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_params & params) {
  505. std::vector<cmd_params_instance> instances;
  506. // this ordering minimizes the number of times that each model needs to be reloaded
  507. for (const auto & m : params.model)
  508. for (const auto & nl : params.n_gpu_layers)
  509. for (const auto & sm : params.split_mode)
  510. for (const auto & mg : params.main_gpu)
  511. for (const auto & ts : params.tensor_split)
  512. for (const auto & mmp : params.use_mmap)
  513. for (const auto & embd : params.embeddings)
  514. for (const auto & nb : params.n_batch)
  515. for (const auto & nub : params.n_ubatch)
  516. for (const auto & tk : params.type_k)
  517. for (const auto & tv : params.type_v)
  518. for (const auto & nkvo : params.no_kv_offload)
  519. for (const auto & nt : params.n_threads) {
  520. for (const auto & n_prompt : params.n_prompt) {
  521. if (n_prompt == 0) {
  522. continue;
  523. }
  524. cmd_params_instance instance = {
  525. /* .model = */ m,
  526. /* .n_prompt = */ n_prompt,
  527. /* .n_gen = */ 0,
  528. /* .n_batch = */ nb,
  529. /* .n_ubatch = */ nub,
  530. /* .type_k = */ tk,
  531. /* .type_v = */ tv,
  532. /* .n_threads = */ nt,
  533. /* .n_gpu_layers = */ nl,
  534. /* .split_mode = */ sm,
  535. /* .main_gpu = */ mg,
  536. /* .no_kv_offload= */ nkvo,
  537. /* .tensor_split = */ ts,
  538. /* .use_mmap = */ mmp,
  539. /* .embeddings = */ embd,
  540. };
  541. instances.push_back(instance);
  542. }
  543. for (const auto & n_gen : params.n_gen) {
  544. if (n_gen == 0) {
  545. continue;
  546. }
  547. cmd_params_instance instance = {
  548. /* .model = */ m,
  549. /* .n_prompt = */ 0,
  550. /* .n_gen = */ n_gen,
  551. /* .n_batch = */ nb,
  552. /* .n_ubatch = */ nub,
  553. /* .type_k = */ tk,
  554. /* .type_v = */ tv,
  555. /* .n_threads = */ nt,
  556. /* .n_gpu_layers = */ nl,
  557. /* .split_mode = */ sm,
  558. /* .main_gpu = */ mg,
  559. /* .no_kv_offload= */ nkvo,
  560. /* .tensor_split = */ ts,
  561. /* .use_mmap = */ mmp,
  562. /* .embeddings = */ embd,
  563. };
  564. instances.push_back(instance);
  565. }
  566. }
  567. return instances;
  568. }
  569. struct test {
  570. static const std::string build_commit;
  571. static const int build_number;
  572. static const bool cuda;
  573. static const bool opencl;
  574. static const bool vulkan;
  575. static const bool kompute;
  576. static const bool metal;
  577. static const bool sycl;
  578. static const bool gpu_blas;
  579. static const bool blas;
  580. static const std::string cpu_info;
  581. static const std::string gpu_info;
  582. std::string model_filename;
  583. std::string model_type;
  584. uint64_t model_size;
  585. uint64_t model_n_params;
  586. int n_batch;
  587. int n_ubatch;
  588. int n_threads;
  589. ggml_type type_k;
  590. ggml_type type_v;
  591. int n_gpu_layers;
  592. llama_split_mode split_mode;
  593. int main_gpu;
  594. bool no_kv_offload;
  595. std::vector<float> tensor_split;
  596. bool use_mmap;
  597. bool embeddings;
  598. int n_prompt;
  599. int n_gen;
  600. std::string test_time;
  601. std::vector<uint64_t> samples_ns;
  602. test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) {
  603. model_filename = inst.model;
  604. char buf[128];
  605. llama_model_desc(lmodel, buf, sizeof(buf));
  606. model_type = buf;
  607. model_size = llama_model_size(lmodel);
  608. model_n_params = llama_model_n_params(lmodel);
  609. n_batch = inst.n_batch;
  610. n_ubatch = inst.n_ubatch;
  611. n_threads = inst.n_threads;
  612. type_k = inst.type_k;
  613. type_v = inst.type_v;
  614. n_gpu_layers = inst.n_gpu_layers;
  615. split_mode = inst.split_mode;
  616. main_gpu = inst.main_gpu;
  617. no_kv_offload = inst.no_kv_offload;
  618. tensor_split = inst.tensor_split;
  619. use_mmap = inst.use_mmap;
  620. embeddings = inst.embeddings;
  621. n_prompt = inst.n_prompt;
  622. n_gen = inst.n_gen;
  623. // RFC 3339 date-time format
  624. time_t t = time(NULL);
  625. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  626. test_time = buf;
  627. (void) ctx;
  628. }
  629. uint64_t avg_ns() const {
  630. return ::avg(samples_ns);
  631. }
  632. uint64_t stdev_ns() const {
  633. return ::stdev(samples_ns);
  634. }
  635. std::vector<double> get_ts() const {
  636. int n_tokens = n_prompt + n_gen;
  637. std::vector<double> ts;
  638. std::transform(samples_ns.begin(), samples_ns.end(), std::back_inserter(ts), [n_tokens](uint64_t t) { return 1e9 * n_tokens / t; });
  639. return ts;
  640. }
  641. double avg_ts() const {
  642. return ::avg(get_ts());
  643. }
  644. double stdev_ts() const {
  645. return ::stdev(get_ts());
  646. }
  647. static std::string get_backend() {
  648. if (cuda) {
  649. return GGML_CUDA_NAME;
  650. }
  651. if (opencl) {
  652. return "OpenCL";
  653. }
  654. if (vulkan) {
  655. return "Vulkan";
  656. }
  657. if (kompute) {
  658. return "Kompute";
  659. }
  660. if (metal) {
  661. return "Metal";
  662. }
  663. if (sycl) {
  664. return GGML_SYCL_NAME;
  665. }
  666. if (gpu_blas) {
  667. return "GPU BLAS";
  668. }
  669. if (blas) {
  670. return "BLAS";
  671. }
  672. return "CPU";
  673. }
  674. static const std::vector<std::string> & get_fields() {
  675. static const std::vector<std::string> fields = {
  676. "build_commit", "build_number",
  677. "cuda", "opencl", "vulkan", "kompute", "metal", "sycl", "gpu_blas", "blas",
  678. "cpu_info", "gpu_info",
  679. "model_filename", "model_type", "model_size", "model_n_params",
  680. "n_batch", "n_ubatch",
  681. "n_threads", "type_k", "type_v",
  682. "n_gpu_layers", "split_mode",
  683. "main_gpu", "no_kv_offload",
  684. "tensor_split", "use_mmap", "embeddings",
  685. "n_prompt", "n_gen", "test_time",
  686. "avg_ns", "stddev_ns",
  687. "avg_ts", "stddev_ts"
  688. };
  689. return fields;
  690. }
  691. enum field_type {STRING, BOOL, INT, FLOAT};
  692. static field_type get_field_type(const std::string & field) {
  693. if (field == "build_number" || field == "n_batch" || field == "n_ubatch" ||
  694. field == "n_threads" ||
  695. field == "model_size" || field == "model_n_params" ||
  696. field == "n_gpu_layers" || field == "main_gpu" ||
  697. field == "n_prompt" || field == "n_gen" ||
  698. field == "avg_ns" || field == "stddev_ns") {
  699. return INT;
  700. }
  701. if (field == "cuda" || field == "opencl" || field == "vulkan" || field == "kompute" || field == "metal" ||
  702. field == "gpu_blas" || field == "blas" || field == "sycl" ||field == "f16_kv" || field == "no_kv_offload" ||
  703. field == "use_mmap" || field == "embeddings") {
  704. return BOOL;
  705. }
  706. if (field == "avg_ts" || field == "stddev_ts") {
  707. return FLOAT;
  708. }
  709. return STRING;
  710. }
  711. std::vector<std::string> get_values() const {
  712. std::string tensor_split_str;
  713. int max_nonzero = 0;
  714. for (size_t i = 0; i < llama_max_devices(); i++) {
  715. if (tensor_split[i] > 0) {
  716. max_nonzero = i;
  717. }
  718. }
  719. for (int i = 0; i <= max_nonzero; i++) {
  720. char buf[32];
  721. snprintf(buf, sizeof(buf), "%.2f", tensor_split[i]);
  722. tensor_split_str += buf;
  723. if (i < max_nonzero) {
  724. tensor_split_str += "/";
  725. }
  726. }
  727. std::vector<std::string> values = {
  728. build_commit, std::to_string(build_number),
  729. std::to_string(cuda), std::to_string(opencl), std::to_string(vulkan), std::to_string(vulkan),
  730. std::to_string(metal), std::to_string(sycl), std::to_string(gpu_blas), std::to_string(blas),
  731. cpu_info, gpu_info,
  732. model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params),
  733. std::to_string(n_batch), std::to_string(n_ubatch),
  734. std::to_string(n_threads), ggml_type_name(type_k), ggml_type_name(type_v),
  735. std::to_string(n_gpu_layers), split_mode_str(split_mode),
  736. std::to_string(main_gpu), std::to_string(no_kv_offload),
  737. tensor_split_str, std::to_string(use_mmap), std::to_string(embeddings),
  738. std::to_string(n_prompt), std::to_string(n_gen), test_time,
  739. std::to_string(avg_ns()), std::to_string(stdev_ns()),
  740. std::to_string(avg_ts()), std::to_string(stdev_ts())
  741. };
  742. return values;
  743. }
  744. std::map<std::string, std::string> get_map() const {
  745. std::map<std::string, std::string> map;
  746. auto fields = get_fields();
  747. auto values = get_values();
  748. std::transform(fields.begin(), fields.end(), values.begin(),
  749. std::inserter(map, map.end()), std::make_pair<const std::string &, const std::string &>);
  750. return map;
  751. }
  752. };
  753. const std::string test::build_commit = LLAMA_COMMIT;
  754. const int test::build_number = LLAMA_BUILD_NUMBER;
  755. const bool test::cuda = !!ggml_cpu_has_cublas();
  756. const bool test::opencl = !!ggml_cpu_has_clblast();
  757. const bool test::vulkan = !!ggml_cpu_has_vulkan();
  758. const bool test::kompute = !!ggml_cpu_has_kompute();
  759. const bool test::metal = !!ggml_cpu_has_metal();
  760. const bool test::gpu_blas = !!ggml_cpu_has_gpublas();
  761. const bool test::blas = !!ggml_cpu_has_blas();
  762. const bool test::sycl = !!ggml_cpu_has_sycl();
  763. const std::string test::cpu_info = get_cpu_info();
  764. const std::string test::gpu_info = get_gpu_info();
  765. struct printer {
  766. virtual ~printer() {}
  767. FILE * fout;
  768. virtual void print_header(const cmd_params & params) { (void) params; }
  769. virtual void print_test(const test & t) = 0;
  770. virtual void print_footer() { }
  771. };
  772. struct csv_printer : public printer {
  773. static std::string escape_csv(const std::string & field) {
  774. std::string escaped = "\"";
  775. for (auto c : field) {
  776. if (c == '"') {
  777. escaped += "\"";
  778. }
  779. escaped += c;
  780. }
  781. escaped += "\"";
  782. return escaped;
  783. }
  784. void print_header(const cmd_params & params) override {
  785. std::vector<std::string> fields = test::get_fields();
  786. fprintf(fout, "%s\n", join(fields, ",").c_str());
  787. (void) params;
  788. }
  789. void print_test(const test & t) override {
  790. std::vector<std::string> values = t.get_values();
  791. std::transform(values.begin(), values.end(), values.begin(), escape_csv);
  792. fprintf(fout, "%s\n", join(values, ",").c_str());
  793. }
  794. };
  795. struct json_printer : public printer {
  796. bool first = true;
  797. static std::string escape_json(const std::string & value) {
  798. std::string escaped;
  799. for (auto c : value) {
  800. if (c == '"') {
  801. escaped += "\\\"";
  802. } else if (c == '\\') {
  803. escaped += "\\\\";
  804. } else if (c <= 0x1f) {
  805. char buf[8];
  806. snprintf(buf, sizeof(buf), "\\u%04x", c);
  807. escaped += buf;
  808. } else {
  809. escaped += c;
  810. }
  811. }
  812. return escaped;
  813. }
  814. static std::string format_value(const std::string & field, const std::string & value) {
  815. switch (test::get_field_type(field)) {
  816. case test::STRING:
  817. return "\"" + escape_json(value) + "\"";
  818. case test::BOOL:
  819. return value == "0" ? "false" : "true";
  820. default:
  821. return value;
  822. }
  823. }
  824. void print_header(const cmd_params & params) override {
  825. fprintf(fout, "[\n");
  826. (void) params;
  827. }
  828. void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
  829. assert(fields.size() == values.size());
  830. for (size_t i = 0; i < fields.size(); i++) {
  831. fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(), format_value(fields.at(i), values.at(i)).c_str());
  832. }
  833. }
  834. void print_test(const test & t) override {
  835. if (first) {
  836. first = false;
  837. } else {
  838. fprintf(fout, ",\n");
  839. }
  840. fprintf(fout, " {\n");
  841. print_fields(test::get_fields(), t.get_values());
  842. fprintf(fout, " \"samples_ns\": [ %s ],\n", join(t.samples_ns, ", ").c_str());
  843. fprintf(fout, " \"samples_ts\": [ %s ]\n", join(t.get_ts(), ", ").c_str());
  844. fprintf(fout, " }");
  845. fflush(fout);
  846. }
  847. void print_footer() override {
  848. fprintf(fout, "\n]\n");
  849. }
  850. };
  851. struct markdown_printer : public printer {
  852. std::vector<std::string> fields;
  853. static int get_field_width(const std::string & field) {
  854. if (field == "model") {
  855. return -30;
  856. }
  857. if (field == "t/s") {
  858. return 16;
  859. }
  860. if (field == "size" || field == "params") {
  861. return 10;
  862. }
  863. if (field == "n_gpu_layers") {
  864. return 3;
  865. }
  866. int width = std::max((int)field.length(), 10);
  867. if (test::get_field_type(field) == test::STRING) {
  868. return -width;
  869. }
  870. return width;
  871. }
  872. static std::string get_field_display_name(const std::string & field) {
  873. if (field == "n_gpu_layers") {
  874. return "ngl";
  875. }
  876. if (field == "split_mode") {
  877. return "sm";
  878. }
  879. if (field == "n_threads") {
  880. return "threads";
  881. }
  882. if (field == "no_kv_offload") {
  883. return "nkvo";
  884. }
  885. if (field == "use_mmap") {
  886. return "mmap";
  887. }
  888. if (field == "embeddings") {
  889. return "embd";
  890. }
  891. if (field == "tensor_split") {
  892. return "ts";
  893. }
  894. return field;
  895. }
  896. void print_header(const cmd_params & params) override {
  897. // select fields to print
  898. fields.emplace_back("model");
  899. fields.emplace_back("size");
  900. fields.emplace_back("params");
  901. fields.emplace_back("backend");
  902. bool is_cpu_backend = test::get_backend() == "CPU" || test::get_backend() == "BLAS";
  903. if (!is_cpu_backend) {
  904. fields.emplace_back("n_gpu_layers");
  905. }
  906. if (params.n_threads.size() > 1 || params.n_threads != cmd_params_defaults.n_threads || is_cpu_backend) {
  907. fields.emplace_back("n_threads");
  908. }
  909. if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) {
  910. fields.emplace_back("n_batch");
  911. }
  912. if (params.n_ubatch.size() > 1 || params.n_ubatch != cmd_params_defaults.n_ubatch) {
  913. fields.emplace_back("n_ubatch");
  914. }
  915. if (params.type_k.size() > 1 || params.type_k != cmd_params_defaults.type_k) {
  916. fields.emplace_back("type_k");
  917. }
  918. if (params.type_v.size() > 1 || params.type_v != cmd_params_defaults.type_v) {
  919. fields.emplace_back("type_v");
  920. }
  921. if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) {
  922. fields.emplace_back("main_gpu");
  923. }
  924. if (params.split_mode.size() > 1 || params.split_mode != cmd_params_defaults.split_mode) {
  925. fields.emplace_back("split_mode");
  926. }
  927. if (params.no_kv_offload.size() > 1 || params.no_kv_offload != cmd_params_defaults.no_kv_offload) {
  928. fields.emplace_back("no_kv_offload");
  929. }
  930. if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) {
  931. fields.emplace_back("tensor_split");
  932. }
  933. if (params.use_mmap.size() > 1 || params.use_mmap != cmd_params_defaults.use_mmap) {
  934. fields.emplace_back("use_mmap");
  935. }
  936. if (params.embeddings.size() > 1 || params.embeddings != cmd_params_defaults.embeddings) {
  937. fields.emplace_back("embeddings");
  938. }
  939. fields.emplace_back("test");
  940. fields.emplace_back("t/s");
  941. fprintf(fout, "|");
  942. for (const auto & field : fields) {
  943. fprintf(fout, " %*s |", get_field_width(field), get_field_display_name(field).c_str());
  944. }
  945. fprintf(fout, "\n");
  946. fprintf(fout, "|");
  947. for (const auto & field : fields) {
  948. int width = get_field_width(field);
  949. fprintf(fout, " %s%s |", std::string(std::abs(width) - 1, '-').c_str(), width > 0 ? ":" : "-");
  950. }
  951. fprintf(fout, "\n");
  952. }
  953. void print_test(const test & t) override {
  954. std::map<std::string, std::string> vmap = t.get_map();
  955. fprintf(fout, "|");
  956. for (const auto & field : fields) {
  957. std::string value;
  958. char buf[128];
  959. if (field == "model") {
  960. value = t.model_type;
  961. } else if (field == "size") {
  962. if (t.model_size < 1024*1024*1024) {
  963. snprintf(buf, sizeof(buf), "%.2f MiB", t.model_size / 1024.0 / 1024.0);
  964. } else {
  965. snprintf(buf, sizeof(buf), "%.2f GiB", t.model_size / 1024.0 / 1024.0 / 1024.0);
  966. }
  967. value = buf;
  968. } else if (field == "params") {
  969. if (t.model_n_params < 1000*1000*1000) {
  970. snprintf(buf, sizeof(buf), "%.2f M", t.model_n_params / 1e6);
  971. } else {
  972. snprintf(buf, sizeof(buf), "%.2f B", t.model_n_params / 1e9);
  973. }
  974. value = buf;
  975. } else if (field == "backend") {
  976. value = test::get_backend();
  977. } else if (field == "test") {
  978. if (t.n_prompt > 0 && t.n_gen == 0) {
  979. snprintf(buf, sizeof(buf), "pp %d", t.n_prompt);
  980. } else if (t.n_gen > 0 && t.n_prompt == 0) {
  981. snprintf(buf, sizeof(buf), "tg %d", t.n_gen);
  982. } else {
  983. assert(false);
  984. exit(1);
  985. }
  986. value = buf;
  987. } else if (field == "t/s") {
  988. snprintf(buf, sizeof(buf), "%.2f ± %.2f", t.avg_ts(), t.stdev_ts());
  989. value = buf;
  990. } else if (vmap.find(field) != vmap.end()) {
  991. value = vmap.at(field);
  992. } else {
  993. assert(false);
  994. exit(1);
  995. }
  996. int width = get_field_width(field);
  997. if (field == "t/s") {
  998. // HACK: the utf-8 character is 2 bytes
  999. width += 1;
  1000. }
  1001. fprintf(fout, " %*s |", width, value.c_str());
  1002. }
  1003. fprintf(fout, "\n");
  1004. }
  1005. void print_footer() override {
  1006. fprintf(fout, "\nbuild: %s (%d)\n", test::build_commit.c_str(), test::build_number);
  1007. }
  1008. };
  1009. struct sql_printer : public printer {
  1010. static std::string get_sql_field_type(const std::string & field) {
  1011. switch (test::get_field_type(field)) {
  1012. case test::STRING:
  1013. return "TEXT";
  1014. case test::BOOL:
  1015. case test::INT:
  1016. return "INTEGER";
  1017. case test::FLOAT:
  1018. return "REAL";
  1019. default:
  1020. assert(false);
  1021. exit(1);
  1022. }
  1023. }
  1024. void print_header(const cmd_params & params) override {
  1025. std::vector<std::string> fields = test::get_fields();
  1026. fprintf(fout, "CREATE TABLE IF NOT EXISTS test (\n");
  1027. for (size_t i = 0; i < fields.size(); i++) {
  1028. fprintf(fout, " %s %s%s\n", fields.at(i).c_str(), get_sql_field_type(fields.at(i)).c_str(), i < fields.size() - 1 ? "," : "");
  1029. }
  1030. fprintf(fout, ");\n");
  1031. fprintf(fout, "\n");
  1032. (void) params;
  1033. }
  1034. void print_test(const test & t) override {
  1035. fprintf(fout, "INSERT INTO test (%s) ", join(test::get_fields(), ", ").c_str());
  1036. fprintf(fout, "VALUES (");
  1037. std::vector<std::string> values = t.get_values();
  1038. for (size_t i = 0; i < values.size(); i++) {
  1039. fprintf(fout, "'%s'%s", values.at(i).c_str(), i < values.size() - 1 ? ", " : "");
  1040. }
  1041. fprintf(fout, ");\n");
  1042. }
  1043. };
  1044. static void test_prompt(llama_context * ctx, int n_prompt, int n_past, int n_batch, int n_threads) {
  1045. llama_set_n_threads(ctx, n_threads, n_threads);
  1046. const llama_model * model = llama_get_model(ctx);
  1047. const int32_t n_vocab = llama_n_vocab(model);
  1048. std::vector<llama_token> tokens(n_batch);
  1049. int n_processed = 0;
  1050. while (n_processed < n_prompt) {
  1051. int n_tokens = std::min(n_prompt - n_processed, n_batch);
  1052. tokens[0] = n_processed == 0 && llama_add_bos_token(model) ? llama_token_bos(model) : std::rand() % n_vocab;
  1053. for (int i = 1; i < n_tokens; i++) {
  1054. tokens[i] = std::rand() % n_vocab;
  1055. }
  1056. llama_decode(ctx, llama_batch_get_one(tokens.data(), n_tokens, n_past + n_processed, 0));
  1057. n_processed += n_tokens;
  1058. }
  1059. llama_synchronize(ctx);
  1060. }
  1061. static void test_gen(llama_context * ctx, int n_gen, int n_past, int n_threads) {
  1062. llama_set_n_threads(ctx, n_threads, n_threads);
  1063. const llama_model * model = llama_get_model(ctx);
  1064. const int32_t n_vocab = llama_n_vocab(model);
  1065. llama_token token = llama_add_bos_token(model) ? llama_token_bos(model) : std::rand() % n_vocab;
  1066. for (int i = 0; i < n_gen; i++) {
  1067. llama_decode(ctx, llama_batch_get_one(&token, 1, n_past + i, 0));
  1068. llama_synchronize(ctx);
  1069. token = std::rand() % n_vocab;
  1070. }
  1071. }
  1072. static void llama_null_log_callback(enum ggml_log_level level, const char * text, void * user_data) {
  1073. (void) level;
  1074. (void) text;
  1075. (void) user_data;
  1076. }
  1077. int main(int argc, char ** argv) {
  1078. // try to set locale for unicode characters in markdown
  1079. setlocale(LC_CTYPE, ".UTF-8");
  1080. #if !defined(NDEBUG)
  1081. fprintf(stderr, "warning: asserts enabled, performance may be affected\n");
  1082. #endif
  1083. #if (defined(_MSC_VER) && defined(_DEBUG)) || (!defined(_MSC_VER) && !defined(__OPTIMIZE__))
  1084. fprintf(stderr, "warning: debug build, performance may be affected\n");
  1085. #endif
  1086. #if defined(__SANITIZE_ADDRESS__) || defined(__SANITIZE_THREAD__)
  1087. fprintf(stderr, "warning: sanitizer enabled, performance may be affected\n");
  1088. #endif
  1089. cmd_params params = parse_cmd_params(argc, argv);
  1090. // initialize llama.cpp
  1091. if (!params.verbose) {
  1092. llama_log_set(llama_null_log_callback, NULL);
  1093. }
  1094. llama_backend_init();
  1095. // initialize printer
  1096. std::unique_ptr<printer> p;
  1097. switch (params.output_format) {
  1098. case CSV:
  1099. p.reset(new csv_printer());
  1100. break;
  1101. case JSON:
  1102. p.reset(new json_printer());
  1103. break;
  1104. case MARKDOWN:
  1105. p.reset(new markdown_printer());
  1106. break;
  1107. case SQL:
  1108. p.reset(new sql_printer());
  1109. break;
  1110. default:
  1111. assert(false);
  1112. exit(1);
  1113. }
  1114. p->fout = stdout;
  1115. p->print_header(params);
  1116. std::vector<cmd_params_instance> params_instances = get_cmd_params_instances(params);
  1117. llama_model * lmodel = nullptr;
  1118. const cmd_params_instance * prev_inst = nullptr;
  1119. for (const auto & inst : params_instances) {
  1120. // keep the same model between tests when possible
  1121. if (!lmodel || !prev_inst || !inst.equal_mparams(*prev_inst)) {
  1122. if (lmodel) {
  1123. llama_free_model(lmodel);
  1124. }
  1125. lmodel = llama_load_model_from_file(inst.model.c_str(), inst.to_llama_mparams());
  1126. if (lmodel == NULL) {
  1127. fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str());
  1128. return 1;
  1129. }
  1130. prev_inst = &inst;
  1131. }
  1132. llama_context * ctx = llama_new_context_with_model(lmodel, inst.to_llama_cparams());
  1133. if (ctx == NULL) {
  1134. fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, inst.model.c_str());
  1135. llama_free_model(lmodel);
  1136. return 1;
  1137. }
  1138. test t(inst, lmodel, ctx);
  1139. llama_kv_cache_clear(ctx);
  1140. // warmup run
  1141. if (t.n_prompt > 0) {
  1142. //test_prompt(ctx, std::min(t.n_batch, std::min(t.n_prompt, 32)), 0, t.n_batch, t.n_threads);
  1143. test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
  1144. }
  1145. if (t.n_gen > 0) {
  1146. test_gen(ctx, 1, 0, t.n_threads);
  1147. }
  1148. for (int i = 0; i < params.reps; i++) {
  1149. llama_kv_cache_clear(ctx);
  1150. uint64_t t_start = get_time_ns();
  1151. if (t.n_prompt > 0) {
  1152. test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
  1153. }
  1154. if (t.n_gen > 0) {
  1155. test_gen(ctx, t.n_gen, t.n_prompt, t.n_threads);
  1156. }
  1157. uint64_t t_ns = get_time_ns() - t_start;
  1158. t.samples_ns.push_back(t_ns);
  1159. }
  1160. p->print_test(t);
  1161. llama_print_timings(ctx);
  1162. llama_free(ctx);
  1163. }
  1164. llama_free_model(lmodel);
  1165. p->print_footer();
  1166. llama_backend_free();
  1167. return 0;
  1168. }