1
0

ggml.c 690 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437164381643916440164411644216443164441644516446164471644816449164501645116452164531645416455164561645716458164591646016461164621646316464164651646616467164681646916470164711647216473164741647516476164771647816479164801648116482164831648416485164861648716488164891649016491164921649316494164951649616497164981649916500165011650216503165041650516506165071650816509165101651116512165131651416515165161651716518165191652016521165221652316524165251652616527165281652916530165311653216533165341653516536165371653816539165401654116542165431654416545165461654716548165491655016551165521655316554165551655616557165581655916560165611656216563165641656516566165671656816569165701657116572165731657416575165761657716578165791658016581165821658316584165851658616587165881658916590165911659216593165941659516596165971659816599166001660116602166031660416605166061660716608166091661016611166121661316614166151661616617166181661916620166211662216623166241662516626166271662816629166301663116632166331663416635166361663716638166391664016641166421664316644166451664616647166481664916650166511665216653166541665516656166571665816659166601666116662166631666416665166661666716668166691667016671166721667316674166751667616677166781667916680166811668216683166841668516686166871668816689166901669116692166931669416695166961669716698166991670016701167021670316704167051670616707167081670916710167111671216713167141671516716167171671816719167201672116722167231672416725167261672716728167291673016731167321673316734167351673616737167381673916740167411674216743167441674516746167471674816749167501675116752167531675416755167561675716758167591676016761167621676316764167651676616767167681676916770167711677216773167741677516776167771677816779167801678116782167831678416785167861678716788167891679016791167921679316794167951679616797167981679916800168011680216803168041680516806168071680816809168101681116812168131681416815168161681716818168191682016821168221682316824168251682616827168281682916830168311683216833168341683516836168371683816839168401684116842168431684416845168461684716848168491685016851168521685316854168551685616857168581685916860168611686216863168641686516866168671686816869168701687116872168731687416875168761687716878168791688016881168821688316884168851688616887168881688916890168911689216893168941689516896168971689816899169001690116902169031690416905169061690716908169091691016911169121691316914169151691616917169181691916920169211692216923169241692516926169271692816929169301693116932169331693416935169361693716938169391694016941169421694316944169451694616947169481694916950169511695216953169541695516956169571695816959169601696116962169631696416965169661696716968169691697016971169721697316974169751697616977169781697916980169811698216983169841698516986169871698816989169901699116992169931699416995169961699716998169991700017001170021700317004170051700617007170081700917010170111701217013170141701517016170171701817019170201702117022170231702417025170261702717028170291703017031170321703317034170351703617037170381703917040170411704217043170441704517046170471704817049170501705117052170531705417055170561705717058170591706017061170621706317064170651706617067170681706917070170711707217073170741707517076170771707817079170801708117082170831708417085170861708717088170891709017091170921709317094170951709617097170981709917100171011710217103171041710517106171071710817109171101711117112171131711417115171161711717118171191712017121171221712317124171251712617127171281712917130171311713217133171341713517136171371713817139171401714117142171431714417145171461714717148171491715017151171521715317154171551715617157171581715917160171611716217163171641716517166171671716817169171701717117172171731717417175171761717717178171791718017181171821718317184171851718617187171881718917190171911719217193171941719517196171971719817199172001720117202172031720417205172061720717208172091721017211172121721317214172151721617217172181721917220172211722217223172241722517226172271722817229172301723117232172331723417235172361723717238172391724017241172421724317244172451724617247172481724917250172511725217253172541725517256172571725817259172601726117262172631726417265172661726717268172691727017271172721727317274172751727617277172781727917280172811728217283172841728517286172871728817289172901729117292172931729417295172961729717298172991730017301173021730317304173051730617307173081730917310173111731217313173141731517316173171731817319173201732117322173231732417325173261732717328173291733017331173321733317334173351733617337173381733917340173411734217343173441734517346173471734817349173501735117352173531735417355173561735717358173591736017361173621736317364173651736617367173681736917370173711737217373173741737517376173771737817379173801738117382173831738417385173861738717388173891739017391173921739317394173951739617397173981739917400174011740217403174041740517406174071740817409174101741117412174131741417415174161741717418174191742017421174221742317424174251742617427174281742917430174311743217433174341743517436174371743817439174401744117442174431744417445174461744717448174491745017451174521745317454174551745617457174581745917460174611746217463174641746517466174671746817469174701747117472174731747417475174761747717478174791748017481174821748317484174851748617487174881748917490174911749217493174941749517496174971749817499175001750117502175031750417505175061750717508175091751017511175121751317514175151751617517175181751917520175211752217523175241752517526175271752817529175301753117532175331753417535175361753717538175391754017541175421754317544175451754617547175481754917550175511755217553175541755517556175571755817559175601756117562175631756417565175661756717568175691757017571175721757317574175751757617577175781757917580175811758217583175841758517586175871758817589175901759117592175931759417595175961759717598175991760017601176021760317604176051760617607176081760917610176111761217613176141761517616176171761817619176201762117622176231762417625176261762717628176291763017631176321763317634176351763617637176381763917640176411764217643176441764517646176471764817649176501765117652176531765417655176561765717658176591766017661176621766317664176651766617667176681766917670176711767217673176741767517676176771767817679176801768117682176831768417685176861768717688176891769017691176921769317694176951769617697176981769917700177011770217703177041770517706177071770817709177101771117712177131771417715177161771717718177191772017721177221772317724177251772617727177281772917730177311773217733177341773517736177371773817739177401774117742177431774417745177461774717748177491775017751177521775317754177551775617757177581775917760177611776217763177641776517766177671776817769177701777117772177731777417775177761777717778177791778017781177821778317784177851778617787177881778917790177911779217793177941779517796177971779817799178001780117802178031780417805178061780717808178091781017811178121781317814178151781617817178181781917820178211782217823178241782517826178271782817829178301783117832178331783417835178361783717838178391784017841178421784317844178451784617847178481784917850178511785217853178541785517856178571785817859178601786117862178631786417865178661786717868178691787017871178721787317874178751787617877178781787917880178811788217883178841788517886178871788817889178901789117892178931789417895178961789717898178991790017901179021790317904179051790617907179081790917910179111791217913179141791517916179171791817919179201792117922179231792417925179261792717928179291793017931179321793317934179351793617937179381793917940179411794217943179441794517946179471794817949179501795117952179531795417955179561795717958179591796017961179621796317964179651796617967179681796917970179711797217973179741797517976179771797817979179801798117982179831798417985179861798717988179891799017991179921799317994179951799617997179981799918000180011800218003180041800518006180071800818009180101801118012180131801418015180161801718018180191802018021180221802318024180251802618027180281802918030180311803218033180341803518036180371803818039180401804118042180431804418045180461804718048180491805018051180521805318054180551805618057180581805918060180611806218063180641806518066180671806818069180701807118072180731807418075180761807718078180791808018081180821808318084180851808618087180881808918090180911809218093180941809518096180971809818099181001810118102181031810418105181061810718108181091811018111181121811318114181151811618117181181811918120181211812218123181241812518126181271812818129181301813118132181331813418135181361813718138181391814018141181421814318144181451814618147181481814918150181511815218153181541815518156181571815818159181601816118162181631816418165181661816718168181691817018171181721817318174181751817618177181781817918180181811818218183181841818518186181871818818189181901819118192181931819418195181961819718198181991820018201182021820318204182051820618207182081820918210182111821218213182141821518216182171821818219182201822118222182231822418225182261822718228182291823018231182321823318234182351823618237182381823918240182411824218243182441824518246182471824818249182501825118252182531825418255182561825718258182591826018261182621826318264182651826618267182681826918270182711827218273182741827518276182771827818279182801828118282182831828418285182861828718288182891829018291182921829318294182951829618297182981829918300183011830218303183041830518306183071830818309183101831118312183131831418315183161831718318183191832018321183221832318324183251832618327183281832918330183311833218333183341833518336183371833818339183401834118342183431834418345183461834718348183491835018351183521835318354183551835618357183581835918360183611836218363183641836518366183671836818369183701837118372183731837418375183761837718378183791838018381183821838318384183851838618387183881838918390183911839218393183941839518396183971839818399184001840118402184031840418405184061840718408184091841018411184121841318414184151841618417184181841918420184211842218423184241842518426184271842818429184301843118432184331843418435184361843718438184391844018441184421844318444184451844618447184481844918450184511845218453184541845518456184571845818459184601846118462184631846418465184661846718468184691847018471184721847318474184751847618477184781847918480184811848218483184841848518486184871848818489184901849118492184931849418495184961849718498184991850018501185021850318504185051850618507185081850918510185111851218513185141851518516185171851818519185201852118522185231852418525185261852718528185291853018531185321853318534185351853618537185381853918540185411854218543185441854518546185471854818549185501855118552185531855418555185561855718558185591856018561185621856318564185651856618567185681856918570185711857218573185741857518576185771857818579185801858118582185831858418585185861858718588185891859018591185921859318594185951859618597185981859918600186011860218603186041860518606186071860818609186101861118612186131861418615186161861718618186191862018621186221862318624186251862618627186281862918630186311863218633186341863518636186371863818639186401864118642186431864418645186461864718648186491865018651186521865318654186551865618657186581865918660186611866218663186641866518666186671866818669186701867118672186731867418675186761867718678186791868018681186821868318684186851868618687186881868918690186911869218693186941869518696186971869818699187001870118702187031870418705187061870718708187091871018711187121871318714187151871618717187181871918720187211872218723187241872518726187271872818729187301873118732187331873418735187361873718738187391874018741187421874318744187451874618747187481874918750187511875218753187541875518756187571875818759187601876118762187631876418765187661876718768187691877018771187721877318774187751877618777187781877918780187811878218783187841878518786187871878818789187901879118792187931879418795187961879718798187991880018801188021880318804188051880618807188081880918810188111881218813188141881518816188171881818819188201882118822188231882418825188261882718828188291883018831188321883318834188351883618837188381883918840188411884218843188441884518846188471884818849188501885118852188531885418855188561885718858188591886018861188621886318864188651886618867188681886918870188711887218873188741887518876188771887818879188801888118882188831888418885188861888718888188891889018891188921889318894188951889618897188981889918900189011890218903189041890518906189071890818909189101891118912189131891418915189161891718918189191892018921189221892318924189251892618927189281892918930189311893218933189341893518936189371893818939189401894118942189431894418945189461894718948189491895018951189521895318954189551895618957189581895918960189611896218963189641896518966189671896818969189701897118972189731897418975189761897718978189791898018981189821898318984189851898618987189881898918990189911899218993189941899518996189971899818999190001900119002190031900419005190061900719008190091901019011190121901319014190151901619017190181901919020190211902219023190241902519026190271902819029190301903119032190331903419035190361903719038190391904019041190421904319044190451904619047190481904919050190511905219053190541905519056190571905819059190601906119062190631906419065190661906719068190691907019071190721907319074190751907619077190781907919080190811908219083190841908519086190871908819089190901909119092190931909419095190961909719098190991910019101191021910319104191051910619107191081910919110191111911219113191141911519116191171911819119191201912119122191231912419125191261912719128191291913019131191321913319134191351913619137191381913919140191411914219143191441914519146191471914819149191501915119152191531915419155191561915719158191591916019161191621916319164191651916619167191681916919170191711917219173191741917519176191771917819179191801918119182191831918419185191861918719188191891919019191191921919319194191951919619197191981919919200192011920219203192041920519206192071920819209192101921119212192131921419215192161921719218192191922019221192221922319224192251922619227192281922919230192311923219233192341923519236192371923819239192401924119242192431924419245192461924719248192491925019251192521925319254192551925619257192581925919260192611926219263192641926519266192671926819269192701927119272192731927419275192761927719278192791928019281192821928319284192851928619287192881928919290192911929219293192941929519296192971929819299193001930119302193031930419305193061930719308193091931019311193121931319314193151931619317193181931919320193211932219323193241932519326193271932819329193301933119332193331933419335193361933719338193391934019341193421934319344193451934619347193481934919350193511935219353193541935519356193571935819359193601936119362193631936419365193661936719368193691937019371193721937319374193751937619377193781937919380193811938219383193841938519386193871938819389193901939119392193931939419395193961939719398193991940019401194021940319404194051940619407194081940919410194111941219413194141941519416194171941819419194201942119422194231942419425194261942719428194291943019431194321943319434194351943619437194381943919440194411944219443194441944519446194471944819449194501945119452194531945419455194561945719458194591946019461194621946319464194651946619467194681946919470194711947219473194741947519476194771947819479194801948119482194831948419485194861948719488194891949019491194921949319494194951949619497194981949919500195011950219503195041950519506195071950819509195101951119512195131951419515195161951719518195191952019521195221952319524195251952619527195281952919530195311953219533195341953519536195371953819539195401954119542195431954419545195461954719548195491955019551195521955319554195551955619557195581955919560195611956219563195641956519566195671956819569195701957119572195731957419575195761957719578195791958019581195821958319584195851958619587195881958919590195911959219593195941959519596195971959819599196001960119602196031960419605196061960719608196091961019611196121961319614196151961619617196181961919620196211962219623196241962519626196271962819629196301963119632196331963419635196361963719638196391964019641196421964319644196451964619647196481964919650196511965219653196541965519656196571965819659196601966119662196631966419665196661966719668196691967019671196721967319674196751967619677196781967919680196811968219683196841968519686196871968819689196901969119692196931969419695196961969719698196991970019701197021970319704197051970619707197081970919710197111971219713197141971519716197171971819719197201972119722197231972419725197261972719728197291973019731197321973319734197351973619737197381973919740197411974219743197441974519746197471974819749197501975119752197531975419755197561975719758197591976019761197621976319764197651976619767197681976919770197711977219773197741977519776197771977819779197801978119782197831978419785197861978719788197891979019791197921979319794197951979619797197981979919800198011980219803198041980519806198071980819809198101981119812198131981419815198161981719818198191982019821198221982319824198251982619827198281982919830198311983219833198341983519836198371983819839198401984119842198431984419845198461984719848198491985019851198521985319854198551985619857198581985919860198611986219863198641986519866198671986819869198701987119872198731987419875198761987719878198791988019881198821988319884198851988619887198881988919890198911989219893198941989519896198971989819899199001990119902199031990419905199061990719908199091991019911199121991319914199151991619917199181991919920199211992219923199241992519926199271992819929199301993119932199331993419935199361993719938199391994019941199421994319944199451994619947199481994919950199511995219953199541995519956199571995819959199601996119962199631996419965199661996719968199691997019971199721997319974199751997619977199781997919980199811998219983199841998519986199871998819989199901999119992199931999419995199961999719998199992000020001200022000320004200052000620007200082000920010200112001220013200142001520016200172001820019200202002120022200232002420025200262002720028200292003020031200322003320034200352003620037200382003920040200412004220043200442004520046200472004820049200502005120052200532005420055200562005720058200592006020061200622006320064200652006620067200682006920070200712007220073200742007520076200772007820079200802008120082200832008420085200862008720088200892009020091200922009320094200952009620097200982009920100201012010220103201042010520106201072010820109201102011120112201132011420115201162011720118201192012020121201222012320124201252012620127201282012920130201312013220133201342013520136201372013820139201402014120142201432014420145201462014720148201492015020151201522015320154201552015620157201582015920160201612016220163201642016520166201672016820169201702017120172201732017420175201762017720178201792018020181201822018320184201852018620187201882018920190201912019220193201942019520196201972019820199202002020120202202032020420205202062020720208202092021020211202122021320214202152021620217202182021920220202212022220223202242022520226202272022820229202302023120232202332023420235202362023720238202392024020241202422024320244202452024620247202482024920250202512025220253202542025520256202572025820259202602026120262202632026420265202662026720268202692027020271202722027320274202752027620277202782027920280202812028220283202842028520286202872028820289202902029120292202932029420295202962029720298202992030020301203022030320304203052030620307203082030920310203112031220313203142031520316203172031820319203202032120322203232032420325203262032720328203292033020331203322033320334203352033620337203382033920340203412034220343203442034520346203472034820349203502035120352203532035420355203562035720358203592036020361203622036320364203652036620367203682036920370203712037220373203742037520376203772037820379203802038120382203832038420385203862038720388203892039020391203922039320394203952039620397203982039920400204012040220403204042040520406204072040820409204102041120412204132041420415204162041720418204192042020421204222042320424204252042620427204282042920430204312043220433204342043520436204372043820439204402044120442204432044420445204462044720448204492045020451204522045320454204552045620457204582045920460204612046220463204642046520466204672046820469204702047120472204732047420475204762047720478204792048020481204822048320484204852048620487204882048920490204912049220493204942049520496204972049820499205002050120502205032050420505205062050720508205092051020511205122051320514205152051620517205182051920520205212052220523205242052520526205272052820529205302053120532205332053420535205362053720538205392054020541205422054320544205452054620547205482054920550205512055220553205542055520556205572055820559205602056120562205632056420565205662056720568205692057020571205722057320574205752057620577205782057920580205812058220583205842058520586205872058820589205902059120592205932059420595205962059720598205992060020601206022060320604206052060620607206082060920610206112061220613206142061520616206172061820619206202062120622206232062420625206262062720628206292063020631206322063320634206352063620637206382063920640206412064220643206442064520646206472064820649206502065120652206532065420655206562065720658206592066020661206622066320664206652066620667206682066920670206712067220673206742067520676206772067820679206802068120682206832068420685206862068720688206892069020691206922069320694206952069620697206982069920700207012070220703207042070520706207072070820709207102071120712207132071420715207162071720718207192072020721207222072320724207252072620727207282072920730207312073220733207342073520736207372073820739207402074120742207432074420745207462074720748207492075020751207522075320754207552075620757207582075920760207612076220763207642076520766207672076820769207702077120772207732077420775207762077720778207792078020781207822078320784207852078620787207882078920790207912079220793207942079520796207972079820799208002080120802208032080420805208062080720808208092081020811208122081320814208152081620817208182081920820208212082220823208242082520826208272082820829208302083120832208332083420835208362083720838208392084020841208422084320844208452084620847208482084920850208512085220853208542085520856208572085820859208602086120862208632086420865208662086720868208692087020871208722087320874208752087620877208782087920880208812088220883208842088520886208872088820889208902089120892208932089420895208962089720898208992090020901209022090320904209052090620907209082090920910209112091220913209142091520916209172091820919209202092120922209232092420925209262092720928209292093020931209322093320934209352093620937209382093920940209412094220943209442094520946209472094820949209502095120952209532095420955209562095720958209592096020961209622096320964209652096620967209682096920970209712097220973209742097520976209772097820979209802098120982209832098420985209862098720988209892099020991209922099320994209952099620997209982099921000210012100221003210042100521006210072100821009210102101121012210132101421015210162101721018210192102021021210222102321024210252102621027210282102921030210312103221033210342103521036210372103821039210402104121042210432104421045210462104721048210492105021051210522105321054210552105621057210582105921060210612106221063210642106521066210672106821069210702107121072210732107421075210762107721078210792108021081210822108321084210852108621087210882108921090210912109221093210942109521096210972109821099211002110121102211032110421105211062110721108211092111021111211122111321114211152111621117211182111921120211212112221123211242112521126211272112821129211302113121132211332113421135211362113721138211392114021141211422114321144211452114621147211482114921150211512115221153211542115521156211572115821159211602116121162211632116421165211662116721168211692117021171211722117321174211752117621177211782117921180211812118221183211842118521186211872118821189211902119121192211932119421195211962119721198211992120021201212022120321204212052120621207212082120921210212112121221213212142121521216212172121821219212202122121222212232122421225212262122721228212292123021231212322123321234212352123621237212382123921240212412124221243212442124521246212472124821249212502125121252212532125421255212562125721258212592126021261212622126321264212652126621267212682126921270212712127221273212742127521276212772127821279212802128121282212832128421285212862128721288212892129021291212922129321294212952129621297212982129921300213012130221303213042130521306213072130821309213102131121312213132131421315213162131721318213192132021321213222132321324213252132621327213282132921330213312133221333213342133521336213372133821339213402134121342213432134421345213462134721348213492135021351213522135321354213552135621357213582135921360213612136221363213642136521366213672136821369213702137121372213732137421375213762137721378213792138021381213822138321384213852138621387213882138921390213912139221393213942139521396213972139821399214002140121402214032140421405214062140721408214092141021411214122141321414214152141621417214182141921420214212142221423214242142521426214272142821429214302143121432214332143421435214362143721438214392144021441214422144321444214452144621447214482144921450214512145221453214542145521456214572145821459214602146121462214632146421465214662146721468214692147021471214722147321474214752147621477214782147921480214812148221483214842148521486214872148821489214902149121492214932149421495214962149721498214992150021501215022150321504215052150621507215082150921510215112151221513215142151521516215172151821519215202152121522215232152421525215262152721528215292153021531215322153321534215352153621537215382153921540215412154221543215442154521546215472154821549215502155121552215532155421555215562155721558215592156021561215622156321564215652156621567215682156921570215712157221573215742157521576215772157821579215802158121582215832158421585215862158721588215892159021591215922159321594215952159621597215982159921600216012160221603216042160521606216072160821609216102161121612216132161421615216162161721618216192162021621216222162321624216252162621627216282162921630216312163221633
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #if defined(_MSC_VER) || defined(__MINGW32__)
  6. #include <malloc.h> // using malloc.h with MSC/MINGW
  7. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  8. #include <alloca.h>
  9. #endif
  10. #include <assert.h>
  11. #include <errno.h>
  12. #include <time.h>
  13. #include <math.h>
  14. #include <stdlib.h>
  15. #include <string.h>
  16. #include <stdint.h>
  17. #include <inttypes.h>
  18. #include <stdio.h>
  19. #include <float.h>
  20. #include <limits.h>
  21. #include <stdarg.h>
  22. #include <signal.h>
  23. #if defined(__gnu_linux__)
  24. #include <syscall.h>
  25. #endif
  26. #ifdef GGML_USE_METAL
  27. #include <unistd.h>
  28. #endif
  29. #if defined(_MSC_VER)
  30. // disable "possible loss of data" to avoid hundreds of casts
  31. // we should just be careful :)
  32. #pragma warning(disable: 4244 4267)
  33. // disable POSIX deprecation warnings
  34. // these functions are never going away, anyway
  35. #pragma warning(disable: 4996)
  36. #endif
  37. #if defined(_WIN32)
  38. #include <windows.h>
  39. typedef volatile LONG atomic_int;
  40. typedef atomic_int atomic_bool;
  41. static void atomic_store(atomic_int * ptr, LONG val) {
  42. InterlockedExchange(ptr, val);
  43. }
  44. static LONG atomic_load(atomic_int * ptr) {
  45. return InterlockedCompareExchange(ptr, 0, 0);
  46. }
  47. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  48. return InterlockedExchangeAdd(ptr, inc);
  49. }
  50. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  51. return atomic_fetch_add(ptr, -(dec));
  52. }
  53. typedef HANDLE pthread_t;
  54. typedef DWORD thread_ret_t;
  55. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  56. (void) unused;
  57. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  58. if (handle == NULL)
  59. {
  60. return EAGAIN;
  61. }
  62. *out = handle;
  63. return 0;
  64. }
  65. static int pthread_join(pthread_t thread, void * unused) {
  66. (void) unused;
  67. int ret = (int) WaitForSingleObject(thread, INFINITE);
  68. CloseHandle(thread);
  69. return ret;
  70. }
  71. static int sched_yield (void) {
  72. Sleep (0);
  73. return 0;
  74. }
  75. #else
  76. #include <pthread.h>
  77. #include <stdatomic.h>
  78. typedef void * thread_ret_t;
  79. #include <sys/types.h>
  80. #include <sys/stat.h>
  81. #include <unistd.h>
  82. #endif
  83. #ifdef GGML_USE_CPU_HBM
  84. #include <hbwmalloc.h>
  85. #endif
  86. #if defined(__APPLE__)
  87. #include <TargetConditionals.h>
  88. #endif
  89. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  90. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  91. #include <sys/wait.h>
  92. void ggml_print_backtrace(void) {
  93. /*
  94. #include <execinfo.h>
  95. #include <dlfcn.h>
  96. void * trace[100];
  97. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  98. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  99. */
  100. // backtrack_symbols does not show line numbers, use gdb instead
  101. char attach[32];
  102. snprintf(attach, sizeof(attach), "attach %d", getpid());
  103. int pid = fork();
  104. if (pid == 0) {
  105. execlp("gdb", "gdb", "--batch",
  106. "-ex", "set style enabled on",
  107. "-ex", attach,
  108. "-ex", "bt -frame-info source-and-location",
  109. "-ex", "detach",
  110. "-ex", "quit",
  111. (char *) NULL);
  112. } else {
  113. waitpid(pid, NULL, 0);
  114. }
  115. }
  116. #else
  117. void ggml_print_backtrace(void) {
  118. // platform not supported
  119. }
  120. #endif
  121. /*#define GGML_PERF*/
  122. #define GGML_DEBUG 0
  123. #define GGML_GELU_FP16
  124. #define GGML_GELU_QUICK_FP16
  125. #define GGML_SILU_FP16
  126. // #define GGML_CROSS_ENTROPY_EXP_FP16
  127. // #define GGML_FLASH_ATTN_EXP_FP16
  128. #define GGML_SOFT_MAX_UNROLL 4
  129. #define GGML_VEC_DOT_UNROLL 2
  130. #define GGML_VEC_MAD_UNROLL 32
  131. //
  132. // logging
  133. //
  134. #if (GGML_DEBUG >= 1)
  135. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  136. #else
  137. #define GGML_PRINT_DEBUG(...)
  138. #endif
  139. #if (GGML_DEBUG >= 5)
  140. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  141. #else
  142. #define GGML_PRINT_DEBUG_5(...)
  143. #endif
  144. #if (GGML_DEBUG >= 10)
  145. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  146. #else
  147. #define GGML_PRINT_DEBUG_10(...)
  148. #endif
  149. #define GGML_PRINT(...) printf(__VA_ARGS__)
  150. //
  151. // end of logging block
  152. //
  153. #ifdef GGML_USE_ACCELERATE
  154. // uncomment to use vDSP for soft max computation
  155. // note: not sure if it is actually faster
  156. //#define GGML_SOFT_MAX_ACCELERATE
  157. #endif
  158. #if defined(_MSC_VER) || defined(__MINGW32__)
  159. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  160. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  161. #else
  162. inline static void * ggml_aligned_malloc(size_t size) {
  163. if (size == 0) {
  164. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  165. return NULL;
  166. }
  167. void * aligned_memory = NULL;
  168. #ifdef GGML_USE_CPU_HBM
  169. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  170. #elif GGML_USE_METAL
  171. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  172. #else
  173. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  174. #endif
  175. if (result != 0) {
  176. // Handle allocation failure
  177. const char *error_desc = "unknown allocation error";
  178. switch (result) {
  179. case EINVAL:
  180. error_desc = "invalid alignment value";
  181. break;
  182. case ENOMEM:
  183. error_desc = "insufficient memory";
  184. break;
  185. }
  186. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  187. GGML_ASSERT(false);
  188. return NULL;
  189. }
  190. return aligned_memory;
  191. }
  192. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  193. #ifdef GGML_USE_CPU_HBM
  194. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  195. #else
  196. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  197. #endif
  198. #endif
  199. inline static void * ggml_malloc(size_t size) {
  200. if (size == 0) {
  201. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  202. return NULL;
  203. }
  204. void * result = malloc(size);
  205. if (result == NULL) {
  206. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  207. GGML_ASSERT(false);
  208. }
  209. return result;
  210. }
  211. // calloc
  212. inline static void * ggml_calloc(size_t num, size_t size) {
  213. if (num == 0 || size == 0) {
  214. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  215. return NULL;
  216. }
  217. void * result = calloc(num, size);
  218. if (result == NULL) {
  219. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  220. GGML_ASSERT(false);
  221. }
  222. return result;
  223. }
  224. #define GGML_MALLOC(size) ggml_malloc(size)
  225. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  226. #define GGML_FREE(ptr) free(ptr)
  227. #define UNUSED GGML_UNUSED
  228. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  229. #if defined(GGML_USE_ACCELERATE)
  230. #include <Accelerate/Accelerate.h>
  231. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  232. #include "ggml-opencl.h"
  233. #elif defined(GGML_USE_VULKAN)
  234. #include "ggml-vulkan.h"
  235. #endif
  236. #elif defined(GGML_USE_OPENBLAS)
  237. #if defined(GGML_BLAS_USE_MKL)
  238. #include <mkl.h>
  239. #else
  240. #include <cblas.h>
  241. #endif
  242. #elif defined(GGML_USE_CUBLAS)
  243. #include "ggml-cuda.h"
  244. #elif defined(GGML_USE_CLBLAST)
  245. #include "ggml-opencl.h"
  246. #elif defined(GGML_USE_VULKAN)
  247. #include "ggml-vulkan.h"
  248. #elif defined(GGML_USE_SYCL)
  249. #include "ggml-sycl.h"
  250. #endif
  251. // floating point type used to accumulate sums
  252. typedef double ggml_float;
  253. #undef MIN
  254. #undef MAX
  255. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  256. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  257. //
  258. // global data
  259. //
  260. // precomputed gelu table for f16 (128 KB)
  261. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  262. // precomputed quick gelu table for f16 (128 KB)
  263. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  264. // precomputed silu table for f16 (128 KB)
  265. static ggml_fp16_t ggml_table_silu_f16[1 << 16];
  266. // precomputed exp table for f16 (128 KB)
  267. static ggml_fp16_t ggml_table_exp_f16[1 << 16];
  268. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  269. float ggml_table_f32_f16[1 << 16];
  270. const char * ggml_status_to_string(enum ggml_status status) {
  271. switch (status) {
  272. case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)";
  273. case GGML_STATUS_FAILED: return "GGML status: error (operation failed)";
  274. case GGML_STATUS_SUCCESS: return "GGML status: success";
  275. case GGML_STATUS_ABORTED: return "GGML status: warning (operation aborted)";
  276. }
  277. return "GGML status: unknown";
  278. }
  279. // note: do not use these inside ggml.c
  280. // these are meant to be used via the ggml.h API
  281. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  282. return GGML_FP16_TO_FP32(x);
  283. }
  284. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  285. return GGML_FP32_TO_FP16(x);
  286. }
  287. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  288. for (int i = 0; i < n; i++) {
  289. y[i] = GGML_FP16_TO_FP32(x[i]);
  290. }
  291. }
  292. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  293. int i = 0;
  294. #if defined(__F16C__)
  295. for (; i + 7 < n; i += 8) {
  296. __m256 x_vec = _mm256_loadu_ps(x + i);
  297. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  298. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  299. }
  300. for(; i + 3 < n; i += 4) {
  301. __m128 x_vec = _mm_loadu_ps(x + i);
  302. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  303. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  304. }
  305. #endif
  306. for (; i < n; i++) {
  307. y[i] = GGML_FP32_TO_FP16(x[i]);
  308. }
  309. }
  310. bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) {
  311. return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0;
  312. }
  313. //
  314. // timing
  315. //
  316. #if defined(_MSC_VER) || defined(__MINGW32__)
  317. static int64_t timer_freq, timer_start;
  318. void ggml_time_init(void) {
  319. LARGE_INTEGER t;
  320. QueryPerformanceFrequency(&t);
  321. timer_freq = t.QuadPart;
  322. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  323. // and the uptime is high enough.
  324. // We subtract the program start time to reduce the likelihood of that happening.
  325. QueryPerformanceCounter(&t);
  326. timer_start = t.QuadPart;
  327. }
  328. int64_t ggml_time_ms(void) {
  329. LARGE_INTEGER t;
  330. QueryPerformanceCounter(&t);
  331. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  332. }
  333. int64_t ggml_time_us(void) {
  334. LARGE_INTEGER t;
  335. QueryPerformanceCounter(&t);
  336. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  337. }
  338. #else
  339. void ggml_time_init(void) {}
  340. int64_t ggml_time_ms(void) {
  341. struct timespec ts;
  342. clock_gettime(CLOCK_MONOTONIC, &ts);
  343. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  344. }
  345. int64_t ggml_time_us(void) {
  346. struct timespec ts;
  347. clock_gettime(CLOCK_MONOTONIC, &ts);
  348. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  349. }
  350. #endif
  351. int64_t ggml_cycles(void) {
  352. return clock();
  353. }
  354. int64_t ggml_cycles_per_ms(void) {
  355. return CLOCKS_PER_SEC/1000;
  356. }
  357. #ifdef GGML_PERF
  358. #define ggml_perf_time_ms() ggml_time_ms()
  359. #define ggml_perf_time_us() ggml_time_us()
  360. #define ggml_perf_cycles() ggml_cycles()
  361. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  362. #else
  363. #define ggml_perf_time_ms() 0
  364. #define ggml_perf_time_us() 0
  365. #define ggml_perf_cycles() 0
  366. #define ggml_perf_cycles_per_ms() 0
  367. #endif
  368. //
  369. // cache line
  370. //
  371. #if defined(__cpp_lib_hardware_interference_size)
  372. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  373. #else
  374. #if defined(__POWER9_VECTOR__)
  375. #define CACHE_LINE_SIZE 128
  376. #else
  377. #define CACHE_LINE_SIZE 64
  378. #endif
  379. #endif
  380. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  381. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  382. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  383. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  384. [GGML_TYPE_I8] = {
  385. .type_name = "i8",
  386. .blck_size = 1,
  387. .type_size = sizeof(int8_t),
  388. .is_quantized = false,
  389. },
  390. [GGML_TYPE_I16] = {
  391. .type_name = "i16",
  392. .blck_size = 1,
  393. .type_size = sizeof(int16_t),
  394. .is_quantized = false,
  395. },
  396. [GGML_TYPE_I32] = {
  397. .type_name = "i32",
  398. .blck_size = 1,
  399. .type_size = sizeof(int32_t),
  400. .is_quantized = false,
  401. },
  402. [GGML_TYPE_I64] = {
  403. .type_name = "i64",
  404. .blck_size = 1,
  405. .type_size = sizeof(int64_t),
  406. .is_quantized = false,
  407. },
  408. [GGML_TYPE_F64] = {
  409. .type_name = "f64",
  410. .blck_size = 1,
  411. .type_size = sizeof(double),
  412. .is_quantized = false,
  413. .nrows = 1,
  414. },
  415. [GGML_TYPE_F32] = {
  416. .type_name = "f32",
  417. .blck_size = 1,
  418. .type_size = sizeof(float),
  419. .is_quantized = false,
  420. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  421. .vec_dot_type = GGML_TYPE_F32,
  422. .nrows = 1,
  423. },
  424. [GGML_TYPE_F16] = {
  425. .type_name = "f16",
  426. .blck_size = 1,
  427. .type_size = sizeof(ggml_fp16_t),
  428. .is_quantized = false,
  429. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  430. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  431. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  432. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  433. .vec_dot_type = GGML_TYPE_F16,
  434. .nrows = 1,
  435. },
  436. [GGML_TYPE_Q4_0] = {
  437. .type_name = "q4_0",
  438. .blck_size = QK4_0,
  439. .type_size = sizeof(block_q4_0),
  440. .is_quantized = true,
  441. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  442. .from_float = quantize_row_q4_0,
  443. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  444. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  445. .vec_dot_type = GGML_TYPE_Q8_0,
  446. #if defined (__ARM_FEATURE_MATMUL_INT8)
  447. .nrows = 2,
  448. #else
  449. .nrows = 1,
  450. #endif
  451. },
  452. [GGML_TYPE_Q4_1] = {
  453. .type_name = "q4_1",
  454. .blck_size = QK4_1,
  455. .type_size = sizeof(block_q4_1),
  456. .is_quantized = true,
  457. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  458. .from_float = quantize_row_q4_1,
  459. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  460. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  461. .vec_dot_type = GGML_TYPE_Q8_1,
  462. #if defined (__ARM_FEATURE_MATMUL_INT8)
  463. .nrows = 2,
  464. #else
  465. .nrows = 1,
  466. #endif
  467. },
  468. [4] = { // GGML_TYPE_Q4_2
  469. .type_name = "DEPRECATED",
  470. .blck_size = 0,
  471. .type_size = 0,
  472. .is_quantized = false,
  473. .to_float = NULL,
  474. .from_float = NULL,
  475. .from_float_reference = NULL,
  476. .vec_dot = NULL,
  477. .vec_dot_type = GGML_TYPE_COUNT,
  478. .nrows = 1,
  479. },
  480. [5] = { // GGML_TYPE_Q4_3
  481. .type_name = "DEPRECATED",
  482. .blck_size = 0,
  483. .type_size = 0,
  484. .is_quantized = false,
  485. .to_float = NULL,
  486. .from_float = NULL,
  487. .from_float_reference = NULL,
  488. .vec_dot = NULL,
  489. .vec_dot_type = GGML_TYPE_COUNT,
  490. .nrows = 1,
  491. },
  492. [GGML_TYPE_Q5_0] = {
  493. .type_name = "q5_0",
  494. .blck_size = QK5_0,
  495. .type_size = sizeof(block_q5_0),
  496. .is_quantized = true,
  497. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  498. .from_float = quantize_row_q5_0,
  499. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  500. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  501. .vec_dot_type = GGML_TYPE_Q8_0,
  502. .nrows = 1,
  503. },
  504. [GGML_TYPE_Q5_1] = {
  505. .type_name = "q5_1",
  506. .blck_size = QK5_1,
  507. .type_size = sizeof(block_q5_1),
  508. .is_quantized = true,
  509. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  510. .from_float = quantize_row_q5_1,
  511. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  512. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  513. .vec_dot_type = GGML_TYPE_Q8_1,
  514. .nrows = 1,
  515. },
  516. [GGML_TYPE_Q8_0] = {
  517. .type_name = "q8_0",
  518. .blck_size = QK8_0,
  519. .type_size = sizeof(block_q8_0),
  520. .is_quantized = true,
  521. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  522. .from_float = quantize_row_q8_0,
  523. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  524. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  525. .vec_dot_type = GGML_TYPE_Q8_0,
  526. #if defined (__ARM_FEATURE_MATMUL_INT8)
  527. .nrows = 2,
  528. #else
  529. .nrows = 1,
  530. #endif
  531. },
  532. [GGML_TYPE_Q8_1] = {
  533. .type_name = "q8_1",
  534. .blck_size = QK8_1,
  535. .type_size = sizeof(block_q8_1),
  536. .is_quantized = true,
  537. .from_float = quantize_row_q8_1,
  538. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  539. .vec_dot_type = GGML_TYPE_Q8_1,
  540. .nrows = 1,
  541. },
  542. [GGML_TYPE_Q2_K] = {
  543. .type_name = "q2_K",
  544. .blck_size = QK_K,
  545. .type_size = sizeof(block_q2_K),
  546. .is_quantized = true,
  547. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  548. .from_float = quantize_row_q2_K,
  549. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  550. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  551. .vec_dot_type = GGML_TYPE_Q8_K,
  552. .nrows = 1,
  553. },
  554. [GGML_TYPE_Q3_K] = {
  555. .type_name = "q3_K",
  556. .blck_size = QK_K,
  557. .type_size = sizeof(block_q3_K),
  558. .is_quantized = true,
  559. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  560. .from_float = quantize_row_q3_K,
  561. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  562. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  563. .vec_dot_type = GGML_TYPE_Q8_K,
  564. .nrows = 1,
  565. },
  566. [GGML_TYPE_Q4_K] = {
  567. .type_name = "q4_K",
  568. .blck_size = QK_K,
  569. .type_size = sizeof(block_q4_K),
  570. .is_quantized = true,
  571. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  572. .from_float = quantize_row_q4_K,
  573. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  574. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  575. .vec_dot_type = GGML_TYPE_Q8_K,
  576. .nrows = 1,
  577. },
  578. [GGML_TYPE_Q5_K] = {
  579. .type_name = "q5_K",
  580. .blck_size = QK_K,
  581. .type_size = sizeof(block_q5_K),
  582. .is_quantized = true,
  583. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  584. .from_float = quantize_row_q5_K,
  585. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  586. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  587. .vec_dot_type = GGML_TYPE_Q8_K,
  588. .nrows = 1,
  589. },
  590. [GGML_TYPE_Q6_K] = {
  591. .type_name = "q6_K",
  592. .blck_size = QK_K,
  593. .type_size = sizeof(block_q6_K),
  594. .is_quantized = true,
  595. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  596. .from_float = quantize_row_q6_K,
  597. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  598. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  599. .vec_dot_type = GGML_TYPE_Q8_K,
  600. .nrows = 1,
  601. },
  602. [GGML_TYPE_IQ2_XXS] = {
  603. .type_name = "iq2_xxs",
  604. .blck_size = QK_K,
  605. .type_size = sizeof(block_iq2_xxs),
  606. .is_quantized = true,
  607. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  608. .from_float = NULL,
  609. .from_float_reference = NULL,
  610. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  611. .vec_dot_type = GGML_TYPE_Q8_K,
  612. .nrows = 1,
  613. },
  614. [GGML_TYPE_IQ2_XS] = {
  615. .type_name = "iq2_xs",
  616. .blck_size = QK_K,
  617. .type_size = sizeof(block_iq2_xs),
  618. .is_quantized = true,
  619. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  620. .from_float = NULL,
  621. .from_float_reference = NULL,
  622. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  623. .vec_dot_type = GGML_TYPE_Q8_K,
  624. .nrows = 1,
  625. },
  626. [GGML_TYPE_IQ3_XXS] = {
  627. .type_name = "iq3_xxs",
  628. .blck_size = QK_K,
  629. .type_size = sizeof(block_iq3_xxs),
  630. .is_quantized = true,
  631. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  632. .from_float = quantize_row_iq3_xxs,
  633. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_xxs_reference,
  634. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  635. .vec_dot_type = GGML_TYPE_Q8_K,
  636. .nrows = 1,
  637. },
  638. [GGML_TYPE_IQ3_S] = {
  639. .type_name = "iq3_s",
  640. .blck_size = QK_K,
  641. .type_size = sizeof(block_iq3_s),
  642. .is_quantized = true,
  643. .to_float = (ggml_to_float_t) dequantize_row_iq3_s,
  644. .from_float = quantize_row_iq3_s,
  645. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_s_reference,
  646. .vec_dot = ggml_vec_dot_iq3_s_q8_K,
  647. .vec_dot_type = GGML_TYPE_Q8_K,
  648. .nrows = 1,
  649. },
  650. [GGML_TYPE_IQ2_S] = {
  651. .type_name = "iq2_s",
  652. .blck_size = QK_K,
  653. .type_size = sizeof(block_iq2_s),
  654. .is_quantized = true,
  655. .to_float = (ggml_to_float_t) dequantize_row_iq2_s,
  656. .from_float = quantize_row_iq2_s,
  657. .from_float_reference = (ggml_from_float_t)quantize_row_iq2_s_reference,
  658. .vec_dot = ggml_vec_dot_iq2_s_q8_K,
  659. .vec_dot_type = GGML_TYPE_Q8_K,
  660. .nrows = 1,
  661. },
  662. [GGML_TYPE_IQ1_S] = {
  663. .type_name = "iq1_s",
  664. .blck_size = QK_K,
  665. .type_size = sizeof(block_iq1_s),
  666. .is_quantized = true,
  667. .to_float = (ggml_to_float_t) dequantize_row_iq1_s,
  668. .from_float = NULL,
  669. .from_float_reference = NULL,
  670. .vec_dot = ggml_vec_dot_iq1_s_q8_K,
  671. .vec_dot_type = GGML_TYPE_Q8_K,
  672. .nrows = 1,
  673. },
  674. [GGML_TYPE_IQ4_NL] = {
  675. .type_name = "iq4_nl",
  676. .blck_size = QK4_NL,
  677. .type_size = sizeof(block_iq4_nl),
  678. .is_quantized = true,
  679. .to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
  680. .from_float = quantize_row_iq4_nl,
  681. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_nl_reference,
  682. .vec_dot = ggml_vec_dot_iq4_nl_q8_0,
  683. .vec_dot_type = GGML_TYPE_Q8_0,
  684. .nrows = 1,
  685. },
  686. [GGML_TYPE_IQ4_XS] = {
  687. .type_name = "iq4_xs",
  688. #if QK_K == 64
  689. .blck_size = QK4_NL,
  690. #else
  691. .blck_size = QK_K,
  692. #endif
  693. .type_size = sizeof(block_iq4_xs),
  694. .is_quantized = true,
  695. .to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
  696. .from_float = quantize_row_iq4_xs,
  697. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_xs_reference,
  698. .vec_dot = ggml_vec_dot_iq4_xs_q8_K,
  699. #if QK_K == 64
  700. .vec_dot_type = GGML_TYPE_Q8_0,
  701. #else
  702. .vec_dot_type = GGML_TYPE_Q8_K,
  703. #endif
  704. .nrows = 1,
  705. },
  706. [GGML_TYPE_Q8_K] = {
  707. .type_name = "q8_K",
  708. .blck_size = QK_K,
  709. .type_size = sizeof(block_q8_K),
  710. .is_quantized = true,
  711. .from_float = quantize_row_q8_K,
  712. }
  713. };
  714. // For internal test use
  715. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  716. GGML_ASSERT(type < GGML_TYPE_COUNT);
  717. return type_traits[type];
  718. }
  719. //
  720. // simd mappings
  721. //
  722. #if defined(__ARM_NEON)
  723. #if !defined(__aarch64__)
  724. // 64-bit compatibility
  725. inline static float vaddvq_f32(float32x4_t v) {
  726. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  727. }
  728. #endif
  729. #endif
  730. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  731. // we then implement the fundamental computation operations below using only these macros
  732. // adding support for new architectures requires to define the corresponding SIMD macros
  733. //
  734. // GGML_F32_STEP / GGML_F16_STEP
  735. // number of elements to process in a single step
  736. //
  737. // GGML_F32_EPR / GGML_F16_EPR
  738. // number of elements to fit in a single register
  739. //
  740. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  741. #define GGML_SIMD
  742. // F32 NEON
  743. #define GGML_F32_STEP 16
  744. #define GGML_F32_EPR 4
  745. #define GGML_F32x4 float32x4_t
  746. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  747. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  748. #define GGML_F32x4_LOAD vld1q_f32
  749. #define GGML_F32x4_STORE vst1q_f32
  750. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  751. #define GGML_F32x4_ADD vaddq_f32
  752. #define GGML_F32x4_MUL vmulq_f32
  753. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  754. #define GGML_F32x4_REDUCE(res, x) \
  755. { \
  756. int offset = GGML_F32_ARR >> 1; \
  757. for (int i = 0; i < offset; ++i) { \
  758. x[i] = vaddq_f32(x[i], x[offset+i]); \
  759. } \
  760. offset >>= 1; \
  761. for (int i = 0; i < offset; ++i) { \
  762. x[i] = vaddq_f32(x[i], x[offset+i]); \
  763. } \
  764. offset >>= 1; \
  765. for (int i = 0; i < offset; ++i) { \
  766. x[i] = vaddq_f32(x[i], x[offset+i]); \
  767. } \
  768. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  769. }
  770. #define GGML_F32_VEC GGML_F32x4
  771. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  772. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  773. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  774. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  775. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  776. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  777. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  778. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  779. // F16 NEON
  780. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  781. #define GGML_F16_STEP 32
  782. #define GGML_F16_EPR 8
  783. #define GGML_F16x8 float16x8_t
  784. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  785. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  786. #define GGML_F16x8_LOAD(x) vld1q_f16((const ggml_fp16_internal_t *)(x))
  787. #define GGML_F16x8_STORE vst1q_f16
  788. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  789. #define GGML_F16x8_ADD vaddq_f16
  790. #define GGML_F16x8_MUL vmulq_f16
  791. #define GGML_F16x8_REDUCE(res, x) \
  792. do { \
  793. int offset = GGML_F16_ARR >> 1; \
  794. for (int i = 0; i < offset; ++i) { \
  795. x[i] = vaddq_f16(x[i], x[offset+i]); \
  796. } \
  797. offset >>= 1; \
  798. for (int i = 0; i < offset; ++i) { \
  799. x[i] = vaddq_f16(x[i], x[offset+i]); \
  800. } \
  801. offset >>= 1; \
  802. for (int i = 0; i < offset; ++i) { \
  803. x[i] = vaddq_f16(x[i], x[offset+i]); \
  804. } \
  805. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  806. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  807. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  808. } while (0)
  809. #define GGML_F16_VEC GGML_F16x8
  810. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  811. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  812. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  813. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  814. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  815. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  816. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  817. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  818. #else
  819. // if FP16 vector arithmetic is not supported, we use FP32 instead
  820. // and take advantage of the vcvt_ functions to convert to/from FP16
  821. #define GGML_F16_STEP 16
  822. #define GGML_F16_EPR 4
  823. #define GGML_F32Cx4 float32x4_t
  824. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  825. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  826. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const ggml_fp16_internal_t *)(x)))
  827. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  828. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  829. #define GGML_F32Cx4_ADD vaddq_f32
  830. #define GGML_F32Cx4_MUL vmulq_f32
  831. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  832. #define GGML_F16_VEC GGML_F32Cx4
  833. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  834. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  835. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  836. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  837. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  838. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  839. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  840. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  841. #endif
  842. #elif defined(__AVX__)
  843. #define GGML_SIMD
  844. // F32 AVX
  845. #define GGML_F32_STEP 32
  846. #define GGML_F32_EPR 8
  847. #define GGML_F32x8 __m256
  848. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  849. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  850. #define GGML_F32x8_LOAD _mm256_loadu_ps
  851. #define GGML_F32x8_STORE _mm256_storeu_ps
  852. #if defined(__FMA__)
  853. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  854. #else
  855. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  856. #endif
  857. #define GGML_F32x8_ADD _mm256_add_ps
  858. #define GGML_F32x8_MUL _mm256_mul_ps
  859. #define GGML_F32x8_REDUCE(res, x) \
  860. do { \
  861. int offset = GGML_F32_ARR >> 1; \
  862. for (int i = 0; i < offset; ++i) { \
  863. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  864. } \
  865. offset >>= 1; \
  866. for (int i = 0; i < offset; ++i) { \
  867. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  868. } \
  869. offset >>= 1; \
  870. for (int i = 0; i < offset; ++i) { \
  871. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  872. } \
  873. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  874. _mm256_extractf128_ps(x[0], 1)); \
  875. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  876. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  877. } while (0)
  878. // TODO: is this optimal ?
  879. #define GGML_F32_VEC GGML_F32x8
  880. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  881. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  882. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  883. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  884. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  885. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  886. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  887. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  888. // F16 AVX
  889. #define GGML_F16_STEP 32
  890. #define GGML_F16_EPR 8
  891. // F16 arithmetic is not supported by AVX, so we use F32 instead
  892. #define GGML_F32Cx8 __m256
  893. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  894. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  895. #if defined(__F16C__)
  896. // the _mm256_cvt intrinsics require F16C
  897. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  898. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  899. #else
  900. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  901. float tmp[8];
  902. for (int i = 0; i < 8; i++) {
  903. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  904. }
  905. return _mm256_loadu_ps(tmp);
  906. }
  907. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  908. float arr[8];
  909. _mm256_storeu_ps(arr, y);
  910. for (int i = 0; i < 8; i++)
  911. x[i] = GGML_FP32_TO_FP16(arr[i]);
  912. }
  913. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  914. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  915. #endif
  916. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  917. #define GGML_F32Cx8_ADD _mm256_add_ps
  918. #define GGML_F32Cx8_MUL _mm256_mul_ps
  919. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  920. #define GGML_F16_VEC GGML_F32Cx8
  921. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  922. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  923. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  924. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  925. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  926. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  927. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  928. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  929. #elif defined(__POWER9_VECTOR__)
  930. #define GGML_SIMD
  931. // F32 POWER9
  932. #define GGML_F32_STEP 32
  933. #define GGML_F32_EPR 4
  934. #define GGML_F32x4 vector float
  935. #define GGML_F32x4_ZERO 0.0f
  936. #define GGML_F32x4_SET1 vec_splats
  937. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  938. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  939. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  940. #define GGML_F32x4_ADD vec_add
  941. #define GGML_F32x4_MUL vec_mul
  942. #define GGML_F32x4_REDUCE(res, x) \
  943. { \
  944. int offset = GGML_F32_ARR >> 1; \
  945. for (int i = 0; i < offset; ++i) { \
  946. x[i] = vec_add(x[i], x[offset+i]); \
  947. } \
  948. offset >>= 1; \
  949. for (int i = 0; i < offset; ++i) { \
  950. x[i] = vec_add(x[i], x[offset+i]); \
  951. } \
  952. offset >>= 1; \
  953. for (int i = 0; i < offset; ++i) { \
  954. x[i] = vec_add(x[i], x[offset+i]); \
  955. } \
  956. res = vec_extract(x[0], 0) + \
  957. vec_extract(x[0], 1) + \
  958. vec_extract(x[0], 2) + \
  959. vec_extract(x[0], 3); \
  960. }
  961. #define GGML_F32_VEC GGML_F32x4
  962. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  963. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  964. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  965. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  966. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  967. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  968. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  969. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  970. // F16 POWER9
  971. #define GGML_F16_STEP GGML_F32_STEP
  972. #define GGML_F16_EPR GGML_F32_EPR
  973. #define GGML_F16_VEC GGML_F32x4
  974. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  975. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  976. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  977. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  978. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  979. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  980. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  981. vec_extract_fp32_from_shortl(vec_xl(0, p))
  982. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  983. #define GGML_F16_VEC_STORE(p, r, i) \
  984. if (i & 0x1) \
  985. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  986. r[i - GGML_ENDIAN_BYTE(0)]), \
  987. 0, p - GGML_F16_EPR)
  988. #elif defined(__wasm_simd128__)
  989. #define GGML_SIMD
  990. // F32 WASM
  991. #define GGML_F32_STEP 16
  992. #define GGML_F32_EPR 4
  993. #define GGML_F32x4 v128_t
  994. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  995. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  996. #define GGML_F32x4_LOAD wasm_v128_load
  997. #define GGML_F32x4_STORE wasm_v128_store
  998. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  999. #define GGML_F32x4_ADD wasm_f32x4_add
  1000. #define GGML_F32x4_MUL wasm_f32x4_mul
  1001. #define GGML_F32x4_REDUCE(res, x) \
  1002. { \
  1003. int offset = GGML_F32_ARR >> 1; \
  1004. for (int i = 0; i < offset; ++i) { \
  1005. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1006. } \
  1007. offset >>= 1; \
  1008. for (int i = 0; i < offset; ++i) { \
  1009. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1010. } \
  1011. offset >>= 1; \
  1012. for (int i = 0; i < offset; ++i) { \
  1013. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1014. } \
  1015. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1016. wasm_f32x4_extract_lane(x[0], 1) + \
  1017. wasm_f32x4_extract_lane(x[0], 2) + \
  1018. wasm_f32x4_extract_lane(x[0], 3); \
  1019. }
  1020. #define GGML_F32_VEC GGML_F32x4
  1021. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1022. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1023. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1024. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1025. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1026. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1027. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1028. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1029. // F16 WASM
  1030. #define GGML_F16_STEP 16
  1031. #define GGML_F16_EPR 4
  1032. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1033. float tmp[4];
  1034. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1035. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1036. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1037. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1038. return wasm_v128_load(tmp);
  1039. }
  1040. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1041. float tmp[4];
  1042. wasm_v128_store(tmp, x);
  1043. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1044. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1045. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1046. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1047. }
  1048. #define GGML_F16x4 v128_t
  1049. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1050. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1051. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1052. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1053. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1054. #define GGML_F16x4_ADD wasm_f32x4_add
  1055. #define GGML_F16x4_MUL wasm_f32x4_mul
  1056. #define GGML_F16x4_REDUCE(res, x) \
  1057. { \
  1058. int offset = GGML_F16_ARR >> 1; \
  1059. for (int i = 0; i < offset; ++i) { \
  1060. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1061. } \
  1062. offset >>= 1; \
  1063. for (int i = 0; i < offset; ++i) { \
  1064. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1065. } \
  1066. offset >>= 1; \
  1067. for (int i = 0; i < offset; ++i) { \
  1068. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1069. } \
  1070. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1071. wasm_f32x4_extract_lane(x[0], 1) + \
  1072. wasm_f32x4_extract_lane(x[0], 2) + \
  1073. wasm_f32x4_extract_lane(x[0], 3); \
  1074. }
  1075. #define GGML_F16_VEC GGML_F16x4
  1076. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1077. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1078. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1079. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1080. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1081. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1082. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1083. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1084. #elif defined(__SSE3__)
  1085. #define GGML_SIMD
  1086. // F32 SSE
  1087. #define GGML_F32_STEP 32
  1088. #define GGML_F32_EPR 4
  1089. #define GGML_F32x4 __m128
  1090. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1091. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1092. #define GGML_F32x4_LOAD _mm_loadu_ps
  1093. #define GGML_F32x4_STORE _mm_storeu_ps
  1094. #if defined(__FMA__)
  1095. // TODO: Does this work?
  1096. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1097. #else
  1098. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1099. #endif
  1100. #define GGML_F32x4_ADD _mm_add_ps
  1101. #define GGML_F32x4_MUL _mm_mul_ps
  1102. #define GGML_F32x4_REDUCE(res, x) \
  1103. { \
  1104. int offset = GGML_F32_ARR >> 1; \
  1105. for (int i = 0; i < offset; ++i) { \
  1106. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1107. } \
  1108. offset >>= 1; \
  1109. for (int i = 0; i < offset; ++i) { \
  1110. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1111. } \
  1112. offset >>= 1; \
  1113. for (int i = 0; i < offset; ++i) { \
  1114. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1115. } \
  1116. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1117. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1118. }
  1119. // TODO: is this optimal ?
  1120. #define GGML_F32_VEC GGML_F32x4
  1121. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1122. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1123. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1124. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1125. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1126. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1127. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1128. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1129. // F16 SSE
  1130. #define GGML_F16_STEP 32
  1131. #define GGML_F16_EPR 4
  1132. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1133. float tmp[4];
  1134. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1135. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1136. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1137. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1138. return _mm_loadu_ps(tmp);
  1139. }
  1140. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1141. float arr[4];
  1142. _mm_storeu_ps(arr, y);
  1143. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1144. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1145. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1146. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1147. }
  1148. #define GGML_F32Cx4 __m128
  1149. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1150. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1151. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1152. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1153. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1154. #define GGML_F32Cx4_ADD _mm_add_ps
  1155. #define GGML_F32Cx4_MUL _mm_mul_ps
  1156. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1157. #define GGML_F16_VEC GGML_F32Cx4
  1158. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1159. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1160. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1161. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1162. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1163. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1164. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1165. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1166. #endif
  1167. // GGML_F32_ARR / GGML_F16_ARR
  1168. // number of registers to use per step
  1169. #ifdef GGML_SIMD
  1170. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1171. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1172. #endif
  1173. //
  1174. // fundamental operations
  1175. //
  1176. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1177. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1178. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1179. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1180. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1181. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1182. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1183. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1184. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1185. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1186. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1187. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1188. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1189. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1190. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1191. assert(nrc == 1);
  1192. UNUSED(nrc);
  1193. UNUSED(bx);
  1194. UNUSED(by);
  1195. UNUSED(bs);
  1196. #ifdef GGML_SIMD
  1197. float sumf = 0.0f;
  1198. const int np = (n & ~(GGML_F32_STEP - 1));
  1199. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1200. GGML_F32_VEC ax[GGML_F32_ARR];
  1201. GGML_F32_VEC ay[GGML_F32_ARR];
  1202. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1203. for (int j = 0; j < GGML_F32_ARR; j++) {
  1204. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1205. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1206. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1207. }
  1208. }
  1209. // reduce sum0..sum3 to sum0
  1210. GGML_F32_VEC_REDUCE(sumf, sum);
  1211. // leftovers
  1212. for (int i = np; i < n; ++i) {
  1213. sumf += x[i]*y[i];
  1214. }
  1215. #else
  1216. // scalar
  1217. ggml_float sumf = 0.0;
  1218. for (int i = 0; i < n; ++i) {
  1219. sumf += (ggml_float)(x[i]*y[i]);
  1220. }
  1221. #endif
  1222. *s = sumf;
  1223. }
  1224. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1225. assert(nrc == 1);
  1226. UNUSED(nrc);
  1227. UNUSED(bx);
  1228. UNUSED(by);
  1229. UNUSED(bs);
  1230. ggml_float sumf = 0.0;
  1231. #if defined(GGML_SIMD)
  1232. const int np = (n & ~(GGML_F16_STEP - 1));
  1233. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1234. GGML_F16_VEC ax[GGML_F16_ARR];
  1235. GGML_F16_VEC ay[GGML_F16_ARR];
  1236. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1237. for (int j = 0; j < GGML_F16_ARR; j++) {
  1238. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1239. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1240. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1241. }
  1242. }
  1243. // reduce sum0..sum3 to sum0
  1244. GGML_F16_VEC_REDUCE(sumf, sum);
  1245. // leftovers
  1246. for (int i = np; i < n; ++i) {
  1247. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1248. }
  1249. #else
  1250. for (int i = 0; i < n; ++i) {
  1251. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1252. }
  1253. #endif
  1254. *s = sumf;
  1255. }
  1256. // compute GGML_VEC_DOT_UNROLL dot products at once
  1257. // xs - x row stride in bytes
  1258. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1259. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1260. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1261. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1262. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1263. }
  1264. #if defined(GGML_SIMD)
  1265. const int np = (n & ~(GGML_F16_STEP - 1));
  1266. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1267. GGML_F16_VEC ax[GGML_F16_ARR];
  1268. GGML_F16_VEC ay[GGML_F16_ARR];
  1269. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1270. for (int j = 0; j < GGML_F16_ARR; j++) {
  1271. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1272. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1273. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1274. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1275. }
  1276. }
  1277. }
  1278. // reduce sum0..sum3 to sum0
  1279. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1280. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1281. }
  1282. // leftovers
  1283. for (int i = np; i < n; ++i) {
  1284. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1285. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1286. }
  1287. }
  1288. #else
  1289. for (int i = 0; i < n; ++i) {
  1290. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1291. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1292. }
  1293. }
  1294. #endif
  1295. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1296. s[i] = sumf[i];
  1297. }
  1298. }
  1299. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1300. #if defined(GGML_SIMD)
  1301. const int np = (n & ~(GGML_F32_STEP - 1));
  1302. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1303. GGML_F32_VEC ax[GGML_F32_ARR];
  1304. GGML_F32_VEC ay[GGML_F32_ARR];
  1305. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1306. for (int j = 0; j < GGML_F32_ARR; j++) {
  1307. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1308. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1309. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1310. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1311. }
  1312. }
  1313. // leftovers
  1314. for (int i = np; i < n; ++i) {
  1315. y[i] += x[i]*v;
  1316. }
  1317. #else
  1318. // scalar
  1319. for (int i = 0; i < n; ++i) {
  1320. y[i] += x[i]*v;
  1321. }
  1322. #endif
  1323. }
  1324. // xs and vs are byte strides of x and v
  1325. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1326. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1327. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1328. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1329. x[i] = (const float *) ((const char *) xv + i*xs);
  1330. v[i] = (const float *) ((const char *) vv + i*vs);
  1331. }
  1332. #if defined(GGML_SIMD)
  1333. const int np = (n & ~(GGML_F32_STEP - 1));
  1334. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1335. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1336. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1337. }
  1338. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1339. GGML_F32_VEC ay[GGML_F32_ARR];
  1340. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1341. for (int j = 0; j < GGML_F32_ARR; j++) {
  1342. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1343. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1344. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1345. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1346. }
  1347. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1348. }
  1349. }
  1350. // leftovers
  1351. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1352. for (int i = np; i < n; ++i) {
  1353. y[i] += x[k][i]*v[k][0];
  1354. }
  1355. }
  1356. #else
  1357. // scalar
  1358. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1359. for (int i = 0; i < n; ++i) {
  1360. y[i] += x[k][i]*v[k][0];
  1361. }
  1362. }
  1363. #endif
  1364. }
  1365. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1366. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1367. #if defined(GGML_USE_ACCELERATE)
  1368. vDSP_vsmul(y, 1, &v, y, 1, n);
  1369. #elif defined(GGML_SIMD)
  1370. const int np = (n & ~(GGML_F32_STEP - 1));
  1371. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1372. GGML_F32_VEC ay[GGML_F32_ARR];
  1373. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1374. for (int j = 0; j < GGML_F32_ARR; j++) {
  1375. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1376. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1377. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1378. }
  1379. }
  1380. // leftovers
  1381. for (int i = np; i < n; ++i) {
  1382. y[i] *= v;
  1383. }
  1384. #else
  1385. // scalar
  1386. for (int i = 0; i < n; ++i) {
  1387. y[i] *= v;
  1388. }
  1389. #endif
  1390. }
  1391. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  1392. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1393. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1394. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1395. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1396. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1397. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1398. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1399. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1400. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1401. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1402. // TODO: optimize performance
  1403. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1404. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1405. static const float GELU_COEF_A = 0.044715f;
  1406. static const float GELU_QUICK_COEF = -1.702f;
  1407. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1408. inline static float ggml_gelu_f32(float x) {
  1409. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1410. }
  1411. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1412. const uint16_t * i16 = (const uint16_t *) x;
  1413. for (int i = 0; i < n; ++i) {
  1414. y[i] = ggml_table_gelu_f16[i16[i]];
  1415. }
  1416. }
  1417. #ifdef GGML_GELU_FP16
  1418. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1419. uint16_t t;
  1420. for (int i = 0; i < n; ++i) {
  1421. if (x[i] <= -10.0f) {
  1422. y[i] = 0.0f;
  1423. } else if (x[i] >= 10.0f) {
  1424. y[i] = x[i];
  1425. } else {
  1426. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1427. memcpy(&t, &fp16, sizeof(uint16_t));
  1428. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1429. }
  1430. }
  1431. }
  1432. #else
  1433. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1434. for (int i = 0; i < n; ++i) {
  1435. y[i] = ggml_gelu_f32(x[i]);
  1436. }
  1437. }
  1438. #endif
  1439. inline static float ggml_gelu_quick_f32(float x) {
  1440. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1441. }
  1442. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1443. // const uint16_t * i16 = (const uint16_t *) x;
  1444. // for (int i = 0; i < n; ++i) {
  1445. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1446. // }
  1447. //}
  1448. #ifdef GGML_GELU_QUICK_FP16
  1449. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1450. uint16_t t;
  1451. for (int i = 0; i < n; ++i) {
  1452. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1453. memcpy(&t, &fp16, sizeof(uint16_t));
  1454. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1455. }
  1456. }
  1457. #else
  1458. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1459. for (int i = 0; i < n; ++i) {
  1460. y[i] = ggml_gelu_quick_f32(x[i]);
  1461. }
  1462. }
  1463. #endif
  1464. // Sigmoid Linear Unit (SiLU) function
  1465. inline static float ggml_silu_f32(float x) {
  1466. return x/(1.0f + expf(-x));
  1467. }
  1468. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1469. // const uint16_t * i16 = (const uint16_t *) x;
  1470. // for (int i = 0; i < n; ++i) {
  1471. // y[i] = ggml_table_silu_f16[i16[i]];
  1472. // }
  1473. //}
  1474. #ifdef GGML_SILU_FP16
  1475. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1476. uint16_t t;
  1477. for (int i = 0; i < n; ++i) {
  1478. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1479. memcpy(&t, &fp16, sizeof(uint16_t));
  1480. y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
  1481. }
  1482. }
  1483. #else
  1484. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1485. for (int i = 0; i < n; ++i) {
  1486. y[i] = ggml_silu_f32(x[i]);
  1487. }
  1488. }
  1489. #endif
  1490. inline static float ggml_silu_backward_f32(float x, float dy) {
  1491. const float s = 1.0f/(1.0f + expf(-x));
  1492. return dy*s*(1.0f + x*(1.0f - s));
  1493. }
  1494. #ifdef GGML_SILU_FP16
  1495. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1496. for (int i = 0; i < n; ++i) {
  1497. // we did not use x[i] to compute forward silu but its f16 equivalent
  1498. // take derivative at f16 of x[i]:
  1499. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1500. float usedx = GGML_FP16_TO_FP32(fp16);
  1501. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  1502. }
  1503. }
  1504. #else
  1505. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1506. for (int i = 0; i < n; ++i) {
  1507. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1508. }
  1509. }
  1510. #endif
  1511. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1512. #ifndef GGML_USE_ACCELERATE
  1513. ggml_float sum = 0.0;
  1514. for (int i = 0; i < n; ++i) {
  1515. sum += (ggml_float)x[i];
  1516. }
  1517. *s = sum;
  1518. #else
  1519. vDSP_sve(x, 1, s, n);
  1520. #endif
  1521. }
  1522. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1523. ggml_float sum = 0.0;
  1524. for (int i = 0; i < n; ++i) {
  1525. sum += (ggml_float)x[i];
  1526. }
  1527. *s = sum;
  1528. }
  1529. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1530. float sum = 0.0f;
  1531. for (int i = 0; i < n; ++i) {
  1532. sum += GGML_FP16_TO_FP32(x[i]);
  1533. }
  1534. *s = sum;
  1535. }
  1536. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1537. #ifndef GGML_USE_ACCELERATE
  1538. float max = -INFINITY;
  1539. for (int i = 0; i < n; ++i) {
  1540. max = MAX(max, x[i]);
  1541. }
  1542. *s = max;
  1543. #else
  1544. vDSP_maxv(x, 1, s, n);
  1545. #endif
  1546. }
  1547. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1548. ggml_vec_norm_f32(n, s, x);
  1549. *s = 1.f/(*s);
  1550. }
  1551. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1552. float max = -INFINITY;
  1553. int idx = 0;
  1554. for (int i = 0; i < n; ++i) {
  1555. max = MAX(max, x[i]);
  1556. if (max == x[i]) { idx = i; }
  1557. }
  1558. *s = idx;
  1559. }
  1560. //
  1561. // data types
  1562. //
  1563. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  1564. "NONE",
  1565. "DUP",
  1566. "ADD",
  1567. "ADD1",
  1568. "ACC",
  1569. "SUB",
  1570. "MUL",
  1571. "DIV",
  1572. "SQR",
  1573. "SQRT",
  1574. "LOG",
  1575. "SUM",
  1576. "SUM_ROWS",
  1577. "MEAN",
  1578. "ARGMAX",
  1579. "REPEAT",
  1580. "REPEAT_BACK",
  1581. "CONCAT",
  1582. "SILU_BACK",
  1583. "NORM",
  1584. "RMS_NORM",
  1585. "RMS_NORM_BACK",
  1586. "GROUP_NORM",
  1587. "MUL_MAT",
  1588. "MUL_MAT_ID",
  1589. "OUT_PROD",
  1590. "SCALE",
  1591. "SET",
  1592. "CPY",
  1593. "CONT",
  1594. "RESHAPE",
  1595. "VIEW",
  1596. "PERMUTE",
  1597. "TRANSPOSE",
  1598. "GET_ROWS",
  1599. "GET_ROWS_BACK",
  1600. "DIAG",
  1601. "DIAG_MASK_INF",
  1602. "DIAG_MASK_ZERO",
  1603. "SOFT_MAX",
  1604. "SOFT_MAX_BACK",
  1605. "ROPE",
  1606. "ROPE_BACK",
  1607. "ALIBI",
  1608. "CLAMP",
  1609. "CONV_TRANSPOSE_1D",
  1610. "IM2COL",
  1611. "CONV_TRANSPOSE_2D",
  1612. "POOL_1D",
  1613. "POOL_2D",
  1614. "UPSCALE",
  1615. "PAD",
  1616. "ARANGE",
  1617. "TIMESTEP_EMBEDDING",
  1618. "ARGSORT",
  1619. "LEAKY_RELU",
  1620. "FLASH_ATTN",
  1621. "FLASH_FF",
  1622. "FLASH_ATTN_BACK",
  1623. "SSM_CONV",
  1624. "SSM_SCAN",
  1625. "WIN_PART",
  1626. "WIN_UNPART",
  1627. "GET_REL_POS",
  1628. "ADD_REL_POS",
  1629. "UNARY",
  1630. "MAP_UNARY",
  1631. "MAP_BINARY",
  1632. "MAP_CUSTOM1_F32",
  1633. "MAP_CUSTOM2_F32",
  1634. "MAP_CUSTOM3_F32",
  1635. "MAP_CUSTOM1",
  1636. "MAP_CUSTOM2",
  1637. "MAP_CUSTOM3",
  1638. "CROSS_ENTROPY_LOSS",
  1639. "CROSS_ENTROPY_LOSS_BACK",
  1640. };
  1641. static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76");
  1642. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1643. "none",
  1644. "x",
  1645. "x+y",
  1646. "x+y",
  1647. "view(x,nb,offset)+=y->x",
  1648. "x-y",
  1649. "x*y",
  1650. "x/y",
  1651. "x^2",
  1652. "√x",
  1653. "log(x)",
  1654. "Σx",
  1655. "Σx_k",
  1656. "Σx/n",
  1657. "argmax(x)",
  1658. "repeat(x)",
  1659. "repeat_back(x)",
  1660. "concat(x, y)",
  1661. "silu_back(x)",
  1662. "norm(x)",
  1663. "rms_norm(x)",
  1664. "rms_norm_back(x)",
  1665. "group_norm(x)",
  1666. "X*Y",
  1667. "X[i]*Y",
  1668. "X*Y",
  1669. "x*v",
  1670. "y-\\>view(x)",
  1671. "x-\\>y",
  1672. "cont(x)",
  1673. "reshape(x)",
  1674. "view(x)",
  1675. "permute(x)",
  1676. "transpose(x)",
  1677. "get_rows(x)",
  1678. "get_rows_back(x)",
  1679. "diag(x)",
  1680. "diag_mask_inf(x)",
  1681. "diag_mask_zero(x)",
  1682. "soft_max(x)",
  1683. "soft_max_back(x)",
  1684. "rope(x)",
  1685. "rope_back(x)",
  1686. "alibi(x)",
  1687. "clamp(x)",
  1688. "conv_transpose_1d(x)",
  1689. "im2col(x)",
  1690. "conv_transpose_2d(x)",
  1691. "pool_1d(x)",
  1692. "pool_2d(x)",
  1693. "upscale(x)",
  1694. "pad(x)",
  1695. "arange(start, stop, step)",
  1696. "timestep_embedding(timesteps, dim, max_period)",
  1697. "argsort(x)",
  1698. "leaky_relu(x)",
  1699. "flash_attn(x)",
  1700. "flash_ff(x)",
  1701. "flash_attn_back(x)",
  1702. "ssm_conv(x)",
  1703. "ssm_scan(x)",
  1704. "win_part(x)",
  1705. "win_unpart(x)",
  1706. "get_rel_pos(x)",
  1707. "add_rel_pos(x)",
  1708. "unary(x)",
  1709. "f(x)",
  1710. "f(x,y)",
  1711. "custom_f32(x)",
  1712. "custom_f32(x,y)",
  1713. "custom_f32(x,y,z)",
  1714. "custom(x)",
  1715. "custom(x,y)",
  1716. "custom(x,y,z)",
  1717. "cross_entropy_loss(x,y)",
  1718. "cross_entropy_loss_back(x,y)",
  1719. };
  1720. static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76");
  1721. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  1722. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  1723. "ABS",
  1724. "SGN",
  1725. "NEG",
  1726. "STEP",
  1727. "TANH",
  1728. "ELU",
  1729. "RELU",
  1730. "GELU",
  1731. "GELU_QUICK",
  1732. "SILU",
  1733. "HARDSWISH",
  1734. "HARDSIGMOID",
  1735. };
  1736. static_assert(GGML_UNARY_OP_COUNT == 12, "GGML_UNARY_OP_COUNT != 12");
  1737. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1738. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1739. // WARN:
  1740. // Mis-configuration can lead to problem that's hard to reason about:
  1741. // * At best it crash or talks nosense.
  1742. // * At worst it talks slightly difference but hard to perceive.
  1743. //
  1744. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  1745. // Take care about compile options (e.g., GGML_USE_xxx).
  1746. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  1747. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  1748. static void ggml_setup_op_has_task_pass(void) {
  1749. { // INIT
  1750. bool * p = GGML_OP_HAS_INIT;
  1751. p[GGML_OP_ACC ] = true;
  1752. p[GGML_OP_MUL_MAT ] = true;
  1753. p[GGML_OP_MUL_MAT_ID ] = true;
  1754. p[GGML_OP_OUT_PROD ] = true;
  1755. p[GGML_OP_SET ] = true;
  1756. p[GGML_OP_GET_ROWS_BACK ] = true;
  1757. p[GGML_OP_DIAG_MASK_INF ] = true;
  1758. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  1759. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  1760. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  1761. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  1762. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1763. p[GGML_OP_ADD_REL_POS ] = true;
  1764. }
  1765. { // FINALIZE
  1766. bool * p = GGML_OP_HAS_FINALIZE;
  1767. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1768. }
  1769. }
  1770. //
  1771. // ggml context
  1772. //
  1773. struct ggml_context {
  1774. size_t mem_size;
  1775. void * mem_buffer;
  1776. bool mem_buffer_owned;
  1777. bool no_alloc;
  1778. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1779. int n_objects;
  1780. struct ggml_object * objects_begin;
  1781. struct ggml_object * objects_end;
  1782. struct ggml_scratch scratch;
  1783. struct ggml_scratch scratch_save;
  1784. };
  1785. struct ggml_context_container {
  1786. bool used;
  1787. struct ggml_context context;
  1788. };
  1789. //
  1790. // NUMA support
  1791. //
  1792. #define GGML_NUMA_MAX_NODES 8
  1793. #define GGML_NUMA_MAX_CPUS 512
  1794. struct ggml_numa_node {
  1795. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  1796. uint32_t n_cpus;
  1797. };
  1798. struct ggml_numa_nodes {
  1799. enum ggml_numa_strategy numa_strategy;
  1800. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  1801. uint32_t n_nodes;
  1802. uint32_t total_cpus; // hardware threads on system
  1803. uint32_t current_node; // node on which main process is execting
  1804. #if defined(__gnu_linux__)
  1805. cpu_set_t cpuset; // cpuset from numactl
  1806. #else
  1807. uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
  1808. #endif
  1809. };
  1810. //
  1811. // ggml state
  1812. //
  1813. struct ggml_state {
  1814. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1815. struct ggml_numa_nodes numa;
  1816. };
  1817. // global state
  1818. static struct ggml_state g_state;
  1819. static atomic_int g_state_barrier = 0;
  1820. // barrier via spin lock
  1821. inline static void ggml_critical_section_start(void) {
  1822. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1823. while (processing > 0) {
  1824. // wait for other threads to finish
  1825. atomic_fetch_sub(&g_state_barrier, 1);
  1826. sched_yield(); // TODO: reconsider this
  1827. processing = atomic_fetch_add(&g_state_barrier, 1);
  1828. }
  1829. }
  1830. // TODO: make this somehow automatically executed
  1831. // some sort of "sentry" mechanism
  1832. inline static void ggml_critical_section_end(void) {
  1833. atomic_fetch_sub(&g_state_barrier, 1);
  1834. }
  1835. #if defined(__gnu_linux__)
  1836. static cpu_set_t ggml_get_numa_affinity(void) {
  1837. cpu_set_t cpuset;
  1838. pthread_t thread;
  1839. thread = pthread_self();
  1840. CPU_ZERO(&cpuset);
  1841. pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
  1842. return cpuset;
  1843. }
  1844. #else
  1845. static uint32_t ggml_get_numa_affinity(void) {
  1846. return 0; // no NUMA support
  1847. }
  1848. #endif
  1849. void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
  1850. if (g_state.numa.n_nodes > 0) {
  1851. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  1852. return;
  1853. }
  1854. #if defined(__gnu_linux__)
  1855. struct stat st;
  1856. char path[256];
  1857. int rv;
  1858. // set numa scheme
  1859. g_state.numa.numa_strategy = numa_flag;
  1860. GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
  1861. g_state.numa.cpuset = ggml_get_numa_affinity();
  1862. // enumerate nodes
  1863. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  1864. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  1865. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1866. if (stat(path, &st) != 0) { break; }
  1867. ++g_state.numa.n_nodes;
  1868. }
  1869. // enumerate CPUs
  1870. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  1871. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  1872. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1873. if (stat(path, &st) != 0) { break; }
  1874. ++g_state.numa.total_cpus;
  1875. }
  1876. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  1877. // figure out which node we're on
  1878. uint current_cpu;
  1879. int getcpu_ret = 0;
  1880. #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28)
  1881. getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
  1882. #else
  1883. // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
  1884. # if !defined(SYS_getcpu) && defined(SYS_get_cpu)
  1885. # define SYS_getcpu SYS_get_cpu // some older glibc versions use this name
  1886. # endif
  1887. getcpu_ret = syscall(SYS_getcpu, &current_cpu, &g_state.numa.current_node);
  1888. #endif
  1889. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
  1890. g_state.numa.n_nodes = 0;
  1891. return;
  1892. }
  1893. GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
  1894. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  1895. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  1896. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  1897. node->n_cpus = 0;
  1898. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  1899. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  1900. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1901. if (stat(path, &st) == 0) {
  1902. node->cpus[node->n_cpus++] = c;
  1903. GGML_PRINT_DEBUG(" %u", c);
  1904. }
  1905. }
  1906. GGML_PRINT_DEBUG("\n");
  1907. }
  1908. if (ggml_is_numa()) {
  1909. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  1910. if (fptr != NULL) {
  1911. char buf[42];
  1912. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  1913. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  1914. }
  1915. fclose(fptr);
  1916. }
  1917. }
  1918. #else
  1919. GGML_UNUSED(numa_flag);
  1920. // TODO
  1921. #endif
  1922. }
  1923. bool ggml_is_numa(void) {
  1924. return g_state.numa.n_nodes > 1;
  1925. }
  1926. ////////////////////////////////////////////////////////////////////////////////
  1927. void ggml_print_object(const struct ggml_object * obj) {
  1928. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  1929. obj->type, obj->offs, obj->size, (const void *) obj->next);
  1930. }
  1931. void ggml_print_objects(const struct ggml_context * ctx) {
  1932. struct ggml_object * obj = ctx->objects_begin;
  1933. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  1934. while (obj != NULL) {
  1935. ggml_print_object(obj);
  1936. obj = obj->next;
  1937. }
  1938. GGML_PRINT("%s: --- end ---\n", __func__);
  1939. }
  1940. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  1941. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1942. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1943. }
  1944. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  1945. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1946. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1947. }
  1948. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  1949. size_t nbytes;
  1950. size_t blck_size = ggml_blck_size(tensor->type);
  1951. if (blck_size == 1) {
  1952. nbytes = ggml_type_size(tensor->type);
  1953. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  1954. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1955. }
  1956. }
  1957. else {
  1958. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  1959. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  1960. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1961. }
  1962. }
  1963. return nbytes;
  1964. }
  1965. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  1966. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  1967. }
  1968. GGML_CALL int ggml_blck_size(enum ggml_type type) {
  1969. return type_traits[type].blck_size;
  1970. }
  1971. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  1972. return type_traits[type].type_size;
  1973. }
  1974. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  1975. assert(ne % ggml_blck_size(type) == 0);
  1976. return ggml_type_size(type)*ne/ggml_blck_size(type);
  1977. }
  1978. double ggml_type_sizef(enum ggml_type type) {
  1979. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  1980. }
  1981. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  1982. return type_traits[type].type_name;
  1983. }
  1984. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  1985. return type_traits[type].is_quantized;
  1986. }
  1987. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  1988. return GGML_OP_NAME[op];
  1989. }
  1990. const char * ggml_op_symbol(enum ggml_op op) {
  1991. return GGML_OP_SYMBOL[op];
  1992. }
  1993. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  1994. return GGML_UNARY_OP_NAME[op];
  1995. }
  1996. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  1997. if (t->op == GGML_OP_UNARY) {
  1998. enum ggml_unary_op uop = ggml_get_unary_op(t);
  1999. return ggml_unary_op_name(uop);
  2000. }
  2001. else {
  2002. return ggml_op_name(t->op);
  2003. }
  2004. }
  2005. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2006. return ggml_type_size(tensor->type);
  2007. }
  2008. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2009. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2010. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2011. }
  2012. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2013. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2014. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2015. }
  2016. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2017. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2018. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2019. }
  2020. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  2021. return tensor->ne[3] == 1;
  2022. }
  2023. int ggml_n_dims(const struct ggml_tensor * tensor) {
  2024. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  2025. if (tensor->ne[i] > 1) {
  2026. return i + 1;
  2027. }
  2028. }
  2029. return 1;
  2030. }
  2031. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2032. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2033. return (t0->ne[0] == t1->ne[0]) &&
  2034. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2035. (t1->ne[3]%t0->ne[3] == 0);
  2036. }
  2037. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2038. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2039. return (t0->ne[1] == t1->ne[1]) &&
  2040. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2041. (t1->ne[3]%t0->ne[3] == 0);
  2042. }
  2043. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  2044. enum ggml_type wtype = GGML_TYPE_COUNT;
  2045. switch (ftype) {
  2046. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  2047. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  2048. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  2049. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  2050. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  2051. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  2052. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  2053. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  2054. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  2055. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  2056. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  2057. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  2058. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  2059. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  2060. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  2061. case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
  2062. case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
  2063. case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
  2064. case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
  2065. case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
  2066. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  2067. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  2068. }
  2069. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  2070. return wtype;
  2071. }
  2072. size_t ggml_tensor_overhead(void) {
  2073. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  2074. }
  2075. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2076. return tensor->nb[0] > tensor->nb[1];
  2077. }
  2078. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2079. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2080. return
  2081. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2082. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  2083. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2084. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2085. }
  2086. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  2087. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2088. return
  2089. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2090. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2091. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2092. }
  2093. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  2094. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2095. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  2096. }
  2097. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2098. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2099. return
  2100. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2101. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2102. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2103. }
  2104. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2105. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2106. return
  2107. (t0->ne[0] == t1->ne[0] ) &&
  2108. (t0->ne[1] == t1->ne[1] ) &&
  2109. (t0->ne[2] == t1->ne[2] ) &&
  2110. (t0->ne[3] == t1->ne[3] );
  2111. }
  2112. // check if t1 can be represented as a repeatition of t0
  2113. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2114. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2115. return
  2116. (t1->ne[0]%t0->ne[0] == 0) &&
  2117. (t1->ne[1]%t0->ne[1] == 0) &&
  2118. (t1->ne[2]%t0->ne[2] == 0) &&
  2119. (t1->ne[3]%t0->ne[3] == 0);
  2120. }
  2121. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2122. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2123. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  2124. }
  2125. static inline int ggml_up32(int n) {
  2126. return (n + 31) & ~31;
  2127. }
  2128. //static inline int ggml_up64(int n) {
  2129. // return (n + 63) & ~63;
  2130. //}
  2131. static inline int ggml_up(int n, int m) {
  2132. // assert m is a power of 2
  2133. GGML_ASSERT((m & (m - 1)) == 0);
  2134. return (n + m - 1) & ~(m - 1);
  2135. }
  2136. // assert that pointer is aligned to GGML_MEM_ALIGN
  2137. #define ggml_assert_aligned(ptr) \
  2138. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2139. ////////////////////////////////////////////////////////////////////////////////
  2140. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2141. // make this function thread safe
  2142. ggml_critical_section_start();
  2143. static bool is_first_call = true;
  2144. if (is_first_call) {
  2145. // initialize time system (required on Windows)
  2146. ggml_time_init();
  2147. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  2148. {
  2149. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2150. ggml_fp16_t ii;
  2151. for (int i = 0; i < (1 << 16); ++i) {
  2152. uint16_t ui = i;
  2153. memcpy(&ii, &ui, sizeof(ii));
  2154. const float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2155. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2156. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  2157. ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2158. ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2159. }
  2160. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2161. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2162. }
  2163. // initialize g_state
  2164. {
  2165. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2166. g_state = (struct ggml_state) {
  2167. /*.contexts =*/ { { 0 } },
  2168. /*.numa =*/ {
  2169. .n_nodes = 0,
  2170. .total_cpus = 0,
  2171. },
  2172. };
  2173. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2174. g_state.contexts[i].used = false;
  2175. }
  2176. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2177. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2178. }
  2179. #if defined(GGML_USE_CUBLAS)
  2180. ggml_init_cublas();
  2181. #elif defined(GGML_USE_CLBLAST)
  2182. ggml_cl_init();
  2183. #elif defined(GGML_USE_VULKAN)
  2184. ggml_vk_init_cpu_assist();
  2185. #elif defined(GGML_USE_SYCL)
  2186. ggml_init_sycl();
  2187. #endif
  2188. ggml_setup_op_has_task_pass();
  2189. is_first_call = false;
  2190. }
  2191. // find non-used context in g_state
  2192. struct ggml_context * ctx = NULL;
  2193. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2194. if (!g_state.contexts[i].used) {
  2195. g_state.contexts[i].used = true;
  2196. ctx = &g_state.contexts[i].context;
  2197. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2198. break;
  2199. }
  2200. }
  2201. if (ctx == NULL) {
  2202. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2203. ggml_critical_section_end();
  2204. return NULL;
  2205. }
  2206. // allow to call ggml_init with 0 size
  2207. if (params.mem_size == 0) {
  2208. params.mem_size = GGML_MEM_ALIGN;
  2209. }
  2210. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  2211. *ctx = (struct ggml_context) {
  2212. /*.mem_size =*/ mem_size,
  2213. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2214. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2215. /*.no_alloc =*/ params.no_alloc,
  2216. /*.no_alloc_save =*/ params.no_alloc,
  2217. /*.n_objects =*/ 0,
  2218. /*.objects_begin =*/ NULL,
  2219. /*.objects_end =*/ NULL,
  2220. /*.scratch =*/ { 0, 0, NULL, },
  2221. /*.scratch_save =*/ { 0, 0, NULL, },
  2222. };
  2223. GGML_ASSERT(ctx->mem_buffer != NULL);
  2224. ggml_assert_aligned(ctx->mem_buffer);
  2225. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2226. ggml_critical_section_end();
  2227. return ctx;
  2228. }
  2229. void ggml_free(struct ggml_context * ctx) {
  2230. if (ctx == NULL) {
  2231. return;
  2232. }
  2233. // make this function thread safe
  2234. ggml_critical_section_start();
  2235. bool found = false;
  2236. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2237. if (&g_state.contexts[i].context == ctx) {
  2238. g_state.contexts[i].used = false;
  2239. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  2240. __func__, i, ggml_used_mem(ctx));
  2241. if (ctx->mem_buffer_owned) {
  2242. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2243. }
  2244. found = true;
  2245. break;
  2246. }
  2247. }
  2248. if (!found) {
  2249. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2250. }
  2251. ggml_critical_section_end();
  2252. }
  2253. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2254. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2255. }
  2256. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2257. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2258. ctx->scratch = scratch;
  2259. return result;
  2260. }
  2261. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2262. return ctx->no_alloc;
  2263. }
  2264. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2265. ctx->no_alloc = no_alloc;
  2266. }
  2267. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2268. return ctx->mem_buffer;
  2269. }
  2270. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2271. return ctx->mem_size;
  2272. }
  2273. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2274. size_t max_size = 0;
  2275. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2276. size_t bytes = ggml_nbytes(tensor);
  2277. max_size = MAX(max_size, bytes);
  2278. }
  2279. return max_size;
  2280. }
  2281. // IMPORTANT:
  2282. // when creating "opt" tensors, always save and load the scratch buffer
  2283. // this is an error prone process, but it is necessary to support inplace
  2284. // operators when using scratch buffers
  2285. // TODO: implement a better way
  2286. static void ggml_scratch_save(struct ggml_context * ctx) {
  2287. // this is needed to allow opt tensors to store their data
  2288. // TODO: again, need to find a better way
  2289. ctx->no_alloc_save = ctx->no_alloc;
  2290. ctx->no_alloc = false;
  2291. ctx->scratch_save = ctx->scratch;
  2292. ctx->scratch.data = NULL;
  2293. }
  2294. static void ggml_scratch_load(struct ggml_context * ctx) {
  2295. ctx->no_alloc = ctx->no_alloc_save;
  2296. ctx->scratch = ctx->scratch_save;
  2297. }
  2298. ////////////////////////////////////////////////////////////////////////////////
  2299. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  2300. // always insert objects at the end of the context's memory pool
  2301. struct ggml_object * obj_cur = ctx->objects_end;
  2302. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2303. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2304. const size_t cur_end = cur_offs + cur_size;
  2305. // align to GGML_MEM_ALIGN
  2306. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  2307. char * const mem_buffer = ctx->mem_buffer;
  2308. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2309. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2310. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2311. __func__, cur_end + size_needed, ctx->mem_size);
  2312. assert(false);
  2313. return NULL;
  2314. }
  2315. *obj_new = (struct ggml_object) {
  2316. .offs = cur_end + GGML_OBJECT_SIZE,
  2317. .size = size_needed,
  2318. .next = NULL,
  2319. .type = type,
  2320. };
  2321. ggml_assert_aligned(mem_buffer + obj_new->offs);
  2322. if (obj_cur != NULL) {
  2323. obj_cur->next = obj_new;
  2324. } else {
  2325. // this is the first object in this context
  2326. ctx->objects_begin = obj_new;
  2327. }
  2328. ctx->objects_end = obj_new;
  2329. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2330. return obj_new;
  2331. }
  2332. static struct ggml_tensor * ggml_new_tensor_impl(
  2333. struct ggml_context * ctx,
  2334. enum ggml_type type,
  2335. int n_dims,
  2336. const int64_t * ne,
  2337. struct ggml_tensor * view_src,
  2338. size_t view_offs) {
  2339. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2340. // find the base tensor and absolute offset
  2341. if (view_src != NULL && view_src->view_src != NULL) {
  2342. view_offs += view_src->view_offs;
  2343. view_src = view_src->view_src;
  2344. }
  2345. size_t data_size = ggml_row_size(type, ne[0]);
  2346. for (int i = 1; i < n_dims; i++) {
  2347. data_size *= ne[i];
  2348. }
  2349. GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
  2350. void * data = view_src != NULL ? view_src->data : NULL;
  2351. if (data != NULL) {
  2352. data = (char *) data + view_offs;
  2353. }
  2354. size_t obj_alloc_size = 0;
  2355. if (view_src == NULL && !ctx->no_alloc) {
  2356. if (ctx->scratch.data != NULL) {
  2357. // allocate tensor data in the scratch buffer
  2358. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2359. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2360. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2361. assert(false);
  2362. return NULL;
  2363. }
  2364. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2365. ctx->scratch.offs += data_size;
  2366. } else {
  2367. // allocate tensor data in the context's memory pool
  2368. obj_alloc_size = data_size;
  2369. }
  2370. }
  2371. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2372. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2373. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2374. *result = (struct ggml_tensor) {
  2375. /*.type =*/ type,
  2376. /*.backend =*/ GGML_BACKEND_TYPE_CPU,
  2377. /*.buffer =*/ NULL,
  2378. /*.ne =*/ { 1, 1, 1, 1 },
  2379. /*.nb =*/ { 0, 0, 0, 0 },
  2380. /*.op =*/ GGML_OP_NONE,
  2381. /*.op_params =*/ { 0 },
  2382. /*.flags =*/ 0,
  2383. /*.grad =*/ NULL,
  2384. /*.src =*/ { NULL },
  2385. /*.perf_runs =*/ 0,
  2386. /*.perf_cycles =*/ 0,
  2387. /*.perf_time_us =*/ 0,
  2388. /*.view_src =*/ view_src,
  2389. /*.view_offs =*/ view_offs,
  2390. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2391. /*.name =*/ { 0 },
  2392. /*.extra =*/ NULL,
  2393. /*.padding =*/ { 0 },
  2394. };
  2395. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2396. //ggml_assert_aligned(result->data);
  2397. for (int i = 0; i < n_dims; i++) {
  2398. result->ne[i] = ne[i];
  2399. }
  2400. result->nb[0] = ggml_type_size(type);
  2401. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2402. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2403. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2404. }
  2405. ctx->n_objects++;
  2406. return result;
  2407. }
  2408. struct ggml_tensor * ggml_new_tensor(
  2409. struct ggml_context * ctx,
  2410. enum ggml_type type,
  2411. int n_dims,
  2412. const int64_t * ne) {
  2413. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2414. }
  2415. struct ggml_tensor * ggml_new_tensor_1d(
  2416. struct ggml_context * ctx,
  2417. enum ggml_type type,
  2418. int64_t ne0) {
  2419. return ggml_new_tensor(ctx, type, 1, &ne0);
  2420. }
  2421. struct ggml_tensor * ggml_new_tensor_2d(
  2422. struct ggml_context * ctx,
  2423. enum ggml_type type,
  2424. int64_t ne0,
  2425. int64_t ne1) {
  2426. const int64_t ne[2] = { ne0, ne1 };
  2427. return ggml_new_tensor(ctx, type, 2, ne);
  2428. }
  2429. struct ggml_tensor * ggml_new_tensor_3d(
  2430. struct ggml_context * ctx,
  2431. enum ggml_type type,
  2432. int64_t ne0,
  2433. int64_t ne1,
  2434. int64_t ne2) {
  2435. const int64_t ne[3] = { ne0, ne1, ne2 };
  2436. return ggml_new_tensor(ctx, type, 3, ne);
  2437. }
  2438. struct ggml_tensor * ggml_new_tensor_4d(
  2439. struct ggml_context * ctx,
  2440. enum ggml_type type,
  2441. int64_t ne0,
  2442. int64_t ne1,
  2443. int64_t ne2,
  2444. int64_t ne3) {
  2445. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2446. return ggml_new_tensor(ctx, type, 4, ne);
  2447. }
  2448. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2449. ggml_scratch_save(ctx);
  2450. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2451. ggml_scratch_load(ctx);
  2452. ggml_set_i32(result, value);
  2453. return result;
  2454. }
  2455. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2456. ggml_scratch_save(ctx);
  2457. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2458. ggml_scratch_load(ctx);
  2459. ggml_set_f32(result, value);
  2460. return result;
  2461. }
  2462. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2463. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  2464. }
  2465. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  2466. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  2467. assert(params_size <= GGML_MAX_OP_PARAMS);
  2468. memcpy(tensor->op_params, params, params_size);
  2469. }
  2470. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  2471. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2472. return ((const int32_t *)(tensor->op_params))[i];
  2473. }
  2474. static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) {
  2475. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  2476. return ((const float *)(tensor->op_params))[i];
  2477. }
  2478. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  2479. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2480. ((int32_t *)(tensor->op_params))[i] = value;
  2481. }
  2482. static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) {
  2483. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  2484. ((float *)(tensor->op_params))[i] = value;
  2485. }
  2486. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2487. memset(tensor->data, 0, ggml_nbytes(tensor));
  2488. return tensor;
  2489. }
  2490. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2491. const int n = ggml_nrows(tensor);
  2492. const int nc = tensor->ne[0];
  2493. const size_t n1 = tensor->nb[1];
  2494. char * const data = tensor->data;
  2495. switch (tensor->type) {
  2496. case GGML_TYPE_I8:
  2497. {
  2498. assert(tensor->nb[0] == sizeof(int8_t));
  2499. for (int i = 0; i < n; i++) {
  2500. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2501. }
  2502. } break;
  2503. case GGML_TYPE_I16:
  2504. {
  2505. assert(tensor->nb[0] == sizeof(int16_t));
  2506. for (int i = 0; i < n; i++) {
  2507. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2508. }
  2509. } break;
  2510. case GGML_TYPE_I32:
  2511. {
  2512. assert(tensor->nb[0] == sizeof(int32_t));
  2513. for (int i = 0; i < n; i++) {
  2514. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2515. }
  2516. } break;
  2517. case GGML_TYPE_F16:
  2518. {
  2519. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2520. for (int i = 0; i < n; i++) {
  2521. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2522. }
  2523. } break;
  2524. case GGML_TYPE_F32:
  2525. {
  2526. assert(tensor->nb[0] == sizeof(float));
  2527. for (int i = 0; i < n; i++) {
  2528. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2529. }
  2530. } break;
  2531. default:
  2532. {
  2533. GGML_ASSERT(false);
  2534. } break;
  2535. }
  2536. return tensor;
  2537. }
  2538. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2539. const int n = ggml_nrows(tensor);
  2540. const int nc = tensor->ne[0];
  2541. const size_t n1 = tensor->nb[1];
  2542. char * const data = tensor->data;
  2543. switch (tensor->type) {
  2544. case GGML_TYPE_I8:
  2545. {
  2546. assert(tensor->nb[0] == sizeof(int8_t));
  2547. for (int i = 0; i < n; i++) {
  2548. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2549. }
  2550. } break;
  2551. case GGML_TYPE_I16:
  2552. {
  2553. assert(tensor->nb[0] == sizeof(int16_t));
  2554. for (int i = 0; i < n; i++) {
  2555. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2556. }
  2557. } break;
  2558. case GGML_TYPE_I32:
  2559. {
  2560. assert(tensor->nb[0] == sizeof(int32_t));
  2561. for (int i = 0; i < n; i++) {
  2562. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2563. }
  2564. } break;
  2565. case GGML_TYPE_F16:
  2566. {
  2567. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2568. for (int i = 0; i < n; i++) {
  2569. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2570. }
  2571. } break;
  2572. case GGML_TYPE_F32:
  2573. {
  2574. assert(tensor->nb[0] == sizeof(float));
  2575. for (int i = 0; i < n; i++) {
  2576. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2577. }
  2578. } break;
  2579. default:
  2580. {
  2581. GGML_ASSERT(false);
  2582. } break;
  2583. }
  2584. return tensor;
  2585. }
  2586. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  2587. const int64_t ne2 = tensor->ne[2];
  2588. const int64_t ne1 = tensor->ne[1];
  2589. const int64_t ne0 = tensor->ne[0];
  2590. const int64_t i3_ = (i/(ne2*ne1*ne0));
  2591. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  2592. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  2593. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  2594. if (i0) {
  2595. * i0 = i0_;
  2596. }
  2597. if (i1) {
  2598. * i1 = i1_;
  2599. }
  2600. if (i2) {
  2601. * i2 = i2_;
  2602. }
  2603. if (i3) {
  2604. * i3 = i3_;
  2605. }
  2606. }
  2607. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2608. if (!ggml_is_contiguous(tensor)) {
  2609. int64_t id[4] = { 0, 0, 0, 0 };
  2610. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2611. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2612. }
  2613. switch (tensor->type) {
  2614. case GGML_TYPE_I8:
  2615. {
  2616. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2617. return ((int8_t *)(tensor->data))[i];
  2618. }
  2619. case GGML_TYPE_I16:
  2620. {
  2621. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2622. return ((int16_t *)(tensor->data))[i];
  2623. }
  2624. case GGML_TYPE_I32:
  2625. {
  2626. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2627. return ((int32_t *)(tensor->data))[i];
  2628. }
  2629. case GGML_TYPE_F16:
  2630. {
  2631. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2632. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2633. }
  2634. case GGML_TYPE_F32:
  2635. {
  2636. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2637. return ((float *)(tensor->data))[i];
  2638. }
  2639. default:
  2640. {
  2641. GGML_ASSERT(false);
  2642. }
  2643. }
  2644. return 0.0f;
  2645. }
  2646. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2647. if (!ggml_is_contiguous(tensor)) {
  2648. int64_t id[4] = { 0, 0, 0, 0 };
  2649. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2650. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2651. return;
  2652. }
  2653. switch (tensor->type) {
  2654. case GGML_TYPE_I8:
  2655. {
  2656. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2657. ((int8_t *)(tensor->data))[i] = value;
  2658. } break;
  2659. case GGML_TYPE_I16:
  2660. {
  2661. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2662. ((int16_t *)(tensor->data))[i] = value;
  2663. } break;
  2664. case GGML_TYPE_I32:
  2665. {
  2666. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2667. ((int32_t *)(tensor->data))[i] = value;
  2668. } break;
  2669. case GGML_TYPE_F16:
  2670. {
  2671. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2672. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2673. } break;
  2674. case GGML_TYPE_F32:
  2675. {
  2676. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2677. ((float *)(tensor->data))[i] = value;
  2678. } break;
  2679. default:
  2680. {
  2681. GGML_ASSERT(false);
  2682. } break;
  2683. }
  2684. }
  2685. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2686. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2687. switch (tensor->type) {
  2688. case GGML_TYPE_I8:
  2689. return ((int8_t *) data)[0];
  2690. case GGML_TYPE_I16:
  2691. return ((int16_t *) data)[0];
  2692. case GGML_TYPE_I32:
  2693. return ((int32_t *) data)[0];
  2694. case GGML_TYPE_F16:
  2695. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2696. case GGML_TYPE_F32:
  2697. return ((float *) data)[0];
  2698. default:
  2699. GGML_ASSERT(false);
  2700. }
  2701. return 0.0f;
  2702. }
  2703. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  2704. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2705. switch (tensor->type) {
  2706. case GGML_TYPE_I8:
  2707. {
  2708. ((int8_t *)(data))[0] = value;
  2709. } break;
  2710. case GGML_TYPE_I16:
  2711. {
  2712. ((int16_t *)(data))[0] = value;
  2713. } break;
  2714. case GGML_TYPE_I32:
  2715. {
  2716. ((int32_t *)(data))[0] = value;
  2717. } break;
  2718. case GGML_TYPE_F16:
  2719. {
  2720. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2721. } break;
  2722. case GGML_TYPE_F32:
  2723. {
  2724. ((float *)(data))[0] = value;
  2725. } break;
  2726. default:
  2727. {
  2728. GGML_ASSERT(false);
  2729. } break;
  2730. }
  2731. }
  2732. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2733. if (!ggml_is_contiguous(tensor)) {
  2734. int64_t id[4] = { 0, 0, 0, 0 };
  2735. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2736. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  2737. }
  2738. switch (tensor->type) {
  2739. case GGML_TYPE_I8:
  2740. {
  2741. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2742. return ((int8_t *)(tensor->data))[i];
  2743. }
  2744. case GGML_TYPE_I16:
  2745. {
  2746. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2747. return ((int16_t *)(tensor->data))[i];
  2748. }
  2749. case GGML_TYPE_I32:
  2750. {
  2751. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2752. return ((int32_t *)(tensor->data))[i];
  2753. }
  2754. case GGML_TYPE_F16:
  2755. {
  2756. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2757. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2758. }
  2759. case GGML_TYPE_F32:
  2760. {
  2761. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2762. return ((float *)(tensor->data))[i];
  2763. }
  2764. default:
  2765. {
  2766. GGML_ASSERT(false);
  2767. }
  2768. }
  2769. return 0.0f;
  2770. }
  2771. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2772. if (!ggml_is_contiguous(tensor)) {
  2773. int64_t id[4] = { 0, 0, 0, 0 };
  2774. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2775. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2776. return;
  2777. }
  2778. switch (tensor->type) {
  2779. case GGML_TYPE_I8:
  2780. {
  2781. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2782. ((int8_t *)(tensor->data))[i] = value;
  2783. } break;
  2784. case GGML_TYPE_I16:
  2785. {
  2786. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2787. ((int16_t *)(tensor->data))[i] = value;
  2788. } break;
  2789. case GGML_TYPE_I32:
  2790. {
  2791. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2792. ((int32_t *)(tensor->data))[i] = value;
  2793. } break;
  2794. case GGML_TYPE_F16:
  2795. {
  2796. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2797. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2798. } break;
  2799. case GGML_TYPE_F32:
  2800. {
  2801. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2802. ((float *)(tensor->data))[i] = value;
  2803. } break;
  2804. default:
  2805. {
  2806. GGML_ASSERT(false);
  2807. } break;
  2808. }
  2809. }
  2810. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2811. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2812. switch (tensor->type) {
  2813. case GGML_TYPE_I8:
  2814. return ((int8_t *) data)[0];
  2815. case GGML_TYPE_I16:
  2816. return ((int16_t *) data)[0];
  2817. case GGML_TYPE_I32:
  2818. return ((int32_t *) data)[0];
  2819. case GGML_TYPE_F16:
  2820. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2821. case GGML_TYPE_F32:
  2822. return ((float *) data)[0];
  2823. default:
  2824. GGML_ASSERT(false);
  2825. }
  2826. return 0.0f;
  2827. }
  2828. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  2829. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2830. switch (tensor->type) {
  2831. case GGML_TYPE_I8:
  2832. {
  2833. ((int8_t *)(data))[0] = value;
  2834. } break;
  2835. case GGML_TYPE_I16:
  2836. {
  2837. ((int16_t *)(data))[0] = value;
  2838. } break;
  2839. case GGML_TYPE_I32:
  2840. {
  2841. ((int32_t *)(data))[0] = value;
  2842. } break;
  2843. case GGML_TYPE_F16:
  2844. {
  2845. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2846. } break;
  2847. case GGML_TYPE_F32:
  2848. {
  2849. ((float *)(data))[0] = value;
  2850. } break;
  2851. default:
  2852. {
  2853. GGML_ASSERT(false);
  2854. } break;
  2855. }
  2856. }
  2857. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2858. return tensor->data;
  2859. }
  2860. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2861. assert(tensor->type == GGML_TYPE_F32);
  2862. return (float *)(tensor->data);
  2863. }
  2864. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  2865. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  2866. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  2867. }
  2868. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  2869. return tensor->name;
  2870. }
  2871. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  2872. strncpy(tensor->name, name, sizeof(tensor->name) - 1);
  2873. tensor->name[sizeof(tensor->name) - 1] = '\0';
  2874. return tensor;
  2875. }
  2876. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  2877. va_list args;
  2878. va_start(args, fmt);
  2879. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  2880. va_end(args);
  2881. return tensor;
  2882. }
  2883. struct ggml_tensor * ggml_view_tensor(
  2884. struct ggml_context * ctx,
  2885. struct ggml_tensor * src) {
  2886. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  2887. ggml_format_name(result, "%s (view)", src->name);
  2888. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  2889. result->nb[i] = src->nb[i];
  2890. }
  2891. return result;
  2892. }
  2893. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  2894. struct ggml_object * obj = ctx->objects_begin;
  2895. char * const mem_buffer = ctx->mem_buffer;
  2896. while (obj != NULL) {
  2897. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  2898. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2899. }
  2900. obj = obj->next;
  2901. }
  2902. return NULL;
  2903. }
  2904. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  2905. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  2906. obj = obj->next;
  2907. char * const mem_buffer = ctx->mem_buffer;
  2908. while (obj != NULL) {
  2909. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  2910. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2911. }
  2912. obj = obj->next;
  2913. }
  2914. return NULL;
  2915. }
  2916. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  2917. struct ggml_object * obj = ctx->objects_begin;
  2918. char * const mem_buffer = ctx->mem_buffer;
  2919. while (obj != NULL) {
  2920. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  2921. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  2922. if (strcmp(cur->name, name) == 0) {
  2923. return cur;
  2924. }
  2925. }
  2926. obj = obj->next;
  2927. }
  2928. return NULL;
  2929. }
  2930. ////////////////////////////////////////////////////////////////////////////////
  2931. // ggml_dup
  2932. static struct ggml_tensor * ggml_dup_impl(
  2933. struct ggml_context * ctx,
  2934. struct ggml_tensor * a,
  2935. bool inplace) {
  2936. bool is_node = false;
  2937. if (!inplace && (a->grad)) {
  2938. is_node = true;
  2939. }
  2940. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2941. result->op = GGML_OP_DUP;
  2942. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2943. result->src[0] = a;
  2944. return result;
  2945. }
  2946. struct ggml_tensor * ggml_dup(
  2947. struct ggml_context * ctx,
  2948. struct ggml_tensor * a) {
  2949. return ggml_dup_impl(ctx, a, false);
  2950. }
  2951. struct ggml_tensor * ggml_dup_inplace(
  2952. struct ggml_context * ctx,
  2953. struct ggml_tensor * a) {
  2954. return ggml_dup_impl(ctx, a, true);
  2955. }
  2956. // ggml_add
  2957. static struct ggml_tensor * ggml_add_impl(
  2958. struct ggml_context * ctx,
  2959. struct ggml_tensor * a,
  2960. struct ggml_tensor * b,
  2961. bool inplace) {
  2962. GGML_ASSERT(ggml_can_repeat(b, a));
  2963. bool is_node = false;
  2964. if (!inplace && (a->grad || b->grad)) {
  2965. // TODO: support backward pass for broadcasting
  2966. GGML_ASSERT(ggml_are_same_shape(a, b));
  2967. is_node = true;
  2968. }
  2969. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2970. result->op = GGML_OP_ADD;
  2971. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2972. result->src[0] = a;
  2973. result->src[1] = b;
  2974. return result;
  2975. }
  2976. struct ggml_tensor * ggml_add(
  2977. struct ggml_context * ctx,
  2978. struct ggml_tensor * a,
  2979. struct ggml_tensor * b) {
  2980. return ggml_add_impl(ctx, a, b, false);
  2981. }
  2982. struct ggml_tensor * ggml_add_inplace(
  2983. struct ggml_context * ctx,
  2984. struct ggml_tensor * a,
  2985. struct ggml_tensor * b) {
  2986. return ggml_add_impl(ctx, a, b, true);
  2987. }
  2988. // ggml_add_cast
  2989. static struct ggml_tensor * ggml_add_cast_impl(
  2990. struct ggml_context * ctx,
  2991. struct ggml_tensor * a,
  2992. struct ggml_tensor * b,
  2993. enum ggml_type type) {
  2994. // TODO: support less-strict constraint
  2995. // GGML_ASSERT(ggml_can_repeat(b, a));
  2996. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  2997. GGML_ASSERT(ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16); // currently only supported for quantized input and f16
  2998. bool is_node = false;
  2999. if (a->grad || b->grad) {
  3000. // TODO: support backward pass for broadcasting
  3001. GGML_ASSERT(ggml_are_same_shape(a, b));
  3002. is_node = true;
  3003. }
  3004. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3005. result->op = GGML_OP_ADD;
  3006. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  3007. result->src[0] = a;
  3008. result->src[1] = b;
  3009. return result;
  3010. }
  3011. struct ggml_tensor * ggml_add_cast(
  3012. struct ggml_context * ctx,
  3013. struct ggml_tensor * a,
  3014. struct ggml_tensor * b,
  3015. enum ggml_type type) {
  3016. return ggml_add_cast_impl(ctx, a, b, type);
  3017. }
  3018. // ggml_add1
  3019. static struct ggml_tensor * ggml_add1_impl(
  3020. struct ggml_context * ctx,
  3021. struct ggml_tensor * a,
  3022. struct ggml_tensor * b,
  3023. bool inplace) {
  3024. GGML_ASSERT(ggml_is_scalar(b));
  3025. GGML_ASSERT(ggml_is_padded_1d(a));
  3026. bool is_node = false;
  3027. if (a->grad || b->grad) {
  3028. is_node = true;
  3029. }
  3030. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3031. result->op = GGML_OP_ADD1;
  3032. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3033. result->src[0] = a;
  3034. result->src[1] = b;
  3035. return result;
  3036. }
  3037. struct ggml_tensor * ggml_add1(
  3038. struct ggml_context * ctx,
  3039. struct ggml_tensor * a,
  3040. struct ggml_tensor * b) {
  3041. return ggml_add1_impl(ctx, a, b, false);
  3042. }
  3043. struct ggml_tensor * ggml_add1_inplace(
  3044. struct ggml_context * ctx,
  3045. struct ggml_tensor * a,
  3046. struct ggml_tensor * b) {
  3047. return ggml_add1_impl(ctx, a, b, true);
  3048. }
  3049. // ggml_acc
  3050. static struct ggml_tensor * ggml_acc_impl(
  3051. struct ggml_context * ctx,
  3052. struct ggml_tensor * a,
  3053. struct ggml_tensor * b,
  3054. size_t nb1,
  3055. size_t nb2,
  3056. size_t nb3,
  3057. size_t offset,
  3058. bool inplace) {
  3059. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3060. GGML_ASSERT(ggml_is_contiguous(a));
  3061. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3062. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3063. bool is_node = false;
  3064. if (!inplace && (a->grad || b->grad)) {
  3065. is_node = true;
  3066. }
  3067. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3068. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3069. ggml_set_op_params(result, params, sizeof(params));
  3070. result->op = GGML_OP_ACC;
  3071. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3072. result->src[0] = a;
  3073. result->src[1] = b;
  3074. return result;
  3075. }
  3076. struct ggml_tensor * ggml_acc(
  3077. struct ggml_context * ctx,
  3078. struct ggml_tensor * a,
  3079. struct ggml_tensor * b,
  3080. size_t nb1,
  3081. size_t nb2,
  3082. size_t nb3,
  3083. size_t offset) {
  3084. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3085. }
  3086. struct ggml_tensor * ggml_acc_inplace(
  3087. struct ggml_context * ctx,
  3088. struct ggml_tensor * a,
  3089. struct ggml_tensor * b,
  3090. size_t nb1,
  3091. size_t nb2,
  3092. size_t nb3,
  3093. size_t offset) {
  3094. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3095. }
  3096. // ggml_sub
  3097. static struct ggml_tensor * ggml_sub_impl(
  3098. struct ggml_context * ctx,
  3099. struct ggml_tensor * a,
  3100. struct ggml_tensor * b,
  3101. bool inplace) {
  3102. GGML_ASSERT(ggml_are_same_shape(a, b));
  3103. bool is_node = false;
  3104. if (!inplace && (a->grad || b->grad)) {
  3105. is_node = true;
  3106. }
  3107. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3108. result->op = GGML_OP_SUB;
  3109. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3110. result->src[0] = a;
  3111. result->src[1] = b;
  3112. return result;
  3113. }
  3114. struct ggml_tensor * ggml_sub(
  3115. struct ggml_context * ctx,
  3116. struct ggml_tensor * a,
  3117. struct ggml_tensor * b) {
  3118. return ggml_sub_impl(ctx, a, b, false);
  3119. }
  3120. struct ggml_tensor * ggml_sub_inplace(
  3121. struct ggml_context * ctx,
  3122. struct ggml_tensor * a,
  3123. struct ggml_tensor * b) {
  3124. return ggml_sub_impl(ctx, a, b, true);
  3125. }
  3126. // ggml_mul
  3127. static struct ggml_tensor * ggml_mul_impl(
  3128. struct ggml_context * ctx,
  3129. struct ggml_tensor * a,
  3130. struct ggml_tensor * b,
  3131. bool inplace) {
  3132. GGML_ASSERT(ggml_can_repeat(b, a));
  3133. bool is_node = false;
  3134. if (!inplace && (a->grad || b->grad)) {
  3135. // TODO: support backward pass for broadcasting
  3136. GGML_ASSERT(ggml_are_same_shape(a, b));
  3137. is_node = true;
  3138. }
  3139. if (inplace) {
  3140. GGML_ASSERT(!is_node);
  3141. }
  3142. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3143. result->op = GGML_OP_MUL;
  3144. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3145. result->src[0] = a;
  3146. result->src[1] = b;
  3147. return result;
  3148. }
  3149. struct ggml_tensor * ggml_mul(
  3150. struct ggml_context * ctx,
  3151. struct ggml_tensor * a,
  3152. struct ggml_tensor * b) {
  3153. return ggml_mul_impl(ctx, a, b, false);
  3154. }
  3155. struct ggml_tensor * ggml_mul_inplace(
  3156. struct ggml_context * ctx,
  3157. struct ggml_tensor * a,
  3158. struct ggml_tensor * b) {
  3159. return ggml_mul_impl(ctx, a, b, true);
  3160. }
  3161. // ggml_div
  3162. static struct ggml_tensor * ggml_div_impl(
  3163. struct ggml_context * ctx,
  3164. struct ggml_tensor * a,
  3165. struct ggml_tensor * b,
  3166. bool inplace) {
  3167. GGML_ASSERT(ggml_can_repeat(b, a));
  3168. bool is_node = false;
  3169. if (!inplace && (a->grad || b->grad)) {
  3170. is_node = true;
  3171. }
  3172. if (inplace) {
  3173. GGML_ASSERT(!is_node);
  3174. }
  3175. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3176. result->op = GGML_OP_DIV;
  3177. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3178. result->src[0] = a;
  3179. result->src[1] = b;
  3180. return result;
  3181. }
  3182. struct ggml_tensor * ggml_div(
  3183. struct ggml_context * ctx,
  3184. struct ggml_tensor * a,
  3185. struct ggml_tensor * b) {
  3186. return ggml_div_impl(ctx, a, b, false);
  3187. }
  3188. struct ggml_tensor * ggml_div_inplace(
  3189. struct ggml_context * ctx,
  3190. struct ggml_tensor * a,
  3191. struct ggml_tensor * b) {
  3192. return ggml_div_impl(ctx, a, b, true);
  3193. }
  3194. // ggml_sqr
  3195. static struct ggml_tensor * ggml_sqr_impl(
  3196. struct ggml_context * ctx,
  3197. struct ggml_tensor * a,
  3198. bool inplace) {
  3199. bool is_node = false;
  3200. if (!inplace && (a->grad)) {
  3201. is_node = true;
  3202. }
  3203. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3204. result->op = GGML_OP_SQR;
  3205. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3206. result->src[0] = a;
  3207. return result;
  3208. }
  3209. struct ggml_tensor * ggml_sqr(
  3210. struct ggml_context * ctx,
  3211. struct ggml_tensor * a) {
  3212. return ggml_sqr_impl(ctx, a, false);
  3213. }
  3214. struct ggml_tensor * ggml_sqr_inplace(
  3215. struct ggml_context * ctx,
  3216. struct ggml_tensor * a) {
  3217. return ggml_sqr_impl(ctx, a, true);
  3218. }
  3219. // ggml_sqrt
  3220. static struct ggml_tensor * ggml_sqrt_impl(
  3221. struct ggml_context * ctx,
  3222. struct ggml_tensor * a,
  3223. bool inplace) {
  3224. bool is_node = false;
  3225. if (!inplace && (a->grad)) {
  3226. is_node = true;
  3227. }
  3228. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3229. result->op = GGML_OP_SQRT;
  3230. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3231. result->src[0] = a;
  3232. return result;
  3233. }
  3234. struct ggml_tensor * ggml_sqrt(
  3235. struct ggml_context * ctx,
  3236. struct ggml_tensor * a) {
  3237. return ggml_sqrt_impl(ctx, a, false);
  3238. }
  3239. struct ggml_tensor * ggml_sqrt_inplace(
  3240. struct ggml_context * ctx,
  3241. struct ggml_tensor * a) {
  3242. return ggml_sqrt_impl(ctx, a, true);
  3243. }
  3244. // ggml_log
  3245. static struct ggml_tensor * ggml_log_impl(
  3246. struct ggml_context * ctx,
  3247. struct ggml_tensor * a,
  3248. bool inplace) {
  3249. bool is_node = false;
  3250. if (!inplace && (a->grad)) {
  3251. is_node = true;
  3252. }
  3253. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3254. result->op = GGML_OP_LOG;
  3255. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3256. result->src[0] = a;
  3257. return result;
  3258. }
  3259. struct ggml_tensor * ggml_log(
  3260. struct ggml_context * ctx,
  3261. struct ggml_tensor * a) {
  3262. return ggml_log_impl(ctx, a, false);
  3263. }
  3264. struct ggml_tensor * ggml_log_inplace(
  3265. struct ggml_context * ctx,
  3266. struct ggml_tensor * a) {
  3267. return ggml_log_impl(ctx, a, true);
  3268. }
  3269. // ggml_sum
  3270. struct ggml_tensor * ggml_sum(
  3271. struct ggml_context * ctx,
  3272. struct ggml_tensor * a) {
  3273. bool is_node = false;
  3274. if (a->grad) {
  3275. is_node = true;
  3276. }
  3277. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3278. result->op = GGML_OP_SUM;
  3279. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3280. result->src[0] = a;
  3281. return result;
  3282. }
  3283. // ggml_sum_rows
  3284. struct ggml_tensor * ggml_sum_rows(
  3285. struct ggml_context * ctx,
  3286. struct ggml_tensor * a) {
  3287. bool is_node = false;
  3288. if (a->grad) {
  3289. is_node = true;
  3290. }
  3291. int64_t ne[GGML_MAX_DIMS] = { 1 };
  3292. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3293. ne[i] = a->ne[i];
  3294. }
  3295. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  3296. result->op = GGML_OP_SUM_ROWS;
  3297. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3298. result->src[0] = a;
  3299. return result;
  3300. }
  3301. // ggml_mean
  3302. struct ggml_tensor * ggml_mean(
  3303. struct ggml_context * ctx,
  3304. struct ggml_tensor * a) {
  3305. bool is_node = false;
  3306. if (a->grad) {
  3307. GGML_ASSERT(false); // TODO: implement
  3308. is_node = true;
  3309. }
  3310. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3311. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3312. result->op = GGML_OP_MEAN;
  3313. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3314. result->src[0] = a;
  3315. return result;
  3316. }
  3317. // ggml_argmax
  3318. struct ggml_tensor * ggml_argmax(
  3319. struct ggml_context * ctx,
  3320. struct ggml_tensor * a) {
  3321. GGML_ASSERT(ggml_is_matrix(a));
  3322. bool is_node = false;
  3323. if (a->grad) {
  3324. GGML_ASSERT(false);
  3325. is_node = true;
  3326. }
  3327. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  3328. result->op = GGML_OP_ARGMAX;
  3329. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3330. result->src[0] = a;
  3331. return result;
  3332. }
  3333. // ggml_repeat
  3334. struct ggml_tensor * ggml_repeat(
  3335. struct ggml_context * ctx,
  3336. struct ggml_tensor * a,
  3337. struct ggml_tensor * b) {
  3338. GGML_ASSERT(ggml_can_repeat(a, b));
  3339. bool is_node = false;
  3340. if (a->grad) {
  3341. is_node = true;
  3342. }
  3343. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3344. result->op = GGML_OP_REPEAT;
  3345. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3346. result->src[0] = a;
  3347. return result;
  3348. }
  3349. // ggml_repeat_back
  3350. struct ggml_tensor * ggml_repeat_back(
  3351. struct ggml_context * ctx,
  3352. struct ggml_tensor * a,
  3353. struct ggml_tensor * b) {
  3354. GGML_ASSERT(ggml_can_repeat(b, a));
  3355. bool is_node = false;
  3356. if (a->grad) {
  3357. is_node = true;
  3358. }
  3359. if (ggml_are_same_shape(a, b) && !is_node) {
  3360. return a;
  3361. }
  3362. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3363. result->op = GGML_OP_REPEAT_BACK;
  3364. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3365. result->src[0] = a;
  3366. return result;
  3367. }
  3368. // ggml_concat
  3369. struct ggml_tensor * ggml_concat(
  3370. struct ggml_context* ctx,
  3371. struct ggml_tensor* a,
  3372. struct ggml_tensor* b) {
  3373. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3374. bool is_node = false;
  3375. if (a->grad || b->grad) {
  3376. is_node = true;
  3377. }
  3378. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3379. result->op = GGML_OP_CONCAT;
  3380. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3381. result->src[0] = a;
  3382. result->src[1] = b;
  3383. return result;
  3384. }
  3385. // ggml_abs
  3386. struct ggml_tensor * ggml_abs(
  3387. struct ggml_context * ctx,
  3388. struct ggml_tensor * a) {
  3389. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  3390. }
  3391. struct ggml_tensor * ggml_abs_inplace(
  3392. struct ggml_context * ctx,
  3393. struct ggml_tensor * a) {
  3394. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  3395. }
  3396. // ggml_sgn
  3397. struct ggml_tensor * ggml_sgn(
  3398. struct ggml_context * ctx,
  3399. struct ggml_tensor * a) {
  3400. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  3401. }
  3402. struct ggml_tensor * ggml_sgn_inplace(
  3403. struct ggml_context * ctx,
  3404. struct ggml_tensor * a) {
  3405. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  3406. }
  3407. // ggml_neg
  3408. struct ggml_tensor * ggml_neg(
  3409. struct ggml_context * ctx,
  3410. struct ggml_tensor * a) {
  3411. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  3412. }
  3413. struct ggml_tensor * ggml_neg_inplace(
  3414. struct ggml_context * ctx,
  3415. struct ggml_tensor * a) {
  3416. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  3417. }
  3418. // ggml_step
  3419. struct ggml_tensor * ggml_step(
  3420. struct ggml_context * ctx,
  3421. struct ggml_tensor * a) {
  3422. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  3423. }
  3424. struct ggml_tensor * ggml_step_inplace(
  3425. struct ggml_context * ctx,
  3426. struct ggml_tensor * a) {
  3427. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  3428. }
  3429. // ggml_tanh
  3430. struct ggml_tensor * ggml_tanh(
  3431. struct ggml_context * ctx,
  3432. struct ggml_tensor * a) {
  3433. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  3434. }
  3435. struct ggml_tensor * ggml_tanh_inplace(
  3436. struct ggml_context * ctx,
  3437. struct ggml_tensor * a) {
  3438. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  3439. }
  3440. // ggml_elu
  3441. struct ggml_tensor * ggml_elu(
  3442. struct ggml_context * ctx,
  3443. struct ggml_tensor * a) {
  3444. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  3445. }
  3446. struct ggml_tensor * ggml_elu_inplace(
  3447. struct ggml_context * ctx,
  3448. struct ggml_tensor * a) {
  3449. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  3450. }
  3451. // ggml_relu
  3452. struct ggml_tensor * ggml_relu(
  3453. struct ggml_context * ctx,
  3454. struct ggml_tensor * a) {
  3455. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  3456. }
  3457. struct ggml_tensor * ggml_relu_inplace(
  3458. struct ggml_context * ctx,
  3459. struct ggml_tensor * a) {
  3460. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  3461. }
  3462. // ggml_leaky_relu
  3463. struct ggml_tensor * ggml_leaky_relu(
  3464. struct ggml_context * ctx,
  3465. struct ggml_tensor * a, float negative_slope, bool inplace) {
  3466. bool is_node = false;
  3467. if (!inplace && (a->grad)) {
  3468. is_node = true;
  3469. }
  3470. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3471. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  3472. result->op = GGML_OP_LEAKY_RELU;
  3473. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3474. result->src[0] = a;
  3475. return result;
  3476. }
  3477. // ggml_gelu
  3478. struct ggml_tensor * ggml_gelu(
  3479. struct ggml_context * ctx,
  3480. struct ggml_tensor * a) {
  3481. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  3482. }
  3483. struct ggml_tensor * ggml_gelu_inplace(
  3484. struct ggml_context * ctx,
  3485. struct ggml_tensor * a) {
  3486. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  3487. }
  3488. // ggml_gelu_quick
  3489. struct ggml_tensor * ggml_gelu_quick(
  3490. struct ggml_context * ctx,
  3491. struct ggml_tensor * a) {
  3492. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3493. }
  3494. struct ggml_tensor * ggml_gelu_quick_inplace(
  3495. struct ggml_context * ctx,
  3496. struct ggml_tensor * a) {
  3497. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3498. }
  3499. // ggml_silu
  3500. struct ggml_tensor * ggml_silu(
  3501. struct ggml_context * ctx,
  3502. struct ggml_tensor * a) {
  3503. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  3504. }
  3505. struct ggml_tensor * ggml_silu_inplace(
  3506. struct ggml_context * ctx,
  3507. struct ggml_tensor * a) {
  3508. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  3509. }
  3510. // ggml_silu_back
  3511. struct ggml_tensor * ggml_silu_back(
  3512. struct ggml_context * ctx,
  3513. struct ggml_tensor * a,
  3514. struct ggml_tensor * b) {
  3515. bool is_node = false;
  3516. if (a->grad || b->grad) {
  3517. // TODO: implement backward
  3518. is_node = true;
  3519. }
  3520. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3521. result->op = GGML_OP_SILU_BACK;
  3522. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3523. result->src[0] = a;
  3524. result->src[1] = b;
  3525. return result;
  3526. }
  3527. // ggml hardswish
  3528. struct ggml_tensor * ggml_hardswish(
  3529. struct ggml_context * ctx,
  3530. struct ggml_tensor * a) {
  3531. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  3532. }
  3533. // ggml hardsigmoid
  3534. struct ggml_tensor * ggml_hardsigmoid(
  3535. struct ggml_context * ctx,
  3536. struct ggml_tensor * a) {
  3537. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  3538. }
  3539. // ggml_norm
  3540. static struct ggml_tensor * ggml_norm_impl(
  3541. struct ggml_context * ctx,
  3542. struct ggml_tensor * a,
  3543. float eps,
  3544. bool inplace) {
  3545. bool is_node = false;
  3546. if (!inplace && (a->grad)) {
  3547. GGML_ASSERT(false); // TODO: implement backward
  3548. is_node = true;
  3549. }
  3550. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3551. ggml_set_op_params(result, &eps, sizeof(eps));
  3552. result->op = GGML_OP_NORM;
  3553. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3554. result->src[0] = a;
  3555. return result;
  3556. }
  3557. struct ggml_tensor * ggml_norm(
  3558. struct ggml_context * ctx,
  3559. struct ggml_tensor * a,
  3560. float eps) {
  3561. return ggml_norm_impl(ctx, a, eps, false);
  3562. }
  3563. struct ggml_tensor * ggml_norm_inplace(
  3564. struct ggml_context * ctx,
  3565. struct ggml_tensor * a,
  3566. float eps) {
  3567. return ggml_norm_impl(ctx, a, eps, true);
  3568. }
  3569. // ggml_rms_norm
  3570. static struct ggml_tensor * ggml_rms_norm_impl(
  3571. struct ggml_context * ctx,
  3572. struct ggml_tensor * a,
  3573. float eps,
  3574. bool inplace) {
  3575. bool is_node = false;
  3576. if (!inplace && (a->grad)) {
  3577. is_node = true;
  3578. }
  3579. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3580. ggml_set_op_params(result, &eps, sizeof(eps));
  3581. result->op = GGML_OP_RMS_NORM;
  3582. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3583. result->src[0] = a;
  3584. return result;
  3585. }
  3586. struct ggml_tensor * ggml_rms_norm(
  3587. struct ggml_context * ctx,
  3588. struct ggml_tensor * a,
  3589. float eps) {
  3590. return ggml_rms_norm_impl(ctx, a, eps, false);
  3591. }
  3592. struct ggml_tensor * ggml_rms_norm_inplace(
  3593. struct ggml_context * ctx,
  3594. struct ggml_tensor * a,
  3595. float eps) {
  3596. return ggml_rms_norm_impl(ctx, a, eps, true);
  3597. }
  3598. // ggml_rms_norm_back
  3599. struct ggml_tensor * ggml_rms_norm_back(
  3600. struct ggml_context * ctx,
  3601. struct ggml_tensor * a,
  3602. struct ggml_tensor * b,
  3603. float eps) {
  3604. bool is_node = false;
  3605. if (a->grad) {
  3606. // TODO: implement backward
  3607. is_node = true;
  3608. }
  3609. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3610. ggml_set_op_params(result, &eps, sizeof(eps));
  3611. result->op = GGML_OP_RMS_NORM_BACK;
  3612. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3613. result->src[0] = a;
  3614. result->src[1] = b;
  3615. return result;
  3616. }
  3617. // ggml_group_norm
  3618. static struct ggml_tensor * ggml_group_norm_impl(
  3619. struct ggml_context * ctx,
  3620. struct ggml_tensor * a,
  3621. int n_groups,
  3622. bool inplace) {
  3623. bool is_node = false;
  3624. if (!inplace && (a->grad)) {
  3625. GGML_ASSERT(false); // TODO: implement backward
  3626. is_node = true;
  3627. }
  3628. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3629. result->op_params[0] = n_groups;
  3630. result->op = GGML_OP_GROUP_NORM;
  3631. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3632. result->src[0] = a;
  3633. return result;
  3634. }
  3635. struct ggml_tensor * ggml_group_norm(
  3636. struct ggml_context * ctx,
  3637. struct ggml_tensor * a,
  3638. int n_groups) {
  3639. return ggml_group_norm_impl(ctx, a, n_groups, false);
  3640. }
  3641. struct ggml_tensor * ggml_group_norm_inplace(
  3642. struct ggml_context * ctx,
  3643. struct ggml_tensor * a,
  3644. int n_groups) {
  3645. return ggml_group_norm_impl(ctx, a, n_groups, true);
  3646. }
  3647. // ggml_mul_mat
  3648. struct ggml_tensor * ggml_mul_mat(
  3649. struct ggml_context * ctx,
  3650. struct ggml_tensor * a,
  3651. struct ggml_tensor * b) {
  3652. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3653. GGML_ASSERT(!ggml_is_transposed(a));
  3654. bool is_node = false;
  3655. if (a->grad || b->grad) {
  3656. is_node = true;
  3657. }
  3658. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3659. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3660. result->op = GGML_OP_MUL_MAT;
  3661. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3662. result->src[0] = a;
  3663. result->src[1] = b;
  3664. return result;
  3665. }
  3666. void ggml_mul_mat_set_prec(
  3667. struct ggml_tensor * a,
  3668. enum ggml_prec prec) {
  3669. const int32_t prec_i32 = (int32_t) prec;
  3670. ggml_set_op_params_i32(a, 0, prec_i32);
  3671. }
  3672. // ggml_mul_mat_id
  3673. struct ggml_tensor * ggml_mul_mat_id(
  3674. struct ggml_context * ctx,
  3675. struct ggml_tensor * const as[],
  3676. int n_as,
  3677. struct ggml_tensor * ids,
  3678. int id,
  3679. struct ggml_tensor * b) {
  3680. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  3681. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1);
  3682. GGML_ASSERT(ids->ne[1] == b->ne[1]);
  3683. GGML_ASSERT(ids->ne[2] == b->ne[2] && ids->ne[3] == b->ne[3]);
  3684. GGML_ASSERT(n_as > 0 && n_as <= GGML_MAX_SRC - 2);
  3685. GGML_ASSERT(id >= 0 && id < ids->ne[0]);
  3686. bool is_node = false;
  3687. if (as[0]->grad || b->grad) {
  3688. is_node = true;
  3689. }
  3690. const int64_t ne[4] = { as[0]->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3691. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3692. ggml_set_op_params_i32(result, 0, id);
  3693. ggml_set_op_params_i32(result, 1, n_as);
  3694. result->op = GGML_OP_MUL_MAT_ID;
  3695. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3696. result->src[0] = ids;
  3697. result->src[1] = b;
  3698. for (int i = 0; i < n_as; i++) {
  3699. struct ggml_tensor * a = as[i];
  3700. GGML_ASSERT(ggml_are_same_shape(as[0], a));
  3701. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3702. GGML_ASSERT(!ggml_is_transposed(a));
  3703. result->src[i + 2] = a;
  3704. }
  3705. return result;
  3706. }
  3707. // ggml_out_prod
  3708. struct ggml_tensor * ggml_out_prod(
  3709. struct ggml_context * ctx,
  3710. struct ggml_tensor * a,
  3711. struct ggml_tensor * b) {
  3712. GGML_ASSERT(ggml_can_out_prod(a, b));
  3713. GGML_ASSERT(!ggml_is_transposed(a));
  3714. bool is_node = false;
  3715. if (a->grad || b->grad) {
  3716. is_node = true;
  3717. }
  3718. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  3719. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  3720. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3721. result->op = GGML_OP_OUT_PROD;
  3722. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3723. result->src[0] = a;
  3724. result->src[1] = b;
  3725. return result;
  3726. }
  3727. // ggml_scale
  3728. static struct ggml_tensor * ggml_scale_impl(
  3729. struct ggml_context * ctx,
  3730. struct ggml_tensor * a,
  3731. float s,
  3732. bool inplace) {
  3733. GGML_ASSERT(ggml_is_padded_1d(a));
  3734. bool is_node = false;
  3735. if (a->grad) {
  3736. is_node = true;
  3737. }
  3738. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3739. ggml_set_op_params(result, &s, sizeof(s));
  3740. result->op = GGML_OP_SCALE;
  3741. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3742. result->src[0] = a;
  3743. return result;
  3744. }
  3745. struct ggml_tensor * ggml_scale(
  3746. struct ggml_context * ctx,
  3747. struct ggml_tensor * a,
  3748. float s) {
  3749. return ggml_scale_impl(ctx, a, s, false);
  3750. }
  3751. struct ggml_tensor * ggml_scale_inplace(
  3752. struct ggml_context * ctx,
  3753. struct ggml_tensor * a,
  3754. float s) {
  3755. return ggml_scale_impl(ctx, a, s, true);
  3756. }
  3757. // ggml_set
  3758. static struct ggml_tensor * ggml_set_impl(
  3759. struct ggml_context * ctx,
  3760. struct ggml_tensor * a,
  3761. struct ggml_tensor * b,
  3762. size_t nb1,
  3763. size_t nb2,
  3764. size_t nb3,
  3765. size_t offset,
  3766. bool inplace) {
  3767. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  3768. bool is_node = false;
  3769. if (a->grad || b->grad) {
  3770. is_node = true;
  3771. }
  3772. // make a view of the destination
  3773. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3774. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3775. ggml_set_op_params(result, params, sizeof(params));
  3776. result->op = GGML_OP_SET;
  3777. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3778. result->src[0] = a;
  3779. result->src[1] = b;
  3780. return result;
  3781. }
  3782. struct ggml_tensor * ggml_set(
  3783. struct ggml_context * ctx,
  3784. struct ggml_tensor * a,
  3785. struct ggml_tensor * b,
  3786. size_t nb1,
  3787. size_t nb2,
  3788. size_t nb3,
  3789. size_t offset) {
  3790. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3791. }
  3792. struct ggml_tensor * ggml_set_inplace(
  3793. struct ggml_context * ctx,
  3794. struct ggml_tensor * a,
  3795. struct ggml_tensor * b,
  3796. size_t nb1,
  3797. size_t nb2,
  3798. size_t nb3,
  3799. size_t offset) {
  3800. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3801. }
  3802. struct ggml_tensor * ggml_set_1d(
  3803. struct ggml_context * ctx,
  3804. struct ggml_tensor * a,
  3805. struct ggml_tensor * b,
  3806. size_t offset) {
  3807. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  3808. }
  3809. struct ggml_tensor * ggml_set_1d_inplace(
  3810. struct ggml_context * ctx,
  3811. struct ggml_tensor * a,
  3812. struct ggml_tensor * b,
  3813. size_t offset) {
  3814. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  3815. }
  3816. struct ggml_tensor * ggml_set_2d(
  3817. struct ggml_context * ctx,
  3818. struct ggml_tensor * a,
  3819. struct ggml_tensor * b,
  3820. size_t nb1,
  3821. size_t offset) {
  3822. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3823. }
  3824. struct ggml_tensor * ggml_set_2d_inplace(
  3825. struct ggml_context * ctx,
  3826. struct ggml_tensor * a,
  3827. struct ggml_tensor * b,
  3828. size_t nb1,
  3829. size_t offset) {
  3830. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  3831. }
  3832. // ggml_cpy
  3833. static struct ggml_tensor * ggml_cpy_impl(
  3834. struct ggml_context * ctx,
  3835. struct ggml_tensor * a,
  3836. struct ggml_tensor * b) {
  3837. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3838. bool is_node = false;
  3839. if (a->grad || b->grad) {
  3840. // inplace is false and either one have a grad
  3841. is_node = true;
  3842. }
  3843. // make a view of the destination
  3844. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3845. if (strlen(b->name) > 0) {
  3846. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  3847. } else {
  3848. ggml_format_name(result, "%s (copy)", a->name);
  3849. }
  3850. result->op = GGML_OP_CPY;
  3851. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3852. result->src[0] = a;
  3853. result->src[1] = b;
  3854. return result;
  3855. }
  3856. struct ggml_tensor * ggml_cpy(
  3857. struct ggml_context * ctx,
  3858. struct ggml_tensor * a,
  3859. struct ggml_tensor * b) {
  3860. return ggml_cpy_impl(ctx, a, b);
  3861. }
  3862. struct ggml_tensor * ggml_cast(
  3863. struct ggml_context * ctx,
  3864. struct ggml_tensor * a,
  3865. enum ggml_type type) {
  3866. bool is_node = false;
  3867. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3868. ggml_format_name(result, "%s (copy)", a->name);
  3869. result->op = GGML_OP_CPY;
  3870. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3871. result->src[0] = a;
  3872. result->src[1] = result;
  3873. return result;
  3874. }
  3875. // ggml_cont
  3876. static struct ggml_tensor * ggml_cont_impl(
  3877. struct ggml_context * ctx,
  3878. struct ggml_tensor * a) {
  3879. bool is_node = false;
  3880. if (a->grad) {
  3881. is_node = true;
  3882. }
  3883. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3884. ggml_format_name(result, "%s (cont)", a->name);
  3885. result->op = GGML_OP_CONT;
  3886. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3887. result->src[0] = a;
  3888. return result;
  3889. }
  3890. struct ggml_tensor * ggml_cont(
  3891. struct ggml_context * ctx,
  3892. struct ggml_tensor * a) {
  3893. return ggml_cont_impl(ctx, a);
  3894. }
  3895. // make contiguous, with new shape
  3896. GGML_API struct ggml_tensor * ggml_cont_1d(
  3897. struct ggml_context * ctx,
  3898. struct ggml_tensor * a,
  3899. int64_t ne0) {
  3900. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  3901. }
  3902. GGML_API struct ggml_tensor * ggml_cont_2d(
  3903. struct ggml_context * ctx,
  3904. struct ggml_tensor * a,
  3905. int64_t ne0,
  3906. int64_t ne1) {
  3907. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  3908. }
  3909. GGML_API struct ggml_tensor * ggml_cont_3d(
  3910. struct ggml_context * ctx,
  3911. struct ggml_tensor * a,
  3912. int64_t ne0,
  3913. int64_t ne1,
  3914. int64_t ne2) {
  3915. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  3916. }
  3917. struct ggml_tensor * ggml_cont_4d(
  3918. struct ggml_context * ctx,
  3919. struct ggml_tensor * a,
  3920. int64_t ne0,
  3921. int64_t ne1,
  3922. int64_t ne2,
  3923. int64_t ne3) {
  3924. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  3925. bool is_node = false;
  3926. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  3927. ggml_format_name(result, "%s (cont)", a->name);
  3928. result->op = GGML_OP_CONT;
  3929. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3930. result->src[0] = a;
  3931. return result;
  3932. }
  3933. // ggml_reshape
  3934. struct ggml_tensor * ggml_reshape(
  3935. struct ggml_context * ctx,
  3936. struct ggml_tensor * a,
  3937. struct ggml_tensor * b) {
  3938. GGML_ASSERT(ggml_is_contiguous(a));
  3939. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  3940. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3941. bool is_node = false;
  3942. if (a->grad) {
  3943. is_node = true;
  3944. }
  3945. if (b->grad) {
  3946. // gradient propagation is not supported
  3947. //GGML_ASSERT(false);
  3948. }
  3949. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  3950. ggml_format_name(result, "%s (reshaped)", a->name);
  3951. result->op = GGML_OP_RESHAPE;
  3952. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3953. result->src[0] = a;
  3954. return result;
  3955. }
  3956. struct ggml_tensor * ggml_reshape_1d(
  3957. struct ggml_context * ctx,
  3958. struct ggml_tensor * a,
  3959. int64_t ne0) {
  3960. GGML_ASSERT(ggml_is_contiguous(a));
  3961. GGML_ASSERT(ggml_nelements(a) == ne0);
  3962. bool is_node = false;
  3963. if (a->grad) {
  3964. is_node = true;
  3965. }
  3966. const int64_t ne[1] = { ne0 };
  3967. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  3968. ggml_format_name(result, "%s (reshaped)", a->name);
  3969. result->op = GGML_OP_RESHAPE;
  3970. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3971. result->src[0] = a;
  3972. return result;
  3973. }
  3974. struct ggml_tensor * ggml_reshape_2d(
  3975. struct ggml_context * ctx,
  3976. struct ggml_tensor * a,
  3977. int64_t ne0,
  3978. int64_t ne1) {
  3979. GGML_ASSERT(ggml_is_contiguous(a));
  3980. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3981. bool is_node = false;
  3982. if (a->grad) {
  3983. is_node = true;
  3984. }
  3985. const int64_t ne[2] = { ne0, ne1 };
  3986. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  3987. ggml_format_name(result, "%s (reshaped)", a->name);
  3988. result->op = GGML_OP_RESHAPE;
  3989. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3990. result->src[0] = a;
  3991. return result;
  3992. }
  3993. struct ggml_tensor * ggml_reshape_3d(
  3994. struct ggml_context * ctx,
  3995. struct ggml_tensor * a,
  3996. int64_t ne0,
  3997. int64_t ne1,
  3998. int64_t ne2) {
  3999. GGML_ASSERT(ggml_is_contiguous(a));
  4000. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4001. bool is_node = false;
  4002. if (a->grad) {
  4003. is_node = true;
  4004. }
  4005. const int64_t ne[3] = { ne0, ne1, ne2 };
  4006. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  4007. ggml_format_name(result, "%s (reshaped)", a->name);
  4008. result->op = GGML_OP_RESHAPE;
  4009. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4010. result->src[0] = a;
  4011. return result;
  4012. }
  4013. struct ggml_tensor * ggml_reshape_4d(
  4014. struct ggml_context * ctx,
  4015. struct ggml_tensor * a,
  4016. int64_t ne0,
  4017. int64_t ne1,
  4018. int64_t ne2,
  4019. int64_t ne3) {
  4020. GGML_ASSERT(ggml_is_contiguous(a));
  4021. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4022. bool is_node = false;
  4023. if (a->grad) {
  4024. is_node = true;
  4025. }
  4026. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4027. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  4028. ggml_format_name(result, "%s (reshaped)", a->name);
  4029. result->op = GGML_OP_RESHAPE;
  4030. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4031. result->src[0] = a;
  4032. return result;
  4033. }
  4034. static struct ggml_tensor * ggml_view_impl(
  4035. struct ggml_context * ctx,
  4036. struct ggml_tensor * a,
  4037. int n_dims,
  4038. const int64_t * ne,
  4039. size_t offset) {
  4040. bool is_node = false;
  4041. if (a->grad) {
  4042. is_node = true;
  4043. }
  4044. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  4045. ggml_format_name(result, "%s (view)", a->name);
  4046. ggml_set_op_params(result, &offset, sizeof(offset));
  4047. result->op = GGML_OP_VIEW;
  4048. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4049. result->src[0] = a;
  4050. return result;
  4051. }
  4052. // ggml_view_1d
  4053. struct ggml_tensor * ggml_view_1d(
  4054. struct ggml_context * ctx,
  4055. struct ggml_tensor * a,
  4056. int64_t ne0,
  4057. size_t offset) {
  4058. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  4059. return result;
  4060. }
  4061. // ggml_view_2d
  4062. struct ggml_tensor * ggml_view_2d(
  4063. struct ggml_context * ctx,
  4064. struct ggml_tensor * a,
  4065. int64_t ne0,
  4066. int64_t ne1,
  4067. size_t nb1,
  4068. size_t offset) {
  4069. const int64_t ne[2] = { ne0, ne1 };
  4070. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  4071. result->nb[1] = nb1;
  4072. result->nb[2] = result->nb[1]*ne1;
  4073. result->nb[3] = result->nb[2];
  4074. return result;
  4075. }
  4076. // ggml_view_3d
  4077. struct ggml_tensor * ggml_view_3d(
  4078. struct ggml_context * ctx,
  4079. struct ggml_tensor * a,
  4080. int64_t ne0,
  4081. int64_t ne1,
  4082. int64_t ne2,
  4083. size_t nb1,
  4084. size_t nb2,
  4085. size_t offset) {
  4086. const int64_t ne[3] = { ne0, ne1, ne2 };
  4087. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  4088. result->nb[1] = nb1;
  4089. result->nb[2] = nb2;
  4090. result->nb[3] = result->nb[2]*ne2;
  4091. return result;
  4092. }
  4093. // ggml_view_4d
  4094. struct ggml_tensor * ggml_view_4d(
  4095. struct ggml_context * ctx,
  4096. struct ggml_tensor * a,
  4097. int64_t ne0,
  4098. int64_t ne1,
  4099. int64_t ne2,
  4100. int64_t ne3,
  4101. size_t nb1,
  4102. size_t nb2,
  4103. size_t nb3,
  4104. size_t offset) {
  4105. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4106. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  4107. result->nb[1] = nb1;
  4108. result->nb[2] = nb2;
  4109. result->nb[3] = nb3;
  4110. return result;
  4111. }
  4112. // ggml_permute
  4113. struct ggml_tensor * ggml_permute(
  4114. struct ggml_context * ctx,
  4115. struct ggml_tensor * a,
  4116. int axis0,
  4117. int axis1,
  4118. int axis2,
  4119. int axis3) {
  4120. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4121. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4122. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4123. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4124. GGML_ASSERT(axis0 != axis1);
  4125. GGML_ASSERT(axis0 != axis2);
  4126. GGML_ASSERT(axis0 != axis3);
  4127. GGML_ASSERT(axis1 != axis2);
  4128. GGML_ASSERT(axis1 != axis3);
  4129. GGML_ASSERT(axis2 != axis3);
  4130. bool is_node = false;
  4131. if (a->grad) {
  4132. is_node = true;
  4133. }
  4134. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4135. ggml_format_name(result, "%s (permuted)", a->name);
  4136. int ne[GGML_MAX_DIMS];
  4137. int nb[GGML_MAX_DIMS];
  4138. ne[axis0] = a->ne[0];
  4139. ne[axis1] = a->ne[1];
  4140. ne[axis2] = a->ne[2];
  4141. ne[axis3] = a->ne[3];
  4142. nb[axis0] = a->nb[0];
  4143. nb[axis1] = a->nb[1];
  4144. nb[axis2] = a->nb[2];
  4145. nb[axis3] = a->nb[3];
  4146. result->ne[0] = ne[0];
  4147. result->ne[1] = ne[1];
  4148. result->ne[2] = ne[2];
  4149. result->ne[3] = ne[3];
  4150. result->nb[0] = nb[0];
  4151. result->nb[1] = nb[1];
  4152. result->nb[2] = nb[2];
  4153. result->nb[3] = nb[3];
  4154. result->op = GGML_OP_PERMUTE;
  4155. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4156. result->src[0] = a;
  4157. int32_t params[] = { axis0, axis1, axis2, axis3 };
  4158. ggml_set_op_params(result, params, sizeof(params));
  4159. return result;
  4160. }
  4161. // ggml_transpose
  4162. struct ggml_tensor * ggml_transpose(
  4163. struct ggml_context * ctx,
  4164. struct ggml_tensor * a) {
  4165. bool is_node = false;
  4166. if (a->grad) {
  4167. is_node = true;
  4168. }
  4169. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4170. ggml_format_name(result, "%s (transposed)", a->name);
  4171. result->ne[0] = a->ne[1];
  4172. result->ne[1] = a->ne[0];
  4173. result->nb[0] = a->nb[1];
  4174. result->nb[1] = a->nb[0];
  4175. result->op = GGML_OP_TRANSPOSE;
  4176. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4177. result->src[0] = a;
  4178. return result;
  4179. }
  4180. // ggml_get_rows
  4181. struct ggml_tensor * ggml_get_rows(
  4182. struct ggml_context * ctx,
  4183. struct ggml_tensor * a,
  4184. struct ggml_tensor * b) {
  4185. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4186. GGML_ASSERT(b->ne[3] == 1);
  4187. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4188. bool is_node = false;
  4189. if (a->grad || b->grad) {
  4190. is_node = true;
  4191. }
  4192. // TODO: implement non F32 return
  4193. enum ggml_type type = GGML_TYPE_F32;
  4194. if (a->type == GGML_TYPE_I32) {
  4195. type = a->type;
  4196. }
  4197. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  4198. result->op = GGML_OP_GET_ROWS;
  4199. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4200. result->src[0] = a;
  4201. result->src[1] = b;
  4202. return result;
  4203. }
  4204. // ggml_get_rows_back
  4205. struct ggml_tensor * ggml_get_rows_back(
  4206. struct ggml_context * ctx,
  4207. struct ggml_tensor * a,
  4208. struct ggml_tensor * b,
  4209. struct ggml_tensor * c) {
  4210. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4211. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4212. bool is_node = false;
  4213. if (a->grad || b->grad) {
  4214. is_node = true;
  4215. }
  4216. // TODO: implement non F32 return
  4217. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4218. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  4219. result->op = GGML_OP_GET_ROWS_BACK;
  4220. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4221. result->src[0] = a;
  4222. result->src[1] = b;
  4223. return result;
  4224. }
  4225. // ggml_diag
  4226. struct ggml_tensor * ggml_diag(
  4227. struct ggml_context * ctx,
  4228. struct ggml_tensor * a) {
  4229. GGML_ASSERT(a->ne[1] == 1);
  4230. bool is_node = false;
  4231. if (a->grad) {
  4232. is_node = true;
  4233. }
  4234. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  4235. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  4236. result->op = GGML_OP_DIAG;
  4237. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4238. result->src[0] = a;
  4239. return result;
  4240. }
  4241. // ggml_diag_mask_inf
  4242. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  4243. struct ggml_context * ctx,
  4244. struct ggml_tensor * a,
  4245. int n_past,
  4246. bool inplace) {
  4247. bool is_node = false;
  4248. if (a->grad) {
  4249. is_node = true;
  4250. }
  4251. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4252. int32_t params[] = { n_past };
  4253. ggml_set_op_params(result, params, sizeof(params));
  4254. result->op = GGML_OP_DIAG_MASK_INF;
  4255. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4256. result->src[0] = a;
  4257. return result;
  4258. }
  4259. struct ggml_tensor * ggml_diag_mask_inf(
  4260. struct ggml_context * ctx,
  4261. struct ggml_tensor * a,
  4262. int n_past) {
  4263. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  4264. }
  4265. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  4266. struct ggml_context * ctx,
  4267. struct ggml_tensor * a,
  4268. int n_past) {
  4269. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  4270. }
  4271. // ggml_diag_mask_zero
  4272. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  4273. struct ggml_context * ctx,
  4274. struct ggml_tensor * a,
  4275. int n_past,
  4276. bool inplace) {
  4277. bool is_node = false;
  4278. if (a->grad) {
  4279. is_node = true;
  4280. }
  4281. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4282. int32_t params[] = { n_past };
  4283. ggml_set_op_params(result, params, sizeof(params));
  4284. result->op = GGML_OP_DIAG_MASK_ZERO;
  4285. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4286. result->src[0] = a;
  4287. return result;
  4288. }
  4289. struct ggml_tensor * ggml_diag_mask_zero(
  4290. struct ggml_context * ctx,
  4291. struct ggml_tensor * a,
  4292. int n_past) {
  4293. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4294. }
  4295. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4296. struct ggml_context * ctx,
  4297. struct ggml_tensor * a,
  4298. int n_past) {
  4299. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4300. }
  4301. // ggml_soft_max
  4302. static struct ggml_tensor * ggml_soft_max_impl(
  4303. struct ggml_context * ctx,
  4304. struct ggml_tensor * a,
  4305. struct ggml_tensor * mask,
  4306. struct ggml_tensor * pos,
  4307. float scale,
  4308. float max_bias,
  4309. bool inplace) {
  4310. GGML_ASSERT(ggml_is_contiguous(a));
  4311. if (mask) {
  4312. GGML_ASSERT(ggml_is_contiguous(mask));
  4313. GGML_ASSERT(ggml_is_matrix(mask));
  4314. GGML_ASSERT(ggml_can_repeat_rows(mask, a));
  4315. }
  4316. if (pos) {
  4317. GGML_ASSERT(ggml_is_vector(pos));
  4318. GGML_ASSERT(pos->type == GGML_TYPE_F32);
  4319. GGML_ASSERT(pos->ne[0] == a->ne[0]);
  4320. }
  4321. if (max_bias > 0.0f) {
  4322. GGML_ASSERT(pos);
  4323. }
  4324. bool is_node = false;
  4325. if (a->grad) {
  4326. is_node = true;
  4327. }
  4328. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4329. float params[] = { scale, max_bias };
  4330. ggml_set_op_params(result, params, sizeof(params));
  4331. result->op = GGML_OP_SOFT_MAX;
  4332. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4333. result->src[0] = a;
  4334. result->src[1] = mask;
  4335. result->src[2] = pos;
  4336. return result;
  4337. }
  4338. struct ggml_tensor * ggml_soft_max(
  4339. struct ggml_context * ctx,
  4340. struct ggml_tensor * a) {
  4341. return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, false);
  4342. }
  4343. struct ggml_tensor * ggml_soft_max_inplace(
  4344. struct ggml_context * ctx,
  4345. struct ggml_tensor * a) {
  4346. return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, true);
  4347. }
  4348. struct ggml_tensor * ggml_soft_max_ext(
  4349. struct ggml_context * ctx,
  4350. struct ggml_tensor * a,
  4351. struct ggml_tensor * mask,
  4352. struct ggml_tensor * pos,
  4353. float scale,
  4354. float max_bias) {
  4355. return ggml_soft_max_impl(ctx, a, mask, pos, scale, max_bias, false);
  4356. }
  4357. // ggml_soft_max_back
  4358. static struct ggml_tensor * ggml_soft_max_back_impl(
  4359. struct ggml_context * ctx,
  4360. struct ggml_tensor * a,
  4361. struct ggml_tensor * b,
  4362. bool inplace) {
  4363. bool is_node = false;
  4364. if (a->grad || b->grad) {
  4365. is_node = true; // TODO : implement backward pass
  4366. }
  4367. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4368. result->op = GGML_OP_SOFT_MAX_BACK;
  4369. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4370. result->src[0] = a;
  4371. result->src[1] = b;
  4372. return result;
  4373. }
  4374. struct ggml_tensor * ggml_soft_max_back(
  4375. struct ggml_context * ctx,
  4376. struct ggml_tensor * a,
  4377. struct ggml_tensor * b) {
  4378. return ggml_soft_max_back_impl(ctx, a, b, false);
  4379. }
  4380. struct ggml_tensor * ggml_soft_max_back_inplace(
  4381. struct ggml_context * ctx,
  4382. struct ggml_tensor * a,
  4383. struct ggml_tensor * b) {
  4384. return ggml_soft_max_back_impl(ctx, a, b, true);
  4385. }
  4386. // ggml_rope
  4387. static struct ggml_tensor * ggml_rope_impl(
  4388. struct ggml_context * ctx,
  4389. struct ggml_tensor * a,
  4390. struct ggml_tensor * b,
  4391. int n_dims,
  4392. int mode,
  4393. int n_ctx,
  4394. int n_orig_ctx,
  4395. float freq_base,
  4396. float freq_scale,
  4397. float ext_factor,
  4398. float attn_factor,
  4399. float beta_fast,
  4400. float beta_slow,
  4401. float xpos_base,
  4402. bool xpos_down,
  4403. bool inplace) {
  4404. GGML_ASSERT(ggml_is_vector(b));
  4405. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4406. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4407. bool is_node = false;
  4408. if (a->grad) {
  4409. is_node = true;
  4410. }
  4411. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4412. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4413. memcpy(params + 5, &freq_base, sizeof(float));
  4414. memcpy(params + 6, &freq_scale, sizeof(float));
  4415. memcpy(params + 7, &ext_factor, sizeof(float));
  4416. memcpy(params + 8, &attn_factor, sizeof(float));
  4417. memcpy(params + 9, &beta_fast, sizeof(float));
  4418. memcpy(params + 10, &beta_slow, sizeof(float));
  4419. memcpy(params + 11, &xpos_base, sizeof(float));
  4420. memcpy(params + 12, &xpos_down, sizeof(bool));
  4421. ggml_set_op_params(result, params, sizeof(params));
  4422. result->op = GGML_OP_ROPE;
  4423. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4424. result->src[0] = a;
  4425. result->src[1] = b;
  4426. return result;
  4427. }
  4428. struct ggml_tensor * ggml_rope(
  4429. struct ggml_context * ctx,
  4430. struct ggml_tensor * a,
  4431. struct ggml_tensor * b,
  4432. int n_dims,
  4433. int mode,
  4434. int n_ctx) {
  4435. return ggml_rope_impl(
  4436. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  4437. );
  4438. }
  4439. struct ggml_tensor * ggml_rope_inplace(
  4440. struct ggml_context * ctx,
  4441. struct ggml_tensor * a,
  4442. struct ggml_tensor * b,
  4443. int n_dims,
  4444. int mode,
  4445. int n_ctx) {
  4446. return ggml_rope_impl(
  4447. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  4448. );
  4449. }
  4450. struct ggml_tensor * ggml_rope_custom(
  4451. struct ggml_context * ctx,
  4452. struct ggml_tensor * a,
  4453. struct ggml_tensor * b,
  4454. int n_dims,
  4455. int mode,
  4456. int n_ctx,
  4457. int n_orig_ctx,
  4458. float freq_base,
  4459. float freq_scale,
  4460. float ext_factor,
  4461. float attn_factor,
  4462. float beta_fast,
  4463. float beta_slow) {
  4464. return ggml_rope_impl(
  4465. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4466. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  4467. );
  4468. }
  4469. struct ggml_tensor * ggml_rope_custom_inplace(
  4470. struct ggml_context * ctx,
  4471. struct ggml_tensor * a,
  4472. struct ggml_tensor * b,
  4473. int n_dims,
  4474. int mode,
  4475. int n_ctx,
  4476. int n_orig_ctx,
  4477. float freq_base,
  4478. float freq_scale,
  4479. float ext_factor,
  4480. float attn_factor,
  4481. float beta_fast,
  4482. float beta_slow) {
  4483. return ggml_rope_impl(
  4484. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4485. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  4486. );
  4487. }
  4488. struct ggml_tensor * ggml_rope_xpos_inplace(
  4489. struct ggml_context * ctx,
  4490. struct ggml_tensor * a,
  4491. struct ggml_tensor * b,
  4492. int n_dims,
  4493. float base,
  4494. bool down) {
  4495. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  4496. }
  4497. // ggml_rope_back
  4498. struct ggml_tensor * ggml_rope_back(
  4499. struct ggml_context * ctx,
  4500. struct ggml_tensor * a,
  4501. struct ggml_tensor * b,
  4502. int n_dims,
  4503. int mode,
  4504. int n_ctx,
  4505. int n_orig_ctx,
  4506. float freq_base,
  4507. float freq_scale,
  4508. float ext_factor,
  4509. float attn_factor,
  4510. float beta_fast,
  4511. float beta_slow,
  4512. float xpos_base,
  4513. bool xpos_down) {
  4514. GGML_ASSERT(ggml_is_vector(b));
  4515. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4516. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4517. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  4518. bool is_node = false;
  4519. if (a->grad) {
  4520. is_node = false; // TODO: implement backward
  4521. }
  4522. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4523. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4524. memcpy(params + 5, &freq_base, sizeof(float));
  4525. memcpy(params + 6, &freq_scale, sizeof(float));
  4526. memcpy(params + 7, &ext_factor, sizeof(float));
  4527. memcpy(params + 8, &attn_factor, sizeof(float));
  4528. memcpy(params + 9, &beta_fast, sizeof(float));
  4529. memcpy(params + 10, &beta_slow, sizeof(float));
  4530. memcpy(params + 11, &xpos_base, sizeof(float));
  4531. memcpy(params + 12, &xpos_down, sizeof(bool));
  4532. ggml_set_op_params(result, params, sizeof(params));
  4533. result->op = GGML_OP_ROPE_BACK;
  4534. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4535. result->src[0] = a;
  4536. result->src[1] = b;
  4537. return result;
  4538. }
  4539. // ggml_alibi
  4540. struct ggml_tensor * ggml_alibi(
  4541. struct ggml_context * ctx,
  4542. struct ggml_tensor * a,
  4543. int n_past,
  4544. int n_head,
  4545. float bias_max) {
  4546. GGML_ASSERT(n_past >= 0);
  4547. bool is_node = false;
  4548. if (a->grad) {
  4549. GGML_ASSERT(false); // TODO: implement backward
  4550. is_node = true;
  4551. }
  4552. // TODO: when implement backward, fix this:
  4553. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4554. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4555. int32_t op_params[3] = { n_past, n_head };
  4556. memcpy(op_params + 2, &bias_max, sizeof(float));
  4557. ggml_set_op_params(result, op_params, sizeof(op_params));
  4558. result->op = GGML_OP_ALIBI;
  4559. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4560. result->src[0] = a;
  4561. return result;
  4562. }
  4563. // ggml_clamp
  4564. struct ggml_tensor * ggml_clamp(
  4565. struct ggml_context * ctx,
  4566. struct ggml_tensor * a,
  4567. float min,
  4568. float max) {
  4569. bool is_node = false;
  4570. if (a->grad) {
  4571. GGML_ASSERT(false); // TODO: implement backward
  4572. is_node = true;
  4573. }
  4574. // TODO: when implement backward, fix this:
  4575. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4576. float params[] = { min, max };
  4577. ggml_set_op_params(result, params, sizeof(params));
  4578. result->op = GGML_OP_CLAMP;
  4579. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4580. result->src[0] = a;
  4581. return result;
  4582. }
  4583. // ggml_conv_1d
  4584. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4585. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4586. }
  4587. GGML_API struct ggml_tensor * ggml_conv_1d(
  4588. struct ggml_context * ctx,
  4589. struct ggml_tensor * a,
  4590. struct ggml_tensor * b,
  4591. int s0,
  4592. int p0,
  4593. int d0) {
  4594. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
  4595. struct ggml_tensor * result =
  4596. ggml_mul_mat(ctx,
  4597. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  4598. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  4599. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  4600. return result;
  4601. }
  4602. // ggml_conv_1d_ph
  4603. struct ggml_tensor* ggml_conv_1d_ph(
  4604. struct ggml_context * ctx,
  4605. struct ggml_tensor * a,
  4606. struct ggml_tensor * b,
  4607. int s,
  4608. int d) {
  4609. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  4610. }
  4611. // ggml_conv_transpose_1d
  4612. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4613. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  4614. }
  4615. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  4616. struct ggml_context * ctx,
  4617. struct ggml_tensor * a,
  4618. struct ggml_tensor * b,
  4619. int s0,
  4620. int p0,
  4621. int d0) {
  4622. GGML_ASSERT(ggml_is_matrix(b));
  4623. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4624. GGML_ASSERT(a->ne[3] == 1);
  4625. GGML_ASSERT(p0 == 0);
  4626. GGML_ASSERT(d0 == 1);
  4627. bool is_node = false;
  4628. if (a->grad || b->grad) {
  4629. GGML_ASSERT(false); // TODO: implement backward
  4630. is_node = true;
  4631. }
  4632. const int64_t ne[4] = {
  4633. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  4634. a->ne[1], b->ne[2], 1,
  4635. };
  4636. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4637. int32_t params[] = { s0, p0, d0 };
  4638. ggml_set_op_params(result, params, sizeof(params));
  4639. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  4640. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4641. result->src[0] = a;
  4642. result->src[1] = b;
  4643. return result;
  4644. }
  4645. // ggml_conv_depthwise
  4646. struct ggml_tensor * ggml_conv_depthwise_2d(
  4647. struct ggml_context * ctx,
  4648. struct ggml_tensor * a,
  4649. struct ggml_tensor * b,
  4650. int s0,
  4651. int s1,
  4652. int p0,
  4653. int p1,
  4654. int d0,
  4655. int d1) {
  4656. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  4657. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  4658. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  4659. s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
  4660. struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  4661. new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  4662. struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
  4663. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  4664. return result;
  4665. }
  4666. // ggml_conv_2d
  4667. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  4668. // a: [OC,IC, KH, KW]
  4669. // b: [N, IC, IH, IW]
  4670. // result: [N, OH, OW, IC*KH*KW]
  4671. struct ggml_tensor * ggml_im2col(
  4672. struct ggml_context * ctx,
  4673. struct ggml_tensor * a,
  4674. struct ggml_tensor * b,
  4675. int s0,
  4676. int s1,
  4677. int p0,
  4678. int p1,
  4679. int d0,
  4680. int d1,
  4681. bool is_2D,
  4682. enum ggml_type dst_type) {
  4683. if(is_2D) {
  4684. GGML_ASSERT(a->ne[2] == b->ne[2]);
  4685. } else {
  4686. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4687. }
  4688. bool is_node = false;
  4689. if (a->grad || b->grad) {
  4690. GGML_ASSERT(false); // TODO: implement backward
  4691. is_node = true;
  4692. }
  4693. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  4694. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  4695. const int64_t ne[4] = {
  4696. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  4697. OW,
  4698. is_2D ? OH : b->ne[2],
  4699. is_2D ? b->ne[3] : 1,
  4700. };
  4701. struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
  4702. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  4703. ggml_set_op_params(result, params, sizeof(params));
  4704. result->op = GGML_OP_IM2COL;
  4705. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4706. result->src[0] = a;
  4707. result->src[1] = b;
  4708. return result;
  4709. }
  4710. // a: [OC,IC, KH, KW]
  4711. // b: [N, IC, IH, IW]
  4712. // result: [N, OC, OH, OW]
  4713. struct ggml_tensor * ggml_conv_2d(
  4714. struct ggml_context * ctx,
  4715. struct ggml_tensor * a,
  4716. struct ggml_tensor * b,
  4717. int s0,
  4718. int s1,
  4719. int p0,
  4720. int p1,
  4721. int d0,
  4722. int d1) {
  4723. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
  4724. struct ggml_tensor * result =
  4725. ggml_mul_mat(ctx,
  4726. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  4727. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  4728. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
  4729. result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
  4730. return result;
  4731. }
  4732. // ggml_conv_2d_sk_p0
  4733. struct ggml_tensor * ggml_conv_2d_sk_p0(
  4734. struct ggml_context * ctx,
  4735. struct ggml_tensor * a,
  4736. struct ggml_tensor * b) {
  4737. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  4738. }
  4739. // ggml_conv_2d_s1_ph
  4740. struct ggml_tensor * ggml_conv_2d_s1_ph(
  4741. struct ggml_context * ctx,
  4742. struct ggml_tensor * a,
  4743. struct ggml_tensor * b) {
  4744. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  4745. }
  4746. // ggml_conv_transpose_2d_p0
  4747. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  4748. return (ins - 1) * s - 2 * p + ks;
  4749. }
  4750. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  4751. struct ggml_context * ctx,
  4752. struct ggml_tensor * a,
  4753. struct ggml_tensor * b,
  4754. int stride) {
  4755. GGML_ASSERT(a->ne[3] == b->ne[2]);
  4756. bool is_node = false;
  4757. if (a->grad || b->grad) {
  4758. GGML_ASSERT(false); // TODO: implement backward
  4759. is_node = true;
  4760. }
  4761. const int64_t ne[4] = {
  4762. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  4763. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  4764. a->ne[2], b->ne[3],
  4765. };
  4766. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4767. ggml_set_op_params_i32(result, 0, stride);
  4768. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  4769. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4770. result->src[0] = a;
  4771. result->src[1] = b;
  4772. return result;
  4773. }
  4774. // ggml_pool_*
  4775. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  4776. return (ins + 2 * p - ks) / s + 1;
  4777. }
  4778. // ggml_pool_1d
  4779. struct ggml_tensor * ggml_pool_1d(
  4780. struct ggml_context * ctx,
  4781. struct ggml_tensor * a,
  4782. enum ggml_op_pool op,
  4783. int k0,
  4784. int s0,
  4785. int p0) {
  4786. bool is_node = false;
  4787. if (a->grad) {
  4788. GGML_ASSERT(false); // TODO: implement backward
  4789. is_node = true;
  4790. }
  4791. const int64_t ne[4] = {
  4792. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4793. a->ne[1],
  4794. a->ne[2],
  4795. a->ne[3],
  4796. };
  4797. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4798. int32_t params[] = { op, k0, s0, p0 };
  4799. ggml_set_op_params(result, params, sizeof(params));
  4800. result->op = GGML_OP_POOL_1D;
  4801. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4802. result->src[0] = a;
  4803. return result;
  4804. }
  4805. // ggml_pool_2d
  4806. struct ggml_tensor * ggml_pool_2d(
  4807. struct ggml_context * ctx,
  4808. struct ggml_tensor * a,
  4809. enum ggml_op_pool op,
  4810. int k0,
  4811. int k1,
  4812. int s0,
  4813. int s1,
  4814. float p0,
  4815. float p1) {
  4816. bool is_node = false;
  4817. if (a->grad) {
  4818. GGML_ASSERT(false); // TODO: implement backward
  4819. is_node = true;
  4820. }
  4821. struct ggml_tensor * result;
  4822. const int64_t ne[3] = {
  4823. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4824. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  4825. a->ne[2],
  4826. };
  4827. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4828. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  4829. ggml_set_op_params(result, params, sizeof(params));
  4830. result->op = GGML_OP_POOL_2D;
  4831. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4832. result->src[0] = a;
  4833. return result;
  4834. }
  4835. // ggml_upscale
  4836. static struct ggml_tensor * ggml_upscale_impl(
  4837. struct ggml_context * ctx,
  4838. struct ggml_tensor * a,
  4839. int scale_factor) {
  4840. bool is_node = false;
  4841. if (a->grad) {
  4842. GGML_ASSERT(false); // TODO: implement backward
  4843. is_node = true;
  4844. }
  4845. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4846. a->ne[0] * scale_factor,
  4847. a->ne[1] * scale_factor,
  4848. a->ne[2], a->ne[3]);
  4849. result->op = GGML_OP_UPSCALE;
  4850. result->op_params[0] = scale_factor;
  4851. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4852. result->src[0] = a;
  4853. return result;
  4854. }
  4855. struct ggml_tensor * ggml_pad(
  4856. struct ggml_context * ctx,
  4857. struct ggml_tensor * a,
  4858. int p0, int p1, int p2, int p3) {
  4859. bool is_node = false;
  4860. if (a->grad) {
  4861. GGML_ASSERT(false); // TODO: implement backward
  4862. is_node = true;
  4863. }
  4864. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4865. a->ne[0] + p0,
  4866. a->ne[1] + p1,
  4867. a->ne[2] + p2,
  4868. a->ne[3] + p3);
  4869. result->op = GGML_OP_PAD;
  4870. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4871. result->src[0] = a;
  4872. return result;
  4873. }
  4874. struct ggml_tensor * ggml_upscale(
  4875. struct ggml_context * ctx,
  4876. struct ggml_tensor * a,
  4877. int scale_factor) {
  4878. return ggml_upscale_impl(ctx, a, scale_factor);
  4879. }
  4880. struct ggml_tensor * ggml_arange(
  4881. struct ggml_context * ctx,
  4882. float start,
  4883. float stop,
  4884. float step) {
  4885. GGML_ASSERT(stop > start);
  4886. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  4887. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps);
  4888. result->op = GGML_OP_ARANGE;
  4889. ggml_set_op_params_f32(result, 0, start);
  4890. ggml_set_op_params_f32(result, 1, stop);
  4891. ggml_set_op_params_f32(result, 2, step);
  4892. return result;
  4893. }
  4894. struct ggml_tensor * ggml_timestep_embedding(
  4895. struct ggml_context * ctx,
  4896. struct ggml_tensor * timesteps,
  4897. int dim,
  4898. int max_period) {
  4899. bool is_node = false;
  4900. if (timesteps->grad) {
  4901. GGML_ASSERT(false); // TODO: implement backward
  4902. is_node = true;
  4903. }
  4904. int actual_dim = dim;
  4905. if (dim % 2 != 0) {
  4906. actual_dim = dim + 1;
  4907. }
  4908. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]);
  4909. result->op = GGML_OP_TIMESTEP_EMBEDDING;
  4910. ggml_set_op_params_i32(result, 0, dim);
  4911. ggml_set_op_params_i32(result, 1, max_period);
  4912. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4913. result->src[0] = timesteps;
  4914. return result;
  4915. }
  4916. // ggml_argsort
  4917. struct ggml_tensor * ggml_argsort(
  4918. struct ggml_context * ctx,
  4919. struct ggml_tensor * a,
  4920. enum ggml_sort_order order) {
  4921. bool is_node = false;
  4922. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  4923. ggml_set_op_params_i32(result, 0, (int32_t) order);
  4924. result->op = GGML_OP_ARGSORT;
  4925. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4926. result->src[0] = a;
  4927. return result;
  4928. }
  4929. // ggml_top_k
  4930. struct ggml_tensor * ggml_top_k(
  4931. struct ggml_context * ctx,
  4932. struct ggml_tensor * a,
  4933. int k) {
  4934. GGML_ASSERT(a->ne[0] >= k);
  4935. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
  4936. result = ggml_view_4d(ctx, result,
  4937. k, result->ne[1], result->ne[2], result->ne[3],
  4938. result->nb[1], result->nb[2], result->nb[3],
  4939. 0);
  4940. return result;
  4941. }
  4942. // ggml_flash_attn
  4943. struct ggml_tensor * ggml_flash_attn(
  4944. struct ggml_context * ctx,
  4945. struct ggml_tensor * q,
  4946. struct ggml_tensor * k,
  4947. struct ggml_tensor * v,
  4948. bool masked) {
  4949. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4950. // TODO: check if vT can be multiplied by (k*qT)
  4951. bool is_node = false;
  4952. if (q->grad || k->grad || v->grad) {
  4953. is_node = true;
  4954. }
  4955. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4956. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne);
  4957. int32_t t = masked ? 1 : 0;
  4958. ggml_set_op_params(result, &t, sizeof(t));
  4959. result->op = GGML_OP_FLASH_ATTN;
  4960. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4961. result->src[0] = q;
  4962. result->src[1] = k;
  4963. result->src[2] = v;
  4964. return result;
  4965. }
  4966. // ggml_flash_ff
  4967. struct ggml_tensor * ggml_flash_ff(
  4968. struct ggml_context * ctx,
  4969. struct ggml_tensor * a,
  4970. struct ggml_tensor * b0,
  4971. struct ggml_tensor * b1,
  4972. struct ggml_tensor * c0,
  4973. struct ggml_tensor * c1) {
  4974. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4975. // TODO: more checks
  4976. bool is_node = false;
  4977. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4978. is_node = true;
  4979. }
  4980. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4981. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne);
  4982. result->op = GGML_OP_FLASH_FF;
  4983. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4984. result->src[0] = a;
  4985. result->src[1] = b0;
  4986. result->src[2] = b1;
  4987. result->src[3] = c0;
  4988. result->src[4] = c1;
  4989. return result;
  4990. }
  4991. // ggml_flash_attn_back
  4992. struct ggml_tensor * ggml_flash_attn_back(
  4993. struct ggml_context * ctx,
  4994. struct ggml_tensor * q,
  4995. struct ggml_tensor * k,
  4996. struct ggml_tensor * v,
  4997. struct ggml_tensor * d,
  4998. bool masked) {
  4999. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5000. // TODO: check if vT can be multiplied by (k*qT)
  5001. // d shape [D,N,ne2,ne3]
  5002. // q shape [D,N,ne2,ne3]
  5003. // k shape [D,M,kvne2,ne3]
  5004. // v shape [M,D,kvne2,ne3]
  5005. const int64_t D = q->ne[0];
  5006. const int64_t N = q->ne[1];
  5007. const int64_t M = k->ne[1];
  5008. const int64_t ne2 = q->ne[2];
  5009. const int64_t ne3 = q->ne[3];
  5010. const int64_t kvne2 = k->ne[2];
  5011. GGML_ASSERT(k->ne[0] == D);
  5012. GGML_ASSERT(v->ne[0] == M);
  5013. GGML_ASSERT(v->ne[1] == D);
  5014. GGML_ASSERT(d->ne[0] == D);
  5015. GGML_ASSERT(d->ne[1] == N);
  5016. GGML_ASSERT(k->ne[2] == kvne2);
  5017. GGML_ASSERT(k->ne[3] == ne3);
  5018. GGML_ASSERT(v->ne[2] == kvne2);
  5019. GGML_ASSERT(v->ne[3] == ne3);
  5020. GGML_ASSERT(d->ne[2] == ne2);
  5021. GGML_ASSERT(d->ne[3] == ne3);
  5022. GGML_ASSERT(ne2 % kvne2 == 0);
  5023. bool is_node = false;
  5024. if (q->grad || k->grad || v->grad) {
  5025. // when using this operation (in backwards pass) these grads are set.
  5026. // we don't want to create (big) grad of our result, so is_node is false.
  5027. is_node = false;
  5028. }
  5029. // store gradients of q, k and v as continuous tensors concatenated in result.
  5030. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5031. const int64_t elem_q = ggml_nelements(q);
  5032. const int64_t elem_k = ggml_nelements(k);
  5033. const int64_t elem_v = ggml_nelements(v);
  5034. enum ggml_type result_type = GGML_TYPE_F32;
  5035. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  5036. const size_t tsize = ggml_type_size(result_type);
  5037. const size_t offs_q = 0;
  5038. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  5039. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  5040. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  5041. const size_t nelements = (end + tsize - 1)/tsize;
  5042. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  5043. int32_t masked_i = masked ? 1 : 0;
  5044. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  5045. result->op = GGML_OP_FLASH_ATTN_BACK;
  5046. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5047. result->src[0] = q;
  5048. result->src[1] = k;
  5049. result->src[2] = v;
  5050. result->src[3] = d;
  5051. return result;
  5052. }
  5053. // ggml_ssm_conv
  5054. struct ggml_tensor * ggml_ssm_conv(
  5055. struct ggml_context * ctx,
  5056. struct ggml_tensor * s,
  5057. struct ggml_tensor * x,
  5058. struct ggml_tensor * c,
  5059. struct ggml_tensor * sq) {
  5060. GGML_ASSERT(ggml_is_3d(s));
  5061. GGML_ASSERT(ggml_is_matrix(x));
  5062. GGML_ASSERT(ggml_is_matrix(c));
  5063. GGML_ASSERT(ggml_is_matrix(sq));
  5064. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5065. const int64_t d_conv = c->ne[0];
  5066. const int64_t d_inner = c->ne[1];
  5067. const int64_t n_tokens = x->ne[1];
  5068. const int64_t n_kv = s->ne[2];
  5069. GGML_ASSERT( s->ne[0] == d_conv - 1);
  5070. GGML_ASSERT( s->ne[1] == d_inner);
  5071. GGML_ASSERT( x->ne[0] == d_inner);
  5072. GGML_ASSERT(sq->ne[0] == n_kv);
  5073. GGML_ASSERT(sq->ne[1] == n_tokens);
  5074. bool is_node = false;
  5075. if (s->grad || x->grad || c->grad || sq->grad) {
  5076. GGML_ASSERT(false); // TODO: implement
  5077. is_node = true;
  5078. }
  5079. // 2-in-1 concatenated x and conv_states, {d_inner, n_tokens} with {d_conv, d_inner, n_kv}
  5080. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, (d_inner*n_tokens) + (d_conv*d_inner*n_kv));
  5081. result->op = GGML_OP_SSM_CONV;
  5082. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5083. result->src[0] = s;
  5084. result->src[1] = x;
  5085. result->src[2] = c;
  5086. result->src[3] = sq;
  5087. return result;
  5088. }
  5089. // ggml_ssm_scan
  5090. struct ggml_tensor * ggml_ssm_scan(
  5091. struct ggml_context * ctx,
  5092. struct ggml_tensor * s,
  5093. struct ggml_tensor * x,
  5094. struct ggml_tensor * dt,
  5095. struct ggml_tensor * A,
  5096. struct ggml_tensor * B,
  5097. struct ggml_tensor * C,
  5098. struct ggml_tensor * sq) {
  5099. GGML_ASSERT(ggml_is_contiguous(s));
  5100. GGML_ASSERT(ggml_is_contiguous(x));
  5101. GGML_ASSERT(ggml_is_contiguous(dt));
  5102. GGML_ASSERT(ggml_is_contiguous(A));
  5103. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5104. GGML_ASSERT(B->nb[0] == ggml_type_size(B->type));
  5105. GGML_ASSERT(C->nb[0] == ggml_type_size(C->type));
  5106. GGML_ASSERT(ggml_are_same_shape(x, dt));
  5107. {
  5108. const int64_t d_state = s->ne[0];
  5109. const int64_t d_inner = s->ne[1];
  5110. const int64_t n_tokens = x->ne[1];
  5111. GGML_ASSERT(x->ne[0] == d_inner);
  5112. GGML_ASSERT(A->ne[0] == d_state);
  5113. GGML_ASSERT(A->ne[1] == d_inner);
  5114. GGML_ASSERT(B->ne[0] == d_state);
  5115. GGML_ASSERT(B->ne[1] == n_tokens);
  5116. GGML_ASSERT(C->ne[0] == d_state);
  5117. GGML_ASSERT(C->ne[1] == n_tokens);
  5118. }
  5119. bool is_node = false;
  5120. if (s->grad || x->grad || dt->grad || A->grad || B->grad || C->grad || sq->grad) {
  5121. GGML_ASSERT(false); // TODO: implement
  5122. is_node = true;
  5123. }
  5124. // 2-in-1 concatenated y and ssm_states, {d_inner, n_tokens} with {d_state, d_inner, n_kv}
  5125. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ggml_nelements(x) + ggml_nelements(s));
  5126. result->op = GGML_OP_SSM_SCAN;
  5127. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5128. result->src[0] = s;
  5129. result->src[1] = x;
  5130. result->src[2] = dt;
  5131. result->src[3] = A;
  5132. result->src[4] = B;
  5133. result->src[5] = C;
  5134. result->src[6] = sq;
  5135. return result;
  5136. }
  5137. // ggml_win_part
  5138. struct ggml_tensor * ggml_win_part(
  5139. struct ggml_context * ctx,
  5140. struct ggml_tensor * a,
  5141. int w) {
  5142. GGML_ASSERT(a->ne[3] == 1);
  5143. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5144. bool is_node = false;
  5145. if (a->grad) {
  5146. GGML_ASSERT(false); // TODO: implement backward
  5147. is_node = true;
  5148. }
  5149. // padding
  5150. const int px = (w - a->ne[1]%w)%w;
  5151. const int py = (w - a->ne[2]%w)%w;
  5152. const int npx = (px + a->ne[1])/w;
  5153. const int npy = (py + a->ne[2])/w;
  5154. const int np = npx*npy;
  5155. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5156. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5157. int32_t params[] = { npx, npy, w };
  5158. ggml_set_op_params(result, params, sizeof(params));
  5159. result->op = GGML_OP_WIN_PART;
  5160. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5161. result->src[0] = a;
  5162. return result;
  5163. }
  5164. // ggml_win_unpart
  5165. struct ggml_tensor * ggml_win_unpart(
  5166. struct ggml_context * ctx,
  5167. struct ggml_tensor * a,
  5168. int w0,
  5169. int h0,
  5170. int w) {
  5171. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5172. bool is_node = false;
  5173. if (a->grad) {
  5174. GGML_ASSERT(false); // TODO: implement backward
  5175. is_node = true;
  5176. }
  5177. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  5178. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5179. int32_t params[] = { w };
  5180. ggml_set_op_params(result, params, sizeof(params));
  5181. result->op = GGML_OP_WIN_UNPART;
  5182. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5183. result->src[0] = a;
  5184. return result;
  5185. }
  5186. // ggml_get_rel_pos
  5187. struct ggml_tensor * ggml_get_rel_pos(
  5188. struct ggml_context * ctx,
  5189. struct ggml_tensor * a,
  5190. int qh,
  5191. int kh) {
  5192. GGML_ASSERT(qh == kh);
  5193. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  5194. bool is_node = false;
  5195. if (a->grad) {
  5196. GGML_ASSERT(false); // TODO: implement backward
  5197. is_node = true;
  5198. }
  5199. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  5200. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  5201. result->op = GGML_OP_GET_REL_POS;
  5202. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5203. result->src[0] = a;
  5204. return result;
  5205. }
  5206. // ggml_add_rel_pos
  5207. static struct ggml_tensor * ggml_add_rel_pos_impl(
  5208. struct ggml_context * ctx,
  5209. struct ggml_tensor * a,
  5210. struct ggml_tensor * pw,
  5211. struct ggml_tensor * ph,
  5212. bool inplace) {
  5213. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  5214. GGML_ASSERT(ggml_is_contiguous(a));
  5215. GGML_ASSERT(ggml_is_contiguous(pw));
  5216. GGML_ASSERT(ggml_is_contiguous(ph));
  5217. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  5218. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  5219. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  5220. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  5221. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  5222. bool is_node = false;
  5223. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  5224. is_node = true;
  5225. }
  5226. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5227. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  5228. result->op = GGML_OP_ADD_REL_POS;
  5229. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5230. result->src[0] = a;
  5231. result->src[1] = pw;
  5232. result->src[2] = ph;
  5233. return result;
  5234. }
  5235. struct ggml_tensor * ggml_add_rel_pos(
  5236. struct ggml_context * ctx,
  5237. struct ggml_tensor * a,
  5238. struct ggml_tensor * pw,
  5239. struct ggml_tensor * ph) {
  5240. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  5241. }
  5242. struct ggml_tensor * ggml_add_rel_pos_inplace(
  5243. struct ggml_context * ctx,
  5244. struct ggml_tensor * a,
  5245. struct ggml_tensor * pw,
  5246. struct ggml_tensor * ph) {
  5247. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  5248. }
  5249. // gmml_unary
  5250. static struct ggml_tensor * ggml_unary_impl(
  5251. struct ggml_context * ctx,
  5252. struct ggml_tensor * a,
  5253. enum ggml_unary_op op,
  5254. bool inplace) {
  5255. bool is_node = false;
  5256. if (!inplace && (a->grad)) {
  5257. is_node = true;
  5258. }
  5259. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5260. ggml_set_op_params_i32(result, 0, (int32_t) op);
  5261. result->op = GGML_OP_UNARY;
  5262. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5263. result->src[0] = a;
  5264. return result;
  5265. }
  5266. struct ggml_tensor * ggml_unary(
  5267. struct ggml_context * ctx,
  5268. struct ggml_tensor * a,
  5269. enum ggml_unary_op op) {
  5270. return ggml_unary_impl(ctx, a, op, false);
  5271. }
  5272. struct ggml_tensor * ggml_unary_inplace(
  5273. struct ggml_context * ctx,
  5274. struct ggml_tensor * a,
  5275. enum ggml_unary_op op) {
  5276. return ggml_unary_impl(ctx, a, op, true);
  5277. }
  5278. // ggml_map_unary
  5279. static struct ggml_tensor * ggml_map_unary_impl_f32(
  5280. struct ggml_context * ctx,
  5281. struct ggml_tensor * a,
  5282. const ggml_unary_op_f32_t fun,
  5283. bool inplace) {
  5284. bool is_node = false;
  5285. if (!inplace && a->grad) {
  5286. is_node = true;
  5287. }
  5288. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5289. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5290. result->op = GGML_OP_MAP_UNARY;
  5291. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5292. result->src[0] = a;
  5293. return result;
  5294. }
  5295. struct ggml_tensor * ggml_map_unary_f32(
  5296. struct ggml_context * ctx,
  5297. struct ggml_tensor * a,
  5298. const ggml_unary_op_f32_t fun) {
  5299. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5300. }
  5301. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5302. struct ggml_context * ctx,
  5303. struct ggml_tensor * a,
  5304. const ggml_unary_op_f32_t fun) {
  5305. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5306. }
  5307. // ggml_map_binary
  5308. static struct ggml_tensor * ggml_map_binary_impl_f32(
  5309. struct ggml_context * ctx,
  5310. struct ggml_tensor * a,
  5311. struct ggml_tensor * b,
  5312. const ggml_binary_op_f32_t fun,
  5313. bool inplace) {
  5314. GGML_ASSERT(ggml_are_same_shape(a, b));
  5315. bool is_node = false;
  5316. if (!inplace && (a->grad || b->grad)) {
  5317. is_node = true;
  5318. }
  5319. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5320. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5321. result->op = GGML_OP_MAP_BINARY;
  5322. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5323. result->src[0] = a;
  5324. result->src[1] = b;
  5325. return result;
  5326. }
  5327. struct ggml_tensor * ggml_map_binary_f32(
  5328. struct ggml_context * ctx,
  5329. struct ggml_tensor * a,
  5330. struct ggml_tensor * b,
  5331. const ggml_binary_op_f32_t fun) {
  5332. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5333. }
  5334. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5335. struct ggml_context * ctx,
  5336. struct ggml_tensor * a,
  5337. struct ggml_tensor * b,
  5338. const ggml_binary_op_f32_t fun) {
  5339. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5340. }
  5341. // ggml_map_custom1_f32
  5342. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  5343. struct ggml_context * ctx,
  5344. struct ggml_tensor * a,
  5345. const ggml_custom1_op_f32_t fun,
  5346. bool inplace) {
  5347. bool is_node = false;
  5348. if (!inplace && a->grad) {
  5349. is_node = true;
  5350. }
  5351. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5352. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5353. result->op = GGML_OP_MAP_CUSTOM1_F32;
  5354. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5355. result->src[0] = a;
  5356. return result;
  5357. }
  5358. struct ggml_tensor * ggml_map_custom1_f32(
  5359. struct ggml_context * ctx,
  5360. struct ggml_tensor * a,
  5361. const ggml_custom1_op_f32_t fun) {
  5362. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  5363. }
  5364. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  5365. struct ggml_context * ctx,
  5366. struct ggml_tensor * a,
  5367. const ggml_custom1_op_f32_t fun) {
  5368. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  5369. }
  5370. // ggml_map_custom2_f32
  5371. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  5372. struct ggml_context * ctx,
  5373. struct ggml_tensor * a,
  5374. struct ggml_tensor * b,
  5375. const ggml_custom2_op_f32_t fun,
  5376. bool inplace) {
  5377. bool is_node = false;
  5378. if (!inplace && (a->grad || b->grad)) {
  5379. is_node = true;
  5380. }
  5381. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5382. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5383. result->op = GGML_OP_MAP_CUSTOM2_F32;
  5384. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5385. result->src[0] = a;
  5386. result->src[1] = b;
  5387. return result;
  5388. }
  5389. struct ggml_tensor * ggml_map_custom2_f32(
  5390. struct ggml_context * ctx,
  5391. struct ggml_tensor * a,
  5392. struct ggml_tensor * b,
  5393. const ggml_custom2_op_f32_t fun) {
  5394. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  5395. }
  5396. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  5397. struct ggml_context * ctx,
  5398. struct ggml_tensor * a,
  5399. struct ggml_tensor * b,
  5400. const ggml_custom2_op_f32_t fun) {
  5401. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  5402. }
  5403. // ggml_map_custom3_f32
  5404. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  5405. struct ggml_context * ctx,
  5406. struct ggml_tensor * a,
  5407. struct ggml_tensor * b,
  5408. struct ggml_tensor * c,
  5409. const ggml_custom3_op_f32_t fun,
  5410. bool inplace) {
  5411. bool is_node = false;
  5412. if (!inplace && (a->grad || b->grad || c->grad)) {
  5413. is_node = true;
  5414. }
  5415. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5416. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5417. result->op = GGML_OP_MAP_CUSTOM3_F32;
  5418. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5419. result->src[0] = a;
  5420. result->src[1] = b;
  5421. result->src[2] = c;
  5422. return result;
  5423. }
  5424. struct ggml_tensor * ggml_map_custom3_f32(
  5425. struct ggml_context * ctx,
  5426. struct ggml_tensor * a,
  5427. struct ggml_tensor * b,
  5428. struct ggml_tensor * c,
  5429. const ggml_custom3_op_f32_t fun) {
  5430. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  5431. }
  5432. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  5433. struct ggml_context * ctx,
  5434. struct ggml_tensor * a,
  5435. struct ggml_tensor * b,
  5436. struct ggml_tensor * c,
  5437. const ggml_custom3_op_f32_t fun) {
  5438. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  5439. }
  5440. // ggml_map_custom1
  5441. struct ggml_map_custom1_op_params {
  5442. ggml_custom1_op_t fun;
  5443. int n_tasks;
  5444. void * userdata;
  5445. };
  5446. static struct ggml_tensor * ggml_map_custom1_impl(
  5447. struct ggml_context * ctx,
  5448. struct ggml_tensor * a,
  5449. const ggml_custom1_op_t fun,
  5450. int n_tasks,
  5451. void * userdata,
  5452. bool inplace) {
  5453. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5454. bool is_node = false;
  5455. if (!inplace && a->grad) {
  5456. is_node = true;
  5457. }
  5458. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5459. struct ggml_map_custom1_op_params params = {
  5460. /*.fun =*/ fun,
  5461. /*.n_tasks =*/ n_tasks,
  5462. /*.userdata =*/ userdata
  5463. };
  5464. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5465. result->op = GGML_OP_MAP_CUSTOM1;
  5466. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5467. result->src[0] = a;
  5468. return result;
  5469. }
  5470. struct ggml_tensor * ggml_map_custom1(
  5471. struct ggml_context * ctx,
  5472. struct ggml_tensor * a,
  5473. const ggml_custom1_op_t fun,
  5474. int n_tasks,
  5475. void * userdata) {
  5476. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  5477. }
  5478. struct ggml_tensor * ggml_map_custom1_inplace(
  5479. struct ggml_context * ctx,
  5480. struct ggml_tensor * a,
  5481. const ggml_custom1_op_t fun,
  5482. int n_tasks,
  5483. void * userdata) {
  5484. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  5485. }
  5486. // ggml_map_custom2
  5487. struct ggml_map_custom2_op_params {
  5488. ggml_custom2_op_t fun;
  5489. int n_tasks;
  5490. void * userdata;
  5491. };
  5492. static struct ggml_tensor * ggml_map_custom2_impl(
  5493. struct ggml_context * ctx,
  5494. struct ggml_tensor * a,
  5495. struct ggml_tensor * b,
  5496. const ggml_custom2_op_t fun,
  5497. int n_tasks,
  5498. void * userdata,
  5499. bool inplace) {
  5500. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5501. bool is_node = false;
  5502. if (!inplace && (a->grad || b->grad)) {
  5503. is_node = true;
  5504. }
  5505. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5506. struct ggml_map_custom2_op_params params = {
  5507. /*.fun =*/ fun,
  5508. /*.n_tasks =*/ n_tasks,
  5509. /*.userdata =*/ userdata
  5510. };
  5511. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5512. result->op = GGML_OP_MAP_CUSTOM2;
  5513. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5514. result->src[0] = a;
  5515. result->src[1] = b;
  5516. return result;
  5517. }
  5518. struct ggml_tensor * ggml_map_custom2(
  5519. struct ggml_context * ctx,
  5520. struct ggml_tensor * a,
  5521. struct ggml_tensor * b,
  5522. const ggml_custom2_op_t fun,
  5523. int n_tasks,
  5524. void * userdata) {
  5525. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  5526. }
  5527. struct ggml_tensor * ggml_map_custom2_inplace(
  5528. struct ggml_context * ctx,
  5529. struct ggml_tensor * a,
  5530. struct ggml_tensor * b,
  5531. const ggml_custom2_op_t fun,
  5532. int n_tasks,
  5533. void * userdata) {
  5534. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  5535. }
  5536. // ggml_map_custom3
  5537. struct ggml_map_custom3_op_params {
  5538. ggml_custom3_op_t fun;
  5539. int n_tasks;
  5540. void * userdata;
  5541. };
  5542. static struct ggml_tensor * ggml_map_custom3_impl(
  5543. struct ggml_context * ctx,
  5544. struct ggml_tensor * a,
  5545. struct ggml_tensor * b,
  5546. struct ggml_tensor * c,
  5547. const ggml_custom3_op_t fun,
  5548. int n_tasks,
  5549. void * userdata,
  5550. bool inplace) {
  5551. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5552. bool is_node = false;
  5553. if (!inplace && (a->grad || b->grad || c->grad)) {
  5554. is_node = true;
  5555. }
  5556. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5557. struct ggml_map_custom3_op_params params = {
  5558. /*.fun =*/ fun,
  5559. /*.n_tasks =*/ n_tasks,
  5560. /*.userdata =*/ userdata
  5561. };
  5562. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5563. result->op = GGML_OP_MAP_CUSTOM3;
  5564. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5565. result->src[0] = a;
  5566. result->src[1] = b;
  5567. result->src[2] = c;
  5568. return result;
  5569. }
  5570. struct ggml_tensor * ggml_map_custom3(
  5571. struct ggml_context * ctx,
  5572. struct ggml_tensor * a,
  5573. struct ggml_tensor * b,
  5574. struct ggml_tensor * c,
  5575. const ggml_custom3_op_t fun,
  5576. int n_tasks,
  5577. void * userdata) {
  5578. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  5579. }
  5580. struct ggml_tensor * ggml_map_custom3_inplace(
  5581. struct ggml_context * ctx,
  5582. struct ggml_tensor * a,
  5583. struct ggml_tensor * b,
  5584. struct ggml_tensor * c,
  5585. const ggml_custom3_op_t fun,
  5586. int n_tasks,
  5587. void * userdata) {
  5588. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  5589. }
  5590. // ggml_cross_entropy_loss
  5591. struct ggml_tensor * ggml_cross_entropy_loss(
  5592. struct ggml_context * ctx,
  5593. struct ggml_tensor * a,
  5594. struct ggml_tensor * b) {
  5595. GGML_ASSERT(ggml_are_same_shape(a, b));
  5596. bool is_node = false;
  5597. if (a->grad || b->grad) {
  5598. is_node = true;
  5599. }
  5600. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5601. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5602. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5603. result->src[0] = a;
  5604. result->src[1] = b;
  5605. return result;
  5606. }
  5607. // ggml_cross_entropy_loss_back
  5608. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5609. struct ggml_context * ctx,
  5610. struct ggml_tensor * a,
  5611. struct ggml_tensor * b,
  5612. struct ggml_tensor * c) {
  5613. GGML_ASSERT(ggml_are_same_shape(a, b));
  5614. GGML_ASSERT(ggml_is_scalar(c));
  5615. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5616. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5617. result->grad = NULL;
  5618. result->src[0] = a;
  5619. result->src[1] = b;
  5620. result->src[2] = c;
  5621. return result;
  5622. }
  5623. ////////////////////////////////////////////////////////////////////////////////
  5624. void ggml_set_param(
  5625. struct ggml_context * ctx,
  5626. struct ggml_tensor * tensor) {
  5627. tensor->flags |= GGML_TENSOR_FLAG_PARAM;
  5628. GGML_ASSERT(tensor->grad == NULL);
  5629. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5630. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  5631. }
  5632. // ggml_compute_forward_dup
  5633. static void ggml_compute_forward_dup_same_cont(
  5634. const struct ggml_compute_params * params,
  5635. struct ggml_tensor * dst) {
  5636. const struct ggml_tensor * src0 = dst->src[0];
  5637. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5638. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5639. GGML_ASSERT(src0->type == dst->type);
  5640. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  5641. return;
  5642. }
  5643. const size_t nb00 = src0->nb[0];
  5644. const size_t nb0 = dst->nb[0];
  5645. const int ith = params->ith; // thread index
  5646. const int nth = params->nth; // number of threads
  5647. // parallelize by elements
  5648. const int ne = ggml_nelements(dst);
  5649. const int dr = (ne + nth - 1) / nth;
  5650. const int ie0 = dr * ith;
  5651. const int ie1 = MIN(ie0 + dr, ne);
  5652. if (ie0 < ie1) {
  5653. memcpy(
  5654. ((char *) dst->data + ie0*nb0),
  5655. ((char *) src0->data + ie0*nb00),
  5656. (ie1 - ie0) * ggml_type_size(src0->type));
  5657. }
  5658. }
  5659. static void ggml_compute_forward_dup_f16(
  5660. const struct ggml_compute_params * params,
  5661. struct ggml_tensor * dst) {
  5662. const struct ggml_tensor * src0 = dst->src[0];
  5663. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5664. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  5665. return;
  5666. }
  5667. GGML_TENSOR_UNARY_OP_LOCALS
  5668. const int ith = params->ith; // thread index
  5669. const int nth = params->nth; // number of threads
  5670. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5671. ggml_compute_forward_dup_same_cont(params, dst);
  5672. return;
  5673. }
  5674. // parallelize by rows
  5675. const int nr = ne01;
  5676. // number of rows per thread
  5677. const int dr = (nr + nth - 1) / nth;
  5678. // row range for this thread
  5679. const int ir0 = dr * ith;
  5680. const int ir1 = MIN(ir0 + dr, nr);
  5681. if (src0->type == dst->type &&
  5682. ne00 == ne0 &&
  5683. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5684. // copy by rows
  5685. const size_t rs = ne00*nb00;
  5686. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5687. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5688. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5689. memcpy(
  5690. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5691. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5692. rs);
  5693. }
  5694. }
  5695. }
  5696. return;
  5697. }
  5698. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5699. if (ggml_is_contiguous(dst)) {
  5700. if (nb00 == sizeof(ggml_fp16_t)) {
  5701. if (dst->type == GGML_TYPE_F16) {
  5702. size_t id = 0;
  5703. const size_t rs = ne00 * nb00;
  5704. char * dst_ptr = (char *) dst->data;
  5705. for (int i03 = 0; i03 < ne03; i03++) {
  5706. for (int i02 = 0; i02 < ne02; i02++) {
  5707. id += rs * ir0;
  5708. for (int i01 = ir0; i01 < ir1; i01++) {
  5709. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5710. memcpy(dst_ptr + id, src0_ptr, rs);
  5711. id += rs;
  5712. }
  5713. id += rs * (ne01 - ir1);
  5714. }
  5715. }
  5716. } else if (dst->type == GGML_TYPE_F32) {
  5717. size_t id = 0;
  5718. float * dst_ptr = (float *) dst->data;
  5719. for (int i03 = 0; i03 < ne03; i03++) {
  5720. for (int i02 = 0; i02 < ne02; i02++) {
  5721. id += ne00 * ir0;
  5722. for (int i01 = ir0; i01 < ir1; i01++) {
  5723. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5724. for (int i00 = 0; i00 < ne00; i00++) {
  5725. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5726. id++;
  5727. }
  5728. }
  5729. id += ne00 * (ne01 - ir1);
  5730. }
  5731. }
  5732. } else if (type_traits[dst->type].from_float) {
  5733. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5734. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5735. size_t id = 0;
  5736. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5737. char * dst_ptr = (char *) dst->data;
  5738. for (int i03 = 0; i03 < ne03; i03++) {
  5739. for (int i02 = 0; i02 < ne02; i02++) {
  5740. id += rs * ir0;
  5741. for (int i01 = ir0; i01 < ir1; i01++) {
  5742. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5743. for (int i00 = 0; i00 < ne00; i00++) {
  5744. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5745. }
  5746. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5747. id += rs;
  5748. }
  5749. id += rs * (ne01 - ir1);
  5750. }
  5751. }
  5752. } else {
  5753. GGML_ASSERT(false); // TODO: implement
  5754. }
  5755. } else {
  5756. //printf("%s: this is not optimal - fix me\n", __func__);
  5757. if (dst->type == GGML_TYPE_F32) {
  5758. size_t id = 0;
  5759. float * dst_ptr = (float *) dst->data;
  5760. for (int i03 = 0; i03 < ne03; i03++) {
  5761. for (int i02 = 0; i02 < ne02; i02++) {
  5762. id += ne00 * ir0;
  5763. for (int i01 = ir0; i01 < ir1; i01++) {
  5764. for (int i00 = 0; i00 < ne00; i00++) {
  5765. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5766. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5767. id++;
  5768. }
  5769. }
  5770. id += ne00 * (ne01 - ir1);
  5771. }
  5772. }
  5773. } else if (dst->type == GGML_TYPE_F16) {
  5774. size_t id = 0;
  5775. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5776. for (int i03 = 0; i03 < ne03; i03++) {
  5777. for (int i02 = 0; i02 < ne02; i02++) {
  5778. id += ne00 * ir0;
  5779. for (int i01 = ir0; i01 < ir1; i01++) {
  5780. for (int i00 = 0; i00 < ne00; i00++) {
  5781. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5782. dst_ptr[id] = *src0_ptr;
  5783. id++;
  5784. }
  5785. }
  5786. id += ne00 * (ne01 - ir1);
  5787. }
  5788. }
  5789. } else {
  5790. GGML_ASSERT(false); // TODO: implement
  5791. }
  5792. }
  5793. return;
  5794. }
  5795. // dst counters
  5796. int64_t i10 = 0;
  5797. int64_t i11 = 0;
  5798. int64_t i12 = 0;
  5799. int64_t i13 = 0;
  5800. if (dst->type == GGML_TYPE_F16) {
  5801. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5802. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5803. i10 += ne00 * ir0;
  5804. while (i10 >= ne0) {
  5805. i10 -= ne0;
  5806. if (++i11 == ne1) {
  5807. i11 = 0;
  5808. if (++i12 == ne2) {
  5809. i12 = 0;
  5810. if (++i13 == ne3) {
  5811. i13 = 0;
  5812. }
  5813. }
  5814. }
  5815. }
  5816. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5817. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5818. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5819. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5820. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5821. if (++i10 == ne00) {
  5822. i10 = 0;
  5823. if (++i11 == ne01) {
  5824. i11 = 0;
  5825. if (++i12 == ne02) {
  5826. i12 = 0;
  5827. if (++i13 == ne03) {
  5828. i13 = 0;
  5829. }
  5830. }
  5831. }
  5832. }
  5833. }
  5834. }
  5835. i10 += ne00 * (ne01 - ir1);
  5836. while (i10 >= ne0) {
  5837. i10 -= ne0;
  5838. if (++i11 == ne1) {
  5839. i11 = 0;
  5840. if (++i12 == ne2) {
  5841. i12 = 0;
  5842. if (++i13 == ne3) {
  5843. i13 = 0;
  5844. }
  5845. }
  5846. }
  5847. }
  5848. }
  5849. }
  5850. } else if (dst->type == GGML_TYPE_F32) {
  5851. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5852. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5853. i10 += ne00 * ir0;
  5854. while (i10 >= ne0) {
  5855. i10 -= ne0;
  5856. if (++i11 == ne1) {
  5857. i11 = 0;
  5858. if (++i12 == ne2) {
  5859. i12 = 0;
  5860. if (++i13 == ne3) {
  5861. i13 = 0;
  5862. }
  5863. }
  5864. }
  5865. }
  5866. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5867. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5868. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5869. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5870. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5871. if (++i10 == ne0) {
  5872. i10 = 0;
  5873. if (++i11 == ne1) {
  5874. i11 = 0;
  5875. if (++i12 == ne2) {
  5876. i12 = 0;
  5877. if (++i13 == ne3) {
  5878. i13 = 0;
  5879. }
  5880. }
  5881. }
  5882. }
  5883. }
  5884. }
  5885. i10 += ne00 * (ne01 - ir1);
  5886. while (i10 >= ne0) {
  5887. i10 -= ne0;
  5888. if (++i11 == ne1) {
  5889. i11 = 0;
  5890. if (++i12 == ne2) {
  5891. i12 = 0;
  5892. if (++i13 == ne3) {
  5893. i13 = 0;
  5894. }
  5895. }
  5896. }
  5897. }
  5898. }
  5899. }
  5900. } else {
  5901. GGML_ASSERT(false); // TODO: implement
  5902. }
  5903. }
  5904. static void ggml_compute_forward_dup_f32(
  5905. const struct ggml_compute_params * params,
  5906. struct ggml_tensor * dst) {
  5907. const struct ggml_tensor * src0 = dst->src[0];
  5908. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5909. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  5910. return;
  5911. }
  5912. GGML_TENSOR_UNARY_OP_LOCALS
  5913. const int ith = params->ith; // thread index
  5914. const int nth = params->nth; // number of threads
  5915. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5916. ggml_compute_forward_dup_same_cont(params, dst);
  5917. return;
  5918. }
  5919. // parallelize by rows
  5920. const int nr = ne01;
  5921. // number of rows per thread
  5922. const int dr = (nr + nth - 1) / nth;
  5923. // row range for this thread
  5924. const int ir0 = dr * ith;
  5925. const int ir1 = MIN(ir0 + dr, nr);
  5926. if (src0->type == dst->type &&
  5927. ne00 == ne0 &&
  5928. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5929. // copy by rows
  5930. const size_t rs = ne00*nb00;
  5931. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5932. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5933. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5934. memcpy(
  5935. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5936. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5937. rs);
  5938. }
  5939. }
  5940. }
  5941. return;
  5942. }
  5943. if (ggml_is_contiguous(dst)) {
  5944. // TODO: simplify
  5945. if (nb00 == sizeof(float)) {
  5946. if (dst->type == GGML_TYPE_F32) {
  5947. size_t id = 0;
  5948. const size_t rs = ne00 * nb00;
  5949. char * dst_ptr = (char *) dst->data;
  5950. for (int i03 = 0; i03 < ne03; i03++) {
  5951. for (int i02 = 0; i02 < ne02; i02++) {
  5952. id += rs * ir0;
  5953. for (int i01 = ir0; i01 < ir1; i01++) {
  5954. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5955. memcpy(dst_ptr + id, src0_ptr, rs);
  5956. id += rs;
  5957. }
  5958. id += rs * (ne01 - ir1);
  5959. }
  5960. }
  5961. } else if (type_traits[dst->type].from_float) {
  5962. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5963. size_t id = 0;
  5964. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5965. char * dst_ptr = (char *) dst->data;
  5966. for (int i03 = 0; i03 < ne03; i03++) {
  5967. for (int i02 = 0; i02 < ne02; i02++) {
  5968. id += rs * ir0;
  5969. for (int i01 = ir0; i01 < ir1; i01++) {
  5970. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5971. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5972. id += rs;
  5973. }
  5974. id += rs * (ne01 - ir1);
  5975. }
  5976. }
  5977. } else {
  5978. GGML_ASSERT(false); // TODO: implement
  5979. }
  5980. } else {
  5981. //printf("%s: this is not optimal - fix me\n", __func__);
  5982. if (dst->type == GGML_TYPE_F32) {
  5983. size_t id = 0;
  5984. float * dst_ptr = (float *) dst->data;
  5985. for (int i03 = 0; i03 < ne03; i03++) {
  5986. for (int i02 = 0; i02 < ne02; i02++) {
  5987. id += ne00 * ir0;
  5988. for (int i01 = ir0; i01 < ir1; i01++) {
  5989. for (int i00 = 0; i00 < ne00; i00++) {
  5990. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5991. dst_ptr[id] = *src0_ptr;
  5992. id++;
  5993. }
  5994. }
  5995. id += ne00 * (ne01 - ir1);
  5996. }
  5997. }
  5998. } else if (dst->type == GGML_TYPE_F16) {
  5999. size_t id = 0;
  6000. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6001. for (int i03 = 0; i03 < ne03; i03++) {
  6002. for (int i02 = 0; i02 < ne02; i02++) {
  6003. id += ne00 * ir0;
  6004. for (int i01 = ir0; i01 < ir1; i01++) {
  6005. for (int i00 = 0; i00 < ne00; i00++) {
  6006. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6007. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  6008. id++;
  6009. }
  6010. }
  6011. id += ne00 * (ne01 - ir1);
  6012. }
  6013. }
  6014. } else {
  6015. GGML_ASSERT(false); // TODO: implement
  6016. }
  6017. }
  6018. return;
  6019. }
  6020. // dst counters
  6021. int64_t i10 = 0;
  6022. int64_t i11 = 0;
  6023. int64_t i12 = 0;
  6024. int64_t i13 = 0;
  6025. if (dst->type == GGML_TYPE_F32) {
  6026. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6027. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6028. i10 += ne00 * ir0;
  6029. while (i10 >= ne0) {
  6030. i10 -= ne0;
  6031. if (++i11 == ne1) {
  6032. i11 = 0;
  6033. if (++i12 == ne2) {
  6034. i12 = 0;
  6035. if (++i13 == ne3) {
  6036. i13 = 0;
  6037. }
  6038. }
  6039. }
  6040. }
  6041. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6042. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6043. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6044. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6045. memcpy(dst_ptr, src0_ptr, sizeof(float));
  6046. if (++i10 == ne0) {
  6047. i10 = 0;
  6048. if (++i11 == ne1) {
  6049. i11 = 0;
  6050. if (++i12 == ne2) {
  6051. i12 = 0;
  6052. if (++i13 == ne3) {
  6053. i13 = 0;
  6054. }
  6055. }
  6056. }
  6057. }
  6058. }
  6059. }
  6060. i10 += ne00 * (ne01 - ir1);
  6061. while (i10 >= ne0) {
  6062. i10 -= ne0;
  6063. if (++i11 == ne1) {
  6064. i11 = 0;
  6065. if (++i12 == ne2) {
  6066. i12 = 0;
  6067. if (++i13 == ne3) {
  6068. i13 = 0;
  6069. }
  6070. }
  6071. }
  6072. }
  6073. }
  6074. }
  6075. } else if (dst->type == GGML_TYPE_F16) {
  6076. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6077. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6078. i10 += ne00 * ir0;
  6079. while (i10 >= ne0) {
  6080. i10 -= ne0;
  6081. if (++i11 == ne1) {
  6082. i11 = 0;
  6083. if (++i12 == ne2) {
  6084. i12 = 0;
  6085. if (++i13 == ne3) {
  6086. i13 = 0;
  6087. }
  6088. }
  6089. }
  6090. }
  6091. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6092. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6093. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6094. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6095. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  6096. if (++i10 == ne0) {
  6097. i10 = 0;
  6098. if (++i11 == ne1) {
  6099. i11 = 0;
  6100. if (++i12 == ne2) {
  6101. i12 = 0;
  6102. if (++i13 == ne3) {
  6103. i13 = 0;
  6104. }
  6105. }
  6106. }
  6107. }
  6108. }
  6109. }
  6110. i10 += ne00 * (ne01 - ir1);
  6111. while (i10 >= ne0) {
  6112. i10 -= ne0;
  6113. if (++i11 == ne1) {
  6114. i11 = 0;
  6115. if (++i12 == ne2) {
  6116. i12 = 0;
  6117. if (++i13 == ne3) {
  6118. i13 = 0;
  6119. }
  6120. }
  6121. }
  6122. }
  6123. }
  6124. }
  6125. } else {
  6126. GGML_ASSERT(false); // TODO: implement
  6127. }
  6128. }
  6129. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  6130. static void ggml_compute_forward_dup_bytes(
  6131. const struct ggml_compute_params * params,
  6132. struct ggml_tensor * dst) {
  6133. const struct ggml_tensor * src0 = dst->src[0];
  6134. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6135. GGML_ASSERT(src0->type == dst->type);
  6136. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6137. return;
  6138. }
  6139. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  6140. ggml_compute_forward_dup_same_cont(params, dst);
  6141. return;
  6142. }
  6143. GGML_TENSOR_UNARY_OP_LOCALS;
  6144. const size_t type_size = ggml_type_size(src0->type);
  6145. const int ith = params->ith; // thread index
  6146. const int nth = params->nth; // number of threads
  6147. // parallelize by rows
  6148. const int nr = ne01;
  6149. // number of rows per thread
  6150. const int dr = (nr + nth - 1) / nth;
  6151. // row range for this thread
  6152. const int ir0 = dr * ith;
  6153. const int ir1 = MIN(ir0 + dr, nr);
  6154. if (src0->type == dst->type &&
  6155. ne00 == ne0 &&
  6156. nb00 == type_size && nb0 == type_size) {
  6157. // copy by rows
  6158. const size_t rs = ne00 * type_size;
  6159. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6160. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6161. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6162. memcpy(
  6163. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6164. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6165. rs);
  6166. }
  6167. }
  6168. }
  6169. return;
  6170. }
  6171. if (ggml_is_contiguous(dst)) {
  6172. size_t id = 0;
  6173. char * dst_ptr = (char *) dst->data;
  6174. const size_t rs = ne00 * type_size;
  6175. if (nb00 == type_size) {
  6176. // src0 is contigous on first dimension, copy by rows
  6177. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6178. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6179. id += rs * ir0;
  6180. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6181. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6182. memcpy(dst_ptr + id, src0_ptr, rs);
  6183. id += rs;
  6184. }
  6185. id += rs * (ne01 - ir1);
  6186. }
  6187. }
  6188. } else {
  6189. //printf("%s: this is not optimal - fix me\n", __func__);
  6190. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6191. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6192. id += rs * ir0;
  6193. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6194. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6195. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  6196. memcpy(dst_ptr + id, src0_ptr, type_size);
  6197. id += type_size;
  6198. }
  6199. }
  6200. id += rs * (ne01 - ir1);
  6201. }
  6202. }
  6203. }
  6204. return;
  6205. }
  6206. // dst counters
  6207. int64_t i10 = 0;
  6208. int64_t i11 = 0;
  6209. int64_t i12 = 0;
  6210. int64_t i13 = 0;
  6211. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6212. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6213. i10 += ne00 * ir0;
  6214. while (i10 >= ne0) {
  6215. i10 -= ne0;
  6216. if (++i11 == ne1) {
  6217. i11 = 0;
  6218. if (++i12 == ne2) {
  6219. i12 = 0;
  6220. if (++i13 == ne3) {
  6221. i13 = 0;
  6222. }
  6223. }
  6224. }
  6225. }
  6226. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6227. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6228. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6229. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6230. memcpy(dst_ptr, src0_ptr, type_size);
  6231. if (++i10 == ne0) {
  6232. i10 = 0;
  6233. if (++i11 == ne1) {
  6234. i11 = 0;
  6235. if (++i12 == ne2) {
  6236. i12 = 0;
  6237. if (++i13 == ne3) {
  6238. i13 = 0;
  6239. }
  6240. }
  6241. }
  6242. }
  6243. }
  6244. }
  6245. i10 += ne00 * (ne01 - ir1);
  6246. while (i10 >= ne0) {
  6247. i10 -= ne0;
  6248. if (++i11 == ne1) {
  6249. i11 = 0;
  6250. if (++i12 == ne2) {
  6251. i12 = 0;
  6252. if (++i13 == ne3) {
  6253. i13 = 0;
  6254. }
  6255. }
  6256. }
  6257. }
  6258. }
  6259. }
  6260. }
  6261. static void ggml_compute_forward_dup(
  6262. const struct ggml_compute_params * params,
  6263. struct ggml_tensor * dst) {
  6264. const struct ggml_tensor * src0 = dst->src[0];
  6265. if (src0->type == dst->type) {
  6266. ggml_compute_forward_dup_bytes(params, dst);
  6267. return;
  6268. }
  6269. switch (src0->type) {
  6270. case GGML_TYPE_F16:
  6271. {
  6272. ggml_compute_forward_dup_f16(params, dst);
  6273. } break;
  6274. case GGML_TYPE_F32:
  6275. {
  6276. ggml_compute_forward_dup_f32(params, dst);
  6277. } break;
  6278. default:
  6279. {
  6280. GGML_ASSERT(false);
  6281. } break;
  6282. }
  6283. }
  6284. // ggml_compute_forward_add
  6285. static void ggml_compute_forward_add_f32(
  6286. const struct ggml_compute_params * params,
  6287. struct ggml_tensor * dst) {
  6288. const struct ggml_tensor * src0 = dst->src[0];
  6289. const struct ggml_tensor * src1 = dst->src[1];
  6290. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6291. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6292. return;
  6293. }
  6294. const int ith = params->ith;
  6295. const int nth = params->nth;
  6296. #ifdef GGML_USE_CLBLAST
  6297. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  6298. // TODO: OpenCL kernel support full broadcast
  6299. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  6300. if (ith == 0) {
  6301. ggml_cl_add(src0, src1, dst);
  6302. }
  6303. return;
  6304. }
  6305. #endif
  6306. const int nr = ggml_nrows(src0);
  6307. GGML_TENSOR_BINARY_OP_LOCALS
  6308. GGML_ASSERT( nb0 == sizeof(float));
  6309. GGML_ASSERT(nb00 == sizeof(float));
  6310. // rows per thread
  6311. const int dr = (nr + nth - 1)/nth;
  6312. // row range for this thread
  6313. const int ir0 = dr*ith;
  6314. const int ir1 = MIN(ir0 + dr, nr);
  6315. if (nb10 == sizeof(float)) {
  6316. for (int ir = ir0; ir < ir1; ++ir) {
  6317. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6318. const int64_t i03 = ir/(ne02*ne01);
  6319. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6320. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6321. const int64_t i13 = i03 % ne13;
  6322. const int64_t i12 = i02 % ne12;
  6323. const int64_t i11 = i01 % ne11;
  6324. const int64_t nr0 = ne00 / ne10;
  6325. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6326. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6327. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6328. for (int64_t r = 0; r < nr0; ++r) {
  6329. #ifdef GGML_USE_ACCELERATE
  6330. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  6331. #else
  6332. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6333. #endif
  6334. }
  6335. }
  6336. } else {
  6337. // src1 is not contiguous
  6338. for (int ir = ir0; ir < ir1; ++ir) {
  6339. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6340. const int64_t i03 = ir/(ne02*ne01);
  6341. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6342. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6343. const int64_t i13 = i03 % ne13;
  6344. const int64_t i12 = i02 % ne12;
  6345. const int64_t i11 = i01 % ne11;
  6346. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6347. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6348. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  6349. const int64_t i10 = i0 % ne10;
  6350. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6351. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6352. }
  6353. }
  6354. }
  6355. }
  6356. static void ggml_compute_forward_add_f16_f32(
  6357. const struct ggml_compute_params * params,
  6358. struct ggml_tensor * dst) {
  6359. const struct ggml_tensor * src0 = dst->src[0];
  6360. const struct ggml_tensor * src1 = dst->src[1];
  6361. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6362. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6363. return;
  6364. }
  6365. const int ith = params->ith;
  6366. const int nth = params->nth;
  6367. const int nr = ggml_nrows(src0);
  6368. GGML_TENSOR_BINARY_OP_LOCALS
  6369. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6370. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6371. if (dst->type == GGML_TYPE_F32) {
  6372. GGML_ASSERT( nb0 == sizeof(float));
  6373. }
  6374. else {
  6375. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6376. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6377. }
  6378. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6379. // rows per thread
  6380. const int dr = (nr + nth - 1)/nth;
  6381. // row range for this thread
  6382. const int ir0 = dr*ith;
  6383. const int ir1 = MIN(ir0 + dr, nr);
  6384. if (nb10 == sizeof(float)) {
  6385. if (dst->type == GGML_TYPE_F16) {
  6386. for (int ir = ir0; ir < ir1; ++ir) {
  6387. // src0, src1 and dst are same shape => same indices
  6388. const int i3 = ir/(ne2*ne1);
  6389. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6390. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6391. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6392. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6393. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6394. for (int i = 0; i < ne0; i++) {
  6395. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6396. }
  6397. }
  6398. } else {
  6399. for (int ir = ir0; ir < ir1; ++ir) {
  6400. // src0, src1 and dst are same shape => same indices
  6401. const int i3 = ir/(ne2*ne1);
  6402. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6403. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6404. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6405. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6406. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6407. for (int i = 0; i < ne0; i++) {
  6408. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  6409. }
  6410. }
  6411. }
  6412. }
  6413. else {
  6414. // src1 is not contiguous
  6415. GGML_ASSERT(false);
  6416. }
  6417. }
  6418. static void ggml_compute_forward_add_f16_f16(
  6419. const struct ggml_compute_params * params,
  6420. struct ggml_tensor * dst) {
  6421. const struct ggml_tensor * src0 = dst->src[0];
  6422. const struct ggml_tensor * src1 = dst->src[1];
  6423. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6424. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6425. return;
  6426. }
  6427. const int ith = params->ith;
  6428. const int nth = params->nth;
  6429. const int nr = ggml_nrows(src0);
  6430. GGML_TENSOR_BINARY_OP_LOCALS
  6431. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6432. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6433. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6434. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6435. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6436. // rows per thread
  6437. const int dr = (nr + nth - 1)/nth;
  6438. // row range for this thread
  6439. const int ir0 = dr*ith;
  6440. const int ir1 = MIN(ir0 + dr, nr);
  6441. if (nb10 == sizeof(ggml_fp16_t)) {
  6442. for (int ir = ir0; ir < ir1; ++ir) {
  6443. // src0, src1 and dst are same shape => same indices
  6444. const int i3 = ir/(ne2*ne1);
  6445. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6446. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6447. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6448. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6449. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6450. for (int i = 0; i < ne0; i++) {
  6451. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6452. }
  6453. }
  6454. }
  6455. else {
  6456. // src1 is not contiguous
  6457. GGML_ASSERT(false);
  6458. }
  6459. }
  6460. static void ggml_compute_forward_add_q_f32(
  6461. const struct ggml_compute_params * params,
  6462. struct ggml_tensor * dst) {
  6463. const struct ggml_tensor * src0 = dst->src[0];
  6464. const struct ggml_tensor * src1 = dst->src[1];
  6465. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6466. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6467. return;
  6468. }
  6469. const int nr = ggml_nrows(src0);
  6470. GGML_TENSOR_BINARY_OP_LOCALS
  6471. const int ith = params->ith;
  6472. const int nth = params->nth;
  6473. const enum ggml_type type = src0->type;
  6474. const enum ggml_type dtype = dst->type;
  6475. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6476. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  6477. // we don't support permuted src0 or src1
  6478. GGML_ASSERT(nb00 == ggml_type_size(type));
  6479. GGML_ASSERT(nb10 == sizeof(float));
  6480. // dst cannot be transposed or permuted
  6481. GGML_ASSERT(nb0 <= nb1);
  6482. GGML_ASSERT(nb1 <= nb2);
  6483. GGML_ASSERT(nb2 <= nb3);
  6484. GGML_ASSERT(ggml_is_quantized(src0->type));
  6485. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6486. // rows per thread
  6487. const int dr = (nr + nth - 1)/nth;
  6488. // row range for this thread
  6489. const int ir0 = dr*ith;
  6490. const int ir1 = MIN(ir0 + dr, nr);
  6491. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6492. for (int ir = ir0; ir < ir1; ++ir) {
  6493. // src0 indices
  6494. const int i03 = ir/(ne02*ne01);
  6495. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6496. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6497. // src1 and dst are same shape as src0 => same indices
  6498. const int i13 = i03;
  6499. const int i12 = i02;
  6500. const int i11 = i01;
  6501. const int i3 = i03;
  6502. const int i2 = i02;
  6503. const int i1 = i01;
  6504. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6505. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6506. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6507. assert(ne00 % 32 == 0);
  6508. // unquantize row from src0 to temp buffer
  6509. dequantize_row_q(src0_row, wdata, ne00);
  6510. // add src1
  6511. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6512. // quantize row to dst
  6513. if (quantize_row_q != NULL) {
  6514. quantize_row_q(wdata, dst_row, ne00);
  6515. } else {
  6516. memcpy(dst_row, wdata, ne0*nb0);
  6517. }
  6518. }
  6519. }
  6520. static void ggml_compute_forward_add(
  6521. const struct ggml_compute_params * params,
  6522. struct ggml_tensor * dst) {
  6523. const struct ggml_tensor * src0 = dst->src[0];
  6524. const struct ggml_tensor * src1 = dst->src[1];
  6525. switch (src0->type) {
  6526. case GGML_TYPE_F32:
  6527. {
  6528. if (src1->type == GGML_TYPE_F32) {
  6529. ggml_compute_forward_add_f32(params, dst);
  6530. }
  6531. else {
  6532. GGML_ASSERT(false);
  6533. }
  6534. } break;
  6535. case GGML_TYPE_F16:
  6536. {
  6537. if (src1->type == GGML_TYPE_F16) {
  6538. ggml_compute_forward_add_f16_f16(params, dst);
  6539. }
  6540. else if (src1->type == GGML_TYPE_F32) {
  6541. ggml_compute_forward_add_f16_f32(params, dst);
  6542. }
  6543. else {
  6544. GGML_ASSERT(false);
  6545. }
  6546. } break;
  6547. case GGML_TYPE_Q4_0:
  6548. case GGML_TYPE_Q4_1:
  6549. case GGML_TYPE_Q5_0:
  6550. case GGML_TYPE_Q5_1:
  6551. case GGML_TYPE_Q8_0:
  6552. case GGML_TYPE_Q2_K:
  6553. case GGML_TYPE_Q3_K:
  6554. case GGML_TYPE_Q4_K:
  6555. case GGML_TYPE_Q5_K:
  6556. case GGML_TYPE_Q6_K:
  6557. case GGML_TYPE_IQ2_XXS:
  6558. case GGML_TYPE_IQ2_XS:
  6559. case GGML_TYPE_IQ3_XXS:
  6560. case GGML_TYPE_IQ1_S:
  6561. case GGML_TYPE_IQ4_NL:
  6562. case GGML_TYPE_IQ4_XS:
  6563. case GGML_TYPE_IQ3_S:
  6564. case GGML_TYPE_IQ2_S:
  6565. {
  6566. ggml_compute_forward_add_q_f32(params, dst);
  6567. } break;
  6568. default:
  6569. {
  6570. GGML_ASSERT(false);
  6571. } break;
  6572. }
  6573. }
  6574. // ggml_compute_forward_add1
  6575. static void ggml_compute_forward_add1_f32(
  6576. const struct ggml_compute_params * params,
  6577. struct ggml_tensor * dst) {
  6578. const struct ggml_tensor * src0 = dst->src[0];
  6579. const struct ggml_tensor * src1 = dst->src[1];
  6580. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6581. GGML_ASSERT(ggml_is_scalar(src1));
  6582. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6583. return;
  6584. }
  6585. const int ith = params->ith;
  6586. const int nth = params->nth;
  6587. const int nr = ggml_nrows(src0);
  6588. GGML_TENSOR_UNARY_OP_LOCALS
  6589. GGML_ASSERT( nb0 == sizeof(float));
  6590. GGML_ASSERT(nb00 == sizeof(float));
  6591. // rows per thread
  6592. const int dr = (nr + nth - 1)/nth;
  6593. // row range for this thread
  6594. const int ir0 = dr*ith;
  6595. const int ir1 = MIN(ir0 + dr, nr);
  6596. for (int ir = ir0; ir < ir1; ++ir) {
  6597. // src0 and dst are same shape => same indices
  6598. const int i3 = ir/(ne2*ne1);
  6599. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6600. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6601. #ifdef GGML_USE_ACCELERATE
  6602. UNUSED(ggml_vec_add1_f32);
  6603. vDSP_vadd(
  6604. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6605. (float *) ((char *) src1->data), 0,
  6606. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6607. ne0);
  6608. #else
  6609. ggml_vec_add1_f32(ne0,
  6610. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6611. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6612. *(float *) src1->data);
  6613. #endif
  6614. }
  6615. }
  6616. static void ggml_compute_forward_add1_f16_f32(
  6617. const struct ggml_compute_params * params,
  6618. struct ggml_tensor * dst) {
  6619. const struct ggml_tensor * src0 = dst->src[0];
  6620. const struct ggml_tensor * src1 = dst->src[1];
  6621. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6622. GGML_ASSERT(ggml_is_scalar(src1));
  6623. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6624. return;
  6625. }
  6626. // scalar to add
  6627. const float v = *(float *) src1->data;
  6628. const int ith = params->ith;
  6629. const int nth = params->nth;
  6630. const int nr = ggml_nrows(src0);
  6631. GGML_TENSOR_UNARY_OP_LOCALS
  6632. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6633. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6634. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6635. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6636. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6637. // rows per thread
  6638. const int dr = (nr + nth - 1)/nth;
  6639. // row range for this thread
  6640. const int ir0 = dr*ith;
  6641. const int ir1 = MIN(ir0 + dr, nr);
  6642. for (int ir = ir0; ir < ir1; ++ir) {
  6643. // src0 and dst are same shape => same indices
  6644. const int i3 = ir/(ne2*ne1);
  6645. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6646. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6647. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6648. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6649. for (int i = 0; i < ne0; i++) {
  6650. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6651. }
  6652. }
  6653. }
  6654. static void ggml_compute_forward_add1_f16_f16(
  6655. const struct ggml_compute_params * params,
  6656. struct ggml_tensor * dst) {
  6657. const struct ggml_tensor * src0 = dst->src[0];
  6658. const struct ggml_tensor * src1 = dst->src[1];
  6659. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6660. GGML_ASSERT(ggml_is_scalar(src1));
  6661. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6662. return;
  6663. }
  6664. // scalar to add
  6665. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6666. const int ith = params->ith;
  6667. const int nth = params->nth;
  6668. const int nr = ggml_nrows(src0);
  6669. GGML_TENSOR_UNARY_OP_LOCALS
  6670. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6671. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6672. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6673. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6674. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6675. // rows per thread
  6676. const int dr = (nr + nth - 1)/nth;
  6677. // row range for this thread
  6678. const int ir0 = dr*ith;
  6679. const int ir1 = MIN(ir0 + dr, nr);
  6680. for (int ir = ir0; ir < ir1; ++ir) {
  6681. // src0 and dst are same shape => same indices
  6682. const int i3 = ir/(ne2*ne1);
  6683. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6684. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6685. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6686. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6687. for (int i = 0; i < ne0; i++) {
  6688. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6689. }
  6690. }
  6691. }
  6692. static void ggml_compute_forward_add1_q_f32(
  6693. const struct ggml_compute_params * params,
  6694. struct ggml_tensor * dst) {
  6695. const struct ggml_tensor * src0 = dst->src[0];
  6696. const struct ggml_tensor * src1 = dst->src[1];
  6697. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6698. GGML_ASSERT(ggml_is_scalar(src1));
  6699. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6700. return;
  6701. }
  6702. // scalar to add
  6703. const float v = *(float *) src1->data;
  6704. const int ith = params->ith;
  6705. const int nth = params->nth;
  6706. const int nr = ggml_nrows(src0);
  6707. GGML_TENSOR_UNARY_OP_LOCALS
  6708. const enum ggml_type type = src0->type;
  6709. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6710. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6711. // we don't support permuted src0
  6712. GGML_ASSERT(nb00 == ggml_type_size(type));
  6713. // dst cannot be transposed or permuted
  6714. GGML_ASSERT(nb0 <= nb1);
  6715. GGML_ASSERT(nb1 <= nb2);
  6716. GGML_ASSERT(nb2 <= nb3);
  6717. GGML_ASSERT(ggml_is_quantized(src0->type));
  6718. GGML_ASSERT(dst->type == src0->type);
  6719. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6720. // rows per thread
  6721. const int dr = (nr + nth - 1)/nth;
  6722. // row range for this thread
  6723. const int ir0 = dr*ith;
  6724. const int ir1 = MIN(ir0 + dr, nr);
  6725. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6726. for (int ir = ir0; ir < ir1; ++ir) {
  6727. // src0 and dst are same shape => same indices
  6728. const int i3 = ir/(ne2*ne1);
  6729. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6730. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6731. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6732. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6733. assert(ne0 % 32 == 0);
  6734. // unquantize row from src0 to temp buffer
  6735. dequantize_row_q(src0_row, wdata, ne0);
  6736. // add src1
  6737. ggml_vec_acc1_f32(ne0, wdata, v);
  6738. // quantize row to dst
  6739. quantize_row_q(wdata, dst_row, ne0);
  6740. }
  6741. }
  6742. static void ggml_compute_forward_add1(
  6743. const struct ggml_compute_params * params,
  6744. struct ggml_tensor * dst) {
  6745. const struct ggml_tensor * src0 = dst->src[0];
  6746. const struct ggml_tensor * src1 = dst->src[1];
  6747. switch (src0->type) {
  6748. case GGML_TYPE_F32:
  6749. {
  6750. ggml_compute_forward_add1_f32(params, dst);
  6751. } break;
  6752. case GGML_TYPE_F16:
  6753. {
  6754. if (src1->type == GGML_TYPE_F16) {
  6755. ggml_compute_forward_add1_f16_f16(params, dst);
  6756. }
  6757. else if (src1->type == GGML_TYPE_F32) {
  6758. ggml_compute_forward_add1_f16_f32(params, dst);
  6759. }
  6760. else {
  6761. GGML_ASSERT(false);
  6762. }
  6763. } break;
  6764. case GGML_TYPE_Q4_0:
  6765. case GGML_TYPE_Q4_1:
  6766. case GGML_TYPE_Q5_0:
  6767. case GGML_TYPE_Q5_1:
  6768. case GGML_TYPE_Q8_0:
  6769. case GGML_TYPE_Q8_1:
  6770. case GGML_TYPE_Q2_K:
  6771. case GGML_TYPE_Q3_K:
  6772. case GGML_TYPE_Q4_K:
  6773. case GGML_TYPE_Q5_K:
  6774. case GGML_TYPE_Q6_K:
  6775. case GGML_TYPE_IQ2_XXS:
  6776. case GGML_TYPE_IQ2_XS:
  6777. case GGML_TYPE_IQ3_XXS:
  6778. case GGML_TYPE_IQ1_S:
  6779. case GGML_TYPE_IQ4_NL:
  6780. case GGML_TYPE_IQ4_XS:
  6781. case GGML_TYPE_IQ3_S:
  6782. case GGML_TYPE_IQ2_S:
  6783. {
  6784. ggml_compute_forward_add1_q_f32(params, dst);
  6785. } break;
  6786. default:
  6787. {
  6788. GGML_ASSERT(false);
  6789. } break;
  6790. }
  6791. }
  6792. // ggml_compute_forward_acc
  6793. static void ggml_compute_forward_acc_f32(
  6794. const struct ggml_compute_params * params,
  6795. struct ggml_tensor * dst) {
  6796. const struct ggml_tensor * src0 = dst->src[0];
  6797. const struct ggml_tensor * src1 = dst->src[1];
  6798. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6799. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6800. // view src0 and dst with these strides and data offset inbytes during acc
  6801. // nb0 is implicitly element_size because src0 and dst are contiguous
  6802. size_t nb1 = ((int32_t *) dst->op_params)[0];
  6803. size_t nb2 = ((int32_t *) dst->op_params)[1];
  6804. size_t nb3 = ((int32_t *) dst->op_params)[2];
  6805. size_t offset = ((int32_t *) dst->op_params)[3];
  6806. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  6807. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  6808. if (params->ith != 0) {
  6809. return;
  6810. }
  6811. // memcpy needs to be synchronized across threads to avoid race conditions.
  6812. // => do it in INIT phase
  6813. memcpy(
  6814. ((char *) dst->data),
  6815. ((char *) src0->data),
  6816. ggml_nbytes(dst));
  6817. }
  6818. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6819. return;
  6820. }
  6821. const int ith = params->ith;
  6822. const int nth = params->nth;
  6823. const int nr = ggml_nrows(src1);
  6824. const int nc = src1->ne[0];
  6825. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  6826. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  6827. // src0 and dst as viewed during acc
  6828. const size_t nb0 = ggml_element_size(src0);
  6829. const size_t nb00 = nb0;
  6830. const size_t nb01 = nb1;
  6831. const size_t nb02 = nb2;
  6832. const size_t nb03 = nb3;
  6833. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6834. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6835. GGML_ASSERT(nb10 == sizeof(float));
  6836. // rows per thread
  6837. const int dr = (nr + nth - 1)/nth;
  6838. // row range for this thread
  6839. const int ir0 = dr*ith;
  6840. const int ir1 = MIN(ir0 + dr, nr);
  6841. for (int ir = ir0; ir < ir1; ++ir) {
  6842. // src0 and dst are viewed with shape of src1 and offset
  6843. // => same indices
  6844. const int i3 = ir/(ne12*ne11);
  6845. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6846. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6847. #ifdef GGML_USE_ACCELERATE
  6848. vDSP_vadd(
  6849. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6850. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6851. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6852. #else
  6853. ggml_vec_add_f32(nc,
  6854. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6855. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6856. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6857. #endif
  6858. }
  6859. }
  6860. static void ggml_compute_forward_acc(
  6861. const struct ggml_compute_params * params,
  6862. struct ggml_tensor * dst) {
  6863. const struct ggml_tensor * src0 = dst->src[0];
  6864. switch (src0->type) {
  6865. case GGML_TYPE_F32:
  6866. {
  6867. ggml_compute_forward_acc_f32(params, dst);
  6868. } break;
  6869. case GGML_TYPE_F16:
  6870. case GGML_TYPE_Q4_0:
  6871. case GGML_TYPE_Q4_1:
  6872. case GGML_TYPE_Q5_0:
  6873. case GGML_TYPE_Q5_1:
  6874. case GGML_TYPE_Q8_0:
  6875. case GGML_TYPE_Q8_1:
  6876. case GGML_TYPE_Q2_K:
  6877. case GGML_TYPE_Q3_K:
  6878. case GGML_TYPE_Q4_K:
  6879. case GGML_TYPE_Q5_K:
  6880. case GGML_TYPE_Q6_K:
  6881. case GGML_TYPE_IQ2_XXS:
  6882. case GGML_TYPE_IQ2_XS:
  6883. case GGML_TYPE_IQ3_XXS:
  6884. case GGML_TYPE_IQ1_S:
  6885. case GGML_TYPE_IQ4_NL:
  6886. case GGML_TYPE_IQ4_XS:
  6887. case GGML_TYPE_IQ3_S:
  6888. case GGML_TYPE_IQ2_S:
  6889. default:
  6890. {
  6891. GGML_ASSERT(false);
  6892. } break;
  6893. }
  6894. }
  6895. // ggml_compute_forward_sub
  6896. static void ggml_compute_forward_sub_f32(
  6897. const struct ggml_compute_params * params,
  6898. struct ggml_tensor * dst) {
  6899. const struct ggml_tensor * src0 = dst->src[0];
  6900. const struct ggml_tensor * src1 = dst->src[1];
  6901. assert(params->ith == 0);
  6902. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6903. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6904. return;
  6905. }
  6906. const int nr = ggml_nrows(src0);
  6907. GGML_TENSOR_BINARY_OP_LOCALS
  6908. GGML_ASSERT( nb0 == sizeof(float));
  6909. GGML_ASSERT(nb00 == sizeof(float));
  6910. if (nb10 == sizeof(float)) {
  6911. for (int ir = 0; ir < nr; ++ir) {
  6912. // src0, src1 and dst are same shape => same indices
  6913. const int i3 = ir/(ne2*ne1);
  6914. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6915. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6916. #ifdef GGML_USE_ACCELERATE
  6917. vDSP_vsub(
  6918. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6919. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6920. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6921. ne0);
  6922. #else
  6923. ggml_vec_sub_f32(ne0,
  6924. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6925. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6926. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6927. #endif
  6928. // }
  6929. // }
  6930. }
  6931. } else {
  6932. // src1 is not contiguous
  6933. for (int ir = 0; ir < nr; ++ir) {
  6934. // src0, src1 and dst are same shape => same indices
  6935. const int i3 = ir/(ne2*ne1);
  6936. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6937. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6938. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6939. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6940. for (int i0 = 0; i0 < ne0; i0++) {
  6941. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6942. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6943. }
  6944. }
  6945. }
  6946. }
  6947. static void ggml_compute_forward_sub(
  6948. const struct ggml_compute_params * params,
  6949. struct ggml_tensor * dst) {
  6950. const struct ggml_tensor * src0 = dst->src[0];
  6951. switch (src0->type) {
  6952. case GGML_TYPE_F32:
  6953. {
  6954. ggml_compute_forward_sub_f32(params, dst);
  6955. } break;
  6956. default:
  6957. {
  6958. GGML_ASSERT(false);
  6959. } break;
  6960. }
  6961. }
  6962. // ggml_compute_forward_mul
  6963. static void ggml_compute_forward_mul_f32(
  6964. const struct ggml_compute_params * params,
  6965. struct ggml_tensor * dst) {
  6966. const struct ggml_tensor * src0 = dst->src[0];
  6967. const struct ggml_tensor * src1 = dst->src[1];
  6968. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6969. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6970. return;
  6971. }
  6972. const int ith = params->ith;
  6973. const int nth = params->nth;
  6974. #if defined(GGML_USE_CLBLAST)
  6975. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  6976. // TODO: OpenCL kernel support full broadcast
  6977. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  6978. if (ith == 0) {
  6979. ggml_cl_mul(src0, src1, dst);
  6980. }
  6981. return;
  6982. }
  6983. #endif
  6984. const int64_t nr = ggml_nrows(src0);
  6985. GGML_TENSOR_BINARY_OP_LOCALS
  6986. GGML_ASSERT( nb0 == sizeof(float));
  6987. GGML_ASSERT(nb00 == sizeof(float));
  6988. if (nb10 == sizeof(float)) {
  6989. for (int64_t ir = ith; ir < nr; ir += nth) {
  6990. // src0 and dst are same shape => same indices
  6991. const int64_t i03 = ir/(ne02*ne01);
  6992. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6993. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6994. const int64_t i13 = i03 % ne13;
  6995. const int64_t i12 = i02 % ne12;
  6996. const int64_t i11 = i01 % ne11;
  6997. const int64_t nr0 = ne00 / ne10;
  6998. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6999. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7000. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7001. for (int64_t r = 0 ; r < nr0; ++r) {
  7002. #ifdef GGML_USE_ACCELERATE
  7003. UNUSED(ggml_vec_mul_f32);
  7004. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  7005. #else
  7006. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7007. #endif
  7008. }
  7009. }
  7010. } else {
  7011. // src1 is not contiguous
  7012. for (int64_t ir = ith; ir < nr; ir += nth) {
  7013. // src0 and dst are same shape => same indices
  7014. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7015. const int64_t i03 = ir/(ne02*ne01);
  7016. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7017. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7018. const int64_t i13 = i03 % ne13;
  7019. const int64_t i12 = i02 % ne12;
  7020. const int64_t i11 = i01 % ne11;
  7021. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7022. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7023. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  7024. const int64_t i10 = i0 % ne10;
  7025. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7026. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  7027. }
  7028. }
  7029. }
  7030. }
  7031. static void ggml_compute_forward_mul(
  7032. const struct ggml_compute_params * params,
  7033. struct ggml_tensor * dst) {
  7034. const struct ggml_tensor * src0 = dst->src[0];
  7035. const struct ggml_tensor * src1 = dst->src[1];
  7036. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  7037. switch (src0->type) {
  7038. case GGML_TYPE_F32:
  7039. {
  7040. ggml_compute_forward_mul_f32(params, dst);
  7041. } break;
  7042. default:
  7043. {
  7044. GGML_ASSERT(false);
  7045. } break;
  7046. }
  7047. }
  7048. // ggml_compute_forward_div
  7049. static void ggml_compute_forward_div_f32(
  7050. const struct ggml_compute_params * params,
  7051. struct ggml_tensor * dst) {
  7052. const struct ggml_tensor * src0 = dst->src[0];
  7053. const struct ggml_tensor * src1 = dst->src[1];
  7054. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7055. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7056. return;
  7057. }
  7058. const int ith = params->ith;
  7059. const int nth = params->nth;
  7060. const int64_t nr = ggml_nrows(src0);
  7061. GGML_TENSOR_BINARY_OP_LOCALS
  7062. GGML_ASSERT( nb0 == sizeof(float));
  7063. GGML_ASSERT(nb00 == sizeof(float));
  7064. if (nb10 == sizeof(float)) {
  7065. for (int64_t ir = ith; ir < nr; ir += nth) {
  7066. // src0 and dst are same shape => same indices
  7067. const int64_t i03 = ir/(ne02*ne01);
  7068. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7069. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7070. const int64_t i13 = i03 % ne13;
  7071. const int64_t i12 = i02 % ne12;
  7072. const int64_t i11 = i01 % ne11;
  7073. const int64_t nr0 = ne00 / ne10;
  7074. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7075. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7076. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7077. for (int64_t r = 0; r < nr0; ++r) {
  7078. #ifdef GGML_USE_ACCELERATE
  7079. UNUSED(ggml_vec_div_f32);
  7080. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  7081. #else
  7082. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7083. #endif
  7084. }
  7085. }
  7086. } else {
  7087. // src1 is not contiguous
  7088. for (int64_t ir = ith; ir < nr; ir += nth) {
  7089. // src0 and dst are same shape => same indices
  7090. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7091. const int64_t i03 = ir/(ne02*ne01);
  7092. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7093. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7094. const int64_t i13 = i03 % ne13;
  7095. const int64_t i12 = i02 % ne12;
  7096. const int64_t i11 = i01 % ne11;
  7097. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7098. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7099. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  7100. const int64_t i10 = i0 % ne10;
  7101. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7102. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  7103. }
  7104. }
  7105. }
  7106. }
  7107. static void ggml_compute_forward_div(
  7108. const struct ggml_compute_params * params,
  7109. struct ggml_tensor * dst) {
  7110. const struct ggml_tensor * src0 = dst->src[0];
  7111. switch (src0->type) {
  7112. case GGML_TYPE_F32:
  7113. {
  7114. ggml_compute_forward_div_f32(params, dst);
  7115. } break;
  7116. default:
  7117. {
  7118. GGML_ASSERT(false);
  7119. } break;
  7120. }
  7121. }
  7122. // ggml_compute_forward_sqr
  7123. static void ggml_compute_forward_sqr_f32(
  7124. const struct ggml_compute_params * params,
  7125. struct ggml_tensor * dst) {
  7126. const struct ggml_tensor * src0 = dst->src[0];
  7127. assert(params->ith == 0);
  7128. assert(ggml_are_same_shape(src0, dst));
  7129. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7130. return;
  7131. }
  7132. const int n = ggml_nrows(src0);
  7133. const int nc = src0->ne[0];
  7134. assert( dst->nb[0] == sizeof(float));
  7135. assert(src0->nb[0] == sizeof(float));
  7136. for (int i = 0; i < n; i++) {
  7137. ggml_vec_sqr_f32(nc,
  7138. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7139. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7140. }
  7141. }
  7142. static void ggml_compute_forward_sqr(
  7143. const struct ggml_compute_params * params,
  7144. struct ggml_tensor * dst) {
  7145. const struct ggml_tensor * src0 = dst->src[0];
  7146. switch (src0->type) {
  7147. case GGML_TYPE_F32:
  7148. {
  7149. ggml_compute_forward_sqr_f32(params, dst);
  7150. } break;
  7151. default:
  7152. {
  7153. GGML_ASSERT(false);
  7154. } break;
  7155. }
  7156. }
  7157. // ggml_compute_forward_sqrt
  7158. static void ggml_compute_forward_sqrt_f32(
  7159. const struct ggml_compute_params * params,
  7160. struct ggml_tensor * dst) {
  7161. const struct ggml_tensor * src0 = dst->src[0];
  7162. assert(params->ith == 0);
  7163. assert(ggml_are_same_shape(src0, dst));
  7164. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7165. return;
  7166. }
  7167. const int n = ggml_nrows(src0);
  7168. const int nc = src0->ne[0];
  7169. assert( dst->nb[0] == sizeof(float));
  7170. assert(src0->nb[0] == sizeof(float));
  7171. for (int i = 0; i < n; i++) {
  7172. ggml_vec_sqrt_f32(nc,
  7173. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7174. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7175. }
  7176. }
  7177. static void ggml_compute_forward_sqrt(
  7178. const struct ggml_compute_params * params,
  7179. struct ggml_tensor * dst) {
  7180. const struct ggml_tensor * src0 = dst->src[0];
  7181. switch (src0->type) {
  7182. case GGML_TYPE_F32:
  7183. {
  7184. ggml_compute_forward_sqrt_f32(params, dst);
  7185. } break;
  7186. default:
  7187. {
  7188. GGML_ASSERT(false);
  7189. } break;
  7190. }
  7191. }
  7192. // ggml_compute_forward_log
  7193. static void ggml_compute_forward_log_f32(
  7194. const struct ggml_compute_params * params,
  7195. struct ggml_tensor * dst) {
  7196. const struct ggml_tensor * src0 = dst->src[0];
  7197. GGML_ASSERT(params->ith == 0);
  7198. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7199. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7200. return;
  7201. }
  7202. const int n = ggml_nrows(src0);
  7203. const int nc = src0->ne[0];
  7204. GGML_ASSERT( dst->nb[0] == sizeof(float));
  7205. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7206. for (int i = 0; i < n; i++) {
  7207. ggml_vec_log_f32(nc,
  7208. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7209. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7210. }
  7211. }
  7212. static void ggml_compute_forward_log(
  7213. const struct ggml_compute_params * params,
  7214. struct ggml_tensor * dst) {
  7215. const struct ggml_tensor * src0 = dst->src[0];
  7216. switch (src0->type) {
  7217. case GGML_TYPE_F32:
  7218. {
  7219. ggml_compute_forward_log_f32(params, dst);
  7220. } break;
  7221. default:
  7222. {
  7223. GGML_ASSERT(false);
  7224. } break;
  7225. }
  7226. }
  7227. // ggml_compute_forward_sum
  7228. static void ggml_compute_forward_sum_f32(
  7229. const struct ggml_compute_params * params,
  7230. struct ggml_tensor * dst) {
  7231. const struct ggml_tensor * src0 = dst->src[0];
  7232. assert(params->ith == 0);
  7233. assert(ggml_is_scalar(dst));
  7234. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7235. return;
  7236. }
  7237. assert(ggml_is_scalar(dst));
  7238. assert(src0->nb[0] == sizeof(float));
  7239. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  7240. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  7241. ggml_float sum = 0;
  7242. ggml_float row_sum = 0;
  7243. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7244. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7245. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7246. ggml_vec_sum_f32_ggf(ne00,
  7247. &row_sum,
  7248. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7249. sum += row_sum;
  7250. }
  7251. }
  7252. }
  7253. ((float *) dst->data)[0] = sum;
  7254. }
  7255. static void ggml_compute_forward_sum_f16(
  7256. const struct ggml_compute_params * params,
  7257. struct ggml_tensor * dst) {
  7258. const struct ggml_tensor * src0 = dst->src[0];
  7259. assert(params->ith == 0);
  7260. assert(ggml_is_scalar(dst));
  7261. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7262. return;
  7263. }
  7264. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  7265. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  7266. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  7267. float sum = 0;
  7268. float row_sum = 0;
  7269. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7270. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7271. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7272. ggml_vec_sum_f16_ggf(ne00,
  7273. &row_sum,
  7274. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  7275. sum += row_sum;
  7276. }
  7277. }
  7278. }
  7279. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  7280. }
  7281. static void ggml_compute_forward_sum(
  7282. const struct ggml_compute_params * params,
  7283. struct ggml_tensor * dst) {
  7284. const struct ggml_tensor * src0 = dst->src[0];
  7285. switch (src0->type) {
  7286. case GGML_TYPE_F32:
  7287. {
  7288. ggml_compute_forward_sum_f32(params, dst);
  7289. } break;
  7290. case GGML_TYPE_F16:
  7291. {
  7292. ggml_compute_forward_sum_f16(params, dst);
  7293. } break;
  7294. default:
  7295. {
  7296. GGML_ASSERT(false);
  7297. } break;
  7298. }
  7299. }
  7300. // ggml_compute_forward_sum_rows
  7301. static void ggml_compute_forward_sum_rows_f32(
  7302. const struct ggml_compute_params * params,
  7303. struct ggml_tensor * dst) {
  7304. const struct ggml_tensor * src0 = dst->src[0];
  7305. GGML_ASSERT(params->ith == 0);
  7306. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7307. return;
  7308. }
  7309. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7310. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7311. GGML_TENSOR_UNARY_OP_LOCALS
  7312. GGML_ASSERT(ne0 == 1);
  7313. GGML_ASSERT(ne1 == ne01);
  7314. GGML_ASSERT(ne2 == ne02);
  7315. GGML_ASSERT(ne3 == ne03);
  7316. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7317. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7318. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7319. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7320. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7321. float row_sum = 0;
  7322. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7323. dst_row[0] = row_sum;
  7324. }
  7325. }
  7326. }
  7327. }
  7328. static void ggml_compute_forward_sum_rows(
  7329. const struct ggml_compute_params * params,
  7330. struct ggml_tensor * dst) {
  7331. const struct ggml_tensor * src0 = dst->src[0];
  7332. switch (src0->type) {
  7333. case GGML_TYPE_F32:
  7334. {
  7335. ggml_compute_forward_sum_rows_f32(params, dst);
  7336. } break;
  7337. default:
  7338. {
  7339. GGML_ASSERT(false);
  7340. } break;
  7341. }
  7342. }
  7343. // ggml_compute_forward_mean
  7344. static void ggml_compute_forward_mean_f32(
  7345. const struct ggml_compute_params * params,
  7346. struct ggml_tensor * dst) {
  7347. const struct ggml_tensor * src0 = dst->src[0];
  7348. assert(params->ith == 0);
  7349. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7350. return;
  7351. }
  7352. assert(src0->nb[0] == sizeof(float));
  7353. GGML_TENSOR_UNARY_OP_LOCALS
  7354. assert(ne0 == 1);
  7355. assert(ne1 == ne01);
  7356. assert(ne2 == ne02);
  7357. assert(ne3 == ne03);
  7358. UNUSED(ne0);
  7359. UNUSED(ne1);
  7360. UNUSED(ne2);
  7361. UNUSED(ne3);
  7362. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7363. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7364. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7365. ggml_vec_sum_f32(ne00,
  7366. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7367. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7368. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7369. }
  7370. }
  7371. }
  7372. }
  7373. static void ggml_compute_forward_mean(
  7374. const struct ggml_compute_params * params,
  7375. struct ggml_tensor * dst) {
  7376. const struct ggml_tensor * src0 = dst->src[0];
  7377. switch (src0->type) {
  7378. case GGML_TYPE_F32:
  7379. {
  7380. ggml_compute_forward_mean_f32(params, dst);
  7381. } break;
  7382. default:
  7383. {
  7384. GGML_ASSERT(false);
  7385. } break;
  7386. }
  7387. }
  7388. // ggml_compute_forward_argmax
  7389. static void ggml_compute_forward_argmax_f32(
  7390. const struct ggml_compute_params * params,
  7391. struct ggml_tensor * dst) {
  7392. const struct ggml_tensor * src0 = dst->src[0];
  7393. assert(params->ith == 0);
  7394. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7395. return;
  7396. }
  7397. assert(src0->nb[0] == sizeof(float));
  7398. assert(dst->nb[0] == sizeof(float));
  7399. const int64_t ne00 = src0->ne[0];
  7400. const int64_t ne01 = src0->ne[1];
  7401. const size_t nb01 = src0->nb[1];
  7402. const size_t nb0 = dst->nb[0];
  7403. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7404. float * src = (float *) ((char *) src0->data + i1*nb01);
  7405. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  7406. int v = 0;
  7407. ggml_vec_argmax_f32(ne00, &v, src);
  7408. dst_[0] = v;
  7409. }
  7410. }
  7411. static void ggml_compute_forward_argmax(
  7412. const struct ggml_compute_params * params,
  7413. struct ggml_tensor * dst) {
  7414. const struct ggml_tensor * src0 = dst->src[0];
  7415. switch (src0->type) {
  7416. case GGML_TYPE_F32:
  7417. {
  7418. ggml_compute_forward_argmax_f32(params, dst);
  7419. } break;
  7420. default:
  7421. {
  7422. GGML_ASSERT(false);
  7423. } break;
  7424. }
  7425. }
  7426. // ggml_compute_forward_repeat
  7427. static void ggml_compute_forward_repeat_f32(
  7428. const struct ggml_compute_params * params,
  7429. struct ggml_tensor * dst) {
  7430. const struct ggml_tensor * src0 = dst->src[0];
  7431. GGML_ASSERT(params->ith == 0);
  7432. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7433. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7434. return;
  7435. }
  7436. GGML_TENSOR_UNARY_OP_LOCALS
  7437. // guaranteed to be an integer due to the check in ggml_can_repeat
  7438. const int nr0 = (int)(ne0/ne00);
  7439. const int nr1 = (int)(ne1/ne01);
  7440. const int nr2 = (int)(ne2/ne02);
  7441. const int nr3 = (int)(ne3/ne03);
  7442. // TODO: support for transposed / permuted tensors
  7443. GGML_ASSERT(nb0 == sizeof(float));
  7444. GGML_ASSERT(nb00 == sizeof(float));
  7445. // TODO: maybe this is not optimal?
  7446. for (int i3 = 0; i3 < nr3; i3++) {
  7447. for (int k3 = 0; k3 < ne03; k3++) {
  7448. for (int i2 = 0; i2 < nr2; i2++) {
  7449. for (int k2 = 0; k2 < ne02; k2++) {
  7450. for (int i1 = 0; i1 < nr1; i1++) {
  7451. for (int k1 = 0; k1 < ne01; k1++) {
  7452. for (int i0 = 0; i0 < nr0; i0++) {
  7453. ggml_vec_cpy_f32(ne00,
  7454. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7455. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7456. }
  7457. }
  7458. }
  7459. }
  7460. }
  7461. }
  7462. }
  7463. }
  7464. static void ggml_compute_forward_repeat_f16(
  7465. const struct ggml_compute_params * params,
  7466. struct ggml_tensor * dst) {
  7467. const struct ggml_tensor * src0 = dst->src[0];
  7468. GGML_ASSERT(params->ith == 0);
  7469. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7470. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7471. return;
  7472. }
  7473. GGML_TENSOR_UNARY_OP_LOCALS
  7474. // guaranteed to be an integer due to the check in ggml_can_repeat
  7475. const int nr0 = (int)(ne0/ne00);
  7476. const int nr1 = (int)(ne1/ne01);
  7477. const int nr2 = (int)(ne2/ne02);
  7478. const int nr3 = (int)(ne3/ne03);
  7479. // TODO: support for transposed / permuted tensors
  7480. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  7481. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7482. // TODO: maybe this is not optimal?
  7483. for (int i3 = 0; i3 < nr3; i3++) {
  7484. for (int k3 = 0; k3 < ne03; k3++) {
  7485. for (int i2 = 0; i2 < nr2; i2++) {
  7486. for (int k2 = 0; k2 < ne02; k2++) {
  7487. for (int i1 = 0; i1 < nr1; i1++) {
  7488. for (int k1 = 0; k1 < ne01; k1++) {
  7489. for (int i0 = 0; i0 < nr0; i0++) {
  7490. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  7491. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  7492. // ggml_vec_cpy_f16(ne00, y, x)
  7493. for (int i = 0; i < ne00; ++i) {
  7494. y[i] = x[i];
  7495. }
  7496. }
  7497. }
  7498. }
  7499. }
  7500. }
  7501. }
  7502. }
  7503. }
  7504. static void ggml_compute_forward_repeat(
  7505. const struct ggml_compute_params * params,
  7506. struct ggml_tensor * dst) {
  7507. const struct ggml_tensor * src0 = dst->src[0];
  7508. switch (src0->type) {
  7509. case GGML_TYPE_F16:
  7510. case GGML_TYPE_I16:
  7511. {
  7512. ggml_compute_forward_repeat_f16(params, dst);
  7513. } break;
  7514. case GGML_TYPE_F32:
  7515. case GGML_TYPE_I32:
  7516. {
  7517. ggml_compute_forward_repeat_f32(params, dst);
  7518. } break;
  7519. default:
  7520. {
  7521. GGML_ASSERT(false);
  7522. } break;
  7523. }
  7524. }
  7525. // ggml_compute_forward_repeat_back
  7526. static void ggml_compute_forward_repeat_back_f32(
  7527. const struct ggml_compute_params * params,
  7528. struct ggml_tensor * dst) {
  7529. const struct ggml_tensor * src0 = dst->src[0];
  7530. GGML_ASSERT(params->ith == 0);
  7531. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7532. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7533. return;
  7534. }
  7535. GGML_TENSOR_UNARY_OP_LOCALS
  7536. // guaranteed to be an integer due to the check in ggml_can_repeat
  7537. const int nr0 = (int)(ne00/ne0);
  7538. const int nr1 = (int)(ne01/ne1);
  7539. const int nr2 = (int)(ne02/ne2);
  7540. const int nr3 = (int)(ne03/ne3);
  7541. // TODO: support for transposed / permuted tensors
  7542. GGML_ASSERT(nb0 == sizeof(float));
  7543. GGML_ASSERT(nb00 == sizeof(float));
  7544. if (ggml_is_contiguous(dst)) {
  7545. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7546. } else {
  7547. for (int k3 = 0; k3 < ne3; k3++) {
  7548. for (int k2 = 0; k2 < ne2; k2++) {
  7549. for (int k1 = 0; k1 < ne1; k1++) {
  7550. ggml_vec_set_f32(ne0,
  7551. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7552. 0);
  7553. }
  7554. }
  7555. }
  7556. }
  7557. // TODO: maybe this is not optimal?
  7558. for (int i3 = 0; i3 < nr3; i3++) {
  7559. for (int k3 = 0; k3 < ne3; k3++) {
  7560. for (int i2 = 0; i2 < nr2; i2++) {
  7561. for (int k2 = 0; k2 < ne2; k2++) {
  7562. for (int i1 = 0; i1 < nr1; i1++) {
  7563. for (int k1 = 0; k1 < ne1; k1++) {
  7564. for (int i0 = 0; i0 < nr0; i0++) {
  7565. ggml_vec_acc_f32(ne0,
  7566. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7567. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7568. }
  7569. }
  7570. }
  7571. }
  7572. }
  7573. }
  7574. }
  7575. }
  7576. static void ggml_compute_forward_repeat_back(
  7577. const struct ggml_compute_params * params,
  7578. struct ggml_tensor * dst) {
  7579. const struct ggml_tensor * src0 = dst->src[0];
  7580. switch (src0->type) {
  7581. case GGML_TYPE_F32:
  7582. {
  7583. ggml_compute_forward_repeat_back_f32(params, dst);
  7584. } break;
  7585. default:
  7586. {
  7587. GGML_ASSERT(false);
  7588. } break;
  7589. }
  7590. }
  7591. // ggml_compute_forward_concat
  7592. static void ggml_compute_forward_concat_f32(
  7593. const struct ggml_compute_params * params,
  7594. struct ggml_tensor * dst) {
  7595. const struct ggml_tensor * src0 = dst->src[0];
  7596. const struct ggml_tensor * src1 = dst->src[1];
  7597. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7598. return;
  7599. }
  7600. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7601. const int ith = params->ith;
  7602. const int nth = params->nth;
  7603. GGML_TENSOR_BINARY_OP_LOCALS
  7604. // TODO: support for transposed / permuted tensors
  7605. GGML_ASSERT(nb0 == sizeof(float));
  7606. GGML_ASSERT(nb00 == sizeof(float));
  7607. GGML_ASSERT(nb10 == sizeof(float));
  7608. for (int i3 = 0; i3 < ne3; i3++) {
  7609. for (int i2 = ith; i2 < ne2; i2 += nth) {
  7610. if (i2 < ne02) { // src0
  7611. for (int i1 = 0; i1 < ne1; i1++) {
  7612. for (int i0 = 0; i0 < ne0; i0++) {
  7613. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  7614. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7615. *y = *x;
  7616. }
  7617. }
  7618. } // src1
  7619. else {
  7620. for (int i1 = 0; i1 < ne1; i1++) {
  7621. for (int i0 = 0; i0 < ne0; i0++) {
  7622. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  7623. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7624. *y = *x;
  7625. }
  7626. }
  7627. }
  7628. }
  7629. }
  7630. }
  7631. static void ggml_compute_forward_concat(
  7632. const struct ggml_compute_params* params,
  7633. struct ggml_tensor* dst) {
  7634. const struct ggml_tensor * src0 = dst->src[0];
  7635. switch (src0->type) {
  7636. case GGML_TYPE_F32:
  7637. case GGML_TYPE_I32:
  7638. {
  7639. ggml_compute_forward_concat_f32(params, dst);
  7640. } break;
  7641. default:
  7642. {
  7643. GGML_ASSERT(false);
  7644. } break;
  7645. }
  7646. }
  7647. // ggml_compute_forward_abs
  7648. static void ggml_compute_forward_abs_f32(
  7649. const struct ggml_compute_params * params,
  7650. struct ggml_tensor * dst) {
  7651. const struct ggml_tensor * src0 = dst->src[0];
  7652. assert(params->ith == 0);
  7653. assert(ggml_are_same_shape(src0, dst));
  7654. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7655. return;
  7656. }
  7657. const int n = ggml_nrows(src0);
  7658. const int nc = src0->ne[0];
  7659. assert(dst->nb[0] == sizeof(float));
  7660. assert(src0->nb[0] == sizeof(float));
  7661. for (int i = 0; i < n; i++) {
  7662. ggml_vec_abs_f32(nc,
  7663. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7664. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7665. }
  7666. }
  7667. static void ggml_compute_forward_abs(
  7668. const struct ggml_compute_params * params,
  7669. struct ggml_tensor * dst) {
  7670. const struct ggml_tensor * src0 = dst->src[0];
  7671. switch (src0->type) {
  7672. case GGML_TYPE_F32:
  7673. {
  7674. ggml_compute_forward_abs_f32(params, dst);
  7675. } break;
  7676. default:
  7677. {
  7678. GGML_ASSERT(false);
  7679. } break;
  7680. }
  7681. }
  7682. // ggml_compute_forward_sgn
  7683. static void ggml_compute_forward_sgn_f32(
  7684. const struct ggml_compute_params * params,
  7685. struct ggml_tensor * dst) {
  7686. const struct ggml_tensor * src0 = dst->src[0];
  7687. assert(params->ith == 0);
  7688. assert(ggml_are_same_shape(src0, dst));
  7689. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7690. return;
  7691. }
  7692. const int n = ggml_nrows(src0);
  7693. const int nc = src0->ne[0];
  7694. assert(dst->nb[0] == sizeof(float));
  7695. assert(src0->nb[0] == sizeof(float));
  7696. for (int i = 0; i < n; i++) {
  7697. ggml_vec_sgn_f32(nc,
  7698. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7699. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7700. }
  7701. }
  7702. static void ggml_compute_forward_sgn(
  7703. const struct ggml_compute_params * params,
  7704. struct ggml_tensor * dst) {
  7705. const struct ggml_tensor * src0 = dst->src[0];
  7706. switch (src0->type) {
  7707. case GGML_TYPE_F32:
  7708. {
  7709. ggml_compute_forward_sgn_f32(params, dst);
  7710. } break;
  7711. default:
  7712. {
  7713. GGML_ASSERT(false);
  7714. } break;
  7715. }
  7716. }
  7717. // ggml_compute_forward_neg
  7718. static void ggml_compute_forward_neg_f32(
  7719. const struct ggml_compute_params * params,
  7720. struct ggml_tensor * dst) {
  7721. const struct ggml_tensor * src0 = dst->src[0];
  7722. assert(params->ith == 0);
  7723. assert(ggml_are_same_shape(src0, dst));
  7724. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7725. return;
  7726. }
  7727. const int n = ggml_nrows(src0);
  7728. const int nc = src0->ne[0];
  7729. assert(dst->nb[0] == sizeof(float));
  7730. assert(src0->nb[0] == sizeof(float));
  7731. for (int i = 0; i < n; i++) {
  7732. ggml_vec_neg_f32(nc,
  7733. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7734. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7735. }
  7736. }
  7737. static void ggml_compute_forward_neg(
  7738. const struct ggml_compute_params * params,
  7739. struct ggml_tensor * dst) {
  7740. const struct ggml_tensor * src0 = dst->src[0];
  7741. switch (src0->type) {
  7742. case GGML_TYPE_F32:
  7743. {
  7744. ggml_compute_forward_neg_f32(params, dst);
  7745. } break;
  7746. default:
  7747. {
  7748. GGML_ASSERT(false);
  7749. } break;
  7750. }
  7751. }
  7752. // ggml_compute_forward_step
  7753. static void ggml_compute_forward_step_f32(
  7754. const struct ggml_compute_params * params,
  7755. struct ggml_tensor * dst) {
  7756. const struct ggml_tensor * src0 = dst->src[0];
  7757. assert(params->ith == 0);
  7758. assert(ggml_are_same_shape(src0, dst));
  7759. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7760. return;
  7761. }
  7762. const int n = ggml_nrows(src0);
  7763. const int nc = src0->ne[0];
  7764. assert(dst->nb[0] == sizeof(float));
  7765. assert(src0->nb[0] == sizeof(float));
  7766. for (int i = 0; i < n; i++) {
  7767. ggml_vec_step_f32(nc,
  7768. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7769. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7770. }
  7771. }
  7772. static void ggml_compute_forward_step(
  7773. const struct ggml_compute_params * params,
  7774. struct ggml_tensor * dst) {
  7775. const struct ggml_tensor * src0 = dst->src[0];
  7776. switch (src0->type) {
  7777. case GGML_TYPE_F32:
  7778. {
  7779. ggml_compute_forward_step_f32(params, dst);
  7780. } break;
  7781. default:
  7782. {
  7783. GGML_ASSERT(false);
  7784. } break;
  7785. }
  7786. }
  7787. // ggml_compute_forward_tanh
  7788. static void ggml_compute_forward_tanh_f32(
  7789. const struct ggml_compute_params * params,
  7790. struct ggml_tensor * dst) {
  7791. const struct ggml_tensor * src0 = dst->src[0];
  7792. assert(params->ith == 0);
  7793. assert(ggml_are_same_shape(src0, dst));
  7794. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7795. return;
  7796. }
  7797. const int n = ggml_nrows(src0);
  7798. const int nc = src0->ne[0];
  7799. assert(dst->nb[0] == sizeof(float));
  7800. assert(src0->nb[0] == sizeof(float));
  7801. for (int i = 0; i < n; i++) {
  7802. ggml_vec_tanh_f32(nc,
  7803. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7804. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7805. }
  7806. }
  7807. static void ggml_compute_forward_tanh(
  7808. const struct ggml_compute_params * params,
  7809. struct ggml_tensor * dst) {
  7810. const struct ggml_tensor * src0 = dst->src[0];
  7811. switch (src0->type) {
  7812. case GGML_TYPE_F32:
  7813. {
  7814. ggml_compute_forward_tanh_f32(params, dst);
  7815. } break;
  7816. default:
  7817. {
  7818. GGML_ASSERT(false);
  7819. } break;
  7820. }
  7821. }
  7822. // ggml_compute_forward_elu
  7823. static void ggml_compute_forward_elu_f32(
  7824. const struct ggml_compute_params * params,
  7825. struct ggml_tensor * dst) {
  7826. const struct ggml_tensor * src0 = dst->src[0];
  7827. assert(params->ith == 0);
  7828. assert(ggml_are_same_shape(src0, dst));
  7829. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7830. return;
  7831. }
  7832. const int n = ggml_nrows(src0);
  7833. const int nc = src0->ne[0];
  7834. assert(dst->nb[0] == sizeof(float));
  7835. assert(src0->nb[0] == sizeof(float));
  7836. for (int i = 0; i < n; i++) {
  7837. ggml_vec_elu_f32(nc,
  7838. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7839. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7840. }
  7841. }
  7842. static void ggml_compute_forward_elu(
  7843. const struct ggml_compute_params * params,
  7844. struct ggml_tensor * dst) {
  7845. const struct ggml_tensor * src0 = dst->src[0];
  7846. switch (src0->type) {
  7847. case GGML_TYPE_F32:
  7848. {
  7849. ggml_compute_forward_elu_f32(params, dst);
  7850. } break;
  7851. default:
  7852. {
  7853. GGML_ASSERT(false);
  7854. } break;
  7855. }
  7856. }
  7857. // ggml_compute_forward_relu
  7858. static void ggml_compute_forward_relu_f32(
  7859. const struct ggml_compute_params * params,
  7860. struct ggml_tensor * dst) {
  7861. const struct ggml_tensor * src0 = dst->src[0];
  7862. assert(params->ith == 0);
  7863. assert(ggml_are_same_shape(src0, dst));
  7864. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7865. return;
  7866. }
  7867. const int n = ggml_nrows(src0);
  7868. const int nc = src0->ne[0];
  7869. assert(dst->nb[0] == sizeof(float));
  7870. assert(src0->nb[0] == sizeof(float));
  7871. for (int i = 0; i < n; i++) {
  7872. ggml_vec_relu_f32(nc,
  7873. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7874. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7875. }
  7876. }
  7877. static void ggml_compute_forward_relu(
  7878. const struct ggml_compute_params * params,
  7879. struct ggml_tensor * dst) {
  7880. const struct ggml_tensor * src0 = dst->src[0];
  7881. switch (src0->type) {
  7882. case GGML_TYPE_F32:
  7883. {
  7884. ggml_compute_forward_relu_f32(params, dst);
  7885. } break;
  7886. default:
  7887. {
  7888. GGML_ASSERT(false);
  7889. } break;
  7890. }
  7891. }
  7892. // ggml_compute_forward_gelu
  7893. static void ggml_compute_forward_gelu_f32(
  7894. const struct ggml_compute_params * params,
  7895. struct ggml_tensor * dst) {
  7896. const struct ggml_tensor * src0 = dst->src[0];
  7897. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7898. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7899. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7900. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7901. return;
  7902. }
  7903. const int ith = params->ith;
  7904. const int nth = params->nth;
  7905. const int nc = src0->ne[0];
  7906. const int nr = ggml_nrows(src0);
  7907. // rows per thread
  7908. const int dr = (nr + nth - 1)/nth;
  7909. // row range for this thread
  7910. const int ir0 = dr*ith;
  7911. const int ir1 = MIN(ir0 + dr, nr);
  7912. for (int i1 = ir0; i1 < ir1; i1++) {
  7913. ggml_vec_gelu_f32(nc,
  7914. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7915. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7916. #ifndef NDEBUG
  7917. for (int k = 0; k < nc; k++) {
  7918. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7919. UNUSED(x);
  7920. assert(!isnan(x));
  7921. assert(!isinf(x));
  7922. }
  7923. #endif
  7924. }
  7925. }
  7926. static void ggml_compute_forward_gelu(
  7927. const struct ggml_compute_params * params,
  7928. struct ggml_tensor * dst) {
  7929. const struct ggml_tensor * src0 = dst->src[0];
  7930. switch (src0->type) {
  7931. case GGML_TYPE_F32:
  7932. {
  7933. ggml_compute_forward_gelu_f32(params, dst);
  7934. } break;
  7935. default:
  7936. {
  7937. GGML_ASSERT(false);
  7938. } break;
  7939. }
  7940. }
  7941. // ggml_compute_forward_gelu_quick
  7942. static void ggml_compute_forward_gelu_quick_f32(
  7943. const struct ggml_compute_params * params,
  7944. struct ggml_tensor * dst) {
  7945. const struct ggml_tensor * src0 = dst->src[0];
  7946. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7947. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7948. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7949. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7950. return;
  7951. }
  7952. const int ith = params->ith;
  7953. const int nth = params->nth;
  7954. const int nc = src0->ne[0];
  7955. const int nr = ggml_nrows(src0);
  7956. // rows per thread
  7957. const int dr = (nr + nth - 1)/nth;
  7958. // row range for this thread
  7959. const int ir0 = dr*ith;
  7960. const int ir1 = MIN(ir0 + dr, nr);
  7961. for (int i1 = ir0; i1 < ir1; i1++) {
  7962. ggml_vec_gelu_quick_f32(nc,
  7963. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7964. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7965. #ifndef NDEBUG
  7966. for (int k = 0; k < nc; k++) {
  7967. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7968. UNUSED(x);
  7969. assert(!isnan(x));
  7970. assert(!isinf(x));
  7971. }
  7972. #endif
  7973. }
  7974. }
  7975. static void ggml_compute_forward_gelu_quick(
  7976. const struct ggml_compute_params * params,
  7977. struct ggml_tensor * dst) {
  7978. const struct ggml_tensor * src0 = dst->src[0];
  7979. switch (src0->type) {
  7980. case GGML_TYPE_F32:
  7981. {
  7982. ggml_compute_forward_gelu_quick_f32(params, dst);
  7983. } break;
  7984. default:
  7985. {
  7986. GGML_ASSERT(false);
  7987. } break;
  7988. }
  7989. }
  7990. // ggml_compute_forward_silu
  7991. static void ggml_compute_forward_silu_f32(
  7992. const struct ggml_compute_params * params,
  7993. struct ggml_tensor * dst) {
  7994. const struct ggml_tensor * src0 = dst->src[0];
  7995. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7996. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7997. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7998. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7999. return;
  8000. }
  8001. const int ith = params->ith;
  8002. const int nth = params->nth;
  8003. const int nc = src0->ne[0];
  8004. const int nr = ggml_nrows(src0);
  8005. // rows per thread
  8006. const int dr = (nr + nth - 1)/nth;
  8007. // row range for this thread
  8008. const int ir0 = dr*ith;
  8009. const int ir1 = MIN(ir0 + dr, nr);
  8010. for (int i1 = ir0; i1 < ir1; i1++) {
  8011. ggml_vec_silu_f32(nc,
  8012. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8013. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8014. #ifndef NDEBUG
  8015. for (int k = 0; k < nc; k++) {
  8016. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  8017. UNUSED(x);
  8018. assert(!isnan(x));
  8019. assert(!isinf(x));
  8020. }
  8021. #endif
  8022. }
  8023. }
  8024. static void ggml_compute_forward_silu(
  8025. const struct ggml_compute_params * params,
  8026. struct ggml_tensor * dst) {
  8027. const struct ggml_tensor * src0 = dst->src[0];
  8028. switch (src0->type) {
  8029. case GGML_TYPE_F32:
  8030. {
  8031. ggml_compute_forward_silu_f32(params, dst);
  8032. } break;
  8033. default:
  8034. {
  8035. GGML_ASSERT(false);
  8036. } break;
  8037. }
  8038. }
  8039. // ggml_compute_forward_leaky_relu
  8040. static void ggml_compute_forward_leaky_relu_f32(
  8041. const struct ggml_compute_params * params,
  8042. struct ggml_tensor * dst) {
  8043. const struct ggml_tensor * src0 = dst->src[0];
  8044. assert(params->ith == 0);
  8045. assert(ggml_are_same_shape(src0, dst));
  8046. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8047. return;
  8048. }
  8049. const int n = ggml_nrows(src0);
  8050. const int nc = src0->ne[0];
  8051. float negative_slope;
  8052. memcpy(&negative_slope, dst->op_params, sizeof(float));
  8053. assert(dst->nb[0] == sizeof(float));
  8054. assert(src0->nb[0] == sizeof(float));
  8055. for (int i = 0; i < n; i++) {
  8056. ggml_vec_leaky_relu_f32(nc,
  8057. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8058. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  8059. }
  8060. }
  8061. static void ggml_compute_forward_leaky_relu(
  8062. const struct ggml_compute_params * params,
  8063. struct ggml_tensor * dst) {
  8064. const struct ggml_tensor * src0 = dst->src[0];
  8065. switch (src0->type) {
  8066. case GGML_TYPE_F32:
  8067. {
  8068. ggml_compute_forward_leaky_relu_f32(params, dst);
  8069. } break;
  8070. default:
  8071. {
  8072. GGML_ASSERT(false);
  8073. } break;
  8074. }
  8075. }
  8076. // ggml_compute_forward_silu_back
  8077. static void ggml_compute_forward_silu_back_f32(
  8078. const struct ggml_compute_params * params,
  8079. struct ggml_tensor * dst) {
  8080. const struct ggml_tensor * src0 = dst->src[0];
  8081. const struct ggml_tensor * grad = dst->src[1];
  8082. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  8083. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8084. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8085. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8086. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  8087. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8088. return;
  8089. }
  8090. const int ith = params->ith;
  8091. const int nth = params->nth;
  8092. const int nc = src0->ne[0];
  8093. const int nr = ggml_nrows(src0);
  8094. // rows per thread
  8095. const int dr = (nr + nth - 1)/nth;
  8096. // row range for this thread
  8097. const int ir0 = dr*ith;
  8098. const int ir1 = MIN(ir0 + dr, nr);
  8099. for (int i1 = ir0; i1 < ir1; i1++) {
  8100. ggml_vec_silu_backward_f32(nc,
  8101. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8102. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  8103. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  8104. #ifndef NDEBUG
  8105. for (int k = 0; k < nc; k++) {
  8106. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8107. UNUSED(x);
  8108. assert(!isnan(x));
  8109. assert(!isinf(x));
  8110. }
  8111. #endif
  8112. }
  8113. }
  8114. static void ggml_compute_forward_silu_back(
  8115. const struct ggml_compute_params * params,
  8116. struct ggml_tensor * dst) {
  8117. const struct ggml_tensor * src0 = dst->src[0];
  8118. switch (src0->type) {
  8119. case GGML_TYPE_F32:
  8120. {
  8121. ggml_compute_forward_silu_back_f32(params, dst);
  8122. } break;
  8123. default:
  8124. {
  8125. GGML_ASSERT(false);
  8126. } break;
  8127. }
  8128. }
  8129. static void ggml_compute_forward_hardswish_f32(
  8130. const struct ggml_compute_params * params,
  8131. struct ggml_tensor * dst) {
  8132. const struct ggml_tensor * src0 = dst->src[0];
  8133. assert(params->ith == 0);
  8134. assert(ggml_are_same_shape(src0, dst));
  8135. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8136. return;
  8137. }
  8138. const int n = ggml_nrows(src0);
  8139. const int nc = src0->ne[0];
  8140. assert(dst->nb[0] == sizeof(float));
  8141. assert(src0->nb[0] == sizeof(float));
  8142. for (int i = 0; i < n; i++) {
  8143. ggml_vec_hardswish_f32(nc,
  8144. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8145. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8146. }
  8147. }
  8148. static void ggml_compute_forward_hardswish(
  8149. const struct ggml_compute_params * params,
  8150. struct ggml_tensor * dst) {
  8151. const struct ggml_tensor * src0 = dst->src[0];
  8152. switch (src0->type) {
  8153. case GGML_TYPE_F32:
  8154. {
  8155. ggml_compute_forward_hardswish_f32(params, dst);
  8156. } break;
  8157. default:
  8158. {
  8159. GGML_ASSERT(false);
  8160. } break;
  8161. }
  8162. }
  8163. static void ggml_compute_forward_hardsigmoid_f32(
  8164. const struct ggml_compute_params * params,
  8165. struct ggml_tensor * dst) {
  8166. const struct ggml_tensor * src0 = dst->src[0];
  8167. assert(params->ith == 0);
  8168. assert(ggml_are_same_shape(src0, dst));
  8169. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8170. return;
  8171. }
  8172. const int n = ggml_nrows(src0);
  8173. const int nc = src0->ne[0];
  8174. assert(dst->nb[0] == sizeof(float));
  8175. assert(src0->nb[0] == sizeof(float));
  8176. for (int i = 0; i < n; i++) {
  8177. ggml_vec_hardsigmoid_f32(nc,
  8178. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8179. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8180. }
  8181. }
  8182. static void ggml_compute_forward_hardsigmoid(
  8183. const struct ggml_compute_params * params,
  8184. struct ggml_tensor * dst) {
  8185. const struct ggml_tensor * src0 = dst->src[0];
  8186. switch (src0->type) {
  8187. case GGML_TYPE_F32:
  8188. {
  8189. ggml_compute_forward_hardsigmoid_f32(params, dst);
  8190. } break;
  8191. default:
  8192. {
  8193. GGML_ASSERT(false);
  8194. } break;
  8195. }
  8196. }
  8197. // ggml_compute_forward_norm
  8198. static void ggml_compute_forward_norm_f32(
  8199. const struct ggml_compute_params * params,
  8200. struct ggml_tensor * dst) {
  8201. const struct ggml_tensor * src0 = dst->src[0];
  8202. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8203. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8204. return;
  8205. }
  8206. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8207. const int ith = params->ith;
  8208. const int nth = params->nth;
  8209. GGML_TENSOR_UNARY_OP_LOCALS
  8210. float eps;
  8211. memcpy(&eps, dst->op_params, sizeof(float));
  8212. GGML_ASSERT(eps > 0.0f);
  8213. // TODO: optimize
  8214. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8215. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8216. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8217. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8218. ggml_float sum = 0.0;
  8219. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8220. sum += (ggml_float)x[i00];
  8221. }
  8222. float mean = sum/ne00;
  8223. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8224. ggml_float sum2 = 0.0;
  8225. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8226. float v = x[i00] - mean;
  8227. y[i00] = v;
  8228. sum2 += (ggml_float)(v*v);
  8229. }
  8230. float variance = sum2/ne00;
  8231. const float scale = 1.0f/sqrtf(variance + eps);
  8232. ggml_vec_scale_f32(ne00, y, scale);
  8233. }
  8234. }
  8235. }
  8236. }
  8237. static void ggml_compute_forward_norm(
  8238. const struct ggml_compute_params * params,
  8239. struct ggml_tensor * dst) {
  8240. const struct ggml_tensor * src0 = dst->src[0];
  8241. switch (src0->type) {
  8242. case GGML_TYPE_F32:
  8243. {
  8244. ggml_compute_forward_norm_f32(params, dst);
  8245. } break;
  8246. default:
  8247. {
  8248. GGML_ASSERT(false);
  8249. } break;
  8250. }
  8251. }
  8252. // ggml_compute_forward_group_rms_norm
  8253. static void ggml_compute_forward_rms_norm_f32(
  8254. const struct ggml_compute_params * params,
  8255. struct ggml_tensor * dst) {
  8256. const struct ggml_tensor * src0 = dst->src[0];
  8257. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8258. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8259. return;
  8260. }
  8261. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8262. const int ith = params->ith;
  8263. const int nth = params->nth;
  8264. GGML_TENSOR_UNARY_OP_LOCALS
  8265. float eps;
  8266. memcpy(&eps, dst->op_params, sizeof(float));
  8267. GGML_ASSERT(eps > 0.0f);
  8268. // TODO: optimize
  8269. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8270. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8271. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8272. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8273. ggml_float sum = 0.0;
  8274. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8275. sum += (ggml_float)(x[i00] * x[i00]);
  8276. }
  8277. const float mean = sum/ne00;
  8278. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8279. memcpy(y, x, ne00 * sizeof(float));
  8280. // for (int i00 = 0; i00 < ne00; i00++) {
  8281. // y[i00] = x[i00];
  8282. // }
  8283. const float scale = 1.0f/sqrtf(mean + eps);
  8284. ggml_vec_scale_f32(ne00, y, scale);
  8285. }
  8286. }
  8287. }
  8288. }
  8289. static void ggml_compute_forward_rms_norm(
  8290. const struct ggml_compute_params * params,
  8291. struct ggml_tensor * dst) {
  8292. const struct ggml_tensor * src0 = dst->src[0];
  8293. switch (src0->type) {
  8294. case GGML_TYPE_F32:
  8295. {
  8296. ggml_compute_forward_rms_norm_f32(params, dst);
  8297. } break;
  8298. default:
  8299. {
  8300. GGML_ASSERT(false);
  8301. } break;
  8302. }
  8303. }
  8304. static void ggml_compute_forward_rms_norm_back_f32(
  8305. const struct ggml_compute_params * params,
  8306. struct ggml_tensor * dst) {
  8307. const struct ggml_tensor * src0 = dst->src[0];
  8308. const struct ggml_tensor * src1 = dst->src[1];
  8309. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  8310. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8311. return;
  8312. }
  8313. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8314. const int ith = params->ith;
  8315. const int nth = params->nth;
  8316. GGML_TENSOR_BINARY_OP_LOCALS
  8317. float eps;
  8318. memcpy(&eps, dst->op_params, sizeof(float));
  8319. // TODO: optimize
  8320. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8321. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8322. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8323. // src1 is same shape as src0 => same indices
  8324. const int64_t i11 = i01;
  8325. const int64_t i12 = i02;
  8326. const int64_t i13 = i03;
  8327. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8328. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  8329. ggml_float sum_xx = 0.0;
  8330. ggml_float sum_xdz = 0.0;
  8331. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8332. sum_xx += (ggml_float)(x[i00] * x[i00]);
  8333. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  8334. }
  8335. //const float mean = (float)(sum_xx)/ne00;
  8336. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  8337. const float sum_eps = (float)(sum_xx) + eps*ne00;
  8338. //const float mean_xdz = (float)(sum_xdz)/ne00;
  8339. // we could cache rms from forward pass to improve performance.
  8340. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  8341. //const float rms = sqrtf(mean_eps);
  8342. const float rrms = 1.0f / sqrtf(mean_eps);
  8343. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  8344. {
  8345. // z = rms_norm(x)
  8346. //
  8347. // rms_norm(src0) =
  8348. // scale(
  8349. // src0,
  8350. // div(
  8351. // 1,
  8352. // sqrt(
  8353. // add(
  8354. // scale(
  8355. // sum(
  8356. // sqr(
  8357. // src0)),
  8358. // (1.0/N)),
  8359. // eps))));
  8360. // postorder:
  8361. // ## op args grad
  8362. // 00 param src0 grad[#00]
  8363. // 01 const 1
  8364. // 02 sqr (#00) grad[#02]
  8365. // 03 sum (#02) grad[#03]
  8366. // 04 const 1/N
  8367. // 05 scale (#03, #04) grad[#05]
  8368. // 06 const eps
  8369. // 07 add (#05, #06) grad[#07]
  8370. // 08 sqrt (#07) grad[#08]
  8371. // 09 div (#01,#08) grad[#09]
  8372. // 10 scale (#00,#09) grad[#10]
  8373. //
  8374. // backward pass, given grad[#10]
  8375. // #10: scale
  8376. // grad[#00] += scale(grad[#10],#09)
  8377. // grad[#09] += sum(mul(grad[#10],#00))
  8378. // #09: div
  8379. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8380. // #08: sqrt
  8381. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8382. // #07: add
  8383. // grad[#05] += grad[#07]
  8384. // #05: scale
  8385. // grad[#03] += scale(grad[#05],#04)
  8386. // #03: sum
  8387. // grad[#02] += repeat(grad[#03], #02)
  8388. // #02:
  8389. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8390. //
  8391. // substitute and simplify:
  8392. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8393. // grad[#02] = repeat(grad[#03], #02)
  8394. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8395. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8396. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8397. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8398. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8399. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8400. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8401. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8402. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8403. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8404. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8405. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8406. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8407. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8408. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8409. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8410. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8411. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8412. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8413. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8414. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8415. // a = b*c + d*e
  8416. // a = b*c*f/f + d*e*f/f
  8417. // a = (b*c*f + d*e*f)*(1/f)
  8418. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8419. // a = (b + d*e/c)*c
  8420. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8421. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8422. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8423. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8424. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8425. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8426. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8427. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8428. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8429. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8430. }
  8431. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8432. // post-order:
  8433. // dx := x
  8434. // dx := scale(dx,-mean_xdz/mean_eps)
  8435. // dx := add(dx, dz)
  8436. // dx := scale(dx, rrms)
  8437. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8438. ggml_vec_cpy_f32 (ne00, dx, x);
  8439. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8440. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8441. ggml_vec_acc_f32 (ne00, dx, dz);
  8442. ggml_vec_scale_f32(ne00, dx, rrms);
  8443. }
  8444. }
  8445. }
  8446. }
  8447. static void ggml_compute_forward_rms_norm_back(
  8448. const struct ggml_compute_params * params,
  8449. struct ggml_tensor * dst) {
  8450. const struct ggml_tensor * src0 = dst->src[0];
  8451. switch (src0->type) {
  8452. case GGML_TYPE_F32:
  8453. {
  8454. ggml_compute_forward_rms_norm_back_f32(params, dst);
  8455. } break;
  8456. default:
  8457. {
  8458. GGML_ASSERT(false);
  8459. } break;
  8460. }
  8461. }
  8462. // ggml_compute_forward_group_norm
  8463. static void ggml_compute_forward_group_norm_f32(
  8464. const struct ggml_compute_params * params,
  8465. struct ggml_tensor * dst) {
  8466. const struct ggml_tensor * src0 = dst->src[0];
  8467. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8468. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8469. return;
  8470. }
  8471. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8472. const int ith = params->ith;
  8473. const int nth = params->nth;
  8474. GGML_TENSOR_UNARY_OP_LOCALS
  8475. const float eps = 1e-6f; // TODO: make this a parameter
  8476. // TODO: optimize
  8477. int n_channels = src0->ne[2];
  8478. int n_groups = dst->op_params[0];
  8479. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  8480. for (int i = ith; i < n_groups; i += nth) {
  8481. int start = i * n_channels_per_group;
  8482. int end = start + n_channels_per_group;
  8483. if (end > n_channels) {
  8484. end = n_channels;
  8485. }
  8486. int step = end - start;
  8487. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8488. ggml_float sum = 0.0;
  8489. for (int64_t i02 = start; i02 < end; i02++) {
  8490. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8491. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8492. ggml_float sumr = 0.0;
  8493. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8494. sumr += (ggml_float)x[i00];
  8495. }
  8496. sum += sumr;
  8497. }
  8498. }
  8499. const float mean = sum / (ne00 * ne01 * step);
  8500. ggml_float sum2 = 0.0;
  8501. for (int64_t i02 = start; i02 < end; i02++) {
  8502. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8503. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8504. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8505. ggml_float sumr = 0.0;
  8506. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8507. float v = x[i00] - mean;
  8508. y[i00] = v;
  8509. sumr += (ggml_float)(v * v);
  8510. }
  8511. sum2 += sumr;
  8512. }
  8513. }
  8514. const float variance = sum2 / (ne00 * ne01 * step);
  8515. const float scale = 1.0f / sqrtf(variance + eps);
  8516. for (int64_t i02 = start; i02 < end; i02++) {
  8517. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8518. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8519. ggml_vec_scale_f32(ne00, y, scale);
  8520. }
  8521. }
  8522. }
  8523. }
  8524. }
  8525. static void ggml_compute_forward_group_norm(
  8526. const struct ggml_compute_params * params,
  8527. struct ggml_tensor * dst) {
  8528. const struct ggml_tensor * src0 = dst->src[0];
  8529. switch (src0->type) {
  8530. case GGML_TYPE_F32:
  8531. {
  8532. ggml_compute_forward_group_norm_f32(params, dst);
  8533. } break;
  8534. default:
  8535. {
  8536. GGML_ASSERT(false);
  8537. } break;
  8538. }
  8539. }
  8540. // ggml_compute_forward_mul_mat
  8541. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8542. // helper function to determine if it is better to use BLAS or not
  8543. // for large matrices, BLAS is faster
  8544. static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
  8545. const struct ggml_tensor * src0 = dst->src[0];
  8546. const struct ggml_tensor * src1 = dst->src[1];
  8547. //const int64_t ne00 = src0->ne[0];
  8548. //const int64_t ne01 = src0->ne[1];
  8549. const int64_t ne10 = src1->ne[0];
  8550. const int64_t ne0 = dst->ne[0];
  8551. const int64_t ne1 = dst->ne[1];
  8552. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  8553. // all the experts for each batch element and the processing would become incredibly slow
  8554. // TODO: find the optimal values for these
  8555. if (dst->op != GGML_OP_MUL_MAT_ID &&
  8556. ggml_is_contiguous(src0) &&
  8557. ggml_is_contiguous(src1) &&
  8558. //src0->type == GGML_TYPE_F32 &&
  8559. src1->type == GGML_TYPE_F32 &&
  8560. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8561. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8562. return true;
  8563. }
  8564. return false;
  8565. }
  8566. #endif
  8567. static void ggml_compute_forward_mul_mat(
  8568. const struct ggml_compute_params * params,
  8569. struct ggml_tensor * dst) {
  8570. const struct ggml_tensor * src0 = dst->src[0];
  8571. const struct ggml_tensor * src1 = dst->src[1];
  8572. int64_t t0 = ggml_perf_time_us();
  8573. UNUSED(t0);
  8574. GGML_TENSOR_BINARY_OP_LOCALS
  8575. const int ith = params->ith;
  8576. const int nth = params->nth;
  8577. const enum ggml_type type = src0->type;
  8578. const bool src1_cont = ggml_is_contiguous(src1);
  8579. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8580. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8581. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8582. int64_t const vec_dot_num_rows = type_traits[type].nrows;
  8583. GGML_ASSERT(ne0 == ne01);
  8584. GGML_ASSERT(ne1 == ne11);
  8585. GGML_ASSERT(ne2 == ne12);
  8586. GGML_ASSERT(ne3 == ne13);
  8587. // we don't support permuted src0 or src1
  8588. GGML_ASSERT(nb00 == ggml_type_size(type));
  8589. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8590. // dst cannot be transposed or permuted
  8591. GGML_ASSERT(nb0 == sizeof(float));
  8592. GGML_ASSERT(nb0 <= nb1);
  8593. GGML_ASSERT(nb1 <= nb2);
  8594. GGML_ASSERT(nb2 <= nb3);
  8595. // broadcast factors
  8596. const int64_t r2 = ne12/ne02;
  8597. const int64_t r3 = ne13/ne03;
  8598. // nb01 >= nb00 - src0 is not transposed
  8599. // compute by src0 rows
  8600. #if defined(GGML_USE_CLBLAST)
  8601. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8602. if (params->ith == 0 && params->type == GGML_TASK_TYPE_COMPUTE) {
  8603. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8604. }
  8605. return;
  8606. }
  8607. #endif
  8608. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8609. if (ggml_compute_forward_mul_mat_use_blas(dst)) {
  8610. const int64_t ne_plane = ne01*ne00;
  8611. const size_t desired_wsize = ne13*ne12*ne_plane*sizeof(float);
  8612. UNUSED(desired_wsize);
  8613. if (params->type == GGML_TASK_TYPE_INIT) {
  8614. if (type != GGML_TYPE_F32) {
  8615. assert(params->wsize >= desired_wsize);
  8616. // parallelize by src0 rows
  8617. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8618. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8619. // broadcast src0 into src1 across 2nd,3rd dimension
  8620. const int64_t i03 = i13/r3;
  8621. const int64_t i02 = i12/r2;
  8622. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8623. float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8624. ggml_to_float_t const to_float = type_traits[type].to_float;
  8625. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8626. to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00);
  8627. }
  8628. }
  8629. }
  8630. }
  8631. return;
  8632. }
  8633. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8634. return;
  8635. }
  8636. // perform sgemm, parallelization controlled by blas lib
  8637. if (ith != 0) {
  8638. return;
  8639. }
  8640. //const int64_t tgemm0 = ggml_perf_time_us();
  8641. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8642. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8643. const int64_t i03 = i13/r3;
  8644. const int64_t i02 = i12/r2;
  8645. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8646. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  8647. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  8648. if (type != GGML_TYPE_F32) {
  8649. x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8650. }
  8651. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8652. ne1, ne01, ne10,
  8653. 1.0f, y, ne10,
  8654. x, ne00,
  8655. 0.0f, d, ne01);
  8656. }
  8657. }
  8658. //printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2);
  8659. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8660. return;
  8661. }
  8662. #endif
  8663. if (params->type == GGML_TASK_TYPE_INIT) {
  8664. if (ith != 0) {
  8665. return;
  8666. }
  8667. if (src1->type != vec_dot_type) {
  8668. char * wdata = params->wdata;
  8669. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8670. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8671. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8672. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8673. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8674. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8675. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8676. wdata += row_size;
  8677. }
  8678. }
  8679. }
  8680. }
  8681. return;
  8682. }
  8683. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8684. return;
  8685. }
  8686. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8687. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8688. const int64_t nr0 = ne01; // src0 rows
  8689. const int64_t nr1 = ne1*ne12*ne13; // src1 rows
  8690. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8691. // distribute the thread work across the inner or outer loop based on which one is larger
  8692. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8693. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8694. const int64_t ith0 = ith % nth0;
  8695. const int64_t ith1 = ith / nth0;
  8696. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8697. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8698. const int64_t ir010 = dr0*ith0;
  8699. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8700. const int64_t ir110 = dr1*ith1;
  8701. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8702. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8703. // threads with no work simply yield (not sure if it helps)
  8704. if (ir010 >= ir011 || ir110 >= ir111) {
  8705. sched_yield();
  8706. return;
  8707. }
  8708. assert(ne12 % ne02 == 0);
  8709. assert(ne13 % ne03 == 0);
  8710. // block-tiling attempt
  8711. const int64_t blck_0 = 16;
  8712. const int64_t blck_1 = 16;
  8713. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  8714. int64_t nrc = vec_dot_num_rows;
  8715. // TODO: currently the mmla kernels support only even numbered rows/cols.
  8716. // this check can be removed once they are extended to support odd numbered rows/cols too
  8717. if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
  8718. nrc = 1;
  8719. }
  8720. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  8721. // attempt to reduce false-sharing (does not seem to make a difference)
  8722. // 16 * 2, accounting for mmla kernels
  8723. float tmp[32];
  8724. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8725. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8726. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ir1 += nrc) {
  8727. const int64_t i13 = (ir1/(ne12*ne1));
  8728. const int64_t i12 = (ir1 - i13*ne12*ne1)/ne1;
  8729. const int64_t i11 = (ir1 - i13*ne12*ne1 - i12*ne1);
  8730. // broadcast src0 into src1
  8731. const int64_t i03 = i13/r3;
  8732. const int64_t i02 = i12/r2;
  8733. const int64_t i1 = i11;
  8734. const int64_t i2 = i12;
  8735. const int64_t i3 = i13;
  8736. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  8737. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8738. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8739. // the original src1 data pointer, so we should index using the indices directly
  8740. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8741. const char * src1_col = (const char *) wdata +
  8742. (src1_cont || src1->type != vec_dot_type
  8743. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8744. : (i11*nb11 + i12*nb12 + i13*nb13));
  8745. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8746. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8747. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8748. //}
  8749. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ir0 += nrc) {
  8750. vec_dot(ne00, &tmp[ir0 - iir0], (nrc>1 ? 16 : 0), src0_row + ir0*nb01, (nrc>1 ? nb01 : 0), src1_col, (nrc>1 ? src1_col_stride : 0), nrc);
  8751. }
  8752. for (int cn = 0; cn < nrc; ++cn) {
  8753. memcpy(&dst_col[iir0 + cn*nb1/nb0], tmp + (cn*16), (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8754. }
  8755. }
  8756. }
  8757. }
  8758. }
  8759. // ggml_compute_forward_mul_mat_id
  8760. static void ggml_compute_forward_mul_mat_id(
  8761. const struct ggml_compute_params * params,
  8762. struct ggml_tensor * dst) {
  8763. const struct ggml_tensor * ids = dst->src[0];
  8764. const struct ggml_tensor * src1 = dst->src[1];
  8765. const struct ggml_tensor * src0 = dst->src[2]; // only for GGML_TENSOR_BINARY_OP_LOCALS
  8766. GGML_TENSOR_BINARY_OP_LOCALS
  8767. const int ith = params->ith;
  8768. const int nth = params->nth;
  8769. const enum ggml_type type = src0->type;
  8770. const bool src1_cont = ggml_is_contiguous(src1);
  8771. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8772. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8773. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8774. GGML_ASSERT(ne0 == ne01);
  8775. GGML_ASSERT(ne1 == ne11);
  8776. GGML_ASSERT(ne2 == ne12);
  8777. GGML_ASSERT(ne3 == ne13);
  8778. // we don't support permuted src0 or src1
  8779. GGML_ASSERT(nb00 == ggml_type_size(type));
  8780. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8781. // dst cannot be transposed or permuted
  8782. GGML_ASSERT(nb0 == sizeof(float));
  8783. GGML_ASSERT(nb0 <= nb1);
  8784. GGML_ASSERT(nb1 <= nb2);
  8785. GGML_ASSERT(nb2 <= nb3);
  8786. // broadcast factors
  8787. const int64_t r2 = ne12/ne02;
  8788. const int64_t r3 = ne13/ne03;
  8789. // row groups
  8790. const int id = ggml_get_op_params_i32(dst, 0);
  8791. const int n_as = ggml_get_op_params_i32(dst, 1);
  8792. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  8793. (char *) params->wdata :
  8794. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  8795. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  8796. int64_t * matrix_rows = matrix_row_counts + n_as; // [n_as][ne11]
  8797. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne11 + (i1)]
  8798. if (params->type == GGML_TASK_TYPE_INIT) {
  8799. if (ith != 0) {
  8800. return;
  8801. }
  8802. char * wdata = params->wdata;
  8803. if (src1->type != vec_dot_type) {
  8804. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8805. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8806. assert(src1->type == GGML_TYPE_F32);
  8807. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8808. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8809. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8810. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8811. wdata += row_size;
  8812. }
  8813. }
  8814. }
  8815. }
  8816. // initialize matrix_row_counts
  8817. GGML_ASSERT(wdata == wdata_src1_end);
  8818. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  8819. // group rows by src0 matrix
  8820. for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
  8821. const int32_t row_id = *(const int32_t *) ((const char *) ids->data + i01*ids->nb[1] + id*ids->nb[0]);
  8822. GGML_ASSERT(row_id >= 0 && row_id < n_as);
  8823. MMID_MATRIX_ROW(row_id, matrix_row_counts[row_id]) = i01;
  8824. matrix_row_counts[row_id] += 1;
  8825. }
  8826. return;
  8827. }
  8828. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8829. return;
  8830. }
  8831. // compute each matrix multiplication in sequence
  8832. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  8833. const int64_t cne1 = matrix_row_counts[cur_a];
  8834. if (cne1 == 0) {
  8835. continue;
  8836. }
  8837. const struct ggml_tensor * src0_cur = dst->src[cur_a + 2];
  8838. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8839. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8840. const int64_t nr0 = ne01; // src0 rows
  8841. const int64_t nr1 = cne1*ne12*ne13; // src1 rows
  8842. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8843. // distribute the thread work across the inner or outer loop based on which one is larger
  8844. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8845. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8846. const int64_t ith0 = ith % nth0;
  8847. const int64_t ith1 = ith / nth0;
  8848. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8849. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8850. const int64_t ir010 = dr0*ith0;
  8851. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8852. const int64_t ir110 = dr1*ith1;
  8853. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8854. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8855. // threads with no work simply yield (not sure if it helps)
  8856. if (ir010 >= ir011 || ir110 >= ir111) {
  8857. sched_yield();
  8858. continue;
  8859. }
  8860. assert(ne12 % ne02 == 0);
  8861. assert(ne13 % ne03 == 0);
  8862. // block-tiling attempt
  8863. const int64_t blck_0 = 16;
  8864. const int64_t blck_1 = 16;
  8865. // attempt to reduce false-sharing (does not seem to make a difference)
  8866. float tmp[16];
  8867. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8868. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8869. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  8870. const int64_t i13 = (ir1/(ne12*cne1)); // Note: currently, src1 is always a matrix
  8871. const int64_t i12 = (ir1 - i13*ne12*cne1)/cne1;
  8872. const int64_t _i11 = (ir1 - i13*ne12*cne1 - i12*cne1);
  8873. const int64_t i11 = MMID_MATRIX_ROW(cur_a, _i11);
  8874. // broadcast src0 into src1
  8875. const int64_t i03 = i13/r3;
  8876. const int64_t i02 = i12/r2;
  8877. const int64_t i1 = i11;
  8878. const int64_t i2 = i12;
  8879. const int64_t i3 = i13;
  8880. const char * src0_row = (const char *) src0_cur->data + (0 + i02*nb02 + i03*nb03);
  8881. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8882. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8883. // the original src1 data pointer, so we should index using the indices directly
  8884. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8885. const char * src1_col = (const char *) wdata +
  8886. (src1_cont || src1->type != vec_dot_type
  8887. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8888. : (i11*nb11 + i12*nb12 + i13*nb13));
  8889. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8890. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8891. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8892. //}
  8893. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8894. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_row + ir0*nb01, 0, src1_col, 0, 1);
  8895. }
  8896. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8897. }
  8898. }
  8899. }
  8900. }
  8901. #undef MMID_MATRIX_ROW
  8902. }
  8903. // ggml_compute_forward_out_prod
  8904. static void ggml_compute_forward_out_prod_f32(
  8905. const struct ggml_compute_params * params,
  8906. struct ggml_tensor * dst) {
  8907. const struct ggml_tensor * src0 = dst->src[0];
  8908. const struct ggml_tensor * src1 = dst->src[1];
  8909. // int64_t t0 = ggml_perf_time_us();
  8910. // UNUSED(t0);
  8911. GGML_TENSOR_BINARY_OP_LOCALS
  8912. const int ith = params->ith;
  8913. const int nth = params->nth;
  8914. GGML_ASSERT(ne0 == ne00);
  8915. GGML_ASSERT(ne1 == ne10);
  8916. GGML_ASSERT(ne2 == ne02);
  8917. GGML_ASSERT(ne02 == ne12);
  8918. GGML_ASSERT(ne3 == ne13);
  8919. GGML_ASSERT(ne03 == ne13);
  8920. // we don't support permuted src0 or src1
  8921. GGML_ASSERT(nb00 == sizeof(float));
  8922. // dst cannot be transposed or permuted
  8923. GGML_ASSERT(nb0 == sizeof(float));
  8924. // GGML_ASSERT(nb0 <= nb1);
  8925. // GGML_ASSERT(nb1 <= nb2);
  8926. // GGML_ASSERT(nb2 <= nb3);
  8927. // nb01 >= nb00 - src0 is not transposed
  8928. // compute by src0 rows
  8929. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8930. // TODO: #if defined(GGML_USE_CLBLAST)
  8931. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8932. bool use_blas = ggml_is_matrix(src0) &&
  8933. ggml_is_matrix(src1) &&
  8934. ggml_is_contiguous(src0) &&
  8935. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  8936. #endif
  8937. if (params->type == GGML_TASK_TYPE_INIT) {
  8938. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  8939. if (use_blas) {
  8940. return;
  8941. }
  8942. #endif
  8943. if (ith != 0) {
  8944. return;
  8945. }
  8946. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8947. return;
  8948. }
  8949. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8950. return;
  8951. }
  8952. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8953. if (use_blas) {
  8954. if (params->ith != 0) { // All threads other than the first do no work.
  8955. return;
  8956. }
  8957. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  8958. // src0: (k,n)
  8959. // src1: (k,m)
  8960. // dst: (m,n)
  8961. //
  8962. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  8963. // Also expressed as (major,minor)
  8964. // a: (m,k): so src1 transposed
  8965. // b: (k,n): so src0
  8966. // c: (m,n)
  8967. //
  8968. // However, if ggml_is_transposed(src1) is true, then
  8969. // src1->data already contains a transposed version, so sgemm mustn't
  8970. // transpose it further.
  8971. int n = src0->ne[0];
  8972. int k = src0->ne[1];
  8973. int m = src1->ne[0];
  8974. int transposeA, lda;
  8975. if (!ggml_is_transposed(src1)) {
  8976. transposeA = CblasTrans;
  8977. lda = m;
  8978. } else {
  8979. transposeA = CblasNoTrans;
  8980. lda = k;
  8981. }
  8982. float * a = (float *) ((char *) src1->data);
  8983. float * b = (float *) ((char *) src0->data);
  8984. float * c = (float *) ((char *) dst->data);
  8985. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  8986. return;
  8987. }
  8988. #endif
  8989. // dst[:,:,:,:] = 0
  8990. // for i2,i3:
  8991. // for i1:
  8992. // for i01:
  8993. // for i0:
  8994. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8995. // parallelize by last three dimensions
  8996. // total rows in dst
  8997. const int64_t nr = ne1*ne2*ne3;
  8998. // rows per thread
  8999. const int64_t dr = (nr + nth - 1)/nth;
  9000. // row range for this thread
  9001. const int64_t ir0 = dr*ith;
  9002. const int64_t ir1 = MIN(ir0 + dr, nr);
  9003. // block-tiling attempt
  9004. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  9005. const int64_t blck_1 = 16;
  9006. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  9007. const int64_t bir1 = MIN(bir + blck_1, ir1);
  9008. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  9009. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  9010. for (int64_t ir = bir; ir < bir1; ++ir) {
  9011. // dst indices
  9012. const int64_t i3 = ir/(ne2*ne1);
  9013. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  9014. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  9015. const int64_t i02 = i2;
  9016. const int64_t i03 = i3;
  9017. //const int64_t i10 = i1;
  9018. const int64_t i12 = i2;
  9019. const int64_t i13 = i3;
  9020. #if GGML_VEC_MAD_UNROLL > 2
  9021. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  9022. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  9023. const int64_t i11 = i01;
  9024. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9025. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9026. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9027. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  9028. }
  9029. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  9030. const int64_t i11 = i01;
  9031. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9032. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9033. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9034. ggml_vec_mad_f32(ne0, d, s0, *s1);
  9035. }
  9036. #else
  9037. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  9038. const int64_t i11 = i01;
  9039. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9040. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9041. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9042. ggml_vec_mad_f32(ne0, d, s0, *s1);
  9043. }
  9044. #endif
  9045. }
  9046. }
  9047. }
  9048. //int64_t t1 = ggml_perf_time_us();
  9049. //static int64_t acc = 0;
  9050. //acc += t1 - t0;
  9051. //if (t1 - t0 > 10) {
  9052. // printf("\n");
  9053. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  9054. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  9055. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  9056. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  9057. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  9058. //}
  9059. }
  9060. static void ggml_compute_forward_out_prod_q_f32(
  9061. const struct ggml_compute_params * params,
  9062. struct ggml_tensor * dst) {
  9063. const struct ggml_tensor * src0 = dst->src[0];
  9064. const struct ggml_tensor * src1 = dst->src[1];
  9065. // int64_t t0 = ggml_perf_time_us();
  9066. // UNUSED(t0);
  9067. GGML_TENSOR_BINARY_OP_LOCALS;
  9068. const int ith = params->ith;
  9069. const int nth = params->nth;
  9070. const enum ggml_type type = src0->type;
  9071. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9072. GGML_ASSERT(ne02 == ne12);
  9073. GGML_ASSERT(ne03 == ne13);
  9074. GGML_ASSERT(ne2 == ne12);
  9075. GGML_ASSERT(ne3 == ne13);
  9076. // we don't support permuted src0 dim0
  9077. GGML_ASSERT(nb00 == ggml_type_size(type));
  9078. // dst dim0 cannot be transposed or permuted
  9079. GGML_ASSERT(nb0 == sizeof(float));
  9080. // GGML_ASSERT(nb0 <= nb1);
  9081. // GGML_ASSERT(nb1 <= nb2);
  9082. // GGML_ASSERT(nb2 <= nb3);
  9083. GGML_ASSERT(ne0 == ne00);
  9084. GGML_ASSERT(ne1 == ne10);
  9085. GGML_ASSERT(ne2 == ne02);
  9086. GGML_ASSERT(ne3 == ne03);
  9087. // nb01 >= nb00 - src0 is not transposed
  9088. // compute by src0 rows
  9089. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  9090. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  9091. if (params->type == GGML_TASK_TYPE_INIT) {
  9092. if (ith != 0) {
  9093. return;
  9094. }
  9095. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9096. return;
  9097. }
  9098. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  9099. return;
  9100. }
  9101. // parallelize by last three dimensions
  9102. // total rows in dst
  9103. const int64_t nr = ne1*ne2*ne3;
  9104. // rows per thread
  9105. const int64_t dr = (nr + nth - 1)/nth;
  9106. // row range for this thread
  9107. const int64_t ir0 = dr*ith;
  9108. const int64_t ir1 = MIN(ir0 + dr, nr);
  9109. // dst[:,:,:,:] = 0
  9110. // for i2,i3:
  9111. // for i1:
  9112. // for i01:
  9113. // for i0:
  9114. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  9115. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  9116. for (int64_t ir = ir0; ir < ir1; ++ir) {
  9117. // dst indices
  9118. const int64_t i3 = ir/(ne2*ne1);
  9119. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  9120. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  9121. const int64_t i02 = i2;
  9122. const int64_t i03 = i3;
  9123. //const int64_t i10 = i1;
  9124. const int64_t i12 = i2;
  9125. const int64_t i13 = i3;
  9126. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  9127. const int64_t i11 = i01;
  9128. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9129. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9130. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9131. dequantize_row_q(s0, wdata, ne0);
  9132. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  9133. }
  9134. }
  9135. //int64_t t1 = ggml_perf_time_us();
  9136. //static int64_t acc = 0;
  9137. //acc += t1 - t0;
  9138. //if (t1 - t0 > 10) {
  9139. // printf("\n");
  9140. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  9141. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  9142. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  9143. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  9144. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  9145. //}
  9146. }
  9147. static void ggml_compute_forward_out_prod(
  9148. const struct ggml_compute_params * params,
  9149. struct ggml_tensor * dst) {
  9150. const struct ggml_tensor * src0 = dst->src[0];
  9151. switch (src0->type) {
  9152. case GGML_TYPE_Q4_0:
  9153. case GGML_TYPE_Q4_1:
  9154. case GGML_TYPE_Q5_0:
  9155. case GGML_TYPE_Q5_1:
  9156. case GGML_TYPE_Q8_0:
  9157. case GGML_TYPE_Q2_K:
  9158. case GGML_TYPE_Q3_K:
  9159. case GGML_TYPE_Q4_K:
  9160. case GGML_TYPE_Q5_K:
  9161. case GGML_TYPE_Q6_K:
  9162. case GGML_TYPE_IQ2_XXS:
  9163. case GGML_TYPE_IQ2_XS:
  9164. case GGML_TYPE_IQ3_XXS:
  9165. case GGML_TYPE_IQ1_S:
  9166. case GGML_TYPE_IQ4_NL:
  9167. case GGML_TYPE_IQ4_XS:
  9168. case GGML_TYPE_IQ3_S:
  9169. case GGML_TYPE_IQ2_S:
  9170. {
  9171. ggml_compute_forward_out_prod_q_f32(params, dst);
  9172. } break;
  9173. case GGML_TYPE_F16:
  9174. {
  9175. GGML_ASSERT(false); // todo
  9176. // ggml_compute_forward_out_prod_f16_f32(params, dst);
  9177. } break;
  9178. case GGML_TYPE_F32:
  9179. {
  9180. ggml_compute_forward_out_prod_f32(params, dst);
  9181. } break;
  9182. default:
  9183. {
  9184. GGML_ASSERT(false);
  9185. } break;
  9186. }
  9187. }
  9188. // ggml_compute_forward_scale
  9189. static void ggml_compute_forward_scale_f32(
  9190. const struct ggml_compute_params * params,
  9191. struct ggml_tensor * dst) {
  9192. const struct ggml_tensor * src0 = dst->src[0];
  9193. GGML_ASSERT(ggml_is_contiguous(src0));
  9194. GGML_ASSERT(ggml_is_contiguous(dst));
  9195. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9196. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9197. return;
  9198. }
  9199. // scale factor
  9200. float v;
  9201. memcpy(&v, dst->op_params, sizeof(float));
  9202. const int ith = params->ith;
  9203. const int nth = params->nth;
  9204. const int nc = src0->ne[0];
  9205. const int nr = ggml_nrows(src0);
  9206. // rows per thread
  9207. const int dr = (nr + nth - 1)/nth;
  9208. // row range for this thread
  9209. const int ir0 = dr*ith;
  9210. const int ir1 = MIN(ir0 + dr, nr);
  9211. const size_t nb01 = src0->nb[1];
  9212. const size_t nb1 = dst->nb[1];
  9213. for (int i1 = ir0; i1 < ir1; i1++) {
  9214. if (dst->data != src0->data) {
  9215. // src0 is same shape as dst => same indices
  9216. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  9217. }
  9218. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  9219. }
  9220. }
  9221. static void ggml_compute_forward_scale(
  9222. const struct ggml_compute_params * params,
  9223. struct ggml_tensor * dst) {
  9224. const struct ggml_tensor * src0 = dst->src[0];
  9225. switch (src0->type) {
  9226. case GGML_TYPE_F32:
  9227. {
  9228. ggml_compute_forward_scale_f32(params, dst);
  9229. } break;
  9230. default:
  9231. {
  9232. GGML_ASSERT(false);
  9233. } break;
  9234. }
  9235. }
  9236. // ggml_compute_forward_set
  9237. static void ggml_compute_forward_set_f32(
  9238. const struct ggml_compute_params * params,
  9239. struct ggml_tensor * dst) {
  9240. const struct ggml_tensor * src0 = dst->src[0];
  9241. const struct ggml_tensor * src1 = dst->src[1];
  9242. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9243. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9244. // view src0 and dst with these strides and data offset inbytes during set
  9245. // nb0 is implicitly element_size because src0 and dst are contiguous
  9246. size_t nb1 = ((int32_t *) dst->op_params)[0];
  9247. size_t nb2 = ((int32_t *) dst->op_params)[1];
  9248. size_t nb3 = ((int32_t *) dst->op_params)[2];
  9249. size_t offset = ((int32_t *) dst->op_params)[3];
  9250. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  9251. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  9252. if (params->ith != 0) {
  9253. return;
  9254. }
  9255. // memcpy needs to be synchronized across threads to avoid race conditions.
  9256. // => do it in INIT phase
  9257. memcpy(
  9258. ((char *) dst->data),
  9259. ((char *) src0->data),
  9260. ggml_nbytes(dst));
  9261. }
  9262. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9263. return;
  9264. }
  9265. const int ith = params->ith;
  9266. const int nth = params->nth;
  9267. const int nr = ggml_nrows(src1);
  9268. const int nc = src1->ne[0];
  9269. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  9270. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  9271. // src0 and dst as viewed during set
  9272. const size_t nb0 = ggml_element_size(src0);
  9273. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  9274. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  9275. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  9276. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  9277. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  9278. GGML_ASSERT(nb10 == sizeof(float));
  9279. // rows per thread
  9280. const int dr = (nr + nth - 1)/nth;
  9281. // row range for this thread
  9282. const int ir0 = dr*ith;
  9283. const int ir1 = MIN(ir0 + dr, nr);
  9284. for (int ir = ir0; ir < ir1; ++ir) {
  9285. // src0 and dst are viewed with shape of src1 and offset
  9286. // => same indices
  9287. const int i3 = ir/(ne12*ne11);
  9288. const int i2 = (ir - i3*ne12*ne11)/ne11;
  9289. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  9290. ggml_vec_cpy_f32(nc,
  9291. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  9292. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  9293. }
  9294. }
  9295. static void ggml_compute_forward_set(
  9296. const struct ggml_compute_params * params,
  9297. struct ggml_tensor * dst) {
  9298. const struct ggml_tensor * src0 = dst->src[0];
  9299. switch (src0->type) {
  9300. case GGML_TYPE_F32:
  9301. {
  9302. ggml_compute_forward_set_f32(params, dst);
  9303. } break;
  9304. case GGML_TYPE_F16:
  9305. case GGML_TYPE_Q4_0:
  9306. case GGML_TYPE_Q4_1:
  9307. case GGML_TYPE_Q5_0:
  9308. case GGML_TYPE_Q5_1:
  9309. case GGML_TYPE_Q8_0:
  9310. case GGML_TYPE_Q8_1:
  9311. case GGML_TYPE_Q2_K:
  9312. case GGML_TYPE_Q3_K:
  9313. case GGML_TYPE_Q4_K:
  9314. case GGML_TYPE_Q5_K:
  9315. case GGML_TYPE_Q6_K:
  9316. case GGML_TYPE_IQ2_XXS:
  9317. case GGML_TYPE_IQ2_XS:
  9318. case GGML_TYPE_IQ3_XXS:
  9319. case GGML_TYPE_IQ1_S:
  9320. case GGML_TYPE_IQ4_NL:
  9321. case GGML_TYPE_IQ4_XS:
  9322. case GGML_TYPE_IQ3_S:
  9323. case GGML_TYPE_IQ2_S:
  9324. default:
  9325. {
  9326. GGML_ASSERT(false);
  9327. } break;
  9328. }
  9329. }
  9330. // ggml_compute_forward_cpy
  9331. static void ggml_compute_forward_cpy(
  9332. const struct ggml_compute_params * params,
  9333. struct ggml_tensor * dst) {
  9334. ggml_compute_forward_dup(params, dst);
  9335. }
  9336. // ggml_compute_forward_cont
  9337. static void ggml_compute_forward_cont(
  9338. const struct ggml_compute_params * params,
  9339. struct ggml_tensor * dst) {
  9340. ggml_compute_forward_dup(params, dst);
  9341. }
  9342. // ggml_compute_forward_reshape
  9343. static void ggml_compute_forward_reshape(
  9344. const struct ggml_compute_params * params,
  9345. struct ggml_tensor * dst) {
  9346. // NOP
  9347. UNUSED(params);
  9348. UNUSED(dst);
  9349. }
  9350. // ggml_compute_forward_view
  9351. static void ggml_compute_forward_view(
  9352. const struct ggml_compute_params * params,
  9353. const struct ggml_tensor * dst) {
  9354. // NOP
  9355. UNUSED(params);
  9356. UNUSED(dst);
  9357. }
  9358. // ggml_compute_forward_permute
  9359. static void ggml_compute_forward_permute(
  9360. const struct ggml_compute_params * params,
  9361. const struct ggml_tensor * dst) {
  9362. // NOP
  9363. UNUSED(params);
  9364. UNUSED(dst);
  9365. }
  9366. // ggml_compute_forward_transpose
  9367. static void ggml_compute_forward_transpose(
  9368. const struct ggml_compute_params * params,
  9369. const struct ggml_tensor * dst) {
  9370. // NOP
  9371. UNUSED(params);
  9372. UNUSED(dst);
  9373. }
  9374. // ggml_compute_forward_get_rows
  9375. static void ggml_compute_forward_get_rows_q(
  9376. const struct ggml_compute_params * params,
  9377. struct ggml_tensor * dst) {
  9378. const struct ggml_tensor * src0 = dst->src[0];
  9379. const struct ggml_tensor * src1 = dst->src[1];
  9380. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9381. return;
  9382. }
  9383. GGML_TENSOR_BINARY_OP_LOCALS
  9384. const int64_t nc = ne00;
  9385. const int64_t nr = ggml_nelements(src1);
  9386. const enum ggml_type type = src0->type;
  9387. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9388. assert(ne0 == nc);
  9389. assert(ne02 == ne11);
  9390. assert(nb00 == ggml_type_size(type));
  9391. assert(ggml_nrows(dst) == nr);
  9392. const int ith = params->ith;
  9393. const int nth = params->nth;
  9394. // rows per thread
  9395. const int dr = (nr + nth - 1)/nth;
  9396. // row range for this thread
  9397. const int ir0 = dr*ith;
  9398. const int ir1 = MIN(ir0 + dr, nr);
  9399. for (int64_t i = ir0; i < ir1; ++i) {
  9400. const int64_t i12 = i/(ne11*ne10);
  9401. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  9402. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  9403. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9404. dequantize_row_q(
  9405. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9406. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9407. }
  9408. }
  9409. static void ggml_compute_forward_get_rows_f16(
  9410. const struct ggml_compute_params * params,
  9411. struct ggml_tensor * dst) {
  9412. const struct ggml_tensor * src0 = dst->src[0];
  9413. const struct ggml_tensor * src1 = dst->src[1];
  9414. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9415. return;
  9416. }
  9417. GGML_TENSOR_BINARY_OP_LOCALS
  9418. const int64_t nc = ne00;
  9419. const int64_t nr = ggml_nelements(src1);
  9420. assert(ne0 == nc);
  9421. assert(ne02 == ne11);
  9422. assert(nb00 == sizeof(ggml_fp16_t));
  9423. assert(ggml_nrows(dst) == nr);
  9424. const int ith = params->ith;
  9425. const int nth = params->nth;
  9426. // rows per thread
  9427. const int dr = (nr + nth - 1)/nth;
  9428. // row range for this thread
  9429. const int ir0 = dr*ith;
  9430. const int ir1 = MIN(ir0 + dr, nr);
  9431. for (int64_t i = ir0; i < ir1; ++i) {
  9432. const int64_t i12 = i/(ne11*ne10);
  9433. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  9434. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  9435. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9436. ggml_fp16_to_fp32_row(
  9437. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9438. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9439. }
  9440. }
  9441. static void ggml_compute_forward_get_rows_f32(
  9442. const struct ggml_compute_params * params,
  9443. struct ggml_tensor * dst) {
  9444. const struct ggml_tensor * src0 = dst->src[0];
  9445. const struct ggml_tensor * src1 = dst->src[1];
  9446. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9447. return;
  9448. }
  9449. GGML_TENSOR_BINARY_OP_LOCALS
  9450. const int64_t nc = ne00;
  9451. const int64_t nr = ggml_nelements(src1);
  9452. assert(ne0 == nc);
  9453. assert(ne02 == ne11);
  9454. assert(nb00 == sizeof(float));
  9455. assert(ggml_nrows(dst) == nr);
  9456. const int ith = params->ith;
  9457. const int nth = params->nth;
  9458. // rows per thread
  9459. const int dr = (nr + nth - 1)/nth;
  9460. // row range for this thread
  9461. const int ir0 = dr*ith;
  9462. const int ir1 = MIN(ir0 + dr, nr);
  9463. for (int64_t i = ir0; i < ir1; ++i) {
  9464. const int64_t i12 = i/(ne11*ne10);
  9465. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  9466. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  9467. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9468. ggml_vec_cpy_f32(nc,
  9469. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  9470. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  9471. }
  9472. }
  9473. static void ggml_compute_forward_get_rows(
  9474. const struct ggml_compute_params * params,
  9475. struct ggml_tensor * dst) {
  9476. const struct ggml_tensor * src0 = dst->src[0];
  9477. switch (src0->type) {
  9478. case GGML_TYPE_Q4_0:
  9479. case GGML_TYPE_Q4_1:
  9480. case GGML_TYPE_Q5_0:
  9481. case GGML_TYPE_Q5_1:
  9482. case GGML_TYPE_Q8_0:
  9483. case GGML_TYPE_Q8_1:
  9484. case GGML_TYPE_Q2_K:
  9485. case GGML_TYPE_Q3_K:
  9486. case GGML_TYPE_Q4_K:
  9487. case GGML_TYPE_Q5_K:
  9488. case GGML_TYPE_Q6_K:
  9489. case GGML_TYPE_IQ2_XXS:
  9490. case GGML_TYPE_IQ2_XS:
  9491. case GGML_TYPE_IQ3_XXS:
  9492. case GGML_TYPE_IQ1_S:
  9493. case GGML_TYPE_IQ4_NL:
  9494. case GGML_TYPE_IQ4_XS:
  9495. case GGML_TYPE_IQ3_S:
  9496. case GGML_TYPE_IQ2_S:
  9497. {
  9498. ggml_compute_forward_get_rows_q(params, dst);
  9499. } break;
  9500. case GGML_TYPE_F16:
  9501. {
  9502. ggml_compute_forward_get_rows_f16(params, dst);
  9503. } break;
  9504. case GGML_TYPE_F32:
  9505. case GGML_TYPE_I32:
  9506. {
  9507. ggml_compute_forward_get_rows_f32(params, dst);
  9508. } break;
  9509. default:
  9510. {
  9511. GGML_ASSERT(false);
  9512. } break;
  9513. }
  9514. //static bool first = true;
  9515. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9516. //if (first) {
  9517. // first = false;
  9518. //} else {
  9519. // for (int k = 0; k < dst->ne[1]; ++k) {
  9520. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9521. // for (int i = 0; i < 16; ++i) {
  9522. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9523. // }
  9524. // printf("\n");
  9525. // }
  9526. // printf("\n");
  9527. // }
  9528. // printf("\n");
  9529. // exit(0);
  9530. //}
  9531. }
  9532. // ggml_compute_forward_get_rows_back
  9533. static void ggml_compute_forward_get_rows_back_f32_f16(
  9534. const struct ggml_compute_params * params,
  9535. struct ggml_tensor * dst) {
  9536. const struct ggml_tensor * src0 = dst->src[0];
  9537. const struct ggml_tensor * src1 = dst->src[1];
  9538. GGML_ASSERT(params->ith == 0);
  9539. GGML_ASSERT(ggml_is_contiguous(dst));
  9540. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9541. if (params->type == GGML_TASK_TYPE_INIT) {
  9542. if (params->ith != 0) {
  9543. return;
  9544. }
  9545. memset(dst->data, 0, ggml_nbytes(dst));
  9546. }
  9547. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9548. return;
  9549. }
  9550. const int nc = src0->ne[0];
  9551. const int nr = ggml_nelements(src1);
  9552. GGML_ASSERT( dst->ne[0] == nc);
  9553. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9554. for (int i = 0; i < nr; ++i) {
  9555. const int r = ((int32_t *) src1->data)[i];
  9556. for (int j = 0; j < nc; ++j) {
  9557. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9558. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9559. }
  9560. }
  9561. }
  9562. static void ggml_compute_forward_get_rows_back_f32(
  9563. const struct ggml_compute_params * params,
  9564. struct ggml_tensor * dst) {
  9565. const struct ggml_tensor * src0 = dst->src[0];
  9566. const struct ggml_tensor * src1 = dst->src[1];
  9567. GGML_ASSERT(params->ith == 0);
  9568. GGML_ASSERT(ggml_is_contiguous(dst));
  9569. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9570. if (params->type == GGML_TASK_TYPE_INIT) {
  9571. if (params->ith != 0) {
  9572. return;
  9573. }
  9574. memset(dst->data, 0, ggml_nbytes(dst));
  9575. }
  9576. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9577. return;
  9578. }
  9579. const int nc = src0->ne[0];
  9580. const int nr = ggml_nelements(src1);
  9581. GGML_ASSERT( dst->ne[0] == nc);
  9582. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9583. for (int i = 0; i < nr; ++i) {
  9584. const int r = ((int32_t *) src1->data)[i];
  9585. ggml_vec_add_f32(nc,
  9586. (float *) ((char *) dst->data + r*dst->nb[1]),
  9587. (float *) ((char *) dst->data + r*dst->nb[1]),
  9588. (float *) ((char *) src0->data + i*src0->nb[1]));
  9589. }
  9590. }
  9591. static void ggml_compute_forward_get_rows_back(
  9592. const struct ggml_compute_params * params,
  9593. struct ggml_tensor * dst) {
  9594. const struct ggml_tensor * src0 = dst->src[0];
  9595. switch (src0->type) {
  9596. case GGML_TYPE_F16:
  9597. {
  9598. ggml_compute_forward_get_rows_back_f32_f16(params, dst);
  9599. } break;
  9600. case GGML_TYPE_F32:
  9601. {
  9602. ggml_compute_forward_get_rows_back_f32(params, dst);
  9603. } break;
  9604. default:
  9605. {
  9606. GGML_ASSERT(false);
  9607. } break;
  9608. }
  9609. //static bool first = true;
  9610. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9611. //if (first) {
  9612. // first = false;
  9613. //} else {
  9614. // for (int k = 0; k < dst->ne[1]; ++k) {
  9615. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9616. // for (int i = 0; i < 16; ++i) {
  9617. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9618. // }
  9619. // printf("\n");
  9620. // }
  9621. // printf("\n");
  9622. // }
  9623. // printf("\n");
  9624. // exit(0);
  9625. //}
  9626. }
  9627. // ggml_compute_forward_diag
  9628. static void ggml_compute_forward_diag_f32(
  9629. const struct ggml_compute_params * params,
  9630. struct ggml_tensor * dst) {
  9631. const struct ggml_tensor * src0 = dst->src[0];
  9632. GGML_ASSERT(params->ith == 0);
  9633. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9634. return;
  9635. }
  9636. // TODO: handle transposed/permuted matrices
  9637. GGML_TENSOR_UNARY_OP_LOCALS
  9638. GGML_ASSERT(ne00 == ne0);
  9639. GGML_ASSERT(ne00 == ne1);
  9640. GGML_ASSERT(ne01 == 1);
  9641. GGML_ASSERT(ne02 == ne2);
  9642. GGML_ASSERT(ne03 == ne3);
  9643. GGML_ASSERT(nb00 == sizeof(float));
  9644. GGML_ASSERT(nb0 == sizeof(float));
  9645. for (int i3 = 0; i3 < ne3; i3++) {
  9646. for (int i2 = 0; i2 < ne2; i2++) {
  9647. for (int i1 = 0; i1 < ne1; i1++) {
  9648. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9649. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9650. for (int i0 = 0; i0 < i1; i0++) {
  9651. d[i0] = 0;
  9652. }
  9653. d[i1] = s[i1];
  9654. for (int i0 = i1+1; i0 < ne0; i0++) {
  9655. d[i0] = 0;
  9656. }
  9657. }
  9658. }
  9659. }
  9660. }
  9661. static void ggml_compute_forward_diag(
  9662. const struct ggml_compute_params * params,
  9663. struct ggml_tensor * dst) {
  9664. const struct ggml_tensor * src0 = dst->src[0];
  9665. switch (src0->type) {
  9666. case GGML_TYPE_F32:
  9667. {
  9668. ggml_compute_forward_diag_f32(params, dst);
  9669. } break;
  9670. default:
  9671. {
  9672. GGML_ASSERT(false);
  9673. } break;
  9674. }
  9675. }
  9676. // ggml_compute_forward_diag_mask_inf
  9677. static void ggml_compute_forward_diag_mask_f32(
  9678. const struct ggml_compute_params * params,
  9679. struct ggml_tensor * dst,
  9680. const float value) {
  9681. const struct ggml_tensor * src0 = dst->src[0];
  9682. const int ith = params->ith;
  9683. const int nth = params->nth;
  9684. const int n_past = ((int32_t *) dst->op_params)[0];
  9685. const bool inplace = src0->data == dst->data;
  9686. GGML_ASSERT(n_past >= 0);
  9687. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  9688. if (ith != 0) {
  9689. return;
  9690. }
  9691. // memcpy needs to be synchronized across threads to avoid race conditions.
  9692. // => do it in INIT phase
  9693. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9694. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9695. memcpy(
  9696. ((char *) dst->data),
  9697. ((char *) src0->data),
  9698. ggml_nbytes(dst));
  9699. }
  9700. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9701. return;
  9702. }
  9703. // TODO: handle transposed/permuted matrices
  9704. const int n = ggml_nrows(src0);
  9705. const int nc = src0->ne[0];
  9706. const int nr = src0->ne[1];
  9707. const int nz = n/nr;
  9708. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9709. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9710. for (int k = 0; k < nz; k++) {
  9711. for (int j = ith; j < nr; j += nth) {
  9712. for (int i = n_past; i < nc; i++) {
  9713. if (i > n_past + j) {
  9714. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9715. }
  9716. }
  9717. }
  9718. }
  9719. }
  9720. static void ggml_compute_forward_diag_mask_inf(
  9721. const struct ggml_compute_params * params,
  9722. struct ggml_tensor * dst) {
  9723. const struct ggml_tensor * src0 = dst->src[0];
  9724. switch (src0->type) {
  9725. case GGML_TYPE_F32:
  9726. {
  9727. ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
  9728. } break;
  9729. default:
  9730. {
  9731. GGML_ASSERT(false);
  9732. } break;
  9733. }
  9734. }
  9735. static void ggml_compute_forward_diag_mask_zero(
  9736. const struct ggml_compute_params * params,
  9737. struct ggml_tensor * dst) {
  9738. const struct ggml_tensor * src0 = dst->src[0];
  9739. switch (src0->type) {
  9740. case GGML_TYPE_F32:
  9741. {
  9742. ggml_compute_forward_diag_mask_f32(params, dst, 0);
  9743. } break;
  9744. default:
  9745. {
  9746. GGML_ASSERT(false);
  9747. } break;
  9748. }
  9749. }
  9750. // ggml_compute_forward_soft_max
  9751. static void ggml_compute_forward_soft_max_f32(
  9752. const struct ggml_compute_params * params,
  9753. struct ggml_tensor * dst) {
  9754. const struct ggml_tensor * src0 = dst->src[0];
  9755. const struct ggml_tensor * src1 = dst->src[1];
  9756. const struct ggml_tensor * src2 = dst->src[2];
  9757. assert(ggml_is_contiguous(dst));
  9758. assert(ggml_are_same_shape(src0, dst));
  9759. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9760. return;
  9761. }
  9762. float scale = 1.0f;
  9763. float max_bias = 0.0f;
  9764. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  9765. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  9766. // TODO: handle transposed/permuted matrices
  9767. const int ith = params->ith;
  9768. const int nth = params->nth;
  9769. GGML_TENSOR_UNARY_OP_LOCALS
  9770. const int64_t ne11 = src1 ? src1->ne[1] : 1;
  9771. // TODO: is this supposed to be ceil instead of floor?
  9772. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  9773. const uint32_t n_head_kv = ne02;
  9774. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head_kv));
  9775. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  9776. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  9777. const int nc = src0->ne[0];
  9778. const int nr = ggml_nrows(src0);
  9779. // rows per thread
  9780. const int dr = (nr + nth - 1)/nth;
  9781. // row range for this thread
  9782. const int ir0 = dr*ith;
  9783. const int ir1 = MIN(ir0 + dr, nr);
  9784. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  9785. // when max_bias <= 0.0f, src2 is not used and we default it to src0 to avoid branching
  9786. float * pos = src2 ? (float *) src2->data : src0->data;
  9787. for (int i1 = ir0; i1 < ir1; i1++) {
  9788. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9789. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9790. // broadcast the mask across rows
  9791. float * mp = src1 ? (float *)((char *) src1->data + (i1%ne11)*src1->nb[1]) : NULL;
  9792. ggml_vec_cpy_f32 (nc, wp, sp);
  9793. ggml_vec_scale_f32(nc, wp, scale);
  9794. if (mp) {
  9795. ggml_vec_acc_f32(nc, wp, mp);
  9796. }
  9797. // ALiBi bias
  9798. if (max_bias > 0.0f) {
  9799. const uint32_t h = (i1/ne01)%ne02; // head
  9800. const float slope = h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1);
  9801. for (int i = 0; i < nc; i++) {
  9802. wp[i] = wp[i] + slope*pos[i];
  9803. }
  9804. }
  9805. #ifndef NDEBUG
  9806. for (int i = 0; i < nc; ++i) {
  9807. //printf("p[%d] = %f\n", i, p[i]);
  9808. assert(!isnan(wp[i]));
  9809. }
  9810. #endif
  9811. float max = -INFINITY;
  9812. ggml_vec_max_f32(nc, &max, wp);
  9813. ggml_float sum = 0.0;
  9814. uint16_t scvt;
  9815. for (int i = 0; i < nc; i++) {
  9816. if (wp[i] == -INFINITY) {
  9817. dp[i] = 0.0f;
  9818. } else {
  9819. // const float val = (wp[i] == -INFINITY) ? 0.0 : exp(wp[i] - max);
  9820. ggml_fp16_t s = GGML_FP32_TO_FP16(wp[i] - max);
  9821. memcpy(&scvt, &s, sizeof(scvt));
  9822. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  9823. sum += (ggml_float)val;
  9824. dp[i] = val;
  9825. }
  9826. }
  9827. assert(sum > 0.0);
  9828. sum = 1.0/sum;
  9829. ggml_vec_scale_f32(nc, dp, sum);
  9830. #ifndef NDEBUG
  9831. for (int i = 0; i < nc; ++i) {
  9832. assert(!isnan(dp[i]));
  9833. assert(!isinf(dp[i]));
  9834. }
  9835. #endif
  9836. }
  9837. }
  9838. static void ggml_compute_forward_soft_max(
  9839. const struct ggml_compute_params * params,
  9840. struct ggml_tensor * dst) {
  9841. const struct ggml_tensor * src0 = dst->src[0];
  9842. switch (src0->type) {
  9843. case GGML_TYPE_F32:
  9844. {
  9845. ggml_compute_forward_soft_max_f32(params, dst);
  9846. } break;
  9847. default:
  9848. {
  9849. GGML_ASSERT(false);
  9850. } break;
  9851. }
  9852. }
  9853. // ggml_compute_forward_soft_max_back
  9854. static void ggml_compute_forward_soft_max_back_f32(
  9855. const struct ggml_compute_params * params,
  9856. struct ggml_tensor * dst) {
  9857. const struct ggml_tensor * src0 = dst->src[0];
  9858. const struct ggml_tensor * src1 = dst->src[1];
  9859. GGML_ASSERT(ggml_is_contiguous(src0));
  9860. GGML_ASSERT(ggml_is_contiguous(src1));
  9861. GGML_ASSERT(ggml_is_contiguous(dst));
  9862. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9863. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9864. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9865. return;
  9866. }
  9867. // TODO: handle transposed/permuted matrices
  9868. const int ith = params->ith;
  9869. const int nth = params->nth;
  9870. const int nc = src0->ne[0];
  9871. const int nr = ggml_nrows(src0);
  9872. // rows per thread
  9873. const int dr = (nr + nth - 1)/nth;
  9874. // row range for this thread
  9875. const int ir0 = dr*ith;
  9876. const int ir1 = MIN(ir0 + dr, nr);
  9877. for (int i1 = ir0; i1 < ir1; i1++) {
  9878. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9879. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9880. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9881. #ifndef NDEBUG
  9882. for (int i = 0; i < nc; ++i) {
  9883. //printf("p[%d] = %f\n", i, p[i]);
  9884. assert(!isnan(dy[i]));
  9885. assert(!isnan(y[i]));
  9886. }
  9887. #endif
  9888. // Jii = yi - yi*yi
  9889. // Jij = -yi*yj
  9890. // J = diag(y)-y.T*y
  9891. // dx = J * dy
  9892. // dxk = sum_i(Jki * dyi)
  9893. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9894. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  9895. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9896. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9897. // dxk = -yk * dot(y, dy) + yk*dyk
  9898. // dxk = yk * (- dot(y, dy) + dyk)
  9899. // dxk = yk * (dyk - dot(y, dy))
  9900. //
  9901. // post-order:
  9902. // dot_y_dy := dot(y, dy)
  9903. // dx := dy
  9904. // dx := dx - dot_y_dy
  9905. // dx := dx * y
  9906. // linear runtime, no additional memory
  9907. float dot_y_dy = 0;
  9908. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  9909. ggml_vec_cpy_f32 (nc, dx, dy);
  9910. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9911. ggml_vec_mul_f32 (nc, dx, dx, y);
  9912. #ifndef NDEBUG
  9913. for (int i = 0; i < nc; ++i) {
  9914. assert(!isnan(dx[i]));
  9915. assert(!isinf(dx[i]));
  9916. }
  9917. #endif
  9918. }
  9919. }
  9920. static void ggml_compute_forward_soft_max_back(
  9921. const struct ggml_compute_params * params,
  9922. struct ggml_tensor * dst) {
  9923. const struct ggml_tensor * src0 = dst->src[0];
  9924. switch (src0->type) {
  9925. case GGML_TYPE_F32:
  9926. {
  9927. ggml_compute_forward_soft_max_back_f32(params, dst);
  9928. } break;
  9929. default:
  9930. {
  9931. GGML_ASSERT(false);
  9932. } break;
  9933. }
  9934. }
  9935. // ggml_compute_forward_alibi
  9936. static void ggml_compute_forward_alibi_f32(
  9937. const struct ggml_compute_params * params,
  9938. struct ggml_tensor * dst) {
  9939. const struct ggml_tensor * src0 = dst->src[0];
  9940. assert(params->ith == 0);
  9941. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9942. return;
  9943. }
  9944. //const int n_past = ((int32_t *) dst->op_params)[0];
  9945. const int n_head = ((int32_t *) dst->op_params)[1];
  9946. float max_bias;
  9947. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9948. const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9949. const int64_t ne1 = src0->ne[1]; // seq_len_without_past
  9950. const int64_t ne2 = src0->ne[2]; // n_head -> this is k
  9951. //const int64_t ne3 = src0->ne[3]; // 1 -> bsz
  9952. const int64_t n = ggml_nrows(src0);
  9953. const int64_t ne2_ne3 = n/ne1; // ne2*ne3
  9954. const size_t nb0 = src0->nb[0];
  9955. const size_t nb1 = src0->nb[1];
  9956. const size_t nb2 = src0->nb[2];
  9957. //const int nb3 = src0->nb[3];
  9958. GGML_ASSERT(nb0 == sizeof(float));
  9959. GGML_ASSERT(n_head == ne2);
  9960. // add alibi to src0 (KQ_scaled)
  9961. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9962. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9963. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9964. for (int64_t k = 0; k < ne2_ne3; k++) {
  9965. // TODO: k*nb2 or k*nb3
  9966. float m_k;
  9967. if (k < n_heads_log2_floor) {
  9968. m_k = powf(m0, k + 1);
  9969. } else {
  9970. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9971. }
  9972. for (int64_t i = 0; i < ne0; i++) {
  9973. for (int64_t j = 0; j < ne1; j++) {
  9974. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9975. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9976. pdst[0] = i * m_k + src[0];
  9977. }
  9978. }
  9979. }
  9980. }
  9981. static void ggml_compute_forward_alibi_f16(
  9982. const struct ggml_compute_params * params,
  9983. struct ggml_tensor * dst) {
  9984. const struct ggml_tensor * src0 = dst->src[0];
  9985. assert(params->ith == 0);
  9986. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9987. return;
  9988. }
  9989. //const int n_past = ((int32_t *) dst->op_params)[0];
  9990. const int n_head = ((int32_t *) dst->op_params)[1];
  9991. float max_bias;
  9992. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9993. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9994. const int ne1 = src0->ne[1]; // seq_len_without_past
  9995. const int ne2 = src0->ne[2]; // n_head -> this is k
  9996. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9997. const int n = ggml_nrows(src0);
  9998. const int ne2_ne3 = n/ne1; // ne2*ne3
  9999. const int nb0 = src0->nb[0];
  10000. const int nb1 = src0->nb[1];
  10001. const int nb2 = src0->nb[2];
  10002. //const int nb3 = src0->nb[3];
  10003. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10004. //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  10005. GGML_ASSERT(n_head == ne2);
  10006. // add alibi to src0 (KQ_scaled)
  10007. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  10008. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  10009. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  10010. for (int k = 0; k < ne2_ne3; k++) {
  10011. // TODO: k*nb2 or k*nb3
  10012. float m_k;
  10013. if (k < n_heads_log2_floor) {
  10014. m_k = powf(m0, k + 1);
  10015. } else {
  10016. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  10017. }
  10018. for (int i = 0; i < ne0; i++) {
  10019. for (int j = 0; j < ne1; j++) {
  10020. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  10021. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  10022. // we return F32
  10023. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  10024. }
  10025. }
  10026. }
  10027. }
  10028. static void ggml_compute_forward_alibi(
  10029. const struct ggml_compute_params * params,
  10030. struct ggml_tensor * dst) {
  10031. const struct ggml_tensor * src0 = dst->src[0];
  10032. switch (src0->type) {
  10033. case GGML_TYPE_F16:
  10034. {
  10035. ggml_compute_forward_alibi_f16(params, dst);
  10036. } break;
  10037. case GGML_TYPE_F32:
  10038. {
  10039. ggml_compute_forward_alibi_f32(params, dst);
  10040. } break;
  10041. case GGML_TYPE_Q4_0:
  10042. case GGML_TYPE_Q4_1:
  10043. case GGML_TYPE_Q5_0:
  10044. case GGML_TYPE_Q5_1:
  10045. case GGML_TYPE_Q8_0:
  10046. case GGML_TYPE_Q8_1:
  10047. case GGML_TYPE_Q2_K:
  10048. case GGML_TYPE_Q3_K:
  10049. case GGML_TYPE_Q4_K:
  10050. case GGML_TYPE_Q5_K:
  10051. case GGML_TYPE_Q6_K:
  10052. case GGML_TYPE_IQ2_XXS:
  10053. case GGML_TYPE_IQ2_XS:
  10054. case GGML_TYPE_IQ3_XXS:
  10055. case GGML_TYPE_IQ1_S:
  10056. case GGML_TYPE_IQ4_NL:
  10057. case GGML_TYPE_IQ4_XS:
  10058. case GGML_TYPE_IQ3_S:
  10059. case GGML_TYPE_IQ2_S:
  10060. case GGML_TYPE_Q8_K:
  10061. case GGML_TYPE_I8:
  10062. case GGML_TYPE_I16:
  10063. case GGML_TYPE_I32:
  10064. case GGML_TYPE_I64:
  10065. case GGML_TYPE_F64:
  10066. case GGML_TYPE_COUNT:
  10067. {
  10068. GGML_ASSERT(false);
  10069. } break;
  10070. }
  10071. }
  10072. // ggml_compute_forward_clamp
  10073. static void ggml_compute_forward_clamp_f32(
  10074. const struct ggml_compute_params * params,
  10075. struct ggml_tensor * dst) {
  10076. const struct ggml_tensor * src0 = dst->src[0];
  10077. assert(params->ith == 0);
  10078. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10079. return;
  10080. }
  10081. float min;
  10082. float max;
  10083. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  10084. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  10085. const int ith = params->ith;
  10086. const int nth = params->nth;
  10087. const int n = ggml_nrows(src0);
  10088. const int nc = src0->ne[0];
  10089. const size_t nb00 = src0->nb[0];
  10090. const size_t nb01 = src0->nb[1];
  10091. const size_t nb0 = dst->nb[0];
  10092. const size_t nb1 = dst->nb[1];
  10093. GGML_ASSERT( nb0 == sizeof(float));
  10094. GGML_ASSERT(nb00 == sizeof(float));
  10095. for (int j = ith; j < n; j += nth) {
  10096. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  10097. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  10098. for (int i = 0; i < nc; i++) {
  10099. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  10100. }
  10101. }
  10102. }
  10103. static void ggml_compute_forward_clamp(
  10104. const struct ggml_compute_params * params,
  10105. struct ggml_tensor * dst) {
  10106. const struct ggml_tensor * src0 = dst->src[0];
  10107. switch (src0->type) {
  10108. case GGML_TYPE_F32:
  10109. {
  10110. ggml_compute_forward_clamp_f32(params, dst);
  10111. } break;
  10112. case GGML_TYPE_F16:
  10113. case GGML_TYPE_Q4_0:
  10114. case GGML_TYPE_Q4_1:
  10115. case GGML_TYPE_Q5_0:
  10116. case GGML_TYPE_Q5_1:
  10117. case GGML_TYPE_Q8_0:
  10118. case GGML_TYPE_Q8_1:
  10119. case GGML_TYPE_Q2_K:
  10120. case GGML_TYPE_Q3_K:
  10121. case GGML_TYPE_Q4_K:
  10122. case GGML_TYPE_Q5_K:
  10123. case GGML_TYPE_Q6_K:
  10124. case GGML_TYPE_IQ2_XXS:
  10125. case GGML_TYPE_IQ2_XS:
  10126. case GGML_TYPE_IQ3_XXS:
  10127. case GGML_TYPE_IQ1_S:
  10128. case GGML_TYPE_IQ4_NL:
  10129. case GGML_TYPE_IQ4_XS:
  10130. case GGML_TYPE_IQ3_S:
  10131. case GGML_TYPE_IQ2_S:
  10132. case GGML_TYPE_Q8_K:
  10133. case GGML_TYPE_I8:
  10134. case GGML_TYPE_I16:
  10135. case GGML_TYPE_I32:
  10136. case GGML_TYPE_I64:
  10137. case GGML_TYPE_F64:
  10138. case GGML_TYPE_COUNT:
  10139. {
  10140. GGML_ASSERT(false);
  10141. } break;
  10142. }
  10143. }
  10144. // ggml_compute_forward_rope
  10145. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  10146. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  10147. return 1 - MIN(1, MAX(0, y));
  10148. }
  10149. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  10150. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  10151. static void rope_yarn(
  10152. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  10153. float * cos_theta, float * sin_theta
  10154. ) {
  10155. // Get n-d rotational scaling corrected for extrapolation
  10156. float theta_interp = freq_scale * theta_extrap;
  10157. float theta = theta_interp;
  10158. if (ext_factor != 0.0f) {
  10159. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  10160. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  10161. // Get n-d magnitude scaling corrected for interpolation
  10162. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  10163. }
  10164. *cos_theta = cosf(theta) * mscale;
  10165. *sin_theta = sinf(theta) * mscale;
  10166. }
  10167. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  10168. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  10169. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  10170. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  10171. }
  10172. static void ggml_rope_cache_init(
  10173. float theta_base, float freq_scale, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  10174. float * cache, float sin_sign, float theta_scale
  10175. ) {
  10176. float theta = theta_base;
  10177. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10178. rope_yarn(
  10179. theta, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  10180. );
  10181. cache[i0 + 1] *= sin_sign;
  10182. theta *= theta_scale;
  10183. }
  10184. }
  10185. GGML_CALL void ggml_rope_yarn_corr_dims(
  10186. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  10187. ) {
  10188. // start and end correction dims
  10189. float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base));
  10190. float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base));
  10191. dims[0] = MAX(0, start);
  10192. dims[1] = MIN(n_dims - 1, end);
  10193. }
  10194. static void ggml_compute_forward_rope_f32(
  10195. const struct ggml_compute_params * params,
  10196. struct ggml_tensor * dst,
  10197. const bool forward) {
  10198. const struct ggml_tensor * src0 = dst->src[0];
  10199. const struct ggml_tensor * src1 = dst->src[1];
  10200. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10201. return;
  10202. }
  10203. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  10204. // these two only relevant for xPos RoPE:
  10205. float xpos_base;
  10206. bool xpos_down;
  10207. //const int n_past = ((int32_t *) dst->op_params)[0];
  10208. const int n_dims = ((int32_t *) dst->op_params)[1];
  10209. const int mode = ((int32_t *) dst->op_params)[2];
  10210. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10211. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  10212. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  10213. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  10214. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  10215. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  10216. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  10217. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  10218. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  10219. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  10220. GGML_TENSOR_UNARY_OP_LOCALS
  10221. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10222. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10223. GGML_ASSERT(nb00 == sizeof(float));
  10224. const int ith = params->ith;
  10225. const int nth = params->nth;
  10226. const int nr = ggml_nrows(dst);
  10227. GGML_ASSERT(n_dims <= ne0);
  10228. GGML_ASSERT(n_dims % 2 == 0);
  10229. // rows per thread
  10230. const int dr = (nr + nth - 1)/nth;
  10231. // row range for this thread
  10232. const int ir0 = dr*ith;
  10233. const int ir1 = MIN(ir0 + dr, nr);
  10234. // row index used to determine which thread to use
  10235. int ir = 0;
  10236. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10237. const float inv_ndims = -1.f/n_dims;
  10238. float corr_dims[2];
  10239. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  10240. const bool is_neox = mode & 2;
  10241. const bool is_glm = mode & 4;
  10242. // backward process uses inverse rotation by cos and sin.
  10243. // cos and sin build a rotation matrix, where the inverse is the transpose.
  10244. // this essentially just switches the sign of sin.
  10245. const float sin_sign = forward ? 1.0f : -1.0f;
  10246. const int32_t * pos = (const int32_t *) src1->data;
  10247. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10248. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10249. const int64_t p = pos[i2];
  10250. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  10251. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  10252. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  10253. }
  10254. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10255. if (ir++ < ir0) continue;
  10256. if (ir > ir1) break;
  10257. float theta_base = (float)p;
  10258. if (is_glm) {
  10259. theta_base = MIN(p, n_ctx - 2);
  10260. float block_theta = MAX(p - (n_ctx - 2), 0);
  10261. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10262. const float cos_theta = cosf(theta_base);
  10263. const float sin_theta = sinf(theta_base) * sin_sign;
  10264. const float cos_block_theta = cosf(block_theta);
  10265. const float sin_block_theta = sinf(block_theta) * sin_sign;
  10266. theta_base *= theta_scale;
  10267. block_theta *= theta_scale;
  10268. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10269. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10270. const float x0 = src[0];
  10271. const float x1 = src[n_dims/2];
  10272. const float x2 = src[n_dims];
  10273. const float x3 = src[n_dims/2*3];
  10274. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10275. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10276. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  10277. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  10278. }
  10279. } else if (!is_neox) {
  10280. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10281. const float cos_theta = cache[i0 + 0];
  10282. const float sin_theta = cache[i0 + 1];
  10283. // zeta scaling for xPos only:
  10284. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  10285. if (xpos_down) zeta = 1.0f / zeta;
  10286. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10287. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10288. const float x0 = src[0];
  10289. const float x1 = src[1];
  10290. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  10291. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  10292. }
  10293. } else {
  10294. // TODO: this might be wrong for ne0 != n_dims - need double check
  10295. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  10296. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  10297. theta_base *= freq_scale;
  10298. for (int64_t ic = 0; ic < ne0; ic += 2) {
  10299. if (ic < n_dims) {
  10300. const int64_t ib = 0;
  10301. // simplified from `(ib * n_dims + ic) * inv_ndims`
  10302. float cur_rot = inv_ndims * ic - ib;
  10303. float cos_theta, sin_theta;
  10304. rope_yarn(
  10305. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  10306. &cos_theta, &sin_theta
  10307. );
  10308. sin_theta *= sin_sign;
  10309. theta_base *= theta_scale;
  10310. const int64_t i0 = ib*n_dims + ic/2;
  10311. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10312. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10313. const float x0 = src[0];
  10314. const float x1 = src[n_dims/2];
  10315. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10316. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10317. } else {
  10318. const int64_t i0 = ic;
  10319. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10320. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10321. dst_data[0] = src[0];
  10322. dst_data[1] = src[1];
  10323. }
  10324. }
  10325. }
  10326. }
  10327. }
  10328. }
  10329. }
  10330. static void ggml_compute_forward_rope_f16(
  10331. const struct ggml_compute_params * params,
  10332. struct ggml_tensor * dst,
  10333. const bool forward) {
  10334. const struct ggml_tensor * src0 = dst->src[0];
  10335. const struct ggml_tensor * src1 = dst->src[1];
  10336. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10337. return;
  10338. }
  10339. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  10340. //const int n_past = ((int32_t *) dst->op_params)[0];
  10341. const int n_dims = ((int32_t *) dst->op_params)[1];
  10342. const int mode = ((int32_t *) dst->op_params)[2];
  10343. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10344. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  10345. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  10346. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  10347. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  10348. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  10349. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  10350. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  10351. GGML_TENSOR_UNARY_OP_LOCALS
  10352. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10353. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10354. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10355. const int ith = params->ith;
  10356. const int nth = params->nth;
  10357. const int nr = ggml_nrows(dst);
  10358. GGML_ASSERT(n_dims <= ne0);
  10359. GGML_ASSERT(n_dims % 2 == 0);
  10360. // rows per thread
  10361. const int dr = (nr + nth - 1)/nth;
  10362. // row range for this thread
  10363. const int ir0 = dr*ith;
  10364. const int ir1 = MIN(ir0 + dr, nr);
  10365. // row index used to determine which thread to use
  10366. int ir = 0;
  10367. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10368. const float inv_ndims = -1.f/n_dims;
  10369. float corr_dims[2];
  10370. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  10371. const bool is_neox = mode & 2;
  10372. const bool is_glm = mode & 4;
  10373. // backward process uses inverse rotation by cos and sin.
  10374. // cos and sin build a rotation matrix, where the inverse is the transpose.
  10375. // this essentially just switches the sign of sin.
  10376. const float sin_sign = forward ? 1.0f : -1.0f;
  10377. const int32_t * pos = (const int32_t *) src1->data;
  10378. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10379. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10380. const int64_t p = pos[i2];
  10381. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  10382. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  10383. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  10384. }
  10385. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10386. if (ir++ < ir0) continue;
  10387. if (ir > ir1) break;
  10388. float theta_base = (float)p;
  10389. if (is_glm) {
  10390. theta_base = MIN(p, n_ctx - 2);
  10391. float block_theta = MAX(p - (n_ctx - 2), 0);
  10392. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10393. const float cos_theta = cosf(theta_base);
  10394. const float sin_theta = sinf(theta_base) * sin_sign;
  10395. const float cos_block_theta = cosf(block_theta);
  10396. const float sin_block_theta = sinf(block_theta) * sin_sign;
  10397. theta_base *= theta_scale;
  10398. block_theta *= theta_scale;
  10399. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10400. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10401. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10402. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10403. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  10404. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  10405. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10406. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10407. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  10408. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  10409. }
  10410. } else if (!is_neox) {
  10411. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10412. const float cos_theta = cache[i0 + 0];
  10413. const float sin_theta = cache[i0 + 1];
  10414. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10415. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10416. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10417. const float x1 = GGML_FP16_TO_FP32(src[1]);
  10418. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10419. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10420. }
  10421. } else {
  10422. // TODO: this might be wrong for ne0 != n_dims - need double check
  10423. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  10424. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  10425. theta_base *= freq_scale;
  10426. for (int64_t ic = 0; ic < ne0; ic += 2) {
  10427. if (ic < n_dims) {
  10428. const int64_t ib = 0;
  10429. // simplified from `(ib * n_dims + ic) * inv_ndims`
  10430. float cur_rot = inv_ndims * ic - ib;
  10431. float cos_theta, sin_theta;
  10432. rope_yarn(
  10433. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  10434. &cos_theta, &sin_theta
  10435. );
  10436. sin_theta *= sin_sign;
  10437. theta_base *= theta_scale;
  10438. const int64_t i0 = ib*n_dims + ic/2;
  10439. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10440. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10441. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10442. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10443. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10444. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10445. } else {
  10446. const int64_t i0 = ic;
  10447. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10448. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10449. dst_data[0] = src[0];
  10450. dst_data[1] = src[1];
  10451. }
  10452. }
  10453. }
  10454. }
  10455. }
  10456. }
  10457. }
  10458. static void ggml_compute_forward_rope(
  10459. const struct ggml_compute_params * params,
  10460. struct ggml_tensor * dst) {
  10461. const struct ggml_tensor * src0 = dst->src[0];
  10462. switch (src0->type) {
  10463. case GGML_TYPE_F16:
  10464. {
  10465. ggml_compute_forward_rope_f16(params, dst, true);
  10466. } break;
  10467. case GGML_TYPE_F32:
  10468. {
  10469. ggml_compute_forward_rope_f32(params, dst, true);
  10470. } break;
  10471. default:
  10472. {
  10473. GGML_ASSERT(false);
  10474. } break;
  10475. }
  10476. }
  10477. // ggml_compute_forward_rope_back
  10478. static void ggml_compute_forward_rope_back(
  10479. const struct ggml_compute_params * params,
  10480. struct ggml_tensor * dst) {
  10481. const struct ggml_tensor * src0 = dst->src[0];
  10482. switch (src0->type) {
  10483. case GGML_TYPE_F16:
  10484. {
  10485. ggml_compute_forward_rope_f16(params, dst, false);
  10486. } break;
  10487. case GGML_TYPE_F32:
  10488. {
  10489. ggml_compute_forward_rope_f32(params, dst, false);
  10490. } break;
  10491. default:
  10492. {
  10493. GGML_ASSERT(false);
  10494. } break;
  10495. }
  10496. }
  10497. // ggml_compute_forward_conv_transpose_1d
  10498. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  10499. const struct ggml_compute_params * params,
  10500. struct ggml_tensor * dst) {
  10501. const struct ggml_tensor * src0 = dst->src[0];
  10502. const struct ggml_tensor * src1 = dst->src[1];
  10503. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10504. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10505. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10506. int64_t t0 = ggml_perf_time_us();
  10507. UNUSED(t0);
  10508. GGML_TENSOR_BINARY_OP_LOCALS
  10509. const int ith = params->ith;
  10510. const int nth = params->nth;
  10511. const int nk = ne00*ne01*ne02;
  10512. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10513. GGML_ASSERT(nb10 == sizeof(float));
  10514. if (params->type == GGML_TASK_TYPE_INIT) {
  10515. if (ith != 0) {
  10516. return;
  10517. }
  10518. memset(params->wdata, 0, params->wsize);
  10519. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10520. {
  10521. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10522. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10523. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10524. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10525. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  10526. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10527. dst_data[i00*ne02 + i02] = src[i00];
  10528. }
  10529. }
  10530. }
  10531. }
  10532. // permute source data (src1) from (L x Cin) to (Cin x L)
  10533. {
  10534. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10535. ggml_fp16_t * dst_data = wdata;
  10536. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10537. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10538. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10539. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10540. }
  10541. }
  10542. }
  10543. // need to zero dst since we are accumulating into it
  10544. memset(dst->data, 0, ggml_nbytes(dst));
  10545. return;
  10546. }
  10547. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10548. return;
  10549. }
  10550. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10551. // total rows in dst
  10552. const int nr = ne1;
  10553. // rows per thread
  10554. const int dr = (nr + nth - 1)/nth;
  10555. // row range for this thread
  10556. const int ir0 = dr*ith;
  10557. const int ir1 = MIN(ir0 + dr, nr);
  10558. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10559. ggml_fp16_t * const wdata_src = wdata + nk;
  10560. for (int i1 = ir0; i1 < ir1; i1++) {
  10561. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10562. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  10563. for (int i10 = 0; i10 < ne10; i10++) {
  10564. const int i1n = i10*ne11;
  10565. for (int i00 = 0; i00 < ne00; i00++) {
  10566. float v = 0;
  10567. ggml_vec_dot_f16(ne02, &v, 0,
  10568. (ggml_fp16_t *) wdata_src + i1n, 0,
  10569. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  10570. dst_data[i10*s0 + i00] += v;
  10571. }
  10572. }
  10573. }
  10574. }
  10575. static void ggml_compute_forward_conv_transpose_1d_f32(
  10576. const struct ggml_compute_params * params,
  10577. struct ggml_tensor * dst) {
  10578. const struct ggml_tensor * src0 = dst->src[0];
  10579. const struct ggml_tensor * src1 = dst->src[1];
  10580. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10581. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10582. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10583. int64_t t0 = ggml_perf_time_us();
  10584. UNUSED(t0);
  10585. GGML_TENSOR_BINARY_OP_LOCALS
  10586. const int ith = params->ith;
  10587. const int nth = params->nth;
  10588. const int nk = ne00*ne01*ne02;
  10589. GGML_ASSERT(nb00 == sizeof(float));
  10590. GGML_ASSERT(nb10 == sizeof(float));
  10591. if (params->type == GGML_TASK_TYPE_INIT) {
  10592. if (ith != 0) {
  10593. return;
  10594. }
  10595. memset(params->wdata, 0, params->wsize);
  10596. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10597. {
  10598. float * const wdata = (float *) params->wdata + 0;
  10599. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10600. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10601. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10602. float * dst_data = wdata + i01*ne00*ne02;
  10603. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10604. dst_data[i00*ne02 + i02] = src[i00];
  10605. }
  10606. }
  10607. }
  10608. }
  10609. // prepare source data (src1)
  10610. {
  10611. float * const wdata = (float *) params->wdata + nk;
  10612. float * dst_data = wdata;
  10613. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10614. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10615. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10616. dst_data[i10*ne11 + i11] = src[i10];
  10617. }
  10618. }
  10619. }
  10620. // need to zero dst since we are accumulating into it
  10621. memset(dst->data, 0, ggml_nbytes(dst));
  10622. return;
  10623. }
  10624. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10625. return;
  10626. }
  10627. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10628. // total rows in dst
  10629. const int nr = ne1;
  10630. // rows per thread
  10631. const int dr = (nr + nth - 1)/nth;
  10632. // row range for this thread
  10633. const int ir0 = dr*ith;
  10634. const int ir1 = MIN(ir0 + dr, nr);
  10635. float * const wdata = (float *) params->wdata + 0;
  10636. float * const wdata_src = wdata + nk;
  10637. for (int i1 = ir0; i1 < ir1; i1++) {
  10638. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10639. float * wdata_kernel = wdata + i1*ne02*ne00;
  10640. for (int i10 = 0; i10 < ne10; i10++) {
  10641. const int i1n = i10*ne11;
  10642. for (int i00 = 0; i00 < ne00; i00++) {
  10643. float v = 0;
  10644. ggml_vec_dot_f32(ne02, &v, 0,
  10645. wdata_src + i1n, 0,
  10646. wdata_kernel + i00*ne02, 0, 1);
  10647. dst_data[i10*s0 + i00] += v;
  10648. }
  10649. }
  10650. }
  10651. }
  10652. static void ggml_compute_forward_conv_transpose_1d(
  10653. const struct ggml_compute_params * params,
  10654. struct ggml_tensor * dst) {
  10655. const struct ggml_tensor * src0 = dst->src[0];
  10656. switch (src0->type) {
  10657. case GGML_TYPE_F16:
  10658. {
  10659. ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
  10660. } break;
  10661. case GGML_TYPE_F32:
  10662. {
  10663. ggml_compute_forward_conv_transpose_1d_f32(params, dst);
  10664. } break;
  10665. default:
  10666. {
  10667. GGML_ASSERT(false);
  10668. } break;
  10669. }
  10670. }
  10671. // src0: kernel [OC, IC, KH, KW]
  10672. // src1: image [N, IC, IH, IW]
  10673. // dst: result [N, OH, OW, IC*KH*KW]
  10674. static void ggml_compute_forward_im2col_f32(
  10675. const struct ggml_compute_params * params,
  10676. struct ggml_tensor * dst) {
  10677. const struct ggml_tensor * src0 = dst->src[0];
  10678. const struct ggml_tensor * src1 = dst->src[1];
  10679. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10680. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10681. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10682. int64_t t0 = ggml_perf_time_us();
  10683. UNUSED(t0);
  10684. GGML_TENSOR_BINARY_OP_LOCALS;
  10685. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10686. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10687. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10688. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10689. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10690. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10691. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10692. const int ith = params->ith;
  10693. const int nth = params->nth;
  10694. const int64_t N = is_2D ? ne13 : ne12;
  10695. const int64_t IC = is_2D ? ne12 : ne11;
  10696. const int64_t IH = is_2D ? ne11 : 1;
  10697. const int64_t IW = ne10;
  10698. const int64_t KH = is_2D ? ne01 : 1;
  10699. const int64_t KW = ne00;
  10700. const int64_t OH = is_2D ? ne2 : 1;
  10701. const int64_t OW = ne1;
  10702. int ofs0 = is_2D ? nb13 : nb12;
  10703. int ofs1 = is_2D ? nb12 : nb11;
  10704. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10705. GGML_ASSERT(nb10 == sizeof(float));
  10706. if (params->type == GGML_TASK_TYPE_INIT) {
  10707. return;
  10708. }
  10709. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10710. return;
  10711. }
  10712. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10713. {
  10714. float * const wdata = (float *) dst->data;
  10715. for (int64_t in = 0; in < N; in++) {
  10716. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10717. for (int64_t iow = 0; iow < OW; iow++) {
  10718. for (int64_t iic = ith; iic < IC; iic += nth) {
  10719. // micro kernel
  10720. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10721. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10722. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10723. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10724. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10725. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10726. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10727. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10728. } else {
  10729. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  10730. }
  10731. }
  10732. }
  10733. }
  10734. }
  10735. }
  10736. }
  10737. }
  10738. }
  10739. // src0: kernel [OC, IC, KH, KW]
  10740. // src1: image [N, IC, IH, IW]
  10741. // dst: result [N, OH, OW, IC*KH*KW]
  10742. static void ggml_compute_forward_im2col_f16(
  10743. const struct ggml_compute_params * params,
  10744. struct ggml_tensor * dst) {
  10745. const struct ggml_tensor * src0 = dst->src[0];
  10746. const struct ggml_tensor * src1 = dst->src[1];
  10747. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10748. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10749. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  10750. int64_t t0 = ggml_perf_time_us();
  10751. UNUSED(t0);
  10752. GGML_TENSOR_BINARY_OP_LOCALS;
  10753. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10754. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10755. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10756. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10757. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10758. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10759. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10760. const int ith = params->ith;
  10761. const int nth = params->nth;
  10762. const int64_t N = is_2D ? ne13 : ne12;
  10763. const int64_t IC = is_2D ? ne12 : ne11;
  10764. const int64_t IH = is_2D ? ne11 : 1;
  10765. const int64_t IW = ne10;
  10766. const int64_t KH = is_2D ? ne01 : 1;
  10767. const int64_t KW = ne00;
  10768. const int64_t OH = is_2D ? ne2 : 1;
  10769. const int64_t OW = ne1;
  10770. int ofs0 = is_2D ? nb13 : nb12;
  10771. int ofs1 = is_2D ? nb12 : nb11;
  10772. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10773. GGML_ASSERT(nb10 == sizeof(float));
  10774. if (params->type == GGML_TASK_TYPE_INIT) {
  10775. return;
  10776. }
  10777. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10778. return;
  10779. }
  10780. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10781. {
  10782. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  10783. for (int64_t in = 0; in < N; in++) {
  10784. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10785. for (int64_t iow = 0; iow < OW; iow++) {
  10786. for (int64_t iic = ith; iic < IC; iic += nth) {
  10787. // micro kernel
  10788. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10789. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10790. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10791. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10792. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10793. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10794. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10795. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10796. } else {
  10797. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  10798. }
  10799. }
  10800. }
  10801. }
  10802. }
  10803. }
  10804. }
  10805. }
  10806. }
  10807. static void ggml_compute_forward_im2col(
  10808. const struct ggml_compute_params * params,
  10809. struct ggml_tensor * dst) {
  10810. switch (dst->type) {
  10811. case GGML_TYPE_F16:
  10812. {
  10813. ggml_compute_forward_im2col_f16(params, dst);
  10814. } break;
  10815. case GGML_TYPE_F32:
  10816. {
  10817. ggml_compute_forward_im2col_f32(params, dst);
  10818. } break;
  10819. default:
  10820. {
  10821. GGML_ASSERT(false);
  10822. } break;
  10823. }
  10824. }
  10825. // ggml_compute_forward_conv_transpose_2d
  10826. static void ggml_compute_forward_conv_transpose_2d(
  10827. const struct ggml_compute_params * params,
  10828. struct ggml_tensor * dst) {
  10829. const struct ggml_tensor * src0 = dst->src[0];
  10830. const struct ggml_tensor * src1 = dst->src[1];
  10831. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10832. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10833. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10834. int64_t t0 = ggml_perf_time_us();
  10835. UNUSED(t0);
  10836. GGML_TENSOR_BINARY_OP_LOCALS
  10837. const int ith = params->ith;
  10838. const int nth = params->nth;
  10839. const int nk = ne00*ne01*ne02*ne03;
  10840. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10841. GGML_ASSERT(nb10 == sizeof(float));
  10842. if (params->type == GGML_TASK_TYPE_INIT) {
  10843. if (ith != 0) {
  10844. return;
  10845. }
  10846. memset(params->wdata, 0, params->wsize);
  10847. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  10848. {
  10849. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10850. for (int64_t i03 = 0; i03 < ne03; i03++) {
  10851. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10852. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  10853. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  10854. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10855. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10856. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  10857. }
  10858. }
  10859. }
  10860. }
  10861. }
  10862. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  10863. {
  10864. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10865. for (int i12 = 0; i12 < ne12; i12++) {
  10866. for (int i11 = 0; i11 < ne11; i11++) {
  10867. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  10868. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  10869. for (int i10 = 0; i10 < ne10; i10++) {
  10870. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  10871. }
  10872. }
  10873. }
  10874. }
  10875. memset(dst->data, 0, ggml_nbytes(dst));
  10876. return;
  10877. }
  10878. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10879. return;
  10880. }
  10881. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  10882. // total patches in dst
  10883. const int np = ne2;
  10884. // patches per thread
  10885. const int dp = (np + nth - 1)/nth;
  10886. // patch range for this thread
  10887. const int ip0 = dp*ith;
  10888. const int ip1 = MIN(ip0 + dp, np);
  10889. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10890. ggml_fp16_t * const wdata_src = wdata + nk;
  10891. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  10892. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  10893. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  10894. for (int i11 = 0; i11 < ne11; i11++) {
  10895. for (int i10 = 0; i10 < ne10; i10++) {
  10896. const int i1n = i11*ne10*ne12 + i10*ne12;
  10897. for (int i01 = 0; i01 < ne01; i01++) {
  10898. for (int i00 = 0; i00 < ne00; i00++) {
  10899. float v = 0;
  10900. ggml_vec_dot_f16(ne03, &v, 0,
  10901. wdata_src + i1n, 0,
  10902. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  10903. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  10904. }
  10905. }
  10906. }
  10907. }
  10908. }
  10909. }
  10910. // ggml_compute_forward_pool_1d_sk_p0
  10911. static void ggml_compute_forward_pool_1d_sk_p0(
  10912. const struct ggml_compute_params * params,
  10913. const enum ggml_op_pool op,
  10914. const int k,
  10915. struct ggml_tensor * dst) {
  10916. const struct ggml_tensor * src = dst->src[0];
  10917. assert(src->type == GGML_TYPE_F32);
  10918. assert(params->ith == 0);
  10919. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10920. return;
  10921. }
  10922. const char * cdata = (const char *)src->data;
  10923. const char * const data_end = cdata + ggml_nbytes(src);
  10924. float * drow = (float *)dst->data;
  10925. const int64_t rs = dst->ne[0];
  10926. while (cdata < data_end) {
  10927. const float * const srow = (const float *)cdata;
  10928. int j = 0;
  10929. for (int64_t i = 0; i < rs; ++i) {
  10930. switch (op) {
  10931. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  10932. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  10933. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10934. }
  10935. for (int ki = 0; ki < k; ++ki) {
  10936. switch (op) {
  10937. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  10938. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  10939. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10940. }
  10941. ++j;
  10942. }
  10943. switch (op) {
  10944. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  10945. case GGML_OP_POOL_MAX: break;
  10946. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10947. }
  10948. }
  10949. cdata += src->nb[1];
  10950. drow += rs;
  10951. }
  10952. }
  10953. // ggml_compute_forward_pool_1d
  10954. static void ggml_compute_forward_pool_1d(
  10955. const struct ggml_compute_params * params,
  10956. struct ggml_tensor * dst) {
  10957. const int32_t * opts = (const int32_t *)dst->op_params;
  10958. enum ggml_op_pool op = opts[0];
  10959. const int k0 = opts[1];
  10960. const int s0 = opts[2];
  10961. const int p0 = opts[3];
  10962. GGML_ASSERT(p0 == 0); // padding not supported
  10963. GGML_ASSERT(k0 == s0); // only s = k supported
  10964. ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
  10965. }
  10966. // ggml_compute_forward_pool_2d
  10967. static void ggml_compute_forward_pool_2d(
  10968. const struct ggml_compute_params * params,
  10969. struct ggml_tensor * dst) {
  10970. const struct ggml_tensor * src = dst->src[0];
  10971. GGML_ASSERT(src->type == GGML_TYPE_F32);
  10972. GGML_ASSERT(params->ith == 0);
  10973. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10974. return;
  10975. }
  10976. const int32_t * opts = (const int32_t *)dst->op_params;
  10977. enum ggml_op_pool op = opts[0];
  10978. const int k0 = opts[1];
  10979. const int k1 = opts[2];
  10980. const int s0 = opts[3];
  10981. const int s1 = opts[4];
  10982. const int p0 = opts[5];
  10983. const int p1 = opts[6];
  10984. const char * cdata = (const char*)src->data;
  10985. const char * const data_end = cdata + ggml_nbytes(src);
  10986. const int64_t px = dst->ne[0];
  10987. const int64_t py = dst->ne[1];
  10988. const int64_t pa = px * py;
  10989. float * dplane = (float *)dst->data;
  10990. const int ka = k0 * k1;
  10991. const int offset0 = -p0;
  10992. const int offset1 = -p1;
  10993. while (cdata < data_end) {
  10994. for (int oy = 0; oy < py; ++oy) {
  10995. float * const drow = dplane + oy * px;
  10996. for (int ox = 0; ox < px; ++ox) {
  10997. float * const out = drow + ox;
  10998. switch (op) {
  10999. case GGML_OP_POOL_AVG: *out = 0; break;
  11000. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  11001. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11002. }
  11003. const int ix = offset0 + ox * s0;
  11004. const int iy = offset1 + oy * s1;
  11005. for (int ky = 0; ky < k1; ++ky) {
  11006. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  11007. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  11008. for (int kx = 0; kx < k0; ++kx) {
  11009. int j = ix + kx;
  11010. if (j < 0 || j >= src->ne[0]) continue;
  11011. switch (op) {
  11012. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  11013. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  11014. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11015. }
  11016. }
  11017. }
  11018. switch (op) {
  11019. case GGML_OP_POOL_AVG: *out /= ka; break;
  11020. case GGML_OP_POOL_MAX: break;
  11021. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11022. }
  11023. }
  11024. }
  11025. cdata += src->nb[2];
  11026. dplane += pa;
  11027. }
  11028. }
  11029. // ggml_compute_forward_upscale
  11030. static void ggml_compute_forward_upscale_f32(
  11031. const struct ggml_compute_params * params,
  11032. struct ggml_tensor * dst) {
  11033. const struct ggml_tensor * src0 = dst->src[0];
  11034. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11035. return;
  11036. }
  11037. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11038. const int ith = params->ith;
  11039. const int nth = params->nth;
  11040. GGML_TENSOR_UNARY_OP_LOCALS
  11041. const int scale_factor = dst->op_params[0];
  11042. // TODO: optimize
  11043. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11044. const int64_t i03 = i3;
  11045. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  11046. const int64_t i02 = i2;
  11047. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11048. const int64_t i01 = i1 / scale_factor;
  11049. for (int64_t i0 = 0; i0 < ne0; i0++) {
  11050. const int64_t i00 = i0 / scale_factor;
  11051. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  11052. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  11053. *y = *x;
  11054. }
  11055. }
  11056. }
  11057. }
  11058. }
  11059. static void ggml_compute_forward_upscale(
  11060. const struct ggml_compute_params * params,
  11061. struct ggml_tensor * dst) {
  11062. const struct ggml_tensor * src0 = dst->src[0];
  11063. switch (src0->type) {
  11064. case GGML_TYPE_F32:
  11065. {
  11066. ggml_compute_forward_upscale_f32(params, dst);
  11067. } break;
  11068. default:
  11069. {
  11070. GGML_ASSERT(false);
  11071. } break;
  11072. }
  11073. }
  11074. // ggml_compute_forward_pad
  11075. static void ggml_compute_forward_pad_f32(
  11076. const struct ggml_compute_params * params,
  11077. struct ggml_tensor * dst) {
  11078. const struct ggml_tensor * src0 = dst->src[0];
  11079. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11080. return;
  11081. }
  11082. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11083. GGML_ASSERT( dst->nb[0] == sizeof(float));
  11084. const int ith = params->ith;
  11085. const int nth = params->nth;
  11086. GGML_TENSOR_UNARY_OP_LOCALS
  11087. float * dst_ptr = (float *) dst->data;
  11088. // TODO: optimize
  11089. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11090. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  11091. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11092. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  11093. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  11094. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11095. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  11096. dst_ptr[dst_idx] = *src_ptr;
  11097. } else {
  11098. dst_ptr[dst_idx] = 0;
  11099. }
  11100. }
  11101. }
  11102. }
  11103. }
  11104. }
  11105. static void ggml_compute_forward_pad(
  11106. const struct ggml_compute_params * params,
  11107. struct ggml_tensor * dst) {
  11108. const struct ggml_tensor * src0 = dst->src[0];
  11109. switch (src0->type) {
  11110. case GGML_TYPE_F32:
  11111. {
  11112. ggml_compute_forward_pad_f32(params, dst);
  11113. } break;
  11114. default:
  11115. {
  11116. GGML_ASSERT(false);
  11117. } break;
  11118. }
  11119. }
  11120. // ggml_compute_forward_arange
  11121. static void ggml_compute_forward_arange_f32(
  11122. const struct ggml_compute_params * params,
  11123. struct ggml_tensor * dst) {
  11124. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11125. return;
  11126. }
  11127. GGML_ASSERT(dst->nb[0] == sizeof(float));
  11128. const int ith = params->ith;
  11129. const int nth = params->nth;
  11130. const float start = ggml_get_op_params_f32(dst, 0);
  11131. const float stop = ggml_get_op_params_f32(dst, 1);
  11132. const float step = ggml_get_op_params_f32(dst, 2);
  11133. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  11134. GGML_ASSERT(ggml_nelements(dst) == steps);
  11135. for (int64_t i = ith; i < steps; i+= nth) {
  11136. float value = start + step * i;
  11137. ((float *)dst->data)[i] = value;
  11138. }
  11139. }
  11140. static void ggml_compute_forward_arange(
  11141. const struct ggml_compute_params * params,
  11142. struct ggml_tensor * dst) {
  11143. switch (dst->type) {
  11144. case GGML_TYPE_F32:
  11145. {
  11146. ggml_compute_forward_arange_f32(params, dst);
  11147. } break;
  11148. default:
  11149. {
  11150. GGML_ASSERT(false);
  11151. } break;
  11152. }
  11153. }
  11154. static void ggml_compute_forward_timestep_embedding_f32(
  11155. const struct ggml_compute_params * params,
  11156. struct ggml_tensor * dst) {
  11157. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11158. return;
  11159. }
  11160. const struct ggml_tensor * src0 = dst->src[0];
  11161. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11162. const int ith = params->ith;
  11163. const int nth = params->nth;
  11164. GGML_TENSOR_UNARY_OP_LOCALS
  11165. const int dim = ggml_get_op_params_i32(dst, 0);
  11166. const int max_period = ggml_get_op_params_i32(dst, 1);
  11167. int half = dim / 2;
  11168. for (int64_t i = 0; i < ne00; i++) {
  11169. float * embed_data = (float *)((char *) dst->data + i*nb1);
  11170. for (int64_t j = ith; j < half; j += nth) {
  11171. float timestep = ((float *)src0->data)[i];
  11172. float freq = (float)expf(-logf(max_period) * j / half);
  11173. float arg = timestep * freq;
  11174. embed_data[j] = cosf(arg);
  11175. embed_data[j + half] = sinf(arg);
  11176. }
  11177. if (dim % 2 != 0 && ith == 0) {
  11178. embed_data[dim] = 0.f;
  11179. }
  11180. }
  11181. }
  11182. static void ggml_compute_forward_timestep_embedding(
  11183. const struct ggml_compute_params * params,
  11184. struct ggml_tensor * dst) {
  11185. const struct ggml_tensor * src0 = dst->src[0];
  11186. switch (src0->type) {
  11187. case GGML_TYPE_F32:
  11188. {
  11189. ggml_compute_forward_timestep_embedding_f32(params, dst);
  11190. } break;
  11191. default:
  11192. {
  11193. GGML_ASSERT(false);
  11194. } break;
  11195. }
  11196. }
  11197. // ggml_compute_forward_argsort
  11198. static void ggml_compute_forward_argsort_f32(
  11199. const struct ggml_compute_params * params,
  11200. struct ggml_tensor * dst) {
  11201. const struct ggml_tensor * src0 = dst->src[0];
  11202. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11203. return;
  11204. }
  11205. GGML_TENSOR_UNARY_OP_LOCALS
  11206. GGML_ASSERT(nb0 == sizeof(float));
  11207. const int ith = params->ith;
  11208. const int nth = params->nth;
  11209. const int64_t nr = ggml_nrows(src0);
  11210. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  11211. for (int64_t i = ith; i < nr; i += nth) {
  11212. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  11213. const float * src_data = (float *)((char *) src0->data + i*nb01);
  11214. for (int64_t j = 0; j < ne0; j++) {
  11215. dst_data[j] = j;
  11216. }
  11217. // C doesn't have a functional sort, so we do a bubble sort instead
  11218. for (int64_t j = 0; j < ne0; j++) {
  11219. for (int64_t k = j + 1; k < ne0; k++) {
  11220. if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  11221. (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  11222. int32_t tmp = dst_data[j];
  11223. dst_data[j] = dst_data[k];
  11224. dst_data[k] = tmp;
  11225. }
  11226. }
  11227. }
  11228. }
  11229. }
  11230. static void ggml_compute_forward_argsort(
  11231. const struct ggml_compute_params * params,
  11232. struct ggml_tensor * dst) {
  11233. const struct ggml_tensor * src0 = dst->src[0];
  11234. switch (src0->type) {
  11235. case GGML_TYPE_F32:
  11236. {
  11237. ggml_compute_forward_argsort_f32(params, dst);
  11238. } break;
  11239. default:
  11240. {
  11241. GGML_ASSERT(false);
  11242. } break;
  11243. }
  11244. }
  11245. // ggml_compute_forward_flash_attn
  11246. static void ggml_compute_forward_flash_attn_f32(
  11247. const struct ggml_compute_params * params,
  11248. const bool masked,
  11249. struct ggml_tensor * dst) {
  11250. const struct ggml_tensor * q = dst->src[0];
  11251. const struct ggml_tensor * k = dst->src[1];
  11252. const struct ggml_tensor * v = dst->src[2];
  11253. int64_t t0 = ggml_perf_time_us();
  11254. UNUSED(t0);
  11255. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11256. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11257. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11258. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11259. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11260. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11261. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11262. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11263. const int ith = params->ith;
  11264. const int nth = params->nth;
  11265. const int64_t D = neq0;
  11266. const int64_t N = neq1;
  11267. const int64_t P = nek1 - N;
  11268. const int64_t M = P + N;
  11269. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11270. GGML_ASSERT(ne0 == D);
  11271. GGML_ASSERT(ne1 == N);
  11272. GGML_ASSERT(P >= 0);
  11273. GGML_ASSERT(nbq0 == sizeof(float));
  11274. GGML_ASSERT(nbk0 == sizeof(float));
  11275. GGML_ASSERT(nbv0 == sizeof(float));
  11276. GGML_ASSERT(neq0 == D);
  11277. GGML_ASSERT(nek0 == D);
  11278. GGML_ASSERT(nev1 == D);
  11279. GGML_ASSERT(neq1 == N);
  11280. GGML_ASSERT(nek1 == N + P);
  11281. GGML_ASSERT(nev1 == D);
  11282. // dst cannot be transposed or permuted
  11283. GGML_ASSERT(nb0 == sizeof(float));
  11284. GGML_ASSERT(nb0 <= nb1);
  11285. GGML_ASSERT(nb1 <= nb2);
  11286. GGML_ASSERT(nb2 <= nb3);
  11287. if (params->type == GGML_TASK_TYPE_INIT) {
  11288. return;
  11289. }
  11290. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11291. return;
  11292. }
  11293. // parallelize by q rows using ggml_vec_dot_f32
  11294. // total rows in q
  11295. const int nr = neq1*neq2*neq3;
  11296. // rows per thread
  11297. const int dr = (nr + nth - 1)/nth;
  11298. // row range for this thread
  11299. const int ir0 = dr*ith;
  11300. const int ir1 = MIN(ir0 + dr, nr);
  11301. const float scale = 1.0f/sqrtf(D);
  11302. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11303. for (int ir = ir0; ir < ir1; ++ir) {
  11304. // q indices
  11305. const int iq3 = ir/(neq2*neq1);
  11306. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11307. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11308. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  11309. for (int i = M; i < Mup; ++i) {
  11310. S[i] = -INFINITY;
  11311. }
  11312. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11313. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11314. // k indices
  11315. const int ik3 = iq3;
  11316. const int ik2 = iq2 % nek2;
  11317. const int ik1 = ic;
  11318. // S indices
  11319. const int i1 = ik1;
  11320. ggml_vec_dot_f32(neq0,
  11321. S + i1, 0,
  11322. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11323. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11324. }
  11325. // scale
  11326. ggml_vec_scale_f32(masked_begin, S, scale);
  11327. for (int64_t i = masked_begin; i < M; i++) {
  11328. S[i] = -INFINITY;
  11329. }
  11330. // softmax
  11331. // exclude known -INF S[..] values from max and loop
  11332. // dont forget to set their SW values to zero
  11333. {
  11334. float max = -INFINITY;
  11335. ggml_vec_max_f32(masked_begin, &max, S);
  11336. ggml_float sum = 0.0;
  11337. {
  11338. #ifdef GGML_SOFT_MAX_ACCELERATE
  11339. max = -max;
  11340. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11341. vvexpf(S, S, &Mup);
  11342. ggml_vec_sum_f32(Mup, &sum, S);
  11343. #else
  11344. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11345. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11346. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11347. if (i >= masked_begin) {
  11348. break;
  11349. }
  11350. float * SS = S + i;
  11351. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11352. if (i + j >= masked_begin) {
  11353. break;
  11354. } else if (SS[j] == -INFINITY) {
  11355. SS[j] = 0.0f;
  11356. } else {
  11357. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11358. const float val = expf(SS[j] - max);
  11359. #else
  11360. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11361. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11362. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11363. #endif
  11364. sump[j] += (ggml_float)val;
  11365. SS[j] = val;
  11366. }
  11367. }
  11368. }
  11369. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11370. sum += sump[i];
  11371. }
  11372. #endif
  11373. }
  11374. assert(sum > 0.0);
  11375. sum = 1.0/sum;
  11376. ggml_vec_scale_f32(masked_begin, S, sum);
  11377. #ifndef NDEBUG
  11378. for (int i = 0; i < masked_begin; ++i) {
  11379. assert(!isnan(S[i]));
  11380. assert(!isinf(S[i]));
  11381. }
  11382. #endif
  11383. }
  11384. for (int64_t ic = 0; ic < nev1; ++ic) {
  11385. // dst indices
  11386. const int i1 = iq1;
  11387. const int i2 = iq2;
  11388. const int i3 = iq3;
  11389. // v indices
  11390. const int iv2 = iq2 % nev2;
  11391. const int iv3 = iq3;
  11392. ggml_vec_dot_f32(masked_begin,
  11393. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11394. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  11395. S, 0, 1);
  11396. }
  11397. }
  11398. }
  11399. static void ggml_compute_forward_flash_attn_f16(
  11400. const struct ggml_compute_params * params,
  11401. const bool masked,
  11402. struct ggml_tensor * dst) {
  11403. const struct ggml_tensor * q = dst->src[0];
  11404. const struct ggml_tensor * k = dst->src[1];
  11405. const struct ggml_tensor * v = dst->src[2];
  11406. int64_t t0 = ggml_perf_time_us();
  11407. UNUSED(t0);
  11408. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11409. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11410. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11411. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11412. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11413. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11414. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11415. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11416. const int ith = params->ith;
  11417. const int nth = params->nth;
  11418. const int64_t D = neq0;
  11419. const int64_t N = neq1;
  11420. const int64_t P = nek1 - N;
  11421. const int64_t M = P + N;
  11422. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11423. GGML_ASSERT(ne0 == D);
  11424. GGML_ASSERT(ne1 == N);
  11425. GGML_ASSERT(P >= 0);
  11426. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  11427. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  11428. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  11429. GGML_ASSERT(neq0 == D);
  11430. GGML_ASSERT(nek0 == D);
  11431. GGML_ASSERT(nev1 == D);
  11432. GGML_ASSERT(neq1 == N);
  11433. GGML_ASSERT(nek1 == N + P);
  11434. GGML_ASSERT(nev1 == D);
  11435. // dst cannot be transposed or permuted
  11436. GGML_ASSERT(nb0 == sizeof(float));
  11437. GGML_ASSERT(nb0 <= nb1);
  11438. GGML_ASSERT(nb1 <= nb2);
  11439. GGML_ASSERT(nb2 <= nb3);
  11440. if (params->type == GGML_TASK_TYPE_INIT) {
  11441. return;
  11442. }
  11443. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11444. return;
  11445. }
  11446. // parallelize by q rows using ggml_vec_dot_f32
  11447. // total rows in q
  11448. const int nr = neq1*neq2*neq3;
  11449. // rows per thread
  11450. const int dr = (nr + nth - 1)/nth;
  11451. // row range for this thread
  11452. const int ir0 = dr*ith;
  11453. const int ir1 = MIN(ir0 + dr, nr);
  11454. const float scale = 1.0f/sqrtf(D);
  11455. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11456. for (int ir = ir0; ir < ir1; ++ir) {
  11457. // q indices
  11458. const int iq3 = ir/(neq2*neq1);
  11459. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11460. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11461. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  11462. for (int i = M; i < Mup; ++i) {
  11463. S[i] = -INFINITY;
  11464. }
  11465. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  11466. for (int64_t ic = 0; ic < nek1; ++ic) {
  11467. // k indices
  11468. const int ik3 = iq3;
  11469. const int ik2 = iq2 % nek2;
  11470. const int ik1 = ic;
  11471. // S indices
  11472. const int i1 = ik1;
  11473. ggml_vec_dot_f16(neq0,
  11474. S + i1, 0,
  11475. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11476. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11477. }
  11478. } else {
  11479. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  11480. // k indices
  11481. const int ik3 = iq3;
  11482. const int ik2 = iq2 % nek2;
  11483. const int ik1 = ic;
  11484. // S indices
  11485. const int i1 = ik1;
  11486. ggml_vec_dot_f16_unroll(neq0, nbk1,
  11487. S + i1,
  11488. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11489. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11490. }
  11491. }
  11492. // scale
  11493. ggml_vec_scale_f32(nek1, S, scale);
  11494. if (masked) {
  11495. for (int64_t i = P; i < M; i++) {
  11496. if (i > P + iq1) {
  11497. S[i] = -INFINITY;
  11498. }
  11499. }
  11500. }
  11501. // softmax
  11502. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  11503. // dont forget to set their S values to zero
  11504. {
  11505. float max = -INFINITY;
  11506. ggml_vec_max_f32(M, &max, S);
  11507. ggml_float sum = 0.0;
  11508. {
  11509. #ifdef GGML_SOFT_MAX_ACCELERATE
  11510. max = -max;
  11511. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11512. vvexpf(S, S, &Mup);
  11513. ggml_vec_sum_f32(Mup, &sum, S);
  11514. #else
  11515. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11516. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11517. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11518. float * SS = S + i;
  11519. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11520. if (SS[j] == -INFINITY) {
  11521. SS[j] = 0.0f;
  11522. } else {
  11523. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11524. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11525. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11526. sump[j] += (ggml_float)val;
  11527. SS[j] = val;
  11528. }
  11529. }
  11530. }
  11531. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11532. sum += sump[i];
  11533. }
  11534. #endif
  11535. }
  11536. assert(sum > 0.0);
  11537. sum = 1.0/sum;
  11538. ggml_vec_scale_f32(M, S, sum);
  11539. #ifndef NDEBUG
  11540. for (int i = 0; i < M; ++i) {
  11541. assert(!isnan(S[i]));
  11542. assert(!isinf(S[i]));
  11543. }
  11544. #endif
  11545. }
  11546. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  11547. for (int64_t i = 0; i < M; i++) {
  11548. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11549. }
  11550. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  11551. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  11552. for (int64_t ic = 0; ic < nev1; ++ic) {
  11553. // dst indices
  11554. const int i1 = iq1;
  11555. const int i2 = iq2;
  11556. const int i3 = iq3;
  11557. // v indices
  11558. const int iv2 = iq2 % nev2;
  11559. const int iv3 = iq3;
  11560. ggml_vec_dot_f16(nev0,
  11561. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11562. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  11563. S16, 0, 1);
  11564. }
  11565. } else {
  11566. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  11567. // dst indices
  11568. const int i1 = iq1;
  11569. const int i2 = iq2;
  11570. const int i3 = iq3;
  11571. // v indices
  11572. const int iv2 = iq2 % nev2;
  11573. const int iv3 = iq3;
  11574. ggml_vec_dot_f16_unroll(nev0, nbv1,
  11575. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11576. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11577. S16);
  11578. }
  11579. }
  11580. }
  11581. }
  11582. static void ggml_compute_forward_flash_attn(
  11583. const struct ggml_compute_params * params,
  11584. const bool masked,
  11585. struct ggml_tensor * dst) {
  11586. const struct ggml_tensor * q = dst->src[0];
  11587. switch (q->type) {
  11588. case GGML_TYPE_F16:
  11589. {
  11590. ggml_compute_forward_flash_attn_f16(params, masked, dst);
  11591. } break;
  11592. case GGML_TYPE_F32:
  11593. {
  11594. ggml_compute_forward_flash_attn_f32(params, masked, dst);
  11595. } break;
  11596. default:
  11597. {
  11598. GGML_ASSERT(false);
  11599. } break;
  11600. }
  11601. }
  11602. // ggml_compute_forward_flash_ff
  11603. static void ggml_compute_forward_flash_ff_f16(
  11604. const struct ggml_compute_params * params,
  11605. struct ggml_tensor * dst) {
  11606. const struct ggml_tensor * a = dst->src[0]; // F16
  11607. const struct ggml_tensor * b0 = dst->src[1]; // F16 fc_w
  11608. const struct ggml_tensor * b1 = dst->src[2]; // F32 fc_b
  11609. const struct ggml_tensor * c0 = dst->src[3]; // F16 proj_w
  11610. const struct ggml_tensor * c1 = dst->src[4]; // F32 proj_b
  11611. int64_t t0 = ggml_perf_time_us();
  11612. UNUSED(t0);
  11613. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  11614. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  11615. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  11616. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  11617. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  11618. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  11619. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  11620. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  11621. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  11622. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  11623. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11624. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11625. const int ith = params->ith;
  11626. const int nth = params->nth;
  11627. const int64_t D = nea0;
  11628. //const int64_t N = nea1;
  11629. const int64_t M = neb01;
  11630. GGML_ASSERT(ne0 == nea0);
  11631. GGML_ASSERT(ne1 == nea1);
  11632. GGML_ASSERT(ne2 == nea2);
  11633. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  11634. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  11635. GGML_ASSERT(nbb10 == sizeof(float));
  11636. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  11637. GGML_ASSERT(nbc10 == sizeof(float));
  11638. GGML_ASSERT(neb00 == D);
  11639. GGML_ASSERT(neb01 == M);
  11640. GGML_ASSERT(neb10 == M);
  11641. GGML_ASSERT(neb11 == 1);
  11642. GGML_ASSERT(nec00 == M);
  11643. GGML_ASSERT(nec01 == D);
  11644. GGML_ASSERT(nec10 == D);
  11645. GGML_ASSERT(nec11 == 1);
  11646. // dst cannot be transposed or permuted
  11647. GGML_ASSERT(nb0 == sizeof(float));
  11648. GGML_ASSERT(nb0 <= nb1);
  11649. GGML_ASSERT(nb1 <= nb2);
  11650. GGML_ASSERT(nb2 <= nb3);
  11651. if (params->type == GGML_TASK_TYPE_INIT) {
  11652. return;
  11653. }
  11654. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11655. return;
  11656. }
  11657. // parallelize by a rows using ggml_vec_dot_f32
  11658. // total rows in a
  11659. const int nr = nea1*nea2*nea3;
  11660. // rows per thread
  11661. const int dr = (nr + nth - 1)/nth;
  11662. // row range for this thread
  11663. const int ir0 = dr*ith;
  11664. const int ir1 = MIN(ir0 + dr, nr);
  11665. for (int ir = ir0; ir < ir1; ++ir) {
  11666. // a indices
  11667. const int ia3 = ir/(nea2*nea1);
  11668. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  11669. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  11670. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  11671. for (int64_t ic = 0; ic < neb01; ++ic) {
  11672. // b0 indices
  11673. const int ib03 = ia3;
  11674. const int ib02 = ia2;
  11675. const int ib01 = ic;
  11676. // S indices
  11677. const int i1 = ib01;
  11678. ggml_vec_dot_f16(nea0,
  11679. S + i1, 0,
  11680. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)), 0,
  11681. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)), 0, 1);
  11682. }
  11683. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  11684. //ggml_vec_gelu_f32(neb01, S, S);
  11685. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  11686. for (int64_t i = 0; i < M; i++) {
  11687. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11688. }
  11689. ggml_vec_gelu_f16(neb01, S16, S16);
  11690. {
  11691. // dst indices
  11692. const int i1 = ia1;
  11693. const int i2 = ia2;
  11694. const int i3 = ia3;
  11695. for (int64_t ic = 0; ic < nec01; ++ic) {
  11696. ggml_vec_dot_f16(neb01,
  11697. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11698. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)), 0,
  11699. S16, 0, 1);
  11700. }
  11701. ggml_vec_add_f32(nec01,
  11702. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11703. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11704. (float *) c1->data);
  11705. }
  11706. }
  11707. }
  11708. static void ggml_compute_forward_flash_ff(
  11709. const struct ggml_compute_params * params,
  11710. struct ggml_tensor * dst) {
  11711. const struct ggml_tensor * b0 = dst->src[1];
  11712. switch (b0->type) {
  11713. case GGML_TYPE_F16:
  11714. {
  11715. ggml_compute_forward_flash_ff_f16(params, dst);
  11716. } break;
  11717. case GGML_TYPE_F32:
  11718. {
  11719. GGML_ASSERT(false); // TODO
  11720. } break;
  11721. default:
  11722. {
  11723. GGML_ASSERT(false);
  11724. } break;
  11725. }
  11726. }
  11727. // ggml_compute_forward_flash_attn_back
  11728. static void ggml_compute_forward_flash_attn_back_f32(
  11729. const struct ggml_compute_params * params,
  11730. const bool masked,
  11731. struct ggml_tensor * dst) {
  11732. const struct ggml_tensor * q = dst->src[0];
  11733. const struct ggml_tensor * k = dst->src[1];
  11734. const struct ggml_tensor * v = dst->src[2];
  11735. const struct ggml_tensor * d = dst->src[3];
  11736. int64_t t0 = ggml_perf_time_us();
  11737. UNUSED(t0);
  11738. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11739. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11740. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11741. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11742. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11743. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11744. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  11745. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  11746. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11747. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11748. const int ith = params->ith;
  11749. const int nth = params->nth;
  11750. const int64_t D = neq0;
  11751. const int64_t N = neq1;
  11752. const int64_t P = nek1 - N;
  11753. const int64_t M = P + N;
  11754. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11755. const int mxDM = MAX(D, Mup);
  11756. // GGML_ASSERT(ne0 == D);
  11757. // GGML_ASSERT(ne1 == N);
  11758. GGML_ASSERT(P >= 0);
  11759. GGML_ASSERT(nbq0 == sizeof(float));
  11760. GGML_ASSERT(nbk0 == sizeof(float));
  11761. GGML_ASSERT(nbv0 == sizeof(float));
  11762. GGML_ASSERT(neq0 == D);
  11763. GGML_ASSERT(nek0 == D);
  11764. GGML_ASSERT(nev1 == D);
  11765. GGML_ASSERT(ned0 == D);
  11766. GGML_ASSERT(neq1 == N);
  11767. GGML_ASSERT(nek1 == N + P);
  11768. GGML_ASSERT(nev1 == D);
  11769. GGML_ASSERT(ned1 == N);
  11770. // dst cannot be transposed or permuted
  11771. GGML_ASSERT(nb0 == sizeof(float));
  11772. GGML_ASSERT(nb0 <= nb1);
  11773. GGML_ASSERT(nb1 <= nb2);
  11774. GGML_ASSERT(nb2 <= nb3);
  11775. if (params->type == GGML_TASK_TYPE_INIT) {
  11776. if (ith == 0) {
  11777. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11778. }
  11779. return;
  11780. }
  11781. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11782. return;
  11783. }
  11784. const int64_t elem_q = ggml_nelements(q);
  11785. const int64_t elem_k = ggml_nelements(k);
  11786. enum ggml_type result_type = dst->type;
  11787. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  11788. const size_t tsize = ggml_type_size(result_type);
  11789. const size_t offs_q = 0;
  11790. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  11791. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  11792. void * grad_q = (char *) dst->data;
  11793. void * grad_k = (char *) dst->data + offs_k;
  11794. void * grad_v = (char *) dst->data + offs_v;
  11795. const size_t nbgq1 = nb0*neq0;
  11796. const size_t nbgq2 = nb0*neq0*neq1;
  11797. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11798. const size_t nbgk1 = nb0*nek0;
  11799. const size_t nbgk2 = nb0*nek0*nek1;
  11800. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11801. const size_t nbgv1 = nb0*nev0;
  11802. const size_t nbgv2 = nb0*nev0*nev1;
  11803. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11804. // parallelize by k rows using ggml_vec_dot_f32
  11805. // total rows in k
  11806. const int nr = nek2*nek3;
  11807. // rows per thread
  11808. const int dr = (nr + nth - 1)/nth;
  11809. // row range for this thread
  11810. const int ir0 = dr*ith;
  11811. const int ir1 = MIN(ir0 + dr, nr);
  11812. const float scale = 1.0f/sqrtf(D);
  11813. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11814. // how often k2 (and v2) is repeated in q2
  11815. int nrep = neq2/nek2;
  11816. for (int ir = ir0; ir < ir1; ++ir) {
  11817. // q indices
  11818. const int ik3 = ir/(nek2);
  11819. const int ik2 = ir - ik3*nek2;
  11820. const int iq3 = ik3;
  11821. const int id3 = ik3;
  11822. const int iv3 = ik3;
  11823. const int iv2 = ik2;
  11824. for (int irep = 0; irep < nrep; ++irep) {
  11825. const int iq2 = ik2 + irep*nek2;
  11826. const int id2 = iq2;
  11827. // (ik2 + irep*nek2) % nek2 == ik2
  11828. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  11829. const int id1 = iq1;
  11830. // not sure about CACHE_LINE_SIZE_F32..
  11831. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11832. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11833. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11834. for (int i = M; i < Mup; ++i) {
  11835. S[i] = -INFINITY;
  11836. }
  11837. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11838. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11839. // k indices
  11840. const int ik1 = ic;
  11841. // S indices
  11842. const int i1 = ik1;
  11843. ggml_vec_dot_f32(neq0,
  11844. S + i1, 0,
  11845. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11846. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11847. }
  11848. // scale
  11849. ggml_vec_scale_f32(masked_begin, S, scale);
  11850. for (int64_t i = masked_begin; i < M; i++) {
  11851. S[i] = -INFINITY;
  11852. }
  11853. // softmax
  11854. // exclude known -INF S[..] values from max and loop
  11855. // dont forget to set their SM values to zero
  11856. {
  11857. float max = -INFINITY;
  11858. ggml_vec_max_f32(masked_begin, &max, S);
  11859. ggml_float sum = 0.0;
  11860. {
  11861. #ifdef GGML_SOFT_MAX_ACCELERATE
  11862. max = -max;
  11863. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11864. vvexpf(SM, SM, &Mup);
  11865. ggml_vec_sum_f32(Mup, &sum, SM);
  11866. #else
  11867. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11868. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11869. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11870. if (i >= masked_begin) {
  11871. break;
  11872. }
  11873. float * SR = S + i;
  11874. float * SW = SM + i;
  11875. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11876. if (i + j >= masked_begin) {
  11877. break;
  11878. } else if (SR[j] == -INFINITY) {
  11879. SW[j] = 0.0f;
  11880. } else {
  11881. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11882. const float val = expf(SR[j] - max);
  11883. #else
  11884. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11885. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11886. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11887. #endif
  11888. sump[j] += (ggml_float)val;
  11889. SW[j] = val;
  11890. }
  11891. }
  11892. }
  11893. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11894. sum += sump[i];
  11895. }
  11896. #endif
  11897. }
  11898. assert(sum > 0.0);
  11899. sum = 1.0/sum;
  11900. ggml_vec_scale_f32(masked_begin, SM, sum);
  11901. }
  11902. // step-by-step explanation
  11903. {
  11904. // forward-process shape grads from backward process
  11905. // parallel_for ik2,ik3:
  11906. // for irep:
  11907. // iq2 = ik2 + irep*nek2
  11908. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  11909. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11910. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  11911. // for iq1:
  11912. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11913. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11914. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11915. // S0 = -Inf [D,1,1,1]
  11916. // ~S1[i] = dot(kcur[:D,i], qcur)
  11917. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11918. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11919. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11920. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11921. // ~S5[i] = dot(vcur[:,i], S4)
  11922. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  11923. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11924. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  11925. // dst backward-/ grad[dst] = d
  11926. //
  11927. // output gradients with their dependencies:
  11928. //
  11929. // grad[kcur] = grad[S1].T @ qcur
  11930. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11931. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11932. // grad[S4] = grad[S5] @ vcur
  11933. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11934. // grad[qcur] = grad[S1] @ kcur
  11935. // grad[vcur] = grad[S5].T @ S4
  11936. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11937. //
  11938. // in post-order:
  11939. //
  11940. // S1 = qcur @ kcur.T
  11941. // S2 = S1 * scale
  11942. // S3 = diag_mask_inf(S2, P)
  11943. // S4 = softmax(S3)
  11944. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11945. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11946. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11947. // grad[qcur] = grad[S1] @ kcur
  11948. // grad[kcur] = grad[S1].T @ qcur
  11949. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11950. //
  11951. // using less variables (SM=S4):
  11952. //
  11953. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11954. // SM = softmax(S)
  11955. // S = d[:D,iq1,iq2,iq3] @ vcur
  11956. // dot_SM_gradSM = dot(SM, S)
  11957. // S = SM * (S - dot(SM, S))
  11958. // S = diag_mask_zero(S, P) * scale
  11959. //
  11960. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11961. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  11962. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11963. }
  11964. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11965. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11966. // for ic:
  11967. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  11968. // exclude known future zero S[..] values from operation
  11969. ggml_vec_set_f32(masked_begin, S, 0);
  11970. for (int64_t ic = 0; ic < D; ++ic) {
  11971. ggml_vec_mad_f32(masked_begin,
  11972. S,
  11973. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11974. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11975. }
  11976. // S = SM * (S - dot(SM, S))
  11977. float dot_SM_gradSM = 0;
  11978. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  11979. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11980. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  11981. // S = diag_mask_zero(S, P) * scale
  11982. // already done by above ggml_vec_set_f32
  11983. // exclude known zero S[..] values from operation
  11984. ggml_vec_scale_f32(masked_begin, S, scale);
  11985. // S shape [M,1]
  11986. // SM shape [M,1]
  11987. // kcur shape [D,M]
  11988. // qcur shape [D,1]
  11989. // vcur shape [M,D]
  11990. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11991. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11992. // for ic:
  11993. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  11994. // exclude known zero S[..] values from loop
  11995. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11996. ggml_vec_mad_f32(D,
  11997. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  11998. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11999. S[ic]);
  12000. }
  12001. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  12002. // for ic:
  12003. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  12004. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  12005. // exclude known zero S[..] values from loop
  12006. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12007. ggml_vec_mad_f32(D,
  12008. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  12009. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  12010. S[ic]);
  12011. }
  12012. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  12013. // for ic:
  12014. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  12015. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  12016. // exclude known zero SM[..] values from mad
  12017. for (int64_t ic = 0; ic < D; ++ic) {
  12018. ggml_vec_mad_f32(masked_begin,
  12019. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  12020. SM,
  12021. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  12022. }
  12023. }
  12024. }
  12025. }
  12026. }
  12027. static void ggml_compute_forward_flash_attn_back(
  12028. const struct ggml_compute_params * params,
  12029. const bool masked,
  12030. struct ggml_tensor * dst) {
  12031. const struct ggml_tensor * q = dst->src[0];
  12032. switch (q->type) {
  12033. case GGML_TYPE_F32:
  12034. {
  12035. ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
  12036. } break;
  12037. default:
  12038. {
  12039. GGML_ASSERT(false);
  12040. } break;
  12041. }
  12042. }
  12043. // ggml_compute_forward_ssm_conv
  12044. static void ggml_compute_forward_ssm_conv_f32(
  12045. const struct ggml_compute_params * params,
  12046. struct ggml_tensor * dst) {
  12047. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12048. return;
  12049. }
  12050. const struct ggml_tensor * src0 = dst->src[0]; // conv_state
  12051. const struct ggml_tensor * src1 = dst->src[1]; // x
  12052. const struct ggml_tensor * src2 = dst->src[2]; // conv1d.weight
  12053. const struct ggml_tensor * src3 = dst->src[3]; // state_seq
  12054. const int ith = params->ith;
  12055. const int nth = params->nth;
  12056. const int nc = src2->ne[0]; // d_conv
  12057. const int nr = src0->ne[1]; // d_inner
  12058. const int n_t = src1->ne[1]; // n_tokens
  12059. const int n_kv = src0->ne[2]; // max number of sequences in the batch
  12060. GGML_ASSERT((nr*n_t) + (nc*nr*n_kv) == ggml_nelements(dst));
  12061. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12062. GGML_ASSERT(src1->nb[0] == sizeof(float));
  12063. GGML_ASSERT(src2->nb[0] == sizeof(float));
  12064. GGML_ASSERT(src3->nb[0] == sizeof(int32_t));
  12065. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  12066. // for use with the destination state offset between sequences
  12067. GGML_ASSERT(src2->nb[2] == src2->ne[1]*src2->ne[0]*sizeof(float));
  12068. // rows per thread
  12069. const int dr = (nr + nth - 1)/nth;
  12070. // row range for this thread
  12071. const int ir0 = dr*ith;
  12072. const int ir1 = MIN(ir0 + dr, nr);
  12073. const int ir = ir1 - ir0;
  12074. if (n_kv > 1) {
  12075. // multiple sequences means it's hard to know when it's the first time a state is read,
  12076. // so copy them all over to the destination, just to be sure.
  12077. for (int i3 = 0; i3 < n_kv; ++i3) {
  12078. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  12079. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + i3*(src2->nb[2]) + nr*n_t*sizeof(float));
  12080. // can't use memcpy because of d_conv vs d_conv - 1
  12081. for (int i1 = 0; i1 < ir; ++i1) {
  12082. for (int i0 = 0; i0 < nc - 1; ++i0) {
  12083. // copy s0 to last (d_conv - 1) columns of s
  12084. s[1 + i0 + i1*nc] = s0[i0 + i1*(nc - 1)];
  12085. }
  12086. }
  12087. }
  12088. }
  12089. for (int i2 = 0; i2 < n_t; ++i2) {
  12090. int32_t * sq = (int32_t *) ((char *) src3->data + i2*(src3->nb[1])); // {n_kv, n_tokens}
  12091. float * x = (float *) ((char *) dst->data + ir0*sizeof(float) + i2*(nr*sizeof(float))); // {d_inner, n_tokens}
  12092. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + sq[0]*(src2->nb[2]) + nr*n_t*sizeof(float)); // {d_conv, d_inner, n_kv}
  12093. float * s0; // {d_conv - 1, d_inner, n_kv}
  12094. float * x0 = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  12095. float * c = (float *) ((char *) src2->data + ir0*(src2->nb[1])); // {d_conv, d_inner}
  12096. int ne0s0;
  12097. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  12098. // avoid needing to copy the state for the first token
  12099. if (i2 == 0) {
  12100. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_conv - 1, d_inner, n_kv}
  12101. ne0s0 = src0->ne[0];
  12102. } else {
  12103. // the source is the last (d_conv - 1) columns of the destination
  12104. s0 = s + 1;
  12105. ne0s0 = nc;
  12106. }
  12107. // d_inner
  12108. for (int i1 = 0; i1 < ir; ++i1) {
  12109. // shift state left
  12110. for (int i0 = 0; i0 < nc - 1; ++i0) {
  12111. s[i0 + i1*nc] = s0[i0 + i1*ne0s0];
  12112. }
  12113. // insert x on the last column
  12114. s[(nc - 1) + i1*nc] = x0[i1];
  12115. }
  12116. // handle copies when there are multiple output states
  12117. for (int i3 = 1; i3 < n_kv; ++i3) {
  12118. int32_t seq = sq[i3];
  12119. if (0 <= seq && seq < n_kv) {
  12120. float * s1 = s + (seq - sq[0])*nc*nr;
  12121. memcpy(s1, s, nc*ir*sizeof(float));
  12122. } else {
  12123. // stop at negative or too big seq_ids
  12124. break;
  12125. }
  12126. }
  12127. // it seems a little faster when this is separate from the state shift
  12128. for (int i1 = 0; i1 < ir; ++i1) {
  12129. // rowwise dot product
  12130. float sumf = 0.0f;
  12131. for (int i0 = 0; i0 < nc; ++i0) {
  12132. int i = i0 + i1*nc;
  12133. sumf += s[i] * c[i];
  12134. }
  12135. x[i1] = sumf;
  12136. }
  12137. }
  12138. }
  12139. static void ggml_compute_forward_ssm_conv(
  12140. const struct ggml_compute_params * params,
  12141. struct ggml_tensor * dst) {
  12142. switch (dst->src[0]->type) {
  12143. case GGML_TYPE_F32:
  12144. {
  12145. ggml_compute_forward_ssm_conv_f32(params, dst);
  12146. } break;
  12147. default:
  12148. {
  12149. GGML_ASSERT(false);
  12150. } break;
  12151. }
  12152. }
  12153. // ggml_compute_forward_ssm_scan
  12154. static void ggml_compute_forward_ssm_scan_f32(
  12155. const struct ggml_compute_params * params,
  12156. struct ggml_tensor * dst) {
  12157. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12158. return;
  12159. }
  12160. const struct ggml_tensor * src0 = dst->src[0]; // s
  12161. const struct ggml_tensor * src1 = dst->src[1]; // x
  12162. const struct ggml_tensor * src2 = dst->src[2]; // dt
  12163. const struct ggml_tensor * src3 = dst->src[3]; // A
  12164. const struct ggml_tensor * src4 = dst->src[4]; // B
  12165. const struct ggml_tensor * src5 = dst->src[5]; // C
  12166. const struct ggml_tensor * src6 = dst->src[6]; // sq
  12167. const int ith = params->ith;
  12168. const int nth = params->nth;
  12169. const int64_t nc = src0->ne[0]; // d_state
  12170. const int64_t nr = src0->ne[1]; // d_inner
  12171. const int64_t n_t = src1->ne[1]; // number of tokens in the batch
  12172. const int64_t n_kv = src0->ne[2]; // max number of sequences in the batch
  12173. GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
  12174. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12175. GGML_ASSERT(src1->nb[0] == sizeof(float));
  12176. GGML_ASSERT(src2->nb[0] == sizeof(float));
  12177. GGML_ASSERT(src3->nb[0] == sizeof(float));
  12178. GGML_ASSERT(src4->nb[0] == sizeof(float));
  12179. GGML_ASSERT(src5->nb[0] == sizeof(float));
  12180. // required for the dot product between s and C, and when copying the states
  12181. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  12182. // required for per-sequence offsets for states
  12183. GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
  12184. // required to get correct offset for state destination (i.e. src1->nb[2])
  12185. GGML_ASSERT(src1->nb[2] == src1->ne[0]*src1->ne[1]*sizeof(float));
  12186. // rows per thread
  12187. const int dr = (nr + nth - 1)/nth;
  12188. // row range for this thread
  12189. const int ir0 = dr*ith;
  12190. const int ir1 = MIN(ir0 + dr, nr);
  12191. const int ir = ir1 - ir0;
  12192. if (n_kv > 1) {
  12193. // it's hard to know if the source states have already been copied
  12194. // when there are multiple, so copy them already.
  12195. for (int i3 = 0; i3 < n_kv; ++i3) {
  12196. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  12197. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[2]);
  12198. memcpy(s, s0, nc*ir*sizeof(float));
  12199. }
  12200. }
  12201. for (int i2 = 0; i2 < n_t; ++i2) {
  12202. int32_t * sq = (int32_t *) ((char *) src6->data + i2*(src6->nb[1])); // {n_kv, n_tokens}
  12203. float * y = (float *) ((char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  12204. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2]) + src1->nb[2]); // {d_state, d_inner, n_kv}
  12205. float * s0;
  12206. float * x = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  12207. float * dt = (float *) ((char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1])); // {d_inner, n_tokens}
  12208. float * A = (float *) ((char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
  12209. float * B = (float *) ((char *) src4->data + i2*(src4->nb[1])); // {d_state, n_tokens}
  12210. float * C = (float *) ((char *) src5->data + i2*(src5->nb[1])); // {d_state, n_tokens}
  12211. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  12212. // avoid needing to copy the state for the first token
  12213. if (i2 == 0) {
  12214. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_state, d_inner, n_kv}
  12215. } else {
  12216. // otherwise the source is the same as the destination
  12217. s0 = s;
  12218. }
  12219. // d_inner
  12220. for (int i1 = 0; i1 < ir; ++i1) {
  12221. // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
  12222. float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
  12223. float x_dt = x[i1] * dt_soft_plus;
  12224. float sumf = 0.0f;
  12225. // d_state
  12226. for (int i0 = 0; i0 < nc; ++i0) {
  12227. int i = i0 + i1*nc;
  12228. // state = prev_state * dA + dB * x
  12229. float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
  12230. // y = rowwise_dotprod(state, C)
  12231. sumf += state * C[i0];
  12232. s[i] = state;
  12233. }
  12234. y[i1] = sumf;
  12235. }
  12236. // handle copies when there are multiple output states
  12237. for (int i3 = 1; i3 < n_kv; ++i3) {
  12238. int32_t seq = sq[i3];
  12239. if (0 <= seq && seq < n_kv) {
  12240. float * s1 = s + (seq - sq[0])*nc*nr;
  12241. memcpy(s1, s, nc*ir*sizeof(float));
  12242. } else {
  12243. // stop at negative or too big seq_ids
  12244. break;
  12245. }
  12246. }
  12247. }
  12248. }
  12249. static void ggml_compute_forward_ssm_scan(
  12250. const struct ggml_compute_params * params,
  12251. struct ggml_tensor * dst) {
  12252. switch (dst->src[0]->type) {
  12253. case GGML_TYPE_F32:
  12254. {
  12255. ggml_compute_forward_ssm_scan_f32(params, dst);
  12256. } break;
  12257. default:
  12258. {
  12259. GGML_ASSERT(false);
  12260. } break;
  12261. }
  12262. }
  12263. // ggml_compute_forward_win_part
  12264. static void ggml_compute_forward_win_part_f32(
  12265. const struct ggml_compute_params * params,
  12266. struct ggml_tensor * dst) {
  12267. const struct ggml_tensor * src0 = dst->src[0];
  12268. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12269. return;
  12270. }
  12271. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  12272. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12273. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  12274. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  12275. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  12276. assert(ne00 == ne0);
  12277. assert(ne3 == nep0*nep1);
  12278. // TODO: optimize / multi-thread
  12279. for (int py = 0; py < nep1; ++py) {
  12280. for (int px = 0; px < nep0; ++px) {
  12281. const int64_t i3 = py*nep0 + px;
  12282. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12283. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12284. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12285. const int64_t i02 = py*w + i2;
  12286. const int64_t i01 = px*w + i1;
  12287. const int64_t i00 = i0;
  12288. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  12289. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  12290. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  12291. ((float *) dst->data)[i] = 0.0f;
  12292. } else {
  12293. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  12294. }
  12295. }
  12296. }
  12297. }
  12298. }
  12299. }
  12300. }
  12301. static void ggml_compute_forward_win_part(
  12302. const struct ggml_compute_params * params,
  12303. struct ggml_tensor * dst) {
  12304. const struct ggml_tensor * src0 = dst->src[0];
  12305. switch (src0->type) {
  12306. case GGML_TYPE_F32:
  12307. {
  12308. ggml_compute_forward_win_part_f32(params, dst);
  12309. } break;
  12310. default:
  12311. {
  12312. GGML_ASSERT(false);
  12313. } break;
  12314. }
  12315. }
  12316. // ggml_compute_forward_win_unpart
  12317. static void ggml_compute_forward_win_unpart_f32(
  12318. const struct ggml_compute_params * params,
  12319. struct ggml_tensor * dst) {
  12320. const struct ggml_tensor * src0 = dst->src[0];
  12321. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12322. return;
  12323. }
  12324. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  12325. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12326. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  12327. // padding
  12328. const int px = (w - ne1%w)%w;
  12329. //const int py = (w - ne2%w)%w;
  12330. const int npx = (px + ne1)/w;
  12331. //const int npy = (py + ne2)/w;
  12332. assert(ne0 == ne00);
  12333. // TODO: optimize / multi-thread
  12334. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12335. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12336. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12337. const int ip2 = i2/w;
  12338. const int ip1 = i1/w;
  12339. const int64_t i02 = i2%w;
  12340. const int64_t i01 = i1%w;
  12341. const int64_t i00 = i0;
  12342. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  12343. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  12344. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  12345. }
  12346. }
  12347. }
  12348. }
  12349. static void ggml_compute_forward_win_unpart(
  12350. const struct ggml_compute_params * params,
  12351. struct ggml_tensor * dst) {
  12352. const struct ggml_tensor * src0 = dst->src[0];
  12353. switch (src0->type) {
  12354. case GGML_TYPE_F32:
  12355. {
  12356. ggml_compute_forward_win_unpart_f32(params, dst);
  12357. } break;
  12358. default:
  12359. {
  12360. GGML_ASSERT(false);
  12361. } break;
  12362. }
  12363. }
  12364. //gmml_compute_forward_unary
  12365. static void ggml_compute_forward_unary(
  12366. const struct ggml_compute_params * params,
  12367. struct ggml_tensor * dst) {
  12368. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  12369. switch (op) {
  12370. case GGML_UNARY_OP_ABS:
  12371. {
  12372. ggml_compute_forward_abs(params, dst);
  12373. } break;
  12374. case GGML_UNARY_OP_SGN:
  12375. {
  12376. ggml_compute_forward_sgn(params, dst);
  12377. } break;
  12378. case GGML_UNARY_OP_NEG:
  12379. {
  12380. ggml_compute_forward_neg(params, dst);
  12381. } break;
  12382. case GGML_UNARY_OP_STEP:
  12383. {
  12384. ggml_compute_forward_step(params, dst);
  12385. } break;
  12386. case GGML_UNARY_OP_TANH:
  12387. {
  12388. ggml_compute_forward_tanh(params, dst);
  12389. } break;
  12390. case GGML_UNARY_OP_ELU:
  12391. {
  12392. ggml_compute_forward_elu(params, dst);
  12393. } break;
  12394. case GGML_UNARY_OP_RELU:
  12395. {
  12396. ggml_compute_forward_relu(params, dst);
  12397. } break;
  12398. case GGML_UNARY_OP_GELU:
  12399. {
  12400. ggml_compute_forward_gelu(params, dst);
  12401. } break;
  12402. case GGML_UNARY_OP_GELU_QUICK:
  12403. {
  12404. ggml_compute_forward_gelu_quick(params, dst);
  12405. } break;
  12406. case GGML_UNARY_OP_SILU:
  12407. {
  12408. ggml_compute_forward_silu(params, dst);
  12409. } break;
  12410. case GGML_UNARY_OP_HARDSWISH:
  12411. {
  12412. ggml_compute_forward_hardswish(params, dst);
  12413. } break;
  12414. case GGML_UNARY_OP_HARDSIGMOID:
  12415. {
  12416. ggml_compute_forward_hardsigmoid(params, dst);
  12417. } break;
  12418. default:
  12419. {
  12420. GGML_ASSERT(false);
  12421. } break;
  12422. }
  12423. }
  12424. // ggml_compute_forward_get_rel_pos
  12425. static void ggml_compute_forward_get_rel_pos_f16(
  12426. const struct ggml_compute_params * params,
  12427. struct ggml_tensor * dst) {
  12428. const struct ggml_tensor * src0 = dst->src[0];
  12429. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12430. return;
  12431. }
  12432. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  12433. GGML_TENSOR_UNARY_OP_LOCALS
  12434. const int64_t w = ne1;
  12435. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  12436. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  12437. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12438. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12439. const int64_t pos = (w - i1 - 1) + i2;
  12440. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12441. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  12442. }
  12443. }
  12444. }
  12445. }
  12446. static void ggml_compute_forward_get_rel_pos(
  12447. const struct ggml_compute_params * params,
  12448. struct ggml_tensor * dst) {
  12449. const struct ggml_tensor * src0 = dst->src[0];
  12450. switch (src0->type) {
  12451. case GGML_TYPE_F16:
  12452. {
  12453. ggml_compute_forward_get_rel_pos_f16(params, dst);
  12454. } break;
  12455. default:
  12456. {
  12457. GGML_ASSERT(false);
  12458. } break;
  12459. }
  12460. }
  12461. // ggml_compute_forward_add_rel_pos
  12462. static void ggml_compute_forward_add_rel_pos_f32(
  12463. const struct ggml_compute_params * params,
  12464. struct ggml_tensor * dst) {
  12465. const struct ggml_tensor * src0 = dst->src[0];
  12466. const struct ggml_tensor * src1 = dst->src[1];
  12467. const struct ggml_tensor * src2 = dst->src[2];
  12468. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  12469. if (!inplace && params->type == GGML_TASK_TYPE_INIT) {
  12470. if (params->ith != 0) {
  12471. return;
  12472. }
  12473. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  12474. return;
  12475. }
  12476. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12477. return;
  12478. }
  12479. int64_t t0 = ggml_perf_time_us();
  12480. UNUSED(t0);
  12481. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  12482. float * src1_data = (float *) src1->data;
  12483. float * src2_data = (float *) src2->data;
  12484. float * dst_data = (float *) dst->data;
  12485. const int64_t ne10 = src1->ne[0];
  12486. const int64_t ne11 = src1->ne[1];
  12487. const int64_t ne12 = src1->ne[2];
  12488. const int64_t ne13 = src1->ne[3];
  12489. const int ith = params->ith;
  12490. const int nth = params->nth;
  12491. // total patches in dst
  12492. const int np = ne13;
  12493. // patches per thread
  12494. const int dp = (np + nth - 1)/nth;
  12495. // patch range for this thread
  12496. const int ip0 = dp*ith;
  12497. const int ip1 = MIN(ip0 + dp, np);
  12498. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  12499. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  12500. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  12501. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  12502. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  12503. const int64_t jp0 = jp1 + i10;
  12504. const float src1_e = src1_data[jp0];
  12505. const float src2_e = src2_data[jp0];
  12506. const int64_t jdh = jp0 * ne10;
  12507. const int64_t jdw = jdh - (ne10 - 1) * i10;
  12508. for (int64_t j = 0; j < ne10; ++j) {
  12509. dst_data[jdh + j ] += src2_e;
  12510. dst_data[jdw + j*ne10] += src1_e;
  12511. }
  12512. }
  12513. }
  12514. }
  12515. }
  12516. }
  12517. static void ggml_compute_forward_add_rel_pos(
  12518. const struct ggml_compute_params * params,
  12519. struct ggml_tensor * dst) {
  12520. const struct ggml_tensor * src0 = dst->src[0];
  12521. switch (src0->type) {
  12522. case GGML_TYPE_F32:
  12523. {
  12524. ggml_compute_forward_add_rel_pos_f32(params, dst);
  12525. } break;
  12526. default:
  12527. {
  12528. GGML_ASSERT(false);
  12529. } break;
  12530. }
  12531. }
  12532. // ggml_compute_forward_map_unary
  12533. static void ggml_compute_forward_map_unary_f32(
  12534. const struct ggml_compute_params * params,
  12535. struct ggml_tensor * dst,
  12536. const ggml_unary_op_f32_t fun) {
  12537. const struct ggml_tensor * src0 = dst->src[0];
  12538. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  12539. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12540. return;
  12541. }
  12542. const int n = ggml_nrows(src0);
  12543. const int nc = src0->ne[0];
  12544. assert( dst->nb[0] == sizeof(float));
  12545. assert(src0->nb[0] == sizeof(float));
  12546. for (int i = 0; i < n; i++) {
  12547. fun(nc,
  12548. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12549. (float *) ((char *) src0->data + i*(src0->nb[1])));
  12550. }
  12551. }
  12552. static void ggml_compute_forward_map_unary(
  12553. const struct ggml_compute_params * params,
  12554. struct ggml_tensor * dst,
  12555. const ggml_unary_op_f32_t fun) {
  12556. const struct ggml_tensor * src0 = dst->src[0];
  12557. switch (src0->type) {
  12558. case GGML_TYPE_F32:
  12559. {
  12560. ggml_compute_forward_map_unary_f32(params, dst, fun);
  12561. } break;
  12562. default:
  12563. {
  12564. GGML_ASSERT(false);
  12565. } break;
  12566. }
  12567. }
  12568. // ggml_compute_forward_map_binary
  12569. static void ggml_compute_forward_map_binary_f32(
  12570. const struct ggml_compute_params * params,
  12571. struct ggml_tensor * dst,
  12572. const ggml_binary_op_f32_t fun) {
  12573. const struct ggml_tensor * src0 = dst->src[0];
  12574. const struct ggml_tensor * src1 = dst->src[1];
  12575. assert(params->ith == 0);
  12576. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12577. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12578. return;
  12579. }
  12580. const int n = ggml_nrows(src0);
  12581. const int nc = src0->ne[0];
  12582. assert( dst->nb[0] == sizeof(float));
  12583. assert(src0->nb[0] == sizeof(float));
  12584. assert(src1->nb[0] == sizeof(float));
  12585. for (int i = 0; i < n; i++) {
  12586. fun(nc,
  12587. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12588. (float *) ((char *) src0->data + i*(src0->nb[1])),
  12589. (float *) ((char *) src1->data + i*(src1->nb[1])));
  12590. }
  12591. }
  12592. static void ggml_compute_forward_map_binary(
  12593. const struct ggml_compute_params * params,
  12594. struct ggml_tensor * dst,
  12595. const ggml_binary_op_f32_t fun) {
  12596. const struct ggml_tensor * src0 = dst->src[0];
  12597. switch (src0->type) {
  12598. case GGML_TYPE_F32:
  12599. {
  12600. ggml_compute_forward_map_binary_f32(params, dst, fun);
  12601. } break;
  12602. default:
  12603. {
  12604. GGML_ASSERT(false);
  12605. } break;
  12606. }
  12607. }
  12608. // ggml_compute_forward_map_custom1
  12609. static void ggml_compute_forward_map_custom1_f32(
  12610. const struct ggml_compute_params * params,
  12611. struct ggml_tensor * dst,
  12612. const ggml_custom1_op_f32_t fun) {
  12613. const struct ggml_tensor * a = dst->src[0];
  12614. assert(params->ith == 0);
  12615. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12616. return;
  12617. }
  12618. fun(dst, a);
  12619. }
  12620. // ggml_compute_forward_map_custom2
  12621. static void ggml_compute_forward_map_custom2_f32(
  12622. const struct ggml_compute_params * params,
  12623. struct ggml_tensor * dst,
  12624. const ggml_custom2_op_f32_t fun) {
  12625. const struct ggml_tensor * a = dst->src[0];
  12626. const struct ggml_tensor * b = dst->src[1];
  12627. assert(params->ith == 0);
  12628. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12629. return;
  12630. }
  12631. fun(dst, a, b);
  12632. }
  12633. // ggml_compute_forward_map_custom3
  12634. static void ggml_compute_forward_map_custom3_f32(
  12635. const struct ggml_compute_params * params,
  12636. struct ggml_tensor * dst,
  12637. const ggml_custom3_op_f32_t fun) {
  12638. const struct ggml_tensor * a = dst->src[0];
  12639. const struct ggml_tensor * b = dst->src[1];
  12640. const struct ggml_tensor * c = dst->src[1];
  12641. assert(params->ith == 0);
  12642. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12643. return;
  12644. }
  12645. fun(dst, a, b, c);
  12646. }
  12647. // ggml_compute_forward_map_custom1
  12648. static void ggml_compute_forward_map_custom1(
  12649. const struct ggml_compute_params * params,
  12650. struct ggml_tensor * dst) {
  12651. const struct ggml_tensor * a = dst->src[0];
  12652. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12653. return;
  12654. }
  12655. struct ggml_map_custom1_op_params p;
  12656. memcpy(&p, dst->op_params, sizeof(p));
  12657. p.fun(dst, a, params->ith, params->nth, p.userdata);
  12658. }
  12659. // ggml_compute_forward_map_custom2
  12660. static void ggml_compute_forward_map_custom2(
  12661. const struct ggml_compute_params * params,
  12662. struct ggml_tensor * dst) {
  12663. const struct ggml_tensor * a = dst->src[0];
  12664. const struct ggml_tensor * b = dst->src[1];
  12665. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12666. return;
  12667. }
  12668. struct ggml_map_custom2_op_params p;
  12669. memcpy(&p, dst->op_params, sizeof(p));
  12670. p.fun(dst, a, b, params->ith, params->nth, p.userdata);
  12671. }
  12672. // ggml_compute_forward_map_custom3
  12673. static void ggml_compute_forward_map_custom3(
  12674. const struct ggml_compute_params * params,
  12675. struct ggml_tensor * dst) {
  12676. const struct ggml_tensor * a = dst->src[0];
  12677. const struct ggml_tensor * b = dst->src[1];
  12678. const struct ggml_tensor * c = dst->src[2];
  12679. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12680. return;
  12681. }
  12682. struct ggml_map_custom3_op_params p;
  12683. memcpy(&p, dst->op_params, sizeof(p));
  12684. p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
  12685. }
  12686. // ggml_compute_forward_cross_entropy_loss
  12687. static void ggml_compute_forward_cross_entropy_loss_f32(
  12688. const struct ggml_compute_params * params,
  12689. struct ggml_tensor * dst) {
  12690. const struct ggml_tensor * src0 = dst->src[0];
  12691. const struct ggml_tensor * src1 = dst->src[1];
  12692. GGML_ASSERT(ggml_is_contiguous(src0));
  12693. GGML_ASSERT(ggml_is_contiguous(src1));
  12694. GGML_ASSERT(ggml_is_scalar(dst));
  12695. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  12696. const int ith = params->ith;
  12697. const int nth = params->nth;
  12698. float * sums = (float *) params->wdata;
  12699. // TODO: handle transposed/permuted matrices
  12700. const int nc = src0->ne[0];
  12701. const int nr = ggml_nrows(src0);
  12702. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  12703. if (params->type == GGML_TASK_TYPE_INIT) {
  12704. if (ith == 0) {
  12705. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  12706. }
  12707. return;
  12708. }
  12709. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12710. if (ith == 0) {
  12711. float * dp = (float *) dst->data;
  12712. ggml_vec_sum_f32(nth, dp, sums);
  12713. dp[0] *= -1.0f / (float) nr;
  12714. }
  12715. return;
  12716. }
  12717. const double eps = 1e-9;
  12718. // rows per thread
  12719. const int dr = (nr + nth - 1)/nth;
  12720. // row range for this thread
  12721. const int ir0 = dr*ith;
  12722. const int ir1 = MIN(ir0 + dr, nr);
  12723. for (int i1 = ir0; i1 < ir1; i1++) {
  12724. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12725. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12726. float * st = ((float *) params->wdata) + nth + ith*nc;
  12727. #ifndef NDEBUG
  12728. for (int i = 0; i < nc; ++i) {
  12729. //printf("p[%d] = %f\n", i, p[i]);
  12730. assert(!isnan(s0[i]));
  12731. assert(!isnan(s1[i]));
  12732. }
  12733. #endif
  12734. // soft_max
  12735. ggml_float sum = 0.0;
  12736. {
  12737. float max = -INFINITY;
  12738. ggml_vec_max_f32(nc, &max, s0);
  12739. uint16_t scvt; UNUSED(scvt);
  12740. for (int i = 0; i < nc; i++) {
  12741. if (s0[i] == -INFINITY) {
  12742. st[i] = 0.0f;
  12743. } else {
  12744. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12745. const float s = s0[i] - max;
  12746. const float val = expf(s);
  12747. #else
  12748. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12749. memcpy(&scvt, &s, sizeof(scvt));
  12750. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  12751. #endif
  12752. sum += (ggml_float)val;
  12753. st[i] = val;
  12754. }
  12755. }
  12756. assert(sum > 0.0);
  12757. // sum = 1.0/sum;
  12758. }
  12759. // avoid log(0) by rescaling from [0..1] to [eps..1]
  12760. sum = (1.0 - eps) / sum;
  12761. ggml_vec_scale_f32(nc, st, sum);
  12762. ggml_vec_add1_f32(nc, st, st, eps);
  12763. ggml_vec_log_f32(nc, st, st);
  12764. ggml_vec_mul_f32(nc, st, st, s1);
  12765. float st_sum = 0;
  12766. ggml_vec_sum_f32(nc, &st_sum, st);
  12767. sums[ith] += st_sum;
  12768. #ifndef NDEBUG
  12769. for (int i = 0; i < nc; ++i) {
  12770. assert(!isnan(st[i]));
  12771. assert(!isinf(st[i]));
  12772. }
  12773. #endif
  12774. }
  12775. }
  12776. static void ggml_compute_forward_cross_entropy_loss(
  12777. const struct ggml_compute_params * params,
  12778. struct ggml_tensor * dst) {
  12779. const struct ggml_tensor * src0 = dst->src[0];
  12780. switch (src0->type) {
  12781. case GGML_TYPE_F32:
  12782. {
  12783. ggml_compute_forward_cross_entropy_loss_f32(params, dst);
  12784. } break;
  12785. default:
  12786. {
  12787. GGML_ASSERT(false);
  12788. } break;
  12789. }
  12790. }
  12791. // ggml_compute_forward_cross_entropy_loss_back
  12792. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  12793. const struct ggml_compute_params * params,
  12794. struct ggml_tensor * dst) {
  12795. const struct ggml_tensor * src0 = dst->src[0];
  12796. const struct ggml_tensor * src1 = dst->src[1];
  12797. const struct ggml_tensor * opt0 = dst->src[2];
  12798. GGML_ASSERT(ggml_is_contiguous(dst));
  12799. GGML_ASSERT(ggml_is_contiguous(src0));
  12800. GGML_ASSERT(ggml_is_contiguous(src1));
  12801. GGML_ASSERT(ggml_is_contiguous(opt0));
  12802. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12803. const int64_t ith = params->ith;
  12804. const int64_t nth = params->nth;
  12805. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12806. return;
  12807. }
  12808. const double eps = 1e-9;
  12809. // TODO: handle transposed/permuted matrices
  12810. const int64_t nc = src0->ne[0];
  12811. const int64_t nr = ggml_nrows(src0);
  12812. // rows per thread
  12813. const int64_t dr = (nr + nth - 1)/nth;
  12814. // row range for this thread
  12815. const int64_t ir0 = dr*ith;
  12816. const int64_t ir1 = MIN(ir0 + dr, nr);
  12817. float * d = (float *) opt0->data;
  12818. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  12819. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  12820. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12821. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12822. #ifndef NDEBUG
  12823. for (int i = 0; i < nc; ++i) {
  12824. //printf("p[%d] = %f\n", i, p[i]);
  12825. assert(!isnan(s0[i]));
  12826. assert(!isnan(s1[i]));
  12827. }
  12828. #endif
  12829. // soft_max
  12830. ggml_float sum = 0.0;
  12831. {
  12832. float max = -INFINITY;
  12833. ggml_vec_max_f32(nc, &max, s0);
  12834. uint16_t scvt; UNUSED(scvt);
  12835. for (int i = 0; i < nc; i++) {
  12836. if (s0[i] == -INFINITY) {
  12837. ds0[i] = 0.0f;
  12838. } else {
  12839. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12840. const float s = s0[i] - max;
  12841. const float val = expf(s);
  12842. #else
  12843. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12844. memcpy(&scvt, &s, sizeof(scvt));
  12845. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  12846. #endif
  12847. sum += (ggml_float)val;
  12848. ds0[i] = val;
  12849. }
  12850. }
  12851. assert(sum > 0.0);
  12852. sum = (1.0 - eps)/sum;
  12853. }
  12854. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  12855. ggml_vec_scale_f32(nc, ds0, sum);
  12856. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  12857. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  12858. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  12859. #ifndef NDEBUG
  12860. for (int i = 0; i < nc; ++i) {
  12861. assert(!isnan(ds0[i]));
  12862. assert(!isinf(ds0[i]));
  12863. }
  12864. #endif
  12865. }
  12866. }
  12867. static void ggml_compute_forward_cross_entropy_loss_back(
  12868. const struct ggml_compute_params * params,
  12869. struct ggml_tensor * dst) {
  12870. const struct ggml_tensor * src0 = dst->src[0];
  12871. switch (src0->type) {
  12872. case GGML_TYPE_F32:
  12873. {
  12874. ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
  12875. } break;
  12876. default:
  12877. {
  12878. GGML_ASSERT(false);
  12879. } break;
  12880. }
  12881. }
  12882. /////////////////////////////////
  12883. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  12884. GGML_ASSERT(params);
  12885. if (tensor->op == GGML_OP_NONE) {
  12886. return;
  12887. }
  12888. #ifdef GGML_USE_CUBLAS
  12889. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  12890. if (skip_cpu) {
  12891. return;
  12892. }
  12893. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_TYPE_CPU);
  12894. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_TYPE_CPU);
  12895. #elif defined(GGML_USE_VULKAN)
  12896. const bool skip_cpu = ggml_vk_compute_forward_cpu_assist(params, tensor);
  12897. #ifdef GGML_VULKAN_CHECK_RESULTS
  12898. if (skip_cpu) {
  12899. ggml_vk_check_results_1_cpu_assist(params, tensor);
  12900. }
  12901. #endif
  12902. if (skip_cpu) {
  12903. return;
  12904. }
  12905. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_TYPE_CPU);
  12906. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_TYPE_CPU);
  12907. #endif // GGML_USE_CUBLAS
  12908. #ifdef GGML_USE_SYCL
  12909. bool skip_cpu = ggml_sycl_compute_forward(params, tensor);
  12910. if (skip_cpu) {
  12911. return;
  12912. }
  12913. #endif // GGML_USE_SYCL
  12914. switch (tensor->op) {
  12915. case GGML_OP_DUP:
  12916. {
  12917. ggml_compute_forward_dup(params, tensor);
  12918. } break;
  12919. case GGML_OP_ADD:
  12920. {
  12921. ggml_compute_forward_add(params, tensor);
  12922. } break;
  12923. case GGML_OP_ADD1:
  12924. {
  12925. ggml_compute_forward_add1(params, tensor);
  12926. } break;
  12927. case GGML_OP_ACC:
  12928. {
  12929. ggml_compute_forward_acc(params, tensor);
  12930. } break;
  12931. case GGML_OP_SUB:
  12932. {
  12933. ggml_compute_forward_sub(params, tensor);
  12934. } break;
  12935. case GGML_OP_MUL:
  12936. {
  12937. ggml_compute_forward_mul(params, tensor);
  12938. } break;
  12939. case GGML_OP_DIV:
  12940. {
  12941. ggml_compute_forward_div(params, tensor);
  12942. } break;
  12943. case GGML_OP_SQR:
  12944. {
  12945. ggml_compute_forward_sqr(params, tensor);
  12946. } break;
  12947. case GGML_OP_SQRT:
  12948. {
  12949. ggml_compute_forward_sqrt(params, tensor);
  12950. } break;
  12951. case GGML_OP_LOG:
  12952. {
  12953. ggml_compute_forward_log(params, tensor);
  12954. } break;
  12955. case GGML_OP_SUM:
  12956. {
  12957. ggml_compute_forward_sum(params, tensor);
  12958. } break;
  12959. case GGML_OP_SUM_ROWS:
  12960. {
  12961. ggml_compute_forward_sum_rows(params, tensor);
  12962. } break;
  12963. case GGML_OP_MEAN:
  12964. {
  12965. ggml_compute_forward_mean(params, tensor);
  12966. } break;
  12967. case GGML_OP_ARGMAX:
  12968. {
  12969. ggml_compute_forward_argmax(params, tensor);
  12970. } break;
  12971. case GGML_OP_REPEAT:
  12972. {
  12973. ggml_compute_forward_repeat(params, tensor);
  12974. } break;
  12975. case GGML_OP_REPEAT_BACK:
  12976. {
  12977. ggml_compute_forward_repeat_back(params, tensor);
  12978. } break;
  12979. case GGML_OP_CONCAT:
  12980. {
  12981. ggml_compute_forward_concat(params, tensor);
  12982. } break;
  12983. case GGML_OP_SILU_BACK:
  12984. {
  12985. ggml_compute_forward_silu_back(params, tensor);
  12986. } break;
  12987. case GGML_OP_NORM:
  12988. {
  12989. ggml_compute_forward_norm(params, tensor);
  12990. } break;
  12991. case GGML_OP_RMS_NORM:
  12992. {
  12993. ggml_compute_forward_rms_norm(params, tensor);
  12994. } break;
  12995. case GGML_OP_RMS_NORM_BACK:
  12996. {
  12997. ggml_compute_forward_rms_norm_back(params, tensor);
  12998. } break;
  12999. case GGML_OP_GROUP_NORM:
  13000. {
  13001. ggml_compute_forward_group_norm(params, tensor);
  13002. } break;
  13003. case GGML_OP_MUL_MAT:
  13004. {
  13005. ggml_compute_forward_mul_mat(params, tensor);
  13006. } break;
  13007. case GGML_OP_MUL_MAT_ID:
  13008. {
  13009. ggml_compute_forward_mul_mat_id(params, tensor);
  13010. } break;
  13011. case GGML_OP_OUT_PROD:
  13012. {
  13013. ggml_compute_forward_out_prod(params, tensor);
  13014. } break;
  13015. case GGML_OP_SCALE:
  13016. {
  13017. ggml_compute_forward_scale(params, tensor);
  13018. } break;
  13019. case GGML_OP_SET:
  13020. {
  13021. ggml_compute_forward_set(params, tensor);
  13022. } break;
  13023. case GGML_OP_CPY:
  13024. {
  13025. ggml_compute_forward_cpy(params, tensor);
  13026. } break;
  13027. case GGML_OP_CONT:
  13028. {
  13029. ggml_compute_forward_cont(params, tensor);
  13030. } break;
  13031. case GGML_OP_RESHAPE:
  13032. {
  13033. ggml_compute_forward_reshape(params, tensor);
  13034. } break;
  13035. case GGML_OP_VIEW:
  13036. {
  13037. ggml_compute_forward_view(params, tensor);
  13038. } break;
  13039. case GGML_OP_PERMUTE:
  13040. {
  13041. ggml_compute_forward_permute(params, tensor);
  13042. } break;
  13043. case GGML_OP_TRANSPOSE:
  13044. {
  13045. ggml_compute_forward_transpose(params, tensor);
  13046. } break;
  13047. case GGML_OP_GET_ROWS:
  13048. {
  13049. ggml_compute_forward_get_rows(params, tensor);
  13050. } break;
  13051. case GGML_OP_GET_ROWS_BACK:
  13052. {
  13053. ggml_compute_forward_get_rows_back(params, tensor);
  13054. } break;
  13055. case GGML_OP_DIAG:
  13056. {
  13057. ggml_compute_forward_diag(params, tensor);
  13058. } break;
  13059. case GGML_OP_DIAG_MASK_INF:
  13060. {
  13061. ggml_compute_forward_diag_mask_inf(params, tensor);
  13062. } break;
  13063. case GGML_OP_DIAG_MASK_ZERO:
  13064. {
  13065. ggml_compute_forward_diag_mask_zero(params, tensor);
  13066. } break;
  13067. case GGML_OP_SOFT_MAX:
  13068. {
  13069. ggml_compute_forward_soft_max(params, tensor);
  13070. } break;
  13071. case GGML_OP_SOFT_MAX_BACK:
  13072. {
  13073. ggml_compute_forward_soft_max_back(params, tensor);
  13074. } break;
  13075. case GGML_OP_ROPE:
  13076. {
  13077. ggml_compute_forward_rope(params, tensor);
  13078. } break;
  13079. case GGML_OP_ROPE_BACK:
  13080. {
  13081. ggml_compute_forward_rope_back(params, tensor);
  13082. } break;
  13083. case GGML_OP_ALIBI:
  13084. {
  13085. ggml_compute_forward_alibi(params, tensor);
  13086. } break;
  13087. case GGML_OP_CLAMP:
  13088. {
  13089. ggml_compute_forward_clamp(params, tensor);
  13090. } break;
  13091. case GGML_OP_CONV_TRANSPOSE_1D:
  13092. {
  13093. ggml_compute_forward_conv_transpose_1d(params, tensor);
  13094. } break;
  13095. case GGML_OP_IM2COL:
  13096. {
  13097. ggml_compute_forward_im2col(params, tensor);
  13098. } break;
  13099. case GGML_OP_CONV_TRANSPOSE_2D:
  13100. {
  13101. ggml_compute_forward_conv_transpose_2d(params, tensor);
  13102. } break;
  13103. case GGML_OP_POOL_1D:
  13104. {
  13105. ggml_compute_forward_pool_1d(params, tensor);
  13106. } break;
  13107. case GGML_OP_POOL_2D:
  13108. {
  13109. ggml_compute_forward_pool_2d(params, tensor);
  13110. } break;
  13111. case GGML_OP_UPSCALE:
  13112. {
  13113. ggml_compute_forward_upscale(params, tensor);
  13114. } break;
  13115. case GGML_OP_PAD:
  13116. {
  13117. ggml_compute_forward_pad(params, tensor);
  13118. } break;
  13119. case GGML_OP_ARANGE:
  13120. {
  13121. ggml_compute_forward_arange(params, tensor);
  13122. } break;
  13123. case GGML_OP_TIMESTEP_EMBEDDING:
  13124. {
  13125. ggml_compute_forward_timestep_embedding(params, tensor);
  13126. } break;
  13127. case GGML_OP_ARGSORT:
  13128. {
  13129. ggml_compute_forward_argsort(params, tensor);
  13130. } break;
  13131. case GGML_OP_LEAKY_RELU:
  13132. {
  13133. ggml_compute_forward_leaky_relu(params, tensor);
  13134. } break;
  13135. case GGML_OP_FLASH_ATTN:
  13136. {
  13137. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  13138. GGML_ASSERT(t == 0 || t == 1);
  13139. const bool masked = t != 0;
  13140. ggml_compute_forward_flash_attn(params, masked, tensor);
  13141. } break;
  13142. case GGML_OP_FLASH_FF:
  13143. {
  13144. ggml_compute_forward_flash_ff(params, tensor);
  13145. } break;
  13146. case GGML_OP_FLASH_ATTN_BACK:
  13147. {
  13148. int32_t t = ggml_get_op_params_i32(tensor, 0);
  13149. GGML_ASSERT(t == 0 || t == 1);
  13150. bool masked = t != 0;
  13151. ggml_compute_forward_flash_attn_back(params, masked, tensor);
  13152. } break;
  13153. case GGML_OP_SSM_CONV:
  13154. {
  13155. ggml_compute_forward_ssm_conv(params, tensor);
  13156. } break;
  13157. case GGML_OP_SSM_SCAN:
  13158. {
  13159. ggml_compute_forward_ssm_scan(params, tensor);
  13160. } break;
  13161. case GGML_OP_WIN_PART:
  13162. {
  13163. ggml_compute_forward_win_part(params, tensor);
  13164. } break;
  13165. case GGML_OP_WIN_UNPART:
  13166. {
  13167. ggml_compute_forward_win_unpart(params, tensor);
  13168. } break;
  13169. case GGML_OP_UNARY:
  13170. {
  13171. ggml_compute_forward_unary(params, tensor);
  13172. } break;
  13173. case GGML_OP_GET_REL_POS:
  13174. {
  13175. ggml_compute_forward_get_rel_pos(params, tensor);
  13176. } break;
  13177. case GGML_OP_ADD_REL_POS:
  13178. {
  13179. ggml_compute_forward_add_rel_pos(params, tensor);
  13180. } break;
  13181. case GGML_OP_MAP_UNARY:
  13182. {
  13183. ggml_unary_op_f32_t fun;
  13184. memcpy(&fun, tensor->op_params, sizeof(fun));
  13185. ggml_compute_forward_map_unary(params, tensor, fun);
  13186. }
  13187. break;
  13188. case GGML_OP_MAP_BINARY:
  13189. {
  13190. ggml_binary_op_f32_t fun;
  13191. memcpy(&fun, tensor->op_params, sizeof(fun));
  13192. ggml_compute_forward_map_binary(params, tensor, fun);
  13193. }
  13194. break;
  13195. case GGML_OP_MAP_CUSTOM1_F32:
  13196. {
  13197. ggml_custom1_op_f32_t fun;
  13198. memcpy(&fun, tensor->op_params, sizeof(fun));
  13199. ggml_compute_forward_map_custom1_f32(params, tensor, fun);
  13200. }
  13201. break;
  13202. case GGML_OP_MAP_CUSTOM2_F32:
  13203. {
  13204. ggml_custom2_op_f32_t fun;
  13205. memcpy(&fun, tensor->op_params, sizeof(fun));
  13206. ggml_compute_forward_map_custom2_f32(params, tensor, fun);
  13207. }
  13208. break;
  13209. case GGML_OP_MAP_CUSTOM3_F32:
  13210. {
  13211. ggml_custom3_op_f32_t fun;
  13212. memcpy(&fun, tensor->op_params, sizeof(fun));
  13213. ggml_compute_forward_map_custom3_f32(params, tensor, fun);
  13214. }
  13215. break;
  13216. case GGML_OP_MAP_CUSTOM1:
  13217. {
  13218. ggml_compute_forward_map_custom1(params, tensor);
  13219. }
  13220. break;
  13221. case GGML_OP_MAP_CUSTOM2:
  13222. {
  13223. ggml_compute_forward_map_custom2(params, tensor);
  13224. }
  13225. break;
  13226. case GGML_OP_MAP_CUSTOM3:
  13227. {
  13228. ggml_compute_forward_map_custom3(params, tensor);
  13229. }
  13230. break;
  13231. case GGML_OP_CROSS_ENTROPY_LOSS:
  13232. {
  13233. ggml_compute_forward_cross_entropy_loss(params, tensor);
  13234. }
  13235. break;
  13236. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13237. {
  13238. ggml_compute_forward_cross_entropy_loss_back(params, tensor);
  13239. }
  13240. break;
  13241. case GGML_OP_NONE:
  13242. {
  13243. // nop
  13244. } break;
  13245. case GGML_OP_COUNT:
  13246. {
  13247. GGML_ASSERT(false);
  13248. } break;
  13249. }
  13250. }
  13251. ////////////////////////////////////////////////////////////////////////////////
  13252. static size_t ggml_hash_size(size_t min_sz) {
  13253. // next primes after powers of two
  13254. static const size_t primes[] = {
  13255. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  13256. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  13257. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  13258. 16777259, 33554467, 67108879, 134217757, 268435459,
  13259. 536870923, 1073741827, 2147483659
  13260. };
  13261. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  13262. // find the smallest prime that is larger or equal to min_sz
  13263. size_t l = 0;
  13264. size_t r = n_primes;
  13265. while (l < r) {
  13266. size_t m = (l + r)/2;
  13267. if (primes[m] < min_sz) {
  13268. l = m + 1;
  13269. } else {
  13270. r = m;
  13271. }
  13272. }
  13273. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  13274. return sz;
  13275. }
  13276. static size_t ggml_hash(const void * p) {
  13277. return (size_t)p;
  13278. }
  13279. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13280. size_t h = ggml_hash(key) % hash_set.size;
  13281. // linear probing
  13282. size_t i = h;
  13283. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  13284. i = (i + 1) % hash_set.size;
  13285. if (i == h) {
  13286. // visited all hash table entries -> not found
  13287. return GGML_HASHTABLE_FULL;
  13288. }
  13289. }
  13290. return i;
  13291. }
  13292. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13293. size_t i = ggml_hash_find(hash_set, key);
  13294. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  13295. }
  13296. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13297. size_t i = ggml_hash_find(hash_set, key);
  13298. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  13299. if (hash_set.keys[i] == key) {
  13300. return GGML_HASHTABLE_ALREADY_EXISTS;
  13301. }
  13302. // insert
  13303. GGML_ASSERT(hash_set.keys[i] == NULL);
  13304. hash_set.keys[i] = key;
  13305. return i;
  13306. }
  13307. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13308. size_t i = ggml_hash_find(hash_set, key);
  13309. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  13310. hash_set.keys[i] = key;
  13311. return i;
  13312. }
  13313. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  13314. size = ggml_hash_size(size);
  13315. struct ggml_hash_set result;
  13316. result.size = size;
  13317. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  13318. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  13319. return result;
  13320. }
  13321. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  13322. GGML_FREE(hash_set.keys);
  13323. }
  13324. struct hash_map {
  13325. struct ggml_hash_set set;
  13326. struct ggml_tensor ** vals;
  13327. };
  13328. static struct hash_map * ggml_new_hash_map(size_t size) {
  13329. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  13330. result->set = ggml_hash_set_new(size);
  13331. result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size);
  13332. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  13333. return result;
  13334. }
  13335. static void ggml_hash_map_free(struct hash_map * map) {
  13336. ggml_hash_set_free(map->set);
  13337. GGML_FREE(map->vals);
  13338. GGML_FREE(map);
  13339. }
  13340. // gradient checkpointing
  13341. static struct ggml_tensor * ggml_recompute_graph_node(
  13342. struct ggml_context * ctx,
  13343. struct ggml_cgraph * graph,
  13344. struct hash_map * replacements,
  13345. struct ggml_tensor * node) {
  13346. if (node == NULL) {
  13347. return NULL;
  13348. }
  13349. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  13350. return node;
  13351. }
  13352. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  13353. return node;
  13354. }
  13355. int count_children = 0;
  13356. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13357. if (node->src[k]) {
  13358. ++count_children;
  13359. }
  13360. }
  13361. if (count_children == 0) {
  13362. return node;
  13363. }
  13364. size_t i = ggml_hash_find(replacements->set, node);
  13365. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  13366. if (replacements->set.keys[i] == node) {
  13367. return replacements->vals[i];
  13368. }
  13369. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  13370. // insert clone into replacements
  13371. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  13372. replacements->set.keys[i] = node;
  13373. replacements->vals[i] = clone;
  13374. clone->op = node->op;
  13375. clone->grad = node->grad;
  13376. clone->flags = node->flags;
  13377. clone->extra = node->extra;
  13378. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  13379. clone->nb[k] = node->nb[k];
  13380. }
  13381. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13382. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  13383. }
  13384. if (node->view_src != NULL) {
  13385. clone->data = (node->view_src->data == NULL)
  13386. ? NULL // view_src not yet allocated
  13387. : (char *) node->view_src->data // view_src already allocated
  13388. + node->view_offs;
  13389. clone->view_src = node->view_src;
  13390. clone->view_offs = node->view_offs;
  13391. }
  13392. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  13393. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  13394. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  13395. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  13396. return clone;
  13397. }
  13398. void ggml_build_backward_gradient_checkpointing(
  13399. struct ggml_context * ctx,
  13400. struct ggml_cgraph * gf,
  13401. struct ggml_cgraph * gb,
  13402. struct ggml_cgraph * gb_tmp,
  13403. struct ggml_tensor * * checkpoints,
  13404. int n_checkpoints) {
  13405. ggml_graph_cpy(gf, gb_tmp);
  13406. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  13407. if (n_checkpoints <= 0) {
  13408. ggml_graph_cpy(gb_tmp, gb);
  13409. return;
  13410. }
  13411. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  13412. // insert checkpoints in replacements
  13413. for (int i = 0; i < n_checkpoints; ++i) {
  13414. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  13415. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  13416. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  13417. replacements->set.keys[k] = checkpoints[i];
  13418. replacements->vals[k] = checkpoints[i];
  13419. }
  13420. ggml_graph_cpy(gf, gb);
  13421. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  13422. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  13423. // by recomputing them from checkpoints
  13424. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  13425. struct ggml_tensor * node = gb_tmp->nodes[i];
  13426. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13427. // insert new tensors recomputing src, reusing already made replacements,
  13428. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  13429. // recurse for input tensors,
  13430. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  13431. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  13432. }
  13433. // insert rewritten backward node with replacements made into resulting backward graph gb
  13434. ggml_build_forward_expand(gb, node);
  13435. }
  13436. ggml_hash_map_free(replacements);
  13437. }
  13438. // functions to change gradients considering the case that input a might be initial gradient with zero value
  13439. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  13440. if (ggml_hash_contains(zero_table, a)) {
  13441. return b;
  13442. } else {
  13443. return ggml_add_impl(ctx, a, b, false);
  13444. }
  13445. }
  13446. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  13447. if (ggml_hash_contains(zero_table, a)) {
  13448. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  13449. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  13450. } else {
  13451. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  13452. }
  13453. }
  13454. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  13455. if (ggml_hash_contains(zero_table, a)) {
  13456. return ggml_repeat(ctx, b, a);
  13457. } else {
  13458. return ggml_add1_impl(ctx, a, b, false);
  13459. }
  13460. }
  13461. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  13462. if (ggml_hash_contains(zero_table, a)) {
  13463. return ggml_neg(ctx, b);
  13464. } else {
  13465. return ggml_sub_impl(ctx, a, b, false);
  13466. }
  13467. }
  13468. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  13469. struct ggml_tensor * src0 = tensor->src[0];
  13470. struct ggml_tensor * src1 = tensor->src[1];
  13471. switch (tensor->op) {
  13472. case GGML_OP_DUP:
  13473. {
  13474. if (src0->grad) {
  13475. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13476. }
  13477. } break;
  13478. case GGML_OP_ADD:
  13479. {
  13480. if (src0->grad) {
  13481. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13482. }
  13483. if (src1->grad) {
  13484. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  13485. }
  13486. } break;
  13487. case GGML_OP_ADD1:
  13488. {
  13489. if (src0->grad) {
  13490. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13491. }
  13492. if (src1->grad) {
  13493. src1->grad = ggml_add_or_set(ctx,
  13494. src1->grad,
  13495. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  13496. zero_table);
  13497. }
  13498. } break;
  13499. case GGML_OP_ACC:
  13500. {
  13501. if (src0->grad) {
  13502. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13503. }
  13504. if (src1->grad) {
  13505. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13506. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13507. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13508. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13509. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  13510. tensor->grad,
  13511. src1->grad->ne[0],
  13512. src1->grad->ne[1],
  13513. src1->grad->ne[2],
  13514. src1->grad->ne[3],
  13515. nb1, nb2, nb3, offset);
  13516. src1->grad =
  13517. ggml_add_or_set(ctx,
  13518. src1->grad,
  13519. ggml_reshape(ctx,
  13520. ggml_cont(ctx, tensor_grad_view),
  13521. src1->grad),
  13522. zero_table);
  13523. }
  13524. } break;
  13525. case GGML_OP_SUB:
  13526. {
  13527. if (src0->grad) {
  13528. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13529. }
  13530. if (src1->grad) {
  13531. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  13532. }
  13533. } break;
  13534. case GGML_OP_MUL:
  13535. {
  13536. if (src0->grad) {
  13537. src0->grad =
  13538. ggml_add_or_set(ctx,
  13539. src0->grad,
  13540. ggml_mul(ctx, src1, tensor->grad),
  13541. zero_table);
  13542. }
  13543. if (src1->grad) {
  13544. src1->grad =
  13545. ggml_add_or_set(ctx,
  13546. src1->grad,
  13547. ggml_mul(ctx, src0, tensor->grad),
  13548. zero_table);
  13549. }
  13550. } break;
  13551. case GGML_OP_DIV:
  13552. {
  13553. if (src0->grad) {
  13554. src0->grad =
  13555. ggml_add_or_set(ctx,
  13556. src0->grad,
  13557. ggml_div(ctx, tensor->grad, src1),
  13558. zero_table);
  13559. }
  13560. if (src1->grad) {
  13561. src1->grad =
  13562. ggml_sub_or_set(ctx,
  13563. src1->grad,
  13564. ggml_mul(ctx,
  13565. tensor->grad,
  13566. ggml_div(ctx, tensor, src1)),
  13567. zero_table);
  13568. }
  13569. } break;
  13570. case GGML_OP_SQR:
  13571. {
  13572. if (src0->grad) {
  13573. src0->grad =
  13574. ggml_add_or_set(ctx,
  13575. src0->grad,
  13576. ggml_scale(ctx,
  13577. ggml_mul(ctx, src0, tensor->grad),
  13578. 2.0f),
  13579. zero_table);
  13580. }
  13581. } break;
  13582. case GGML_OP_SQRT:
  13583. {
  13584. if (src0->grad) {
  13585. src0->grad =
  13586. ggml_add_or_set(ctx,
  13587. src0->grad,
  13588. ggml_scale(ctx,
  13589. ggml_div(ctx,
  13590. tensor->grad,
  13591. tensor),
  13592. 0.5f),
  13593. zero_table);
  13594. }
  13595. } break;
  13596. case GGML_OP_LOG:
  13597. {
  13598. if (src0->grad) {
  13599. src0->grad =
  13600. ggml_add_or_set(ctx,
  13601. src0->grad,
  13602. ggml_div(ctx,
  13603. tensor->grad,
  13604. src0),
  13605. zero_table);
  13606. }
  13607. } break;
  13608. case GGML_OP_SUM:
  13609. {
  13610. if (src0->grad) {
  13611. src0->grad =
  13612. ggml_add1_or_set(ctx,
  13613. src0->grad,
  13614. tensor->grad,
  13615. zero_table);
  13616. }
  13617. } break;
  13618. case GGML_OP_SUM_ROWS:
  13619. {
  13620. if (src0->grad) {
  13621. src0->grad =
  13622. ggml_add_or_set(ctx,
  13623. src0->grad,
  13624. ggml_repeat(ctx,
  13625. tensor->grad,
  13626. src0->grad),
  13627. zero_table);
  13628. }
  13629. } break;
  13630. case GGML_OP_MEAN:
  13631. case GGML_OP_ARGMAX:
  13632. {
  13633. GGML_ASSERT(false); // TODO: implement
  13634. } break;
  13635. case GGML_OP_REPEAT:
  13636. {
  13637. // necessary for llama
  13638. if (src0->grad) {
  13639. src0->grad = ggml_add_or_set(ctx,
  13640. src0->grad,
  13641. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  13642. zero_table);
  13643. }
  13644. } break;
  13645. case GGML_OP_REPEAT_BACK:
  13646. {
  13647. if (src0->grad) {
  13648. // TODO: test this
  13649. src0->grad = ggml_add_or_set(ctx,
  13650. src0->grad,
  13651. ggml_repeat(ctx, tensor->grad, src0->grad),
  13652. zero_table);
  13653. }
  13654. } break;
  13655. case GGML_OP_CONCAT:
  13656. {
  13657. GGML_ASSERT(false); // TODO: implement
  13658. } break;
  13659. case GGML_OP_SILU_BACK:
  13660. {
  13661. GGML_ASSERT(false); // TODO: not implemented
  13662. } break;
  13663. case GGML_OP_NORM:
  13664. {
  13665. GGML_ASSERT(false); // TODO: not implemented
  13666. } break;
  13667. case GGML_OP_RMS_NORM:
  13668. {
  13669. // necessary for llama
  13670. if (src0->grad) {
  13671. float eps;
  13672. memcpy(&eps, tensor->op_params, sizeof(float));
  13673. src0->grad = ggml_add_or_set(ctx,
  13674. src0->grad,
  13675. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  13676. zero_table);
  13677. }
  13678. } break;
  13679. case GGML_OP_RMS_NORM_BACK:
  13680. {
  13681. GGML_ASSERT(false); // TODO: not implemented
  13682. } break;
  13683. case GGML_OP_GROUP_NORM:
  13684. {
  13685. GGML_ASSERT(false); // TODO: not implemented
  13686. } break;
  13687. case GGML_OP_MUL_MAT:
  13688. {
  13689. // https://cs231n.github.io/optimization-2/#staged
  13690. // # forward pass
  13691. // s0 = np.random.randn(5, 10)
  13692. // s1 = np.random.randn(10, 3)
  13693. // t = s0.dot(s1)
  13694. // # now suppose we had the gradient on t from above in the circuit
  13695. // dt = np.random.randn(*t.shape) # same shape as t
  13696. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  13697. // ds1 = t.T.dot(dt)
  13698. // tensor.shape [m,p,qq,rr]
  13699. // src0.shape [n,m,q1,r1]
  13700. // src1.shape [n,p,qq,rr]
  13701. // necessary for llama
  13702. if (src0->grad) {
  13703. struct ggml_tensor * s1_tg =
  13704. ggml_out_prod(ctx, // [n,m,qq,rr]
  13705. src1, // [n,p,qq,rr]
  13706. tensor->grad); // [m,p,qq,rr]
  13707. const int64_t qq = s1_tg->ne[2];
  13708. const int64_t rr = s1_tg->ne[3];
  13709. const int64_t q1 = src0->ne[2];
  13710. const int64_t r1 = src0->ne[3];
  13711. const bool ne2_broadcasted = qq > q1;
  13712. const bool ne3_broadcasted = rr > r1;
  13713. if (ne2_broadcasted || ne3_broadcasted) {
  13714. // sum broadcast repetitions of s1_tg into shape of src0
  13715. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  13716. }
  13717. src0->grad =
  13718. ggml_add_or_set(ctx,
  13719. src0->grad, // [n,m,q1,r1]
  13720. s1_tg, // [n,m,q1,r1]
  13721. zero_table);
  13722. }
  13723. if (src1->grad) {
  13724. src1->grad =
  13725. ggml_add_or_set(ctx,
  13726. src1->grad, // [n,p,qq,rr]
  13727. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  13728. // ggml_cont(ctx, // [m,n,q1,r1]
  13729. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  13730. // tensor->grad), // [m,p,qq,rr]
  13731. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  13732. // // avoid transpose of src0, rather transpose smaller tensor->grad
  13733. // // and then use ggml_out_prod
  13734. ggml_out_prod(ctx, // [n,p,qq,rr]
  13735. src0, // [n,m,q1,r1]
  13736. ggml_transpose(ctx, // [p,m,qq,rr]
  13737. tensor->grad)), // [m,p,qq,rr]
  13738. zero_table);
  13739. }
  13740. } break;
  13741. case GGML_OP_MUL_MAT_ID:
  13742. {
  13743. GGML_ASSERT(false); // TODO: not implemented
  13744. } break;
  13745. case GGML_OP_OUT_PROD:
  13746. {
  13747. GGML_ASSERT(false); // TODO: not implemented
  13748. } break;
  13749. case GGML_OP_SCALE:
  13750. {
  13751. // necessary for llama
  13752. if (src0->grad) {
  13753. float s;
  13754. memcpy(&s, tensor->op_params, sizeof(float));
  13755. src0->grad =
  13756. ggml_add_or_set(ctx,
  13757. src0->grad,
  13758. ggml_scale_impl(ctx, tensor->grad, s, false),
  13759. zero_table);
  13760. }
  13761. } break;
  13762. case GGML_OP_SET:
  13763. {
  13764. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13765. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13766. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13767. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13768. struct ggml_tensor * tensor_grad_view = NULL;
  13769. if (src0->grad || src1->grad) {
  13770. GGML_ASSERT(src0->type == tensor->type);
  13771. GGML_ASSERT(tensor->grad->type == tensor->type);
  13772. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  13773. tensor_grad_view = ggml_view_4d(ctx,
  13774. tensor->grad,
  13775. src1->grad->ne[0],
  13776. src1->grad->ne[1],
  13777. src1->grad->ne[2],
  13778. src1->grad->ne[3],
  13779. nb1, nb2, nb3, offset);
  13780. }
  13781. if (src0->grad) {
  13782. src0->grad = ggml_add_or_set(ctx,
  13783. src0->grad,
  13784. ggml_acc_impl(ctx,
  13785. tensor->grad,
  13786. ggml_neg(ctx, tensor_grad_view),
  13787. nb1, nb2, nb3, offset, false),
  13788. zero_table);
  13789. }
  13790. if (src1->grad) {
  13791. src1->grad =
  13792. ggml_add_or_set(ctx,
  13793. src1->grad,
  13794. ggml_reshape(ctx,
  13795. ggml_cont(ctx, tensor_grad_view),
  13796. src1->grad),
  13797. zero_table);
  13798. }
  13799. } break;
  13800. case GGML_OP_CPY:
  13801. {
  13802. // necessary for llama
  13803. // cpy overwrites value of src1 by src0 and returns view(src1)
  13804. // the overwriting is mathematically equivalent to:
  13805. // tensor = src0 * 1 + src1 * 0
  13806. if (src0->grad) {
  13807. // dsrc0 = dtensor * 1
  13808. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13809. }
  13810. if (src1->grad) {
  13811. // dsrc1 = dtensor * 0 -> noop
  13812. }
  13813. } break;
  13814. case GGML_OP_CONT:
  13815. {
  13816. // same as cpy
  13817. if (src0->grad) {
  13818. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  13819. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  13820. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13821. }
  13822. } break;
  13823. case GGML_OP_RESHAPE:
  13824. {
  13825. // necessary for llama
  13826. if (src0->grad) {
  13827. src0->grad =
  13828. ggml_add_or_set(ctx, src0->grad,
  13829. ggml_reshape(ctx,
  13830. ggml_is_contiguous(tensor->grad)
  13831. ? tensor->grad
  13832. : ggml_cont(ctx, tensor->grad),
  13833. src0->grad),
  13834. zero_table);
  13835. }
  13836. } break;
  13837. case GGML_OP_VIEW:
  13838. {
  13839. // necessary for llama
  13840. if (src0->grad) {
  13841. size_t offset;
  13842. memcpy(&offset, tensor->op_params, sizeof(offset));
  13843. size_t nb1 = tensor->nb[1];
  13844. size_t nb2 = tensor->nb[2];
  13845. size_t nb3 = tensor->nb[3];
  13846. if (src0->type != src0->grad->type) {
  13847. // gradient is typically F32, but src0 could be other type
  13848. size_t ng = ggml_element_size(src0->grad);
  13849. size_t n0 = ggml_element_size(src0);
  13850. GGML_ASSERT(offset % n0 == 0);
  13851. GGML_ASSERT(nb1 % n0 == 0);
  13852. GGML_ASSERT(nb2 % n0 == 0);
  13853. GGML_ASSERT(nb3 % n0 == 0);
  13854. offset = (offset / n0) * ng;
  13855. nb1 = (nb1 / n0) * ng;
  13856. nb2 = (nb2 / n0) * ng;
  13857. nb3 = (nb3 / n0) * ng;
  13858. }
  13859. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  13860. }
  13861. } break;
  13862. case GGML_OP_PERMUTE:
  13863. {
  13864. // necessary for llama
  13865. if (src0->grad) {
  13866. int32_t * axes = (int32_t *) tensor->op_params;
  13867. int axis0 = axes[0] & 0x3;
  13868. int axis1 = axes[1] & 0x3;
  13869. int axis2 = axes[2] & 0x3;
  13870. int axis3 = axes[3] & 0x3;
  13871. int axes_backward[4] = {0,0,0,0};
  13872. axes_backward[axis0] = 0;
  13873. axes_backward[axis1] = 1;
  13874. axes_backward[axis2] = 2;
  13875. axes_backward[axis3] = 3;
  13876. src0->grad =
  13877. ggml_add_or_set(ctx, src0->grad,
  13878. ggml_permute(ctx,
  13879. tensor->grad,
  13880. axes_backward[0],
  13881. axes_backward[1],
  13882. axes_backward[2],
  13883. axes_backward[3]),
  13884. zero_table);
  13885. }
  13886. } break;
  13887. case GGML_OP_TRANSPOSE:
  13888. {
  13889. // necessary for llama
  13890. if (src0->grad) {
  13891. src0->grad =
  13892. ggml_add_or_set(ctx, src0->grad,
  13893. ggml_transpose(ctx, tensor->grad),
  13894. zero_table);
  13895. }
  13896. } break;
  13897. case GGML_OP_GET_ROWS:
  13898. {
  13899. // necessary for llama (only for tokenizer)
  13900. if (src0->grad) {
  13901. src0->grad =
  13902. ggml_add_or_set(ctx, src0->grad,
  13903. // last ggml_get_rows_back argument src0->grad is only
  13904. // necessary to setup correct output shape
  13905. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  13906. zero_table);
  13907. }
  13908. if (src1->grad) {
  13909. // noop
  13910. }
  13911. } break;
  13912. case GGML_OP_GET_ROWS_BACK:
  13913. {
  13914. GGML_ASSERT(false); // TODO: not implemented
  13915. } break;
  13916. case GGML_OP_DIAG:
  13917. {
  13918. GGML_ASSERT(false); // TODO: not implemented
  13919. } break;
  13920. case GGML_OP_DIAG_MASK_INF:
  13921. {
  13922. // necessary for llama
  13923. if (src0->grad) {
  13924. const int n_past = ((int32_t *) tensor->op_params)[0];
  13925. src0->grad =
  13926. ggml_add_or_set(ctx, src0->grad,
  13927. /* ggml_diag_mask_inf_impl() shouldn't be here */
  13928. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  13929. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13930. zero_table);
  13931. }
  13932. } break;
  13933. case GGML_OP_DIAG_MASK_ZERO:
  13934. {
  13935. // necessary for llama
  13936. if (src0->grad) {
  13937. const int n_past = ((int32_t *) tensor->op_params)[0];
  13938. src0->grad =
  13939. ggml_add_or_set(ctx, src0->grad,
  13940. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13941. zero_table);
  13942. }
  13943. } break;
  13944. case GGML_OP_SOFT_MAX:
  13945. {
  13946. // necessary for llama
  13947. if (src0->grad) {
  13948. src0->grad =
  13949. ggml_add_or_set(ctx, src0->grad,
  13950. ggml_soft_max_back(ctx, tensor->grad, tensor),
  13951. zero_table);
  13952. }
  13953. } break;
  13954. case GGML_OP_SOFT_MAX_BACK:
  13955. {
  13956. GGML_ASSERT(false); // TODO: not implemented
  13957. } break;
  13958. case GGML_OP_ROPE:
  13959. {
  13960. // necessary for llama
  13961. if (src0->grad) {
  13962. //const int n_past = ((int32_t *) tensor->op_params)[0];
  13963. const int n_dims = ((int32_t *) tensor->op_params)[1];
  13964. const int mode = ((int32_t *) tensor->op_params)[2];
  13965. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  13966. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  13967. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  13968. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  13969. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  13970. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  13971. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  13972. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  13973. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  13974. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  13975. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  13976. src0->grad = ggml_add_or_set(ctx,
  13977. src0->grad,
  13978. ggml_rope_back(ctx,
  13979. tensor->grad,
  13980. src1,
  13981. n_dims,
  13982. mode,
  13983. n_ctx,
  13984. n_orig_ctx,
  13985. freq_base,
  13986. freq_scale,
  13987. ext_factor,
  13988. attn_factor,
  13989. beta_fast,
  13990. beta_slow,
  13991. xpos_base,
  13992. xpos_down),
  13993. zero_table);
  13994. }
  13995. } break;
  13996. case GGML_OP_ROPE_BACK:
  13997. {
  13998. if (src0->grad) {
  13999. //const int n_past = ((int32_t *) tensor->op_params)[0];
  14000. const int n_dims = ((int32_t *) tensor->op_params)[1];
  14001. const int mode = ((int32_t *) tensor->op_params)[2];
  14002. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  14003. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  14004. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  14005. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  14006. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  14007. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  14008. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  14009. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  14010. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  14011. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  14012. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  14013. src0->grad = ggml_add_or_set(ctx,
  14014. src0->grad,
  14015. ggml_rope_impl(ctx,
  14016. tensor->grad,
  14017. src1,
  14018. n_dims,
  14019. mode,
  14020. n_ctx,
  14021. n_orig_ctx,
  14022. freq_base,
  14023. freq_scale,
  14024. ext_factor,
  14025. attn_factor,
  14026. beta_fast,
  14027. beta_slow,
  14028. xpos_base,
  14029. xpos_down,
  14030. false),
  14031. zero_table);
  14032. }
  14033. } break;
  14034. case GGML_OP_ALIBI:
  14035. {
  14036. GGML_ASSERT(false); // TODO: not implemented
  14037. } break;
  14038. case GGML_OP_CLAMP:
  14039. {
  14040. GGML_ASSERT(false); // TODO: not implemented
  14041. } break;
  14042. case GGML_OP_CONV_TRANSPOSE_1D:
  14043. {
  14044. GGML_ASSERT(false); // TODO: not implemented
  14045. } break;
  14046. case GGML_OP_IM2COL:
  14047. {
  14048. GGML_ASSERT(false); // TODO: not implemented
  14049. } break;
  14050. case GGML_OP_CONV_TRANSPOSE_2D:
  14051. {
  14052. GGML_ASSERT(false); // TODO: not implemented
  14053. } break;
  14054. case GGML_OP_POOL_1D:
  14055. {
  14056. GGML_ASSERT(false); // TODO: not implemented
  14057. } break;
  14058. case GGML_OP_POOL_2D:
  14059. {
  14060. GGML_ASSERT(false); // TODO: not implemented
  14061. } break;
  14062. case GGML_OP_UPSCALE:
  14063. {
  14064. GGML_ASSERT(false); // TODO: not implemented
  14065. } break;
  14066. case GGML_OP_PAD:
  14067. {
  14068. GGML_ASSERT(false); // TODO: not implemented
  14069. } break;
  14070. case GGML_OP_ARANGE:
  14071. {
  14072. GGML_ASSERT(false); // TODO: not implemented
  14073. } break;
  14074. case GGML_OP_TIMESTEP_EMBEDDING:
  14075. {
  14076. GGML_ASSERT(false); // TODO: not implemented
  14077. } break;
  14078. case GGML_OP_ARGSORT:
  14079. {
  14080. GGML_ASSERT(false); // TODO: not implemented
  14081. } break;
  14082. case GGML_OP_LEAKY_RELU:
  14083. {
  14084. GGML_ASSERT(false); // TODO: not implemented
  14085. } break;
  14086. case GGML_OP_FLASH_ATTN:
  14087. {
  14088. struct ggml_tensor * flash_grad = NULL;
  14089. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  14090. int32_t t = ggml_get_op_params_i32(tensor, 0);
  14091. GGML_ASSERT(t == 0 || t == 1);
  14092. bool masked = t != 0;
  14093. flash_grad =
  14094. ggml_flash_attn_back(ctx,
  14095. src0,
  14096. src1,
  14097. tensor->src[2],
  14098. tensor->grad,
  14099. masked);
  14100. }
  14101. struct ggml_tensor * src2 = tensor->src[2];
  14102. const int64_t elem_q = ggml_nelements(src0);
  14103. const int64_t elem_k = ggml_nelements(src1);
  14104. const int64_t elem_v = ggml_nelements(src2);
  14105. enum ggml_type result_type = flash_grad->type;
  14106. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  14107. const size_t tsize = ggml_type_size(result_type);
  14108. const size_t offs_q = 0;
  14109. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  14110. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  14111. if (src0->grad) {
  14112. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  14113. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  14114. src0->grad = ggml_add_or_set(ctx,
  14115. src0->grad,
  14116. grad_q,
  14117. zero_table);
  14118. }
  14119. if (src1->grad) {
  14120. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  14121. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  14122. src1->grad = ggml_add_or_set(ctx,
  14123. src1->grad,
  14124. grad_k,
  14125. zero_table);
  14126. }
  14127. if (src2->grad) {
  14128. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  14129. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  14130. src2->grad = ggml_add_or_set(ctx,
  14131. src2->grad,
  14132. grad_v,
  14133. zero_table);
  14134. }
  14135. } break;
  14136. case GGML_OP_FLASH_FF:
  14137. {
  14138. GGML_ASSERT(false); // not supported
  14139. } break;
  14140. case GGML_OP_FLASH_ATTN_BACK:
  14141. {
  14142. GGML_ASSERT(false); // not supported
  14143. } break;
  14144. case GGML_OP_SSM_CONV:
  14145. case GGML_OP_SSM_SCAN:
  14146. {
  14147. GGML_ASSERT(false); // TODO: not implemented
  14148. } break;
  14149. case GGML_OP_WIN_PART:
  14150. case GGML_OP_WIN_UNPART:
  14151. case GGML_OP_UNARY:
  14152. {
  14153. switch (ggml_get_unary_op(tensor)) {
  14154. case GGML_UNARY_OP_ABS:
  14155. {
  14156. if (src0->grad) {
  14157. src0->grad =
  14158. ggml_add_or_set(ctx,
  14159. src0->grad,
  14160. ggml_mul(ctx,
  14161. ggml_sgn(ctx, src0),
  14162. tensor->grad),
  14163. zero_table);
  14164. }
  14165. } break;
  14166. case GGML_UNARY_OP_SGN:
  14167. {
  14168. if (src0->grad) {
  14169. // noop
  14170. }
  14171. } break;
  14172. case GGML_UNARY_OP_NEG:
  14173. {
  14174. if (src0->grad) {
  14175. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14176. }
  14177. } break;
  14178. case GGML_UNARY_OP_STEP:
  14179. {
  14180. if (src0->grad) {
  14181. // noop
  14182. }
  14183. } break;
  14184. case GGML_UNARY_OP_TANH:
  14185. {
  14186. GGML_ASSERT(false); // TODO: not implemented
  14187. } break;
  14188. case GGML_UNARY_OP_ELU:
  14189. {
  14190. GGML_ASSERT(false); // TODO: not implemented
  14191. } break;
  14192. case GGML_UNARY_OP_RELU:
  14193. {
  14194. if (src0->grad) {
  14195. src0->grad = ggml_add_or_set(ctx,
  14196. src0->grad,
  14197. ggml_mul(ctx,
  14198. ggml_step(ctx, src0),
  14199. tensor->grad),
  14200. zero_table);
  14201. }
  14202. } break;
  14203. case GGML_UNARY_OP_GELU:
  14204. {
  14205. GGML_ASSERT(false); // TODO: not implemented
  14206. } break;
  14207. case GGML_UNARY_OP_GELU_QUICK:
  14208. {
  14209. GGML_ASSERT(false); // TODO: not implemented
  14210. } break;
  14211. case GGML_UNARY_OP_SILU:
  14212. {
  14213. // necessary for llama
  14214. if (src0->grad) {
  14215. src0->grad = ggml_add_or_set(ctx,
  14216. src0->grad,
  14217. ggml_silu_back(ctx, src0, tensor->grad),
  14218. zero_table);
  14219. }
  14220. } break;
  14221. default:
  14222. GGML_ASSERT(false);
  14223. }
  14224. } break;
  14225. case GGML_OP_GET_REL_POS:
  14226. case GGML_OP_ADD_REL_POS:
  14227. case GGML_OP_MAP_UNARY:
  14228. case GGML_OP_MAP_BINARY:
  14229. case GGML_OP_MAP_CUSTOM1_F32:
  14230. case GGML_OP_MAP_CUSTOM2_F32:
  14231. case GGML_OP_MAP_CUSTOM3_F32:
  14232. case GGML_OP_MAP_CUSTOM1:
  14233. case GGML_OP_MAP_CUSTOM2:
  14234. case GGML_OP_MAP_CUSTOM3:
  14235. {
  14236. GGML_ASSERT(false); // not supported
  14237. } break;
  14238. case GGML_OP_CROSS_ENTROPY_LOSS:
  14239. {
  14240. if (src0->grad) {
  14241. src0->grad = ggml_add_or_set(ctx,
  14242. src0->grad,
  14243. ggml_cross_entropy_loss_back(ctx,
  14244. src0,
  14245. src1,
  14246. tensor->grad),
  14247. zero_table);
  14248. }
  14249. } break;
  14250. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14251. {
  14252. GGML_ASSERT(false); // not supported
  14253. } break;
  14254. case GGML_OP_NONE:
  14255. {
  14256. // nop
  14257. } break;
  14258. case GGML_OP_COUNT:
  14259. {
  14260. GGML_ASSERT(false);
  14261. } break;
  14262. }
  14263. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  14264. if (tensor->src[i] && tensor->src[i]->grad) {
  14265. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  14266. }
  14267. }
  14268. }
  14269. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  14270. if (node->grad == NULL) {
  14271. // this usually happens when we generate intermediate nodes from constants in the backward pass
  14272. // it can also happen during forward pass, if the user performs computations with constants
  14273. if (node->op != GGML_OP_NONE) {
  14274. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  14275. }
  14276. }
  14277. // check if already visited
  14278. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  14279. return;
  14280. }
  14281. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  14282. const int k =
  14283. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  14284. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  14285. /* unknown order, just fall back to using i*/ i;
  14286. if (node->src[k]) {
  14287. ggml_visit_parents(cgraph, node->src[k]);
  14288. }
  14289. }
  14290. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  14291. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  14292. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  14293. if (strlen(node->name) == 0) {
  14294. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  14295. }
  14296. cgraph->leafs[cgraph->n_leafs] = node;
  14297. cgraph->n_leafs++;
  14298. } else {
  14299. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  14300. if (strlen(node->name) == 0) {
  14301. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  14302. }
  14303. cgraph->nodes[cgraph->n_nodes] = node;
  14304. if (cgraph->grads) {
  14305. cgraph->grads[cgraph->n_nodes] = node->grad;
  14306. }
  14307. cgraph->n_nodes++;
  14308. }
  14309. }
  14310. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  14311. if (!expand) {
  14312. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  14313. ggml_graph_clear(cgraph);
  14314. }
  14315. const int n0 = cgraph->n_nodes;
  14316. UNUSED(n0);
  14317. ggml_visit_parents(cgraph, tensor);
  14318. const int n_new = cgraph->n_nodes - n0;
  14319. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  14320. if (n_new > 0) {
  14321. // the last added node should always be starting point
  14322. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  14323. }
  14324. }
  14325. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  14326. ggml_build_forward_impl(cgraph, tensor, true);
  14327. }
  14328. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  14329. GGML_ASSERT(gf->n_nodes > 0);
  14330. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  14331. if (keep) {
  14332. for (int i = 0; i < gf->n_nodes; i++) {
  14333. struct ggml_tensor * node = gf->nodes[i];
  14334. if (node->grad) {
  14335. node->grad = ggml_dup_tensor(ctx, node);
  14336. gf->grads[i] = node->grad;
  14337. }
  14338. }
  14339. }
  14340. // remember original gradients which start with zero values
  14341. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  14342. for (int i = 0; i < gf->n_nodes; i++) {
  14343. if (gf->grads[i]) {
  14344. ggml_hash_insert(zero_table, gf->grads[i]);
  14345. }
  14346. }
  14347. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  14348. struct ggml_tensor * node = gf->nodes[i];
  14349. // inplace operations to add gradients are not created by ggml_compute_backward
  14350. // use allocator to automatically make inplace operations
  14351. if (node->grad) {
  14352. ggml_compute_backward(ctx, node, zero_table);
  14353. }
  14354. }
  14355. for (int i = 0; i < gf->n_nodes; i++) {
  14356. struct ggml_tensor * node = gf->nodes[i];
  14357. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  14358. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  14359. ggml_build_forward_expand(gb, node->grad);
  14360. }
  14361. }
  14362. ggml_hash_set_free(zero_table);
  14363. }
  14364. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  14365. size_t nbytes = sizeof(struct ggml_cgraph);
  14366. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  14367. if (grads) {
  14368. nbytes += size * sizeof(struct ggml_tensor *); // grads
  14369. }
  14370. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  14371. return nbytes;
  14372. }
  14373. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  14374. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  14375. }
  14376. size_t ggml_graph_overhead(void) {
  14377. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  14378. }
  14379. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  14380. const size_t obj_size = ggml_graph_nbytes(size, grads);
  14381. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
  14382. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  14383. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  14384. size_t hash_size = ggml_hash_size(size * 2);
  14385. struct ggml_tensor ** nodes_ptr = data_start;
  14386. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  14387. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  14388. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  14389. // check that we allocated the correct amount of memory
  14390. assert(obj_size == (size_t) (
  14391. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  14392. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  14393. *cgraph = (struct ggml_cgraph) {
  14394. /*.size =*/ size,
  14395. /*.n_nodes =*/ 0,
  14396. /*.n_leafs =*/ 0,
  14397. /*.nodes =*/ nodes_ptr,
  14398. /*.grads =*/ grads_ptr,
  14399. /*.leafs =*/ leafs_ptr,
  14400. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  14401. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  14402. /*.perf_runs =*/ 0,
  14403. /*.perf_cycles =*/ 0,
  14404. /*.perf_time_us =*/ 0,
  14405. };
  14406. return cgraph;
  14407. }
  14408. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  14409. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  14410. }
  14411. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  14412. struct ggml_cgraph cgraph = {
  14413. /*.size =*/ 0,
  14414. /*.n_nodes =*/ i1 - i0,
  14415. /*.n_leafs =*/ 0,
  14416. /*.nodes =*/ cgraph0->nodes + i0,
  14417. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  14418. /*.leafs =*/ NULL,
  14419. /*.hash_table =*/ { 0, NULL },
  14420. /*.order =*/ cgraph0->order,
  14421. /*.perf_runs =*/ 0,
  14422. /*.perf_cycles =*/ 0,
  14423. /*.perf_time_us =*/ 0,
  14424. };
  14425. return cgraph;
  14426. }
  14427. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  14428. GGML_ASSERT(dst->size >= src->n_leafs);
  14429. GGML_ASSERT(dst->size >= src->n_nodes);
  14430. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  14431. dst->n_leafs = src->n_leafs;
  14432. dst->n_nodes = src->n_nodes;
  14433. dst->order = src->order;
  14434. for (int i = 0; i < src->n_leafs; ++i) {
  14435. dst->leafs[i] = src->leafs[i];
  14436. }
  14437. for (int i = 0; i < src->n_nodes; ++i) {
  14438. dst->nodes[i] = src->nodes[i];
  14439. }
  14440. if (src->grads) {
  14441. GGML_ASSERT(dst->grads != NULL);
  14442. for (int i = 0; i < src->n_nodes; ++i) {
  14443. dst->grads[i] = src->grads[i];
  14444. }
  14445. }
  14446. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  14447. if (src->visited_hash_table.keys[i]) {
  14448. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  14449. }
  14450. }
  14451. }
  14452. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  14453. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  14454. ggml_graph_cpy(cgraph, result);
  14455. return result;
  14456. }
  14457. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  14458. GGML_ASSERT(cgraph->grads != NULL);
  14459. for (int i = 0; i < cgraph->n_nodes; i++) {
  14460. struct ggml_tensor * grad = cgraph->grads[i];
  14461. if (grad) {
  14462. ggml_set_zero(grad);
  14463. }
  14464. }
  14465. }
  14466. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  14467. cgraph->n_leafs = 0;
  14468. cgraph->n_nodes = 0;
  14469. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  14470. }
  14471. //
  14472. // thread data
  14473. //
  14474. // synchronization is done via busy loops
  14475. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  14476. //
  14477. #ifdef __APPLE__
  14478. //#include <os/lock.h>
  14479. //
  14480. //typedef os_unfair_lock ggml_lock_t;
  14481. //
  14482. //#define ggml_lock_init(x) UNUSED(x)
  14483. //#define ggml_lock_destroy(x) UNUSED(x)
  14484. //#define ggml_lock_lock os_unfair_lock_lock
  14485. //#define ggml_lock_unlock os_unfair_lock_unlock
  14486. //
  14487. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  14488. typedef int ggml_lock_t;
  14489. #define ggml_lock_init(x) UNUSED(x)
  14490. #define ggml_lock_destroy(x) UNUSED(x)
  14491. #define ggml_lock_lock(x) UNUSED(x)
  14492. #define ggml_lock_unlock(x) UNUSED(x)
  14493. #define GGML_LOCK_INITIALIZER 0
  14494. typedef pthread_t ggml_thread_t;
  14495. #define ggml_thread_create pthread_create
  14496. #define ggml_thread_join pthread_join
  14497. #else
  14498. //typedef pthread_spinlock_t ggml_lock_t;
  14499. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  14500. //#define ggml_lock_destroy pthread_spin_destroy
  14501. //#define ggml_lock_lock pthread_spin_lock
  14502. //#define ggml_lock_unlock pthread_spin_unlock
  14503. typedef int ggml_lock_t;
  14504. #define ggml_lock_init(x) UNUSED(x)
  14505. #define ggml_lock_destroy(x) UNUSED(x)
  14506. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  14507. #define ggml_lock_lock(x) _mm_pause()
  14508. #else
  14509. #define ggml_lock_lock(x) UNUSED(x)
  14510. #endif
  14511. #define ggml_lock_unlock(x) UNUSED(x)
  14512. #define GGML_LOCK_INITIALIZER 0
  14513. typedef pthread_t ggml_thread_t;
  14514. #define ggml_thread_create pthread_create
  14515. #define ggml_thread_join pthread_join
  14516. #endif
  14517. // Android's libc implementation "bionic" does not support setting affinity
  14518. #if defined(__gnu_linux__)
  14519. static void set_numa_thread_affinity(int thread_n) {
  14520. if (!ggml_is_numa()) {
  14521. return;
  14522. }
  14523. int node_num;
  14524. int rv;
  14525. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14526. switch(g_state.numa.numa_strategy) {
  14527. case GGML_NUMA_STRATEGY_DISTRIBUTE:
  14528. // run thread on node_num thread_n / (threads per node)
  14529. node_num = thread_n % g_state.numa.n_nodes;
  14530. break;
  14531. case GGML_NUMA_STRATEGY_ISOLATE:
  14532. // run thread on current_node
  14533. node_num = g_state.numa.current_node;
  14534. break;
  14535. case GGML_NUMA_STRATEGY_NUMACTL:
  14536. // use the cpuset that numactl gave us
  14537. rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
  14538. if (rv) {
  14539. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
  14540. }
  14541. return;
  14542. default:
  14543. return;
  14544. }
  14545. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  14546. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14547. CPU_ZERO_S(setsize, cpus);
  14548. for (size_t i = 0; i < node->n_cpus; ++i) {
  14549. CPU_SET_S(node->cpus[i], setsize, cpus);
  14550. }
  14551. rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14552. if (rv) {
  14553. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  14554. }
  14555. CPU_FREE(cpus);
  14556. }
  14557. static void clear_numa_thread_affinity(void) {
  14558. if (!ggml_is_numa()) {
  14559. return;
  14560. }
  14561. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14562. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14563. CPU_ZERO_S(setsize, cpus);
  14564. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  14565. CPU_SET_S(i, setsize, cpus);
  14566. }
  14567. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14568. if (rv) {
  14569. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  14570. }
  14571. CPU_FREE(cpus);
  14572. }
  14573. #else
  14574. // TODO: Windows etc.
  14575. // (the linux implementation may also work on BSD, someone should test)
  14576. static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
  14577. static void clear_numa_thread_affinity(void) {}
  14578. #endif
  14579. struct ggml_compute_state_shared {
  14580. const struct ggml_cgraph * cgraph;
  14581. const struct ggml_cplan * cplan;
  14582. int64_t perf_node_start_cycles;
  14583. int64_t perf_node_start_time_us;
  14584. const int n_threads;
  14585. // synchronization primitives
  14586. atomic_int n_active; // num active threads
  14587. atomic_int node_n; // active graph node
  14588. atomic_int node_task; // active graph node task phase
  14589. ggml_abort_callback abort_callback; // abort ggml_graph_compute when true
  14590. void * abort_callback_data;
  14591. };
  14592. struct ggml_compute_state {
  14593. ggml_thread_t thrd;
  14594. int ith;
  14595. struct ggml_compute_state_shared * shared;
  14596. enum ggml_status ec;
  14597. };
  14598. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  14599. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  14600. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  14601. node->perf_runs++;
  14602. node->perf_cycles += cycles_cur;
  14603. node->perf_time_us += time_us_cur;
  14604. }
  14605. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_threads) {
  14606. int n_tasks = 0;
  14607. switch (node->op) {
  14608. case GGML_OP_CPY:
  14609. case GGML_OP_DUP:
  14610. case GGML_OP_ADD:
  14611. case GGML_OP_ADD1:
  14612. case GGML_OP_ACC:
  14613. {
  14614. n_tasks = n_threads;
  14615. } break;
  14616. case GGML_OP_SUB:
  14617. case GGML_OP_SQR:
  14618. case GGML_OP_SQRT:
  14619. case GGML_OP_LOG:
  14620. case GGML_OP_SUM:
  14621. case GGML_OP_SUM_ROWS:
  14622. case GGML_OP_MEAN:
  14623. case GGML_OP_ARGMAX:
  14624. case GGML_OP_REPEAT:
  14625. case GGML_OP_REPEAT_BACK:
  14626. case GGML_OP_LEAKY_RELU:
  14627. {
  14628. n_tasks = 1;
  14629. } break;
  14630. case GGML_OP_UNARY:
  14631. switch (ggml_get_unary_op(node)) {
  14632. case GGML_UNARY_OP_ABS:
  14633. case GGML_UNARY_OP_SGN:
  14634. case GGML_UNARY_OP_NEG:
  14635. case GGML_UNARY_OP_STEP:
  14636. case GGML_UNARY_OP_TANH:
  14637. case GGML_UNARY_OP_ELU:
  14638. case GGML_UNARY_OP_RELU:
  14639. case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
  14640. case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
  14641. {
  14642. n_tasks = 1;
  14643. } break;
  14644. case GGML_UNARY_OP_GELU:
  14645. case GGML_UNARY_OP_GELU_QUICK:
  14646. case GGML_UNARY_OP_SILU:
  14647. {
  14648. n_tasks = n_threads;
  14649. } break;
  14650. default:
  14651. GGML_ASSERT(false);
  14652. }
  14653. break;
  14654. case GGML_OP_SILU_BACK:
  14655. case GGML_OP_MUL:
  14656. case GGML_OP_DIV:
  14657. case GGML_OP_NORM:
  14658. case GGML_OP_RMS_NORM:
  14659. case GGML_OP_RMS_NORM_BACK:
  14660. case GGML_OP_GROUP_NORM:
  14661. case GGML_OP_CONCAT:
  14662. {
  14663. n_tasks = n_threads;
  14664. } break;
  14665. case GGML_OP_MUL_MAT:
  14666. {
  14667. n_tasks = n_threads;
  14668. // TODO: use different scheduling for different matrix sizes
  14669. //const int nr0 = ggml_nrows(node->src[0]);
  14670. //const int nr1 = ggml_nrows(node->src[1]);
  14671. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  14672. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  14673. } break;
  14674. case GGML_OP_MUL_MAT_ID:
  14675. {
  14676. n_tasks = n_threads;
  14677. } break;
  14678. case GGML_OP_OUT_PROD:
  14679. {
  14680. n_tasks = n_threads;
  14681. } break;
  14682. case GGML_OP_GET_ROWS:
  14683. {
  14684. // FIXME: the cost of launching additional threads decreases performance with GPU offloading
  14685. //n_tasks = MIN(n_threads, ggml_nelements(node->src[1]));
  14686. n_tasks = MIN(n_cur_threads, ggml_nelements(node->src[1]));
  14687. } break;
  14688. case GGML_OP_SCALE:
  14689. case GGML_OP_SET:
  14690. case GGML_OP_CONT:
  14691. case GGML_OP_RESHAPE:
  14692. case GGML_OP_VIEW:
  14693. case GGML_OP_PERMUTE:
  14694. case GGML_OP_TRANSPOSE:
  14695. case GGML_OP_GET_ROWS_BACK:
  14696. case GGML_OP_DIAG:
  14697. {
  14698. n_tasks = 1;
  14699. } break;
  14700. case GGML_OP_DIAG_MASK_ZERO:
  14701. case GGML_OP_DIAG_MASK_INF:
  14702. case GGML_OP_SOFT_MAX_BACK:
  14703. case GGML_OP_ROPE:
  14704. case GGML_OP_ROPE_BACK:
  14705. case GGML_OP_ADD_REL_POS:
  14706. {
  14707. n_tasks = n_threads;
  14708. } break;
  14709. case GGML_OP_ALIBI:
  14710. {
  14711. n_tasks = 1; //TODO
  14712. } break;
  14713. case GGML_OP_CLAMP:
  14714. {
  14715. n_tasks = 1; //TODO
  14716. } break;
  14717. case GGML_OP_SOFT_MAX:
  14718. {
  14719. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  14720. } break;
  14721. case GGML_OP_CONV_TRANSPOSE_1D:
  14722. {
  14723. n_tasks = n_threads;
  14724. } break;
  14725. case GGML_OP_IM2COL:
  14726. {
  14727. n_tasks = n_threads;
  14728. } break;
  14729. case GGML_OP_CONV_TRANSPOSE_2D:
  14730. {
  14731. n_tasks = n_threads;
  14732. } break;
  14733. case GGML_OP_POOL_1D:
  14734. case GGML_OP_POOL_2D:
  14735. {
  14736. n_tasks = 1;
  14737. } break;
  14738. case GGML_OP_UPSCALE:
  14739. {
  14740. n_tasks = n_threads;
  14741. } break;
  14742. case GGML_OP_PAD:
  14743. {
  14744. n_tasks = n_threads;
  14745. } break;
  14746. case GGML_OP_ARANGE:
  14747. {
  14748. n_tasks = n_threads;
  14749. } break;
  14750. case GGML_OP_TIMESTEP_EMBEDDING:
  14751. {
  14752. n_tasks = n_threads;
  14753. } break;
  14754. case GGML_OP_ARGSORT:
  14755. {
  14756. n_tasks = n_threads;
  14757. } break;
  14758. case GGML_OP_FLASH_ATTN:
  14759. {
  14760. n_tasks = n_threads;
  14761. } break;
  14762. case GGML_OP_FLASH_FF:
  14763. {
  14764. n_tasks = n_threads;
  14765. } break;
  14766. case GGML_OP_FLASH_ATTN_BACK:
  14767. {
  14768. n_tasks = n_threads;
  14769. } break;
  14770. case GGML_OP_SSM_CONV:
  14771. case GGML_OP_SSM_SCAN:
  14772. {
  14773. n_tasks = n_threads;
  14774. } break;
  14775. case GGML_OP_WIN_PART:
  14776. case GGML_OP_WIN_UNPART:
  14777. case GGML_OP_GET_REL_POS:
  14778. case GGML_OP_MAP_UNARY:
  14779. case GGML_OP_MAP_BINARY:
  14780. case GGML_OP_MAP_CUSTOM1_F32:
  14781. case GGML_OP_MAP_CUSTOM2_F32:
  14782. case GGML_OP_MAP_CUSTOM3_F32:
  14783. {
  14784. n_tasks = 1;
  14785. } break;
  14786. case GGML_OP_MAP_CUSTOM1:
  14787. {
  14788. struct ggml_map_custom1_op_params p;
  14789. memcpy(&p, node->op_params, sizeof(p));
  14790. if (p.n_tasks == GGML_N_TASKS_MAX) {
  14791. n_tasks = n_threads;
  14792. } else {
  14793. n_tasks = MIN(p.n_tasks, n_threads);
  14794. }
  14795. } break;
  14796. case GGML_OP_MAP_CUSTOM2:
  14797. {
  14798. struct ggml_map_custom2_op_params p;
  14799. memcpy(&p, node->op_params, sizeof(p));
  14800. if (p.n_tasks == GGML_N_TASKS_MAX) {
  14801. n_tasks = n_threads;
  14802. } else {
  14803. n_tasks = MIN(p.n_tasks, n_threads);
  14804. }
  14805. } break;
  14806. case GGML_OP_MAP_CUSTOM3:
  14807. {
  14808. struct ggml_map_custom3_op_params p;
  14809. memcpy(&p, node->op_params, sizeof(p));
  14810. if (p.n_tasks == GGML_N_TASKS_MAX) {
  14811. n_tasks = n_threads;
  14812. } else {
  14813. n_tasks = MIN(p.n_tasks, n_threads);
  14814. }
  14815. } break;
  14816. case GGML_OP_CROSS_ENTROPY_LOSS:
  14817. {
  14818. n_tasks = n_threads;
  14819. } break;
  14820. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14821. {
  14822. n_tasks = n_threads;
  14823. } break;
  14824. case GGML_OP_NONE:
  14825. {
  14826. n_tasks = 1;
  14827. } break;
  14828. case GGML_OP_COUNT:
  14829. {
  14830. GGML_ASSERT(false);
  14831. } break;
  14832. default:
  14833. {
  14834. fprintf(stderr, "%s: op not implemented: ", __func__);
  14835. if (node->op < GGML_OP_COUNT) {
  14836. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  14837. } else {
  14838. fprintf(stderr, "%d\n", node->op);
  14839. }
  14840. GGML_ASSERT(false);
  14841. } break;
  14842. }
  14843. assert(n_tasks > 0);
  14844. return n_tasks;
  14845. }
  14846. static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
  14847. // wait for other threads to finish
  14848. const int last_node_n = * node_n;
  14849. while (true) {
  14850. if (do_yield) {
  14851. sched_yield();
  14852. }
  14853. * node_n = atomic_load(&state->shared->node_n);
  14854. if (* node_n != last_node_n) break;
  14855. }
  14856. }
  14857. static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
  14858. // wait for other threads to finish
  14859. const int last_task_phase = * task_phase;
  14860. while (true) {
  14861. if (do_yield) {
  14862. sched_yield();
  14863. }
  14864. * task_phase = atomic_load(&state->shared->node_task);
  14865. if (* task_phase != last_task_phase) break;
  14866. }
  14867. }
  14868. static thread_ret_t ggml_graph_compute_thread(void * data) {
  14869. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  14870. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  14871. const struct ggml_cplan * cplan = state->shared->cplan;
  14872. const int n_threads = state->shared->n_threads;
  14873. set_numa_thread_affinity(state->ith);
  14874. int node_n = -1;
  14875. int task_phase = GGML_TASK_TYPE_FINALIZE;
  14876. while (true) {
  14877. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14878. state->shared->node_n += 1;
  14879. state->ec = GGML_STATUS_ABORTED;
  14880. return 0;
  14881. }
  14882. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14883. // all other threads are finished and spinning
  14884. // do finalize and init here so we don't have synchronize again
  14885. struct ggml_compute_params params = {
  14886. /*.type =*/ GGML_TASK_TYPE_FINALIZE,
  14887. /*.ith =*/ 0,
  14888. /*.nth =*/ 0,
  14889. /*.wsize =*/ cplan->work_size,
  14890. /*.wdata =*/ cplan->work_data,
  14891. };
  14892. if (node_n != -1) {
  14893. /* FINALIZE */
  14894. struct ggml_tensor * node = cgraph->nodes[node_n];
  14895. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14896. params.nth = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  14897. ggml_compute_forward(&params, node);
  14898. }
  14899. ggml_graph_compute_perf_stats_node(node, state->shared);
  14900. }
  14901. // distribute new work or execute it direct if 1T
  14902. while (++node_n < cgraph->n_nodes) {
  14903. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  14904. struct ggml_tensor * node = cgraph->nodes[node_n];
  14905. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  14906. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  14907. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  14908. params.nth = n_tasks;
  14909. if (n_tasks == 1) {
  14910. /* INIT */
  14911. if (GGML_OP_HAS_INIT[node->op]) {
  14912. params.type = GGML_TASK_TYPE_INIT;
  14913. ggml_compute_forward(&params, node);
  14914. }
  14915. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  14916. // they do something more efficient than spinning (?)
  14917. params.type = GGML_TASK_TYPE_COMPUTE;
  14918. ggml_compute_forward(&params, node);
  14919. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14920. params.type = GGML_TASK_TYPE_FINALIZE;
  14921. ggml_compute_forward(&params, node);
  14922. }
  14923. ggml_graph_compute_perf_stats_node(node, state->shared);
  14924. } else {
  14925. break;
  14926. }
  14927. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14928. break;
  14929. }
  14930. }
  14931. task_phase = GGML_TASK_TYPE_INIT;
  14932. atomic_store(&state->shared->n_active, n_threads);
  14933. atomic_store(&state->shared->node_n, node_n);
  14934. atomic_store(&state->shared->node_task, task_phase);
  14935. } else {
  14936. ggml_graph_compute_thread_sync_node(&node_n, state, false);
  14937. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  14938. }
  14939. // check if we should stop
  14940. if (node_n >= cgraph->n_nodes) break;
  14941. /* INIT & COMPUTE */
  14942. struct ggml_tensor * node = cgraph->nodes[node_n];
  14943. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  14944. struct ggml_compute_params params = {
  14945. /*.type =*/ GGML_TASK_TYPE_INIT,
  14946. /*.ith =*/ state->ith,
  14947. /*.nth =*/ n_tasks,
  14948. /*.wsize =*/ cplan->work_size,
  14949. /*.wdata =*/ cplan->work_data,
  14950. };
  14951. if (state->ith < n_tasks) {
  14952. if (GGML_OP_HAS_INIT[node->op]) {
  14953. ggml_compute_forward(&params, node);
  14954. }
  14955. }
  14956. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14957. task_phase = GGML_TASK_TYPE_COMPUTE;
  14958. atomic_store(&state->shared->n_active, n_threads);
  14959. atomic_store(&state->shared->node_task, task_phase);
  14960. }
  14961. else {
  14962. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  14963. // depending on the workload and the operating system.
  14964. // since it is not clear what is the best approach, it should potentially become user-configurable
  14965. // ref: https://github.com/ggerganov/ggml/issues/291
  14966. // UPD: adding the do_yield flag seems to resolve the issue universally
  14967. const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT;
  14968. ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield);
  14969. }
  14970. if (state->ith < n_tasks) {
  14971. params.type = GGML_TASK_TYPE_COMPUTE;
  14972. ggml_compute_forward(&params, node);
  14973. }
  14974. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14975. task_phase = GGML_TASK_TYPE_FINALIZE;
  14976. atomic_store(&state->shared->n_active, n_threads);
  14977. atomic_store(&state->shared->node_task, task_phase);
  14978. }
  14979. else {
  14980. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  14981. }
  14982. }
  14983. return 0;
  14984. }
  14985. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  14986. if (n_threads <= 0) {
  14987. n_threads = GGML_DEFAULT_N_THREADS;
  14988. }
  14989. size_t work_size = 0;
  14990. struct ggml_cplan cplan;
  14991. memset(&cplan, 0, sizeof(struct ggml_cplan));
  14992. int max_tasks = 1;
  14993. // thread scheduling for the different operations + work buffer size estimation
  14994. for (int i = 0; i < cgraph->n_nodes; i++) {
  14995. struct ggml_tensor * node = cgraph->nodes[i];
  14996. const int n_tasks = ggml_get_n_tasks(node, n_threads, 1);
  14997. max_tasks = MAX(max_tasks, n_tasks);
  14998. size_t cur = 0;
  14999. switch (node->op) {
  15000. case GGML_OP_CPY:
  15001. case GGML_OP_DUP:
  15002. {
  15003. if (ggml_is_quantized(node->type)) {
  15004. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  15005. }
  15006. } break;
  15007. case GGML_OP_ADD:
  15008. case GGML_OP_ADD1:
  15009. {
  15010. if (ggml_is_quantized(node->src[0]->type)) {
  15011. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  15012. }
  15013. } break;
  15014. case GGML_OP_ACC:
  15015. {
  15016. if (ggml_is_quantized(node->src[0]->type)) {
  15017. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  15018. }
  15019. } break;
  15020. case GGML_OP_MUL_MAT:
  15021. {
  15022. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  15023. #if defined(GGML_USE_CLBLAST)
  15024. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  15025. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  15026. } else
  15027. #endif
  15028. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  15029. if (ggml_compute_forward_mul_mat_use_blas(node)) {
  15030. if (node->src[0]->type != GGML_TYPE_F32) {
  15031. // here we need memory for fully dequantized matrix from src0
  15032. // take into account that src0 can be broadcasted into src1[2,3]
  15033. cur = ggml_type_size(GGML_TYPE_F32)
  15034. * node->src[0]->ne[0]*node->src[0]->ne[1]
  15035. * node->src[1]->ne[2]*node->src[1]->ne[3];
  15036. }
  15037. } else
  15038. #endif
  15039. if (node->src[1]->type != vec_dot_type) {
  15040. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  15041. }
  15042. } break;
  15043. case GGML_OP_MUL_MAT_ID:
  15044. {
  15045. cur = 0;
  15046. const struct ggml_tensor * src0 = node->src[2];
  15047. const struct ggml_tensor * src1 = node->src[1];
  15048. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  15049. if (src1->type != vec_dot_type) {
  15050. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  15051. }
  15052. const int n_as = ggml_get_op_params_i32(node, 1);
  15053. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  15054. cur += n_as * sizeof(int64_t); // matrix_row_counts
  15055. cur += n_as * src1->ne[1] * sizeof(int64_t); // matrix_rows
  15056. } break;
  15057. case GGML_OP_OUT_PROD:
  15058. {
  15059. if (ggml_is_quantized(node->src[0]->type)) {
  15060. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  15061. }
  15062. } break;
  15063. case GGML_OP_SOFT_MAX:
  15064. case GGML_OP_ROPE:
  15065. {
  15066. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  15067. } break;
  15068. case GGML_OP_CONV_TRANSPOSE_1D:
  15069. {
  15070. GGML_ASSERT(node->src[0]->ne[3] == 1);
  15071. GGML_ASSERT(node->src[1]->ne[2] == 1);
  15072. GGML_ASSERT(node->src[1]->ne[3] == 1);
  15073. const int64_t ne00 = node->src[0]->ne[0]; // K
  15074. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  15075. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  15076. const int64_t ne10 = node->src[1]->ne[0]; // L
  15077. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  15078. if (node->src[0]->type == GGML_TYPE_F16 &&
  15079. node->src[1]->type == GGML_TYPE_F32) {
  15080. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  15081. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  15082. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  15083. node->src[1]->type == GGML_TYPE_F32) {
  15084. cur += sizeof(float)*ne00*ne01*ne02;
  15085. cur += sizeof(float)*ne10*ne11;
  15086. } else {
  15087. GGML_ASSERT(false);
  15088. }
  15089. } break;
  15090. case GGML_OP_CONV_TRANSPOSE_2D:
  15091. {
  15092. const int64_t ne00 = node->src[0]->ne[0]; // W
  15093. const int64_t ne01 = node->src[0]->ne[1]; // H
  15094. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  15095. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  15096. const int64_t ne10 = node->src[1]->ne[0]; // W
  15097. const int64_t ne11 = node->src[1]->ne[1]; // H
  15098. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  15099. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  15100. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  15101. } break;
  15102. case GGML_OP_FLASH_ATTN:
  15103. {
  15104. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  15105. if (node->src[1]->type == GGML_TYPE_F32) {
  15106. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  15107. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  15108. } else if (node->src[1]->type == GGML_TYPE_F16) {
  15109. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  15110. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  15111. }
  15112. } break;
  15113. case GGML_OP_FLASH_FF:
  15114. {
  15115. if (node->src[1]->type == GGML_TYPE_F32) {
  15116. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  15117. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  15118. } else if (node->src[1]->type == GGML_TYPE_F16) {
  15119. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  15120. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  15121. }
  15122. } break;
  15123. case GGML_OP_FLASH_ATTN_BACK:
  15124. {
  15125. const int64_t D = node->src[0]->ne[0];
  15126. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  15127. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  15128. if (node->src[1]->type == GGML_TYPE_F32) {
  15129. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  15130. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  15131. } else if (node->src[1]->type == GGML_TYPE_F16) {
  15132. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  15133. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  15134. }
  15135. } break;
  15136. case GGML_OP_CROSS_ENTROPY_LOSS:
  15137. {
  15138. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  15139. } break;
  15140. case GGML_OP_COUNT:
  15141. {
  15142. GGML_ASSERT(false);
  15143. } break;
  15144. default:
  15145. break;
  15146. }
  15147. work_size = MAX(work_size, cur);
  15148. }
  15149. if (work_size > 0) {
  15150. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  15151. }
  15152. cplan.n_threads = MIN(max_tasks, n_threads);
  15153. cplan.work_size = work_size;
  15154. cplan.work_data = NULL;
  15155. return cplan;
  15156. }
  15157. enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  15158. {
  15159. GGML_ASSERT(cplan);
  15160. GGML_ASSERT(cplan->n_threads > 0);
  15161. if (cplan->work_size > 0) {
  15162. GGML_ASSERT(cplan->work_data);
  15163. }
  15164. }
  15165. #ifdef GGML_USE_VULKAN
  15166. for (int i = 0; i < cgraph->n_nodes; i++) {
  15167. ggml_vk_preallocate_buffers_graph_cpu_assist(cgraph->nodes[i]);
  15168. }
  15169. ggml_vk_preallocate_buffers_cpu_assist();
  15170. for (int i = 0; i < cgraph->n_nodes; i++) {
  15171. ggml_vk_build_graph_cpu_assist(cgraph->nodes[i], i == cgraph->n_nodes - 1);
  15172. }
  15173. #endif
  15174. const int n_threads = cplan->n_threads;
  15175. struct ggml_compute_state_shared state_shared = {
  15176. /*.cgraph =*/ cgraph,
  15177. /*.cgraph_plan =*/ cplan,
  15178. /*.perf_node_start_cycles =*/ 0,
  15179. /*.perf_node_start_time_us =*/ 0,
  15180. /*.n_threads =*/ n_threads,
  15181. /*.n_active =*/ n_threads,
  15182. /*.node_n =*/ -1,
  15183. /*.node_task =*/ GGML_TASK_TYPE_FINALIZE,
  15184. /*.abort_callback =*/ NULL,
  15185. /*.abort_callback_data =*/ NULL,
  15186. };
  15187. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  15188. // create thread pool
  15189. if (n_threads > 1) {
  15190. for (int j = 1; j < n_threads; ++j) {
  15191. workers[j] = (struct ggml_compute_state) {
  15192. .thrd = 0,
  15193. .ith = j,
  15194. .shared = &state_shared,
  15195. .ec = GGML_STATUS_SUCCESS,
  15196. };
  15197. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  15198. GGML_ASSERT(rc == 0);
  15199. UNUSED(rc);
  15200. }
  15201. }
  15202. workers[0].ith = 0;
  15203. workers[0].shared = &state_shared;
  15204. workers[0].ec = GGML_STATUS_SUCCESS;
  15205. const int64_t perf_start_cycles = ggml_perf_cycles();
  15206. const int64_t perf_start_time_us = ggml_perf_time_us();
  15207. // this is a work thread too
  15208. ggml_graph_compute_thread(&workers[0]);
  15209. enum ggml_status compute_status = workers[0].ec;
  15210. // don't leave affinity set on the main thread
  15211. clear_numa_thread_affinity();
  15212. // join or kill thread pool
  15213. if (n_threads > 1) {
  15214. for (int j = 1; j < n_threads; j++) {
  15215. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  15216. GGML_ASSERT(rc == 0);
  15217. if (workers[j].ec != GGML_STATUS_SUCCESS)
  15218. compute_status = workers[j].ec;
  15219. }
  15220. }
  15221. #ifdef GGML_USE_VULKAN
  15222. ggml_vk_graph_cleanup_cpu_assist();
  15223. #endif
  15224. // performance stats (graph)
  15225. {
  15226. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  15227. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  15228. cgraph->perf_runs++;
  15229. cgraph->perf_cycles += perf_cycles_cur;
  15230. cgraph->perf_time_us += perf_time_us_cur;
  15231. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  15232. __func__, cgraph->perf_runs,
  15233. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  15234. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  15235. (double) perf_time_us_cur / 1000.0,
  15236. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  15237. }
  15238. return compute_status;
  15239. }
  15240. enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  15241. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  15242. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  15243. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15244. return ggml_graph_compute(cgraph, &cplan);
  15245. }
  15246. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  15247. for (int i = 0; i < cgraph->n_leafs; i++) {
  15248. struct ggml_tensor * leaf = cgraph->leafs[i];
  15249. if (strcmp(leaf->name, name) == 0) {
  15250. return leaf;
  15251. }
  15252. }
  15253. for (int i = 0; i < cgraph->n_nodes; i++) {
  15254. struct ggml_tensor * node = cgraph->nodes[i];
  15255. if (strcmp(node->name, name) == 0) {
  15256. return node;
  15257. }
  15258. }
  15259. return NULL;
  15260. }
  15261. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  15262. const int64_t * ne = tensor->ne;
  15263. const size_t * nb = tensor->nb;
  15264. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  15265. ggml_type_name(tensor->type),
  15266. ggml_op_name (tensor->op),
  15267. ggml_n_dims(tensor),
  15268. ne[0], ne[1], ne[2], ne[3],
  15269. nb[0], nb[1], nb[2], nb[3],
  15270. tensor->data,
  15271. tensor->name);
  15272. }
  15273. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  15274. const int64_t * ne = tensor->ne;
  15275. const size_t * nb = tensor->nb;
  15276. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  15277. arg,
  15278. ggml_type_name(tensor->type),
  15279. ggml_op_name (tensor->op),
  15280. ggml_n_dims(tensor),
  15281. ne[0], ne[1], ne[2], ne[3],
  15282. nb[0], nb[1], nb[2], nb[3],
  15283. tensor->data,
  15284. tensor->name);
  15285. }
  15286. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  15287. uint64_t size_eval = 0;
  15288. // compute size of intermediate results
  15289. // TODO: does not take into account scratch buffers !!!!
  15290. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15291. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  15292. }
  15293. // print
  15294. {
  15295. FILE * fout = stdout;
  15296. fprintf(fout, "\n");
  15297. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  15298. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  15299. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  15300. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  15301. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  15302. // header
  15303. fprintf(fout, "\n");
  15304. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  15305. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  15306. for (int i = 0; i < cgraph->n_leafs; ++i) {
  15307. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  15308. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  15309. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  15310. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  15311. }
  15312. // header
  15313. fprintf(fout, "\n");
  15314. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  15315. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  15316. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15317. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  15318. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15319. if (cgraph->nodes[i]->src[j]) {
  15320. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  15321. }
  15322. }
  15323. fprintf(fout, "\n");
  15324. }
  15325. fprintf(fout, "\n");
  15326. }
  15327. // write binary data
  15328. {
  15329. FILE * fout = fopen(fname, "wb");
  15330. if (!fout) {
  15331. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  15332. return;
  15333. }
  15334. // header
  15335. {
  15336. const uint32_t magic = GGML_FILE_MAGIC;
  15337. const uint32_t version = GGML_FILE_VERSION;
  15338. const uint32_t n_leafs = cgraph->n_leafs;
  15339. const uint32_t n_nodes = cgraph->n_nodes;
  15340. fwrite(&magic, sizeof(uint32_t), 1, fout);
  15341. fwrite(&version, sizeof(uint32_t), 1, fout);
  15342. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  15343. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  15344. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  15345. }
  15346. // leafs
  15347. {
  15348. for (int i = 0; i < cgraph->n_leafs; ++i) {
  15349. const struct ggml_tensor * tensor = cgraph->leafs[i];
  15350. const uint32_t type = tensor->type;
  15351. const uint32_t op = tensor->op;
  15352. fwrite(&type, sizeof(uint32_t), 1, fout);
  15353. fwrite(&op, sizeof(uint32_t), 1, fout);
  15354. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15355. const uint64_t ne = tensor->ne[j];
  15356. const uint64_t nb = tensor->nb[j];
  15357. fwrite(&ne, sizeof(uint64_t), 1, fout);
  15358. fwrite(&nb, sizeof(uint64_t), 1, fout);
  15359. }
  15360. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  15361. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  15362. // dump the data
  15363. // TODO: pad this to 32 byte boundary
  15364. {
  15365. const size_t size = ggml_nbytes(tensor);
  15366. fwrite(tensor->data, sizeof(char), size, fout);
  15367. }
  15368. }
  15369. }
  15370. // nodes
  15371. {
  15372. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15373. const struct ggml_tensor * tensor = cgraph->nodes[i];
  15374. const uint32_t type = tensor->type;
  15375. const uint32_t op = tensor->op;
  15376. fwrite(&type, sizeof(uint32_t), 1, fout);
  15377. fwrite(&op, sizeof(uint32_t), 1, fout);
  15378. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15379. const uint64_t ne = tensor->ne[j];
  15380. const uint64_t nb = tensor->nb[j];
  15381. fwrite(&ne, sizeof(uint64_t), 1, fout);
  15382. fwrite(&nb, sizeof(uint64_t), 1, fout);
  15383. }
  15384. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  15385. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  15386. // output the op arguments
  15387. {
  15388. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  15389. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15390. args[j] = tensor->src[j];
  15391. }
  15392. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15393. if (args[j]) {
  15394. int32_t idx = -1;
  15395. // check if leaf
  15396. {
  15397. for (int k = 0; k < cgraph->n_leafs; ++k) {
  15398. if (args[j] == cgraph->leafs[k]) {
  15399. idx = k;
  15400. break;
  15401. }
  15402. }
  15403. }
  15404. // check if node
  15405. if (idx == -1) {
  15406. for (int k = 0; k < cgraph->n_nodes; ++k) {
  15407. if (args[j] == cgraph->nodes[k]) {
  15408. idx = cgraph->n_leafs + k;
  15409. break;
  15410. }
  15411. }
  15412. }
  15413. if (idx == -1) {
  15414. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  15415. fclose(fout);
  15416. return;
  15417. }
  15418. fwrite(&idx, sizeof(int32_t), 1, fout);
  15419. } else {
  15420. const int32_t nul = -1;
  15421. fwrite(&nul, sizeof(int32_t), 1, fout);
  15422. }
  15423. }
  15424. }
  15425. }
  15426. }
  15427. fclose(fout);
  15428. }
  15429. }
  15430. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  15431. assert(*ctx_data == NULL);
  15432. assert(*ctx_eval == NULL);
  15433. struct ggml_cgraph * result = NULL;
  15434. struct ggml_tensor * data = NULL;
  15435. // read file into data
  15436. {
  15437. FILE * fin = fopen(fname, "rb");
  15438. if (!fin) {
  15439. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  15440. return result;
  15441. }
  15442. size_t fsize = 0;
  15443. fseek(fin, 0, SEEK_END);
  15444. fsize = ftell(fin);
  15445. fseek(fin, 0, SEEK_SET);
  15446. // create the data context
  15447. {
  15448. const size_t overhead = 1*ggml_tensor_overhead();
  15449. struct ggml_init_params params = {
  15450. .mem_size = fsize + overhead,
  15451. .mem_buffer = NULL,
  15452. .no_alloc = false,
  15453. };
  15454. *ctx_data = ggml_init(params);
  15455. if (!*ctx_data) {
  15456. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  15457. fclose(fin);
  15458. return result;
  15459. }
  15460. }
  15461. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  15462. {
  15463. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  15464. if (ret != fsize) {
  15465. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  15466. fclose(fin);
  15467. return result;
  15468. }
  15469. }
  15470. fclose(fin);
  15471. }
  15472. // populate result
  15473. {
  15474. char * ptr = (char *) data->data;
  15475. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  15476. if (magic != GGML_FILE_MAGIC) {
  15477. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  15478. return result;
  15479. }
  15480. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  15481. if (version != GGML_FILE_VERSION) {
  15482. fprintf(stderr, "%s: invalid version number\n", __func__);
  15483. return result;
  15484. }
  15485. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  15486. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  15487. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  15488. const int graph_size = MAX(n_leafs, n_nodes);
  15489. // create the data context
  15490. {
  15491. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  15492. struct ggml_init_params params = {
  15493. .mem_size = size_eval + overhead,
  15494. .mem_buffer = NULL,
  15495. .no_alloc = true,
  15496. };
  15497. *ctx_eval = ggml_init(params);
  15498. if (!*ctx_eval) {
  15499. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  15500. return result;
  15501. }
  15502. }
  15503. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  15504. result->n_leafs = n_leafs;
  15505. result->n_nodes = n_nodes;
  15506. // leafs
  15507. {
  15508. uint32_t type;
  15509. uint32_t op;
  15510. for (uint32_t i = 0; i < n_leafs; ++i) {
  15511. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  15512. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  15513. int64_t ne[GGML_MAX_DIMS];
  15514. size_t nb[GGML_MAX_DIMS];
  15515. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15516. uint64_t ne_cur;
  15517. uint64_t nb_cur;
  15518. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  15519. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  15520. ne[j] = ne_cur;
  15521. nb[j] = nb_cur;
  15522. }
  15523. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  15524. tensor->op = (enum ggml_op) op;
  15525. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  15526. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  15527. tensor->data = (void *) ptr;
  15528. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15529. tensor->nb[j] = nb[j];
  15530. }
  15531. result->leafs[i] = tensor;
  15532. ptr += ggml_nbytes(tensor);
  15533. fprintf(stderr, "%s: loaded leaf %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  15534. }
  15535. }
  15536. ggml_set_no_alloc(*ctx_eval, false);
  15537. // nodes
  15538. {
  15539. uint32_t type;
  15540. uint32_t op;
  15541. for (uint32_t i = 0; i < n_nodes; ++i) {
  15542. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  15543. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  15544. enum ggml_op eop = (enum ggml_op) op;
  15545. int64_t ne[GGML_MAX_DIMS];
  15546. size_t nb[GGML_MAX_DIMS];
  15547. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15548. uint64_t ne_cur;
  15549. uint64_t nb_cur;
  15550. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  15551. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  15552. ne[j] = ne_cur;
  15553. nb[j] = nb_cur;
  15554. }
  15555. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  15556. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  15557. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  15558. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  15559. // parse args
  15560. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15561. const int32_t arg_idx = ptr_arg_idx[j];
  15562. if (arg_idx == -1) {
  15563. continue;
  15564. }
  15565. if (arg_idx < result->n_leafs) {
  15566. args[j] = result->leafs[arg_idx];
  15567. } else {
  15568. args[j] = result->nodes[arg_idx - result->n_leafs];
  15569. }
  15570. }
  15571. // create the tensor
  15572. // "view" operations are handled differently
  15573. // TODO: handle inplace ops - currently a copy is always made
  15574. struct ggml_tensor * tensor = NULL;
  15575. switch (eop) {
  15576. // TODO: implement other view ops
  15577. case GGML_OP_RESHAPE:
  15578. {
  15579. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  15580. } break;
  15581. case GGML_OP_VIEW:
  15582. {
  15583. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15584. size_t offs;
  15585. memcpy(&offs, ptr_op_params, sizeof(offs));
  15586. tensor->data = ((char *) tensor->data) + offs;
  15587. } break;
  15588. case GGML_OP_TRANSPOSE:
  15589. {
  15590. tensor = ggml_transpose(*ctx_eval, args[0]);
  15591. } break;
  15592. case GGML_OP_PERMUTE:
  15593. {
  15594. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15595. } break;
  15596. default:
  15597. {
  15598. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  15599. tensor->op = eop;
  15600. } break;
  15601. }
  15602. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  15603. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  15604. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15605. tensor->nb[j] = nb[j];
  15606. }
  15607. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15608. tensor->src[j] = args[j];
  15609. }
  15610. result->nodes[i] = tensor;
  15611. fprintf(stderr, "%s: loaded node %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  15612. }
  15613. }
  15614. }
  15615. return result;
  15616. }
  15617. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  15618. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  15619. GGML_PRINT("=== GRAPH ===\n");
  15620. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  15621. for (int i = 0; i < cgraph->n_nodes; i++) {
  15622. struct ggml_tensor * node = cgraph->nodes[i];
  15623. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  15624. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  15625. i,
  15626. node->ne[0], node->ne[1], node->ne[2],
  15627. ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ", node->perf_runs,
  15628. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  15629. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  15630. (double) node->perf_time_us / 1000.0,
  15631. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  15632. }
  15633. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  15634. for (int i = 0; i < cgraph->n_leafs; i++) {
  15635. struct ggml_tensor * node = cgraph->leafs[i];
  15636. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  15637. i,
  15638. node->ne[0], node->ne[1],
  15639. ggml_op_name(node->op),
  15640. ggml_get_name(node));
  15641. }
  15642. for (int i = 0; i < GGML_OP_COUNT; i++) {
  15643. if (perf_total_per_op_us[i] == 0) {
  15644. continue;
  15645. }
  15646. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  15647. }
  15648. GGML_PRINT("========================================\n");
  15649. }
  15650. // check if node is part of the graph
  15651. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15652. if (cgraph == NULL) {
  15653. return true;
  15654. }
  15655. for (int i = 0; i < cgraph->n_nodes; i++) {
  15656. if (cgraph->nodes[i] == node) {
  15657. return true;
  15658. }
  15659. }
  15660. return false;
  15661. }
  15662. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15663. for (int i = 0; i < cgraph->n_nodes; i++) {
  15664. struct ggml_tensor * parent = cgraph->nodes[i];
  15665. if (parent->grad == node) {
  15666. return parent;
  15667. }
  15668. }
  15669. return NULL;
  15670. }
  15671. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15672. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  15673. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  15674. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  15675. gparent0 ? (void *) gparent0 : (void *) parent,
  15676. gparent0 ? "g" : "x",
  15677. gparent ? (void *) gparent : (void *) node,
  15678. gparent ? "g" : "x",
  15679. gparent ? "empty" : "vee",
  15680. gparent ? "dashed" : "solid",
  15681. label);
  15682. }
  15683. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15684. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  15685. (void *) parent, "x",
  15686. (void *) node, "x",
  15687. label);
  15688. }
  15689. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  15690. char color[16];
  15691. FILE * fp = fopen(filename, "w");
  15692. GGML_ASSERT(fp);
  15693. fprintf(fp, "digraph G {\n");
  15694. fprintf(fp, " newrank = true;\n");
  15695. fprintf(fp, " rankdir = LR;\n");
  15696. for (int i = 0; i < gb->n_nodes; i++) {
  15697. struct ggml_tensor * node = gb->nodes[i];
  15698. if (ggml_graph_get_parent(gb, node) != NULL) {
  15699. continue;
  15700. }
  15701. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  15702. snprintf(color, sizeof(color), "yellow");
  15703. } else if (node->grad) {
  15704. if (ggml_graph_find(gf, node)) {
  15705. snprintf(color, sizeof(color), "green");
  15706. } else {
  15707. snprintf(color, sizeof(color), "lightblue");
  15708. }
  15709. } else {
  15710. snprintf(color, sizeof(color), "white");
  15711. }
  15712. fprintf(fp, " \"%p\" [ "
  15713. "style = filled; fillcolor = %s; shape = record; "
  15714. "label=\"",
  15715. (void *) node, color);
  15716. if (strlen(node->name) > 0) {
  15717. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15718. } else {
  15719. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15720. }
  15721. if (ggml_is_matrix(node)) {
  15722. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  15723. } else {
  15724. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  15725. }
  15726. if (node->grad) {
  15727. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  15728. } else {
  15729. fprintf(fp, "\"; ]\n");
  15730. }
  15731. }
  15732. for (int i = 0; i < gb->n_leafs; i++) {
  15733. struct ggml_tensor * node = gb->leafs[i];
  15734. snprintf(color, sizeof(color), "pink");
  15735. fprintf(fp, " \"%p\" [ "
  15736. "style = filled; fillcolor = %s; shape = record; "
  15737. "label=\"<x>",
  15738. (void *) node, color);
  15739. if (strlen(node->name) > 0) {
  15740. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15741. } else {
  15742. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15743. }
  15744. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  15745. if (ggml_nelements(node) < 5) {
  15746. fprintf(fp, " | (");
  15747. for (int j = 0; j < ggml_nelements(node); j++) {
  15748. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  15749. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  15750. }
  15751. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  15752. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  15753. }
  15754. else {
  15755. fprintf(fp, "#");
  15756. }
  15757. if (j < ggml_nelements(node) - 1) {
  15758. fprintf(fp, ", ");
  15759. }
  15760. }
  15761. fprintf(fp, ")");
  15762. }
  15763. fprintf(fp, "\"; ]\n");
  15764. }
  15765. for (int i = 0; i < gb->n_nodes; i++) {
  15766. struct ggml_tensor * node = gb->nodes[i];
  15767. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15768. if (node->src[j]) {
  15769. char label[16];
  15770. snprintf(label, sizeof(label), "src %d", j);
  15771. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  15772. }
  15773. }
  15774. }
  15775. for (int i = 0; i < gb->n_leafs; i++) {
  15776. struct ggml_tensor * node = gb->leafs[i];
  15777. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15778. if (node->src[j]) {
  15779. char label[16];
  15780. snprintf(label, sizeof(label), "src %d", j);
  15781. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  15782. }
  15783. }
  15784. }
  15785. fprintf(fp, "}\n");
  15786. fclose(fp);
  15787. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  15788. }
  15789. ////////////////////////////////////////////////////////////////////////////////
  15790. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  15791. int i = 0;
  15792. for (int p = 0; p < np; ++p) {
  15793. const int64_t ne = ggml_nelements(ps[p]) ;
  15794. // TODO: add function to set tensor from array
  15795. for (int64_t j = 0; j < ne; ++j) {
  15796. ggml_set_f32_1d(ps[p], j, x[i++]);
  15797. }
  15798. }
  15799. }
  15800. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  15801. int i = 0;
  15802. for (int p = 0; p < np; ++p) {
  15803. const int64_t ne = ggml_nelements(ps[p]) ;
  15804. // TODO: add function to get all elements at once
  15805. for (int64_t j = 0; j < ne; ++j) {
  15806. x[i++] = ggml_get_f32_1d(ps[p], j);
  15807. }
  15808. }
  15809. }
  15810. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  15811. int64_t i = 0;
  15812. for (int p = 0; p < np; ++p) {
  15813. const int64_t ne = ggml_nelements(ps[p]) ;
  15814. // TODO: add function to get all elements at once
  15815. for (int64_t j = 0; j < ne; ++j) {
  15816. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  15817. }
  15818. }
  15819. }
  15820. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  15821. int64_t i = 0;
  15822. for (int p = 0; p < np; ++p) {
  15823. const int64_t ne = ggml_nelements(ps[p]) ;
  15824. // TODO: add function to get all elements at once
  15825. for (int64_t j = 0; j < ne; ++j) {
  15826. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  15827. }
  15828. }
  15829. }
  15830. //
  15831. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  15832. //
  15833. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  15834. //
  15835. static enum ggml_opt_result ggml_opt_adam(
  15836. struct ggml_context * ctx,
  15837. struct ggml_opt_context * opt,
  15838. struct ggml_opt_params params,
  15839. struct ggml_tensor * f,
  15840. struct ggml_cgraph * gf,
  15841. struct ggml_cgraph * gb,
  15842. ggml_opt_callback callback,
  15843. void * callback_data) {
  15844. GGML_ASSERT(ggml_is_scalar(f));
  15845. // these will store the parameters we want to optimize
  15846. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15847. int np = 0;
  15848. int64_t nx = 0;
  15849. for (int i = 0; i < gf->n_nodes; ++i) {
  15850. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  15851. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15852. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15853. ps[np++] = gf->nodes[i];
  15854. nx += ggml_nelements(gf->nodes[i]);
  15855. }
  15856. }
  15857. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  15858. int iter = opt->iter;
  15859. ggml_opt_init(opt->ctx, opt, params, nx);
  15860. opt->iter = iter;
  15861. }
  15862. // constants
  15863. float sched = params.adam.sched;
  15864. const float alpha = params.adam.alpha;
  15865. const float decay = params.adam.decay * alpha;
  15866. const float beta1 = params.adam.beta1;
  15867. const float beta2 = params.adam.beta2;
  15868. const float eps = params.adam.eps;
  15869. const float gclip = params.adam.gclip;
  15870. const int decay_min_ndim = params.adam.decay_min_ndim;
  15871. const int n_accum = MAX(1, params.n_gradient_accumulation);
  15872. const float accum_norm = 1.0f / (float) n_accum;
  15873. float * g = opt->adam.g->data; // gradients
  15874. float * m = opt->adam.m->data; // first moment
  15875. float * v = opt->adam.v->data; // second moment
  15876. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  15877. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15878. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  15879. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15880. bool cancel = false;
  15881. // compute the function value
  15882. float fx = 0;
  15883. ggml_set_zero(opt->adam.g);
  15884. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15885. if (callback) {
  15886. callback(callback_data, accum_step, &sched, &cancel);
  15887. if (cancel) {
  15888. return GGML_OPT_RESULT_CANCEL;
  15889. }
  15890. }
  15891. // ggml_graph_reset (gf);
  15892. ggml_set_f32 (f->grad, 1.0f);
  15893. ggml_graph_compute(gb, &cplan);
  15894. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15895. fx += ggml_get_f32_1d(f, 0);
  15896. }
  15897. fx *= accum_norm;
  15898. opt->adam.fx_prev = fx;
  15899. opt->adam.fx_best = opt->adam.fx_prev;
  15900. if (pf) {
  15901. pf[opt->iter % params.past] = opt->adam.fx_prev;
  15902. }
  15903. opt->loss_before = opt->adam.fx_prev;
  15904. opt->loss_after = opt->adam.fx_prev;
  15905. // initialize
  15906. if (opt->just_initialized) {
  15907. opt->adam.n_no_improvement = 0;
  15908. opt->just_initialized = false;
  15909. }
  15910. float * fx_best = &opt->adam.fx_best;
  15911. float * fx_prev = &opt->adam.fx_prev;
  15912. int * n_no_improvement = &opt->adam.n_no_improvement;
  15913. int iter0 = opt->iter;
  15914. // run the optimizer
  15915. for (int t = 0; t < params.adam.n_iter; ++t) {
  15916. opt->iter = iter0 + t + 1;
  15917. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  15918. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15919. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  15920. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  15921. for (int i = 0; i < np; ++i) {
  15922. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  15923. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  15924. }
  15925. const int64_t t_start_wall = ggml_time_us();
  15926. const int64_t t_start_cpu = ggml_cycles();
  15927. UNUSED(t_start_wall);
  15928. UNUSED(t_start_cpu);
  15929. {
  15930. float gnorm = 1.0f;
  15931. if (gclip > 0.0f) {
  15932. // gradient clipping
  15933. ggml_float sum = 0.0;
  15934. for (int64_t i = 0; i < nx; ++i) {
  15935. sum += (ggml_float)(g[i]*g[i]);
  15936. }
  15937. ggml_float norm = sqrt(sum);
  15938. if (norm > (ggml_float) gclip) {
  15939. gnorm = (float) ((ggml_float) gclip / norm);
  15940. }
  15941. }
  15942. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  15943. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  15944. int64_t i = 0;
  15945. for (int p = 0; p < np; ++p) {
  15946. const int64_t ne = ggml_nelements(ps[p]);
  15947. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  15948. for (int64_t j = 0; j < ne; ++j) {
  15949. float x = ggml_get_f32_1d(ps[p], j);
  15950. float g_ = g[i]*gnorm;
  15951. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  15952. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  15953. float mh = m[i]*beta1h;
  15954. float vh = v[i]*beta2h;
  15955. vh = sqrtf(vh) + eps;
  15956. x = x*(1.0f - p_decay) - mh/vh;
  15957. ggml_set_f32_1d(ps[p], j, x);
  15958. ++i;
  15959. }
  15960. }
  15961. }
  15962. fx = 0;
  15963. ggml_set_zero(opt->adam.g);
  15964. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15965. if (callback) {
  15966. callback(callback_data, accum_step, &sched, &cancel);
  15967. if (cancel) {
  15968. return GGML_OPT_RESULT_CANCEL;;
  15969. }
  15970. }
  15971. // ggml_graph_reset (gf);
  15972. ggml_set_f32 (f->grad, 1.0f);
  15973. ggml_graph_compute(gb, &cplan);
  15974. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15975. fx += ggml_get_f32_1d(f, 0);
  15976. }
  15977. fx *= accum_norm;
  15978. opt->loss_after = fx;
  15979. // check convergence
  15980. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  15981. GGML_PRINT_DEBUG("converged\n");
  15982. return GGML_OPT_RESULT_OK;
  15983. }
  15984. // delta-based convergence test
  15985. if (pf != NULL) {
  15986. // need at least params.past iterations to start checking for convergence
  15987. if (params.past <= iter0 + t) {
  15988. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  15989. if (fabsf(rate) < params.delta) {
  15990. return GGML_OPT_RESULT_OK;
  15991. }
  15992. }
  15993. pf[(iter0 + t)%params.past] = fx;
  15994. }
  15995. // check for improvement
  15996. if (params.max_no_improvement > 0) {
  15997. if (fx_best[0] > fx) {
  15998. fx_best[0] = fx;
  15999. n_no_improvement[0] = 0;
  16000. } else {
  16001. ++n_no_improvement[0];
  16002. if (n_no_improvement[0] >= params.max_no_improvement) {
  16003. return GGML_OPT_RESULT_OK;
  16004. }
  16005. }
  16006. }
  16007. fx_prev[0] = fx;
  16008. {
  16009. const int64_t t_end_cpu = ggml_cycles();
  16010. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  16011. UNUSED(t_end_cpu);
  16012. const int64_t t_end_wall = ggml_time_us();
  16013. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  16014. UNUSED(t_end_wall);
  16015. }
  16016. }
  16017. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16018. }
  16019. //
  16020. // L-BFGS
  16021. //
  16022. // the L-BFGS implementation below is based on the following implementation:
  16023. //
  16024. // https://github.com/chokkan/liblbfgs
  16025. //
  16026. struct ggml_lbfgs_iteration_data {
  16027. float alpha;
  16028. float ys;
  16029. float * s;
  16030. float * y;
  16031. };
  16032. static enum ggml_opt_result linesearch_backtracking(
  16033. const struct ggml_opt_params * params,
  16034. int nx,
  16035. float * x,
  16036. float * fx,
  16037. float * g,
  16038. float * d,
  16039. float * step,
  16040. const float * xp,
  16041. struct ggml_tensor * f,
  16042. struct ggml_cgraph * gb,
  16043. struct ggml_cplan * cplan,
  16044. const int np,
  16045. struct ggml_tensor * ps[],
  16046. bool * cancel,
  16047. ggml_opt_callback callback,
  16048. void * callback_data) {
  16049. int count = 0;
  16050. float width = 0.0f;
  16051. float dg = 0.0f;
  16052. float finit = 0.0f;
  16053. float dginit = 0.0f;
  16054. float dgtest = 0.0f;
  16055. const float dec = 0.5f;
  16056. const float inc = 2.1f;
  16057. const int n_accum = MAX(1, params->n_gradient_accumulation);
  16058. const float accum_norm = 1.0f / (float) n_accum;
  16059. if (*step <= 0.f) {
  16060. return GGML_LINESEARCH_INVALID_PARAMETERS;
  16061. }
  16062. // compute the initial gradient in the search direction
  16063. ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
  16064. // make sure that d points to a descent direction
  16065. if (0 < dginit) {
  16066. return GGML_LINESEARCH_FAIL;
  16067. }
  16068. // initialize local variables
  16069. finit = *fx;
  16070. dgtest = params->lbfgs.ftol*dginit;
  16071. while (true) {
  16072. ggml_vec_cpy_f32(nx, x, xp);
  16073. ggml_vec_mad_f32(nx, x, d, *step);
  16074. // evaluate the function and gradient values
  16075. {
  16076. ggml_opt_set_params(np, ps, x);
  16077. *fx = 0;
  16078. memset(g, 0, sizeof(float)*nx);
  16079. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16080. if (callback) {
  16081. // LBFG-S does not support learning rate -> ignore learning schedule
  16082. float sched = 0;
  16083. callback(callback_data, accum_step, &sched, cancel);
  16084. if (*cancel) {
  16085. return GGML_OPT_RESULT_CANCEL;
  16086. }
  16087. }
  16088. // ggml_graph_reset (gf);
  16089. ggml_set_f32 (f->grad, 1.0f);
  16090. ggml_graph_compute(gb, cplan);
  16091. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16092. *fx += ggml_get_f32_1d(f, 0);
  16093. }
  16094. *fx *= accum_norm;
  16095. }
  16096. ++count;
  16097. if (*fx > finit + (*step)*dgtest) {
  16098. width = dec;
  16099. } else {
  16100. // Armijo condition is satisfied
  16101. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  16102. return count;
  16103. }
  16104. ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
  16105. // check the Wolfe condition
  16106. if (dg < params->lbfgs.wolfe * dginit) {
  16107. width = inc;
  16108. } else {
  16109. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  16110. // regular Wolfe conditions
  16111. return count;
  16112. }
  16113. if(dg > -params->lbfgs.wolfe*dginit) {
  16114. width = dec;
  16115. } else {
  16116. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  16117. return count;
  16118. }
  16119. }
  16120. }
  16121. if (*step < params->lbfgs.min_step) {
  16122. return GGML_LINESEARCH_MINIMUM_STEP;
  16123. }
  16124. if (*step > params->lbfgs.max_step) {
  16125. return GGML_LINESEARCH_MAXIMUM_STEP;
  16126. }
  16127. if (params->lbfgs.max_linesearch <= count) {
  16128. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  16129. }
  16130. (*step) *= width;
  16131. }
  16132. GGML_ASSERT(false && "line search failed");
  16133. return GGML_LINESEARCH_FAIL;
  16134. }
  16135. static enum ggml_opt_result ggml_opt_lbfgs(
  16136. struct ggml_context * ctx,
  16137. struct ggml_opt_context * opt,
  16138. struct ggml_opt_params params,
  16139. struct ggml_tensor * f,
  16140. struct ggml_cgraph * gf,
  16141. struct ggml_cgraph * gb,
  16142. ggml_opt_callback callback,
  16143. void * callback_data) {
  16144. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  16145. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  16146. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  16147. return GGML_OPT_RESULT_INVALID_WOLFE;
  16148. }
  16149. }
  16150. const int m = params.lbfgs.m;
  16151. // these will store the parameters we want to optimize
  16152. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  16153. int np = 0;
  16154. int nx = 0;
  16155. for (int i = 0; i < gf->n_nodes; ++i) {
  16156. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  16157. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  16158. GGML_ASSERT(np < GGML_MAX_PARAMS);
  16159. ps[np++] = gf->nodes[i];
  16160. nx += ggml_nelements(gf->nodes[i]);
  16161. }
  16162. }
  16163. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  16164. int iter = opt->iter;
  16165. ggml_opt_init(ctx, opt, params, nx);
  16166. opt->iter = iter;
  16167. }
  16168. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  16169. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16170. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16171. float * x = opt->lbfgs.x->data; // current parameters
  16172. float * xp = opt->lbfgs.xp->data; // previous parameters
  16173. float * g = opt->lbfgs.g->data; // current gradient
  16174. float * gp = opt->lbfgs.gp->data; // previous gradient
  16175. float * d = opt->lbfgs.d->data; // search direction
  16176. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  16177. const int n_accum = MAX(1, params.n_gradient_accumulation);
  16178. const float accum_norm = 1.0f / (float) n_accum;
  16179. float fx = 0.0f; // cost function value
  16180. float xnorm = 0.0f; // ||x||
  16181. float gnorm = 0.0f; // ||g||
  16182. // initialize x from the graph nodes
  16183. ggml_opt_get_params(np, ps, x);
  16184. // the L-BFGS memory
  16185. float * lm_alpha = opt->lbfgs.lmal->data;
  16186. float * lm_ys = opt->lbfgs.lmys->data;
  16187. float * lm_s = opt->lbfgs.lms->data;
  16188. float * lm_y = opt->lbfgs.lmy->data;
  16189. bool cancel = false;
  16190. // evaluate the function value and its gradient
  16191. {
  16192. ggml_opt_set_params(np, ps, x);
  16193. fx = 0;
  16194. memset(g, 0, sizeof(float)*nx);
  16195. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16196. if (callback) {
  16197. // LBFG-S does not support learning rate -> ignore learning schedule
  16198. float sched = 0;
  16199. callback(callback_data, accum_step, &sched, &cancel);
  16200. if (cancel) {
  16201. return GGML_OPT_RESULT_CANCEL;
  16202. }
  16203. }
  16204. // ggml_graph_reset (gf);
  16205. ggml_set_f32 (f->grad, 1.0f);
  16206. ggml_graph_compute(gb, &cplan);
  16207. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16208. fx += ggml_get_f32_1d(f, 0);
  16209. }
  16210. fx *= accum_norm;
  16211. opt->loss_before = fx;
  16212. opt->loss_after = fx;
  16213. }
  16214. // search direction = -gradient
  16215. ggml_vec_neg_f32(nx, d, g);
  16216. // ||x||, ||g||
  16217. ggml_vec_norm_f32(nx, &xnorm, x);
  16218. ggml_vec_norm_f32(nx, &gnorm, g);
  16219. if (xnorm < 1.0f) {
  16220. xnorm = 1.0f;
  16221. }
  16222. // already optimized
  16223. if (gnorm/xnorm <= params.lbfgs.eps) {
  16224. return GGML_OPT_RESULT_OK;
  16225. }
  16226. if (opt->just_initialized) {
  16227. if (pf) {
  16228. pf[0] = fx;
  16229. }
  16230. opt->lbfgs.fx_best = fx;
  16231. // initial step
  16232. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  16233. opt->lbfgs.j = 0;
  16234. opt->lbfgs.k = 1;
  16235. opt->lbfgs.end = 0;
  16236. opt->lbfgs.n_no_improvement = 0;
  16237. opt->just_initialized = false;
  16238. }
  16239. float * fx_best = &opt->lbfgs.fx_best;
  16240. float * step = &opt->lbfgs.step;
  16241. int * j = &opt->lbfgs.j;
  16242. int * k = &opt->lbfgs.k;
  16243. int * end = &opt->lbfgs.end;
  16244. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  16245. int ls = 0;
  16246. int bound = 0;
  16247. float ys = 0.0f;
  16248. float yy = 0.0f;
  16249. float beta = 0.0f;
  16250. int it = 0;
  16251. while (true) {
  16252. // store the current position and gradient vectors
  16253. ggml_vec_cpy_f32(nx, xp, x);
  16254. ggml_vec_cpy_f32(nx, gp, g);
  16255. // TODO: instead of passing &cancel here, use the return code of the linesearch
  16256. // to determine if the optimization should be cancelled
  16257. // this is a simple change, but not doing this atm, since I don't have a nice
  16258. // way to test and don't want to break something with so many changes lined up
  16259. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  16260. if (cancel) {
  16261. return GGML_OPT_RESULT_CANCEL;
  16262. }
  16263. if (ls < 0) {
  16264. // linesearch failed - go back to the previous point and return
  16265. ggml_vec_cpy_f32(nx, x, xp);
  16266. ggml_vec_cpy_f32(nx, g, gp);
  16267. return ls;
  16268. }
  16269. opt->loss_after = fx;
  16270. ggml_vec_norm_f32(nx, &xnorm, x);
  16271. ggml_vec_norm_f32(nx, &gnorm, g);
  16272. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  16273. if (xnorm < 1.0f) {
  16274. xnorm = 1.0f;
  16275. }
  16276. if (gnorm/xnorm <= params.lbfgs.eps) {
  16277. // converged
  16278. return GGML_OPT_RESULT_OK;
  16279. }
  16280. // delta-based convergence test
  16281. if (pf != NULL) {
  16282. // need at least params.past iterations to start checking for convergence
  16283. if (params.past <= k[0]) {
  16284. const float rate = (pf[k[0]%params.past] - fx)/fx;
  16285. if (fabsf(rate) < params.delta) {
  16286. return GGML_OPT_RESULT_OK;
  16287. }
  16288. }
  16289. pf[k[0]%params.past] = fx;
  16290. }
  16291. // check for improvement
  16292. if (params.max_no_improvement > 0) {
  16293. if (fx < fx_best[0]) {
  16294. fx_best[0] = fx;
  16295. n_no_improvement[0] = 0;
  16296. } else {
  16297. n_no_improvement[0]++;
  16298. if (n_no_improvement[0] >= params.max_no_improvement) {
  16299. return GGML_OPT_RESULT_OK;
  16300. }
  16301. }
  16302. }
  16303. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  16304. // reached the maximum number of iterations
  16305. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16306. }
  16307. // update vectors s and y:
  16308. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  16309. // y_{k+1} = g_{k+1} - g_{k}.
  16310. //
  16311. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  16312. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  16313. // compute scalars ys and yy:
  16314. // ys = y^t \cdot s -> 1 / \rho.
  16315. // yy = y^t \cdot y.
  16316. //
  16317. ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
  16318. ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
  16319. lm_ys[end[0]] = ys;
  16320. // find new search direction
  16321. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  16322. bound = (m <= k[0]) ? m : k[0];
  16323. k[0]++;
  16324. it++;
  16325. end[0] = (end[0] + 1)%m;
  16326. // initialize search direction with -g
  16327. ggml_vec_neg_f32(nx, d, g);
  16328. j[0] = end[0];
  16329. for (int i = 0; i < bound; ++i) {
  16330. j[0] = (j[0] + m - 1) % m;
  16331. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  16332. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
  16333. lm_alpha[j[0]] /= lm_ys[j[0]];
  16334. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  16335. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  16336. }
  16337. ggml_vec_scale_f32(nx, d, ys/yy);
  16338. for (int i = 0; i < bound; ++i) {
  16339. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  16340. ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
  16341. beta /= lm_ys[j[0]];
  16342. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  16343. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  16344. j[0] = (j[0] + 1)%m;
  16345. }
  16346. step[0] = 1.0;
  16347. }
  16348. GGML_ASSERT(false && "lbfgs failed");
  16349. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16350. }
  16351. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  16352. struct ggml_opt_params result;
  16353. switch (type) {
  16354. case GGML_OPT_TYPE_ADAM:
  16355. {
  16356. result = (struct ggml_opt_params) {
  16357. .type = GGML_OPT_TYPE_ADAM,
  16358. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  16359. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  16360. .past = 0,
  16361. .delta = 1e-5f,
  16362. .max_no_improvement = 100,
  16363. .print_forward_graph = true,
  16364. .print_backward_graph = true,
  16365. .n_gradient_accumulation = 1,
  16366. .adam = {
  16367. .n_iter = 10000,
  16368. .sched = 1.000f,
  16369. .decay = 0.0f,
  16370. .decay_min_ndim = 2,
  16371. .alpha = 0.001f,
  16372. .beta1 = 0.9f,
  16373. .beta2 = 0.999f,
  16374. .eps = 1e-8f,
  16375. .eps_f = 1e-5f,
  16376. .eps_g = 1e-3f,
  16377. .gclip = 0.0f,
  16378. },
  16379. };
  16380. } break;
  16381. case GGML_OPT_TYPE_LBFGS:
  16382. {
  16383. result = (struct ggml_opt_params) {
  16384. .type = GGML_OPT_TYPE_LBFGS,
  16385. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  16386. .n_threads = 1,
  16387. .past = 0,
  16388. .delta = 1e-5f,
  16389. .max_no_improvement = 0,
  16390. .print_forward_graph = true,
  16391. .print_backward_graph = true,
  16392. .n_gradient_accumulation = 1,
  16393. .lbfgs = {
  16394. .m = 6,
  16395. .n_iter = 100,
  16396. .max_linesearch = 20,
  16397. .eps = 1e-5f,
  16398. .ftol = 1e-4f,
  16399. .wolfe = 0.9f,
  16400. .min_step = 1e-20f,
  16401. .max_step = 1e+20f,
  16402. .linesearch = GGML_LINESEARCH_DEFAULT,
  16403. },
  16404. };
  16405. } break;
  16406. }
  16407. return result;
  16408. }
  16409. GGML_API void ggml_opt_init(
  16410. struct ggml_context * ctx,
  16411. struct ggml_opt_context * opt,
  16412. struct ggml_opt_params params,
  16413. int64_t nx) {
  16414. opt->ctx = ctx;
  16415. opt->params = params;
  16416. opt->iter = 0;
  16417. opt->nx = nx;
  16418. opt->just_initialized = true;
  16419. if (opt->ctx == NULL) {
  16420. struct ggml_init_params ctx_opt_params;
  16421. if (opt->params.type == GGML_OPT_TYPE_ADAM) {
  16422. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  16423. if (opt->params.past > 0) {
  16424. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  16425. }
  16426. } else if (opt->params.type == GGML_OPT_TYPE_LBFGS) {
  16427. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  16428. if (opt->params.past > 0) {
  16429. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  16430. }
  16431. }
  16432. ctx_opt_params.mem_buffer = NULL;
  16433. ctx_opt_params.no_alloc = false;
  16434. opt->ctx = ggml_init(ctx_opt_params);
  16435. }
  16436. switch (opt->params.type) {
  16437. case GGML_OPT_TYPE_ADAM:
  16438. {
  16439. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16440. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16441. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16442. opt->adam.pf = params.past > 0
  16443. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  16444. : NULL;
  16445. ggml_set_zero(opt->adam.m);
  16446. ggml_set_zero(opt->adam.v);
  16447. if (opt->adam.pf) {
  16448. ggml_set_zero(opt->adam.pf);
  16449. }
  16450. } break;
  16451. case GGML_OPT_TYPE_LBFGS:
  16452. {
  16453. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16454. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16455. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16456. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16457. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16458. opt->lbfgs.pf = params.past > 0
  16459. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  16460. : NULL;
  16461. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  16462. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  16463. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  16464. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  16465. ggml_set_zero(opt->lbfgs.x);
  16466. ggml_set_zero(opt->lbfgs.xp);
  16467. ggml_set_zero(opt->lbfgs.g);
  16468. ggml_set_zero(opt->lbfgs.gp);
  16469. ggml_set_zero(opt->lbfgs.d);
  16470. if (opt->lbfgs.pf) {
  16471. ggml_set_zero(opt->lbfgs.pf);
  16472. }
  16473. ggml_set_zero(opt->lbfgs.lmal);
  16474. ggml_set_zero(opt->lbfgs.lmys);
  16475. ggml_set_zero(opt->lbfgs.lms);
  16476. ggml_set_zero(opt->lbfgs.lmy);
  16477. } break;
  16478. }
  16479. }
  16480. enum ggml_opt_result ggml_opt(
  16481. struct ggml_context * ctx,
  16482. struct ggml_opt_params params,
  16483. struct ggml_tensor * f) {
  16484. bool free_ctx = false;
  16485. if (ctx == NULL) {
  16486. struct ggml_init_params params_ctx = {
  16487. .mem_size = 16*1024*1024,
  16488. .mem_buffer = NULL,
  16489. .no_alloc = false,
  16490. };
  16491. ctx = ggml_init(params_ctx);
  16492. if (ctx == NULL) {
  16493. return GGML_OPT_RESULT_NO_CONTEXT;
  16494. }
  16495. free_ctx = true;
  16496. }
  16497. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  16498. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  16499. ggml_opt_init(ctx, opt, params, 0);
  16500. result = ggml_opt_resume(ctx, opt, f);
  16501. if (free_ctx) {
  16502. ggml_free(ctx);
  16503. }
  16504. return result;
  16505. }
  16506. enum ggml_opt_result ggml_opt_resume(
  16507. struct ggml_context * ctx,
  16508. struct ggml_opt_context * opt,
  16509. struct ggml_tensor * f) {
  16510. // build forward + backward compute graphs
  16511. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  16512. ggml_build_forward_expand(gf, f);
  16513. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  16514. ggml_build_backward_expand(ctx, gf, gb, true);
  16515. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  16516. }
  16517. enum ggml_opt_result ggml_opt_resume_g(
  16518. struct ggml_context * ctx,
  16519. struct ggml_opt_context * opt,
  16520. struct ggml_tensor * f,
  16521. struct ggml_cgraph * gf,
  16522. struct ggml_cgraph * gb,
  16523. ggml_opt_callback callback,
  16524. void * callback_data) {
  16525. // build forward + backward compute graphs
  16526. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  16527. switch (opt->params.type) {
  16528. case GGML_OPT_TYPE_ADAM:
  16529. {
  16530. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  16531. } break;
  16532. case GGML_OPT_TYPE_LBFGS:
  16533. {
  16534. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  16535. } break;
  16536. }
  16537. if (opt->params.print_forward_graph) {
  16538. ggml_graph_print (gf);
  16539. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  16540. }
  16541. if (opt->params.print_backward_graph) {
  16542. ggml_graph_print (gb);
  16543. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  16544. }
  16545. return result;
  16546. }
  16547. ////////////////////////////////////////////////////////////////////////////////
  16548. void ggml_set_input(struct ggml_tensor * tensor) {
  16549. tensor->flags |= GGML_TENSOR_FLAG_INPUT;
  16550. }
  16551. void ggml_set_output(struct ggml_tensor * tensor) {
  16552. tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
  16553. }
  16554. ////////////////////////////////////////////////////////////////////////////////
  16555. void ggml_quantize_init(enum ggml_type type) {
  16556. ggml_critical_section_start();
  16557. switch (type) {
  16558. case GGML_TYPE_IQ2_XXS:
  16559. case GGML_TYPE_IQ2_XS:
  16560. case GGML_TYPE_IQ2_S:
  16561. case GGML_TYPE_IQ1_S: iq2xs_init_impl(type); break;
  16562. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  16563. case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
  16564. default: // nothing
  16565. break;
  16566. }
  16567. ggml_critical_section_end();
  16568. }
  16569. void ggml_quantize_free(void) {
  16570. ggml_critical_section_start();
  16571. iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
  16572. iq2xs_free_impl(GGML_TYPE_IQ2_XS);
  16573. iq2xs_free_impl(GGML_TYPE_IQ1_S);
  16574. iq3xs_free_impl(256);
  16575. ggml_critical_section_end();
  16576. }
  16577. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  16578. return
  16579. type == GGML_TYPE_IQ2_XXS ||
  16580. type == GGML_TYPE_IQ2_XS ||
  16581. type == GGML_TYPE_IQ1_S;
  16582. }
  16583. size_t ggml_quantize_chunk(
  16584. enum ggml_type type,
  16585. const float * src,
  16586. void * dst,
  16587. int start,
  16588. int nrows,
  16589. int n_per_row,
  16590. const float * imatrix) {
  16591. const int n = nrows * n_per_row;
  16592. if (ggml_quantize_requires_imatrix(type)) {
  16593. GGML_ASSERT(imatrix != NULL);
  16594. }
  16595. GGML_ASSERT(start % type_traits[type].blck_size == 0);
  16596. GGML_ASSERT(start % n_per_row == 0);
  16597. ggml_quantize_init(type); // this is noop if already initialized
  16598. const size_t start_row = start / n_per_row;
  16599. const size_t row_size = ggml_row_size(type, n_per_row);
  16600. size_t result = 0;
  16601. switch (type) {
  16602. case GGML_TYPE_Q4_0: result = quantize_q4_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16603. case GGML_TYPE_Q4_1: result = quantize_q4_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16604. case GGML_TYPE_Q5_0: result = quantize_q5_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16605. case GGML_TYPE_Q5_1: result = quantize_q5_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16606. case GGML_TYPE_Q8_0: result = quantize_q8_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16607. case GGML_TYPE_Q2_K: result = quantize_q2_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16608. case GGML_TYPE_Q3_K: result = quantize_q3_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16609. case GGML_TYPE_Q4_K: result = quantize_q4_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16610. case GGML_TYPE_Q5_K: result = quantize_q5_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16611. case GGML_TYPE_Q6_K: result = quantize_q6_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16612. case GGML_TYPE_IQ2_XXS: result = quantize_iq2_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16613. case GGML_TYPE_IQ2_XS: result = quantize_iq2_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16614. case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16615. case GGML_TYPE_IQ3_S: result = quantize_iq3_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16616. case GGML_TYPE_IQ2_S: result = quantize_iq2_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16617. case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16618. case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16619. #if QK_K == 64
  16620. case GGML_TYPE_IQ4_XS: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16621. #else
  16622. case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16623. #endif
  16624. case GGML_TYPE_F16:
  16625. {
  16626. size_t elemsize = sizeof(ggml_fp16_t);
  16627. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  16628. result = n * elemsize;
  16629. } break;
  16630. case GGML_TYPE_F32:
  16631. {
  16632. size_t elemsize = sizeof(float);
  16633. result = n * elemsize;
  16634. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  16635. } break;
  16636. default:
  16637. assert(false);
  16638. }
  16639. GGML_ASSERT(result == nrows * row_size);
  16640. return result;
  16641. }
  16642. ////////////////////////////////////////////////////////////////////////////////
  16643. struct gguf_str {
  16644. uint64_t n; // GGUFv2
  16645. char * data;
  16646. };
  16647. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  16648. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  16649. [GGUF_TYPE_INT8] = sizeof(int8_t),
  16650. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  16651. [GGUF_TYPE_INT16] = sizeof(int16_t),
  16652. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  16653. [GGUF_TYPE_INT32] = sizeof(int32_t),
  16654. [GGUF_TYPE_FLOAT32] = sizeof(float),
  16655. [GGUF_TYPE_BOOL] = sizeof(bool),
  16656. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  16657. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  16658. [GGUF_TYPE_INT64] = sizeof(int64_t),
  16659. [GGUF_TYPE_FLOAT64] = sizeof(double),
  16660. [GGUF_TYPE_ARRAY] = 0, // undefined
  16661. };
  16662. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16663. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  16664. [GGUF_TYPE_UINT8] = "u8",
  16665. [GGUF_TYPE_INT8] = "i8",
  16666. [GGUF_TYPE_UINT16] = "u16",
  16667. [GGUF_TYPE_INT16] = "i16",
  16668. [GGUF_TYPE_UINT32] = "u32",
  16669. [GGUF_TYPE_INT32] = "i32",
  16670. [GGUF_TYPE_FLOAT32] = "f32",
  16671. [GGUF_TYPE_BOOL] = "bool",
  16672. [GGUF_TYPE_STRING] = "str",
  16673. [GGUF_TYPE_ARRAY] = "arr",
  16674. [GGUF_TYPE_UINT64] = "u64",
  16675. [GGUF_TYPE_INT64] = "i64",
  16676. [GGUF_TYPE_FLOAT64] = "f64",
  16677. };
  16678. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16679. union gguf_value {
  16680. uint8_t uint8;
  16681. int8_t int8;
  16682. uint16_t uint16;
  16683. int16_t int16;
  16684. uint32_t uint32;
  16685. int32_t int32;
  16686. float float32;
  16687. uint64_t uint64;
  16688. int64_t int64;
  16689. double float64;
  16690. bool bool_;
  16691. struct gguf_str str;
  16692. struct {
  16693. enum gguf_type type;
  16694. uint64_t n; // GGUFv2
  16695. void * data;
  16696. } arr;
  16697. };
  16698. struct gguf_kv {
  16699. struct gguf_str key;
  16700. enum gguf_type type;
  16701. union gguf_value value;
  16702. };
  16703. struct gguf_header {
  16704. char magic[4];
  16705. uint32_t version;
  16706. uint64_t n_tensors; // GGUFv2
  16707. uint64_t n_kv; // GGUFv2
  16708. };
  16709. struct gguf_tensor_info {
  16710. struct gguf_str name;
  16711. uint32_t n_dims;
  16712. uint64_t ne[GGML_MAX_DIMS];
  16713. enum ggml_type type;
  16714. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  16715. // for writing API
  16716. const void * data;
  16717. size_t size;
  16718. };
  16719. struct gguf_context {
  16720. struct gguf_header header;
  16721. struct gguf_kv * kv;
  16722. struct gguf_tensor_info * infos;
  16723. size_t alignment;
  16724. size_t offset; // offset of `data` from beginning of file
  16725. size_t size; // size of `data` in bytes
  16726. //uint8_t * padding;
  16727. void * data;
  16728. };
  16729. static size_t gguf_type_size(enum gguf_type type) {
  16730. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  16731. return GGUF_TYPE_SIZE[type];
  16732. }
  16733. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  16734. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  16735. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  16736. for (uint32_t i = 0; i < info->n_dims; ++i) {
  16737. GGML_ASSERT(info->ne[i] > 0);
  16738. }
  16739. // prevent overflow for total number of elements
  16740. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  16741. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  16742. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  16743. }
  16744. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  16745. const size_t n = fread(dst, 1, size, file);
  16746. *offset += n;
  16747. return n == size;
  16748. }
  16749. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  16750. p->n = 0;
  16751. p->data = NULL;
  16752. bool ok = true;
  16753. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  16754. // early exit if string length is invalid, prevents from integer overflow
  16755. if (p->n == SIZE_MAX) {
  16756. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  16757. return false;
  16758. }
  16759. p->data = GGML_CALLOC(p->n + 1, 1);
  16760. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  16761. return ok;
  16762. }
  16763. struct gguf_context * gguf_init_empty(void) {
  16764. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16765. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  16766. ctx->header.version = GGUF_VERSION;
  16767. ctx->header.n_tensors = 0;
  16768. ctx->header.n_kv = 0;
  16769. ctx->kv = NULL;
  16770. ctx->infos = NULL;
  16771. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16772. ctx->offset = 0;
  16773. ctx->size = 0;
  16774. ctx->data = NULL;
  16775. return ctx;
  16776. }
  16777. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  16778. FILE * file = fopen(fname, "rb");
  16779. if (!file) {
  16780. return NULL;
  16781. }
  16782. // offset from start of file
  16783. size_t offset = 0;
  16784. char magic[4];
  16785. // check the magic before making allocations
  16786. {
  16787. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  16788. for (uint32_t i = 0; i < sizeof(magic); i++) {
  16789. if (magic[i] != GGUF_MAGIC[i]) {
  16790. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  16791. fclose(file);
  16792. return NULL;
  16793. }
  16794. }
  16795. }
  16796. bool ok = true;
  16797. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16798. // read the header
  16799. {
  16800. strncpy(ctx->header.magic, magic, 4);
  16801. ctx->kv = NULL;
  16802. ctx->infos = NULL;
  16803. ctx->data = NULL;
  16804. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  16805. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  16806. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  16807. if (ctx->header.version == 1) {
  16808. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  16809. fclose(file);
  16810. gguf_free(ctx);
  16811. return NULL;
  16812. }
  16813. // sanity-checks to prevent from integer/buffer overflows
  16814. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  16815. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  16816. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  16817. if (!ok) {
  16818. fprintf(stderr, "%s: failed to read header\n", __func__);
  16819. fclose(file);
  16820. gguf_free(ctx);
  16821. return NULL;
  16822. }
  16823. }
  16824. // read the kv pairs
  16825. {
  16826. ctx->kv = GGML_MALLOC(ctx->header.n_kv * sizeof(struct gguf_kv));
  16827. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  16828. struct gguf_kv * kv = &ctx->kv[i];
  16829. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  16830. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  16831. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  16832. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  16833. switch (kv->type) {
  16834. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  16835. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  16836. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  16837. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  16838. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  16839. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  16840. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  16841. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  16842. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  16843. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  16844. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  16845. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  16846. case GGUF_TYPE_ARRAY:
  16847. {
  16848. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  16849. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  16850. switch (kv->value.arr.type) {
  16851. case GGUF_TYPE_UINT8:
  16852. case GGUF_TYPE_INT8:
  16853. case GGUF_TYPE_UINT16:
  16854. case GGUF_TYPE_INT16:
  16855. case GGUF_TYPE_UINT32:
  16856. case GGUF_TYPE_INT32:
  16857. case GGUF_TYPE_FLOAT32:
  16858. case GGUF_TYPE_UINT64:
  16859. case GGUF_TYPE_INT64:
  16860. case GGUF_TYPE_FLOAT64:
  16861. case GGUF_TYPE_BOOL:
  16862. {
  16863. // prevent from integer overflow in the malloc below
  16864. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  16865. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  16866. fclose(file);
  16867. gguf_free(ctx);
  16868. return NULL;
  16869. }
  16870. kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  16871. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  16872. } break;
  16873. case GGUF_TYPE_STRING:
  16874. {
  16875. // prevent from integer overflow in the malloc below
  16876. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  16877. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  16878. fclose(file);
  16879. gguf_free(ctx);
  16880. return NULL;
  16881. }
  16882. kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * sizeof(struct gguf_str));
  16883. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  16884. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  16885. }
  16886. } break;
  16887. case GGUF_TYPE_ARRAY:
  16888. default: GGML_ASSERT(false && "invalid type"); break;
  16889. }
  16890. } break;
  16891. default: GGML_ASSERT(false && "invalid type");
  16892. }
  16893. if (!ok) {
  16894. break;
  16895. }
  16896. }
  16897. if (!ok) {
  16898. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  16899. fclose(file);
  16900. gguf_free(ctx);
  16901. return NULL;
  16902. }
  16903. }
  16904. // read the tensor infos
  16905. {
  16906. ctx->infos = GGML_MALLOC(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  16907. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16908. struct gguf_tensor_info * info = &ctx->infos[i];
  16909. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16910. info->ne[j] = 1;
  16911. }
  16912. ok = ok && gguf_fread_str(file, &info->name, &offset);
  16913. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  16914. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  16915. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16916. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  16917. }
  16918. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  16919. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  16920. gguf_tensor_info_sanitize(info);
  16921. if (!ok) {
  16922. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  16923. fclose(file);
  16924. gguf_free(ctx);
  16925. return NULL;
  16926. }
  16927. }
  16928. }
  16929. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16930. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  16931. if (alignment_idx != -1) {
  16932. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  16933. }
  16934. // we require the data section to be aligned, so take into account any padding
  16935. {
  16936. const size_t offset_pad = offset % ctx->alignment;
  16937. if (offset_pad != 0) {
  16938. offset += ctx->alignment - offset_pad;
  16939. fseek(file, offset, SEEK_SET);
  16940. }
  16941. }
  16942. // store the current file offset - this is where the data section starts
  16943. ctx->offset = offset;
  16944. // compute the total size of the data section, taking into account the alignment
  16945. {
  16946. ctx->size = 0;
  16947. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16948. struct gguf_tensor_info * info = &ctx->infos[i];
  16949. const int64_t ne =
  16950. (int64_t) info->ne[0] *
  16951. (int64_t) info->ne[1] *
  16952. (int64_t) info->ne[2] *
  16953. (int64_t) info->ne[3];
  16954. if (ne % ggml_blck_size(info->type) != 0) {
  16955. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  16956. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  16957. fclose(file);
  16958. gguf_free(ctx);
  16959. return NULL;
  16960. }
  16961. const size_t size_cur = ggml_row_size(info->type, ne);
  16962. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  16963. }
  16964. }
  16965. // load the tensor data only if requested
  16966. if (params.ctx != NULL) {
  16967. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  16968. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  16969. // the ggml_tensor structs to the appropriate locations in the binary blob
  16970. // compute the exact size needed for the new ggml_context
  16971. const size_t mem_size =
  16972. params.no_alloc ?
  16973. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  16974. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  16975. struct ggml_init_params pdata = {
  16976. .mem_size = mem_size,
  16977. .mem_buffer = NULL,
  16978. .no_alloc = params.no_alloc,
  16979. };
  16980. *params.ctx = ggml_init(pdata);
  16981. struct ggml_context * ctx_data = *params.ctx;
  16982. struct ggml_tensor * data = NULL;
  16983. if (!params.no_alloc) {
  16984. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  16985. ok = ok && data != NULL;
  16986. // read the binary blob with the tensor data
  16987. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  16988. if (!ok) {
  16989. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  16990. fclose(file);
  16991. ggml_free(ctx_data);
  16992. gguf_free(ctx);
  16993. return NULL;
  16994. }
  16995. ctx->data = data->data;
  16996. }
  16997. ggml_set_no_alloc(ctx_data, true);
  16998. // create the tensors
  16999. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17000. const int64_t ne[GGML_MAX_DIMS] = {
  17001. ctx->infos[i].ne[0],
  17002. ctx->infos[i].ne[1],
  17003. ctx->infos[i].ne[2],
  17004. ctx->infos[i].ne[3],
  17005. };
  17006. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  17007. ok = ok && cur != NULL;
  17008. ggml_set_name(cur, ctx->infos[i].name.data);
  17009. if (!ok) {
  17010. break;
  17011. }
  17012. // point the data member to the appropriate location in the binary blob using the tensor infos
  17013. if (!params.no_alloc) {
  17014. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  17015. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  17016. }
  17017. }
  17018. if (!ok) {
  17019. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  17020. fclose(file);
  17021. ggml_free(ctx_data);
  17022. gguf_free(ctx);
  17023. return NULL;
  17024. }
  17025. ggml_set_no_alloc(ctx_data, params.no_alloc);
  17026. }
  17027. fclose(file);
  17028. return ctx;
  17029. }
  17030. void gguf_free(struct gguf_context * ctx) {
  17031. if (ctx == NULL) {
  17032. return;
  17033. }
  17034. if (ctx->kv) {
  17035. // free string memory - not great..
  17036. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  17037. struct gguf_kv * kv = &ctx->kv[i];
  17038. if (kv->key.data) {
  17039. GGML_FREE(kv->key.data);
  17040. }
  17041. if (kv->type == GGUF_TYPE_STRING) {
  17042. if (kv->value.str.data) {
  17043. GGML_FREE(kv->value.str.data);
  17044. }
  17045. }
  17046. if (kv->type == GGUF_TYPE_ARRAY) {
  17047. if (kv->value.arr.data) {
  17048. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  17049. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  17050. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  17051. if (str->data) {
  17052. GGML_FREE(str->data);
  17053. }
  17054. }
  17055. }
  17056. GGML_FREE(kv->value.arr.data);
  17057. }
  17058. }
  17059. }
  17060. GGML_FREE(ctx->kv);
  17061. }
  17062. if (ctx->infos) {
  17063. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17064. struct gguf_tensor_info * info = &ctx->infos[i];
  17065. if (info->name.data) {
  17066. GGML_FREE(info->name.data);
  17067. }
  17068. }
  17069. GGML_FREE(ctx->infos);
  17070. }
  17071. GGML_ALIGNED_FREE(ctx);
  17072. }
  17073. const char * gguf_type_name(enum gguf_type type) {
  17074. return GGUF_TYPE_NAME[type];
  17075. }
  17076. int gguf_get_version(const struct gguf_context * ctx) {
  17077. return ctx->header.version;
  17078. }
  17079. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  17080. return ctx->alignment;
  17081. }
  17082. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  17083. return ctx->offset;
  17084. }
  17085. void * gguf_get_data(const struct gguf_context * ctx) {
  17086. return ctx->data;
  17087. }
  17088. int gguf_get_n_kv(const struct gguf_context * ctx) {
  17089. return ctx->header.n_kv;
  17090. }
  17091. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  17092. // return -1 if key not found
  17093. int keyfound = -1;
  17094. const int n_kv = gguf_get_n_kv(ctx);
  17095. for (int i = 0; i < n_kv; ++i) {
  17096. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  17097. keyfound = i;
  17098. break;
  17099. }
  17100. }
  17101. return keyfound;
  17102. }
  17103. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  17104. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17105. return ctx->kv[key_id].key.data;
  17106. }
  17107. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  17108. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17109. return ctx->kv[key_id].type;
  17110. }
  17111. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  17112. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17113. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17114. return ctx->kv[key_id].value.arr.type;
  17115. }
  17116. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  17117. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17118. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17119. return ctx->kv[key_id].value.arr.data;
  17120. }
  17121. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  17122. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17123. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17124. struct gguf_kv * kv = &ctx->kv[key_id];
  17125. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  17126. return str->data;
  17127. }
  17128. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  17129. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17130. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17131. return ctx->kv[key_id].value.arr.n;
  17132. }
  17133. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  17134. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17135. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  17136. return ctx->kv[key_id].value.uint8;
  17137. }
  17138. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  17139. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17140. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  17141. return ctx->kv[key_id].value.int8;
  17142. }
  17143. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  17144. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17145. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  17146. return ctx->kv[key_id].value.uint16;
  17147. }
  17148. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  17149. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17150. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  17151. return ctx->kv[key_id].value.int16;
  17152. }
  17153. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  17154. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17155. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  17156. return ctx->kv[key_id].value.uint32;
  17157. }
  17158. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  17159. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17160. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  17161. return ctx->kv[key_id].value.int32;
  17162. }
  17163. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  17164. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17165. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  17166. return ctx->kv[key_id].value.float32;
  17167. }
  17168. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  17169. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17170. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  17171. return ctx->kv[key_id].value.uint64;
  17172. }
  17173. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  17174. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17175. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  17176. return ctx->kv[key_id].value.int64;
  17177. }
  17178. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  17179. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17180. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  17181. return ctx->kv[key_id].value.float64;
  17182. }
  17183. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  17184. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17185. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  17186. return ctx->kv[key_id].value.bool_;
  17187. }
  17188. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  17189. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17190. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  17191. return ctx->kv[key_id].value.str.data;
  17192. }
  17193. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  17194. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17195. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  17196. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  17197. return &ctx->kv[key_id].value;
  17198. }
  17199. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  17200. return ctx->header.n_tensors;
  17201. }
  17202. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  17203. // return -1 if tensor not found
  17204. int tensorfound = -1;
  17205. const int n_tensors = gguf_get_n_tensors(ctx);
  17206. for (int i = 0; i < n_tensors; ++i) {
  17207. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  17208. tensorfound = i;
  17209. break;
  17210. }
  17211. }
  17212. return tensorfound;
  17213. }
  17214. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  17215. return ctx->infos[i].offset;
  17216. }
  17217. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  17218. return ctx->infos[i].name.data;
  17219. }
  17220. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  17221. return ctx->infos[i].type;
  17222. }
  17223. // returns the index
  17224. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  17225. const int idx = gguf_find_key(ctx, key);
  17226. if (idx >= 0) {
  17227. return idx;
  17228. }
  17229. const int n_kv = gguf_get_n_kv(ctx);
  17230. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  17231. ctx->kv[n_kv].key.n = strlen(key);
  17232. ctx->kv[n_kv].key.data = strdup(key);
  17233. ctx->header.n_kv++;
  17234. return n_kv;
  17235. }
  17236. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  17237. const int idx = gguf_get_or_add_key(ctx, key);
  17238. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  17239. ctx->kv[idx].value.uint8 = val;
  17240. }
  17241. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  17242. const int idx = gguf_get_or_add_key(ctx, key);
  17243. ctx->kv[idx].type = GGUF_TYPE_INT8;
  17244. ctx->kv[idx].value.int8 = val;
  17245. }
  17246. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  17247. const int idx = gguf_get_or_add_key(ctx, key);
  17248. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  17249. ctx->kv[idx].value.uint16 = val;
  17250. }
  17251. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  17252. const int idx = gguf_get_or_add_key(ctx, key);
  17253. ctx->kv[idx].type = GGUF_TYPE_INT16;
  17254. ctx->kv[idx].value.int16 = val;
  17255. }
  17256. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  17257. const int idx = gguf_get_or_add_key(ctx, key);
  17258. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  17259. ctx->kv[idx].value.uint32 = val;
  17260. }
  17261. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  17262. const int idx = gguf_get_or_add_key(ctx, key);
  17263. ctx->kv[idx].type = GGUF_TYPE_INT32;
  17264. ctx->kv[idx].value.int32 = val;
  17265. }
  17266. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  17267. const int idx = gguf_get_or_add_key(ctx, key);
  17268. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  17269. ctx->kv[idx].value.float32 = val;
  17270. }
  17271. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  17272. const int idx = gguf_get_or_add_key(ctx, key);
  17273. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  17274. ctx->kv[idx].value.uint64 = val;
  17275. }
  17276. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  17277. const int idx = gguf_get_or_add_key(ctx, key);
  17278. ctx->kv[idx].type = GGUF_TYPE_INT64;
  17279. ctx->kv[idx].value.int64 = val;
  17280. }
  17281. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  17282. const int idx = gguf_get_or_add_key(ctx, key);
  17283. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  17284. ctx->kv[idx].value.float64 = val;
  17285. }
  17286. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  17287. const int idx = gguf_get_or_add_key(ctx, key);
  17288. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  17289. ctx->kv[idx].value.bool_ = val;
  17290. }
  17291. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  17292. const int idx = gguf_get_or_add_key(ctx, key);
  17293. ctx->kv[idx].type = GGUF_TYPE_STRING;
  17294. ctx->kv[idx].value.str.n = strlen(val);
  17295. ctx->kv[idx].value.str.data = strdup(val);
  17296. }
  17297. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  17298. const int idx = gguf_get_or_add_key(ctx, key);
  17299. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  17300. ctx->kv[idx].value.arr.type = type;
  17301. ctx->kv[idx].value.arr.n = n;
  17302. ctx->kv[idx].value.arr.data = GGML_MALLOC(n*gguf_type_size(type));
  17303. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  17304. }
  17305. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  17306. const int idx = gguf_get_or_add_key(ctx, key);
  17307. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  17308. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  17309. ctx->kv[idx].value.arr.n = n;
  17310. ctx->kv[idx].value.arr.data = GGML_MALLOC(n*sizeof(struct gguf_str));
  17311. for (int i = 0; i < n; i++) {
  17312. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  17313. str->n = strlen(data[i]);
  17314. str->data = strdup(data[i]);
  17315. }
  17316. }
  17317. // set or add KV pairs from another context
  17318. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  17319. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  17320. switch (src->kv[i].type) {
  17321. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  17322. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  17323. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  17324. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  17325. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  17326. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  17327. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  17328. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  17329. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  17330. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  17331. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  17332. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  17333. case GGUF_TYPE_ARRAY:
  17334. {
  17335. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  17336. const char ** data = GGML_MALLOC(src->kv[i].value.arr.n*sizeof(char *));
  17337. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  17338. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  17339. }
  17340. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  17341. GGML_FREE((void *)data);
  17342. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  17343. GGML_ASSERT(false && "nested arrays not supported");
  17344. } else {
  17345. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  17346. }
  17347. } break;
  17348. default: GGML_ASSERT(false && "invalid type"); break;
  17349. }
  17350. }
  17351. }
  17352. void gguf_add_tensor(
  17353. struct gguf_context * ctx,
  17354. const struct ggml_tensor * tensor) {
  17355. const int idx = ctx->header.n_tensors;
  17356. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  17357. ctx->infos[idx].name.n = strlen(tensor->name);
  17358. ctx->infos[idx].name.data = strdup(tensor->name);
  17359. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  17360. ctx->infos[idx].ne[i] = 1;
  17361. }
  17362. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  17363. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  17364. ctx->infos[idx].ne[i] = tensor->ne[i];
  17365. }
  17366. ctx->infos[idx].type = tensor->type;
  17367. ctx->infos[idx].offset = 0;
  17368. ctx->infos[idx].data = tensor->data;
  17369. ctx->infos[idx].size = ggml_nbytes(tensor);
  17370. if (ctx->header.n_tensors > 0) {
  17371. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  17372. }
  17373. ctx->header.n_tensors++;
  17374. }
  17375. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  17376. const int idx = gguf_find_tensor(ctx, name);
  17377. if (idx < 0) {
  17378. GGML_ASSERT(false && "tensor not found");
  17379. }
  17380. ctx->infos[idx].type = type;
  17381. }
  17382. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  17383. const int idx = gguf_find_tensor(ctx, name);
  17384. if (idx < 0) {
  17385. GGML_ASSERT(false && "tensor not found");
  17386. }
  17387. ctx->infos[idx].data = data;
  17388. ctx->infos[idx].size = size;
  17389. // update offsets
  17390. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  17391. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  17392. }
  17393. }
  17394. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  17395. // fwrite(&val->n, sizeof(val->n), 1, file);
  17396. // fwrite(val->data, sizeof(char), val->n, file);
  17397. //}
  17398. //
  17399. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  17400. // fwrite(val, sizeof(char), size, file);
  17401. //}
  17402. struct gguf_buf {
  17403. void * data;
  17404. size_t size;
  17405. size_t offset;
  17406. };
  17407. static struct gguf_buf gguf_buf_init(size_t size) {
  17408. struct gguf_buf buf = {
  17409. /*buf.data =*/ size == 0 ? NULL : GGML_MALLOC(size),
  17410. /*buf.size =*/ size,
  17411. /*buf.offset =*/ 0,
  17412. };
  17413. return buf;
  17414. }
  17415. static void gguf_buf_free(struct gguf_buf buf) {
  17416. if (buf.data) {
  17417. GGML_FREE(buf.data);
  17418. }
  17419. }
  17420. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  17421. if (buf->offset + size > buf->size) {
  17422. buf->size = 1.5*(buf->offset + size);
  17423. if (buf->data) {
  17424. buf->data = realloc(buf->data, buf->size);
  17425. }
  17426. }
  17427. }
  17428. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  17429. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  17430. if (buf->data) {
  17431. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  17432. }
  17433. buf->offset += sizeof(val->n);
  17434. if (buf->data) {
  17435. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  17436. }
  17437. buf->offset += val->n;
  17438. }
  17439. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  17440. gguf_buf_grow(buf, el_size);
  17441. if (buf->data) {
  17442. memcpy((char *) buf->data + buf->offset, val, el_size);
  17443. }
  17444. buf->offset += el_size;
  17445. }
  17446. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  17447. // write header
  17448. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  17449. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  17450. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  17451. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  17452. // write key-value pairs
  17453. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  17454. struct gguf_kv * kv = &ctx->kv[i];
  17455. gguf_bwrite_str(buf, &kv->key);
  17456. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  17457. switch (kv->type) {
  17458. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  17459. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  17460. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  17461. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  17462. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  17463. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  17464. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  17465. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  17466. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  17467. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  17468. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  17469. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  17470. case GGUF_TYPE_ARRAY:
  17471. {
  17472. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  17473. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  17474. switch (kv->value.arr.type) {
  17475. case GGUF_TYPE_UINT8:
  17476. case GGUF_TYPE_INT8:
  17477. case GGUF_TYPE_UINT16:
  17478. case GGUF_TYPE_INT16:
  17479. case GGUF_TYPE_UINT32:
  17480. case GGUF_TYPE_INT32:
  17481. case GGUF_TYPE_FLOAT32:
  17482. case GGUF_TYPE_UINT64:
  17483. case GGUF_TYPE_INT64:
  17484. case GGUF_TYPE_FLOAT64:
  17485. case GGUF_TYPE_BOOL:
  17486. {
  17487. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  17488. } break;
  17489. case GGUF_TYPE_STRING:
  17490. {
  17491. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  17492. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  17493. }
  17494. } break;
  17495. case GGUF_TYPE_ARRAY:
  17496. default: GGML_ASSERT(false && "invalid type"); break;
  17497. }
  17498. } break;
  17499. default: GGML_ASSERT(false && "invalid type");
  17500. }
  17501. }
  17502. // write tensor infos
  17503. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17504. struct gguf_tensor_info * info = &ctx->infos[i];
  17505. gguf_bwrite_str(buf, &info->name);
  17506. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  17507. for (uint32_t j = 0; j < info->n_dims; ++j) {
  17508. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  17509. }
  17510. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  17511. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  17512. }
  17513. // we require the data section to be aligned, so take into account any padding
  17514. {
  17515. const size_t offset = buf->offset;
  17516. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  17517. if (offset_pad != offset) {
  17518. uint8_t pad = 0;
  17519. for (size_t i = 0; i < offset_pad - offset; ++i) {
  17520. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17521. }
  17522. }
  17523. }
  17524. if (only_meta) {
  17525. return;
  17526. }
  17527. size_t offset = 0;
  17528. // write tensor data
  17529. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17530. struct gguf_tensor_info * info = &ctx->infos[i];
  17531. const size_t size = info->size;
  17532. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  17533. gguf_bwrite_el(buf, info->data, size);
  17534. if (size_pad != size) {
  17535. uint8_t pad = 0;
  17536. for (size_t j = 0; j < size_pad - size; ++j) {
  17537. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17538. }
  17539. }
  17540. GGML_ASSERT(offset == info->offset);
  17541. offset += size_pad;
  17542. }
  17543. }
  17544. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  17545. FILE * file = fopen(fname, "wb");
  17546. if (!file) {
  17547. GGML_ASSERT(false && "failed to open file for writing");
  17548. }
  17549. struct gguf_buf buf = gguf_buf_init(16*1024);
  17550. gguf_write_to_buf(ctx, &buf, only_meta);
  17551. fwrite(buf.data, 1, buf.offset, file);
  17552. gguf_buf_free(buf);
  17553. fclose(file);
  17554. }
  17555. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  17556. // no allocs - only compute size
  17557. struct gguf_buf buf = gguf_buf_init(0);
  17558. gguf_write_to_buf(ctx, &buf, true);
  17559. return buf.offset;
  17560. }
  17561. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  17562. struct gguf_buf buf = gguf_buf_init(16*1024);
  17563. gguf_write_to_buf(ctx, &buf, true);
  17564. memcpy(data, buf.data, buf.offset);
  17565. gguf_buf_free(buf);
  17566. }
  17567. ////////////////////////////////////////////////////////////////////////////////
  17568. int ggml_cpu_has_avx(void) {
  17569. #if defined(__AVX__)
  17570. return 1;
  17571. #else
  17572. return 0;
  17573. #endif
  17574. }
  17575. int ggml_cpu_has_avx_vnni(void) {
  17576. #if defined(__AVXVNNI__)
  17577. return 1;
  17578. #else
  17579. return 0;
  17580. #endif
  17581. }
  17582. int ggml_cpu_has_avx2(void) {
  17583. #if defined(__AVX2__)
  17584. return 1;
  17585. #else
  17586. return 0;
  17587. #endif
  17588. }
  17589. int ggml_cpu_has_avx512(void) {
  17590. #if defined(__AVX512F__)
  17591. return 1;
  17592. #else
  17593. return 0;
  17594. #endif
  17595. }
  17596. int ggml_cpu_has_avx512_vbmi(void) {
  17597. #if defined(__AVX512VBMI__)
  17598. return 1;
  17599. #else
  17600. return 0;
  17601. #endif
  17602. }
  17603. int ggml_cpu_has_avx512_vnni(void) {
  17604. #if defined(__AVX512VNNI__)
  17605. return 1;
  17606. #else
  17607. return 0;
  17608. #endif
  17609. }
  17610. int ggml_cpu_has_fma(void) {
  17611. #if defined(__FMA__)
  17612. return 1;
  17613. #else
  17614. return 0;
  17615. #endif
  17616. }
  17617. int ggml_cpu_has_neon(void) {
  17618. #if defined(__ARM_NEON)
  17619. return 1;
  17620. #else
  17621. return 0;
  17622. #endif
  17623. }
  17624. int ggml_cpu_has_arm_fma(void) {
  17625. #if defined(__ARM_FEATURE_FMA)
  17626. return 1;
  17627. #else
  17628. return 0;
  17629. #endif
  17630. }
  17631. int ggml_cpu_has_metal(void) {
  17632. #if defined(GGML_USE_METAL)
  17633. return 1;
  17634. #else
  17635. return 0;
  17636. #endif
  17637. }
  17638. int ggml_cpu_has_f16c(void) {
  17639. #if defined(__F16C__)
  17640. return 1;
  17641. #else
  17642. return 0;
  17643. #endif
  17644. }
  17645. int ggml_cpu_has_fp16_va(void) {
  17646. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  17647. return 1;
  17648. #else
  17649. return 0;
  17650. #endif
  17651. }
  17652. int ggml_cpu_has_wasm_simd(void) {
  17653. #if defined(__wasm_simd128__)
  17654. return 1;
  17655. #else
  17656. return 0;
  17657. #endif
  17658. }
  17659. int ggml_cpu_has_blas(void) {
  17660. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL)
  17661. return 1;
  17662. #else
  17663. return 0;
  17664. #endif
  17665. }
  17666. int ggml_cpu_has_cublas(void) {
  17667. #if defined(GGML_USE_CUBLAS)
  17668. return 1;
  17669. #else
  17670. return 0;
  17671. #endif
  17672. }
  17673. int ggml_cpu_has_clblast(void) {
  17674. #if defined(GGML_USE_CLBLAST)
  17675. return 1;
  17676. #else
  17677. return 0;
  17678. #endif
  17679. }
  17680. int ggml_cpu_has_vulkan(void) {
  17681. #if defined(GGML_USE_VULKAN)
  17682. return 1;
  17683. #else
  17684. return 0;
  17685. #endif
  17686. }
  17687. int ggml_cpu_has_kompute(void) {
  17688. #if defined(GGML_USE_KOMPUTE)
  17689. return 1;
  17690. #else
  17691. return 0;
  17692. #endif
  17693. }
  17694. int ggml_cpu_has_sycl(void) {
  17695. #if defined(GGML_USE_SYCL)
  17696. return 1;
  17697. #else
  17698. return 0;
  17699. #endif
  17700. }
  17701. int ggml_cpu_has_gpublas(void) {
  17702. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() ||
  17703. ggml_cpu_has_sycl();
  17704. }
  17705. int ggml_cpu_has_sse3(void) {
  17706. #if defined(__SSE3__)
  17707. return 1;
  17708. #else
  17709. return 0;
  17710. #endif
  17711. }
  17712. int ggml_cpu_has_ssse3(void) {
  17713. #if defined(__SSSE3__)
  17714. return 1;
  17715. #else
  17716. return 0;
  17717. #endif
  17718. }
  17719. int ggml_cpu_has_vsx(void) {
  17720. #if defined(__POWER9_VECTOR__)
  17721. return 1;
  17722. #else
  17723. return 0;
  17724. #endif
  17725. }
  17726. int ggml_cpu_has_matmul_int8(void) {
  17727. #if defined(__ARM_FEATURE_MATMUL_INT8)
  17728. return 1;
  17729. #else
  17730. return 0;
  17731. #endif
  17732. }
  17733. ////////////////////////////////////////////////////////////////////////////////