constants.py 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804
  1. from __future__ import annotations
  2. import sys
  3. from enum import Enum, IntEnum, auto
  4. from typing import Any
  5. #
  6. # constants
  7. #
  8. GGUF_MAGIC = 0x46554747 # "GGUF"
  9. GGUF_VERSION = 3
  10. GGUF_DEFAULT_ALIGNMENT = 32
  11. #
  12. # metadata keys
  13. #
  14. class Keys:
  15. class General:
  16. ARCHITECTURE = "general.architecture"
  17. QUANTIZATION_VERSION = "general.quantization_version"
  18. ALIGNMENT = "general.alignment"
  19. NAME = "general.name"
  20. AUTHOR = "general.author"
  21. URL = "general.url"
  22. DESCRIPTION = "general.description"
  23. LICENSE = "general.license"
  24. SOURCE_URL = "general.source.url"
  25. SOURCE_HF_REPO = "general.source.huggingface.repository"
  26. FILE_TYPE = "general.file_type"
  27. class LLM:
  28. VOCAB_SIZE = "{arch}.vocab_size"
  29. CONTEXT_LENGTH = "{arch}.context_length"
  30. EMBEDDING_LENGTH = "{arch}.embedding_length"
  31. BLOCK_COUNT = "{arch}.block_count"
  32. FEED_FORWARD_LENGTH = "{arch}.feed_forward_length"
  33. USE_PARALLEL_RESIDUAL = "{arch}.use_parallel_residual"
  34. TENSOR_DATA_LAYOUT = "{arch}.tensor_data_layout"
  35. EXPERT_COUNT = "{arch}.expert_count"
  36. EXPERT_USED_COUNT = "{arch}.expert_used_count"
  37. POOLING_TYPE = "{arch}.pooling_type"
  38. class Attention:
  39. HEAD_COUNT = "{arch}.attention.head_count"
  40. HEAD_COUNT_KV = "{arch}.attention.head_count_kv"
  41. MAX_ALIBI_BIAS = "{arch}.attention.max_alibi_bias"
  42. CLAMP_KQV = "{arch}.attention.clamp_kqv"
  43. KEY_LENGTH = "{arch}.attention.key_length"
  44. VALUE_LENGTH = "{arch}.attention.value_length"
  45. LAYERNORM_EPS = "{arch}.attention.layer_norm_epsilon"
  46. LAYERNORM_RMS_EPS = "{arch}.attention.layer_norm_rms_epsilon"
  47. CAUSAL = "{arch}.attention.causal"
  48. class Rope:
  49. DIMENSION_COUNT = "{arch}.rope.dimension_count"
  50. FREQ_BASE = "{arch}.rope.freq_base"
  51. SCALING_TYPE = "{arch}.rope.scaling.type"
  52. SCALING_FACTOR = "{arch}.rope.scaling.factor"
  53. SCALING_ORIG_CTX_LEN = "{arch}.rope.scaling.original_context_length"
  54. SCALING_FINETUNED = "{arch}.rope.scaling.finetuned"
  55. class SSM:
  56. CONV_KERNEL = "{arch}.ssm.conv_kernel"
  57. INNER_SIZE = "{arch}.ssm.inner_size"
  58. STATE_SIZE = "{arch}.ssm.state_size"
  59. TIME_STEP_RANK = "{arch}.ssm.time_step_rank"
  60. class Tokenizer:
  61. MODEL = "tokenizer.ggml.model"
  62. LIST = "tokenizer.ggml.tokens"
  63. TOKEN_TYPE = "tokenizer.ggml.token_type"
  64. TOKEN_TYPE_COUNT = "tokenizer.ggml.token_type_count" # for BERT-style token types
  65. SCORES = "tokenizer.ggml.scores"
  66. MERGES = "tokenizer.ggml.merges"
  67. BOS_ID = "tokenizer.ggml.bos_token_id"
  68. EOS_ID = "tokenizer.ggml.eos_token_id"
  69. UNK_ID = "tokenizer.ggml.unknown_token_id"
  70. SEP_ID = "tokenizer.ggml.seperator_token_id"
  71. PAD_ID = "tokenizer.ggml.padding_token_id"
  72. CLS_ID = "tokenizer.ggml.cls_token_id"
  73. MASK_ID = "tokenizer.ggml.mask_token_id"
  74. ADD_BOS = "tokenizer.ggml.add_bos_token"
  75. ADD_EOS = "tokenizer.ggml.add_eos_token"
  76. ADD_PREFIX = "tokenizer.ggml.add_space_prefix"
  77. HF_JSON = "tokenizer.huggingface.json"
  78. RWKV = "tokenizer.rwkv.world"
  79. CHAT_TEMPLATE = "tokenizer.chat_template"
  80. #
  81. # recommended mapping of model tensor names for storage in gguf
  82. #
  83. class MODEL_ARCH(IntEnum):
  84. LLAMA = auto()
  85. FALCON = auto()
  86. BAICHUAN = auto()
  87. GPT2 = auto()
  88. GPTJ = auto()
  89. GPTNEOX = auto()
  90. MPT = auto()
  91. STARCODER = auto()
  92. PERSIMMON = auto()
  93. REFACT = auto()
  94. BERT = auto()
  95. NOMIC_BERT = auto()
  96. BLOOM = auto()
  97. STABLELM = auto()
  98. QWEN = auto()
  99. QWEN2 = auto()
  100. PHI2 = auto()
  101. PLAMO = auto()
  102. CODESHELL = auto()
  103. ORION = auto()
  104. INTERNLM2 = auto()
  105. MINICPM = auto()
  106. GEMMA = auto()
  107. STARCODER2 = auto()
  108. MAMBA = auto()
  109. class MODEL_TENSOR(IntEnum):
  110. TOKEN_EMBD = auto()
  111. TOKEN_EMBD_NORM = auto()
  112. TOKEN_TYPES = auto()
  113. POS_EMBD = auto()
  114. OUTPUT = auto()
  115. OUTPUT_NORM = auto()
  116. ROPE_FREQS = auto()
  117. ATTN_Q = auto()
  118. ATTN_K = auto()
  119. ATTN_V = auto()
  120. ATTN_QKV = auto()
  121. ATTN_OUT = auto()
  122. ATTN_NORM = auto()
  123. ATTN_NORM_2 = auto()
  124. ATTN_OUT_NORM = auto()
  125. ATTN_ROT_EMBD = auto()
  126. FFN_GATE_INP = auto()
  127. FFN_NORM = auto()
  128. FFN_GATE = auto()
  129. FFN_DOWN = auto()
  130. FFN_UP = auto()
  131. FFN_ACT = auto()
  132. FFN_GATE_EXP = auto()
  133. FFN_DOWN_EXP = auto()
  134. FFN_UP_EXP = auto()
  135. ATTN_Q_NORM = auto()
  136. ATTN_K_NORM = auto()
  137. LAYER_OUT_NORM = auto()
  138. SSM_IN = auto()
  139. SSM_CONV1D = auto()
  140. SSM_X = auto()
  141. SSM_DT = auto()
  142. SSM_A = auto()
  143. SSM_D = auto()
  144. SSM_OUT = auto()
  145. MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
  146. MODEL_ARCH.LLAMA: "llama",
  147. MODEL_ARCH.FALCON: "falcon",
  148. MODEL_ARCH.BAICHUAN: "baichuan",
  149. MODEL_ARCH.GPT2: "gpt2",
  150. MODEL_ARCH.GPTJ: "gptj",
  151. MODEL_ARCH.GPTNEOX: "gptneox",
  152. MODEL_ARCH.MPT: "mpt",
  153. MODEL_ARCH.STARCODER: "starcoder",
  154. MODEL_ARCH.PERSIMMON: "persimmon",
  155. MODEL_ARCH.REFACT: "refact",
  156. MODEL_ARCH.BERT: "bert",
  157. MODEL_ARCH.NOMIC_BERT: "nomic-bert",
  158. MODEL_ARCH.BLOOM: "bloom",
  159. MODEL_ARCH.STABLELM: "stablelm",
  160. MODEL_ARCH.QWEN: "qwen",
  161. MODEL_ARCH.QWEN2: "qwen2",
  162. MODEL_ARCH.PHI2: "phi2",
  163. MODEL_ARCH.PLAMO: "plamo",
  164. MODEL_ARCH.CODESHELL: "codeshell",
  165. MODEL_ARCH.ORION: "orion",
  166. MODEL_ARCH.INTERNLM2: "internlm2",
  167. MODEL_ARCH.MINICPM: "minicpm",
  168. MODEL_ARCH.GEMMA: "gemma",
  169. MODEL_ARCH.STARCODER2: "starcoder2",
  170. MODEL_ARCH.MAMBA: "mamba",
  171. }
  172. TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
  173. MODEL_TENSOR.TOKEN_EMBD: "token_embd",
  174. MODEL_TENSOR.TOKEN_EMBD_NORM: "token_embd_norm",
  175. MODEL_TENSOR.TOKEN_TYPES: "token_types",
  176. MODEL_TENSOR.POS_EMBD: "position_embd",
  177. MODEL_TENSOR.OUTPUT_NORM: "output_norm",
  178. MODEL_TENSOR.OUTPUT: "output",
  179. MODEL_TENSOR.ROPE_FREQS: "rope_freqs",
  180. MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
  181. MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2",
  182. MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
  183. MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q",
  184. MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k",
  185. MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v",
  186. MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
  187. MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd",
  188. MODEL_TENSOR.ATTN_Q_NORM: "blk.{bid}.attn_q_norm",
  189. MODEL_TENSOR.ATTN_K_NORM: "blk.{bid}.attn_k_norm",
  190. MODEL_TENSOR.ATTN_OUT_NORM: "blk.{bid}.attn_output_norm",
  191. MODEL_TENSOR.FFN_GATE_INP: "blk.{bid}.ffn_gate_inp",
  192. MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
  193. MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate",
  194. MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
  195. MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
  196. MODEL_TENSOR.FFN_ACT: "blk.{bid}.ffn",
  197. MODEL_TENSOR.FFN_GATE_EXP: "blk.{bid}.ffn_gate.{xid}",
  198. MODEL_TENSOR.FFN_DOWN_EXP: "blk.{bid}.ffn_down.{xid}",
  199. MODEL_TENSOR.FFN_UP_EXP: "blk.{bid}.ffn_up.{xid}",
  200. MODEL_TENSOR.LAYER_OUT_NORM: "blk.{bid}.layer_output_norm",
  201. MODEL_TENSOR.SSM_IN: "blk.{bid}.ssm_in",
  202. MODEL_TENSOR.SSM_CONV1D: "blk.{bid}.ssm_conv1d",
  203. MODEL_TENSOR.SSM_X: "blk.{bid}.ssm_x",
  204. MODEL_TENSOR.SSM_DT: "blk.{bid}.ssm_dt",
  205. MODEL_TENSOR.SSM_A: "blk.{bid}.ssm_a",
  206. MODEL_TENSOR.SSM_D: "blk.{bid}.ssm_d",
  207. MODEL_TENSOR.SSM_OUT: "blk.{bid}.ssm_out",
  208. }
  209. MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
  210. MODEL_ARCH.LLAMA: [
  211. MODEL_TENSOR.TOKEN_EMBD,
  212. MODEL_TENSOR.OUTPUT_NORM,
  213. MODEL_TENSOR.OUTPUT,
  214. MODEL_TENSOR.ROPE_FREQS,
  215. MODEL_TENSOR.ATTN_NORM,
  216. MODEL_TENSOR.ATTN_Q,
  217. MODEL_TENSOR.ATTN_K,
  218. MODEL_TENSOR.ATTN_V,
  219. MODEL_TENSOR.ATTN_OUT,
  220. MODEL_TENSOR.ATTN_ROT_EMBD,
  221. MODEL_TENSOR.FFN_GATE_INP,
  222. MODEL_TENSOR.FFN_NORM,
  223. MODEL_TENSOR.FFN_GATE,
  224. MODEL_TENSOR.FFN_DOWN,
  225. MODEL_TENSOR.FFN_UP,
  226. MODEL_TENSOR.FFN_GATE_EXP,
  227. MODEL_TENSOR.FFN_DOWN_EXP,
  228. MODEL_TENSOR.FFN_UP_EXP,
  229. ],
  230. MODEL_ARCH.GPTNEOX: [
  231. MODEL_TENSOR.TOKEN_EMBD,
  232. MODEL_TENSOR.OUTPUT_NORM,
  233. MODEL_TENSOR.OUTPUT,
  234. MODEL_TENSOR.ATTN_NORM,
  235. MODEL_TENSOR.ATTN_QKV,
  236. MODEL_TENSOR.ATTN_OUT,
  237. MODEL_TENSOR.FFN_NORM,
  238. MODEL_TENSOR.FFN_DOWN,
  239. MODEL_TENSOR.FFN_UP,
  240. ],
  241. MODEL_ARCH.FALCON: [
  242. MODEL_TENSOR.TOKEN_EMBD,
  243. MODEL_TENSOR.OUTPUT_NORM,
  244. MODEL_TENSOR.OUTPUT,
  245. MODEL_TENSOR.ATTN_NORM,
  246. MODEL_TENSOR.ATTN_NORM_2,
  247. MODEL_TENSOR.ATTN_QKV,
  248. MODEL_TENSOR.ATTN_OUT,
  249. MODEL_TENSOR.FFN_DOWN,
  250. MODEL_TENSOR.FFN_UP,
  251. ],
  252. MODEL_ARCH.BAICHUAN: [
  253. MODEL_TENSOR.TOKEN_EMBD,
  254. MODEL_TENSOR.OUTPUT_NORM,
  255. MODEL_TENSOR.OUTPUT,
  256. MODEL_TENSOR.ROPE_FREQS,
  257. MODEL_TENSOR.ATTN_NORM,
  258. MODEL_TENSOR.ATTN_Q,
  259. MODEL_TENSOR.ATTN_K,
  260. MODEL_TENSOR.ATTN_V,
  261. MODEL_TENSOR.ATTN_OUT,
  262. MODEL_TENSOR.ATTN_ROT_EMBD,
  263. MODEL_TENSOR.FFN_NORM,
  264. MODEL_TENSOR.FFN_GATE,
  265. MODEL_TENSOR.FFN_DOWN,
  266. MODEL_TENSOR.FFN_UP,
  267. ],
  268. MODEL_ARCH.STARCODER: [
  269. MODEL_TENSOR.TOKEN_EMBD,
  270. MODEL_TENSOR.POS_EMBD,
  271. MODEL_TENSOR.OUTPUT_NORM,
  272. MODEL_TENSOR.OUTPUT,
  273. MODEL_TENSOR.ATTN_NORM,
  274. MODEL_TENSOR.ATTN_QKV,
  275. MODEL_TENSOR.ATTN_OUT,
  276. MODEL_TENSOR.FFN_NORM,
  277. MODEL_TENSOR.FFN_DOWN,
  278. MODEL_TENSOR.FFN_UP,
  279. ],
  280. MODEL_ARCH.BERT: [
  281. MODEL_TENSOR.TOKEN_EMBD,
  282. MODEL_TENSOR.TOKEN_EMBD_NORM,
  283. MODEL_TENSOR.TOKEN_TYPES,
  284. MODEL_TENSOR.POS_EMBD,
  285. MODEL_TENSOR.OUTPUT_NORM,
  286. MODEL_TENSOR.ATTN_OUT_NORM,
  287. MODEL_TENSOR.ATTN_Q,
  288. MODEL_TENSOR.ATTN_K,
  289. MODEL_TENSOR.ATTN_V,
  290. MODEL_TENSOR.ATTN_OUT,
  291. MODEL_TENSOR.FFN_DOWN,
  292. MODEL_TENSOR.FFN_UP,
  293. MODEL_TENSOR.LAYER_OUT_NORM,
  294. ],
  295. MODEL_ARCH.NOMIC_BERT: [
  296. MODEL_TENSOR.TOKEN_EMBD,
  297. MODEL_TENSOR.TOKEN_EMBD_NORM,
  298. MODEL_TENSOR.TOKEN_TYPES,
  299. MODEL_TENSOR.POS_EMBD,
  300. MODEL_TENSOR.OUTPUT_NORM,
  301. MODEL_TENSOR.ATTN_OUT_NORM,
  302. MODEL_TENSOR.ATTN_QKV,
  303. MODEL_TENSOR.ATTN_OUT,
  304. MODEL_TENSOR.FFN_GATE,
  305. MODEL_TENSOR.FFN_DOWN,
  306. MODEL_TENSOR.FFN_UP,
  307. MODEL_TENSOR.LAYER_OUT_NORM,
  308. ],
  309. MODEL_ARCH.MPT: [
  310. MODEL_TENSOR.TOKEN_EMBD,
  311. MODEL_TENSOR.OUTPUT_NORM,
  312. MODEL_TENSOR.OUTPUT,
  313. MODEL_TENSOR.ATTN_NORM,
  314. MODEL_TENSOR.ATTN_QKV,
  315. MODEL_TENSOR.ATTN_OUT,
  316. MODEL_TENSOR.FFN_NORM,
  317. MODEL_TENSOR.FFN_DOWN,
  318. MODEL_TENSOR.FFN_UP,
  319. MODEL_TENSOR.FFN_ACT,
  320. ],
  321. MODEL_ARCH.GPTJ: [
  322. MODEL_TENSOR.TOKEN_EMBD,
  323. MODEL_TENSOR.OUTPUT_NORM,
  324. MODEL_TENSOR.OUTPUT,
  325. MODEL_TENSOR.ATTN_NORM,
  326. MODEL_TENSOR.ATTN_Q,
  327. MODEL_TENSOR.ATTN_K,
  328. MODEL_TENSOR.ATTN_V,
  329. MODEL_TENSOR.ATTN_OUT,
  330. MODEL_TENSOR.FFN_DOWN,
  331. MODEL_TENSOR.FFN_UP,
  332. ],
  333. MODEL_ARCH.PERSIMMON: [
  334. MODEL_TENSOR.TOKEN_EMBD,
  335. MODEL_TENSOR.OUTPUT,
  336. MODEL_TENSOR.OUTPUT_NORM,
  337. MODEL_TENSOR.ATTN_NORM,
  338. MODEL_TENSOR.ATTN_QKV,
  339. MODEL_TENSOR.ATTN_OUT,
  340. MODEL_TENSOR.FFN_NORM,
  341. MODEL_TENSOR.FFN_DOWN,
  342. MODEL_TENSOR.FFN_UP,
  343. MODEL_TENSOR.ATTN_Q_NORM,
  344. MODEL_TENSOR.ATTN_K_NORM,
  345. MODEL_TENSOR.ATTN_ROT_EMBD,
  346. ],
  347. MODEL_ARCH.REFACT: [
  348. MODEL_TENSOR.TOKEN_EMBD,
  349. MODEL_TENSOR.OUTPUT_NORM,
  350. MODEL_TENSOR.OUTPUT,
  351. MODEL_TENSOR.ATTN_NORM,
  352. MODEL_TENSOR.ATTN_Q,
  353. MODEL_TENSOR.ATTN_K,
  354. MODEL_TENSOR.ATTN_V,
  355. MODEL_TENSOR.ATTN_OUT,
  356. MODEL_TENSOR.FFN_NORM,
  357. MODEL_TENSOR.FFN_GATE,
  358. MODEL_TENSOR.FFN_DOWN,
  359. MODEL_TENSOR.FFN_UP,
  360. ],
  361. MODEL_ARCH.BLOOM: [
  362. MODEL_TENSOR.TOKEN_EMBD,
  363. MODEL_TENSOR.TOKEN_EMBD_NORM,
  364. MODEL_TENSOR.OUTPUT_NORM,
  365. MODEL_TENSOR.OUTPUT,
  366. MODEL_TENSOR.ATTN_NORM,
  367. MODEL_TENSOR.ATTN_QKV,
  368. MODEL_TENSOR.ATTN_OUT,
  369. MODEL_TENSOR.FFN_NORM,
  370. MODEL_TENSOR.FFN_DOWN,
  371. MODEL_TENSOR.FFN_UP,
  372. ],
  373. MODEL_ARCH.STABLELM: [
  374. MODEL_TENSOR.TOKEN_EMBD,
  375. MODEL_TENSOR.OUTPUT_NORM,
  376. MODEL_TENSOR.OUTPUT,
  377. MODEL_TENSOR.ROPE_FREQS,
  378. MODEL_TENSOR.ATTN_NORM,
  379. MODEL_TENSOR.ATTN_Q,
  380. MODEL_TENSOR.ATTN_K,
  381. MODEL_TENSOR.ATTN_V,
  382. MODEL_TENSOR.ATTN_OUT,
  383. MODEL_TENSOR.FFN_NORM,
  384. MODEL_TENSOR.FFN_GATE,
  385. MODEL_TENSOR.FFN_DOWN,
  386. MODEL_TENSOR.FFN_UP,
  387. ],
  388. MODEL_ARCH.QWEN: [
  389. MODEL_TENSOR.TOKEN_EMBD,
  390. MODEL_TENSOR.OUTPUT_NORM,
  391. MODEL_TENSOR.OUTPUT,
  392. MODEL_TENSOR.ROPE_FREQS,
  393. MODEL_TENSOR.ATTN_NORM,
  394. MODEL_TENSOR.ATTN_QKV,
  395. MODEL_TENSOR.ATTN_OUT,
  396. MODEL_TENSOR.ATTN_ROT_EMBD,
  397. MODEL_TENSOR.FFN_NORM,
  398. MODEL_TENSOR.FFN_GATE,
  399. MODEL_TENSOR.FFN_DOWN,
  400. MODEL_TENSOR.FFN_UP,
  401. ],
  402. MODEL_ARCH.QWEN2: [
  403. MODEL_TENSOR.TOKEN_EMBD,
  404. MODEL_TENSOR.OUTPUT_NORM,
  405. MODEL_TENSOR.OUTPUT,
  406. MODEL_TENSOR.ATTN_NORM,
  407. MODEL_TENSOR.ATTN_Q,
  408. MODEL_TENSOR.ATTN_K,
  409. MODEL_TENSOR.ATTN_V,
  410. MODEL_TENSOR.ATTN_OUT,
  411. MODEL_TENSOR.FFN_NORM,
  412. MODEL_TENSOR.FFN_GATE,
  413. MODEL_TENSOR.FFN_DOWN,
  414. MODEL_TENSOR.FFN_UP,
  415. ],
  416. MODEL_ARCH.PLAMO: [
  417. MODEL_TENSOR.TOKEN_EMBD,
  418. MODEL_TENSOR.OUTPUT_NORM,
  419. MODEL_TENSOR.OUTPUT,
  420. MODEL_TENSOR.ROPE_FREQS,
  421. MODEL_TENSOR.ATTN_NORM,
  422. MODEL_TENSOR.ATTN_Q,
  423. MODEL_TENSOR.ATTN_K,
  424. MODEL_TENSOR.ATTN_V,
  425. MODEL_TENSOR.ATTN_OUT,
  426. MODEL_TENSOR.ATTN_ROT_EMBD,
  427. MODEL_TENSOR.FFN_GATE,
  428. MODEL_TENSOR.FFN_DOWN,
  429. MODEL_TENSOR.FFN_UP,
  430. ],
  431. MODEL_ARCH.GPT2: [
  432. MODEL_TENSOR.TOKEN_EMBD,
  433. MODEL_TENSOR.POS_EMBD,
  434. MODEL_TENSOR.OUTPUT_NORM,
  435. MODEL_TENSOR.OUTPUT,
  436. MODEL_TENSOR.ATTN_NORM,
  437. MODEL_TENSOR.ATTN_QKV,
  438. MODEL_TENSOR.ATTN_OUT,
  439. MODEL_TENSOR.FFN_NORM,
  440. MODEL_TENSOR.FFN_DOWN,
  441. MODEL_TENSOR.FFN_UP,
  442. ],
  443. MODEL_ARCH.PHI2: [
  444. MODEL_TENSOR.TOKEN_EMBD,
  445. MODEL_TENSOR.OUTPUT_NORM,
  446. MODEL_TENSOR.OUTPUT,
  447. MODEL_TENSOR.ATTN_NORM,
  448. MODEL_TENSOR.ATTN_QKV,
  449. MODEL_TENSOR.ATTN_Q,
  450. MODEL_TENSOR.ATTN_K,
  451. MODEL_TENSOR.ATTN_V,
  452. MODEL_TENSOR.ATTN_OUT,
  453. MODEL_TENSOR.FFN_NORM,
  454. MODEL_TENSOR.FFN_DOWN,
  455. MODEL_TENSOR.FFN_UP,
  456. ],
  457. MODEL_ARCH.CODESHELL: [
  458. MODEL_TENSOR.TOKEN_EMBD,
  459. MODEL_TENSOR.POS_EMBD,
  460. MODEL_TENSOR.OUTPUT_NORM,
  461. MODEL_TENSOR.OUTPUT,
  462. MODEL_TENSOR.ATTN_NORM,
  463. MODEL_TENSOR.ATTN_QKV,
  464. MODEL_TENSOR.ATTN_OUT,
  465. MODEL_TENSOR.ATTN_ROT_EMBD,
  466. MODEL_TENSOR.FFN_NORM,
  467. MODEL_TENSOR.FFN_DOWN,
  468. MODEL_TENSOR.FFN_UP,
  469. ],
  470. MODEL_ARCH.ORION: [
  471. MODEL_TENSOR.TOKEN_EMBD,
  472. MODEL_TENSOR.OUTPUT_NORM,
  473. MODEL_TENSOR.OUTPUT,
  474. MODEL_TENSOR.ROPE_FREQS,
  475. MODEL_TENSOR.ATTN_NORM,
  476. MODEL_TENSOR.ATTN_Q,
  477. MODEL_TENSOR.ATTN_K,
  478. MODEL_TENSOR.ATTN_V,
  479. MODEL_TENSOR.ATTN_OUT,
  480. MODEL_TENSOR.ATTN_ROT_EMBD,
  481. MODEL_TENSOR.FFN_NORM,
  482. MODEL_TENSOR.FFN_GATE,
  483. MODEL_TENSOR.FFN_DOWN,
  484. MODEL_TENSOR.FFN_UP,
  485. ],
  486. MODEL_ARCH.INTERNLM2: [
  487. MODEL_TENSOR.TOKEN_EMBD,
  488. MODEL_TENSOR.OUTPUT_NORM,
  489. MODEL_TENSOR.OUTPUT,
  490. MODEL_TENSOR.ATTN_NORM,
  491. MODEL_TENSOR.ATTN_Q,
  492. MODEL_TENSOR.ATTN_K,
  493. MODEL_TENSOR.ATTN_V,
  494. MODEL_TENSOR.ATTN_OUT,
  495. MODEL_TENSOR.ATTN_ROT_EMBD,
  496. MODEL_TENSOR.FFN_NORM,
  497. MODEL_TENSOR.FFN_GATE,
  498. MODEL_TENSOR.FFN_DOWN,
  499. MODEL_TENSOR.FFN_UP,
  500. ],
  501. MODEL_ARCH.MINICPM: [
  502. MODEL_TENSOR.TOKEN_EMBD,
  503. MODEL_TENSOR.OUTPUT_NORM,
  504. MODEL_TENSOR.ROPE_FREQS,
  505. MODEL_TENSOR.ATTN_NORM,
  506. MODEL_TENSOR.ATTN_Q,
  507. MODEL_TENSOR.ATTN_K,
  508. MODEL_TENSOR.ATTN_V,
  509. MODEL_TENSOR.ATTN_OUT,
  510. MODEL_TENSOR.ATTN_ROT_EMBD,
  511. MODEL_TENSOR.FFN_GATE_INP,
  512. MODEL_TENSOR.FFN_NORM,
  513. MODEL_TENSOR.FFN_GATE,
  514. MODEL_TENSOR.FFN_DOWN,
  515. MODEL_TENSOR.FFN_UP,
  516. MODEL_TENSOR.FFN_GATE_EXP,
  517. MODEL_TENSOR.FFN_DOWN_EXP,
  518. MODEL_TENSOR.FFN_UP_EXP,
  519. ],
  520. MODEL_ARCH.GEMMA: [
  521. MODEL_TENSOR.TOKEN_EMBD,
  522. MODEL_TENSOR.OUTPUT_NORM,
  523. MODEL_TENSOR.ATTN_NORM,
  524. MODEL_TENSOR.ATTN_Q,
  525. MODEL_TENSOR.ATTN_K,
  526. MODEL_TENSOR.ATTN_V,
  527. MODEL_TENSOR.ATTN_OUT,
  528. MODEL_TENSOR.FFN_GATE,
  529. MODEL_TENSOR.FFN_DOWN,
  530. MODEL_TENSOR.FFN_UP,
  531. MODEL_TENSOR.FFN_NORM,
  532. ],
  533. MODEL_ARCH.STARCODER2: [
  534. MODEL_TENSOR.TOKEN_EMBD,
  535. MODEL_TENSOR.OUTPUT_NORM,
  536. MODEL_TENSOR.OUTPUT,
  537. MODEL_TENSOR.ROPE_FREQS,
  538. MODEL_TENSOR.ATTN_NORM,
  539. MODEL_TENSOR.ATTN_Q,
  540. MODEL_TENSOR.ATTN_K,
  541. MODEL_TENSOR.ATTN_V,
  542. MODEL_TENSOR.ATTN_OUT,
  543. MODEL_TENSOR.ATTN_ROT_EMBD,
  544. MODEL_TENSOR.FFN_NORM,
  545. MODEL_TENSOR.FFN_DOWN,
  546. MODEL_TENSOR.FFN_UP,
  547. ],
  548. MODEL_ARCH.MAMBA: [
  549. MODEL_TENSOR.TOKEN_EMBD,
  550. MODEL_TENSOR.OUTPUT_NORM,
  551. MODEL_TENSOR.OUTPUT,
  552. MODEL_TENSOR.ATTN_NORM,
  553. MODEL_TENSOR.SSM_IN,
  554. MODEL_TENSOR.SSM_CONV1D,
  555. MODEL_TENSOR.SSM_X,
  556. MODEL_TENSOR.SSM_DT,
  557. MODEL_TENSOR.SSM_A,
  558. MODEL_TENSOR.SSM_D,
  559. MODEL_TENSOR.SSM_OUT,
  560. ],
  561. # TODO
  562. }
  563. # tensors that will not be serialized
  564. MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
  565. MODEL_ARCH.LLAMA: [
  566. MODEL_TENSOR.ROPE_FREQS,
  567. MODEL_TENSOR.ATTN_ROT_EMBD,
  568. ],
  569. MODEL_ARCH.BAICHUAN: [
  570. MODEL_TENSOR.ROPE_FREQS,
  571. MODEL_TENSOR.ATTN_ROT_EMBD,
  572. ],
  573. MODEL_ARCH.PERSIMMON: [
  574. MODEL_TENSOR.ROPE_FREQS,
  575. ],
  576. MODEL_ARCH.QWEN: [
  577. MODEL_TENSOR.ROPE_FREQS,
  578. MODEL_TENSOR.ATTN_ROT_EMBD,
  579. ],
  580. MODEL_ARCH.CODESHELL: [
  581. MODEL_TENSOR.ROPE_FREQS,
  582. MODEL_TENSOR.ATTN_ROT_EMBD,
  583. ],
  584. MODEL_ARCH.ORION: [
  585. MODEL_TENSOR.ROPE_FREQS,
  586. MODEL_TENSOR.ATTN_ROT_EMBD,
  587. ],
  588. MODEL_ARCH.STARCODER2: [
  589. MODEL_TENSOR.ROPE_FREQS,
  590. MODEL_TENSOR.ATTN_ROT_EMBD,
  591. ],
  592. }
  593. #
  594. # types
  595. #
  596. class TokenType(IntEnum):
  597. NORMAL = 1
  598. UNKNOWN = 2
  599. CONTROL = 3
  600. USER_DEFINED = 4
  601. UNUSED = 5
  602. BYTE = 6
  603. class RopeScalingType(Enum):
  604. NONE = 'none'
  605. LINEAR = 'linear'
  606. YARN = 'yarn'
  607. class PoolingType(IntEnum):
  608. NONE = 0
  609. MEAN = 1
  610. CLS = 2
  611. class GGMLQuantizationType(IntEnum):
  612. F32 = 0
  613. F16 = 1
  614. Q4_0 = 2
  615. Q4_1 = 3
  616. Q5_0 = 6
  617. Q5_1 = 7
  618. Q8_0 = 8
  619. Q8_1 = 9
  620. Q2_K = 10
  621. Q3_K = 11
  622. Q4_K = 12
  623. Q5_K = 13
  624. Q6_K = 14
  625. Q8_K = 15
  626. IQ2_XXS = 16
  627. IQ2_XS = 17
  628. IQ3_XXS = 18
  629. IQ1_S = 19
  630. IQ4_NL = 20
  631. IQ3_S = 21
  632. IQ2_S = 22
  633. IQ4_XS = 23
  634. I8 = 24
  635. I16 = 25
  636. I32 = 26
  637. I64 = 27
  638. F64 = 28
  639. class GGUFEndian(IntEnum):
  640. LITTLE = 0
  641. BIG = 1
  642. class GGUFValueType(IntEnum):
  643. UINT8 = 0
  644. INT8 = 1
  645. UINT16 = 2
  646. INT16 = 3
  647. UINT32 = 4
  648. INT32 = 5
  649. FLOAT32 = 6
  650. BOOL = 7
  651. STRING = 8
  652. ARRAY = 9
  653. UINT64 = 10
  654. INT64 = 11
  655. FLOAT64 = 12
  656. @staticmethod
  657. def get_type(val: Any) -> GGUFValueType:
  658. if isinstance(val, (str, bytes, bytearray)):
  659. return GGUFValueType.STRING
  660. elif isinstance(val, list):
  661. return GGUFValueType.ARRAY
  662. elif isinstance(val, float):
  663. return GGUFValueType.FLOAT32
  664. elif isinstance(val, bool):
  665. return GGUFValueType.BOOL
  666. elif isinstance(val, int):
  667. return GGUFValueType.INT32
  668. # TODO: need help with 64-bit types in Python
  669. else:
  670. print("Unknown type:", type(val))
  671. sys.exit()
  672. # Note: Does not support GGML_QKK_64
  673. QK_K = 256
  674. # Items here are (block size, type size)
  675. GGML_QUANT_SIZES = {
  676. GGMLQuantizationType.F32: (1, 4),
  677. GGMLQuantizationType.F16: (1, 2),
  678. GGMLQuantizationType.Q4_0: (32, 2 + 16),
  679. GGMLQuantizationType.Q4_1: (32, 2 + 2 + 16),
  680. GGMLQuantizationType.Q5_0: (32, 2 + 4 + 16),
  681. GGMLQuantizationType.Q5_1: (32, 2 + 2 + 4 + 16),
  682. GGMLQuantizationType.Q8_0: (32, 2 + 32),
  683. GGMLQuantizationType.Q8_1: (32, 4 + 4 + 32),
  684. GGMLQuantizationType.Q2_K: (256, 2 + 2 + QK_K // 16 + QK_K // 4),
  685. GGMLQuantizationType.Q3_K: (256, 2 + QK_K // 4 + QK_K // 8 + 12),
  686. GGMLQuantizationType.Q4_K: (256, 2 + 2 + QK_K // 2 + 12),
  687. GGMLQuantizationType.Q5_K: (256, 2 + 2 + QK_K // 2 + QK_K // 8 + 12),
  688. GGMLQuantizationType.Q6_K: (256, 2 + QK_K // 2 + QK_K // 4 + QK_K // 16),
  689. GGMLQuantizationType.Q8_K: (256, 4 + QK_K + QK_K // 8),
  690. GGMLQuantizationType.IQ2_XXS: (256, 2 + QK_K // 4),
  691. GGMLQuantizationType.IQ2_XS: (256, 2 + QK_K // 4 + QK_K // 32),
  692. GGMLQuantizationType.IQ3_XXS: (256, 2 + QK_K // 4 + QK_K // 8),
  693. GGMLQuantizationType.IQ1_S: (256, 2 + QK_K // 8 + QK_K // 16),
  694. GGMLQuantizationType.IQ4_NL: (32, 2 + 16),
  695. GGMLQuantizationType.IQ3_S: (256, 2 + QK_K // 4 + QK_K // 8 + QK_K // 32 + 4),
  696. GGMLQuantizationType.IQ2_S: (256, 2 + QK_K // 4 + QK_K // 16),
  697. GGMLQuantizationType.IQ4_XS: (256, 2 + 2 + QK_K // 2 + QK_K // 64),
  698. GGMLQuantizationType.I8: (1, 1),
  699. GGMLQuantizationType.I16: (1, 2),
  700. GGMLQuantizationType.I32: (1, 4),
  701. GGMLQuantizationType.I64: (1, 8),
  702. GGMLQuantizationType.F64: (1, 8),
  703. }
  704. # Aliases for backward compatibility.
  705. # general
  706. KEY_GENERAL_ARCHITECTURE = Keys.General.ARCHITECTURE
  707. KEY_GENERAL_QUANTIZATION_VERSION = Keys.General.QUANTIZATION_VERSION
  708. KEY_GENERAL_ALIGNMENT = Keys.General.ALIGNMENT
  709. KEY_GENERAL_NAME = Keys.General.NAME
  710. KEY_GENERAL_AUTHOR = Keys.General.AUTHOR
  711. KEY_GENERAL_URL = Keys.General.URL
  712. KEY_GENERAL_DESCRIPTION = Keys.General.DESCRIPTION
  713. KEY_GENERAL_LICENSE = Keys.General.LICENSE
  714. KEY_GENERAL_SOURCE_URL = Keys.General.SOURCE_URL
  715. KEY_GENERAL_SOURCE_HF_REPO = Keys.General.SOURCE_HF_REPO
  716. KEY_GENERAL_FILE_TYPE = Keys.General.FILE_TYPE
  717. # LLM
  718. KEY_VOCAB_SIZE = Keys.LLM.VOCAB_SIZE
  719. KEY_CONTEXT_LENGTH = Keys.LLM.CONTEXT_LENGTH
  720. KEY_EMBEDDING_LENGTH = Keys.LLM.EMBEDDING_LENGTH
  721. KEY_BLOCK_COUNT = Keys.LLM.BLOCK_COUNT
  722. KEY_FEED_FORWARD_LENGTH = Keys.LLM.FEED_FORWARD_LENGTH
  723. KEY_USE_PARALLEL_RESIDUAL = Keys.LLM.USE_PARALLEL_RESIDUAL
  724. KEY_TENSOR_DATA_LAYOUT = Keys.LLM.TENSOR_DATA_LAYOUT
  725. # attention
  726. KEY_ATTENTION_HEAD_COUNT = Keys.Attention.HEAD_COUNT
  727. KEY_ATTENTION_HEAD_COUNT_KV = Keys.Attention.HEAD_COUNT_KV
  728. KEY_ATTENTION_MAX_ALIBI_BIAS = Keys.Attention.MAX_ALIBI_BIAS
  729. KEY_ATTENTION_CLAMP_KQV = Keys.Attention.CLAMP_KQV
  730. KEY_ATTENTION_LAYERNORM_EPS = Keys.Attention.LAYERNORM_EPS
  731. KEY_ATTENTION_LAYERNORM_RMS_EPS = Keys.Attention.LAYERNORM_RMS_EPS
  732. # RoPE
  733. KEY_ROPE_DIMENSION_COUNT = Keys.Rope.DIMENSION_COUNT
  734. KEY_ROPE_FREQ_BASE = Keys.Rope.FREQ_BASE
  735. KEY_ROPE_SCALING_TYPE = Keys.Rope.SCALING_TYPE
  736. KEY_ROPE_SCALING_FACTOR = Keys.Rope.SCALING_FACTOR
  737. KEY_ROPE_SCALING_ORIG_CTX_LEN = Keys.Rope.SCALING_ORIG_CTX_LEN
  738. KEY_ROPE_SCALING_FINETUNED = Keys.Rope.SCALING_FINETUNED
  739. # SSM
  740. KEY_SSM_CONV_KERNEL = Keys.SSM.CONV_KERNEL
  741. KEY_SSM_INNER_SIZE = Keys.SSM.INNER_SIZE
  742. KEY_SSM_STATE_SIZE = Keys.SSM.STATE_SIZE
  743. KEY_SSM_TIME_STEP_RANK = Keys.SSM.TIME_STEP_RANK
  744. # tokenization
  745. KEY_TOKENIZER_MODEL = Keys.Tokenizer.MODEL
  746. KEY_TOKENIZER_LIST = Keys.Tokenizer.LIST
  747. KEY_TOKENIZER_TOKEN_TYPE = Keys.Tokenizer.TOKEN_TYPE
  748. KEY_TOKENIZER_SCORES = Keys.Tokenizer.SCORES
  749. KEY_TOKENIZER_MERGES = Keys.Tokenizer.MERGES
  750. KEY_TOKENIZER_BOS_ID = Keys.Tokenizer.BOS_ID
  751. KEY_TOKENIZER_EOS_ID = Keys.Tokenizer.EOS_ID
  752. KEY_TOKENIZER_UNK_ID = Keys.Tokenizer.UNK_ID
  753. KEY_TOKENIZER_SEP_ID = Keys.Tokenizer.SEP_ID
  754. KEY_TOKENIZER_PAD_ID = Keys.Tokenizer.PAD_ID
  755. KEY_TOKENIZER_CLS_ID = Keys.Tokenizer.CLS_ID
  756. KEY_TOKENIZER_MASK_ID = Keys.Tokenizer.MASK_ID
  757. KEY_TOKENIZER_HF_JSON = Keys.Tokenizer.HF_JSON
  758. KEY_TOKENIZER_RWKV = Keys.Tokenizer.RWKV