ggml.c 520 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #ifdef GGML_USE_K_QUANTS
  5. #include "k_quants.h"
  6. #endif
  7. #if defined(_MSC_VER) || defined(__MINGW32__)
  8. #include <malloc.h> // using malloc.h with MSC/MINGW
  9. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  10. #include <alloca.h>
  11. #endif
  12. #include <assert.h>
  13. #include <errno.h>
  14. #include <time.h>
  15. #include <math.h>
  16. #include <stdlib.h>
  17. #include <string.h>
  18. #include <stdint.h>
  19. #include <inttypes.h>
  20. #include <stdio.h>
  21. #include <float.h>
  22. #include <limits.h>
  23. #ifdef GGML_USE_METAL
  24. #include <unistd.h>
  25. #endif
  26. // if C99 - static_assert is noop
  27. // ref: https://stackoverflow.com/a/53923785/4039976
  28. #ifndef static_assert
  29. #define static_assert(cond, msg) struct global_scope_noop_trick
  30. #endif
  31. #if defined(_WIN32)
  32. #include <windows.h>
  33. typedef volatile LONG atomic_int;
  34. typedef atomic_int atomic_bool;
  35. static void atomic_store(atomic_int* ptr, LONG val) {
  36. InterlockedExchange(ptr, val);
  37. }
  38. static LONG atomic_load(atomic_int* ptr) {
  39. return InterlockedCompareExchange(ptr, 0, 0);
  40. }
  41. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  42. return InterlockedExchangeAdd(ptr, inc);
  43. }
  44. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  45. return atomic_fetch_add(ptr, -(dec));
  46. }
  47. typedef HANDLE pthread_t;
  48. typedef DWORD thread_ret_t;
  49. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  50. (void) unused;
  51. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  52. if (handle == NULL)
  53. {
  54. return EAGAIN;
  55. }
  56. *out = handle;
  57. return 0;
  58. }
  59. static int pthread_join(pthread_t thread, void* unused) {
  60. (void) unused;
  61. return (int) WaitForSingleObject(thread, INFINITE);
  62. }
  63. static int sched_yield (void) {
  64. Sleep (0);
  65. return 0;
  66. }
  67. #else
  68. #include <pthread.h>
  69. #include <stdatomic.h>
  70. typedef void* thread_ret_t;
  71. #endif
  72. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  73. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  74. #ifndef __FMA__
  75. #define __FMA__
  76. #endif
  77. #ifndef __F16C__
  78. #define __F16C__
  79. #endif
  80. #ifndef __SSE3__
  81. #define __SSE3__
  82. #endif
  83. #endif
  84. #ifdef __HAIKU__
  85. #define static_assert(cond, msg) _Static_assert(cond, msg)
  86. #endif
  87. /*#define GGML_PERF*/
  88. #define GGML_DEBUG 0
  89. #define GGML_GELU_FP16
  90. #define GGML_SILU_FP16
  91. #define GGML_SOFT_MAX_UNROLL 4
  92. #define GGML_VEC_DOT_UNROLL 2
  93. #ifdef GGML_USE_ACCELERATE
  94. // uncomment to use vDSP for soft max computation
  95. // note: not sure if it is actually faster
  96. //#define GGML_SOFT_MAX_ACCELERATE
  97. #endif
  98. #if UINTPTR_MAX == 0xFFFFFFFF
  99. #define GGML_MEM_ALIGN 4
  100. #else
  101. #define GGML_MEM_ALIGN 16
  102. #endif
  103. #if defined(_MSC_VER) || defined(__MINGW32__)
  104. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  105. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  106. #else
  107. inline static void* ggml_aligned_malloc(size_t size) {
  108. void* aligned_memory = NULL;
  109. #ifdef GGML_USE_METAL
  110. int result = posix_memalign(&aligned_memory, getpagesize(), size);
  111. #else
  112. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  113. #endif
  114. if (result != 0) {
  115. // Handle allocation failure
  116. return NULL;
  117. }
  118. return aligned_memory;
  119. }
  120. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  121. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  122. #endif
  123. #define UNUSED(x) (void)(x)
  124. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  125. #if defined(GGML_USE_ACCELERATE)
  126. #include <Accelerate/Accelerate.h>
  127. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  128. #include "ggml-opencl.h"
  129. #endif
  130. #elif defined(GGML_USE_OPENBLAS)
  131. #include <cblas.h>
  132. #elif defined(GGML_USE_CUBLAS)
  133. #include "ggml-cuda.h"
  134. #elif defined(GGML_USE_CLBLAST)
  135. #include "ggml-opencl.h"
  136. #endif
  137. #undef MIN
  138. #undef MAX
  139. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  140. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  141. // floating point type used to accumulate sums
  142. typedef double ggml_float;
  143. // 16-bit float
  144. // on Arm, we use __fp16
  145. // on x86, we use uint16_t
  146. #ifdef __ARM_NEON
  147. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  148. //
  149. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  150. //
  151. #include <arm_neon.h>
  152. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  153. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  154. #define GGML_FP16_TO_FP32(x) ((float) (x))
  155. #define GGML_FP32_TO_FP16(x) (x)
  156. #else
  157. #ifdef __wasm_simd128__
  158. #include <wasm_simd128.h>
  159. #else
  160. #ifdef __POWER9_VECTOR__
  161. #include <altivec.h>
  162. #undef bool
  163. #define bool _Bool
  164. #else
  165. #if defined(_MSC_VER) || defined(__MINGW32__)
  166. #include <intrin.h>
  167. #else
  168. #if !defined(__riscv)
  169. #include <immintrin.h>
  170. #endif
  171. #endif
  172. #endif
  173. #endif
  174. #ifdef __F16C__
  175. #ifdef _MSC_VER
  176. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  177. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  178. #else
  179. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  180. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  181. #endif
  182. #elif defined(__POWER9_VECTOR__)
  183. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  184. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  185. /* the inline asm below is about 12% faster than the lookup method */
  186. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  187. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  188. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  189. register float f;
  190. register double d;
  191. __asm__(
  192. "mtfprd %0,%2\n"
  193. "xscvhpdp %0,%0\n"
  194. "frsp %1,%0\n" :
  195. /* temp */ "=d"(d),
  196. /* out */ "=f"(f):
  197. /* in */ "r"(h));
  198. return f;
  199. }
  200. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  201. register double d;
  202. register ggml_fp16_t r;
  203. __asm__( /* xscvdphp can work on double or single precision */
  204. "xscvdphp %0,%2\n"
  205. "mffprd %1,%0\n" :
  206. /* temp */ "=d"(d),
  207. /* out */ "=r"(r):
  208. /* in */ "f"(f));
  209. return r;
  210. }
  211. #else
  212. // FP16 <-> FP32
  213. // ref: https://github.com/Maratyszcza/FP16
  214. static inline float fp32_from_bits(uint32_t w) {
  215. union {
  216. uint32_t as_bits;
  217. float as_value;
  218. } fp32;
  219. fp32.as_bits = w;
  220. return fp32.as_value;
  221. }
  222. static inline uint32_t fp32_to_bits(float f) {
  223. union {
  224. float as_value;
  225. uint32_t as_bits;
  226. } fp32;
  227. fp32.as_value = f;
  228. return fp32.as_bits;
  229. }
  230. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  231. const uint32_t w = (uint32_t) h << 16;
  232. const uint32_t sign = w & UINT32_C(0x80000000);
  233. const uint32_t two_w = w + w;
  234. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  235. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  236. const float exp_scale = 0x1.0p-112f;
  237. #else
  238. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  239. #endif
  240. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  241. const uint32_t magic_mask = UINT32_C(126) << 23;
  242. const float magic_bias = 0.5f;
  243. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  244. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  245. const uint32_t result = sign |
  246. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  247. return fp32_from_bits(result);
  248. }
  249. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  250. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  251. const float scale_to_inf = 0x1.0p+112f;
  252. const float scale_to_zero = 0x1.0p-110f;
  253. #else
  254. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  255. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  256. #endif
  257. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  258. const uint32_t w = fp32_to_bits(f);
  259. const uint32_t shl1_w = w + w;
  260. const uint32_t sign = w & UINT32_C(0x80000000);
  261. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  262. if (bias < UINT32_C(0x71000000)) {
  263. bias = UINT32_C(0x71000000);
  264. }
  265. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  266. const uint32_t bits = fp32_to_bits(base);
  267. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  268. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  269. const uint32_t nonsign = exp_bits + mantissa_bits;
  270. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  271. }
  272. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  273. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  274. #endif // __F16C__
  275. #endif // __ARM_NEON
  276. //
  277. // global data
  278. //
  279. // precomputed gelu table for f16 (128 KB)
  280. static ggml_fp16_t table_gelu_f16[1 << 16];
  281. // precomputed silu table for f16 (128 KB)
  282. static ggml_fp16_t table_silu_f16[1 << 16];
  283. // precomputed exp table for f16 (128 KB)
  284. static ggml_fp16_t table_exp_f16[1 << 16];
  285. // precomputed f32 table for f16 (256 KB)
  286. static float table_f32_f16[1 << 16];
  287. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  288. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  289. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  290. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  291. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  292. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  293. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  294. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  295. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  296. // precomputed tables for expanding 8bits to 8 bytes:
  297. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  298. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  299. #endif
  300. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  301. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  302. // This is also true for POWER9.
  303. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  304. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  305. uint16_t s;
  306. memcpy(&s, &f, sizeof(uint16_t));
  307. return table_f32_f16[s];
  308. }
  309. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  310. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  311. #endif
  312. // note: do not use these inside ggml.c
  313. // these are meant to be used via the ggml.h API
  314. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  315. return (float) GGML_FP16_TO_FP32(x);
  316. }
  317. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  318. return GGML_FP32_TO_FP16(x);
  319. }
  320. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n) {
  321. for (size_t i = 0; i < n; i++) {
  322. y[i] = GGML_FP16_TO_FP32(x[i]);
  323. }
  324. }
  325. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n) {
  326. size_t i = 0;
  327. #if defined(__F16C__)
  328. for (; i + 7 < n; i += 8) {
  329. __m256 x_vec = _mm256_loadu_ps(x + i);
  330. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  331. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  332. }
  333. for(; i + 3 < n; i += 4) {
  334. __m128 x_vec = _mm_loadu_ps(x + i);
  335. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  336. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  337. }
  338. #endif
  339. for (; i < n; i++) {
  340. y[i] = GGML_FP32_TO_FP16(x[i]);
  341. }
  342. }
  343. //
  344. // timing
  345. //
  346. #if defined(_MSC_VER) || defined(__MINGW32__)
  347. static int64_t timer_freq, timer_start;
  348. void ggml_time_init(void) {
  349. LARGE_INTEGER t;
  350. QueryPerformanceFrequency(&t);
  351. timer_freq = t.QuadPart;
  352. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  353. // and the uptime is high enough.
  354. // We subtract the program start time to reduce the likelihood of that happening.
  355. QueryPerformanceCounter(&t);
  356. timer_start = t.QuadPart;
  357. }
  358. int64_t ggml_time_ms(void) {
  359. LARGE_INTEGER t;
  360. QueryPerformanceCounter(&t);
  361. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  362. }
  363. int64_t ggml_time_us(void) {
  364. LARGE_INTEGER t;
  365. QueryPerformanceCounter(&t);
  366. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  367. }
  368. #else
  369. void ggml_time_init(void) {}
  370. int64_t ggml_time_ms(void) {
  371. struct timespec ts;
  372. clock_gettime(CLOCK_MONOTONIC, &ts);
  373. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  374. }
  375. int64_t ggml_time_us(void) {
  376. struct timespec ts;
  377. clock_gettime(CLOCK_MONOTONIC, &ts);
  378. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  379. }
  380. #endif
  381. int64_t ggml_cycles(void) {
  382. return clock();
  383. }
  384. int64_t ggml_cycles_per_ms(void) {
  385. return CLOCKS_PER_SEC/1000;
  386. }
  387. #ifdef GGML_PERF
  388. #define ggml_perf_time_ms() ggml_time_ms()
  389. #define ggml_perf_time_us() ggml_time_us()
  390. #define ggml_perf_cycles() ggml_cycles()
  391. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  392. #else
  393. #define ggml_perf_time_ms() 0
  394. #define ggml_perf_time_us() 0
  395. #define ggml_perf_cycles() 0
  396. #define ggml_perf_cycles_per_ms() 0
  397. #endif
  398. //
  399. // cache line
  400. //
  401. #if defined(__cpp_lib_hardware_interference_size)
  402. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  403. #else
  404. #if defined(__POWER9_VECTOR__)
  405. #define CACHE_LINE_SIZE 128
  406. #else
  407. #define CACHE_LINE_SIZE 64
  408. #endif
  409. #endif
  410. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  411. //
  412. // quantization
  413. //
  414. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  415. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  416. // multiply int8_t, add results pairwise twice
  417. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  418. // Get absolute values of x vectors
  419. const __m128i ax = _mm_sign_epi8(x, x);
  420. // Sign the values of the y vectors
  421. const __m128i sy = _mm_sign_epi8(y, x);
  422. // Perform multiplication and create 16-bit values
  423. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  424. const __m128i ones = _mm_set1_epi16(1);
  425. return _mm_madd_epi16(ones, dot);
  426. }
  427. #if __AVX__ || __AVX2__ || __AVX512F__
  428. // horizontally add 8 floats
  429. static inline float hsum_float_8(const __m256 x) {
  430. __m128 res = _mm256_extractf128_ps(x, 1);
  431. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  432. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  433. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  434. return _mm_cvtss_f32(res);
  435. }
  436. // horizontally add 8 int32_t
  437. static inline int hsum_i32_8(const __m256i a) {
  438. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  439. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  440. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  441. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  442. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  443. }
  444. // horizontally add 4 int32_t
  445. static inline int hsum_i32_4(const __m128i a) {
  446. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  447. const __m128i sum64 = _mm_add_epi32(hi64, a);
  448. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  449. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  450. }
  451. #if defined(__AVX2__) || defined(__AVX512F__)
  452. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  453. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  454. uint32_t x32;
  455. memcpy(&x32, x, sizeof(uint32_t));
  456. const __m256i shuf_mask = _mm256_set_epi64x(
  457. 0x0303030303030303, 0x0202020202020202,
  458. 0x0101010101010101, 0x0000000000000000);
  459. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  460. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  461. bytes = _mm256_or_si256(bytes, bit_mask);
  462. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  463. }
  464. // Unpack 32 4-bit fields into 32 bytes
  465. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  466. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  467. {
  468. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  469. const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
  470. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  471. return _mm256_and_si256(lowMask, bytes);
  472. }
  473. // add int16_t pairwise and return as float vector
  474. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  475. const __m256i ones = _mm256_set1_epi16(1);
  476. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  477. return _mm256_cvtepi32_ps(summed_pairs);
  478. }
  479. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  480. #if __AVXVNNI__
  481. const __m256i zero = _mm256_setzero_si256();
  482. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  483. return _mm256_cvtepi32_ps(summed_pairs);
  484. #else
  485. // Perform multiplication and create 16-bit values
  486. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  487. return sum_i16_pairs_float(dot);
  488. #endif
  489. }
  490. // multiply int8_t, add results pairwise twice and return as float vector
  491. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  492. #if __AVXVNNIINT8__
  493. const __m256i zero = _mm256_setzero_si256();
  494. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  495. return _mm256_cvtepi32_ps(summed_pairs);
  496. #else
  497. // Get absolute values of x vectors
  498. const __m256i ax = _mm256_sign_epi8(x, x);
  499. // Sign the values of the y vectors
  500. const __m256i sy = _mm256_sign_epi8(y, x);
  501. return mul_sum_us8_pairs_float(ax, sy);
  502. #endif
  503. }
  504. static inline __m128i packNibbles( __m256i bytes )
  505. {
  506. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  507. #if __AVX512F__
  508. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  509. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  510. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  511. #else
  512. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  513. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  514. __m256i low = _mm256_and_si256( lowByte, bytes );
  515. high = _mm256_srli_epi16( high, 4 );
  516. bytes = _mm256_or_si256( low, high );
  517. // Compress uint16_t lanes into bytes
  518. __m128i r0 = _mm256_castsi256_si128( bytes );
  519. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  520. return _mm_packus_epi16( r0, r1 );
  521. #endif
  522. }
  523. #elif defined(__AVX__)
  524. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  525. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  526. uint32_t x32;
  527. memcpy(&x32, x, sizeof(uint32_t));
  528. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  529. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  530. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  531. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  532. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  533. bytesl = _mm_or_si128(bytesl, bit_mask);
  534. bytesh = _mm_or_si128(bytesh, bit_mask);
  535. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  536. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  537. return MM256_SET_M128I(bytesh, bytesl);
  538. }
  539. // Unpack 32 4-bit fields into 32 bytes
  540. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  541. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  542. {
  543. // Load 16 bytes from memory
  544. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  545. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  546. const __m128i lowMask = _mm_set1_epi8(0xF);
  547. tmpl = _mm_and_si128(lowMask, tmpl);
  548. tmph = _mm_and_si128(lowMask, tmph);
  549. return MM256_SET_M128I(tmph, tmpl);
  550. }
  551. // add int16_t pairwise and return as float vector
  552. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  553. const __m128i ones = _mm_set1_epi16(1);
  554. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  555. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  556. const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
  557. return _mm256_cvtepi32_ps(summed_pairs);
  558. }
  559. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  560. const __m128i axl = _mm256_castsi256_si128(ax);
  561. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  562. const __m128i syl = _mm256_castsi256_si128(sy);
  563. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  564. // Perform multiplication and create 16-bit values
  565. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  566. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  567. return sum_i16_pairs_float(doth, dotl);
  568. }
  569. // multiply int8_t, add results pairwise twice and return as float vector
  570. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  571. const __m128i xl = _mm256_castsi256_si128(x);
  572. const __m128i xh = _mm256_extractf128_si256(x, 1);
  573. const __m128i yl = _mm256_castsi256_si128(y);
  574. const __m128i yh = _mm256_extractf128_si256(y, 1);
  575. // Get absolute values of x vectors
  576. const __m128i axl = _mm_sign_epi8(xl, xl);
  577. const __m128i axh = _mm_sign_epi8(xh, xh);
  578. // Sign the values of the y vectors
  579. const __m128i syl = _mm_sign_epi8(yl, xl);
  580. const __m128i syh = _mm_sign_epi8(yh, xh);
  581. // Perform multiplication and create 16-bit values
  582. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  583. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  584. return sum_i16_pairs_float(doth, dotl);
  585. }
  586. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  587. {
  588. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  589. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  590. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  591. __m128i low = _mm_and_si128( lowByte, bytes1 );
  592. high = _mm_srli_epi16( high, 4 );
  593. bytes1 = _mm_or_si128( low, high );
  594. high = _mm_andnot_si128( lowByte, bytes2 );
  595. low = _mm_and_si128( lowByte, bytes2 );
  596. high = _mm_srli_epi16( high, 4 );
  597. bytes2 = _mm_or_si128( low, high );
  598. return _mm_packus_epi16( bytes1, bytes2);
  599. }
  600. #endif
  601. #elif defined(__SSSE3__)
  602. // horizontally add 4x4 floats
  603. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  604. __m128 res_0 =_mm_hadd_ps(a, b);
  605. __m128 res_1 =_mm_hadd_ps(c, d);
  606. __m128 res =_mm_hadd_ps(res_0, res_1);
  607. res =_mm_hadd_ps(res, res);
  608. res =_mm_hadd_ps(res, res);
  609. return _mm_cvtss_f32(res);
  610. }
  611. #endif // __AVX__ || __AVX2__ || __AVX512F__
  612. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  613. #if defined(__ARM_NEON)
  614. #if !defined(__aarch64__)
  615. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  616. return
  617. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  618. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  619. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  620. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  621. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  622. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  623. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  624. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  625. }
  626. inline static int16_t vaddvq_s8(int8x16_t v) {
  627. return
  628. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  629. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  630. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  631. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  632. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  633. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  634. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  635. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  636. }
  637. inline static int32_t vaddvq_s16(int16x8_t v) {
  638. return
  639. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  640. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  641. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  642. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  643. }
  644. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  645. return
  646. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  647. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  648. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  649. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  650. }
  651. inline static int32_t vaddvq_s32(int32x4_t v) {
  652. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  653. }
  654. inline static float vaddvq_f32(float32x4_t v) {
  655. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  656. }
  657. inline static float vminvq_f32(float32x4_t v) {
  658. return
  659. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  660. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  661. }
  662. inline static float vmaxvq_f32(float32x4_t v) {
  663. return
  664. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  665. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  666. }
  667. inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  668. int32x4_t res;
  669. res[0] = roundf(vgetq_lane_f32(v, 0));
  670. res[1] = roundf(vgetq_lane_f32(v, 1));
  671. res[2] = roundf(vgetq_lane_f32(v, 2));
  672. res[3] = roundf(vgetq_lane_f32(v, 3));
  673. return res;
  674. }
  675. #endif
  676. #endif
  677. #define QK4_0 32
  678. typedef struct {
  679. ggml_fp16_t d; // delta
  680. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  681. } block_q4_0;
  682. static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
  683. #define QK4_1 32
  684. typedef struct {
  685. ggml_fp16_t d; // delta
  686. ggml_fp16_t m; // min
  687. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  688. } block_q4_1;
  689. static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
  690. #define QK5_0 32
  691. typedef struct {
  692. ggml_fp16_t d; // delta
  693. uint8_t qh[4]; // 5-th bit of quants
  694. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  695. } block_q5_0;
  696. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  697. #define QK5_1 32
  698. typedef struct {
  699. ggml_fp16_t d; // delta
  700. ggml_fp16_t m; // min
  701. uint8_t qh[4]; // 5-th bit of quants
  702. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  703. } block_q5_1;
  704. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  705. #define QK8_0 32
  706. typedef struct {
  707. ggml_fp16_t d; // delta
  708. int8_t qs[QK8_0]; // quants
  709. } block_q8_0;
  710. static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
  711. #define QK8_1 32
  712. typedef struct {
  713. float d; // delta
  714. float s; // d * sum(qs[i])
  715. int8_t qs[QK8_1]; // quants
  716. } block_q8_1;
  717. static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  718. // reference implementation for deterministic creation of model files
  719. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  720. static const int qk = QK4_0;
  721. assert(k % qk == 0);
  722. const int nb = k / qk;
  723. for (int i = 0; i < nb; i++) {
  724. float amax = 0.0f; // absolute max
  725. float max = 0.0f;
  726. for (int j = 0; j < qk; j++) {
  727. const float v = x[i*qk + j];
  728. if (amax < fabsf(v)) {
  729. amax = fabsf(v);
  730. max = v;
  731. }
  732. }
  733. const float d = max / -8;
  734. const float id = d ? 1.0f/d : 0.0f;
  735. y[i].d = GGML_FP32_TO_FP16(d);
  736. for (int j = 0; j < qk/2; ++j) {
  737. const float x0 = x[i*qk + 0 + j]*id;
  738. const float x1 = x[i*qk + qk/2 + j]*id;
  739. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  740. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  741. y[i].qs[j] = xi0;
  742. y[i].qs[j] |= xi1 << 4;
  743. }
  744. }
  745. }
  746. static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  747. quantize_row_q4_0_reference(x, y, k);
  748. }
  749. static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  750. const int qk = QK4_1;
  751. assert(k % qk == 0);
  752. const int nb = k / qk;
  753. for (int i = 0; i < nb; i++) {
  754. float min = FLT_MAX;
  755. float max = -FLT_MAX;
  756. for (int j = 0; j < qk; j++) {
  757. const float v = x[i*qk + j];
  758. if (v < min) min = v;
  759. if (v > max) max = v;
  760. }
  761. const float d = (max - min) / ((1 << 4) - 1);
  762. const float id = d ? 1.0f/d : 0.0f;
  763. y[i].d = GGML_FP32_TO_FP16(d);
  764. y[i].m = GGML_FP32_TO_FP16(min);
  765. for (int j = 0; j < qk/2; ++j) {
  766. const float x0 = (x[i*qk + 0 + j] - min)*id;
  767. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  768. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  769. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  770. y[i].qs[j] = xi0;
  771. y[i].qs[j] |= xi1 << 4;
  772. }
  773. }
  774. }
  775. static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  776. quantize_row_q4_1_reference(x, y, k);
  777. }
  778. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  779. static const int qk = QK5_0;
  780. assert(k % qk == 0);
  781. const int nb = k / qk;
  782. for (int i = 0; i < nb; i++) {
  783. float amax = 0.0f; // absolute max
  784. float max = 0.0f;
  785. for (int j = 0; j < qk; j++) {
  786. const float v = x[i*qk + j];
  787. if (amax < fabsf(v)) {
  788. amax = fabsf(v);
  789. max = v;
  790. }
  791. }
  792. const float d = max / -16;
  793. const float id = d ? 1.0f/d : 0.0f;
  794. y[i].d = GGML_FP32_TO_FP16(d);
  795. uint32_t qh = 0;
  796. for (int j = 0; j < qk/2; ++j) {
  797. const float x0 = x[i*qk + 0 + j]*id;
  798. const float x1 = x[i*qk + qk/2 + j]*id;
  799. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  800. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  801. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  802. // get the 5-th bit and store it in qh at the right position
  803. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  804. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  805. }
  806. memcpy(&y[i].qh, &qh, sizeof(qh));
  807. }
  808. }
  809. static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  810. quantize_row_q5_0_reference(x, y, k);
  811. }
  812. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  813. const int qk = QK5_1;
  814. assert(k % qk == 0);
  815. const int nb = k / qk;
  816. for (int i = 0; i < nb; i++) {
  817. float min = FLT_MAX;
  818. float max = -FLT_MAX;
  819. for (int j = 0; j < qk; j++) {
  820. const float v = x[i*qk + j];
  821. if (v < min) min = v;
  822. if (v > max) max = v;
  823. }
  824. const float d = (max - min) / ((1 << 5) - 1);
  825. const float id = d ? 1.0f/d : 0.0f;
  826. y[i].d = GGML_FP32_TO_FP16(d);
  827. y[i].m = GGML_FP32_TO_FP16(min);
  828. uint32_t qh = 0;
  829. for (int j = 0; j < qk/2; ++j) {
  830. const float x0 = (x[i*qk + 0 + j] - min)*id;
  831. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  832. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  833. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  834. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  835. // get the 5-th bit and store it in qh at the right position
  836. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  837. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  838. }
  839. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  840. }
  841. }
  842. static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  843. quantize_row_q5_1_reference(x, y, k);
  844. }
  845. // reference implementation for deterministic creation of model files
  846. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  847. assert(k % QK8_0 == 0);
  848. const int nb = k / QK8_0;
  849. for (int i = 0; i < nb; i++) {
  850. float amax = 0.0f; // absolute max
  851. for (int j = 0; j < QK8_0; j++) {
  852. const float v = x[i*QK8_0 + j];
  853. amax = MAX(amax, fabsf(v));
  854. }
  855. const float d = amax / ((1 << 7) - 1);
  856. const float id = d ? 1.0f/d : 0.0f;
  857. y[i].d = GGML_FP32_TO_FP16(d);
  858. for (int j = 0; j < QK8_0; ++j) {
  859. const float x0 = x[i*QK8_0 + j]*id;
  860. y[i].qs[j] = roundf(x0);
  861. }
  862. }
  863. }
  864. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  865. assert(QK8_0 == 32);
  866. assert(k % QK8_0 == 0);
  867. const int nb = k / QK8_0;
  868. block_q8_0 * restrict y = vy;
  869. #if defined(__ARM_NEON)
  870. for (int i = 0; i < nb; i++) {
  871. float32x4_t srcv [8];
  872. float32x4_t asrcv[8];
  873. float32x4_t amaxv[8];
  874. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  875. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  876. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  877. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  878. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  879. const float amax = vmaxvq_f32(amaxv[0]);
  880. const float d = amax / ((1 << 7) - 1);
  881. const float id = d ? 1.0f/d : 0.0f;
  882. y[i].d = GGML_FP32_TO_FP16(d);
  883. for (int j = 0; j < 8; j++) {
  884. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  885. const int32x4_t vi = vcvtnq_s32_f32(v);
  886. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  887. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  888. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  889. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  890. }
  891. }
  892. #elif defined(__wasm_simd128__)
  893. for (int i = 0; i < nb; i++) {
  894. v128_t srcv [8];
  895. v128_t asrcv[8];
  896. v128_t amaxv[8];
  897. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  898. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  899. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  900. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  901. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  902. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  903. wasm_f32x4_extract_lane(amaxv[0], 1)),
  904. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  905. wasm_f32x4_extract_lane(amaxv[0], 3)));
  906. const float d = amax / ((1 << 7) - 1);
  907. const float id = d ? 1.0f/d : 0.0f;
  908. y[i].d = GGML_FP32_TO_FP16(d);
  909. for (int j = 0; j < 8; j++) {
  910. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  911. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  912. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  913. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  914. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  915. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  916. }
  917. }
  918. #elif defined(__AVX2__) || defined(__AVX__)
  919. for (int i = 0; i < nb; i++) {
  920. // Load elements into 4 AVX vectors
  921. __m256 v0 = _mm256_loadu_ps( x );
  922. __m256 v1 = _mm256_loadu_ps( x + 8 );
  923. __m256 v2 = _mm256_loadu_ps( x + 16 );
  924. __m256 v3 = _mm256_loadu_ps( x + 24 );
  925. x += 32;
  926. // Compute max(abs(e)) for the block
  927. const __m256 signBit = _mm256_set1_ps( -0.0f );
  928. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  929. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  930. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  931. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  932. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  933. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  934. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  935. const float maxScalar = _mm_cvtss_f32( max4 );
  936. // Quantize these floats
  937. const float d = maxScalar / 127.f;
  938. y[i].d = GGML_FP32_TO_FP16(d);
  939. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  940. const __m256 mul = _mm256_set1_ps( id );
  941. // Apply the multiplier
  942. v0 = _mm256_mul_ps( v0, mul );
  943. v1 = _mm256_mul_ps( v1, mul );
  944. v2 = _mm256_mul_ps( v2, mul );
  945. v3 = _mm256_mul_ps( v3, mul );
  946. // Round to nearest integer
  947. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  948. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  949. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  950. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  951. // Convert floats to integers
  952. __m256i i0 = _mm256_cvtps_epi32( v0 );
  953. __m256i i1 = _mm256_cvtps_epi32( v1 );
  954. __m256i i2 = _mm256_cvtps_epi32( v2 );
  955. __m256i i3 = _mm256_cvtps_epi32( v3 );
  956. #if defined(__AVX2__)
  957. // Convert int32 to int16
  958. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  959. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  960. // Convert int16 to int8
  961. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  962. // We got our precious signed bytes, but the order is now wrong
  963. // These AVX2 pack instructions process 16-byte pieces independently
  964. // The following instruction is fixing the order
  965. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  966. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  967. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  968. #else
  969. // Since we don't have in AVX some necessary functions,
  970. // we split the registers in half and call AVX2 analogs from SSE
  971. __m128i ni0 = _mm256_castsi256_si128( i0 );
  972. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  973. __m128i ni2 = _mm256_castsi256_si128( i1 );
  974. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  975. __m128i ni4 = _mm256_castsi256_si128( i2 );
  976. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  977. __m128i ni6 = _mm256_castsi256_si128( i3 );
  978. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  979. // Convert int32 to int16
  980. ni0 = _mm_packs_epi32( ni0, ni1 );
  981. ni2 = _mm_packs_epi32( ni2, ni3 );
  982. ni4 = _mm_packs_epi32( ni4, ni5 );
  983. ni6 = _mm_packs_epi32( ni6, ni7 );
  984. // Convert int16 to int8
  985. ni0 = _mm_packs_epi16( ni0, ni2 );
  986. ni4 = _mm_packs_epi16( ni4, ni6 );
  987. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  988. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  989. #endif
  990. }
  991. #else
  992. // scalar
  993. quantize_row_q8_0_reference(x, y, k);
  994. #endif
  995. }
  996. // reference implementation for deterministic creation of model files
  997. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  998. assert(QK8_1 == 32);
  999. assert(k % QK8_1 == 0);
  1000. const int nb = k / QK8_1;
  1001. for (int i = 0; i < nb; i++) {
  1002. float amax = 0.0f; // absolute max
  1003. for (int j = 0; j < QK8_1; j++) {
  1004. const float v = x[i*QK8_1 + j];
  1005. amax = MAX(amax, fabsf(v));
  1006. }
  1007. const float d = amax / ((1 << 7) - 1);
  1008. const float id = d ? 1.0f/d : 0.0f;
  1009. y[i].d = d;
  1010. int sum = 0;
  1011. for (int j = 0; j < QK8_1/2; ++j) {
  1012. const float v0 = x[i*QK8_1 + j]*id;
  1013. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  1014. y[i].qs[ j] = roundf(v0);
  1015. y[i].qs[QK8_1/2 + j] = roundf(v1);
  1016. sum += y[i].qs[ j];
  1017. sum += y[i].qs[QK8_1/2 + j];
  1018. }
  1019. y[i].s = sum*d;
  1020. }
  1021. }
  1022. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1023. assert(k % QK8_1 == 0);
  1024. const int nb = k / QK8_1;
  1025. block_q8_1 * restrict y = vy;
  1026. #if defined(__ARM_NEON)
  1027. for (int i = 0; i < nb; i++) {
  1028. float32x4_t srcv [8];
  1029. float32x4_t asrcv[8];
  1030. float32x4_t amaxv[8];
  1031. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  1032. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  1033. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  1034. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  1035. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  1036. const float amax = vmaxvq_f32(amaxv[0]);
  1037. const float d = amax / ((1 << 7) - 1);
  1038. const float id = d ? 1.0f/d : 0.0f;
  1039. y[i].d = d;
  1040. int32x4_t accv = vdupq_n_s32(0);
  1041. for (int j = 0; j < 8; j++) {
  1042. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  1043. const int32x4_t vi = vcvtnq_s32_f32(v);
  1044. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  1045. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1046. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1047. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1048. accv = vaddq_s32(accv, vi);
  1049. }
  1050. y[i].s = d * vaddvq_s32(accv);
  1051. }
  1052. #elif defined(__wasm_simd128__)
  1053. for (int i = 0; i < nb; i++) {
  1054. v128_t srcv [8];
  1055. v128_t asrcv[8];
  1056. v128_t amaxv[8];
  1057. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  1058. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  1059. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  1060. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  1061. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  1062. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  1063. wasm_f32x4_extract_lane(amaxv[0], 1)),
  1064. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  1065. wasm_f32x4_extract_lane(amaxv[0], 3)));
  1066. const float d = amax / ((1 << 7) - 1);
  1067. const float id = d ? 1.0f/d : 0.0f;
  1068. y[i].d = d;
  1069. v128_t accv = wasm_i32x4_splat(0);
  1070. for (int j = 0; j < 8; j++) {
  1071. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  1072. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  1073. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1074. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1075. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1076. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1077. accv = wasm_i32x4_add(accv, vi);
  1078. }
  1079. y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
  1080. wasm_i32x4_extract_lane(accv, 1) +
  1081. wasm_i32x4_extract_lane(accv, 2) +
  1082. wasm_i32x4_extract_lane(accv, 3));
  1083. }
  1084. #elif defined(__AVX2__) || defined(__AVX__)
  1085. for (int i = 0; i < nb; i++) {
  1086. // Load elements into 4 AVX vectors
  1087. __m256 v0 = _mm256_loadu_ps( x );
  1088. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1089. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1090. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1091. x += 32;
  1092. // Compute max(abs(e)) for the block
  1093. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1094. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1095. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1096. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1097. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1098. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1099. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1100. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1101. const float maxScalar = _mm_cvtss_f32( max4 );
  1102. // Quantize these floats
  1103. const float d = maxScalar / 127.f;
  1104. y[i].d = d;
  1105. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1106. const __m256 mul = _mm256_set1_ps( id );
  1107. // Apply the multiplier
  1108. v0 = _mm256_mul_ps( v0, mul );
  1109. v1 = _mm256_mul_ps( v1, mul );
  1110. v2 = _mm256_mul_ps( v2, mul );
  1111. v3 = _mm256_mul_ps( v3, mul );
  1112. // Round to nearest integer
  1113. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1114. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1115. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1116. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1117. // Convert floats to integers
  1118. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1119. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1120. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1121. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1122. #if defined(__AVX2__)
  1123. // Compute the sum of the quants and set y[i].s
  1124. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1125. // Convert int32 to int16
  1126. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1127. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1128. // Convert int16 to int8
  1129. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1130. // We got our precious signed bytes, but the order is now wrong
  1131. // These AVX2 pack instructions process 16-byte pieces independently
  1132. // The following instruction is fixing the order
  1133. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1134. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1135. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1136. #else
  1137. // Since we don't have in AVX some necessary functions,
  1138. // we split the registers in half and call AVX2 analogs from SSE
  1139. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1140. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1141. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1142. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1143. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1144. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1145. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1146. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1147. // Compute the sum of the quants and set y[i].s
  1148. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1149. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1150. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  1151. // Convert int32 to int16
  1152. ni0 = _mm_packs_epi32( ni0, ni1 );
  1153. ni2 = _mm_packs_epi32( ni2, ni3 );
  1154. ni4 = _mm_packs_epi32( ni4, ni5 );
  1155. ni6 = _mm_packs_epi32( ni6, ni7 );
  1156. // Convert int16 to int8
  1157. ni0 = _mm_packs_epi16( ni0, ni2 );
  1158. ni4 = _mm_packs_epi16( ni4, ni6 );
  1159. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1160. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1161. #endif
  1162. }
  1163. #else
  1164. // scalar
  1165. quantize_row_q8_1_reference(x, y, k);
  1166. #endif
  1167. }
  1168. static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  1169. static const int qk = QK4_0;
  1170. assert(k % qk == 0);
  1171. const int nb = k / qk;
  1172. for (int i = 0; i < nb; i++) {
  1173. const float d = GGML_FP16_TO_FP32(x[i].d);
  1174. for (int j = 0; j < qk/2; ++j) {
  1175. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1176. const int x1 = (x[i].qs[j] >> 4) - 8;
  1177. y[i*qk + j + 0 ] = x0*d;
  1178. y[i*qk + j + qk/2] = x1*d;
  1179. }
  1180. }
  1181. }
  1182. static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  1183. static const int qk = QK4_1;
  1184. assert(k % qk == 0);
  1185. const int nb = k / qk;
  1186. for (int i = 0; i < nb; i++) {
  1187. const float d = GGML_FP16_TO_FP32(x[i].d);
  1188. const float m = GGML_FP16_TO_FP32(x[i].m);
  1189. for (int j = 0; j < qk/2; ++j) {
  1190. const int x0 = (x[i].qs[j] & 0x0F);
  1191. const int x1 = (x[i].qs[j] >> 4);
  1192. y[i*qk + j + 0 ] = x0*d + m;
  1193. y[i*qk + j + qk/2] = x1*d + m;
  1194. }
  1195. }
  1196. }
  1197. static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  1198. static const int qk = QK5_0;
  1199. assert(k % qk == 0);
  1200. const int nb = k / qk;
  1201. for (int i = 0; i < nb; i++) {
  1202. const float d = GGML_FP16_TO_FP32(x[i].d);
  1203. uint32_t qh;
  1204. memcpy(&qh, x[i].qh, sizeof(qh));
  1205. for (int j = 0; j < qk/2; ++j) {
  1206. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1207. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1208. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1209. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1210. y[i*qk + j + 0 ] = x0*d;
  1211. y[i*qk + j + qk/2] = x1*d;
  1212. }
  1213. }
  1214. }
  1215. static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  1216. static const int qk = QK5_1;
  1217. assert(k % qk == 0);
  1218. const int nb = k / qk;
  1219. for (int i = 0; i < nb; i++) {
  1220. const float d = GGML_FP16_TO_FP32(x[i].d);
  1221. const float m = GGML_FP16_TO_FP32(x[i].m);
  1222. uint32_t qh;
  1223. memcpy(&qh, x[i].qh, sizeof(qh));
  1224. for (int j = 0; j < qk/2; ++j) {
  1225. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1226. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1227. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1228. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1229. y[i*qk + j + 0 ] = x0*d + m;
  1230. y[i*qk + j + qk/2] = x1*d + m;
  1231. }
  1232. }
  1233. }
  1234. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1235. static const int qk = QK8_0;
  1236. assert(k % qk == 0);
  1237. const int nb = k / qk;
  1238. const block_q8_0 * restrict x = vx;
  1239. for (int i = 0; i < nb; i++) {
  1240. const float d = GGML_FP16_TO_FP32(x[i].d);
  1241. for (int j = 0; j < qk; ++j) {
  1242. y[i*qk + j] = x[i].qs[j]*d;
  1243. }
  1244. }
  1245. }
  1246. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1247. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1248. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1249. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1250. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1251. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  1252. [GGML_TYPE_Q4_0] = {
  1253. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q4_0,
  1254. .quantize_row_q = quantize_row_q4_0,
  1255. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  1256. .quantize_row_q_dot = quantize_row_q8_0,
  1257. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  1258. .vec_dot_type = GGML_TYPE_Q8_0,
  1259. },
  1260. [GGML_TYPE_Q4_1] = {
  1261. .dequantize_row_q = (dequantize_row_q_t)dequantize_row_q4_1,
  1262. .quantize_row_q = quantize_row_q4_1,
  1263. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  1264. .quantize_row_q_dot = quantize_row_q8_1,
  1265. .vec_dot_q = ggml_vec_dot_q4_1_q8_1,
  1266. .vec_dot_type = GGML_TYPE_Q8_1,
  1267. },
  1268. [GGML_TYPE_Q5_0] = {
  1269. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_0,
  1270. .quantize_row_q = quantize_row_q5_0,
  1271. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_0_reference,
  1272. .quantize_row_q_dot = quantize_row_q8_0,
  1273. .vec_dot_q = ggml_vec_dot_q5_0_q8_0,
  1274. .vec_dot_type = GGML_TYPE_Q8_0,
  1275. },
  1276. [GGML_TYPE_Q5_1] = {
  1277. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_1,
  1278. .quantize_row_q = quantize_row_q5_1,
  1279. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_1_reference,
  1280. .quantize_row_q_dot = quantize_row_q8_1,
  1281. .vec_dot_q = ggml_vec_dot_q5_1_q8_1,
  1282. .vec_dot_type = GGML_TYPE_Q8_1,
  1283. },
  1284. [GGML_TYPE_Q8_0] = {
  1285. .dequantize_row_q = dequantize_row_q8_0,
  1286. .quantize_row_q = quantize_row_q8_0,
  1287. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference,
  1288. .quantize_row_q_dot = quantize_row_q8_0,
  1289. .vec_dot_q = ggml_vec_dot_q8_0_q8_0,
  1290. .vec_dot_type = GGML_TYPE_Q8_0,
  1291. },
  1292. [GGML_TYPE_Q8_1] = {
  1293. .dequantize_row_q = NULL, // TODO
  1294. .quantize_row_q = quantize_row_q8_1,
  1295. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_1_reference,
  1296. .quantize_row_q_dot = quantize_row_q8_1,
  1297. .vec_dot_q = NULL, // TODO
  1298. .vec_dot_type = GGML_TYPE_Q8_1,
  1299. },
  1300. #ifdef GGML_USE_K_QUANTS
  1301. [GGML_TYPE_Q2_K] = {
  1302. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q2_K,
  1303. .quantize_row_q = quantize_row_q2_K,
  1304. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q2_K_reference,
  1305. .quantize_row_q_dot = quantize_row_q8_K,
  1306. .vec_dot_q = ggml_vec_dot_q2_K_q8_K,
  1307. .vec_dot_type = GGML_TYPE_Q8_K,
  1308. },
  1309. [GGML_TYPE_Q3_K] = {
  1310. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q3_K,
  1311. .quantize_row_q = quantize_row_q3_K,
  1312. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q3_K_reference,
  1313. .quantize_row_q_dot = quantize_row_q8_K,
  1314. .vec_dot_q = ggml_vec_dot_q3_K_q8_K,
  1315. .vec_dot_type = GGML_TYPE_Q8_K,
  1316. },
  1317. [GGML_TYPE_Q4_K] = {
  1318. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q4_K,
  1319. .quantize_row_q = quantize_row_q4_K,
  1320. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_K_reference,
  1321. .quantize_row_q_dot = quantize_row_q8_K,
  1322. .vec_dot_q = ggml_vec_dot_q4_K_q8_K,
  1323. .vec_dot_type = GGML_TYPE_Q8_K,
  1324. },
  1325. [GGML_TYPE_Q5_K] = {
  1326. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_K,
  1327. .quantize_row_q = quantize_row_q5_K,
  1328. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_K_reference,
  1329. .quantize_row_q_dot = quantize_row_q8_K,
  1330. .vec_dot_q = ggml_vec_dot_q5_K_q8_K,
  1331. .vec_dot_type = GGML_TYPE_Q8_K,
  1332. },
  1333. [GGML_TYPE_Q6_K] = {
  1334. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q6_K,
  1335. .quantize_row_q = quantize_row_q6_K,
  1336. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q6_K_reference,
  1337. .quantize_row_q_dot = quantize_row_q8_K,
  1338. .vec_dot_q = ggml_vec_dot_q6_K_q8_K,
  1339. .vec_dot_type = GGML_TYPE_Q8_K,
  1340. },
  1341. #endif
  1342. };
  1343. // For internal test use
  1344. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  1345. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1346. return quantize_fns[i];
  1347. }
  1348. //
  1349. // simd mappings
  1350. //
  1351. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1352. // we then implement the fundamental computation operations below using only these macros
  1353. // adding support for new architectures requires to define the corresponding SIMD macros
  1354. //
  1355. // GGML_F32_STEP / GGML_F16_STEP
  1356. // number of elements to process in a single step
  1357. //
  1358. // GGML_F32_EPR / GGML_F16_EPR
  1359. // number of elements to fit in a single register
  1360. //
  1361. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1362. #define GGML_SIMD
  1363. // F32 NEON
  1364. #define GGML_F32_STEP 16
  1365. #define GGML_F32_EPR 4
  1366. #define GGML_F32x4 float32x4_t
  1367. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1368. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1369. #define GGML_F32x4_LOAD vld1q_f32
  1370. #define GGML_F32x4_STORE vst1q_f32
  1371. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1372. #define GGML_F32x4_ADD vaddq_f32
  1373. #define GGML_F32x4_MUL vmulq_f32
  1374. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1375. #define GGML_F32x4_REDUCE(res, x) \
  1376. { \
  1377. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1378. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1379. } \
  1380. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1381. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1382. } \
  1383. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1384. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1385. } \
  1386. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1387. }
  1388. #define GGML_F32_VEC GGML_F32x4
  1389. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1390. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1391. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1392. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1393. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1394. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1395. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1396. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1397. // F16 NEON
  1398. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1399. #define GGML_F16_STEP 32
  1400. #define GGML_F16_EPR 8
  1401. #define GGML_F16x8 float16x8_t
  1402. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1403. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1404. #define GGML_F16x8_LOAD vld1q_f16
  1405. #define GGML_F16x8_STORE vst1q_f16
  1406. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1407. #define GGML_F16x8_ADD vaddq_f16
  1408. #define GGML_F16x8_MUL vmulq_f16
  1409. #define GGML_F16x8_REDUCE(res, x) \
  1410. { \
  1411. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1412. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1413. } \
  1414. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1415. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1416. } \
  1417. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1418. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1419. } \
  1420. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1421. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1422. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1423. }
  1424. #define GGML_F16_VEC GGML_F16x8
  1425. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1426. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1427. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1428. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1429. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1430. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1431. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1432. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1433. #else
  1434. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1435. // and take advantage of the vcvt_ functions to convert to/from FP16
  1436. #define GGML_F16_STEP 16
  1437. #define GGML_F16_EPR 4
  1438. #define GGML_F32Cx4 float32x4_t
  1439. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1440. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1441. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1442. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1443. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1444. #define GGML_F32Cx4_ADD vaddq_f32
  1445. #define GGML_F32Cx4_MUL vmulq_f32
  1446. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1447. #define GGML_F16_VEC GGML_F32Cx4
  1448. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1449. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1450. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1451. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1452. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1453. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1454. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1455. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1456. #endif
  1457. #elif defined(__AVX__)
  1458. #define GGML_SIMD
  1459. // F32 AVX
  1460. #define GGML_F32_STEP 32
  1461. #define GGML_F32_EPR 8
  1462. #define GGML_F32x8 __m256
  1463. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1464. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1465. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1466. #define GGML_F32x8_STORE _mm256_storeu_ps
  1467. #if defined(__FMA__)
  1468. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1469. #else
  1470. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1471. #endif
  1472. #define GGML_F32x8_ADD _mm256_add_ps
  1473. #define GGML_F32x8_MUL _mm256_mul_ps
  1474. #define GGML_F32x8_REDUCE(res, x) \
  1475. { \
  1476. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1477. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1478. } \
  1479. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1480. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1481. } \
  1482. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1483. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1484. } \
  1485. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1486. _mm256_extractf128_ps(x[0], 1)); \
  1487. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1488. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1489. }
  1490. // TODO: is this optimal ?
  1491. #define GGML_F32_VEC GGML_F32x8
  1492. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1493. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1494. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1495. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1496. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1497. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1498. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1499. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1500. // F16 AVX
  1501. #define GGML_F16_STEP 32
  1502. #define GGML_F16_EPR 8
  1503. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1504. #define GGML_F32Cx8 __m256
  1505. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1506. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1507. #if defined(__F16C__)
  1508. // the _mm256_cvt intrinsics require F16C
  1509. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1510. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1511. #else
  1512. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1513. float tmp[8];
  1514. for (int i = 0; i < 8; i++) {
  1515. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1516. }
  1517. return _mm256_loadu_ps(tmp);
  1518. }
  1519. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1520. float arr[8];
  1521. _mm256_storeu_ps(arr, y);
  1522. for (int i = 0; i < 8; i++)
  1523. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1524. }
  1525. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1526. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1527. #endif
  1528. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1529. #define GGML_F32Cx8_ADD _mm256_add_ps
  1530. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1531. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1532. #define GGML_F16_VEC GGML_F32Cx8
  1533. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1534. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1535. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1536. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1537. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1538. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1539. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1540. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1541. #elif defined(__POWER9_VECTOR__)
  1542. #define GGML_SIMD
  1543. // F32 POWER9
  1544. #define GGML_F32_STEP 32
  1545. #define GGML_F32_EPR 4
  1546. #define GGML_F32x4 vector float
  1547. #define GGML_F32x4_ZERO 0.0f
  1548. #define GGML_F32x4_SET1 vec_splats
  1549. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1550. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1551. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1552. #define GGML_F32x4_ADD vec_add
  1553. #define GGML_F32x4_MUL vec_mul
  1554. #define GGML_F32x4_REDUCE(res, x) \
  1555. { \
  1556. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1557. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1558. } \
  1559. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1560. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1561. } \
  1562. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1563. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1564. } \
  1565. res = vec_extract(x[0], 0) + \
  1566. vec_extract(x[0], 1) + \
  1567. vec_extract(x[0], 2) + \
  1568. vec_extract(x[0], 3); \
  1569. }
  1570. #define GGML_F32_VEC GGML_F32x4
  1571. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1572. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1573. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1574. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1575. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1576. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1577. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1578. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1579. // F16 POWER9
  1580. #define GGML_F16_STEP GGML_F32_STEP
  1581. #define GGML_F16_EPR GGML_F32_EPR
  1582. #define GGML_F16_VEC GGML_F32x4
  1583. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1584. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1585. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1586. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1587. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1588. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1589. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1590. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1591. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1592. #define GGML_F16_VEC_STORE(p, r, i) \
  1593. if (i & 0x1) \
  1594. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1595. r[i - GGML_ENDIAN_BYTE(0)]), \
  1596. 0, p - GGML_F16_EPR)
  1597. #elif defined(__wasm_simd128__)
  1598. #define GGML_SIMD
  1599. // F32 WASM
  1600. #define GGML_F32_STEP 16
  1601. #define GGML_F32_EPR 4
  1602. #define GGML_F32x4 v128_t
  1603. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1604. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1605. #define GGML_F32x4_LOAD wasm_v128_load
  1606. #define GGML_F32x4_STORE wasm_v128_store
  1607. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1608. #define GGML_F32x4_ADD wasm_f32x4_add
  1609. #define GGML_F32x4_MUL wasm_f32x4_mul
  1610. #define GGML_F32x4_REDUCE(res, x) \
  1611. { \
  1612. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1613. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1614. } \
  1615. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1616. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1617. } \
  1618. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1619. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1620. } \
  1621. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1622. wasm_f32x4_extract_lane(x[0], 1) + \
  1623. wasm_f32x4_extract_lane(x[0], 2) + \
  1624. wasm_f32x4_extract_lane(x[0], 3); \
  1625. }
  1626. #define GGML_F32_VEC GGML_F32x4
  1627. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1628. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1629. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1630. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1631. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1632. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1633. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1634. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1635. // F16 WASM
  1636. #define GGML_F16_STEP 16
  1637. #define GGML_F16_EPR 4
  1638. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1639. float tmp[4];
  1640. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1641. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1642. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1643. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1644. return wasm_v128_load(tmp);
  1645. }
  1646. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1647. float tmp[4];
  1648. wasm_v128_store(tmp, x);
  1649. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1650. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1651. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1652. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1653. }
  1654. #define GGML_F16x4 v128_t
  1655. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1656. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1657. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1658. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1659. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1660. #define GGML_F16x4_ADD wasm_f32x4_add
  1661. #define GGML_F16x4_MUL wasm_f32x4_mul
  1662. #define GGML_F16x4_REDUCE(res, x) \
  1663. { \
  1664. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1665. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1666. } \
  1667. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1668. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1669. } \
  1670. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1671. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1672. } \
  1673. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1674. wasm_f32x4_extract_lane(x[0], 1) + \
  1675. wasm_f32x4_extract_lane(x[0], 2) + \
  1676. wasm_f32x4_extract_lane(x[0], 3); \
  1677. }
  1678. #define GGML_F16_VEC GGML_F16x4
  1679. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1680. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1681. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1682. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1683. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1684. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1685. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1686. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1687. #elif defined(__SSE3__)
  1688. #define GGML_SIMD
  1689. // F32 SSE
  1690. #define GGML_F32_STEP 32
  1691. #define GGML_F32_EPR 4
  1692. #define GGML_F32x4 __m128
  1693. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1694. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1695. #define GGML_F32x4_LOAD _mm_loadu_ps
  1696. #define GGML_F32x4_STORE _mm_storeu_ps
  1697. #if defined(__FMA__)
  1698. // TODO: Does this work?
  1699. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1700. #else
  1701. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1702. #endif
  1703. #define GGML_F32x4_ADD _mm_add_ps
  1704. #define GGML_F32x4_MUL _mm_mul_ps
  1705. #define GGML_F32x4_REDUCE(res, x) \
  1706. { \
  1707. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1708. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1709. } \
  1710. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1711. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1712. } \
  1713. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1714. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1715. } \
  1716. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1717. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1718. }
  1719. // TODO: is this optimal ?
  1720. #define GGML_F32_VEC GGML_F32x4
  1721. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1722. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1723. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1724. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1725. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1726. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1727. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1728. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1729. // F16 SSE
  1730. #define GGML_F16_STEP 32
  1731. #define GGML_F16_EPR 4
  1732. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1733. float tmp[4];
  1734. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1735. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1736. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1737. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1738. return _mm_loadu_ps(tmp);
  1739. }
  1740. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1741. float arr[4];
  1742. _mm_storeu_ps(arr, y);
  1743. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1744. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1745. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1746. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1747. }
  1748. #define GGML_F32Cx4 __m128
  1749. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1750. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1751. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1752. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1753. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1754. #define GGML_F32Cx4_ADD _mm_add_ps
  1755. #define GGML_F32Cx4_MUL _mm_mul_ps
  1756. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1757. #define GGML_F16_VEC GGML_F32Cx4
  1758. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1759. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1760. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1761. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1762. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1763. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1764. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1765. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1766. #endif
  1767. // GGML_F32_ARR / GGML_F16_ARR
  1768. // number of registers to use per step
  1769. #ifdef GGML_SIMD
  1770. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1771. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1772. #endif
  1773. //
  1774. // fundamental operations
  1775. //
  1776. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1777. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1778. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1779. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1780. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1781. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1782. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1783. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1784. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1785. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1786. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1787. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1788. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1789. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1790. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1791. #ifdef GGML_SIMD
  1792. float sumf = 0.0f;
  1793. const int np = (n & ~(GGML_F32_STEP - 1));
  1794. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1795. GGML_F32_VEC ax[GGML_F32_ARR];
  1796. GGML_F32_VEC ay[GGML_F32_ARR];
  1797. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1798. for (int j = 0; j < GGML_F32_ARR; j++) {
  1799. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1800. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1801. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1802. }
  1803. }
  1804. // reduce sum0..sum3 to sum0
  1805. GGML_F32_VEC_REDUCE(sumf, sum);
  1806. // leftovers
  1807. for (int i = np; i < n; ++i) {
  1808. sumf += x[i]*y[i];
  1809. }
  1810. #else
  1811. // scalar
  1812. ggml_float sumf = 0.0;
  1813. for (int i = 0; i < n; ++i) {
  1814. sumf += (ggml_float)(x[i]*y[i]);
  1815. }
  1816. #endif
  1817. *s = sumf;
  1818. }
  1819. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1820. ggml_float sumf = 0.0;
  1821. #if defined(GGML_SIMD)
  1822. const int np = (n & ~(GGML_F16_STEP - 1));
  1823. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1824. GGML_F16_VEC ax[GGML_F16_ARR];
  1825. GGML_F16_VEC ay[GGML_F16_ARR];
  1826. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1827. for (int j = 0; j < GGML_F16_ARR; j++) {
  1828. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1829. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1830. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1831. }
  1832. }
  1833. // reduce sum0..sum3 to sum0
  1834. GGML_F16_VEC_REDUCE(sumf, sum);
  1835. // leftovers
  1836. for (int i = np; i < n; ++i) {
  1837. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1838. }
  1839. #else
  1840. for (int i = 0; i < n; ++i) {
  1841. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1842. }
  1843. #endif
  1844. *s = sumf;
  1845. }
  1846. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1847. const int qk = QK8_0;
  1848. const int nb = n / qk;
  1849. assert(n % qk == 0);
  1850. assert(nb % 2 == 0);
  1851. const block_q4_0 * restrict x = vx;
  1852. const block_q8_0 * restrict y = vy;
  1853. #if defined(__ARM_NEON)
  1854. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1855. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1856. for (int i = 0; i < nb; i += 2) {
  1857. const block_q4_0 * restrict x0 = &x[i + 0];
  1858. const block_q4_0 * restrict x1 = &x[i + 1];
  1859. const block_q8_0 * restrict y0 = &y[i + 0];
  1860. const block_q8_0 * restrict y1 = &y[i + 1];
  1861. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1862. const int8x16_t s8b = vdupq_n_s8(0x8);
  1863. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1864. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1865. // 4-bit -> 8-bit
  1866. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1867. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1868. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1869. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1870. // sub 8
  1871. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1872. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1873. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1874. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1875. // load y
  1876. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1877. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1878. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1879. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1880. #if defined(__ARM_FEATURE_DOTPROD)
  1881. // dot product into int32x4_t
  1882. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  1883. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  1884. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1885. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1886. #else
  1887. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
  1888. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
  1889. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
  1890. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
  1891. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
  1892. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
  1893. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
  1894. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
  1895. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  1896. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  1897. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  1898. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  1899. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1900. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1901. #endif
  1902. }
  1903. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  1904. #elif defined(__AVX2__)
  1905. // Initialize accumulator with zeros
  1906. __m256 acc = _mm256_setzero_ps();
  1907. // Main loop
  1908. for (int i = 0; i < nb; ++i) {
  1909. /* Compute combined scale for the block */
  1910. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  1911. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  1912. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1913. const __m256i off = _mm256_set1_epi8( 8 );
  1914. bx = _mm256_sub_epi8( bx, off );
  1915. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  1916. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  1917. /* Multiply q with scale and accumulate */
  1918. acc = _mm256_fmadd_ps( d, q, acc );
  1919. }
  1920. *s = hsum_float_8(acc);
  1921. #elif defined(__AVX__)
  1922. // Initialize accumulator with zeros
  1923. __m256 acc = _mm256_setzero_ps();
  1924. // Main loop
  1925. for (int i = 0; i < nb; ++i) {
  1926. // Compute combined scale for the block
  1927. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  1928. const __m128i lowMask = _mm_set1_epi8(0xF);
  1929. const __m128i off = _mm_set1_epi8(8);
  1930. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  1931. __m128i bx = _mm_and_si128(lowMask, tmp);
  1932. __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
  1933. bx = _mm_sub_epi8(bx, off);
  1934. const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
  1935. bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  1936. by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  1937. bx = _mm_sub_epi8(bx, off);
  1938. const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
  1939. // Convert int32_t to float
  1940. __m256 p = _mm256_cvtepi32_ps(MM256_SET_M128I(i32_0, i32_1));
  1941. // Apply the scale, and accumulate
  1942. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  1943. }
  1944. *s = hsum_float_8(acc);
  1945. #elif defined(__SSSE3__)
  1946. // set constants
  1947. const __m128i lowMask = _mm_set1_epi8(0xF);
  1948. const __m128i off = _mm_set1_epi8(8);
  1949. // Initialize accumulator with zeros
  1950. __m128 acc_0 = _mm_setzero_ps();
  1951. __m128 acc_1 = _mm_setzero_ps();
  1952. __m128 acc_2 = _mm_setzero_ps();
  1953. __m128 acc_3 = _mm_setzero_ps();
  1954. // First round without accumulation
  1955. {
  1956. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  1957. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  1958. // Compute combined scale for the block 0 and 1
  1959. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  1960. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  1961. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  1962. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  1963. bx_0 = _mm_sub_epi8(bx_0, off);
  1964. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  1965. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  1966. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  1967. bx_1 = _mm_sub_epi8(bx_1, off);
  1968. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  1969. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  1970. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  1971. // Compute combined scale for the block 2 and 3
  1972. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  1973. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  1974. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  1975. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  1976. bx_2 = _mm_sub_epi8(bx_2, off);
  1977. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  1978. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  1979. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  1980. bx_3 = _mm_sub_epi8(bx_3, off);
  1981. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  1982. // Convert int32_t to float
  1983. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  1984. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  1985. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  1986. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  1987. // Apply the scale
  1988. acc_0 = _mm_mul_ps( d_0_1, p0 );
  1989. acc_1 = _mm_mul_ps( d_0_1, p1 );
  1990. acc_2 = _mm_mul_ps( d_2_3, p2 );
  1991. acc_3 = _mm_mul_ps( d_2_3, p3 );
  1992. }
  1993. // Main loop
  1994. for (int i = 2; i < nb; i+=2) {
  1995. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  1996. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  1997. // Compute combined scale for the block 0 and 1
  1998. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  1999. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  2000. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2001. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  2002. bx_0 = _mm_sub_epi8(bx_0, off);
  2003. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2004. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2005. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2006. bx_1 = _mm_sub_epi8(bx_1, off);
  2007. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2008. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  2009. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  2010. // Compute combined scale for the block 2 and 3
  2011. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  2012. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  2013. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2014. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  2015. bx_2 = _mm_sub_epi8(bx_2, off);
  2016. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2017. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2018. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  2019. bx_3 = _mm_sub_epi8(bx_3, off);
  2020. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2021. // Convert int32_t to float
  2022. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2023. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2024. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2025. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2026. // Apply the scale
  2027. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  2028. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  2029. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  2030. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  2031. // Acummulate
  2032. acc_0 = _mm_add_ps(p0_d, acc_0);
  2033. acc_1 = _mm_add_ps(p1_d, acc_1);
  2034. acc_2 = _mm_add_ps(p2_d, acc_2);
  2035. acc_3 = _mm_add_ps(p3_d, acc_3);
  2036. }
  2037. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  2038. #else
  2039. // scalar
  2040. float sumf = 0.0;
  2041. for (int i = 0; i < nb; i++) {
  2042. int sumi = 0;
  2043. for (int j = 0; j < qk/2; ++j) {
  2044. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  2045. const int v1 = (x[i].qs[j] >> 4) - 8;
  2046. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2047. }
  2048. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  2049. }
  2050. *s = sumf;
  2051. #endif
  2052. }
  2053. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2054. const int qk = QK8_1;
  2055. const int nb = n / qk;
  2056. assert(n % qk == 0);
  2057. assert(nb % 2 == 0);
  2058. const block_q4_1 * restrict x = vx;
  2059. const block_q8_1 * restrict y = vy;
  2060. // TODO: add WASM SIMD
  2061. #if defined(__ARM_NEON)
  2062. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2063. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2064. float summs = 0;
  2065. for (int i = 0; i < nb; i += 2) {
  2066. const block_q4_1 * restrict x0 = &x[i + 0];
  2067. const block_q4_1 * restrict x1 = &x[i + 1];
  2068. const block_q8_1 * restrict y0 = &y[i + 0];
  2069. const block_q8_1 * restrict y1 = &y[i + 1];
  2070. summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
  2071. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2072. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2073. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2074. // 4-bit -> 8-bit
  2075. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2076. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2077. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2078. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2079. // load y
  2080. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2081. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2082. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2083. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2084. #if defined(__ARM_FEATURE_DOTPROD)
  2085. // dot product into int32x4_t
  2086. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  2087. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  2088. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2089. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2090. #else
  2091. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
  2092. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
  2093. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
  2094. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
  2095. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
  2096. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
  2097. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
  2098. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
  2099. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2100. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2101. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2102. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2103. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2104. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2105. #endif
  2106. }
  2107. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2108. #elif defined(__AVX2__) || defined(__AVX__)
  2109. // Initialize accumulator with zeros
  2110. __m256 acc = _mm256_setzero_ps();
  2111. float summs = 0;
  2112. // Main loop
  2113. for (int i = 0; i < nb; ++i) {
  2114. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  2115. const float d1 = y[i].d;
  2116. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2117. const __m256 d0v = _mm256_set1_ps( d0 );
  2118. const __m256 d1v = _mm256_set1_ps( d1 );
  2119. // Compute combined scales
  2120. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2121. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2122. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2123. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2124. const __m256 xy = mul_sum_us8_pairs_float(bx, by);
  2125. // Accumulate d0*d1*x*y
  2126. #if defined(__AVX2__)
  2127. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2128. #else
  2129. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  2130. #endif
  2131. }
  2132. *s = hsum_float_8(acc) + summs;
  2133. #else
  2134. // scalar
  2135. float sumf = 0.0;
  2136. for (int i = 0; i < nb; i++) {
  2137. int sumi = 0;
  2138. for (int j = 0; j < qk/2; ++j) {
  2139. const int v0 = (x[i].qs[j] & 0x0F);
  2140. const int v1 = (x[i].qs[j] >> 4);
  2141. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2142. }
  2143. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2144. }
  2145. *s = sumf;
  2146. #endif
  2147. }
  2148. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2149. const int qk = QK8_0;
  2150. const int nb = n / qk;
  2151. assert(n % qk == 0);
  2152. assert(nb % 2 == 0);
  2153. assert(qk == QK5_0);
  2154. const block_q5_0 * restrict x = vx;
  2155. const block_q8_0 * restrict y = vy;
  2156. #if defined(__ARM_NEON)
  2157. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2158. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2159. uint32_t qh0;
  2160. uint32_t qh1;
  2161. uint64_t tmp0[4];
  2162. uint64_t tmp1[4];
  2163. for (int i = 0; i < nb; i += 2) {
  2164. const block_q5_0 * restrict x0 = &x[i];
  2165. const block_q5_0 * restrict x1 = &x[i + 1];
  2166. const block_q8_0 * restrict y0 = &y[i];
  2167. const block_q8_0 * restrict y1 = &y[i + 1];
  2168. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2169. // extract the 5th bit via lookup table ((!b) << 4)
  2170. memcpy(&qh0, x0->qh, sizeof(qh0));
  2171. memcpy(&qh1, x1->qh, sizeof(qh1));
  2172. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  2173. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  2174. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  2175. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  2176. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  2177. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  2178. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  2179. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  2180. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2181. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2182. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2183. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2184. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2185. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2186. // 4-bit -> 8-bit
  2187. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2188. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2189. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2190. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2191. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2192. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  2193. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  2194. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  2195. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  2196. // load y
  2197. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2198. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2199. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2200. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2201. #if defined(__ARM_FEATURE_DOTPROD)
  2202. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2203. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2204. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2205. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2206. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2207. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2208. #else
  2209. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2210. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2211. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2212. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2213. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2214. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2215. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2216. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2217. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2218. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2219. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2220. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2221. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2222. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2223. #endif
  2224. }
  2225. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2226. #elif defined(__wasm_simd128__)
  2227. v128_t sumv = wasm_f32x4_splat(0.0f);
  2228. uint32_t qh;
  2229. uint64_t tmp[4];
  2230. // TODO: check if unrolling this is better
  2231. for (int i = 0; i < nb; ++i) {
  2232. const block_q5_0 * restrict x0 = &x[i];
  2233. const block_q8_0 * restrict y0 = &y[i];
  2234. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2235. // extract the 5th bit
  2236. memcpy(&qh, x0->qh, sizeof(qh));
  2237. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  2238. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  2239. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  2240. tmp[3] = table_b2b_1[(qh >> 24) ];
  2241. const v128_t qhl = wasm_v128_load(tmp + 0);
  2242. const v128_t qhh = wasm_v128_load(tmp + 2);
  2243. const v128_t v0 = wasm_v128_load(x0->qs);
  2244. // 4-bit -> 8-bit
  2245. const v128_t v0l = wasm_v128_and (v0, m4b);
  2246. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2247. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2248. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  2249. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  2250. // load y
  2251. const v128_t v1l = wasm_v128_load(y0->qs);
  2252. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2253. // int8x16 -> int16x8
  2254. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2255. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2256. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2257. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2258. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2259. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2260. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2261. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2262. // dot product
  2263. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2264. wasm_i32x4_add(
  2265. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2266. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2267. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2268. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2269. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  2270. }
  2271. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2272. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2273. #elif defined(__AVX2__)
  2274. // Initialize accumulator with zeros
  2275. __m256 acc = _mm256_setzero_ps();
  2276. // Main loop
  2277. for (int i = 0; i < nb; i++) {
  2278. /* Compute combined scale for the block */
  2279. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2280. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2281. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2282. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2283. bx = _mm256_or_si256(bx, bxhi);
  2284. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2285. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2286. /* Multiply q with scale and accumulate */
  2287. acc = _mm256_fmadd_ps(d, q, acc);
  2288. }
  2289. *s = hsum_float_8(acc);
  2290. #elif defined(__AVX__)
  2291. // Initialize accumulator with zeros
  2292. __m256 acc = _mm256_setzero_ps();
  2293. __m128i mask = _mm_set1_epi8((char)0xF0);
  2294. // Main loop
  2295. for (int i = 0; i < nb; i++) {
  2296. /* Compute combined scale for the block */
  2297. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2298. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2299. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2300. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2301. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2302. bxhil = _mm_andnot_si128(bxhil, mask);
  2303. bxhih = _mm_andnot_si128(bxhih, mask);
  2304. __m128i bxl = _mm256_castsi256_si128(bx);
  2305. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2306. bxl = _mm_or_si128(bxl, bxhil);
  2307. bxh = _mm_or_si128(bxh, bxhih);
  2308. bx = MM256_SET_M128I(bxh, bxl);
  2309. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2310. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2311. /* Multiply q with scale and accumulate */
  2312. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  2313. }
  2314. *s = hsum_float_8(acc);
  2315. #else
  2316. // scalar
  2317. float sumf = 0.0;
  2318. for (int i = 0; i < nb; i++) {
  2319. uint32_t qh;
  2320. memcpy(&qh, x[i].qh, sizeof(qh));
  2321. int sumi = 0;
  2322. for (int j = 0; j < qk/2; ++j) {
  2323. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2324. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  2325. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  2326. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  2327. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2328. }
  2329. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  2330. }
  2331. *s = sumf;
  2332. #endif
  2333. }
  2334. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2335. const int qk = QK8_1;
  2336. const int nb = n / qk;
  2337. assert(n % qk == 0);
  2338. assert(nb % 2 == 0);
  2339. assert(qk == QK5_1);
  2340. const block_q5_1 * restrict x = vx;
  2341. const block_q8_1 * restrict y = vy;
  2342. #if defined(__ARM_NEON)
  2343. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2344. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2345. float summs0 = 0.0f;
  2346. float summs1 = 0.0f;
  2347. uint32_t qh0;
  2348. uint32_t qh1;
  2349. uint64_t tmp0[4];
  2350. uint64_t tmp1[4];
  2351. for (int i = 0; i < nb; i += 2) {
  2352. const block_q5_1 * restrict x0 = &x[i];
  2353. const block_q5_1 * restrict x1 = &x[i + 1];
  2354. const block_q8_1 * restrict y0 = &y[i];
  2355. const block_q8_1 * restrict y1 = &y[i + 1];
  2356. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2357. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2358. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  2359. // extract the 5th bit via lookup table ((b) << 4)
  2360. memcpy(&qh0, x0->qh, sizeof(qh0));
  2361. memcpy(&qh1, x1->qh, sizeof(qh1));
  2362. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  2363. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  2364. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  2365. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  2366. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  2367. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  2368. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  2369. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  2370. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2371. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2372. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2373. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2374. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2375. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2376. // 4-bit -> 8-bit
  2377. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2378. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2379. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2380. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2381. // add high bit
  2382. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  2383. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  2384. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  2385. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  2386. // load y
  2387. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2388. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2389. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2390. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2391. #if defined(__ARM_FEATURE_DOTPROD)
  2392. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2393. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2394. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2395. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2396. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2397. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2398. #else
  2399. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2400. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2401. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2402. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2403. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2404. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2405. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2406. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2407. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2408. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2409. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2410. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2411. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2412. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2413. #endif
  2414. }
  2415. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  2416. #elif defined(__wasm_simd128__)
  2417. v128_t sumv = wasm_f32x4_splat(0.0f);
  2418. float summs = 0.0f;
  2419. uint32_t qh;
  2420. uint64_t tmp[4];
  2421. // TODO: check if unrolling this is better
  2422. for (int i = 0; i < nb; ++i) {
  2423. const block_q5_1 * restrict x0 = &x[i];
  2424. const block_q8_1 * restrict y0 = &y[i];
  2425. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2426. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2427. // extract the 5th bit
  2428. memcpy(&qh, x0->qh, sizeof(qh));
  2429. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  2430. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  2431. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  2432. tmp[3] = table_b2b_0[(qh >> 24) ];
  2433. const v128_t qhl = wasm_v128_load(tmp + 0);
  2434. const v128_t qhh = wasm_v128_load(tmp + 2);
  2435. const v128_t v0 = wasm_v128_load(x0->qs);
  2436. // 4-bit -> 8-bit
  2437. const v128_t v0l = wasm_v128_and (v0, m4b);
  2438. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2439. // add high bit
  2440. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  2441. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  2442. // load y
  2443. const v128_t v1l = wasm_v128_load(y0->qs);
  2444. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2445. // int8x16 -> int16x8
  2446. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2447. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2448. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2449. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2450. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2451. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2452. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2453. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2454. // dot product
  2455. sumv = wasm_f32x4_add(sumv,
  2456. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  2457. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2458. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2459. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2460. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2461. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
  2462. }
  2463. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2464. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2465. #elif defined(__AVX2__)
  2466. // Initialize accumulator with zeros
  2467. __m256 acc = _mm256_setzero_ps();
  2468. float summs = 0.0f;
  2469. // Main loop
  2470. for (int i = 0; i < nb; i++) {
  2471. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2472. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2473. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2474. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2475. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2476. bx = _mm256_or_si256(bx, bxhi);
  2477. const __m256 dy = _mm256_set1_ps(y[i].d);
  2478. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2479. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2480. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2481. }
  2482. *s = hsum_float_8(acc) + summs;
  2483. #elif defined(__AVX__)
  2484. // Initialize accumulator with zeros
  2485. __m256 acc = _mm256_setzero_ps();
  2486. __m128i mask = _mm_set1_epi8(0x10);
  2487. float summs = 0.0f;
  2488. // Main loop
  2489. for (int i = 0; i < nb; i++) {
  2490. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2491. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2492. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2493. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2494. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2495. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2496. bxhil = _mm_and_si128(bxhil, mask);
  2497. bxhih = _mm_and_si128(bxhih, mask);
  2498. __m128i bxl = _mm256_castsi256_si128(bx);
  2499. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2500. bxl = _mm_or_si128(bxl, bxhil);
  2501. bxh = _mm_or_si128(bxh, bxhih);
  2502. bx = MM256_SET_M128I(bxh, bxl);
  2503. const __m256 dy = _mm256_set1_ps(y[i].d);
  2504. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2505. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2506. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  2507. }
  2508. *s = hsum_float_8(acc) + summs;
  2509. #else
  2510. // scalar
  2511. float sumf = 0.0;
  2512. for (int i = 0; i < nb; i++) {
  2513. uint32_t qh;
  2514. memcpy(&qh, x[i].qh, sizeof(qh));
  2515. int sumi = 0;
  2516. for (int j = 0; j < qk/2; ++j) {
  2517. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  2518. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  2519. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  2520. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  2521. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2522. }
  2523. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2524. }
  2525. *s = sumf;
  2526. #endif
  2527. }
  2528. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2529. const int qk = QK8_0;
  2530. const int nb = n / qk;
  2531. assert(n % qk == 0);
  2532. assert(nb % 2 == 0);
  2533. const block_q8_0 * restrict x = vx;
  2534. const block_q8_0 * restrict y = vy;
  2535. #if defined(__ARM_NEON)
  2536. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2537. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2538. for (int i = 0; i < nb; i += 2) {
  2539. const block_q8_0 * restrict x0 = &x[i + 0];
  2540. const block_q8_0 * restrict x1 = &x[i + 1];
  2541. const block_q8_0 * restrict y0 = &y[i + 0];
  2542. const block_q8_0 * restrict y1 = &y[i + 1];
  2543. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2544. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2545. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2546. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2547. // load y
  2548. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2549. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2550. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2551. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2552. #if defined(__ARM_FEATURE_DOTPROD)
  2553. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2554. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2555. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2556. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2557. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2558. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2559. #else
  2560. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2561. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2562. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2563. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2564. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2565. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2566. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2567. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2568. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2569. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2570. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2571. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2572. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2573. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2574. #endif
  2575. }
  2576. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2577. #elif defined(__AVX2__) || defined(__AVX__)
  2578. // Initialize accumulator with zeros
  2579. __m256 acc = _mm256_setzero_ps();
  2580. // Main loop
  2581. for (int i = 0; i < nb; ++i) {
  2582. // Compute combined scale for the block
  2583. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2584. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2585. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2586. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2587. // Multiply q with scale and accumulate
  2588. #if defined(__AVX2__)
  2589. acc = _mm256_fmadd_ps( d, q, acc );
  2590. #else
  2591. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  2592. #endif
  2593. }
  2594. *s = hsum_float_8(acc);
  2595. #else
  2596. // scalar
  2597. float sumf = 0.0;
  2598. for (int i = 0; i < nb; i++) {
  2599. int sumi = 0;
  2600. for (int j = 0; j < qk; j++) {
  2601. sumi += x[i].qs[j]*y[i].qs[j];
  2602. }
  2603. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  2604. }
  2605. *s = sumf;
  2606. #endif
  2607. }
  2608. // compute GGML_VEC_DOT_UNROLL dot products at once
  2609. // xs - x row stride in bytes
  2610. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2611. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2612. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2613. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2614. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2615. }
  2616. #if defined(GGML_SIMD)
  2617. const int np = (n & ~(GGML_F16_STEP - 1));
  2618. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2619. GGML_F16_VEC ax[GGML_F16_ARR];
  2620. GGML_F16_VEC ay[GGML_F16_ARR];
  2621. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2622. for (int j = 0; j < GGML_F16_ARR; j++) {
  2623. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2624. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2625. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2626. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2627. }
  2628. }
  2629. }
  2630. // reduce sum0..sum3 to sum0
  2631. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2632. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2633. }
  2634. // leftovers
  2635. for (int i = np; i < n; ++i) {
  2636. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2637. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2638. }
  2639. }
  2640. #else
  2641. for (int i = 0; i < n; ++i) {
  2642. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2643. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2644. }
  2645. }
  2646. #endif
  2647. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2648. s[i] = sumf[i];
  2649. }
  2650. }
  2651. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2652. #if defined(GGML_SIMD)
  2653. const int np = (n & ~(GGML_F32_STEP - 1));
  2654. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2655. GGML_F32_VEC ax[GGML_F32_ARR];
  2656. GGML_F32_VEC ay[GGML_F32_ARR];
  2657. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2658. for (int j = 0; j < GGML_F32_ARR; j++) {
  2659. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2660. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2661. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2662. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2663. }
  2664. }
  2665. // leftovers
  2666. for (int i = np; i < n; ++i) {
  2667. y[i] += x[i]*v;
  2668. }
  2669. #else
  2670. // scalar
  2671. for (int i = 0; i < n; ++i) {
  2672. y[i] += x[i]*v;
  2673. }
  2674. #endif
  2675. }
  2676. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2677. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2678. #if defined(GGML_SIMD)
  2679. const int np = (n & ~(GGML_F32_STEP - 1));
  2680. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2681. GGML_F32_VEC ay[GGML_F32_ARR];
  2682. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2683. for (int j = 0; j < GGML_F32_ARR; j++) {
  2684. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2685. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2686. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2687. }
  2688. }
  2689. // leftovers
  2690. for (int i = np; i < n; ++i) {
  2691. y[i] *= v;
  2692. }
  2693. #else
  2694. // scalar
  2695. for (int i = 0; i < n; ++i) {
  2696. y[i] *= v;
  2697. }
  2698. #endif
  2699. }
  2700. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2701. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2702. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2703. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  2704. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2705. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2706. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2707. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2708. static const float GELU_COEF_A = 0.044715f;
  2709. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2710. inline static float ggml_gelu_f32(float x) {
  2711. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2712. }
  2713. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2714. const uint16_t * i16 = (const uint16_t *) x;
  2715. for (int i = 0; i < n; ++i) {
  2716. y[i] = table_gelu_f16[i16[i]];
  2717. }
  2718. }
  2719. #ifdef GGML_GELU_FP16
  2720. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2721. uint16_t t;
  2722. for (int i = 0; i < n; ++i) {
  2723. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2724. memcpy(&t, &fp16, sizeof(uint16_t));
  2725. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2726. }
  2727. }
  2728. #else
  2729. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2730. for (int i = 0; i < n; ++i) {
  2731. y[i] = ggml_gelu_f32(x[i]);
  2732. }
  2733. }
  2734. #endif
  2735. // Sigmoid Linear Unit (SiLU) function
  2736. inline static float ggml_silu_f32(float x) {
  2737. return x/(1.0f + expf(-x));
  2738. }
  2739. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2740. // const uint16_t * i16 = (const uint16_t *) x;
  2741. // for (int i = 0; i < n; ++i) {
  2742. // y[i] = table_silu_f16[i16[i]];
  2743. // }
  2744. //}
  2745. #ifdef GGML_SILU_FP16
  2746. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2747. uint16_t t;
  2748. for (int i = 0; i < n; ++i) {
  2749. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2750. memcpy(&t, &fp16, sizeof(uint16_t));
  2751. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2752. }
  2753. }
  2754. #else
  2755. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2756. for (int i = 0; i < n; ++i) {
  2757. y[i] = ggml_silu_f32(x[i]);
  2758. }
  2759. }
  2760. #endif
  2761. inline static float ggml_silu_backward_f32(float x, float dy) {
  2762. const float s = 1.0f/(1.0f + expf(-x));
  2763. return dy*s*(1.0f + x*(1.0f - s));
  2764. }
  2765. #ifdef GGML_SILU_FP16
  2766. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2767. for (int i = 0; i < n; ++i) {
  2768. // we did not use x[i] to compute forward silu but its f16 equivalent
  2769. // take derivative at f16 of x[i]:
  2770. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2771. float usedx = GGML_FP16_TO_FP32(fp16);
  2772. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  2773. }
  2774. }
  2775. #else
  2776. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2777. for (int i = 0; i < n; ++i) {
  2778. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2779. }
  2780. }
  2781. #endif
  2782. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2783. #ifndef GGML_USE_ACCELERATE
  2784. ggml_float sum = 0.0;
  2785. for (int i = 0; i < n; ++i) {
  2786. sum += (ggml_float)x[i];
  2787. }
  2788. *s = sum;
  2789. #else
  2790. vDSP_sve(x, 1, s, n);
  2791. #endif
  2792. }
  2793. inline static void ggml_vec_sum_ggf(const int n, ggml_float * s, const float * x) {
  2794. ggml_float sum = 0.0;
  2795. for (int i = 0; i < n; ++i) {
  2796. sum += (ggml_float)x[i];
  2797. }
  2798. *s = sum;
  2799. }
  2800. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2801. #ifndef GGML_USE_ACCELERATE
  2802. float max = -INFINITY;
  2803. for (int i = 0; i < n; ++i) {
  2804. max = MAX(max, x[i]);
  2805. }
  2806. *s = max;
  2807. #else
  2808. vDSP_maxv(x, 1, s, n);
  2809. #endif
  2810. }
  2811. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2812. ggml_vec_norm_f32(n, s, x);
  2813. *s = 1.f/(*s);
  2814. }
  2815. //
  2816. // logging
  2817. //
  2818. #if (GGML_DEBUG >= 1)
  2819. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2820. #else
  2821. #define GGML_PRINT_DEBUG(...)
  2822. #endif
  2823. #if (GGML_DEBUG >= 5)
  2824. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2825. #else
  2826. #define GGML_PRINT_DEBUG_5(...)
  2827. #endif
  2828. #if (GGML_DEBUG >= 10)
  2829. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2830. #else
  2831. #define GGML_PRINT_DEBUG_10(...)
  2832. #endif
  2833. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2834. //
  2835. // data types
  2836. //
  2837. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2838. [GGML_TYPE_F32] = 1,
  2839. [GGML_TYPE_F16] = 1,
  2840. [GGML_TYPE_Q4_0] = QK4_0,
  2841. [GGML_TYPE_Q4_1] = QK4_1,
  2842. [GGML_TYPE_Q5_0] = QK5_0,
  2843. [GGML_TYPE_Q5_1] = QK5_1,
  2844. [GGML_TYPE_Q8_0] = QK8_0,
  2845. [GGML_TYPE_Q8_1] = QK8_1,
  2846. #ifdef GGML_USE_K_QUANTS
  2847. [GGML_TYPE_Q2_K] = QK_K,
  2848. [GGML_TYPE_Q3_K] = QK_K,
  2849. [GGML_TYPE_Q4_K] = QK_K,
  2850. [GGML_TYPE_Q5_K] = QK_K,
  2851. [GGML_TYPE_Q6_K] = QK_K,
  2852. [GGML_TYPE_Q8_K] = QK_K,
  2853. #endif
  2854. [GGML_TYPE_I8] = 1,
  2855. [GGML_TYPE_I16] = 1,
  2856. [GGML_TYPE_I32] = 1,
  2857. };
  2858. static_assert(GGML_TYPE_COUNT == 19, "GGML_BLCK_SIZE is outdated");
  2859. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2860. [GGML_TYPE_F32] = sizeof(float),
  2861. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2862. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2863. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2864. [GGML_TYPE_Q5_0] = sizeof(block_q5_0),
  2865. [GGML_TYPE_Q5_1] = sizeof(block_q5_1),
  2866. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  2867. [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
  2868. #ifdef GGML_USE_K_QUANTS
  2869. [GGML_TYPE_Q2_K] = sizeof(block_q2_K),
  2870. [GGML_TYPE_Q3_K] = sizeof(block_q3_K),
  2871. [GGML_TYPE_Q4_K] = sizeof(block_q4_K),
  2872. [GGML_TYPE_Q5_K] = sizeof(block_q5_K),
  2873. [GGML_TYPE_Q6_K] = sizeof(block_q6_K),
  2874. [GGML_TYPE_Q8_K] = sizeof(block_q8_K),
  2875. #endif
  2876. [GGML_TYPE_I8] = sizeof(int8_t),
  2877. [GGML_TYPE_I16] = sizeof(int16_t),
  2878. [GGML_TYPE_I32] = sizeof(int32_t),
  2879. };
  2880. static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_SIZE is outdated");
  2881. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  2882. [GGML_TYPE_F32] = "f32",
  2883. [GGML_TYPE_F16] = "f16",
  2884. [GGML_TYPE_Q4_0] = "q4_0",
  2885. [GGML_TYPE_Q4_1] = "q4_1",
  2886. [GGML_TYPE_Q5_0] = "q5_0",
  2887. [GGML_TYPE_Q5_1] = "q5_1",
  2888. [GGML_TYPE_Q8_0] = "q8_0",
  2889. [GGML_TYPE_Q8_1] = "q8_1",
  2890. [GGML_TYPE_Q2_K] = "q2_K",
  2891. [GGML_TYPE_Q3_K] = "q3_K",
  2892. [GGML_TYPE_Q4_K] = "q4_K",
  2893. [GGML_TYPE_Q5_K] = "q5_K",
  2894. [GGML_TYPE_Q6_K] = "q6_K",
  2895. [GGML_TYPE_Q8_K] = "q8_K",
  2896. [GGML_TYPE_I8] = "i8",
  2897. [GGML_TYPE_I16] = "i16",
  2898. [GGML_TYPE_I32] = "i32",
  2899. };
  2900. static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_NAME is outdated");
  2901. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  2902. [GGML_TYPE_F32] = false,
  2903. [GGML_TYPE_F16] = false,
  2904. [GGML_TYPE_Q4_0] = true,
  2905. [GGML_TYPE_Q4_1] = true,
  2906. [GGML_TYPE_Q5_0] = true,
  2907. [GGML_TYPE_Q5_1] = true,
  2908. [GGML_TYPE_Q8_0] = true,
  2909. [GGML_TYPE_Q8_1] = true,
  2910. [GGML_TYPE_Q2_K] = true,
  2911. [GGML_TYPE_Q3_K] = true,
  2912. [GGML_TYPE_Q4_K] = true,
  2913. [GGML_TYPE_Q5_K] = true,
  2914. [GGML_TYPE_Q6_K] = true,
  2915. [GGML_TYPE_Q8_K] = true,
  2916. [GGML_TYPE_I8] = false,
  2917. [GGML_TYPE_I16] = false,
  2918. [GGML_TYPE_I32] = false,
  2919. };
  2920. static_assert(GGML_TYPE_COUNT == 19, "GGML_IS_QUANTIZED is outdated");
  2921. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  2922. "NONE",
  2923. "DUP",
  2924. "ADD",
  2925. "ADD1",
  2926. "ACC",
  2927. "SUB",
  2928. "MUL",
  2929. "DIV",
  2930. "SQR",
  2931. "SQRT",
  2932. "LOG",
  2933. "SUM",
  2934. "SUM_ROWS",
  2935. "MEAN",
  2936. "REPEAT",
  2937. "ABS",
  2938. "SGN",
  2939. "NEG",
  2940. "STEP",
  2941. "RELU",
  2942. "GELU",
  2943. "SILU",
  2944. "SILU_BACK",
  2945. "NORM",
  2946. "RMS_NORM",
  2947. "RMS_NORM_BACK",
  2948. "MUL_MAT",
  2949. "SCALE",
  2950. "SET",
  2951. "CPY",
  2952. "CONT",
  2953. "RESHAPE",
  2954. "VIEW",
  2955. "PERMUTE",
  2956. "TRANSPOSE",
  2957. "GET_ROWS",
  2958. "GET_ROWS_BACK",
  2959. "DIAG",
  2960. "DIAG_MASK_INF",
  2961. "DIAG_MASK_ZERO",
  2962. "SOFT_MAX",
  2963. "ROPE",
  2964. "ROPE_BACK",
  2965. "ALIBI",
  2966. "CLAMP",
  2967. "CONV_1D_1S",
  2968. "CONV_1D_2S",
  2969. "FLASH_ATTN",
  2970. "FLASH_FF",
  2971. "MAP_UNARY",
  2972. "MAP_BINARY",
  2973. };
  2974. static_assert(GGML_OP_COUNT == 51, "GGML_OP_COUNT != 51");
  2975. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2976. "none",
  2977. "x",
  2978. "x+y",
  2979. "x+y",
  2980. "view(x,nb,offset)+=y->x",
  2981. "x-y",
  2982. "x*y",
  2983. "x/y",
  2984. "x^2",
  2985. "√x",
  2986. "log(x)",
  2987. "Σx",
  2988. "Σx_k",
  2989. "Σx/n",
  2990. "repeat(x)",
  2991. "abs(x)",
  2992. "sgn(x)",
  2993. "-x",
  2994. "step(x)",
  2995. "relu(x)",
  2996. "gelu(x)",
  2997. "silu(x)",
  2998. "silu_back(x)",
  2999. "norm(x)",
  3000. "rms_norm(x)",
  3001. "rms_norm_back(x)",
  3002. "X*Y",
  3003. "x*v",
  3004. "y-\\>view(x)",
  3005. "x-\\>y",
  3006. "cont(x)",
  3007. "reshape(x)",
  3008. "view(x)",
  3009. "permute(x)",
  3010. "transpose(x)",
  3011. "get_rows(x)",
  3012. "get_rows_back(x)",
  3013. "diag(x)",
  3014. "diag_mask_inf(x)",
  3015. "diag_mask_zero(x)",
  3016. "soft_max(x)",
  3017. "rope(x)",
  3018. "rope_back(x)",
  3019. "alibi(x)",
  3020. "clamp(x)",
  3021. "conv_1d_1s(x)",
  3022. "conv_1d_2s(x)",
  3023. "flash_attn(x)",
  3024. "flash_ff(x)",
  3025. "f(x)",
  3026. "f(x,y)",
  3027. };
  3028. static_assert(GGML_OP_COUNT == 51, "GGML_OP_COUNT != 51");
  3029. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  3030. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  3031. //
  3032. // ggml context
  3033. //
  3034. struct ggml_context {
  3035. size_t mem_size;
  3036. void * mem_buffer;
  3037. bool mem_buffer_owned;
  3038. bool no_alloc;
  3039. int n_objects;
  3040. struct ggml_object * objects_begin;
  3041. struct ggml_object * objects_end;
  3042. struct ggml_scratch scratch;
  3043. struct ggml_scratch scratch_save;
  3044. };
  3045. struct ggml_context_container {
  3046. bool used;
  3047. struct ggml_context context;
  3048. };
  3049. //
  3050. // ggml state
  3051. //
  3052. struct ggml_state {
  3053. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  3054. };
  3055. // global state
  3056. static struct ggml_state g_state;
  3057. static atomic_int g_state_barrier = 0;
  3058. // barrier via spin lock
  3059. inline static void ggml_critical_section_start(void) {
  3060. int processing = atomic_fetch_add(&g_state_barrier, 1);
  3061. while (processing > 0) {
  3062. // wait for other threads to finish
  3063. atomic_fetch_sub(&g_state_barrier, 1);
  3064. sched_yield(); // TODO: reconsider this
  3065. processing = atomic_fetch_add(&g_state_barrier, 1);
  3066. }
  3067. }
  3068. // TODO: make this somehow automatically executed
  3069. // some sort of "sentry" mechanism
  3070. inline static void ggml_critical_section_end(void) {
  3071. atomic_fetch_sub(&g_state_barrier, 1);
  3072. }
  3073. ////////////////////////////////////////////////////////////////////////////////
  3074. void ggml_print_object(const struct ggml_object * obj) {
  3075. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  3076. obj->offs, obj->size, (const void *) obj->next);
  3077. }
  3078. void ggml_print_objects(const struct ggml_context * ctx) {
  3079. struct ggml_object * obj = ctx->objects_begin;
  3080. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3081. while (obj != NULL) {
  3082. ggml_print_object(obj);
  3083. obj = obj->next;
  3084. }
  3085. GGML_PRINT("%s: --- end ---\n", __func__);
  3086. }
  3087. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3088. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3089. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3090. }
  3091. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  3092. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3093. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3094. }
  3095. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3096. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3097. // this should handle cases where the tensor is not contiguous in memory
  3098. // probaby just:
  3099. //
  3100. // return tensor->ne[3]*tensor->nb[3]
  3101. //
  3102. // is enough, but just in case, adding the second part
  3103. return MAX(tensor->ne[3]*tensor->nb[3], (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type]);
  3104. }
  3105. size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
  3106. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3107. return (nrows_split*tensor->ne[0]*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  3108. }
  3109. int ggml_blck_size(enum ggml_type type) {
  3110. return GGML_BLCK_SIZE[type];
  3111. }
  3112. size_t ggml_type_size(enum ggml_type type) {
  3113. return GGML_TYPE_SIZE[type];
  3114. }
  3115. float ggml_type_sizef(enum ggml_type type) {
  3116. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  3117. }
  3118. const char * ggml_type_name(enum ggml_type type) {
  3119. return GGML_TYPE_NAME[type];
  3120. }
  3121. const char * ggml_op_name(enum ggml_op op) {
  3122. return GGML_OP_NAME[op];
  3123. }
  3124. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3125. return GGML_TYPE_SIZE[tensor->type];
  3126. }
  3127. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3128. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3129. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3130. }
  3131. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3132. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3133. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3134. }
  3135. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3136. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3137. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3138. }
  3139. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3140. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3141. return
  3142. (t0->ne[0] == t1->ne[0]) &&
  3143. (t0->ne[2] == t1->ne[2]) &&
  3144. (t0->ne[3] == t1->ne[3]);
  3145. }
  3146. bool ggml_is_quantized(enum ggml_type type) {
  3147. return GGML_IS_QUANTIZED[type];
  3148. }
  3149. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3150. enum ggml_type wtype = GGML_TYPE_COUNT;
  3151. switch (ftype) {
  3152. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3153. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3154. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3155. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3156. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3157. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3158. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3159. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  3160. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  3161. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  3162. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  3163. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  3164. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3165. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3166. }
  3167. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3168. return wtype;
  3169. }
  3170. size_t ggml_tensor_overhead(void) {
  3171. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE + 16;
  3172. }
  3173. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3174. return tensor->nb[0] > tensor->nb[1];
  3175. }
  3176. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3177. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3178. return
  3179. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3180. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  3181. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3182. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3183. }
  3184. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3185. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3186. return
  3187. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3188. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3189. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3190. }
  3191. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3192. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3193. return
  3194. (t0->ne[0] == t1->ne[0] ) &&
  3195. (t0->ne[1] == t1->ne[1] ) &&
  3196. (t0->ne[2] == t1->ne[2] ) &&
  3197. (t0->ne[3] == t1->ne[3] );
  3198. }
  3199. // check if t1 can be represented as a repeatition of t0
  3200. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3201. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3202. return
  3203. (t1->ne[0]%t0->ne[0] == 0) &&
  3204. (t1->ne[1]%t0->ne[1] == 0) &&
  3205. (t1->ne[2]%t0->ne[2] == 0) &&
  3206. (t1->ne[3]%t0->ne[3] == 0);
  3207. }
  3208. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3209. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3210. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  3211. }
  3212. static inline int ggml_up32(int n) {
  3213. return (n + 31) & ~31;
  3214. }
  3215. //static inline int ggml_up64(int n) {
  3216. // return (n + 63) & ~63;
  3217. //}
  3218. static inline int ggml_up(int n, int m) {
  3219. // assert m is a power of 2
  3220. GGML_ASSERT((m & (m - 1)) == 0);
  3221. return (n + m - 1) & ~(m - 1);
  3222. }
  3223. // assert that pointer is aligned to GGML_MEM_ALIGN
  3224. #define ggml_assert_aligned(ptr) \
  3225. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3226. ////////////////////////////////////////////////////////////////////////////////
  3227. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3228. // make this function thread safe
  3229. ggml_critical_section_start();
  3230. static bool is_first_call = true;
  3231. if (is_first_call) {
  3232. // initialize time system (required on Windows)
  3233. ggml_time_init();
  3234. // initialize GELU, SILU and EXP F32 tables
  3235. {
  3236. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3237. ggml_fp16_t ii;
  3238. for (int i = 0; i < (1 << 16); ++i) {
  3239. uint16_t ui = i;
  3240. memcpy(&ii, &ui, sizeof(ii));
  3241. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3242. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3243. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3244. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3245. }
  3246. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3247. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3248. }
  3249. // initialize g_state
  3250. {
  3251. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3252. g_state = (struct ggml_state) {
  3253. /*.contexts =*/ { { 0 } },
  3254. };
  3255. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3256. g_state.contexts[i].used = false;
  3257. }
  3258. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3259. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3260. }
  3261. #if defined(GGML_USE_CUBLAS)
  3262. ggml_init_cublas();
  3263. #elif defined(GGML_USE_CLBLAST)
  3264. ggml_cl_init();
  3265. #endif
  3266. is_first_call = false;
  3267. }
  3268. // find non-used context in g_state
  3269. struct ggml_context * ctx = NULL;
  3270. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3271. if (!g_state.contexts[i].used) {
  3272. g_state.contexts[i].used = true;
  3273. ctx = &g_state.contexts[i].context;
  3274. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3275. break;
  3276. }
  3277. }
  3278. if (ctx == NULL) {
  3279. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3280. ggml_critical_section_end();
  3281. return NULL;
  3282. }
  3283. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  3284. *ctx = (struct ggml_context) {
  3285. /*.mem_size =*/ mem_size,
  3286. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3287. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3288. /*.no_alloc =*/ params.no_alloc,
  3289. /*.n_objects =*/ 0,
  3290. /*.objects_begin =*/ NULL,
  3291. /*.objects_end =*/ NULL,
  3292. /*.scratch =*/ { 0, 0, NULL, },
  3293. /*.scratch_save =*/ { 0, 0, NULL, },
  3294. };
  3295. GGML_ASSERT(ctx->mem_buffer != NULL);
  3296. ggml_assert_aligned(ctx->mem_buffer);
  3297. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3298. ggml_critical_section_end();
  3299. return ctx;
  3300. }
  3301. void ggml_free(struct ggml_context * ctx) {
  3302. // make this function thread safe
  3303. ggml_critical_section_start();
  3304. bool found = false;
  3305. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3306. if (&g_state.contexts[i].context == ctx) {
  3307. g_state.contexts[i].used = false;
  3308. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  3309. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  3310. if (ctx->mem_buffer_owned) {
  3311. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3312. }
  3313. found = true;
  3314. break;
  3315. }
  3316. }
  3317. if (!found) {
  3318. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3319. }
  3320. ggml_critical_section_end();
  3321. }
  3322. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3323. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3324. }
  3325. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3326. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3327. ctx->scratch = scratch;
  3328. return result;
  3329. }
  3330. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  3331. ctx->no_alloc = no_alloc;
  3332. }
  3333. void * ggml_get_mem_buffer(struct ggml_context * ctx) {
  3334. return ctx->mem_buffer;
  3335. }
  3336. size_t ggml_get_mem_size(struct ggml_context * ctx) {
  3337. return ctx->mem_size;
  3338. }
  3339. // IMPORTANT:
  3340. // when creating "opt" tensors, always save and load the scratch buffer
  3341. // this is an error prone process, but it is necessary to support inplace
  3342. // operators when using scratch buffers
  3343. // TODO: implement a better way
  3344. void ggml_scratch_save(struct ggml_context * ctx) {
  3345. ctx->scratch_save = ctx->scratch;
  3346. ctx->scratch.data = NULL;
  3347. }
  3348. void ggml_scratch_load(struct ggml_context * ctx) {
  3349. ctx->scratch = ctx->scratch_save;
  3350. }
  3351. ////////////////////////////////////////////////////////////////////////////////
  3352. struct ggml_tensor * ggml_new_tensor_impl(
  3353. struct ggml_context * ctx,
  3354. enum ggml_type type,
  3355. int n_dims,
  3356. const int64_t* ne,
  3357. void* data) {
  3358. // always insert objects at the end of the context's memory pool
  3359. struct ggml_object * obj_cur = ctx->objects_end;
  3360. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3361. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3362. const size_t cur_end = cur_offs + cur_size;
  3363. size_t size_needed = 0;
  3364. if (data == NULL && !ctx->no_alloc) {
  3365. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3366. for (int i = 1; i < n_dims; i++) {
  3367. size_needed *= ne[i];
  3368. }
  3369. // align to GGML_MEM_ALIGN
  3370. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3371. }
  3372. char * const mem_buffer = ctx->mem_buffer;
  3373. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3374. if (ctx->scratch.data == NULL || data != NULL) {
  3375. size_needed += GGML_TENSOR_SIZE;
  3376. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3377. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3378. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3379. assert(false);
  3380. return NULL;
  3381. }
  3382. *obj_new = (struct ggml_object) {
  3383. .offs = cur_end + GGML_OBJECT_SIZE,
  3384. .size = size_needed,
  3385. .next = NULL,
  3386. };
  3387. } else {
  3388. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3389. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3390. __func__, ctx->scratch.offs + size_needed, ctx->scratch.size);
  3391. assert(false);
  3392. return NULL;
  3393. }
  3394. if (cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE > ctx->mem_size) {
  3395. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3396. __func__, cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE, ctx->mem_size);
  3397. assert(false);
  3398. return NULL;
  3399. }
  3400. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3401. *obj_new = (struct ggml_object) {
  3402. .offs = cur_end + GGML_OBJECT_SIZE,
  3403. .size = GGML_TENSOR_SIZE,
  3404. .next = NULL,
  3405. };
  3406. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3407. ctx->scratch.offs += size_needed;
  3408. }
  3409. if (obj_cur != NULL) {
  3410. obj_cur->next = obj_new;
  3411. } else {
  3412. // this is the first object in this context
  3413. ctx->objects_begin = obj_new;
  3414. }
  3415. ctx->objects_end = obj_new;
  3416. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3417. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3418. ggml_assert_aligned(result);
  3419. *result = (struct ggml_tensor) {
  3420. /*.type =*/ type,
  3421. /*.backend =*/ GGML_BACKEND_CPU,
  3422. /*.n_dims =*/ n_dims,
  3423. /*.ne =*/ { 1, 1, 1, 1 },
  3424. /*.nb =*/ { 0, 0, 0, 0 },
  3425. /*.op =*/ GGML_OP_NONE,
  3426. /*.is_param =*/ false,
  3427. /*.grad =*/ NULL,
  3428. /*.src0 =*/ NULL,
  3429. /*.src1 =*/ NULL,
  3430. /*.opt =*/ { NULL },
  3431. /*.n_tasks =*/ 0,
  3432. /*.perf_runs =*/ 0,
  3433. /*.perf_cycles =*/ 0,
  3434. /*.perf_time_us =*/ 0,
  3435. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3436. /*.name =*/ { 0 },
  3437. /*.extra =*/ NULL,
  3438. /*.pad =*/ { 0 },
  3439. };
  3440. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3441. //ggml_assert_aligned(result->data);
  3442. for (int i = 0; i < n_dims; i++) {
  3443. result->ne[i] = ne[i];
  3444. }
  3445. result->nb[0] = GGML_TYPE_SIZE[type];
  3446. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3447. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3448. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3449. }
  3450. ctx->n_objects++;
  3451. return result;
  3452. }
  3453. struct ggml_tensor * ggml_new_tensor(
  3454. struct ggml_context * ctx,
  3455. enum ggml_type type,
  3456. int n_dims,
  3457. const int64_t * ne) {
  3458. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3459. }
  3460. struct ggml_tensor * ggml_new_tensor_1d(
  3461. struct ggml_context * ctx,
  3462. enum ggml_type type,
  3463. int64_t ne0) {
  3464. return ggml_new_tensor(ctx, type, 1, &ne0);
  3465. }
  3466. struct ggml_tensor * ggml_new_tensor_2d(
  3467. struct ggml_context * ctx,
  3468. enum ggml_type type,
  3469. int64_t ne0,
  3470. int64_t ne1) {
  3471. const int64_t ne[2] = { ne0, ne1 };
  3472. return ggml_new_tensor(ctx, type, 2, ne);
  3473. }
  3474. struct ggml_tensor * ggml_new_tensor_3d(
  3475. struct ggml_context * ctx,
  3476. enum ggml_type type,
  3477. int64_t ne0,
  3478. int64_t ne1,
  3479. int64_t ne2) {
  3480. const int64_t ne[3] = { ne0, ne1, ne2 };
  3481. return ggml_new_tensor(ctx, type, 3, ne);
  3482. }
  3483. struct ggml_tensor * ggml_new_tensor_4d(
  3484. struct ggml_context * ctx,
  3485. enum ggml_type type,
  3486. int64_t ne0,
  3487. int64_t ne1,
  3488. int64_t ne2,
  3489. int64_t ne3) {
  3490. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3491. return ggml_new_tensor(ctx, type, 4, ne);
  3492. }
  3493. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3494. ggml_scratch_save(ctx);
  3495. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3496. ggml_scratch_load(ctx);
  3497. ggml_set_i32(result, value);
  3498. return result;
  3499. }
  3500. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3501. ggml_scratch_save(ctx);
  3502. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3503. ggml_scratch_load(ctx);
  3504. ggml_set_f32(result, value);
  3505. return result;
  3506. }
  3507. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3508. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3509. }
  3510. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3511. memset(tensor->data, 0, ggml_nbytes(tensor));
  3512. return tensor;
  3513. }
  3514. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3515. const int n = ggml_nrows(tensor);
  3516. const int nc = tensor->ne[0];
  3517. const size_t n1 = tensor->nb[1];
  3518. char * const data = tensor->data;
  3519. switch (tensor->type) {
  3520. case GGML_TYPE_I8:
  3521. {
  3522. assert(tensor->nb[0] == sizeof(int8_t));
  3523. for (int i = 0; i < n; i++) {
  3524. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3525. }
  3526. } break;
  3527. case GGML_TYPE_I16:
  3528. {
  3529. assert(tensor->nb[0] == sizeof(int16_t));
  3530. for (int i = 0; i < n; i++) {
  3531. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3532. }
  3533. } break;
  3534. case GGML_TYPE_I32:
  3535. {
  3536. assert(tensor->nb[0] == sizeof(int32_t));
  3537. for (int i = 0; i < n; i++) {
  3538. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3539. }
  3540. } break;
  3541. case GGML_TYPE_F16:
  3542. {
  3543. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3544. for (int i = 0; i < n; i++) {
  3545. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3546. }
  3547. } break;
  3548. case GGML_TYPE_F32:
  3549. {
  3550. assert(tensor->nb[0] == sizeof(float));
  3551. for (int i = 0; i < n; i++) {
  3552. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3553. }
  3554. } break;
  3555. default:
  3556. {
  3557. GGML_ASSERT(false);
  3558. } break;
  3559. }
  3560. return tensor;
  3561. }
  3562. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3563. const int n = ggml_nrows(tensor);
  3564. const int nc = tensor->ne[0];
  3565. const size_t n1 = tensor->nb[1];
  3566. char * const data = tensor->data;
  3567. switch (tensor->type) {
  3568. case GGML_TYPE_I8:
  3569. {
  3570. assert(tensor->nb[0] == sizeof(int8_t));
  3571. for (int i = 0; i < n; i++) {
  3572. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3573. }
  3574. } break;
  3575. case GGML_TYPE_I16:
  3576. {
  3577. assert(tensor->nb[0] == sizeof(int16_t));
  3578. for (int i = 0; i < n; i++) {
  3579. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3580. }
  3581. } break;
  3582. case GGML_TYPE_I32:
  3583. {
  3584. assert(tensor->nb[0] == sizeof(int32_t));
  3585. for (int i = 0; i < n; i++) {
  3586. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3587. }
  3588. } break;
  3589. case GGML_TYPE_F16:
  3590. {
  3591. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3592. for (int i = 0; i < n; i++) {
  3593. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3594. }
  3595. } break;
  3596. case GGML_TYPE_F32:
  3597. {
  3598. assert(tensor->nb[0] == sizeof(float));
  3599. for (int i = 0; i < n; i++) {
  3600. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3601. }
  3602. } break;
  3603. default:
  3604. {
  3605. GGML_ASSERT(false);
  3606. } break;
  3607. }
  3608. return tensor;
  3609. }
  3610. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3611. switch (tensor->type) {
  3612. case GGML_TYPE_I8:
  3613. {
  3614. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3615. return ((int8_t *)(tensor->data))[i];
  3616. } break;
  3617. case GGML_TYPE_I16:
  3618. {
  3619. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3620. return ((int16_t *)(tensor->data))[i];
  3621. } break;
  3622. case GGML_TYPE_I32:
  3623. {
  3624. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3625. return ((int32_t *)(tensor->data))[i];
  3626. } break;
  3627. case GGML_TYPE_F16:
  3628. {
  3629. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3630. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3631. } break;
  3632. case GGML_TYPE_F32:
  3633. {
  3634. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3635. return ((float *)(tensor->data))[i];
  3636. } break;
  3637. default:
  3638. {
  3639. GGML_ASSERT(false);
  3640. } break;
  3641. }
  3642. return 0.0f;
  3643. }
  3644. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3645. switch (tensor->type) {
  3646. case GGML_TYPE_I8:
  3647. {
  3648. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3649. ((int8_t *)(tensor->data))[i] = value;
  3650. } break;
  3651. case GGML_TYPE_I16:
  3652. {
  3653. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3654. ((int16_t *)(tensor->data))[i] = value;
  3655. } break;
  3656. case GGML_TYPE_I32:
  3657. {
  3658. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3659. ((int32_t *)(tensor->data))[i] = value;
  3660. } break;
  3661. case GGML_TYPE_F16:
  3662. {
  3663. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3664. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3665. } break;
  3666. case GGML_TYPE_F32:
  3667. {
  3668. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3669. ((float *)(tensor->data))[i] = value;
  3670. } break;
  3671. default:
  3672. {
  3673. GGML_ASSERT(false);
  3674. } break;
  3675. }
  3676. }
  3677. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3678. switch (tensor->type) {
  3679. case GGML_TYPE_I8:
  3680. {
  3681. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3682. return ((int8_t *)(tensor->data))[i];
  3683. } break;
  3684. case GGML_TYPE_I16:
  3685. {
  3686. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3687. return ((int16_t *)(tensor->data))[i];
  3688. } break;
  3689. case GGML_TYPE_I32:
  3690. {
  3691. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3692. return ((int32_t *)(tensor->data))[i];
  3693. } break;
  3694. case GGML_TYPE_F16:
  3695. {
  3696. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3697. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3698. } break;
  3699. case GGML_TYPE_F32:
  3700. {
  3701. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3702. return ((float *)(tensor->data))[i];
  3703. } break;
  3704. default:
  3705. {
  3706. GGML_ASSERT(false);
  3707. } break;
  3708. }
  3709. return 0.0f;
  3710. }
  3711. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3712. switch (tensor->type) {
  3713. case GGML_TYPE_I8:
  3714. {
  3715. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3716. ((int8_t *)(tensor->data))[i] = value;
  3717. } break;
  3718. case GGML_TYPE_I16:
  3719. {
  3720. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3721. ((int16_t *)(tensor->data))[i] = value;
  3722. } break;
  3723. case GGML_TYPE_I32:
  3724. {
  3725. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3726. ((int32_t *)(tensor->data))[i] = value;
  3727. } break;
  3728. case GGML_TYPE_F16:
  3729. {
  3730. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3731. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3732. } break;
  3733. case GGML_TYPE_F32:
  3734. {
  3735. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3736. ((float *)(tensor->data))[i] = value;
  3737. } break;
  3738. default:
  3739. {
  3740. GGML_ASSERT(false);
  3741. } break;
  3742. }
  3743. }
  3744. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3745. return tensor->data;
  3746. }
  3747. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3748. assert(tensor->type == GGML_TYPE_F32);
  3749. return (float *)(tensor->data);
  3750. }
  3751. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3752. return tensor->name;
  3753. }
  3754. void ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3755. strncpy(tensor->name, name, sizeof(tensor->name));
  3756. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3757. }
  3758. struct ggml_tensor * ggml_view_tensor(
  3759. struct ggml_context * ctx,
  3760. const struct ggml_tensor * src) {
  3761. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  3762. result->nb[0] = src->nb[0];
  3763. result->nb[1] = src->nb[1];
  3764. result->nb[2] = src->nb[2];
  3765. result->nb[3] = src->nb[3];
  3766. return result;
  3767. }
  3768. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  3769. struct ggml_object * obj = ctx->objects_begin;
  3770. char * const mem_buffer = ctx->mem_buffer;
  3771. while (obj != NULL) {
  3772. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  3773. if (strcmp(cur->name, name) == 0) {
  3774. return cur;
  3775. }
  3776. obj = obj->next;
  3777. }
  3778. return NULL;
  3779. }
  3780. ////////////////////////////////////////////////////////////////////////////////
  3781. // ggml_dup
  3782. struct ggml_tensor * ggml_dup_impl(
  3783. struct ggml_context * ctx,
  3784. struct ggml_tensor * a,
  3785. bool inplace) {
  3786. bool is_node = false;
  3787. if (!inplace && (a->grad)) {
  3788. is_node = true;
  3789. }
  3790. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3791. result->op = GGML_OP_DUP;
  3792. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3793. result->src0 = a;
  3794. result->src1 = NULL;
  3795. return result;
  3796. }
  3797. struct ggml_tensor * ggml_dup(
  3798. struct ggml_context * ctx,
  3799. struct ggml_tensor * a) {
  3800. return ggml_dup_impl(ctx, a, false);
  3801. }
  3802. struct ggml_tensor * ggml_dup_inplace(
  3803. struct ggml_context * ctx,
  3804. struct ggml_tensor * a) {
  3805. return ggml_dup_impl(ctx, a, true);
  3806. }
  3807. // ggml_add
  3808. struct ggml_tensor * ggml_add_impl(
  3809. struct ggml_context * ctx,
  3810. struct ggml_tensor * a,
  3811. struct ggml_tensor * b,
  3812. bool inplace) {
  3813. GGML_ASSERT(ggml_are_same_shape(a, b));
  3814. bool is_node = false;
  3815. if (!inplace && (a->grad || b->grad)) {
  3816. is_node = true;
  3817. }
  3818. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3819. result->op = GGML_OP_ADD;
  3820. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3821. result->src0 = a;
  3822. result->src1 = b;
  3823. return result;
  3824. }
  3825. struct ggml_tensor * ggml_add(
  3826. struct ggml_context * ctx,
  3827. struct ggml_tensor * a,
  3828. struct ggml_tensor * b) {
  3829. return ggml_add_impl(ctx, a, b, false);
  3830. }
  3831. struct ggml_tensor * ggml_add_inplace(
  3832. struct ggml_context * ctx,
  3833. struct ggml_tensor * a,
  3834. struct ggml_tensor * b) {
  3835. return ggml_add_impl(ctx, a, b, true);
  3836. }
  3837. // ggml_add1
  3838. struct ggml_tensor * ggml_add1_impl(
  3839. struct ggml_context * ctx,
  3840. struct ggml_tensor * a,
  3841. struct ggml_tensor * b,
  3842. bool inplace) {
  3843. GGML_ASSERT(ggml_is_scalar(b));
  3844. GGML_ASSERT(ggml_is_padded_1d(a));
  3845. bool is_node = false;
  3846. if (!inplace && (a->grad || b->grad)) {
  3847. is_node = true;
  3848. }
  3849. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3850. result->op = GGML_OP_ADD1;
  3851. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3852. result->src0 = a;
  3853. result->src1 = b;
  3854. return result;
  3855. }
  3856. struct ggml_tensor * ggml_add1(
  3857. struct ggml_context * ctx,
  3858. struct ggml_tensor * a,
  3859. struct ggml_tensor * b) {
  3860. return ggml_add1_impl(ctx, a, b, false);
  3861. }
  3862. struct ggml_tensor * ggml_add1_inplace(
  3863. struct ggml_context * ctx,
  3864. struct ggml_tensor * a,
  3865. struct ggml_tensor * b) {
  3866. return ggml_add1_impl(ctx, a, b, true);
  3867. }
  3868. // ggml_acc
  3869. struct ggml_tensor * ggml_acc_impl(
  3870. struct ggml_context * ctx,
  3871. struct ggml_tensor * a,
  3872. struct ggml_tensor * b,
  3873. size_t nb1,
  3874. size_t nb2,
  3875. size_t nb3,
  3876. size_t offset,
  3877. bool inplace) {
  3878. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3879. GGML_ASSERT(ggml_is_contiguous(a));
  3880. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3881. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3882. bool is_node = false;
  3883. if (!inplace && (a->grad || b->grad)) {
  3884. is_node = true;
  3885. }
  3886. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3887. ggml_scratch_save(ctx);
  3888. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  3889. ((int32_t *) c->data)[0] = nb1;
  3890. ((int32_t *) c->data)[1] = nb2;
  3891. ((int32_t *) c->data)[2] = nb3;
  3892. ((int32_t *) c->data)[3] = offset;
  3893. ((int32_t *) c->data)[4] = inplace ? 1 : 0;
  3894. ggml_scratch_load(ctx);
  3895. result->op = GGML_OP_ACC;
  3896. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3897. result->src0 = a;
  3898. result->src1 = b;
  3899. result->opt[0] = c;
  3900. return result;
  3901. }
  3902. struct ggml_tensor * ggml_acc(
  3903. struct ggml_context * ctx,
  3904. struct ggml_tensor * a,
  3905. struct ggml_tensor * b,
  3906. size_t nb1,
  3907. size_t nb2,
  3908. size_t nb3,
  3909. size_t offset) {
  3910. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3911. }
  3912. struct ggml_tensor * ggml_acc_inplace(
  3913. struct ggml_context * ctx,
  3914. struct ggml_tensor * a,
  3915. struct ggml_tensor * b,
  3916. size_t nb1,
  3917. size_t nb2,
  3918. size_t nb3,
  3919. size_t offset) {
  3920. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3921. }
  3922. // ggml_sub
  3923. struct ggml_tensor * ggml_sub_impl(
  3924. struct ggml_context * ctx,
  3925. struct ggml_tensor * a,
  3926. struct ggml_tensor * b,
  3927. bool inplace) {
  3928. GGML_ASSERT(ggml_are_same_shape(a, b));
  3929. bool is_node = false;
  3930. if (!inplace && (a->grad || b->grad)) {
  3931. is_node = true;
  3932. }
  3933. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3934. result->op = GGML_OP_SUB;
  3935. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3936. result->src0 = a;
  3937. result->src1 = b;
  3938. return result;
  3939. }
  3940. struct ggml_tensor * ggml_sub(
  3941. struct ggml_context * ctx,
  3942. struct ggml_tensor * a,
  3943. struct ggml_tensor * b) {
  3944. return ggml_sub_impl(ctx, a, b, false);
  3945. }
  3946. struct ggml_tensor * ggml_sub_inplace(
  3947. struct ggml_context * ctx,
  3948. struct ggml_tensor * a,
  3949. struct ggml_tensor * b) {
  3950. return ggml_sub_impl(ctx, a, b, true);
  3951. }
  3952. // ggml_mul
  3953. struct ggml_tensor * ggml_mul_impl(
  3954. struct ggml_context * ctx,
  3955. struct ggml_tensor * a,
  3956. struct ggml_tensor * b,
  3957. bool inplace) {
  3958. // TODO: support less-strict constraint
  3959. // GGML_ASSERT(ggml_can_repeat(b, a));
  3960. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  3961. bool is_node = false;
  3962. if (!inplace && (a->grad || b->grad)) {
  3963. // TODO: support backward pass for broadcasting
  3964. GGML_ASSERT(ggml_are_same_shape(a, b));
  3965. is_node = true;
  3966. }
  3967. if (inplace) {
  3968. GGML_ASSERT(is_node == false);
  3969. }
  3970. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3971. result->op = GGML_OP_MUL;
  3972. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3973. result->src0 = a;
  3974. result->src1 = b;
  3975. return result;
  3976. }
  3977. struct ggml_tensor * ggml_mul(
  3978. struct ggml_context * ctx,
  3979. struct ggml_tensor * a,
  3980. struct ggml_tensor * b) {
  3981. return ggml_mul_impl(ctx, a, b, false);
  3982. }
  3983. struct ggml_tensor * ggml_mul_inplace(
  3984. struct ggml_context * ctx,
  3985. struct ggml_tensor * a,
  3986. struct ggml_tensor * b) {
  3987. return ggml_mul_impl(ctx, a, b, true);
  3988. }
  3989. // ggml_div
  3990. struct ggml_tensor * ggml_div_impl(
  3991. struct ggml_context * ctx,
  3992. struct ggml_tensor * a,
  3993. struct ggml_tensor * b,
  3994. bool inplace) {
  3995. GGML_ASSERT(ggml_are_same_shape(a, b));
  3996. bool is_node = false;
  3997. if (!inplace && (a->grad || b->grad)) {
  3998. is_node = true;
  3999. }
  4000. if (inplace) {
  4001. GGML_ASSERT(is_node == false);
  4002. }
  4003. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4004. result->op = GGML_OP_DIV;
  4005. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4006. result->src0 = a;
  4007. result->src1 = b;
  4008. return result;
  4009. }
  4010. struct ggml_tensor * ggml_div(
  4011. struct ggml_context * ctx,
  4012. struct ggml_tensor * a,
  4013. struct ggml_tensor * b) {
  4014. return ggml_div_impl(ctx, a, b, false);
  4015. }
  4016. struct ggml_tensor * ggml_div_inplace(
  4017. struct ggml_context * ctx,
  4018. struct ggml_tensor * a,
  4019. struct ggml_tensor * b) {
  4020. return ggml_div_impl(ctx, a, b, true);
  4021. }
  4022. // ggml_sqr
  4023. struct ggml_tensor * ggml_sqr_impl(
  4024. struct ggml_context * ctx,
  4025. struct ggml_tensor * a,
  4026. bool inplace) {
  4027. bool is_node = false;
  4028. if (!inplace && (a->grad)) {
  4029. is_node = true;
  4030. }
  4031. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4032. result->op = GGML_OP_SQR;
  4033. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4034. result->src0 = a;
  4035. result->src1 = NULL;
  4036. return result;
  4037. }
  4038. struct ggml_tensor * ggml_sqr(
  4039. struct ggml_context * ctx,
  4040. struct ggml_tensor * a) {
  4041. return ggml_sqr_impl(ctx, a, false);
  4042. }
  4043. struct ggml_tensor * ggml_sqr_inplace(
  4044. struct ggml_context * ctx,
  4045. struct ggml_tensor * a) {
  4046. return ggml_sqr_impl(ctx, a, true);
  4047. }
  4048. // ggml_sqrt
  4049. struct ggml_tensor * ggml_sqrt_impl(
  4050. struct ggml_context * ctx,
  4051. struct ggml_tensor * a,
  4052. bool inplace) {
  4053. bool is_node = false;
  4054. if (!inplace && (a->grad)) {
  4055. is_node = true;
  4056. }
  4057. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4058. result->op = GGML_OP_SQRT;
  4059. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4060. result->src0 = a;
  4061. result->src1 = NULL;
  4062. return result;
  4063. }
  4064. struct ggml_tensor * ggml_sqrt(
  4065. struct ggml_context * ctx,
  4066. struct ggml_tensor * a) {
  4067. return ggml_sqrt_impl(ctx, a, false);
  4068. }
  4069. struct ggml_tensor * ggml_sqrt_inplace(
  4070. struct ggml_context * ctx,
  4071. struct ggml_tensor * a) {
  4072. return ggml_sqrt_impl(ctx, a, true);
  4073. }
  4074. // ggml_log
  4075. struct ggml_tensor * ggml_log_impl(
  4076. struct ggml_context * ctx,
  4077. struct ggml_tensor * a,
  4078. bool inplace) {
  4079. bool is_node = false;
  4080. if (!inplace && (a->grad)) {
  4081. is_node = true;
  4082. }
  4083. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4084. result->op = GGML_OP_LOG;
  4085. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4086. result->src0 = a;
  4087. result->src1 = NULL;
  4088. return result;
  4089. }
  4090. struct ggml_tensor * ggml_log(
  4091. struct ggml_context * ctx,
  4092. struct ggml_tensor * a) {
  4093. return ggml_log_impl(ctx, a, false);
  4094. }
  4095. struct ggml_tensor * ggml_log_inplace(
  4096. struct ggml_context * ctx,
  4097. struct ggml_tensor * a) {
  4098. return ggml_log_impl(ctx, a, true);
  4099. }
  4100. // ggml_sum
  4101. struct ggml_tensor * ggml_sum(
  4102. struct ggml_context * ctx,
  4103. struct ggml_tensor * a) {
  4104. bool is_node = false;
  4105. if (a->grad) {
  4106. is_node = true;
  4107. }
  4108. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4109. result->op = GGML_OP_SUM;
  4110. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4111. result->src0 = a;
  4112. result->src1 = NULL;
  4113. return result;
  4114. }
  4115. // ggml_sum_rows
  4116. struct ggml_tensor * ggml_sum_rows(
  4117. struct ggml_context * ctx,
  4118. struct ggml_tensor * a) {
  4119. bool is_node = false;
  4120. if (a->grad) {
  4121. is_node = true;
  4122. }
  4123. int64_t ne[4] = {1,1,1,1};
  4124. for (int i=1; i<a->n_dims; ++i) {
  4125. ne[i] = a->ne[i];
  4126. }
  4127. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  4128. result->op = GGML_OP_SUM_ROWS;
  4129. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4130. result->src0 = a;
  4131. result->src1 = NULL;
  4132. return result;
  4133. }
  4134. // ggml_mean
  4135. struct ggml_tensor * ggml_mean(
  4136. struct ggml_context * ctx,
  4137. struct ggml_tensor * a) {
  4138. bool is_node = false;
  4139. if (a->grad) {
  4140. GGML_ASSERT(false); // TODO: implement
  4141. is_node = true;
  4142. }
  4143. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4144. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4145. result->op = GGML_OP_MEAN;
  4146. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4147. result->src0 = a;
  4148. result->src1 = NULL;
  4149. return result;
  4150. }
  4151. // ggml_repeat
  4152. struct ggml_tensor * ggml_repeat(
  4153. struct ggml_context * ctx,
  4154. struct ggml_tensor * a,
  4155. struct ggml_tensor * b) {
  4156. GGML_ASSERT(ggml_can_repeat(a, b));
  4157. bool is_node = false;
  4158. if (a->grad) {
  4159. is_node = true;
  4160. }
  4161. if (ggml_are_same_shape(a, b) && !is_node) {
  4162. return a;
  4163. }
  4164. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4165. result->op = GGML_OP_REPEAT;
  4166. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4167. result->src0 = a;
  4168. result->src1 = b;
  4169. return result;
  4170. }
  4171. // ggml_abs
  4172. struct ggml_tensor * ggml_abs_impl(
  4173. struct ggml_context * ctx,
  4174. struct ggml_tensor * a,
  4175. bool inplace) {
  4176. bool is_node = false;
  4177. if (!inplace && (a->grad)) {
  4178. is_node = true;
  4179. }
  4180. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4181. result->op = GGML_OP_ABS;
  4182. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4183. result->src0 = a;
  4184. result->src1 = NULL;
  4185. return result;
  4186. }
  4187. struct ggml_tensor * ggml_abs(
  4188. struct ggml_context * ctx,
  4189. struct ggml_tensor * a) {
  4190. return ggml_abs_impl(ctx, a, false);
  4191. }
  4192. struct ggml_tensor * ggml_abs_inplace(
  4193. struct ggml_context * ctx,
  4194. struct ggml_tensor * a) {
  4195. return ggml_abs_impl(ctx, a, true);
  4196. }
  4197. // ggml_sgn
  4198. struct ggml_tensor * ggml_sgn_impl(
  4199. struct ggml_context * ctx,
  4200. struct ggml_tensor * a,
  4201. bool inplace) {
  4202. bool is_node = false;
  4203. if (!inplace && (a->grad)) {
  4204. is_node = true;
  4205. }
  4206. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4207. result->op = GGML_OP_SGN;
  4208. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4209. result->src0 = a;
  4210. result->src1 = NULL;
  4211. return result;
  4212. }
  4213. struct ggml_tensor * ggml_sgn(
  4214. struct ggml_context * ctx,
  4215. struct ggml_tensor * a) {
  4216. return ggml_sgn_impl(ctx, a, false);
  4217. }
  4218. struct ggml_tensor * ggml_sgn_inplace(
  4219. struct ggml_context * ctx,
  4220. struct ggml_tensor * a) {
  4221. return ggml_sgn_impl(ctx, a, true);
  4222. }
  4223. // ggml_neg
  4224. struct ggml_tensor * ggml_neg_impl(
  4225. struct ggml_context * ctx,
  4226. struct ggml_tensor * a,
  4227. bool inplace) {
  4228. bool is_node = false;
  4229. if (!inplace && (a->grad)) {
  4230. is_node = true;
  4231. }
  4232. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4233. result->op = GGML_OP_NEG;
  4234. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4235. result->src0 = a;
  4236. result->src1 = NULL;
  4237. return result;
  4238. }
  4239. struct ggml_tensor * ggml_neg(
  4240. struct ggml_context * ctx,
  4241. struct ggml_tensor * a) {
  4242. return ggml_neg_impl(ctx, a, false);
  4243. }
  4244. struct ggml_tensor * ggml_neg_inplace(
  4245. struct ggml_context * ctx,
  4246. struct ggml_tensor * a) {
  4247. return ggml_neg_impl(ctx, a, true);
  4248. }
  4249. // ggml_step
  4250. struct ggml_tensor * ggml_step_impl(
  4251. struct ggml_context * ctx,
  4252. struct ggml_tensor * a,
  4253. bool inplace) {
  4254. bool is_node = false;
  4255. if (!inplace && (a->grad)) {
  4256. is_node = true;
  4257. }
  4258. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4259. result->op = GGML_OP_STEP;
  4260. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4261. result->src0 = a;
  4262. result->src1 = NULL;
  4263. return result;
  4264. }
  4265. struct ggml_tensor * ggml_step(
  4266. struct ggml_context * ctx,
  4267. struct ggml_tensor * a) {
  4268. return ggml_step_impl(ctx, a, false);
  4269. }
  4270. struct ggml_tensor * ggml_step_inplace(
  4271. struct ggml_context * ctx,
  4272. struct ggml_tensor * a) {
  4273. return ggml_step_impl(ctx, a, true);
  4274. }
  4275. // ggml_relu
  4276. struct ggml_tensor * ggml_relu_impl(
  4277. struct ggml_context * ctx,
  4278. struct ggml_tensor * a,
  4279. bool inplace) {
  4280. bool is_node = false;
  4281. if (!inplace && (a->grad)) {
  4282. is_node = true;
  4283. }
  4284. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4285. result->op = GGML_OP_RELU;
  4286. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4287. result->src0 = a;
  4288. result->src1 = NULL;
  4289. return result;
  4290. }
  4291. struct ggml_tensor * ggml_relu(
  4292. struct ggml_context * ctx,
  4293. struct ggml_tensor * a) {
  4294. return ggml_relu_impl(ctx, a, false);
  4295. }
  4296. struct ggml_tensor * ggml_relu_inplace(
  4297. struct ggml_context * ctx,
  4298. struct ggml_tensor * a) {
  4299. return ggml_relu_impl(ctx, a, true);
  4300. }
  4301. // ggml_gelu
  4302. struct ggml_tensor * ggml_gelu_impl(
  4303. struct ggml_context * ctx,
  4304. struct ggml_tensor * a,
  4305. bool inplace) {
  4306. bool is_node = false;
  4307. if (!inplace && (a->grad)) {
  4308. is_node = true;
  4309. }
  4310. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4311. result->op = GGML_OP_GELU;
  4312. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4313. result->src0 = a;
  4314. result->src1 = NULL;
  4315. return result;
  4316. }
  4317. struct ggml_tensor * ggml_gelu(
  4318. struct ggml_context * ctx,
  4319. struct ggml_tensor * a) {
  4320. return ggml_gelu_impl(ctx, a, false);
  4321. }
  4322. struct ggml_tensor * ggml_gelu_inplace(
  4323. struct ggml_context * ctx,
  4324. struct ggml_tensor * a) {
  4325. return ggml_gelu_impl(ctx, a, true);
  4326. }
  4327. // ggml_silu
  4328. struct ggml_tensor * ggml_silu_impl(
  4329. struct ggml_context * ctx,
  4330. struct ggml_tensor * a,
  4331. bool inplace) {
  4332. bool is_node = false;
  4333. if (!inplace && (a->grad)) {
  4334. is_node = true;
  4335. }
  4336. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4337. result->op = GGML_OP_SILU;
  4338. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4339. result->src0 = a;
  4340. result->src1 = NULL;
  4341. return result;
  4342. }
  4343. struct ggml_tensor * ggml_silu(
  4344. struct ggml_context * ctx,
  4345. struct ggml_tensor * a) {
  4346. return ggml_silu_impl(ctx, a, false);
  4347. }
  4348. struct ggml_tensor * ggml_silu_inplace(
  4349. struct ggml_context * ctx,
  4350. struct ggml_tensor * a) {
  4351. return ggml_silu_impl(ctx, a, true);
  4352. }
  4353. // ggml_silu_back
  4354. struct ggml_tensor * ggml_silu_back(
  4355. struct ggml_context * ctx,
  4356. struct ggml_tensor * a,
  4357. struct ggml_tensor * b) {
  4358. bool is_node = false;
  4359. if (a->grad || b->grad) {
  4360. // TODO: implement backward
  4361. is_node = true;
  4362. }
  4363. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4364. result->op = GGML_OP_SILU_BACK;
  4365. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4366. result->src0 = a;
  4367. result->src1 = b;
  4368. return result;
  4369. }
  4370. // ggml_norm
  4371. struct ggml_tensor * ggml_norm_impl(
  4372. struct ggml_context * ctx,
  4373. struct ggml_tensor * a,
  4374. bool inplace) {
  4375. bool is_node = false;
  4376. if (!inplace && (a->grad)) {
  4377. GGML_ASSERT(false); // TODO: implement backward
  4378. is_node = true;
  4379. }
  4380. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4381. result->op = GGML_OP_NORM;
  4382. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4383. result->src0 = a;
  4384. result->src1 = NULL; // TODO: maybe store epsilon here?
  4385. return result;
  4386. }
  4387. struct ggml_tensor * ggml_norm(
  4388. struct ggml_context * ctx,
  4389. struct ggml_tensor * a) {
  4390. return ggml_norm_impl(ctx, a, false);
  4391. }
  4392. struct ggml_tensor * ggml_norm_inplace(
  4393. struct ggml_context * ctx,
  4394. struct ggml_tensor * a) {
  4395. return ggml_norm_impl(ctx, a, true);
  4396. }
  4397. struct ggml_tensor * ggml_rms_norm_impl(
  4398. struct ggml_context * ctx,
  4399. struct ggml_tensor * a,
  4400. bool inplace) {
  4401. bool is_node = false;
  4402. if (!inplace && (a->grad)) {
  4403. is_node = true;
  4404. }
  4405. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4406. result->op = GGML_OP_RMS_NORM;
  4407. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4408. result->src0 = a;
  4409. result->src1 = NULL; // TODO: maybe store epsilon here?
  4410. return result;
  4411. }
  4412. struct ggml_tensor * ggml_rms_norm(
  4413. struct ggml_context * ctx,
  4414. struct ggml_tensor * a) {
  4415. return ggml_rms_norm_impl(ctx, a, false);
  4416. }
  4417. struct ggml_tensor * ggml_rms_norm_inplace(
  4418. struct ggml_context * ctx,
  4419. struct ggml_tensor * a) {
  4420. return ggml_rms_norm_impl(ctx, a, true);
  4421. }
  4422. struct ggml_tensor * ggml_rms_norm_back(
  4423. struct ggml_context * ctx,
  4424. struct ggml_tensor * a,
  4425. struct ggml_tensor * b) {
  4426. bool is_node = false;
  4427. if (a->grad) {
  4428. // TODO: implement backward
  4429. is_node = true;
  4430. }
  4431. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4432. result->op = GGML_OP_RMS_NORM_BACK;
  4433. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4434. result->src0 = a;
  4435. result->src1 = b;
  4436. return result;
  4437. }
  4438. // ggml_mul_mat
  4439. struct ggml_tensor * ggml_mul_mat(
  4440. struct ggml_context * ctx,
  4441. struct ggml_tensor * a,
  4442. struct ggml_tensor * b) {
  4443. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4444. GGML_ASSERT(!ggml_is_transposed(a));
  4445. bool is_node = false;
  4446. if (a->grad || b->grad) {
  4447. is_node = true;
  4448. }
  4449. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  4450. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4451. result->op = GGML_OP_MUL_MAT;
  4452. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4453. result->src0 = a;
  4454. result->src1 = b;
  4455. return result;
  4456. }
  4457. // ggml_scale
  4458. struct ggml_tensor * ggml_scale_impl(
  4459. struct ggml_context * ctx,
  4460. struct ggml_tensor * a,
  4461. struct ggml_tensor * b,
  4462. bool inplace) {
  4463. GGML_ASSERT(ggml_is_scalar(b));
  4464. GGML_ASSERT(ggml_is_padded_1d(a));
  4465. bool is_node = false;
  4466. if (!inplace && (a->grad || b->grad)) {
  4467. is_node = true;
  4468. }
  4469. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4470. result->op = GGML_OP_SCALE;
  4471. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4472. result->src0 = a;
  4473. result->src1 = b;
  4474. return result;
  4475. }
  4476. struct ggml_tensor * ggml_scale(
  4477. struct ggml_context * ctx,
  4478. struct ggml_tensor * a,
  4479. struct ggml_tensor * b) {
  4480. return ggml_scale_impl(ctx, a, b, false);
  4481. }
  4482. struct ggml_tensor * ggml_scale_inplace(
  4483. struct ggml_context * ctx,
  4484. struct ggml_tensor * a,
  4485. struct ggml_tensor * b) {
  4486. return ggml_scale_impl(ctx, a, b, true);
  4487. }
  4488. // ggml_set
  4489. struct ggml_tensor * ggml_set_impl(
  4490. struct ggml_context * ctx,
  4491. struct ggml_tensor * a,
  4492. struct ggml_tensor * b,
  4493. size_t nb1,
  4494. size_t nb2,
  4495. size_t nb3,
  4496. size_t offset,
  4497. bool inplace) {
  4498. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4499. bool is_node = false;
  4500. if (!inplace && (a->grad || b->grad)) {
  4501. is_node = true;
  4502. }
  4503. // make a view of the destination
  4504. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4505. ggml_scratch_save(ctx);
  4506. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  4507. (( int32_t * ) c->data)[0] = nb1;
  4508. (( int32_t * ) c->data)[1] = nb2;
  4509. (( int32_t * ) c->data)[2] = nb3;
  4510. (( int32_t * ) c->data)[3] = offset;
  4511. (( int32_t * ) c->data)[4] = inplace ? 1 : 0;
  4512. ggml_scratch_load(ctx);
  4513. result->op = GGML_OP_SET;
  4514. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4515. result->src0 = a;
  4516. result->src1 = b;
  4517. result->opt[0] = c;
  4518. return result;
  4519. }
  4520. struct ggml_tensor * ggml_set(
  4521. struct ggml_context * ctx,
  4522. struct ggml_tensor * a,
  4523. struct ggml_tensor * b,
  4524. size_t nb1,
  4525. size_t nb2,
  4526. size_t nb3,
  4527. size_t offset) {
  4528. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4529. }
  4530. struct ggml_tensor * ggml_set_inplace(
  4531. struct ggml_context * ctx,
  4532. struct ggml_tensor * a,
  4533. struct ggml_tensor * b,
  4534. size_t nb1,
  4535. size_t nb2,
  4536. size_t nb3,
  4537. size_t offset) {
  4538. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4539. }
  4540. struct ggml_tensor * ggml_set_1d(
  4541. struct ggml_context * ctx,
  4542. struct ggml_tensor * a,
  4543. struct ggml_tensor * b,
  4544. size_t offset) {
  4545. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4546. }
  4547. struct ggml_tensor * ggml_set_1d_inplace(
  4548. struct ggml_context * ctx,
  4549. struct ggml_tensor * a,
  4550. struct ggml_tensor * b,
  4551. size_t offset) {
  4552. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4553. }
  4554. struct ggml_tensor * ggml_set_2d(
  4555. struct ggml_context * ctx,
  4556. struct ggml_tensor * a,
  4557. struct ggml_tensor * b,
  4558. size_t nb1,
  4559. size_t offset) {
  4560. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4561. }
  4562. struct ggml_tensor * ggml_set_2d_inplace(
  4563. struct ggml_context * ctx,
  4564. struct ggml_tensor * a,
  4565. struct ggml_tensor * b,
  4566. size_t nb1,
  4567. size_t offset) {
  4568. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4569. }
  4570. // ggml_cpy
  4571. struct ggml_tensor * ggml_cpy_impl(
  4572. struct ggml_context * ctx,
  4573. struct ggml_tensor * a,
  4574. struct ggml_tensor * b,
  4575. bool inplace) {
  4576. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4577. bool is_node = false;
  4578. if (!inplace && (a->grad || b->grad)) {
  4579. is_node = true;
  4580. }
  4581. // make a view of the destination
  4582. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4583. result->op = GGML_OP_CPY;
  4584. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4585. result->src0 = a;
  4586. result->src1 = b;
  4587. return result;
  4588. }
  4589. struct ggml_tensor * ggml_cpy(
  4590. struct ggml_context * ctx,
  4591. struct ggml_tensor * a,
  4592. struct ggml_tensor * b) {
  4593. return ggml_cpy_impl(ctx, a, b, false);
  4594. }
  4595. struct ggml_tensor * ggml_cpy_inplace(
  4596. struct ggml_context * ctx,
  4597. struct ggml_tensor * a,
  4598. struct ggml_tensor * b) {
  4599. return ggml_cpy_impl(ctx, a, b, true);
  4600. }
  4601. // ggml_cont
  4602. struct ggml_tensor * ggml_cont_impl(
  4603. struct ggml_context * ctx,
  4604. struct ggml_tensor * a,
  4605. bool inplace) {
  4606. bool is_node = false;
  4607. if (!inplace && a->grad) {
  4608. is_node = true;
  4609. }
  4610. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4611. result->op = GGML_OP_CONT;
  4612. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4613. result->src0 = a;
  4614. result->src1 = NULL;
  4615. return result;
  4616. }
  4617. struct ggml_tensor * ggml_cont(
  4618. struct ggml_context * ctx,
  4619. struct ggml_tensor * a) {
  4620. return ggml_cont_impl(ctx, a, false);
  4621. }
  4622. struct ggml_tensor * ggml_cont_inplace(
  4623. struct ggml_context * ctx,
  4624. struct ggml_tensor * a) {
  4625. return ggml_cont_impl(ctx, a, true);
  4626. }
  4627. // ggml_reshape
  4628. struct ggml_tensor * ggml_reshape(
  4629. struct ggml_context * ctx,
  4630. struct ggml_tensor * a,
  4631. struct ggml_tensor * b) {
  4632. GGML_ASSERT(ggml_is_contiguous(a));
  4633. GGML_ASSERT(ggml_is_contiguous(b));
  4634. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4635. bool is_node = false;
  4636. if (a->grad) {
  4637. is_node = true;
  4638. }
  4639. if (b->grad) {
  4640. // gradient propagation is not supported
  4641. //GGML_ASSERT(false);
  4642. }
  4643. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  4644. result->op = GGML_OP_RESHAPE;
  4645. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4646. result->src0 = a;
  4647. result->src1 = NULL;
  4648. return result;
  4649. }
  4650. struct ggml_tensor * ggml_reshape_1d(
  4651. struct ggml_context * ctx,
  4652. struct ggml_tensor * a,
  4653. int64_t ne0) {
  4654. GGML_ASSERT(ggml_is_contiguous(a));
  4655. GGML_ASSERT(ggml_nelements(a) == ne0);
  4656. bool is_node = false;
  4657. if (a->grad) {
  4658. is_node = true;
  4659. }
  4660. const int64_t ne[1] = { ne0 };
  4661. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a->data);
  4662. result->op = GGML_OP_RESHAPE;
  4663. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4664. result->src0 = a;
  4665. result->src1 = NULL;
  4666. return result;
  4667. }
  4668. struct ggml_tensor * ggml_reshape_2d(
  4669. struct ggml_context * ctx,
  4670. struct ggml_tensor * a,
  4671. int64_t ne0,
  4672. int64_t ne1) {
  4673. GGML_ASSERT(ggml_is_contiguous(a));
  4674. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4675. bool is_node = false;
  4676. if (a->grad) {
  4677. is_node = true;
  4678. }
  4679. const int64_t ne[2] = { ne0, ne1 };
  4680. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  4681. result->op = GGML_OP_RESHAPE;
  4682. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4683. result->src0 = a;
  4684. result->src1 = NULL;
  4685. return result;
  4686. }
  4687. struct ggml_tensor * ggml_reshape_3d(
  4688. struct ggml_context * ctx,
  4689. struct ggml_tensor * a,
  4690. int64_t ne0,
  4691. int64_t ne1,
  4692. int64_t ne2) {
  4693. GGML_ASSERT(ggml_is_contiguous(a));
  4694. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4695. bool is_node = false;
  4696. if (a->grad) {
  4697. is_node = true;
  4698. }
  4699. const int64_t ne[3] = { ne0, ne1, ne2 };
  4700. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  4701. result->op = GGML_OP_RESHAPE;
  4702. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4703. result->src0 = a;
  4704. result->src1 = NULL;
  4705. return result;
  4706. }
  4707. struct ggml_tensor * ggml_reshape_4d(
  4708. struct ggml_context * ctx,
  4709. struct ggml_tensor * a,
  4710. int64_t ne0,
  4711. int64_t ne1,
  4712. int64_t ne2,
  4713. int64_t ne3) {
  4714. GGML_ASSERT(ggml_is_contiguous(a));
  4715. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4716. bool is_node = false;
  4717. if (a->grad) {
  4718. is_node = true;
  4719. }
  4720. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4721. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a->data);
  4722. result->op = GGML_OP_RESHAPE;
  4723. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4724. result->src0 = a;
  4725. result->src1 = NULL;
  4726. return result;
  4727. }
  4728. // ggml_view_1d
  4729. struct ggml_tensor * ggml_view_1d(
  4730. struct ggml_context * ctx,
  4731. struct ggml_tensor * a,
  4732. int64_t ne0,
  4733. size_t offset) {
  4734. bool is_node = false;
  4735. if (a->grad) {
  4736. is_node = true;
  4737. }
  4738. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  4739. ggml_scratch_save(ctx);
  4740. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4741. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  4742. ggml_scratch_load(ctx);
  4743. result->op = GGML_OP_VIEW;
  4744. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4745. result->src0 = a;
  4746. result->src1 = NULL;
  4747. result->opt[0] = offs;
  4748. if (is_node) {
  4749. memcpy(result->padding, &offset, sizeof(offset));
  4750. }
  4751. return result;
  4752. }
  4753. // ggml_view_2d
  4754. struct ggml_tensor * ggml_view_2d(
  4755. struct ggml_context * ctx,
  4756. struct ggml_tensor * a,
  4757. int64_t ne0,
  4758. int64_t ne1,
  4759. size_t nb1,
  4760. size_t offset) {
  4761. bool is_node = false;
  4762. if (a->grad) {
  4763. is_node = true;
  4764. }
  4765. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  4766. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  4767. ggml_scratch_save(ctx);
  4768. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4769. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  4770. ggml_scratch_load(ctx);
  4771. result->nb[1] = nb1;
  4772. result->nb[2] = result->nb[1]*ne1;
  4773. result->nb[3] = result->nb[2];
  4774. result->op = GGML_OP_VIEW;
  4775. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4776. result->src0 = a;
  4777. result->src1 = NULL;
  4778. result->opt[0] = offs;
  4779. if (is_node) {
  4780. memcpy(result->padding, &offset, sizeof(offset));
  4781. }
  4782. return result;
  4783. }
  4784. // ggml_view_3d
  4785. struct ggml_tensor * ggml_view_3d(
  4786. struct ggml_context * ctx,
  4787. struct ggml_tensor * a,
  4788. int64_t ne0,
  4789. int64_t ne1,
  4790. int64_t ne2,
  4791. size_t nb1,
  4792. size_t nb2,
  4793. size_t offset) {
  4794. bool is_node = false;
  4795. if (a->grad) {
  4796. is_node = true;
  4797. }
  4798. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  4799. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  4800. ggml_scratch_save(ctx);
  4801. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4802. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  4803. ggml_scratch_load(ctx);
  4804. result->nb[1] = nb1;
  4805. result->nb[2] = nb2;
  4806. result->nb[3] = result->nb[2]*ne2;
  4807. result->op = GGML_OP_VIEW;
  4808. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4809. result->src0 = a;
  4810. result->src1 = NULL;
  4811. result->opt[0] = offs;
  4812. if (is_node) {
  4813. memcpy(result->padding, &offset, sizeof(offset));
  4814. }
  4815. return result;
  4816. }
  4817. // ggml_view_4d
  4818. struct ggml_tensor * ggml_view_4d(
  4819. struct ggml_context * ctx,
  4820. struct ggml_tensor * a,
  4821. int64_t ne0,
  4822. int64_t ne1,
  4823. int64_t ne2,
  4824. int64_t ne3,
  4825. size_t nb1,
  4826. size_t nb2,
  4827. size_t nb3,
  4828. size_t offset) {
  4829. bool is_node = false;
  4830. if (a->grad) {
  4831. is_node = true;
  4832. }
  4833. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, ne3 };
  4834. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, (char *) a->data + offset);
  4835. ggml_scratch_save(ctx);
  4836. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4837. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  4838. ggml_scratch_load(ctx);
  4839. result->nb[1] = nb1;
  4840. result->nb[2] = nb2;
  4841. result->nb[3] = nb3;
  4842. result->op = GGML_OP_VIEW;
  4843. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4844. result->src0 = a;
  4845. result->src1 = NULL;
  4846. result->opt[0] = offs;
  4847. if (is_node) {
  4848. memcpy(result->padding, &offset, sizeof(offset));
  4849. }
  4850. return result;
  4851. }
  4852. // ggml_permute
  4853. struct ggml_tensor * ggml_permute(
  4854. struct ggml_context * ctx,
  4855. struct ggml_tensor * a,
  4856. int axis0,
  4857. int axis1,
  4858. int axis2,
  4859. int axis3) {
  4860. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4861. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4862. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4863. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4864. GGML_ASSERT(axis0 != axis1);
  4865. GGML_ASSERT(axis0 != axis2);
  4866. GGML_ASSERT(axis0 != axis3);
  4867. GGML_ASSERT(axis1 != axis2);
  4868. GGML_ASSERT(axis1 != axis3);
  4869. GGML_ASSERT(axis2 != axis3);
  4870. bool is_node = false;
  4871. if (a->grad) {
  4872. is_node = true;
  4873. }
  4874. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4875. int ne[GGML_MAX_DIMS];
  4876. int nb[GGML_MAX_DIMS];
  4877. ne[axis0] = a->ne[0];
  4878. ne[axis1] = a->ne[1];
  4879. ne[axis2] = a->ne[2];
  4880. ne[axis3] = a->ne[3];
  4881. nb[axis0] = a->nb[0];
  4882. nb[axis1] = a->nb[1];
  4883. nb[axis2] = a->nb[2];
  4884. nb[axis3] = a->nb[3];
  4885. result->ne[0] = ne[0];
  4886. result->ne[1] = ne[1];
  4887. result->ne[2] = ne[2];
  4888. result->ne[3] = ne[3];
  4889. result->nb[0] = nb[0];
  4890. result->nb[1] = nb[1];
  4891. result->nb[2] = nb[2];
  4892. result->nb[3] = nb[3];
  4893. result->op = GGML_OP_PERMUTE;
  4894. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4895. result->src0 = a;
  4896. result->src1 = NULL;
  4897. if (is_node) {
  4898. result->padding[0] = axis0;
  4899. result->padding[1] = axis1;
  4900. result->padding[2] = axis2;
  4901. result->padding[3] = axis3;
  4902. }
  4903. return result;
  4904. }
  4905. // ggml_transpose
  4906. struct ggml_tensor * ggml_transpose(
  4907. struct ggml_context * ctx,
  4908. struct ggml_tensor * a) {
  4909. bool is_node = false;
  4910. if (a->grad) {
  4911. is_node = true;
  4912. }
  4913. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4914. result->ne[0] = a->ne[1];
  4915. result->ne[1] = a->ne[0];
  4916. result->nb[0] = a->nb[1];
  4917. result->nb[1] = a->nb[0];
  4918. result->op = GGML_OP_TRANSPOSE;
  4919. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4920. result->src0 = a;
  4921. result->src1 = NULL;
  4922. return result;
  4923. }
  4924. // ggml_get_rows
  4925. struct ggml_tensor * ggml_get_rows(
  4926. struct ggml_context * ctx,
  4927. struct ggml_tensor * a,
  4928. struct ggml_tensor * b) {
  4929. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4930. bool is_node = false;
  4931. if (a->grad || b->grad) {
  4932. is_node = true;
  4933. }
  4934. // TODO: implement non F32 return
  4935. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4936. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  4937. result->op = GGML_OP_GET_ROWS;
  4938. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4939. result->src0 = a;
  4940. result->src1 = b;
  4941. return result;
  4942. }
  4943. // ggml_get_rows_back
  4944. struct ggml_tensor * ggml_get_rows_back(
  4945. struct ggml_context * ctx,
  4946. struct ggml_tensor * a,
  4947. struct ggml_tensor * b,
  4948. struct ggml_tensor * c) {
  4949. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4950. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4951. bool is_node = false;
  4952. if (a->grad || b->grad) {
  4953. is_node = true;
  4954. }
  4955. // TODO: implement non F32 return
  4956. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4957. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  4958. result->op = GGML_OP_GET_ROWS_BACK;
  4959. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4960. result->src0 = a;
  4961. result->src1 = b;
  4962. result->opt[0] = c;
  4963. return result;
  4964. }
  4965. // ggml_diag
  4966. struct ggml_tensor * ggml_diag(
  4967. struct ggml_context * ctx,
  4968. struct ggml_tensor * a) {
  4969. GGML_ASSERT(a->ne[1] == 1);
  4970. bool is_node = false;
  4971. if (a->grad) {
  4972. is_node = true;
  4973. }
  4974. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  4975. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  4976. result->op = GGML_OP_DIAG;
  4977. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4978. result->src0 = a;
  4979. result->src1 = NULL;
  4980. return result;
  4981. }
  4982. // ggml_diag_mask_inf
  4983. struct ggml_tensor * ggml_diag_mask_inf_impl(
  4984. struct ggml_context * ctx,
  4985. struct ggml_tensor * a,
  4986. int n_past,
  4987. bool inplace) {
  4988. bool is_node = false;
  4989. if (a->grad) {
  4990. is_node = true;
  4991. }
  4992. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4993. ggml_scratch_save(ctx);
  4994. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4995. ((int32_t *) b->data)[0] = n_past;
  4996. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  4997. ggml_scratch_load(ctx);
  4998. result->op = GGML_OP_DIAG_MASK_INF;
  4999. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5000. result->src0 = a;
  5001. result->src1 = b;
  5002. return result;
  5003. }
  5004. struct ggml_tensor * ggml_diag_mask_inf(
  5005. struct ggml_context * ctx,
  5006. struct ggml_tensor * a,
  5007. int n_past) {
  5008. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5009. }
  5010. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5011. struct ggml_context * ctx,
  5012. struct ggml_tensor * a,
  5013. int n_past) {
  5014. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5015. }
  5016. // ggml_diag_mask_zero
  5017. struct ggml_tensor * ggml_diag_mask_zero_impl(
  5018. struct ggml_context * ctx,
  5019. struct ggml_tensor * a,
  5020. int n_past,
  5021. bool inplace) {
  5022. bool is_node = false;
  5023. if (a->grad) {
  5024. is_node = true;
  5025. }
  5026. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5027. ggml_scratch_save(ctx);
  5028. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5029. ggml_set_name(b, "n_past, inplace");
  5030. ((int32_t *) b->data)[0] = n_past;
  5031. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  5032. ggml_scratch_load(ctx);
  5033. result->op = GGML_OP_DIAG_MASK_ZERO;
  5034. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5035. result->src0 = a;
  5036. result->src1 = b;
  5037. return result;
  5038. }
  5039. struct ggml_tensor * ggml_diag_mask_zero(
  5040. struct ggml_context * ctx,
  5041. struct ggml_tensor * a,
  5042. int n_past) {
  5043. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5044. }
  5045. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5046. struct ggml_context * ctx,
  5047. struct ggml_tensor * a,
  5048. int n_past) {
  5049. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5050. }
  5051. // ggml_soft_max
  5052. struct ggml_tensor * ggml_soft_max_impl(
  5053. struct ggml_context * ctx,
  5054. struct ggml_tensor * a,
  5055. bool inplace) {
  5056. bool is_node = false;
  5057. if (a->grad) {
  5058. is_node = true;
  5059. }
  5060. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5061. result->op = GGML_OP_SOFT_MAX;
  5062. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5063. result->src0 = a;
  5064. result->src1 = NULL;
  5065. return result;
  5066. }
  5067. struct ggml_tensor * ggml_soft_max(
  5068. struct ggml_context * ctx,
  5069. struct ggml_tensor * a) {
  5070. return ggml_soft_max_impl(ctx, a, false);
  5071. }
  5072. struct ggml_tensor * ggml_soft_max_inplace(
  5073. struct ggml_context * ctx,
  5074. struct ggml_tensor * a) {
  5075. return ggml_soft_max_impl(ctx, a, true);
  5076. }
  5077. // ggml_rope
  5078. struct ggml_tensor * ggml_rope_impl(
  5079. struct ggml_context * ctx,
  5080. struct ggml_tensor * a,
  5081. int n_past,
  5082. int n_dims,
  5083. int mode,
  5084. bool inplace) {
  5085. GGML_ASSERT(n_past >= 0);
  5086. bool is_node = false;
  5087. if (!inplace && a->grad) {
  5088. is_node = true;
  5089. }
  5090. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5091. ggml_scratch_save(ctx);
  5092. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5093. ((int32_t *) b->data)[0] = n_past;
  5094. ((int32_t *) b->data)[1] = n_dims;
  5095. ((int32_t *) b->data)[2] = mode;
  5096. ggml_scratch_load(ctx);
  5097. result->op = GGML_OP_ROPE;
  5098. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5099. result->src0 = a;
  5100. result->src1 = b;
  5101. return result;
  5102. }
  5103. struct ggml_tensor * ggml_rope(
  5104. struct ggml_context * ctx,
  5105. struct ggml_tensor * a,
  5106. int n_past,
  5107. int n_dims,
  5108. int mode) {
  5109. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, false);
  5110. }
  5111. struct ggml_tensor * ggml_rope_inplace(
  5112. struct ggml_context * ctx,
  5113. struct ggml_tensor * a,
  5114. int n_past,
  5115. int n_dims,
  5116. int mode) {
  5117. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, true);
  5118. }
  5119. // ggml_rope_back
  5120. struct ggml_tensor * ggml_rope_back(
  5121. struct ggml_context * ctx,
  5122. struct ggml_tensor * a,
  5123. int n_past,
  5124. int n_dims,
  5125. int mode) {
  5126. GGML_ASSERT(n_past >= 0);
  5127. bool is_node = false;
  5128. if (a->grad) {
  5129. GGML_ASSERT(false); // TODO: implement backward
  5130. is_node = true;
  5131. }
  5132. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5133. ggml_scratch_save(ctx);
  5134. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5135. ggml_set_name(b, "n_past, n_dims, mode");
  5136. ((int32_t *) b->data)[0] = n_past;
  5137. ((int32_t *) b->data)[1] = n_dims;
  5138. ((int32_t *) b->data)[2] = mode;
  5139. ggml_scratch_load(ctx);
  5140. result->op = GGML_OP_ROPE_BACK;
  5141. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5142. result->src0 = a;
  5143. result->src1 = b;
  5144. return result;
  5145. }
  5146. // ggml_alibi
  5147. struct ggml_tensor * ggml_alibi(
  5148. struct ggml_context * ctx,
  5149. struct ggml_tensor * a,
  5150. int n_past,
  5151. int n_head,
  5152. float bias_max) {
  5153. GGML_ASSERT(n_past >= 0);
  5154. bool is_node = false;
  5155. if (a->grad) {
  5156. GGML_ASSERT(false); // TODO: implement backward
  5157. is_node = true;
  5158. }
  5159. // TODO: when implement backward, fix this:
  5160. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5161. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5162. ggml_scratch_save(ctx);
  5163. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5164. ((int32_t *) b->data)[0] = n_past;
  5165. ((int32_t *) b->data)[1] = n_head;
  5166. GGML_ASSERT(sizeof(float) == sizeof(int32_t));
  5167. (((float *) b->data)[2]) = bias_max;
  5168. ggml_scratch_load(ctx);
  5169. result->op = GGML_OP_ALIBI;
  5170. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5171. result->src0 = a;
  5172. result->src1 = b;
  5173. return result;
  5174. }
  5175. // ggml_clamp
  5176. struct ggml_tensor * ggml_clamp(
  5177. struct ggml_context * ctx,
  5178. struct ggml_tensor * a,
  5179. float min,
  5180. float max) {
  5181. bool is_node = false;
  5182. if (a->grad) {
  5183. GGML_ASSERT(false); // TODO: implement backward
  5184. is_node = true;
  5185. }
  5186. // TODO: when implement backward, fix this:
  5187. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5188. ggml_scratch_save(ctx);
  5189. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5190. ((float *) b->data)[0] = min;
  5191. ((float *) b->data)[1] = max;
  5192. ggml_scratch_load(ctx);
  5193. result->op = GGML_OP_CLAMP;
  5194. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5195. result->src0 = a;
  5196. result->src1 = b;
  5197. return result;
  5198. }
  5199. // ggml_conv_1d_1s
  5200. struct ggml_tensor * ggml_conv_1d_1s(
  5201. struct ggml_context * ctx,
  5202. struct ggml_tensor * a,
  5203. struct ggml_tensor * b) {
  5204. GGML_ASSERT(ggml_is_matrix(b));
  5205. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5206. GGML_ASSERT(a->ne[3] == 1);
  5207. bool is_node = false;
  5208. if (a->grad || b->grad) {
  5209. GGML_ASSERT(false); // TODO: implement backward
  5210. is_node = true;
  5211. }
  5212. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  5213. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5214. result->op = GGML_OP_CONV_1D_1S;
  5215. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5216. result->src0 = a;
  5217. result->src1 = b;
  5218. return result;
  5219. }
  5220. // ggml_conv_1d_2s
  5221. struct ggml_tensor * ggml_conv_1d_2s(
  5222. struct ggml_context * ctx,
  5223. struct ggml_tensor * a,
  5224. struct ggml_tensor * b) {
  5225. GGML_ASSERT(ggml_is_matrix(b));
  5226. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5227. GGML_ASSERT(a->ne[3] == 1);
  5228. bool is_node = false;
  5229. if (a->grad || b->grad) {
  5230. GGML_ASSERT(false); // TODO: implement backward
  5231. is_node = true;
  5232. }
  5233. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  5234. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5235. result->op = GGML_OP_CONV_1D_2S;
  5236. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5237. result->src0 = a;
  5238. result->src1 = b;
  5239. return result;
  5240. }
  5241. // ggml_flash_attn
  5242. struct ggml_tensor * ggml_flash_attn(
  5243. struct ggml_context * ctx,
  5244. struct ggml_tensor * q,
  5245. struct ggml_tensor * k,
  5246. struct ggml_tensor * v,
  5247. bool masked) {
  5248. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5249. // TODO: check if vT can be multiplied by (k*qT)
  5250. bool is_node = false;
  5251. if (q->grad || k->grad || v->grad) {
  5252. GGML_ASSERT(false); // TODO: implement backward
  5253. is_node = true;
  5254. }
  5255. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5256. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  5257. result->op = GGML_OP_FLASH_ATTN;
  5258. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5259. result->src0 = q;
  5260. result->src1 = k;
  5261. result->opt[0] = v;
  5262. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  5263. return result;
  5264. }
  5265. // ggml_flash_ff
  5266. struct ggml_tensor * ggml_flash_ff(
  5267. struct ggml_context * ctx,
  5268. struct ggml_tensor * a,
  5269. struct ggml_tensor * b0,
  5270. struct ggml_tensor * b1,
  5271. struct ggml_tensor * c0,
  5272. struct ggml_tensor * c1) {
  5273. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5274. // TODO: more checks
  5275. bool is_node = false;
  5276. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5277. GGML_ASSERT(false); // TODO: implement backward
  5278. is_node = true;
  5279. }
  5280. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5281. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  5282. result->op = GGML_OP_FLASH_FF;
  5283. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5284. result->src0 = a;
  5285. result->src1 = b0;
  5286. result->opt[0] = b1;
  5287. result->opt[1] = c0;
  5288. result->opt[2] = c1;
  5289. return result;
  5290. }
  5291. // ggml_map_unary
  5292. struct ggml_tensor * ggml_map_unary_impl_f32(
  5293. struct ggml_context * ctx,
  5294. struct ggml_tensor * a,
  5295. const ggml_unary_op_f32_t fun,
  5296. bool inplace) {
  5297. bool is_node = false;
  5298. if (!inplace && a->grad) {
  5299. is_node = true;
  5300. }
  5301. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5302. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5303. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5304. result->op = GGML_OP_MAP_UNARY;
  5305. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5306. result->src0 = a;
  5307. result->opt[0] = addr_tensor;
  5308. return result;
  5309. }
  5310. struct ggml_tensor * ggml_map_unary_f32(
  5311. struct ggml_context * ctx,
  5312. struct ggml_tensor * a,
  5313. const ggml_unary_op_f32_t fun) {
  5314. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5315. }
  5316. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5317. struct ggml_context * ctx,
  5318. struct ggml_tensor * a,
  5319. const ggml_unary_op_f32_t fun) {
  5320. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5321. }
  5322. // ggml_map_binary
  5323. struct ggml_tensor * ggml_map_binary_impl_f32(
  5324. struct ggml_context * ctx,
  5325. struct ggml_tensor * a,
  5326. struct ggml_tensor * b,
  5327. const ggml_binary_op_f32_t fun,
  5328. bool inplace) {
  5329. GGML_ASSERT(ggml_are_same_shape(a, b));
  5330. bool is_node = false;
  5331. if (!inplace && (a->grad || b->grad)) {
  5332. is_node = true;
  5333. }
  5334. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5335. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5336. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5337. result->op = GGML_OP_MAP_BINARY;
  5338. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5339. result->src0 = a;
  5340. result->src1 = b;
  5341. result->opt[0] = addr_tensor;
  5342. return result;
  5343. }
  5344. struct ggml_tensor * ggml_map_binary_f32(
  5345. struct ggml_context * ctx,
  5346. struct ggml_tensor * a,
  5347. struct ggml_tensor * b,
  5348. const ggml_binary_op_f32_t fun) {
  5349. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5350. }
  5351. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5352. struct ggml_context * ctx,
  5353. struct ggml_tensor * a,
  5354. struct ggml_tensor * b,
  5355. const ggml_binary_op_f32_t fun) {
  5356. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5357. }
  5358. ////////////////////////////////////////////////////////////////////////////////
  5359. void ggml_set_param(
  5360. struct ggml_context * ctx,
  5361. struct ggml_tensor * tensor) {
  5362. tensor->is_param = true;
  5363. GGML_ASSERT(tensor->grad == NULL);
  5364. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5365. }
  5366. // ggml_compute_forward_dup
  5367. static void ggml_compute_forward_dup_same_cont(
  5368. const struct ggml_compute_params * params,
  5369. const struct ggml_tensor * src0,
  5370. struct ggml_tensor * dst) {
  5371. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5372. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5373. GGML_ASSERT(src0->type == dst->type);
  5374. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5375. return;
  5376. }
  5377. const size_t nb00 = src0->nb[0];
  5378. const size_t nb0 = dst->nb[0];
  5379. const int ith = params->ith; // thread index
  5380. const int nth = params->nth; // number of threads
  5381. // parallelize by elements
  5382. const int ne = ggml_nelements(dst);
  5383. const int dr = (ne + nth - 1) / nth;
  5384. const int ie0 = dr * ith;
  5385. const int ie1 = MIN(ie0 + dr, ne);
  5386. if (ie0 < ie1) {
  5387. memcpy(
  5388. ((char *) dst->data + ie0*nb0),
  5389. ((char *) src0->data + ie0*nb00),
  5390. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  5391. }
  5392. }
  5393. static void ggml_compute_forward_dup_f16(
  5394. const struct ggml_compute_params * params,
  5395. const struct ggml_tensor * src0,
  5396. struct ggml_tensor * dst) {
  5397. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5398. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5399. return;
  5400. }
  5401. const int64_t ne00 = src0->ne[0];
  5402. const int64_t ne01 = src0->ne[1];
  5403. const int64_t ne02 = src0->ne[2];
  5404. const int64_t ne03 = src0->ne[3];
  5405. const int64_t ne0 = dst->ne[0];
  5406. const int64_t ne1 = dst->ne[1];
  5407. const int64_t ne2 = dst->ne[2];
  5408. const int64_t ne3 = dst->ne[3];
  5409. const size_t nb00 = src0->nb[0];
  5410. const size_t nb01 = src0->nb[1];
  5411. const size_t nb02 = src0->nb[2];
  5412. const size_t nb03 = src0->nb[3];
  5413. const size_t nb0 = dst->nb[0];
  5414. const size_t nb1 = dst->nb[1];
  5415. const size_t nb2 = dst->nb[2];
  5416. const size_t nb3 = dst->nb[3];
  5417. const int ith = params->ith; // thread index
  5418. const int nth = params->nth; // number of threads
  5419. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5420. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5421. return;
  5422. }
  5423. // parallelize by rows
  5424. const int nr = ne01;
  5425. // number of rows per thread
  5426. const int dr = (nr + nth - 1) / nth;
  5427. // row range for this thread
  5428. const int ir0 = dr * ith;
  5429. const int ir1 = MIN(ir0 + dr, nr);
  5430. if (src0->type == dst->type &&
  5431. ne00 == ne0 &&
  5432. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5433. // copy by rows
  5434. const size_t rs = ne00*nb00;
  5435. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5436. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5437. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5438. memcpy(
  5439. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5440. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5441. rs);
  5442. }
  5443. }
  5444. }
  5445. return;
  5446. }
  5447. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5448. if (ggml_is_contiguous(dst)) {
  5449. if (nb00 == sizeof(ggml_fp16_t)) {
  5450. if (dst->type == GGML_TYPE_F16) {
  5451. size_t id = 0;
  5452. const size_t rs = ne00 * nb00;
  5453. char * dst_ptr = (char *) dst->data;
  5454. for (int i03 = 0; i03 < ne03; i03++) {
  5455. for (int i02 = 0; i02 < ne02; i02++) {
  5456. id += rs * ir0;
  5457. for (int i01 = ir0; i01 < ir1; i01++) {
  5458. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5459. memcpy(dst_ptr + id, src0_ptr, rs);
  5460. id += rs;
  5461. }
  5462. id += rs * (ne01 - ir1);
  5463. }
  5464. }
  5465. } else if (dst->type == GGML_TYPE_F32) {
  5466. size_t id = 0;
  5467. float * dst_ptr = (float *) dst->data;
  5468. for (int i03 = 0; i03 < ne03; i03++) {
  5469. for (int i02 = 0; i02 < ne02; i02++) {
  5470. id += ne00 * ir0;
  5471. for (int i01 = ir0; i01 < ir1; i01++) {
  5472. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5473. for (int i00 = 0; i00 < ne00; i00++) {
  5474. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5475. id++;
  5476. }
  5477. }
  5478. id += ne00 * (ne01 - ir1);
  5479. }
  5480. }
  5481. } else if (ggml_is_quantized(dst->type)) {
  5482. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5483. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5484. size_t id = 0;
  5485. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5486. char * dst_ptr = (char *) dst->data;
  5487. for (int i03 = 0; i03 < ne03; i03++) {
  5488. for (int i02 = 0; i02 < ne02; i02++) {
  5489. id += rs * ir0;
  5490. for (int i01 = ir0; i01 < ir1; i01++) {
  5491. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5492. for (int i00 = 0; i00 < ne00; i00++) {
  5493. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5494. }
  5495. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5496. id += rs;
  5497. }
  5498. id += rs * (ne01 - ir1);
  5499. }
  5500. }
  5501. } else {
  5502. GGML_ASSERT(false); // TODO: implement
  5503. }
  5504. } else {
  5505. //printf("%s: this is not optimal - fix me\n", __func__);
  5506. if (dst->type == GGML_TYPE_F32) {
  5507. size_t id = 0;
  5508. float * dst_ptr = (float *) dst->data;
  5509. for (int i03 = 0; i03 < ne03; i03++) {
  5510. for (int i02 = 0; i02 < ne02; i02++) {
  5511. id += ne00 * ir0;
  5512. for (int i01 = ir0; i01 < ir1; i01++) {
  5513. for (int i00 = 0; i00 < ne00; i00++) {
  5514. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5515. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5516. id++;
  5517. }
  5518. }
  5519. id += ne00 * (ne01 - ir1);
  5520. }
  5521. }
  5522. } else if (dst->type == GGML_TYPE_F16) {
  5523. size_t id = 0;
  5524. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5525. for (int i03 = 0; i03 < ne03; i03++) {
  5526. for (int i02 = 0; i02 < ne02; i02++) {
  5527. id += ne00 * ir0;
  5528. for (int i01 = ir0; i01 < ir1; i01++) {
  5529. for (int i00 = 0; i00 < ne00; i00++) {
  5530. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5531. dst_ptr[id] = *src0_ptr;
  5532. id++;
  5533. }
  5534. }
  5535. id += ne00 * (ne01 - ir1);
  5536. }
  5537. }
  5538. } else {
  5539. GGML_ASSERT(false); // TODO: implement
  5540. }
  5541. }
  5542. return;
  5543. }
  5544. // dst counters
  5545. int64_t i10 = 0;
  5546. int64_t i11 = 0;
  5547. int64_t i12 = 0;
  5548. int64_t i13 = 0;
  5549. if (dst->type == GGML_TYPE_F16) {
  5550. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5551. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5552. i10 += ne00 * ir0;
  5553. while (i10 >= ne0) {
  5554. i10 -= ne0;
  5555. if (++i11 == ne1) {
  5556. i11 = 0;
  5557. if (++i12 == ne2) {
  5558. i12 = 0;
  5559. if (++i13 == ne3) {
  5560. i13 = 0;
  5561. }
  5562. }
  5563. }
  5564. }
  5565. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5566. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5567. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5568. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5569. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5570. if (++i10 == ne00) {
  5571. i10 = 0;
  5572. if (++i11 == ne01) {
  5573. i11 = 0;
  5574. if (++i12 == ne02) {
  5575. i12 = 0;
  5576. if (++i13 == ne03) {
  5577. i13 = 0;
  5578. }
  5579. }
  5580. }
  5581. }
  5582. }
  5583. }
  5584. i10 += ne00 * (ne01 - ir1);
  5585. while (i10 >= ne0) {
  5586. i10 -= ne0;
  5587. if (++i11 == ne1) {
  5588. i11 = 0;
  5589. if (++i12 == ne2) {
  5590. i12 = 0;
  5591. if (++i13 == ne3) {
  5592. i13 = 0;
  5593. }
  5594. }
  5595. }
  5596. }
  5597. }
  5598. }
  5599. } else if (dst->type == GGML_TYPE_F32) {
  5600. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5601. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5602. i10 += ne00 * ir0;
  5603. while (i10 >= ne0) {
  5604. i10 -= ne0;
  5605. if (++i11 == ne1) {
  5606. i11 = 0;
  5607. if (++i12 == ne2) {
  5608. i12 = 0;
  5609. if (++i13 == ne3) {
  5610. i13 = 0;
  5611. }
  5612. }
  5613. }
  5614. }
  5615. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5616. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5617. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5618. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5619. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5620. if (++i10 == ne0) {
  5621. i10 = 0;
  5622. if (++i11 == ne1) {
  5623. i11 = 0;
  5624. if (++i12 == ne2) {
  5625. i12 = 0;
  5626. if (++i13 == ne3) {
  5627. i13 = 0;
  5628. }
  5629. }
  5630. }
  5631. }
  5632. }
  5633. }
  5634. i10 += ne00 * (ne01 - ir1);
  5635. while (i10 >= ne0) {
  5636. i10 -= ne0;
  5637. if (++i11 == ne1) {
  5638. i11 = 0;
  5639. if (++i12 == ne2) {
  5640. i12 = 0;
  5641. if (++i13 == ne3) {
  5642. i13 = 0;
  5643. }
  5644. }
  5645. }
  5646. }
  5647. }
  5648. }
  5649. } else {
  5650. GGML_ASSERT(false); // TODO: implement
  5651. }
  5652. }
  5653. static void ggml_compute_forward_dup_f32(
  5654. const struct ggml_compute_params * params,
  5655. const struct ggml_tensor * src0,
  5656. struct ggml_tensor * dst) {
  5657. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5658. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5659. return;
  5660. }
  5661. const int64_t ne00 = src0->ne[0];
  5662. const int64_t ne01 = src0->ne[1];
  5663. const int64_t ne02 = src0->ne[2];
  5664. const int64_t ne03 = src0->ne[3];
  5665. const int64_t ne0 = dst->ne[0];
  5666. const int64_t ne1 = dst->ne[1];
  5667. const int64_t ne2 = dst->ne[2];
  5668. const int64_t ne3 = dst->ne[3];
  5669. const size_t nb00 = src0->nb[0];
  5670. const size_t nb01 = src0->nb[1];
  5671. const size_t nb02 = src0->nb[2];
  5672. const size_t nb03 = src0->nb[3];
  5673. const size_t nb0 = dst->nb[0];
  5674. const size_t nb1 = dst->nb[1];
  5675. const size_t nb2 = dst->nb[2];
  5676. const size_t nb3 = dst->nb[3];
  5677. const int ith = params->ith; // thread index
  5678. const int nth = params->nth; // number of threads
  5679. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5680. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5681. return;
  5682. }
  5683. // parallelize by rows
  5684. const int nr = ne01;
  5685. // number of rows per thread
  5686. const int dr = (nr + nth - 1) / nth;
  5687. // row range for this thread
  5688. const int ir0 = dr * ith;
  5689. const int ir1 = MIN(ir0 + dr, nr);
  5690. if (src0->type == dst->type &&
  5691. ne00 == ne0 &&
  5692. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5693. // copy by rows
  5694. const size_t rs = ne00*nb00;
  5695. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5696. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5697. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5698. memcpy(
  5699. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5700. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5701. rs);
  5702. }
  5703. }
  5704. }
  5705. return;
  5706. }
  5707. if (ggml_is_contiguous(dst)) {
  5708. // TODO: simplify
  5709. if (nb00 == sizeof(float)) {
  5710. if (dst->type == GGML_TYPE_F32) {
  5711. size_t id = 0;
  5712. const size_t rs = ne00 * nb00;
  5713. char * dst_ptr = (char *) dst->data;
  5714. for (int i03 = 0; i03 < ne03; i03++) {
  5715. for (int i02 = 0; i02 < ne02; i02++) {
  5716. id += rs * ir0;
  5717. for (int i01 = ir0; i01 < ir1; i01++) {
  5718. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5719. memcpy(dst_ptr + id, src0_ptr, rs);
  5720. id += rs;
  5721. }
  5722. id += rs * (ne01 - ir1);
  5723. }
  5724. }
  5725. } else if (dst->type == GGML_TYPE_F16) {
  5726. size_t id = 0;
  5727. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5728. for (int i03 = 0; i03 < ne03; i03++) {
  5729. for (int i02 = 0; i02 < ne02; i02++) {
  5730. id += ne00 * ir0;
  5731. for (int i01 = ir0; i01 < ir1; i01++) {
  5732. for (int i00 = 0; i00 < ne00; i00++) {
  5733. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5734. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5735. id++;
  5736. }
  5737. }
  5738. id += ne00 * (ne01 - ir1);
  5739. }
  5740. }
  5741. } else if (ggml_is_quantized(dst->type)) {
  5742. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5743. size_t id = 0;
  5744. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5745. char * dst_ptr = (char *) dst->data;
  5746. for (int i03 = 0; i03 < ne03; i03++) {
  5747. for (int i02 = 0; i02 < ne02; i02++) {
  5748. id += rs * ir0;
  5749. for (int i01 = ir0; i01 < ir1; i01++) {
  5750. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5751. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5752. id += rs;
  5753. }
  5754. id += rs * (ne01 - ir1);
  5755. }
  5756. }
  5757. } else {
  5758. GGML_ASSERT(false); // TODO: implement
  5759. }
  5760. } else {
  5761. //printf("%s: this is not optimal - fix me\n", __func__);
  5762. if (dst->type == GGML_TYPE_F32) {
  5763. size_t id = 0;
  5764. float * dst_ptr = (float *) dst->data;
  5765. for (int i03 = 0; i03 < ne03; i03++) {
  5766. for (int i02 = 0; i02 < ne02; i02++) {
  5767. id += ne00 * ir0;
  5768. for (int i01 = ir0; i01 < ir1; i01++) {
  5769. for (int i00 = 0; i00 < ne00; i00++) {
  5770. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5771. dst_ptr[id] = *src0_ptr;
  5772. id++;
  5773. }
  5774. }
  5775. id += ne00 * (ne01 - ir1);
  5776. }
  5777. }
  5778. } else if (dst->type == GGML_TYPE_F16) {
  5779. size_t id = 0;
  5780. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5781. for (int i03 = 0; i03 < ne03; i03++) {
  5782. for (int i02 = 0; i02 < ne02; i02++) {
  5783. id += ne00 * ir0;
  5784. for (int i01 = ir0; i01 < ir1; i01++) {
  5785. for (int i00 = 0; i00 < ne00; i00++) {
  5786. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5787. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5788. id++;
  5789. }
  5790. }
  5791. id += ne00 * (ne01 - ir1);
  5792. }
  5793. }
  5794. } else {
  5795. GGML_ASSERT(false); // TODO: implement
  5796. }
  5797. }
  5798. return;
  5799. }
  5800. // dst counters
  5801. int64_t i10 = 0;
  5802. int64_t i11 = 0;
  5803. int64_t i12 = 0;
  5804. int64_t i13 = 0;
  5805. if (dst->type == GGML_TYPE_F32) {
  5806. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5807. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5808. i10 += ne00 * ir0;
  5809. while (i10 >= ne0) {
  5810. i10 -= ne0;
  5811. if (++i11 == ne1) {
  5812. i11 = 0;
  5813. if (++i12 == ne2) {
  5814. i12 = 0;
  5815. if (++i13 == ne3) {
  5816. i13 = 0;
  5817. }
  5818. }
  5819. }
  5820. }
  5821. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5822. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5823. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5824. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5825. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5826. if (++i10 == ne0) {
  5827. i10 = 0;
  5828. if (++i11 == ne1) {
  5829. i11 = 0;
  5830. if (++i12 == ne2) {
  5831. i12 = 0;
  5832. if (++i13 == ne3) {
  5833. i13 = 0;
  5834. }
  5835. }
  5836. }
  5837. }
  5838. }
  5839. }
  5840. i10 += ne00 * (ne01 - ir1);
  5841. while (i10 >= ne0) {
  5842. i10 -= ne0;
  5843. if (++i11 == ne1) {
  5844. i11 = 0;
  5845. if (++i12 == ne2) {
  5846. i12 = 0;
  5847. if (++i13 == ne3) {
  5848. i13 = 0;
  5849. }
  5850. }
  5851. }
  5852. }
  5853. }
  5854. }
  5855. } else if (dst->type == GGML_TYPE_F16) {
  5856. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5857. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5858. i10 += ne00 * ir0;
  5859. while (i10 >= ne0) {
  5860. i10 -= ne0;
  5861. if (++i11 == ne1) {
  5862. i11 = 0;
  5863. if (++i12 == ne2) {
  5864. i12 = 0;
  5865. if (++i13 == ne3) {
  5866. i13 = 0;
  5867. }
  5868. }
  5869. }
  5870. }
  5871. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5872. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5873. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5874. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5875. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5876. if (++i10 == ne0) {
  5877. i10 = 0;
  5878. if (++i11 == ne1) {
  5879. i11 = 0;
  5880. if (++i12 == ne2) {
  5881. i12 = 0;
  5882. if (++i13 == ne3) {
  5883. i13 = 0;
  5884. }
  5885. }
  5886. }
  5887. }
  5888. }
  5889. }
  5890. i10 += ne00 * (ne01 - ir1);
  5891. while (i10 >= ne0) {
  5892. i10 -= ne0;
  5893. if (++i11 == ne1) {
  5894. i11 = 0;
  5895. if (++i12 == ne2) {
  5896. i12 = 0;
  5897. if (++i13 == ne3) {
  5898. i13 = 0;
  5899. }
  5900. }
  5901. }
  5902. }
  5903. }
  5904. }
  5905. } else {
  5906. GGML_ASSERT(false); // TODO: implement
  5907. }
  5908. }
  5909. static void ggml_compute_forward_dup(
  5910. const struct ggml_compute_params * params,
  5911. const struct ggml_tensor * src0,
  5912. struct ggml_tensor * dst) {
  5913. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5914. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5915. return;
  5916. }
  5917. switch (src0->type) {
  5918. case GGML_TYPE_F16:
  5919. {
  5920. ggml_compute_forward_dup_f16(params, src0, dst);
  5921. } break;
  5922. case GGML_TYPE_F32:
  5923. {
  5924. ggml_compute_forward_dup_f32(params, src0, dst);
  5925. } break;
  5926. default:
  5927. {
  5928. GGML_ASSERT(false);
  5929. } break;
  5930. }
  5931. }
  5932. // ggml_compute_forward_add
  5933. static void ggml_compute_forward_add_f32(
  5934. const struct ggml_compute_params * params,
  5935. const struct ggml_tensor * src0,
  5936. const struct ggml_tensor * src1,
  5937. struct ggml_tensor * dst) {
  5938. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5939. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5940. return;
  5941. }
  5942. const int ith = params->ith;
  5943. const int nth = params->nth;
  5944. const int nr = ggml_nrows(src0);
  5945. const int64_t ne0 = src0->ne[0];
  5946. const int64_t ne1 = src0->ne[1];
  5947. const int64_t ne2 = src0->ne[2];
  5948. const size_t nb00 = src0->nb[0];
  5949. const size_t nb01 = src0->nb[1];
  5950. const size_t nb02 = src0->nb[2];
  5951. const size_t nb03 = src0->nb[3];
  5952. const size_t nb10 = src1->nb[0];
  5953. const size_t nb11 = src1->nb[1];
  5954. const size_t nb12 = src1->nb[2];
  5955. const size_t nb13 = src1->nb[3];
  5956. const size_t nb0 = dst->nb[0];
  5957. const size_t nb1 = dst->nb[1];
  5958. const size_t nb2 = dst->nb[2];
  5959. const size_t nb3 = dst->nb[3];
  5960. GGML_ASSERT( nb0 == sizeof(float));
  5961. GGML_ASSERT(nb00 == sizeof(float));
  5962. // rows per thread
  5963. const int dr = (nr + nth - 1)/nth;
  5964. // row range for this thread
  5965. const int ir0 = dr*ith;
  5966. const int ir1 = MIN(ir0 + dr, nr);
  5967. if (nb10 == sizeof(float)) {
  5968. for (int ir = ir0; ir < ir1; ++ir) {
  5969. // src0, src1 and dst are same shape => same indices
  5970. const int i3 = ir/(ne2*ne1);
  5971. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5972. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5973. #ifdef GGML_USE_ACCELERATE
  5974. vDSP_vadd(
  5975. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  5976. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  5977. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  5978. ne0);
  5979. #else
  5980. ggml_vec_add_f32(ne0,
  5981. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  5982. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  5983. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  5984. #endif
  5985. // }
  5986. // }
  5987. }
  5988. } else {
  5989. // src1 is not contiguous
  5990. for (int ir = ir0; ir < ir1; ++ir) {
  5991. // src0, src1 and dst are same shape => same indices
  5992. const int i3 = ir/(ne2*ne1);
  5993. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5994. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5995. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  5996. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5997. for (int i0 = 0; i0 < ne0; i0++) {
  5998. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  5999. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6000. }
  6001. }
  6002. }
  6003. }
  6004. static void ggml_compute_forward_add_f16_f32(
  6005. const struct ggml_compute_params * params,
  6006. const struct ggml_tensor * src0,
  6007. const struct ggml_tensor * src1,
  6008. struct ggml_tensor * dst) {
  6009. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6010. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6011. return;
  6012. }
  6013. const int ith = params->ith;
  6014. const int nth = params->nth;
  6015. const int nr = ggml_nrows(src0);
  6016. const int64_t ne0 = src0->ne[0];
  6017. const int64_t ne1 = src0->ne[1];
  6018. const int64_t ne2 = src0->ne[2];
  6019. const size_t nb00 = src0->nb[0];
  6020. const size_t nb01 = src0->nb[1];
  6021. const size_t nb02 = src0->nb[2];
  6022. const size_t nb03 = src0->nb[3];
  6023. const size_t nb10 = src1->nb[0];
  6024. const size_t nb11 = src1->nb[1];
  6025. const size_t nb12 = src1->nb[2];
  6026. const size_t nb13 = src1->nb[3];
  6027. const size_t nb0 = dst->nb[0];
  6028. const size_t nb1 = dst->nb[1];
  6029. const size_t nb2 = dst->nb[2];
  6030. const size_t nb3 = dst->nb[3];
  6031. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6032. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6033. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6034. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6035. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6036. // rows per thread
  6037. const int dr = (nr + nth - 1)/nth;
  6038. // row range for this thread
  6039. const int ir0 = dr*ith;
  6040. const int ir1 = MIN(ir0 + dr, nr);
  6041. if (nb10 == sizeof(float)) {
  6042. for (int ir = ir0; ir < ir1; ++ir) {
  6043. // src0, src1 and dst are same shape => same indices
  6044. const int i3 = ir/(ne2*ne1);
  6045. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6046. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6047. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6048. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6049. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6050. for (int i = 0; i < ne0; i++) {
  6051. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6052. }
  6053. }
  6054. }
  6055. else {
  6056. // src1 is not contiguous
  6057. GGML_ASSERT(false);
  6058. }
  6059. }
  6060. static void ggml_compute_forward_add_f16_f16(
  6061. const struct ggml_compute_params * params,
  6062. const struct ggml_tensor * src0,
  6063. const struct ggml_tensor * src1,
  6064. struct ggml_tensor * dst) {
  6065. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6066. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6067. return;
  6068. }
  6069. const int ith = params->ith;
  6070. const int nth = params->nth;
  6071. const int nr = ggml_nrows(src0);
  6072. const int64_t ne0 = src0->ne[0];
  6073. const int64_t ne1 = src0->ne[1];
  6074. const int64_t ne2 = src0->ne[2];
  6075. const size_t nb00 = src0->nb[0];
  6076. const size_t nb01 = src0->nb[1];
  6077. const size_t nb02 = src0->nb[2];
  6078. const size_t nb03 = src0->nb[3];
  6079. const size_t nb10 = src1->nb[0];
  6080. const size_t nb11 = src1->nb[1];
  6081. const size_t nb12 = src1->nb[2];
  6082. const size_t nb13 = src1->nb[3];
  6083. const size_t nb0 = dst->nb[0];
  6084. const size_t nb1 = dst->nb[1];
  6085. const size_t nb2 = dst->nb[2];
  6086. const size_t nb3 = dst->nb[3];
  6087. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6088. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6089. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6090. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6091. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6092. // rows per thread
  6093. const int dr = (nr + nth - 1)/nth;
  6094. // row range for this thread
  6095. const int ir0 = dr*ith;
  6096. const int ir1 = MIN(ir0 + dr, nr);
  6097. if (nb10 == sizeof(ggml_fp16_t)) {
  6098. for (int ir = ir0; ir < ir1; ++ir) {
  6099. // src0, src1 and dst are same shape => same indices
  6100. const int i3 = ir/(ne2*ne1);
  6101. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6102. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6103. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6104. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6105. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6106. for (int i = 0; i < ne0; i++) {
  6107. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6108. }
  6109. }
  6110. }
  6111. else {
  6112. // src1 is not contiguous
  6113. GGML_ASSERT(false);
  6114. }
  6115. }
  6116. static void ggml_compute_forward_add_q_f32(
  6117. const struct ggml_compute_params * params,
  6118. const struct ggml_tensor * src0,
  6119. const struct ggml_tensor * src1,
  6120. struct ggml_tensor * dst) {
  6121. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6122. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6123. return;
  6124. }
  6125. const int nr = ggml_nrows(src0);
  6126. const int64_t ne00 = src0->ne[0];
  6127. const int64_t ne01 = src0->ne[1];
  6128. const int64_t ne02 = src0->ne[2];
  6129. //const int64_t ne03 = src0->ne[3];
  6130. const size_t nb00 = src0->nb[0];
  6131. const size_t nb01 = src0->nb[1];
  6132. const size_t nb02 = src0->nb[2];
  6133. const size_t nb03 = src0->nb[3];
  6134. const size_t nb10 = src1->nb[0];
  6135. const size_t nb11 = src1->nb[1];
  6136. const size_t nb12 = src1->nb[2];
  6137. const size_t nb13 = src1->nb[3];
  6138. const size_t nb0 = dst->nb[0];
  6139. const size_t nb1 = dst->nb[1];
  6140. const size_t nb2 = dst->nb[2];
  6141. const size_t nb3 = dst->nb[3];
  6142. const int ith = params->ith;
  6143. const int nth = params->nth;
  6144. const enum ggml_type type = src0->type;
  6145. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6146. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  6147. // we don't support permuted src0 or src1
  6148. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6149. GGML_ASSERT(nb10 == sizeof(float));
  6150. // dst cannot be transposed or permuted
  6151. GGML_ASSERT(nb0 <= nb1);
  6152. GGML_ASSERT(nb1 <= nb2);
  6153. GGML_ASSERT(nb2 <= nb3);
  6154. GGML_ASSERT(ggml_is_quantized(src0->type));
  6155. GGML_ASSERT(dst->type == src0->type);
  6156. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6157. // rows per thread
  6158. const int dr = (nr + nth - 1)/nth;
  6159. // row range for this thread
  6160. const int ir0 = dr*ith;
  6161. const int ir1 = MIN(ir0 + dr, nr);
  6162. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6163. for (int ir = ir0; ir < ir1; ++ir) {
  6164. // src0 indices
  6165. const int i03 = ir/(ne02*ne01);
  6166. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6167. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6168. // src1 and dst are same shape as src0 => same indices
  6169. const int i13 = i03;
  6170. const int i12 = i02;
  6171. const int i11 = i01;
  6172. const int i3 = i03;
  6173. const int i2 = i02;
  6174. const int i1 = i01;
  6175. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6176. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6177. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb0));
  6178. assert(ne00 % 32 == 0);
  6179. // unquantize row from src0 to temp buffer
  6180. dequantize_row_q(src0_row, wdata, ne00);
  6181. // add src1
  6182. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6183. // quantize row to dst
  6184. quantize_row_q(wdata, dst_row, ne00);
  6185. }
  6186. }
  6187. static void ggml_compute_forward_add(
  6188. const struct ggml_compute_params * params,
  6189. const struct ggml_tensor * src0,
  6190. const struct ggml_tensor * src1,
  6191. struct ggml_tensor * dst) {
  6192. switch (src0->type) {
  6193. case GGML_TYPE_F32:
  6194. {
  6195. ggml_compute_forward_add_f32(params, src0, src1, dst);
  6196. } break;
  6197. case GGML_TYPE_F16:
  6198. {
  6199. if (src1->type == GGML_TYPE_F16) {
  6200. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  6201. }
  6202. else if (src1->type == GGML_TYPE_F32) {
  6203. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  6204. }
  6205. else {
  6206. GGML_ASSERT(false);
  6207. }
  6208. } break;
  6209. case GGML_TYPE_Q4_0:
  6210. case GGML_TYPE_Q4_1:
  6211. case GGML_TYPE_Q5_0:
  6212. case GGML_TYPE_Q5_1:
  6213. case GGML_TYPE_Q8_0:
  6214. case GGML_TYPE_Q2_K:
  6215. case GGML_TYPE_Q3_K:
  6216. case GGML_TYPE_Q4_K:
  6217. case GGML_TYPE_Q5_K:
  6218. case GGML_TYPE_Q6_K:
  6219. {
  6220. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  6221. } break;
  6222. default:
  6223. {
  6224. GGML_ASSERT(false);
  6225. } break;
  6226. }
  6227. }
  6228. // ggml_compute_forward_add1
  6229. static void ggml_compute_forward_add1_f32(
  6230. const struct ggml_compute_params * params,
  6231. const struct ggml_tensor * src0,
  6232. const struct ggml_tensor * src1,
  6233. struct ggml_tensor * dst) {
  6234. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6235. GGML_ASSERT(ggml_is_scalar(src1));
  6236. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6237. return;
  6238. }
  6239. const int ith = params->ith;
  6240. const int nth = params->nth;
  6241. const int nr = ggml_nrows(src0);
  6242. const int64_t ne0 = src0->ne[0];
  6243. const int64_t ne1 = src0->ne[1];
  6244. const int64_t ne2 = src0->ne[2];
  6245. const size_t nb00 = src0->nb[0];
  6246. const size_t nb01 = src0->nb[1];
  6247. const size_t nb02 = src0->nb[2];
  6248. const size_t nb03 = src0->nb[3];
  6249. const size_t nb0 = dst->nb[0];
  6250. const size_t nb1 = dst->nb[1];
  6251. const size_t nb2 = dst->nb[2];
  6252. const size_t nb3 = dst->nb[3];
  6253. GGML_ASSERT( nb0 == sizeof(float));
  6254. GGML_ASSERT(nb00 == sizeof(float));
  6255. // rows per thread
  6256. const int dr = (nr + nth - 1)/nth;
  6257. // row range for this thread
  6258. const int ir0 = dr*ith;
  6259. const int ir1 = MIN(ir0 + dr, nr);
  6260. for (int ir = ir0; ir < ir1; ++ir) {
  6261. // src0 and dst are same shape => same indices
  6262. const int i3 = ir/(ne2*ne1);
  6263. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6264. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6265. #ifdef GGML_USE_ACCELERATE
  6266. UNUSED(ggml_vec_add1_f32);
  6267. vDSP_vadd(
  6268. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6269. (float *) ((char *) src1->data), 0,
  6270. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6271. ne0);
  6272. #else
  6273. ggml_vec_add1_f32(ne0,
  6274. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6275. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6276. *(float *) src1->data);
  6277. #endif
  6278. }
  6279. }
  6280. static void ggml_compute_forward_add1_f16_f32(
  6281. const struct ggml_compute_params * params,
  6282. const struct ggml_tensor * src0,
  6283. const struct ggml_tensor * src1,
  6284. struct ggml_tensor * dst) {
  6285. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6286. GGML_ASSERT(ggml_is_scalar(src1));
  6287. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6288. return;
  6289. }
  6290. // scalar to add
  6291. const float v = *(float *) src1->data;
  6292. const int ith = params->ith;
  6293. const int nth = params->nth;
  6294. const int nr = ggml_nrows(src0);
  6295. const int64_t ne0 = src0->ne[0];
  6296. const int64_t ne1 = src0->ne[1];
  6297. const int64_t ne2 = src0->ne[2];
  6298. const size_t nb00 = src0->nb[0];
  6299. const size_t nb01 = src0->nb[1];
  6300. const size_t nb02 = src0->nb[2];
  6301. const size_t nb03 = src0->nb[3];
  6302. const size_t nb0 = dst->nb[0];
  6303. const size_t nb1 = dst->nb[1];
  6304. const size_t nb2 = dst->nb[2];
  6305. const size_t nb3 = dst->nb[3];
  6306. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6307. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6308. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6309. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6310. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6311. // rows per thread
  6312. const int dr = (nr + nth - 1)/nth;
  6313. // row range for this thread
  6314. const int ir0 = dr*ith;
  6315. const int ir1 = MIN(ir0 + dr, nr);
  6316. for (int ir = ir0; ir < ir1; ++ir) {
  6317. // src0 and dst are same shape => same indices
  6318. const int i3 = ir/(ne2*ne1);
  6319. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6320. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6321. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6322. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6323. for (int i = 0; i < ne0; i++) {
  6324. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6325. }
  6326. }
  6327. }
  6328. static void ggml_compute_forward_add1_f16_f16(
  6329. const struct ggml_compute_params * params,
  6330. const struct ggml_tensor * src0,
  6331. const struct ggml_tensor * src1,
  6332. struct ggml_tensor * dst) {
  6333. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6334. GGML_ASSERT(ggml_is_scalar(src1));
  6335. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6336. return;
  6337. }
  6338. // scalar to add
  6339. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6340. const int ith = params->ith;
  6341. const int nth = params->nth;
  6342. const int nr = ggml_nrows(src0);
  6343. const int64_t ne0 = src0->ne[0];
  6344. const int64_t ne1 = src0->ne[1];
  6345. const int64_t ne2 = src0->ne[2];
  6346. const size_t nb00 = src0->nb[0];
  6347. const size_t nb01 = src0->nb[1];
  6348. const size_t nb02 = src0->nb[2];
  6349. const size_t nb03 = src0->nb[3];
  6350. const size_t nb0 = dst->nb[0];
  6351. const size_t nb1 = dst->nb[1];
  6352. const size_t nb2 = dst->nb[2];
  6353. const size_t nb3 = dst->nb[3];
  6354. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6355. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6356. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6357. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6358. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6359. // rows per thread
  6360. const int dr = (nr + nth - 1)/nth;
  6361. // row range for this thread
  6362. const int ir0 = dr*ith;
  6363. const int ir1 = MIN(ir0 + dr, nr);
  6364. for (int ir = ir0; ir < ir1; ++ir) {
  6365. // src0 and dst are same shape => same indices
  6366. const int i3 = ir/(ne2*ne1);
  6367. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6368. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6369. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6370. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6371. for (int i = 0; i < ne0; i++) {
  6372. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6373. }
  6374. }
  6375. }
  6376. static void ggml_compute_forward_add1_q_f32(
  6377. const struct ggml_compute_params * params,
  6378. const struct ggml_tensor * src0,
  6379. const struct ggml_tensor * src1,
  6380. struct ggml_tensor * dst) {
  6381. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6382. GGML_ASSERT(ggml_is_scalar(src1));
  6383. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6384. return;
  6385. }
  6386. // scalar to add
  6387. const float v = *(float *) src1->data;
  6388. const int ith = params->ith;
  6389. const int nth = params->nth;
  6390. const int nr = ggml_nrows(src0);
  6391. const int64_t ne0 = src0->ne[0];
  6392. const int64_t ne1 = src0->ne[1];
  6393. const int64_t ne2 = src0->ne[2];
  6394. const size_t nb00 = src0->nb[0];
  6395. const size_t nb01 = src0->nb[1];
  6396. const size_t nb02 = src0->nb[2];
  6397. const size_t nb03 = src0->nb[3];
  6398. const size_t nb0 = dst->nb[0];
  6399. const size_t nb1 = dst->nb[1];
  6400. const size_t nb2 = dst->nb[2];
  6401. const size_t nb3 = dst->nb[3];
  6402. const enum ggml_type type = src0->type;
  6403. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6404. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  6405. // we don't support permuted src0
  6406. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6407. // dst cannot be transposed or permuted
  6408. GGML_ASSERT(nb0 <= nb1);
  6409. GGML_ASSERT(nb1 <= nb2);
  6410. GGML_ASSERT(nb2 <= nb3);
  6411. GGML_ASSERT(ggml_is_quantized(src0->type));
  6412. GGML_ASSERT(dst->type == src0->type);
  6413. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6414. // rows per thread
  6415. const int dr = (nr + nth - 1)/nth;
  6416. // row range for this thread
  6417. const int ir0 = dr*ith;
  6418. const int ir1 = MIN(ir0 + dr, nr);
  6419. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6420. for (int ir = ir0; ir < ir1; ++ir) {
  6421. // src0 and dst are same shape => same indices
  6422. const int i3 = ir/(ne2*ne1);
  6423. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6424. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6425. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6426. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6427. assert(ne0 % 32 == 0);
  6428. // unquantize row from src0 to temp buffer
  6429. dequantize_row_q(src0_row, wdata, ne0);
  6430. // add src1
  6431. ggml_vec_acc1_f32(ne0, wdata, v);
  6432. // quantize row to dst
  6433. quantize_row_q(wdata, dst_row, ne0);
  6434. }
  6435. }
  6436. static void ggml_compute_forward_add1(
  6437. const struct ggml_compute_params * params,
  6438. const struct ggml_tensor * src0,
  6439. const struct ggml_tensor * src1,
  6440. struct ggml_tensor * dst) {
  6441. switch (src0->type) {
  6442. case GGML_TYPE_F32:
  6443. {
  6444. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  6445. } break;
  6446. case GGML_TYPE_F16:
  6447. {
  6448. if (src1->type == GGML_TYPE_F16) {
  6449. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  6450. }
  6451. else if (src1->type == GGML_TYPE_F32) {
  6452. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  6453. }
  6454. else {
  6455. GGML_ASSERT(false);
  6456. }
  6457. } break;
  6458. case GGML_TYPE_Q4_0:
  6459. case GGML_TYPE_Q4_1:
  6460. case GGML_TYPE_Q5_0:
  6461. case GGML_TYPE_Q5_1:
  6462. case GGML_TYPE_Q8_0:
  6463. case GGML_TYPE_Q8_1:
  6464. case GGML_TYPE_Q2_K:
  6465. case GGML_TYPE_Q3_K:
  6466. case GGML_TYPE_Q4_K:
  6467. case GGML_TYPE_Q5_K:
  6468. case GGML_TYPE_Q6_K:
  6469. {
  6470. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  6471. } break;
  6472. default:
  6473. {
  6474. GGML_ASSERT(false);
  6475. } break;
  6476. }
  6477. }
  6478. // ggml_compute_forward_acc
  6479. static void ggml_compute_forward_acc_f32(
  6480. const struct ggml_compute_params * params,
  6481. const struct ggml_tensor * src0,
  6482. const struct ggml_tensor * src1,
  6483. const struct ggml_tensor * opt0,
  6484. struct ggml_tensor * dst) {
  6485. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6486. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6487. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  6488. GGML_ASSERT(ggml_nelements(opt0) == 5);
  6489. // view src0 and dst with these strides and data offset inbytes during acc
  6490. // nb0 is implicitely element_size because src0 and dst are contiguous
  6491. size_t nb1 = ((int32_t *) opt0->data)[0];
  6492. size_t nb2 = ((int32_t *) opt0->data)[1];
  6493. size_t nb3 = ((int32_t *) opt0->data)[2];
  6494. size_t offset = ((int32_t *) opt0->data)[3];
  6495. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  6496. if (!inplace && (params->type == GGML_TASK_INIT)) {
  6497. // memcpy needs to be synchronized across threads to avoid race conditions.
  6498. // => do it in INIT phase
  6499. memcpy(
  6500. ((char *) dst->data),
  6501. ((char *) src0->data),
  6502. ggml_nbytes(dst));
  6503. }
  6504. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6505. return;
  6506. }
  6507. const int ith = params->ith;
  6508. const int nth = params->nth;
  6509. const int nr = ggml_nrows(src1);
  6510. const int nc = src1->ne[0];
  6511. const int64_t ne10 = src1->ne[0];
  6512. const int64_t ne11 = src1->ne[1];
  6513. const int64_t ne12 = src1->ne[2];
  6514. const int64_t ne13 = src1->ne[3];
  6515. const size_t nb10 = src1->nb[0];
  6516. const size_t nb11 = src1->nb[1];
  6517. const size_t nb12 = src1->nb[2];
  6518. const size_t nb13 = src1->nb[3];
  6519. // src0 and dst as viewed during acc
  6520. const size_t nb0 = ggml_element_size(src0);
  6521. const size_t nb00 = nb0;
  6522. const size_t nb01 = nb1;
  6523. const size_t nb02 = nb2;
  6524. const size_t nb03 = nb3;
  6525. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6526. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6527. GGML_ASSERT(nb10 == sizeof(float));
  6528. // rows per thread
  6529. const int dr = (nr + nth - 1)/nth;
  6530. // row range for this thread
  6531. const int ir0 = dr*ith;
  6532. const int ir1 = MIN(ir0 + dr, nr);
  6533. for (int ir = ir0; ir < ir1; ++ir) {
  6534. // src0 and dst are viewed with shape of src1 and offset
  6535. // => same indices
  6536. const int i3 = ir/(ne12*ne11);
  6537. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6538. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6539. #ifdef GGML_USE_ACCELERATE
  6540. vDSP_vadd(
  6541. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6542. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6543. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6544. #else
  6545. ggml_vec_add_f32(nc,
  6546. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6547. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6548. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6549. #endif
  6550. }
  6551. }
  6552. static void ggml_compute_forward_acc(
  6553. const struct ggml_compute_params * params,
  6554. const struct ggml_tensor * src0,
  6555. const struct ggml_tensor * src1,
  6556. const struct ggml_tensor * opt0,
  6557. struct ggml_tensor * dst) {
  6558. switch (src0->type) {
  6559. case GGML_TYPE_F32:
  6560. {
  6561. ggml_compute_forward_acc_f32(params, src0, src1, opt0, dst);
  6562. } break;
  6563. case GGML_TYPE_F16:
  6564. case GGML_TYPE_Q4_0:
  6565. case GGML_TYPE_Q4_1:
  6566. case GGML_TYPE_Q5_0:
  6567. case GGML_TYPE_Q5_1:
  6568. case GGML_TYPE_Q8_0:
  6569. case GGML_TYPE_Q8_1:
  6570. case GGML_TYPE_Q2_K:
  6571. case GGML_TYPE_Q3_K:
  6572. case GGML_TYPE_Q4_K:
  6573. case GGML_TYPE_Q5_K:
  6574. case GGML_TYPE_Q6_K:
  6575. default:
  6576. {
  6577. GGML_ASSERT(false);
  6578. } break;
  6579. }
  6580. }
  6581. // ggml_compute_forward_sub
  6582. static void ggml_compute_forward_sub_f32(
  6583. const struct ggml_compute_params * params,
  6584. const struct ggml_tensor * src0,
  6585. const struct ggml_tensor * src1,
  6586. struct ggml_tensor * dst) {
  6587. assert(params->ith == 0);
  6588. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6589. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6590. return;
  6591. }
  6592. const int nr = ggml_nrows(src0);
  6593. const int64_t ne0 = src0->ne[0];
  6594. const int64_t ne1 = src0->ne[1];
  6595. const int64_t ne2 = src0->ne[2];
  6596. const size_t nb00 = src0->nb[0];
  6597. const size_t nb01 = src0->nb[1];
  6598. const size_t nb02 = src0->nb[2];
  6599. const size_t nb03 = src0->nb[3];
  6600. const size_t nb10 = src1->nb[0];
  6601. const size_t nb11 = src1->nb[1];
  6602. const size_t nb12 = src1->nb[2];
  6603. const size_t nb13 = src1->nb[3];
  6604. const size_t nb0 = dst->nb[0];
  6605. const size_t nb1 = dst->nb[1];
  6606. const size_t nb2 = dst->nb[2];
  6607. const size_t nb3 = dst->nb[3];
  6608. GGML_ASSERT( nb0 == sizeof(float));
  6609. GGML_ASSERT(nb00 == sizeof(float));
  6610. if (nb10 == sizeof(float)) {
  6611. for (int ir = 0; ir < nr; ++ir) {
  6612. // src0, src1 and dst are same shape => same indices
  6613. const int i3 = ir/(ne2*ne1);
  6614. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6615. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6616. #ifdef GGML_USE_ACCELERATE
  6617. vDSP_vsub(
  6618. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6619. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6620. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6621. ne0);
  6622. #else
  6623. ggml_vec_sub_f32(ne0,
  6624. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6625. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6626. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6627. #endif
  6628. // }
  6629. // }
  6630. }
  6631. } else {
  6632. // src1 is not contiguous
  6633. for (int ir = 0; ir < nr; ++ir) {
  6634. // src0, src1 and dst are same shape => same indices
  6635. const int i3 = ir/(ne2*ne1);
  6636. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6637. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6638. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6639. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6640. for (int i0 = 0; i0 < ne0; i0++) {
  6641. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6642. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6643. }
  6644. }
  6645. }
  6646. }
  6647. static void ggml_compute_forward_sub(
  6648. const struct ggml_compute_params * params,
  6649. const struct ggml_tensor * src0,
  6650. const struct ggml_tensor * src1,
  6651. struct ggml_tensor * dst) {
  6652. switch (src0->type) {
  6653. case GGML_TYPE_F32:
  6654. {
  6655. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  6656. } break;
  6657. default:
  6658. {
  6659. GGML_ASSERT(false);
  6660. } break;
  6661. }
  6662. }
  6663. // ggml_compute_forward_mul
  6664. static void ggml_compute_forward_mul_f32(
  6665. const struct ggml_compute_params * params,
  6666. const struct ggml_tensor * src0,
  6667. const struct ggml_tensor * src1,
  6668. struct ggml_tensor * dst) {
  6669. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  6670. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6671. return;
  6672. }
  6673. const int ith = params->ith;
  6674. const int nth = params->nth;
  6675. #ifdef GGML_USE_CLBLAST
  6676. if (src1->backend == GGML_BACKEND_GPU) {
  6677. if (ith == 0) {
  6678. ggml_cl_mul(src0, src1, dst);
  6679. }
  6680. return;
  6681. }
  6682. #endif
  6683. const int64_t nr = ggml_nrows(src0);
  6684. const int64_t ne00 = src0->ne[0];
  6685. const int64_t ne01 = src0->ne[1];
  6686. const int64_t ne02 = src0->ne[2];
  6687. const int64_t ne10 = src1->ne[0];
  6688. const int64_t ne11 = src1->ne[1];
  6689. const int64_t ne12 = src1->ne[2];
  6690. const int64_t ne13 = src1->ne[3];
  6691. const size_t nb00 = src0->nb[0];
  6692. const size_t nb01 = src0->nb[1];
  6693. const size_t nb02 = src0->nb[2];
  6694. const size_t nb03 = src0->nb[3];
  6695. const size_t nb10 = src1->nb[0];
  6696. const size_t nb11 = src1->nb[1];
  6697. const size_t nb12 = src1->nb[2];
  6698. const size_t nb13 = src1->nb[3];
  6699. const size_t nb0 = dst->nb[0];
  6700. const size_t nb1 = dst->nb[1];
  6701. const size_t nb2 = dst->nb[2];
  6702. const size_t nb3 = dst->nb[3];
  6703. GGML_ASSERT( nb0 == sizeof(float));
  6704. GGML_ASSERT(nb00 == sizeof(float));
  6705. GGML_ASSERT(ne00 == ne10);
  6706. if (nb10 == sizeof(float)) {
  6707. for (int64_t ir = ith; ir < nr; ir += nth) {
  6708. // src0 and dst are same shape => same indices
  6709. const int64_t i03 = ir/(ne02*ne01);
  6710. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6711. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6712. const int64_t i13 = i03 % ne13;
  6713. const int64_t i12 = i02 % ne12;
  6714. const int64_t i11 = i01 % ne11;
  6715. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6716. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6717. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6718. #ifdef GGML_USE_ACCELERATE
  6719. UNUSED(ggml_vec_mul_f32);
  6720. vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  6721. #else
  6722. ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  6723. #endif
  6724. // }
  6725. // }
  6726. }
  6727. } else {
  6728. // src1 is not contiguous
  6729. for (int64_t ir = ith; ir < nr; ir += nth) {
  6730. // src0 and dst are same shape => same indices
  6731. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6732. const int64_t i03 = ir/(ne02*ne01);
  6733. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6734. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6735. const int64_t i13 = i03 % ne13;
  6736. const int64_t i12 = i02 % ne12;
  6737. const int64_t i11 = i01 % ne11;
  6738. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6739. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6740. for (int64_t i0 = 0; i0 < ne00; i0++) {
  6741. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  6742. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  6743. }
  6744. }
  6745. }
  6746. }
  6747. static void ggml_compute_forward_mul(
  6748. const struct ggml_compute_params * params,
  6749. const struct ggml_tensor * src0,
  6750. const struct ggml_tensor * src1,
  6751. struct ggml_tensor * dst) {
  6752. switch (src0->type) {
  6753. case GGML_TYPE_F32:
  6754. {
  6755. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  6756. } break;
  6757. default:
  6758. {
  6759. GGML_ASSERT(false);
  6760. } break;
  6761. }
  6762. }
  6763. // ggml_compute_forward_div
  6764. static void ggml_compute_forward_div_f32(
  6765. const struct ggml_compute_params * params,
  6766. const struct ggml_tensor * src0,
  6767. const struct ggml_tensor * src1,
  6768. struct ggml_tensor * dst) {
  6769. assert(params->ith == 0);
  6770. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6771. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6772. return;
  6773. }
  6774. const int nr = ggml_nrows(src0);
  6775. const int64_t ne0 = src0->ne[0];
  6776. const int64_t ne1 = src0->ne[1];
  6777. const int64_t ne2 = src0->ne[2];
  6778. const size_t nb00 = src0->nb[0];
  6779. const size_t nb01 = src0->nb[1];
  6780. const size_t nb02 = src0->nb[2];
  6781. const size_t nb03 = src0->nb[3];
  6782. const size_t nb10 = src1->nb[0];
  6783. const size_t nb11 = src1->nb[1];
  6784. const size_t nb12 = src1->nb[2];
  6785. const size_t nb13 = src1->nb[3];
  6786. const size_t nb0 = dst->nb[0];
  6787. const size_t nb1 = dst->nb[1];
  6788. const size_t nb2 = dst->nb[2];
  6789. const size_t nb3 = dst->nb[3];
  6790. GGML_ASSERT( nb0 == sizeof(float));
  6791. GGML_ASSERT(nb00 == sizeof(float));
  6792. if (nb10 == sizeof(float)) {
  6793. for (int ir = 0; ir < nr; ++ir) {
  6794. // src0, src1 and dst are same shape => same indices
  6795. const int i3 = ir/(ne2*ne1);
  6796. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6797. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6798. #ifdef GGML_USE_ACCELERATE
  6799. vDSP_vdiv(
  6800. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6801. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6802. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6803. ne0);
  6804. #else
  6805. ggml_vec_div_f32(ne0,
  6806. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6807. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6808. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6809. #endif
  6810. // }
  6811. // }
  6812. }
  6813. } else {
  6814. // src1 is not contiguous
  6815. for (int ir = 0; ir < nr; ++ir) {
  6816. // src0, src1 and dst are same shape => same indices
  6817. const int i3 = ir/(ne2*ne1);
  6818. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6819. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6820. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6821. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6822. for (int i0 = 0; i0 < ne0; i0++) {
  6823. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6824. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  6825. }
  6826. }
  6827. }
  6828. }
  6829. static void ggml_compute_forward_div(
  6830. const struct ggml_compute_params * params,
  6831. const struct ggml_tensor * src0,
  6832. const struct ggml_tensor * src1,
  6833. struct ggml_tensor * dst) {
  6834. switch (src0->type) {
  6835. case GGML_TYPE_F32:
  6836. {
  6837. ggml_compute_forward_div_f32(params, src0, src1, dst);
  6838. } break;
  6839. default:
  6840. {
  6841. GGML_ASSERT(false);
  6842. } break;
  6843. }
  6844. }
  6845. // ggml_compute_forward_sqr
  6846. static void ggml_compute_forward_sqr_f32(
  6847. const struct ggml_compute_params * params,
  6848. const struct ggml_tensor * src0,
  6849. struct ggml_tensor * dst) {
  6850. assert(params->ith == 0);
  6851. assert(ggml_are_same_shape(src0, dst));
  6852. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6853. return;
  6854. }
  6855. const int n = ggml_nrows(src0);
  6856. const int nc = src0->ne[0];
  6857. assert( dst->nb[0] == sizeof(float));
  6858. assert(src0->nb[0] == sizeof(float));
  6859. for (int i = 0; i < n; i++) {
  6860. ggml_vec_sqr_f32(nc,
  6861. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6862. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6863. }
  6864. }
  6865. static void ggml_compute_forward_sqr(
  6866. const struct ggml_compute_params * params,
  6867. const struct ggml_tensor * src0,
  6868. struct ggml_tensor * dst) {
  6869. switch (src0->type) {
  6870. case GGML_TYPE_F32:
  6871. {
  6872. ggml_compute_forward_sqr_f32(params, src0, dst);
  6873. } break;
  6874. default:
  6875. {
  6876. GGML_ASSERT(false);
  6877. } break;
  6878. }
  6879. }
  6880. // ggml_compute_forward_sqrt
  6881. static void ggml_compute_forward_sqrt_f32(
  6882. const struct ggml_compute_params * params,
  6883. const struct ggml_tensor * src0,
  6884. struct ggml_tensor * dst) {
  6885. assert(params->ith == 0);
  6886. assert(ggml_are_same_shape(src0, dst));
  6887. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6888. return;
  6889. }
  6890. const int n = ggml_nrows(src0);
  6891. const int nc = src0->ne[0];
  6892. assert( dst->nb[0] == sizeof(float));
  6893. assert(src0->nb[0] == sizeof(float));
  6894. for (int i = 0; i < n; i++) {
  6895. ggml_vec_sqrt_f32(nc,
  6896. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6897. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6898. }
  6899. }
  6900. static void ggml_compute_forward_sqrt(
  6901. const struct ggml_compute_params * params,
  6902. const struct ggml_tensor * src0,
  6903. struct ggml_tensor * dst) {
  6904. switch (src0->type) {
  6905. case GGML_TYPE_F32:
  6906. {
  6907. ggml_compute_forward_sqrt_f32(params, src0, dst);
  6908. } break;
  6909. default:
  6910. {
  6911. GGML_ASSERT(false);
  6912. } break;
  6913. }
  6914. }
  6915. // ggml_compute_forward_log
  6916. static void ggml_compute_forward_log_f32(
  6917. const struct ggml_compute_params * params,
  6918. const struct ggml_tensor * src0,
  6919. struct ggml_tensor * dst) {
  6920. GGML_ASSERT(params->ith == 0);
  6921. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6922. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6923. return;
  6924. }
  6925. const int n = ggml_nrows(src0);
  6926. const int nc = src0->ne[0];
  6927. GGML_ASSERT( dst->nb[0] == sizeof(float));
  6928. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6929. for (int i = 0; i < n; i++) {
  6930. ggml_vec_log_f32(nc,
  6931. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6932. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6933. }
  6934. }
  6935. static void ggml_compute_forward_log(
  6936. const struct ggml_compute_params * params,
  6937. const struct ggml_tensor * src0,
  6938. struct ggml_tensor * dst) {
  6939. switch (src0->type) {
  6940. case GGML_TYPE_F32:
  6941. {
  6942. ggml_compute_forward_log_f32(params, src0, dst);
  6943. } break;
  6944. default:
  6945. {
  6946. GGML_ASSERT(false);
  6947. } break;
  6948. }
  6949. }
  6950. // ggml_compute_forward_sum
  6951. static void ggml_compute_forward_sum_f32(
  6952. const struct ggml_compute_params * params,
  6953. const struct ggml_tensor * src0,
  6954. struct ggml_tensor * dst) {
  6955. assert(params->ith == 0);
  6956. assert(ggml_is_scalar(dst));
  6957. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6958. return;
  6959. }
  6960. assert(ggml_is_scalar(dst));
  6961. assert(src0->nb[0] == sizeof(float));
  6962. const int64_t ne00 = src0->ne[0];
  6963. const int64_t ne01 = src0->ne[1];
  6964. const int64_t ne02 = src0->ne[2];
  6965. const int64_t ne03 = src0->ne[3];
  6966. const size_t nb01 = src0->nb[1];
  6967. const size_t nb02 = src0->nb[2];
  6968. const size_t nb03 = src0->nb[3];
  6969. ggml_float sum = 0;
  6970. ggml_float row_sum = 0;
  6971. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6972. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6973. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6974. ggml_vec_sum_ggf(ne00,
  6975. &row_sum,
  6976. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6977. sum += row_sum;
  6978. }
  6979. }
  6980. }
  6981. ((float *) dst->data)[0] = sum;
  6982. }
  6983. static void ggml_compute_forward_sum(
  6984. const struct ggml_compute_params * params,
  6985. const struct ggml_tensor * src0,
  6986. struct ggml_tensor * dst) {
  6987. switch (src0->type) {
  6988. case GGML_TYPE_F32:
  6989. {
  6990. ggml_compute_forward_sum_f32(params, src0, dst);
  6991. } break;
  6992. default:
  6993. {
  6994. GGML_ASSERT(false);
  6995. } break;
  6996. }
  6997. }
  6998. // ggml_compute_forward_sum_rows
  6999. static void ggml_compute_forward_sum_rows_f32(
  7000. const struct ggml_compute_params * params,
  7001. const struct ggml_tensor * src0,
  7002. struct ggml_tensor * dst) {
  7003. GGML_ASSERT(params->ith == 0);
  7004. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7005. return;
  7006. }
  7007. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7008. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7009. const int64_t ne00 = src0->ne[0];
  7010. const int64_t ne01 = src0->ne[1];
  7011. const int64_t ne02 = src0->ne[2];
  7012. const int64_t ne03 = src0->ne[3];
  7013. const int64_t ne0 = dst->ne[0];
  7014. const int64_t ne1 = dst->ne[1];
  7015. const int64_t ne2 = dst->ne[2];
  7016. const int64_t ne3 = dst->ne[3];
  7017. GGML_ASSERT(ne0 == 1);
  7018. GGML_ASSERT(ne1 == ne01);
  7019. GGML_ASSERT(ne2 == ne02);
  7020. GGML_ASSERT(ne3 == ne03);
  7021. const size_t nb01 = src0->nb[1];
  7022. const size_t nb02 = src0->nb[2];
  7023. const size_t nb03 = src0->nb[3];
  7024. const size_t nb1 = dst->nb[1];
  7025. const size_t nb2 = dst->nb[2];
  7026. const size_t nb3 = dst->nb[3];
  7027. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7028. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7029. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7030. float* src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7031. float* dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7032. float row_sum = 0;
  7033. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7034. dst_row[0] = row_sum;
  7035. }
  7036. }
  7037. }
  7038. }
  7039. static void ggml_compute_forward_sum_rows(
  7040. const struct ggml_compute_params * params,
  7041. const struct ggml_tensor * src0,
  7042. struct ggml_tensor * dst) {
  7043. switch (src0->type) {
  7044. case GGML_TYPE_F32:
  7045. {
  7046. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  7047. } break;
  7048. default:
  7049. {
  7050. GGML_ASSERT(false);
  7051. } break;
  7052. }
  7053. }
  7054. // ggml_compute_forward_mean
  7055. static void ggml_compute_forward_mean_f32(
  7056. const struct ggml_compute_params * params,
  7057. const struct ggml_tensor * src0,
  7058. struct ggml_tensor * dst) {
  7059. assert(params->ith == 0);
  7060. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7061. return;
  7062. }
  7063. assert(src0->nb[0] == sizeof(float));
  7064. const int64_t ne00 = src0->ne[0];
  7065. const int64_t ne01 = src0->ne[1];
  7066. const int64_t ne02 = src0->ne[2];
  7067. const int64_t ne03 = src0->ne[3];
  7068. const size_t nb01 = src0->nb[1];
  7069. const size_t nb02 = src0->nb[2];
  7070. const size_t nb03 = src0->nb[3];
  7071. const int64_t ne0 = dst->ne[0];
  7072. const int64_t ne1 = dst->ne[1];
  7073. const int64_t ne2 = dst->ne[2];
  7074. const int64_t ne3 = dst->ne[3];
  7075. assert(ne0 == 1);
  7076. assert(ne1 == ne01);
  7077. assert(ne2 == ne02);
  7078. assert(ne3 == ne03);
  7079. UNUSED(ne0);
  7080. UNUSED(ne1);
  7081. UNUSED(ne2);
  7082. UNUSED(ne3);
  7083. const size_t nb1 = dst->nb[1];
  7084. const size_t nb2 = dst->nb[2];
  7085. const size_t nb3 = dst->nb[3];
  7086. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7087. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7088. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7089. ggml_vec_sum_f32(ne00,
  7090. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7091. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7092. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7093. }
  7094. }
  7095. }
  7096. }
  7097. static void ggml_compute_forward_mean(
  7098. const struct ggml_compute_params * params,
  7099. const struct ggml_tensor * src0,
  7100. struct ggml_tensor * dst) {
  7101. switch (src0->type) {
  7102. case GGML_TYPE_F32:
  7103. {
  7104. ggml_compute_forward_mean_f32(params, src0, dst);
  7105. } break;
  7106. default:
  7107. {
  7108. GGML_ASSERT(false);
  7109. } break;
  7110. }
  7111. }
  7112. // ggml_compute_forward_repeat
  7113. static void ggml_compute_forward_repeat_f32(
  7114. const struct ggml_compute_params * params,
  7115. const struct ggml_tensor * src0,
  7116. struct ggml_tensor * dst) {
  7117. GGML_ASSERT(params->ith == 0);
  7118. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7119. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7120. return;
  7121. }
  7122. const int64_t ne0 = dst->ne[0];
  7123. const int64_t ne1 = dst->ne[1];
  7124. const int64_t ne2 = dst->ne[2];
  7125. const int64_t ne3 = dst->ne[3];
  7126. const int64_t ne00 = src0->ne[0];
  7127. const int64_t ne01 = src0->ne[1];
  7128. const int64_t ne02 = src0->ne[2];
  7129. const int64_t ne03 = src0->ne[3];
  7130. const size_t nb0 = dst->nb[0];
  7131. const size_t nb1 = dst->nb[1];
  7132. const size_t nb2 = dst->nb[2];
  7133. const size_t nb3 = dst->nb[3];
  7134. const size_t nb00 = src0->nb[0];
  7135. const size_t nb01 = src0->nb[1];
  7136. const size_t nb02 = src0->nb[2];
  7137. const size_t nb03 = src0->nb[3];
  7138. // guaranteed to be an integer due to the check in ggml_can_repeat
  7139. const int nr0 = (int)(ne0/ne00);
  7140. const int nr1 = (int)(ne1/ne01);
  7141. const int nr2 = (int)(ne2/ne02);
  7142. const int nr3 = (int)(ne3/ne03);
  7143. // TODO: support for transposed / permuted tensors
  7144. GGML_ASSERT(nb0 == sizeof(float));
  7145. GGML_ASSERT(nb00 == sizeof(float));
  7146. // TODO: maybe this is not optimal?
  7147. for (int i3 = 0; i3 < nr3; i3++) {
  7148. for (int k3 = 0; k3 < ne03; k3++) {
  7149. for (int i2 = 0; i2 < nr2; i2++) {
  7150. for (int k2 = 0; k2 < ne02; k2++) {
  7151. for (int i1 = 0; i1 < nr1; i1++) {
  7152. for (int k1 = 0; k1 < ne01; k1++) {
  7153. for (int i0 = 0; i0 < nr0; i0++) {
  7154. ggml_vec_cpy_f32(ne00,
  7155. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7156. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7157. }
  7158. }
  7159. }
  7160. }
  7161. }
  7162. }
  7163. }
  7164. }
  7165. static void ggml_compute_forward_repeat(
  7166. const struct ggml_compute_params * params,
  7167. const struct ggml_tensor * src0,
  7168. struct ggml_tensor * dst) {
  7169. switch (src0->type) {
  7170. case GGML_TYPE_F32:
  7171. {
  7172. ggml_compute_forward_repeat_f32(params, src0, dst);
  7173. } break;
  7174. default:
  7175. {
  7176. GGML_ASSERT(false);
  7177. } break;
  7178. }
  7179. }
  7180. // ggml_compute_forward_abs
  7181. static void ggml_compute_forward_abs_f32(
  7182. const struct ggml_compute_params * params,
  7183. const struct ggml_tensor * src0,
  7184. struct ggml_tensor * dst) {
  7185. assert(params->ith == 0);
  7186. assert(ggml_are_same_shape(src0, dst));
  7187. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7188. return;
  7189. }
  7190. const int n = ggml_nrows(src0);
  7191. const int nc = src0->ne[0];
  7192. assert(dst->nb[0] == sizeof(float));
  7193. assert(src0->nb[0] == sizeof(float));
  7194. for (int i = 0; i < n; i++) {
  7195. ggml_vec_abs_f32(nc,
  7196. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7197. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7198. }
  7199. }
  7200. static void ggml_compute_forward_abs(
  7201. const struct ggml_compute_params * params,
  7202. const struct ggml_tensor * src0,
  7203. struct ggml_tensor * dst) {
  7204. switch (src0->type) {
  7205. case GGML_TYPE_F32:
  7206. {
  7207. ggml_compute_forward_abs_f32(params, src0, dst);
  7208. } break;
  7209. default:
  7210. {
  7211. GGML_ASSERT(false);
  7212. } break;
  7213. }
  7214. }
  7215. // ggml_compute_forward_sgn
  7216. static void ggml_compute_forward_sgn_f32(
  7217. const struct ggml_compute_params * params,
  7218. const struct ggml_tensor * src0,
  7219. struct ggml_tensor * dst) {
  7220. assert(params->ith == 0);
  7221. assert(ggml_are_same_shape(src0, dst));
  7222. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7223. return;
  7224. }
  7225. const int n = ggml_nrows(src0);
  7226. const int nc = src0->ne[0];
  7227. assert(dst->nb[0] == sizeof(float));
  7228. assert(src0->nb[0] == sizeof(float));
  7229. for (int i = 0; i < n; i++) {
  7230. ggml_vec_sgn_f32(nc,
  7231. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7232. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7233. }
  7234. }
  7235. static void ggml_compute_forward_sgn(
  7236. const struct ggml_compute_params * params,
  7237. const struct ggml_tensor * src0,
  7238. struct ggml_tensor * dst) {
  7239. switch (src0->type) {
  7240. case GGML_TYPE_F32:
  7241. {
  7242. ggml_compute_forward_sgn_f32(params, src0, dst);
  7243. } break;
  7244. default:
  7245. {
  7246. GGML_ASSERT(false);
  7247. } break;
  7248. }
  7249. }
  7250. // ggml_compute_forward_neg
  7251. static void ggml_compute_forward_neg_f32(
  7252. const struct ggml_compute_params * params,
  7253. const struct ggml_tensor * src0,
  7254. struct ggml_tensor * dst) {
  7255. assert(params->ith == 0);
  7256. assert(ggml_are_same_shape(src0, dst));
  7257. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7258. return;
  7259. }
  7260. const int n = ggml_nrows(src0);
  7261. const int nc = src0->ne[0];
  7262. assert(dst->nb[0] == sizeof(float));
  7263. assert(src0->nb[0] == sizeof(float));
  7264. for (int i = 0; i < n; i++) {
  7265. ggml_vec_neg_f32(nc,
  7266. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7267. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7268. }
  7269. }
  7270. static void ggml_compute_forward_neg(
  7271. const struct ggml_compute_params * params,
  7272. const struct ggml_tensor * src0,
  7273. struct ggml_tensor * dst) {
  7274. switch (src0->type) {
  7275. case GGML_TYPE_F32:
  7276. {
  7277. ggml_compute_forward_neg_f32(params, src0, dst);
  7278. } break;
  7279. default:
  7280. {
  7281. GGML_ASSERT(false);
  7282. } break;
  7283. }
  7284. }
  7285. // ggml_compute_forward_step
  7286. static void ggml_compute_forward_step_f32(
  7287. const struct ggml_compute_params * params,
  7288. const struct ggml_tensor * src0,
  7289. struct ggml_tensor * dst) {
  7290. assert(params->ith == 0);
  7291. assert(ggml_are_same_shape(src0, dst));
  7292. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7293. return;
  7294. }
  7295. const int n = ggml_nrows(src0);
  7296. const int nc = src0->ne[0];
  7297. assert(dst->nb[0] == sizeof(float));
  7298. assert(src0->nb[0] == sizeof(float));
  7299. for (int i = 0; i < n; i++) {
  7300. ggml_vec_step_f32(nc,
  7301. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7302. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7303. }
  7304. }
  7305. static void ggml_compute_forward_step(
  7306. const struct ggml_compute_params * params,
  7307. const struct ggml_tensor * src0,
  7308. struct ggml_tensor * dst) {
  7309. switch (src0->type) {
  7310. case GGML_TYPE_F32:
  7311. {
  7312. ggml_compute_forward_step_f32(params, src0, dst);
  7313. } break;
  7314. default:
  7315. {
  7316. GGML_ASSERT(false);
  7317. } break;
  7318. }
  7319. }
  7320. // ggml_compute_forward_relu
  7321. static void ggml_compute_forward_relu_f32(
  7322. const struct ggml_compute_params * params,
  7323. const struct ggml_tensor * src0,
  7324. struct ggml_tensor * dst) {
  7325. assert(params->ith == 0);
  7326. assert(ggml_are_same_shape(src0, dst));
  7327. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7328. return;
  7329. }
  7330. const int n = ggml_nrows(src0);
  7331. const int nc = src0->ne[0];
  7332. assert(dst->nb[0] == sizeof(float));
  7333. assert(src0->nb[0] == sizeof(float));
  7334. for (int i = 0; i < n; i++) {
  7335. ggml_vec_relu_f32(nc,
  7336. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7337. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7338. }
  7339. }
  7340. static void ggml_compute_forward_relu(
  7341. const struct ggml_compute_params * params,
  7342. const struct ggml_tensor * src0,
  7343. struct ggml_tensor * dst) {
  7344. switch (src0->type) {
  7345. case GGML_TYPE_F32:
  7346. {
  7347. ggml_compute_forward_relu_f32(params, src0, dst);
  7348. } break;
  7349. default:
  7350. {
  7351. GGML_ASSERT(false);
  7352. } break;
  7353. }
  7354. }
  7355. // ggml_compute_forward_gelu
  7356. static void ggml_compute_forward_gelu_f32(
  7357. const struct ggml_compute_params * params,
  7358. const struct ggml_tensor * src0,
  7359. struct ggml_tensor * dst) {
  7360. GGML_ASSERT(ggml_is_contiguous(src0));
  7361. GGML_ASSERT(ggml_is_contiguous(dst));
  7362. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7363. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7364. return;
  7365. }
  7366. const int ith = params->ith;
  7367. const int nth = params->nth;
  7368. const int nc = src0->ne[0];
  7369. const int nr = ggml_nrows(src0);
  7370. // rows per thread
  7371. const int dr = (nr + nth - 1)/nth;
  7372. // row range for this thread
  7373. const int ir0 = dr*ith;
  7374. const int ir1 = MIN(ir0 + dr, nr);
  7375. for (int i1 = ir0; i1 < ir1; i1++) {
  7376. ggml_vec_gelu_f32(nc,
  7377. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7378. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7379. #ifndef NDEBUG
  7380. for (int k = 0; k < nc; k++) {
  7381. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7382. UNUSED(x);
  7383. assert(!isnan(x));
  7384. assert(!isinf(x));
  7385. }
  7386. #endif
  7387. }
  7388. }
  7389. static void ggml_compute_forward_gelu(
  7390. const struct ggml_compute_params * params,
  7391. const struct ggml_tensor * src0,
  7392. struct ggml_tensor * dst) {
  7393. switch (src0->type) {
  7394. case GGML_TYPE_F32:
  7395. {
  7396. ggml_compute_forward_gelu_f32(params, src0, dst);
  7397. } break;
  7398. default:
  7399. {
  7400. GGML_ASSERT(false);
  7401. } break;
  7402. }
  7403. //printf("XXXXXXXX gelu\n");
  7404. }
  7405. // ggml_compute_forward_silu
  7406. static void ggml_compute_forward_silu_f32(
  7407. const struct ggml_compute_params * params,
  7408. const struct ggml_tensor * src0,
  7409. struct ggml_tensor * dst) {
  7410. GGML_ASSERT(ggml_is_contiguous(src0));
  7411. GGML_ASSERT(ggml_is_contiguous(dst));
  7412. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7413. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7414. return;
  7415. }
  7416. const int ith = params->ith;
  7417. const int nth = params->nth;
  7418. const int nc = src0->ne[0];
  7419. const int nr = ggml_nrows(src0);
  7420. // rows per thread
  7421. const int dr = (nr + nth - 1)/nth;
  7422. // row range for this thread
  7423. const int ir0 = dr*ith;
  7424. const int ir1 = MIN(ir0 + dr, nr);
  7425. for (int i1 = ir0; i1 < ir1; i1++) {
  7426. ggml_vec_silu_f32(nc,
  7427. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7428. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7429. #ifndef NDEBUG
  7430. for (int k = 0; k < nc; k++) {
  7431. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7432. UNUSED(x);
  7433. assert(!isnan(x));
  7434. assert(!isinf(x));
  7435. }
  7436. #endif
  7437. }
  7438. }
  7439. static void ggml_compute_forward_silu(
  7440. const struct ggml_compute_params * params,
  7441. const struct ggml_tensor * src0,
  7442. struct ggml_tensor * dst) {
  7443. switch (src0->type) {
  7444. case GGML_TYPE_F32:
  7445. {
  7446. ggml_compute_forward_silu_f32(params, src0, dst);
  7447. } break;
  7448. default:
  7449. {
  7450. GGML_ASSERT(false);
  7451. } break;
  7452. }
  7453. }
  7454. // ggml_compute_forward_silu_back
  7455. static void ggml_compute_forward_silu_back_f32(
  7456. const struct ggml_compute_params * params,
  7457. const struct ggml_tensor * src0,
  7458. const struct ggml_tensor * grad,
  7459. struct ggml_tensor * dst) {
  7460. GGML_ASSERT(ggml_is_contiguous(grad));
  7461. GGML_ASSERT(ggml_is_contiguous(src0));
  7462. GGML_ASSERT(ggml_is_contiguous(dst));
  7463. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7464. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7465. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7466. return;
  7467. }
  7468. const int ith = params->ith;
  7469. const int nth = params->nth;
  7470. const int nc = src0->ne[0];
  7471. const int nr = ggml_nrows(src0);
  7472. // rows per thread
  7473. const int dr = (nr + nth - 1)/nth;
  7474. // row range for this thread
  7475. const int ir0 = dr*ith;
  7476. const int ir1 = MIN(ir0 + dr, nr);
  7477. for (int i1 = ir0; i1 < ir1; i1++) {
  7478. ggml_vec_silu_backward_f32(nc,
  7479. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7480. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7481. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7482. #ifndef NDEBUG
  7483. for (int k = 0; k < nc; k++) {
  7484. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7485. UNUSED(x);
  7486. assert(!isnan(x));
  7487. assert(!isinf(x));
  7488. }
  7489. #endif
  7490. }
  7491. }
  7492. static void ggml_compute_forward_silu_back(
  7493. const struct ggml_compute_params * params,
  7494. const struct ggml_tensor * src0,
  7495. const struct ggml_tensor * grad,
  7496. struct ggml_tensor * dst) {
  7497. switch (src0->type) {
  7498. case GGML_TYPE_F32:
  7499. {
  7500. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  7501. } break;
  7502. default:
  7503. {
  7504. GGML_ASSERT(false);
  7505. } break;
  7506. }
  7507. }
  7508. // ggml_compute_forward_norm
  7509. static void ggml_compute_forward_norm_f32(
  7510. const struct ggml_compute_params * params,
  7511. const struct ggml_tensor * src0,
  7512. struct ggml_tensor * dst) {
  7513. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7514. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7515. return;
  7516. }
  7517. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7518. const int ith = params->ith;
  7519. const int nth = params->nth;
  7520. const int64_t ne00 = src0->ne[0];
  7521. const int64_t ne01 = src0->ne[1];
  7522. const int64_t ne02 = src0->ne[2];
  7523. const int64_t ne03 = src0->ne[3];
  7524. const size_t nb01 = src0->nb[1];
  7525. const size_t nb02 = src0->nb[2];
  7526. const size_t nb03 = src0->nb[3];
  7527. const size_t nb1 = dst->nb[1];
  7528. const size_t nb2 = dst->nb[2];
  7529. const size_t nb3 = dst->nb[3];
  7530. const float eps = 1e-5f; // TODO: make this a parameter
  7531. // TODO: optimize
  7532. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7533. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7534. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7535. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7536. ggml_float sum = 0.0;
  7537. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7538. sum += (ggml_float)x[i00];
  7539. }
  7540. float mean = sum/ne00;
  7541. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7542. ggml_float sum2 = 0.0;
  7543. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7544. float v = x[i00] - mean;
  7545. y[i00] = v;
  7546. sum2 += (ggml_float)(v*v);
  7547. }
  7548. float variance = sum2/ne00;
  7549. const float scale = 1.0f/sqrtf(variance + eps);
  7550. ggml_vec_scale_f32(ne00, y, scale);
  7551. }
  7552. }
  7553. }
  7554. }
  7555. static void ggml_compute_forward_norm(
  7556. const struct ggml_compute_params * params,
  7557. const struct ggml_tensor * src0,
  7558. struct ggml_tensor * dst) {
  7559. switch (src0->type) {
  7560. case GGML_TYPE_F32:
  7561. {
  7562. ggml_compute_forward_norm_f32(params, src0, dst);
  7563. } break;
  7564. default:
  7565. {
  7566. GGML_ASSERT(false);
  7567. } break;
  7568. }
  7569. }
  7570. static void ggml_compute_forward_rms_norm_f32(
  7571. const struct ggml_compute_params * params,
  7572. const struct ggml_tensor * src0,
  7573. struct ggml_tensor * dst) {
  7574. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7575. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7576. return;
  7577. }
  7578. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7579. const int ith = params->ith;
  7580. const int nth = params->nth;
  7581. const int64_t ne00 = src0->ne[0];
  7582. const int64_t ne01 = src0->ne[1];
  7583. const int64_t ne02 = src0->ne[2];
  7584. const int64_t ne03 = src0->ne[3];
  7585. const size_t nb01 = src0->nb[1];
  7586. const size_t nb02 = src0->nb[2];
  7587. const size_t nb03 = src0->nb[3];
  7588. const size_t nb1 = dst->nb[1];
  7589. const size_t nb2 = dst->nb[2];
  7590. const size_t nb3 = dst->nb[3];
  7591. const float eps = 1e-6f; // TODO: make this a parameter
  7592. // TODO: optimize
  7593. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7594. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7595. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7596. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7597. ggml_float sum = 0.0;
  7598. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7599. sum += (ggml_float)(x[i00] * x[i00]);
  7600. }
  7601. const float mean = sum/ne00;
  7602. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7603. memcpy(y, x, ne00 * sizeof(float));
  7604. // for (int i00 = 0; i00 < ne00; i00++) {
  7605. // y[i00] = x[i00];
  7606. // }
  7607. const float scale = 1.0f/sqrtf(mean + eps);
  7608. ggml_vec_scale_f32(ne00, y, scale);
  7609. }
  7610. }
  7611. }
  7612. }
  7613. static void ggml_compute_forward_rms_norm(
  7614. const struct ggml_compute_params * params,
  7615. const struct ggml_tensor * src0,
  7616. struct ggml_tensor * dst) {
  7617. switch (src0->type) {
  7618. case GGML_TYPE_F32:
  7619. {
  7620. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  7621. } break;
  7622. default:
  7623. {
  7624. GGML_ASSERT(false);
  7625. } break;
  7626. }
  7627. }
  7628. static void ggml_compute_forward_rms_norm_back_f32(
  7629. const struct ggml_compute_params * params,
  7630. const struct ggml_tensor * src0,
  7631. const struct ggml_tensor * src1,
  7632. struct ggml_tensor * dst) {
  7633. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  7634. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7635. return;
  7636. }
  7637. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7638. const int ith = params->ith;
  7639. const int nth = params->nth;
  7640. const int64_t ne00 = src0->ne[0];
  7641. const int64_t ne01 = src0->ne[1];
  7642. const int64_t ne02 = src0->ne[2];
  7643. const int64_t ne03 = src0->ne[3];
  7644. const size_t nb01 = src0->nb[1];
  7645. const size_t nb02 = src0->nb[2];
  7646. const size_t nb03 = src0->nb[3];
  7647. const size_t nb11 = src1->nb[1];
  7648. const size_t nb12 = src1->nb[2];
  7649. const size_t nb13 = src1->nb[3];
  7650. const size_t nb1 = dst->nb[1];
  7651. const size_t nb2 = dst->nb[2];
  7652. const size_t nb3 = dst->nb[3];
  7653. const float eps = 1e-6f; // TODO: make this a parameter
  7654. // TODO: optimize
  7655. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7656. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7657. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7658. // src1 is same shape as src0 => same indices
  7659. const int64_t i11 = i01;
  7660. const int64_t i12 = i02;
  7661. const int64_t i13 = i03;
  7662. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7663. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  7664. ggml_float sum_xx = 0.0;
  7665. ggml_float sum_xdz = 0.0;
  7666. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7667. sum_xx += (ggml_float)(x[i00] * x[i00]);
  7668. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  7669. }
  7670. //const float mean = (float)(sum_xx)/ne00;
  7671. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  7672. const float sum_eps = (float)(sum_xx) + eps*ne00;
  7673. //const float mean_xdz = (float)(sum_xdz)/ne00;
  7674. // we could cache rms from forward pass to improve performance.
  7675. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  7676. //const float rms = sqrtf(mean_eps);
  7677. const float rrms = 1.0f / sqrtf(mean_eps);
  7678. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  7679. {
  7680. // z = rms_norm(x)
  7681. //
  7682. // rms_norm(src0) =
  7683. // scale(
  7684. // src0,
  7685. // div(
  7686. // 1,
  7687. // sqrt(
  7688. // add(
  7689. // scale(
  7690. // sum(
  7691. // sqr(
  7692. // src0)),
  7693. // (1.0/N)),
  7694. // eps))));
  7695. // postorder:
  7696. // ## op args grad
  7697. // 00 param src0 grad[#00]
  7698. // 01 const 1
  7699. // 02 sqr (#00) grad[#02]
  7700. // 03 sum (#02) grad[#03]
  7701. // 04 const 1/N
  7702. // 05 scale (#03, #04) grad[#05]
  7703. // 06 const eps
  7704. // 07 add (#05, #06) grad[#07]
  7705. // 08 sqrt (#07) grad[#08]
  7706. // 09 div (#01,#08) grad[#09]
  7707. // 10 scale (#00,#09) grad[#10]
  7708. //
  7709. // backward pass, given grad[#10]
  7710. // #10: scale
  7711. // grad[#00] += scale(grad[#10],#09)
  7712. // grad[#09] += sum(mul(grad[#10],#00))
  7713. // #09: div
  7714. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  7715. // #08: sqrt
  7716. // grad[#07] += mul(grad[#08], div(0.5, #08))
  7717. // #07: add
  7718. // grad[#05] += grad[#07]
  7719. // #05: scale
  7720. // grad[#03] += scale(grad[#05],#04)
  7721. // #03: sum
  7722. // grad[#02] += repeat(grad[#03], #02)
  7723. // #02:
  7724. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  7725. //
  7726. // substitute and simplify:
  7727. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7728. // grad[#02] = repeat(grad[#03], #02)
  7729. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  7730. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  7731. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  7732. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  7733. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  7734. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  7735. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  7736. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  7737. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  7738. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7739. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  7740. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  7741. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  7742. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7743. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7744. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  7745. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  7746. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  7747. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  7748. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  7749. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  7750. // a = b*c + d*e
  7751. // a = b*c*f/f + d*e*f/f
  7752. // a = (b*c*f + d*e*f)*(1/f)
  7753. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  7754. // a = (b + d*e/c)*c
  7755. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  7756. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  7757. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  7758. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  7759. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  7760. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  7761. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  7762. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  7763. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7764. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7765. }
  7766. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7767. // post-order:
  7768. // dx := x
  7769. // dx := scale(dx,-mean_xdz/mean_eps)
  7770. // dx := add(dx, dz)
  7771. // dx := scale(dx, rrms)
  7772. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7773. ggml_vec_cpy_f32 (ne00, dx, x);
  7774. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  7775. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  7776. ggml_vec_acc_f32 (ne00, dx, dz);
  7777. ggml_vec_scale_f32(ne00, dx, rrms);
  7778. }
  7779. }
  7780. }
  7781. }
  7782. static void ggml_compute_forward_rms_norm_back(
  7783. const struct ggml_compute_params * params,
  7784. const struct ggml_tensor * src0,
  7785. const struct ggml_tensor * src1,
  7786. struct ggml_tensor * dst) {
  7787. switch (src0->type) {
  7788. case GGML_TYPE_F32:
  7789. {
  7790. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  7791. } break;
  7792. default:
  7793. {
  7794. GGML_ASSERT(false);
  7795. } break;
  7796. }
  7797. }
  7798. // ggml_compute_forward_mul_mat
  7799. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7800. // helper function to determine if it is better to use BLAS or not
  7801. // for large matrices, BLAS is faster
  7802. static bool ggml_compute_forward_mul_mat_use_blas(
  7803. const struct ggml_tensor * src0,
  7804. const struct ggml_tensor * src1,
  7805. struct ggml_tensor * dst) {
  7806. //const int64_t ne00 = src0->ne[0];
  7807. //const int64_t ne01 = src0->ne[1];
  7808. const int64_t ne10 = src1->ne[0];
  7809. const int64_t ne0 = dst->ne[0];
  7810. const int64_t ne1 = dst->ne[1];
  7811. // TODO: find the optimal values for these
  7812. if (ggml_is_contiguous(src0) &&
  7813. ggml_is_contiguous(src1) &&
  7814. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  7815. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  7816. return true;
  7817. }
  7818. return false;
  7819. }
  7820. #endif
  7821. static void ggml_compute_forward_mul_mat_f32(
  7822. const struct ggml_compute_params * params,
  7823. const struct ggml_tensor * src0,
  7824. const struct ggml_tensor * src1,
  7825. struct ggml_tensor * dst) {
  7826. int64_t t0 = ggml_perf_time_us();
  7827. UNUSED(t0);
  7828. const int64_t ne00 = src0->ne[0];
  7829. const int64_t ne01 = src0->ne[1];
  7830. const int64_t ne02 = src0->ne[2];
  7831. const int64_t ne03 = src0->ne[3];
  7832. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7833. const int64_t ne10 = src1->ne[0];
  7834. #endif
  7835. const int64_t ne11 = src1->ne[1];
  7836. #ifndef NDEBUG
  7837. const int64_t ne12 = src1->ne[2];
  7838. const int64_t ne13 = src1->ne[3];
  7839. const int64_t ne0 = dst->ne[0];
  7840. const int64_t ne1 = dst->ne[1];
  7841. const int64_t ne2 = dst->ne[2];
  7842. const int64_t ne3 = dst->ne[3];
  7843. const int nb00 = src0->nb[0];
  7844. #endif
  7845. const int nb01 = src0->nb[1];
  7846. const int nb02 = src0->nb[2];
  7847. const int nb03 = src0->nb[3];
  7848. #ifndef NDEBUG
  7849. const int nb10 = src1->nb[0];
  7850. #endif
  7851. const int nb11 = src1->nb[1];
  7852. const int nb12 = src1->nb[2];
  7853. const int nb13 = src1->nb[3];
  7854. const int nb0 = dst->nb[0];
  7855. const int nb1 = dst->nb[1];
  7856. const int nb2 = dst->nb[2];
  7857. const int nb3 = dst->nb[3];
  7858. const int ith = params->ith;
  7859. const int nth = params->nth;
  7860. assert(ne02 == ne12);
  7861. assert(ne03 == ne13);
  7862. assert(ne2 == ne12);
  7863. assert(ne3 == ne13);
  7864. // we don't support permuted src0 or src1
  7865. assert(nb00 == sizeof(float));
  7866. assert(nb10 == sizeof(float));
  7867. // dst cannot be transposed or permuted
  7868. assert(nb0 == sizeof(float));
  7869. assert(nb0 <= nb1);
  7870. assert(nb1 <= nb2);
  7871. assert(nb2 <= nb3);
  7872. assert(ne0 == ne01);
  7873. assert(ne1 == ne11);
  7874. assert(ne2 == ne02);
  7875. assert(ne3 == ne03);
  7876. // nb01 >= nb00 - src0 is not transposed
  7877. // compute by src0 rows
  7878. #if defined(GGML_USE_CLBLAST)
  7879. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  7880. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7881. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7882. }
  7883. return;
  7884. }
  7885. #endif
  7886. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7887. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  7888. if (params->ith != 0) {
  7889. return;
  7890. }
  7891. if (params->type == GGML_TASK_INIT) {
  7892. return;
  7893. }
  7894. if (params->type == GGML_TASK_FINALIZE) {
  7895. return;
  7896. }
  7897. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7898. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7899. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  7900. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  7901. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  7902. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  7903. ne11, ne01, ne10,
  7904. 1.0f, y, ne10,
  7905. x, ne00,
  7906. 0.0f, d, ne01);
  7907. }
  7908. }
  7909. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  7910. return;
  7911. }
  7912. #endif
  7913. if (params->type == GGML_TASK_INIT) {
  7914. return;
  7915. }
  7916. if (params->type == GGML_TASK_FINALIZE) {
  7917. return;
  7918. }
  7919. // parallelize by src0 rows using ggml_vec_dot_f32
  7920. // total rows in src0
  7921. const int nr = ne01*ne02*ne03;
  7922. // rows per thread
  7923. const int dr = (nr + nth - 1)/nth;
  7924. // row range for this thread
  7925. const int ir0 = dr*ith;
  7926. const int ir1 = MIN(ir0 + dr, nr);
  7927. for (int ir = ir0; ir < ir1; ++ir) {
  7928. // src0 indices
  7929. const int i03 = ir/(ne02*ne01);
  7930. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7931. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7932. for (int64_t ic = 0; ic < ne11; ++ic) {
  7933. // src1 indices
  7934. const int i13 = i03;
  7935. const int i12 = i02;
  7936. const int i11 = ic;
  7937. // dst indices
  7938. const int i0 = i01;
  7939. const int i1 = i11;
  7940. const int i2 = i02;
  7941. const int i3 = i03;
  7942. ggml_vec_dot_f32(ne00,
  7943. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7944. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  7945. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  7946. }
  7947. }
  7948. //int64_t t1 = ggml_perf_time_us();
  7949. //static int64_t acc = 0;
  7950. //acc += t1 - t0;
  7951. //if (t1 - t0 > 10) {
  7952. // printf("\n");
  7953. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  7954. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  7955. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  7956. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  7957. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  7958. //}
  7959. }
  7960. static void ggml_compute_forward_mul_mat_f16_f32(
  7961. const struct ggml_compute_params * params,
  7962. const struct ggml_tensor * src0,
  7963. const struct ggml_tensor * src1,
  7964. struct ggml_tensor * dst) {
  7965. int64_t t0 = ggml_perf_time_us();
  7966. UNUSED(t0);
  7967. const int64_t ne00 = src0->ne[0];
  7968. const int64_t ne01 = src0->ne[1];
  7969. const int64_t ne02 = src0->ne[2];
  7970. const int64_t ne03 = src0->ne[3];
  7971. const int64_t ne10 = src1->ne[0];
  7972. const int64_t ne11 = src1->ne[1];
  7973. const int64_t ne12 = src1->ne[2];
  7974. const int64_t ne13 = src1->ne[3];
  7975. const int64_t ne0 = dst->ne[0];
  7976. const int64_t ne1 = dst->ne[1];
  7977. const int64_t ne2 = dst->ne[2];
  7978. const int64_t ne3 = dst->ne[3];
  7979. //const int64_t ne = ne0*ne1*ne2*ne3;
  7980. const int nb00 = src0->nb[0];
  7981. const int nb01 = src0->nb[1];
  7982. const int nb02 = src0->nb[2];
  7983. const int nb03 = src0->nb[3];
  7984. const int nb10 = src1->nb[0];
  7985. const int nb11 = src1->nb[1];
  7986. const int nb12 = src1->nb[2];
  7987. const int nb13 = src1->nb[3];
  7988. const int nb0 = dst->nb[0];
  7989. const int nb1 = dst->nb[1];
  7990. const int nb2 = dst->nb[2];
  7991. const int nb3 = dst->nb[3];
  7992. const int ith = params->ith;
  7993. const int nth = params->nth;
  7994. GGML_ASSERT(ne02 == ne12);
  7995. GGML_ASSERT(ne03 == ne13);
  7996. GGML_ASSERT(ne2 == ne12);
  7997. GGML_ASSERT(ne3 == ne13);
  7998. // TODO: we don't support permuted src0
  7999. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8000. // dst cannot be transposed or permuted
  8001. GGML_ASSERT(nb0 == sizeof(float));
  8002. GGML_ASSERT(nb0 <= nb1);
  8003. GGML_ASSERT(nb1 <= nb2);
  8004. GGML_ASSERT(nb2 <= nb3);
  8005. GGML_ASSERT(ne0 == ne01);
  8006. GGML_ASSERT(ne1 == ne11);
  8007. GGML_ASSERT(ne2 == ne02);
  8008. GGML_ASSERT(ne3 == ne03);
  8009. // nb01 >= nb00 - src0 is not transposed
  8010. // compute by src0 rows
  8011. #if defined(GGML_USE_CLBLAST)
  8012. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8013. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8014. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8015. }
  8016. return;
  8017. }
  8018. #endif
  8019. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8020. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8021. GGML_ASSERT(nb10 == sizeof(float));
  8022. if (params->ith != 0) {
  8023. return;
  8024. }
  8025. if (params->type == GGML_TASK_INIT) {
  8026. return;
  8027. }
  8028. if (params->type == GGML_TASK_FINALIZE) {
  8029. return;
  8030. }
  8031. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8032. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8033. float * const wdata = params->wdata;
  8034. {
  8035. size_t id = 0;
  8036. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8037. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  8038. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  8039. }
  8040. }
  8041. assert(id*sizeof(float) <= params->wsize);
  8042. }
  8043. const float * x = wdata;
  8044. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  8045. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  8046. // zT = y * xT
  8047. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8048. ne11, ne01, ne10,
  8049. 1.0f, y, ne10,
  8050. x, ne00,
  8051. 0.0f, d, ne01);
  8052. }
  8053. }
  8054. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  8055. return;
  8056. }
  8057. #endif
  8058. if (params->type == GGML_TASK_INIT) {
  8059. ggml_fp16_t * const wdata = params->wdata;
  8060. size_t id = 0;
  8061. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8062. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8063. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8064. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  8065. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  8066. }
  8067. }
  8068. }
  8069. }
  8070. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  8071. return;
  8072. }
  8073. if (params->type == GGML_TASK_FINALIZE) {
  8074. return;
  8075. }
  8076. // fp16 -> half the size, so divide by 2
  8077. // TODO: do not support transposed src1
  8078. assert(nb10/2 == sizeof(ggml_fp16_t));
  8079. // parallelize by src0 rows using ggml_vec_dot_f16
  8080. // total rows in src0
  8081. const int nr = ne01*ne02*ne03;
  8082. // rows per thread
  8083. const int dr = (nr + nth - 1)/nth;
  8084. // row range for this thread
  8085. const int ir0 = dr*ith;
  8086. const int ir1 = MIN(ir0 + dr, nr);
  8087. ggml_fp16_t * wdata = params->wdata;
  8088. for (int ir = ir0; ir < ir1; ++ir) {
  8089. // src0 indices
  8090. const int i03 = ir/(ne02*ne01);
  8091. const int i02 = (ir - i03*ne02*ne01)/ne01;
  8092. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8093. const int i13 = i03;
  8094. const int i12 = i02;
  8095. const int i0 = i01;
  8096. const int i2 = i02;
  8097. const int i3 = i03;
  8098. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  8099. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  8100. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  8101. for (int64_t ic = 0; ic < ne11; ++ic) {
  8102. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  8103. }
  8104. }
  8105. //int64_t t1 = ggml_time_us();
  8106. //static int64_t acc = 0;
  8107. //acc += t1 - t0;
  8108. //if (t1 - t0 > 10) {
  8109. // printf("\n");
  8110. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8111. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8112. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8113. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8114. //}
  8115. }
  8116. static void ggml_compute_forward_mul_mat_q_f32(
  8117. const struct ggml_compute_params * params,
  8118. const struct ggml_tensor * src0,
  8119. const struct ggml_tensor * src1,
  8120. struct ggml_tensor * dst) {
  8121. int64_t t0 = ggml_perf_time_us();
  8122. UNUSED(t0);
  8123. const int64_t ne00 = src0->ne[0];
  8124. const int64_t ne01 = src0->ne[1];
  8125. const int64_t ne02 = src0->ne[2];
  8126. const int64_t ne03 = src0->ne[3];
  8127. const int64_t ne10 = src1->ne[0];
  8128. const int64_t ne11 = src1->ne[1];
  8129. const int64_t ne12 = src1->ne[2];
  8130. const int64_t ne13 = src1->ne[3];
  8131. const int64_t ne0 = dst->ne[0];
  8132. const int64_t ne1 = dst->ne[1];
  8133. const int64_t ne2 = dst->ne[2];
  8134. const int64_t ne3 = dst->ne[3];
  8135. const int nb00 = src0->nb[0];
  8136. const int nb01 = src0->nb[1];
  8137. const int nb02 = src0->nb[2];
  8138. const int nb03 = src0->nb[3];
  8139. const int nb10 = src1->nb[0];
  8140. const int nb11 = src1->nb[1];
  8141. const int nb12 = src1->nb[2];
  8142. const int nb13 = src1->nb[3];
  8143. const int nb0 = dst->nb[0];
  8144. const int nb1 = dst->nb[1];
  8145. const int nb2 = dst->nb[2];
  8146. const int nb3 = dst->nb[3];
  8147. const int ith = params->ith;
  8148. const int nth = params->nth;
  8149. GGML_ASSERT(ne02 == ne12);
  8150. GGML_ASSERT(ne03 == ne13);
  8151. GGML_ASSERT(ne2 == ne12);
  8152. GGML_ASSERT(ne3 == ne13);
  8153. const enum ggml_type type = src0->type;
  8154. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  8155. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  8156. enum ggml_type const vec_dot_type = quantize_fns[type].vec_dot_type;
  8157. // we don't support permuted src0 or src1
  8158. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  8159. GGML_ASSERT(nb10 == sizeof(float));
  8160. // dst cannot be transposed or permuted
  8161. GGML_ASSERT(nb0 == sizeof(float));
  8162. GGML_ASSERT(nb0 <= nb1);
  8163. GGML_ASSERT(nb1 <= nb2);
  8164. GGML_ASSERT(nb2 <= nb3);
  8165. GGML_ASSERT(ne0 == ne01);
  8166. GGML_ASSERT(ne1 == ne11);
  8167. GGML_ASSERT(ne2 == ne02);
  8168. GGML_ASSERT(ne3 == ne03);
  8169. // nb01 >= nb00 - src0 is not transposed
  8170. // compute by src0 rows
  8171. #if defined(GGML_USE_CLBLAST)
  8172. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8173. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8174. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8175. }
  8176. return;
  8177. }
  8178. #endif
  8179. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8180. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8181. if (params->ith != 0) {
  8182. return;
  8183. }
  8184. if (params->type == GGML_TASK_INIT) {
  8185. return;
  8186. }
  8187. if (params->type == GGML_TASK_FINALIZE) {
  8188. return;
  8189. }
  8190. float * const wdata = params->wdata;
  8191. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  8192. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8193. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8194. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  8195. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  8196. {
  8197. size_t id = 0;
  8198. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8199. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  8200. id += ne00;
  8201. }
  8202. assert(id*sizeof(float) <= params->wsize);
  8203. }
  8204. const float * x = wdata;
  8205. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8206. ne11, ne01, ne10,
  8207. 1.0f, y, ne10,
  8208. x, ne00,
  8209. 0.0f, d, ne01);
  8210. }
  8211. }
  8212. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8213. return;
  8214. }
  8215. #endif
  8216. if (params->type == GGML_TASK_INIT) {
  8217. char * wdata = params->wdata;
  8218. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8219. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8220. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8221. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8222. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8223. wdata += row_size;
  8224. }
  8225. }
  8226. }
  8227. return;
  8228. }
  8229. if (params->type == GGML_TASK_FINALIZE) {
  8230. return;
  8231. }
  8232. // parallelize by src0 rows using ggml_vec_dot_q
  8233. // total rows in src0
  8234. const int nr = ne01*ne02*ne03;
  8235. // rows per thread
  8236. const int dr = (nr + nth - 1)/nth;
  8237. // row range for this thread
  8238. const int ir0 = dr*ith;
  8239. const int ir1 = MIN(ir0 + dr, nr);
  8240. void * wdata = params->wdata;
  8241. const size_t row_size = ne00*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8242. for (int ir = ir0; ir < ir1; ++ir) {
  8243. // src0 indices
  8244. const int i03 = ir/(ne02*ne01);
  8245. const int i02 = (ir - i03*ne02*ne01)/ne01;
  8246. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8247. const int i13 = i03;
  8248. const int i12 = i02;
  8249. const int i0 = i01;
  8250. const int i2 = i02;
  8251. const int i3 = i03;
  8252. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  8253. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  8254. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  8255. assert(ne00 % 32 == 0);
  8256. for (int64_t ic = 0; ic < ne11; ++ic) {
  8257. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  8258. }
  8259. }
  8260. //int64_t t1 = ggml_time_us();
  8261. //static int64_t acc = 0;
  8262. //acc += t1 - t0;
  8263. //if (t1 - t0 > 10) {
  8264. // printf("\n");
  8265. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8266. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8267. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8268. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8269. //}
  8270. }
  8271. static void ggml_compute_forward_mul_mat(
  8272. const struct ggml_compute_params * params,
  8273. const struct ggml_tensor * src0,
  8274. const struct ggml_tensor * src1,
  8275. struct ggml_tensor * dst) {
  8276. switch (src0->type) {
  8277. case GGML_TYPE_Q4_0:
  8278. case GGML_TYPE_Q4_1:
  8279. case GGML_TYPE_Q5_0:
  8280. case GGML_TYPE_Q5_1:
  8281. case GGML_TYPE_Q8_0:
  8282. case GGML_TYPE_Q8_1:
  8283. case GGML_TYPE_Q2_K:
  8284. case GGML_TYPE_Q3_K:
  8285. case GGML_TYPE_Q4_K:
  8286. case GGML_TYPE_Q5_K:
  8287. case GGML_TYPE_Q6_K:
  8288. {
  8289. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  8290. } break;
  8291. case GGML_TYPE_F16:
  8292. {
  8293. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  8294. } break;
  8295. case GGML_TYPE_F32:
  8296. {
  8297. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  8298. } break;
  8299. default:
  8300. {
  8301. GGML_ASSERT(false);
  8302. } break;
  8303. }
  8304. }
  8305. // ggml_compute_forward_scale
  8306. static void ggml_compute_forward_scale_f32(
  8307. const struct ggml_compute_params * params,
  8308. const struct ggml_tensor * src0,
  8309. const struct ggml_tensor * src1,
  8310. struct ggml_tensor * dst) {
  8311. GGML_ASSERT(ggml_is_contiguous(src0));
  8312. GGML_ASSERT(ggml_is_contiguous(dst));
  8313. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8314. GGML_ASSERT(ggml_is_scalar(src1));
  8315. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8316. return;
  8317. }
  8318. // scale factor
  8319. const float v = *(float *) src1->data;
  8320. const int ith = params->ith;
  8321. const int nth = params->nth;
  8322. const int nc = src0->ne[0];
  8323. const int nr = ggml_nrows(src0);
  8324. // rows per thread
  8325. const int dr = (nr + nth - 1)/nth;
  8326. // row range for this thread
  8327. const int ir0 = dr*ith;
  8328. const int ir1 = MIN(ir0 + dr, nr);
  8329. const size_t nb01 = src0->nb[1];
  8330. const size_t nb1 = dst->nb[1];
  8331. for (int i1 = ir0; i1 < ir1; i1++) {
  8332. if (dst->data != src0->data) {
  8333. // src0 is same shape as dst => same indices
  8334. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8335. }
  8336. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8337. }
  8338. }
  8339. static void ggml_compute_forward_scale(
  8340. const struct ggml_compute_params * params,
  8341. const struct ggml_tensor * src0,
  8342. const struct ggml_tensor * src1,
  8343. struct ggml_tensor * dst) {
  8344. switch (src0->type) {
  8345. case GGML_TYPE_F32:
  8346. {
  8347. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  8348. } break;
  8349. default:
  8350. {
  8351. GGML_ASSERT(false);
  8352. } break;
  8353. }
  8354. }
  8355. // ggml_compute_forward_set
  8356. static void ggml_compute_forward_set_f32(
  8357. const struct ggml_compute_params * params,
  8358. const struct ggml_tensor * src0,
  8359. const struct ggml_tensor * src1,
  8360. const struct ggml_tensor * opt0,
  8361. struct ggml_tensor * dst) {
  8362. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8363. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8364. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  8365. GGML_ASSERT(ggml_nelements(opt0) == 5);
  8366. // view src0 and dst with these strides and data offset inbytes during set
  8367. // nb0 is implicitely element_size because src0 and dst are contiguous
  8368. size_t nb1 = ((int32_t *) opt0->data)[0];
  8369. size_t nb2 = ((int32_t *) opt0->data)[1];
  8370. size_t nb3 = ((int32_t *) opt0->data)[2];
  8371. size_t offset = ((int32_t *) opt0->data)[3];
  8372. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  8373. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8374. // memcpy needs to be synchronized across threads to avoid race conditions.
  8375. // => do it in INIT phase
  8376. memcpy(
  8377. ((char *) dst->data),
  8378. ((char *) src0->data),
  8379. ggml_nbytes(dst));
  8380. }
  8381. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8382. return;
  8383. }
  8384. const int ith = params->ith;
  8385. const int nth = params->nth;
  8386. const int nr = ggml_nrows(src1);
  8387. const int nc = src1->ne[0];
  8388. const int64_t ne10 = src1->ne[0];
  8389. const int64_t ne11 = src1->ne[1];
  8390. const int64_t ne12 = src1->ne[2];
  8391. const int64_t ne13 = src1->ne[3];
  8392. const size_t nb10 = src1->nb[0];
  8393. const size_t nb11 = src1->nb[1];
  8394. const size_t nb12 = src1->nb[2];
  8395. const size_t nb13 = src1->nb[3];
  8396. // src0 and dst as viewed during set
  8397. const size_t nb0 = ggml_element_size(src0);
  8398. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8399. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8400. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8401. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8402. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 < ggml_nbytes(dst));
  8403. GGML_ASSERT(nb10 == sizeof(float));
  8404. // rows per thread
  8405. const int dr = (nr + nth - 1)/nth;
  8406. // row range for this thread
  8407. const int ir0 = dr*ith;
  8408. const int ir1 = MIN(ir0 + dr, nr);
  8409. for (int ir = ir0; ir < ir1; ++ir) {
  8410. // src0 and dst are viewed with shape of src1 and offset
  8411. // => same indices
  8412. const int i3 = ir/(ne12*ne11);
  8413. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8414. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8415. ggml_vec_cpy_f32(nc,
  8416. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8417. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8418. }
  8419. }
  8420. static void ggml_compute_forward_set(
  8421. const struct ggml_compute_params * params,
  8422. const struct ggml_tensor * src0,
  8423. const struct ggml_tensor * src1,
  8424. const struct ggml_tensor * opt0,
  8425. struct ggml_tensor * dst) {
  8426. switch (src0->type) {
  8427. case GGML_TYPE_F32:
  8428. {
  8429. ggml_compute_forward_set_f32(params, src0, src1, opt0, dst);
  8430. } break;
  8431. case GGML_TYPE_F16:
  8432. case GGML_TYPE_Q4_0:
  8433. case GGML_TYPE_Q4_1:
  8434. case GGML_TYPE_Q5_0:
  8435. case GGML_TYPE_Q5_1:
  8436. case GGML_TYPE_Q8_0:
  8437. case GGML_TYPE_Q8_1:
  8438. case GGML_TYPE_Q2_K:
  8439. case GGML_TYPE_Q3_K:
  8440. case GGML_TYPE_Q4_K:
  8441. case GGML_TYPE_Q5_K:
  8442. case GGML_TYPE_Q6_K:
  8443. default:
  8444. {
  8445. GGML_ASSERT(false);
  8446. } break;
  8447. }
  8448. }
  8449. // ggml_compute_forward_cpy
  8450. static void ggml_compute_forward_cpy(
  8451. const struct ggml_compute_params * params,
  8452. const struct ggml_tensor * src0,
  8453. struct ggml_tensor * dst) {
  8454. ggml_compute_forward_dup(params, src0, dst);
  8455. }
  8456. // ggml_compute_forward_cont
  8457. static void ggml_compute_forward_cont(
  8458. const struct ggml_compute_params * params,
  8459. const struct ggml_tensor * src0,
  8460. struct ggml_tensor * dst) {
  8461. ggml_compute_forward_dup(params, src0, dst);
  8462. }
  8463. // ggml_compute_forward_reshape
  8464. static void ggml_compute_forward_reshape(
  8465. const struct ggml_compute_params * params,
  8466. const struct ggml_tensor * src0,
  8467. struct ggml_tensor * dst) {
  8468. // NOP
  8469. UNUSED(params);
  8470. UNUSED(src0);
  8471. UNUSED(dst);
  8472. }
  8473. // ggml_compute_forward_view
  8474. static void ggml_compute_forward_view(
  8475. const struct ggml_compute_params * params,
  8476. const struct ggml_tensor * src0) {
  8477. // NOP
  8478. UNUSED(params);
  8479. UNUSED(src0);
  8480. }
  8481. // ggml_compute_forward_permute
  8482. static void ggml_compute_forward_permute(
  8483. const struct ggml_compute_params * params,
  8484. const struct ggml_tensor * src0) {
  8485. // NOP
  8486. UNUSED(params);
  8487. UNUSED(src0);
  8488. }
  8489. // ggml_compute_forward_transpose
  8490. static void ggml_compute_forward_transpose(
  8491. const struct ggml_compute_params * params,
  8492. const struct ggml_tensor * src0) {
  8493. // NOP
  8494. UNUSED(params);
  8495. UNUSED(src0);
  8496. }
  8497. // ggml_compute_forward_get_rows
  8498. static void ggml_compute_forward_get_rows_q(
  8499. const struct ggml_compute_params * params,
  8500. const struct ggml_tensor * src0,
  8501. const struct ggml_tensor * src1,
  8502. struct ggml_tensor * dst) {
  8503. assert(params->ith == 0);
  8504. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8505. return;
  8506. }
  8507. const int nc = src0->ne[0];
  8508. const int nr = ggml_nelements(src1);
  8509. const enum ggml_type type = src0->type;
  8510. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  8511. assert( dst->ne[0] == nc);
  8512. assert( dst->ne[1] == nr);
  8513. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  8514. for (int i = 0; i < nr; ++i) {
  8515. const int r = ((int32_t *) src1->data)[i];
  8516. dequantize_row_q(
  8517. (const void *) ((char *) src0->data + r*src0->nb[1]),
  8518. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  8519. }
  8520. }
  8521. static void ggml_compute_forward_get_rows_f16(
  8522. const struct ggml_compute_params * params,
  8523. const struct ggml_tensor * src0,
  8524. const struct ggml_tensor * src1,
  8525. struct ggml_tensor * dst) {
  8526. assert(params->ith == 0);
  8527. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8528. return;
  8529. }
  8530. const int nc = src0->ne[0];
  8531. const int nr = ggml_nelements(src1);
  8532. assert( dst->ne[0] == nc);
  8533. assert( dst->ne[1] == nr);
  8534. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8535. for (int i = 0; i < nr; ++i) {
  8536. const int r = ((int32_t *) src1->data)[i];
  8537. for (int j = 0; j < nc; ++j) {
  8538. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  8539. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  8540. }
  8541. }
  8542. }
  8543. static void ggml_compute_forward_get_rows_f32(
  8544. const struct ggml_compute_params * params,
  8545. const struct ggml_tensor * src0,
  8546. const struct ggml_tensor * src1,
  8547. struct ggml_tensor * dst) {
  8548. assert(params->ith == 0);
  8549. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8550. return;
  8551. }
  8552. const int nc = src0->ne[0];
  8553. const int nr = ggml_nelements(src1);
  8554. assert( dst->ne[0] == nc);
  8555. assert( dst->ne[1] == nr);
  8556. assert(src0->nb[0] == sizeof(float));
  8557. for (int i = 0; i < nr; ++i) {
  8558. const int r = ((int32_t *) src1->data)[i];
  8559. ggml_vec_cpy_f32(nc,
  8560. (float *) ((char *) dst->data + i*dst->nb[1]),
  8561. (float *) ((char *) src0->data + r*src0->nb[1]));
  8562. }
  8563. }
  8564. static void ggml_compute_forward_get_rows(
  8565. const struct ggml_compute_params * params,
  8566. const struct ggml_tensor * src0,
  8567. const struct ggml_tensor * src1,
  8568. struct ggml_tensor * dst) {
  8569. switch (src0->type) {
  8570. case GGML_TYPE_Q4_0:
  8571. case GGML_TYPE_Q4_1:
  8572. case GGML_TYPE_Q5_0:
  8573. case GGML_TYPE_Q5_1:
  8574. case GGML_TYPE_Q8_0:
  8575. case GGML_TYPE_Q8_1:
  8576. case GGML_TYPE_Q2_K:
  8577. case GGML_TYPE_Q3_K:
  8578. case GGML_TYPE_Q4_K:
  8579. case GGML_TYPE_Q5_K:
  8580. case GGML_TYPE_Q6_K:
  8581. {
  8582. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  8583. } break;
  8584. case GGML_TYPE_F16:
  8585. {
  8586. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  8587. } break;
  8588. case GGML_TYPE_F32:
  8589. {
  8590. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  8591. } break;
  8592. default:
  8593. {
  8594. GGML_ASSERT(false);
  8595. } break;
  8596. }
  8597. //static bool first = true;
  8598. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8599. //if (first) {
  8600. // first = false;
  8601. //} else {
  8602. // for (int k = 0; k < dst->ne[1]; ++k) {
  8603. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8604. // for (int i = 0; i < 16; ++i) {
  8605. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8606. // }
  8607. // printf("\n");
  8608. // }
  8609. // printf("\n");
  8610. // }
  8611. // printf("\n");
  8612. // exit(0);
  8613. //}
  8614. }
  8615. // ggml_compute_forward_get_rows_back
  8616. static void ggml_compute_forward_get_rows_back_f32_f16(
  8617. const struct ggml_compute_params * params,
  8618. const struct ggml_tensor * src0,
  8619. const struct ggml_tensor * src1,
  8620. const struct ggml_tensor * opt0,
  8621. struct ggml_tensor * dst) {
  8622. GGML_ASSERT(params->ith == 0);
  8623. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  8624. GGML_ASSERT(ggml_is_contiguous(opt0));
  8625. GGML_ASSERT(ggml_is_contiguous(dst));
  8626. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8627. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8628. return;
  8629. }
  8630. const int nc = src0->ne[0];
  8631. const int nr = ggml_nelements(src1);
  8632. GGML_ASSERT( dst->ne[0] == nc);
  8633. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  8634. for (int i = 0; i < nr; ++i) {
  8635. const int r = ((int32_t *) src1->data)[i];
  8636. for (int j = 0; j < nc; ++j) {
  8637. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  8638. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  8639. }
  8640. }
  8641. }
  8642. static void ggml_compute_forward_get_rows_back_f32(
  8643. const struct ggml_compute_params * params,
  8644. const struct ggml_tensor * src0,
  8645. const struct ggml_tensor * src1,
  8646. const struct ggml_tensor * opt0,
  8647. struct ggml_tensor * dst) {
  8648. GGML_ASSERT(params->ith == 0);
  8649. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  8650. GGML_ASSERT(ggml_is_contiguous(opt0));
  8651. GGML_ASSERT(ggml_is_contiguous(dst));
  8652. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8653. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8654. return;
  8655. }
  8656. const int nc = src0->ne[0];
  8657. const int nr = ggml_nelements(src1);
  8658. GGML_ASSERT( dst->ne[0] == nc);
  8659. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8660. for (int i = 0; i < nr; ++i) {
  8661. const int r = ((int32_t *) src1->data)[i];
  8662. ggml_vec_add_f32(nc,
  8663. (float *) ((char *) dst->data + r*dst->nb[1]),
  8664. (float *) ((char *) dst->data + r*dst->nb[1]),
  8665. (float *) ((char *) src0->data + i*src0->nb[1]));
  8666. }
  8667. }
  8668. static void ggml_compute_forward_get_rows_back(
  8669. const struct ggml_compute_params * params,
  8670. const struct ggml_tensor * src0,
  8671. const struct ggml_tensor * src1,
  8672. const struct ggml_tensor * opt0,
  8673. struct ggml_tensor * dst) {
  8674. switch (src0->type) {
  8675. case GGML_TYPE_F16:
  8676. {
  8677. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst);
  8678. } break;
  8679. case GGML_TYPE_F32:
  8680. {
  8681. ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst);
  8682. } break;
  8683. default:
  8684. {
  8685. GGML_ASSERT(false);
  8686. } break;
  8687. }
  8688. //static bool first = true;
  8689. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8690. //if (first) {
  8691. // first = false;
  8692. //} else {
  8693. // for (int k = 0; k < dst->ne[1]; ++k) {
  8694. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8695. // for (int i = 0; i < 16; ++i) {
  8696. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8697. // }
  8698. // printf("\n");
  8699. // }
  8700. // printf("\n");
  8701. // }
  8702. // printf("\n");
  8703. // exit(0);
  8704. //}
  8705. }
  8706. // ggml_compute_forward_diag
  8707. static void ggml_compute_forward_diag_f32(
  8708. const struct ggml_compute_params * params,
  8709. const struct ggml_tensor * src0,
  8710. struct ggml_tensor * dst) {
  8711. GGML_ASSERT(params->ith == 0);
  8712. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8713. return;
  8714. }
  8715. // TODO: handle transposed/permuted matrices
  8716. const int ne00 = src0->ne[0];
  8717. const int ne01 = src0->ne[1];
  8718. const int ne02 = src0->ne[2];
  8719. const int ne03 = src0->ne[3];
  8720. const int ne0 = dst->ne[0];
  8721. const int ne1 = dst->ne[1];
  8722. const int ne2 = dst->ne[2];
  8723. const int ne3 = dst->ne[3];
  8724. GGML_ASSERT(ne00 == ne0);
  8725. GGML_ASSERT(ne00 == ne1);
  8726. GGML_ASSERT(ne01 == 1);
  8727. GGML_ASSERT(ne02 == ne2);
  8728. GGML_ASSERT(ne03 == ne3);
  8729. const int nb00 = src0->nb[0];
  8730. //const int nb01 = src0->nb[1];
  8731. const int nb02 = src0->nb[2];
  8732. const int nb03 = src0->nb[3];
  8733. const int nb0 = dst->nb[0];
  8734. const int nb1 = dst->nb[1];
  8735. const int nb2 = dst->nb[2];
  8736. const int nb3 = dst->nb[3];
  8737. GGML_ASSERT(nb00 == sizeof(float));
  8738. GGML_ASSERT(nb0 == sizeof(float));
  8739. for (int i3 = 0; i3 < ne3; i3++) {
  8740. for (int i2 = 0; i2 < ne2; i2++) {
  8741. for (int i1 = 0; i1 < ne1; i1++) {
  8742. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  8743. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  8744. for (int i0 = 0; i0 < i1; i0++) {
  8745. d[i0] = 0;
  8746. }
  8747. d[i1] = s[i1];
  8748. for (int i0 = i1+1; i0 < ne0; i0++) {
  8749. d[i0] = 0;
  8750. }
  8751. }
  8752. }
  8753. }
  8754. }
  8755. static void ggml_compute_forward_diag(
  8756. const struct ggml_compute_params * params,
  8757. const struct ggml_tensor * src0,
  8758. struct ggml_tensor * dst) {
  8759. switch (src0->type) {
  8760. case GGML_TYPE_F32:
  8761. {
  8762. ggml_compute_forward_diag_f32(params, src0, dst);
  8763. } break;
  8764. default:
  8765. {
  8766. GGML_ASSERT(false);
  8767. } break;
  8768. }
  8769. }
  8770. // ggml_compute_forward_diag_mask_inf
  8771. static void ggml_compute_forward_diag_mask_f32(
  8772. const struct ggml_compute_params * params,
  8773. const struct ggml_tensor * src0,
  8774. const struct ggml_tensor * src1,
  8775. struct ggml_tensor * dst,
  8776. const float value) {
  8777. assert(src1->type == GGML_TYPE_I32);
  8778. assert(ggml_nelements(src1) == 2);
  8779. const int ith = params->ith;
  8780. const int nth = params->nth;
  8781. const int n_past = ((int32_t *) src1->data)[0];
  8782. const bool inplace = (bool)((int32_t *) src1->data)[1];
  8783. assert(n_past >= 0);
  8784. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8785. // memcpy needs to be synchronized across threads to avoid race conditions.
  8786. // => do it in INIT phase
  8787. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  8788. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8789. memcpy(
  8790. ((char *) dst->data),
  8791. ((char *) src0->data),
  8792. ggml_nbytes(dst));
  8793. }
  8794. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8795. return;
  8796. }
  8797. // TODO: handle transposed/permuted matrices
  8798. const int n = ggml_nrows(src0);
  8799. const int nc = src0->ne[0];
  8800. const int nr = src0->ne[1];
  8801. const int nz = n/nr;
  8802. assert( dst->nb[0] == sizeof(float));
  8803. assert(src0->nb[0] == sizeof(float));
  8804. for (int k = 0; k < nz; k++) {
  8805. for (int j = ith; j < nr; j += nth) {
  8806. for (int i = n_past; i < nc; i++) {
  8807. if (i > n_past + j) {
  8808. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  8809. }
  8810. }
  8811. }
  8812. }
  8813. }
  8814. static void ggml_compute_forward_diag_mask_inf(
  8815. const struct ggml_compute_params * params,
  8816. const struct ggml_tensor * src0,
  8817. const struct ggml_tensor * src1,
  8818. struct ggml_tensor * dst) {
  8819. switch (src0->type) {
  8820. case GGML_TYPE_F32:
  8821. {
  8822. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, -INFINITY);
  8823. } break;
  8824. default:
  8825. {
  8826. GGML_ASSERT(false);
  8827. } break;
  8828. }
  8829. }
  8830. static void ggml_compute_forward_diag_mask_zero(
  8831. const struct ggml_compute_params * params,
  8832. const struct ggml_tensor * src0,
  8833. const struct ggml_tensor * src1,
  8834. struct ggml_tensor * dst) {
  8835. switch (src0->type) {
  8836. case GGML_TYPE_F32:
  8837. {
  8838. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, 0);
  8839. } break;
  8840. default:
  8841. {
  8842. GGML_ASSERT(false);
  8843. } break;
  8844. }
  8845. }
  8846. // ggml_compute_forward_soft_max
  8847. static void ggml_compute_forward_soft_max_f32(
  8848. const struct ggml_compute_params * params,
  8849. const struct ggml_tensor * src0,
  8850. struct ggml_tensor * dst) {
  8851. GGML_ASSERT(ggml_is_contiguous(src0));
  8852. GGML_ASSERT(ggml_is_contiguous(dst));
  8853. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8854. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8855. return;
  8856. }
  8857. // TODO: handle transposed/permuted matrices
  8858. const int ith = params->ith;
  8859. const int nth = params->nth;
  8860. const int nc = src0->ne[0];
  8861. const int nr = ggml_nrows(src0);
  8862. // rows per thread
  8863. const int dr = (nr + nth - 1)/nth;
  8864. // row range for this thread
  8865. const int ir0 = dr*ith;
  8866. const int ir1 = MIN(ir0 + dr, nr);
  8867. for (int i1 = ir0; i1 < ir1; i1++) {
  8868. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  8869. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  8870. #ifndef NDEBUG
  8871. for (int i = 0; i < nc; ++i) {
  8872. //printf("p[%d] = %f\n", i, p[i]);
  8873. assert(!isnan(sp[i]));
  8874. }
  8875. #endif
  8876. float max = -INFINITY;
  8877. ggml_vec_max_f32(nc, &max, sp);
  8878. ggml_float sum = 0.0;
  8879. uint16_t scvt;
  8880. for (int i = 0; i < nc; i++) {
  8881. if (sp[i] == -INFINITY) {
  8882. dp[i] = 0.0f;
  8883. } else {
  8884. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  8885. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  8886. memcpy(&scvt, &s, sizeof(scvt));
  8887. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  8888. sum += (ggml_float)val;
  8889. dp[i] = val;
  8890. }
  8891. }
  8892. assert(sum > 0.0);
  8893. sum = 1.0/sum;
  8894. ggml_vec_scale_f32(nc, dp, sum);
  8895. #ifndef NDEBUG
  8896. for (int i = 0; i < nc; ++i) {
  8897. assert(!isnan(dp[i]));
  8898. assert(!isinf(dp[i]));
  8899. }
  8900. #endif
  8901. }
  8902. }
  8903. static void ggml_compute_forward_soft_max(
  8904. const struct ggml_compute_params * params,
  8905. const struct ggml_tensor * src0,
  8906. struct ggml_tensor * dst) {
  8907. switch (src0->type) {
  8908. case GGML_TYPE_F32:
  8909. {
  8910. ggml_compute_forward_soft_max_f32(params, src0, dst);
  8911. } break;
  8912. default:
  8913. {
  8914. GGML_ASSERT(false);
  8915. } break;
  8916. }
  8917. }
  8918. // ggml_compute_forward_alibi
  8919. static void ggml_compute_forward_alibi_f32(
  8920. const struct ggml_compute_params * params,
  8921. const struct ggml_tensor * src0,
  8922. const struct ggml_tensor * src1,
  8923. struct ggml_tensor * dst) {
  8924. assert(params->ith == 0);
  8925. assert(src1->type == GGML_TYPE_I32);
  8926. assert(ggml_nelements(src1) == 3);
  8927. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8928. return;
  8929. }
  8930. const int n_past = ((int32_t *) src1->data)[0];
  8931. const int n_head = ((int32_t *) src1->data)[1];
  8932. const float max_bias = ((float *) src1->data)[2];
  8933. assert(n_past >= 0);
  8934. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  8935. const int ne1 = src0->ne[1]; // seq_len_without_past
  8936. //const int ne2 = src0->ne[2]; // n_head -> this is k
  8937. //const int ne3 = src0->ne[3]; // 1 -> bsz
  8938. const int n = ggml_nrows(src0);
  8939. const int ne2_ne3 = n/ne1; // ne2*ne3
  8940. const int nb0 = src0->nb[0];
  8941. const int nb1 = src0->nb[1];
  8942. const int nb2 = src0->nb[2];
  8943. //const int nb3 = src0->nb[3];
  8944. assert(nb0 == sizeof(float));
  8945. assert(ne1 + n_past == ne0); (void) n_past;
  8946. // add alibi to src0 (KQ_scaled)
  8947. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  8948. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  8949. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  8950. for (int i = 0; i < ne0; i++) {
  8951. for (int j = 0; j < ne1; j++) {
  8952. for (int k = 0; k < ne2_ne3; k++) {
  8953. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  8954. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  8955. // TODO: k*nb2 or k*nb3
  8956. float m_k;
  8957. if (k < n_heads_log2_floor) {
  8958. m_k = powf(m0, k + 1);
  8959. } else {
  8960. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  8961. }
  8962. pdst[0] = (i-ne0+1) * m_k + src[0];
  8963. }
  8964. }
  8965. }
  8966. }
  8967. static void ggml_compute_forward_alibi_f16(
  8968. const struct ggml_compute_params * params,
  8969. const struct ggml_tensor * src0,
  8970. const struct ggml_tensor * src1,
  8971. struct ggml_tensor * dst) {
  8972. assert(params->ith == 0);
  8973. assert(src1->type == GGML_TYPE_I32);
  8974. assert(ggml_nelements(src1) == 3);
  8975. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8976. return;
  8977. }
  8978. const int n_past = ((int32_t *) src1->data)[0];
  8979. const int n_head = ((int32_t *) src1->data)[1];
  8980. const float max_bias = ((float *) src1->data)[2];
  8981. assert(n_past >= 0);
  8982. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  8983. const int ne1 = src0->ne[1]; // seq_len_without_past
  8984. //const int ne2 = src0->ne[2]; // n_head -> this is k
  8985. //const int ne3 = src0->ne[3]; // 1 -> bsz
  8986. const int n = ggml_nrows(src0);
  8987. const int ne2_ne3 = n/ne1; // ne2*ne3
  8988. const int nb0 = src0->nb[0];
  8989. const int nb1 = src0->nb[1];
  8990. const int nb2 = src0->nb[2];
  8991. //const int nb3 = src0->nb[3];
  8992. assert(nb0 == sizeof(ggml_fp16_t));
  8993. assert(ne1 + n_past == ne0); (void) n_past;
  8994. // add alibi to src0 (KQ_scaled)
  8995. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  8996. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  8997. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  8998. for (int i = 0; i < ne0; i++) {
  8999. for (int j = 0; j < ne1; j++) {
  9000. for (int k = 0; k < ne2_ne3; k++) {
  9001. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9002. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9003. // TODO: k*nb2 or k*nb3
  9004. float m_k;
  9005. if (k < n_heads_log2_floor) {
  9006. m_k = powf(m0, k + 1);
  9007. } else {
  9008. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9009. }
  9010. // we return F32
  9011. pdst[0] = (i-ne0+1) * m_k + GGML_FP16_TO_FP32(src[0]);
  9012. }
  9013. }
  9014. }
  9015. }
  9016. static void ggml_compute_forward_alibi(
  9017. const struct ggml_compute_params * params,
  9018. const struct ggml_tensor * src0,
  9019. const struct ggml_tensor * src1,
  9020. struct ggml_tensor * dst) {
  9021. switch (src0->type) {
  9022. case GGML_TYPE_F16:
  9023. {
  9024. ggml_compute_forward_alibi_f16(params, src0, src1, dst);
  9025. } break;
  9026. case GGML_TYPE_F32:
  9027. {
  9028. ggml_compute_forward_alibi_f32(params, src0, src1, dst);
  9029. } break;
  9030. case GGML_TYPE_Q4_0:
  9031. case GGML_TYPE_Q4_1:
  9032. case GGML_TYPE_Q5_0:
  9033. case GGML_TYPE_Q5_1:
  9034. case GGML_TYPE_Q8_0:
  9035. case GGML_TYPE_Q8_1:
  9036. case GGML_TYPE_Q2_K:
  9037. case GGML_TYPE_Q3_K:
  9038. case GGML_TYPE_Q4_K:
  9039. case GGML_TYPE_Q5_K:
  9040. case GGML_TYPE_Q6_K:
  9041. case GGML_TYPE_Q8_K:
  9042. case GGML_TYPE_I8:
  9043. case GGML_TYPE_I16:
  9044. case GGML_TYPE_I32:
  9045. case GGML_TYPE_COUNT:
  9046. {
  9047. GGML_ASSERT(false);
  9048. } break;
  9049. }
  9050. }
  9051. // ggml_compute_forward_clamp
  9052. static void ggml_compute_forward_clamp_f32(
  9053. const struct ggml_compute_params * params,
  9054. const struct ggml_tensor * src0,
  9055. const struct ggml_tensor * src1,
  9056. struct ggml_tensor * dst) {
  9057. assert(params->ith == 0);
  9058. assert(src1->type == GGML_TYPE_I32);
  9059. assert(ggml_nelements(src1) == 2);
  9060. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9061. return;
  9062. }
  9063. const int min = ((float *) src1->data)[0];
  9064. const int max = ((float *) src1->data)[1];
  9065. const int ith = params->ith;
  9066. const int nth = params->nth;
  9067. const int n = ggml_nrows(src0);
  9068. const int nc = src0->ne[0];
  9069. const size_t nb00 = src0->nb[0];
  9070. const size_t nb01 = src0->nb[1];
  9071. const size_t nb0 = dst->nb[0];
  9072. const size_t nb1 = dst->nb[1];
  9073. GGML_ASSERT( nb0 == sizeof(float));
  9074. GGML_ASSERT(nb00 == sizeof(float));
  9075. for (int j = ith; j < n; j += nth) {
  9076. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9077. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9078. for (int i = 0; i < nc; i++) {
  9079. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9080. }
  9081. }
  9082. }
  9083. static void ggml_compute_forward_clamp(
  9084. const struct ggml_compute_params * params,
  9085. const struct ggml_tensor * src0,
  9086. const struct ggml_tensor * src1,
  9087. struct ggml_tensor * dst) {
  9088. switch (src0->type) {
  9089. case GGML_TYPE_F32:
  9090. {
  9091. ggml_compute_forward_clamp_f32(params, src0, src1, dst);
  9092. } break;
  9093. case GGML_TYPE_F16:
  9094. case GGML_TYPE_Q4_0:
  9095. case GGML_TYPE_Q4_1:
  9096. case GGML_TYPE_Q5_0:
  9097. case GGML_TYPE_Q5_1:
  9098. case GGML_TYPE_Q8_0:
  9099. case GGML_TYPE_Q8_1:
  9100. case GGML_TYPE_Q2_K:
  9101. case GGML_TYPE_Q3_K:
  9102. case GGML_TYPE_Q4_K:
  9103. case GGML_TYPE_Q5_K:
  9104. case GGML_TYPE_Q6_K:
  9105. case GGML_TYPE_Q8_K:
  9106. case GGML_TYPE_I8:
  9107. case GGML_TYPE_I16:
  9108. case GGML_TYPE_I32:
  9109. case GGML_TYPE_COUNT:
  9110. {
  9111. GGML_ASSERT(false);
  9112. } break;
  9113. }
  9114. }
  9115. // ggml_compute_forward_rope
  9116. static void ggml_compute_forward_rope_f32(
  9117. const struct ggml_compute_params * params,
  9118. const struct ggml_tensor * src0,
  9119. const struct ggml_tensor * src1,
  9120. struct ggml_tensor * dst) {
  9121. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9122. GGML_ASSERT(ggml_nelements(src1) == 3);
  9123. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9124. return;
  9125. }
  9126. const int n_past = ((int32_t *) src1->data)[0];
  9127. const int n_dims = ((int32_t *) src1->data)[1];
  9128. const int mode = ((int32_t *) src1->data)[2];
  9129. assert(n_past >= 0);
  9130. const size_t nb00 = src0->nb[0];
  9131. const size_t nb01 = src0->nb[1];
  9132. const size_t nb02 = src0->nb[2];
  9133. const size_t nb03 = src0->nb[3];
  9134. const int64_t ne0 = dst->ne[0];
  9135. const int64_t ne1 = dst->ne[1];
  9136. const int64_t ne2 = dst->ne[2];
  9137. const int64_t ne3 = dst->ne[3];
  9138. const size_t nb0 = dst->nb[0];
  9139. const size_t nb1 = dst->nb[1];
  9140. const size_t nb2 = dst->nb[2];
  9141. const size_t nb3 = dst->nb[3];
  9142. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9143. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9144. GGML_ASSERT(nb00 == sizeof(float));
  9145. const int ith = params->ith;
  9146. const int nth = params->nth;
  9147. const int nr = ggml_nrows(dst);
  9148. GGML_ASSERT(n_dims <= ne0);
  9149. GGML_ASSERT(n_dims % 2 == 0);
  9150. // rows per thread
  9151. const int dr = (nr + nth - 1)/nth;
  9152. // row range for this thread
  9153. const int ir0 = dr*ith;
  9154. const int ir1 = MIN(ir0 + dr, nr);
  9155. // row index used to determine which thread to use
  9156. int ir = 0;
  9157. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9158. const bool is_neox = mode & 2;
  9159. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9160. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9161. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9162. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9163. if (ir++ < ir0) continue;
  9164. if (ir > ir1) break;
  9165. float theta = (float)p;
  9166. if (!is_neox) {
  9167. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9168. const float cos_theta = cosf(theta);
  9169. const float sin_theta = sinf(theta);
  9170. theta *= theta_scale;
  9171. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9172. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9173. const float x0 = src[0];
  9174. const float x1 = src[1];
  9175. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9176. dst_data[1] = x0*sin_theta + x1*cos_theta;
  9177. }
  9178. } else {
  9179. // TODO: this is probably wrong, but I can't figure it out ..
  9180. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9181. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9182. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9183. const float cos_theta = cosf(theta);
  9184. const float sin_theta = sinf(theta);
  9185. theta *= theta_scale;
  9186. const int64_t i0 = ib*n_dims + ic/2;
  9187. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9188. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9189. const float x0 = src[0];
  9190. const float x1 = src[n_dims/2];
  9191. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9192. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9193. }
  9194. }
  9195. }
  9196. }
  9197. }
  9198. }
  9199. }
  9200. static void ggml_compute_forward_rope_f16(
  9201. const struct ggml_compute_params * params,
  9202. const struct ggml_tensor * src0,
  9203. const struct ggml_tensor * src1,
  9204. struct ggml_tensor * dst) {
  9205. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9206. GGML_ASSERT(ggml_nelements(src1) == 3);
  9207. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9208. return;
  9209. }
  9210. const int n_past = ((int32_t *) src1->data)[0];
  9211. const int n_dims = ((int32_t *) src1->data)[1];
  9212. const int mode = ((int32_t *) src1->data)[2];
  9213. assert(n_past >= 0);
  9214. const size_t nb00 = src0->nb[0];
  9215. const size_t nb01 = src0->nb[1];
  9216. const size_t nb02 = src0->nb[2];
  9217. const size_t nb03 = src0->nb[3];
  9218. const int64_t ne0 = dst->ne[0];
  9219. const int64_t ne1 = dst->ne[1];
  9220. const int64_t ne2 = dst->ne[2];
  9221. const int64_t ne3 = dst->ne[3];
  9222. const size_t nb0 = dst->nb[0];
  9223. const size_t nb1 = dst->nb[1];
  9224. const size_t nb2 = dst->nb[2];
  9225. const size_t nb3 = dst->nb[3];
  9226. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9227. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9228. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9229. const int ith = params->ith;
  9230. const int nth = params->nth;
  9231. const int nr = ggml_nrows(dst);
  9232. GGML_ASSERT(n_dims <= ne0);
  9233. GGML_ASSERT(n_dims % 2 == 0);
  9234. // rows per thread
  9235. const int dr = (nr + nth - 1)/nth;
  9236. // row range for this thread
  9237. const int ir0 = dr*ith;
  9238. const int ir1 = MIN(ir0 + dr, nr);
  9239. // row index used to determine which thread to use
  9240. int ir = 0;
  9241. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9242. const bool is_neox = mode & 2;
  9243. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9244. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9245. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9246. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9247. if (ir++ < ir0) continue;
  9248. if (ir > ir1) break;
  9249. float theta = (float)p;
  9250. if (!is_neox) {
  9251. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9252. const float cos_theta = cosf(theta);
  9253. const float sin_theta = sinf(theta);
  9254. theta *= theta_scale;
  9255. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9256. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9257. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9258. const float x1 = GGML_FP16_TO_FP32(src[1]);
  9259. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9260. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9261. }
  9262. } else {
  9263. // TODO: this is probably wrong, but I can't figure it out ..
  9264. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9265. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9266. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9267. const float cos_theta = cosf(theta);
  9268. const float sin_theta = sinf(theta);
  9269. theta *= theta_scale;
  9270. const int64_t i0 = ib*n_dims + ic/2;
  9271. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9272. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9273. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9274. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9275. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9276. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9277. }
  9278. }
  9279. }
  9280. }
  9281. }
  9282. }
  9283. }
  9284. static void ggml_compute_forward_rope(
  9285. const struct ggml_compute_params * params,
  9286. const struct ggml_tensor * src0,
  9287. const struct ggml_tensor * src1,
  9288. struct ggml_tensor * dst) {
  9289. switch (src0->type) {
  9290. case GGML_TYPE_F16:
  9291. {
  9292. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  9293. } break;
  9294. case GGML_TYPE_F32:
  9295. {
  9296. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  9297. } break;
  9298. default:
  9299. {
  9300. GGML_ASSERT(false);
  9301. } break;
  9302. }
  9303. }
  9304. // ggml_compute_forward_rope_back
  9305. static void ggml_compute_forward_rope_back_f32(
  9306. const struct ggml_compute_params * params,
  9307. const struct ggml_tensor * src0,
  9308. const struct ggml_tensor * src1,
  9309. struct ggml_tensor * dst) {
  9310. assert(src1->type == GGML_TYPE_I32);
  9311. assert(ggml_nelements(src1) == 3);
  9312. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9313. return;
  9314. }
  9315. // y = rope(x, src1)
  9316. // dx = rope_back(dy, src1)
  9317. // src0 is dy, src1 contains options
  9318. const int n_past = ((int32_t *) src1->data)[0];
  9319. const int n_dims = ((int32_t *) src1->data)[1];
  9320. const int mode = ((int32_t *) src1->data)[2];
  9321. assert(n_past >= 0);
  9322. const size_t nb00 = src0->nb[0];
  9323. const size_t nb01 = src0->nb[1];
  9324. const size_t nb02 = src0->nb[2];
  9325. const size_t nb03 = src0->nb[3];
  9326. const int64_t ne0 = dst->ne[0];
  9327. const int64_t ne1 = dst->ne[1];
  9328. const int64_t ne2 = dst->ne[2];
  9329. const int64_t ne3 = dst->ne[3];
  9330. const size_t nb0 = dst->nb[0];
  9331. const size_t nb1 = dst->nb[1];
  9332. const size_t nb2 = dst->nb[2];
  9333. const size_t nb3 = dst->nb[3];
  9334. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9335. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9336. assert(nb0 == sizeof(float));
  9337. const int ith = params->ith;
  9338. const int nth = params->nth;
  9339. const int nr = ggml_nrows(dst);
  9340. // rows per thread
  9341. const int dr = (nr + nth - 1)/nth;
  9342. // row range for this thread
  9343. const int ir0 = dr*ith;
  9344. const int ir1 = MIN(ir0 + dr, nr);
  9345. // row index used to determine which thread to use
  9346. int ir = 0;
  9347. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9348. const bool is_neox = mode & 2;
  9349. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9350. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9351. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9352. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9353. if (ir++ < ir0) continue;
  9354. if (ir > ir1) break;
  9355. float theta = (float)p;
  9356. if (!is_neox) {
  9357. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9358. const float cos_theta = cosf(theta);
  9359. const float sin_theta = sinf(theta);
  9360. theta *= theta_scale;
  9361. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9362. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9363. const float dy0 = dy[0];
  9364. const float dy1 = dy[1];
  9365. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9366. dx[1] = - dy0*sin_theta + dy1*cos_theta;
  9367. }
  9368. } else {
  9369. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9370. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9371. const float cos_theta = cosf(theta);
  9372. const float sin_theta = sinf(theta);
  9373. theta *= theta_scale;
  9374. const int64_t i0 = ib*n_dims + ic/2;
  9375. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9376. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9377. const float dy0 = dy[0];
  9378. const float dy1 = dy[n_dims/2];
  9379. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9380. dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
  9381. }
  9382. }
  9383. }
  9384. }
  9385. }
  9386. }
  9387. }
  9388. static void ggml_compute_forward_rope_back_f16(
  9389. const struct ggml_compute_params * params,
  9390. const struct ggml_tensor * src0,
  9391. const struct ggml_tensor * src1,
  9392. struct ggml_tensor * dst) {
  9393. assert(src1->type == GGML_TYPE_I32);
  9394. assert(ggml_nelements(src1) == 3);
  9395. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9396. return;
  9397. }
  9398. // y = rope(x, src1)
  9399. // dx = rope_back(dy, src1)
  9400. // src0 is dy, src1 contains options
  9401. const int n_past = ((int32_t *) src1->data)[0];
  9402. const int n_dims = ((int32_t *) src1->data)[1];
  9403. const int mode = ((int32_t *) src1->data)[2];
  9404. assert(n_past >= 0);
  9405. const size_t nb00 = src0->nb[0];
  9406. const size_t nb01 = src0->nb[1];
  9407. const size_t nb02 = src0->nb[2];
  9408. const size_t nb03 = src0->nb[3];
  9409. const int64_t ne0 = dst->ne[0];
  9410. const int64_t ne1 = dst->ne[1];
  9411. const int64_t ne2 = dst->ne[2];
  9412. const int64_t ne3 = dst->ne[3];
  9413. const size_t nb0 = dst->nb[0];
  9414. const size_t nb1 = dst->nb[1];
  9415. const size_t nb2 = dst->nb[2];
  9416. const size_t nb3 = dst->nb[3];
  9417. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9418. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9419. assert(nb0 == sizeof(ggml_fp16_t));
  9420. const int ith = params->ith;
  9421. const int nth = params->nth;
  9422. const int nr = ggml_nrows(dst);
  9423. // rows per thread
  9424. const int dr = (nr + nth - 1)/nth;
  9425. // row range for this thread
  9426. const int ir0 = dr*ith;
  9427. const int ir1 = MIN(ir0 + dr, nr);
  9428. // row index used to determine which thread to use
  9429. int ir = 0;
  9430. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9431. const bool is_neox = mode & 2;
  9432. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9433. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9434. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9435. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9436. if (ir++ < ir0) continue;
  9437. if (ir > ir1) break;
  9438. float theta = (float)p;
  9439. if (!is_neox) {
  9440. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9441. const float cos_theta = cosf(theta);
  9442. const float sin_theta = sinf(theta);
  9443. theta *= theta_scale;
  9444. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9445. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9446. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  9447. const float dy1 = GGML_FP16_TO_FP32(dy[1]);
  9448. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  9449. dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  9450. }
  9451. } else {
  9452. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9453. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9454. const float cos_theta = cosf(theta);
  9455. const float sin_theta = sinf(theta);
  9456. theta *= theta_scale;
  9457. const int64_t i0 = ib*n_dims + ic/2;
  9458. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9459. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9460. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  9461. const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
  9462. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  9463. dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  9464. }
  9465. }
  9466. }
  9467. }
  9468. }
  9469. }
  9470. }
  9471. static void ggml_compute_forward_rope_back(
  9472. const struct ggml_compute_params * params,
  9473. const struct ggml_tensor * src0,
  9474. const struct ggml_tensor * src1,
  9475. struct ggml_tensor * dst) {
  9476. switch (src0->type) {
  9477. case GGML_TYPE_F16:
  9478. {
  9479. ggml_compute_forward_rope_back_f16(params, src0, src1, dst);
  9480. } break;
  9481. case GGML_TYPE_F32:
  9482. {
  9483. ggml_compute_forward_rope_back_f32(params, src0, src1, dst);
  9484. } break;
  9485. default:
  9486. {
  9487. GGML_ASSERT(false);
  9488. } break;
  9489. }
  9490. }
  9491. // ggml_compute_forward_conv_1d_1s
  9492. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  9493. const struct ggml_compute_params * params,
  9494. const struct ggml_tensor * src0,
  9495. const struct ggml_tensor * src1,
  9496. struct ggml_tensor * dst) {
  9497. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9498. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9499. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9500. int64_t t0 = ggml_perf_time_us();
  9501. UNUSED(t0);
  9502. const int64_t ne00 = src0->ne[0];
  9503. const int64_t ne01 = src0->ne[1];
  9504. const int64_t ne02 = src0->ne[2];
  9505. //const int64_t ne03 = src0->ne[3];
  9506. const int64_t ne10 = src1->ne[0];
  9507. const int64_t ne11 = src1->ne[1];
  9508. //const int64_t ne12 = src1->ne[2];
  9509. //const int64_t ne13 = src1->ne[3];
  9510. //const int64_t ne0 = dst->ne[0];
  9511. //const int64_t ne1 = dst->ne[1];
  9512. //const int64_t ne2 = dst->ne[2];
  9513. //const int64_t ne3 = dst->ne[3];
  9514. //const int64_t ne = ne0*ne1*ne2*ne3;
  9515. const int nb00 = src0->nb[0];
  9516. const int nb01 = src0->nb[1];
  9517. const int nb02 = src0->nb[2];
  9518. //const int nb03 = src0->nb[3];
  9519. const int nb10 = src1->nb[0];
  9520. const int nb11 = src1->nb[1];
  9521. //const int nb12 = src1->nb[2];
  9522. //const int nb13 = src1->nb[3];
  9523. //const int nb0 = dst->nb[0];
  9524. const int nb1 = dst->nb[1];
  9525. //const int nb2 = dst->nb[2];
  9526. //const int nb3 = dst->nb[3];
  9527. const int ith = params->ith;
  9528. const int nth = params->nth;
  9529. const int nk = ne00;
  9530. const int nh = nk/2;
  9531. const int ew0 = ggml_up32(ne01);
  9532. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9533. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9534. GGML_ASSERT(nb10 == sizeof(float));
  9535. if (params->type == GGML_TASK_INIT) {
  9536. // TODO: fix this memset (wsize is overestimated)
  9537. memset(params->wdata, 0, params->wsize);
  9538. // prepare kernel data (src0)
  9539. {
  9540. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9541. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9542. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9543. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  9544. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  9545. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9546. dst_data[i00*ew0 + i01] = src[i00];
  9547. }
  9548. }
  9549. }
  9550. }
  9551. // prepare source data (src1)
  9552. {
  9553. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  9554. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9555. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9556. ggml_fp16_t * dst_data = wdata;
  9557. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9558. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  9559. }
  9560. }
  9561. }
  9562. return;
  9563. }
  9564. if (params->type == GGML_TASK_FINALIZE) {
  9565. return;
  9566. }
  9567. // total rows in dst
  9568. const int nr = ne02;
  9569. // rows per thread
  9570. const int dr = (nr + nth - 1)/nth;
  9571. // row range for this thread
  9572. const int ir0 = dr*ith;
  9573. const int ir1 = MIN(ir0 + dr, nr);
  9574. for (int i1 = ir0; i1 < ir1; i1++) {
  9575. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9576. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  9577. dst_data[i0] = 0;
  9578. for (int k = -nh; k <= nh; k++) {
  9579. float v = 0.0f;
  9580. ggml_vec_dot_f16(ew0, &v,
  9581. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9582. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9583. dst_data[i0] += v;
  9584. }
  9585. }
  9586. }
  9587. }
  9588. static void ggml_compute_forward_conv_1d_1s_f32(
  9589. const struct ggml_compute_params * params,
  9590. const struct ggml_tensor * src0,
  9591. const struct ggml_tensor * src1,
  9592. struct ggml_tensor * dst) {
  9593. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9594. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9595. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9596. int64_t t0 = ggml_perf_time_us();
  9597. UNUSED(t0);
  9598. const int64_t ne00 = src0->ne[0];
  9599. const int64_t ne01 = src0->ne[1];
  9600. const int64_t ne02 = src0->ne[2];
  9601. //const int64_t ne03 = src0->ne[3];
  9602. const int64_t ne10 = src1->ne[0];
  9603. const int64_t ne11 = src1->ne[1];
  9604. //const int64_t ne12 = src1->ne[2];
  9605. //const int64_t ne13 = src1->ne[3];
  9606. //const int64_t ne0 = dst->ne[0];
  9607. //const int64_t ne1 = dst->ne[1];
  9608. //const int64_t ne2 = dst->ne[2];
  9609. //const int64_t ne3 = dst->ne[3];
  9610. //const int64_t ne = ne0*ne1*ne2*ne3;
  9611. const int nb00 = src0->nb[0];
  9612. const int nb01 = src0->nb[1];
  9613. const int nb02 = src0->nb[2];
  9614. //const int nb03 = src0->nb[3];
  9615. const int nb10 = src1->nb[0];
  9616. const int nb11 = src1->nb[1];
  9617. //const int nb12 = src1->nb[2];
  9618. //const int nb13 = src1->nb[3];
  9619. //const int nb0 = dst->nb[0];
  9620. const int nb1 = dst->nb[1];
  9621. //const int nb2 = dst->nb[2];
  9622. //const int nb3 = dst->nb[3];
  9623. const int ith = params->ith;
  9624. const int nth = params->nth;
  9625. const int nk = ne00;
  9626. const int nh = nk/2;
  9627. const int ew0 = ggml_up32(ne01);
  9628. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9629. GGML_ASSERT(nb00 == sizeof(float));
  9630. GGML_ASSERT(nb10 == sizeof(float));
  9631. if (params->type == GGML_TASK_INIT) {
  9632. // TODO: fix this memset (wsize is overestimated)
  9633. memset(params->wdata, 0, params->wsize);
  9634. // prepare kernel data (src0)
  9635. {
  9636. float * const wdata = (float *) params->wdata + 0;
  9637. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9638. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9639. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  9640. float * dst_data = wdata + i02*ew0*ne00;
  9641. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9642. dst_data[i00*ew0 + i01] = src[i00];
  9643. }
  9644. }
  9645. }
  9646. }
  9647. // prepare source data (src1)
  9648. {
  9649. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  9650. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9651. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9652. float * dst_data = wdata;
  9653. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9654. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  9655. }
  9656. }
  9657. }
  9658. return;
  9659. }
  9660. if (params->type == GGML_TASK_FINALIZE) {
  9661. return;
  9662. }
  9663. // total rows in dst
  9664. const int nr = ne02;
  9665. // rows per thread
  9666. const int dr = (nr + nth - 1)/nth;
  9667. // row range for this thread
  9668. const int ir0 = dr*ith;
  9669. const int ir1 = MIN(ir0 + dr, nr);
  9670. for (int i1 = ir0; i1 < ir1; i1++) {
  9671. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9672. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  9673. dst_data[i0] = 0;
  9674. for (int k = -nh; k <= nh; k++) {
  9675. float v = 0.0f;
  9676. ggml_vec_dot_f32(ew0, &v,
  9677. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9678. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9679. dst_data[i0] += v;
  9680. }
  9681. }
  9682. }
  9683. }
  9684. static void ggml_compute_forward_conv_1d_1s(
  9685. const struct ggml_compute_params * params,
  9686. const struct ggml_tensor * src0,
  9687. const struct ggml_tensor * src1,
  9688. struct ggml_tensor * dst) {
  9689. switch (src0->type) {
  9690. case GGML_TYPE_F16:
  9691. {
  9692. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  9693. } break;
  9694. case GGML_TYPE_F32:
  9695. {
  9696. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  9697. } break;
  9698. default:
  9699. {
  9700. GGML_ASSERT(false);
  9701. } break;
  9702. }
  9703. }
  9704. // ggml_compute_forward_conv_1d_2s
  9705. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  9706. const struct ggml_compute_params * params,
  9707. const struct ggml_tensor * src0,
  9708. const struct ggml_tensor * src1,
  9709. struct ggml_tensor * dst) {
  9710. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9711. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9712. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9713. int64_t t0 = ggml_perf_time_us();
  9714. UNUSED(t0);
  9715. const int64_t ne00 = src0->ne[0];
  9716. const int64_t ne01 = src0->ne[1];
  9717. const int64_t ne02 = src0->ne[2];
  9718. //const int64_t ne03 = src0->ne[3];
  9719. const int64_t ne10 = src1->ne[0];
  9720. const int64_t ne11 = src1->ne[1];
  9721. //const int64_t ne12 = src1->ne[2];
  9722. //const int64_t ne13 = src1->ne[3];
  9723. //const int64_t ne0 = dst->ne[0];
  9724. //const int64_t ne1 = dst->ne[1];
  9725. //const int64_t ne2 = dst->ne[2];
  9726. //const int64_t ne3 = dst->ne[3];
  9727. //const int64_t ne = ne0*ne1*ne2*ne3;
  9728. const int nb00 = src0->nb[0];
  9729. const int nb01 = src0->nb[1];
  9730. const int nb02 = src0->nb[2];
  9731. //const int nb03 = src0->nb[3];
  9732. const int nb10 = src1->nb[0];
  9733. const int nb11 = src1->nb[1];
  9734. //const int nb12 = src1->nb[2];
  9735. //const int nb13 = src1->nb[3];
  9736. //const int nb0 = dst->nb[0];
  9737. const int nb1 = dst->nb[1];
  9738. //const int nb2 = dst->nb[2];
  9739. //const int nb3 = dst->nb[3];
  9740. const int ith = params->ith;
  9741. const int nth = params->nth;
  9742. const int nk = ne00;
  9743. const int nh = nk/2;
  9744. const int ew0 = ggml_up32(ne01);
  9745. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9746. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9747. GGML_ASSERT(nb10 == sizeof(float));
  9748. if (params->type == GGML_TASK_INIT) {
  9749. // TODO: fix this memset (wsize is overestimated)
  9750. memset(params->wdata, 0, params->wsize);
  9751. // prepare kernel data (src0)
  9752. {
  9753. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9754. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9755. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9756. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  9757. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  9758. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9759. dst_data[i00*ew0 + i01] = src[i00];
  9760. }
  9761. }
  9762. }
  9763. }
  9764. // prepare source data (src1)
  9765. {
  9766. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  9767. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9768. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9769. ggml_fp16_t * dst_data = wdata;
  9770. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9771. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  9772. }
  9773. }
  9774. }
  9775. return;
  9776. }
  9777. if (params->type == GGML_TASK_FINALIZE) {
  9778. return;
  9779. }
  9780. // total rows in dst
  9781. const int nr = ne02;
  9782. // rows per thread
  9783. const int dr = (nr + nth - 1)/nth;
  9784. // row range for this thread
  9785. const int ir0 = dr*ith;
  9786. const int ir1 = MIN(ir0 + dr, nr);
  9787. for (int i1 = ir0; i1 < ir1; i1++) {
  9788. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9789. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  9790. dst_data[i0/2] = 0;
  9791. for (int k = -nh; k <= nh; k++) {
  9792. float v = 0.0f;
  9793. ggml_vec_dot_f16(ew0, &v,
  9794. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9795. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9796. dst_data[i0/2] += v;
  9797. }
  9798. }
  9799. }
  9800. }
  9801. static void ggml_compute_forward_conv_1d_2s_f32(
  9802. const struct ggml_compute_params * params,
  9803. const struct ggml_tensor * src0,
  9804. const struct ggml_tensor * src1,
  9805. struct ggml_tensor * dst) {
  9806. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9807. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9808. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9809. int64_t t0 = ggml_perf_time_us();
  9810. UNUSED(t0);
  9811. const int64_t ne00 = src0->ne[0];
  9812. const int64_t ne01 = src0->ne[1];
  9813. const int64_t ne02 = src0->ne[2];
  9814. //const int64_t ne03 = src0->ne[3];
  9815. const int64_t ne10 = src1->ne[0];
  9816. const int64_t ne11 = src1->ne[1];
  9817. //const int64_t ne12 = src1->ne[2];
  9818. //const int64_t ne13 = src1->ne[3];
  9819. //const int64_t ne0 = dst->ne[0];
  9820. //const int64_t ne1 = dst->ne[1];
  9821. //const int64_t ne2 = dst->ne[2];
  9822. //const int64_t ne3 = dst->ne[3];
  9823. //const int64_t ne = ne0*ne1*ne2*ne3;
  9824. const int nb00 = src0->nb[0];
  9825. const int nb01 = src0->nb[1];
  9826. const int nb02 = src0->nb[2];
  9827. //const int nb03 = src0->nb[3];
  9828. const int nb10 = src1->nb[0];
  9829. const int nb11 = src1->nb[1];
  9830. //const int nb12 = src1->nb[2];
  9831. //const int nb13 = src1->nb[3];
  9832. //const int nb0 = dst->nb[0];
  9833. const int nb1 = dst->nb[1];
  9834. //const int nb2 = dst->nb[2];
  9835. //const int nb3 = dst->nb[3];
  9836. const int ith = params->ith;
  9837. const int nth = params->nth;
  9838. const int nk = ne00;
  9839. const int nh = nk/2;
  9840. const int ew0 = ggml_up32(ne01);
  9841. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9842. GGML_ASSERT(nb00 == sizeof(float));
  9843. GGML_ASSERT(nb10 == sizeof(float));
  9844. if (params->type == GGML_TASK_INIT) {
  9845. // TODO: fix this memset (wsize is overestimated)
  9846. memset(params->wdata, 0, params->wsize);
  9847. // prepare kernel data (src0)
  9848. {
  9849. float * const wdata = (float *) params->wdata + 0;
  9850. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9851. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9852. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  9853. float * dst_data = wdata + i02*ew0*ne00;
  9854. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9855. dst_data[i00*ew0 + i01] = src[i00];
  9856. }
  9857. }
  9858. }
  9859. }
  9860. // prepare source data (src1)
  9861. {
  9862. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  9863. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9864. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9865. float * dst_data = wdata;
  9866. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9867. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  9868. }
  9869. }
  9870. }
  9871. return;
  9872. }
  9873. if (params->type == GGML_TASK_FINALIZE) {
  9874. return;
  9875. }
  9876. // total rows in dst
  9877. const int nr = ne02;
  9878. // rows per thread
  9879. const int dr = (nr + nth - 1)/nth;
  9880. // row range for this thread
  9881. const int ir0 = dr*ith;
  9882. const int ir1 = MIN(ir0 + dr, nr);
  9883. for (int i1 = ir0; i1 < ir1; i1++) {
  9884. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9885. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  9886. dst_data[i0/2] = 0;
  9887. for (int k = -nh; k <= nh; k++) {
  9888. float v = 0.0f;
  9889. ggml_vec_dot_f32(ew0, &v,
  9890. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9891. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9892. dst_data[i0/2] += v;
  9893. }
  9894. }
  9895. }
  9896. }
  9897. static void ggml_compute_forward_conv_1d_2s(
  9898. const struct ggml_compute_params * params,
  9899. const struct ggml_tensor * src0,
  9900. const struct ggml_tensor * src1,
  9901. struct ggml_tensor * dst) {
  9902. switch (src0->type) {
  9903. case GGML_TYPE_F16:
  9904. {
  9905. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  9906. } break;
  9907. case GGML_TYPE_F32:
  9908. {
  9909. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  9910. } break;
  9911. default:
  9912. {
  9913. GGML_ASSERT(false);
  9914. } break;
  9915. }
  9916. }
  9917. // ggml_compute_forward_flash_attn
  9918. static void ggml_compute_forward_flash_attn_f32(
  9919. const struct ggml_compute_params * params,
  9920. const struct ggml_tensor * q,
  9921. const struct ggml_tensor * k,
  9922. const struct ggml_tensor * v,
  9923. const bool masked,
  9924. struct ggml_tensor * dst) {
  9925. int64_t t0 = ggml_perf_time_us();
  9926. UNUSED(t0);
  9927. const int64_t neq0 = q->ne[0];
  9928. const int64_t neq1 = q->ne[1];
  9929. const int64_t neq2 = q->ne[2];
  9930. const int64_t neq3 = q->ne[3];
  9931. const int64_t nek0 = k->ne[0];
  9932. const int64_t nek1 = k->ne[1];
  9933. //const int64_t nek2 = k->ne[2];
  9934. //const int64_t nek3 = k->ne[3];
  9935. //const int64_t nev0 = v->ne[0];
  9936. const int64_t nev1 = v->ne[1];
  9937. //const int64_t nev2 = v->ne[2];
  9938. //const int64_t nev3 = v->ne[3];
  9939. const int64_t ne0 = dst->ne[0];
  9940. const int64_t ne1 = dst->ne[1];
  9941. //const int64_t ne2 = dst->ne[2];
  9942. //const int64_t ne3 = dst->ne[3];
  9943. const int nbk0 = k->nb[0];
  9944. const int nbk1 = k->nb[1];
  9945. const int nbk2 = k->nb[2];
  9946. const int nbk3 = k->nb[3];
  9947. const int nbq0 = q->nb[0];
  9948. const int nbq1 = q->nb[1];
  9949. const int nbq2 = q->nb[2];
  9950. const int nbq3 = q->nb[3];
  9951. const int nbv0 = v->nb[0];
  9952. const int nbv1 = v->nb[1];
  9953. const int nbv2 = v->nb[2];
  9954. const int nbv3 = v->nb[3];
  9955. const int nb0 = dst->nb[0];
  9956. const int nb1 = dst->nb[1];
  9957. const int nb2 = dst->nb[2];
  9958. const int nb3 = dst->nb[3];
  9959. const int ith = params->ith;
  9960. const int nth = params->nth;
  9961. const int64_t D = neq0;
  9962. const int64_t N = neq1;
  9963. const int64_t P = nek1 - N;
  9964. const int64_t M = P + N;
  9965. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  9966. GGML_ASSERT(ne0 == D);
  9967. GGML_ASSERT(ne1 == N);
  9968. GGML_ASSERT(P >= 0);
  9969. GGML_ASSERT(nbq0 == sizeof(float));
  9970. GGML_ASSERT(nbk0 == sizeof(float));
  9971. GGML_ASSERT(nbv0 == sizeof(float));
  9972. GGML_ASSERT(neq0 == D);
  9973. GGML_ASSERT(nek0 == D);
  9974. GGML_ASSERT(nev1 == D);
  9975. GGML_ASSERT(neq1 == N);
  9976. GGML_ASSERT(nek1 == N + P);
  9977. GGML_ASSERT(nev1 == D);
  9978. // dst cannot be transposed or permuted
  9979. GGML_ASSERT(nb0 == sizeof(float));
  9980. GGML_ASSERT(nb0 <= nb1);
  9981. GGML_ASSERT(nb1 <= nb2);
  9982. GGML_ASSERT(nb2 <= nb3);
  9983. if (params->type == GGML_TASK_INIT) {
  9984. return;
  9985. }
  9986. if (params->type == GGML_TASK_FINALIZE) {
  9987. return;
  9988. }
  9989. // parallelize by q rows using ggml_vec_dot_f32
  9990. // total rows in q
  9991. const int nr = neq1*neq2*neq3;
  9992. // rows per thread
  9993. const int dr = (nr + nth - 1)/nth;
  9994. // row range for this thread
  9995. const int ir0 = dr*ith;
  9996. const int ir1 = MIN(ir0 + dr, nr);
  9997. const float scale = 1.0f/sqrtf(D);
  9998. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  9999. for (int ir = ir0; ir < ir1; ++ir) {
  10000. // q indices
  10001. const int iq3 = ir/(neq2*neq1);
  10002. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10003. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10004. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  10005. for (int i = M; i < Mup; ++i) {
  10006. S[i] = -INFINITY;
  10007. }
  10008. for (int64_t ic = 0; ic < nek1; ++ic) {
  10009. // k indices
  10010. const int ik3 = iq3;
  10011. const int ik2 = iq2;
  10012. const int ik1 = ic;
  10013. // S indices
  10014. const int i1 = ik1;
  10015. ggml_vec_dot_f32(neq0,
  10016. S + i1,
  10017. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10018. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10019. }
  10020. // scale
  10021. ggml_vec_scale_f32(nek1, S, scale);
  10022. if (masked) {
  10023. for (int64_t i = P; i < M; i++) {
  10024. if (i > P + iq1) {
  10025. S[i] = -INFINITY;
  10026. }
  10027. }
  10028. }
  10029. // softmax
  10030. {
  10031. float max = -INFINITY;
  10032. ggml_vec_max_f32(M, &max, S);
  10033. ggml_float sum = 0.0;
  10034. {
  10035. #ifdef GGML_SOFT_MAX_ACCELERATE
  10036. max = -max;
  10037. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10038. vvexpf(S, S, &Mup);
  10039. ggml_vec_sum_f32(Mup, &sum, S);
  10040. #else
  10041. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10042. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10043. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10044. float * SS = S + i;
  10045. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10046. if (SS[j] == -INFINITY) {
  10047. SS[j] = 0.0f;
  10048. } else {
  10049. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10050. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10051. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  10052. sump[j] += (ggml_float)val;
  10053. SS[j] = val;
  10054. }
  10055. }
  10056. }
  10057. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10058. sum += sump[i];
  10059. }
  10060. #endif
  10061. }
  10062. assert(sum > 0.0);
  10063. sum = 1.0/sum;
  10064. ggml_vec_scale_f32(M, S, sum);
  10065. #ifndef NDEBUG
  10066. for (int i = 0; i < M; ++i) {
  10067. assert(!isnan(S[i]));
  10068. assert(!isinf(S[i]));
  10069. }
  10070. #endif
  10071. }
  10072. for (int64_t ic = 0; ic < nev1; ++ic) {
  10073. // dst indices
  10074. const int i1 = iq1;
  10075. const int i2 = iq2;
  10076. const int i3 = iq3;
  10077. ggml_vec_dot_f32(nek1,
  10078. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10079. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10080. S);
  10081. }
  10082. }
  10083. }
  10084. static void ggml_compute_forward_flash_attn_f16(
  10085. const struct ggml_compute_params * params,
  10086. const struct ggml_tensor * q,
  10087. const struct ggml_tensor * k,
  10088. const struct ggml_tensor * v,
  10089. const bool masked,
  10090. struct ggml_tensor * dst) {
  10091. int64_t t0 = ggml_perf_time_us();
  10092. UNUSED(t0);
  10093. const int64_t neq0 = q->ne[0];
  10094. const int64_t neq1 = q->ne[1];
  10095. const int64_t neq2 = q->ne[2];
  10096. const int64_t neq3 = q->ne[3];
  10097. const int64_t nek0 = k->ne[0];
  10098. const int64_t nek1 = k->ne[1];
  10099. //const int64_t nek2 = k->ne[2];
  10100. //const int64_t nek3 = k->ne[3];
  10101. //const int64_t nev0 = v->ne[0];
  10102. const int64_t nev1 = v->ne[1];
  10103. //const int64_t nev2 = v->ne[2];
  10104. //const int64_t nev3 = v->ne[3];
  10105. const int64_t ne0 = dst->ne[0];
  10106. const int64_t ne1 = dst->ne[1];
  10107. //const int64_t ne2 = dst->ne[2];
  10108. //const int64_t ne3 = dst->ne[3];
  10109. const int nbk0 = k->nb[0];
  10110. const int nbk1 = k->nb[1];
  10111. const int nbk2 = k->nb[2];
  10112. const int nbk3 = k->nb[3];
  10113. const int nbq0 = q->nb[0];
  10114. const int nbq1 = q->nb[1];
  10115. const int nbq2 = q->nb[2];
  10116. const int nbq3 = q->nb[3];
  10117. const int nbv0 = v->nb[0];
  10118. const int nbv1 = v->nb[1];
  10119. const int nbv2 = v->nb[2];
  10120. const int nbv3 = v->nb[3];
  10121. const int nb0 = dst->nb[0];
  10122. const int nb1 = dst->nb[1];
  10123. const int nb2 = dst->nb[2];
  10124. const int nb3 = dst->nb[3];
  10125. const int ith = params->ith;
  10126. const int nth = params->nth;
  10127. const int64_t D = neq0;
  10128. const int64_t N = neq1;
  10129. const int64_t P = nek1 - N;
  10130. const int64_t M = P + N;
  10131. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10132. GGML_ASSERT(ne0 == D);
  10133. GGML_ASSERT(ne1 == N);
  10134. GGML_ASSERT(P >= 0);
  10135. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  10136. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  10137. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  10138. GGML_ASSERT(neq0 == D);
  10139. GGML_ASSERT(nek0 == D);
  10140. GGML_ASSERT(nev1 == D);
  10141. GGML_ASSERT(neq1 == N);
  10142. GGML_ASSERT(nek1 == N + P);
  10143. GGML_ASSERT(nev1 == D);
  10144. // dst cannot be transposed or permuted
  10145. GGML_ASSERT(nb0 == sizeof(float));
  10146. GGML_ASSERT(nb0 <= nb1);
  10147. GGML_ASSERT(nb1 <= nb2);
  10148. GGML_ASSERT(nb2 <= nb3);
  10149. if (params->type == GGML_TASK_INIT) {
  10150. return;
  10151. }
  10152. if (params->type == GGML_TASK_FINALIZE) {
  10153. return;
  10154. }
  10155. // parallelize by q rows using ggml_vec_dot_f32
  10156. // total rows in q
  10157. const int nr = neq1*neq2*neq3;
  10158. // rows per thread
  10159. const int dr = (nr + nth - 1)/nth;
  10160. // row range for this thread
  10161. const int ir0 = dr*ith;
  10162. const int ir1 = MIN(ir0 + dr, nr);
  10163. const float scale = 1.0f/sqrtf(D);
  10164. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10165. for (int ir = ir0; ir < ir1; ++ir) {
  10166. // q indices
  10167. const int iq3 = ir/(neq2*neq1);
  10168. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10169. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10170. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  10171. for (int i = M; i < Mup; ++i) {
  10172. S[i] = -INFINITY;
  10173. }
  10174. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  10175. for (int64_t ic = 0; ic < nek1; ++ic) {
  10176. // k indices
  10177. const int ik3 = iq3;
  10178. const int ik2 = iq2;
  10179. const int ik1 = ic;
  10180. // S indices
  10181. const int i1 = ik1;
  10182. ggml_vec_dot_f16(neq0,
  10183. S + i1,
  10184. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10185. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10186. }
  10187. } else {
  10188. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  10189. // k indices
  10190. const int ik3 = iq3;
  10191. const int ik2 = iq2;
  10192. const int ik1 = ic;
  10193. // S indices
  10194. const int i1 = ik1;
  10195. ggml_vec_dot_f16_unroll(neq0, nbk1,
  10196. S + i1,
  10197. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10198. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10199. }
  10200. }
  10201. // scale
  10202. ggml_vec_scale_f32(nek1, S, scale);
  10203. if (masked) {
  10204. for (int64_t i = P; i < M; i++) {
  10205. if (i > P + iq1) {
  10206. S[i] = -INFINITY;
  10207. }
  10208. }
  10209. }
  10210. // softmax
  10211. {
  10212. float max = -INFINITY;
  10213. ggml_vec_max_f32(M, &max, S);
  10214. ggml_float sum = 0.0;
  10215. {
  10216. #ifdef GGML_SOFT_MAX_ACCELERATE
  10217. max = -max;
  10218. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10219. vvexpf(S, S, &Mup);
  10220. ggml_vec_sum_f32(Mup, &sum, S);
  10221. #else
  10222. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10223. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10224. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10225. float * SS = S + i;
  10226. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10227. if (SS[j] == -INFINITY) {
  10228. SS[j] = 0.0f;
  10229. } else {
  10230. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10231. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10232. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  10233. sump[j] += (ggml_float)val;
  10234. SS[j] = val;
  10235. }
  10236. }
  10237. }
  10238. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10239. sum += sump[i];
  10240. }
  10241. #endif
  10242. }
  10243. assert(sum > 0.0);
  10244. sum = 1.0/sum;
  10245. ggml_vec_scale_f32(M, S, sum);
  10246. #ifndef NDEBUG
  10247. for (int i = 0; i < M; ++i) {
  10248. assert(!isnan(S[i]));
  10249. assert(!isinf(S[i]));
  10250. }
  10251. #endif
  10252. }
  10253. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  10254. for (int64_t i = 0; i < M; i++) {
  10255. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10256. }
  10257. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  10258. for (int64_t ic = 0; ic < nev1; ++ic) {
  10259. // dst indices
  10260. const int i1 = iq1;
  10261. const int i2 = iq2;
  10262. const int i3 = iq3;
  10263. ggml_vec_dot_f16(nek1,
  10264. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10265. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10266. S16);
  10267. }
  10268. } else {
  10269. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  10270. // dst indices
  10271. const int i1 = iq1;
  10272. const int i2 = iq2;
  10273. const int i3 = iq3;
  10274. ggml_vec_dot_f16_unroll(nek1, nbv1,
  10275. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10276. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10277. S16);
  10278. }
  10279. }
  10280. }
  10281. }
  10282. static void ggml_compute_forward_flash_attn(
  10283. const struct ggml_compute_params * params,
  10284. const struct ggml_tensor * q,
  10285. const struct ggml_tensor * k,
  10286. const struct ggml_tensor * v,
  10287. const bool masked,
  10288. struct ggml_tensor * dst) {
  10289. switch (q->type) {
  10290. case GGML_TYPE_F16:
  10291. {
  10292. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  10293. } break;
  10294. case GGML_TYPE_F32:
  10295. {
  10296. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  10297. } break;
  10298. default:
  10299. {
  10300. GGML_ASSERT(false);
  10301. } break;
  10302. }
  10303. }
  10304. // ggml_compute_forward_flash_ff
  10305. static void ggml_compute_forward_flash_ff_f16(
  10306. const struct ggml_compute_params * params,
  10307. const struct ggml_tensor * a, // F16
  10308. const struct ggml_tensor * b0, // F16 fc_w
  10309. const struct ggml_tensor * b1, // F32 fc_b
  10310. const struct ggml_tensor * c0, // F16 proj_w
  10311. const struct ggml_tensor * c1, // F32 proj_b
  10312. struct ggml_tensor * dst) {
  10313. int64_t t0 = ggml_perf_time_us();
  10314. UNUSED(t0);
  10315. const int64_t nea0 = a->ne[0];
  10316. const int64_t nea1 = a->ne[1];
  10317. const int64_t nea2 = a->ne[2];
  10318. const int64_t nea3 = a->ne[3];
  10319. const int64_t neb00 = b0->ne[0];
  10320. const int64_t neb01 = b0->ne[1];
  10321. //const int64_t neb02 = b0->ne[2];
  10322. //const int64_t neb03 = b0->ne[3];
  10323. const int64_t neb10 = b1->ne[0];
  10324. const int64_t neb11 = b1->ne[1];
  10325. //const int64_t neb12 = b1->ne[2];
  10326. //const int64_t neb13 = b1->ne[3];
  10327. const int64_t nec00 = c0->ne[0];
  10328. const int64_t nec01 = c0->ne[1];
  10329. //const int64_t nec02 = c0->ne[2];
  10330. //const int64_t nec03 = c0->ne[3];
  10331. const int64_t nec10 = c1->ne[0];
  10332. const int64_t nec11 = c1->ne[1];
  10333. //const int64_t nec12 = c1->ne[2];
  10334. //const int64_t nec13 = c1->ne[3];
  10335. const int64_t ne0 = dst->ne[0];
  10336. const int64_t ne1 = dst->ne[1];
  10337. const int64_t ne2 = dst->ne[2];
  10338. //const int64_t ne3 = dst->ne[3];
  10339. const int nba0 = a->nb[0];
  10340. const int nba1 = a->nb[1];
  10341. const int nba2 = a->nb[2];
  10342. const int nba3 = a->nb[3];
  10343. const int nbb00 = b0->nb[0];
  10344. const int nbb01 = b0->nb[1];
  10345. const int nbb02 = b0->nb[2];
  10346. const int nbb03 = b0->nb[3];
  10347. const int nbb10 = b1->nb[0];
  10348. //const int nbb11 = b1->nb[1];
  10349. //const int nbb12 = b1->nb[2];
  10350. //const int nbb13 = b1->nb[3];
  10351. const int nbc00 = c0->nb[0];
  10352. const int nbc01 = c0->nb[1];
  10353. const int nbc02 = c0->nb[2];
  10354. const int nbc03 = c0->nb[3];
  10355. const int nbc10 = c1->nb[0];
  10356. //const int nbc11 = c1->nb[1];
  10357. //const int nbc12 = c1->nb[2];
  10358. //const int nbc13 = c1->nb[3];
  10359. const int nb0 = dst->nb[0];
  10360. const int nb1 = dst->nb[1];
  10361. const int nb2 = dst->nb[2];
  10362. const int nb3 = dst->nb[3];
  10363. const int ith = params->ith;
  10364. const int nth = params->nth;
  10365. const int64_t D = nea0;
  10366. //const int64_t N = nea1;
  10367. const int64_t M = neb01;
  10368. GGML_ASSERT(ne0 == nea0);
  10369. GGML_ASSERT(ne1 == nea1);
  10370. GGML_ASSERT(ne2 == nea2);
  10371. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  10372. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  10373. GGML_ASSERT(nbb10 == sizeof(float));
  10374. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  10375. GGML_ASSERT(nbc10 == sizeof(float));
  10376. GGML_ASSERT(neb00 == D);
  10377. GGML_ASSERT(neb01 == M);
  10378. GGML_ASSERT(neb10 == M);
  10379. GGML_ASSERT(neb11 == 1);
  10380. GGML_ASSERT(nec00 == M);
  10381. GGML_ASSERT(nec01 == D);
  10382. GGML_ASSERT(nec10 == D);
  10383. GGML_ASSERT(nec11 == 1);
  10384. // dst cannot be transposed or permuted
  10385. GGML_ASSERT(nb0 == sizeof(float));
  10386. GGML_ASSERT(nb0 <= nb1);
  10387. GGML_ASSERT(nb1 <= nb2);
  10388. GGML_ASSERT(nb2 <= nb3);
  10389. if (params->type == GGML_TASK_INIT) {
  10390. return;
  10391. }
  10392. if (params->type == GGML_TASK_FINALIZE) {
  10393. return;
  10394. }
  10395. // parallelize by a rows using ggml_vec_dot_f32
  10396. // total rows in a
  10397. const int nr = nea1*nea2*nea3;
  10398. // rows per thread
  10399. const int dr = (nr + nth - 1)/nth;
  10400. // row range for this thread
  10401. const int ir0 = dr*ith;
  10402. const int ir1 = MIN(ir0 + dr, nr);
  10403. for (int ir = ir0; ir < ir1; ++ir) {
  10404. // a indices
  10405. const int ia3 = ir/(nea2*nea1);
  10406. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  10407. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  10408. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  10409. for (int64_t ic = 0; ic < neb01; ++ic) {
  10410. // b0 indices
  10411. const int ib03 = ia3;
  10412. const int ib02 = ia2;
  10413. const int ib01 = ic;
  10414. // S indices
  10415. const int i1 = ib01;
  10416. ggml_vec_dot_f16(nea0,
  10417. S + i1,
  10418. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  10419. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  10420. }
  10421. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  10422. //ggml_vec_gelu_f32(neb01, S, S);
  10423. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  10424. for (int64_t i = 0; i < M; i++) {
  10425. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10426. }
  10427. ggml_vec_gelu_f16(neb01, S16, S16);
  10428. {
  10429. // dst indices
  10430. const int i1 = ia1;
  10431. const int i2 = ia2;
  10432. const int i3 = ia3;
  10433. for (int64_t ic = 0; ic < nec01; ++ic) {
  10434. ggml_vec_dot_f16(neb01,
  10435. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10436. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  10437. S16);
  10438. }
  10439. ggml_vec_add_f32(nec01,
  10440. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10441. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10442. (float *) c1->data);
  10443. }
  10444. }
  10445. }
  10446. static void ggml_compute_forward_flash_ff(
  10447. const struct ggml_compute_params * params,
  10448. const struct ggml_tensor * a,
  10449. const struct ggml_tensor * b0,
  10450. const struct ggml_tensor * b1,
  10451. const struct ggml_tensor * c0,
  10452. const struct ggml_tensor * c1,
  10453. struct ggml_tensor * dst) {
  10454. switch (b0->type) {
  10455. case GGML_TYPE_F16:
  10456. {
  10457. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  10458. } break;
  10459. case GGML_TYPE_F32:
  10460. {
  10461. GGML_ASSERT(false); // TODO
  10462. } break;
  10463. default:
  10464. {
  10465. GGML_ASSERT(false);
  10466. } break;
  10467. }
  10468. }
  10469. // ggml_compute_forward_map_unary
  10470. static void ggml_compute_forward_map_unary_f32(
  10471. const struct ggml_compute_params * params,
  10472. const struct ggml_tensor * src0,
  10473. struct ggml_tensor * dst,
  10474. const ggml_unary_op_f32_t fun) {
  10475. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10476. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10477. return;
  10478. }
  10479. const int n = ggml_nrows(src0);
  10480. const int nc = src0->ne[0];
  10481. assert( dst->nb[0] == sizeof(float));
  10482. assert(src0->nb[0] == sizeof(float));
  10483. for (int i = 0; i < n; i++) {
  10484. fun(nc,
  10485. (float *) ((char *) dst->data + i*( dst->nb[1])),
  10486. (float *) ((char *) src0->data + i*(src0->nb[1])));
  10487. }
  10488. }
  10489. static void ggml_compute_forward_map_unary(
  10490. const struct ggml_compute_params * params,
  10491. const struct ggml_tensor * src0,
  10492. struct ggml_tensor * dst,
  10493. const ggml_unary_op_f32_t fun) {
  10494. switch (src0->type) {
  10495. case GGML_TYPE_F32:
  10496. {
  10497. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  10498. } break;
  10499. default:
  10500. {
  10501. GGML_ASSERT(false);
  10502. } break;
  10503. }
  10504. }
  10505. // ggml_compute_forward_map_binary
  10506. static void ggml_compute_forward_map_binary_f32(
  10507. const struct ggml_compute_params * params,
  10508. const struct ggml_tensor * src0,
  10509. const struct ggml_tensor * src1,
  10510. struct ggml_tensor * dst,
  10511. const ggml_binary_op_f32_t fun) {
  10512. assert(params->ith == 0);
  10513. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  10514. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10515. return;
  10516. }
  10517. const int n = ggml_nrows(src0);
  10518. const int nc = src0->ne[0];
  10519. assert( dst->nb[0] == sizeof(float));
  10520. assert(src0->nb[0] == sizeof(float));
  10521. assert(src1->nb[0] == sizeof(float));
  10522. for (int i = 0; i < n; i++) {
  10523. fun(nc,
  10524. (float *) ((char *) dst->data + i*( dst->nb[1])),
  10525. (float *) ((char *) src0->data + i*(src0->nb[1])),
  10526. (float *) ((char *) src1->data + i*(src1->nb[1])));
  10527. }
  10528. }
  10529. static void ggml_compute_forward_map_binary(
  10530. const struct ggml_compute_params * params,
  10531. const struct ggml_tensor * src0,
  10532. const struct ggml_tensor * src1,
  10533. struct ggml_tensor * dst,
  10534. const ggml_binary_op_f32_t fun) {
  10535. switch (src0->type) {
  10536. case GGML_TYPE_F32:
  10537. {
  10538. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  10539. } break;
  10540. default:
  10541. {
  10542. GGML_ASSERT(false);
  10543. } break;
  10544. }
  10545. }
  10546. /////////////////////////////////
  10547. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  10548. GGML_ASSERT(params);
  10549. #ifdef GGML_USE_CUBLAS
  10550. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  10551. if (skip_cpu) {
  10552. return;
  10553. }
  10554. GGML_ASSERT(tensor->src0->backend == GGML_BACKEND_CPU);
  10555. GGML_ASSERT(tensor->src1 == NULL || tensor->src1->backend == GGML_BACKEND_CPU);
  10556. #endif // GGML_USE_CUBLAS
  10557. switch (tensor->op) {
  10558. case GGML_OP_DUP:
  10559. {
  10560. ggml_compute_forward_dup(params, tensor->src0, tensor);
  10561. } break;
  10562. case GGML_OP_ADD:
  10563. {
  10564. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  10565. } break;
  10566. case GGML_OP_ADD1:
  10567. {
  10568. ggml_compute_forward_add1(params, tensor->src0, tensor->src1, tensor);
  10569. } break;
  10570. case GGML_OP_ACC:
  10571. {
  10572. ggml_compute_forward_acc(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  10573. } break;
  10574. case GGML_OP_SUB:
  10575. {
  10576. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  10577. } break;
  10578. case GGML_OP_MUL:
  10579. {
  10580. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  10581. } break;
  10582. case GGML_OP_DIV:
  10583. {
  10584. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  10585. } break;
  10586. case GGML_OP_SQR:
  10587. {
  10588. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  10589. } break;
  10590. case GGML_OP_SQRT:
  10591. {
  10592. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  10593. } break;
  10594. case GGML_OP_LOG:
  10595. {
  10596. ggml_compute_forward_log(params, tensor->src0, tensor);
  10597. } break;
  10598. case GGML_OP_SUM:
  10599. {
  10600. ggml_compute_forward_sum(params, tensor->src0, tensor);
  10601. } break;
  10602. case GGML_OP_SUM_ROWS:
  10603. {
  10604. ggml_compute_forward_sum_rows(params, tensor->src0, tensor);
  10605. } break;
  10606. case GGML_OP_MEAN:
  10607. {
  10608. ggml_compute_forward_mean(params, tensor->src0, tensor);
  10609. } break;
  10610. case GGML_OP_REPEAT:
  10611. {
  10612. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  10613. } break;
  10614. case GGML_OP_ABS:
  10615. {
  10616. ggml_compute_forward_abs(params, tensor->src0, tensor);
  10617. } break;
  10618. case GGML_OP_SGN:
  10619. {
  10620. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  10621. } break;
  10622. case GGML_OP_NEG:
  10623. {
  10624. ggml_compute_forward_neg(params, tensor->src0, tensor);
  10625. } break;
  10626. case GGML_OP_STEP:
  10627. {
  10628. ggml_compute_forward_step(params, tensor->src0, tensor);
  10629. } break;
  10630. case GGML_OP_RELU:
  10631. {
  10632. ggml_compute_forward_relu(params, tensor->src0, tensor);
  10633. } break;
  10634. case GGML_OP_GELU:
  10635. {
  10636. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  10637. } break;
  10638. case GGML_OP_SILU:
  10639. {
  10640. ggml_compute_forward_silu(params, tensor->src0, tensor);
  10641. } break;
  10642. case GGML_OP_SILU_BACK:
  10643. {
  10644. ggml_compute_forward_silu_back(params, tensor->src0, tensor->src1, tensor);
  10645. } break;
  10646. case GGML_OP_NORM:
  10647. {
  10648. ggml_compute_forward_norm(params, tensor->src0, tensor);
  10649. } break;
  10650. case GGML_OP_RMS_NORM:
  10651. {
  10652. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  10653. } break;
  10654. case GGML_OP_RMS_NORM_BACK:
  10655. {
  10656. ggml_compute_forward_rms_norm_back(params, tensor->src0, tensor->src1, tensor);
  10657. } break;
  10658. case GGML_OP_MUL_MAT:
  10659. {
  10660. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  10661. } break;
  10662. case GGML_OP_SCALE:
  10663. {
  10664. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  10665. } break;
  10666. case GGML_OP_SET:
  10667. {
  10668. ggml_compute_forward_set(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  10669. } break;
  10670. case GGML_OP_CPY:
  10671. {
  10672. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  10673. } break;
  10674. case GGML_OP_CONT:
  10675. {
  10676. ggml_compute_forward_cont(params, tensor->src0, tensor);
  10677. } break;
  10678. case GGML_OP_RESHAPE:
  10679. {
  10680. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  10681. } break;
  10682. case GGML_OP_VIEW:
  10683. {
  10684. ggml_compute_forward_view(params, tensor->src0);
  10685. } break;
  10686. case GGML_OP_PERMUTE:
  10687. {
  10688. ggml_compute_forward_permute(params, tensor->src0);
  10689. } break;
  10690. case GGML_OP_TRANSPOSE:
  10691. {
  10692. ggml_compute_forward_transpose(params, tensor->src0);
  10693. } break;
  10694. case GGML_OP_GET_ROWS:
  10695. {
  10696. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  10697. } break;
  10698. case GGML_OP_GET_ROWS_BACK:
  10699. {
  10700. ggml_compute_forward_get_rows_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  10701. } break;
  10702. case GGML_OP_DIAG:
  10703. {
  10704. ggml_compute_forward_diag(params, tensor->src0, tensor);
  10705. } break;
  10706. case GGML_OP_DIAG_MASK_INF:
  10707. {
  10708. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  10709. } break;
  10710. case GGML_OP_DIAG_MASK_ZERO:
  10711. {
  10712. ggml_compute_forward_diag_mask_zero(params, tensor->src0, tensor->src1, tensor);
  10713. } break;
  10714. case GGML_OP_SOFT_MAX:
  10715. {
  10716. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  10717. } break;
  10718. case GGML_OP_ROPE:
  10719. {
  10720. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  10721. } break;
  10722. case GGML_OP_ROPE_BACK:
  10723. {
  10724. ggml_compute_forward_rope_back(params, tensor->src0, tensor->src1, tensor);
  10725. } break;
  10726. case GGML_OP_ALIBI:
  10727. {
  10728. ggml_compute_forward_alibi(params, tensor->src0, tensor->src1, tensor);
  10729. } break;
  10730. case GGML_OP_CLAMP:
  10731. {
  10732. ggml_compute_forward_clamp(params, tensor->src0, tensor->src1, tensor);
  10733. } break;
  10734. case GGML_OP_CONV_1D_1S:
  10735. {
  10736. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  10737. } break;
  10738. case GGML_OP_CONV_1D_2S:
  10739. {
  10740. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  10741. } break;
  10742. case GGML_OP_FLASH_ATTN:
  10743. {
  10744. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  10745. GGML_ASSERT(t == 0 || t == 1);
  10746. bool masked = t != 0;
  10747. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  10748. } break;
  10749. case GGML_OP_FLASH_FF:
  10750. {
  10751. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  10752. } break;
  10753. case GGML_OP_MAP_UNARY:
  10754. {
  10755. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  10756. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  10757. }
  10758. break;
  10759. case GGML_OP_MAP_BINARY:
  10760. {
  10761. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  10762. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  10763. }
  10764. break;
  10765. case GGML_OP_NONE:
  10766. {
  10767. // nop
  10768. } break;
  10769. case GGML_OP_COUNT:
  10770. {
  10771. GGML_ASSERT(false);
  10772. } break;
  10773. }
  10774. }
  10775. ////////////////////////////////////////////////////////////////////////////////
  10776. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  10777. struct ggml_tensor * src0 = tensor->src0;
  10778. struct ggml_tensor * src1 = tensor->src1;
  10779. switch (tensor->op) {
  10780. case GGML_OP_DUP:
  10781. {
  10782. if (src0->grad) {
  10783. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10784. }
  10785. } break;
  10786. case GGML_OP_ADD:
  10787. {
  10788. if (src0->grad) {
  10789. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10790. }
  10791. if (src1->grad) {
  10792. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  10793. }
  10794. } break;
  10795. case GGML_OP_ADD1:
  10796. {
  10797. if (src0->grad) {
  10798. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10799. }
  10800. if (src1->grad) {
  10801. src1->grad = ggml_add_impl(ctx,
  10802. src1->grad,
  10803. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  10804. inplace);
  10805. }
  10806. } break;
  10807. case GGML_OP_ACC:
  10808. {
  10809. if (src0->grad) {
  10810. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10811. }
  10812. if (src1->grad) {
  10813. GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
  10814. GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
  10815. const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
  10816. const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
  10817. const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
  10818. const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
  10819. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  10820. tensor->grad,
  10821. src1->grad->ne[0],
  10822. src1->grad->ne[1],
  10823. src1->grad->ne[2],
  10824. src1->grad->ne[3],
  10825. nb1, nb2, nb3, offset);
  10826. src1->grad =
  10827. ggml_add_impl(ctx,
  10828. src1->grad,
  10829. ggml_reshape(ctx,
  10830. ggml_cont(ctx, tensor_grad_view),
  10831. src1->grad),
  10832. inplace);
  10833. }
  10834. } break;
  10835. case GGML_OP_SUB:
  10836. {
  10837. if (src0->grad) {
  10838. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10839. }
  10840. if (src1->grad) {
  10841. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  10842. }
  10843. } break;
  10844. case GGML_OP_MUL:
  10845. {
  10846. if (src0->grad) {
  10847. src0->grad =
  10848. ggml_add_impl(ctx,
  10849. src0->grad,
  10850. ggml_mul(ctx, src1, tensor->grad),
  10851. inplace);
  10852. }
  10853. if (src1->grad) {
  10854. src1->grad =
  10855. ggml_add_impl(ctx,
  10856. src1->grad,
  10857. ggml_mul(ctx, src0, tensor->grad),
  10858. inplace);
  10859. }
  10860. } break;
  10861. case GGML_OP_DIV:
  10862. {
  10863. if (src0->grad) {
  10864. src0->grad =
  10865. ggml_add_impl(ctx,
  10866. src0->grad,
  10867. ggml_div(ctx, tensor->grad, src1),
  10868. inplace);
  10869. }
  10870. if (src1->grad) {
  10871. src1->grad =
  10872. ggml_sub_impl(ctx,
  10873. src1->grad,
  10874. ggml_mul(ctx,
  10875. tensor->grad,
  10876. ggml_div(ctx, tensor, src1)),
  10877. inplace);
  10878. }
  10879. } break;
  10880. case GGML_OP_SQR:
  10881. {
  10882. if (src0->grad) {
  10883. src0->grad =
  10884. ggml_add_impl(ctx,
  10885. src0->grad,
  10886. ggml_scale(ctx,
  10887. ggml_mul(ctx, src0, tensor->grad),
  10888. ggml_new_f32(ctx, 2.0f)),
  10889. inplace);
  10890. }
  10891. } break;
  10892. case GGML_OP_SQRT:
  10893. {
  10894. if (src0->grad) {
  10895. src0->grad =
  10896. ggml_add_impl(ctx,
  10897. src0->grad,
  10898. ggml_mul(ctx,
  10899. tensor->grad, // this was not catched by test_grad because in test_grad tensor->grad is 1
  10900. ggml_div(ctx,
  10901. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  10902. tensor)),
  10903. inplace);
  10904. }
  10905. } break;
  10906. case GGML_OP_LOG:
  10907. {
  10908. if (src0->grad) {
  10909. src0->grad =
  10910. ggml_add_impl(ctx,
  10911. src0->grad,
  10912. ggml_div(ctx,
  10913. tensor->grad,
  10914. src0),
  10915. inplace);
  10916. }
  10917. } break;
  10918. case GGML_OP_SUM:
  10919. {
  10920. if (src0->grad) {
  10921. src0->grad =
  10922. ggml_add1_impl(ctx,
  10923. src0->grad,
  10924. tensor->grad,
  10925. inplace);
  10926. }
  10927. } break;
  10928. case GGML_OP_SUM_ROWS:
  10929. {
  10930. if (src0->grad) {
  10931. src0->grad =
  10932. ggml_add_impl(ctx,
  10933. src0->grad,
  10934. ggml_repeat(ctx,
  10935. tensor->grad,
  10936. src0->grad),
  10937. inplace);
  10938. }
  10939. } break;
  10940. case GGML_OP_MEAN:
  10941. {
  10942. GGML_ASSERT(false); // TODO: implement
  10943. } break;
  10944. case GGML_OP_REPEAT:
  10945. {
  10946. // necessary for llama
  10947. if (src0->grad) {
  10948. GGML_ASSERT(src0->n_dims == 1 || src0->n_dims == 2);
  10949. const int nc = tensor->ne[0];
  10950. const int nr = tensor->ne[1];
  10951. const int nc0 = src0->ne[0];
  10952. const int nr0 = src0->ne[1];
  10953. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  10954. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  10955. // tensor->grad [nc,nr,1,1]
  10956. // reshape [nc0,nc/nc0,nr0,nr/nr0]
  10957. // permute [nc0,nr0,nc/nc0,nr/nr0]
  10958. // substitute [nc0,nr0,ncr,nrr]
  10959. // reshape [nc0*nr0,ncr*nrr,1,1]
  10960. // transpose [ncr*nrr,nc0*nr0,1,1]
  10961. // sum rows [1,nc0*nr0,1,1]
  10962. // transpose [nc0*nr0,1,1]
  10963. // reshape [nc0,nr0,1,1] reshape_1d or reshape_2d
  10964. // add to src0->grad
  10965. int64_t ne[4] = {nc0,ncr,nr0,nrr};
  10966. struct ggml_tensor* F00 = tensor->grad;
  10967. struct ggml_tensor* F01 = ggml_reshape (ctx, F00, ggml_new_tensor(ctx,tensor->grad->type,4,ne));
  10968. struct ggml_tensor* F02 = ggml_permute (ctx, F01, 0,2,1,3);
  10969. struct ggml_tensor* F03 = ggml_cont (ctx, F02);
  10970. struct ggml_tensor* F04 = ggml_reshape_2d(ctx, F03, nc0*nr0, ncr*nrr);
  10971. struct ggml_tensor* F05 = ggml_transpose (ctx, F04);
  10972. struct ggml_tensor* F06 = ggml_cont (ctx, F05);
  10973. struct ggml_tensor* F07 = ggml_sum_rows (ctx, F06);
  10974. struct ggml_tensor* F08 = ggml_transpose (ctx, F07);
  10975. struct ggml_tensor* F09 = ggml_cont (ctx, F08);
  10976. struct ggml_tensor* F10 = ggml_reshape (ctx, F09, src0->grad);
  10977. src0->grad =
  10978. ggml_add_impl(ctx,
  10979. src0->grad,
  10980. F10,
  10981. inplace);
  10982. }
  10983. } break;
  10984. case GGML_OP_ABS:
  10985. {
  10986. if (src0->grad) {
  10987. src0->grad =
  10988. ggml_add_impl(ctx,
  10989. src0->grad,
  10990. ggml_mul(ctx,
  10991. ggml_sgn(ctx, src0),
  10992. tensor->grad),
  10993. inplace);
  10994. }
  10995. } break;
  10996. case GGML_OP_SGN:
  10997. {
  10998. if (src0->grad) {
  10999. // noop
  11000. }
  11001. } break;
  11002. case GGML_OP_NEG:
  11003. {
  11004. if (src0->grad) {
  11005. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  11006. }
  11007. } break;
  11008. case GGML_OP_STEP:
  11009. {
  11010. if (src0->grad) {
  11011. // noop
  11012. }
  11013. } break;
  11014. case GGML_OP_RELU:
  11015. {
  11016. if (src0->grad) {
  11017. src0->grad = ggml_sub_impl(ctx,
  11018. src0->grad,
  11019. ggml_mul(ctx,
  11020. ggml_step(ctx, src0),
  11021. tensor->grad),
  11022. inplace);
  11023. }
  11024. } break;
  11025. case GGML_OP_GELU:
  11026. {
  11027. GGML_ASSERT(false); // TODO: not implemented
  11028. } break;
  11029. case GGML_OP_ALIBI:
  11030. {
  11031. GGML_ASSERT(false); // TODO: not implemented
  11032. } break;
  11033. case GGML_OP_CLAMP:
  11034. {
  11035. GGML_ASSERT(false); // TODO: not implemented
  11036. } break;
  11037. case GGML_OP_SILU:
  11038. {
  11039. // necessary for llama
  11040. if (src0->grad) {
  11041. src0->grad = ggml_add_impl(ctx,
  11042. src0->grad,
  11043. ggml_silu_back(ctx, src0, tensor->grad),
  11044. inplace);
  11045. }
  11046. } break;
  11047. case GGML_OP_SILU_BACK:
  11048. {
  11049. GGML_ASSERT(false); // TODO: not implemented
  11050. } break;
  11051. case GGML_OP_NORM:
  11052. {
  11053. GGML_ASSERT(false); // TODO: not implemented
  11054. } break;
  11055. case GGML_OP_RMS_NORM:
  11056. {
  11057. // necessary for llama
  11058. if (src0->grad) {
  11059. src0->grad = ggml_add_impl(ctx,
  11060. src0->grad,
  11061. ggml_rms_norm_back(ctx, src0, tensor->grad),
  11062. inplace);
  11063. }
  11064. } break;
  11065. case GGML_OP_RMS_NORM_BACK:
  11066. {
  11067. GGML_ASSERT(false); // TODO: not implemented
  11068. } break;
  11069. case GGML_OP_MUL_MAT:
  11070. {
  11071. // https://cs231n.github.io/optimization-2/#staged
  11072. // # forward pass
  11073. // s0 = np.random.randn(5, 10)
  11074. // s1 = np.random.randn(10, 3)
  11075. // t = s0.dot(s1)
  11076. // # now suppose we had the gradient on t from above in the circuit
  11077. // dt = np.random.randn(*t.shape) # same shape as t
  11078. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  11079. // ds1 = t.T.dot(dt)
  11080. // tensor.shape [m,p]
  11081. // src0.shape [n,m]
  11082. // src1.shape [n,p]
  11083. // necessary for llama
  11084. if (src0->grad) {
  11085. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  11086. src0->grad =
  11087. ggml_add_impl(ctx,
  11088. src0->grad,
  11089. // ds0 = dt.dot(s1.T)
  11090. // ggml_out_prod(ctx, // [n,m]
  11091. // src1, // [n,p]
  11092. // tensor->grad), // [m,p]
  11093. // for now just using A*B==(B.T*A.T).T
  11094. ggml_cont(ctx, // [n,m]
  11095. ggml_transpose(ctx, // [n,m]
  11096. ggml_mul_mat(ctx, // [m,n]
  11097. ggml_cont(ctx, // [p,m]
  11098. ggml_transpose(ctx, // [p,m]
  11099. tensor->grad)), // [m,p]
  11100. ggml_cont(ctx, // [p,n]
  11101. ggml_transpose(ctx, // [p,n]
  11102. src1))))), // [n,p]
  11103. inplace);
  11104. }
  11105. if (src1->grad) {
  11106. src1->grad =
  11107. ggml_add_impl(ctx,
  11108. src1->grad,
  11109. // ds1 = s0.T.dot(dt):
  11110. ggml_mul_mat(ctx, // [n,p]
  11111. ggml_cont(ctx, // [m,n]
  11112. ggml_transpose(ctx, src0)), // [m,n]
  11113. tensor->grad), // [m,p]
  11114. inplace);
  11115. }
  11116. } break;
  11117. case GGML_OP_SCALE:
  11118. {
  11119. // necessary for llama
  11120. if (src0->grad) {
  11121. src0->grad =
  11122. ggml_add_impl(ctx,
  11123. src0->grad,
  11124. ggml_scale_impl(ctx, tensor->grad, src1, false),
  11125. inplace);
  11126. }
  11127. if (src1->grad) {
  11128. src1->grad =
  11129. ggml_add_impl(ctx,
  11130. src1->grad,
  11131. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  11132. inplace);
  11133. }
  11134. } break;
  11135. case GGML_OP_SET:
  11136. {
  11137. GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
  11138. GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
  11139. const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
  11140. const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
  11141. const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
  11142. const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
  11143. struct ggml_tensor * tensor_grad_view = NULL;
  11144. if (src0->grad || src1->grad) {
  11145. GGML_ASSERT(src0->type == tensor->type);
  11146. GGML_ASSERT(tensor->grad->type == tensor->type);
  11147. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  11148. tensor_grad_view = ggml_view_4d(ctx,
  11149. tensor->grad,
  11150. src1->grad->ne[0],
  11151. src1->grad->ne[1],
  11152. src1->grad->ne[2],
  11153. src1->grad->ne[3],
  11154. nb1, nb2, nb3, offset);
  11155. }
  11156. if (src0->grad) {
  11157. src0->grad = ggml_add_impl(ctx,
  11158. src0->grad,
  11159. ggml_acc_impl(ctx,
  11160. tensor->grad,
  11161. ggml_neg(ctx, tensor_grad_view),
  11162. nb1, nb2, nb3, offset, false),
  11163. inplace);
  11164. }
  11165. if (src1->grad) {
  11166. src1->grad =
  11167. ggml_add_impl(ctx,
  11168. src1->grad,
  11169. ggml_reshape(ctx,
  11170. ggml_cont(ctx, tensor_grad_view),
  11171. src1->grad),
  11172. inplace);
  11173. }
  11174. } break;
  11175. case GGML_OP_CPY:
  11176. {
  11177. // necessary for llama
  11178. // cpy overwrites value of src1 by src0 and returns view(src1)
  11179. // the overwriting is mathematically equivalent to:
  11180. // tensor = src0 * 1 + src1 * 0
  11181. if (src0->grad) {
  11182. // dsrc0 = dtensor * 1
  11183. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  11184. }
  11185. if (src1->grad) {
  11186. // dsrc1 = dtensor * 0 -> noop
  11187. }
  11188. } break;
  11189. case GGML_OP_CONT:
  11190. {
  11191. // same as cpy
  11192. if (src0->grad) {
  11193. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  11194. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  11195. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  11196. }
  11197. } break;
  11198. case GGML_OP_RESHAPE:
  11199. {
  11200. // necessary for llama
  11201. if (src0->grad) {
  11202. src0->grad =
  11203. ggml_add_impl(ctx, src0->grad,
  11204. ggml_reshape(ctx, tensor->grad, src0->grad),
  11205. inplace);
  11206. }
  11207. } break;
  11208. case GGML_OP_VIEW:
  11209. {
  11210. // necessary for llama
  11211. if (src0->grad) {
  11212. size_t offset;
  11213. memcpy(&offset, tensor->padding, sizeof(offset));
  11214. size_t nb1 = tensor->nb[1];
  11215. size_t nb2 = tensor->nb[2];
  11216. size_t nb3 = tensor->nb[3];
  11217. if (src0->type != src0->grad->type) {
  11218. // gradient is typically F32, but src0 could be other type
  11219. size_t ng = ggml_element_size(src0->grad);
  11220. size_t n0 = ggml_element_size(src0);
  11221. GGML_ASSERT(offset % n0 == 0);
  11222. GGML_ASSERT(nb1 % n0 == 0);
  11223. GGML_ASSERT(nb2 % n0 == 0);
  11224. GGML_ASSERT(nb3 % n0 == 0);
  11225. offset = (offset / n0) * ng;
  11226. nb1 = (nb1 / n0) * ng;
  11227. nb2 = (nb2 / n0) * ng;
  11228. nb3 = (nb3 / n0) * ng;
  11229. }
  11230. src0->grad = ggml_acc_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace);
  11231. }
  11232. } break;
  11233. case GGML_OP_PERMUTE:
  11234. {
  11235. // necessary for llama
  11236. if (src0->grad) {
  11237. int axis0 = tensor->padding[0] & 0x3;
  11238. int axis1 = tensor->padding[1] & 0x3;
  11239. int axis2 = tensor->padding[2] & 0x3;
  11240. int axis3 = tensor->padding[3] & 0x3;
  11241. int axes_backward[4] = {0,0,0,0};
  11242. axes_backward[axis0] = 0;
  11243. axes_backward[axis1] = 1;
  11244. axes_backward[axis2] = 2;
  11245. axes_backward[axis3] = 3;
  11246. src0->grad =
  11247. ggml_add_impl(ctx, src0->grad,
  11248. ggml_permute(ctx,
  11249. tensor->grad,
  11250. axes_backward[0],
  11251. axes_backward[1],
  11252. axes_backward[2],
  11253. axes_backward[3]),
  11254. inplace);
  11255. }
  11256. } break;
  11257. case GGML_OP_TRANSPOSE:
  11258. {
  11259. // necessary for llama
  11260. if (src0->grad) {
  11261. src0->grad =
  11262. ggml_add_impl(ctx, src0->grad,
  11263. ggml_transpose(ctx, tensor->grad),
  11264. inplace);
  11265. }
  11266. } break;
  11267. case GGML_OP_GET_ROWS:
  11268. {
  11269. // necessary for llama (only for tokenizer)
  11270. if (src0->grad) {
  11271. src0->grad =
  11272. ggml_add_impl(ctx, src0->grad,
  11273. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  11274. inplace);
  11275. }
  11276. if (src1->grad) {
  11277. // noop
  11278. }
  11279. } break;
  11280. case GGML_OP_GET_ROWS_BACK:
  11281. {
  11282. GGML_ASSERT(false); // TODO: not implemented
  11283. } break;
  11284. case GGML_OP_DIAG:
  11285. {
  11286. GGML_ASSERT(false); // TODO: not implemented
  11287. } break;
  11288. case GGML_OP_DIAG_MASK_INF:
  11289. {
  11290. // necessary for llama
  11291. if (src0->grad) {
  11292. assert(src1->type == GGML_TYPE_I32);
  11293. assert(ggml_nelements(src1) == 2);
  11294. const int n_past = ((int32_t *) src1->data)[0];
  11295. src0->grad =
  11296. ggml_add_impl(ctx, src0->grad,
  11297. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  11298. inplace);
  11299. }
  11300. if (src1->grad) {
  11301. // noop
  11302. }
  11303. } break;
  11304. case GGML_OP_DIAG_MASK_ZERO:
  11305. {
  11306. // necessary for llama
  11307. if (src0->grad) {
  11308. assert(src1->type == GGML_TYPE_I32);
  11309. assert(ggml_nelements(src1) == 2);
  11310. const int n_past = ((int32_t *) src1->data)[0];
  11311. src0->grad =
  11312. ggml_add_impl(ctx, src0->grad,
  11313. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  11314. inplace);
  11315. }
  11316. if (src1->grad) {
  11317. // noop
  11318. }
  11319. } break;
  11320. case GGML_OP_SOFT_MAX:
  11321. {
  11322. // necessary for llama
  11323. if (src0->grad) {
  11324. // y = softmax(x)
  11325. //
  11326. // Jii = yi - yi*yi
  11327. // Jij = -yi*yj
  11328. // J = diag(y)-y.*y
  11329. // dx = J * dy
  11330. // dxk = sum(Jkj * dyk)
  11331. int64_t ne2[4] = {
  11332. tensor->ne[0],
  11333. 1,
  11334. tensor->ne[1]*tensor->ne[2],
  11335. tensor->ne[3]
  11336. };
  11337. struct ggml_tensor * tensor2 = ggml_cont(ctx,
  11338. ggml_reshape_4d(ctx,
  11339. ggml_cont(ctx, tensor),
  11340. ne2[0], ne2[1], ne2[2], ne2[3]));
  11341. struct ggml_tensor * grad2 = ggml_cont(ctx,
  11342. ggml_reshape_4d(ctx,
  11343. ggml_cont(ctx, tensor->grad),
  11344. ne2[0], ne2[1], ne2[2], ne2[3]));
  11345. struct ggml_tensor * tensor2_t = ggml_cont(ctx, // [1,ne0,ne1*ne2,ne3]
  11346. ggml_permute(ctx, // [1,ne0,ne1*ne2,ne3]
  11347. tensor2, // [ne0,1,ne1*ne2,ne3]
  11348. 1, 0, 2, 3));
  11349. src0->grad =
  11350. ggml_add_impl(ctx,
  11351. src0->grad, // [ne0,ne1,ne2,ne3]
  11352. ggml_reshape(ctx, // [ne0,ne1,ne2,ne3]
  11353. ggml_mul_mat(ctx, // [ne0,1,ne1*ne2,ne3]
  11354. ggml_sub(ctx, // [ne0,ne0,ne1*ne2,ne3]
  11355. ggml_diag(ctx, // [ne0,ne0,ne1*ne2,ne3]
  11356. tensor2), // [ne0,1,ne1*ne2,ne3]
  11357. ggml_mul_mat(ctx, // [ne0,ne0,ne1*ne2,ne3]
  11358. tensor2_t, // [1,ne0,ne1*ne2,ne3]
  11359. tensor2_t)), // [1,ne0,ne1*ne2,ne3]
  11360. grad2), // [ne0,1,ne1*ne2,ne3]
  11361. src0->grad),
  11362. inplace);
  11363. }
  11364. } break;
  11365. case GGML_OP_ROPE:
  11366. {
  11367. // necessary for llama
  11368. if (src0->grad) {
  11369. assert(src1->type == GGML_TYPE_I32);
  11370. assert(ggml_nelements(src1) == 3);
  11371. const int n_past = ((int32_t *) src1->data)[0];
  11372. const int n_dims = ((int32_t *) src1->data)[1];
  11373. const int mode = ((int32_t *) src1->data)[2];
  11374. src0->grad = ggml_add_impl(ctx,
  11375. src0->grad,
  11376. ggml_rope_back(ctx,
  11377. tensor->grad,
  11378. n_past,
  11379. n_dims,
  11380. mode),
  11381. inplace);
  11382. }
  11383. if (src1->grad) {
  11384. // noop
  11385. }
  11386. } break;
  11387. case GGML_OP_ROPE_BACK:
  11388. {
  11389. if (src0->grad) {
  11390. assert(src1->type == GGML_TYPE_I32);
  11391. assert(ggml_nelements(src1) == 3);
  11392. const int n_past = ((int32_t *) src1->data)[0];
  11393. const int n_dims = ((int32_t *) src1->data)[1];
  11394. const int mode = ((int32_t *) src1->data)[2];
  11395. src0->grad = ggml_add_impl(ctx,
  11396. src0->grad,
  11397. ggml_rope(ctx,
  11398. tensor->grad,
  11399. n_past,
  11400. n_dims,
  11401. mode),
  11402. inplace);
  11403. }
  11404. if (src1->grad) {
  11405. // noop
  11406. }
  11407. } break;
  11408. case GGML_OP_CONV_1D_1S:
  11409. {
  11410. GGML_ASSERT(false); // TODO: not implemented
  11411. } break;
  11412. case GGML_OP_CONV_1D_2S:
  11413. {
  11414. GGML_ASSERT(false); // TODO: not implemented
  11415. } break;
  11416. case GGML_OP_FLASH_ATTN:
  11417. {
  11418. GGML_ASSERT(false); // not supported
  11419. } break;
  11420. case GGML_OP_FLASH_FF:
  11421. {
  11422. GGML_ASSERT(false); // not supported
  11423. } break;
  11424. case GGML_OP_MAP_UNARY:
  11425. case GGML_OP_MAP_BINARY:
  11426. {
  11427. GGML_ASSERT(false); // not supported
  11428. } break;
  11429. case GGML_OP_NONE:
  11430. {
  11431. // nop
  11432. } break;
  11433. case GGML_OP_COUNT:
  11434. {
  11435. GGML_ASSERT(false);
  11436. } break;
  11437. }
  11438. }
  11439. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  11440. if (node->grad == NULL) {
  11441. // this usually happens when we generate intermediate nodes from constants in the backward pass
  11442. // it can also happen during forward pass, if the user performs computations with constants
  11443. if (node->op != GGML_OP_NONE) {
  11444. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  11445. }
  11446. }
  11447. // check if already visited
  11448. for (int i = 0; i < cgraph->n_nodes; i++) {
  11449. if (cgraph->nodes[i] == node) {
  11450. return;
  11451. }
  11452. }
  11453. for (int i = 0; i < cgraph->n_leafs; i++) {
  11454. if (cgraph->leafs[i] == node) {
  11455. return;
  11456. }
  11457. }
  11458. if (node->src0) {
  11459. ggml_visit_parents(cgraph, node->src0);
  11460. }
  11461. if (node->src1) {
  11462. ggml_visit_parents(cgraph, node->src1);
  11463. }
  11464. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  11465. if (node->opt[i]) {
  11466. ggml_visit_parents(cgraph, node->opt[i]);
  11467. }
  11468. }
  11469. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  11470. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  11471. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  11472. if (strlen(node->name) == 0) {
  11473. snprintf(node->name, sizeof(node->name), "leaf_%d", cgraph->n_leafs);
  11474. }
  11475. cgraph->leafs[cgraph->n_leafs] = node;
  11476. cgraph->n_leafs++;
  11477. } else {
  11478. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  11479. if (strlen(node->name) == 0) {
  11480. snprintf(node->name, sizeof(node->name), "node_%d", cgraph->n_nodes);
  11481. }
  11482. cgraph->nodes[cgraph->n_nodes] = node;
  11483. cgraph->grads[cgraph->n_nodes] = node->grad;
  11484. cgraph->n_nodes++;
  11485. }
  11486. }
  11487. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  11488. if (!expand) {
  11489. cgraph->n_nodes = 0;
  11490. cgraph->n_leafs = 0;
  11491. }
  11492. const int n0 = cgraph->n_nodes;
  11493. UNUSED(n0);
  11494. ggml_visit_parents(cgraph, tensor);
  11495. const int n_new = cgraph->n_nodes - n0;
  11496. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  11497. if (n_new > 0) {
  11498. // the last added node should always be starting point
  11499. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  11500. }
  11501. }
  11502. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  11503. ggml_build_forward_impl(cgraph, tensor, true);
  11504. }
  11505. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  11506. struct ggml_cgraph result = {
  11507. /*.n_nodes =*/ 0,
  11508. /*.n_leafs =*/ 0,
  11509. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  11510. /*.work_size =*/ 0,
  11511. /*.work =*/ NULL,
  11512. /*.nodes =*/ { NULL },
  11513. /*.grads =*/ { NULL },
  11514. /*.leafs =*/ { NULL },
  11515. /*.perf_runs =*/ 0,
  11516. /*.perf_cycles =*/ 0,
  11517. /*.perf_time_us =*/ 0,
  11518. };
  11519. ggml_build_forward_impl(&result, tensor, false);
  11520. return result;
  11521. }
  11522. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  11523. struct ggml_cgraph result = *gf;
  11524. GGML_ASSERT(gf->n_nodes > 0);
  11525. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  11526. if (keep) {
  11527. for (int i = 0; i < gf->n_nodes; i++) {
  11528. struct ggml_tensor * node = gf->nodes[i];
  11529. if (node->grad) {
  11530. node->grad = ggml_dup_tensor(ctx, node);
  11531. gf->grads[i] = node->grad;
  11532. }
  11533. }
  11534. }
  11535. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  11536. struct ggml_tensor * node = gf->nodes[i];
  11537. // because we detached the grad nodes from the original graph, we can afford inplace operations
  11538. if (node->grad) {
  11539. ggml_compute_backward(ctx, node, keep);
  11540. }
  11541. }
  11542. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  11543. struct ggml_tensor * node = gf->nodes[i];
  11544. if (node->is_param) {
  11545. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  11546. ggml_build_forward_impl(&result, node->grad, true);
  11547. }
  11548. }
  11549. return result;
  11550. }
  11551. //
  11552. // thread data
  11553. //
  11554. // synchronization is done via busy loops
  11555. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  11556. //
  11557. #ifdef __APPLE__
  11558. //#include <os/lock.h>
  11559. //
  11560. //typedef os_unfair_lock ggml_lock_t;
  11561. //
  11562. //#define ggml_lock_init(x) UNUSED(x)
  11563. //#define ggml_lock_destroy(x) UNUSED(x)
  11564. //#define ggml_lock_lock os_unfair_lock_lock
  11565. //#define ggml_lock_unlock os_unfair_lock_unlock
  11566. //
  11567. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  11568. typedef int ggml_lock_t;
  11569. #define ggml_lock_init(x) UNUSED(x)
  11570. #define ggml_lock_destroy(x) UNUSED(x)
  11571. #define ggml_lock_lock(x) UNUSED(x)
  11572. #define ggml_lock_unlock(x) UNUSED(x)
  11573. #define GGML_LOCK_INITIALIZER 0
  11574. typedef pthread_t ggml_thread_t;
  11575. #define ggml_thread_create pthread_create
  11576. #define ggml_thread_join pthread_join
  11577. #else
  11578. //typedef pthread_spinlock_t ggml_lock_t;
  11579. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  11580. //#define ggml_lock_destroy pthread_spin_destroy
  11581. //#define ggml_lock_lock pthread_spin_lock
  11582. //#define ggml_lock_unlock pthread_spin_unlock
  11583. typedef int ggml_lock_t;
  11584. #define ggml_lock_init(x) UNUSED(x)
  11585. #define ggml_lock_destroy(x) UNUSED(x)
  11586. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  11587. #define ggml_lock_lock(x) _mm_pause()
  11588. #else
  11589. #define ggml_lock_lock(x) UNUSED(x)
  11590. #endif
  11591. #define ggml_lock_unlock(x) UNUSED(x)
  11592. #define GGML_LOCK_INITIALIZER 0
  11593. typedef pthread_t ggml_thread_t;
  11594. #define ggml_thread_create pthread_create
  11595. #define ggml_thread_join pthread_join
  11596. #endif
  11597. struct ggml_compute_state_shared {
  11598. ggml_lock_t spin;
  11599. int n_threads;
  11600. // synchronization primitives
  11601. atomic_int n_ready;
  11602. atomic_bool has_work;
  11603. atomic_bool stop; // stop all threads
  11604. };
  11605. struct ggml_compute_state {
  11606. ggml_thread_t thrd;
  11607. struct ggml_compute_params params;
  11608. struct ggml_tensor * node;
  11609. struct ggml_compute_state_shared * shared;
  11610. };
  11611. static thread_ret_t ggml_graph_compute_thread(void * data) {
  11612. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  11613. const int n_threads = state->shared->n_threads;
  11614. while (true) {
  11615. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  11616. atomic_store(&state->shared->has_work, false);
  11617. } else {
  11618. while (atomic_load(&state->shared->has_work)) {
  11619. if (atomic_load(&state->shared->stop)) {
  11620. return 0;
  11621. }
  11622. ggml_lock_lock (&state->shared->spin);
  11623. ggml_lock_unlock(&state->shared->spin);
  11624. }
  11625. }
  11626. atomic_fetch_sub(&state->shared->n_ready, 1);
  11627. // wait for work
  11628. while (!atomic_load(&state->shared->has_work)) {
  11629. if (atomic_load(&state->shared->stop)) {
  11630. return 0;
  11631. }
  11632. ggml_lock_lock (&state->shared->spin);
  11633. ggml_lock_unlock(&state->shared->spin);
  11634. }
  11635. // check if we should stop
  11636. if (atomic_load(&state->shared->stop)) {
  11637. break;
  11638. }
  11639. if (state->node) {
  11640. if (state->params.ith < state->params.nth) {
  11641. ggml_compute_forward(&state->params, state->node);
  11642. }
  11643. state->node = NULL;
  11644. } else {
  11645. break;
  11646. }
  11647. }
  11648. return 0;
  11649. }
  11650. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  11651. const int n_threads = cgraph->n_threads;
  11652. struct ggml_compute_state_shared state_shared = {
  11653. /*.spin =*/ GGML_LOCK_INITIALIZER,
  11654. /*.n_threads =*/ n_threads,
  11655. /*.n_ready =*/ 0,
  11656. /*.has_work =*/ false,
  11657. /*.stop =*/ false,
  11658. };
  11659. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  11660. // create thread pool
  11661. if (n_threads > 1) {
  11662. ggml_lock_init(&state_shared.spin);
  11663. atomic_store(&state_shared.has_work, true);
  11664. for (int j = 0; j < n_threads - 1; j++) {
  11665. workers[j] = (struct ggml_compute_state) {
  11666. .thrd = 0,
  11667. .params = {
  11668. .type = GGML_TASK_COMPUTE,
  11669. .ith = j + 1,
  11670. .nth = n_threads,
  11671. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11672. .wdata = cgraph->work ? cgraph->work->data : NULL,
  11673. },
  11674. .node = NULL,
  11675. .shared = &state_shared,
  11676. };
  11677. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  11678. GGML_ASSERT(rc == 0);
  11679. UNUSED(rc);
  11680. }
  11681. }
  11682. // initialize tasks + work buffer
  11683. {
  11684. size_t work_size = 0;
  11685. // thread scheduling for the different operations
  11686. for (int i = 0; i < cgraph->n_nodes; i++) {
  11687. struct ggml_tensor * node = cgraph->nodes[i];
  11688. switch (node->op) {
  11689. case GGML_OP_CPY:
  11690. case GGML_OP_DUP:
  11691. {
  11692. node->n_tasks = n_threads;
  11693. size_t cur = 0;
  11694. if (ggml_is_quantized(node->type)) {
  11695. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
  11696. }
  11697. work_size = MAX(work_size, cur);
  11698. } break;
  11699. case GGML_OP_ADD:
  11700. case GGML_OP_ADD1:
  11701. {
  11702. node->n_tasks = n_threads;
  11703. size_t cur = 0;
  11704. if (ggml_is_quantized(node->src0->type)) {
  11705. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
  11706. }
  11707. work_size = MAX(work_size, cur);
  11708. } break;
  11709. case GGML_OP_ACC:
  11710. {
  11711. node->n_tasks = n_threads;
  11712. size_t cur = 0;
  11713. if (ggml_is_quantized(node->src0->type)) {
  11714. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src1->ne[0] * n_threads;
  11715. }
  11716. work_size = MAX(work_size, cur);
  11717. } break;
  11718. case GGML_OP_SUB:
  11719. case GGML_OP_DIV:
  11720. case GGML_OP_SQR:
  11721. case GGML_OP_SQRT:
  11722. case GGML_OP_LOG:
  11723. case GGML_OP_SUM:
  11724. case GGML_OP_SUM_ROWS:
  11725. case GGML_OP_MEAN:
  11726. case GGML_OP_REPEAT:
  11727. case GGML_OP_ABS:
  11728. case GGML_OP_SGN:
  11729. case GGML_OP_NEG:
  11730. case GGML_OP_STEP:
  11731. case GGML_OP_RELU:
  11732. {
  11733. node->n_tasks = 1;
  11734. } break;
  11735. case GGML_OP_MUL:
  11736. case GGML_OP_GELU:
  11737. case GGML_OP_SILU:
  11738. case GGML_OP_SILU_BACK:
  11739. case GGML_OP_NORM:
  11740. case GGML_OP_RMS_NORM:
  11741. case GGML_OP_RMS_NORM_BACK:
  11742. {
  11743. node->n_tasks = n_threads;
  11744. } break;
  11745. case GGML_OP_MUL_MAT:
  11746. {
  11747. node->n_tasks = n_threads;
  11748. // TODO: use different scheduling for different matrix sizes
  11749. //const int nr0 = ggml_nrows(node->src0);
  11750. //const int nr1 = ggml_nrows(node->src1);
  11751. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  11752. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  11753. size_t cur = 0;
  11754. #if defined(GGML_USE_CUBLAS)
  11755. if (ggml_cuda_can_mul_mat(node->src0, node->src1, node)) {
  11756. node->n_tasks = 1; // TODO: this actually is doing nothing
  11757. // the threads are still spinning
  11758. }
  11759. else
  11760. #elif defined(GGML_USE_CLBLAST)
  11761. if (ggml_cl_can_mul_mat(node->src0, node->src1, node)) {
  11762. node->n_tasks = 1; // TODO: this actually is doing nothing
  11763. // the threads are still spinning
  11764. cur = ggml_cl_mul_mat_get_wsize(node->src0, node->src1, node);
  11765. }
  11766. else
  11767. #endif
  11768. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  11769. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  11770. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  11771. node->n_tasks = 1; // TODO: this actually is doing nothing
  11772. // the threads are still spinning
  11773. // here we need memory just for single 2D matrix from src0
  11774. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  11775. } else {
  11776. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  11777. }
  11778. #else
  11779. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  11780. #endif
  11781. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  11782. cur = 0;
  11783. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  11784. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  11785. node->n_tasks = 1;
  11786. }
  11787. #endif
  11788. } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
  11789. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  11790. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  11791. node->n_tasks = 1;
  11792. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  11793. } else
  11794. #endif
  11795. {
  11796. const enum ggml_type type_q = quantize_fns[node->src0->type].vec_dot_type;
  11797. cur = GGML_TYPE_SIZE[type_q]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[type_q];
  11798. }
  11799. } else {
  11800. GGML_ASSERT(false);
  11801. }
  11802. work_size = MAX(work_size, cur);
  11803. } break;
  11804. case GGML_OP_SCALE:
  11805. {
  11806. node->n_tasks = n_threads;
  11807. } break;
  11808. case GGML_OP_SET:
  11809. case GGML_OP_CONT:
  11810. case GGML_OP_RESHAPE:
  11811. case GGML_OP_VIEW:
  11812. case GGML_OP_PERMUTE:
  11813. case GGML_OP_TRANSPOSE:
  11814. case GGML_OP_GET_ROWS:
  11815. case GGML_OP_GET_ROWS_BACK:
  11816. case GGML_OP_DIAG:
  11817. case GGML_OP_DIAG_MASK_ZERO:
  11818. {
  11819. node->n_tasks = 1;
  11820. } break;
  11821. case GGML_OP_DIAG_MASK_INF:
  11822. case GGML_OP_SOFT_MAX:
  11823. case GGML_OP_ROPE:
  11824. case GGML_OP_ROPE_BACK:
  11825. {
  11826. node->n_tasks = n_threads;
  11827. } break;
  11828. case GGML_OP_ALIBI:
  11829. {
  11830. node->n_tasks = 1; //TODO
  11831. } break;
  11832. case GGML_OP_CLAMP:
  11833. {
  11834. node->n_tasks = 1; //TODO
  11835. } break;
  11836. case GGML_OP_CONV_1D_1S:
  11837. case GGML_OP_CONV_1D_2S:
  11838. {
  11839. node->n_tasks = n_threads;
  11840. GGML_ASSERT(node->src0->ne[3] == 1);
  11841. GGML_ASSERT(node->src1->ne[2] == 1);
  11842. GGML_ASSERT(node->src1->ne[3] == 1);
  11843. size_t cur = 0;
  11844. const int nk = node->src0->ne[0];
  11845. if (node->src0->type == GGML_TYPE_F16 &&
  11846. node->src1->type == GGML_TYPE_F32) {
  11847. cur = sizeof(ggml_fp16_t)*(
  11848. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  11849. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  11850. );
  11851. } else if (node->src0->type == GGML_TYPE_F32 &&
  11852. node->src1->type == GGML_TYPE_F32) {
  11853. cur = sizeof(float)*(
  11854. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  11855. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  11856. );
  11857. } else {
  11858. GGML_ASSERT(false);
  11859. }
  11860. work_size = MAX(work_size, cur);
  11861. } break;
  11862. case GGML_OP_FLASH_ATTN:
  11863. {
  11864. node->n_tasks = n_threads;
  11865. size_t cur = 0;
  11866. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  11867. if (node->src1->type == GGML_TYPE_F32) {
  11868. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  11869. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  11870. }
  11871. if (node->src1->type == GGML_TYPE_F16) {
  11872. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  11873. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  11874. }
  11875. work_size = MAX(work_size, cur);
  11876. } break;
  11877. case GGML_OP_FLASH_FF:
  11878. {
  11879. node->n_tasks = n_threads;
  11880. size_t cur = 0;
  11881. if (node->src1->type == GGML_TYPE_F32) {
  11882. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  11883. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  11884. }
  11885. if (node->src1->type == GGML_TYPE_F16) {
  11886. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  11887. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  11888. }
  11889. work_size = MAX(work_size, cur);
  11890. } break;
  11891. case GGML_OP_MAP_UNARY:
  11892. case GGML_OP_MAP_BINARY:
  11893. {
  11894. node->n_tasks = 1;
  11895. } break;
  11896. case GGML_OP_NONE:
  11897. {
  11898. node->n_tasks = 1;
  11899. } break;
  11900. case GGML_OP_COUNT:
  11901. {
  11902. GGML_ASSERT(false);
  11903. } break;
  11904. }
  11905. }
  11906. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  11907. GGML_ASSERT(false); // TODO: better handling
  11908. }
  11909. if (work_size > 0 && cgraph->work == NULL) {
  11910. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  11911. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  11912. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  11913. }
  11914. }
  11915. const int64_t perf_start_cycles = ggml_perf_cycles();
  11916. const int64_t perf_start_time_us = ggml_perf_time_us();
  11917. for (int i = 0; i < cgraph->n_nodes; i++) {
  11918. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  11919. struct ggml_tensor * node = cgraph->nodes[i];
  11920. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  11921. //if (node->grad == NULL && node->perf_runs > 0) {
  11922. // continue;
  11923. //}
  11924. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  11925. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  11926. // INIT
  11927. struct ggml_compute_params params = {
  11928. /*.type =*/ GGML_TASK_INIT,
  11929. /*.ith =*/ 0,
  11930. /*.nth =*/ node->n_tasks,
  11931. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11932. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  11933. };
  11934. ggml_compute_forward(&params, node);
  11935. // COMPUTE
  11936. if (node->n_tasks > 1) {
  11937. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11938. atomic_store(&state_shared.has_work, false);
  11939. }
  11940. while (atomic_load(&state_shared.has_work)) {
  11941. ggml_lock_lock (&state_shared.spin);
  11942. ggml_lock_unlock(&state_shared.spin);
  11943. }
  11944. // launch thread pool
  11945. for (int j = 0; j < n_threads - 1; j++) {
  11946. workers[j].params = (struct ggml_compute_params) {
  11947. .type = GGML_TASK_COMPUTE,
  11948. .ith = j + 1,
  11949. .nth = node->n_tasks,
  11950. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11951. .wdata = cgraph->work ? cgraph->work->data : NULL,
  11952. };
  11953. workers[j].node = node;
  11954. }
  11955. atomic_fetch_sub(&state_shared.n_ready, 1);
  11956. while (atomic_load(&state_shared.n_ready) > 0) {
  11957. ggml_lock_lock (&state_shared.spin);
  11958. ggml_lock_unlock(&state_shared.spin);
  11959. }
  11960. atomic_store(&state_shared.has_work, true);
  11961. }
  11962. params.type = GGML_TASK_COMPUTE;
  11963. ggml_compute_forward(&params, node);
  11964. // wait for thread pool
  11965. if (node->n_tasks > 1) {
  11966. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11967. atomic_store(&state_shared.has_work, false);
  11968. }
  11969. while (atomic_load(&state_shared.has_work)) {
  11970. ggml_lock_lock (&state_shared.spin);
  11971. ggml_lock_unlock(&state_shared.spin);
  11972. }
  11973. atomic_fetch_sub(&state_shared.n_ready, 1);
  11974. while (atomic_load(&state_shared.n_ready) != 0) {
  11975. ggml_lock_lock (&state_shared.spin);
  11976. ggml_lock_unlock(&state_shared.spin);
  11977. }
  11978. }
  11979. // FINALIZE
  11980. if (node->n_tasks > 1) {
  11981. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11982. atomic_store(&state_shared.has_work, false);
  11983. }
  11984. while (atomic_load(&state_shared.has_work)) {
  11985. ggml_lock_lock (&state_shared.spin);
  11986. ggml_lock_unlock(&state_shared.spin);
  11987. }
  11988. // launch thread pool
  11989. for (int j = 0; j < n_threads - 1; j++) {
  11990. workers[j].params = (struct ggml_compute_params) {
  11991. .type = GGML_TASK_FINALIZE,
  11992. .ith = j + 1,
  11993. .nth = node->n_tasks,
  11994. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11995. .wdata = cgraph->work ? cgraph->work->data : NULL,
  11996. };
  11997. workers[j].node = node;
  11998. }
  11999. atomic_fetch_sub(&state_shared.n_ready, 1);
  12000. while (atomic_load(&state_shared.n_ready) > 0) {
  12001. ggml_lock_lock (&state_shared.spin);
  12002. ggml_lock_unlock(&state_shared.spin);
  12003. }
  12004. atomic_store(&state_shared.has_work, true);
  12005. }
  12006. params.type = GGML_TASK_FINALIZE;
  12007. ggml_compute_forward(&params, node);
  12008. // wait for thread pool
  12009. if (node->n_tasks > 1) {
  12010. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  12011. atomic_store(&state_shared.has_work, false);
  12012. }
  12013. while (atomic_load(&state_shared.has_work)) {
  12014. ggml_lock_lock (&state_shared.spin);
  12015. ggml_lock_unlock(&state_shared.spin);
  12016. }
  12017. atomic_fetch_sub(&state_shared.n_ready, 1);
  12018. while (atomic_load(&state_shared.n_ready) != 0) {
  12019. ggml_lock_lock (&state_shared.spin);
  12020. ggml_lock_unlock(&state_shared.spin);
  12021. }
  12022. }
  12023. // performance stats (node)
  12024. {
  12025. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  12026. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  12027. node->perf_runs++;
  12028. node->perf_cycles += perf_cycles_cur;
  12029. node->perf_time_us += perf_time_us_cur;
  12030. }
  12031. }
  12032. // join thread pool
  12033. if (n_threads > 1) {
  12034. atomic_store(&state_shared.stop, true);
  12035. atomic_store(&state_shared.has_work, true);
  12036. for (int j = 0; j < n_threads - 1; j++) {
  12037. int rc = ggml_thread_join(workers[j].thrd, NULL);
  12038. GGML_ASSERT(rc == 0);
  12039. UNUSED(rc);
  12040. }
  12041. ggml_lock_destroy(&state_shared.spin);
  12042. }
  12043. // performance stats (graph)
  12044. {
  12045. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  12046. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  12047. cgraph->perf_runs++;
  12048. cgraph->perf_cycles += perf_cycles_cur;
  12049. cgraph->perf_time_us += perf_time_us_cur;
  12050. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  12051. __func__, cgraph->perf_runs,
  12052. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  12053. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  12054. (double) perf_time_us_cur / 1000.0,
  12055. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  12056. }
  12057. }
  12058. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  12059. for (int i = 0; i < cgraph->n_nodes; i++) {
  12060. struct ggml_tensor * grad = cgraph->grads[i];
  12061. if (grad) {
  12062. ggml_set_zero(grad);
  12063. }
  12064. }
  12065. }
  12066. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  12067. for (int i = 0; i < cgraph->n_leafs; i++) {
  12068. struct ggml_tensor * leaf = cgraph->leafs[i];
  12069. if (strcmp(leaf->name, name) == 0) {
  12070. return leaf;
  12071. }
  12072. }
  12073. for (int i = 0; i < cgraph->n_nodes; i++) {
  12074. struct ggml_tensor * node = cgraph->nodes[i];
  12075. if (strcmp(node->name, name) == 0) {
  12076. return node;
  12077. }
  12078. }
  12079. return NULL;
  12080. }
  12081. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  12082. const int64_t * ne = tensor->ne;
  12083. const size_t * nb = tensor->nb;
  12084. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  12085. ggml_type_name(tensor->type),
  12086. ggml_op_name (tensor->op),
  12087. tensor->n_dims,
  12088. ne[0], ne[1], ne[2], ne[3],
  12089. nb[0], nb[1], nb[2], nb[3],
  12090. tensor->data,
  12091. tensor->name);
  12092. }
  12093. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  12094. const int64_t * ne = tensor->ne;
  12095. const size_t * nb = tensor->nb;
  12096. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %8d %16p %32s\n",
  12097. arg,
  12098. ggml_type_name(tensor->type),
  12099. ggml_op_name (tensor->op),
  12100. tensor->n_dims,
  12101. ne[0], ne[1], ne[2], ne[3],
  12102. nb[0], nb[1], nb[2], nb[3],
  12103. tensor->n_tasks,
  12104. tensor->data,
  12105. tensor->name);
  12106. }
  12107. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  12108. //assert(cgraph->work == NULL);
  12109. //assert(cgraph->work_size == 0);
  12110. uint64_t size_eval = 0;
  12111. // compute size of intermediate results
  12112. // TODO: does not take into account scratch buffers !!!!
  12113. for (int i = 0; i < cgraph->n_nodes; ++i) {
  12114. size_eval += ggml_nbytes(cgraph->nodes[i]);
  12115. }
  12116. // print
  12117. {
  12118. FILE * fout = stdout;
  12119. fprintf(fout, "\n");
  12120. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  12121. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  12122. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  12123. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  12124. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  12125. // header
  12126. fprintf(fout, "\n");
  12127. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  12128. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  12129. for (int i = 0; i < cgraph->n_leafs; ++i) {
  12130. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  12131. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  12132. GGML_ASSERT(cgraph->leafs[i]->src0 == NULL);
  12133. GGML_ASSERT(cgraph->leafs[i]->src1 == NULL);
  12134. }
  12135. // header
  12136. fprintf(fout, "\n");
  12137. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  12138. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  12139. for (int i = 0; i < cgraph->n_nodes; ++i) {
  12140. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  12141. if (cgraph->nodes[i]->src0) {
  12142. ggml_graph_export_node(cgraph->nodes[i]->src0, "SRC0", fout);
  12143. }
  12144. if (cgraph->nodes[i]->src1) {
  12145. ggml_graph_export_node(cgraph->nodes[i]->src1, "SRC1", fout);
  12146. }
  12147. for (int j = 0; j < GGML_MAX_OPT; ++j) {
  12148. if (cgraph->nodes[i]->opt[j]) {
  12149. ggml_graph_export_node(cgraph->nodes[i]->opt[j], "OPT", fout);
  12150. }
  12151. }
  12152. fprintf(fout, "\n");
  12153. }
  12154. fprintf(fout, "\n");
  12155. }
  12156. // write binary data
  12157. {
  12158. FILE * fout = fopen(fname, "wb");
  12159. if (!fout) {
  12160. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  12161. return;
  12162. }
  12163. // header
  12164. {
  12165. const uint32_t magic = GGML_FILE_MAGIC;
  12166. const uint32_t version = GGML_FILE_VERSION;
  12167. const uint32_t n_leafs = cgraph->n_leafs;
  12168. const uint32_t nodes = cgraph->n_nodes;
  12169. fwrite(&magic, sizeof(uint32_t), 1, fout);
  12170. fwrite(&version, sizeof(uint32_t), 1, fout);
  12171. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  12172. fwrite(&nodes, sizeof(uint32_t), 1, fout);
  12173. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  12174. }
  12175. // leafs
  12176. {
  12177. for (int i = 0; i < cgraph->n_leafs; ++i) {
  12178. const struct ggml_tensor * tensor = cgraph->leafs[i];
  12179. const uint32_t type = tensor->type;
  12180. const uint32_t op = tensor->op;
  12181. const uint32_t n_dims = tensor->n_dims;
  12182. fwrite(&type, sizeof(uint32_t), 1, fout);
  12183. fwrite(&op, sizeof(uint32_t), 1, fout);
  12184. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  12185. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  12186. const uint64_t ne = tensor->ne[j];
  12187. const uint64_t nb = tensor->nb[j];
  12188. fwrite(&ne, sizeof(uint64_t), 1, fout);
  12189. fwrite(&nb, sizeof(uint64_t), 1, fout);
  12190. }
  12191. // store the pointer address
  12192. {
  12193. const uint64_t ptr = (uint64_t) tensor->data;
  12194. fwrite(&ptr, sizeof(uint64_t), 1, fout);
  12195. }
  12196. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  12197. // dump the data
  12198. // TODO: pad this to 32 byte boundary
  12199. {
  12200. const size_t size = ggml_nbytes(tensor);
  12201. fwrite(tensor->data, sizeof(char), size, fout);
  12202. }
  12203. }
  12204. }
  12205. // nodes
  12206. {
  12207. for (int i = 0; i < cgraph->n_nodes; ++i) {
  12208. const struct ggml_tensor * tensor = cgraph->nodes[i];
  12209. const uint32_t type = tensor->type;
  12210. const uint32_t op = tensor->op;
  12211. const uint32_t n_dims = tensor->n_dims;
  12212. fwrite(&type, sizeof(uint32_t), 1, fout);
  12213. fwrite(&op, sizeof(uint32_t), 1, fout);
  12214. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  12215. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  12216. const uint64_t ne = tensor->ne[j];
  12217. const uint64_t nb = tensor->nb[j];
  12218. fwrite(&ne, sizeof(uint64_t), 1, fout);
  12219. fwrite(&nb, sizeof(uint64_t), 1, fout);
  12220. }
  12221. // store the pointer address
  12222. {
  12223. const uint64_t ptr = (uint64_t) tensor->data;
  12224. fwrite(&ptr, sizeof(uint64_t), 1, fout);
  12225. }
  12226. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  12227. // output the op arguments
  12228. {
  12229. struct ggml_tensor * args[2 + GGML_MAX_OPT] = { NULL };
  12230. args[0] = tensor->src0;
  12231. args[1] = tensor->src1;
  12232. for (int j = 0; j < GGML_MAX_OPT; ++j) {
  12233. args[2 + j] = tensor->opt[j];
  12234. }
  12235. for (int j = 0; j < 2 + GGML_MAX_OPT; ++j) {
  12236. if (args[j]) {
  12237. int32_t idx = -1;
  12238. // check if leaf
  12239. {
  12240. for (int k = 0; k < cgraph->n_leafs; ++k) {
  12241. if (args[j] == cgraph->leafs[k]) {
  12242. idx = k;
  12243. break;
  12244. }
  12245. }
  12246. }
  12247. // check if node
  12248. if (idx == -1) {
  12249. for (int k = 0; k < cgraph->n_nodes; ++k) {
  12250. if (args[j] == cgraph->nodes[k]) {
  12251. idx = GGML_MAX_NODES + k;
  12252. break;
  12253. }
  12254. }
  12255. }
  12256. if (idx == -1) {
  12257. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  12258. return;
  12259. }
  12260. fwrite(&idx, sizeof(int32_t), 1, fout);
  12261. } else {
  12262. const int32_t nul = -1;
  12263. fwrite(&nul, sizeof(int32_t), 1, fout);
  12264. }
  12265. }
  12266. }
  12267. }
  12268. }
  12269. fclose(fout);
  12270. }
  12271. }
  12272. struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  12273. assert(*ctx_data == NULL);
  12274. assert(*ctx_eval == NULL);
  12275. struct ggml_cgraph result = { 0 };
  12276. struct ggml_tensor * data = NULL;
  12277. // read file into data
  12278. {
  12279. FILE * fin = fopen(fname, "rb");
  12280. if (!fin) {
  12281. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  12282. return result;
  12283. }
  12284. size_t fsize = 0;
  12285. fseek(fin, 0, SEEK_END);
  12286. fsize = ftell(fin);
  12287. fseek(fin, 0, SEEK_SET);
  12288. // create the data context
  12289. {
  12290. const size_t overhead = 1*ggml_tensor_overhead();
  12291. struct ggml_init_params params = {
  12292. .mem_size = fsize + overhead,
  12293. .mem_buffer = NULL,
  12294. .no_alloc = false,
  12295. };
  12296. *ctx_data = ggml_init(params);
  12297. if (!*ctx_data) {
  12298. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  12299. return result;
  12300. }
  12301. }
  12302. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  12303. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  12304. if (ret != fsize) {
  12305. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  12306. return result;
  12307. }
  12308. fclose(fin);
  12309. }
  12310. // populate result
  12311. {
  12312. char * ptr = (char *) data->data;
  12313. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  12314. if (magic != GGML_FILE_MAGIC) {
  12315. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  12316. return result;
  12317. }
  12318. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  12319. if (version != GGML_FILE_VERSION) {
  12320. fprintf(stderr, "%s: invalid version number\n", __func__);
  12321. return result;
  12322. }
  12323. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  12324. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  12325. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  12326. result.n_leafs = n_leafs;
  12327. result.n_nodes = n_nodes;
  12328. // create the data context
  12329. {
  12330. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead();
  12331. struct ggml_init_params params = {
  12332. .mem_size = size_eval + overhead,
  12333. .mem_buffer = NULL,
  12334. .no_alloc = true,
  12335. };
  12336. *ctx_eval = ggml_init(params);
  12337. if (!*ctx_eval) {
  12338. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  12339. return result;
  12340. }
  12341. }
  12342. // leafs
  12343. {
  12344. uint32_t type;
  12345. uint32_t op;
  12346. uint32_t n_dims;
  12347. for (uint32_t i = 0; i < n_leafs; ++i) {
  12348. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  12349. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  12350. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  12351. int64_t ne[GGML_MAX_DIMS];
  12352. size_t nb[GGML_MAX_DIMS];
  12353. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  12354. uint64_t ne_cur;
  12355. uint64_t nb_cur;
  12356. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  12357. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  12358. ne[j] = ne_cur;
  12359. nb[j] = nb_cur;
  12360. }
  12361. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  12362. tensor->op = (enum ggml_op) op;
  12363. uint64_t ptr_cur = *(const uint64_t *) ptr; ptr += sizeof(ptr_cur);
  12364. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  12365. tensor->data = (void *) ptr;
  12366. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  12367. tensor->nb[j] = nb[j];
  12368. }
  12369. result.leafs[i] = tensor;
  12370. ptr += ggml_nbytes(tensor);
  12371. fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  12372. }
  12373. }
  12374. ggml_set_no_alloc(*ctx_eval, false);
  12375. // nodes
  12376. {
  12377. uint32_t type;
  12378. uint32_t op;
  12379. uint32_t n_dims;
  12380. for (uint32_t i = 0; i < n_nodes; ++i) {
  12381. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  12382. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  12383. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  12384. enum ggml_op eop = (enum ggml_op) op;
  12385. int64_t ne[GGML_MAX_DIMS];
  12386. size_t nb[GGML_MAX_DIMS];
  12387. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  12388. uint64_t ne_cur;
  12389. uint64_t nb_cur;
  12390. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  12391. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  12392. ne[j] = ne_cur;
  12393. nb[j] = nb_cur;
  12394. }
  12395. uint64_t ptr_cur = *(const uint64_t *) ptr; ptr += sizeof(ptr_cur); // TODO: not yet used
  12396. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  12397. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += (2 + GGML_MAX_OPT)*sizeof(int32_t);
  12398. struct ggml_tensor * args[2 + GGML_MAX_OPT] = { NULL };
  12399. // parse args
  12400. for (int j = 0; j < 2 + GGML_MAX_OPT; ++j) {
  12401. const int32_t arg_idx = ptr_arg_idx[j];
  12402. if (arg_idx == -1) {
  12403. continue;
  12404. }
  12405. if (arg_idx < GGML_MAX_NODES) {
  12406. args[j] = result.leafs[arg_idx];
  12407. } else {
  12408. args[j] = result.nodes[arg_idx - GGML_MAX_NODES];
  12409. }
  12410. }
  12411. // create the tensor
  12412. // "view" operations are handled differently
  12413. // TODO: handle inplace ops - currently a copy is always made
  12414. struct ggml_tensor * tensor = NULL;
  12415. switch (eop) {
  12416. // TODO: implement other view ops
  12417. case GGML_OP_RESHAPE:
  12418. {
  12419. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  12420. } break;
  12421. case GGML_OP_VIEW:
  12422. {
  12423. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  12424. uint64_t offs;
  12425. memcpy(&offs, args[2]->data, sizeof(offs));
  12426. tensor->data = ((char *) tensor->data) + offs;
  12427. } break;
  12428. case GGML_OP_TRANSPOSE:
  12429. {
  12430. tensor = ggml_transpose(*ctx_eval, args[0]);
  12431. } break;
  12432. case GGML_OP_PERMUTE:
  12433. {
  12434. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  12435. } break;
  12436. default:
  12437. {
  12438. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  12439. tensor->op = eop;
  12440. } break;
  12441. }
  12442. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  12443. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  12444. tensor->nb[j] = nb[j];
  12445. }
  12446. tensor->src0 = args[0];
  12447. tensor->src1 = args[1];
  12448. for (int j = 0; j < GGML_MAX_OPT; ++j) {
  12449. tensor->opt[j] = args[2 + j];
  12450. }
  12451. result.nodes[i] = tensor;
  12452. fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  12453. }
  12454. }
  12455. }
  12456. return result;
  12457. }
  12458. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  12459. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  12460. GGML_PRINT("=== GRAPH ===\n");
  12461. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  12462. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  12463. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  12464. for (int i = 0; i < cgraph->n_nodes; i++) {
  12465. struct ggml_tensor * node = cgraph->nodes[i];
  12466. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  12467. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  12468. i,
  12469. node->ne[0], node->ne[1], node->ne[2],
  12470. GGML_OP_NAME[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  12471. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  12472. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  12473. (double) node->perf_time_us / 1000.0,
  12474. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  12475. }
  12476. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  12477. for (int i = 0; i < cgraph->n_leafs; i++) {
  12478. struct ggml_tensor * node = cgraph->leafs[i];
  12479. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  12480. i,
  12481. node->ne[0], node->ne[1],
  12482. GGML_OP_NAME[node->op]);
  12483. }
  12484. for (int i = 0; i < GGML_OP_COUNT; i++) {
  12485. if (perf_total_per_op_us[i] == 0) {
  12486. continue;
  12487. }
  12488. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_NAME[i], (double) perf_total_per_op_us[i] / 1000.0);
  12489. }
  12490. GGML_PRINT("========================================\n");
  12491. }
  12492. // check if node is part of the graph
  12493. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  12494. if (cgraph == NULL) {
  12495. return true;
  12496. }
  12497. for (int i = 0; i < cgraph->n_nodes; i++) {
  12498. if (cgraph->nodes[i] == node) {
  12499. return true;
  12500. }
  12501. }
  12502. return false;
  12503. }
  12504. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  12505. for (int i = 0; i < cgraph->n_nodes; i++) {
  12506. struct ggml_tensor * parent = cgraph->nodes[i];
  12507. if (parent->grad == node) {
  12508. return parent;
  12509. }
  12510. }
  12511. return NULL;
  12512. }
  12513. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  12514. char color[16];
  12515. FILE * fp = fopen(filename, "w");
  12516. GGML_ASSERT(fp);
  12517. fprintf(fp, "digraph G {\n");
  12518. fprintf(fp, " newrank = true;\n");
  12519. fprintf(fp, " rankdir = LR;\n");
  12520. for (int i = 0; i < gb->n_nodes; i++) {
  12521. struct ggml_tensor * node = gb->nodes[i];
  12522. if (ggml_graph_get_parent(gb, node) != NULL) {
  12523. continue;
  12524. }
  12525. if (node->is_param) {
  12526. snprintf(color, sizeof(color), "yellow");
  12527. } else if (node->grad) {
  12528. if (ggml_graph_find(gf, node)) {
  12529. snprintf(color, sizeof(color), "green");
  12530. } else {
  12531. snprintf(color, sizeof(color), "lightblue");
  12532. }
  12533. } else {
  12534. snprintf(color, sizeof(color), "white");
  12535. }
  12536. fprintf(fp, " \"%p\" [ "
  12537. "style = filled; fillcolor = %s; shape = record; "
  12538. "label=\"",
  12539. (void *) node, color);
  12540. if (strlen(node->name) > 0) {
  12541. fprintf(fp, "%s |", node->name);
  12542. }
  12543. if (node->n_dims == 2) {
  12544. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], GGML_OP_SYMBOL[node->op]);
  12545. } else {
  12546. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], GGML_OP_SYMBOL[node->op]);
  12547. }
  12548. if (node->grad) {
  12549. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  12550. } else {
  12551. fprintf(fp, "\"; ]\n");
  12552. }
  12553. }
  12554. for (int i = 0; i < gb->n_leafs; i++) {
  12555. struct ggml_tensor * node = gb->leafs[i];
  12556. snprintf(color, sizeof(color), "pink");
  12557. fprintf(fp, " \"%p\" [ "
  12558. "style = filled; fillcolor = %s; shape = record; "
  12559. "label=\"<x>",
  12560. (void *) node, color);
  12561. if (strlen(node->name) > 0) {
  12562. fprintf(fp, "%s | ", node->name);
  12563. }
  12564. if (ggml_nelements(node) == 1) {
  12565. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  12566. fprintf(fp, "%d", ggml_get_i32_1d(node, 0));
  12567. }
  12568. else {
  12569. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, 0));
  12570. }
  12571. }
  12572. else {
  12573. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  12574. }
  12575. fprintf(fp, "\"; ]\n");
  12576. }
  12577. for (int i = 0; i < gb->n_nodes; i++) {
  12578. struct ggml_tensor * node = gb->nodes[i];
  12579. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  12580. if (node->src0) {
  12581. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  12582. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  12583. parent0 ? (void *) parent0 : (void *) node->src0,
  12584. parent0 ? "g" : "x",
  12585. parent ? (void *) parent : (void *) node,
  12586. parent ? "g" : "x",
  12587. parent ? "empty" : "vee",
  12588. parent ? "dashed" : "solid");
  12589. }
  12590. if (node->src1) {
  12591. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  12592. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  12593. parent1 ? (void *) parent1 : (void *) node->src1,
  12594. parent1 ? "g" : "x",
  12595. parent ? (void *) parent : (void *) node,
  12596. parent ? "g" : "x",
  12597. parent ? "empty" : "vee",
  12598. parent ? "dashed" : "solid");
  12599. }
  12600. }
  12601. for (int i = 0; i < gb->n_leafs; i++) {
  12602. struct ggml_tensor * node = gb->leafs[i];
  12603. if (node->src0) {
  12604. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  12605. (void *) node->src0, "x",
  12606. (void *) node, "x");
  12607. }
  12608. if (node->src1) {
  12609. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  12610. (void *) node->src1, "x",
  12611. (void *) node, "x");
  12612. }
  12613. }
  12614. fprintf(fp, "}\n");
  12615. fclose(fp);
  12616. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  12617. }
  12618. ////////////////////////////////////////////////////////////////////////////////
  12619. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  12620. int i = 0;
  12621. for (int p = 0; p < np; ++p) {
  12622. const int64_t ne = ggml_nelements(ps[p]) ;
  12623. // TODO: add function to set tensor from array
  12624. for (int64_t j = 0; j < ne; ++j) {
  12625. ggml_set_f32_1d(ps[p], j, x[i++]);
  12626. }
  12627. }
  12628. }
  12629. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  12630. int i = 0;
  12631. for (int p = 0; p < np; ++p) {
  12632. const int64_t ne = ggml_nelements(ps[p]) ;
  12633. // TODO: add function to get all elements at once
  12634. for (int64_t j = 0; j < ne; ++j) {
  12635. x[i++] = ggml_get_f32_1d(ps[p], j);
  12636. }
  12637. }
  12638. }
  12639. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  12640. int i = 0;
  12641. for (int p = 0; p < np; ++p) {
  12642. const int64_t ne = ggml_nelements(ps[p]) ;
  12643. // TODO: add function to get all elements at once
  12644. for (int64_t j = 0; j < ne; ++j) {
  12645. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  12646. }
  12647. }
  12648. }
  12649. //
  12650. // ADAM
  12651. //
  12652. // ref: https://arxiv.org/pdf/1412.6980.pdf
  12653. //
  12654. static enum ggml_opt_result ggml_opt_adam(
  12655. struct ggml_context * ctx,
  12656. struct ggml_opt_params params,
  12657. struct ggml_tensor * f,
  12658. struct ggml_cgraph * gf,
  12659. struct ggml_cgraph * gb) {
  12660. GGML_ASSERT(ggml_is_scalar(f));
  12661. gf->n_threads = params.n_threads;
  12662. gb->n_threads = params.n_threads;
  12663. // these will store the parameters we want to optimize
  12664. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  12665. int np = 0;
  12666. int nx = 0;
  12667. for (int i = 0; i < gf->n_nodes; ++i) {
  12668. if (gf->nodes[i]->is_param) {
  12669. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  12670. GGML_ASSERT(np < GGML_MAX_PARAMS);
  12671. ps[np++] = gf->nodes[i];
  12672. nx += ggml_nelements(gf->nodes[i]);
  12673. }
  12674. }
  12675. // constants
  12676. const float alpha = params.adam.alpha;
  12677. const float beta1 = params.adam.beta1;
  12678. const float beta2 = params.adam.beta2;
  12679. const float eps = params.adam.eps;
  12680. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  12681. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  12682. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  12683. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  12684. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  12685. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  12686. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  12687. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  12688. // initialize
  12689. ggml_vec_set_f32(nx, m, 0.0f);
  12690. ggml_vec_set_f32(nx, v, 0.0f);
  12691. // update view
  12692. ggml_opt_get_params(np, ps, x);
  12693. // compute the function value
  12694. ggml_graph_reset (gf);
  12695. ggml_set_f32 (f->grad, 1.0f);
  12696. ggml_graph_compute(ctx, gb);
  12697. float fx_prev = ggml_get_f32_1d(f, 0);
  12698. if (pf) {
  12699. pf[0] = fx_prev;
  12700. }
  12701. int n_no_improvement = 0;
  12702. float fx_best = fx_prev;
  12703. // run the optimizer
  12704. for (int t = 0; t < params.adam.n_iter; ++t) {
  12705. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  12706. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  12707. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  12708. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  12709. for (int i = 0; i < np; ++i) {
  12710. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  12711. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  12712. }
  12713. const int64_t t_start_wall = ggml_time_us();
  12714. const int64_t t_start_cpu = ggml_cycles();
  12715. UNUSED(t_start_wall);
  12716. UNUSED(t_start_cpu);
  12717. {
  12718. // update the gradient
  12719. ggml_opt_get_grad(np, ps, g1);
  12720. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  12721. ggml_vec_scale_f32(nx, m, beta1);
  12722. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  12723. // g2 = g1^2
  12724. ggml_vec_sqr_f32 (nx, g2, g1);
  12725. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  12726. ggml_vec_scale_f32(nx, v, beta2);
  12727. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  12728. // m^hat = m_t / (1 - beta1^t)
  12729. // v^hat = v_t / (1 - beta2^t)
  12730. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  12731. ggml_vec_cpy_f32 (nx, mh, m);
  12732. ggml_vec_cpy_f32 (nx, vh, v);
  12733. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  12734. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  12735. ggml_vec_sqrt_f32 (nx, vh, vh);
  12736. ggml_vec_acc1_f32 (nx, vh, eps);
  12737. ggml_vec_div_f32 (nx, mh, mh, vh);
  12738. ggml_vec_sub_f32 (nx, x, x, mh);
  12739. // update the parameters
  12740. ggml_opt_set_params(np, ps, x);
  12741. }
  12742. ggml_graph_reset (gf);
  12743. ggml_set_f32 (f->grad, 1.0f);
  12744. ggml_graph_compute(ctx, gb);
  12745. const float fx = ggml_get_f32_1d(f, 0);
  12746. // check convergence
  12747. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  12748. GGML_PRINT_DEBUG("converged\n");
  12749. return GGML_OPT_OK;
  12750. }
  12751. // delta-based convergence test
  12752. if (pf != NULL) {
  12753. // need at least params.past iterations to start checking for convergence
  12754. if (params.past <= t) {
  12755. const float rate = (pf[t%params.past] - fx)/fx;
  12756. if (fabsf(rate) < params.delta) {
  12757. return GGML_OPT_OK;
  12758. }
  12759. }
  12760. pf[t%params.past] = fx;
  12761. }
  12762. // check for improvement
  12763. if (params.max_no_improvement > 0) {
  12764. if (fx_best > fx) {
  12765. fx_best = fx;
  12766. n_no_improvement = 0;
  12767. } else {
  12768. ++n_no_improvement;
  12769. if (n_no_improvement >= params.max_no_improvement) {
  12770. return GGML_OPT_OK;
  12771. }
  12772. }
  12773. }
  12774. fx_prev = fx;
  12775. {
  12776. const int64_t t_end_cpu = ggml_cycles();
  12777. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  12778. UNUSED(t_end_cpu);
  12779. const int64_t t_end_wall = ggml_time_us();
  12780. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  12781. UNUSED(t_end_wall);
  12782. }
  12783. }
  12784. return GGML_OPT_DID_NOT_CONVERGE;
  12785. }
  12786. //
  12787. // L-BFGS
  12788. //
  12789. // the L-BFGS implementation below is based on the following implementation:
  12790. //
  12791. // https://github.com/chokkan/liblbfgs
  12792. //
  12793. struct ggml_lbfgs_iteration_data {
  12794. float alpha;
  12795. float ys;
  12796. float * s;
  12797. float * y;
  12798. };
  12799. static enum ggml_opt_result linesearch_backtracking(
  12800. struct ggml_context * ctx,
  12801. const struct ggml_opt_params * params,
  12802. int nx,
  12803. float * x,
  12804. float * fx,
  12805. float * g,
  12806. float * d,
  12807. float * step,
  12808. const float * xp,
  12809. struct ggml_tensor * f,
  12810. struct ggml_cgraph * gf,
  12811. struct ggml_cgraph * gb,
  12812. const int np,
  12813. struct ggml_tensor * ps[]) {
  12814. int count = 0;
  12815. float width = 0.0f;
  12816. float dg = 0.0f;
  12817. float finit = 0.0f;
  12818. float dginit = 0.0f;
  12819. float dgtest = 0.0f;
  12820. const float dec = 0.5f;
  12821. const float inc = 2.1f;
  12822. if (*step <= 0.f) {
  12823. return GGML_LINESEARCH_INVALID_PARAMETERS;
  12824. }
  12825. // compute the initial gradient in the search direction
  12826. ggml_vec_dot_f32(nx, &dginit, g, d);
  12827. // make sure that d points to a descent direction
  12828. if (0 < dginit) {
  12829. return GGML_LINESEARCH_FAIL;
  12830. }
  12831. // initialize local variables
  12832. finit = *fx;
  12833. dgtest = params->lbfgs.ftol*dginit;
  12834. while (true) {
  12835. ggml_vec_cpy_f32(nx, x, xp);
  12836. ggml_vec_mad_f32(nx, x, d, *step);
  12837. // evaluate the function and gradient values
  12838. {
  12839. ggml_opt_set_params(np, ps, x);
  12840. ggml_graph_reset (gf);
  12841. ggml_set_f32 (f->grad, 1.0f);
  12842. ggml_graph_compute(ctx, gb);
  12843. ggml_opt_get_grad(np, ps, g);
  12844. *fx = ggml_get_f32_1d(f, 0);
  12845. }
  12846. ++count;
  12847. if (*fx > finit + (*step)*dgtest) {
  12848. width = dec;
  12849. } else {
  12850. // Armijo condition is satisfied
  12851. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  12852. return count;
  12853. }
  12854. ggml_vec_dot_f32(nx, &dg, g, d);
  12855. // check the Wolfe condition
  12856. if (dg < params->lbfgs.wolfe * dginit) {
  12857. width = inc;
  12858. } else {
  12859. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  12860. // regular Wolfe conditions
  12861. return count;
  12862. }
  12863. if(dg > -params->lbfgs.wolfe*dginit) {
  12864. width = dec;
  12865. } else {
  12866. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  12867. return count;
  12868. }
  12869. return count;
  12870. }
  12871. }
  12872. if (*step < params->lbfgs.min_step) {
  12873. return GGML_LINESEARCH_MINIMUM_STEP;
  12874. }
  12875. if (*step > params->lbfgs.max_step) {
  12876. return GGML_LINESEARCH_MAXIMUM_STEP;
  12877. }
  12878. if (params->lbfgs.max_linesearch <= count) {
  12879. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  12880. }
  12881. (*step) *= width;
  12882. }
  12883. return GGML_LINESEARCH_FAIL;
  12884. }
  12885. static enum ggml_opt_result ggml_opt_lbfgs(
  12886. struct ggml_context * ctx,
  12887. struct ggml_opt_params params,
  12888. struct ggml_tensor * f,
  12889. struct ggml_cgraph * gf,
  12890. struct ggml_cgraph * gb) {
  12891. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  12892. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  12893. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  12894. return GGML_OPT_INVALID_WOLFE;
  12895. }
  12896. }
  12897. gf->n_threads = params.n_threads;
  12898. gb->n_threads = params.n_threads;
  12899. const int m = params.lbfgs.m;
  12900. // these will store the parameters we want to optimize
  12901. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  12902. int np = 0;
  12903. int nx = 0;
  12904. for (int i = 0; i < gf->n_nodes; ++i) {
  12905. if (gf->nodes[i]->is_param) {
  12906. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  12907. GGML_ASSERT(np < GGML_MAX_PARAMS);
  12908. ps[np++] = gf->nodes[i];
  12909. nx += ggml_nelements(gf->nodes[i]);
  12910. }
  12911. }
  12912. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  12913. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  12914. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  12915. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  12916. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  12917. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  12918. float fx = 0.0f; // cost function value
  12919. float xnorm = 0.0f; // ||x||
  12920. float gnorm = 0.0f; // ||g||
  12921. float step = 0.0f;
  12922. // initialize x from the graph nodes
  12923. ggml_opt_get_params(np, ps, x);
  12924. // the L-BFGS memory
  12925. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  12926. for (int i = 0; i < m; ++i) {
  12927. lm[i].alpha = 0.0f;
  12928. lm[i].ys = 0.0f;
  12929. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  12930. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  12931. }
  12932. // evaluate the function value and its gradient
  12933. {
  12934. ggml_opt_set_params(np, ps, x);
  12935. ggml_graph_reset (gf);
  12936. ggml_set_f32 (f->grad, 1.0f);
  12937. ggml_graph_compute(ctx, gb);
  12938. ggml_opt_get_grad(np, ps, g);
  12939. fx = ggml_get_f32_1d(f, 0);
  12940. }
  12941. if (pf) {
  12942. pf[0] = fx;
  12943. }
  12944. float fx_best = fx;
  12945. // search direction = -gradient
  12946. ggml_vec_neg_f32(nx, d, g);
  12947. // ||x||, ||g||
  12948. ggml_vec_norm_f32(nx, &xnorm, x);
  12949. ggml_vec_norm_f32(nx, &gnorm, g);
  12950. if (xnorm < 1.0f) {
  12951. xnorm = 1.0f;
  12952. }
  12953. // already optimized
  12954. if (gnorm/xnorm <= params.lbfgs.eps) {
  12955. return GGML_OPT_OK;
  12956. }
  12957. // initial step
  12958. ggml_vec_norm_inv_f32(nx, &step, d);
  12959. int j = 0;
  12960. int k = 1;
  12961. int ls = 0;
  12962. int end = 0;
  12963. int bound = 0;
  12964. int n_no_improvement = 0;
  12965. float ys = 0.0f;
  12966. float yy = 0.0f;
  12967. float beta = 0.0f;
  12968. while (true) {
  12969. // store the current position and gradient vectors
  12970. ggml_vec_cpy_f32(nx, xp, x);
  12971. ggml_vec_cpy_f32(nx, gp, g);
  12972. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  12973. if (ls < 0) {
  12974. // linesearch failed - go back to the previous point and return
  12975. ggml_vec_cpy_f32(nx, x, xp);
  12976. ggml_vec_cpy_f32(nx, g, gp);
  12977. return ls;
  12978. }
  12979. ggml_vec_norm_f32(nx, &xnorm, x);
  12980. ggml_vec_norm_f32(nx, &gnorm, g);
  12981. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  12982. if (xnorm < 1.0f) {
  12983. xnorm = 1.0f;
  12984. }
  12985. if (gnorm/xnorm <= params.lbfgs.eps) {
  12986. // converged
  12987. return GGML_OPT_OK;
  12988. }
  12989. // delta-based convergence test
  12990. if (pf != NULL) {
  12991. // need at least params.past iterations to start checking for convergence
  12992. if (params.past <= k) {
  12993. const float rate = (pf[k%params.past] - fx)/fx;
  12994. if (fabsf(rate) < params.delta) {
  12995. return GGML_OPT_OK;
  12996. }
  12997. }
  12998. pf[k%params.past] = fx;
  12999. }
  13000. // check for improvement
  13001. if (params.max_no_improvement > 0) {
  13002. if (fx < fx_best) {
  13003. fx_best = fx;
  13004. n_no_improvement = 0;
  13005. } else {
  13006. n_no_improvement++;
  13007. if (n_no_improvement >= params.max_no_improvement) {
  13008. return GGML_OPT_OK;
  13009. }
  13010. }
  13011. }
  13012. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  13013. // reached the maximum number of iterations
  13014. return GGML_OPT_DID_NOT_CONVERGE;
  13015. }
  13016. // update vectors s and y:
  13017. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  13018. // y_{k+1} = g_{k+1} - g_{k}.
  13019. //
  13020. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  13021. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  13022. // compute scalars ys and yy:
  13023. // ys = y^t \cdot s -> 1 / \rho.
  13024. // yy = y^t \cdot y.
  13025. //
  13026. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  13027. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  13028. lm[end].ys = ys;
  13029. // find new search direction
  13030. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  13031. bound = (m <= k) ? m : k;
  13032. k++;
  13033. end = (end + 1)%m;
  13034. // initialize search direction with -g
  13035. ggml_vec_neg_f32(nx, d, g);
  13036. j = end;
  13037. for (int i = 0; i < bound; ++i) {
  13038. j = (j + m - 1) % m;
  13039. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  13040. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  13041. lm[j].alpha /= lm[j].ys;
  13042. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  13043. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  13044. }
  13045. ggml_vec_scale_f32(nx, d, ys/yy);
  13046. for (int i = 0; i < bound; ++i) {
  13047. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  13048. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  13049. beta /= lm[j].ys;
  13050. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  13051. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  13052. j = (j + 1)%m;
  13053. }
  13054. step = 1.0;
  13055. }
  13056. return GGML_OPT_DID_NOT_CONVERGE;
  13057. }
  13058. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  13059. struct ggml_opt_params result;
  13060. switch (type) {
  13061. case GGML_OPT_ADAM:
  13062. {
  13063. result = (struct ggml_opt_params) {
  13064. .type = GGML_OPT_ADAM,
  13065. .n_threads = 1,
  13066. .past = 0,
  13067. .delta = 1e-5f,
  13068. .max_no_improvement = 100,
  13069. .print_forward_graph = true,
  13070. .print_backward_graph = true,
  13071. .adam = {
  13072. .n_iter = 10000,
  13073. .alpha = 0.001f,
  13074. .beta1 = 0.9f,
  13075. .beta2 = 0.999f,
  13076. .eps = 1e-8f,
  13077. .eps_f = 1e-5f,
  13078. .eps_g = 1e-3f,
  13079. },
  13080. };
  13081. } break;
  13082. case GGML_OPT_LBFGS:
  13083. {
  13084. result = (struct ggml_opt_params) {
  13085. .type = GGML_OPT_LBFGS,
  13086. .n_threads = 1,
  13087. .past = 0,
  13088. .delta = 1e-5f,
  13089. .max_no_improvement = 0,
  13090. .print_forward_graph = true,
  13091. .print_backward_graph = true,
  13092. .lbfgs = {
  13093. .m = 6,
  13094. .n_iter = 100,
  13095. .max_linesearch = 20,
  13096. .eps = 1e-5f,
  13097. .ftol = 1e-4f,
  13098. .wolfe = 0.9f,
  13099. .min_step = 1e-20f,
  13100. .max_step = 1e+20f,
  13101. .linesearch = GGML_LINESEARCH_DEFAULT,
  13102. },
  13103. };
  13104. } break;
  13105. }
  13106. return result;
  13107. }
  13108. enum ggml_opt_result ggml_opt(
  13109. struct ggml_context * ctx,
  13110. struct ggml_opt_params params,
  13111. struct ggml_tensor * f) {
  13112. bool free_ctx = false;
  13113. if (ctx == NULL) {
  13114. struct ggml_init_params params_ctx = {
  13115. .mem_size = 16*1024*1024,
  13116. .mem_buffer = NULL,
  13117. .no_alloc = false,
  13118. };
  13119. ctx = ggml_init(params_ctx);
  13120. if (ctx == NULL) {
  13121. return GGML_OPT_NO_CONTEXT;
  13122. }
  13123. free_ctx = true;
  13124. }
  13125. enum ggml_opt_result result = GGML_OPT_OK;
  13126. // build forward + backward compute graphs
  13127. struct ggml_cgraph gf = ggml_build_forward (f);
  13128. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, true);
  13129. switch (params.type) {
  13130. case GGML_OPT_ADAM:
  13131. {
  13132. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  13133. } break;
  13134. case GGML_OPT_LBFGS:
  13135. {
  13136. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  13137. } break;
  13138. }
  13139. if (params.print_forward_graph) {
  13140. ggml_graph_print (&gf);
  13141. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  13142. }
  13143. if (params.print_backward_graph) {
  13144. ggml_graph_print (&gb);
  13145. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  13146. }
  13147. if (free_ctx) {
  13148. ggml_free(ctx);
  13149. }
  13150. return result;
  13151. }
  13152. ////////////////////////////////////////////////////////////////////////////////
  13153. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  13154. assert(k % QK4_0 == 0);
  13155. const int nb = k / QK4_0;
  13156. for (int b = 0; b < n; b += k) {
  13157. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  13158. quantize_row_q4_0_reference(src + b, y, k);
  13159. for (int i = 0; i < nb; i++) {
  13160. for (int j = 0; j < QK4_0; j += 2) {
  13161. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  13162. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  13163. hist[vi0]++;
  13164. hist[vi1]++;
  13165. }
  13166. }
  13167. }
  13168. return (n/QK4_0*sizeof(block_q4_0));
  13169. }
  13170. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  13171. assert(k % QK4_1 == 0);
  13172. const int nb = k / QK4_1;
  13173. for (int b = 0; b < n; b += k) {
  13174. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  13175. quantize_row_q4_1_reference(src + b, y, k);
  13176. for (int i = 0; i < nb; i++) {
  13177. for (int j = 0; j < QK4_1; j += 2) {
  13178. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  13179. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  13180. hist[vi0]++;
  13181. hist[vi1]++;
  13182. }
  13183. }
  13184. }
  13185. return (n/QK4_1*sizeof(block_q4_1));
  13186. }
  13187. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  13188. assert(k % QK5_0 == 0);
  13189. const int nb = k / QK5_0;
  13190. for (int b = 0; b < n; b += k) {
  13191. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  13192. quantize_row_q5_0_reference(src + b, y, k);
  13193. for (int i = 0; i < nb; i++) {
  13194. uint32_t qh;
  13195. memcpy(&qh, &y[i].qh, sizeof(qh));
  13196. for (int j = 0; j < QK5_0; j += 2) {
  13197. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  13198. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  13199. // cast to 16 bins
  13200. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  13201. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  13202. hist[vi0]++;
  13203. hist[vi1]++;
  13204. }
  13205. }
  13206. }
  13207. return (n/QK5_0*sizeof(block_q5_0));
  13208. }
  13209. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  13210. assert(k % QK5_1 == 0);
  13211. const int nb = k / QK5_1;
  13212. for (int b = 0; b < n; b += k) {
  13213. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  13214. quantize_row_q5_1_reference(src + b, y, k);
  13215. for (int i = 0; i < nb; i++) {
  13216. uint32_t qh;
  13217. memcpy(&qh, &y[i].qh, sizeof(qh));
  13218. for (int j = 0; j < QK5_1; j += 2) {
  13219. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  13220. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  13221. // cast to 16 bins
  13222. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  13223. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  13224. hist[vi0]++;
  13225. hist[vi1]++;
  13226. }
  13227. }
  13228. }
  13229. return (n/QK5_1*sizeof(block_q5_1));
  13230. }
  13231. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  13232. assert(k % QK8_0 == 0);
  13233. const int nb = k / QK8_0;
  13234. for (int b = 0; b < n; b += k) {
  13235. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  13236. quantize_row_q8_0_reference(src + b, y, k);
  13237. for (int i = 0; i < nb; i++) {
  13238. for (int j = 0; j < QK8_0; ++j) {
  13239. const int8_t vi = y[i].qs[j];
  13240. hist[vi/16 + 8]++;
  13241. }
  13242. }
  13243. }
  13244. return (n/QK8_0*sizeof(block_q8_0));
  13245. }
  13246. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  13247. size_t result = 0;
  13248. switch (type) {
  13249. case GGML_TYPE_Q4_0:
  13250. {
  13251. GGML_ASSERT(start % QK4_0 == 0);
  13252. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  13253. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  13254. } break;
  13255. case GGML_TYPE_Q4_1:
  13256. {
  13257. GGML_ASSERT(start % QK4_1 == 0);
  13258. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  13259. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  13260. } break;
  13261. case GGML_TYPE_Q5_0:
  13262. {
  13263. GGML_ASSERT(start % QK5_0 == 0);
  13264. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  13265. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  13266. } break;
  13267. case GGML_TYPE_Q5_1:
  13268. {
  13269. GGML_ASSERT(start % QK5_1 == 0);
  13270. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  13271. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  13272. } break;
  13273. case GGML_TYPE_Q8_0:
  13274. {
  13275. GGML_ASSERT(start % QK8_0 == 0);
  13276. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  13277. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  13278. } break;
  13279. #ifdef GGML_USE_K_QUANTS
  13280. case GGML_TYPE_Q2_K:
  13281. {
  13282. GGML_ASSERT(start % QK_K == 0);
  13283. block_q2_K * block = (block_q2_K*)dst + start / QK_K;
  13284. result = ggml_quantize_q2_K(src + start, block, n, n, hist);
  13285. } break;
  13286. case GGML_TYPE_Q3_K:
  13287. {
  13288. GGML_ASSERT(start % QK_K == 0);
  13289. block_q3_K * block = (block_q3_K*)dst + start / QK_K;
  13290. result = ggml_quantize_q3_K(src + start, block, n, n, hist);
  13291. } break;
  13292. case GGML_TYPE_Q4_K:
  13293. {
  13294. GGML_ASSERT(start % QK_K == 0);
  13295. block_q4_K * block = (block_q4_K*)dst + start / QK_K;
  13296. result = ggml_quantize_q4_K(src + start, block, n, n, hist);
  13297. } break;
  13298. case GGML_TYPE_Q5_K:
  13299. {
  13300. GGML_ASSERT(start % QK_K == 0);
  13301. block_q5_K * block = (block_q5_K*)dst + start / QK_K;
  13302. result = ggml_quantize_q5_K(src + start, block, n, n, hist);
  13303. } break;
  13304. case GGML_TYPE_Q6_K:
  13305. {
  13306. GGML_ASSERT(start % QK_K == 0);
  13307. block_q6_K * block = (block_q6_K*)dst + start / QK_K;
  13308. result = ggml_quantize_q6_K(src + start, block, n, n, hist);
  13309. } break;
  13310. #endif
  13311. default:
  13312. assert(false);
  13313. }
  13314. return result;
  13315. }
  13316. ////////////////////////////////////////////////////////////////////////////////
  13317. int ggml_cpu_has_avx(void) {
  13318. #if defined(__AVX__)
  13319. return 1;
  13320. #else
  13321. return 0;
  13322. #endif
  13323. }
  13324. int ggml_cpu_has_avx2(void) {
  13325. #if defined(__AVX2__)
  13326. return 1;
  13327. #else
  13328. return 0;
  13329. #endif
  13330. }
  13331. int ggml_cpu_has_avx512(void) {
  13332. #if defined(__AVX512F__)
  13333. return 1;
  13334. #else
  13335. return 0;
  13336. #endif
  13337. }
  13338. int ggml_cpu_has_avx512_vbmi(void) {
  13339. #if defined(__AVX512VBMI__)
  13340. return 1;
  13341. #else
  13342. return 0;
  13343. #endif
  13344. }
  13345. int ggml_cpu_has_avx512_vnni(void) {
  13346. #if defined(__AVX512VNNI__)
  13347. return 1;
  13348. #else
  13349. return 0;
  13350. #endif
  13351. }
  13352. int ggml_cpu_has_fma(void) {
  13353. #if defined(__FMA__)
  13354. return 1;
  13355. #else
  13356. return 0;
  13357. #endif
  13358. }
  13359. int ggml_cpu_has_neon(void) {
  13360. #if defined(__ARM_NEON)
  13361. return 1;
  13362. #else
  13363. return 0;
  13364. #endif
  13365. }
  13366. int ggml_cpu_has_arm_fma(void) {
  13367. #if defined(__ARM_FEATURE_FMA)
  13368. return 1;
  13369. #else
  13370. return 0;
  13371. #endif
  13372. }
  13373. int ggml_cpu_has_f16c(void) {
  13374. #if defined(__F16C__)
  13375. return 1;
  13376. #else
  13377. return 0;
  13378. #endif
  13379. }
  13380. int ggml_cpu_has_fp16_va(void) {
  13381. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  13382. return 1;
  13383. #else
  13384. return 0;
  13385. #endif
  13386. }
  13387. int ggml_cpu_has_wasm_simd(void) {
  13388. #if defined(__wasm_simd128__)
  13389. return 1;
  13390. #else
  13391. return 0;
  13392. #endif
  13393. }
  13394. int ggml_cpu_has_blas(void) {
  13395. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  13396. return 1;
  13397. #else
  13398. return 0;
  13399. #endif
  13400. }
  13401. int ggml_cpu_has_cublas(void) {
  13402. #if defined(GGML_USE_CUBLAS)
  13403. return 1;
  13404. #else
  13405. return 0;
  13406. #endif
  13407. }
  13408. int ggml_cpu_has_clblast(void) {
  13409. #if defined(GGML_USE_CLBLAST)
  13410. return 1;
  13411. #else
  13412. return 0;
  13413. #endif
  13414. }
  13415. int ggml_cpu_has_gpublas(void) {
  13416. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  13417. }
  13418. int ggml_cpu_has_sse3(void) {
  13419. #if defined(__SSE3__)
  13420. return 1;
  13421. #else
  13422. return 0;
  13423. #endif
  13424. }
  13425. int ggml_cpu_has_vsx(void) {
  13426. #if defined(__POWER9_VECTOR__)
  13427. return 1;
  13428. #else
  13429. return 0;
  13430. #endif
  13431. }
  13432. ////////////////////////////////////////////////////////////////////////////////