ggml-backend.cpp 76 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008
  1. // Note: porting this file to C++ is a work in progress
  2. #ifdef _WIN32
  3. #define WIN32_LEAN_AND_MEAN
  4. #ifndef NOMINMAX
  5. # define NOMINMAX
  6. #endif
  7. #include <windows.h>
  8. #endif
  9. #include "ggml-backend.h"
  10. #include "ggml-backend-impl.h"
  11. #include "ggml-alloc.h"
  12. #include "ggml-impl.h"
  13. #include <assert.h>
  14. #include <limits.h>
  15. #include <stdarg.h>
  16. #include <stdio.h>
  17. #include <stdlib.h>
  18. #include <string.h>
  19. #include <string>
  20. #include <vector>
  21. #include <algorithm>
  22. #ifdef __APPLE__
  23. #include <sys/types.h>
  24. #include <sys/sysctl.h>
  25. #endif
  26. // backend buffer type
  27. const char * ggml_backend_buft_name(ggml_backend_buffer_type_t buft) {
  28. return buft->iface.get_name(buft);
  29. }
  30. ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  31. if (size == 0) {
  32. // return a dummy buffer for zero-sized allocations
  33. return ggml_backend_buffer_init(buft, {}, NULL, 0);
  34. }
  35. return buft->iface.alloc_buffer(buft, size);
  36. }
  37. size_t ggml_backend_buft_get_alignment(ggml_backend_buffer_type_t buft) {
  38. return buft->iface.get_alignment(buft);
  39. }
  40. size_t ggml_backend_buft_get_max_size(ggml_backend_buffer_type_t buft) {
  41. // get_max_size is optional, defaults to SIZE_MAX
  42. if (buft->iface.get_max_size) {
  43. return buft->iface.get_max_size(buft);
  44. }
  45. return SIZE_MAX;
  46. }
  47. size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor) {
  48. // get_alloc_size is optional, defaults to ggml_nbytes
  49. if (buft->iface.get_alloc_size) {
  50. size_t size = buft->iface.get_alloc_size(buft, tensor);
  51. assert(size >= ggml_nbytes(tensor));
  52. return size;
  53. }
  54. return ggml_nbytes(tensor);
  55. }
  56. bool ggml_backend_buft_is_host(ggml_backend_buffer_type_t buft) {
  57. if (buft->iface.is_host) {
  58. return buft->iface.is_host(buft);
  59. }
  60. return false;
  61. }
  62. ggml_backend_dev_t ggml_backend_buft_get_device(ggml_backend_buffer_type_t buft) {
  63. return buft->device;
  64. }
  65. // backend buffer
  66. ggml_backend_buffer_t ggml_backend_buffer_init(
  67. ggml_backend_buffer_type_t buft,
  68. struct ggml_backend_buffer_i iface,
  69. void * context,
  70. size_t size) {
  71. ggml_backend_buffer_t buffer = new ggml_backend_buffer {
  72. /* .interface = */ iface,
  73. /* .buft = */ buft,
  74. /* .context = */ context,
  75. /* .size = */ size,
  76. /* .usage = */ GGML_BACKEND_BUFFER_USAGE_ANY
  77. };
  78. return buffer;
  79. }
  80. const char * ggml_backend_buffer_name(ggml_backend_buffer_t buffer) {
  81. return ggml_backend_buft_name(ggml_backend_buffer_get_type(buffer));
  82. }
  83. void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) {
  84. if (buffer == NULL) {
  85. return;
  86. }
  87. if (buffer->iface.free_buffer != NULL) {
  88. buffer->iface.free_buffer(buffer);
  89. }
  90. delete buffer;
  91. }
  92. size_t ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) {
  93. return buffer->size;
  94. }
  95. void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
  96. // get_base is optional if the buffer is zero-sized
  97. if (buffer->size == 0) {
  98. return NULL;
  99. }
  100. void * base = buffer->iface.get_base(buffer);
  101. GGML_ASSERT(base != NULL && "backend buffer base cannot be NULL");
  102. return base;
  103. }
  104. enum ggml_status ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
  105. // init_tensor is optional
  106. if (buffer->iface.init_tensor) {
  107. return buffer->iface.init_tensor(buffer, tensor);
  108. }
  109. return GGML_STATUS_SUCCESS;
  110. }
  111. void ggml_backend_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  112. // clear is optional if the buffer is zero-sized
  113. if (buffer->size == 0) {
  114. return;
  115. }
  116. buffer->iface.clear(buffer, value);
  117. }
  118. size_t ggml_backend_buffer_get_alignment(ggml_backend_buffer_t buffer) {
  119. return ggml_backend_buft_get_alignment(ggml_backend_buffer_get_type(buffer));
  120. }
  121. size_t ggml_backend_buffer_get_max_size(ggml_backend_buffer_t buffer) {
  122. return ggml_backend_buft_get_max_size(ggml_backend_buffer_get_type(buffer));
  123. }
  124. size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor) {
  125. return ggml_backend_buft_get_alloc_size(ggml_backend_buffer_get_type(buffer), tensor);
  126. }
  127. bool ggml_backend_buffer_is_host(ggml_backend_buffer_t buffer) {
  128. return ggml_backend_buft_is_host(ggml_backend_buffer_get_type(buffer));
  129. }
  130. void ggml_backend_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
  131. buffer->usage = usage;
  132. // FIXME: add a generic callback to the buffer interface
  133. if (ggml_backend_buffer_is_multi_buffer(buffer)) {
  134. ggml_backend_multi_buffer_set_usage(buffer, usage);
  135. }
  136. }
  137. enum ggml_backend_buffer_usage ggml_backend_buffer_get_usage(ggml_backend_buffer_t buffer) {
  138. return buffer->usage;
  139. }
  140. ggml_backend_buffer_type_t ggml_backend_buffer_get_type(ggml_backend_buffer_t buffer) {
  141. return buffer->buft;
  142. }
  143. void ggml_backend_buffer_reset(ggml_backend_buffer_t buffer) {
  144. if (buffer->iface.reset) {
  145. buffer->iface.reset(buffer);
  146. }
  147. }
  148. bool ggml_backend_buffer_copy_tensor(const struct ggml_tensor * src, struct ggml_tensor * dst) {
  149. ggml_backend_buffer_t dst_buf = dst->view_src ? dst->view_src->buffer : dst->buffer;
  150. if (dst_buf->iface.cpy_tensor) {
  151. return dst_buf->iface.cpy_tensor(dst_buf, src, dst);
  152. }
  153. return false;
  154. }
  155. // backend
  156. ggml_guid_t ggml_backend_guid(ggml_backend_t backend) {
  157. if (backend == NULL) {
  158. return NULL;
  159. }
  160. return backend->guid;
  161. }
  162. const char * ggml_backend_name(ggml_backend_t backend) {
  163. if (backend == NULL) {
  164. return "NULL";
  165. }
  166. return backend->iface.get_name(backend);
  167. }
  168. void ggml_backend_free(ggml_backend_t backend) {
  169. if (backend == NULL) {
  170. return;
  171. }
  172. backend->iface.free(backend);
  173. }
  174. ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend) {
  175. return ggml_backend_dev_buffer_type(backend->device);
  176. }
  177. ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size) {
  178. return ggml_backend_buft_alloc_buffer(ggml_backend_get_default_buffer_type(backend), size);
  179. }
  180. size_t ggml_backend_get_alignment(ggml_backend_t backend) {
  181. return ggml_backend_buft_get_alignment(ggml_backend_get_default_buffer_type(backend));
  182. }
  183. size_t ggml_backend_get_max_size(ggml_backend_t backend) {
  184. return ggml_backend_buft_get_max_size(ggml_backend_get_default_buffer_type(backend));
  185. }
  186. void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  187. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  188. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
  189. if (backend->iface.set_tensor_async == NULL) {
  190. ggml_backend_tensor_set(tensor, data, offset, size);
  191. } else {
  192. backend->iface.set_tensor_async(backend, tensor, data, offset, size);
  193. }
  194. }
  195. void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  196. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  197. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
  198. if (backend->iface.get_tensor_async == NULL) {
  199. ggml_backend_tensor_get(tensor, data, offset, size);
  200. } else {
  201. backend->iface.get_tensor_async(backend, tensor, data, offset, size);
  202. }
  203. }
  204. void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  205. GGML_ASSERT(tensor);
  206. ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  207. if (size == 0) {
  208. return;
  209. }
  210. GGML_ASSERT(buf != NULL && "tensor buffer not set");
  211. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  212. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
  213. buf->iface.set_tensor(buf, tensor, data, offset, size);
  214. }
  215. void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  216. GGML_ASSERT(tensor);
  217. ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  218. if (size == 0) {
  219. return;
  220. }
  221. GGML_ASSERT(buf != NULL && "tensor buffer not set");
  222. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  223. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
  224. buf->iface.get_tensor(buf, tensor, data, offset, size);
  225. }
  226. void ggml_backend_tensor_memset(struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
  227. ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  228. if (size == 0) {
  229. return;
  230. }
  231. GGML_ASSERT(buf != NULL && "tensor buffer not set");
  232. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  233. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
  234. GGML_ASSERT(buf->iface.memset_tensor != NULL && "memset not implemented by backend buffer");
  235. buf->iface.memset_tensor(buf, tensor, value, offset, size);
  236. }
  237. void ggml_backend_synchronize(ggml_backend_t backend) {
  238. if (backend->iface.synchronize == NULL) {
  239. return;
  240. }
  241. backend->iface.synchronize(backend);
  242. }
  243. ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  244. GGML_ASSERT(backend->iface.graph_plan_create != NULL);
  245. return backend->iface.graph_plan_create(backend, cgraph);
  246. }
  247. void ggml_backend_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  248. GGML_ASSERT(backend->iface.graph_plan_free != NULL);
  249. backend->iface.graph_plan_free(backend, plan);
  250. }
  251. enum ggml_status ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  252. GGML_ASSERT(backend->iface.graph_plan_compute != NULL);
  253. return backend->iface.graph_plan_compute(backend, plan);
  254. }
  255. enum ggml_status ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  256. enum ggml_status err = ggml_backend_graph_compute_async(backend, cgraph);
  257. ggml_backend_synchronize(backend);
  258. return err;
  259. }
  260. enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  261. return backend->iface.graph_compute(backend, cgraph);
  262. }
  263. bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
  264. return ggml_backend_dev_supports_op(backend->device, op);
  265. }
  266. bool ggml_backend_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
  267. return ggml_backend_dev_supports_buft(backend->device, buft);
  268. }
  269. bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op) {
  270. return ggml_backend_dev_offload_op(backend->device, op);
  271. }
  272. ggml_backend_dev_t ggml_backend_get_device(ggml_backend_t backend) {
  273. return backend->device;
  274. }
  275. // backend copy
  276. static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
  277. if (a->type != b->type) {
  278. return false;
  279. }
  280. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  281. if (a->ne[i] != b->ne[i]) {
  282. return false;
  283. }
  284. if (a->nb[i] != b->nb[i]) {
  285. return false;
  286. }
  287. }
  288. return true;
  289. }
  290. void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst) {
  291. GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
  292. if (src == dst) {
  293. return;
  294. }
  295. if (ggml_backend_buffer_is_host(src->buffer)) {
  296. ggml_backend_tensor_set(dst, src->data, 0, ggml_nbytes(src));
  297. } else if (ggml_backend_buffer_is_host(dst->buffer)) {
  298. ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src));
  299. } else if (!ggml_backend_buffer_copy_tensor(src, dst)) {
  300. #ifndef NDEBUG
  301. GGML_LOG_DEBUG("%s: warning: slow copy from %s to %s\n", __func__, ggml_backend_buffer_name(src->buffer), ggml_backend_buffer_name(dst->buffer));
  302. #endif
  303. size_t nbytes = ggml_nbytes(src);
  304. void * data = malloc(nbytes);
  305. ggml_backend_tensor_get(src, data, 0, nbytes);
  306. ggml_backend_tensor_set(dst, data, 0, nbytes);
  307. free(data);
  308. }
  309. }
  310. void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, struct ggml_tensor * src, struct ggml_tensor * dst) {
  311. GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
  312. if (src == dst) {
  313. return;
  314. }
  315. if (backend_dst->iface.cpy_tensor_async != NULL) {
  316. if (backend_dst->iface.cpy_tensor_async(backend_src, backend_dst, src, dst)) {
  317. return;
  318. }
  319. }
  320. // an async copy would normally happen after all the queued operations on both backends are completed
  321. // to simulate the same behavior, we need to synchronize both backends first, and do a blocking copy
  322. ggml_backend_synchronize(backend_src);
  323. ggml_backend_synchronize(backend_dst);
  324. ggml_backend_tensor_copy(src, dst);
  325. }
  326. // events
  327. ggml_backend_event_t ggml_backend_event_new(ggml_backend_dev_t device) {
  328. // null device is allowed for the transition period to the device interface
  329. if (device == NULL || device->iface.event_new == NULL) {
  330. return NULL;
  331. }
  332. return device->iface.event_new(device);
  333. }
  334. void ggml_backend_event_free(ggml_backend_event_t event) {
  335. if (event == NULL) {
  336. return;
  337. }
  338. event->device->iface.event_free(event->device, event);
  339. }
  340. void ggml_backend_event_record(ggml_backend_event_t event, ggml_backend_t backend) {
  341. GGML_ASSERT(backend->iface.event_record != NULL);
  342. backend->iface.event_record(backend, event);
  343. }
  344. void ggml_backend_event_synchronize(ggml_backend_event_t event) {
  345. GGML_ASSERT(event->device->iface.event_synchronize);
  346. event->device->iface.event_synchronize(event->device, event);
  347. }
  348. void ggml_backend_event_wait(ggml_backend_t backend, ggml_backend_event_t event) {
  349. GGML_ASSERT(backend->iface.event_wait != NULL);
  350. backend->iface.event_wait(backend, event);
  351. }
  352. // Backend device
  353. const char * ggml_backend_dev_name(ggml_backend_dev_t device) {
  354. return device->iface.get_name(device);
  355. }
  356. const char * ggml_backend_dev_description(ggml_backend_dev_t device) {
  357. return device->iface.get_description(device);
  358. }
  359. void ggml_backend_dev_memory(ggml_backend_dev_t device, size_t * free, size_t * total) {
  360. device->iface.get_memory(device, free, total);
  361. }
  362. enum ggml_backend_dev_type ggml_backend_dev_type(ggml_backend_dev_t device) {
  363. return device->iface.get_type(device);
  364. }
  365. void ggml_backend_dev_get_props(ggml_backend_dev_t device, struct ggml_backend_dev_props * props) {
  366. memset(props, 0, sizeof(*props));
  367. device->iface.get_props(device, props);
  368. }
  369. ggml_backend_reg_t ggml_backend_dev_backend_reg(ggml_backend_dev_t device) {
  370. return device->reg;
  371. }
  372. ggml_backend_t ggml_backend_dev_init(ggml_backend_dev_t device, const char * params) {
  373. return device->iface.init_backend(device, params);
  374. }
  375. ggml_backend_buffer_type_t ggml_backend_dev_buffer_type(ggml_backend_dev_t device) {
  376. return device->iface.get_buffer_type(device);
  377. }
  378. ggml_backend_buffer_type_t ggml_backend_dev_host_buffer_type(ggml_backend_dev_t device) {
  379. if (device->iface.get_host_buffer_type == NULL) {
  380. return NULL;
  381. }
  382. return device->iface.get_host_buffer_type(device);
  383. }
  384. ggml_backend_buffer_t ggml_backend_dev_buffer_from_host_ptr(ggml_backend_dev_t device, void * ptr, size_t size, size_t max_tensor_size) {
  385. return device->iface.buffer_from_host_ptr(device, ptr, size, max_tensor_size);
  386. }
  387. bool ggml_backend_dev_supports_op(ggml_backend_dev_t device, const struct ggml_tensor * op) {
  388. return device->iface.supports_op(device, op);
  389. }
  390. bool ggml_backend_dev_supports_buft(ggml_backend_dev_t device, ggml_backend_buffer_type_t buft) {
  391. return device->iface.supports_buft(device, buft);
  392. }
  393. bool ggml_backend_dev_offload_op(ggml_backend_dev_t device, const struct ggml_tensor * op) {
  394. if (device->iface.offload_op != NULL) {
  395. return device->iface.offload_op(device, op);
  396. }
  397. return false;
  398. }
  399. // Backend (reg)
  400. const char * ggml_backend_reg_name(ggml_backend_reg_t reg) {
  401. return reg->iface.get_name(reg);
  402. }
  403. size_t ggml_backend_reg_dev_count(ggml_backend_reg_t reg) {
  404. return reg->iface.get_device_count(reg);
  405. }
  406. ggml_backend_dev_t ggml_backend_reg_dev_get(ggml_backend_reg_t reg, size_t index) {
  407. return reg->iface.get_device(reg, index);
  408. }
  409. void * ggml_backend_reg_get_proc_address(ggml_backend_reg_t reg, const char * name) {
  410. if (!reg->iface.get_proc_address) {
  411. return NULL;
  412. }
  413. return reg->iface.get_proc_address(reg, name);
  414. }
  415. // multi-buffer buffer
  416. struct ggml_backend_multi_buffer_context {
  417. ggml_backend_buffer_t * buffers;
  418. size_t n_buffers;
  419. };
  420. static void ggml_backend_multi_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  421. ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) buffer->context;
  422. for (size_t i = 0; i < ctx->n_buffers; i++) {
  423. ggml_backend_buffer_free(ctx->buffers[i]);
  424. }
  425. free(ctx->buffers);
  426. free(ctx);
  427. }
  428. static void ggml_backend_multi_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  429. ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) buffer->context;
  430. for (size_t i = 0; i < ctx->n_buffers; i++) {
  431. ggml_backend_buffer_clear(ctx->buffers[i], value);
  432. }
  433. }
  434. static const struct ggml_backend_buffer_i ggml_backend_multi_buffer_i = {
  435. /* .free_buffer = */ ggml_backend_multi_buffer_free_buffer,
  436. /* .get_base = */ NULL,
  437. /* .init_tensor = */ NULL,
  438. /* .memset_tensor = */ NULL,
  439. /* .set_tensor = */ NULL,
  440. /* .get_tensor = */ NULL,
  441. /* .cpy_tensor = */ NULL,
  442. /* .clear = */ ggml_backend_multi_buffer_clear,
  443. /* .reset = */ NULL,
  444. };
  445. ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer_t * buffers, size_t n_buffers) {
  446. ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) malloc(sizeof(struct ggml_backend_multi_buffer_context));
  447. ctx->n_buffers = n_buffers;
  448. ctx->buffers = (ggml_backend_buffer_t *) malloc(n_buffers * sizeof(ggml_backend_buffer_t));
  449. GGML_ASSERT(ctx->buffers != NULL);
  450. size_t total_size = 0;
  451. for (size_t i = 0; i < n_buffers; i++) {
  452. ctx->buffers[i] = buffers[i];
  453. total_size += ggml_backend_buffer_get_size(buffers[i]);
  454. }
  455. return ggml_backend_buffer_init(buffers[0]->buft, ggml_backend_multi_buffer_i, ctx, total_size);
  456. }
  457. bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer) {
  458. return buffer->iface.free_buffer == ggml_backend_multi_buffer_free_buffer;
  459. }
  460. void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
  461. GGML_ASSERT(ggml_backend_buffer_is_multi_buffer(buffer));
  462. ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) buffer->context;
  463. for (size_t i = 0; i < ctx->n_buffers; i++) {
  464. ggml_backend_buffer_set_usage(ctx->buffers[i], usage);
  465. }
  466. }
  467. // creates a copy of the tensor with the same memory layout
  468. static struct ggml_tensor * ggml_dup_tensor_layout(struct ggml_context * ctx, const struct ggml_tensor * tensor) {
  469. struct ggml_tensor * dup = ggml_dup_tensor(ctx, tensor);
  470. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  471. dup->nb[i] = tensor->nb[i];
  472. }
  473. return dup;
  474. }
  475. static bool ggml_is_view_op(enum ggml_op op) {
  476. return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
  477. }
  478. // scheduler
  479. #ifndef GGML_SCHED_MAX_BACKENDS
  480. #define GGML_SCHED_MAX_BACKENDS 16
  481. #endif
  482. #ifndef GGML_SCHED_MAX_SPLIT_INPUTS
  483. #define GGML_SCHED_MAX_SPLIT_INPUTS GGML_MAX_SRC
  484. #endif
  485. #ifndef GGML_SCHED_MAX_COPIES
  486. #define GGML_SCHED_MAX_COPIES 4
  487. #endif
  488. struct ggml_backend_sched_split {
  489. int backend_id;
  490. int i_start;
  491. int i_end;
  492. struct ggml_tensor * inputs[GGML_SCHED_MAX_SPLIT_INPUTS];
  493. int n_inputs;
  494. // graph view of this split
  495. struct ggml_cgraph graph;
  496. };
  497. struct ggml_backend_sched {
  498. bool is_reset; // true if the scheduler has been reset since the last graph split
  499. bool is_alloc;
  500. int n_backends;
  501. ggml_backend_t backends[GGML_SCHED_MAX_BACKENDS];
  502. ggml_backend_buffer_type_t bufts[GGML_SCHED_MAX_BACKENDS];
  503. ggml_gallocr_t galloc;
  504. // hash map of the nodes in the graph
  505. struct ggml_hash_set hash_set;
  506. int * hv_tensor_backend_ids; // [hash_set.size]
  507. struct ggml_tensor ** hv_tensor_copies; // [hash_set.size][n_backends][n_copies]
  508. int * node_backend_ids; // [graph_size]
  509. int * leaf_backend_ids; // [graph_size]
  510. int * prev_node_backend_ids; // [graph_size]
  511. int * prev_leaf_backend_ids; // [graph_size]
  512. // copy of the graph with modified inputs
  513. struct ggml_cgraph graph;
  514. // graph splits
  515. struct ggml_backend_sched_split * splits;
  516. int n_splits;
  517. int splits_capacity;
  518. // pipeline parallelism support
  519. int n_copies;
  520. int cur_copy;
  521. ggml_backend_event_t events[GGML_SCHED_MAX_BACKENDS][GGML_SCHED_MAX_COPIES];
  522. struct ggml_tensor * graph_inputs[GGML_SCHED_MAX_SPLIT_INPUTS];
  523. int n_graph_inputs;
  524. struct ggml_context * ctx;
  525. ggml_backend_sched_eval_callback callback_eval;
  526. void * callback_eval_user_data;
  527. char * context_buffer;
  528. size_t context_buffer_size;
  529. bool op_offload;
  530. int debug;
  531. };
  532. #define hash_id(tensor) ggml_hash_find_or_insert(&sched->hash_set, tensor)
  533. #define tensor_backend_id(tensor) sched->hv_tensor_backend_ids[hash_id(tensor)]
  534. #define tensor_id_copy(id, backend_id, copy_id) sched->hv_tensor_copies[(id) * sched->n_backends * sched->n_copies + (backend_id) * sched->n_copies + (copy_id)]
  535. #define tensor_copy(tensor, backend_id, copy_id) tensor_id_copy(hash_id(tensor), backend_id, copy_id)
  536. // returns the priority of the backend, lower id is higher priority
  537. static int ggml_backend_sched_backend_id(ggml_backend_sched_t sched, ggml_backend_t backend) {
  538. for (int i = 0; i < sched->n_backends; i++) {
  539. if (sched->backends[i] == backend) {
  540. return i;
  541. }
  542. }
  543. return -1;
  544. }
  545. static int ggml_backend_sched_backend_from_buffer(ggml_backend_sched_t sched, const struct ggml_tensor * tensor, const struct ggml_tensor * op) {
  546. ggml_backend_buffer_t buffer = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  547. if (buffer == NULL) {
  548. return -1;
  549. }
  550. // find highest prio backend that supports the buffer type and the op
  551. for (int i = 0; i < sched->n_backends; i++) {
  552. if (ggml_backend_supports_buft(sched->backends[i], buffer->buft) &&
  553. ggml_backend_supports_op(sched->backends[i], op)) {
  554. return i;
  555. }
  556. }
  557. #ifndef NDEBUG
  558. GGML_LOG_DEBUG("%s: warning: no backend supports op %s with a weight with buffer type %s used in tensor %s, the weight will need to be copied\n",
  559. __func__, ggml_op_desc(tensor), ggml_backend_buffer_name(buffer), tensor->name);
  560. #endif
  561. return -1;
  562. }
  563. #if 0
  564. #define GGML_SCHED_MAX_SPLITS_DEBUG 4096
  565. static char causes[GGML_DEFAULT_GRAPH_SIZE*16 + GGML_SCHED_MAX_SPLITS_DEBUG*GGML_SCHED_MAX_SPLIT_INPUTS][128]; // debug only
  566. #define SET_CAUSE(node, ...) sprintf(causes[hash_id(node)], __VA_ARGS__)
  567. #define GET_CAUSE(node) causes[hash_id(node)]
  568. #else
  569. #define SET_CAUSE(node, ...)
  570. #define GET_CAUSE(node) ""
  571. #endif
  572. // returns the backend that should be used for the node based on the current locations
  573. static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, struct ggml_tensor * tensor) {
  574. // assign pre-allocated nodes to their backend
  575. int cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor, tensor);
  576. if (cur_backend_id != -1) {
  577. SET_CAUSE(tensor, "1.dst");
  578. return cur_backend_id;
  579. }
  580. // view_src
  581. if (tensor->view_src != NULL) {
  582. cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor->view_src, tensor);
  583. if (cur_backend_id != -1) {
  584. SET_CAUSE(tensor, "1.vsrc");
  585. return cur_backend_id;
  586. }
  587. }
  588. if (tensor->buffer || (tensor->view_src && tensor->view_src->buffer)) {
  589. // since the tensor is pre-allocated, it cannot be moved to another backend
  590. ggml_backend_buffer_t buffer = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  591. GGML_ABORT("pre-allocated tensor (%s) in a buffer (%s) that cannot run the operation (%s)", tensor->name, ggml_backend_buffer_name(buffer), ggml_op_name(tensor->op));
  592. }
  593. // graph input
  594. if (tensor->flags & GGML_TENSOR_FLAG_INPUT) {
  595. cur_backend_id = sched->n_backends - 1; // last backend (assumed CPU)
  596. SET_CAUSE(tensor, "1.inp");
  597. return cur_backend_id;
  598. }
  599. // operations with weights are preferably run on the same backend as the weights
  600. for (int i = 0; i < GGML_MAX_SRC; i++) {
  601. const struct ggml_tensor * src = tensor->src[i];
  602. if (src == NULL) {
  603. continue;
  604. }
  605. // skip ROPE since the rope freqs tensor is too small to choose a backend based on it
  606. // not an ideal solution
  607. if (tensor->op != GGML_OP_ROPE && src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
  608. int src_backend_id = ggml_backend_sched_backend_from_buffer(sched, src, tensor);
  609. // check if a backend with higher prio wants to offload the op
  610. if (sched->op_offload && src_backend_id == sched->n_backends - 1 && ggml_backend_buffer_is_host(src->buffer)) {
  611. for (int b = 0; b < src_backend_id; b++) {
  612. if (ggml_backend_supports_op(sched->backends[b], tensor) && ggml_backend_offload_op(sched->backends[b], tensor)) {
  613. SET_CAUSE(tensor, "1.off");
  614. return b;
  615. }
  616. }
  617. }
  618. SET_CAUSE(tensor, "1.wgt%d", i);
  619. return src_backend_id;
  620. }
  621. }
  622. return -1;
  623. }
  624. static char * fmt_size(size_t size) {
  625. static char buffer[128];
  626. if (size >= 1024*1024) {
  627. snprintf(buffer, sizeof(buffer), "%zuM", size/1024/1024);
  628. } else {
  629. snprintf(buffer, sizeof(buffer), "%zuK", size/1024);
  630. }
  631. return buffer;
  632. }
  633. static void ggml_backend_sched_print_assignments(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  634. int cur_split = 0;
  635. for (int i = 0; i < graph->n_nodes; i++) {
  636. if (cur_split < sched->n_splits && i == sched->splits[cur_split].i_start) {
  637. ggml_backend_t split_backend = sched->backends[sched->splits[cur_split].backend_id];
  638. GGML_LOG_DEBUG("\n## SPLIT #%d: %s # %d inputs", cur_split, ggml_backend_name(split_backend),
  639. sched->splits[cur_split].n_inputs);
  640. for (int j = 0; j < sched->splits[cur_split].n_inputs; j++) {
  641. if (j == 0) {
  642. GGML_LOG_DEBUG(": ");
  643. }
  644. GGML_LOG_DEBUG("[%s (%5.5s)] ", sched->splits[cur_split].inputs[j]->name,
  645. fmt_size(ggml_nbytes(sched->splits[cur_split].inputs[j])));
  646. }
  647. GGML_LOG_DEBUG("\n");
  648. cur_split++;
  649. }
  650. struct ggml_tensor * node = graph->nodes[i];
  651. if (ggml_is_view_op(node->op)) {
  652. continue;
  653. }
  654. if (sched->debug > 1) {
  655. ggml_backend_t tensor_backend = ggml_backend_sched_get_tensor_backend(sched, node);
  656. GGML_LOG_DEBUG("node #%3d (%10.10s): %20.20s (%5.5s) [%5.5s %8.8s]:", i, ggml_op_name(node->op), node->name,
  657. fmt_size(ggml_nbytes(node)), tensor_backend ? ggml_backend_name(tensor_backend) : "NULL", GET_CAUSE(node));
  658. for (int j = 0; j < GGML_MAX_SRC; j++) {
  659. struct ggml_tensor * src = node->src[j];
  660. if (src == NULL) {
  661. continue;
  662. }
  663. ggml_backend_t src_backend = ggml_backend_sched_get_tensor_backend(sched, src);
  664. GGML_LOG_DEBUG(" %20.20s (%5.5s) [%5.5s %8.8s]", src->name,
  665. fmt_size(ggml_nbytes(src)), src_backend ? ggml_backend_name(src_backend) : "NULL", GET_CAUSE(src));
  666. }
  667. GGML_LOG_DEBUG("\n");
  668. }
  669. }
  670. }
  671. static bool ggml_backend_sched_buffer_supported(ggml_backend_sched_t sched, struct ggml_tensor * t, int backend_id) {
  672. ggml_backend_buffer_t buf = t->view_src ? t->view_src->buffer : t->buffer;
  673. ggml_backend_buffer_type_t buft = NULL;
  674. if (buf) {
  675. // the tensor is already allocated
  676. buft = buf->buft;
  677. } else {
  678. // see if the tensor already has a backend assigned, and use the buffer type of that backend
  679. int tensor_backend_id = tensor_backend_id(t);
  680. if (tensor_backend_id == -1 && t->view_src) {
  681. tensor_backend_id = tensor_backend_id(t->view_src);
  682. }
  683. if (tensor_backend_id != -1) {
  684. buft = sched->bufts[tensor_backend_id];
  685. }
  686. }
  687. return buft != NULL && ggml_backend_supports_buft(sched->backends[backend_id], buft);
  688. }
  689. static void ggml_backend_sched_set_if_supported(ggml_backend_sched_t sched, struct ggml_tensor * node, int cur_backend_id, int * node_backend_id) {
  690. if (ggml_backend_supports_op(sched->backends[cur_backend_id], node)) {
  691. *node_backend_id = cur_backend_id;
  692. SET_CAUSE(node, "2.sup");
  693. }
  694. }
  695. // assigns backends to ops and splits the graph into subgraphs that can be computed on the same backend
  696. static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  697. // reset splits
  698. sched->n_splits = 0;
  699. sched->n_graph_inputs = 0;
  700. sched->is_reset = false;
  701. struct ggml_init_params params = {
  702. /* .mem_size = */ sched->context_buffer_size,
  703. /* .mem_buffer = */ sched->context_buffer,
  704. /* .no_alloc = */ true
  705. };
  706. ggml_free(sched->ctx);
  707. sched->ctx = ggml_init(params);
  708. if (sched->ctx == NULL) {
  709. GGML_ABORT("%s: failed to initialize context\n", __func__);
  710. }
  711. // pass 1: assign backends to ops with pre-allocated inputs
  712. for (int i = 0; i < graph->n_leafs; i++) {
  713. struct ggml_tensor * leaf = graph->leafs[i];
  714. int * leaf_backend_id = &tensor_backend_id(leaf);
  715. // do not overwrite user assignments
  716. if (*leaf_backend_id == -1) {
  717. *leaf_backend_id = ggml_backend_sched_backend_id_from_cur(sched, leaf);
  718. }
  719. }
  720. for (int i = 0; i < graph->n_nodes; i++) {
  721. struct ggml_tensor * node = graph->nodes[i];
  722. int * node_backend_id = &tensor_backend_id(node);
  723. // do not overwrite user assignments
  724. if (*node_backend_id == -1) {
  725. *node_backend_id = ggml_backend_sched_backend_id_from_cur(sched, node);
  726. #if 0
  727. // src
  728. if (node->op == GGML_OP_NONE) {
  729. continue;
  730. }
  731. for (int j = 0; j < GGML_MAX_SRC; j++) {
  732. struct ggml_tensor * src = node->src[j];
  733. if (src == NULL) {
  734. continue;
  735. }
  736. int * src_backend_id = &tensor_backend_id(src);
  737. if (*src_backend_id == -1) {
  738. *src_backend_id = ggml_backend_sched_backend_id_from_cur(sched, src);
  739. }
  740. }
  741. #endif
  742. }
  743. }
  744. // pass 2: expand current backend assignments
  745. // assign the same backend to adjacent nodes
  746. // expand gpu backends (i.e. non last prio) up and down, ignoring cpu (the lowest priority backend)
  747. // thus, cpu will never be used unless weights are on cpu, or there are no gpu ops between cpu ops
  748. // ops unsupported by the backend being expanded will be left unassigned so that they can be assigned later when the locations of its inputs are known
  749. // expand gpu down
  750. {
  751. int cur_backend_id = -1;
  752. for (int i = 0; i < graph->n_nodes; i++) {
  753. struct ggml_tensor * node = graph->nodes[i];
  754. if (ggml_is_view_op(node->op)) {
  755. continue;
  756. }
  757. int * node_backend_id = &tensor_backend_id(node);
  758. if (*node_backend_id != -1) {
  759. if (*node_backend_id == sched->n_backends - 1) {
  760. // skip cpu (lowest prio backend)
  761. cur_backend_id = -1;
  762. } else {
  763. cur_backend_id = *node_backend_id;
  764. }
  765. } else if (cur_backend_id != -1) {
  766. ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
  767. }
  768. }
  769. }
  770. // expand gpu up
  771. {
  772. int cur_backend_id = -1;
  773. for (int i = graph->n_nodes - 1; i >= 0; i--) {
  774. struct ggml_tensor * node = graph->nodes[i];
  775. if (ggml_is_view_op(node->op)) {
  776. continue;
  777. }
  778. int * node_backend_id = &tensor_backend_id(node);
  779. if (*node_backend_id != -1) {
  780. if (*node_backend_id == sched->n_backends - 1) {
  781. // skip cpu (lowest prio backend)
  782. cur_backend_id = -1;
  783. } else {
  784. cur_backend_id = *node_backend_id;
  785. }
  786. } else if (cur_backend_id != -1) {
  787. ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
  788. }
  789. }
  790. }
  791. // expand rest down
  792. {
  793. int cur_backend_id = -1;
  794. for (int i = 0; i < graph->n_nodes; i++) {
  795. struct ggml_tensor * node = graph->nodes[i];
  796. if (ggml_is_view_op(node->op)) {
  797. continue;
  798. }
  799. int * node_backend_id = &tensor_backend_id(node);
  800. if (*node_backend_id != -1) {
  801. cur_backend_id = *node_backend_id;
  802. } else if (cur_backend_id != -1) {
  803. ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
  804. }
  805. }
  806. }
  807. // expand rest up
  808. {
  809. int cur_backend_id = -1;
  810. for (int i = graph->n_nodes - 1; i >= 0; i--) {
  811. struct ggml_tensor * node = graph->nodes[i];
  812. if (ggml_is_view_op(node->op)) {
  813. continue;
  814. }
  815. int * node_backend_id = &tensor_backend_id(node);
  816. if (*node_backend_id != -1) {
  817. cur_backend_id = *node_backend_id;
  818. } else if (cur_backend_id != -1) {
  819. ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
  820. }
  821. }
  822. }
  823. // pass 3: upgrade nodes to higher prio backends with compatible buffer types
  824. // if the tensor is already in the same buffer type (*) as another higher priority backend, we should move it there
  825. // however, we also need to verify that the sources are in compatible buffer types
  826. // (*) the actual requirement is more relaxed, the buffer type of the backend should be supported by all the users of this tensor further down the graph
  827. // however, this is slow to verify, so we have a more strict requirement that the buffer type is the same
  828. // this is not uncommon since multiple backends can use host memory, with the same buffer type (eg. BLAS and CPU)
  829. // additionally, set remaining unassigned nodes to the backend with the most supported inputs
  830. // only nodes that could not be assigned during expansion due to the backend not supporting the op should be unassigned at this point
  831. for (int i = 0; i < graph->n_nodes; i++) {
  832. struct ggml_tensor * node = graph->nodes[i];
  833. if (ggml_is_view_op(node->op)) {
  834. continue;
  835. }
  836. int * node_backend_id = &tensor_backend_id(node);
  837. if (*node_backend_id == -1) {
  838. // unassigned node: find the backend with the most supported inputs
  839. int n_supported_best = -1;
  840. for (int b = 0; b < sched->n_backends; b++) {
  841. if (ggml_backend_supports_op(sched->backends[b], node)) {
  842. int n_supported = 0;
  843. for (int j = 0; j < GGML_MAX_SRC; j++) {
  844. struct ggml_tensor * src = node->src[j];
  845. if (src == NULL) {
  846. continue;
  847. }
  848. if ((tensor_backend_id(src) != -1 || tensor_backend_id(src->view_src) != -1) && ggml_backend_sched_buffer_supported(sched, src, b)) {
  849. n_supported++;
  850. }
  851. }
  852. if (n_supported > n_supported_best) {
  853. n_supported_best = n_supported;
  854. *node_backend_id = b;
  855. SET_CAUSE(node, "3.best");
  856. }
  857. }
  858. }
  859. } else {
  860. // assigned node: upgrade to higher prio backend if possible
  861. for (int b = 0; b < *node_backend_id; b++) {
  862. if (sched->bufts[b] == sched->bufts[*node_backend_id] && ggml_backend_supports_op(sched->backends[b], node)) {
  863. bool supported = true;
  864. for (int j = 0; j < GGML_MAX_SRC; j++) {
  865. struct ggml_tensor * src = node->src[j];
  866. if (src == NULL) {
  867. continue;
  868. }
  869. if (!ggml_backend_sched_buffer_supported(sched, src, b)) {
  870. supported = false;
  871. break;
  872. }
  873. }
  874. if (supported) {
  875. *node_backend_id = b;
  876. SET_CAUSE(node, "3.upg");
  877. break;
  878. }
  879. }
  880. }
  881. }
  882. }
  883. // pass 4: assign backends to remaining src from dst and view_src
  884. for (int i = 0; i < graph->n_nodes; i++) {
  885. struct ggml_tensor * node = graph->nodes[i];
  886. int * cur_backend_id = &tensor_backend_id(node);
  887. if (node->view_src != NULL && *cur_backend_id == -1) {
  888. *cur_backend_id = tensor_backend_id(node->view_src);
  889. SET_CAUSE(node, "4.vsrc");
  890. }
  891. for (int j = 0; j < GGML_MAX_SRC; j++) {
  892. struct ggml_tensor * src = node->src[j];
  893. if (src == NULL) {
  894. continue;
  895. }
  896. int * src_backend_id = &tensor_backend_id(src);
  897. if (*src_backend_id == -1) {
  898. if (src->view_src != NULL) {
  899. // views are always on the same backend as the source
  900. *src_backend_id = tensor_backend_id(src->view_src);
  901. SET_CAUSE(src, "4.vsrc");
  902. } else {
  903. *src_backend_id = *cur_backend_id;
  904. SET_CAUSE(src, "4.cur");
  905. }
  906. }
  907. }
  908. }
  909. // pass 5: split graph, find tensors that need to be copied
  910. {
  911. int i_split = 0;
  912. struct ggml_backend_sched_split * split = &sched->splits[0];
  913. // find the backend of the first split, skipping view ops
  914. int i = 0;
  915. for (; i < graph->n_nodes; i++) {
  916. struct ggml_tensor * node = graph->nodes[i];
  917. if (!ggml_is_view_op(node->op)) {
  918. split->backend_id = tensor_backend_id(node);
  919. break;
  920. }
  921. }
  922. split->i_start = 0;
  923. split->n_inputs = 0;
  924. int cur_backend_id = split->backend_id;
  925. for (; i < graph->n_nodes; i++) {
  926. struct ggml_tensor * node = graph->nodes[i];
  927. if (ggml_is_view_op(node->op)) {
  928. continue;
  929. }
  930. const int node_backend_id = tensor_backend_id(node);
  931. assert(node_backend_id != -1); // all nodes should be assigned by now, this can happen if there is no CPU fallback
  932. // check if we should start a new split based on the sources of the current node
  933. bool need_new_split = false;
  934. if (node_backend_id == cur_backend_id && split->n_inputs > 0) {
  935. for (int j = 0; j < GGML_MAX_SRC; j++) {
  936. struct ggml_tensor * src = node->src[j];
  937. if (src == NULL) {
  938. continue;
  939. }
  940. // check if a weight is on a different and incompatible backend
  941. // by starting a new split, the memory of the previously offloaded weights can be reused
  942. if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
  943. int src_backend_id = tensor_backend_id(src);
  944. if (src_backend_id != cur_backend_id && !ggml_backend_sched_buffer_supported(sched, src, cur_backend_id)) {
  945. need_new_split = true;
  946. break;
  947. }
  948. }
  949. // check if the split has too many inputs
  950. // FIXME: count the number of inputs instead of only checking when full
  951. if (split->n_inputs == GGML_SCHED_MAX_SPLIT_INPUTS) {
  952. const size_t id = hash_id(src);
  953. int src_backend_id = sched->hv_tensor_backend_ids[id];
  954. bool supported = ggml_backend_sched_buffer_supported(sched, src, cur_backend_id);
  955. if (src_backend_id != cur_backend_id && tensor_id_copy(id, cur_backend_id, 0) == NULL && !supported) {
  956. need_new_split = true;
  957. break;
  958. }
  959. }
  960. }
  961. }
  962. if (node_backend_id != cur_backend_id || need_new_split) {
  963. split->i_end = i;
  964. i_split++;
  965. if (i_split >= sched->splits_capacity) {
  966. sched->splits_capacity *= 2;
  967. sched->splits = (ggml_backend_sched_split *)
  968. realloc(sched->splits, sched->splits_capacity * sizeof(struct ggml_backend_sched_split));
  969. GGML_ASSERT(sched->splits != NULL);
  970. }
  971. split = &sched->splits[i_split];
  972. split->backend_id = node_backend_id;
  973. split->i_start = i;
  974. split->n_inputs = 0;
  975. cur_backend_id = node_backend_id;
  976. }
  977. // find inputs that are not on the same backend
  978. for (int j = 0; j < GGML_MAX_SRC; j++) {
  979. struct ggml_tensor * src = node->src[j];
  980. if (src == NULL) {
  981. continue;
  982. }
  983. size_t src_id = hash_id(src);
  984. const int src_backend_id = sched->hv_tensor_backend_ids[src_id];
  985. assert(src_backend_id != -1); // all inputs should be assigned by now
  986. if (src->flags & GGML_TENSOR_FLAG_INPUT && sched->n_copies > 1) {
  987. if (tensor_id_copy(src_id, src_backend_id, 0) == NULL) {
  988. ggml_backend_t backend = sched->backends[src_backend_id];
  989. for (int c = 0; c < sched->n_copies; c++) {
  990. struct ggml_tensor * tensor_copy;
  991. if (c == sched->cur_copy) {
  992. tensor_copy = src; // use the original tensor as the current copy
  993. } else {
  994. tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
  995. ggml_format_name(tensor_copy, "%s#%s#%d", ggml_backend_name(backend), src->name, c);
  996. }
  997. if (sched->n_copies > 1) {
  998. ggml_set_input(tensor_copy);
  999. ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
  1000. }
  1001. tensor_id_copy(src_id, src_backend_id, c) = tensor_copy;
  1002. SET_CAUSE(tensor_copy, "4.cpy");
  1003. }
  1004. int n_graph_inputs = sched->n_graph_inputs++;
  1005. GGML_ASSERT(n_graph_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
  1006. sched->graph_inputs[n_graph_inputs] = src;
  1007. }
  1008. }
  1009. if (src_backend_id != cur_backend_id && !ggml_backend_sched_buffer_supported(sched, src, cur_backend_id)) {
  1010. // create a copy of the input in the split's backend
  1011. if (tensor_id_copy(src_id, cur_backend_id, 0) == NULL) {
  1012. ggml_backend_t backend = sched->backends[cur_backend_id];
  1013. for (int c = 0; c < sched->n_copies; c++) {
  1014. struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
  1015. ggml_format_name(tensor_copy, "%s#%s#%d", ggml_backend_name(backend), src->name, c);
  1016. if (sched->n_copies > 1) {
  1017. ggml_set_input(tensor_copy);
  1018. ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
  1019. }
  1020. tensor_id_copy(src_id, cur_backend_id, c) = tensor_copy;
  1021. SET_CAUSE(tensor_copy, "4.cpy");
  1022. }
  1023. int n_inputs = split->n_inputs++;
  1024. GGML_ASSERT(n_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
  1025. split->inputs[n_inputs] = src;
  1026. }
  1027. node->src[j] = tensor_id_copy(src_id, cur_backend_id, sched->cur_copy);
  1028. }
  1029. }
  1030. }
  1031. split->i_end = graph->n_nodes;
  1032. sched->n_splits = i_split + 1;
  1033. }
  1034. if (sched->debug) {
  1035. ggml_backend_sched_print_assignments(sched, graph);
  1036. }
  1037. // swap node_backend_ids and leaf _backend_ids with prevs
  1038. {
  1039. int * tmp = sched->node_backend_ids;
  1040. sched->node_backend_ids = sched->prev_node_backend_ids;
  1041. sched->prev_node_backend_ids = tmp;
  1042. tmp = sched->leaf_backend_ids;
  1043. sched->leaf_backend_ids = sched->prev_leaf_backend_ids;
  1044. sched->prev_leaf_backend_ids = tmp;
  1045. }
  1046. int graph_size = std::max(graph->n_nodes, graph->n_leafs) + sched->n_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2*sched->n_copies;
  1047. if (sched->graph.size < graph_size) {
  1048. sched->graph.size = graph_size;
  1049. sched->graph.nodes = (ggml_tensor **) realloc(sched->graph.nodes, graph_size * sizeof(struct ggml_tensor *));
  1050. sched->graph.leafs = (ggml_tensor **) realloc(sched->graph.leafs, graph_size * sizeof(struct ggml_tensor *));
  1051. GGML_ASSERT(sched->graph.nodes != NULL);
  1052. GGML_ASSERT(sched->graph.leafs != NULL);
  1053. }
  1054. sched->graph.n_nodes = 0;
  1055. sched->graph.n_leafs = 0;
  1056. struct ggml_cgraph * graph_copy = &sched->graph;
  1057. for (int i = 0; i < sched->n_splits; i++) {
  1058. struct ggml_backend_sched_split * split = &sched->splits[i];
  1059. split->graph = ggml_graph_view(graph, split->i_start, split->i_end);
  1060. // add inputs to the graph copy so that they are allocated by ggml-alloc at the start of the split
  1061. for (int j = 0; j < split->n_inputs; j++) {
  1062. assert(graph_copy->size > (graph_copy->n_nodes + 1));
  1063. struct ggml_tensor * input = split->inputs[j];
  1064. const size_t input_id = hash_id(input);
  1065. struct ggml_tensor * input_cpy = tensor_id_copy(input_id, split->backend_id, sched->cur_copy);
  1066. // add a dependency to the input source so that it is not freed before the copy is done
  1067. struct ggml_tensor * input_dep = ggml_view_tensor(sched->ctx, input);
  1068. input_dep->src[0] = input;
  1069. sched->node_backend_ids[graph_copy->n_nodes] = sched->hv_tensor_backend_ids[input_id];
  1070. graph_copy->nodes[graph_copy->n_nodes++] = input_dep;
  1071. // add a dependency to the input copy so that it is allocated at the start of the split
  1072. sched->node_backend_ids[graph_copy->n_nodes] = split->backend_id;
  1073. graph_copy->nodes[graph_copy->n_nodes++] = input_cpy;
  1074. }
  1075. for (int j = split->i_start; j < split->i_end; j++) {
  1076. assert(graph_copy->size > graph_copy->n_nodes);
  1077. sched->node_backend_ids[graph_copy->n_nodes] = tensor_backend_id(graph->nodes[j]);
  1078. graph_copy->nodes[graph_copy->n_nodes++] = graph->nodes[j];
  1079. }
  1080. }
  1081. if (sched->n_copies > 1) {
  1082. // add input copies as leafs so that they are allocated first
  1083. for (int i = 0; i < sched->n_graph_inputs; i++) {
  1084. struct ggml_tensor * input = sched->graph_inputs[i];
  1085. size_t id = hash_id(input);
  1086. int backend_id = tensor_backend_id(input);
  1087. for (int c = 0; c < sched->n_copies; c++) {
  1088. struct ggml_tensor * input_cpy = tensor_id_copy(id, backend_id, c);
  1089. sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
  1090. assert(graph_copy->size > graph_copy->n_leafs);
  1091. graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
  1092. }
  1093. }
  1094. for (int i = 0; i < sched->n_splits; i++) {
  1095. struct ggml_backend_sched_split * split = &sched->splits[i];
  1096. int backend_id = split->backend_id;
  1097. for (int j = 0; j < split->n_inputs; j++) {
  1098. struct ggml_tensor * input = split->inputs[j];
  1099. size_t id = hash_id(input);
  1100. for (int c = 0; c < sched->n_copies; c++) {
  1101. struct ggml_tensor * input_cpy = tensor_id_copy(id, backend_id, c);
  1102. sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
  1103. assert(graph_copy->size > graph_copy->n_leafs);
  1104. graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
  1105. }
  1106. }
  1107. }
  1108. }
  1109. // add leafs from the original graph
  1110. for (int i = 0; i < graph->n_leafs; i++) {
  1111. struct ggml_tensor * leaf = graph->leafs[i];
  1112. sched->leaf_backend_ids[graph_copy->n_leafs] = tensor_backend_id(leaf);
  1113. assert(graph_copy->size > graph_copy->n_leafs);
  1114. graph_copy->leafs[graph_copy->n_leafs++] = leaf;
  1115. }
  1116. }
  1117. static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) {
  1118. bool backend_ids_changed = false;
  1119. for (int i = 0; i < sched->graph.n_nodes; i++) {
  1120. if (sched->node_backend_ids[i] != sched->prev_node_backend_ids[i] &&
  1121. sched->bufts[sched->node_backend_ids[i]] != sched->bufts[sched->prev_node_backend_ids[i]]) {
  1122. backend_ids_changed = true;
  1123. break;
  1124. }
  1125. }
  1126. if (!backend_ids_changed) {
  1127. for (int i = 0; i < sched->graph.n_leafs; i++) {
  1128. if (sched->leaf_backend_ids[i] != sched->prev_leaf_backend_ids[i] &&
  1129. sched->bufts[sched->leaf_backend_ids[i]] != sched->bufts[sched->prev_leaf_backend_ids[i]]) {
  1130. backend_ids_changed = true;
  1131. break;
  1132. }
  1133. }
  1134. }
  1135. // allocate graph
  1136. if (backend_ids_changed || !ggml_gallocr_alloc_graph(sched->galloc, &sched->graph)) {
  1137. // the re-allocation may cause the split inputs to be moved to a different address
  1138. ggml_backend_sched_synchronize(sched);
  1139. #ifndef NDEBUG
  1140. GGML_LOG_DEBUG("%s: failed to allocate graph, reserving (backend_ids_changed = %d)\n", __func__, backend_ids_changed);
  1141. #endif
  1142. ggml_gallocr_reserve_n(sched->galloc, &sched->graph, sched->node_backend_ids, sched->leaf_backend_ids);
  1143. if (!ggml_gallocr_alloc_graph(sched->galloc, &sched->graph)) {
  1144. GGML_LOG_ERROR("%s: failed to allocate graph\n", __func__);
  1145. return false;
  1146. }
  1147. }
  1148. return true;
  1149. }
  1150. static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t sched) {
  1151. struct ggml_backend_sched_split * splits = sched->splits;
  1152. for (int i = 0; i < sched->n_splits; i++) {
  1153. struct ggml_backend_sched_split * split = &splits[i];
  1154. int split_backend_id = split->backend_id;
  1155. ggml_backend_t split_backend = sched->backends[split_backend_id];
  1156. // copy the input tensors to the split backend
  1157. for (int j = 0; j < split->n_inputs; j++) {
  1158. ggml_backend_t input_backend = ggml_backend_sched_get_tensor_backend(sched, split->inputs[j]);
  1159. struct ggml_tensor * input = split->inputs[j];
  1160. struct ggml_tensor * input_cpy = tensor_copy(input, split_backend_id, sched->cur_copy);
  1161. if (input->flags & GGML_TENSOR_FLAG_INPUT) {
  1162. // inputs from the user must be copied immediately to prevent the user overwriting the data before the copy is done
  1163. if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
  1164. ggml_backend_event_synchronize(sched->events[split_backend_id][sched->cur_copy]);
  1165. } else {
  1166. ggml_backend_synchronize(split_backend);
  1167. }
  1168. ggml_backend_tensor_copy(input, input_cpy);
  1169. } else {
  1170. // wait for the split backend to finish using the input before overwriting it
  1171. if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
  1172. ggml_backend_event_wait(split_backend, sched->events[split_backend_id][sched->cur_copy]);
  1173. } else {
  1174. ggml_backend_synchronize(split_backend);
  1175. }
  1176. // try async copy, but if not possible, we can still use a sync copy without synchronizing the dst backend, since we handle the synchronization here with multiple copies and events
  1177. // TODO: add public function to facilitate this, since applications do not have direct access to the backend interface
  1178. if (!split_backend->iface.cpy_tensor_async || !split_backend->iface.cpy_tensor_async(input_backend, split_backend, input, input_cpy)) {
  1179. ggml_backend_synchronize(input_backend);
  1180. if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
  1181. ggml_backend_event_synchronize(sched->events[split_backend_id][sched->cur_copy]);
  1182. } else {
  1183. ggml_backend_synchronize(split_backend);
  1184. }
  1185. ggml_backend_tensor_copy(input, input_cpy);
  1186. }
  1187. }
  1188. }
  1189. if (!sched->callback_eval) {
  1190. enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &split->graph);
  1191. if (ec != GGML_STATUS_SUCCESS) {
  1192. return ec;
  1193. }
  1194. } else {
  1195. // similar to ggml_backend_compare_graph_backend
  1196. for (int j0 = 0; j0 < split->graph.n_nodes; j0++) {
  1197. struct ggml_tensor * t = split->graph.nodes[j0];
  1198. // check if the user needs data from this node
  1199. bool need = sched->callback_eval(t, true, sched->callback_eval_user_data);
  1200. int j1 = j0;
  1201. // determine the range [j0, j1] of nodes that can be computed together
  1202. while (!need && j1 < split->graph.n_nodes - 1) {
  1203. t = split->graph.nodes[++j1];
  1204. need = sched->callback_eval(t, true, sched->callback_eval_user_data);
  1205. }
  1206. struct ggml_cgraph gv = ggml_graph_view(&split->graph, j0, j1 + 1);
  1207. enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &gv);
  1208. if (ec != GGML_STATUS_SUCCESS) {
  1209. return ec;
  1210. }
  1211. // TODO: pass backend to the callback, then the user can decide if they want to synchronize
  1212. ggml_backend_synchronize(split_backend);
  1213. if (need && !sched->callback_eval(t, false, sched->callback_eval_user_data)) {
  1214. break;
  1215. }
  1216. j0 = j1;
  1217. }
  1218. }
  1219. // record the event of this copy
  1220. if (split->n_inputs > 0) {
  1221. if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
  1222. ggml_backend_event_record(sched->events[split_backend_id][sched->cur_copy], split_backend);
  1223. }
  1224. }
  1225. }
  1226. sched->cur_copy = (sched->cur_copy + 1) % sched->n_copies;
  1227. return GGML_STATUS_SUCCESS;
  1228. }
  1229. ggml_backend_sched_t ggml_backend_sched_new(
  1230. ggml_backend_t * backends,
  1231. ggml_backend_buffer_type_t * bufts,
  1232. int n_backends,
  1233. size_t graph_size,
  1234. bool parallel,
  1235. bool op_offload) {
  1236. GGML_ASSERT(n_backends > 0);
  1237. GGML_ASSERT(n_backends <= GGML_SCHED_MAX_BACKENDS);
  1238. GGML_ASSERT(ggml_backend_dev_type(ggml_backend_get_device(backends[n_backends - 1])) == GGML_BACKEND_DEVICE_TYPE_CPU);
  1239. struct ggml_backend_sched * sched = (ggml_backend_sched *) calloc(1, sizeof(struct ggml_backend_sched));
  1240. const char * GGML_SCHED_DEBUG = getenv("GGML_SCHED_DEBUG");
  1241. sched->debug = GGML_SCHED_DEBUG ? atoi(GGML_SCHED_DEBUG) : 0;
  1242. sched->n_backends = n_backends;
  1243. sched->n_copies = parallel ? GGML_SCHED_MAX_COPIES : 1;
  1244. // initialize hash table
  1245. // FIXME: needs to be size*2 to account for leafs (do it in graph_split instead)
  1246. sched->hash_set = ggml_hash_set_new(graph_size);
  1247. sched->hv_tensor_backend_ids = (int *) malloc(sched->hash_set.size * sizeof(sched->hv_tensor_backend_ids[0]));
  1248. sched->hv_tensor_copies = (ggml_tensor **) malloc(sched->hash_set.size * sched->n_backends * sched->n_copies * sizeof(struct ggml_tensor *));
  1249. const size_t ggml_sched_max_splits = graph_size; // at most there is one split for each node in the graph
  1250. const size_t nodes_size = graph_size + ggml_sched_max_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2;
  1251. sched->node_backend_ids = (int *) calloc(nodes_size, sizeof(sched->node_backend_ids[0]));
  1252. sched->leaf_backend_ids = (int *) calloc(nodes_size, sizeof(sched->leaf_backend_ids[0]));
  1253. sched->prev_node_backend_ids = (int *) calloc(nodes_size, sizeof(sched->prev_node_backend_ids[0]));
  1254. sched->prev_leaf_backend_ids = (int *) calloc(nodes_size, sizeof(sched->prev_leaf_backend_ids[0]));
  1255. sched->context_buffer_size = ggml_sched_max_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2*sizeof(struct ggml_tensor) + ggml_graph_overhead_custom(graph_size, false);
  1256. sched->context_buffer = (char *) malloc(sched->context_buffer_size);
  1257. const int initial_splits_capacity = 16;
  1258. sched->splits = (ggml_backend_sched_split *) calloc(initial_splits_capacity, sizeof(sched->splits[0]));
  1259. sched->splits_capacity = initial_splits_capacity;
  1260. for (int b = 0; b < n_backends; b++) {
  1261. sched->backends[b] = backends[b];
  1262. sched->bufts[b] = bufts ? bufts[b] : ggml_backend_get_default_buffer_type(backends[b]);
  1263. GGML_ASSERT(ggml_backend_supports_buft(backends[b], sched->bufts[b]));
  1264. if (sched->n_copies > 1) {
  1265. for (int c = 0; c < sched->n_copies; c++) {
  1266. sched->events[b][c] = ggml_backend_event_new(backends[b]->device);
  1267. }
  1268. }
  1269. }
  1270. sched->galloc = ggml_gallocr_new_n(sched->bufts, n_backends);
  1271. sched->op_offload = op_offload;
  1272. ggml_backend_sched_reset(sched);
  1273. return sched;
  1274. }
  1275. void ggml_backend_sched_free(ggml_backend_sched_t sched) {
  1276. if (sched == NULL) {
  1277. return;
  1278. }
  1279. for (int b = 0; b < sched->n_backends; b++) {
  1280. for (int c = 0; c < sched->n_copies; c++) {
  1281. ggml_backend_event_free(sched->events[b][c]);
  1282. }
  1283. }
  1284. ggml_gallocr_free(sched->galloc);
  1285. ggml_free(sched->ctx);
  1286. ggml_hash_set_free(&sched->hash_set);
  1287. free(sched->splits);
  1288. free(sched->hv_tensor_backend_ids);
  1289. free(sched->hv_tensor_copies);
  1290. free(sched->node_backend_ids);
  1291. free(sched->leaf_backend_ids);
  1292. free(sched->prev_node_backend_ids);
  1293. free(sched->prev_leaf_backend_ids);
  1294. free(sched->context_buffer);
  1295. free(sched->graph.nodes);
  1296. free(sched->graph.leafs);
  1297. free(sched);
  1298. }
  1299. void ggml_backend_sched_reset(ggml_backend_sched_t sched) {
  1300. // reset state for the next run
  1301. if (!sched->is_reset) {
  1302. ggml_hash_set_reset(&sched->hash_set);
  1303. memset(sched->hv_tensor_backend_ids, -1, sched->hash_set.size * sizeof(sched->hv_tensor_backend_ids[0]));
  1304. memset(sched->hv_tensor_copies, 0, sched->hash_set.size * sched->n_backends * sched->n_copies * sizeof(struct ggml_tensor *));
  1305. sched->is_reset = true;
  1306. }
  1307. sched->is_alloc = false;
  1308. }
  1309. bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) {
  1310. GGML_ASSERT((int)sched->hash_set.size >= measure_graph->n_nodes + measure_graph->n_leafs);
  1311. ggml_backend_sched_split_graph(sched, measure_graph);
  1312. ggml_backend_sched_synchronize(sched);
  1313. if (!ggml_gallocr_reserve_n(sched->galloc, &sched->graph, sched->node_backend_ids, sched->leaf_backend_ids)) {
  1314. return false;
  1315. }
  1316. ggml_backend_sched_reset(sched);
  1317. return true;
  1318. }
  1319. bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  1320. GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes + graph->n_leafs);
  1321. ggml_backend_sched_split_graph(sched, graph);
  1322. if (!ggml_backend_sched_alloc_splits(sched)) {
  1323. return false;
  1324. }
  1325. sched->is_alloc = true;
  1326. return true;
  1327. }
  1328. enum ggml_status ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  1329. enum ggml_status err = ggml_backend_sched_graph_compute_async(sched, graph);
  1330. ggml_backend_sched_synchronize(sched);
  1331. return err;
  1332. }
  1333. enum ggml_status ggml_backend_sched_graph_compute_async(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  1334. if (!sched->is_reset && !sched->is_alloc) {
  1335. ggml_backend_sched_reset(sched);
  1336. }
  1337. if (!sched->is_alloc) {
  1338. if (!ggml_backend_sched_alloc_graph(sched, graph)) {
  1339. return GGML_STATUS_ALLOC_FAILED;
  1340. }
  1341. }
  1342. return ggml_backend_sched_compute_splits(sched);
  1343. }
  1344. void ggml_backend_sched_synchronize(ggml_backend_sched_t sched) {
  1345. for (int i = 0; i < sched->n_backends; i++) {
  1346. ggml_backend_synchronize(sched->backends[i]);
  1347. }
  1348. }
  1349. void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data) {
  1350. sched->callback_eval = callback;
  1351. sched->callback_eval_user_data = user_data;
  1352. }
  1353. int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched) {
  1354. return sched->n_splits;
  1355. }
  1356. int ggml_backend_sched_get_n_copies(ggml_backend_sched_t sched) {
  1357. return sched->n_copies;
  1358. }
  1359. int ggml_backend_sched_get_n_backends(ggml_backend_sched_t sched) {
  1360. return sched->n_backends;
  1361. }
  1362. ggml_backend_t ggml_backend_sched_get_backend(ggml_backend_sched_t sched, int i) {
  1363. GGML_ASSERT(i >= 0 && i < sched->n_backends);
  1364. return sched->backends[i];
  1365. }
  1366. size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend) {
  1367. int backend_index = ggml_backend_sched_backend_id(sched, backend);
  1368. GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
  1369. return ggml_gallocr_get_buffer_size(sched->galloc, backend_index);
  1370. }
  1371. void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) {
  1372. int backend_index = ggml_backend_sched_backend_id(sched, backend);
  1373. GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
  1374. tensor_backend_id(node) = backend_index;
  1375. SET_CAUSE(node, "usr");
  1376. sched->is_reset = false;
  1377. }
  1378. ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node) {
  1379. int backend_index = tensor_backend_id(node);
  1380. if (backend_index == -1) {
  1381. return NULL;
  1382. }
  1383. return sched->backends[backend_index];
  1384. }
  1385. // utils
  1386. enum ggml_status ggml_backend_view_init(struct ggml_tensor * tensor) {
  1387. GGML_ASSERT(tensor->buffer == NULL);
  1388. GGML_ASSERT(tensor->view_src != NULL);
  1389. GGML_ASSERT(tensor->view_src->buffer != NULL);
  1390. GGML_ASSERT(tensor->view_src->data != NULL);
  1391. tensor->buffer = tensor->view_src->buffer;
  1392. tensor->data = (char *)tensor->view_src->data + tensor->view_offs;
  1393. return ggml_backend_buffer_init_tensor(tensor->buffer, tensor);
  1394. }
  1395. enum ggml_status ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr) {
  1396. GGML_ASSERT(tensor->buffer == NULL);
  1397. GGML_ASSERT(tensor->data == NULL);
  1398. GGML_ASSERT(tensor->view_src == NULL);
  1399. GGML_ASSERT(addr >= ggml_backend_buffer_get_base(buffer));
  1400. GGML_ASSERT((char *)addr + ggml_backend_buffer_get_alloc_size(buffer, tensor) <=
  1401. (char *)ggml_backend_buffer_get_base(buffer) + ggml_backend_buffer_get_size(buffer));
  1402. tensor->buffer = buffer;
  1403. tensor->data = addr;
  1404. return ggml_backend_buffer_init_tensor(buffer, tensor);
  1405. }
  1406. static struct ggml_tensor * graph_copy_dup_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies,
  1407. struct ggml_context * ctx_allocated, struct ggml_context * ctx_unallocated, struct ggml_tensor * src) {
  1408. GGML_ASSERT(src != NULL);
  1409. GGML_ASSERT(src->data && "graph must be allocated");
  1410. size_t id = ggml_hash_insert(&hash_set, src);
  1411. if (id == GGML_HASHSET_ALREADY_EXISTS) {
  1412. return node_copies[ggml_hash_find(&hash_set, src)];
  1413. }
  1414. struct ggml_tensor * dst = ggml_dup_tensor_layout(src->data && !src->view_src ? ctx_allocated : ctx_unallocated, src);
  1415. if (src->view_src != NULL) {
  1416. dst->view_src = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, src->view_src);
  1417. dst->view_offs = src->view_offs;
  1418. }
  1419. dst->op = src->op;
  1420. memcpy(dst->op_params, src->op_params, sizeof(dst->op_params));
  1421. ggml_set_name(dst, src->name);
  1422. // copy src
  1423. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1424. struct ggml_tensor * s = src->src[i];
  1425. if (s == NULL) {
  1426. continue;
  1427. }
  1428. dst->src[i] = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, s);
  1429. }
  1430. node_copies[id] = dst;
  1431. return dst;
  1432. }
  1433. static void graph_copy_init_tensor(struct ggml_hash_set * hash_set, struct ggml_tensor ** node_copies, bool * node_init, struct ggml_tensor * src) {
  1434. size_t id = ggml_hash_find(hash_set, src);
  1435. if (node_init[id]) {
  1436. return;
  1437. }
  1438. node_init[id] = true;
  1439. struct ggml_tensor * dst = node_copies[id];
  1440. if (dst->view_src != NULL) {
  1441. graph_copy_init_tensor(hash_set, node_copies, node_init, src->view_src);
  1442. enum ggml_status status = ggml_backend_view_init(dst);
  1443. GGML_ASSERT(status == GGML_STATUS_SUCCESS);
  1444. }
  1445. else {
  1446. ggml_backend_tensor_copy(src, dst);
  1447. }
  1448. // init src
  1449. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1450. struct ggml_tensor * s = src->src[i];
  1451. if (s == NULL) {
  1452. continue;
  1453. }
  1454. graph_copy_init_tensor(hash_set, node_copies, node_init, s);
  1455. }
  1456. }
  1457. struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph) {
  1458. struct ggml_hash_set hash_set = ggml_hash_set_new(graph->visited_hash_set.size);
  1459. struct ggml_tensor ** node_copies = (ggml_tensor **) calloc(hash_set.size, sizeof(node_copies[0])); // NOLINT
  1460. bool * node_init = (bool *) calloc(hash_set.size, sizeof(node_init[0]));
  1461. struct ggml_init_params params = {
  1462. /* .mem_size = */ ggml_tensor_overhead()*hash_set.size + ggml_graph_overhead_custom(graph->size, false),
  1463. /* .mem_buffer = */ NULL,
  1464. /* .no_alloc = */ true
  1465. };
  1466. struct ggml_context * ctx_allocated = ggml_init(params);
  1467. struct ggml_context * ctx_unallocated = ggml_init(params);
  1468. if (ctx_allocated == NULL || ctx_unallocated == NULL) {
  1469. GGML_LOG_ERROR("%s: failed to allocate context for graph copy\n", __func__);
  1470. ggml_hash_set_free(&hash_set);
  1471. free(node_copies);
  1472. free(node_init);
  1473. ggml_free(ctx_allocated);
  1474. ggml_free(ctx_unallocated);
  1475. return {
  1476. /* .buffer = */ NULL,
  1477. /* .ctx_allocated = */ NULL,
  1478. /* .ctx_unallocated = */ NULL,
  1479. /* .graph = */ NULL,
  1480. };
  1481. }
  1482. // dup nodes
  1483. for (int i = 0; i < graph->n_nodes; i++) {
  1484. struct ggml_tensor * node = graph->nodes[i];
  1485. graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, node);
  1486. }
  1487. // allocate nodes
  1488. ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx_allocated, backend);
  1489. if (buffer == NULL) {
  1490. GGML_LOG_ERROR("%s: failed to allocate buffer for graph copy\n", __func__);
  1491. ggml_hash_set_free(&hash_set);
  1492. free(node_copies);
  1493. free(node_init);
  1494. ggml_free(ctx_allocated);
  1495. ggml_free(ctx_unallocated);
  1496. return {
  1497. /* .buffer = */ NULL,
  1498. /* .ctx_allocated = */ NULL,
  1499. /* .ctx_unallocated = */ NULL,
  1500. /* .graph = */ NULL,
  1501. };
  1502. }
  1503. //printf("copy buffer size: %zu MB\n", ggml_backend_buffer_get_size(buffer) / 1024 / 1024);
  1504. // copy data and init views
  1505. for (int i = 0; i < graph->n_nodes; i++) {
  1506. struct ggml_tensor * node = graph->nodes[i];
  1507. graph_copy_init_tensor(&hash_set, node_copies, node_init, node);
  1508. }
  1509. // build graph copy
  1510. struct ggml_cgraph * graph_copy = ggml_new_graph_custom(ctx_allocated, graph->size, false);
  1511. for (int i = 0; i < graph->n_nodes; i++) {
  1512. struct ggml_tensor * node = graph->nodes[i];
  1513. struct ggml_tensor * node_copy = node_copies[ggml_hash_find(&hash_set, node)];
  1514. graph_copy->nodes[i] = node_copy;
  1515. }
  1516. graph_copy->n_nodes = graph->n_nodes;
  1517. ggml_hash_set_free(&hash_set);
  1518. free(node_copies);
  1519. free(node_init);
  1520. return {
  1521. /* .buffer = */ buffer,
  1522. /* .ctx_allocated = */ ctx_allocated,
  1523. /* .ctx_unallocated = */ ctx_unallocated,
  1524. /* .graph = */ graph_copy,
  1525. };
  1526. }
  1527. void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy) {
  1528. ggml_backend_buffer_free(copy.buffer);
  1529. ggml_free(copy.ctx_allocated);
  1530. ggml_free(copy.ctx_unallocated);
  1531. }
  1532. bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data) {
  1533. struct ggml_backend_graph_copy copy = ggml_backend_graph_copy(backend2, graph);
  1534. if (copy.buffer == NULL) {
  1535. return false;
  1536. }
  1537. struct ggml_cgraph * g1 = graph;
  1538. struct ggml_cgraph * g2 = copy.graph;
  1539. assert(g1->n_nodes == g2->n_nodes);
  1540. for (int i = 0; i < g1->n_nodes; i++) {
  1541. struct ggml_tensor * t1 = g1->nodes[i];
  1542. struct ggml_tensor * t2 = g2->nodes[i];
  1543. assert(t1->op == t2->op && ggml_are_same_layout(t1, t2));
  1544. struct ggml_cgraph g1v = ggml_graph_view(g1, i, i + 1);
  1545. struct ggml_cgraph g2v = ggml_graph_view(g2, i, i + 1);
  1546. ggml_backend_graph_compute(backend1, &g1v);
  1547. ggml_backend_graph_compute(backend2, &g2v);
  1548. if (ggml_is_view_op(t1->op)) {
  1549. continue;
  1550. }
  1551. // compare results, calculate rms etc
  1552. if (!callback(i, t1, t2, user_data)) {
  1553. break;
  1554. }
  1555. }
  1556. ggml_backend_graph_copy_free(copy);
  1557. return true;
  1558. }
  1559. // CPU backend - buffer
  1560. static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
  1561. uintptr_t data = (uintptr_t)buffer->context;
  1562. // align the buffer
  1563. if (data % TENSOR_ALIGNMENT != 0) {
  1564. data = GGML_PAD(data, TENSOR_ALIGNMENT);
  1565. }
  1566. return (void *)data;
  1567. }
  1568. static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  1569. ggml_aligned_free(buffer->context, buffer->size);
  1570. }
  1571. static void ggml_backend_cpu_buffer_memset_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
  1572. memset((char *)tensor->data + offset, value, size);
  1573. GGML_UNUSED(buffer);
  1574. }
  1575. static void ggml_backend_cpu_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  1576. memcpy((char *)tensor->data + offset, data, size);
  1577. GGML_UNUSED(buffer);
  1578. }
  1579. static void ggml_backend_cpu_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  1580. memcpy(data, (const char *)tensor->data + offset, size);
  1581. GGML_UNUSED(buffer);
  1582. }
  1583. static bool ggml_backend_cpu_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
  1584. if (ggml_backend_buffer_is_host(src->buffer)) {
  1585. memcpy(dst->data, src->data, ggml_nbytes(src));
  1586. return true;
  1587. }
  1588. return false;
  1589. GGML_UNUSED(buffer);
  1590. }
  1591. static void ggml_backend_cpu_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  1592. memset(buffer->context, value, buffer->size);
  1593. }
  1594. static const struct ggml_backend_buffer_i ggml_backend_cpu_buffer_i = {
  1595. /* .free_buffer = */ ggml_backend_cpu_buffer_free_buffer,
  1596. /* .get_base = */ ggml_backend_cpu_buffer_get_base,
  1597. /* .init_tensor = */ NULL, // no initialization required
  1598. /* .memset_tensor = */ ggml_backend_cpu_buffer_memset_tensor,
  1599. /* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
  1600. /* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
  1601. /* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor,
  1602. /* .clear = */ ggml_backend_cpu_buffer_clear,
  1603. /* .reset = */ NULL,
  1604. };
  1605. static const struct ggml_backend_buffer_i ggml_backend_cpu_buffer_from_ptr_i = {
  1606. /* .free_buffer = */ NULL, // ptr is not owned by the buffer, so it does not need to be freed
  1607. /* .get_base = */ ggml_backend_cpu_buffer_get_base,
  1608. /* .init_tensor = */ NULL, // no initialization required
  1609. /* .memset_tensor = */ ggml_backend_cpu_buffer_memset_tensor,
  1610. /* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
  1611. /* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
  1612. /* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor,
  1613. /* .clear = */ ggml_backend_cpu_buffer_clear,
  1614. /* .reset = */ NULL,
  1615. };
  1616. // CPU backend buffer type
  1617. // this buffer type is defined here to make it available to all backends
  1618. static const char * ggml_backend_cpu_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
  1619. return "CPU";
  1620. GGML_UNUSED(buft);
  1621. }
  1622. static ggml_backend_buffer_t ggml_backend_cpu_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  1623. void * data = ggml_aligned_malloc(size);
  1624. if (data == NULL) {
  1625. GGML_LOG_ERROR("%s: failed to allocate buffer of size %zu\n", __func__, size);
  1626. return NULL;
  1627. }
  1628. return ggml_backend_buffer_init(buft, ggml_backend_cpu_buffer_i, data, size);
  1629. }
  1630. static size_t ggml_backend_cpu_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
  1631. return TENSOR_ALIGNMENT;
  1632. GGML_UNUSED(buft);
  1633. }
  1634. static bool ggml_backend_cpu_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
  1635. return true;
  1636. GGML_UNUSED(buft);
  1637. }
  1638. ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void) {
  1639. static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type = {
  1640. /* .iface = */ {
  1641. /* .get_name = */ ggml_backend_cpu_buffer_type_get_name,
  1642. /* .alloc_buffer = */ ggml_backend_cpu_buffer_type_alloc_buffer,
  1643. /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
  1644. /* .get_max_size = */ NULL, // defaults to SIZE_MAX
  1645. /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
  1646. /* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
  1647. },
  1648. /* .device = */ NULL, // FIXME ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0),
  1649. /* .context = */ NULL,
  1650. };
  1651. return &ggml_backend_cpu_buffer_type;
  1652. }
  1653. static const char * ggml_backend_cpu_buffer_from_ptr_type_get_name(ggml_backend_buffer_type_t buft) {
  1654. return "CPU_Mapped";
  1655. GGML_UNUSED(buft);
  1656. }
  1657. static ggml_backend_buffer_type_t ggml_backend_cpu_buffer_from_ptr_type(void) {
  1658. static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type = {
  1659. /* .iface = */ {
  1660. /* .get_name = */ ggml_backend_cpu_buffer_from_ptr_type_get_name,
  1661. /* .alloc_buffer = */ ggml_backend_cpu_buffer_type_alloc_buffer,
  1662. /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
  1663. /* .get_max_size = */ NULL, // defaults to SIZE_MAX
  1664. /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
  1665. /* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
  1666. },
  1667. /* .device = */ NULL, // FIXME ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0),
  1668. /* .context = */ NULL,
  1669. };
  1670. return &ggml_backend_cpu_buffer_type;
  1671. }
  1672. ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size) {
  1673. GGML_ASSERT((uintptr_t)ptr % TENSOR_ALIGNMENT == 0 && "buffer pointer must be aligned");
  1674. return ggml_backend_buffer_init(ggml_backend_cpu_buffer_from_ptr_type(), ggml_backend_cpu_buffer_from_ptr_i, ptr, size);
  1675. }